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Abstract of the Dissertation

Interpreting News Through the Science of Networks

by
Andrew Mehler

Doctor of Philosophy
in
Computer Science
Stony Brook University
2008

On-line news sources provide a large and comprehensiveisafpworld events
and news entities. The Lydia project (www.textmap.com)yazes over a thousand
on-line newspapers every day to discover news trendssents, and geographic
biases. The aim of the project is to deliver news analysis snade of content
that would be impossible for a person to read, and to mine dite w learn infor-
mation that a human would otherwise be unable to realize. axerdge network
analysis techniques to understand this real world onlivesrdata. First, a geo-
graphic network based on cities is used to visualize our, daidto quantify which
news entities have a geographic bias. We also consider tinorkeformed by
co-occurrences of people in news articles. We discover éteark is scale-free,
and show what we may learn from this network. We then show hevecawn clean
the network, removing noise argppuriousedges. Removing these spurious edges
leaves the properties of the network essentially unalteFadally, we show how
to discover communities in the network by using a small setxaimple members.
Given some example members (20-400) we are able to discomemanities of
thousands of members. In addition, we describe the coemterresolution tech-

nigue, an important step in improving the reliability andbustness of th network



data. The algorithm for clustering co-references is shagnyell as a method of
hashing names to quickly discover co-reference candidates
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Chapter 1
Introduction

Online news sources provide a large and comprehensive £afpworld events
and news entities. The Lydia project (www.textmap.com)yzes over a thousand
online newspapers every day to discover news trends, semismnand geographic
biases. An example of the online front end of the project awshin Figure 1. The
aim of the project is to deliver news analysis on a scale ofesdrthat would be
impossible for a person to read, and to mine the data to desauorld facts that
a human would be unable to realize. We leverage network sisaigchniques to
understand this real world online news data. First, a ggdgcanetwork based on
cities is used to visualize our data, and quantify which nemtities have a geo-
graphic bias. We also consider the network formed by co4oenaes of references
to people in news articles. We discover the network is sfrake-and show what
we may learn from this network. We then show how we can cleamttwork,
removing noise andpuriousedges. Removing these spurious edges leaves the
properties of the network essentially unaltered. Finallg,show how to discover
communities in the network by using a small set of example begs Given some
example members (20-400) we are able to discover commsifighousands of
members. In addition, we describe our co-reference rasaltechnique. Resolv-
ing co-references is an important step in improving thekglity and robustness of
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Figure 1. Textmap (www.textmap.com) page of Barack Obama

the network data. An algorithm for clustering co-referenisedeveloped, as well
as a method of hashing names to quickly discover co-refereacdidates.

The architecture of the Lydia system has been describedt#il de[48]. The
main components of Lydia are

1. Spiders to download the news sources.
2. Named entity recognition, including co-reference resoh [49].
3. Various derivative analyses based on the named entibgnétion.

The system can also be extended to other sources such aaljdatabases, finan-

cial reports, and blogs [47]. Some derivative analysesigeavinclude question



answering [42], spatial analysis and geographic bias {(thaps’) [53], and senti-
ment analysis [29]. Searching our database is also distus$e].

The component of Lydia that we leverage most for furthersisdhe Named
Entity Recognitiorpipeline. This stage reads plain article text, and extrduts
Named Entities (which we will call ‘actors’ or ‘entities’J.hese are the proper noun
entities (people, places, organizations) that the agtidiscuss. For example, if the
article mentions the string ‘Bill Clinton’, then the pipelim@uld extract that ‘Bill
Clinton’ is a named entity, and its type is ‘PERSON’. When two edrentities
appear in the same article, we say there accurrenceor that there exists a
juxtaposition Clearly, much can be learned about an entity from otheriegtitith
who they are talked about (who is in their neighborhood). seheeighbors in the
articles can be represented as a network, and network sctenbniques can be

applied.

1.1 My Publications

| have been working on problems related to news analysie ditay 2003. My
three publications on this work to date [49, 53, 54] are sunmad below, and will

also be covered in subsequent chapters.

e Spatial Data Analysisin [53] the spatial analysis techniques used with Lydia
are described. The main results of this are the ‘heatmagésthat are seen
on entity pages. Considering the maps as geographic netweeksterpolate
‘heat’ values from news data, and develop methods to qyagébgraphic
bias. We describe the model for estimating geographic @ojylcalculating
how much bias a map shows, color schemes used, and the pordoicicess

for rendering the maps.

e Determining Co-Referencels [49] we describe our techniques for determin-

ing co-referential entities. This is the problem of deterimg that ‘George

3



Bush’ and ‘George W. Bush’ actually are referring to the sante@e We
consider the vector of terms that co-occur with an entitg laase a similar-
ity score on the cosine similarity of two term vectors. Imtsrof network
science, co-reference candidates are vertices thatrareturally equivalent
Since the space of terms is so large, we first reduce the dioreiisy of the

problem, by clustering the terms into 100 different groups.

e Corrective Hashing.Password corrective hashing is described in [54]. We
show that a password scheme can retain nearly all of its isgeuth in-
creased usability by allowing a small number of errors inghgsword. While
seemingly separate from the main themes of this thesisscore hashing is
a needed method for reducing the complexity of finding cevexices. It can
find candidates for co-reference, as a way for correctingncomspelling

errors, and typos.

1.2 Network Science

More general knowledge of the world can be discovered fradirgy news articles
besides just the topics of the articles. This includes ifigng what communities

there are, what the most important entities are, how thdientre inter-related,
what is talked about positively and negatively, where gapQically entities are
talked about most, and the temporal interest in entitieschivaf this can be learned
by studying the networks that arise from Lydia’s named gr&xtraction. Knowl-

edge of the world can be optimized by simply studying the oekw created by
entities co-occurring in news articles. Among the netwoslkescan consider are
the entity co-occurrence network (for different definisoof co-occurrence), the
entity - article participation network, or even the entitguthor participation net-

work. For example Figure 2 shows an example co-occurrenweonefocused on
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Figure 2. An example network, focused on Hillary Clinton.

Hillary Clinton. This network is taken from actual data acadated up to 4 Octo-
ber 2007. For visualization, not all network edges are shawty those deemed
most important.

Network science techniques can be applied to these netwodiscover new
information about the world. Some of the problems that casdieed with so-
cial network analysis are: identifying spurious relatioips, discovering commu-
nities (clusters), monitoring changes in communitiestioek over time, discovery
of dominating and sibling entities, classification of gntiype, co-reference and

disambiguation, and predicting sentiment.



Network science studies how individual elements interactexhibit phe-
nomenon that cannot be described by individual interastidine reductionist hy-
pothesis, which states that a system can be understood &kitgdt down into its
smallest parts and understanding the interaction betwebividual particles, was
rejected by Anderson in his 1972 paper [2]. Instead, networ&nce tells us that
complex interactions in a network lead to higher order phegrmon which are not
predicted by individual interactions. This is why higheder disciplines such as
chemistry, biology and economics exist [81].

One property displayed by social networks is the ‘Small Wdéthenomenon’,
popularized by the Stanley Milgram experiment [55]. Realld/oetworks tend to
have small distances between vertices, and these smadlgratleasily found locally
by greedy routing. That is, not only do short paths exist,thay can be easily
found by the members of the network, using only informatibowt a members
neighbors [82]. Milgram showed this by having subjects ifbidska route a letter
to an unknown person in Massachusetts, where at each hogttdyedould only be
sent to someone the sender was on a first name basis with. Chialnes that were
completed, the average length of the chain was only 6. Tlhipgty of networks
is somewhat conflicting with the property that real netwakksd to have a high
clustering coefficient (groups tend to form), since higHlystered networks would
have vertices isolated from vertices not in their clustdd.[81aving both of these
properties is what distinguishes small-world networks.

At the core of network theory is simple graph theory. Grapiesused to de-
scribe social networks, and many graph theoretic profgedre commonly used
to describe the properties of a social network. These imcllidmeter, clustering
coefficients, and centrality measures. Centrality meagdetess about the ‘impor-
tance’ of a node of a network. Observing how information flea®ugh members
of a network will show that nodes of high centrality have agéamfluence over
the network. The spread of information through a populatian be learned from



studying the network properties. In some cases, as in viaakating, we wish to
target very few, but very important nodes that will lead taaaade of an idea. But
in the case of preventing the spread of a disease, we wisls¢owdr what network
connections should be altered to make a population resttesm outbreak [81].

A major concept in network theory is that a network is dynarttichanges and
evolves over time. The network will cluster, and form graugsd these groups will
change over time. The key observation is that although gfoupation and mem-
bership externally seems to be an independent decisior@rttities, the structure
of the network makes group movement predictable. Group dtons are deter-

mined by network configuration to some extent, and not frebtysen by entities.

1.3 Properties of News Networks
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Figure 3: Degree (r) and Juxtaposition Count (l) Distribati@og-log) of News
Entity Network.

1.3.1 Data Sets

Our analysis is done on three different sets of data. Theipaharea of interest is

in online news data. We have 2 sets of data for this, one smadfs/ery reliable,
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well known sources (i.e. The New York Times, The WashingtostPetc.); and
a second large set of all sources we could acquire (includiagy smaller, local
sources). The smaller set, called ‘goodnews’, is less nargy easier to experiment
with given its size. However we feel the larger set, calladllids’, is more likely to
contain interesting signals.

Our goodnews news entity network consists of data extreoted 158 online
news sources, starting from November 1 2004. There are 20%@rtices (enti-
ties) in the network, and 2,249,568 edges. Restricted tolpethere are 144,851
vertices and 265,779 edges.

Our dailies news entity network consists of data extraatehf917 online news
sources, from November 1, 2004. There are 853,054 vertwegiés) in the net-
work, and 4,753,134 edges. Restricted to people, there &d&D vertices and
594,884 edges.

For comparison, we also have a network obtained from pubistdaets, called
‘medline’. There are 29,282 vertices (entities) in the reekyyand 260,730 edges.

In addition, we analyze the networks on all extracted esstjtand also just on
the subset of people entities. The summaries of main net progerties are shown
in Table 1.

Source Categorieg \ertices Edges| Avg. Degree
goodnews PERSON | 144,851| 256,779 3.545
goodnews all 495,320| 2,249,568 9.083
dailies PERSON | 299,486| 594,884 3.973
dailies all 853,054| 4,753,134 11.144
medline | all 29,282| 260,730 17.808

Table 1: Network Summaries.

Figure 3 shows a log-log plot of the degrees of the nodes ohetwork. The
linear trend of the plot suggests a power-law distributimmmiode degrees, meaning
our network is in the category of scale-free networks. Stale networks are a
class of networks whose degree distributions obey a poweli2]; the probability



of a node having degrde P(K) is
P(k) 0ok

wherea is a constant depending on the network (typically betweend23). This
model suggests that entities display preferential attactimThat is, vertices will
attach to popular vertices with higher probability; a rigkt gcher scenario. The
model can be expanded withfitnessfor each vertex to explain the popularity of
new vertices [12, 7]. The highest degree nodes in our netax@shown in table 2.
We see three important political entities, and a populaichliadriver. Also seen are

some example entities having middle and low degrees.

High Degree Mid Degree Lowest Degree
George W. Bush 1015 || Alec Baldwin 125 || Jeff Tweedy 15
Mark Martin 803 || David Beckham| 124 || Vanna White 10
Barack Obama | 736 || Larry King 119 | Seth MacFarlane| 5
John McCain 663 || Kurt Vonnegut | 48 || Martin Van Buren| 3

Table 2: Example Degrees of Nodes in goodnews data.

1.3.2 Juxtapositions

The network we consider is a co-occurrence network. Thexe elge between two
entities if they both appear in the same sentence in anariitie weight associated
with an edge is the number of times the two entities co-ocEigure 3 shows the
degree distribution of the co-occurrence counts of aciidngs result coincides with
our notion that the network is scale-free, that is the esgtitend to connect to other
popular entities.

The rest of this thesis is organized as follows: Chapter 2idses spatial anal-
ysis, and the generation of ‘heatmaps’. Our co-referenselu@on algorithm is
described in Chapter 3. Chapter 4 discusses password-ecegrbashing, a tech-

nique that is used in co-reference resolution. Chapter 5 stmw the network
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can be used to remove spurious edges. Discovering a comniront seeds is in
Chapter 6. Finally, Chapter 7 concludes with areas of futisearch.
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Chapter 2

Spatial Analysis of News Sources

2.1 Introduction

Lydia tracks the occurrences of hundreds of thousands diffenatities arising
in news sources. An exciting consequence of this is that veestablish re-
gional biases in the news, by analyzing the relative frequémat entities are men-
tioned in different news sources. We can report the restilbsioanalysis through
“heatmaps”, which are data maps reflecting interest in angérgity as a function
of location.

Typical heatmaps of interest are presented in Figures 4& h€atmap for New
York governorGeorge Patakis from October 2005, and focuses on his home state
of New York; but also exhibits a secondary concentratiorowd. This is explain-
able by Pataki’s consideration as a presidential candideug the significance of
the lowa Caucuses, the first test of the U.S. presidentialgrgireeason (such ambi-
tions for Pataki were not realized). The heatmap for Pho8nix's basketball star
Steve Nasheflects home town fan interest in both his current and previ@al-
las Mavericks) teams. Heatmaps of geographical locatitsts show interesting

biases. News interest Mexicois significantly heavier around the U.S. / Mexico

1This chapter is an extended version of [53].
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George Pataki: 04/11/2005-10/09/2005 . Steve Nash: 09/19/2005-10/26/2005

L e
priaht (c) 2005 The Research Foundation of State University of New York, Hitisie textriap.com min0.000000 Copyriaht (c) 2005 The Fiesearch Foundtion of State University of New York, http: i textmap.com min0.000000

Figure 4: Heatmaps for New York Govern@eorge Patak({l) and Dallas/Phoenix
basketball staBteve Naskr).

border, particularly in southern Texasdlashington, DQeflects national interest in
its capital city, with stronger concentrations centeredhia District of Columbia
(reflecting local interest) and the State of Washingtondotithg natural language
processing artifacts in resolving city references fromestaferences). National
figures such as President George Bush show little regionsa] tihile former in-
ternational movie star Arnold Schwarzenegger is today g@risna state political
figure.

It is the geographical bias among primary news sources whgchits us to
construct maps of relative interest in particular entitids alternate way to study
relative geographic interest is to compare the referereguincy of entities in a
given news source. These biases are illustrated in Tablehi@hvpresent signif-
icantly overrepresented entities in each of three major Woae newspapers, as
scored by the number of standard deviations above the meguency of reference
over all sources. These over-represented entities indbad political and busi-
ness figures (e.@rad Fitzpatrickof LiveJournal and television st@prah Winfrey
based in San Francisco and Chicago, respectively), localsspgures/teams (e.g.

Steve McMichaedindDwayne Wadg and even local dialects (e.Bstados Unidos
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San Francisco Chronicle Chicago Tribune Miami Herald
Entity Score | Entity Score Entity Score
Wuksachi Lodge 24.39 Steve McMichael | 24.38 Estados Unidos 16.49
Brad Fitzpatrick 24.39 Chicago Tribune 2320 Broward 14.65
Golden Gate Park | 15.29 Richard J. Daley | 1589 Dwyane Wade 1360
Bay Area 1203 White Sox 13.86 Miami-Dade County | 1248
San Francisco, CA| 10.20 Ozzie Guillen 1042 Marlins 1155
Giants 4.66 Oprah Winfrey 10.39 Adam Kidan 11.08

Table 3: Overrepresented Entities in Three Major U.S. Neypsps

Mexico Washington, DC: 09/19/2005-10/26/2005

Frequency
max0.016393

2400 Copyright {c} 2005 The Research Fourdation of State University of New York, http:bwww. textmap.com “7 min0.000000

bt s textmap.com

Figure 5: Heatmaps for two geographic locations, narvyicoandWashington,
DC.

in heavily Cuban Miami).

Also, we can also study over-representation by city, as iierfd. We use the
‘heat’ measure as used in the heatmaps, searching for wéiiotstare the most
standard deviations above their mean.

Note that these source biases reflect interest in the prifoaagion the given
paper. However, the set of U.S. cities with spiderable entiaily newspapers is
surprisingly small, so sophisticated modeling and anslgse needed to interpolate
this data throughout the United States. Our contributioas a

e News Source and Coverage Analysi¥Ve discuss the basic mechanics of
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San Francisco Chronicle Chicago Tribune Miami Herald
Entity Score | Entity Score | Entity Score
Gavin Newsom 10.84 Chicago, IL 8.57 Miami, FL 10.26
San Francisco, CA| 1056 Richard Daley 7.06 South Florida 9.53
Bay Area 8.44 Joan Humphrey Lefkow | 5.20 Fort Lauderdale, FL | 8.76
Pedro Feliz 5.36 Aon Corp. 4.69 Cuba 8.09
BALCO 5.29 Salvador Dali 454 Caracas 7.02
Kimberly Bell 5.02 Wrigley Field 4.42 Florida Marlins 6.91

Table 4: Most Overrepresented Entities in Three ImportaBt Cities

large-scale news acquisition and analysis, includingespid and duplicate
document identification. We use visualization techniqoeteimonstrate how
news sources are distributed around the country. Weotldiscuss the details
of our entity extraction / NLP analysis, which has been presly presented
in [49, 48, 42].

Source-Influence Modeling for Entity Analysignterpolating entity distribu-
tions from roughly 500 different newspapers to reflect regainterest over
the entire United States requires some sophisticated mgdeh this chap-
ter, we present the details of our news source-influence Inddes model
is based on computing an appropriate sphere of influenceafdr Bewspa-
per, as a function of its circulation, location, and the gapan distribution
of the United States. We also describe our model for allogatie relative

contribution of all news sources influencing each location.

Visualization Techniques for Data MapsThe engineering of our spatial
news analysis system required a variety of decisions caimggvisualization
techniques, which may be of independent interest. Thesedadhe use of
Delauney triangulations for surface interpolation andweagons of assorted

color scales.
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¢ Identifying Interesting Heatmaps Our system is capable of constructing
heatmaps for thousands of different entities on a dailysbadar more than
can be exhaustively viewed by any human observer. Many fsstare un-
interesting in that they show no regional bias. Identifylimg most interesting
heatmaps for visual inspection requires the developmestaistical meth-
ods for evaluating geographical bias.

We propose a total of five different discrimination funcsorach a variant
of one of two general methods, namely variance analysis andected-

component histograms. We present the results of compn#dtiexperi-

ments that demonstrate that while all can successfullyndisish spatially-

interesting entity maps from those of unbiased entitiesrandom distribu-

tions, the best in practice appear to be the weighted vagiand maximum
gap discriminators.

2.1.1 Previous Work

Statistical geographic maps are studied in depth in [75¢ Mioran coefficient is

described as a measure of spatial autocorrelation. TherMmefficient is given as

3N X 6 = X)X - X) /3 3 wj
Y (X —X)2/n

wherew;j is 1 for adjacent elements and O otherwise. When examiningrizges,

MC

(1)

we do not suppose spatial autocorrelation to be of use; agmextboth geograph-
ically biased and unbiased maps to have high spatial autdation, a result of the
modelling and of the nature of news. A comprehensive ovengémap layout,
color, and all aspects of creation are also covered.

Miller and Han [56] give frameworks and algorithms for datanimg tasks
on spatial and geographical databases. They focus on espa¢ion, rule mining,
clustering, outlier detection, and other data mining tasklerk on smoothing has
been done to help visualize data. Algorithms such as HeadiBan[57], [32] (a
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median based smoother), splines, surface modelling, eftranhsforms, are used
to smooth noisy data. Our problem differs from these in thadathing algorithms
start with an exact data map, and hope to filter out noise. Weadestart with
an exact data map; we start with loose geographic informatlmut heat, based
on newspaper locations, and attempt to create the exact Batanstance, [57]
examine mortality data maps. The data map begins with exdices of mortality
rates, and their smoother makes this information easieistmiize. We however
do not begin with any data. We must calculate the heat data ¢ty based on the
newspapers from surrounding cities.

Lydia is the front-end analysis system we employ in this projeaidcentity
extraction on our newspaper sources. An in-depth discassidhe architecture of
the Lydia natural language processing (NLP) pipeline can be found8h [Lydia
has been adapted to work on a variety of other text sourcelsidimg blogs [49],

and served as the basis for a question answering systensséstin [42].

2.2 Text Acquisition and Analysis

The data for our analyses come from U.S. newspaper webditethis section,
we describe the mechanics of acquiring representative teewghrough spidering
and duplicate article detection analysis before repodimgnalysis of the coverage

breadth of our news sampling.

2.2.1 Text Acquisition / Spidering

It is clearly infeasible for us to build custom spiders focleaf the roughly 800
daily newspapers in the United States and approximatelyd2@9 English lan-

guage newspapers overseas that Lydia uses. Instead, wepbela universal spi-
der that downloads all the pages from a newspaper websitacexall new articles,

and normalizes them to remove source-specific formattiniggatifacts.
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Our spiders are built around the popular prograget[33] with the correct pa-
rameters; regulating the recursion depth (two levels mgffor most newspapers),
user identification (via cookies), and wait time (for patiéss, we never hit a web-
site more than once per second). The news sources are diwd#de zone, with
many (at least 30) newspapers spidered in parallel acrass@azpne. Each down-
load starts at 12:30AM local time. Each newspaper takeste2f®80 minutes to
download, with a raw download size of 40-130MB. There are taasons why we
download more than 40 times the amount of data per newspagethdn we end
up with: (1) wgetdownloads the entire directory structure of the websiteluih
ing old articles and (2) each html file also contains a lot dieotthings including

advertisements and navigational aids.

2.2.2 Duplicate Article Identification

An interesting issue we faced concerned identifying dapdicand near-duplicate
news articles. Repeated instances of given news articleskeamthe significance
of our spatial trends analysis, so we need to eliminate dafdiarticles before sub-
sequent processing. Duplicate articles appear both asufi eésyndication and
because old articles are often left on a website and get tegiigapidered.
Schleimer et al.[71] describe a clever solution to this peobin the context
of plagiarism detection. By comparing hash codes on all appihg windows of
lengthw appearing in the documents, we can identify whenever twaments
share a common sequence of lengthalthough at the cost of an index at least the
size of the documents themselves. However, the index sizébeasubstantially
reduced by a factor gb with little loss of detection accuracy by only keeping the
codes which are congruent to O mpd This will result in a different number of
codes for different documents, however. We discoverdd liiss of detection will
happen if we select thesmallestodes congruent to O maalfor each article. The

naive way to do this is to hash all- w windows for ann-character document in
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O(wn) time. However, The Karp-Rabin string matching algorithm] [@®poses an
incremental hash code such that all codes can be compute@ar time.

Through experimentation, we discovered that taking them@llest hashes of
windows of size 150 characters that are congruent to 0 mogyi@@ (1) a good
sub-sampling of the possible hashes in a document, (2) amabke probability
that if two articles are near duplicates, then they willic&@lon at least two of these
hashes and (3) a reasonable probability that if two artialesunique, then they
will not collide on more than one of these hashes. Our expertal set of 3583
newspaper days resulted in a total of 2833 unique articles with 18398 exact
duplicates and 874 near duplicates according to our measure.

2.2.3 News Coverage Analysis

Every local newspaper has a readership centered aroundyhe which it is lo-
cated. The size of thephere of influencaround a given paper is a function of
(2) its readership (naturally measured by circulation oray such as web hits)
and (2) geographic population density. Details of our infleee analysis will be
presented in Section 2.3, but here we discuss its conseggiencsampling density
and potential for multi-source integration.

We have attempted to spider all of the roughly 800 daily U&vspapers we
are aware of through authoritative web sources. Many nguespaebsites are no
longer active or are highly seasonal (particularly schalspapers which cease
activity for summer and other break periods). Others (primamall limited cir-
culation papers) employ robot.txt files or even block IP addes to prevent us from
spidering them. The upshot is that we get occasional spigetata from roughly
600 online newspapers, however on any given day only abdusb0rces are ac-
tive.

We can use our model of influences to visualize the coverageeaources we

spider. Figure 6 presents a datamap where a city’s heat iscida of the number
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of newspapers it is influenced by. We get significant covetiagrighout the entire
country, excepting isolated border locations around Maiti@nesota, and Texas.
The regions covered by more than ten sources are emphanizlee binary map
of Figure 7. Many of these areas are surprisingly scatteredna the country,

reflecting intense competition among small papers in macgl lmarkets.

Coverage Count

' Frequency
maw:1. 000000

S
Copyright {c) 2005 The Research Foundation of State University of ke ork, hitp e textmap. com min:0.000000

Figure 6: The number of different news sources influencirap&asS. city.

Figure 8 measures the relative raw volume of text that infleemesidents of
each location. The national media centers of California aea NMork are signifi-
cantly overrepresented by this measure.

However, if we weight the word count by the influence (seei6e@.3 as in
Figure 9 we see that the words of news any city gets is much omferm, perhaps

indicating a universal capacity for news volume.
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Figure 7: The number of cities influenced by more than tencesur
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Figure 8: Media exposure by location as measured by volunaaifwords.
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Figure 9: Average words per unit of influence.
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2.3 Source-Influence Modeling

The heatany given entitye generates in a given locatiais a function of the
frequency of reference @& in each of the sources that have influence @/efhe
relative frequency of entitg in the sources is given by

_ referenceg,s)
heate,s) = s reference@;,s)’ -

Thus each heat value is from 0 to 1, giving the frequency ddregfce to the
particular entity. A heat value of.05 implies that the entity is referenced once for
every 20 entity references over the universe of all entitiEse heat of an entity
is a relative measure; even areas of high news volume may buas absolute
references to a given entity, but the popularity (heat) temheined by itfrequency
of reference.

The principle concern of heatmap construction is detemgitihe ‘heat’ values,
which is the estimate of the frequency of reference. Thelprolis trivial if we have
just a single source (we just use the frequency referendeadfsburce), but diffi-
culties emerge with combining multiple sources. The sast®uld be combined
in such a way that the more influential source has a greatansistermining the
heat value. For instance, references in ‘The New York Tirsbsuld have a greater
effect than references in ‘The Ithaca Times'. However, vg® aleed to consider
the geographic distribution of the source. ‘The Ithaca Bhwéll have greater in-
fluence over cities close to Ithaca, with decreasing inflaghe farther away a city

is.

2.3.1 Estimating Source Influence

An analysis involving both ‘The New York Times’ and ‘The It® Times’ must
capture thenfluencerelation between a news source and a location. This influence
relation must take into account the distance of the soum® the location, the

circulation of the source, and other relevant features.
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Constructing this influence function forms the basis of oatimap model. The
radius of influence of a news source depends on the circolafithe newspaper,
and the population of nearby cities. Cities inside of thisleiwill be influenced by
an amount depending on their distance from the center, watkimum influence at
the newspaper’s location. This is captured in the equation
influencds.c) — if dist(s,c) > rinf ()

f(distancés,c)) x max-influencés) else
where f is some decay function, in our case linear, apg(s) is the radius of
influence ofs. Whenf is linear, the influence of a newspaper can be thought of as
a cone centered at the newspaper, with height the maximtloencte, and base the
circle of influence. Cities outside of this circle will receizero influence from the
given source.

The maximum influence of a newspaper source is a combinafisMareous
circulation and ranking statistics of the source. In patc, we use a weighted
combination of Alexa’s reach per million web traffic anal/éivww.alexa.org) and
the weekday average circulation of the newspaper. Tog#tbgrestimate the num-
ber of readers (both online and paper) of the newspaper. Waats the online
readership by multiplying the Alexa reach per million by grepulation of the U.S.
in millions. We estimate the radius of influence supportea lgyven printed circu-
lation through an estimate of the frequency with which peaalbscribe to news-
papers. We model that 10% of the population covered by theisad influence
should equal the readership estimate.

2.3.2 Integrating Multiple Sources

Once the influence function of each source has been defiretigttt at a location
can be calculated by a weighted average of the referencednetes of the entity

in each source, weighted by each source’s influence on tla¢idoc (The reader
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Mexico - Washington D.C.

Figure 10: Black body radiation heatmaps for Mexico and Wagoin, DC.

should be aware that we have overloaded the heat functioa fiftéal function we
are trying to model is the heat function between cities andien We also make
use of the heat between an entity and a source).

For our model, we discretize space into roughly 25,000 Uts¢towns of all
sizes. For a givel of cities, S of news sources, anf of entities, we define the

heat of an entite at city c as:

Zshea(e, s) x influencés,c)

heate,c) = Zsinfluence{s, c) ' ®)

2.4 Visualization Issues

To render our heatmaps, we use mesa/openGl graphics éisraffe know how to
calculate the heat at cities, and openGl will interpolatet lbetween cities if given
a polygon mesh. To get a polygon mesh from our set of cities,seel Jonathan
Richard Shewchuk’'s C program ‘ triangle ' [74], [6]. This cres a Delauney
triangulation of the cities.

To get the coloring for the heatmaps, we set the scale suthhidanaximum

heat value gets the highest red value, and the other valaesaled linearly. This
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George W. Bush Arnold Schwarzenegger: 11/01/2004-04/16/2007
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Figure 11: Comparing heatmaps for national-figure George Buahd California
Governor Arnold Schwarzenegger (r). Schwarzeneggeralisp clear regional
bias toward his home state.

makes 2 heatmaps incomparable, since they are on differaless However, using
absolute scales makes most heat effects unobservable v&nclow values are im-
perceivable. This method ensures we will always have maxiroontrast between
the highest and lowest heat values.

Figure 10 show heatmaps using an alternate coloring, chliek-body radi-
ation. For this method, each heat value is scaled to Kelmp#ratures, and the
color chosen is the wavelength of light a black body with tieatperature emits.
The black body coloring scheme makes it easier to observantiadler fluctuations

of heat while retaining the impact of the areas of large heat.

2.5 Identifying Significant Heatmaps

Once we have the ability to calculate a large number of ehigtmaps, we are
faced with the problem of automatically screening whichledse are interesting
to look at, i.e. suggest significant geographic bias vs.tieatof uniform national
interest.

In this section we present methods for quantifying the gapolgic disparity of a
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heatmap. Geographic disparity does not have a precisetaefirand proves dif-
ficult to quantify for a variety of reasons. Because the pdpmriadensity is highly
non-uniform, the relative sizes of significant intensitpyes misleading. For ex-
ample. the area covered by “red” and “blue” states on the@lalcmap overstates
the degree of red/Republican dominance due to their strendtte sparsely pop-
ulated West. The news distributions resulting from our nigadeve to have large
numbers of local optima. Do these represent distinct regisources of elevated
interest or are they modeling artifacts?

We consider two distinct classes of methods, based on arianalysis and

connected component analysis respectively.

2.5.1 Variance Analysis

Statistical variance measures the deviation of data vdless their mean. We
would expect that heatmaps showing higher statisticabwage of heat values more
likely reflect regional biases, although similar varianceasures can be derived
from simple checkerboard patterns. That is, imagine a iledkcheckerboard,
versus a board with left half painted red, and the right hiaitk. Both boards have
the same frequency of red and black squares, but the checkdrpattern has no
spatial biases.

We define two scores reflecting this measure:

e Variance— Our heatmap construction gives us heat values for each, 8725

cities. For this measure, we compute the variance of theSg2heat values.

e Weighted Variance- The variance measure will be biased by absolute heat.

If we scale every value on a heatmap by some constant, thenearivill also
be scaled (by the square of the constant), although the lyimdgdistribution
is essentially the same. For this measure we divide thenaiby the mean
of the 25,374 values.
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The first 2 scores we use are variance, and variance dividedday. We ex-
pect a term with geographic bias to have 2 different distrams (1 for the area of
interest, and 1 for the rest of the country) and thus have Wigltance. Variance
alone however will usually weight a term that is overall mpopular higher then a
term that is overall less popular, but has more geographg. bWe correct for this
in the second score by dividing by the mean.

2.5.2 Connected Component Analysis

Consider a heatmap with a very high geographic disparity. dfleok at the ten
cities with the highest heat values, we would expect themet@lbostered close
together. If the heatmap has no disparity, then the top 1@ities will probably be
scattered all about the country. Suppose we continue tododtie top 20, 30, 40
cities and so on. Heatmaps with high disparity should hawstets of cities, while
heatmaps with no disparity should remain scattered. Thisvates the idea of the
connected component proffier a heatmap.

Consider the grapt® on the set of cities induced by adding an edge between
every pair of nearby cities, That(s, c2) € E if distancéc,c) < d. We can define
a profile for a heatmap by counting the number of connectegoaents inG only
including cities above a certain heat value. The profilegdgional figurewayne
Gretzkyand national ternrAmericaare shown in Figure 12. We see the regional
term has a long period of a small number of connected compenesrresponding
to the high concentration area.

We propose three different features of the profiles for sgpmethods:

e Largest Gap- A large gap between a connected component change would

suggest that the entity is drawn from two separate (natiandllocal) proba-
bility distributions.
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Figure 12: Connected Component Profiles for Wayne Gretzky andrika.

¢ Weighted Gap- This method again uses the largest gap, but divides this num

ber by the maximum heat. Thus terms that are generally popuda’t be

more heavily favored as they are in the first method.

e Percentage Gap- Finally we score based on the largg@srcentageheat

change between component changes.

2.5.3 Results

To quantitatively evaluate our geographical bias measarasavoid personal bias
judgments as to the relative geographic disparity of hegisnave conducted a
large-scale experiment assessing how well these measistegsydish maps of
regionally-biased entities from (1) maps of entities witbgumed uniform national
interest and (2) random maps generated under two differecfers. In the first
model, the frequency of our imaginary entity in each news®®is chosen from a
uniform distribution, while in the second model it is cho$eam a binomial distri-
bution. Heatmaps generated under these models are showguie FL3. Uniform
model has greater local variances, while the binomialidistion is more globally

smooth because in a binomial distribution, values are cedtaround the mean.
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Uniform Frequency Distribution " Binomial Frequency Distribution

Figure 13: Random Heatmaps. The frequency of this imaginatiyyein each
source is given by a random uniform distribution, or a binairdistribution

We made two sets of real entity heatmaps for our experimegrisities likely
to be geographically biased include United States citiek lanal sports teams.
Entities likely to have little bias include foreign citiespuntry names, national
political figures, and entertainment terms. In total, westnrcted 128 un-biased
heatmaps, and 400 biased heatmaps. We also made 200 heaachpkor the
uniform and binomial distributions.

The results of our scoring method are presented in Tablesd5@&nFor all
five methods we calculate the mean, median, max, and min dnseador the raw
score, and for the ranks. From these experiments, we cafucaitat theveighted
gap methodhas the best results, since it in general scored biased nigiper hthan
un-biased maps, and both higher then random maps. Howesssr,teough the
other four scoring methods scored random maps above owedlesatmaps, they
score biased higher then the real un-biased maps. Thustt@l acaps, each of the
scoring methods has some significance.

We are interested in distinguishing geographic bias ameadyworld maps.
Figure 14 shows thReceiver Operating Cury@®OC) for classifying the real world

maps. we see that each scoring method is substantially dhew5-degree line
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ROC Curves For Detecting Biased Heatmaps
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Figure 14: ROC Curves For Heatmap Classification

that indicates random guessing in an ROC curve. This, cdupith the fact that
the methods are not perfectly correlated with each other Table 7) lead us to
believe that a fusion method should do even better (A fusietihod cannot improve
when underlying different scoring methods are highly datesl, thus effectively all

saying the same thing).

2.6 Conclusions

In this chapter we have presented a way of spatially modeimgs references,
based on references in newspapers. These visualizataltes) theatmaps’, show
the geographic popularity of an entity, and possible ggagcabiases. To help find
heatmaps that display geographic bias, we have develop#wdseof scoring the
maps, based on a spatial ‘connected components’ feature.
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Weighted Gap mean min  median max
biased 0.519 0.080 0.494 0.996
unbiased 0.367 0.053 0.323 0.947
uniform 0.080 0.035 0.070 0.208
binomial 0.098 0.037 0.088 0.254
Percent Gap mean min  median max
biased 6.23 0.300 2.00 243.3
unbiased 2.08 0.273 1.25 18.0
uniform 7.55 0.294 1.68 967.6
binomial 2.53 0.411 2.49 4.55
Max Gap mean min  median max
biased 1.66e-3| 7.00e-6 5.12e-4 2.80e-2
unbiased 5.10e-4| 6.00e-6 1.36e-4 9.34e-3
uniform 7.47e-2| 6.55e-2 3.33e-2 2.05e-1
binomial 1.57e-3 5.19e4 1.33e-3 5.00e-3
Weighted Variance| mean min  median max
biased 6.60e-4 | 7.53e-6 2.30e-4 1.3le-2
unbiased 2.6le-4| 3.50e-6 7.57e-5 3.23e-3
uniform 9.70e-2| 5.58e-2 9.37e-2 1.58e-1
binomial 1.18e-3| 7.56e-4 1.16e-3 1.94e-3
Variance mean min  median max
biased 1.76e-7 | 1.80e-11 9.79e-9 9.14e-6
unbiased 9.35e-8 | 1.32e-12 3.36e-9 1.92e-6
uniform 3.36e-2 1.59e-2 3.22e-2 5.50e-2
binomial 8.13e-6 | 4.94e-6 8.00e-6 1.46e-5

Table 5: Performance of our 5 different scoring methods.
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Weighted Gap mean | min  median max
biased 246 0 232 719
unbiased 354 21 352 867
uniform 747 450 770 927
binomial 685 408 690 925
Percent Gap mean | min  median max
biased 437 1 459 922
unbiased 589 25 660 927
uniform 506 0 553 925
binomial 395 134 367 911
Max Gap mean | min  median max
biased 576 200 632 926
unbiased 728 213 784 927
uniform 100 0 100 199
binomial 432 238 439 630
Weighted Variance| mean | min  median  max
biased 609 200 623 926
unbiased 728 216 769 927
uniform 100 0 100 199
binomial 367 238 367 498
Variance mean | min  median max
biased 649 245 641 926
unbiased 707 410 742 927
uniform 100 0 100 199
binomial 301 200 302 402

Table 6: Rank Performance of five different scoring methods92v test maps are
ranked according to each method. For each of the 4 categurieaps, the mean,
min, median, and max ranks are shown. For example, the Véglgbap score ranks
biased maps a median of 232. This means half of the biasedamnapsnked higher
than 232. The highest ranked biased map is 0, the best raslbfms

data | Wei. Gap| Max Gap | % Gap| Variance| Wei. Var.
Weighted Gap bias 1 0.708 0.431 | 0.376 0.651
unbias 1 0.722 0.856 | 0.621 0.738
Max Gap bias 0.708 1 0.883 | 0.865 0.985
unbias| 0.722 1 0.966 | 0.910 0.931
Percent Gap bias 0.431 0.883 1 0.984 0.928
unbias| 0.856 0.966 1 0.877 0.934
Variance bias 0.376 0.865 0.984 1 0.919
unbias| 0.621 0.910 0.877 1 0.980
Weighted Var. bias 0.651 0.984 0.928 | 0.919 1
unbias| 0.738 0.931 0.934 | 0.980 1

Table 7: Pearson Correlation Coefficients for five scoring th
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Chapter 3

ldentifying Co-referential Names

Across Large Corpora*

3.1 Introduction

A single logical entity can be referred to by several difféereames over a large
text corpus. For exampl&eorge Buslis often referred to aBush President Bush
George W. Buslor “W” , even among polite company. However, morphologically-
similar names likeGeorge H.W. Busltan refer to different entities. Accurately
identifying the members of theo-reference sdbr a given entity is an important
problem in text mining and natural language processing.

Our interest in identifying such co-reference sets arigethé context of our
systemLydia [48, 47, 42, 53], which seeks to build a relational model abge,
places, and things through natural language processingws$ sources. Indeed,
we encourage the reader to visit our websh#p(//www.textmap.cojrto study
our analysis of recent news obtained from over 500 dailynentiews sources. In
particular, we display the members of each of the 100,00 tarence sets we re-
construct daily (on a single commodity computer) from thegtdy 150,000 entity

1This chapter is an extended version of [49].
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names we currently track.
Our algorithm for identifying co-referring entity sets acately and efficiently

on a large scale involves optimizing our algorithm’s thresps:

1. Morphological Similarity— The scale of our problem makes it infeasible
to explicitly compare each pair of names for possible cenerice. First,
we narrow our search space by identifying candidate pairarialysis on a

strictly syntactic basis via morphological hashing teguess.

2. Contextual Similarity- Next, we determine how similar a pair of names is
based on the contexts in which they are used. The scale ofolbiepn makes
it infeasible to explicitly analyze all text references@sated with each pair
of candidate names. Instead, we propose methods usingccorecce anal-
ysis to other entities to determine the probability that two entities ace

referent by context.

3. Evidence Combination and ClusterirgFinally, we combine our measures
of contextual and morphological similarity in order to dkrsthe names. The
problem of clustering names is complicated by the vastmiffee in the num-
ber of references between popular and infrequently-useesaaThe strength
of our contextual evidence is thus substantially weakeufgropular names.

We propose and evaluate methods for dealing with this pnoble

Our problem is different from traditional cross-documeorreference analysis
(see Section 3.2.1). In that problem, there is a set of dontstikat all mention the
samename and the difficulty is clustering the documents into $etsmention the
same entity. In our problem, there is a set of documents tkeation many entities,
each possibly with multiple names, and we want to clustentimaes. This differ-
ence, combined with our need to manage the daily flow and stéhe news, pre-
sented challenges that separate us from existing techsigubke following ways:

(1) the use of entity co-occurrence lists as the sole fedtureontextual analysis,
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(2) our high-speed dimension reduction techniques (basddmeans clustering
and graph partitioning algorithms) to improve the qualitpor contextual analysis
and the efficiency of our algorithms, (3) our use of morphadabsimilarity hashing
techniques to avoid the need for pairwise-similarity tegtf all name pairs, and
(4) our use oWariable precision phonetic hashing order to tune the performance
of our morphological similarity hashing.

The rest of this chapter is organized as follows. SectionsBrReys previous
work on this and other problems. Section 3.3 discussesnmotd morphological
similarity, while Section 3.4 shows how we compute the pbilitg that two names
are co-referential from their respective co-occurrensts.li Section 3.5 discusses
issues that arise in clustering. Experimental results asengn Section 3.6. We

present our conclusions in Section 3.7.

3.2 Related Work

The problem of identifying co-reference sets has been wisteldied in a variety of
different contexts. In this section, we survey related wamkparticular, two papers
discussing projects with similar goals but different taglues are discussed below.

We now describe work on three related problems in the suibsscbelow,
namely, cross-document and in-document co-referencéutesoin natural lan-
guage processing and record linkage in databases.

Novak, Raghaven, and Tomkins [62] sought to find all of thesakathat cor-
respond to the same person on Internet message boards. [kt these aliases
into groups based on extracted feature vectors. Theirreatet includes general
word usage, misspellings, punctuation usage, emoticars function word us-
age. Information retrieval similarity and KL-divergenae @ompared as potential
distance measures over the feature space with KL-diveegesacking best. Ag-

glomerative clustering is used to form the final clusters.
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Li, Morie, and Roth [46] study a similar problem, which theyll¢ae robust
reading problem. They present an unsupervised learnirgitdg for this prob-
lem. First, they develop a probabilistic model for how @esitand mentions are dis-
tributed throughout a corpus. Then they provide differefxations of the model
with corresponding inference algorithms. Finally theygenet an EM algorithm to

learn these models in an unsupervised way and estimate ttiel parameters.

3.2.1 Cross Document Co-reference Resolution

The problem of cross-document co-reference has been ezdrfainly extensively.

Bagga and Baldwin [4] present an algorithm which extracts eacttence in
each document that contains an ambiguous name and formsaasyiof the docu-
ment with respect to the entity. They then use the vectorespatiel to compute the
similarity of two such summaries. If the similarity of thedwdocuments is above
a threshold, then they consider the two documents to berirgfehe same person.
They concluded that good results could be achieved by Igokirthe context sur-
rounding the occurrences of the name and comparing docsrmsimtg techniques
from information retrieval.

Mann and Yarowsky [52] present a partially supervised atlgor for this prob-
lem. The algorithm takes as input either a small set of seplgduor each of a
small set of personal attributes from which it generatesaekbn patterns or a set
of hand-crafted extractions for each of the personal atted Next, it uses these
values along with other contextual clues as the featureovdot each document
before using bottom-up centroid agglomerative clustering

Gooi and Allan [30] study statistical techniques for crdssument co-
reference resolution. Like Bagga and Baldwin, they use stéppktext around
each mention of the ambiguous name. They compagomerative clustering
repeatedly merging the closest pair of clusters, witltemental clusteringeither

adding each point to an existing cluster or starting a neglsian cluster. They
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also compare KL-divergence as a distance function withneosimilarity. They
conclude that agglomerative clustering performs bettm thcremental clustering,
however incremental clustering is much more time efficiefttey also conclude

that cosine similarity performs better using KL-divergenc

3.2.2 Within-document co-reference resolution

The natural language processing community has extensstetlied the problem
of within-document co-reference resolution, finding cksaai noun phrases that
refer to the same things. For example, in a news artizgiek Cheneymay later be
referred to as/ice Presidenthe, or Mr. Cheney Published solutions all heavily
rely on information that is only relevant within a documesiich as the distance
between the two phrases.

We note we perform such an analysis as part of our news NLRmp#dd8], but
we do not discuss it further here.

Ng and Cardie [61] present a supervised machine learningdbalgorithm for
within-document co-reference resolution. They use a dmtisee classifier to clas-
sify each pair of noun phrases in a document as either corrgjeor not and a
clustering algorithm to resolve conflicting classificasonThey experiment with
different feature sets, clustering algorithms, and trajrset selection algorithms.
They conclude that linking a proper noun phrase to its masbaile previously
occurring co-referring phrase is a better way of clusterihgt a training set selec-
tion algorithm that is designed for this clustering aldamitis superior, and while
adding features can be helpful, too many can degrade peafaren

Bean and Riloff [9] present an unsupervised approach to @aerte resolu-
tion that uses contextual role knowledge to determine ifion phrases co-refer.
First they identify easy-to-resolve co-referring pairgl ase them as training data.
Information extraction patterns are then used to genemédennation about the role

each noun phrase plays in the text. The information extdafttam the training
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data is used to help resolve the other pairs in the corpus; Jin@w that this phase
increases recall substantially with just a slight decreageecision.

Luo, Ittycheriah, Jing, Kambhatla, and Roukos [50] presesti@ervised ma-
chine learning approach to co-reference resolution. Thpyesent an instance of
the co-reference resolution problem in terms @&ell Treewhere each leaf in the
tree represents one possible solution and all possibléicoduare given by a leaf
in the tree, and cast the problem as trying to find the besttoolaf path in this
tree. They train a maximum entropy model to assign proliaslio each edge in
the tree and search the tree for the most probable leaf. Téwdinre set includes
lexical features (same spelling, substring), distanctifea, and syntactic features
(part-of-speech).

3.2.3 Record Linkage

Our co-reference set identification problem is similar ®icord linkage problem
from data mining. The problem arises when there is no shareat-free key field to
join on across databases. Consider two tables containingmation about people
from two different databases. Even if both databases usegdlson’s name and
address as the primary key, conventions concerning alahi@vs and word usage
may differ, and typos and misspellings may appear in eitledd.fiThe goal is to
identify which records correspond to the same entities.

Cochinwala, Dalal, EImagarmid, and Verykios [16] presentiizsy of current
techniques in record linkage. They identify three phasésdoecord linkage prob-
lem. First, the data is preprocessed. For example, a nardexfagt be parsed to find
the first and last names it contains. Then the database meffidently searched
for potentially matching record pairs. Finally, poteriaimatching records are
compared to determine whether or not to link them. Cochinwalal. pose the
record linkage problem as a classification problem and ptesesupervised ma-

chine learning-based algorithm to classify record pairsiteer “should be linked”
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or “should not be linked".

Hernandez and Stolfo [34] present two different technidaoetarge databases.
The first approach sorts the data on some key and only coediderrecords for
a merge if they are in a small neighborhood of each other. €oersl clusters
the records in such a way that two records will be in the samstet if they are
potentially referring to the same entity. Finally, they pose taking the transitive
closure of independent runs of the above algorithms, widependent key fields,
as the final merge. They show that this multi-pass algorithisuperior to all the
other algorithms that they consider.

Cohen and Richman [18] consider two problems: (1) taking iniagfdists
of names and determining which pairs of names in the diftdists are the same
and (2) taking in a single list of names and partitioning theta clusters that refer
to the same entity. They propose adaptive learning-baséching and clustering
methods to solve either of these problems. Their featureowéacludes whether
one string is a substring of the other and the edit distantveds the two strings.

Bilenko and Mooney [10] propose two distance measures betsteegs. The
first is a variation of edit distance. They view the edit distabetween two strings
as a stochastic process with a probability for each sulistituinsertion and dele-
tion. Then any two strings will have a probability assodiateth their editing.
They train the parameters of this stochastic model on a sstrinigs so as to
maximize the probability of the training pairs. The seconebsure is a variation
on vector space similarity. Instead of using the traditideam frequency-inverse
document frequendyf-idf) weighting scheme, they propose using SVMs to learn
weights for each term. They conclude that their distanceiosedre very effective

at solving this problem in the domain in which they are trdine
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3.2.4 Gene Name Normalization

Noted biologist David Botstein likes to say that “biologisteuld rather share a
toothbrush than a gene’s name”. Effectively mining the ledmoal literature re-
quires normalizing gene names by identifying approprigteoaym sets. Repre-
sentative work includes [17, 84].

Cohen et al. [17] propose sets of gene-name transformatiatsyield syn-
onyms, including removing the first character, the last atiar, the first word, the
last word, mapping vowel sequences to a constant strintgaement of hyphens
with spaces, normalizing capitalization, and the remo¥@lamenthesized material.
They conclude that these heuristics are useful in finding syoonym sets.

Yu and Agichtein [84] present a system to identify synonysigene name
pairs in a corpus. They use a combination of partially-svped, supervised, and
hand-crafted systems. The partially-supervised methahigerative procedure
that takes as input a small set of seed pairs of synonymoussgamd uses them
to identify a set of extraction patterns. Their supervisexthnd uses an SVM to
classify the contexts of a pair of genes as either synonyrapusn-synonymous.
The hand-crafted system uses a set of rules that were dddogyndomain experts
to identify synonymous genes. Finally, a total confidenceaigulated from the
confidences of the three methods. They conclude that a catiininof all three

systems out-performs any of the single systems in isolation

3.3 Morphological Similarity

With hundreds of thousands of names occurring in a largeuspipis intractable to
compare every pair as potentially co-referential. Furtinerst of these comparisons
are clearly spurious, and thus would increase the podyibilifalse positives. We
propose that most pairs of co-referential names result fiteenfollowing set of

morphological transformations:
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e Subsequence Similarity Taking a string subsequence of a name is one way
of generating aliases of that name. For examipbed Motor Co.is often re-
ferred to ag~ord andGeorge W. Busls also calledseorge BushTo identify
these pairs, we examine all possible string subsequences of eaalord
name, hashing the name on each of its subsequences. Notg thatnum-
ber of words in a name, is bounded by about 10. Any subsequeatzhing

another name implies potential morphological compatipili

e Pronunciation Similarity- The Metaphone [64] algorithm returns a hash code
of a word such that two words share the same hash code if theydailar
English pronunciations. Here we say that two names are mtogically-
compatible if they have the same Metaphone hash code. Mmtaph use-
ful in identifying different spellings of foreign languagemes (e.g.Vic-
tor YanukovichandViktor Yanukovychas possibly co-referential. In Section
3.3.1, we detail our methods for tuning the performance of #spect of
morphological similarity using variable precision phdoétashing.

e Stemming- We use a Porter stemmer [65] to stem each word of each name
and use the stem as a hash code for each name. A hash codertatiesans
that two names have morphologically-compatible namesm@ieg can be

used to identify pairs lik&New York YankeandNew York Yankees

e Abbreviations- If one name is an abbreviation of another, then we say that
they are morphologically compatible. For example JFK arthJe Kennedy
are both co-referential with John Fitzgerald Kennedy. Td &fi names that
are abbreviations of a name, we check if any of the@ssible abbreviations

of the name’sr-words are also in our corpus.

We observe that there is a notion of degree of morphologicalagity. For

example,George Bushs more likely to be co-referential witkbeorge W. Bush
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thanU.S.is with Assistant U.S. Attorney Richard Convertirkr each of our mor-
phological transformations we have a different measuréeftiegree of similarity.
For example, for pronunciation similarity, we model the gietion of aliases as a
stochastic “typing” process where the probability of a tyige is a constant. Then
we compute the probability that one name was “typed-in” wtienother was in-
tended.

3.3.1 Variable Precision Phonetic Hashing

Several phonetic hashing schemes have been developedkavwethion a specific
data set or for specific performance levels [64, 77, 11]. Nthoas exist that allow
the hashing scheme to be parameterized to give differenigmwa/recall tradeoffs.
In this section we investigate phonetic hashing schema$#we an adjustable pa-
rameter giving a range of operating points with differergqision/recall tradeoffs.

Given a query string, we envision a sequence of transfoomsafrom the query
string to an empty or null string, where each transformaitcanew version of the
string that has had some tokenization or weakening apphied tWe can model
the space of transformations on the universe of strings agphgFor example the
name ‘Wright’, is shown in Figure 15, with a possible transfation sequence.

The weight of each change is determined by how drastic it @sth8 distance
from ‘Writ’ to ‘Rit’ should be relatively small when compareditv the distance
from ‘Rt’ to ‘R’. This tokenization path gives us different wons of the query
name to use in different tolerances of the hashing functMe. also see that the
path for the name ‘Rite’ eventually joins the path of ‘WrighThe name ‘Reston’
similarly joins the path, but lower down; suggesting thattéRand ‘Wright’ are
closer to each other then to ‘Reston’.

A patrticular tokenizer in this scheme specifies a set of maggabstitution rules,
along with weights for the rules. The rules are applied inveelst cost rule first

order. An example set of rules that could have generatedéitfuis shown below.
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Reston — Restm Rst\,
Wright — Writ - Rit— Rt—-R —
Rite ~

Figure 15: Tokenization Path of the Name 'Wright'.

This rule set says the cheapest rule is substituting a ‘t'glor. The next cheapest
is substituting an ‘r’ for ‘wr’ only if at the start of a queryrinally there are two
deletion rules. The vowel deletion is considered less dette, and is given a

lower weight then the consonant deletion.

e ght—t,0.2

e Wwr—r,0.3

e (defijoju) —:1
e (t) —:5

The tokenizer also has a position vector. This vector weigig rules on their
position in the string. This can be used to make rules appligtie beginning of
a string more costly than rules applied toward the end ofiagstFinally, ties are
broken by applying the rule that changes the rightmost o the string.

To complete the definition of the hash function we must spduifw to select
the point on the tokenization path to operate at. Among theyncandidates for
these scoring methods, our experimentation showed theatts®] the code that is a

fixed distance from the null string works best.

¢ Distance From Query - We generate the string which lies aolatesdistance
from the query name. A potential problem is that the stringsight’ and
‘Rite’ would have different distances to ‘Rit’; and thus wouldt hash to the

same consensus string.
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e Distance From Null String - We select the point a certain alisadistance
from the null string. This method has the property that any sivings that
get hashed together stay together as we decrease the diftamcnull, and
stay apart as we increase the distance. Since ‘Rit’ has omydmtance to
null, ‘Wright' and ‘Rite’ would be hashed together if the diste was low

enough to stop at or before ‘Rit’.

e Percentage Distance From Null String - We select a point egogage dis-
tance from the null string. This method may at first seem neasie, since
more complex strings will have more complex hashed stringewever,
we do not get the monotonicity properties we got with ‘Distaf-rom Null

String’.

e To the topmost code of a certain length - We select the codsestdo the
query of a certain string length. This method has the desmedotonic-
ity properties; and it also makes the hashing scheme lesstigerto rule

weights, since we always go to a certain length code word.

e To the lowest code of certain length - Same as the above scloernee take

the code closest to Null.

Table 8 shows how we can vary the precision and recall of aghiihg algorithm
to get different tradeoffs. For a hand-created set of naxtesated from our test set
(see Section 3.6), we measured the precision and recall bfshing algorithm at a
range of its operating points. For comparison, we also shevwptecision and recall
of three other phonetic hashing algorithms. It shows how aveuse our algorithm
to dial in the precision and recall of our notion of pronuticia similarity.

Our initial attempts at a hash function did not focus on depiglg the rule
set. Rather hand coded rule sets were used that attemptecutateran already
well known tokenization method (Soundex, NYSIIS, Caverghdnetaphone). For
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Code Weight| Precision| Recall
0 0.002 1

120 0.150 0.909
121 0.139 0.818
141 0.157 0.727
146 0.293 0.636
167 0.360 0.545
172 0.442 0.454
187 0.662 0.363
229 1.000 0.090
Metaphone | 0.715 0.732
Soundex 0.468 0.797
NYSIIS 0.814 0.672

Table 8: Precision and recall for our variable precisionn@tic hashing and fixed
precision hashing

instance, Soundex treats the letters 'b’,f';p’, and "8 #$he same token; So the

Soundex-like rule set contained the rule
° (b|f|p|v) —1:2

We also see with these rules that the alphabet for the rulgsbmalifferent from

the alphabet for the names (i.e., we have the character '1’).

3.4 Contextual Similarity

Our mental model of where an entity fits into the world depdadgely upon how
it relates to other entities.

We predict that the co-occurrences associated with twoetarential names
(say Matrtin Luther King and MLK) would be far more similar than those of

morphologically-similar but not co-referential pairs {Seartin Luther Kingand
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Martin Luther). Thus we use the vector of co-occurrence counts for eacle resm
our feature space for contextual similarity.

We identified two primary technical issues in determiningteatual similarity
using this feature space: (1) dimension reduction and {@jtfans for computing
the similarity of two co-occurrence lists. Each of thesel wé described in the

following subsections.

3.4.1 Dimension Reduction

In the experimental run of 8897 newspaper days of text we used throughout
our experiments (details in Section 3.6), we encountered1Bd different name
strings that occurred more than 5 times. This implies aneexity sparse, high-
dimensional feature space — large because each additiatitstlame represents a
new dimension, and sparse because a typical entity onlyaictewith a few hun-
dred or so other entities even in a large text corpus.

Our experiments show that simple techniques which huntediémtical terms
among the 100 or so most significant entries on each co-aawerlist failed, be-
cause the most significantly co-occurring terms for an namewighly unstable,
particularly for low frequency names. Much more consisteate “themes” of co-
occurring terms. In other words, while the most frequenbeisgions ofGeorge
Bushand“W” might have relatively few names in common, both will be sgign
associated with “Republican” and “Texas” themes.

Dimension-reduction techniques provide a way to captuct iemes, and can
improve both recognition accuracy and the computatiori@iefcy of co-reference
set construction. We examined two different dimensiornso#idn techniques based
on creating crude clusters of names, then project our carosace lists onto this

smaller space.

e K-means clustering This widely-used clustering method is simple and per-

forms well in practice. Beginning witk randomly selected names as initial
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cluster centroids, we assign each name to its closest agrftrsing cosine
similarity of co-occurrence lists) and recompute censoidfter repeating
for a given number of iterations (5, in our case) we assigi earne to its

closest centroid and take this as our final clustering.

e Graph partitioning— The problem of graph partitioning seeks to partition
the vertices of a graph into a small number of large companaytutting a
small number of edges. Such components in a graph of cotaemes should
correspond to “themes”, subsets of terms which more stycaggociate with
themselves than the world at large. Thus we propose grapitignaing as a
potential dimension reduction technique for such relatiatata — the names

in each component will collapse to a single dimension.

Although graph partitioning is NP-complete [25], reasdedteuristics exist.
In particular, we used METIS[39], a well-known program féficently par-
titioning large weighted graphs intohigh-weight subgraphs, witkbeing a
user-specified parameter. Our graph contains a node foy eagne and an
edge between every pair of nodesy) if they co-occur with each other at
least once. The weight assigned to each edge is the cosiiarginbetween

the co-occurrence lists afandy.

3.4.2 Measuring Contextual Similarity

Given two names, with their co-occurrence lists projecteit @ur reduced dimen-
sional space, we now want a measure of how similar they arecdaffsider two
different approaches: (1) they can be viewed as probaldigyributions and be
compared byKL-divergenceor (2) they can be viewed as vectors and compared
by the cosine of the angle between the vectors. We detail efatiese potential

measures here.
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3.4.2.1 KL-Divergence

The KL-Divergence is an information theoretic measure @ dissimilarity be-
tween two probability distributions. Given two distriboris, the KL-Divergence of
them is defined by

p(x)
KL(p,q) = p(x)log
(P.a) = 5 pOYlog
To use this measure, we turn each co-occurrence list intolzapility distribu-

tion for each name
. number of co-occurences between i and j
bili) = total number of co-occurrences for i
As a discounting method for probability-0 pairs, we do lineenoothing of all

probabilities with the background distribution setting

pi(j) = api(j)+(1—a)bg(j)
where
_ total occurrences of names in cluster j
~ total number of entity occurrences in corpus

bg(j)

3.4.2.2 Cosine Similarity

A standard way of comparing contexts views the two contextgegtors in a high
dimensional space and computes the cosine of the angle éretthem. [4] pro-
posed this technique for the similar problem of personalendisambiguation. We
use theterm frequency-inverse document frequeoicgach vector position, i.e. we
weight each term in the vector by the inverse of the numbecofimences it has in

the corpus. LettingN be the number of sentences in the corpus, our score is

k
dix,y) = jpx(i)-jpy()
2, 1P 0Py
where jpx(i) the number of co-occurrences betweerand x, weighted by

log( N ), and

number of occurrences o
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3.5 Issuesin Clustering

Now that we know which pairs of names are morphologicaligisir and their de-
grees of morphological and contextual similarity, we ngégla way of combining
morphological and contextual similarities into a singlelpability that two names
are co-referential and (2) a method to cluster names inteef@ence sets. We

discuss each problem below.

3.5.1 Combining Notions of Similarity

For each pair of morphologically-related names, we havesorea of their mor-
phological and contextual similarities. We need a way to loioi@ them into a
meaningful probability that the two names are co-refeanti

For each measure of contextual similarity and for edit dista we computed
the precision curve on our experimental corpus (see Se8t&)n Since the preci-
sion at a measure of similarity is the probability that a figom the test set with
this amount of similarity were co-referential, we use thegeves to turn each of
our notions of similarity into a probability estimate. Assing that these two prob-
abilities are independent, we now can estimate the prabathiat these two names
are co-referential by multiplying the probabilities givieytheir morphological and
contextual similarities. This gives us a single probap#stimate that we can use

as a similarity score in the clustering algorithms.

3.5.2 Clustering Algorithms

Once we have probabilities associated with each pair of hadggically related
names, we need to group them into co-reference sets. Becausgstem must be
able to handle large numbers of names, we must be carefulkiithof clustering

algorithm we choose. We experimented with two algorithms:
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Figure 16: Number of Clusters vs. Peak F-score for our dinsengduction algo-
rithms and distance measures

¢ Single link— Here we merge the clusters that two names are in if the proba-

bility that they are co-referential is above a threshold.

¢ Nearest neighbo+ Each name is linked with its nearest neighbor if the prob-

ability that they were co-referential is above a threshold.

e Average link— Our algorithm merges two clusters if the weighted average

probability between names in each of the clusters is abokeeahold.

3.6 Experimental Results

In order to optimize various parameters, decide which naghweork best, and ver-
ify our techniques, we ran a set of experiments against thne dast set that was
used to produce the precision curves used in section 3.5adh &f these experi-
ments is described below.

All of the experiments in this chapter where conducted orsadet of 88097

newspaper-days worth of text, partitioned among 604 dispuablications. These
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were taken from spidering that was performed between AfriPD05 and Novem-
ber 5, 2005. We used a hand-crafted set of roughly 320 coemsfe sets from the
entities in this corpus.

In Section 3.6.1, precision is given byp%, recall by tpt+—pfn’ and f-
1

aIr )l where tp = true positivesf p = false positivesandfn =

false negatives. In Section 3.6.3 these measures are gibe B-cubed algorithm

score by

introduced in [4]. For each name

||lintersection of propsed set and truej|set

Precisi
recision= Iproposed st

Recal lintersection of proposed set and true|set
a ||true seft

and overall precision and recall are the averages of thdsesia

3.6.1 Optimizing Contextual Similarity Measure

Optimizing our contextual similarity phase involves theper choice of (1) dimen-
sion reduction algorithm, (2) number of dimensions, andc8)textual similarity
measure. For both of the dimension reduction algorithkas¢ans, METIS) and
both of the distance measures (KL-Divergence, Cosine gityjlawe recorded the
peak F-score as a function of number of dimensions from 1@@o 2

Figures 16 shows this plot. It shows that while the peak perémce of all four
combinations is comparable, KL-Divergence with METIS dirsi®n reduction is
to be the most robust to changesirFor the rest of the analysis in this chapter, we

used KL-divergence, METIS dimension reduction, and 150etisions.

3.6.2 Morphological Similarity

We hypothesized that using a value different than 1 for tret 0bsubstituting a
vowel for a vowel might lead to more meaningful notions ot eistance similarity.
In order to find the best notion of edit distance, we lookedhat peak F-score

52



obtained at values of the parameter from 0 to 3 in incremeht%.oOur results
show that the value of the vowel parameter do not affect eiite subsequence
morphological similarity class nor the stemming class ofphological similarity.
However, for the Metaphone class of morphological sintjaiit is best to use a

vowel parameter of about 2.

3.6.3 Clustering Methods

The first clustering algorithm that we tried was simple sérgik clustering. Figure
17(a) shows that it has decent peak performance, but is nptafeust to the setting
of the threshold. Further, manual evaluation of the clssteat are produced shows
that it tends to create very long clusters, putting manyghiimto the same cluster
that should not even be considered. For example, the seg@amge Bush—
Bush— Bush-Cheney~ Cheney— Dick Cheneyleads toGeorge BustandDick
Cheneybeing called co-referential.

The next simple clustering algorithm was nearest neigh®ghile this is an
improvement over single link clustering, it still does netrform very well.

The next clustering algorithm that we tried was weightedrage link. Figure
17(b) shows that this has slightly better peak performahae single-link cluster-
ing, and is much more robust in the setting of the threshold.

3.7 Conclusion

In this chapter we presented an algorithm to find sets of fareatial names. We
introduced the idea of morphological similarity, the natibat two names are po-
tentially co-referential based on the text that compri$esrtame. Then we dis-
cussed the issues surrounding computing the contextu@bhsiy of two names
and gave two different measures. Clustering names givenrti@phological and

contextual similarities was discussed and we presenteeriexental results for our
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(a) Single-link clustering (b) Average-link clustering

Figure 17: Threshold vs. Precision, Recall, and F-score forctustering algo-
rithms

system.
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Chapter 4

Improving Usability Through

Password-Corrective Hashing

4.1 Introduction

The design of any password authentication system requirad@off between secu-
rity and usability. For example, mandating longer passwanda system improves
security while complicating the user’s ability to rememipasswords and enter
them correctly.

The data entry problem is by no means trivial. Empirical Esi@f typing accu-
racy [31, 51, 63] suggest that typists make data-entry €narghly once every 30
keystrokes on typical English text. Assuming ten-chargeésswords, this implies
that roughly one out of every three login attempts by lecaterusers fail due to data
entry errors. Indeed, typing error rates are presumablg bigher on the cryptic,
case-sensitive, punctuation-intensive strings reconaieeiior high-security pass-
words. An inspiration for this chapter was the painful meynafrrepeatedly typing
a 128-bit wireless encryption WEP key (consisting of 26 hexadal-characters)

until achieving the required perfect fidelity. Finally, usguggling passwords for

1This chapter is an extended version of [54].
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several different systems can easily confuse typing ewgfsrecalling the wrong
password [70]. Subsequent cycling through passwords a@r eftstems may result
in users getting locked out, with a subsequent need for ayoadgeset.

In this chapter, we propose a way to increase the usabilitgasbword au-
thentication systems by correcting for two common classegata entry errors,
namely transposition and substitution errors. Transjpostand substitutions can
arise from physical input errors or from partial passworchte We show how to
identify and correct for these errors with low false positnates (i.e., low proba-
bility that an arbitrary string will be accepted as the pawsixfor authentication).
Thus our techniques increase usability with provablydittiss of security. Indeed,
they may arguably eveincreasesecurity in practice, because users benefiting from
our correcting schemes will be more inclined to choose gtymasswords, and not
resort to insecure practices such as writing down a password

Some naive approaches to this problem suggest themseles first would
involve explicitly comparing an entered string to the passivon file to check for
equivalence modulo single transpositions or substitstiddowever, this requires
that the password file be stored as plain-text instead ofgbemtrypted, which is
clearly a bad idea for security. The second approach ingawgomatic repeated
login attempts using explicit transformations of the eatisstring. Indeed, SAMBA
appears to employ such a method to relax sensitivity to passease and charac-
ter order [79]. However, such methods quickly get expensagethere are — 1
possible transpositions amn possible substitutions on ancharacter password
defined on an alphabet of sine Finally, one might generate all variants of a pass-
word, and then store these encrypted. A login would thenlckach possibility.
Not only would this increase the size of the password file,ibatay also make
malicious decrypting easier if it is known that a set of epteg keys differ by only

a transposition.
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Instead, we propose a simple technique of applying a sipglesword-
correctivehash function to each entered password attempt. That sshésh func-
tion is applied to the entered password, and the resultipgsken encrypted and
stored. The important property required of the hash funasdhat two strings dif-
fering by a single data entry error (i.e. one transpositioeubstitution) be likely
to be hashed to the same key, while more substantially thffestrings are hashed
to different keys.

In this chapter, we study the efficiency of a variety of hasicfions in correct-
ing single transposition and substitution errors. We ogsty analyze the recall /
false positive rate tradeoffs for each class of hash funstto determine the most

appropriate choice for common password applications. ftiquéar:

e We develop precise analytical formulae for the precisiexdt tradeoffs for
correcting transposition errors using sorting-networ& block-sorting hash
functions. These functions contain parameters tradingeaftirity for usabil-

ity; tradeoffs which are made explicit through our analysis

¢ We do the same for two classes of alphabet-weakening hastidns, which
correct for substitution errors. These alphabet-weakgsthemes can be
composed with the permutation-based functions describedea yielding a
function which can simultaneously correct for transpositand substitution

errors.

e We prove the curious property that the limiting case of bothoar
permutation-based methods (character sorting) has theestigorecision

among all perfect-recall methods for correcting trandpmserrors.

e The explicit precision / recall performance of these meshsdvery sensi-
tive to the length and alphabet size of the associated keyerelore, we
evaluate these tradeoffs at parameter values reflectingnoontlasses of

keys/passwords (including system passwords, socialisgoumbers, WEP
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passwords, and credit card numbers) to identify the mostadds hash func-

tions and parameters for each.

e Finally, we evaluate these schemes using a popular cracidictionary) of
680,000 common words. We show that we can correctfiouser transpo-
sition errors while reducing the computational cost of akrattack by only
13%.

This chapter is organized as follows. Previous work on passaystem usabil-
ity and corrective hashing techniques is reviewed in Seetié.1. We introduce the
notion of password-corrective hashing in Section 4.2. T two sections present
our analysis of hashing techniques against transpositidrsabstitution errors, re-
spectively. Finally, Section 4.5 details our experimersisig standard crack-lists.

4.1.1 Previous Work

The importance of user interaction in password autheimicas well known. Basic
facts about human memory are in conflict with most passwolidips. Sasse and
Adams [1] stress human factors in developing security. S&®stoff and Weirich
[70] note usability problems with password authenticagtsuch as the number of
passwords a user must remember, strict password poliaeging systems, and
memory demands. Their studies found that users rarely agiplforget a pass-
word. Instead, users often partially recall a password calt¢he wrong password
(typically from another system the user is enrolled in). yhete that the user
cannot know which of these two reasons apply after a fail¢idesatication attempt.
There have been many human factor studies of data entry deetGsudin [31]
investigated error rates by typists, discovering that c®wpists (20 wpm) had per-
character error rates of abouf%, while experts (60-90 wpm) had error rates of
0.4%— 1.9%. Mackenzie [51] sought to partition these errors by tygentifying
per-character substitution error rates of 0.962%, inserérror rates of 0.218%
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and deletion rates of 1.045%. Peterson [63] found that p@sisons represented
between % and 131% of all data-entry errors, while substitutions accourited
between 2% and 400% of all errors.

There has been some previous work in developing passwoosiggcschemes
that tolerates errors. Frykholm and Juels [24] require ugeisupply answers to
personal questions for authentication, but the answensamequired to be entirely
correct. Spector and Ginzberg [76] propose a pass-phrdmangcthat matches
phrase semantics, and is flexible on syntax and actual weets u

Cranor and Garfinkel [19] suggest a system require more th&hdifferent
potential passwords for effective security. While mostesys in theory allow this
many, users restricting themselves to dictionary wordsambe about 16 differ-
ent password keys. Our methods do reduce the theoreticaberuaf potential
passwords for a system; however for added security, paddeaogth can be made
longer. The convenience offered by our system should maigelopasswords less
of a burden. Our proposed hashing methods reduce the eéfestace of potential
keys. However modest assumptions of key length and alplsassieave more than
enough potential effective passwords to satisfy this conce

The problem of determining when two different strings intfaefer to the same
entity has several applications. When the strings refer tities (people, places,
things) this is known as theo-reference resolution problemvhich has been well-
studied within the natural language community [4, 9, 30,8, Two names that
should be spelled identically could possibly differ due ttyping error, a com-
mon misspelling, an alternate spelling, or in the case aifpr names differing
transliteration methods (Osama / Usama). This use is Igedran our system for
co-reference resolution (Chapter 3. It also arises in therddinkage problem from
data mining [16, 18, 34], The problem arises when there isaoesl, error-free key
field to join on across databases. Consider tables contamfimgnation about peo-
ple from two different databases. Even if both databased tiseperson’s name
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and address as the primary key, conventions concerningabbons and word us-
age may differ, and typos and misspellings may appear iewifibld. The goal is

to identify which records correspond to the same entities.

4.2 Password Correction Hashing

In general, it is logical to assume that a minor differencevieen an entered pass-
word and the version on file still represents an authorizesigit to access an ac-
count. We will evaluate different hashing schemes to wathdtsubstitution and
transposition errors. These schemes transform an inpogsito a generalized
representation; typically similar size to the originairsgr We will evaluate how
these generalized representations correctly fix transposind substitution errors
(recall) vs. how often they induce random strings to coll(iidése positive rate).

4.2.1 Preliminaries and Notation

A transposition error is one in which two consecutive chimacof a password are
switched. If the password i5C;. . . Cy, then a transposition igC; . .. Ci11Gi . . . Cn.
A substitution is when any single character is replaced mtheer. Thus for any
beZ, ciCr...Ci1bG 1. ..Ch.

In dealing with the password correcting systems, it is nemgsto distinguish
the types of errors the system makes. A system that makesrthhe€not allowing
authorized access is preferable to one that allows unaaéibaccess.

We denote a pair of different strings which are considereadvatent to beeal
positive For equivalence under transposition, the pair “12345”‘dr2d 35" repre-
sent a real positive. Similarly, “12345” and “67890” are alneegative, since they
are not equivalent. Thieue positivesare the real positives that the hashing scheme
correctly hashes to the same representative string. The falsitives are the real

negatives that the scheme incorrectly hashes to the samesespative string. The
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definition is symmetric for true negatives and false posgiv
We have the following relationship

true positivest false negatives- real positives (4)

true negatives- false positives= real negatives (5)

We will survey hash schemes on strings of lengtbver an alphabeX of size

m. Recallis defined as
recall= true positiveg(real positive$

that is it is the fraction of positives the scheme correctlgntifies as positive.
Higher recall means easier access to the system, whereasrkwall is less flexible

on the errors in the password. Thalse Positive Rates defined as,
False positive rate- false positiveg(real negatives

i.e. the frequency an unauthorized access (negative)asrextly called a positive.

The lower this value, the more secure a system is.

4.3 Correcting Transpositions

In analyzing transposition errors, we note that the numlbetifeerent positives

and negatives depends orandm. Let Rrans[n, m| be the number of transposition
positives, andNirans|n, M| be the number of negatives. The positives are counted as
follows. Choose among the— 1 possible spots for a transposition. Then choose
among than characters for the— 2 spots not in the transposition. Finally we must
choose from them characters, 2 different characters that are in the traitspos
spot. We must choose different characters, since chodségpime character results

in a transposition that gives back the original string. Thus

] = (n- 2y 2() ©
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Since there arat” different strings,

m"
Rrans[N, M) + Nerans[n, M| = ( > )

and thus

m—1
m

Noarfn. = (1 ) = Rl = (/2)(n0 1)~ (0= ) 7

4.3.1 Character Sorting

Sorting is a natural choice for trying to eliminate trangpos errors, since sorting
will tend to impose its own order on a string. Sorting the inpeguence renders the
original order inconsequential, so character distributethe only distinguishing

feature of a sequence. Thus all transpositions will be ciaagth hence
recalkot =1 (8)

To count the false positives associated with characteingpive first count the true
positives plus false positives. Any pair of strings with 8@ne character distribu-
tion will be hashed together to a true or false positive. Scat pairs of strings

with the same character distribution:

tPsort + fPsor = Y (<kl';km)) 2%( > (kl'h_ km)z—m”) 9)

k>0 k>0
Since we know the recall and total positives (from the presisection), we can

use the formula for recall to solve for true positives. Wenteabtract this from the

above result to get false positives, and divide by negativeget

X/m'—1—n(m-1) n 2
M —1—nm—1) ' 2 (kl...km> (10)

k>0

fp'ratesort =

In fact, character sorting offers the highest precision efegorrecting all single

transposition errors:
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Theorem 1 Character sorting has perfect recall for single transpasits, and has
the lowest false positives of any method that does so.

Proof: Character sorting must have perfect recall, since any tvigstdiffering

by a single transposition must have the same character sgt.chinsider another
methodM which also has perfect recall but fewer false positives. ré&lmeust be
two stringsS and T that are a false positive under character sorting, but not in
the new method.S and T are hashed together under character sorting, so they
have the same character set. Thus there is a sequence gbS§#,s,...sj, T
where each consecutive strings differ by a single transipasiSinceSandT are

not hashed together undbf, there must exist consecutive stringss;1 in the
sequence that are not hashed together ukbdeBinces ands . 1 differ by a single
transposition, this contradicts the assumption Mdtad perfect recall. Therefore
character sorting has the best performance of any perfeail rmethod. O

4.3.2 Even-Odd Transposition Sorting Networks: Single Stage

We now consider weakening (hashing) a string by sendingdutih k stages of
an even-odd sorting network [43]. A sorting network is a catagon graph. In
an odd/even sorting network, at each stage adjacent entrebe swapped or left
alone. Even pairs may be swapped in the even stages, and oddrpthe odd
stages. We assume the first stage is an even stage. The fglemample illustrates

a string as it is transformed through each stage of the n&twor
14572463~ 14572436— 14527346— 14253746— --- — 12344567

We first consider the case of a single stage sorting networker Ahe first

stage of an odd-even network, all even transpositions wilcbrrected, but odd
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transpositions will remain, so

even transpositions
total transpositions

_n/2] _

(11)

recalh_stage=

To calculate the false positives (fp) and the fp-rate, we &adculate the sum
of false positives and true positives and then subtract the positives (tp=
recallx positives). To determine tp fp, we consider a string witk possible even
transposition locations (i.e1— k characters are repeats, so no real transposition is

"2) ways to choose thetransposition locationsnl™/2/-k

possible). There aré
ways to choose the characters for the repeated charaatspasition locations;
<r2n)k ways to choose the characters for Kieansposition locations; and finallyf 2
ways to order the characters involved in the transpositioations. Each of these
2K strings differs only in even transpositions, so all will getshed together giving

(sz) colliding pairs. Summing ovek gives

2 n/2 2
01 staget 01 stage = (L ﬁ J) (2) an/ZJ_k<2) (13)

k=0
_ %m(n/a (2m—1)lV2 _ mln/2]) (14)

Then we solve for false positives.
fplfstage = (tplfstage‘l’ fplfstagQ _tpl stage (15)

_ %—m(n/ﬂ((Zm_l)Ln/Zj min/2 _ /202 ) mv2  (16)

Finally,
(2-1/m)l"2 —1—n/2J("5)

fp'rateifstage = fpl—stage/N[er] =

m"2"V2 —1_n) (18)

Q
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4.3.3 2-stage Sorting Networks

By adding an extra stage of sorting some odd transpositicrewill now be
caught, depending on whether the first stage moved the ¢besacvolved in the
transposition. Consider the string fragmabtd The odd transpositioratbd) will

be corrected in the second step wlaed b,c < d. This glves(m+2) corrected trans-
position errors from%m3 m— 1) possible transposition errors. Odd length strings
have an extra odd transposition, not surrounded by 4 clesanly 3, as irabc

In this case, there ar(éng 1) transpositions that get corrected fr(%mnz(m— 1) pos-

sible errors.
21— 1) % m+2 m+1
recalbstage = (Ln/2j+((n(/%l§(m> i))‘l) [odoq(<—) 4%9)
~ (1/12)+ (11/12)(“‘/ 2J) (20)

Where[nodd evaluates to 1 ifiis odd, and 0 otherwise. We do not have analytical
results for the false positive rate of 2-stage sorting, sinstead ran simulations to
get results. See Section 4.3.5 for these results.

4.3.4 Block Sorting Methods

With block sorting, we divide the string into fixed-size bks¢and completely sort
each block. The following example illustrates the transfation for blocks of size
4.
17385901987435091237— 13780159478903591237

The only transposition errors not matched by such a schemthase that occur
across block boundaries.

We first consider the case of 2 blocks. The string is brokemtga block of
sizen; and one of size — ny, typically ny = n/2. Only a transposition that crosses

over the block boundary will not be caught, so
recalb_pjock=("N—2)/(N—1)
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regardless of the block sizes. Now consider true positicmsider the true pos-
itives that result from a single transposition spot. We choose among alin
characters for every digit, except the transposition digiust be different. Thus
them"1(m— 1) term. There argn — 2) transposition spots (since we cant match

across the blocks). Finally, each match is counted twicejesdivide by 2.
tPy_plock = (1/2)mM"(m—1)(n—2)

Let fptpeg(K) be the true positives plus false positives for completeirspr
string of lengthk. We get the fp-rate by using the results from complete sgprtin

Since within a block, the contents are completely sortedhawe

fP2_piock = fPtPcs(N1) X fptpes(n —Nny) (21)

We can generalize for an arbitrary numbekdflocks. The only transpositions

not found are still ones occurring across block boundasies,
recalk_piocks= (N—Kk)/(n—1)

We again get the fp-rate by using results from completersprti

k
fPk_blocks= I_prtpcs< n;) (22)
|=

4.3.5 Evaluation

In this section, we evaluate these transposition cornectiethods on a variety of
alphabet sizes and string length pairs corresponding toitapt classes of pass-

words/keys. In particular, we consider:

e System Passwords Typical online account passwords. We consider three
cases: the full English alphabet with case, digits, unaeesand periodri=
64), a smaller case-independent alphabet of size 32, aadytfppasswords on

typical lengths.
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e WEP Keys- Wireless encryption (WEP) keys. We consider hexadecimal
WEP keys for 64 and 128-bit WER & 10,26, m= 16).

e Social Security NumbersNine digit identification numbersn& 9, m= 10).

e Credit Cards— Credit cards numbers comprise 16 digit numbersnss {6,
m=10).

e Proper Names- The first/last names of people average about seven characte

on the case-insensitive English alphabet,rse (7, m= 26).

e System Passwords These represent passwords used for typical online ac-
count access. We consider three cases: the full Englistalagiwith case,
digits, underscore and periothE& 64), a smaller case-independent alphabet

of size 32, and binary passwords on typical lengths.

o WEP Keys- Wireless encryption (WEP) keys are widely used for encngpti
wireless communications. We consider hexadecimal WEP kay64 and
128-bit WEP (= 10,26, m= 16).

e Social Security Numbers These identifier numbers are widely used as
database keys to identify individual Americans. Each idients a nine digit

number, sorf=9, m= 10).

e Credit Cards— Web transactions often employ credit card numbers asiident
fiers after they have been previously entered for paymergy Thmprise 16

digit numbers, sor(= 16, m= 10).

e Proper Names- The first/last names of people average about seven characte

on the case-insensitive English alphabet,rse (7, m= 26).

Table 9 compares the performancekedtage sorting networks, amdlock sorting

for correcting transposition errors. Most of the resultser@alculated exactly using
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formulas 4 - 22, but some were approximated. Fhsummation 3 ~o (klﬂkm)z,
that appeared in the character sorting analysis was cotigna#y evaluated for the
different applications; except for the cases£ 64 n = 8) and (n= 16 n = 26), for
which it was approximated. The maximum of tﬂ%*rrl‘*l) terms in the summation

. ! )
'S (L”/mJ!m[n/rr]Tﬂ!(“*ln/mjm)) . Thus

X =

m+n—1
n

) 00/ /i 2 @3)

For the two-stage sorting network, the false positive ratestimated by taking
random samples and doing a 2-stage sorting network, anddibhieg a reverse 2-
stage sorting network on the result to determine the setadirsg strings that could
have generated the result code. This gives us the ratio s¢ fabsitives to true
positives, which is then used to calculate the false p@srate.

We see for most schemes, good recall is achieved at reagdoabialse posi-
tive rates. High recall and low false positive rate will eresthat the added conve-
nience of a system does not come with a loss of secdritg.2-Block scheme offers
the best balance between high recall and low false posititesraand is recom-
mendedIt should be noted that these schemes do become risky onaipladibets,
as the row fom = 2 indicates. Fortunately secure systems use large alphiaiest

so this will not be a problem.

4.4 Correcting Substitution Errors

Another common class of entry errors is substitution erratsere one character
gets replaced by another character. We now consider tweedad hash functions
that weaken the alphabet by making distinct charactersahees Such schemes
can overcome substitution errors, i.e. two strings shoaldshed together if they
differ by only a single substitution. For substitutions, naeve

P[n, Mlsups= %m”n(m— 1) (24)
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Algorithm

Application 1-Stage 2-Stage Complete 2-Block 3-Block

n m Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate

Passwords

8 64 0.571 3.75e-14| 0.609 3.92e-13| 1 2.17e-10| 0.857 6.37e-13| 0.714 2.07e-14
10 32 0.556 2.11e-14| 0.596 3.64e-13| 1 8.20e-11| 0.889 4.23e-12| 0.778 1.03e-13
20 2 0.526 4.93e-5 | 0.645 0.0110 1 0.125 0.947 0.0146 0.894 0.002135
WEP Key

10 16 0.556 1.97e-11| 0.600 3.30e-10| 1 7.67e-7 | 0.889 3.08e-9 | 0.778 8.48e-11
26 16 0.520 2.67e-28| 0.568 3.57e-28| 1 2.39e-5 | 0.960 5.96e-15| 0.920 2.58e-18
SSNs

9 10 0.500 8.43e-10| 0.587 1.60e-7 | 1 5.48e-5 | 0.875 5.93e-7 | 0.750 1.77e-8

Credit Cards

16 10 0.533 1.62e-14| 0.585 1.45e-12| 1 4.12e-6 | 0.933 4.30e-9 | 0.867 4.06e-11
Names

7 26 0.500 1.75e-11| 0.598 5.96e-9 | 1 4.15e-7 | 0.833 6.43e-9 | 0.667 1.34e-10

Table 9: Recall and False Positive Rate for correcting trasipo errors for com-
mon password/key lengths

N[N, M|sups= (rrzf“) — P[n,mlsyps= %m“(m” —1—-n(m-1)) (25)

4.4.1 High-Low Weakening

In this scheme, we partition characters in the alphalset being either high or low.
This reduces the input key to a binary string. For examplasictering the digits
0—4 as low ('I') and 5- 9 as high (’h’) transforms:

1738590198743509123% |hlhhhllhhhllhlhillh

A substitution error is found whenever the substituted abimrs map to the
same symbol. Lek be the size of the low set (and thos- k the size of the high
set). The true positives follows since there areharacter positions to perform a

substitution, the othar— 1 characters can be anything.

Phigh—tow = nrfp_l((;) + <m; k)) (26)

We divide this by the number of positives to get

k(k—1)+(m—-k)(m—k—1)
m(m—1)

recalhigh—low = (27)
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To determine the false positives, we first calculate fp. We sum ovelj where|
is the number of characters in the string belonging to thedety

Nkl (m—k)" n
tPhigh—tow + fPhigh—tow = Z}( ( 5 ) )X (J) (28)
i=

= %((2k2+mz—2mk)”—m”) (29)

We then subtract the true positives and divide by negativget the false positive
rate.

4.4.2 \Weak Set Methods

In this scheme, a set & ‘weak’ characters get replaced by a single character,
while the other characters remain the same. For examplaingfihe weak set
as consisting of all non-alphabetic characters and regdattiem with the weak

symbol (') yields the transformation
L1saSmpHn — L.saSmpsn

This leaves an alphabet of sire— k+ 1. Only substitutions among theke
characters are found, so

k(k—1)

m(m—1) (30)

recallyeak-set=

We get the false positives by first calculatihg+tp.
4 kj n—j n 1 2\n n
tpwealeset‘*‘fpwealeset: Z) 2 (m_ k) = 5((m_ k+k ) —m" (31)
i= J
Solving for fp-rate gets

(I-k/m+k/m"—1-n/mk)(k-1) 1 k K,
m'—1—n(m—1) ~GTmtm) G2

fp'rate/vealeset =
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Algorithm

Application High-Low Weak Set
n m Rec fp-rate | Rec fp-rate
Passwords

8 64 0.492 0.00391| 0.246  1.95e-5
10 32 0.484 9.77e-4| 0,242  1.75e-6
WEP Key
10 16 0.467 9.77e-4| 0.233  3.10e-6
26 16 0.467 1.49e-8| 0.233 4.75e-15

SSNs

9 10 0.444  0.00195| 0.222 1.97e-5
Credit Cards

16 10 0.444  1.53e-5| 0.222  4.30e-9
Names

7 26 0.480 0.00781| 0.240 1.03e-4

Table 10: Recall and False Positive Rate for correcting dulisth errors on com-
mon password/key lengths.

Algorithm

Application k=4 k=m/8 k=m/4 k=m/2

n m Rec fp-rate Rec fp-rate Rec fp-rate Rec fp-rate
Passwords
8 64 0.003 5.17e-15| 0.014 5.14e-13| 0.060 9.20e-10| 0.246 1.95e-5
10 32 0.012 1.72e-14| 0.012 1.72e-14| 0.056 2.20e-11| 0.242 1.75e-6
WEP Key
10 16 0.050 2.37e-10| 0.008 9.07e-13| 0.050 2.37e-10| 0.233 3.10e-6
26 16 0.050 1.03e-25/ 0.008 8.44e-31| 0.050 1.03e-25| 0.233 4.75e-15

SSNs

9 10 0.133 1.95e-6 - - 0.022 2.36e-9 | 0.222 1.97e-5
Credit Cards

16 10 0.133 3.0le-11 - - 0.022 1.43e-15| 0.222 4.30e-9
Names

7 26 0.018 1.25e-9| 0.009 2.07e-10| 0.046  2.56e-8 | 0.240  1.03e-4

Table 11: Weak Set performance in correcting substitutroore for different weak
set sizes.
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4.4.3 Evaluation

Tables 10 and 11 present our results for correcting sinddstgution errors using
alphabet weakening. Table 10 shows High-Low weakeningteefar equal-sized
high and low sets; and ‘Weak set’ weakening for a weak setcfine/2. Table 11
gives the tradeoffs for ‘Weak Set’ weakening as we changsitteeof the weak set.
Since an alphabet of size 2 cannot be further weakenedcafiphs withm= 2 are
not shown.

Our results show a clear recall / false positive rate traglaot! the false positive
rates are more problematic than we obtained for transpasériror correction in
Table 9. The weak set results of Table 11 has more acceptdbéedositive rates,
but very little recall gain. The figures below show the parfance for varying the
k parameter (the size of the weakened sets).

We see that substitution errors appear more difficult toembithan transposition
errors. The loss of information of the type of character nsak@y scheme capable

of high recall also have high false positive rates.

4.5 Resistance to Crack-List Attacks

Users usually choose passwords from a much smaller key $paceahat offered
by the system. For instance, although systems typicalbwadirbitrary character
strings many users stick to dictionary words or common nar@ee failing of our
analytical results is that we assumed a uniform distributbpasswords over the
space of possible keys. Also, we assumed that all keys argathe length, which
is not true in many domains.

To get a more complete sense of the performance of correstbemes, we
tested on them a crack list of dictionary words and commoneasamMe used
the lists from ftp://ftp.cerias.purdue.edu/pub/diattainaries, which includes dic-

tionaries in English, German, Italian, Swedish, Norwegemd Dutch; as well as
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Block Sorting Sorting Network

Blocks | Recall | Unique Codes| False Pos. Rate| Stages| Recall | Unique Codes| False Pos. Rate
1 1 593347 1.42e-06 Inf 1 593347 1.42e-06
2 0.89 656475 4.79e-07 9 0.93 596026 1.41e-06
3 0.79 670265 3.16e-07 8 0.89 600209 1.39e-06
4 0.68 676146 2.68e-07 7 0.85 607036 1.33e-06
5 0.57 678491 2.51e-07 6 0.80 618944 1.21e-06
6 0.47 679395 2.42e-07 5 0.75 632101 1.03e-06
7 0.38 679737 2.39e-07 4 0.70 648115 7.61e-07
8 0.30 679873 2.38e-07 3 0.66 658338 5.74e-07
9 0.24 679932 2.37e-07 2 0.60 668050 3.80e-07
10 0.18 679972 2.36e-07 1 0.55 672544 3.17e-07
Inf 0 680000 0 0 0 680000 0

Table 12: Performance of Transposition Correcting MethadBiationary Data.

lists of common names, organizations, abbreviations, jaopaovie and TV hames,
common slang, Internet words, famous people, and a few pthular terms that
appear in passwords. Combined, these lists had 680,000aut@qus.

Table 12 shows the ability of block sorting and sorting ne&sdo correct trans-
positions on the crack lists. We see that in the case of a @impbrt, the number
of unique keys is now only 593,347. That is, a cracker who#mlircrack-list of
680,000 words could now get by with a list of 593,347 wordss th about 13%
shorter. This is not much to pay for eliminating all trangpos errors. For more
extreme security, 5-block sorting still has over 50% regagt allows a reduction of
only 1509 names off the crack list, or 0.22%. The performaric®rting networks
is not quite as good, though still reasonably effective uFedL8 illustrates the false
positive-recall tradeoffs of the two methods.

Figure 19 shows the distribution of the size of the equivedetiasses for high-
low and weak set, with a split point of 248. The x-axis is tleesf the code set.

That is, the value 3 means that 3 different words get hashétetsame code.
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Chapter 5

Implied Relations and Edge Pruning

5.1 Introduction

On-line news sources provide a large and comprehensiveisafpworld events
and news entities. The Lydia project (www.textmap.com)yazes over a thousand
on-line newspapers every day to discover news trendsnsents, and geographic
biases. The aim of the project is to deliver news analysis scake of content that
would be impossible for a person to read, and to mine the datiistover world
facts that a human analyst would be unable to realize. Ommigee to analyze the
data is leveraging network science on a co-occurrence metsfcnamed entities.
Edge scores in this network are frequency of co-occurreateden two entities.

But real world network data is often noisy. Edge scores am aiien biased
for popular entities. We would like to develop an edge scheg is a more accu-
rate reflection of actual link strength. This will give a leetuinderstanding of the
network, as well as enable us to prune low strength relatiSme our network is
very large, this will enable otherwise intractable analysi

We want to score pairs of entities based on how related theyGurrently, we
have a co-occurrence count as an edge score, but as we withsee are short-

comings to relying on this measure alone. We have developether notion of
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an ‘implied relation score’ that corrects for implied coeacrences, and normalizes
for overall entity popularity. We can also consider otheaswees such as mutual
information (or point-wise mutual information), and meas.ithat consider the pro-
files of high frequency words appearing with entities. Thilt elp us distinguish
entities with high co-occurrences from their frequent @space with a common
(most likely popular) neighbor, such as ‘Dick Cheney’ andutaBush’. Both of
these people occur frequently with ‘George Bush’, so thesrofio-occur with each
other due to the common friend, but they themselves shareala@onnection. A
second-order relationship exists between Laura Bush anki ©heney which is
almost completely explained by interactions between Geéugsh and Dick Ch-
eney. Second-order relationships within a network are imegad less interesting
than primary relations. On the other hand, entities whiehoswerall not mentioned
frequently will have a low number of co-occurrences (beeathey have a low
number of occurrences), although they may be involved imgportant relation.
We propose a model to identify second order relationshiplsimve news network.
We show that it enables us to prune a news network of lesestiag relationships
with minimal impact on network structure. These prune-aulges are in essence

‘implied’ edges; existing only as an artifact of other redas.

5.2 Previous Work

5.2.1 The Lydia Project

The Lydia project has been discussed in Chapter 1. It is mesdi@again here to
make this chapter self-contained. The Lydia system autcaigt builds an entity
database from online U.S. newspapers downloaded on a dasig.b The tech-
niques used for entity identification include part-of-sgeé&égging, templates and
gazetteers, as well as clustering for co-reference rasaolutThe architecture of
the Lydia system is described in detail in [48]. The main comgnts of Lydia are
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spiders to download the news sources, named entity exinaatid classification,
including co-reference detection [49], and various deirresanalysis based on the
named entity recognition.

The system can also be extended to other sources such asquubatabases,
financial reports, and blogs [47]. Some of these analysiad@xjuestion answering
[42], spatial analysis and geographic bias (‘heatmap8), [&nd sentiment analysis

[29]. Searching our database is also discussed in [8].

5.2.2 Network Links

Motivated by clustering, work has been done on assigningagiily scores to ver-

tices of a network, as a measure of their structural equicale These include
Euclidean distance, Pearson correlation, and mutualrimdton [58]. While these
measures may be useful in determining vertices’ similgotydis-similarity), they

have classically been used as metrics for clustering dlgos.

Clauset, Moore, and Newman [15] describe a method of predistissinginks
in networks, the opposite problem we are looking at. Theitho@ is based on
first finding a hierarchical structure, and using this proligthc hierarchy to decide
which non-existent links are most likely to be in the netwaoFkis same idea could
in principle be applied to deciding which existing links tiedel is most surprised

by, but this was not studied.

5.3 Identifying Implied Relationships

The nature of the way news articles are written, and the diffiof NLP processing
tends to lead to networks that are larger than necessarjofaiteel free to make
off-cuff and unrelated comments on any subject, and in geitiee real world aspect
of article data leads to noise. We describe a technique fouleting the number

of ‘noisy’ edges in such a network. In particular, we devedop'implied relation
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score’ for each edge that indicates how certain we are the sgfyesents a real
relationship between entities, or if the edge is an artitdatoise (i.e. it can be
explained away by other relations in the network). (Thesgesdvere originally
termedspurious but this notion didn’t accurately describe our methodsyder,
due to this legacy ‘spurious score’, and ‘implied relatisesre’ are occasionally
used interchangeably)

The purpose of determining theplied edges is two-fold. First, pruning im-
plied edges from our graph can make existing network arsfgshniques tractable.
Alternatively we can use the score itself as the basis folyaiza We can then use

this score as a similarity score for, say, clustering.

5.3.1 Implied/Meaningful Juxtapositions

From our news analysis, we get a juxtaposition count for geghof entities. A
juxtaposition (co-occurrence) is defined as a pair of @#tifippearing in the same
sentence. Although correlated, this count does not tellaws tneaningful a rela-
tionship exists between the two entities. For example, idenghe two pairs of
entities (George Bush, United States) and (Stephen Harpagdaa Clearly we
would expect many more juxtapositions for (George Bush,&dhBtates), based on
the relative popularity. However, the relation betweentthe pairs is essentially
the same. Also consider Laura Bush and Dick Cheney. The jusitamas between
these two entities will be artificially high, simply becaubkey both get mentioned
frequently with a third entity, namely George Bush .

We determine a normalized meaning-fullness by modelintppositions as be-

ing of three basic types:

e Popularity - Some juxtapositions will occur simply because the erstitie

volved are overall extremely popular.
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¢ Neighbors Some juxtapositions will occur because two entities haver-
mon neighbor. No strong relation exists between the twdiestibut their

juxtapositions are fairly high due to a common friend.

¢ Significant RelationshipsJuxtapositions occurring from actual relations and

interactions.

We model these types of juxtapositions by taking a naiveraption of inde-
pendence. We estimate the first two types of juxtapositiamd subtract these from
the observed number of juxtapositions to get the third type.

5.3.1.1 Entity Popularity

If we assume an entity is equally likely to participate in gaytaposition pair,
regardless of the other entity in the pair, than the expeutigaber of juxtapositions

between two entities depends only on their overall fregigsnd hat is,

Juxtspop(€1,€2) = JuXtgotar * f(€1) * f(€2)

where Juxtgop are the estimate of juxtapositions occurring from poptyafi(e) is
the total frequency of an entityin the corpus, and Juxtsy are the total number

of juxtapositions in the corpus.

5.3.1.2 Neighborhood

Consider now two entities;, e; that have a common neighbar We can again
assume that given the occurrenceahe occurrence af; ande, are independent.

Under these assumptioegsande, have a frequency of appearing witlgiven by,
f(e1|z) = Juxtger,z)/  Juxtge, z).
e

and the estimate is then the same as the popularity estimate,
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JUxteighbol €1,€22) = Juxts f(ey]2) « f(ez|2) (33)
= Juxte{el,z)*Juxts{ez,z)/z\luxts{e,z). (34)
e

To get the total neighborhood contribution we sum over aljimgorsz.

5.3.1.3 Implied Relation Score

From the estimates of Neighborhood and Popularity juxtéipos, we get the sig-
nificant juxtapositions by subtracting from our empiricaliat. To normalize for
overall popularity, we then convert to a score by calcutatine probability that
the significant juxtaposition count could occur by chanchatlis, two very pop-
ular entities will be more likely to have a juxtaposition ebumuch greater than
what we estimate, so the apparent large number of signifjaatdpositions may
be due to chance fluctuations. By converting to a probabil#yhave a score that
is comparable across all pairs of entities.

This probability is a computationally expensive operatidn alternative score
is to use the ratio of real edges to implied edges. Sincedhiswould be extremely

high for low weight edges, we multiply by the log of the reaged, giving

implied relation score- (real edgegimplied edgeg«log(1+ real edges

5.3.2 Evaluation of Implied Relation Score

We evaluate the effectiveness of our implied relation sbgreeeing how properties
of the graph change as implied edges are removed in ordeord.9d/e expect our
network to be a small-world network and thus have short phéteeen any two
connected vertices. This can be seen in Figure 20. Sincelatig all shortest

path is computationally intensive, we compute the averagdest paths on random
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Figure 20: Average shortest path distances of pruned nkswdtdges are added
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starting from a minimum spanning tree. As edges are addedwhrage distance
quickly decreases, approaching the complete graph.
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samples of the vertices. The graphs also show what happemsr@dmove edges in
reverse order (Inv. Implied Score), by simple co-refererment (Juxt Count), and
randomly (Random Score).

Another property we examine is articulation points (Fig2it¢ and leaves (Fig-
ure 22. We see that as we remove implied edges, the numberafiation points
grows very slowly, but as more important edges are remotediamber of articu-
lation points begins to grow rapidly. This effect needs tetuelied more rigorously,
but we believe that removing the most implied edges leagés tlusters, and thus
many bridges between clusters. Thus once the most impligdsedre removed,
and then inter-cluster edges, there will be many articoregioints.

One problem in evaluating our score is that there is no grawrt for what a
real relation is. We can approximate a ground truth by using acttin of human
knowledge, wikipedia. We assume that there is a real reldiggween two entities
if one of them appears on the other’s wikipedia page. We trenthe implied
relations score as a threshold for pruning, and can getgwoecand recall for how
well the pruned graph approximates the wikipedia graph. ¥éeidifferent sets
of wikipedia dumps for our ground truth. One is a small dungfr5 November
2005; and the other is a much larger dump from 18 October 2@f@r(Wikipedia
gained significant popularity.) The average and mediartigesind negative score
for each scoring method is shown in Tables 13 - 16. The pacisiecall graphs are
shown in Figures 23 - 24. Figure 23 shows the precision of @alaasertain rank for
our different scoring methods. Figure 24 shows the pretisiecall curves for each
scoring method. The curves are obtained by consideringpaliiple thresholds for

each method. The precision / recall graphs are shown in &sg28 - 24.
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medline dailies dailies| goodnews| goodnews

Method ALL | PERSON ALL | PERSON ALL
20071018 20071018| 20071018| 20071018, 20071018

Score | Pos. || 4,300.11| 48,384.40| 86,039.20| 65,302.80| 152,563.00
Score | Neg. 219.62| 11,159.10| 11,135.90; 8,731.04| 21,276.00
Juxts Pos. 94.68 85.09 78.83 39.13 38.57
Juxts Neg. 48.64 30.12 30.87 17.14 20.14
Real Pos. 34.95 52.88 37.59 26.11 15.17
Real Neg. -41.61 16.05 5.39 9.73 5.18
Implied | Pos. 59.73 32.21 41.23 13.03 23.40
Implied | Neg. 90.26 14.06 25.48 7.41 14.96
Ratio Pos. 4.03 7.95 5.09 6.46 4.19
Ratio Neg. 1.11 4.39 3.28 3.78 3.28
Nbrs Pos. 36.46 8.96 51.89 6.13 38.98
Nbrs Neg. 60.50 7.12 44.44 6.09 33.34
NRatio | Pos. 0.16 0.11 0.07 0.11 0.08
NRatio | Neg. 0.12 0.08 0.04 0.08 0.05

Table 13: Network averages for positive and negative exasnph the 2007
Wikipedia data. Except for some medline exceptions, pasiicores are higher
than negative scores.

5.4 Future Work

Network science research is often limited by the availgbdi good network data.
Data such as citation networks [3], karate clubs [58], andiébiog networks [44]
have proven useful for exploration, and confirming theomyr @ata then makes for

interesting study, because it is both large scale and cdrepséve of world events.
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medline dailies dailies | goodnews| goodnews

Method ALL | PERSON ALL | PERSON ALL
20071018 20071018| 20071018| 20071018 20071018

Score | Pos. 5.70 13.97 9.18 20.16 9.94
Score | Neg. -1.00 8.12 5.89 8.33 6.85
Juxts | Pos. 27.00 20.00 17.00 13.00 11.00
Juxts | Neg. 17.00 10.00 8.00 9.00 8.00
Real Pos. 12.48 12.00 9.47 8.99 6.84
Real Neg. -0.88 5.97 4.65 5.99 5.51
Implied | Pos. 11.92 4.58 5.22 2.26 2.87
Implied | Neg. 22.21 3.01 3.02 2.31 2.51
Ratio Pos. 1.63 3.18 2.36 4.27 2.66
Ratio Neg. -0.05 2.26 1.82 2.42 2.10
Nbrs Pos. 19.00 4.00 15.00 2.00 8.00
Nbrs Neg. 41.00 4.00 15.00 3.00 11.00
NRatio | Pos. 0.14 0.07 0.05 0.06 0.04
NRatio | Neg. 0.11 0.05 0.03 0.06 0.03

Table 14: Network medians for positive and negative example the 2007

Wikipedia data.
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medline dailies dailies | goodnews| goodnews

Method ALL | PERSON ALL | PERSON ALL
20051105 20051105/ 20051105| 20051105, 20051105

Score | Pos. || 6,114.22| 42,952.30| 59,024.40| 81,593.00( 174,486.00
Score | Neg. 125.31| 6,738.93] 5,609.93| 6,675.41| 13,821.30
Juxts | Pos. 136.14 87.06 113.22 40.98 48.51
Juxts | Neg. 55.67 39.04 31.44 21.63 21.02
Real Pos. 43.87 57.60 54.27 29.64 22.94
Real Neg. -54.37 19.61 5.64 10.89 4.71
Spur Pos. 92.27 29.46 58.95 11.34 25.57
Spur | Neg. 110.03 19.43 25.80 10.74 16.31
Ratio | Pos. 4.22 9.66 5.22 7.65 4.65
Ratio | Neg. 0.86 4.47 2.98 3.59 3.05
Nbrs | Pos. 40.23 7.35 48.80 4.37 31.77
Nbrs Neg. 64.11 6.17 45.93 6.00 33.18
NRatio | Pos. 0.18 0.09 0.08 0.10 0.08
NRatio | Neg. 0.14 0.08 0.05 0.10 0.06

Table 15: Network averages for positive and negative exasnph the 2005

Wikipedia data. Except for some medline exceptions, paskicores are higher

than negative scores.
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medline dailies dailies | goodnews| goodnews|

Method ALL | PERSON ALL | PERSON ALL
20051105| 20051105 20051105| 20051105| 20051105

Score | Pos. 6.12 17.77 9.48 39.51 12.91
Score | Neg. -1.00 7.48 4.57 6.97 5.73
Juxts | Pos. 33.00 19.00 22.00 13.00 12.00
Juxts | Neg. 18.00 11.00 9.00 9.00 8.00
Real Pos. 13.96 12.13 11.72 9.24 7.83
Real Neg. -4.20 5.99 4.31 5.96 5.26
Spur Pos. 13.05 3.6 6.36 1.3 2.67
Spur | Neg. 27.97 3.48 3.73 2.82 2.89
Ratio | Pos. 1.69 3.71 2.38 5.00 3.14
Ratio | Neg. -0.18 2.10 1.52 2.11 1.86
Nbrs Pos. 19.00 3.00 15.00 1.00 6.00
Nbrs Neg. 45.00 3.00 17.00 3.00 12.00
NRatio | Pos. 0.17 0.06 0.05 0.04 0.05
NRatio | Neg. 0.13 0.05 0.03 0.06 0.03

Table 16: Network medians for positive and negative example the 2005
Wikipedia data. Except for some medline exceptions, paskicores are higher

than negative scores.
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Chapter 6

Discovering Entity Communities

6.1 Introduction

To understand the world, we must learn about its communitiégere is a two-
way path of knowledge; we learn about an entity by learningtwdommunities
it is @ member of, and we learn about communities by examiitsxgnembers.
We seek to discover communities from news entities mineah fitee Lydia project
(www.textmap.com).

Our approach to community discovery uses techniques framank science
and social network analysis. The information needed toodessccommunities is
contained in the co-occurrence network of the Lydia datee ddroccurrence net-
work has named entities as vertices, and an edge betweeratmedentities if they
co-occur in a sentence in a news article. The weight of the®dgthe frequency
of co-occurrence. A pruned example of the network is showfRigire 25 (Edge
weights are not shown).

Typically, a few members of any community are known. Ask therage person
to name 10 baseball players, and they could run them off withause. Think now
how their response would differ had you asked them to neweeybaseball player.
Our version of the community discovery problem attempteteitage this partial
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Figure 25: A partial view of a co-occurrence network.
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knowledge of a community. Starting with an initial seed sat is a sampling of a
community, we seek to discover as much of the full commurstpassible.

Community discovery is a fundamental classification probiesocial network
analysis. Once communities are discovered, interestiatys@s result. Knowledge
of communities can assist classic NLP tasks such as infaymedtrieval and ques-
tion answering. The communities can also themselves beia tbstudy. The
evolution and growth of a community can be predicted. Theratdtion between
communities can be studied. ldeology of a community can lsemed, and its
movement predicted. In addition, the flow of ideas betweanroanities can be
studied. In the context of Lydia, once we have known comnmeesmiand we can
observe community-wide sentiment, we can predict how sttt of individuals
interacts with community sentiment and how a communitiesisent effects one
of its members.

In its most general form, community discovery can be considi@ clustering
problem; and as such is as hard as clustering. In our corgexéral heuristics

present themselves, but none offer a completely satisfastdution:

e Reference lists / gazetteer®ne solution that offers itself is the use of ref-
erence lists (say from Wikipedia). Most curated lists, sastthose found
on Wikipedia, will be incomplete; or at least lag in comptetss relative to
the speed of news. Certain lists may also just not exist. Qtimary contain
a preconception, or bias. Such would be the case where merabeself-
identified. The reality of an individual’'s company may diffeom how they
perceive themselves (or want themselves to be perceive@llys the names
used from an external list may not be consistent with the sansed in a

network, adding an extra layer of complexity.

¢ Relation Extraction Another means of discovering communities could be to
read them from the text. The text says “Democrat Bill Clintom@mced

yesterday..”, and thus we know Bill Clinton is in the communi2gmocrat’.
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This method may be possible but it just shifts the hardness & hard discov-
ery problem to a hard NLP problem. Determining Bill Clinton iDamocrat
from reading text is a difficult NLP problem. Even if it coulé blone, not all
communities are mentioned as explicitly as our exampleiquaarly for low

volume entities.

General solutions to our problem also have many hurdlesdocome:

Network Noise Analytical methods don't start with perfect data. Our input
data was computed from imperfect named entity recogniztassifiers, co-
reference resolution, and other NLP tasks. The network@lstains noise,

such as spurious relations, from the way news stories ateewri

Multiple MembershipA problem also arises with people that bridge commu-
nities. Say we are trying to discover an entertainment comtyyand have
Arnold Schwarzenegger as a member. His political friendg start to creep
into the community. Eventually, if enough political erggicreep in, we will

be growing the wrong community.

Entity DisambiguationA similar problem arises when different people share
the same name, such as with John Edwards, which is the nametlofab
Carolina congressman, and an Indiana Pacers Center. Thisawde the two

communities to be bridged.

Community Granularity. Specific groups can also be difficult to discover.
Trying to identify ‘Baseball Players’ will often result inédhtifying all people

related to baseball (managers, agents, owners, etc.)

Our contribution is as follows

¢ We give a general method for community discovery from seeds.
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We demonstrate our methods work well on real world netwagken given

very small seed groups (20 - 400 members).

Our methods are fast, and incremental.

Our methods allow local community discovery.

We evaluate parameter optimization to maximize perforraanc

Our method can be divided into two tasks. First, as an incneahenethod,
given a set of members of a community, find which vertex is nlisty to also
be a member. Second, determine when the next member to aittélisrot to
be in the community. To put it simply, we have one phase tordete the next
member to add, and another phase to determine when to stogaddmbers. As
can be seen in Figure 26, identifying this stopping phasedsgs important as
the growing phase. This figure shows what happens as a groe®td expand a
seed set. The x-axis shows the number of members in the egp@odhmunity; as
the grower is expanding the community, we move along theig-akhe 3 shaded
regions represent the size of the seed set, the number etdgridentified baseball
players, and the number of falsely identified baseball piay&tarting from the
seed set, we see initially that almost all added members areatly identified
baseball players. For the first 1000 members, we see almofgtis® positives.
For the next 1000 members, we start to see non-baseballrplesgeping into the
community (The darkest shaded region), but still a sigmificaumber of baseball
players being added. Eventually, once the community getdaime, the grower
has lost all ability to distinguish baseball players, anddding correct members at
a rate no better than random. Identifying where this bregakioint happens is an
essential component of reliably recognizing communities.

We also notice that even at this breaking point, only abotird bf the com-
munity has been found. The community appears to have ary easdover-able

core of members, and many harder to distinguish outliers WA will see later, the
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Evaluation of Growth of Baseball Players in dailies by Binomial CDF
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Figure 26: Growing the community ‘Baseball Players’. The tineusand members
added to our seed group of 100 are almost exclusively bdsaaadrs. The fraction
of baseball players in the next thousand members startltoffalAfter about two
thousand insertions the grower is adding members seemabhgiandom.

problem isn’t as bad as it appears, and can partially be equleby difficulties in

evaluation techniques).

6.2 Related Work

The two main problems with communities are discovery andtifleation. Discov-
ery is concerned with finding a group of entities that are mensibf a community,
while identification seeks to identify what a community igegi its members. Our
problem is purely a discovery problem, since it is assumatltthe seed commu-
nity’s identity is already known.
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6.2.1 Communities

Our notion of a community is external from the network. A coomty is a group
existing in the real world. Although real world communit&®ould have properties
that translate to the network representation, they are efotetl by the network.

Typical definitions of communities however depend solelynetwork proper-
ties. Generally communities are groups of vertices thabatter connected within
the community than outside of it [58], as in * Web Communitjeghich are defined
as a set of vertices each with more neighbors in the commasibut of it [22, 27].
It is expected that a definition of a community within the netikvwill necessarily
produce a real-world community.

Web Communities are a specialization of graph alliances. [Spfecifically, a
defensive alliance is a set of vertices where each has dtdsasany neighbors in
the alliance, than out of it (strongdefensive alliance has strictly more neighbors in
the alliance). Offensive alliances are a set of verticesre/tiee vertices’ neighbors
each have more members in the alliance than outside of itaayidbal alliance is
both offensive and defensive. The complexity of findingaates of a given size
k is NP-complete [13, 20, 45, 73], but also shown FPT (fixed ipatar tractable)
[21].

6.2.2 Discovery Methods

Community discovery aims to find groups in the network thaehstvong connec-
tions. Among members of a group, there will be lots of conioest(high density),
while there will be much fewer connections between diffegroups. Discovering
communities is typically viewed as a clustering problenthvepecific techniques
being more applicable to social networks. There have alsa beal world studies,
such as Kossinets’ and Watts’ study of the Yale email netddk A large class
of methods deal on a global scale. The output of these dtgosiis to assign every

single vertex to a community. An overview of these methodsyics.
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6.2.2.1 Bisection Techniques

Bisection techniques attempt to partition the network byeded bisections. Most
methods perform well for a single bisection, but not alwaysvell for more than
two groups. Also, an external decision needs to be made tcatedwhen to stop

bisecting (how many groups to stop with) [58].

e Max Flow - Min Cut. Min Cut algorithms can produce good bisections, but
make no guarantees on keeping both groups of similar siageFLawrence,
and Giles [23] give a min-cut algorithm based on min-cutdre€his algo-
rithm is actually able to produce an arbitrary number of tdtss and can be

expanded to produce a hierarchical clustering.

e Spectral BisectionSpectral bisection techniques partition a graph based on
the eigenvectors of its Laplacian. The Laplac@mf a graphG is defined
asQ = D — A whereD is ann x n diagonal matrix withdy, = d(v), andA
is the nxn adjacency matrix ofs. Since all rows and columns @ sum
to 0, Q has I' as an eigenvector, with eigenvalage = 0. If the graph had
two connected components, there would be eigenvectors waitie 1 for
vertices in the component, and O otherwise. For a real n&twbere the two
communities aren’t completely disconnected, there wiklsenall eigenvalue
with eigenvector a linear combination of eigenvectors @& prerfect group
splits (the vector of 1's for members of the groups, and Omilse). The
spectral bisection method finds the eigenvector correspgnd the second
smallest eigenvaluk,, and bisects the graph on weather the eigenvector entry
for a vertex is positive or negative; is also called the algebraic connectivity
of a graph. A smaller value indicates a better split into 219866, 58]. This
method relies on calculation of eigenvectors. Using theckaa method, this
can be calculated i®(m/(As—A2). Also, the median entry of the eigenvector

can be used to split the vertices into more equally sizedis@tproduces a
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poor split.

e Kernighan-Lin Algorithm.The Kernighan-Lin algorithm [41] is a heuristic al-
gorithm that attempts to greedily minimize the “externattf a partition,
which is the sum of the cost of inter-partition edges. Ittstarith an initial
partition n (possibly random), and determines the pair dices whose swap
would produce the largest decrease in cost. In then swaps,thed deter-
mines the next pair, not considering already swapped e=tid his gives a
sequence of vertex swaps which is then scanned to find thenmmi The
procedure is then repeated with the new partition as thérsigsoint, until
convergence on a local minimum is achieved. Sizes of the asatipns must
be given, although ranges can be specified by adding dumnssr@drtices
with all edge costs 0). The run time of the described algorithO(n?), but

additional heuristics on pair selecting can be used to sppéede heuristic.

6.2.2.2 Hierarchical Clustering

Hierarchical clustering produces clusters of various éegof similarity, often rep-
resented as a dendrogram. The techniques for hierarchisiedng are driven
by a similarity measure between the vertices of a network, [@hich is usually

application specific.

e Agglomerative.Each vertex initially belongs to its own cluster. Edges are
considered in order of similarity to merge clusters int@érclusters. (See
the section below on similarity measures). 3ingle Linkage clusters are
formed whenever two components become connected.CBorplete Link-

age clusters are formed whenever all links between two clesiez added.

Newman [58] gives an algorithm basedmodularity Q Given a partition of

the vertices, define a matreawhereg;j is the fraction of edges i between
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components andj. ThenQ is defined as
Q= Zigi — Zjjkajaq = Trace(e) — |||

At each step, choose to merge the two clusters that causegdhtest in-

crease iMQQ. The running time i©O(mn).

Agglomerative clustering methods don't find peripheral rbems reliably
[59]. There is also an added level of complexity for deteingnat which

level of the hierarchy gives the best communities.

e Divisive. In divisive hierarchical clustering, the entire graphs started with
as one cluster, and edges are removed to break the clustesmaller clusters

(as opposed to agglomerative where clusters are joinedderlalusters.

Girvan and Newman [28, 59] give an algorithm based on edgedsstness
centrality. The edge with highest betweenness centralitgrmoved from the
graph until no edges remain (centrality is recomputed afgsh removal.)
Edge betweenness can be calculate@®{mn), giving a total computation
time of O(n?n). The running time was improved by Tyler et al. by randomly

sampling the vertices to compute betweenness on.

Clauset, Moore, and Newman [15] go on to state that hieraatBtcucture is
actually a defining component of social networks; sufficientpower law degree
distributions, high clustering coefficients, and shorbdangths (small world). The
hierarchical random graphmodel is a dendrogram, with probabilities at internal
nodes. The probability of an edge between two leaves is eéqulaé value in their
lowest common ancestor. This model produces networks gixigjlthe properties
of small-world networks. They also give a statistical baakgbrithm for inferring

the most likely hierarchical random graph model from a gimetwork.
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6.2.2.3 Other methods

Not all community discover methods seek to partition thewoek. Hopcroft, Khan,
Kulis, and Selman [36] give a method of using agglomeratiustering to find
‘natural communities’. The idea is that not all individua¥dl naturally fall into
communities. A ‘natural community’ is a stable communityglaster that should
still exist if the network is slightly perturbed. By pertunigi the network, and seeing
which clusters consistently are found, the ‘natural’ atdb$e’ groups can be found.
Efficiently perturbing networks and stability of clustegimlgorithms (HITS and
PageRank) can be found in [60]. This work is also extendedih {8here the goal
is then to track these ‘natural communities’ over time. @thethods include:

e Resistor NetworksWu and Huberman [83] give a clustering method based
on considering the network as a resistor network and cinsfeertices based
on similar electrical potential. This method scales toexiely large graphs
(linear run time), and can also be modified to extract a siogihemunity from

a single node (i.e. a single seed).

e Core Collapse SequencA. k-core is a component of a grafghwhere each
vertex has degrek or larger. The core collapse sequence looks at the se-

guence of cores fdt=1,2,...n—1. [72]

6.2.3 Similarity Measures

Two entities are structurally equivalent if they have themeaet of neighbors. Var-
ious measures have been proposed for measuring the degrgeivdlence for two

entities that are not completely equivalent, including lEleéan distance and Pear-
son correlation. Euclidean distance is the distance betweetwo vertices adja-

cency vectors. The distance between vertica®d j is
Xij = \/(Z(aik - ajk>2>
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whereay are the entries of the adjacency matAxX12]. Pearson correlation is

defined as
(1/n) Sk(aik — ) (@jk — Mj)
0i0j

Gj =

wherep; = dedi)/|V|. Other measures can also be defined, the reader is referred
to [12].

Much study has been done on co-citation networks. Class@sitdisty metrics
derived from this application are termed Bibliometric. Baisknan and Deo [5]
give a similarity metric inspired by Bibliometrics.

IN(u) AN(V)|
min(dy, dy) +1

whereN(u) is the neighborhood af.

6.2.4 Growing From Seeds

Growing communities from seeds is done on a smaller scale Gdogle Sets
(http://labs.google.com/sets) [14]. A user can enter upviditems, and the set
is expanded to 15 or 30 items. Inspired by this, GhahramahHamiler [26] devel-
oped the idea of Bayesian Sets. Using a statistical modet®{c@mmunities), and
Bayesian inference, complete sets could be grown from saedssmilar scale to
that of Google Sets. Our problem differs from Google sethan e are attempting
to grow much larger communities (up to thousands of mempbtd)also rely on
larger seed sets (tens or hundreds of members).

Flake, Lawrence and Giles [22] examined the problem of fipaweb commu-
nities, where a community was defined as a set of sites, edlcimere neighbors in
the community than out. They found that communities can b@eftly discovered
as a max-flow / min-cut problem, if the source set containethbes of the com-
munity, and the sink contained non-members. Thus with skedee community,
and seeds for non-community members, the community couttidocevered. They

also show approximation algorithms that work on just a legal of the network.
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Thelen and Riloff [78] give a method for learning semantidders from seed
sets. Their method is NLP based (not network based), usitigrpanatching such
as ‘A was arrested’, to learn new members. They also expherbenefits of simul-
taneously growing classes.

Sarmento et al. [69] grow entity classes from very small segsl They seek to
estimate the membership functipiiS, e); which is a measure of if entitybelongs
to the same classes as the seedSséthis is done by a cosine similarity score on
the co-occurrence vectors; where a co-occurrence meaestities appear in a list
structure (such as “A, B, and C”).

Our problem of growing the communities from seeds resemblasnally su-
pervised learning, and bootstrapping. Supervised legrages large amounts of
training data to construct a classifier. Unsupervised lagreeeks to construct a
classifier without training data. Since this is usually atreaxely hard (sometimes
impossible task), minimally supervised learning attemptsonstruct a classifier
using a very small amount of training data. These technigquesiseful for quickly
constructing classifiers on lesser known domains, whergga Emount of training

data is unavailable.

6.2.5 Temporal Growth

Our problem attempts to grow a community from a partial viewed set). The
communities formed by entities are not themselves statitria. A related prob-
lem would be to predict temporal changes from a complete.viglembers will
come and go as they please, and groups will grow or shrinkze gdtor instance,
we would like to know the probability of a particular entity joining a particu-
lar group. Current research has shown it is possible to pgrédtkse changes in a
community based on its current structure. The change in arzonty is usually a
very small fraction of the community itself. Thus a very shmaimber of members

are being predicted, starting from a very large number of bws) as opposed to
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our problem of finding a large number of members from a smatiimer. Because
only a very few members will join, there is large prior probigp of not joining.
Thus even though the methods have some predictive poweradety predicting
individual membership remains elusive. Predicting oveiaé change is somewhat
more attainable.

Backstrom et al. [3] worked on predicting changes from curnetwork prop-
erties. They used a decision tree technique,where thegtaedined properties of
the network that would be used as a feature vector. To tra@y, took snapshots
of LiveJournal and DBLP co-authorship networks at diffefgoints in time. They
found that the most important feature determining memiyeismot just who your
neighbors are, but how your neighbors are connected.

Sarkar et al. [68] tracked group dynamics by first reducinifien to a latent
space model. This reduced dimension allow entities to bsidered as spatially

separated only, and Markov chain models could be used tagpradvement.

6.2.6 Real World Networks

The Internet can be cited as the reason network science tastisebegun to be
studied [7]. Barabasi explains that before the Internetietheas simply no data
available for large and reliable networks. Internet stiteehas revealed many prop-
erties that are then found in other networks.

Gibson, Kleinberg, and Raghavan [27] examined the link togpbf the world
wide web. They discovered that communities exist on the Wabse communities
have “authoritative” pages, and are linked together by "Ipdges.

Tyler, Wilkinson, and Huberman [80] discovered organmaél community
structure through examining emails. The network they a®rsid was formed by
the to/from pairs of email. They then used a divisive betwess based technique
for discovering communities. The sample contained 485 HIP draployees, and
185,773 emails.
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6.3 Expanding a Community

Our task of expanding communities lies somewhere betwesodering communi-
ties, and predicting growth. Discovery tasks typicallygwoe a clustering of sorts,
based entirely on network structure. Our task differs irt the know initial seed
members. This gives both a starting point for a communitg, @so limits discov-
ery to a single community. Also, we know what community isnggiooked for; as
opposed to a discovery task that outputs a group of membatrdéhong to some
community, but gives no indication of what that community Adso, community
discovery is a global problem, seeking to partition vegicgo communities. Our
version can operate on a local level, discovering just dsicgmmunity if wanted.
Prediction tasks are concerned with how the community isgimg over time.
Given the complete membership of a community, it seeks toviinidh people are
most likely to join in the future, and which members are ki leave. Our task is
to take an incomplete membership of a community, and prediet the complete
membership is, but at a static time period. Usually the mestisecommunities in a
prediction task are self-identified; as in say a Myspace grttus possible that the
new members really are already functioning as a communityineg, but just have
not identified themselves as such yet, and as such the selffied communities

aren’t a completely accurate representation of the readwor

6.3.1 Selecting The Most Likely Next Member

The essential function of a community grower is to choosentd member to
add to the community. This is achieved by assigning a scoed ntities of the
network. Below we describe different criteria for identifgi the most likely next

community member.

¢ Neighbor Count The most obvious way of finding new members is to see

who has a lot of neighbors in the community. Basketball playeitl be
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neighbors with other basketball players, musicians wiklepmusicians, etc.

Juxtaposition Count One drawback of using a neighbor count is that each
neighbor is given the same weight, regardless of the stneafjthe rela-
tion. The edge weights on our network are co-occurrencaiéeges, also
termedjuxtapositionsin the Lydia project. Using juxtaposition weight in-
stead assigns more importance to neighbors that appearfraquently with

an entity.

Neighbor Ratio- A failing of the counting scores is that the statuses of
ubiquitous entities get artificially elevated. An extreynpbpular entity like
“George Bush” will have neighbors from many communitiescsite has
over a thousand neighbors. Perhaps six of these neighbershamists,
compared to John Dalton, an entity that has only 8 neighl®is (vhich
are chemists). The raw neighbor count score would identédgrGe Bush as
more likely to be a chemist. But if we consider an entity’s kq@@pularity,

and use a ratio, Dalton is promoted to the most likely chemist

Juxtaposition Ratie The same bias to ubiquitous entities found with neigh-
bor counts is also present in juxtaposition counts. All efédges to “George
Bush” will have a high weight, simply because of the total dapty of
“George Bush”. Using a ratio helps account for high frequenestices.
However, this ratio (and juxtaposition measures in geheuafer from be-
ing one sided. The edge weights on very rare entities will lnehrlarger

than on edges to popular entities.

Binomial Probability- Using ratios eliminates the problem of popular entities
being elevated, but at the cost of elevating extremely unjgoentities. If
an entity had 100 neighbors, 60 of which are chemists, thayldvbave a
neighbor ratio of 0.6. Compare this to an entity that has 1himgwho is a
chemist, for a ratio of 1. What if we consider an entity whosigimeors are
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chosen randomly. If the entity hasneighbors, the probability that at ledst
of these are chemists is

i_i (T) «pl e (1—p)" .

wherep s the fraction of known chemists in the network. If this pabbity is
extremely low, than it might be reasoned that the neighber®wot chosen

randomly, and the entity is a member of a community.

6.3.2 Complexity of Adding New Members

Our algorithm for expanding a network is logically very simpOur initial guess
of the community is the seed set. We then continually growctmmunity, at each
step adding the highest scoring non-member.

If done naively, adding a member co&I§E|) at each iteration. For each vertex,
we need to check which of its neighbors are in the communitgetbthe score.
This is because all of our scoring methods depend solely @hbers. But this
dependence leads to a performance improvement. Thus wherex \s added to
the community, the only vertices whose scores will changetlae neighbors of
the added vertex. In addition, the vertices can be kept inatifyr queue to easily
identify the highest scoring member. Since a vertex can balgdded once, each
edge is only considered once. Combined with the cost of maintpa priority
queue, we get a complexity &(|E|log(|V|) (The priority queue is on vertices so
has at mosjV | elements). Our algorithm then, whenever a vextéxadded to the

community, only updates the scores of the neighboss of

6.4 Validating a Community

The methods for growing a community described in the prevgrction are useful

for adding members to a community, but do not provide a cleawar on when to
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stop adding members. Figure 26 shows what happens when argsallowed to
continuously add new members. Initially, most of the meralzetded are indeed
members of the community. Eventually, at around 700 membersee a shift in
composition , and most of the new members added do not beddhg tommunity.
The grower appears to have expanded outside the communitg. dould stop the
growth before it enters into this second phase, we wouldropé the quality of the
expanding community.

6.4.1 Stopping Rules

If we knew what Figure 26 looked like, properly terminatirg tgrowth would be
easy. However, all we are given is a (small) subset of the coniy) and no other
validation information as to which insertions are invalitf. we had a subset of
the community, we could monitor how frequently these memlaee being added
by the grower. In the first phase, when nearly everything deithded is correct,
we expect to add a new validation member with frequency eiguile percent of
the community the validation set is (for example if our vatidn set is 5% of the
total community, we would expect to see a validation memieea@bout every 20
inserts). Once we shift into adding arbitrary entities, wpeet to see validation
members with frequency equal to the percent of the entingarktcomposed of the
validation set, which is much much less than the first pesggnt

To precisely find the correct stopping point, we find the pthat best splits the
validation intervals into two groups. Since all of the inv&s on one side of the
ideal split should be about the same, we expect the deviafitire intervals to be
small. We then find the split that minimizes the absolute atlemh. The stopping
pointsis

k n

stopping point= argmim(%(m — U(Xo,---,X)|) + Z (1% — L (%s1,- -5 %n)]))-
i=k-1

where the functionu is the arithmetic mean of its arguments. For example, su@pos
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the validation members are found on inserts 3, 7, 10, 11,8&1, 120, 203, 290,
387, 506. This yields an interval sequence{8f4,3,1,5,2,3,99,83,87,97,119}.
The optimal stopping point is after the seventh insert, Wigives absolute devia-

tions of

S (% —1(3,4,3,1,5,2,3))) + 5 (1% — H(99,83,87,97,119)))
=5 (X[ =3)+ (x| —97)
=[3-3|+[4—3|+[3—3|+|1-3[+|5-3|+[2—3|+[3—3|
+]99— 97| + 83— 97|+ 87— 97|+ |97— 97| + |119— 97|
=54

which is minimal for this sequence. Figure 27 shows actualruals for various
validation set sizes. We see that the intervals do startroatisand take a sudden
and dramatic spike. At the 90th validation member found,itiervals suddenly

become orders of magnitude larger.

6.4.2 Boosting

Our grower is sensitive to which vertices are chosen as atiid vertices, and
which as seed vertices. The algorithm is designed to usesveajl given sets, and
this causes a high degree of sensitivity to which verticéglgaesen for seeding and
which for validation.

To improve the performance, we use a boosting technique uWeur growing
algorithm multiple times, each time using a different geoti of seed and valida-
tion members. Each vertex then accumulates a number ofs\iatiehow often it
is identified as part of the community. Figure 28 demonsirétte value of boost-
ing. The x-axis represents vertices receiving at leastriaty votes. The blue
shaded region represents false-positives; vertices thaheorrectly added to the
community. As the number of votes is increased, the pratisfdhe community
members is increased. The reason being is that for any nushisetes, the number
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Validation Intervals of Baseball Players by BinomialCDF (dailies)
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Figure 27: Validation Intervals. The height of the bar atipos i represents the
number of members added between finding the (i-1)st vatidatiember, and the
ith member.
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Evaluation of Baseball Players in dailies by Boosting with Binomial CDF
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Figure 28: Boosting Performance. At around 30 votes we arenfindearly as
many members as 0 votes, with much higher precision. For leigger precision,
we can operate at 90 votes, with only a slight loss in recall.

of true positives is fairly constant. So the bulk of the trusitives are being seen
in nearly every boosting run. However, as the vote requirgnsancreased, many
of the false positives drop out, since they are only appganra small number of

the boosting runs.

6.4.2.1 Precision/ Recall Tradeoffs

It now remains to determine what boosting cutoff to use. Weese this by using
our validation members to estimate precision and recalke gikien members are
divided into seed and validation for each boosting run. We these validation
members, and track how many votes they get. If we make thedkEfith that any
vertex that appears in 100% of the boosting runs is indeedeantrember of the

community, we can estimate the percentage of the commumattycomprises the
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validation set as
fval = #validation members with 1004 vertices with 100%

Then at any vote cutoff we can estimate precision and regdtidking at vali-
dation precision and recall, and adjusting by this frequyeRor a given number of

votesy, the precisiorpre, is estimated as
prey = val(v) x fyq /mentv)

whereval(v) is the number of validation members with at leasbtes, and mem(v)

is the number of all members with at leastotes. The estimated recall is
rec, ~ val(v) /val(0)

whereval(0) is simply the size of the entire validation set.

Figures 29 shows examples of estimating the precision aralyeompared to
the actual precision and recall. This approximation yieldsapproximation of f-
score, which can be maximized to set a cutoff. Going evehéurtve can maximize

the general F-measure for afly
Fg = (1+ B?) * (precision« recall) /(B2 x precision+ recall)

This now gives us a knob to turn to get precision / recall todige If the preci-
sion and recall estimates are sufficiently accurate, we caximmze any general

F-measure.

6.5 Parameter Optimization

To maximize the performance of a community growing scherhe, garameter

space needs to be optimized:

113



Estimating Precision and Recall of Binomial CDF on Baseball Players in dailies

1 T T T T T T — —
Estimated PreciSion
Estimated Recall -+
Actual Precision
Actual Recall
0.8 1
0.6 [ |
04
0.2 F )
0 1 1 ] | | . | | |

0 10 20 30 40 50 60 70 80 90 100
Votes

Figure 29: Estimating Precision and Recall. The estimatedigion and recall
curves closely shadow the actual precision and recall.
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e Neighbor Selection MethodWe compare five different scoring methods
Neighbor Count, Juxtaposition Count, Neighbor Ratio, Juxtdjpn Ratio,
and Binomial CDF. The default grower is Neighbor Count.

¢ Validation Set SizeWe compare the effects of the number of members we
reserve for validation. Too few members, and there won'’trimmugh to val-
idate with. Too many members and we are taking away seed nisnmbae

default validate percentage is 50%.

o Number of Boostera/Ve evaluate the effect of the number of boosters. More
boosters being better is our general expectation, but weetisere is no fall-
off with too many. Also, more boosters means higher computatosts. If
there is no difference in performance between two sizes refeipthe smaller

size. Default value is 100 boosters.

o Beta Knob.We evaluate the effects of our beta knob, and ensure thafal use

precision / recall tradeoff is achieved. Default value & 1.

e Given elementdn applications of our grower, the number of given elements
may not be flexible. However, we evaluate our methods witteifit sizes
of given elements to see how robust our methods are to extyeasmall given

sets. We evaluate at 20, 200, and 400 given members.

Globally optimizing the parameter space would be very camtpnally inten-
sive. Instead, each parameter is optimized individualith weasonable choices for
the other parameters. Our initial setup uses default valuastioned above. For
each data point, the grower was run on five different randas$gned given sets,

and the results macro-averaged.
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6.5.1 Difficulty with Evaluation

It should be pointed out that our evaluation methods are edept. To begin
with, the assumed truth communities are not 100% accuratee tiuth set for
baseball for example was taken from the baseball databatgk/(iwww.baseball-
databank.org/). The completeness of the members may badgiggm real world.
Also, there is a problem of entity co-reference. The named/en the baseball
databank may differ from our name. For instance, the databaay list ‘Larry
Jones’ as a baseball player, while we only see his prefeasgtrof ‘Chipper Jones’
in the data. Mirroring the co-reference problem is the disigmation problem.
There exist different people that share the same name. ®dlaphas over 30 en-
tries for the name ‘John Edwards’. While current news is ndtldominated by the
former Carolina congressman, there is also a current NBAeplagmed ‘John Ed-
wards’, as well as a 1960s baseball player. Since our ewalisat't equipped with
the means of disambiguating references, performance wilidrt. The baseball
player grower will be penalized for not discovering ‘Johmiadds’, even though
none of the mentions of ‘John Edwards’ in the data was for teeball player.

Finally, there are problems with the named entity recognitf the Lydia sys-
tem that are propagated. Lydia may get the segmentationgyaoml tag ‘Outfielder
Carlos Beltran’ as an entity. When this entity gets includedvendommunity, it is
evaluated as a false positive. Lydia may also get categmizarong. If the term
‘New York Mets’ gets incorrectly classified as a Person, It show up in the com-
munity. The community grower will call this a baseball playe

Finally, a concept such as ‘baseball players’ may be tooispéar our growers
to distinguish; instead the neighborhood may reflect a gériemseball’ category,

including owners, managers, and agents.
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Figure 30: Evaluation of Community Growers on Basketball Btayfor starting
sizes of 20 and 400.

6.5.2 Starting Size

Our parameter optimization experiments were done on gieesizes of 20, 200,
and 400. Since our method needs to be seeded, there may decestvhere the
user can only supply a very small starting set. Figure 26 shibw results for a
single (no boosting) grower run, on different sized randavery sets. There is
some variance, since each given set is randomly generated,ebfind that larger
given sets do not seem to increase performance, espeaabyl.r This gives us
some insight into the structure of the community. Remembaet tie truth set
for our community came from an external source. Within thievoek it appears
that there is a component of the community that is closelyneoted, with typical
community properties, and another component that is omgamly connected.
The closely connected members are easily discovered wiitleresmall or large
seed sets, and the other members are hard to find with both @nthlarge seed

sets.
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6.5.3 Comparing Growers

Figure 30 show results of evaluating the different growerfie Binomial CDF
based score consistently has the highest f-measure, anestigecall. The Neigh-
bors count method will sometimes have a higher precisiomatmuch lower recall.

Thus we choose Binomial CDF as our default grower.

6.5.4 Effect of Validation Set Size.

Figure 31 shows results of validation percentage evalnstidhe fraction of the
given set to use for validation was varied from 10% to 90% erements of 10%,
with a minimum size of three for the validation set. For a giget size of 20, there
is a lot of variance. This is due to the nature of our stoppinggrga. We need
intervals to determine a stopping criteria. With few valida members, we get few
intervals, and thus a very volatile method. With large sthiiste seems to be very
little difference in the choice of validation size. With témwv a percentage, there
are not enough members to validate with. Too high, and ther@teenough seed
members to grow from. A choice of 50% offers the best balamte/den seed and

validation.

6.5.5 Effects of Boosting

We seek to find what kind of performance gains we get from bogs{The more
boosting runs we use, the better results we expect, but vgtrehcomputation cost.
We see the results in Figure 32. For given sets of 200 and 46Gee very little
difference in performance. For a given size of 20, we againeseatic behavior.
Since there is no difference in performance, we choose 10§, gince this will

save computation time.
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Figure 31: Evaluation of Validation Percentage on BaskeRlalers, for starting
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Figure 32: Evaluation of Number of Boosting runs on BasketBkyers, for start-
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6.5.6 Effects of Beta Parameter.

As explained in section 6.4.2.1, we have a krgbfor precision/recall tradeoff.
Figure 33 shows results of turning this knob for differentréons (Baseball players,
Basketball players, Football players, and Movie Stdfg)measure typically hag

in the rang€0,inf); with the interpretation thg® represents how much more recall
is weighted over precision. Thys= 1 is an equal weighting3 = 2 means recall

is weighted twice as much, aiftl= 0.5 means recall is weighted half as much. We
make the operating points favoring precision have the samgeras those favoring
recall. We do this by the transformatigsl,= 3 —1for3 > 1,andB’ = (—-1/B)+1

for B < 1.

Turning the knob positive weights recall higher than priecisand negative
weights precision higher. We see the actual results arastenswith this notion.
We also observe however that the growers seem to have a fewabmtperating
points, and not a continuum of points; as different valuelsaesé all operate at the
same point (the vote cutoff point is the same for a large rarfigeeta values). The
optimal points tend to be at the right, bottom ends of ‘cliff§hat is, looking at
the graph we see some points of sharp decline in false pesitlvis clearly better
to use the points just after this decline, as there is littl@® difference in recall

immediately before or after the decline.

6.6 Experiments in Community Discovery

The evaluations for parameters were conducted on 4 diffe@nmunities, base-
ball players, basketball players, football players, andimstars. In this section we
discuss the setup and evaluation for each community; andsedaok closely at
the community growth.
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False Positives

False Negatives

+ 4+ ++++++++++ 4+ +

Laci Peterson
Roy Williams
Madison Square Garde
Mike Krzyzewski
Mark Cuban

Van Gundy

Greg Oden

Rick Pitino

Gregg Popovich
David Stern

Mike Montgomery
Jim Calhoun
Bernie Bickerstaff
Flip Saunders
Jerry Buss

Rick Barnes

Van Horn

Paul Hewitt

John Calipari
Lawrence Frank

*

n

E o .

E O . .

John Edwards
Michael Jackson
Shaquille O’Neal
Bob Riley
Michael Phelps
Steve Smith

Mel Gibson

Billy Donovan
Pat Riley

Jim Davis

Greg Anderson
Michael Young
Bernie Williams
Mike Davis
Larry Johnson
Aaron Brooks
J.J. Redick
Mike Williams
John Chaney
Jayson Williams

Table 17: Incorrectly classified basketball players. Natabsled with a '+’ are
associated with basketball, but not necessarily playeenés$ labeled with a '*
are people that share a name with lesser known basketbgdirplaThe frequency
of these labels indicates that the growers are actually iggpwnore reasonable
communities than the performance scores indicate.
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6.6.1 Basketball

Truth data for basketball players is taken from basketbf@ience.com. To get a
sense of how the community is grown, we look at the most popriéties that
are mis-classified. Table 17 shows the top 20 false posifleé$ and false neg-
atives (right). The popularity is the number of referendss éntity has in our
data. Looking at the false negatives, we see that the graveften the victim
of an obscure basketball player having the name of someome famous. John
Edwards, Bob Riley, Mike Davis, and John Chaney, most famousliigans;
Michael Jackson, most famously a musician; Mel Gibson, rersbusly a film
actor; Michael Phelps, most famously a swimmer; Steve Sniith Davis, most
famously a cartoonist; Greg Anderson, most famously a patdoainer; Michael
Young and Bernie Williams most famously baseball playersioAaBrooks, most
famously a football player; Mike Williams, two differentdtball players - are all
also the names of basketball players. We also see on thepladsteve side many
people that are not quite basketball players, but basketdated, such as NBA
commissioner David Stern, Owners Mark Cuban and Jerry Busgshes Mike
Krzyzewski, Van Gundy, Rick Pitino, Gregg Popovich, Mike Mgomery, Jim
Calhoun, Bernie Bickerstaff, Flip Saunders, Rick Barnes, Paulitjelohn Cali-
pari, and Lawrence Frank. We also see a basketball arenasdfa8quare Garden,
a result of poor categorization (most likely caused by ‘Madi being considered a
female first name). Greg Oden being called a false positiae isxample of the in-
completeness of basketballreference.com. Oden is ciy@niNBA player, signed
under the Portland Trail Blazers. Injuries cause Oden to hisssntire first season,
and as such, he has never played in an official NBA game, sorie iget listed as
a player in basketballreference.com. Examining these lestds us to believe that
our growers are actually performing better than reported.
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6.6.2 Baseball

Truth data for baseball players is taken from the basebdHdbdamk (baseball-
databank.org). We again ran our grower, and examined thepopslar false pos-
itives and false negatives. The results are shown in tahléN&see many of the
same phenomenon we saw for basketball players. Many of tbe f@sitives are
not baseball players, but people most associated with bs&Winter Haven’ is a
classification error, being the name of the city where théaimsland Red Sox have
spring training. ‘League Baseball’ is also an NLP error, ogpepne mistakingly
thinking the ‘Major’ in ‘Major League Baseball’ is a militatytle. Bud Selig is the
commissioner of baseball. George Steinbrenner is the owfrtee Yankees. Brian
Cashman, Theo Epstein, and Jim Hendry are general managemnyg. L& Russa
(also appearing as ‘La Russa’, an error in co-reference) isager. Scott Bo-
ras is a notorious agent. There also appear to be a numbendfaseball people
who are linked to baseball through the recent steroid s¢sndzeorge Mitchell,
a U.S. senator, and never previously involved with basglshow most famous
for his ‘Mitchell Report’, an investigation on steroids saaned by Major League
Baseball. Also included in the community via a steroid cotioads congressman
Henry Waxman (part of the congressional hearings on sterotkfamed trainer
Greg Anderson who supplied many athletes with steroids,remmdbaseball ath-
letes who have been involved with performance enhancing sttandals including:
Floyd Landis who was stripped of the Tour de France for a pesitrug test, Mar-
ion Jones who was forced to return 5 Olympic medals after dighgpisteroid use,
and Tim Montgomery who was stripped of the 100m record foolwement with
performance enhancing drugs.

On the false negative side, we again have a disambiguatiiolgm. Larry
Brown appears in our corpus, but always in reference to thieetiaall coach. Un-
fortunately, out evaluation only sees the name ‘Larry Brqvamid assumes it be-

longs to the middle infielder that played for the Indians ie tate 60s. The same
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problem causes the evaluation of the grower to have falsatineg for Mike Tyson,
most famously a heavyweight boxer; George Washington, faostusly first pres-
ident of the United States and Commander in Chief of the Contsh&mmy; Bill
Richardson, most famously governor or New Mexico; Bill Nelsorost famously
a senator from Florida; Paul Martin, the 21st Prime MinisteCanada; Michael
Brown, most famously the former director of FEMA, Jim Davigeator of Garfield;
John Warner, a senator from Virginia; Tommy Thompson, farpresidential can-
didate and Governor of Wisconsin; Paul O’Neil, former Staneof the Treasury;
Larry Johnson, a former NBA player; and John Fox, most fadyausomedian.
Once again, inspection of what the grower is getting wromgl$eus to believe

that it will perform better in practice than the evaluations

6.6.3 Football

Football players were taken from http://www.pro-footbaference.com/. Table
19 shows mis-classified football players. As usual, theeedsambiguation prob-
lem with evaluating false negatives. The false positivegehgccumulated many
basketball players. While still in the ‘athlete’ categorgsketball players are not
otherwise related to football players. If we look closerted &ctual vote count, we
see that many of the basketball related entities receivedrl@otes than football
related entities.

6.6.4 Movie Stars

Truth data for movie stars was taken from the Internet Moagabase (imdb.com).
The problem with directly using IMDB data is that they areeoftoo complete.
Nearly everyone of any fame has an entry in IMDB, even Bill Cimtdhe differ-

ence is that non movie stars usually appear in documentanegppear as them-
selves, or have only appeared in a couple of films. To find a rolassical set of
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False Positives False Negatives
# Lance Armstrong | * Larry Brown
Scott Peterson *  Mike Tyson
+ Winter Haven *  George Washington
+ Bud Selig * Bill Richardson
+ League Baseball David Wells
# Floyd Landis Felipe Alou
Eli Manning Miguel Tejada
+ George Steinbrenner* Bill Nelson
# Marion Jones *  Paul Martin
# Greg Anderson Mike Brown
+ Brian Cashman Chris Carpenter
# George Mitchell * Jim Davis
+ Tony La Russa * John Warner
# Tim Montgomery Mark Mulder
+ LaRussa Mike Lowell
Bode Miller *  Tommy Thompson
*  Scott Boras *  Mike Davis
# Henry Waxman *  Paul O'Neill
+ Theo Epstein * Larry Johnson
+ Jim Hendry * John Fox

Table 18: Incorrectly classified baseball players. Namdis i+’ are people most
associated with baseball, but who are not players. Namésanit’ are people as-
sociated with performance enhancing drug scandals, ofwiaseball was a large
part of. Names marked with a '*' are people who share the saamenwith a
lesser-known baseball player.
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False Positives False Negatives
Kobe Bryant * Michael Jackson
Scott Peterson *  Tony Stewart
Shaquille O’Neal Jimmie Johnson
Michael Jordan * Randy Johnson
Laci Peterson *  Bob Riley
Allen Iverson Reggie Bush
Richard Nixon * Michael Moore
LeBron James * Michael Brown
Barry Bonds *  Bill Nelson

+ Bill Belichick Matt Hasselbeck

+ Bill Parcells * George Allen
Dwyane Wade *  Tommy Thompson
Dirk Nowitzki * Frank Robinson
Phil Jackson * Michael Young
Mike Tyson * Kevin Brown
Arthur Andersen | * Ted Williams
George Washington* Gordon Brown

+ Nick Saban * Dan Brown
Jason Kidd *  Luis Castillo
Steve Nash * Tim Johnson

Table 19: Incorrectly classified football players. Namdselad with a '+ are
associated with football, but not necessarily players. Bafabeled with a '* are
people that share a name with lesser known football players.
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movie stars, we filtered IMDB'’s data to remove all actors whuoseie list was over
25% documentaries, or who appeared in less than 3 other miovViee most pop-
ular misclassified entities were examined, and results didaok very promising.
Inspection of the false negatives gives some insight to tbelpms. Like the other
communities, movie stars has a problem with disambiguatiat is multiple peo-
ple sharing the same name. For instance, in the basketibathooity, we saw John
Edwards was the name of a basketball player. When he is notiedlin the com-
munity, recall gets penalized, but the community is otheewinaffected. However,
if John Edwards happened to be included in the seed set, caitynguowth would
be influenced and directed towards political members. Metaes seems to have
a high number of name clashes. Since the seed sets in ouatwalare chosen
randomly, bad members could get in the seed set, and affegpoalth. Instead, a
hand-crafted seed set of 50 popular movie stars was cotesfrand used as seeds.
The results of using these seeds is shown in Table 20.

These results are more reasonable than before, and can laénegpbetter.
Nearly all of the false positives are entertainment relgtedple, movie direc-
tors, television people, or misclassified entertainmeated entities (Warner Bros.,
Beverly Hills). Even David Beckham can be explained by eithemhovie with his
name in the title “Bend it like Beckham?”, or his elevated staasa celebrity, and
not just a soccer player. Lance Armstrong also has a cefediatus.

On the false negative side, there are the disambiguatioblggrs we have
seen in other communities, and also people who are most f&foolsomething
other than movies, but also have appeared in some moviesShkquille O’Neal,
most known as an NBA player, but who also appeared in the filaise' Chips”,
“Kazaam”, “Steel”, “Freddy Got Fingered”, and “The Wash'b @hile he can def-
initely claim movie star status, in the public mind, he is akeball player and not
considered a movie star. Elvis Presley is also in this cayefeing more associated
with music than acting.
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False Positives False Negatives
Michael Jackson: 113931&¢ Shaquille O’'Neal: 54253: 0
Lance Armstrong: 77978 * Robert Blake: 24985: 0
Martha Stewart: 59851 | * David Wells: 21368: 0
“Friends ”: 47218 @ Elvis Presley: 16273: 95

*

*

*

Britney Spears: 41652 John Howard: 16065: 61
Donald Trump: 38343 Richard Hamilton: 14227: 0

+ Bob Dylan: 21038 Adam Scott: 12927: 0
Beverly Hills: 18792 Bill Cosby: 11685: 80
David Beckham: 18617 | * John Lynch: 9775: 32
Warner Bros: 17713 @ Rosie O'Donnell: 9388: 82

+ Paris Hilton: 17294 Willie Nelson: 8781: 94
David Letterman: 17014| *  Chris Young: 7440: O

+ Steven Spielberg: 16693 * Eddie Jones: 6906: 0
Paul McCartney: 16561 Woody Allen: 6906: 61
Katie Couric: 16172 *  Vernon Wells: 6851: 0

+ Ray Charles: 14609 Tim McGraw: 6435: 96
Oprah Winfrey: 14545 | *  Mike Smith: 6314: 0

+ Martin Scorsese: 12161 John Wayne: 6122: 87
Elton John: 11397 Jane Fonda: 5995: 92
Simon Cowell: 10643 * John Abraham: 5660: 0

Table 20: Incorrectly classified film actors, grown from malhuset seeds. People
marked with a '+’ are movie related, if not primarily actoBylan and Charles the
subjects of recent films). The other false positives arertntenent related, but not
movie actors. People marked with a '*" have a name clash wath movie stars.
People marked with af’ have been in enough films for IMDB to call them an
actor, but in everyday news are primarily associated withesother community
(O’Neal with sports, Presley with music, and O’Donnell wataytime television).

Robert Blake is most famously a hockey player; David Wells istfi@mously
a baseball pitcher; John Howard is the 25th Prime Ministehdwstralia; Richard
Hamilton is most famously a basketball player; Adam Scottadgssional golfer;
John Lynch a football player; Chris Jones a baseball playddieeJones a bas-
ketball player; Vernon Wells a baseball player; Mike Smithogkey player; John

Abraham a football player.
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Network | Baseball| Basketball| Football| Movie Stars

\ertices 144,851 | 3,587 1,276 4,699 2,171
Edges 265,779 | 21,565 | 5,879 11,256 | 5,718
Intra-Comm. Deg,| 3.67 12.02 9.21 4.79 5.27
Density .000025 | .003353 | .007227 | .00102 | .00243
Bridges - 16,510 | 9,787 24,181 | 14,921
Bridge Deg. - 4.6 7.67 5.15 6.87

Strong Vertices - 2,020 639 2,206 1,008
Weak Vertices - 339 203 761 482
Isolated Vertices || - 1,228 434 1,732 681

Table 21: Community properties in goodnews data. The comimyuwegions are
higher density, and vertices will typically have more nédigis inside the commu-
nity than outside. Isolated vertices are detrimental tosthecture of the commu-
nity, and are possibly an artifact of bad evaluation lists.

Network | Baseball| Basketball| Football| Movie Stars

\ertices 299,486 | 4,872 1,653 6,514 2,703
Edges 594,884 | 36,509 | 10,358 16,745 | 8,081
Intra-Comm. Deg, 3.97 14.98 12.53 5.14 5.98
Density .000013 | .003077 | .007586 | .00079 | .00221
Bridges - 39,107 | 21,553 52,458 | 25,355
Bridge Deg. - 8.03 13.04 8.05 9.38

Strong Vertices | - 2,221 735 2,491 1,161
Weak Vertices - 748 348 1,584 772
Isolated Vertices | - 1,903 570 2,439 770

Table 22: Community properties in dailies data. Communityaregare of higher
density. Isolated Vertices still corrupt our communities.

6.6.5 Summary of Communities

A summary of community properties in the network is shown abl€& 21 and 22.
These are the network properties of the gold standard coritynaot grown com-
munities (The vertex set is the gold standard set). The cadshow properties for

each of the four communities, with the first column showingperties of the entire
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network. The first row)erticesis the number of members of the community. The
second rowEdgesis the number of intra-community edges (edges between two
members of the community); as opposed to Brelgesrow which is the number
of edges with exactly one end in the community. Average {@oamunity Degree
gives the average number of neighbors a community membén kizescommunity,
and average bridge degree gives the number of neighbodeuwdtthe community.
To further inspect the communities, we classify the vestegeither being ‘Strong’,
‘Weak’, or ‘Isolated’. A Strong vertex is a vertex that hadeatst half of its neigh-
bors in the community. An Isolated vertex is one that has radnes neighbors in
the community. A Weak vertex is one that is neither Stronglsalated (Less than
half of its neighbors are in the community, and at least ongsofieighbors is a
community member).

All of the communities have densities of about 2 orders of mitage greater
than the network as a whole. This is a typical property of camities. Many
general definitions of communities describe them as regibhgyher density.

As we have discussed, we believe part of our evaluation pnoblre caused by
imperfect gold standards. The large number of Weak andttsbigertices indicates
that this is not a trivial problem. Except for baseball plsyi@ goodnews, all of the
communities have over half of their vertices weak or isalafehis means that most
vertices have more neighbors outside the community thader(also reflected in
the average degrees). When these vertices are includeddrsets there can be
negative results, highlighted by the movie star exampléefirevious section.

Not surprisingly, the recall for our growers tops out at andthe same value as
the number of Strong vertices. Isolated vertices shoulda@xpected to be found
during growing. In fact, since our growers only considerghéiors, an isolated
vertex can only be added if incorrect members are added éddfoThus a high
precision grower will miss nearly all isolated verticesepa third of the community

in most cases.
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Chapter 7
Conclusions and Future Work

The Lydia project provides a unique large scale network af veorld entities.
The addition of community information will promote deepe@derstanding of the
world, and allow further analysis on the data. Topics foufatwork are outlined

below.

7.1 Future Work

7.1.1 NLP Scored Edges

Working with a network allows us to perform analysis we coutd otherwise ac-
complish. However, we can still leverage some NLP toolseeisly in creating
edge similarity scores. One method we would like to explera similarity score
based on entity word profiles; That is, what is the frequerieyards that appear in
the same article (or sentence, or window) with an entity. B will have words
such as "home”, "run”, "baseball”, "world”, "series”, "Yawees”, which would be
very similar to the profile of other baseball players. Gedgsh on the other hand
will have "President”, "Iraq”, and "administration” as hdrequency words, and be

very dis-similar to Babe Ruth. Michael Jordan may have his freduency words
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"play”, "win”, "champion”, "great” in common with Babe Ruth,igng them a
similarity in the middle.

7.1.2 Changes in Communities/Network Over Time

The previous problem concerned itself with a snapshot ohetwork at a specific
time. We would also like to know how the communities evolveiae progresses.
We want to be able to predict new membership of communities, inuch a com-
munity will grow or shrink, and predict the emergence of n@mmunities.

The communities formed by entities are not themselvescstatime. Mem-
bers will come and go as they please, and groups will grow onisin size. For
instance, we would like to know the probabilipyof a particular entity joining a
particular group. Current research has shown it is possilgheddict these changes

in a community based on its current structure.

7.1.3 Discover Dominating and Sibling Entities

We often notice in our network that some entities have nedrthe same neighbors
(structural equivalence.) For instance, ‘Bill Clinton’ andfilliam Jefferson Clin-

ton’ (both strings refer to the same person) would have méthyecssame neighbors,
but so to would ‘David Ortiz’ and ‘Manny Ramirez’ (both playrfthe same base-
ball team.) Another situation is when the neighbors of origyeare nearly a subset
of the neighbors of another entity. For example ‘David Oudizd ‘Red Sox’, when

one entity is part of the other entity. This can also occurmdue entity has a repre-
sentation that is very infrequent, and usually reserved &pecific setting. Finding
dominating and sibling entities can be used to improve ¢ereace, and discover

hierarchies and groups.
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7.1.4 Classify Entity Type

The domain of entities of news articles is extremely largel as a result classifi-
cation of entities leads to many UNKNOWN entities. Currenitlydlia uses hand
made rules, lists, and statistical classification. We caa ate position in the net-
work to classify some of these UNKNOWN entities. Verticeshad same type will
likely display similar network properties (i.e. clusterefficient), and similar link

frequencies.

7.1.5 Co-reference and Disambiguation

Co-reference (entities which can be referred to by diffestings, e.g. ‘IBM’ and
‘International Business Machines’) can be done by usingusrnetwork properties
(including the sibling relation mention above.)

Often, a single string can possibly refer to multiple difier people. For exam-
ple, Wikipedia lists 11 entries for the name ‘Adam Smith’.dig currently has no
methods for disambiguating a mention of ‘Adam Smith’ in aticée. The network
would be able to help in determining which ‘Adam Smith’ a parar mention is
referring to. This would involve clustering the mentionseotities. We could then
classify new mentions by determining which cluster theyt igsnto. We would
also periodically attempt to re-cluster to learn if new megs of an entity are
emerging (say a 12th Adam Smith).

7.1.6 Predict Sentiment

Lydia assigns sentiment scores to entities [48]. We wouldtw@ learn what the
interaction of group sentiment is with individual sentirhen particular, how does
individual member’s sentiment affect a group’s sentimeng (@roup as a single

unit, as well as the sentiment of the other members of a grokpr example, if
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the sentiment of ‘George Bush’ goes up or down, how does thiensemt of ‘Re-
publicans’ change, and how do other republicans’ (say ‘[Mtlkeney’) sentiment
change. An essential question here is: given a network anddhtiment of every
individual save one, how accurately can we predict thaviddal's sentiment?

There has been much work done on the spread of influence inveonket
[67, 40, 35]. Viral marketing aims to target the smallestafetertices that will
cause a cascade. A customer has both intrinsic value (tbe adilhimself buying
a product), and network value (the value of his influencematy be worthwhile
to market to an individual with negative intrinsic value ismetwork influence is
positive. On the other hand it may be bad to market to an iddali with posi-
tive intrinsic value if he will negatively influence the neiwk [67]. Richardson et
al [67] describe a model for viral marketing. First they mimetworks from data
(from knowledge sharing sites), then build a probabilisticdel, and finally de-
velop a marketing plan. Their model includes continuousketarg functions, and
also models costs for discovering network structure. Spogaepidemics is also
modeled on networks [81]. These are slightly different aaghan what we are
trying to model, the spread of sentiment.
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