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Abstract of the Dissertation

Interpreting News Through the Science of Networks

by

Andrew Mehler

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

On-line news sources provide a large and comprehensive corpus of world events

and news entities. The Lydia project (www.textmap.com) analyzes over a thousand

on-line newspapers every day to discover news trends, sentiments, and geographic

biases. The aim of the project is to deliver news analysis on ascale of content

that would be impossible for a person to read, and to mine the data to learn infor-

mation that a human would otherwise be unable to realize. We leverage network

analysis techniques to understand this real world online news data. First, a geo-

graphic network based on cities is used to visualize our data, and to quantify which

news entities have a geographic bias. We also consider the network formed by

co-occurrences of people in news articles. We discover the network is scale-free,

and show what we may learn from this network. We then show how we can clean

the network, removing noise andspuriousedges. Removing these spurious edges

leaves the properties of the network essentially unaltered. Finally, we show how

to discover communities in the network by using a small set ofexample members.

Given some example members (20-400) we are able to discover communities of

thousands of members. In addition, we describe the co-reference resolution tech-

nique, an important step in improving the reliability and robustness of th network
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data. The algorithm for clustering co-references is shown,as well as a method of

hashing names to quickly discover co-reference candidates.
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Chapter 1

Introduction

Online news sources provide a large and comprehensive corpus of world events

and news entities. The Lydia project (www.textmap.com) analyzes over a thousand

online newspapers every day to discover news trends, sentiments, and geographic

biases. An example of the online front end of the project is shown in Figure 1. The

aim of the project is to deliver news analysis on a scale of content that would be

impossible for a person to read, and to mine the data to discover world facts that

a human would be unable to realize. We leverage network analysis techniques to

understand this real world online news data. First, a geographic network based on

cities is used to visualize our data, and quantify which newsentities have a geo-

graphic bias. We also consider the network formed by co-occurrences of references

to people in news articles. We discover the network is scale-free, and show what

we may learn from this network. We then show how we can clean the network,

removing noise andspuriousedges. Removing these spurious edges leaves the

properties of the network essentially unaltered. Finally,we show how to discover

communities in the network by using a small set of example members. Given some

example members (20-400) we are able to discover communities of thousands of

members. In addition, we describe our co-reference resolution technique. Resolv-

ing co-references is an important step in improving the reliability and robustness of

1



Figure 1: Textmap (www.textmap.com) page of Barack Obama

the network data. An algorithm for clustering co-references is developed, as well

as a method of hashing names to quickly discover co-reference candidates.

The architecture of the Lydia system has been described in detail in [48]. The

main components of Lydia are

1. Spiders to download the news sources.

2. Named entity recognition, including co-reference resolution [49].

3. Various derivative analyses based on the named entity recognition.

The system can also be extended to other sources such as journal databases, finan-

cial reports, and blogs [47]. Some derivative analyses provided include question

2



answering [42], spatial analysis and geographic bias (‘heatmaps’) [53], and senti-

ment analysis [29]. Searching our database is also discussed in [8].

The component of Lydia that we leverage most for further study is theNamed

Entity Recognitionpipeline. This stage reads plain article text, and extractsthe

Named Entities (which we will call ‘actors’ or ‘entities’).These are the proper noun

entities (people, places, organizations) that the articles discuss. For example, if the

article mentions the string ‘Bill Clinton’, then the pipelinewould extract that ‘Bill

Clinton’ is a named entity, and its type is ‘PERSON’. When two named entities

appear in the same article, we say there is aco-occurrence, or that there exists a

juxtaposition. Clearly, much can be learned about an entity from other entities with

who they are talked about (who is in their neighborhood). These neighbors in the

articles can be represented as a network, and network science techniques can be

applied.

1.1 My Publications

I have been working on problems related to news analysis since May 2003. My

three publications on this work to date [49, 53, 54] are summarized below, and will

also be covered in subsequent chapters.

• Spatial Data Analysis.In [53] the spatial analysis techniques used with Lydia

are described. The main results of this are the ‘heatmap’ images that are seen

on entity pages. Considering the maps as geographic networks, we interpolate

‘heat’ values from news data, and develop methods to quantify geographic

bias. We describe the model for estimating geographic popularity, calculating

how much bias a map shows, color schemes used, and the production process

for rendering the maps.

• Determining Co-References.In [49] we describe our techniques for determin-

ing co-referential entities. This is the problem of determining that ‘George
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Bush’ and ‘George W. Bush’ actually are referring to the same person. We

consider the vector of terms that co-occur with an entity, and base a similar-

ity score on the cosine similarity of two term vectors. In terms of network

science, co-reference candidates are vertices that arestructurally equivalent.

Since the space of terms is so large, we first reduce the dimensionality of the

problem, by clustering the terms into 100 different groups.

• Corrective Hashing.Password corrective hashing is described in [54]. We

show that a password scheme can retain nearly all of its security with in-

creased usability by allowing a small number of errors in thepassword. While

seemingly separate from the main themes of this thesis, corrective hashing is

a needed method for reducing the complexity of finding co-references. It can

find candidates for co-reference, as a way for correcting common spelling

errors, and typos.

1.2 Network Science

More general knowledge of the world can be discovered from reading news articles

besides just the topics of the articles. This includes identifying what communities

there are, what the most important entities are, how the entities are inter-related,

what is talked about positively and negatively, where geographically entities are

talked about most, and the temporal interest in entities. Much of this can be learned

by studying the networks that arise from Lydia’s named entity extraction. Knowl-

edge of the world can be optimized by simply studying the networks created by

entities co-occurring in news articles. Among the networkswe can consider are

the entity co-occurrence network (for different definitions of co-occurrence), the

entity - article participation network, or even the entity -author participation net-

work. For example Figure 2 shows an example co-occurrence network focused on
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Figure 2: An example network, focused on Hillary Clinton.

Hillary Clinton. This network is taken from actual data accumulated up to 4 Octo-

ber 2007. For visualization, not all network edges are shown, only those deemed

most important.

Network science techniques can be applied to these networksto discover new

information about the world. Some of the problems that can besolved with so-

cial network analysis are: identifying spurious relationships, discovering commu-

nities (clusters), monitoring changes in communities/network over time, discovery

of dominating and sibling entities, classification of entity type, co-reference and

disambiguation, and predicting sentiment.
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Network science studies how individual elements interact to exhibit phe-

nomenon that cannot be described by individual interactions. The reductionist hy-

pothesis, which states that a system can be understood by breaking it down into its

smallest parts and understanding the interaction between individual particles, was

rejected by Anderson in his 1972 paper [2]. Instead, networkscience tells us that

complex interactions in a network lead to higher order phenomenon which are not

predicted by individual interactions. This is why higher order disciplines such as

chemistry, biology and economics exist [81].

One property displayed by social networks is the ‘Small World Phenomenon’,

popularized by the Stanley Milgram experiment [55]. Real world networks tend to

have small distances between vertices, and these small paths are easily found locally

by greedy routing. That is, not only do short paths exist, butthey can be easily

found by the members of the network, using only information about a members

neighbors [82]. Milgram showed this by having subjects in Nebraska route a letter

to an unknown person in Massachusetts, where at each hop the letter could only be

sent to someone the sender was on a first name basis with. Of thechains that were

completed, the average length of the chain was only 6. This property of networks

is somewhat conflicting with the property that real networkstend to have a high

clustering coefficient (groups tend to form), since highly clustered networks would

have vertices isolated from vertices not in their cluster [81]. Having both of these

properties is what distinguishes small-world networks.

At the core of network theory is simple graph theory. Graphs are used to de-

scribe social networks, and many graph theoretic properties are commonly used

to describe the properties of a social network. These include diameter, clustering

coefficients, and centrality measures. Centrality measurestell us about the ‘impor-

tance’ of a node of a network. Observing how information flowsthrough members

of a network will show that nodes of high centrality have a large influence over

the network. The spread of information through a populationcan be learned from
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studying the network properties. In some cases, as in viral marketing, we wish to

target very few, but very important nodes that will lead to a cascade of an idea. But

in the case of preventing the spread of a disease, we wish to discover what network

connections should be altered to make a population resilient to an outbreak [81].

A major concept in network theory is that a network is dynamic. It changes and

evolves over time. The network will cluster, and form groups, and these groups will

change over time. The key observation is that although groupformation and mem-

bership externally seems to be an independent decision of the entities, the structure

of the network makes group movement predictable. Group formations are deter-

mined by network configuration to some extent, and not freelychosen by entities.

1.3 Properties of News Networks
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Figure 3: Degree (r) and Juxtaposition Count (l) Distribution (log-log) of News
Entity Network.

1.3.1 Data Sets

Our analysis is done on three different sets of data. The principal area of interest is

in online news data. We have 2 sets of data for this, one small set of very reliable,
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well known sources (i.e. The New York Times, The Washington Post, etc.); and

a second large set of all sources we could acquire (includingmany smaller, local

sources). The smaller set, called ‘goodnews’, is less noisy, and easier to experiment

with given its size. However we feel the larger set, called ‘dailies’, is more likely to

contain interesting signals.

Our goodnews news entity network consists of data extractedfrom 158 online

news sources, starting from November 1 2004. There are 495,320 vertices (enti-

ties) in the network, and 2,249,568 edges. Restricted to people, there are 144,851

vertices and 265,779 edges.

Our dailies news entity network consists of data extracted from 917 online news

sources, from November 1, 2004. There are 853,054 vertices (entities) in the net-

work, and 4,753,134 edges. Restricted to people, there are 299,486 vertices and

594,884 edges.

For comparison, we also have a network obtained from pubmed abstracts, called

‘medline’. There are 29,282 vertices (entities) in the network, and 260,730 edges.

In addition, we analyze the networks on all extracted entities, and also just on

the subset of people entities. The summaries of main net workproperties are shown

in Table 1.

Source Categories Vertices Edges Avg. Degree
goodnews PERSON 144,851 256,779 3.545
goodnews all 495,320 2,249,568 9.083
dailies PERSON 299,486 594,884 3.973
dailies all 853,054 4,753,134 11.144
medline all 29,282 260,730 17.808

Table 1: Network Summaries.

Figure 3 shows a log-log plot of the degrees of the nodes of ournetwork. The

linear trend of the plot suggests a power-law distribution for node degrees, meaning

our network is in the category of scale-free networks. Scale-free networks are a

class of networks whose degree distributions obey a power law [12]; the probability
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of a node having degreek, P(k) is

P(k) ∝ α−k

whereα is a constant depending on the network (typically between 2 and 3). This

model suggests that entities display preferential attachment. That is, vertices will

attach to popular vertices with higher probability; a rich get richer scenario. The

model can be expanded with afitnessfor each vertex to explain the popularity of

new vertices [12, 7]. The highest degree nodes in our networkare shown in table 2.

We see three important political entities, and a popular Nascar driver. Also seen are

some example entities having middle and low degrees.

High Degree Mid Degree Lowest Degree
George W. Bush 1015 Alec Baldwin 125 Jeff Tweedy 15
Mark Martin 803 David Beckham 124 Vanna White 10
Barack Obama 736 Larry King 119 Seth MacFarlane 5
John McCain 663 Kurt Vonnegut 48 Martin Van Buren 3

Table 2: Example Degrees of Nodes in goodnews data.

1.3.2 Juxtapositions

The network we consider is a co-occurrence network. There isan edge between two

entities if they both appear in the same sentence in an article. The weight associated

with an edge is the number of times the two entities co-occur.Figure 3 shows the

degree distribution of the co-occurrence counts of actors.This result coincides with

our notion that the network is scale-free, that is the entities tend to connect to other

popular entities.

The rest of this thesis is organized as follows: Chapter 2 discusses spatial anal-

ysis, and the generation of ‘heatmaps’. Our co-reference resolution algorithm is

described in Chapter 3. Chapter 4 discusses password-corrective hashing, a tech-

nique that is used in co-reference resolution. Chapter 5 shows how the network
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can be used to remove spurious edges. Discovering a community from seeds is in

Chapter 6. Finally, Chapter 7 concludes with areas of future research.
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Chapter 2

Spatial Analysis of News Sources1

2.1 Introduction

Lydia tracks the occurrences of hundreds of thousands different entities arising

in news sources. An exciting consequence of this is that we can establish re-

gional biases in the news, by analyzing the relative frequency that entities are men-

tioned in different news sources. We can report the results of our analysis through

“heatmaps”, which are data maps reflecting interest in a given entity as a function

of location.

Typical heatmaps of interest are presented in Figures 4-5. The heatmap for New

York governorGeorge Patakiis from October 2005, and focuses on his home state

of New York; but also exhibits a secondary concentration in Iowa. This is explain-

able by Pataki’s consideration as a presidential candidate, and the significance of

the Iowa Caucuses, the first test of the U.S. presidential primary season (such ambi-

tions for Pataki were not realized). The heatmap for PhoenixSun’s basketball star

Steve Nashreflects home town fan interest in both his current and previous (Dal-

las Mavericks) teams. Heatmaps of geographical locations also show interesting

biases. News interest inMexico is significantly heavier around the U.S. / Mexico

1This chapter is an extended version of [53].
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Figure 4: Heatmaps for New York GovernorGeorge Pataki(l) and Dallas/Phoenix
basketball starSteve Nash(r).

border, particularly in southern Texas.Washington, DCreflects national interest in

its capital city, with stronger concentrations centered inthe District of Columbia

(reflecting local interest) and the State of Washington (reflecting natural language

processing artifacts in resolving city references from state references). National

figures such as President George Bush show little regional bias, while former in-

ternational movie star Arnold Schwarzenegger is today primarily a state political

figure.

It is the geographical bias among primary news sources whichpermits us to

construct maps of relative interest in particular entities. An alternate way to study

relative geographic interest is to compare the reference frequency of entities in a

given news source. These biases are illustrated in Table 3, which present signif-

icantly overrepresented entities in each of three major American newspapers, as

scored by the number of standard deviations above the mean frequency of reference

over all sources. These over-represented entities includelocal political and busi-

ness figures (e.g.Brad Fitzpatrickof LiveJournal and television starOprah Winfrey,

based in San Francisco and Chicago, respectively), local sports figures/teams (e.g.

Steve McMichaelandDwayne Wade), and even local dialects (e.g.Estados Unidos
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San Francisco Chronicle Chicago Tribune Miami Herald

Entity Score Entity Score Entity Score

Wuksachi Lodge 24.39 Steve McMichael 24.38 Estados Unidos 16.49

Brad Fitzpatrick 24.39 Chicago Tribune 23.20 Broward 14.65

Golden Gate Park 15.29 Richard J. Daley 15.89 Dwyane Wade 13.60

Bay Area 12.03 White Sox 13.86 Miami-Dade County 12.48

San Francisco, CA 10.20 Ozzie Guillen 10.42 Marlins 11.55

Giants 4.66 Oprah Winfrey 10.39 Adam Kidan 11.08

Table 3: Overrepresented Entities in Three Major U.S. Newspapers

Figure 5: Heatmaps for two geographic locations, namelyMexicoandWashington,
DC.

in heavily Cuban Miami).

Also, we can also study over-representation by city, as in Table 4. We use the

‘heat’ measure as used in the heatmaps, searching for which terms are the most

standard deviations above their mean.

Note that these source biases reflect interest in the primarylocation the given

paper. However, the set of U.S. cities with spiderable online daily newspapers is

surprisingly small, so sophisticated modeling and analysis are needed to interpolate

this data throughout the United States. Our contributions are:

• News Source and Coverage Analysis– We discuss the basic mechanics of
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San Francisco Chronicle Chicago Tribune Miami Herald

Entity Score Entity Score Entity Score

Gavin Newsom 10.84 Chicago, IL 8.57 Miami, FL 10.26

San Francisco, CA 10.56 Richard Daley 7.06 South Florida 9.53

Bay Area 8.44 Joan Humphrey Lefkow 5.20 Fort Lauderdale, FL 8.76

Pedro Feliz 5.36 Aon Corp. 4.69 Cuba 8.09

BALCO 5.29 Salvador Dali 4.54 Caracas 7.02

Kimberly Bell 5.02 Wrigley Field 4.42 Florida Marlins 6.91

Table 4: Most Overrepresented Entities in Three Important U.S. Cities

large-scale news acquisition and analysis, including spidering and duplicate

document identification. We use visualization techniques to demonstrate how

news sources are distributed around the country. We donotdiscuss the details

of our entity extraction / NLP analysis, which has been previously presented

in [49, 48, 42].

• Source-Influence Modeling for Entity Analysis– Interpolating entity distribu-

tions from roughly 500 different newspapers to reflect relative interest over

the entire United States requires some sophisticated modeling. In this chap-

ter, we present the details of our news source-influence model. This model

is based on computing an appropriate sphere of influence for each newspa-

per, as a function of its circulation, location, and the population distribution

of the United States. We also describe our model for allocating the relative

contribution of all news sources influencing each location.

• Visualization Techniques for Data Maps– The engineering of our spatial

news analysis system required a variety of decisions concerning visualization

techniques, which may be of independent interest. These include the use of

Delauney triangulations for surface interpolation and evaluations of assorted

color scales.
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• Identifying Interesting Heatmaps– Our system is capable of constructing

heatmaps for thousands of different entities on a daily basis – far more than

can be exhaustively viewed by any human observer. Many heatmaps are un-

interesting in that they show no regional bias. Identifyingthe most interesting

heatmaps for visual inspection requires the development ofstatistical meth-

ods for evaluating geographical bias.

We propose a total of five different discrimination functions, each a variant

of one of two general methods, namely variance analysis and connected-

component histograms. We present the results of computational experi-

ments that demonstrate that while all can successfully distinguish spatially-

interesting entity maps from those of unbiased entities andrandom distribu-

tions, the best in practice appear to be the weighted variance and maximum

gap discriminators.

2.1.1 Previous Work

Statistical geographic maps are studied in depth in [75]. The Moran coefficient is

described as a measure of spatial autocorrelation. The Moran coefficient is given as

MC =
∑n

i=1∑n
j=1wi j (Xi −X)(Xj −X)/∑i ∑ j wi j

∑n
i=1(Xi −X)2/n

(1)

wherewi j is 1 for adjacent elements and 0 otherwise. When examining heatmaps,

we do not suppose spatial autocorrelation to be of use; as we expect both geograph-

ically biased and unbiased maps to have high spatial autocorrelation, a result of the

modelling and of the nature of news. A comprehensive overview of map layout,

color, and all aspects of creation are also covered.

Miller and Han [56] give frameworks and algorithms for data mining tasks

on spatial and geographical databases. They focus on representation, rule mining,

clustering, outlier detection, and other data mining tasks. Work on smoothing has

been done to help visualize data. Algorithms such as Head-Banging [57], [32] (a
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median based smoother), splines, surface modelling, wavelet transforms, are used

to smooth noisy data. Our problem differs from these in that smoothing algorithms

start with an exact data map, and hope to filter out noise. We donot start with

an exact data map; we start with loose geographic information about heat, based

on newspaper locations, and attempt to create the exact data. For instance, [57]

examine mortality data maps. The data map begins with exact values of mortality

rates, and their smoother makes this information easier to visualize. We however

do not begin with any data. We must calculate the heat data fora city based on the

newspapers from surrounding cities.

Lydia is the front-end analysis system we employ in this project todo entity

extraction on our newspaper sources. An in-depth discussion on the architecture of

theLydia natural language processing (NLP) pipeline can be found in [48]. Lydia

has been adapted to work on a variety of other text sources, including blogs [49],

and served as the basis for a question answering system discussed in [42].

2.2 Text Acquisition and Analysis

The data for our analyses come from U.S. newspaper websites.In this section,

we describe the mechanics of acquiring representative newstext through spidering

and duplicate article detection analysis before reportingan analysis of the coverage

breadth of our news sampling.

2.2.1 Text Acquisition / Spidering

It is clearly infeasible for us to build custom spiders for each of the roughly 800

daily newspapers in the United States and approximately 300daily English lan-

guage newspapers overseas that Lydia uses. Instead, we developed a universal spi-

der that downloads all the pages from a newspaper website, extracts all new articles,

and normalizes them to remove source-specific formatting and artifacts.
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Our spiders are built around the popular programwget[33] with the correct pa-

rameters; regulating the recursion depth (two levels suffices for most newspapers),

user identification (via cookies), and wait time (for politeness, we never hit a web-

site more than once per second). The news sources are dividedby time zone, with

many (at least 30) newspapers spidered in parallel across a given zone. Each down-

load starts at 12:30AM local time. Each newspaper takes about 20-80 minutes to

download, with a raw download size of 40-130MB. There are two reasons why we

download more than 40 times the amount of data per newspaper day than we end

up with: (1) wgetdownloads the entire directory structure of the website, includ-

ing old articles and (2) each html file also contains a lot of other things including

advertisements and navigational aids.

2.2.2 Duplicate Article Identification

An interesting issue we faced concerned identifying duplicate and near-duplicate

news articles. Repeated instances of given news articles canskew the significance

of our spatial trends analysis, so we need to eliminate duplicate articles before sub-

sequent processing. Duplicate articles appear both as a result of syndication and

because old articles are often left on a website and get repeatedly spidered.

Schleimer et al.[71] describe a clever solution to this problem in the context

of plagiarism detection. By comparing hash codes on all overlapping windows of

length w appearing in the documents, we can identify whenever two documents

share a common sequence of lengthw, although at the cost of an index at least the

size of the documents themselves. However, the index size can be substantially

reduced by a factor ofp with little loss of detection accuracy by only keeping the

codes which are congruent to 0 modp. This will result in a different number of

codes for different documents, however. We discovered little loss of detection will

happen if we select thec smallestcodes congruent to 0 modp for each article. The

naive way to do this is to hash alln−w windows for ann-character document in
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O(wn) time. However, The Karp-Rabin string matching algorithm [38] proposes an

incremental hash code such that all codes can be computed in linear time.

Through experimentation, we discovered that taking the 10 smallest hashes of

windows of size 150 characters that are congruent to 0 mod 100gives (1) a good

sub-sampling of the possible hashes in a document, (2) a reasonable probability

that if two articles are near duplicates, then they will collide on at least two of these

hashes and (3) a reasonable probability that if two articlesare unique, then they

will not collide on more than one of these hashes. Our experimental set of 3,583

newspaper days resulted in a total of 253,523 unique articles with 185,398 exact

duplicates and 8,874 near duplicates according to our measure.

2.2.3 News Coverage Analysis

Every local newspaper has a readership centered around the city in which it is lo-

cated. The size of thesphere of influencearound a given paper is a function of

(1) its readership (naturally measured by circulation or a proxy such as web hits)

and (2) geographic population density. Details of our influence analysis will be

presented in Section 2.3, but here we discuss its consequences on sampling density

and potential for multi-source integration.

We have attempted to spider all of the roughly 800 daily U.S. newspapers we

are aware of through authoritative web sources. Many newspaper websites are no

longer active or are highly seasonal (particularly school newspapers which cease

activity for summer and other break periods). Others (primarily small limited cir-

culation papers) employ robot.txt files or even block IP addresses to prevent us from

spidering them. The upshot is that we get occasional spidering data from roughly

600 online newspapers, however on any given day only about 500 sources are ac-

tive.

We can use our model of influences to visualize the coverage ofthe sources we

spider. Figure 6 presents a datamap where a city’s heat is a function of the number
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of newspapers it is influenced by. We get significant coveragethroughout the entire

country, excepting isolated border locations around Maine, Minnesota, and Texas.

The regions covered by more than ten sources are emphasized in the binary map

of Figure 7. Many of these areas are surprisingly scattered around the country,

reflecting intense competition among small papers in many local markets.

Figure 6: The number of different news sources influencing each U.S. city.

Figure 8 measures the relative raw volume of text that influences residents of

each location. The national media centers of California and New York are signifi-

cantly overrepresented by this measure.

However, if we weight the word count by the influence (see Section 2.3 as in

Figure 9 we see that the words of news any city gets is much moreuniform, perhaps

indicating a universal capacity for news volume.
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Figure 7: The number of cities influenced by more than ten sources.
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Figure 8: Media exposure by location as measured by volume oftotal words.
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Figure 9: Average words per unit of influence.
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2.3 Source-Influence Modeling

The heat any given entitye generates in a given locations is a function of the

frequency of reference ofe in each of the sources that have influence overs. The

relative frequency of entitye in the sourcesi is given by

heat(e,s) =
references(e,s)

∑ references(ei,s)
. (2)

Thus each heat value is from 0 to 1, giving the frequency of reference to the

particular entity. A heat value of 0.05 implies that the entity is referenced once for

every 20 entity references over the universe of all entities. The heat of an entity

is a relative measure; even areas of high news volume may boast more absolute

references to a given entity, but the popularity (heat) is determined by itsfrequency

of reference.

The principle concern of heatmap construction is determining the ‘heat’ values,

which is the estimate of the frequency of reference. The problem is trivial if we have

just a single source (we just use the frequency reference of that source), but diffi-

culties emerge with combining multiple sources. The sources should be combined

in such a way that the more influential source has a greater sayin determining the

heat value. For instance, references in ‘The New York Times’should have a greater

effect than references in ‘The Ithaca Times’. However, we also need to consider

the geographic distribution of the source. ‘The Ithaca Times’ will have greater in-

fluence over cities close to Ithaca, with decreasing influence the farther away a city

is.

2.3.1 Estimating Source Influence

An analysis involving both ‘The New York Times’ and ‘The Ithaca Times’ must

capture theinfluencerelation between a news source and a location. This influence

relation must take into account the distance of the source from the location, the

circulation of the source, and other relevant features.
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Constructing this influence function forms the basis of our heatmap model. The

radius of influence of a news source depends on the circulation of the newspaper,

and the population of nearby cities. Cities inside of this circle will be influenced by

an amount depending on their distance from the center, with maximum influence at

the newspaper’s location. This is captured in the equation

in f luence(s,c) =







0 if dist(s,c) > r in f (s)

f (distance(s,c))×max-influence(s) else

where f is some decay function, in our case linear, andr in f (s) is the radius of

influence ofs. When f is linear, the influence of a newspaper can be thought of as

a cone centered at the newspaper, with height the maximum-influence, and base the

circle of influence. Cities outside of this circle will receive zero influence from the

given source.

The maximum influence of a newspaper source is a combination of various

circulation and ranking statistics of the source. In particular, we use a weighted

combination of Alexa’s reach per million web traffic analysis (www.alexa.org) and

the weekday average circulation of the newspaper. Togetherthey estimate the num-

ber of readers (both online and paper) of the newspaper. We estimate the online

readership by multiplying the Alexa reach per million by thepopulation of the U.S.

in millions. We estimate the radius of influence supported bya given printed circu-

lation through an estimate of the frequency with which people subscribe to news-

papers. We model that 10% of the population covered by the radius of influence

should equal the readership estimate.

2.3.2 Integrating Multiple Sources

Once the influence function of each source has been defined, the heat at a location

can be calculated by a weighted average of the reference frequencies of the entity

in each source, weighted by each source’s influence on the location. (The reader
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Figure 10: Black body radiation heatmaps for Mexico and Washington, DC.

should be aware that we have overloaded the heat function. The final function we

are trying to model is the heat function between cities and entities. We also make

use of the heat between an entity and a source).

For our model, we discretize space into roughly 25,000 U.S. cities/towns of all

sizes. For a givenC of cities,S of news sources, andE of entities, we define the

heat of an entityeat cityc as:

heat(e,c) =

∑
s∈S

heat(e,s)× influence(s,c)

∑
s∈S

influence(s,c)
. (3)

2.4 Visualization Issues

To render our heatmaps, we use mesa/openGl graphics libraries. We know how to

calculate the heat at cities, and openGl will interpolate heat between cities if given

a polygon mesh. To get a polygon mesh from our set of cities, weused Jonathan

Richard Shewchuk’s C program ‘ triangle ’ [74], [6]. This creates a Delauney

triangulation of the cities.

To get the coloring for the heatmaps, we set the scale such that the maximum

heat value gets the highest red value, and the other values are scaled linearly. This
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Figure 11: Comparing heatmaps for national-figure George Bush(l) and California
Governor Arnold Schwarzenegger (r). Schwarzenegger displays a clear regional
bias toward his home state.

makes 2 heatmaps incomparable, since they are on different scales. However, using

absolute scales makes most heat effects unobservable, since very low values are im-

perceivable. This method ensures we will always have maximum contrast between

the highest and lowest heat values.

Figure 10 show heatmaps using an alternate coloring, calledblack-body radi-

ation. For this method, each heat value is scaled to Kelvin temperatures, and the

color chosen is the wavelength of light a black body with thattemperature emits.

The black body coloring scheme makes it easier to observe thesmaller fluctuations

of heat while retaining the impact of the areas of large heat.

2.5 Identifying Significant Heatmaps

Once we have the ability to calculate a large number of entityheatmaps, we are

faced with the problem of automatically screening which of these are interesting

to look at, i.e. suggest significant geographic bias vs. entities of uniform national

interest.

In this section we present methods for quantifying the geographic disparity of a
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heatmap. Geographic disparity does not have a precise definition, and proves dif-

ficult to quantify for a variety of reasons. Because the population density is highly

non-uniform, the relative sizes of significant intensity proves misleading. For ex-

ample. the area covered by “red” and “blue” states on the electoral map overstates

the degree of red/Republican dominance due to their strengthin the sparsely pop-

ulated West. The news distributions resulting from our model prove to have large

numbers of local optima. Do these represent distinct regional sources of elevated

interest or are they modeling artifacts?

We consider two distinct classes of methods, based on variance analysis and

connected component analysis respectively.

2.5.1 Variance Analysis

Statistical variance measures the deviation of data valuesfrom their mean. We

would expect that heatmaps showing higher statistical variance of heat values more

likely reflect regional biases, although similar variance measures can be derived

from simple checkerboard patterns. That is, imagine a black/red checkerboard,

versus a board with left half painted red, and the right half black. Both boards have

the same frequency of red and black squares, but the checkerboard pattern has no

spatial biases.

We define two scores reflecting this measure:

• Variance– Our heatmap construction gives us heat values for each of 25,374

cities. For this measure, we compute the variance of these 25,374 heat values.

• Weighted Variance– The variance measure will be biased by absolute heat.

If we scale every value on a heatmap by some constant, the variance will also

be scaled (by the square of the constant), although the underlying distribution

is essentially the same. For this measure we divide the variance by the mean

of the 25,374 values.
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The first 2 scores we use are variance, and variance divided bymean. We ex-

pect a term with geographic bias to have 2 different distributions (1 for the area of

interest, and 1 for the rest of the country) and thus have highvariance. Variance

alone however will usually weight a term that is overall morepopular higher then a

term that is overall less popular, but has more geographic bias. We correct for this

in the second score by dividing by the mean.

2.5.2 Connected Component Analysis

Consider a heatmap with a very high geographic disparity. If we look at the ten

cities with the highest heat values, we would expect them to be clustered close

together. If the heatmap has no disparity, then the top 10 hotcities will probably be

scattered all about the country. Suppose we continue to lookat the top 20, 30, 40

cities and so on. Heatmaps with high disparity should have clusters of cities, while

heatmaps with no disparity should remain scattered. This motivates the idea of the

connected component profilefor a heatmap.

Consider the graphG on the set of citiesc induced by adding an edge between

every pair of nearby cities, That is(c1,c2)∈E if distance(c1,c2) < d. We can define

a profile for a heatmap by counting the number of connected components inG only

including cities above a certain heat value. The profiles forregional figureWayne

Gretzkyand national termAmericaare shown in Figure 12. We see the regional

term has a long period of a small number of connected components, corresponding

to the high concentration area.

We propose three different features of the profiles for scoring methods:

• Largest Gap– A large gap between a connected component change would

suggest that the entity is drawn from two separate (nationaland local) proba-

bility distributions.
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Figure 12: Connected Component Profiles for Wayne Gretzky and America.

• Weighted Gap– This method again uses the largest gap, but divides this num-

ber by the maximum heat. Thus terms that are generally popular won’t be

more heavily favored as they are in the first method.

• Percentage Gap– Finally we score based on the largestpercentageheat

change between component changes.

2.5.3 Results

To quantitatively evaluate our geographical bias measures, and avoid personal bias

judgments as to the relative geographic disparity of heat maps, we conducted a

large-scale experiment assessing how well these measures distinguish maps of

regionally-biased entities from (1) maps of entities with presumed uniform national

interest and (2) random maps generated under two different models. In the first

model, the frequency of our imaginary entity in each news source is chosen from a

uniform distribution, while in the second model it is chosenfrom a binomial distri-

bution. Heatmaps generated under these models are shown in Figure 13. Uniform

model has greater local variances, while the binomial distribution is more globally

smooth because in a binomial distribution, values are centered around the mean.
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Figure 13: Random Heatmaps. The frequency of this imaginary entity in each
source is given by a random uniform distribution, or a binomial distribution

We made two sets of real entity heatmaps for our experiments.Entities likely

to be geographically biased include United States cities and local sports teams.

Entities likely to have little bias include foreign cities,country names, national

political figures, and entertainment terms. In total, we constructed 128 un-biased

heatmaps, and 400 biased heatmaps. We also made 200 heatmapseach for the

uniform and binomial distributions.

The results of our scoring method are presented in Tables 5 and 6. For all

five methods we calculate the mean, median, max, and min on each set for the raw

score, and for the ranks. From these experiments, we can conclude that theweighted

gap methodhas the best results, since it in general scored biased maps higher than

un-biased maps, and both higher then random maps. However, even though the

other four scoring methods scored random maps above our biased heatmaps, they

score biased higher then the real un-biased maps. Thus for actual maps, each of the

scoring methods has some significance.

We are interested in distinguishing geographic bias among real world maps.

Figure 14 shows theReceiver Operating Curve(ROC) for classifying the real world

maps. we see that each scoring method is substantially abovethe 45-degree line
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Figure 14: ROC Curves For Heatmap Classification

that indicates random guessing in an ROC curve. This, coupled with the fact that

the methods are not perfectly correlated with each other (see Table 7) lead us to

believe that a fusion method should do even better (A fusion method cannot improve

when underlying different scoring methods are highly correlated, thus effectively all

saying the same thing).

2.6 Conclusions

In this chapter we have presented a way of spatially modelingnews references,

based on references in newspapers. These visualizations, called ‘ heatmaps’, show

the geographic popularity of an entity, and possible geographic biases. To help find

heatmaps that display geographic bias, we have developed methods of scoring the

maps, based on a spatial ‘connected components’ feature.
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Weighted Gap mean min median max
biased 0.519 0.080 0.494 0.996
unbiased 0.367 0.053 0.323 0.947
uniform 0.080 0.035 0.070 0.208
binomial 0.098 0.037 0.088 0.254
Percent Gap mean min median max
biased 6.23 0.300 2.00 243.3
unbiased 2.08 0.273 1.25 18.0
uniform 7.55 0.294 1.68 967.6
binomial 2.53 0.411 2.49 4.55
Max Gap mean min median max
biased 1.66e-3 7.00e-6 5.12e-4 2.80e-2
unbiased 5.10e-4 6.00e-6 1.36e-4 9.34e-3
uniform 7.47e-2 6.55e-2 3.33e-2 2.05e-1
binomial 1.57e-3 5.19e4 1.33e-3 5.00e-3
Weighted Variance mean min median max
biased 6.60e-4 7.53e-6 2.30e-4 1.31e-2
unbiased 2.61e-4 3.50e-6 7.57e-5 3.23e-3
uniform 9.70e-2 5.58e-2 9.37e-2 1.58e-1
binomial 1.18e-3 7.56e-4 1.16e-3 1.94e-3
Variance mean min median max
biased 1.76e-7 1.80e-11 9.79e-9 9.14e-6
unbiased 9.35e-8 1.32e-12 3.36e-9 1.92e-6
uniform 3.36e-2 1.59e-2 3.22e-2 5.50e-2
binomial 8.13e-6 4.94e-6 8.00e-6 1.46e-5

Table 5: Performance of our 5 different scoring methods.
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Weighted Gap mean min median max
biased 246 0 232 719
unbiased 354 21 352 867
uniform 747 450 770 927
binomial 685 408 690 925
Percent Gap mean min median max
biased 437 1 459 922
unbiased 589 25 660 927
uniform 506 0 553 925
binomial 395 134 367 911
Max Gap mean min median max
biased 576 200 632 926
unbiased 728 213 784 927
uniform 100 0 100 199
binomial 432 238 439 630
Weighted Variance mean min median max
biased 609 200 623 926
unbiased 728 216 769 927
uniform 100 0 100 199
binomial 367 238 367 498
Variance mean min median max
biased 649 245 641 926
unbiased 707 410 742 927
uniform 100 0 100 199
binomial 301 200 302 402

Table 6: Rank Performance of five different scoring methods. All 927 test maps are
ranked according to each method. For each of the 4 categoriesof maps, the mean,
min, median, and max ranks are shown. For example, the Weighted Gap score ranks
biased maps a median of 232. This means half of the biased mapsare ranked higher
than 232. The highest ranked biased map is 0, the best rank possible.

data Wei. Gap Max Gap % Gap Variance Wei. Var.
Weighted Gap bias 1 0.708 0.431 0.376 0.651

unbias 1 0.722 0.856 0.621 0.738
Max Gap bias 0.708 1 0.883 0.865 0.985

unbias 0.722 1 0.966 0.910 0.931
Percent Gap bias 0.431 0.883 1 0.984 0.928

unbias 0.856 0.966 1 0.877 0.934
Variance bias 0.376 0.865 0.984 1 0.919

unbias 0.621 0.910 0.877 1 0.980
Weighted Var. bias 0.651 0.984 0.928 0.919 1

unbias 0.738 0.931 0.934 0.980 1

Table 7: Pearson Correlation Coefficients for five scoring methods.

33



Chapter 3

Identifying Co-referential Names

Across Large Corpora 1

3.1 Introduction

A single logical entity can be referred to by several different names over a large

text corpus. For example,George Bushis often referred to asBush, President Bush,

George W. Bush, or “W” , even among polite company. However, morphologically-

similar names likeGeorge H.W. Bushcan refer to different entities. Accurately

identifying the members of theco-reference setfor a given entity is an important

problem in text mining and natural language processing.

Our interest in identifying such co-reference sets arises in the context of our

systemLydia [48, 47, 42, 53], which seeks to build a relational model of people,

places, and things through natural language processing of news sources. Indeed,

we encourage the reader to visit our website (http://www.textmap.com) to study

our analysis of recent news obtained from over 500 daily online news sources. In

particular, we display the members of each of the 100,000 co-reference sets we re-

construct daily (on a single commodity computer) from the roughly 150,000 entity

1This chapter is an extended version of [49].
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names we currently track.

Our algorithm for identifying co-referring entity sets accurately and efficiently

on a large scale involves optimizing our algorithm’s three steps:

1. Morphological Similarity– The scale of our problem makes it infeasible

to explicitly compare each pair of names for possible co-reference. First,

we narrow our search space by identifying candidate pairs for analysis on a

strictly syntactic basis via morphological hashing techniques.

2. Contextual Similarity– Next, we determine how similar a pair of names is

based on the contexts in which they are used. The scale of our problem makes

it infeasible to explicitly analyze all text references associated with each pair

of candidate names. Instead, we propose methods using co-occurrence anal-

ysis to other entities to determine the probability that two entities areco-

referent by context.

3. Evidence Combination and Clustering– Finally, we combine our measures

of contextual and morphological similarity in order to cluster the names. The

problem of clustering names is complicated by the vast difference in the num-

ber of references between popular and infrequently-used names. The strength

of our contextual evidence is thus substantially weaker forunpopular names.

We propose and evaluate methods for dealing with this problem.

Our problem is different from traditional cross-document co-reference analysis

(see Section 3.2.1). In that problem, there is a set of documents that all mention the

samename and the difficulty is clustering the documents into setsthat mention the

same entity. In our problem, there is a set of documents that mention many entities,

each possibly with multiple names, and we want to cluster thenames. This differ-

ence, combined with our need to manage the daily flow and scaleof the news, pre-

sented challenges that separate us from existing techniques in the following ways:

(1) the use of entity co-occurrence lists as the sole featurefor contextual analysis,
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(2) our high-speed dimension reduction techniques (based on k-means clustering

and graph partitioning algorithms) to improve the quality of our contextual analysis

and the efficiency of our algorithms, (3) our use of morphological similarity hashing

techniques to avoid the need for pairwise-similarity testing of all name pairs, and

(4) our use ofvariable precision phonetic hashingin order to tune the performance

of our morphological similarity hashing.

The rest of this chapter is organized as follows. Section 3.2surveys previous

work on this and other problems. Section 3.3 discusses notions of morphological

similarity, while Section 3.4 shows how we compute the probability that two names

are co-referential from their respective co-occurrence lists. Section 3.5 discusses

issues that arise in clustering. Experimental results are given in Section 3.6. We

present our conclusions in Section 3.7.

3.2 Related Work

The problem of identifying co-reference sets has been widely studied in a variety of

different contexts. In this section, we survey related work. In particular, two papers

discussing projects with similar goals but different techniques are discussed below.

We now describe work on three related problems in the subsections below,

namely, cross-document and in-document co-reference resolution in natural lan-

guage processing and record linkage in databases.

Novak, Raghaven, and Tomkins [62] sought to find all of the aliases that cor-

respond to the same person on Internet message boards. They cluster these aliases

into groups based on extracted feature vectors. Their feature set includes general

word usage, misspellings, punctuation usage, emoticons, and function word us-

age. Information retrieval similarity and KL-divergence are compared as potential

distance measures over the feature space with KL-divergence working best. Ag-

glomerative clustering is used to form the final clusters.
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Li, Morie, and Roth [46] study a similar problem, which they call the robust

reading problem. They present an unsupervised learning algorithm for this prob-

lem. First, they develop a probabilistic model for how entities and mentions are dis-

tributed throughout a corpus. Then they provide different relaxations of the model

with corresponding inference algorithms. Finally they present an EM algorithm to

learn these models in an unsupervised way and estimate the model parameters.

3.2.1 Cross Document Co-reference Resolution

The problem of cross-document co-reference has been examined fairly extensively.

Bagga and Baldwin [4] present an algorithm which extracts eachsentence in

each document that contains an ambiguous name and forms a summary of the docu-

ment with respect to the entity. They then use the vector space model to compute the

similarity of two such summaries. If the similarity of the two documents is above

a threshold, then they consider the two documents to be referring the same person.

They concluded that good results could be achieved by looking at the context sur-

rounding the occurrences of the name and comparing documents using techniques

from information retrieval.

Mann and Yarowsky [52] present a partially supervised algorithm for this prob-

lem. The algorithm takes as input either a small set of seed tuples for each of a

small set of personal attributes from which it generates extraction patterns or a set

of hand-crafted extractions for each of the personal attributes. Next, it uses these

values along with other contextual clues as the feature vector for each document

before using bottom-up centroid agglomerative clustering.

Gooi and Allan [30] study statistical techniques for cross-document co-

reference resolution. Like Bagga and Baldwin, they use snippets of text around

each mention of the ambiguous name. They compareagglomerative clustering,

repeatedly merging the closest pair of clusters, withincremental clustering, either

adding each point to an existing cluster or starting a new singleton cluster. They
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also compare KL-divergence as a distance function with cosine similarity. They

conclude that agglomerative clustering performs better than incremental clustering,

however incremental clustering is much more time efficient.They also conclude

that cosine similarity performs better using KL-divergence.

3.2.2 Within-document co-reference resolution

The natural language processing community has extensivelystudied the problem

of within-document co-reference resolution, finding chains of noun phrases that

refer to the same things. For example, in a news article,Dick Cheneymay later be

referred to asVice President, he, or Mr. Cheney. Published solutions all heavily

rely on information that is only relevant within a document,such as the distance

between the two phrases.

We note we perform such an analysis as part of our news NLP pipeline [48], but

we do not discuss it further here.

Ng and Cardie [61] present a supervised machine learning-based algorithm for

within-document co-reference resolution. They use a decision tree classifier to clas-

sify each pair of noun phrases in a document as either co-referring or not and a

clustering algorithm to resolve conflicting classifications. They experiment with

different feature sets, clustering algorithms, and training set selection algorithms.

They conclude that linking a proper noun phrase to its most probable previously

occurring co-referring phrase is a better way of clustering, that a training set selec-

tion algorithm that is designed for this clustering algorithm is superior, and while

adding features can be helpful, too many can degrade performance.

Bean and Riloff [9] present an unsupervised approach to co-reference resolu-

tion that uses contextual role knowledge to determine if twonoun phrases co-refer.

First they identify easy-to-resolve co-referring pairs and use them as training data.

Information extraction patterns are then used to generate information about the role

each noun phrase plays in the text. The information extracted from the training
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data is used to help resolve the other pairs in the corpus. They show that this phase

increases recall substantially with just a slight decreasein precision.

Luo, Ittycheriah, Jing, Kambhatla, and Roukos [50] present asupervised ma-

chine learning approach to co-reference resolution. They represent an instance of

the co-reference resolution problem in terms of aBell Treewhere each leaf in the

tree represents one possible solution and all possible solutions are given by a leaf

in the tree, and cast the problem as trying to find the best rootto leaf path in this

tree. They train a maximum entropy model to assign probabilities to each edge in

the tree and search the tree for the most probable leaf. Theirfeature set includes

lexical features (same spelling, substring), distance features, and syntactic features

(part-of-speech).

3.2.3 Record Linkage

Our co-reference set identification problem is similar to the record linkage problem

from data mining. The problem arises when there is no shared,error-free key field to

join on across databases. Consider two tables containing information about people

from two different databases. Even if both databases used the person’s name and

address as the primary key, conventions concerning abbreviations and word usage

may differ, and typos and misspellings may appear in either field. The goal is to

identify which records correspond to the same entities.

Cochinwala, Dalal, Elmagarmid, and Verykios [16] present a survey of current

techniques in record linkage. They identify three phases tothe record linkage prob-

lem. First, the data is preprocessed. For example, a name field may be parsed to find

the first and last names it contains. Then the database must beefficiently searched

for potentially matching record pairs. Finally, potentially matching records are

compared to determine whether or not to link them. Cochinwalaet al. pose the

record linkage problem as a classification problem and present a supervised ma-

chine learning-based algorithm to classify record pairs aseither “should be linked”
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or “should not be linked”.

Hernandez and Stolfo [34] present two different techniquesfor large databases.

The first approach sorts the data on some key and only considers two records for

a merge if they are in a small neighborhood of each other. The second clusters

the records in such a way that two records will be in the same cluster if they are

potentially referring to the same entity. Finally, they propose taking the transitive

closure of independent runs of the above algorithms, with independent key fields,

as the final merge. They show that this multi-pass algorithm is superior to all the

other algorithms that they consider.

Cohen and Richman [18] consider two problems: (1) taking in a pair of lists

of names and determining which pairs of names in the different lists are the same

and (2) taking in a single list of names and partitioning theminto clusters that refer

to the same entity. They propose adaptive learning-based matching and clustering

methods to solve either of these problems. Their feature vector includes whether

one string is a substring of the other and the edit distance between the two strings.

Bilenko and Mooney [10] propose two distance measures between strings. The

first is a variation of edit distance. They view the edit distance between two strings

as a stochastic process with a probability for each substitution, insertion and dele-

tion. Then any two strings will have a probability associated with their editing.

They train the parameters of this stochastic model on a set ofstrings so as to

maximize the probability of the training pairs. The second measure is a variation

on vector space similarity. Instead of using the traditional term frequency-inverse

document frequency(tf-idf) weighting scheme, they propose using SVMs to learn

weights for each term. They conclude that their distance metrics are very effective

at solving this problem in the domain in which they are trained.
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3.2.4 Gene Name Normalization

Noted biologist David Botstein likes to say that “biologistswould rather share a

toothbrush than a gene’s name”. Effectively mining the biomedical literature re-

quires normalizing gene names by identifying appropriate synonym sets. Repre-

sentative work includes [17, 84].

Cohen et al. [17] propose sets of gene-name transformations that yield syn-

onyms, including removing the first character, the last character, the first word, the

last word, mapping vowel sequences to a constant string, replacement of hyphens

with spaces, normalizing capitalization, and the removal of parenthesized material.

They conclude that these heuristics are useful in finding such synonym sets.

Yu and Agichtein [84] present a system to identify synonymous gene name

pairs in a corpus. They use a combination of partially-supervised, supervised, and

hand-crafted systems. The partially-supervised method isan iterative procedure

that takes as input a small set of seed pairs of synonymous genes and uses them

to identify a set of extraction patterns. Their supervised method uses an SVM to

classify the contexts of a pair of genes as either synonymousor non-synonymous.

The hand-crafted system uses a set of rules that were designed by domain experts

to identify synonymous genes. Finally, a total confidence iscalculated from the

confidences of the three methods. They conclude that a combination of all three

systems out-performs any of the single systems in isolation.

3.3 Morphological Similarity

With hundreds of thousands of names occurring in a large corpus, it is intractable to

compare every pair as potentially co-referential. Further, most of these comparisons

are clearly spurious, and thus would increase the possibility of false positives. We

propose that most pairs of co-referential names result fromthe following set of

morphological transformations:
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• Subsequence Similarity– Taking a string subsequence of a name is one way

of generating aliases of that name. For example,Ford Motor Co. is often re-

ferred to asFord andGeorge W. Bushis also calledGeorge Bush. To identify

these pairs, we examine all 2n possible string subsequences of eachn-word

name, hashing the name on each of its subsequences. Note thatn, the num-

ber of words in a name, is bounded by about 10. Any subsequencematching

another name implies potential morphological compatibility.

• Pronunciation Similarity– The Metaphone [64] algorithm returns a hash code

of a word such that two words share the same hash code if they have similar

English pronunciations. Here we say that two names are morphologically-

compatible if they have the same Metaphone hash code. Metaphone is use-

ful in identifying different spellings of foreign languagenames (e.g.Vic-

tor YanukovichandViktor Yanukovych) as possibly co-referential. In Section

3.3.1, we detail our methods for tuning the performance of this aspect of

morphological similarity using variable precision phonetic hashing.

• Stemming– We use a Porter stemmer [65] to stem each word of each name

and use the stem as a hash code for each name. A hash code collision means

that two names have morphologically-compatible names. Stemming can be

used to identify pairs likeNew York YankeeandNew York Yankees.

• Abbreviations– If one name is an abbreviation of another, then we say that

they are morphologically compatible. For example JFK and John F. Kennedy

are both co-referential with John Fitzgerald Kennedy. To find all names that

are abbreviations of a name, we check if any of the 2n possible abbreviations

of the name’sn-words are also in our corpus.

We observe that there is a notion of degree of morphological similarity. For

example,George Bushis more likely to be co-referential withGeorge W. Bush
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thanU.S.is with Assistant U.S. Attorney Richard Convertino. For each of our mor-

phological transformations we have a different measure of the degree of similarity.

For example, for pronunciation similarity, we model the generation of aliases as a

stochastic “typing” process where the probability of a mis-type is a constant. Then

we compute the probability that one name was “typed-in” whenthe other was in-

tended.

3.3.1 Variable Precision Phonetic Hashing

Several phonetic hashing schemes have been developed to work well on a specific

data set or for specific performance levels [64, 77, 11]. No methods exist that allow

the hashing scheme to be parameterized to give different precision/recall tradeoffs.

In this section we investigate phonetic hashing schemes that have an adjustable pa-

rameter giving a range of operating points with different precision/recall tradeoffs.

Given a query string, we envision a sequence of transformations from the query

string to an empty or null string, where each transformationis a new version of the

string that has had some tokenization or weakening applied to it. We can model

the space of transformations on the universe of strings as a graph. For example the

name ‘Wright’, is shown in Figure 15, with a possible transformation sequence.

The weight of each change is determined by how drastic it is. So the distance

from ‘Writ’ to ‘Rit’ should be relatively small when compared with the distance

from ‘Rt’ to ‘R’. This tokenization path gives us different versions of the query

name to use in different tolerances of the hashing function.We also see that the

path for the name ‘Rite’ eventually joins the path of ‘Wright’.The name ‘Reston’

similarly joins the path, but lower down; suggesting that ‘Rite’ and ‘Wright’ are

closer to each other then to ‘Reston’.

A particular tokenizer in this scheme specifies a set of n-gram substitution rules,

along with weights for the rules. The rules are applied in a lowest cost rule first

order. An example set of rules that could have generated Figure 15 is shown below.
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Reston → Restn; Rstց

Wright → Writ → Rit → Rt→ R→

Riteր

Figure 15: Tokenization Path of the Name ’Wright’.

This rule set says the cheapest rule is substituting a ‘t’ for‘ght’. The next cheapest

is substituting an ‘r’ for ‘wr’ only if at the start of a query.Finally there are two

deletion rules. The vowel deletion is considered less destructive, and is given a

lower weight then the consonant deletion.

• ght→ t;0.2

• wr → r;0.3

• (a|e|i|o|u)→ ;1

• (t|r) → ;5

The tokenizer also has a position vector. This vector weights the rules on their

position in the string. This can be used to make rules appliedat the beginning of

a string more costly than rules applied toward the end of a string. Finally, ties are

broken by applying the rule that changes the rightmost portion of the string.

To complete the definition of the hash function we must specify how to select

the point on the tokenization path to operate at. Among the many candidates for

these scoring methods, our experimentation showed that selecting the code that is a

fixed distance from the null string works best.

• Distance From Query - We generate the string which lies an absolute distance

from the query name. A potential problem is that the strings ‘Wright’ and

‘Rite’ would have different distances to ‘Rit’; and thus wouldnot hash to the

same consensus string.
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• Distance From Null String - We select the point a certain absolute distance

from the null string. This method has the property that any two strings that

get hashed together stay together as we decrease the distance from null, and

stay apart as we increase the distance. Since ‘Rit’ has only one distance to

null, ‘Wright’ and ‘Rite’ would be hashed together if the distance was low

enough to stop at or before ‘Rit’.

• Percentage Distance From Null String - We select a point a percentage dis-

tance from the null string. This method may at first seem reasonable, since

more complex strings will have more complex hashed strings.However,

we do not get the monotonicity properties we got with ‘Distance From Null

String’.

• To the topmost code of a certain length - We select the code closest to the

query of a certain string length. This method has the desiredmonotonic-

ity properties; and it also makes the hashing scheme less sensitive to rule

weights, since we always go to a certain length code word.

• To the lowest code of certain length - Same as the above scheme, but we take

the code closest to Null.

Table 8 shows how we can vary the precision and recall of our hashing algorithm

to get different tradeoffs. For a hand-created set of names extracted from our test set

(see Section 3.6), we measured the precision and recall of our hashing algorithm at a

range of its operating points. For comparison, we also show the precision and recall

of three other phonetic hashing algorithms. It shows how we can use our algorithm

to dial in the precision and recall of our notion of pronunciation similarity.

Our initial attempts at a hash function did not focus on developing the rule

set. Rather hand coded rule sets were used that attempted to emulate an already

well known tokenization method (Soundex, NYSIIS, Caverphone, Metaphone). For
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Code Weight Precision Recall
0 0.002 1
120 0.150 0.909
121 0.139 0.818
141 0.157 0.727
146 0.293 0.636
167 0.360 0.545
172 0.442 0.454
187 0.662 0.363
229 1.000 0.090
Metaphone 0.715 0.732
Soundex 0.468 0.797
NYSIIS 0.814 0.672

Table 8: Precision and recall for our variable precision phonetic hashing and fixed
precision hashing

instance, Soundex treats the letters ’b’,’f’,’p’, and ’v’ as the same token; So the

Soundex-like rule set contained the rule

• (b|f|p|v) → 1;2

We also see with these rules that the alphabet for the rules may be different from

the alphabet for the names (i.e., we have the character ’1’).

3.4 Contextual Similarity

Our mental model of where an entity fits into the world dependslargely upon how

it relates to other entities.

We predict that the co-occurrences associated with two co-referential names

(say Martin Luther King and MLK) would be far more similar than those of

morphologically-similar but not co-referential pairs (say Martin Luther Kingand
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Martin Luther). Thus we use the vector of co-occurrence counts for each name as

our feature space for contextual similarity.

We identified two primary technical issues in determining contextual similarity

using this feature space: (1) dimension reduction and (2) functions for computing

the similarity of two co-occurrence lists. Each of these will be described in the

following subsections.

3.4.1 Dimension Reduction

In the experimental run of 88,097 newspaper days of text we used throughout

our experiments (details in Section 3.6), we encountered 174,191 different name

strings that occurred more than 5 times. This implies an extremely sparse, high-

dimensional feature space – large because each additional entity name represents a

new dimension, and sparse because a typical entity only interacts with a few hun-

dred or so other entities even in a large text corpus.

Our experiments show that simple techniques which hunted for identical terms

among the 100 or so most significant entries on each co-occurrence list failed, be-

cause the most significantly co-occurring terms for an name were highly unstable,

particularly for low frequency names. Much more consistentwere “themes” of co-

occurring terms. In other words, while the most frequent associations ofGeorge

Bushand“W” might have relatively few names in common, both will be strongly

associated with “Republican” and “Texas” themes.

Dimension-reduction techniques provide a way to capture such themes, and can

improve both recognition accuracy and the computational efficiency of co-reference

set construction. We examined two different dimension-reduction techniques based

on creating crude clusters of names, then project our co-occurrence lists onto this

smaller space.

• K-means clustering– This widely-used clustering method is simple and per-

forms well in practice. Beginning withk randomly selected names as initial
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cluster centroids, we assign each name to its closest centroid (using cosine

similarity of co-occurrence lists) and recompute centroids. After repeating

for a given number of iterations (5, in our case) we assign each name to its

closest centroid and take this as our final clustering.

• Graph partitioning– The problem of graph partitioning seeks to partition

the vertices of a graph into a small number of large components by cutting a

small number of edges. Such components in a graph of co-occurrences should

correspond to “themes”, subsets of terms which more strongly associate with

themselves than the world at large. Thus we propose graph partitioning as a

potential dimension reduction technique for such relational data – the names

in each component will collapse to a single dimension.

Although graph partitioning is NP-complete [25], reasonable heuristics exist.

In particular, we used METIS[39], a well-known program for efficiently par-

titioning large weighted graphs intok high-weight subgraphs, withk being a

user-specified parameter. Our graph contains a node for every name and an

edge between every pair of nodes(x,y) if they co-occur with each other at

least once. The weight assigned to each edge is the cosine similarity between

the co-occurrence lists ofx andy.

3.4.2 Measuring Contextual Similarity

Given two names, with their co-occurrence lists projected onto our reduced dimen-

sional space, we now want a measure of how similar they are. Weconsider two

different approaches: (1) they can be viewed as probabilitydistributions and be

compared byKL-divergenceor (2) they can be viewed as vectors and compared

by the cosine of the angle between the vectors. We detail eachof these potential

measures here.
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3.4.2.1 KL-Divergence

The KL-Divergence is an information theoretic measure of the dissimilarity be-

tween two probability distributions. Given two distributions, the KL-Divergence of

them is defined by

KL(p,q) = ∑
x∈X

p(x) log
p(x)
q(x)

To use this measure, we turn each co-occurrence list into a probability distribu-

tion for each namei,

p̂i( j) =
number of co-occurences between i and j

total number of co-occurrences for i

As a discounting method for probability-0 pairs, we do linear smoothing of all

probabilities with the background distribution setting

pi( j) = α p̂i( j)+(1−α)bg( j)

where

bg( j) =
total occurrences of names in cluster j

total number of entity occurrences in corpus

3.4.2.2 Cosine Similarity

A standard way of comparing contexts views the two contexts as vectors in a high

dimensional space and computes the cosine of the angle between them. [4] pro-

posed this technique for the similar problem of personal name disambiguation. We

use theterm frequency-inverse document frequencyof each vector position, i.e. we

weight each term in the vector by the inverse of the number of occurrences it has in

the corpus. LettingN be the number of sentences in the corpus, our score is

d(x,y) =
k

∑
i=0

jp∗
x(i) · jp∗

y(i)

where jpx(i) the number of co-occurrences betweeni and x, weighted by

log( N
number of occurrences of i), and

jp∗
x(i) =

jpx(i)
‖ jpx‖
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3.5 Issues in Clustering

Now that we know which pairs of names are morphologically-similar and their de-

grees of morphological and contextual similarity, we need:(1) a way of combining

morphological and contextual similarities into a single probability that two names

are co-referential and (2) a method to cluster names into co-reference sets. We

discuss each problem below.

3.5.1 Combining Notions of Similarity

For each pair of morphologically-related names, we have measures of their mor-

phological and contextual similarities. We need a way to combine them into a

meaningful probability that the two names are co-referential.

For each measure of contextual similarity and for edit distance, we computed

the precision curve on our experimental corpus (see Section3.6). Since the preci-

sion at a measure of similarity is the probability that a pairfrom the test set with

this amount of similarity were co-referential, we use thesecurves to turn each of

our notions of similarity into a probability estimate. Assuming that these two prob-

abilities are independent, we now can estimate the probability that these two names

are co-referential by multiplying the probabilities givenby their morphological and

contextual similarities. This gives us a single probability estimate that we can use

as a similarity score in the clustering algorithms.

3.5.2 Clustering Algorithms

Once we have probabilities associated with each pair of morphologically related

names, we need to group them into co-reference sets. Because our system must be

able to handle large numbers of names, we must be careful whatkind of clustering

algorithm we choose. We experimented with two algorithms:
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Figure 16: Number of Clusters vs. Peak F-score for our dimension reduction algo-
rithms and distance measures

• Single link– Here we merge the clusters that two names are in if the proba-

bility that they are co-referential is above a threshold.

• Nearest neighbor– Each name is linked with its nearest neighbor if the prob-

ability that they were co-referential is above a threshold.

• Average link– Our algorithm merges two clusters if the weighted average

probability between names in each of the clusters is above a threshold.

3.6 Experimental Results

In order to optimize various parameters, decide which methods work best, and ver-

ify our techniques, we ran a set of experiments against the same test set that was

used to produce the precision curves used in section 3.5.1. Each of these experi-

ments is described below.

All of the experiments in this chapter where conducted on a test set of 88,097

newspaper-days worth of text, partitioned among 604 distinct publications. These
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were taken from spidering that was performed between April 11, 2005 and Novem-

ber 5, 2005. We used a hand-crafted set of roughly 320 co-reference sets from the

entities in this corpus.

In Section 3.6.1, precision is given by t p
t p+ f p, recall by t p

t p+ f n, and f-

score by 1
α 1

P+(1−α) 1
R

where t p = true positives, f p = false positives, and f n =

false negatives. In Section 3.6.3 these measures are given by the B-cubed algorithm

introduced in [4]. For each name

Precision=
‖intersection of propsed set and true set‖

‖proposed set‖

Recall=
‖intersection of proposed set and true set‖

‖true set‖

and overall precision and recall are the averages of these values.

3.6.1 Optimizing Contextual Similarity Measure

Optimizing our contextual similarity phase involves the proper choice of (1) dimen-

sion reduction algorithm, (2) number of dimensions, and (3)contextual similarity

measure. For both of the dimension reduction algorithms (k-means, METIS) and

both of the distance measures (KL-Divergence, Cosine similarity), we recorded the

peak F-score as a function of number of dimensions from 10 to 290.

Figures 16 shows this plot. It shows that while the peak performance of all four

combinations is comparable, KL-Divergence with METIS dimension reduction is

to be the most robust to changes ink. For the rest of the analysis in this chapter, we

used KL-divergence, METIS dimension reduction, and 150 dimensions.

3.6.2 Morphological Similarity

We hypothesized that using a value different than 1 for the cost of substituting a

vowel for a vowel might lead to more meaningful notions of edit distance similarity.

In order to find the best notion of edit distance, we looked at the peak F-score
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obtained at values of the parameter from 0 to 3 in increments of .1. Our results

show that the value of the vowel parameter do not affect either the subsequence

morphological similarity class nor the stemming class of morphological similarity.

However, for the Metaphone class of morphological similarity, it is best to use a

vowel parameter of about 2.

3.6.3 Clustering Methods

The first clustering algorithm that we tried was simple single link clustering. Figure

17(a) shows that it has decent peak performance, but is not very robust to the setting

of the threshold. Further, manual evaluation of the clusters that are produced shows

that it tends to create very long clusters, putting many things into the same cluster

that should not even be considered. For example, the sequence George Bush→

Bush→ Bush-Cheney→ Cheney→ Dick Cheneyleads toGeorge BushandDick

Cheneybeing called co-referential.

The next simple clustering algorithm was nearest neighbor.While this is an

improvement over single link clustering, it still does not perform very well.

The next clustering algorithm that we tried was weighted-average link. Figure

17(b) shows that this has slightly better peak performance than single-link cluster-

ing, and is much more robust in the setting of the threshold.

3.7 Conclusion

In this chapter we presented an algorithm to find sets of co-referential names. We

introduced the idea of morphological similarity, the notion that two names are po-

tentially co-referential based on the text that comprises the name. Then we dis-

cussed the issues surrounding computing the contextual similarity of two names

and gave two different measures. Clustering names given their morphological and

contextual similarities was discussed and we presented experimental results for our
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Figure 17: Threshold vs. Precision, Recall, and F-score for our clustering algo-
rithms

system.
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Chapter 4

Improving Usability Through

Password-Corrective Hashing1

4.1 Introduction

The design of any password authentication system requires atradeoff between secu-

rity and usability. For example, mandating longer passwords in a system improves

security while complicating the user’s ability to rememberpasswords and enter

them correctly.

The data entry problem is by no means trivial. Empirical studies of typing accu-

racy [31, 51, 63] suggest that typists make data-entry errors roughly once every 30

keystrokes on typical English text. Assuming ten-character passwords, this implies

that roughly one out of every three login attempts by legitimate users fail due to data

entry errors. Indeed, typing error rates are presumably even higher on the cryptic,

case-sensitive, punctuation-intensive strings recommended for high-security pass-

words. An inspiration for this chapter was the painful memory of repeatedly typing

a 128-bit wireless encryption WEP key (consisting of 26 hexadecimal-characters)

until achieving the required perfect fidelity. Finally, users juggling passwords for

1This chapter is an extended version of [54].
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several different systems can easily confuse typing errorswith recalling the wrong

password [70]. Subsequent cycling through passwords on other systems may result

in users getting locked out, with a subsequent need for a password reset.

In this chapter, we propose a way to increase the usability ofpassword au-

thentication systems by correcting for two common classes of data entry errors,

namely transposition and substitution errors. Transpositions and substitutions can

arise from physical input errors or from partial password recall. We show how to

identify and correct for these errors with low false positive rates (i.e., low proba-

bility that an arbitrary string will be accepted as the password for authentication).

Thus our techniques increase usability with provably little loss of security. Indeed,

they may arguably evenincreasesecurity in practice, because users benefiting from

our correcting schemes will be more inclined to choose strong passwords, and not

resort to insecure practices such as writing down a password.

Some naive approaches to this problem suggest themselves. The first would

involve explicitly comparing an entered string to the password on file to check for

equivalence modulo single transpositions or substitutions. However, this requires

that the password file be stored as plain-text instead of being encrypted, which is

clearly a bad idea for security. The second approach involves automatic repeated

login attempts using explicit transformations of the entered string. Indeed, SAMBA

appears to employ such a method to relax sensitivity to password case and charac-

ter order [79]. However, such methods quickly get expensive, as there aren− 1

possible transpositions andnm possible substitutions on ann-character password

defined on an alphabet of sizem. Finally, one might generate all variants of a pass-

word, and then store these encrypted. A login would then check each possibility.

Not only would this increase the size of the password file, butit may also make

malicious decrypting easier if it is known that a set of encrypted keys differ by only

a transposition.
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Instead, we propose a simple technique of applying a singlepassword-

correctivehash function to each entered password attempt. That is, this hash func-

tion is applied to the entered password, and the resulting key is then encrypted and

stored. The important property required of the hash function is that two strings dif-

fering by a single data entry error (i.e. one transposition or substitution) be likely

to be hashed to the same key, while more substantially differing strings are hashed

to different keys.

In this chapter, we study the efficiency of a variety of hash functions in correct-

ing single transposition and substitution errors. We rigorously analyze the recall /

false positive rate tradeoffs for each class of hash functions to determine the most

appropriate choice for common password applications. In particular:

• We develop precise analytical formulae for the precision/recall tradeoffs for

correcting transposition errors using sorting-network and block-sorting hash

functions. These functions contain parameters trading offsecurity for usabil-

ity; tradeoffs which are made explicit through our analysis.

• We do the same for two classes of alphabet-weakening hash functions, which

correct for substitution errors. These alphabet-weakening schemes can be

composed with the permutation-based functions described above, yielding a

function which can simultaneously correct for transposition and substitution

errors.

• We prove the curious property that the limiting case of both of our

permutation-based methods (character sorting) has the highest precision

among all perfect-recall methods for correcting transposition errors.

• The explicit precision / recall performance of these methods is very sensi-

tive to the length and alphabet size of the associated keys. Therefore, we

evaluate these tradeoffs at parameter values reflecting common classes of

keys/passwords (including system passwords, social security numbers, WEP
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passwords, and credit card numbers) to identify the most desirable hash func-

tions and parameters for each.

• Finally, we evaluate these schemes using a popular crack-list (dictionary) of

680,000 common words. We show that we can correct forall user transpo-

sition errors while reducing the computational cost of a crack attack by only

13%.

This chapter is organized as follows. Previous work on password system usabil-

ity and corrective hashing techniques is reviewed in Section 4.1.1. We introduce the

notion of password-corrective hashing in Section 4.2. The next two sections present

our analysis of hashing techniques against transposition and substitution errors, re-

spectively. Finally, Section 4.5 details our experiments using standard crack-lists.

4.1.1 Previous Work

The importance of user interaction in password authentication is well known. Basic

facts about human memory are in conflict with most password policies. Sasse and

Adams [1] stress human factors in developing security. Sasse, Brostoff and Weirich

[70] note usability problems with password authentication, such as the number of

passwords a user must remember, strict password policies, varying systems, and

memory demands. Their studies found that users rarely completely forget a pass-

word. Instead, users often partially recall a password or recall the wrong password

(typically from another system the user is enrolled in). They note that the user

cannot know which of these two reasons apply after a failed authentication attempt.

There have been many human factor studies of data entry methods. Grudin [31]

investigated error rates by typists, discovering that novice typists (20 wpm) had per-

character error rates of about 3.2%, while experts (60-90 wpm) had error rates of

0.4%−1.9%. Mackenzie [51] sought to partition these errors by type,identifying

per-character substitution error rates of 0.962%, insertion error rates of 0.218%
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and deletion rates of 1.045%. Peterson [63] found that transpositions represented

between 2.6% and 13.1% of all data-entry errors, while substitutions accountedfor

between 26.9% and 40.0% of all errors.

There has been some previous work in developing password recovery schemes

that tolerates errors. Frykholm and Juels [24] require users to supply answers to

personal questions for authentication, but the answers arenot required to be entirely

correct. Spector and Ginzberg [76] propose a pass-phrase scheme that matches

phrase semantics, and is flexible on syntax and actual words used.

Cranor and Garfinkel [19] suggest a system require more than 1012 different

potential passwords for effective security. While most systems in theory allow this

many, users restricting themselves to dictionary words useonly about 106 differ-

ent password keys. Our methods do reduce the theoretical number of potential

passwords for a system; however for added security, password length can be made

longer. The convenience offered by our system should make longer passwords less

of a burden. Our proposed hashing methods reduce the effective space of potential

keys. However modest assumptions of key length and alphabetsize leave more than

enough potential effective passwords to satisfy this concern.

The problem of determining when two different strings in fact refer to the same

entity has several applications. When the strings refer to entities (people, places,

things) this is known as theco-reference resolution problem, which has been well-

studied within the natural language community [4, 9, 30, 52,61]. Two names that

should be spelled identically could possibly differ due to atyping error, a com-

mon misspelling, an alternate spelling, or in the case of foreign names differing

transliteration methods (Osama / Usama). This use is leveraged in our system for

co-reference resolution (Chapter 3. It also arises in the record linkage problem from

data mining [16, 18, 34], The problem arises when there is no shared, error-free key

field to join on across databases. Consider tables containinginformation about peo-

ple from two different databases. Even if both databases used the person’s name
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and address as the primary key, conventions concerning abbreviations and word us-

age may differ, and typos and misspellings may appear in either field. The goal is

to identify which records correspond to the same entities.

4.2 Password Correction Hashing

In general, it is logical to assume that a minor difference between an entered pass-

word and the version on file still represents an authorized attempt to access an ac-

count. We will evaluate different hashing schemes to withstand substitution and

transposition errors. These schemes transform an input string into a generalized

representation; typically similar size to the original string. We will evaluate how

these generalized representations correctly fix transposition and substitution errors

(recall) vs. how often they induce random strings to collide(false positive rate).

4.2.1 Preliminaries and Notation

A transposition error is one in which two consecutive characters of a password are

switched. If the password isc1c2 . . .cn, then a transposition isc1c2 . . .ci+1ci . . .cn.

A substitution is when any single character is replaced by another. Thus for any

b∈ Σ, c1c2 . . .ci−1bci+1 . . .cn.

In dealing with the password correcting systems, it is necessary to distinguish

the types of errors the system makes. A system that makes the error of not allowing

authorized access is preferable to one that allows unauthorized access.

We denote a pair of different strings which are considered equivalent to bereal

positive. For equivalence under transposition, the pair “12345” and“12435” repre-

sent a real positive. Similarly, “12345” and “67890” are a real negative, since they

are not equivalent. Thetrue positivesare the real positives that the hashing scheme

correctly hashes to the same representative string. The false positives are the real

negatives that the scheme incorrectly hashes to the same representative string. The
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definition is symmetric for true negatives and false positives.

We have the following relationship

true positives+ false negatives= real positives (4)

true negatives+ false positives= real negatives (5)

We will survey hash schemes on strings of lengthn over an alphabetΣ of size

m. Recallis defined as

recall= true positives/(real positives)

that is it is the fraction of positives the scheme correctly identifies as positive.

Higher recall means easier access to the system, whereas lower recall is less flexible

on the errors in the password. TheFalse Positive Rateis defined as,

False positive rate= false positives/(real negatives)

i.e. the frequency an unauthorized access (negative) is incorrectly called a positive.

The lower this value, the more secure a system is.

4.3 Correcting Transpositions

In analyzing transposition errors, we note that the number of different positives

and negatives depends onn andm. Let Ptrans[n,m] be the number of transposition

positives, andNtrans[n,m] be the number of negatives. The positives are counted as

follows. Choose among then−1 possible spots for a transposition. Then choose

among themcharacters for then−2 spots not in the transposition. Finally we must

choose from them characters, 2 different characters that are in the transposition

spot. We must choose different characters, since choosing the same character results

in a transposition that gives back the original string. Thus

Ptrans[n,m] = (n−1)mn−2
(

m
2

)

(6)
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Since there aremn different strings,

Ptrans[n,m]+Ntrans[n,m] =

(

mn

2

)

and thus

Ntrans[n,m] =

(

mn

2

)

−Ptrans[n,m] = (mn/2)((mn−1)− (n−1)
m−1

m
) (7)

4.3.1 Character Sorting

Sorting is a natural choice for trying to eliminate transposition errors, since sorting

will tend to impose its own order on a string. Sorting the input sequence renders the

original order inconsequential, so character distribution is the only distinguishing

feature of a sequence. Thus all transpositions will be caught and hence

recallsort = 1 (8)

To count the false positives associated with character sorting, we first count the true

positives plus false positives. Any pair of strings with thesame character distribu-

tion will be hashed together to a true or false positive. So wecount pairs of strings

with the same character distribution:

tpsort + fpsort = ∑
ki≥0

(

( n
k1...km

)

2

)

=
1
2
( ∑
ki≥0

(

n
k1 . . .km

)2

−mn) (9)

Since we know the recall and total positives (from the previous section), we can

use the formula for recall to solve for true positives. We then subtract this from the

above result to get false positives, and divide by negativesto get

fp-ratesort =
X/mn−1−n(m−1)

mn−1−n(m−1)
;X = ∑

ki≥0

(

n
k1 . . .km

)2

(10)

In fact, character sorting offers the highest precision wayof correcting all single

transposition errors:
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Theorem 1 Character sorting has perfect recall for single transpositions, and has

the lowest false positives of any method that does so.

Proof: Character sorting must have perfect recall, since any two strings differing

by a single transposition must have the same character set. Now consider another

methodM which also has perfect recall but fewer false positives. There must be

two stringsS and T that are a false positive under character sorting, but not in

the new method.S and T are hashed together under character sorting, so they

have the same character set. Thus there is a sequence of strings S,s1,s2, . . .sj ,T

where each consecutive strings differ by a single transposition. SinceSandT are

not hashed together underM, there must exist consecutive stringssi,si+1 in the

sequence that are not hashed together underM. Sincesi andsi+1 differ by a single

transposition, this contradicts the assumption thatM had perfect recall. Therefore

character sorting has the best performance of any perfect recall method. 2

4.3.2 Even-Odd Transposition Sorting Networks: Single Stage

We now consider weakening (hashing) a string by sending it throughk stages of

an even-odd sorting network [43]. A sorting network is a computation graph. In

an odd/even sorting network, at each stage adjacent entriescan be swapped or left

alone. Even pairs may be swapped in the even stages, and odd pairs in the odd

stages. We assume the first stage is an even stage. The following example illustrates

a string as it is transformed through each stage of the network:

14572463→ 14572436→ 14527346→ 14253746→ ·· · → 12344567

We first consider the case of a single stage sorting network. After the first

stage of an odd-even network, all even transpositions will be corrected, but odd
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transpositions will remain, so

recall1−stage=
even transpositions
total transpositions

(11)

=
⌊n/2⌋
n−1

≈ 1/2 (12)

To calculate the false positives (fp) and the fp-rate, we first calculate the sum

of false positives and true positives and then subtract the true positives (tp=

recall∗positives). To determine tp+ fp, we consider a string withk possible even

transposition locations (i.e.n−k characters are repeats, so no real transposition is

possible). There are
(⌊n/2⌋

k

)

ways to choose thek transposition locations;m⌊n/2⌋−k

ways to choose the characters for the repeated character transposition locations;
(m

2

)k
ways to choose the characters for thek transposition locations; and finally 2k

ways to order the characters involved in the transposition locations. Each of these

2k strings differs only in even transpositions, so all will gethashed together giving
(2k

2

)

colliding pairs. Summing overk gives

tp1−stage+ fp1−stage =
⌊n/2⌋

∑
k=0

(

⌊n/2⌋
k

)(

m
2

)k

m⌊n/2⌋−k
(

2k

2

)

(13)

=
1
2

m⌈n/2⌉((2m−1)⌊n/2⌋−m⌊n/2⌋) (14)

Then we solve for false positives.

fp1−stage = (tp1−stage+ fp1−stage)− tp1−stage (15)

=
1
2

m⌈n/2⌉((2m−1)⌊n/2⌋−m⌊n/2⌋−⌊n/2⌋(
m−1

m
)m⌊n/2⌋ (16)

Finally,

fp-rate1−stage = fp1−stage/N[n,m] =
(2−1/m)⌊n/2⌋−1−⌊n/2⌋(m−1

m )

mn−1− (n−1)(m−1
m )

(17)

≈ m−n(2⌊n/2⌋−1−n) (18)

64



4.3.3 2-stage Sorting Networks

By adding an extra stage of sorting some odd transposition errors will now be

caught, depending on whether the first stage moved the characters involved in the

transposition. Consider the string fragmentabcd; The odd transposition (acbd) will

be corrected in the second step whena≤ b,c≤ d. This gives
(m+2

4

)

corrected trans-

position errors from1
2m3(m−1) possible transposition errors. Odd length strings

have an extra odd transposition, not surrounded by 4 characters, only 3, as inabc.

In this case, there are
(m+1

3

)

transpositions that get corrected from12m2(m−1) pos-

sible errors.

recall2stage = (⌊n/2⌋+
(⌈n/2⌉−1)∗

(m+2
4

)

(1
2m3(m−1))

+ [nodd]

(m+1
3

)

(1
2m2(m−1))

)× (
1

n−1
)(19)

≈ (1/12)+(11/12)(
⌊n/2⌋
n−1

) (20)

Where[nodd] evaluates to 1 ifn is odd, and 0 otherwise. We do not have analytical

results for the false positive rate of 2-stage sorting, so weinstead ran simulations to

get results. See Section 4.3.5 for these results.

4.3.4 Block Sorting Methods

With block sorting, we divide the string into fixed-size blocks, and completely sort

each block. The following example illustrates the transformation for blocks of size

4:

1738|5901|9874|3509|1237→ 1378|0159|4789|0359|1237

The only transposition errors not matched by such a scheme are those that occur

across block boundaries.

We first consider the case of 2 blocks. The string is broken up into a block of

sizen1 and one of sizen−n1, typically n1 = n/2. Only a transposition that crosses

over the block boundary will not be caught, so

recall2−block = (n−2)/(n−1)
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regardless of the block sizes. Now consider true positives.Consider the true pos-

itives that result from a single transposition spot. We can choose among allm

characters for every digit, except the transposition digits must be different. Thus

themn−1(m−1) term. There are(n−2) transposition spots (since we cant match

across the blocks). Finally, each match is counted twice, sowe divide by 2.

tp2−block = (1/2)mn−1(m−1)(n−2)

Let fptpcs(k) be the true positives plus false positives for complete sorting a

string of lengthk. We get the fp-rate by using the results from complete sorting.

Since within a block, the contents are completely sorted, wehave

fp2−block = fptpcs(n1)× fptpcs(n−n1) (21)

We can generalize for an arbitrary number ofk blocks. The only transpositions

not found are still ones occurring across block boundaries,so

recallk−blocks= (n−k)/(n−1)

We again get the fp-rate by using results from complete sorting.

fpk−blocks=
k

∏
j=0

fptpcs(n j) (22)

4.3.5 Evaluation

In this section, we evaluate these transposition correction methods on a variety of

alphabet sizes and string length pairs corresponding to important classes of pass-

words/keys. In particular, we consider:

• System Passwords– Typical online account passwords. We consider three

cases: the full English alphabet with case, digits, underscore and period (m=

64), a smaller case-independent alphabet of size 32, and binary passwords on

typical lengths.
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• WEP Keys– Wireless encryption (WEP) keys. We consider hexadecimal

WEP keys for 64 and 128-bit WEP (n = 10,26,m= 16).

• Social Security Numbers– Nine digit identification numbers, (n= 9,m= 10).

• Credit Cards– Credit cards numbers comprise 16 digit numbers, so (n = 16,

m= 10).

• Proper Names– The first/last names of people average about seven characters

on the case-insensitive English alphabet, so (n = 7, m= 26).

• System Passwords– These represent passwords used for typical online ac-

count access. We consider three cases: the full English alphabet with case,

digits, underscore and period (m= 64), a smaller case-independent alphabet

of size 32, and binary passwords on typical lengths.

• WEP Keys– Wireless encryption (WEP) keys are widely used for encrypting

wireless communications. We consider hexadecimal WEP keys for 64 and

128-bit WEP (n = 10,26,m= 16).

• Social Security Numbers– These identifier numbers are widely used as

database keys to identify individual Americans. Each identifier is a nine digit

number, so (n = 9, m= 10).

• Credit Cards– Web transactions often employ credit card numbers as identi-

fiers after they have been previously entered for payment. They comprise 16

digit numbers, so (n = 16,m= 10).

• Proper Names– The first/last names of people average about seven characters

on the case-insensitive English alphabet, so (n = 7, m= 26).

Table 9 compares the performance ofk-stage sorting networks, andk block sorting

for correcting transposition errors. Most of the results were calculated exactly using
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formulas 4 - 22, but some were approximated. TheX summation,∑ki≥0
( n

k1...km

)2
,

that appeared in the character sorting analysis was computationally evaluated for the

different applications; except for the cases (m= 64,n= 8) and (m= 16,n= 26), for

which it was approximated. The maximum of the
(m+n−1

n

)

terms in the summation

is ( n!
⌊n/m⌋!m⌈n/m⌉!(n−⌊n/m⌋m) )

2. Thus

X ≈

(

m+n−1
n

)

(n!/⌊n/m⌋!m⌈n/m⌉!(n−⌊n/m⌋m))2 (23)

For the two-stage sorting network, the false positive rate is estimated by taking

random samples and doing a 2-stage sorting network, and thendoing a reverse 2-

stage sorting network on the result to determine the set of starting strings that could

have generated the result code. This gives us the ratio of false positives to true

positives, which is then used to calculate the false positive rate.

We see for most schemes, good recall is achieved at reasonably low false posi-

tive rates. High recall and low false positive rate will ensure that the added conve-

nience of a system does not come with a loss of security.The 2-Block scheme offers

the best balance between high recall and low false positive rates, and is recom-

mended.It should be noted that these schemes do become risky on smallalphabets,

as the row form= 2 indicates. Fortunately secure systems use large alphabetsizes,

so this will not be a problem.

4.4 Correcting Substitution Errors

Another common class of entry errors is substitution errors, where one character

gets replaced by another character. We now consider two classes of hash functions

that weaken the alphabet by making distinct characters the same. Such schemes

can overcome substitution errors, i.e. two strings should be hashed together if they

differ by only a single substitution. For substitutions, wehave

P[n,m]subs=
1
2

mnn(m−1) (24)
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Algorithm
Application 1-Stage 2-Stage Complete 2-Block 3-Block
n m Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate
Passwords
8 64 0.571 3.75e-14 0.609 3.92e-13 1 2.17e-10 0.857 6.37e-13 0.714 2.07e-14
10 32 0.556 2.11e-14 0.596 3.64e-13 1 8.20e-11 0.889 4.23e-12 0.778 1.03e-13
20 2 0.526 4.93e-5 0.645 0.0110 1 0.125 0.947 0.0146 0.894 0.002135
WEP Key
10 16 0.556 1.97e-11 0.600 3.30e-10 1 7.67e-7 0.889 3.08e-9 0.778 8.48e-11
26 16 0.520 2.67e-28 0.568 3.57e-28 1 2.39e-5 0.960 5.96e-15 0.920 2.58e-18
SSNs
9 10 0.500 8.43e-10 0.587 1.60e-7 1 5.48e-5 0.875 5.93e-7 0.750 1.77e-8
Credit Cards
16 10 0.533 1.62e-14 0.585 1.45e-12 1 4.12e-6 0.933 4.30e-9 0.867 4.06e-11
Names
7 26 0.500 1.75e-11 0.598 5.96e-9 1 4.15e-7 0.833 6.43e-9 0.667 1.34e-10

Table 9: Recall and False Positive Rate for correcting transposition errors for com-
mon password/key lengths

N[n,m]subs=

(

mn

2

)

−P[n,m]subs=
1
2

mn(mn−1−n(m−1)) (25)

4.4.1 High-Low Weakening

In this scheme, we partition characters in the alphabetΣ as being either high or low.

This reduces the input key to a binary string. For example, considering the digits

0−4 as low (’l’) and 5−9 as high (’h’) transforms:

17385901987435091237→ lhlhhhllhhhllhlhlllh

A substitution error is found whenever the substituted characters map to the

same symbol. Letk be the size of the low set (and thusm− k the size of the high

set). The true positives follows since there aren character positions to perform a

substitution, the othern−1 characters can be anything.

tphigh−low = nmn−1(

(

k
2

)

+

(

m−k
2

)

) (26)

We divide this by the number of positives to get

recallhigh−low =
k(k−1)+(m−k)(m−k−1)

m(m−1)
(27)
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To determine the false positives, we first calculate tp+ fp. We sum overj where j

is the number of characters in the string belonging to the lowset.

tphigh−low + fphigh−low =
n

∑
j=0

(

k j(m−k)n− j

2

)

×

(

n
j

)

(28)

=
1
2
((2k2 +m2−2mk)n−mn) (29)

We then subtract the true positives and divide by negatives to get the false positive

rate.

4.4.2 Weak Set Methods

In this scheme, a set ofk ‘weak’ characters get replaced by a single character,

while the other characters remain the same. For example, defining the weak set

as consisting of all non-alphabetic characters and replacing them with the weak

symbol (’.’) yields the transformation

L1saS!mps0n→ L.saS.mps.n

This leaves an alphabet of sizem− k+ 1. Only substitutions among thesek

characters are found, so

recallweak−set =
k(k−1)

m(m−1)
(30)

We get the false positives by first calculatingf p+ t p.

tpweak−set+ fpweak−set =
n

∑
j=0

(

k j

2

)

(m−k)n− j
(

n
j

)

=
1
2
((m−k+k2)n−mn (31)

Solving for fp-rate gets

fp-rateweak−set =
(1−k/m+k2/m)n−1−n/m(k)(k−1)

mn−1−n(m−1)
≈ (

1
m
−

k
m2 +

k2

m2)n (32)
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Algorithm
Application High-Low Weak Set
n m Rec fp-rate Rec fp-rate
Passwords
8 64 0.492 0.00391 0.246 1.95e-5
10 32 0.484 9.77e-4 0,242 1.75e-6
WEP Key
10 16 0.467 9.77e-4 0.233 3.10e-6
26 16 0.467 1.49e-8 0.233 4.75e-15
SSNs
9 10 0.444 0.00195 0.222 1.97e-5
Credit Cards
16 10 0.444 1.53e-5 0.222 4.30e-9
Names
7 26 0.480 0.00781 0.240 1.03e-4

Table 10: Recall and False Positive Rate for correcting substitution errors on com-
mon password/key lengths.

Algorithm
Application k=4 k=m/8 k=m/4 k=m/2
n m Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate
Passwords
8 64 0.003 5.17e-15 0.014 5.14e-13 0.060 9.20e-10 0.246 1.95e-5
10 32 0.012 1.72e-14 0.012 1.72e-14 0.056 2.20e-11 0.242 1.75e-6
WEP Key
10 16 0.050 2.37e-10 0.008 9.07e-13 0.050 2.37e-10 0.233 3.10e-6
26 16 0.050 1.03e-25 0.008 8.44e-31 0.050 1.03e-25 0.233 4.75e-15
SSNs
9 10 0.133 1.95e-6 - - 0.022 2.36e-9 0.222 1.97e-5
Credit Cards
16 10 0.133 3.01e-11 - - 0.022 1.43e-15 0.222 4.30e-9
Names
7 26 0.018 1.25e-9 0.009 2.07e-10 0.046 2.56e-8 0.240 1.03e-4

Table 11: Weak Set performance in correcting substitution errors for different weak
set sizes.
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4.4.3 Evaluation

Tables 10 and 11 present our results for correcting single substitution errors using

alphabet weakening. Table 10 shows High-Low weakening results for equal-sized

high and low sets; and ‘Weak set’ weakening for a weak set sizeof m/2. Table 11

gives the tradeoffs for ‘Weak Set’ weakening as we change thesize of the weak set.

Since an alphabet of size 2 cannot be further weakened, applications withm= 2 are

not shown.

Our results show a clear recall / false positive rate tradeoff; and the false positive

rates are more problematic than we obtained for transposition error correction in

Table 9. The weak set results of Table 11 has more acceptable false positive rates,

but very little recall gain. The figures below show the performance for varying the

k parameter (the size of the weakened sets).

We see that substitution errors appear more difficult to correct than transposition

errors. The loss of information of the type of character makes any scheme capable

of high recall also have high false positive rates.

4.5 Resistance to Crack-List Attacks

Users usually choose passwords from a much smaller key spacethan that offered

by the system. For instance, although systems typically allow arbitrary character

strings many users stick to dictionary words or common names. One failing of our

analytical results is that we assumed a uniform distribution of passwords over the

space of possible keys. Also, we assumed that all keys are thesame length, which

is not true in many domains.

To get a more complete sense of the performance of correctionschemes, we

tested on them a crack list of dictionary words and common names. We used

the lists from ftp://ftp.cerias.purdue.edu/pub/dict/dictionaries, which includes dic-

tionaries in English, German, Italian, Swedish, Norwegian, and Dutch; as well as
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Block Sorting Sorting Network
Blocks Recall Unique Codes False Pos. Rate Stages Recall Unique Codes False Pos. Rate

1 1 593347 1.42e-06 Inf 1 593347 1.42e-06
2 0.89 656475 4.79e-07 9 0.93 596026 1.41e-06
3 0.79 670265 3.16e-07 8 0.89 600209 1.39e-06
4 0.68 676146 2.68e-07 7 0.85 607036 1.33e-06
5 0.57 678491 2.51e-07 6 0.80 618944 1.21e-06
6 0.47 679395 2.42e-07 5 0.75 632101 1.03e-06
7 0.38 679737 2.39e-07 4 0.70 648115 7.61e-07
8 0.30 679873 2.38e-07 3 0.66 658338 5.74e-07
9 0.24 679932 2.37e-07 2 0.60 668050 3.80e-07
10 0.18 679972 2.36e-07 1 0.55 672544 3.17e-07
Inf 0 680000 0 0 0 680000 0

Table 12: Performance of Transposition Correcting Methods on Dictionary Data.

lists of common names, organizations, abbreviations, popular movie and TV names,

common slang, Internet words, famous people, and a few otherpopular terms that

appear in passwords. Combined, these lists had 680,000 unique terms.

Table 12 shows the ability of block sorting and sorting networks to correct trans-

positions on the crack lists. We see that in the case of a complete sort, the number

of unique keys is now only 593,347. That is, a cracker whose initial crack-list of

680,000 words could now get by with a list of 593,347 words; this is about 13%

shorter. This is not much to pay for eliminating all transposition errors. For more

extreme security, 5-block sorting still has over 50% recall, yet allows a reduction of

only 1509 names off the crack list, or 0.22%. The performanceof sorting networks

is not quite as good, though still reasonably effective. Figure 18 illustrates the false

positive-recall tradeoffs of the two methods.

Figure 19 shows the distribution of the size of the equivalence classes for high-

low and weak set, with a split point of 248. The x-axis is the size of the code set.

That is, the value 3 means that 3 different words get hashed tothe same code.
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Chapter 5

Implied Relations and Edge Pruning

5.1 Introduction

On-line news sources provide a large and comprehensive corpus of world events

and news entities. The Lydia project (www.textmap.com) analyzes over a thousand

on-line newspapers every day to discover news trends, sentiments, and geographic

biases. The aim of the project is to deliver news analysis on ascale of content that

would be impossible for a person to read, and to mine the data to discover world

facts that a human analyst would be unable to realize. One technique to analyze the

data is leveraging network science on a co-occurrence network of named entities.

Edge scores in this network are frequency of co-occurrence between two entities.

But real world network data is often noisy. Edge scores are also often biased

for popular entities. We would like to develop an edge score that is a more accu-

rate reflection of actual link strength. This will give a better understanding of the

network, as well as enable us to prune low strength relations. Since our network is

very large, this will enable otherwise intractable analysis.

We want to score pairs of entities based on how related they are. Currently, we

have a co-occurrence count as an edge score, but as we will see, there are short-

comings to relying on this measure alone. We have developed another notion of
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an ‘implied relation score’ that corrects for implied co-occurrences, and normalizes

for overall entity popularity. We can also consider other measures such as mutual

information (or point-wise mutual information), and measures that consider the pro-

files of high frequency words appearing with entities. This will help us distinguish

entities with high co-occurrences from their frequent appearance with a common

(most likely popular) neighbor, such as ‘Dick Cheney’ and ‘Laura Bush’. Both of

these people occur frequently with ‘George Bush’, so they often co-occur with each

other due to the common friend, but they themselves share no real connection. A

second-order relationship exists between Laura Bush and Dick Cheney which is

almost completely explained by interactions between George Bush and Dick Ch-

eney. Second-order relationships within a network are in general less interesting

than primary relations. On the other hand, entities which are overall not mentioned

frequently will have a low number of co-occurrences (because they have a low

number of occurrences), although they may be involved in an important relation.

We propose a model to identify second order relationships within a news network.

We show that it enables us to prune a news network of less interesting relationships

with minimal impact on network structure. These prune-ableedges are in essence

‘implied’ edges; existing only as an artifact of other relations.

5.2 Previous Work

5.2.1 The Lydia Project

The Lydia project has been discussed in Chapter 1. It is mentioned again here to

make this chapter self-contained. The Lydia system automatically builds an entity

database from online U.S. newspapers downloaded on a daily basis. The tech-

niques used for entity identification include part-of-speech tagging, templates and

gazetteers, as well as clustering for co-reference resolution. The architecture of

the Lydia system is described in detail in [48]. The main components of Lydia are
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spiders to download the news sources, named entity extraction and classification,

including co-reference detection [49], and various derivative analysis based on the

named entity recognition.

The system can also be extended to other sources such as pub-med databases,

financial reports, and blogs [47]. Some of these analysis include question answering

[42], spatial analysis and geographic bias (‘heatmaps’) [53], and sentiment analysis

[29]. Searching our database is also discussed in [8].

5.2.2 Network Links

Motivated by clustering, work has been done on assigning similarity scores to ver-

tices of a network, as a measure of their structural equivalence. These include

Euclidean distance, Pearson correlation, and mutual information [58]. While these

measures may be useful in determining vertices’ similarity(or dis-similarity), they

have classically been used as metrics for clustering algorithms.

Clauset, Moore, and Newman [15] describe a method of predictingmissinglinks

in networks, the opposite problem we are looking at. Their method is based on

first finding a hierarchical structure, and using this probabilistic hierarchy to decide

which non-existent links are most likely to be in the network. This same idea could

in principle be applied to deciding which existing links themodel is most surprised

by, but this was not studied.

5.3 Identifying Implied Relationships

The nature of the way news articles are written, and the difficulty of NLP processing

tends to lead to networks that are larger than necessary. Authors feel free to make

off-cuff and unrelated comments on any subject, and in general the real world aspect

of article data leads to noise. We describe a technique for calculating the number

of ‘noisy’ edges in such a network. In particular, we developan ‘implied relation
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score’ for each edge that indicates how certain we are the edge represents a real

relationship between entities, or if the edge is an artifactof noise (i.e. it can be

explained away by other relations in the network). (These edges were originally

termedspurious, but this notion didn’t accurately describe our methods; however,

due to this legacy ‘spurious score’, and ‘implied relationsscore’ are occasionally

used interchangeably)

The purpose of determining theimplied edges is two-fold. First, pruning im-

plied edges from our graph can make existing network analysis techniques tractable.

Alternatively we can use the score itself as the basis for analysis. We can then use

this score as a similarity score for, say, clustering.

5.3.1 Implied/Meaningful Juxtapositions

From our news analysis, we get a juxtaposition count for eachpair of entities. A

juxtaposition (co-occurrence) is defined as a pair of entities appearing in the same

sentence. Although correlated, this count does not tell us how meaningful a rela-

tionship exists between the two entities. For example, consider the two pairs of

entities (George Bush, United States) and (Stephen Harper, Canada). Clearly we

would expect many more juxtapositions for (George Bush, United States), based on

the relative popularity. However, the relation between thetwo pairs is essentially

the same. Also consider Laura Bush and Dick Cheney. The juxtapositions between

these two entities will be artificially high, simply becausethey both get mentioned

frequently with a third entity, namely George Bush .

We determine a normalized meaning-fullness by modeling juxtapositions as be-

ing of three basic types:

• Popularity - Some juxtapositions will occur simply because the entities in-

volved are overall extremely popular.
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• Neighbors- Some juxtapositions will occur because two entities have acom-

mon neighbor. No strong relation exists between the two entities, but their

juxtapositions are fairly high due to a common friend.

• Significant Relationships- Juxtapositions occurring from actual relations and

interactions.

We model these types of juxtapositions by taking a naive assumption of inde-

pendence. We estimate the first two types of juxtapositions,and subtract these from

the observed number of juxtapositions to get the third type.

5.3.1.1 Entity Popularity

If we assume an entity is equally likely to participate in anyjuxtaposition pair,

regardless of the other entity in the pair, than the expectednumber of juxtapositions

between two entities depends only on their overall frequencies. That is,

Juxtspop(e1,e2) = Juxtstotal ∗ f (e1)∗ f (e2)

where Juxtspop are the estimate of juxtapositions occurring from popularity, f (e) is

the total frequency of an entitye in the corpus, and Juxtstotal are the total number

of juxtapositions in the corpus.

5.3.1.2 Neighborhood

Consider now two entitiese1,e2 that have a common neighborz. We can again

assume that given the occurrence ofz, the occurrence ofe1 ande2 are independent.

Under these assumptionse1 ande2 have a frequency of appearing withzgiven by,

f (e1|z) = Juxts(e1,z)/∑
e

Juxts(e,z).

and the estimate is then the same as the popularity estimate,
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Juxtsneighbor(e1,e2|z) = Juxtsz∗ f (e1|z)∗ f (e2|z) (33)

= Juxts(e1,z)∗Juxts(e2,z)/∑
e

Juxts(e,z). (34)

To get the total neighborhood contribution we sum over all neighborsz.

5.3.1.3 Implied Relation Score

From the estimates of Neighborhood and Popularity juxtapositions, we get the sig-

nificant juxtapositions by subtracting from our empirical count. To normalize for

overall popularity, we then convert to a score by calculating the probability that

the significant juxtaposition count could occur by chance. That is, two very pop-

ular entities will be more likely to have a juxtaposition count much greater than

what we estimate, so the apparent large number of significantjuxtapositions may

be due to chance fluctuations. By converting to a probability we have a score that

is comparable across all pairs of entities.

This probability is a computationally expensive operation. An alternative score

is to use the ratio of real edges to implied edges. Since this ratio would be extremely

high for low weight edges, we multiply by the log of the real edges, giving

implied relation score= (real edges/implied edges)∗ log(1+ real edges).

5.3.2 Evaluation of Implied Relation Score

We evaluate the effectiveness of our implied relation scoreby seeing how properties

of the graph change as implied edges are removed in order of score. We expect our

network to be a small-world network and thus have short pathsbetween any two

connected vertices. This can be seen in Figure 20. Since calculating all shortest

path is computationally intensive, we compute the average shortest paths on random
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samples of the vertices. The graphs also show what happens ifwe remove edges in

reverse order (Inv. Implied Score), by simple co-referencecount (Juxt Count), and

randomly (Random Score).

Another property we examine is articulation points (Figure21) and leaves (Fig-

ure 22. We see that as we remove implied edges, the number of articulation points

grows very slowly, but as more important edges are removed, the number of articu-

lation points begins to grow rapidly. This effect needs to bestudied more rigorously,

but we believe that removing the most implied edges leaves tight clusters, and thus

many bridges between clusters. Thus once the most implied edges are removed,

and then inter-cluster edges, there will be many articulation points.

One problem in evaluating our score is that there is no groundtruth for what a

real relation is. We can approximate a ground truth by using a collection of human

knowledge, wikipedia. We assume that there is a real relation between two entities

if one of them appears on the other’s wikipedia page. We then use the implied

relations score as a threshold for pruning, and can get precision and recall for how

well the pruned graph approximates the wikipedia graph. We use 2 different sets

of wikipedia dumps for our ground truth. One is a small dump from 5 November

2005; and the other is a much larger dump from 18 October 2007 (After Wikipedia

gained significant popularity.) The average and median positive and negative score

for each scoring method is shown in Tables 13 - 16. The precision / recall graphs are

shown in Figures 23 - 24. Figure 23 shows the precision of above a certain rank for

our different scoring methods. Figure 24 shows the precision / recall curves for each

scoring method. The curves are obtained by considering all possible thresholds for

each method. The precision / recall graphs are shown in Figures 23 - 24.
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Figure 21: Number of articulation points.
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medline dailies dailies goodnews goodnews
Method ALL PERSON ALL PERSON ALL

20071018 20071018 20071018 20071018 20071018

Score Pos. 4,300.11 48,384.40 86,039.20 65,302.80 152,563.00
Score Neg. 219.62 11,159.10 11,135.90 8,731.04 21,276.00
Juxts Pos. 94.68 85.09 78.83 39.13 38.57
Juxts Neg. 48.64 30.12 30.87 17.14 20.14
Real Pos. 34.95 52.88 37.59 26.11 15.17
Real Neg. -41.61 16.05 5.39 9.73 5.18
Implied Pos. 59.73 32.21 41.23 13.03 23.40
Implied Neg. 90.26 14.06 25.48 7.41 14.96
Ratio Pos. 4.03 7.95 5.09 6.46 4.19
Ratio Neg. 1.11 4.39 3.28 3.78 3.28
Nbrs Pos. 36.46 8.96 51.89 6.13 38.98
Nbrs Neg. 60.50 7.12 44.44 6.09 33.34
NRatio Pos. 0.16 0.11 0.07 0.11 0.08
NRatio Neg. 0.12 0.08 0.04 0.08 0.05

Table 13: Network averages for positive and negative examples on the 2007
Wikipedia data. Except for some medline exceptions, positive scores are higher
than negative scores.

5.4 Future Work

Network science research is often limited by the availability of good network data.

Data such as citation networks [3], karate clubs [58], and email/blog networks [44]

have proven useful for exploration, and confirming theory. Our data then makes for

interesting study, because it is both large scale and comprehensive of world events.
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medline dailies dailies goodnews goodnews
Method ALL PERSON ALL PERSON ALL

20071018 20071018 20071018 20071018 20071018

Score Pos. 5.70 13.97 9.18 20.16 9.94
Score Neg. -1.00 8.12 5.89 8.33 6.85
Juxts Pos. 27.00 20.00 17.00 13.00 11.00
Juxts Neg. 17.00 10.00 8.00 9.00 8.00
Real Pos. 12.48 12.00 9.47 8.99 6.84
Real Neg. -0.88 5.97 4.65 5.99 5.51
Implied Pos. 11.92 4.58 5.22 2.26 2.87
Implied Neg. 22.21 3.01 3.02 2.31 2.51
Ratio Pos. 1.63 3.18 2.36 4.27 2.66
Ratio Neg. -0.05 2.26 1.82 2.42 2.10
Nbrs Pos. 19.00 4.00 15.00 2.00 8.00
Nbrs Neg. 41.00 4.00 15.00 3.00 11.00
NRatio Pos. 0.14 0.07 0.05 0.06 0.04
NRatio Neg. 0.11 0.05 0.03 0.06 0.03

Table 14: Network medians for positive and negative examples on the 2007
Wikipedia data.
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medline dailies dailies goodnews goodnews
Method ALL PERSON ALL PERSON ALL

20051105 20051105 20051105 20051105 20051105

Score Pos. 6,114.22 42,952.30 59,024.40 81,593.00 174,486.00
Score Neg. 125.31 6,738.93 5,609.93 6,675.41 13,821.30
Juxts Pos. 136.14 87.06 113.22 40.98 48.51
Juxts Neg. 55.67 39.04 31.44 21.63 21.02
Real Pos. 43.87 57.60 54.27 29.64 22.94
Real Neg. -54.37 19.61 5.64 10.89 4.71
Spur Pos. 92.27 29.46 58.95 11.34 25.57
Spur Neg. 110.03 19.43 25.80 10.74 16.31
Ratio Pos. 4.22 9.66 5.22 7.65 4.65
Ratio Neg. 0.86 4.47 2.98 3.59 3.05
Nbrs Pos. 40.23 7.35 48.80 4.37 31.77
Nbrs Neg. 64.11 6.17 45.93 6.00 33.18
NRatio Pos. 0.18 0.09 0.08 0.10 0.08
NRatio Neg. 0.14 0.08 0.05 0.10 0.06

Table 15: Network averages for positive and negative examples on the 2005
Wikipedia data. Except for some medline exceptions, positive scores are higher
than negative scores.
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medline dailies dailies goodnews goodnews
Method ALL PERSON ALL PERSON ALL

20051105 20051105 20051105 20051105 20051105

Score Pos. 6.12 17.77 9.48 39.51 12.91
Score Neg. -1.00 7.48 4.57 6.97 5.73
Juxts Pos. 33.00 19.00 22.00 13.00 12.00
Juxts Neg. 18.00 11.00 9.00 9.00 8.00
Real Pos. 13.96 12.13 11.72 9.24 7.83
Real Neg. -4.20 5.99 4.31 5.96 5.26
Spur Pos. 13.05 3.6 6.36 1.3 2.67
Spur Neg. 27.97 3.48 3.73 2.82 2.89
Ratio Pos. 1.69 3.71 2.38 5.00 3.14
Ratio Neg. -0.18 2.10 1.52 2.11 1.86
Nbrs Pos. 19.00 3.00 15.00 1.00 6.00
Nbrs Neg. 45.00 3.00 17.00 3.00 12.00
NRatio Pos. 0.17 0.06 0.05 0.04 0.05
NRatio Neg. 0.13 0.05 0.03 0.06 0.03

Table 16: Network medians for positive and negative examples on the 2005
Wikipedia data. Except for some medline exceptions, positive scores are higher
than negative scores.
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Chapter 6

Discovering Entity Communities

6.1 Introduction

To understand the world, we must learn about its communities. There is a two-

way path of knowledge; we learn about an entity by learning what communities

it is a member of, and we learn about communities by examiningits members.

We seek to discover communities from news entities mined from the Lydia project

(www.textmap.com).

Our approach to community discovery uses techniques from network science

and social network analysis. The information needed to discover communities is

contained in the co-occurrence network of the Lydia data. The co-occurrence net-

work has named entities as vertices, and an edge between two named entities if they

co-occur in a sentence in a news article. The weight of the edges is the frequency

of co-occurrence. A pruned example of the network is shown inFigure 25 (Edge

weights are not shown).

Typically, a few members of any community are known. Ask the average person

to name 10 baseball players, and they could run them off without pause. Think now

how their response would differ had you asked them to nameeverybaseball player.

Our version of the community discovery problem attempts to leverage this partial
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Figure 25: A partial view of a co-occurrence network.
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knowledge of a community. Starting with an initial seed set that is a sampling of a

community, we seek to discover as much of the full community as possible.

Community discovery is a fundamental classification problemin social network

analysis. Once communities are discovered, interesting analyses result. Knowledge

of communities can assist classic NLP tasks such as information retrieval and ques-

tion answering. The communities can also themselves be a topic of study. The

evolution and growth of a community can be predicted. The interaction between

communities can be studied. Ideology of a community can be observed, and its

movement predicted. In addition, the flow of ideas between communities can be

studied. In the context of Lydia, once we have known communities and we can

observe community-wide sentiment, we can predict how sentiment of individuals

interacts with community sentiment and how a communities sentiment effects one

of its members.

In its most general form, community discovery can be considered a clustering

problem; and as such is as hard as clustering. In our context,several heuristics

present themselves, but none offer a completely satisfactory solution:

• Reference lists / gazetteers.One solution that offers itself is the use of ref-

erence lists (say from Wikipedia). Most curated lists, suchas those found

on Wikipedia, will be incomplete; or at least lag in completeness relative to

the speed of news. Certain lists may also just not exist. Others may contain

a preconception, or bias. Such would be the case where members are self-

identified. The reality of an individual’s company may differ from how they

perceive themselves (or want themselves to be perceived). Finally, the names

used from an external list may not be consistent with the names used in a

network, adding an extra layer of complexity.

• Relation Extraction.Another means of discovering communities could be to

read them from the text. The text says “Democrat Bill Clinton announced

yesterday..”, and thus we know Bill Clinton is in the community‘Democrat’.
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This method may be possible but it just shifts the hardness from a hard discov-

ery problem to a hard NLP problem. Determining Bill Clinton is aDemocrat

from reading text is a difficult NLP problem. Even if it could be done, not all

communities are mentioned as explicitly as our example; particularly for low

volume entities.

General solutions to our problem also have many hurdles to overcome:

• Network Noise.Analytical methods don’t start with perfect data. Our input

data was computed from imperfect named entity recognizers,classifiers, co-

reference resolution, and other NLP tasks. The network alsocontains noise,

such as spurious relations, from the way news stories are written.

• Multiple Membership.A problem also arises with people that bridge commu-

nities. Say we are trying to discover an entertainment community, and have

Arnold Schwarzenegger as a member. His political friends may start to creep

into the community. Eventually, if enough political entities creep in, we will

be growing the wrong community.

• Entity Disambiguation.A similar problem arises when different people share

the same name, such as with John Edwards, which is the name of both a

Carolina congressman, and an Indiana Pacers Center. This willcause the two

communities to be bridged.

• Community Granularity.Specific groups can also be difficult to discover.

Trying to identify ‘Baseball Players’ will often result in identifying all people

related to baseball (managers, agents, owners, etc.)

Our contribution is as follows

• We give a general method for community discovery from seeds.
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• We demonstrate our methods work well on real world networks,even given

very small seed groups (20 - 400 members).

• Our methods are fast, and incremental.

• Our methods allow local community discovery.

• We evaluate parameter optimization to maximize performance.

Our method can be divided into two tasks. First, as an incremental method,

given a set of members of a community, find which vertex is mostlikely to also

be a member. Second, determine when the next member to add is likely not to

be in the community. To put it simply, we have one phase to determine the next

member to add, and another phase to determine when to stop adding members. As

can be seen in Figure 26, identifying this stopping phase is just as important as

the growing phase. This figure shows what happens as a grower tries to expand a

seed set. The x-axis shows the number of members in the expanded community; as

the grower is expanding the community, we move along the x-axis. The 3 shaded

regions represent the size of the seed set, the number of correctly identified baseball

players, and the number of falsely identified baseball players. Starting from the

seed set, we see initially that almost all added members are correctly identified

baseball players. For the first 1000 members, we see almost nofalse positives.

For the next 1000 members, we start to see non-baseball players creeping into the

community (The darkest shaded region), but still a significant number of baseball

players being added. Eventually, once the community gets too large, the grower

has lost all ability to distinguish baseball players, and isadding correct members at

a rate no better than random. Identifying where this breaking point happens is an

essential component of reliably recognizing communities.

We also notice that even at this breaking point, only about a third of the com-

munity has been found. The community appears to have an easily discover-able

core of members, and many harder to distinguish outliers. (As we will see later, the

96



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

M
em

be
rs

Members

Evaluation of Growth of Baseball Players in dailies by Binomial CDF

Total Members
True Positives

Start Set
Full Community Size

Weak Members
Strong Members
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problem isn’t as bad as it appears, and can partially be explained by difficulties in

evaluation techniques).

6.2 Related Work

The two main problems with communities are discovery and identification. Discov-

ery is concerned with finding a group of entities that are members of a community,

while identification seeks to identify what a community is given its members. Our

problem is purely a discovery problem, since it is assumed that the seed commu-

nity’s identity is already known.
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6.2.1 Communities

Our notion of a community is external from the network. A community is a group

existing in the real world. Although real world communitiesshould have properties

that translate to the network representation, they are not defined by the network.

Typical definitions of communities however depend solely onnetwork proper-

ties. Generally communities are groups of vertices that arebetter connected within

the community than outside of it [58], as in ‘ Web Communities’, which are defined

as a set of vertices each with more neighbors in the communityas out of it [22, 27].

It is expected that a definition of a community within the network will necessarily

produce a real-world community.

Web Communities are a specialization of graph alliances [21]. Specifically, a

defensive alliance is a set of vertices where each has at least as many neighbors in

the alliance, than out of it (astrongdefensive alliance has strictly more neighbors in

the alliance). Offensive alliances are a set of vertices where the vertices’ neighbors

each have more members in the alliance than outside of it; anda global alliance is

both offensive and defensive. The complexity of finding alliances of a given size

k is NP-complete [13, 20, 45, 73], but also shown FPT (fixed parameter tractable)

[21].

6.2.2 Discovery Methods

Community discovery aims to find groups in the network that have strong connec-

tions. Among members of a group, there will be lots of connections (high density),

while there will be much fewer connections between different groups. Discovering

communities is typically viewed as a clustering problem, with specific techniques

being more applicable to social networks. There have also been real world studies,

such as Kossinets’ and Watts’ study of the Yale email network[44]. A large class

of methods deal on a global scale. The output of these algorithms is to assign every

single vertex to a community. An overview of these methods follows.

98



6.2.2.1 Bisection Techniques

Bisection techniques attempt to partition the network by repeated bisections. Most

methods perform well for a single bisection, but not always so well for more than

two groups. Also, an external decision needs to be made to indicate when to stop

bisecting (how many groups to stop with) [58].

• Max Flow - Min Cut.Min Cut algorithms can produce good bisections, but

make no guarantees on keeping both groups of similar size. Flake, Lawrence,

and Giles [23] give a min-cut algorithm based on min-cut trees. This algo-

rithm is actually able to produce an arbitrary number of clusters, and can be

expanded to produce a hierarchical clustering.

• Spectral Bisection.Spectral bisection techniques partition a graph based on

the eigenvectors of its Laplacian. The LaplacianQ of a graphG is defined

asQ = D−A whereD is ann×n diagonal matrix withdv,v = d(v), andA

is the nxn adjacency matrix ofG. Since all rows and columns ofQ sum

to 0, Q has 1n as an eigenvector, with eigenvalueλ1 = 0. If the graph had

two connected components, there would be eigenvectors withvalue 1 for

vertices in the component, and 0 otherwise. For a real network where the two

communities aren’t completely disconnected, there will bea small eigenvalue

with eigenvector a linear combination of eigenvectors of the perfect group

splits (the vector of 1’s for members of the groups, and 0 otherwise). The

spectral bisection method finds the eigenvector corresponding to the second

smallest eigenvalueλ2, and bisects the graph on weather the eigenvector entry

for a vertex is positive or negative.λ2 is also called the algebraic connectivity

of a graph. A smaller value indicates a better split into 2 groups [66, 58]. This

method relies on calculation of eigenvectors. Using the Lanczos method, this

can be calculated inO(m/(λ3−λ2). Also, the median entry of the eigenvector

can be used to split the vertices into more equally sized setsif 0 produces a
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poor split.

• Kernighan-Lin Algorithm.The Kernighan-Lin algorithm [41] is a heuristic al-

gorithm that attempts to greedily minimize the “external cost” of a partition,

which is the sum of the cost of inter-partition edges. It starts with an initial

partition n (possibly random), and determines the pair of vertices whose swap

would produce the largest decrease in cost. In then swaps these, and deter-

mines the next pair, not considering already swapped vertices. This gives a

sequence of vertex swaps which is then scanned to find the minimum. The

procedure is then repeated with the new partition as the starting point, until

convergence on a local minimum is achieved. Sizes of the two partitions must

be given, although ranges can be specified by adding dummy nodes (vertices

with all edge costs 0). The run time of the described algorithm is O(n2), but

additional heuristics on pair selecting can be used to speedup the heuristic.

6.2.2.2 Hierarchical Clustering

Hierarchical clustering produces clusters of various degrees of similarity, often rep-

resented as a dendrogram. The techniques for hierarchical clustering are driven

by a similarity measure between the vertices of a network [72], which is usually

application specific.

• Agglomerative.Each vertex initially belongs to its own cluster. Edges are

considered in order of similarity to merge clusters into larger clusters. (See

the section below on similarity measures). InSingle Linkage, clusters are

formed whenever two components become connected. ForComplete Link-

age, clusters are formed whenever all links between two clusters are added.

Newman [58] gives an algorithm based onmodularity Q. Given a partition of

the vertices, define a matrixewhereei j is the fraction of edges inG between
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componentsi and j. ThenQ is defined as

Q = Σieii −Σi jkei j eki = Trace(e)−||e2||.

At each step, choose to merge the two clusters that causes thegreatest in-

crease inQ. The running time isO(mn).

Agglomerative clustering methods don’t find peripheral members reliably

[59]. There is also an added level of complexity for determining at which

level of the hierarchy gives the best communities.

• Divisive. In divisive hierarchical clustering, the entire graphG is started with

as one cluster, and edges are removed to break the cluster into smaller clusters

(as opposed to agglomerative where clusters are joined to larger clusters.

Girvan and Newman [28, 59] give an algorithm based on edge betweenness

centrality. The edge with highest betweenness centrality is removed from the

graph until no edges remain (centrality is recomputed aftereach removal.)

Edge betweenness can be calculated inO(mn), giving a total computation

time ofO(m2n). The running time was improved by Tyler et al. by randomly

sampling the vertices to compute betweenness on.

Clauset, Moore, and Newman [15] go on to state that hierarchical structure is

actually a defining component of social networks; sufficientfor power law degree

distributions, high clustering coefficients, and short path lengths (small world). The

hierarchical random graphmodel is a dendrogram, with probabilities at internal

nodes. The probability of an edge between two leaves is equalto the value in their

lowest common ancestor. This model produces networks exhibiting the properties

of small-world networks. They also give a statistical basedalgorithm for inferring

the most likely hierarchical random graph model from a givennetwork.
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6.2.2.3 Other methods

Not all community discover methods seek to partition the network. Hopcroft, Khan,

Kulis, and Selman [36] give a method of using agglomerative clustering to find

‘natural communities’. The idea is that not all individualswill naturally fall into

communities. A ‘natural community’ is a stable community; acluster that should

still exist if the network is slightly perturbed. By perturbing the network, and seeing

which clusters consistently are found, the ‘natural’ and ‘stable’ groups can be found.

Efficiently perturbing networks and stability of clustering algorithms (HITS and

PageRank) can be found in [60]. This work is also extended in [37], where the goal

is then to track these ‘natural communities’ over time. Other methods include:

• Resistor Networks.Wu and Huberman [83] give a clustering method based

on considering the network as a resistor network and clustering vertices based

on similar electrical potential. This method scales to extremely large graphs

(linear run time), and can also be modified to extract a singlecommunity from

a single node (i.e. a single seed).

• Core Collapse Sequence.A k-core is a component of a graphG where each

vertex has degreek or larger. The core collapse sequence looks at the se-

quence of cores fork = 1,2, . . .n−1. [72]

6.2.3 Similarity Measures

Two entities are structurally equivalent if they have the same set of neighbors. Var-

ious measures have been proposed for measuring the degree ofequivalence for two

entities that are not completely equivalent, including Euclidean distance and Pear-

son correlation. Euclidean distance is the distance between the two vertices adja-

cency vectors. The distance between verticesi and j is

xi j =
√

(∑(aik −a jk)
2)
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whereaik are the entries of the adjacency matrixA [12]. Pearson correlation is

defined as

Ci j =
(1/n)∑k(aik −µi)(a jk −µ j)

σiσ j

whereµi = deg(i)/|V|. Other measures can also be defined, the reader is referred

to [12].

Much study has been done on co-citation networks. Classes of similarity metrics

derived from this application are termed Bibliometric. Balakrishnan and Deo [5]

give a similarity metric inspired by Bibliometrics.

|N(u)∩N(v)|
min(du,dv)+1

whereN(u) is the neighborhood ofu.

6.2.4 Growing From Seeds

Growing communities from seeds is done on a smaller scale with Google Sets

(http://labs.google.com/sets) [14]. A user can enter up tofive items, and the set

is expanded to 15 or 30 items. Inspired by this, Ghahramani and Heller [26] devel-

oped the idea of Bayesian Sets. Using a statistical model of sets (communities), and

Bayesian inference, complete sets could be grown from seeds on a similar scale to

that of Google Sets. Our problem differs from Google sets in that we are attempting

to grow much larger communities (up to thousands of members); but also rely on

larger seed sets (tens or hundreds of members).

Flake, Lawrence and Giles [22] examined the problem of finding web commu-

nities, where a community was defined as a set of sites, each with more neighbors in

the community than out. They found that communities can be efficiently discovered

as a max-flow / min-cut problem, if the source set contained members of the com-

munity, and the sink contained non-members. Thus with seedsfor the community,

and seeds for non-community members, the community could bediscovered. They

also show approximation algorithms that work on just a localview of the network.

103



Thelen and Riloff [78] give a method for learning semantic lexicons from seed

sets. Their method is NLP based (not network based), using pattern matching such

as ‘A was arrested’, to learn new members. They also explore the benefits of simul-

taneously growing classes.

Sarmento et al. [69] grow entity classes from very small seedsets. They seek to

estimate the membership functionµ(S,e); which is a measure of if entityebelongs

to the same classes as the seed setS. This is done by a cosine similarity score on

the co-occurrence vectors; where a co-occurrence means theentities appear in a list

structure (such as “A, B, and C”).

Our problem of growing the communities from seeds resemblesminimally su-

pervised learning, and bootstrapping. Supervised learning uses large amounts of

training data to construct a classifier. Unsupervised learning seeks to construct a

classifier without training data. Since this is usually an extremely hard (sometimes

impossible task), minimally supervised learning attemptsto construct a classifier

using a very small amount of training data. These techniquesare useful for quickly

constructing classifiers on lesser known domains, where a large amount of training

data is unavailable.

6.2.5 Temporal Growth

Our problem attempts to grow a community from a partial view (seed set). The

communities formed by entities are not themselves static intime. A related prob-

lem would be to predict temporal changes from a complete view. Members will

come and go as they please, and groups will grow or shrink in size. For instance,

we would like to know the probabilityp of a particular entity joining a particu-

lar group. Current research has shown it is possible to predict these changes in a

community based on its current structure. The change in a community is usually a

very small fraction of the community itself. Thus a very small number of members

are being predicted, starting from a very large number of members; as opposed to
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our problem of finding a large number of members from a small number. Because

only a very few members will join, there is large prior probability of not joining.

Thus even though the methods have some predictive power, accurately predicting

individual membership remains elusive. Predicting overall size change is somewhat

more attainable.

Backstrom et al. [3] worked on predicting changes from current network prop-

erties. They used a decision tree technique,where they predetermined properties of

the network that would be used as a feature vector. To train, they took snapshots

of LiveJournal and DBLP co-authorship networks at differentpoints in time. They

found that the most important feature determining membership is not just who your

neighbors are, but how your neighbors are connected.

Sarkar et al. [68] tracked group dynamics by first reducing entities to a latent

space model. This reduced dimension allow entities to be considered as spatially

separated only, and Markov chain models could be used to predict movement.

6.2.6 Real World Networks

The Internet can be cited as the reason network science has recently begun to be

studied [7]. Barabasi explains that before the Internet, there was simply no data

available for large and reliable networks. Internet structure has revealed many prop-

erties that are then found in other networks.

Gibson, Kleinberg, and Raghavan [27] examined the link topology of the world

wide web. They discovered that communities exist on the web.These communities

have “authoritative” pages, and are linked together by “hub” pages.

Tyler, Wilkinson, and Huberman [80] discovered organizational community

structure through examining emails. The network they considered was formed by

the to/from pairs of email. They then used a divisive betweenness based technique

for discovering communities. The sample contained 485 HP Lab employees, and

185,773 emails.
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6.3 Expanding a Community

Our task of expanding communities lies somewhere between discovering communi-

ties, and predicting growth. Discovery tasks typically produce a clustering of sorts,

based entirely on network structure. Our task differs in that we know initial seed

members. This gives both a starting point for a community, and also limits discov-

ery to a single community. Also, we know what community is being looked for; as

opposed to a discovery task that outputs a group of members that belong to some

community, but gives no indication of what that community is. Also, community

discovery is a global problem, seeking to partition vertices into communities. Our

version can operate on a local level, discovering just a single community if wanted.

Prediction tasks are concerned with how the community is changing over time.

Given the complete membership of a community, it seeks to findwhich people are

most likely to join in the future, and which members are likely to leave. Our task is

to take an incomplete membership of a community, and predictwhat the complete

membership is, but at a static time period. Usually the members of communities in a

prediction task are self-identified; as in say a Myspace group. It is possible that the

new members really are already functioning as a community member, but just have

not identified themselves as such yet, and as such the self-identified communities

aren’t a completely accurate representation of the real world.

6.3.1 Selecting The Most Likely Next Member

The essential function of a community grower is to choose thenext member to

add to the community. This is achieved by assigning a score toall entities of the

network. Below we describe different criteria for identifying the most likely next

community member.

• Neighbor Count- The most obvious way of finding new members is to see

who has a lot of neighbors in the community. Basketball players will be
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neighbors with other basketball players, musicians with other musicians, etc.

• Juxtaposition Count- One drawback of using a neighbor count is that each

neighbor is given the same weight, regardless of the strength of the rela-

tion. The edge weights on our network are co-occurrence frequencies, also

termedjuxtapositionsin the Lydia project. Using juxtaposition weight in-

stead assigns more importance to neighbors that appear morefrequently with

an entity.

• Neighbor Ratio- A failing of the counting scores is that the statuses of

ubiquitous entities get artificially elevated. An extremely popular entity like

“George Bush” will have neighbors from many communities, since he has

over a thousand neighbors. Perhaps six of these neighbors are chemists,

compared to John Dalton, an entity that has only 8 neighbors (5 of which

are chemists). The raw neighbor count score would identify George Bush as

more likely to be a chemist. But if we consider an entity’s total popularity,

and use a ratio, Dalton is promoted to the most likely chemist.

• Juxtaposition Ratio- The same bias to ubiquitous entities found with neigh-

bor counts is also present in juxtaposition counts. All of the edges to “George

Bush” will have a high weight, simply because of the total popularity of

“George Bush”. Using a ratio helps account for high frequencyvertices.

However, this ratio (and juxtaposition measures in general) suffer from be-

ing one sided. The edge weights on very rare entities will be much larger

than on edges to popular entities.

• Binomial Probability- Using ratios eliminates the problem of popular entities

being elevated, but at the cost of elevating extremely unpopular entities. If

an entity had 100 neighbors, 60 of which are chemists, they would have a

neighbor ratio of 0.6. Compare this to an entity that has 1 neighbor who is a

chemist, for a ratio of 1. What if we consider an entity whose neighbors are
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chosen randomly. If the entity hasn neighbors, the probability that at leastk

of these are chemists is

n

∑
i=k

(

n
i

)

∗ pi ∗ (1− p)n−i .

wherep is the fraction of known chemists in the network. If this probability is

extremely low, than it might be reasoned that the neighbors were not chosen

randomly, and the entity is a member of a community.

6.3.2 Complexity of Adding New Members

Our algorithm for expanding a network is logically very simple. Our initial guess

of the community is the seed set. We then continually grow thecommunity, at each

step adding the highest scoring non-member.

If done naively, adding a member costsO(|E|) at each iteration. For each vertex,

we need to check which of its neighbors are in the community toget the score.

This is because all of our scoring methods depend solely on neighbors. But this

dependence leads to a performance improvement. Thus when a vertex is added to

the community, the only vertices whose scores will change are the neighbors of

the added vertex. In addition, the vertices can be kept in a priority queue to easily

identify the highest scoring member. Since a vertex can onlybe added once, each

edge is only considered once. Combined with the cost of maintaining a priority

queue, we get a complexity ofO(|E|log(|V|) (The priority queue is on vertices so

has at most|V| elements). Our algorithm then, whenever a vertexv is added to the

community, only updates the scores of the neighbors ofv.

6.4 Validating a Community

The methods for growing a community described in the previous section are useful

for adding members to a community, but do not provide a clear answer on when to
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stop adding members. Figure 26 shows what happens when a grower is allowed to

continuously add new members. Initially, most of the members added are indeed

members of the community. Eventually, at around 700 members, we see a shift in

composition , and most of the new members added do not belong to the community.

The grower appears to have expanded outside the community. If we could stop the

growth before it enters into this second phase, we would optimize the quality of the

expanding community.

6.4.1 Stopping Rules

If we knew what Figure 26 looked like, properly terminating the growth would be

easy. However, all we are given is a (small) subset of the community, and no other

validation information as to which insertions are invalid.If we had a subset of

the community, we could monitor how frequently these members are being added

by the grower. In the first phase, when nearly everything being added is correct,

we expect to add a new validation member with frequency equalto the percent of

the community the validation set is (for example if our validation set is 5% of the

total community, we would expect to see a validation member once about every 20

inserts). Once we shift into adding arbitrary entities, we expect to see validation

members with frequency equal to the percent of the entire network composed of the

validation set, which is much much less than the first percentage.

To precisely find the correct stopping point, we find the pointthat best splits the

validation intervals into two groups. Since all of the intervals on one side of the

ideal split should be about the same, we expect the deviationof the intervals to be

small. We then find the split that minimizes the absolute deviation. The stopping

points is

stopping point= argmink(
k

∑
i=0

(|xi −µ(x0, . . . ,xk)|)+
n

∑
i=k+1

(|xi −µ(xk+1, . . . ,xn)|)).

where the functionµ is the arithmetic mean of its arguments. For example, suppose
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the validation members are found on inserts 3, 7, 10, 11, 16, 18, 21, 120, 203, 290,

387, 506. This yields an interval sequence of{3,4,3,1,5,2,3,99,83,87,97,119}.

The optimal stopping point is after the seventh insert, which gives absolute devia-

tions of

∑(|xi −µ(3,4,3,1,5,2,3)|)+∑(|xi −µ(99,83,87,97,119)|)

= ∑(|xi|−3)+∑(|xi|−97)

= |3−3|+ |4−3|+ |3−3|+ |1−3|+ |5−3|+ |2−3|+ |3−3|

+|99−97|+ |83−97|+ |87−97|+ |97−97|+ |119−97|

= 54

which is minimal for this sequence. Figure 27 shows actual intervals for various

validation set sizes. We see that the intervals do start out small, and take a sudden

and dramatic spike. At the 90th validation member found, theintervals suddenly

become orders of magnitude larger.

6.4.2 Boosting

Our grower is sensitive to which vertices are chosen as validation vertices, and

which as seed vertices. The algorithm is designed to use verysmall given sets, and

this causes a high degree of sensitivity to which vertices get chosen for seeding and

which for validation.

To improve the performance, we use a boosting technique. We run our growing

algorithm multiple times, each time using a different partition of seed and valida-

tion members. Each vertex then accumulates a number of ‘votes’ for how often it

is identified as part of the community. Figure 28 demonstrates the value of boost-

ing. The x-axis represents vertices receiving at least thatmany votes. The blue

shaded region represents false-positives; vertices that we incorrectly added to the

community. As the number of votes is increased, the precision of the community

members is increased. The reason being is that for any numberof votes, the number
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of true positives is fairly constant. So the bulk of the true positives are being seen

in nearly every boosting run. However, as the vote requirement is increased, many

of the false positives drop out, since they are only appearing in a small number of

the boosting runs.

6.4.2.1 Precision / Recall Tradeoffs

It now remains to determine what boosting cutoff to use. We achieve this by using

our validation members to estimate precision and recall. The given members are

divided into seed and validation for each boosting run. We use these validation

members, and track how many votes they get. If we make the leapof faith that any

vertex that appears in 100% of the boosting runs is indeed a true member of the

community, we can estimate the percentage of the community that comprises the
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validation set as

fval = #validation members with 100%/#vertices with 100%

Then at any vote cutoff we can estimate precision and recall by looking at vali-

dation precision and recall, and adjusting by this frequency. For a given number of

votesv, the precisionprev is estimated as

prev ≈ val(v)∗ fval/mem(v)

whereval(v) is the number of validation members with at leastv votes, and mem(v)

is the number of all members with at leastv votes. The estimated recall is

recv ≈ val(v)/val(0)

whereval(0) is simply the size of the entire validation set.

Figures 29 shows examples of estimating the precision and recall, compared to

the actual precision and recall. This approximation yieldsan approximation of f-

score, which can be maximized to set a cutoff. Going even further, we can maximize

the general F-measure for anyβ .

Fβ = (1+β 2)∗ (precision∗ recall)/(β 2∗ precision+ recall)

This now gives us a knob to turn to get precision / recall tradeoffs. If the preci-

sion and recall estimates are sufficiently accurate, we can maximize any general

F-measure.

6.5 Parameter Optimization

To maximize the performance of a community growing scheme, the parameter

space needs to be optimized:
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• Neighbor Selection Method.We compare five different scoring methods

Neighbor Count, Juxtaposition Count, Neighbor Ratio, Juxtaposition Ratio,

and Binomial CDF. The default grower is Neighbor Count.

• Validation Set Size.We compare the effects of the number of members we

reserve for validation. Too few members, and there won’t be enough to val-

idate with. Too many members and we are taking away seed members. The

default validate percentage is 50%.

• Number of Boosters.We evaluate the effect of the number of boosters. More

boosters being better is our general expectation, but we ensure there is no fall-

off with too many. Also, more boosters means higher computation costs. If

there is no difference in performance between two sizes, we prefer the smaller

size. Default value is 100 boosters.

• Beta Knob.We evaluate the effects of our beta knob, and ensure that a useful

precision / recall tradeoff is achieved. Default value is 1.0.

• Given elements.In applications of our grower, the number of given elements

may not be flexible. However, we evaluate our methods with different sizes

of given elements to see how robust our methods are to extremely small given

sets. We evaluate at 20, 200, and 400 given members.

Globally optimizing the parameter space would be very computationally inten-

sive. Instead, each parameter is optimized individually, with reasonable choices for

the other parameters. Our initial setup uses default valuesmentioned above. For

each data point, the grower was run on five different randomlyassigned given sets,

and the results macro-averaged.
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6.5.1 Difficulty with Evaluation

It should be pointed out that our evaluation methods are not perfect. To begin

with, the assumed truth communities are not 100% accurate. The truth set for

baseball for example was taken from the baseball databank (http://www.baseball-

databank.org/). The completeness of the members may be lagging from real world.

Also, there is a problem of entity co-reference. The named entry in the baseball

databank may differ from our name. For instance, the databank may list ‘Larry

Jones’ as a baseball player, while we only see his preferred name of ‘Chipper Jones’

in the data. Mirroring the co-reference problem is the disambiguation problem.

There exist different people that share the same name. Wikipedia has over 30 en-

tries for the name ‘John Edwards’. While current news is no doubt dominated by the

former Carolina congressman, there is also a current NBA player named ‘John Ed-

wards’, as well as a 1960s baseball player. Since our evaluator isn’t equipped with

the means of disambiguating references, performance will be hurt. The baseball

player grower will be penalized for not discovering ‘John Edwards’, even though

none of the mentions of ‘John Edwards’ in the data was for the baseball player.

Finally, there are problems with the named entity recognition of the Lydia sys-

tem that are propagated. Lydia may get the segmentation wrong, and tag ‘Outfielder

Carlos Beltran’ as an entity. When this entity gets included in the community, it is

evaluated as a false positive. Lydia may also get categorization wrong. If the term

‘New York Mets’ gets incorrectly classified as a Person, it will show up in the com-

munity. The community grower will call this a baseball player.

Finally, a concept such as ‘baseball players’ may be too specific for our growers

to distinguish; instead the neighborhood may reflect a general ‘baseball’ category,

including owners, managers, and agents.
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6.5.2 Starting Size

Our parameter optimization experiments were done on given set sizes of 20, 200,

and 400. Since our method needs to be seeded, there may be instances where the

user can only supply a very small starting set. Figure 26 shows the results for a

single (no boosting) grower run, on different sized random given sets. There is

some variance, since each given set is randomly generated, but we find that larger

given sets do not seem to increase performance, especially recall. This gives us

some insight into the structure of the community. Remember that the truth set

for our community came from an external source. Within the network it appears

that there is a component of the community that is closely connected, with typical

community properties, and another component that is only randomly connected.

The closely connected members are easily discovered with either small or large

seed sets, and the other members are hard to find with both small and large seed

sets.
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6.5.3 Comparing Growers

Figure 30 show results of evaluating the different growers.The Binomial CDF

based score consistently has the highest f-measure, and highest recall. The Neigh-

bors count method will sometimes have a higher precision, but at much lower recall.

Thus we choose Binomial CDF as our default grower.

6.5.4 Effect of Validation Set Size.

Figure 31 shows results of validation percentage evaluations. The fraction of the

given set to use for validation was varied from 10% to 90% in increments of 10%,

with a minimum size of three for the validation set. For a given set size of 20, there

is a lot of variance. This is due to the nature of our stopping criteria. We need

intervals to determine a stopping criteria. With few validation members, we get few

intervals, and thus a very volatile method. With large sets,there seems to be very

little difference in the choice of validation size. With toolow a percentage, there

are not enough members to validate with. Too high, and there aren’t enough seed

members to grow from. A choice of 50% offers the best balance between seed and

validation.

6.5.5 Effects of Boosting

We seek to find what kind of performance gains we get from boosting. The more

boosting runs we use, the better results we expect, but with higher computation cost.

We see the results in Figure 32. For given sets of 200 and 400, we see very little

difference in performance. For a given size of 20, we again see erratic behavior.

Since there is no difference in performance, we choose 100 runs, since this will

save computation time.
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6.5.6 Effects of Beta Parameter.

As explained in section 6.4.2.1, we have a knobFβ for precision/recall tradeoff.

Figure 33 shows results of turning this knob for different domains (Baseball players,

Basketball players, Football players, and Movie Stars).Fβ measure typically hasβ

in the range(0, inf); with the interpretation thatβ represents how much more recall

is weighted over precision. Thusβ = 1 is an equal weighting,β = 2 means recall

is weighted twice as much, andβ = 0.5 means recall is weighted half as much. We

make the operating points favoring precision have the same range as those favoring

recall. We do this by the transformation,β ′ = β −1 for β > 1, andβ ′ = (−1/β )+1

for β < 1.

Turning the knob positive weights recall higher than precision, and negative

weights precision higher. We see the actual results are consistent with this notion.

We also observe however that the growers seem to have a few optimal operating

points, and not a continuum of points; as different values ofbeta all operate at the

same point (the vote cutoff point is the same for a large rangeof beta values). The

optimal points tend to be at the right, bottom ends of ‘cliffs’. That is, looking at

the graph we see some points of sharp decline in false positives. It is clearly better

to use the points just after this decline, as there is little or no difference in recall

immediately before or after the decline.

6.6 Experiments in Community Discovery

The evaluations for parameters were conducted on 4 different communities, base-

ball players, basketball players, football players, and movie stars. In this section we

discuss the setup and evaluation for each community; and we also look closely at

the community growth.
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False Positives False Negatives
Laci Peterson * John Edwards

+ Roy Williams * Michael Jackson
+ Madison Square Garden Shaquille O’Neal
+ Mike Krzyzewski * Bob Riley
+ Mark Cuban * Michael Phelps
+ Van Gundy * Steve Smith
+ Greg Oden * Mel Gibson
+ Rick Pitino Billy Donovan
+ Gregg Popovich Pat Riley
+ David Stern * Jim Davis
+ Mike Montgomery * Greg Anderson
+ Jim Calhoun * Michael Young
+ Bernie Bickerstaff * Bernie Williams
+ Flip Saunders * Mike Davis
+ Jerry Buss Larry Johnson
+ Rick Barnes * Aaron Brooks
+ Van Horn J.J. Redick
+ Paul Hewitt * Mike Williams
+ John Calipari * John Chaney
+ Lawrence Frank Jayson Williams

Table 17: Incorrectly classified basketball players. Nameslabeled with a ’+’ are
associated with basketball, but not necessarily players. Names labeled with a ’*’
are people that share a name with lesser known basketball players. The frequency
of these labels indicates that the growers are actually growing more reasonable
communities than the performance scores indicate.
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6.6.1 Basketball

Truth data for basketball players is taken from basketballreference.com. To get a

sense of how the community is grown, we look at the most popular entities that

are mis-classified. Table 17 shows the top 20 false positives(left) and false neg-

atives (right). The popularity is the number of references the entity has in our

data. Looking at the false negatives, we see that the grower is often the victim

of an obscure basketball player having the name of someone more famous. John

Edwards, Bob Riley, Mike Davis, and John Chaney, most famously politicians;

Michael Jackson, most famously a musician; Mel Gibson, mostfamously a film

actor; Michael Phelps, most famously a swimmer; Steve Smith; Jim Davis, most

famously a cartoonist; Greg Anderson, most famously a personal trainer; Michael

Young and Bernie Williams most famously baseball players; Aaron Brooks, most

famously a football player; Mike Williams, two different football players - are all

also the names of basketball players. We also see on the falsepositive side many

people that are not quite basketball players, but basketball related, such as NBA

commissioner David Stern, Owners Mark Cuban and Jerry Buss, coaches Mike

Krzyzewski, Van Gundy, Rick Pitino, Gregg Popovich, Mike Montgomery, Jim

Calhoun, Bernie Bickerstaff, Flip Saunders, Rick Barnes, Paul Hewitt, John Cali-

pari, and Lawrence Frank. We also see a basketball arena, Madison Square Garden,

a result of poor categorization (most likely caused by ‘Madison’ being considered a

female first name). Greg Oden being called a false positive isan example of the in-

completeness of basketballreference.com. Oden is currently an NBA player, signed

under the Portland Trail Blazers. Injuries cause Oden to misshis entire first season,

and as such, he has never played in an official NBA game, so he isnot yet listed as

a player in basketballreference.com. Examining these lists leads us to believe that

our growers are actually performing better than reported.
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6.6.2 Baseball

Truth data for baseball players is taken from the baseball databank (baseball-

databank.org). We again ran our grower, and examined the most popular false pos-

itives and false negatives. The results are shown in table 18. We see many of the

same phenomenon we saw for basketball players. Many of the false positives are

not baseball players, but people most associated with baseball. ‘Winter Haven’ is a

classification error, being the name of the city where the Indians and Red Sox have

spring training. ‘League Baseball’ is also an NLP error, our pipeline mistakingly

thinking the ‘Major’ in ‘Major League Baseball’ is a militarytitle. Bud Selig is the

commissioner of baseball. George Steinbrenner is the ownerof the Yankees. Brian

Cashman, Theo Epstein, and Jim Hendry are general managers. Tony La Russa

(also appearing as ‘La Russa’, an error in co-reference) is a manger. Scott Bo-

ras is a notorious agent. There also appear to be a number of non-baseball people

who are linked to baseball through the recent steroid scandals. George Mitchell,

a U.S. senator, and never previously involved with baseball, is now most famous

for his ‘Mitchell Report’, an investigation on steroids sanctioned by Major League

Baseball. Also included in the community via a steroid connection is congressman

Henry Waxman (part of the congressional hearings on steroids), defamed trainer

Greg Anderson who supplied many athletes with steroids, andnon-baseball ath-

letes who have been involved with performance enhancing drug scandals including:

Floyd Landis who was stripped of the Tour de France for a positive drug test, Mar-

ion Jones who was forced to return 5 Olympic medals after admitting steroid use,

and Tim Montgomery who was stripped of the 100m record for involvement with

performance enhancing drugs.

On the false negative side, we again have a disambiguation problem. Larry

Brown appears in our corpus, but always in reference to the basketball coach. Un-

fortunately, out evaluation only sees the name ‘Larry Brown’, and assumes it be-

longs to the middle infielder that played for the Indians in the late 60s. The same
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problem causes the evaluation of the grower to have false negatives for Mike Tyson,

most famously a heavyweight boxer; George Washington, mostfamously first pres-

ident of the United States and Commander in Chief of the Continental Army; Bill

Richardson, most famously governor or New Mexico; Bill Nelson, most famously

a senator from Florida; Paul Martin, the 21st Prime Ministerof Canada; Michael

Brown, most famously the former director of FEMA; Jim Davis, creator of Garfield;

John Warner, a senator from Virginia; Tommy Thompson, former presidential can-

didate and Governor of Wisconsin; Paul O’Neil, former Secretary of the Treasury;

Larry Johnson, a former NBA player; and John Fox, most famously a comedian.

Once again, inspection of what the grower is getting wrong leads us to believe

that it will perform better in practice than the evaluations.

6.6.3 Football

Football players were taken from http://www.pro-football-reference.com/. Table

19 shows mis-classified football players. As usual, there isa disambiguation prob-

lem with evaluating false negatives. The false positives have accumulated many

basketball players. While still in the ‘athlete’ category, basketball players are not

otherwise related to football players. If we look closer at the actual vote count, we

see that many of the basketball related entities received lower votes than football

related entities.

6.6.4 Movie Stars

Truth data for movie stars was taken from the Internet Movie Database (imdb.com).

The problem with directly using IMDB data is that they are often too complete.

Nearly everyone of any fame has an entry in IMDB, even Bill Clinton. The differ-

ence is that non movie stars usually appear in documentaries, or appear as them-

selves, or have only appeared in a couple of films. To find a moreclassical set of
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False Positives False Negatives
# Lance Armstrong * Larry Brown

Scott Peterson * Mike Tyson
+ Winter Haven * George Washington
+ Bud Selig * Bill Richardson
+ League Baseball David Wells
# Floyd Landis Felipe Alou

Eli Manning Miguel Tejada
+ George Steinbrenner* Bill Nelson
# Marion Jones * Paul Martin
# Greg Anderson Mike Brown
+ Brian Cashman Chris Carpenter
# George Mitchell * Jim Davis
+ Tony La Russa * John Warner
# Tim Montgomery Mark Mulder
+ La Russa Mike Lowell

Bode Miller * Tommy Thompson
* Scott Boras * Mike Davis
# Henry Waxman * Paul O’Neill
+ Theo Epstein * Larry Johnson
+ Jim Hendry * John Fox

Table 18: Incorrectly classified baseball players. Names with a ’+’ are people most
associated with baseball, but who are not players. Names with a ’#’ are people as-
sociated with performance enhancing drug scandals, of which baseball was a large
part of. Names marked with a ’*’ are people who share the same name with a
lesser-known baseball player.
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False Positives False Negatives
Kobe Bryant * Michael Jackson
Scott Peterson * Tony Stewart
Shaquille O’Neal Jimmie Johnson
Michael Jordan * Randy Johnson
Laci Peterson * Bob Riley
Allen Iverson Reggie Bush
Richard Nixon * Michael Moore
LeBron James * Michael Brown
Barry Bonds * Bill Nelson

+ Bill Belichick Matt Hasselbeck
+ Bill Parcells * George Allen

Dwyane Wade * Tommy Thompson
Dirk Nowitzki * Frank Robinson
Phil Jackson * Michael Young
Mike Tyson * Kevin Brown
Arthur Andersen * Ted Williams
George Washington * Gordon Brown

+ Nick Saban * Dan Brown
Jason Kidd * Luis Castillo
Steve Nash * Tim Johnson

Table 19: Incorrectly classified football players. Names labeled with a ’+’ are
associated with football, but not necessarily players. Names labeled with a ’*’ are
people that share a name with lesser known football players.
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movie stars, we filtered IMDB’s data to remove all actors whosemovie list was over

25% documentaries, or who appeared in less than 3 other movies. The most pop-

ular misclassified entities were examined, and results did not look very promising.

Inspection of the false negatives gives some insight to the problems. Like the other

communities, movie stars has a problem with disambiguation; that is multiple peo-

ple sharing the same name. For instance, in the basketball community, we saw John

Edwards was the name of a basketball player. When he is not included in the com-

munity, recall gets penalized, but the community is otherwise unaffected. However,

if John Edwards happened to be included in the seed set, community growth would

be influenced and directed towards political members. Moviestars seems to have

a high number of name clashes. Since the seed sets in our evaluators are chosen

randomly, bad members could get in the seed set, and affect all growth. Instead, a

hand-crafted seed set of 50 popular movie stars was constructed and used as seeds.

The results of using these seeds is shown in Table 20.

These results are more reasonable than before, and can be explained better.

Nearly all of the false positives are entertainment relatedpeople, movie direc-

tors, television people, or misclassified entertainment related entities (Warner Bros.,

Beverly Hills). Even David Beckham can be explained by either the movie with his

name in the title “Bend it like Beckham”, or his elevated statusas a celebrity, and

not just a soccer player. Lance Armstrong also has a celebrity status.

On the false negative side, there are the disambiguation problems we have

seen in other communities, and also people who are most famous for something

other than movies, but also have appeared in some movies, like Shaquille O’Neal,

most known as an NBA player, but who also appeared in the films “Blue Chips”,

“Kazaam”, “Steel”, “Freddy Got Fingered”, and “The Wash”. So while he can def-

initely claim movie star status, in the public mind, he is a basketball player and not

considered a movie star. Elvis Presley is also in this category, being more associated

with music than acting.
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False Positives False Negatives
Michael Jackson: 113931⊕ Shaquille O’Neal: 54253: 0
Lance Armstrong: 77978 * Robert Blake: 24985: 0
Martha Stewart: 59851 * David Wells: 21368: 0
“ Friends ”: 47218 ⊕ Elvis Presley: 16273: 95
Britney Spears: 41652 * John Howard: 16065: 61
Donald Trump: 38343 * Richard Hamilton: 14227: 0

+ Bob Dylan: 21038 * Adam Scott: 12927: 0
Beverly Hills: 18792 Bill Cosby: 11685: 80
David Beckham: 18617 * John Lynch: 9775: 32
Warner Bros: 17713 ⊕ Rosie O’Donnell: 9388: 82

+ Paris Hilton: 17294 Willie Nelson: 8781: 94
David Letterman: 17014 * Chris Young: 7440: 0

+ Steven Spielberg: 16695 * Eddie Jones: 6906: 0
Paul McCartney: 16561 Woody Allen: 6906: 61
Katie Couric: 16172 * Vernon Wells: 6851: 0

+ Ray Charles: 14609 Tim McGraw: 6435: 96
Oprah Winfrey: 14545 * Mike Smith: 6314: 0

+ Martin Scorsese: 12161 John Wayne: 6122: 87
Elton John: 11397 Jane Fonda: 5995: 92
Simon Cowell: 10643 * John Abraham: 5660: 0

Table 20: Incorrectly classified film actors, grown from manually set seeds. People
marked with a ’+’ are movie related, if not primarily actors (Dylan and Charles the
subjects of recent films). The other false positives are entertainment related, but not
movie actors. People marked with a ’*’ have a name clash with non movie stars.
People marked with a ’⊕’ have been in enough films for IMDB to call them an
actor, but in everyday news are primarily associated with some other community
(O’Neal with sports, Presley with music, and O’Donnell withdaytime television).

Robert Blake is most famously a hockey player; David Wells is most famously

a baseball pitcher; John Howard is the 25th Prime Minister ofAustralia; Richard

Hamilton is most famously a basketball player; Adam Scott a professional golfer;

John Lynch a football player; Chris Jones a baseball player; Eddie Jones a bas-

ketball player; Vernon Wells a baseball player; Mike Smith ahockey player; John

Abraham a football player.
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Network Baseball Basketball Football Movie Stars
Vertices 144,851 3,587 1,276 4,699 2,171
Edges 265,779 21,565 5,879 11,256 5,718
Intra-Comm. Deg. 3.67 12.02 9.21 4.79 5.27
Density .000025 .003353 .007227 .00102 .00243
Bridges - 16,510 9,787 24,181 14,921
Bridge Deg. - 4.6 7.67 5.15 6.87
Strong Vertices - 2,020 639 2,206 1,008
Weak Vertices - 339 203 761 482
Isolated Vertices - 1,228 434 1,732 681

Table 21: Community properties in goodnews data. The community regions are
higher density, and vertices will typically have more neighbors inside the commu-
nity than outside. Isolated vertices are detrimental to thestructure of the commu-
nity, and are possibly an artifact of bad evaluation lists.

Network Baseball Basketball Football Movie Stars
Vertices 299,486 4,872 1,653 6,514 2,703
Edges 594,884 36,509 10,358 16,745 8,081
Intra-Comm. Deg. 3.97 14.98 12.53 5.14 5.98
Density .000013 .003077 .007586 .00079 .00221
Bridges - 39,107 21,553 52,458 25,355
Bridge Deg. - 8.03 13.04 8.05 9.38
Strong Vertices - 2,221 735 2,491 1,161
Weak Vertices - 748 348 1,584 772
Isolated Vertices - 1,903 570 2,439 770

Table 22: Community properties in dailies data. Community regions are of higher
density. Isolated Vertices still corrupt our communities.

6.6.5 Summary of Communities

A summary of community properties in the network is shown in Table 21 and 22.

These are the network properties of the gold standard community, not grown com-

munities (The vertex set is the gold standard set). The columns show properties for

each of the four communities, with the first column showing properties of the entire
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network. The first row,Verticesis the number of members of the community. The

second row,Edgesis the number of intra-community edges (edges between two

members of the community); as opposed to theBridgesrow which is the number

of edges with exactly one end in the community. Average Intra-Community Degree

gives the average number of neighbors a community member hasin the community,

and average bridge degree gives the number of neighbor outside of the community.

To further inspect the communities, we classify the vertices as either being ‘Strong’,

‘Weak’, or ‘Isolated’. A Strong vertex is a vertex that has atleast half of its neigh-

bors in the community. An Isolated vertex is one that has noneof its neighbors in

the community. A Weak vertex is one that is neither Strong norIsolated (Less than

half of its neighbors are in the community, and at least one ofits neighbors is a

community member).

All of the communities have densities of about 2 orders of magnitude greater

than the network as a whole. This is a typical property of communities. Many

general definitions of communities describe them as regionsof higher density.

As we have discussed, we believe part of our evaluation problems are caused by

imperfect gold standards. The large number of Weak and Isolated vertices indicates

that this is not a trivial problem. Except for baseball players in goodnews, all of the

communities have over half of their vertices weak or isolated. This means that most

vertices have more neighbors outside the community than inside (also reflected in

the average degrees). When these vertices are included in seed sets, there can be

negative results, highlighted by the movie star example of the previous section.

Not surprisingly, the recall for our growers tops out at around the same value as

the number of Strong vertices. Isolated vertices should notbe expected to be found

during growing. In fact, since our growers only consider neighbors, an isolated

vertex can only be added if incorrect members are added before it. Thus a high

precision grower will miss nearly all isolated vertices, over a third of the community

in most cases.
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Chapter 7

Conclusions and Future Work

The Lydia project provides a unique large scale network of real world entities.

The addition of community information will promote deeper understanding of the

world, and allow further analysis on the data. Topics for future work are outlined

below.

7.1 Future Work

7.1.1 NLP Scored Edges

Working with a network allows us to perform analysis we couldnot otherwise ac-

complish. However, we can still leverage some NLP tools, especially in creating

edge similarity scores. One method we would like to explore is a similarity score

based on entity word profiles; That is, what is the frequency of words that appear in

the same article (or sentence, or window) with an entity. BabeRuth will have words

such as ”home”, ”run”, ”baseball”, ”world”, ”series”, ”Yankees”, which would be

very similar to the profile of other baseball players. GeorgeBush on the other hand

will have ”President”, ”Iraq”, and ”administration” as high frequency words, and be

very dis-similar to Babe Ruth. Michael Jordan may have his mid-frequency words

132



”play”, ”win”, ”champion”, ”great” in common with Babe Ruth, giving them a

similarity in the middle.

7.1.2 Changes in Communities/Network Over Time

The previous problem concerned itself with a snapshot of ournetwork at a specific

time. We would also like to know how the communities evolve astime progresses.

We want to be able to predict new membership of communities, how much a com-

munity will grow or shrink, and predict the emergence of new communities.

The communities formed by entities are not themselves static in time. Mem-

bers will come and go as they please, and groups will grow or shrink in size. For

instance, we would like to know the probabilityp of a particular entity joining a

particular group. Current research has shown it is possible to predict these changes

in a community based on its current structure.

7.1.3 Discover Dominating and Sibling Entities

We often notice in our network that some entities have nearlyall the same neighbors

(structural equivalence.) For instance, ‘Bill Clinton’ and ‘William Jefferson Clin-

ton’ (both strings refer to the same person) would have many of the same neighbors,

but so to would ‘David Ortiz’ and ‘Manny Ramirez’ (both play for the same base-

ball team.) Another situation is when the neighbors of one entity are nearly a subset

of the neighbors of another entity. For example ‘David Ortiz’ and ‘Red Sox’, when

one entity is part of the other entity. This can also occur when an entity has a repre-

sentation that is very infrequent, and usually reserved fora specific setting. Finding

dominating and sibling entities can be used to improve co-reference, and discover

hierarchies and groups.
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7.1.4 Classify Entity Type

The domain of entities of news articles is extremely large, and as a result classifi-

cation of entities leads to many UNKNOWN entities. Currently,Lydia uses hand

made rules, lists, and statistical classification. We can also use position in the net-

work to classify some of these UNKNOWN entities. Vertices of the same type will

likely display similar network properties (i.e. cluster coefficient), and similar link

frequencies.

7.1.5 Co-reference and Disambiguation

Co-reference (entities which can be referred to by differentstrings, e.g. ‘IBM’ and

‘International Business Machines’) can be done by using various network properties

(including the sibling relation mention above.)

Often, a single string can possibly refer to multiple different people. For exam-

ple, Wikipedia lists 11 entries for the name ‘Adam Smith’. Lydia currently has no

methods for disambiguating a mention of ‘Adam Smith’ in an article. The network

would be able to help in determining which ‘Adam Smith’ a particular mention is

referring to. This would involve clustering the mentions ofentities. We could then

classify new mentions by determining which cluster they best fit into. We would

also periodically attempt to re-cluster to learn if new meanings of an entity are

emerging (say a 12th Adam Smith).

7.1.6 Predict Sentiment

Lydia assigns sentiment scores to entities [48]. We would want to learn what the

interaction of group sentiment is with individual sentiment. In particular, how does

individual member’s sentiment affect a group’s sentiment (the group as a single

unit, as well as the sentiment of the other members of a group.) For example, if
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the sentiment of ‘George Bush’ goes up or down, how does the sentiment of ‘Re-

publicans’ change, and how do other republicans’ (say ‘DickCheney’) sentiment

change. An essential question here is: given a network and the sentiment of every

individual save one, how accurately can we predict that individual’s sentiment?

There has been much work done on the spread of influence in a network

[67, 40, 35]. Viral marketing aims to target the smallest setof vertices that will

cause a cascade. A customer has both intrinsic value (the value of himself buying

a product), and network value (the value of his influence). Itmay be worthwhile

to market to an individual with negative intrinsic value if his network influence is

positive. On the other hand it may be bad to market to an individual with posi-

tive intrinsic value if he will negatively influence the network [67]. Richardson et

al [67] describe a model for viral marketing. First they minenetworks from data

(from knowledge sharing sites), then build a probabilisticmodel, and finally de-

velop a marketing plan. Their model includes continuous marketing functions, and

also models costs for discovering network structure. Spread of epidemics is also

modeled on networks [81]. These are slightly different angles than what we are

trying to model, the spread of sentiment.
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