

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Lattice Volume Rendering

A Dissertation Presented

by

Feng Qiu

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2008

Copyright by

Feng Qiu

2008

Stony Brook University

The Graduate School

Feng Qiu

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Arie E. Kaufman, Dissertation Advisor
Distinguished Professor, Computer Science Department

Klaus Mueller, Chairperson of Defense

Associate Professor, Computer Science Department

Xianfeng David Gu

Assistant Professor, Computer Science Department

Torsten Möller, External Committee Member
Associate Professor, Computer Science Department, Simon Fraser University

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Lattice Volume Rendering

by

Feng Qiu

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

Direct volume rendering renders volume datasets without intermediate surface rep-

resentation. However, due to the large data size, high quality volume rendering is a

challenging research problem. Researchers have proposed various volumetric light-

ing models that consider no scattering, single scattering and multiple scattering.

In practice, nearly all numerical solutions of graphics and visualization prob-

lems assume a discretization of the simulation domain into a grid of cells or points.

In most cases, the discretization is regular and generates a lattice. This work

presents several new techniques and algorithms for rendering lattice volumes. The

3D Cartesian Cubic (CC) lattice is the most frequently used lattice for volumes.

Because of its simplicity, it is natively supported by many kinds of hardware, es-

pecially on the graphics processing unit (GPU). Three algorithms are presented

for rendering 3D CC lattices without scattering: an object order cell projection

algorithm based on min-max octree data structure that renders large datasets be-

yond GPU memory capacity, a hybrid method that improves the rendering speed

by CPU/GPU parallelism, and a method of ray tracing height field on the GPU.

For rendering the CC lattice with single scattering, a half angle splatting algorithm

has achieved real time rendering of smoke. To overcome the popping artifact of

half angle based method, a lighting volume based method is proposed and further

accelerated with the GPU.

A novel volumetric global illumination framework based on the Face-Centered

Cubic (FCC) lattice is proposed to compute multiple scattering for volumetric

iii

global illumination. An FCC lattice has better sampling efficiency than the CC

lattice. Furthermore, it has the maximal possible kissing number, which provides

optimal 3D angular discretization. The proposed algorithms greatly simplify the

computation of multiple scattering and minimize illumination information storage

due to angular discretization.

Two distinct applications of lattice computation and rendering have been

developed, dispersion visualization for the flow simulation of lattice Boltzmann

Method (LBM) and computer aided polyp detection for virtual colonoscopy. The

LBM simulates the flow field by the micro-scale Boltzmann kinetics of fluid ele-

ments on a lattice, and the simulation results are rendered on GPUs and GPU clus-

ters. The second application focuses on a new pipeline for computer aided polyp

detection for virtual colonoscopy. The new pipeline has a volume rendering stage

to generate the electronic biopsy image of a conformal flattened colon. Then, the

polyps are detected on the single 2D biopsy image with texture analysis, which is

significantly faster than traditional shape analysis methods.

iv

To my parents.

Contents

List of Tables . ix

List of Figures . x

Acknowledgements . xiii

Publications . xiv

1 Introduction . 1

1.1 Volume Data Representation . 2

1.2 Optical Model for Volume Rendering 5

1.3 Background . 8

1.3.1 Existing Rendering Methods 8

1.3.2 Volume Rendering Hardware 13

1.4 Contributions . 18

2 Volume Rendering CC Lattices without Scattering 21

2.1 Ray Tracing Height Fields . 21

2.1.1 Surface Reconstruction . 23

2.1.2 Rasterization-Tracing Hybrid Rendering on GPU 24

2.1.3 Results . 26

2.2 GPU-CPU Hybrid Volume Ray-casting 27

2.2.1 Algorithm Overview . 28

2.2.2 Ray Determination . 31

2.2.3 Multi-pass Slab Rendering and Hole Filling 33

2.2.4 Dynamic Workload Balancing 36

vi

2.2.5 Implementation and Results 37

2.3 Ray-casting Large Datasets with GPUs 41

2.3.1 Algorithm Overview . 42

2.3.2 Cell Projection . 45

2.3.3 Cell Sorting . 48

2.3.4 Implementation and Results 50

3 Volume Rendering CC Lattices with Single Scattering 53

3.1 Dispersion Visualization with Half Angle Splatting 55

3.1.1 Texturing Buildings . 56

3.1.2 Smoke . 59

3.1.3 Results . 61

3.2 Smoke Rendering with Lighting Volume 62

3.3 Volume Rendering for Urban Security on GPU Cluster 70

3.3.1 Background . 72

3.3.2 Volume Rendering on a GPU Cluster 72

3.3.3 Results . 77

3.4 Volumetric Refraction for Heat Shimmering and Mirage 78

4 Volumetric Global Illumination on FCC Lattice 84

4.1 Background . 85

4.2 FCC Data Structure . 86

4.2.1 Storage and Indexing . 87

4.2.2 Nearest Site . 87

4.2.3 Links and Neighbors . 88

4.2.4 Closest Link . 90

4.3 Sampling on FCC . 94

4.4 Diffuse Photon Tracing . 95

4.5 Specular Photon Tracing . 99

4.6 Implementation . 101

4.7 Results . 103

5 Volume Rendering for Virtual Colonoscopy 111

5.1 The CAD Pipeline . 113

vii

5.2 Direct Volume Rendering of Flattened Colon 117

5.3 Polygon Assisted Colon Rendering 119

5.4 Results . 120

6 Conclusions and Future Work . 124

6.1 Conclusions . 124

6.2 Future Work . 126

Bibliography . 130

viii

List of Tables

2.1 Average rendering speed for the engine and human foot data sets. . . 38

2.2 Average rendering speed for the lobster, lego car, and tooth data sets. 39

2.3 Datasets used in the experiments. 51

3.1 Smoke rendering performance. 66

4.1 Link vectors and neighbors of FCC lattice sites. 90

4.2 The positions of links in projection planes. 92

4.3 Times used to render the smoke in Figure 4.7. 105

4.4 Rendering time of the foot, engine and lobster data in Figures 4.9,

4.10 and 4.11. 108

5.1 Experimental results of the CAD pipeline. 122

ix

List of Figures

1.1 Three different volume data grids: (a) regular, (b) curvilinear, and

(c) unstructured grids. 2

1.2 2D cubic lattice. 3

1.3 (a) 3D BCC and (b) 3D FCC lattices. 4

1.4 (a) Single and (b) multiple scattering. 8

1.5 (a) Traditional OpenGL hardware pipeline. (b) GPU pipeline. . . . 16

1.6 Lattice volume rendering techniques presented in this work. 18

2.1 Two cases of a ray passing through a cell. 23

2.2 Triangle reconstruction. (a) Z4 is moved to Z5; (b) test whether the

intersection point is inside the triangle Z1Z2Z3. 24

2.3 Rendering results of the rasterization-tracing hybrid algorithm. . . . 26

2.4 The flowchart of our GPU-CPU hybrid volumetric ray-casting al-

gorithm. 31

2.5 Volume rendering of the engine and human foot data sets. 38

2.6 Volume rendering of the lobster, lego car, and tooth data sets. 39

2.7 (a) A close up view of a polyp; (b) A view of the colon from a

camera parallel to the centerline. 40

2.8 The three-layer structure used to store the cell data. 43

2.9 Overview of GPU-based object-order ray-casting algorithm. 44

2.10 Cell projection pipeline. 45

2.11 A layer of cells with same Manhattan distance can be projected

together. 49

2.12 Visible Human CT datasets rendering results. 51

2.13 Brain dataset of the Korean Visible Human. 52

x

3.1 (a) D3Q13 and (b) D3Q19 LBM. 54

3.2 Façade variation using one set of textures. 57

3.3 Closeup view using nearest neighbor interpolation. 59

3.4 Half angle slicing. 60

3.5 The projected spherical gaussian kernel on different planes. 61

3.6 Snapshots of smoke dispersion simulation in the West Village area

of New York City. 61

3.7 Closeup views of buildings and smoke. 62

3.8 Smoke and streamlines representing dispersion simulation results

in the West Village area of New York City. 63

3.9 Lighting volume calculation. 66

3.10 Smoke passing a static sphere. 67

3.11 Smoke passing a sphere moving towards the smoke inlet. 67

3.12 Smoke passing a sphere with user controlled fine resolution grid. . . 68

3.13 Snapshots of navigation in New York city blocks on a single GPU. . 71

3.14 A sample GPU cluster of 4 work nodes for simulation and render-

ing, 3 compositing nodes and 1 master node. 76

3.15 Example configuration of 2×2 nodes in 2D. 77

3.16 Smoke dispersion simulated in the Times Square Area of New York

City. 79

3.17 Desert shimmering. 82

3.18 Mirage in a desert. 82

3.19 Mirage over water. 83

4.1 Two constructions of an FCC lattice. 86

4.2 Projection of 12 links and neighbors of an FCC lattice site on the

plane z = 0. 89

4.3 12 links grouped into 3 sets in the transformed coordinate system. . 91

4.4 (a) Cuboctahedron composed of 12 neighbors; (b) The Voronoi cell

of the FCC lattice. 93

4.5 Hexagonal lattice and its Fourier transformation. 95

4.6 Illustration of tracing photons on a hexagonal lattice. 96

xi

4.7 Inhomogeneous smoke rendered with global illumination (multiple

scattering) and an anisotropic phase function. 104

4.8 Cloud rendered with our diffuse photon tracing. 106

4.9 Global illumination of a CT scan of the visible human foot. 107

4.10 Global illumination of an industrial CT scan of an engine. 108

4.11 Global illumination of a CT scan of a lobster. 108

5.1 CAD pipeline. 113

5.2 (a) Closeup endoscopic view of a polyp; (b) Zoom-in view of the

same polyp in the flattened colon image. 116

5.3 A closeup view of a polyp rendered (a) without coloring, and (b)

with coloring. 120

5.4 A flattened image for a whole colon data set. 121

5.5 Results of (a) rendering, (b) clustering and (c) FP reduction. 122

xii

Acknowledgements

First of all, I would like to thank sincerely my parents, my sister, and my

brother for their invaluable love in all my life. Without their support, trust, and

inspiration, I could have not finished my research in the last few years.

I am deeply grateful to my adviser, Arie Kaufman, for years of guidance in

pleasant and exciting journey. I have learned much from him, not only his insightful

thinking and the way to do research but also the attitude towards life. Without his

support and encouragement, I could not have achieved my research goals and makes

this dissertation possible.

I would like to thank Prof. Klaus Mueller, Xianfeng David Gu, Hong Qin,

Dimitris Samaras, Michael Ashikhmin in the Visualization lab and Prof. Jerome

Liang at the Department of Radiology, for their great collaboration and valuable

suggestions in various aspects of my research over the years.

I would like to thank Bin Zhang for his great work and technical support. I

would like to thank the current and past members of the Visualization lab, espe-

cially Wei Hong, Zhe Fan, Ye Zhao, Xiaoming Wei, Wei Li, Neophytou Neophy-

tos, Jianning Wang, Huamin Qu, Haitao Zhang, Suzanne Yoakum-Stover, Fang Xu,

Shengying Li, Aili Li, Yiping Han, Yu-chuan Kuo, Kaloian Petkov, Joseph Marino,

Miao Jin, Xiaotian Yin for extensive collaboration, joint publication, and friend-

ship.

The work has been partially supported by the ONR grant N000140110034,

NSF grants CCR-0306438, IIS-0097646 and CCF-0702699, and NIH grants

CA082402 and CA110186.

Publications

1. W. Hong, X. Gu, F. Qiu, and A. Kaufman, Conformal Colon Flattening for

Virtual Colonoscopy, IEEE Trans. on Medical Imaging, (submitted), 2008.

2. Z. Fan, Y. Kuo, Y. Zhao, F. Qiu, A. Kaufman, and W. Arcieri, Visual Simula-

tion of Thermal Fluid Dynamics in a Pressurized Water Reactor, The Visual

Computer, (submitted), 2008.

3. K. Petkov, Z. Fan, F. Qiu, K. Mueller, and A. Kaufman, Efficient Flow Sim-

ulation with LBM on Face-Centered Cubic Lattices, IEEE Trans. on Visual-

ization and Computer Graphics, (submitted), 2008.

4. W. Hong, F. Qiu, and A. Kaufman, Hybrid Volumetric Ray-Casting, The Vi-

sual Computer, (to appear), 2008.

5. F. Qiu, B. Zhang, K. Petkov, L. Chong, A. Kaufman, K. Mueller, and X. Gu,

Enclosed Five-Wall Immersive Cabin, Lecture Notes in Computer Science,

(to appear), 2008.

6. F. Qiu, J. Marino, and A. Kaufman, Accelerated CAD Pipeline with Tex-

ture Analysis, International Symposium on Virtual Colonoscopy, (to appear),

2008.

7. F. Qiu, Z. Fan, X. Yin, A. Kaufman, and X. Gu, Colon Flattening with Dis-

crete Ricci Flow, MICCAI Workshop on Virtual Colonoscopy, pp. 97-101,

2008.

8. F. Qiu, J. Marino, and A. Kaufman, Computer Aided Polyp Detection with

Texture Analysis, MICCAI Workshop on Virtual Colonoscopy, pp. 148-152,

2008.

9. J. Marino, F. Qiu, and A. Kaufman, A Proposed Method for the Co-

Registration of Virtual and Optical Colonoscopy Views, MICCAI Workshop

on Virtual Colonoscopy, pp. 122-126, 2008.

xiv

10. Z. Fan, F. Qiu, and A. Kaufman, Zippy: A Framework for Computation and

Visualization on a GPU Cluster, Computer Graphics Forum, 27(2):341-350,

2008.

11. J. Marino, F. Qiu, and A. Kaufman, Virtually Assisted Optical Colonoscopy,

SPIE Medical Imaging, 6916:0J, 2008.

12. F. Qiu, F. Xu, Z. Fan, N. Neophytos, A. Kaufman, and K. Mueller, Lattice-

Based Volumetric Global Illumination, IEEE Trans. on Visualization and

Computer Graphics, 13(6):1576-1583, 2007.

13. Y. Zhao, F. Qiu, Z. Fan, and A. Kaufman, Flow Simulation with Multi-

resolution LBM, ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games, pp. 181-188, 2007.

14. W. Hong, J. Wang, F. Qiu, A. Kaufman, and J. Anderson, Colonoscopy Sim-

ulation, SPIE Medical Imaging, 6511:0R, 2007.

15. W. Hong, F. Qiu, J. Marino, and A. Kaufman, Computer-aided Detection of

Colonic Polyps Using Volume Rendering, SPIE Medical Imaging, 6514:06,

2007.

16. Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y. Kuo, A. Kaufman, K. Mueller, Visual

Simulation of Heat Shimmering and Mirage, IEEE Trans. on Visualization

and Computer Graphics, 13(1):179-189, 2007.

17. A. Kaufman, W. Hong, X. Gu, and F. Qiu, Patent (pending): System and

Method for Computer Aided Polyp Detection, 2006.

18. W. Hong, F. Qiu, and A. Kaufman, A Pipeline for Computer Aided Polyp

Detection, IEEE Trans. on Visualization and Computer Graphics, 12(5):861-

868, 2006.

19. W. Hong, X. Gu, F. Qiu, M. Jin, and A. Kaufman, Conformal Virtual Colon

Flattening, ACM Symposium on Solid and Physical Modeling, pp. 85-93,

2006.

20. Y. Zhao, L. Wang, F. Qiu, A. Kaufman, and K. Mueller, Melting and Flowing

in Multiphase Environment, Computers & Graphics, 30(4):519-528, 2006.

21. X. Wei, F. Qiu, W. Li, S. Yoakum-Stover, and A. Kaufman, Visual Simulation

of Chemical Garden, Computer Graphics International, pp. 74-81, 2005.

22. W. Hong, F. Qiu, and A.Kaufman, GPU-based Object-Order Ray-Casting for

Large Datasets, Volume Graphics, pp. 177-186, 2005.

xv

23. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, GPU Cluster for High

Performance Computing, ACM/IEEE Supercomputing, pp. 47-54, 2004.

24. F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. Yoakum-Stover, A.

Kaufman, and K. Mueller, Dispersion Simulation and Visualization for Urban

Security, IEEE Visualization, pp. 553-560, 2004.

25. H. Zhang, F. Qiu, and A. Kaufman, Fast Hybrid Approach for Texturing Point

Models, Computer Graphics Forum, 23(4):715-725, 2004.

26. X. Wei, Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A. Kauf-

man, Lattice-Based Flow Field Modeling, IEEE Trans. on Visualization and

Computer Graphics, 10(6):719-729, 2004.

27. H. Qu, F. Qiu, N. Zhang, A. Kaufman, and M. Wan, Ray Tracing Height

Fields, Computer Graphics International, pp. 202-209, 2003.

xvi

Chapter 1

Introduction

In traditional computer graphics, images are synthesized from geometric prim-

itives such as lines, points and polygons. However, they are not suitable for repre-

senting the inside of objects such as a CT scan of a human bone. Some objects such

as clouds and smoke are too voluminous to be represented efficiently in geometric

primitives. Therefore, a volume is proposed to represent three dimensional (3D)

objects with information inside them [6, 68].

Over the last few decades, technologies and methods for acquiring volumetric

datasets have been developing rapidly. For example, Magnetic Resonance Imaging

(MRI) and Computed Tomography (CT) scanners used in hospitals scan patients

and generate series of 2D slices, which are later 3D reconstructed into a volume

model and visualized for diagnosis. Computational Fluid Dynamics (CFD) meth-

ods in mechanical engineering produce 3D flow densities and velocity fields. Re-

searchers in computer graphics and visualization have developed many techniques

to visualize 3D volume data. A volume can be rendered by converting the data into

explicit surface representation by surface extraction methods such as the Marching

Cubes iso-surface extraction [88], which can be rendered with traditional computer

graphics methods. However, the surface extraction is a slow process and it produces

huge amount of small triangles to represent the surfaces. Many of the generated tri-

angles are even smaller than a pixel on the screen. Rendering such large geometric

models is a big challenge for the most advanced graphics hardware. The surface

model is essentially a 2D representation of a volumetric object. Further, the surface

1

CHAPTER 1. Introduction 2

extraction process inevitably loses some information. Therefore, direct volume ren-

dering has been proposed to process volume data and produce images without an

intermediate surface representation. It is capable of preserving and revealing more

information of the volume data than surface extraction.

1.1 Volume Data Representation

Mathematically, a volume is a continuous function defined on a 3D domain

(R3). In practice, nearly all numerical solutions assume a discretization of the sim-

ulation domain into a grid of cells or points, because the computer can easily store

and process discrete data. This discretization can be regular or irregular. The irreg-

ular grids can be further divided into two categories: unstructured grids and curvi-

linear grids. Figure 1.1(b)-(c) illustrates examples of curvilinear and unstructured

grids.

(a) (b) (c)

Figure 1.1: Three different volume data grids: (a) regular, (b) curvilinear, and (c) unstruc-

tured grids.

This work focuses on volumes on lattices, because most existing volume

datasets and scanning modalities assume a regular discretization. A lattice (or a

point lattice) is a set of points called lattice sites regularly positioned in space [22].

Mathematically, a lattice in Rn is a discrete subgroup [30] of Rn, which can be gener-

ated from a vector basis by a linear combination with integral coefficients. In other

words, a lattice is the subgroup {a1v1 + a2v2 + · · ·+ anvn}, where {v1,v2, · · · ,vn}
is the vector basis and ai are integers. For example, {a1

(

1
0

)

+ a2

(

0
1

)

} is a lattice of

R2, which is a 2D cubic lattice as shown in Figure 1.2. The sites of a lattice are

CHAPTER 1. Introduction 3

connected with a set of lines (or links). In Figure. 1.2, the green vectors are the two

basis vectors. The dots are the lattice sites and the blue one is the origin. The lines

are the lattice links. Each site in this lattice has four neighbors.

(0,0)

Figure 1.2: 2D cubic lattice.

A lattice may be constructed with different vector basis. For example, the

vector basis for the 2D cubic lattice can be {
(

0
1

)

,
(

1
0

)

} or {
(

0
1

)

,
(

1
1

)

}. Given a vector

basis {v0,v1, · · · ,vn} where vi = (vi0,vi1, · · · ,vin)
T , the matrix

M = (v0,v1, · · · ,vn) =

v00 v10 · · · vn0

v01 v11 · · · vn1

...
...

. . .
...

v0n v1n · · · vnn

(1.1)

is called a generator matrix for the (n+1)D lattice. Because of this simple repre-

sentation, a lattice can be compactly stored in a 1D array.

The lattice sites result from the discretization of space or space-time, and the

lattice links are the results of angular discretization. In fact, space tiling and cover-

ing is a well-studied research topic in mathematics [46, 47], and researchers in the

graphics community have also worked in this domain, studying geometric model-

ing with 3D solids [104]. In physics, a lattice model is a physical model defined

on a lattice, as opposed to the continuum of space or space-time. Further, it has

been widely recognized [12, 117] that atoms, molecules or ions in crystals are pe-

riodically positioned on a lattice. Then, within a lattice model, the lattice sites are

associated with some physical and chemical properties or attributes, and the physi-

cal process is modeled by some equations or operations acting on the lattice sites.

CHAPTER 1. Introduction 4

The most commonly used lattice is the simple Cubic Cartesian (CC) lattice,

but some researchers have also proposed discretization as well as voxelization al-

gorithms on the Body Centered Cubic (BCC) lattice (Figure 1.3(a)), the Face Cen-

tered Cubic (FCC) lattice (Figure 1.3(b)), and other general grids [89, 90, 166]. A

3D BCC lattice can be constructed by adding one lattice site at the center of every

cell of the simple cubic lattice. A 3D FCC lattice can be constructed by adding sites

at the centers of the square surfaces of every cell of the simple cubic lattice. The

generator matrix for BCC and FCC lattices are

MBCC =

1 0 1
2

0 1 1
2

0 0 1
2

, MFCC =

1
2

0 1
2

0 1
2

1
2

1
2

1
2

0

respectively, assuming the cubic cell size is 1.

(a) BCC Lattice. (b) FCC Lattice.

Figure 1.3: (a) 3D BCC and (b) 3D FCC lattices.

The BCC lattice in particular has been utilized in isosurface extraction and

3D/4D rendering [14,26,33,95,112,149,151], and in CT reconstruction [93,94,108,

109]. The main motivation in all of these applications was the lossless reduction

(assuming radial frequency spectra) of the required grid points due to the better

sampling efficiency of the BCC lattice.

Interpolation filters reconstruct a continuous function from the lattice points.

In lattices of regular geometry, the appropriate shape of this interpolation filter is

determined by the Voronoi cell of the lattice, which defines the Nyquist Boundary

Solid (NBS) in frequency space. The NBS separates the signal spectrum from its

aliases. The filter function, on the other hand, is dictated by signal quality con-

straints. An ideal filter function should satisfy:

CHAPTER 1. Introduction 5

1. Minimal contributions in the filter’s frequency spectrum stop-band and non-

scaled contributions in the spectrum’s pass-band (the spectra outside and in-

side the NBS, respectively);

2. Packing the NBS of main spectrum and aliases most compactly, as this creates

the sparsest spatial sampling [10] and saves storage space;

3. The distribution of the lattice points in the computational domain (space or

space-time) should be uniform.

Assuming that the lattice sites results from an isotropic and band-limited

sampling function, the support of the corresponding lattice in the frequency do-

main is a hyper-sphere, surrounded by a set of alias replicas. Hence, the most

efficient sampling scheme arranges the replicated (hyper-spherical) frequency re-

sponse as densely as possible in the frequency domain to avoid overlapping of the

aliased spectra. As demonstrated in multi-dimensional signal theory [29] an op-

timal sampling scheme is obtained when the frequency response of the sampling

lattice is an optimal sphere packing lattice [22]. Optimal sampling lattices can

achieve up to 13.4%, 29.3%, and 50% of savings in 2, 3 and 4 dimensions, and

they have been used in volume visualization [33, 112, 150] with high quality im-

age results. It is shown [22, 50] that the FCC lattice achieves the sphere close

packing. Theußl et al. have used this result to prove that the BCC lattice is the

optimal regular lattice for volume sampling. The BCC grid has become quite pop-

ular [4, 28, 102, 112, 149, 150]. Much research has been devoted to design complex

(non-isotropic) filters to capture the rhombic dodecahedral shape of the FCC NBS

precisely [34] and the hexagonal shape of the 2D hexagonal lattice [26, 152].

1.2 Optical Model for Volume Rendering

Direct volume rendering does not produce resulting images from geometric

primitives, therefore an optical model describing how light interacts with the vol-

ume is required [96]. There are three major processes for the interaction between

light and volumetric objects:

1. Emission - light energy sent out from particles;

2. Absorption - light energy retained by particles;

CHAPTER 1. Introduction 6

3. Scattering - changing light direction by particle reflection.

Absorption is described by the absorption coefficient σa of the medium, which

represents the probability of light being absorbed by the medium per unit distance.

The light intensity changed by absorption at position is described by the differential

equation:
dI(x,ω)

ds
= −σa(x,ω)I(x,ω) (1.2)

where I(x,ω) is the light intensity at position x from direction ω. In computer

graphics, the absorption coefficient is usually a function of the position and inde-

pendent of light direction. Equation 1.2 can be solved and the intensity of the ray

starting at point x with direction ω after traveling distance d is:

I(x+dω,ω) = I0(x,ω)e−
R d

0 σa(x+tω,ω)dt (1.3)

where I0 is the light source intensity. Similarly, the emission coefficient σe is used

to describe the light emitted from the medium:

dI(x,ω)

ds
= σe(x,ω) (1.4)

and the solution is

I(x+dω,ω) = I0(x,ω)+

∫ d

0

σe(x+ tω,ω)dt. (1.5)

One of the commonly used optical models in direct volume rendering involves only

absorption and emission. For any point on a ray, the amount of light varies:

dI(x,ω)

ds
= −σa(x,ω)I(x,ω)+σe(x,ω) (1.6)

and the solution is:

I(x+dω,ω) = I0(x,ω)e−
R d

0 σa(x+tω,ω)dt +

∫ d

0

σe(x+ tω,ω)e−
R d

t σa(x+(d−s)ω,ω)dsdt.

(1.7)

As light travels in the medium, it may change the direction due to scattering

by the particles. The scattering process reduces the light intensity in its incoming

direction ω, which is called out-scattering and increases the light intensity in its

outcoming direction ω′, which is called in-scattering. The scattering coefficient σs

CHAPTER 1. Introduction 7

represents the probability of light scattered in the medium. The radiance reduction

due to out-scattering is:

dI(x,ω)

ds
= −σs(x,ω)I(x,ω). (1.8)

For convenience, the effect of out-scattering is usually calculated with absorption

together and the combination of these two effects is called extinction. The extinction

coefficient σt is simply the sum of σa and σs:

σt(x,ω) = σa(x,ω)+σs(x,ω). (1.9)

The in-scattering increases the radiance at a point x from scattering from other di-

rections. To account for in-scattering, the phase function is used to describe the

conditional probability of light scatter from ω to be scattered in direction ω′ assum-

ing that the light is scattered, and it obeys:

∫

Ω
f (x,ω,ω′)dω′ = 1 (1.10)

where Ω is the solid angle space at x. Most media in real world is isotropic and

the phase functions only depend on the cosine of the angle θ between ω and ω′.

Another important and frequently used optical model takes account of shadows. It

assumes that the light is only scattered once, which occurs at the sampling point, as

shown in Figure 1.4(a). Thus, this optical model is also a single scattering model.

The intensity of light arriving at the sampling point can be solved with:

I(x+dω′,ω′) = I0(x,ω
′)e−

R ∞
0 σa(x+tω′,ω′)dt (1.11)

where ω′ is the unit light direction. And the solution of light intensity arriving at a

image pixel is:

I(x+dω,ω) = I0(x,ω)e−
R d

0 σa(x+tω,ω)dt +

∫ d

0

(

f (x+ tω,ω,ω′)I0(x+ tω,ω′)

e−
R ∞

0 σa(x+tω+sω′,ω′)dse−
R d

t σa(x+(d−s)ω,ω)ds

)

dt (1.12)

The single scattering model is only valid for low albedo media, where the

probability for a photon to be scattered is low. For some volumetric objects such

CHAPTER 1. Introduction 8

View point

Light

source

(a)

View point

Light

source

(b)

Figure 1.4: (a) Single and (b) multiple scattering.

as clouds, a beam of light is scattered multiple times before it is finally absorbed or

arrives at the image plane. Multiple scattering is important for high albedo partici-

pating media. The differential equation accounting for multiple scattering is

dI(x,ω)

ds
= −σt(x,ω)I(x,ω)+σe(x,ω)+σs(x,ω)

∫

Ω
f (x,ω,ω′)I(x,ω′)dω′,

(1.13)

which does not have an analytic solution. A two-pass numerical solution of Equa-

tion 1.13 is

I(x+dω,ω) = I(x,ω)e−
R d

0 σt(x+tω,ω)dt +
∫ d

0

R(x+ tω,ω)e−
R d

t σt(x+sω,ω)dsdt, (1.14)

R(x,ω) = σe(x,ω)+σs(x,ω)

∫

Ω
f (x,ω,ω′)I(x,ω′)dω′. (1.15)

1.3 Background

1.3.1 Existing Rendering Methods

In low-albedo rendering, the volume rendering integral [9, 67, 96] is evaluated

along straight lines. The volume rendering methods can be classified into object-

order, image-order, domain-based and hybrid techniques. Object-order techniques

use a forward mapping scheme where the volume data is mapped onto the image

CHAPTER 1. Introduction 9

plane. In image-order algorithms, a backward mapping scheme is used where rays

are cast from each pixel in the image plane through the volume data to determine

the final pixel value. Hybrid rendering methods are combinations of object-order

and image-order algorithms, in which the volume is traversed in object order while

the contribution of each voxel to the image is computed in image order. In domain-

based techniques the spatial volume data is first transformed into an alternative

domain, such as compression frequency and wavelet, and then a projection is gen-

erated directly from that domain.

Splatting, proposed by Westover [165], is an object-order rendering tech-

niques. The renderer calculates a 2D footprint for each data sample and uses the

footprint to distribute the sample’s energy onto the image plane. Each sample is

transformed from input 3D space coordinates (xi,yi,zi) to (ui,vi) screen position.

Then, the sample is shaded with some rule such as the Phong illumination model

and gets the color and opacity values. Next, the renderer determines the pixels

affected by this sample and adds its contribution to those pixels. Mueller and Craw-

fis [105] have proposed a view-aligned sheet buffer method to remove the popping

artifact. Mueller et al. [107] have analyzed the common approximation errors in

the splatting process for perspective viewing and have presented an antialiasing ex-

tension to the basic splatting algorithm that mitigates the spatial aliasing for high-

resolution volumes. They have introduced a resampling filter combining a recon-

struction with a low-pass kernel to avoid aliasing artifacts. Mueller et al. [106,113]

have adapted the splatting pipeline by performing the classification and shading

process after the voxels have been projected onto the screen to produce crisp edges

and surface details. Also, time-varying data on BCC grids [112] has been efficiently

rendered with the splatting method. Zwicker et al. [180] have presented a splatting

approach based on elliptical Gaussian kernels. Splatting approach has been used

for rendering points [136] and surfaces [181].

Cell projection is another popular object-space rendering technique, especially

for unstructured volume grids [97, 138]. The basic idea of cell projection is to de-

compose the volume into tetrahedral cells. Then, the projected tetrahedra is further

decomposed into one to four triangles. For the vertices of triangle(s) around the

tetrahedron’s silouette, they have zero color and opacity because of zero thickness.

CHAPTER 1. Introduction 10

The viewpoint and any other triangle vertex determines a line intersecting the sur-

face of the tetrahedron at two points. The color and opacity values of both points

can be interpolated from the tetrahedron vertices. Then, an approximated integra-

tion is applied on the segment to get the color and opacity of the triangle vertex. At

last, the triangles are scan converted in the graphics hardware pipeline. This method

requires that the cells are sorted in view-dependent depth order. A lot of algorithms

have been proposed to solve this problem, such as the Mesh Polyhedra Visibility

Ordering (MPVO) [168], which exploited the connectivity information in acyclic

convex meshes; XMPVO [142], which removed the assumption of MPVO that the

mesh be convex and connected; BSP-XMPVO [21], which introduced the BSP tree

on the set of boundary faces of the mesh to improve speed. Stein et al. have de-

scribed a O(n2) algorithm to sort n arbitrarily shaped convex polyhedra [145].

Farias et al. [36] have presented the ZSweep algorithm based on sweeping the

data with a plane parallel to the viewing plane, in order of increasing z, project-

ing the faces of cells that are incident to vertices as they are encountered by the

sweep plane. The efficiency arises from the fact that the algorithm exploits the im-

plicit (approximate) global ordering that the z-ordering of the vertices induces on

the cells that are incident on them. The algorithm projects cells by projecting each

of their faces, with special care taken to avoid double projection of internal faces

and to assure correctness in the projection order. The contribution for each pixel

is computed in stages, during the sweep, using a short list of ordered face intersec-

tions, which is known to be correct and complete at the instant that each stage of

the computation is completed.

Yagel et al. [172, 174] have proposed a fast approximation algorithm, which

transformed the grid vertices to image space with graphics hardware for a given

view direction, then incrementally computed the 2D polygon-meshes by letting a set

of equidistant planes, parallel to the screen plane, intersect (slice) the transformed

grid, finally used the graphics hardware to render (interpolate-fill) the polygon-

meshes and composite them in a front-to-back order. Westermann [163] has pro-

posed a technique which took advantage of hardware accelerated polygon rendering

and 2D texture mapping and thus avoided any sorting of the tetrahedral elements.

Ray casting is the most famous image-order volume rendering method [78,79].

In these implementations, shading and classification is performed first with transfer

CHAPTER 1. Introduction 11

function and gradients. Then, for each pixel on the image plane, one ray is cast

into the volume data along which the volume data is sampled and accumulated.

Usually a trilinear interpolation is used to get color and opacity values of sample

points while other interpolation filters are also available as discussed in Section

1.1. The color and opacity values are then composited to different pixels in either

back-to-front and front-to-back order. The shading and classification stage can be

implemented after interpolation in post-classification rendering.

Levoy’s hierarchical data structure, octree, has been employed to decompose

the volume data set according to the opacity values [79]. In the ray traversing

procedure, those empty regions were skipped thus improving the rendering speed.

The second optimization technique, called “early ray termination”, was applied in

front-to-back compositing. It stopped the traversing procedure for a ray when the

corresponding pixel’s opacity value was larger than certain user specified threshold.

One disadvantage of ray casting is aliasing. For parallel projections, the rays

that are cast through the volume maintain a constant sampling rate on the underlying

volume data. For perspective projections, however, the rays do not maintain such a

continuous and uniform sampling rate. Levoy et al. have proposed to use a 3D-

mipmap representation of the underlying volume data to create larger sampling

kernels when the rays diverge [80]. Novins et al have presented a technique to

split rays into four child rays once the neighboring rays diverge past some threshold

[115]. Kreeger et al. have proposed the ER-Perspective algorithm by dividing the

view frustum into regions based on exponentially increasing distances from the

viewpoint [71]. Then, continuous rays are cast back-to-front (or front-to-back) and

merge (or split) the rays once they become too close (or too far) from each other.

Ray tracing can also be applied in rendering unstructured volume data. The

ray-segment, the part of a ray inside the volume, determines the contribution of data

to a pixel. Following a ray-segment inside the volume can be efficiently achieved

with the adjacency information of cells. The ray-segment is generated through

identifying the first cell intersected with a ray. Garrity has sorted all boundary faces

into a coarse mesh and only the faces in the mesh region intersected by the ray have

been tested [41]. Bunyk et al. have solved the first cell problem by transforming

boundary faces into screen space and sorting the intersection point in depth value

for each screen pixel [11].

CHAPTER 1. Introduction 12

In hybrid methods, the volume is traversed in object order and the contribu-

tions of data are accumulated in image order. Yagel and Kaufman have proposed

the template-based method for parallel projection [173]. The algorithm determines

which of the volume faces is most perpendicular to projection direction as the base-

plane. The same form for all rays is stored as the ray-template. For each pixel,

one ray is cast into the volume by repeating a sequence of steps specified by the

ray-template. Finally, the base-plane is warped to the image plane.

Lacrout et al. [74] have proposed a method based on a factorization of the

viewing matrix into a 3D shear parallel to the slices of the volume data, a projec-

tion to form a distorted intermediate image, and a 2D warp to produce the final

image. The view transformation matrix Mview can be defined as a factorization

Mview = P ·S ·Mwarp where P is a permutation matrix which transposes the coordi-

nate system to make the z-axis the principal viewing axis, S transforms the volume

into sheared object space, Mwarp transforms sheared object coordinates into image

coordinates. A simple volume rendering algorithm based on the shear-warp factor-

ization operates as follows. First, transform the volume data to sheared object space

by translating and resampling each slice according to S. For perspective transforma-

tions, also scale each slice. P specifies which of the three possible slicing directions

to use. Then, composite the resampled slices together and get a 2D intermediate

image in sheared object space. At last, transform the intermediate image to image

space by warping it according to Mwarp. This second resampling step produces

the correct final image. The shear-warp factorization allows to implement coher-

ence optimizations for both the volume data and the image with low computational

overhead because both data structures can be traversed simultaneously in scanline

order. It is one of the fastest software rendering algorithms for regular grids. The

shear-warp method needs three stacks of slices for different projection directions,

each with one copy of volume data. When base-plane changes, the stacks used for

projection also changes and causes popping. The sampling distance between slices

is fixed and may cause artifacts in some cases.

Global illumination has not been widely employed in volume rendering be-

cause of the computation complexity. When a photon encounters an object, it might

be reflected, refracted, and scattered many times before finally being absorbed or

exiting the scene. It is closely related to the radiative transfer problem that has been

CHAPTER 1. Introduction 13

studied by physicists for decades [16]. The simulation of all kinds of interaction

is time-consuming, and many simplified models have been proposed in computer

graphics. Max [96] has evaluated several optical models for direct volume rendering

and presented an integral equation for light transport in volumes including multi-

ple scattering. Blinn [9] has analytically solved the transport equation for constant

density medium with single scattering. Kajiya and von Herzen [67] have proposed

tracing rays in inhomogeneous volumes. To calculate multiple scattering, spheri-

cal harmonics have been used. Radiosity [18, 44, 114] is a finite element method,

modeling light inter-reflections between diffuse surfaces with equation

BidAi = EidAi +Ri

∫

j

B jFjidA j, (1.16)

where Bi, Ei and Ri are the radiosity, emitted energy and reflectivity of patch

i, respectively, and Fji represents how much energy from patch j can arrive at

patch i. The radiosity method was extended to glossy and mirror reflections

[59, 139, 140, 153] and participating media [135]. Rushmeier and Torrance [135]

have exploited the zonal method for isotropic scattering. Max [98] has extended

the discrete ordinates method to capture anisotropic multiple scattering. Based on

the Monte Carlo ray tracing method in which rays interact with objects stochasti-

cally [23,24,66], Jensen proposed the two-pass photon mapping algorithm [60]. In

pass 1, photons are emitted and traced through the environment where the photons

interact with objects in a stochastic way, and the illumination information generated

is stored in a photon map. In pass 2, the photons are then used for estimating the

irradiance of a given region. Photon Mapping has been applied to caustics [61],

participating media [63] and subsurface scattering [64] (see also [19, 62]). Geist et

al. [42] have revised the LBM to render participating media with only light diffu-

sion. However, all these methods are still very slow.

1.3.2 Volume Rendering Hardware

The expensive computational cost of direct volume rendering makes it difficult

for sequential implementations and general-purpose computers to deliver interac-

tive or real-time performance. Motivated by traditional computer graphics which

CHAPTER 1. Introduction 14

can be accelerated by OpenGL graphics hardware, researchers have designed sev-

eral different special-purpose volume rendering hardware architectures to address

this challenge.

The underlying algorithm of Cube-4 [122, 123] is modified from the ray-

casting algorithm and suitable for a parallel hardware implementation. The vol-

umetric dataset is stored as a 3D regular grid of voxels. The face of the volume

memory that is most perpendicular to the major component of the viewing direction

is called the base-plane. Consecutive data slices parallel to the base-plane are tra-

versed in scanline order. Beams of two adjacent data slices of voxels are processed

simultaneously to compute a new slice of interpolated sample values in between

these two slices. The orthogonal voxel neighborhoods between data slices allow for

accurate 3D resampling using trilinear interpolation. To approximate the surface

normals for shading and classification and avoid accessing voxel values more than

once, the interpolated sample values are used to estimate the gradients on each sam-

ple position. The interpolated data slices from the trilinear interpolation stage are

stored in the so-called ABC buffers. The current buffer stores the samples that are

currently being shaded. The ahead and behind buffers store the samples one slice

ahead and one slice behind in major viewing direction, respectively. After shading

and classification, the compositing of samples onto the base-plane is performed.

The distorted intermediate base-plane image is then warped onto the viewing plane

to produce the final image.

A second generation VIZARD system, VIZARD II, has been presented by

Meißner [100, 101]. It is a reconfigurable volume rendering hardware system for

perspective ray casting. The core of the system is the ray processing unit (RPU),

which calculates color pixel values using the start position and increment values for

a given ray. The VIZARD II PCI card is built using off-the-shelf components such

as the PCI interface chip, the SHARC ADSP 21160 DSP, and the Xilinx Virtex

FPGA. The system running at 50MHz can render a 2563 data set at 3-7 frames per

second at 2562 image resolution.

The RACE II engine uses a hybrid volume rendering methodology that com-

bines algorithmic and hardware acceleration to improve ray casting performance

[130]. It integrates space leaping with an empty space data-structure called the

Transparent Voxel-Block (TVB) table.

CHAPTER 1. Introduction 15

In recent years, the demand for high-performance 3D computer graphics,

mostly driven by computer game and entertainment industry, has led to powerful

graphics processing unit (GPU) installed on almost every consumer PC. Some func-

tions of these cards such as 3D texture are previously only available on expensive

graphics workstation. Some functions such as a floating-point fragment program

were not even implemented on those workstations. Thus, some volume rendering

algorithms can be easily ported to PC platforms and new volume rendering methods

were proposed on programmable graphics hardware.

The majority of 3D graphics hardware generate raster images through a fixed

sequence of processing stages or pipeline [131, 137]. The input of the pipeline is a

stream of geometric primitives described by vertices, which are generated by eval-

uating polynomial functions for approximating curve and surface geometry. In the

geometry processing stage, the geometry engine computes the linear transforma-

tions of vertices such as rotation, translation and scaling. Then, local illumination

models are evaluated for each vertex. The vertices are grouped to rendering primi-

tives, such as lines and triangles. After clipping, rendering primitives are projected

to image plane. In the rasterization stage, the geometric primitives are converted

to fragments. Each fragment corresponds to one pixel on the image plane and is

assigned with some attributes such as screen coordinates, depth, color, opacity and

texture coordinates. Then, the texture coordinates are used to fetch proper texels

from the texture maps which are combined to final color and opacity of the frag-

ment. When a fragment is written to the frame buffer, certain tests are performed to

determine whether it can be written and the actual value saved in the frame buffer

is also modified by the previous content in frame buffer.

To add more features to this standard pipeline, many extensions are integrated

in modern graphics accelerators. In the following sections, NVIDIA’s Geforce fam-

ily of cards are discussed as representatives. One of the major improvements in

Geforce3 class cards is a flexible mechanism for fragment shading including tex-

ture shaders and register combiners [116]. The texture shader extension defines

more than 20 pre-defined texture shader programs. In most recent graphics accel-

erators, the fixed pipeline for rendering only polygons with texture mapping has

evolved to a flexible pipeline with programmable vertex, geometry, and fragment

stages and therefore is called graphics processing unit (GPU), as shown in Figure

CHAPTER 1. Introduction 16

1.5(b). The fragment program stage has been generalized to include floating point

computation and a complete, orthogonal instruction set. An application defined

fragment program can perform mathematical computations and texture lookups us-

ing arbitrary texture coordinates on each fragment.

Application
Primitive
Assembly

Transform
& Light

Rasterization Texturing

Texture
Memory

Frame
Buffer

3 D
 v e rtic e s

2 D
 v e rtic e s

tr ia n g le s

fra g m
 e n ts

p ix e ls

(a)

Application
Geometry

Processing

Vertex

Processing
Rasterization

Fragment

Processing

Video Memory

Frame

Buffer

3
D
 v
e
rtic

e
s

2
D
 v
e
rtic

e
s

tria
n
g
le
s

fra
g
m
e
n
ts

p
ix
e
ls

(b)

Figure 1.5: (a) Traditional OpenGL hardware pipeline. (b) GPU pipeline.

The GPU can be described with a streaming processing model [126]. Stream-

ing computing differs from traditional computing in that the system reads the data

required for a computation as a sequential stream of elements. Each element of a

stream is a record of data requiring a similar computation. The system executes

a program or kernel on each element of the input stream placing the result on an

output stream. In this sense, a programmable graphics processor executes a vertex

program on a stream of vertices, a geometry program on a stream of primitives, and

a fragment program on a stream of fragments.

Crawfis and Max [25] have exploited texture hardware in traditional OpenGL

graphics hardware to accelerate the splatting method. It stores the generic foot-

print table in a texture map and then uses the texturing hardware to interpolate

sampled values from these maps. The compositing hardware is used to update the

frame buffer. Three dimensional texture mapping hardware has been recognized

as a very efficient acceleration technique for volume rendering, which was intro-

duced in the SGI RealityEngine [1]. The basic idea of this method is to store the

CHAPTER 1. Introduction 17

volume as a 3D solid texture on the graphics hardware, then to sample the texture

using planes parallel to the image plane and composite into the frame buffer with

the blending hardware. Cabral et al. [13] have rendered datasets of 2563 voxels at

interactive frame rates on a four Raster Manager SGI RealityEngine Onyx with a

single 150MHz CPU.

With evolving hardware, Rezk-Salama et al. [132] have described a method

that implements trilinear interpolation and per-pixel illumination with multi-

textures and register combiner extensions. To produce a high quality image, post-

classification is required and can be implemented with dependent texture lookups.

Pre-integrated classification method [32] calculates the ray integral in the pre-

processing step, which is a function of the densities at the two end points of the

ray segment. Li et al. [83] have applied empty space skipping and occlusion clip-

ping techniques to accelerate 3D texture based volume rendering.

Kruger et al. [73] have further implemented the whole ray casting algorithm

on most recent GPUs in a multi-pass approach. In the first pass, the front face of

the volume bounding box is rendered to a 2D RGB texture. 3D texture coordinates

of each vertex are issued as per-vertex color COL. The result is a 2D texture (TMP)

having the same resolution as the current viewport. The color components in the

texture are the coordinates of the first intersection point in texture space. In the

second pass, the back faces are rendered and the normalized direction computed

from the TMP texture and the position of the intersection point with the back faces

is stored in the texture DIR. Then, in each main pass, M steps of ray traversal along

the rays are performed, and rendering is directed to a 2D texture RES, which can

be accessed in the consecutive passes.

To integrate early ray termination, after each main pass, an additional interme-

diate pass is executed. In this pass, the fragment program checks the opacity value

of each fragment and replaces the depth value if the opacity value is larger than

a certain threshold. Thus, in the later main passes, the corresponding fragment is

culled by an early depth test and no fragment program is executed for it. To enable

empty space skipping, an auxiliary data structure is precomputed, which stores the

min/max density in one block containing 83 voxels. In the intermediate pass, the

fragment program checks the auxiliary data structure at 8 times larger step size. If

all blocks possibly accessed in the next main pass are empty, the fragment’s depth

CHAPTER 1. Introduction 18

Quality/complexity

no scattering single scattering multiple scattering

CC lattice FCC lattice

Large

dataset

on GPU

Hybrid

GPU/CPU

rendering

Ray trace

height

field

Half

angle

splatting

Lighting

volume

Diffuse

photon

tracing

Specular

photon

tracing

Optical

model

Lattices

Algorithms

Figure 1.6: Lattice volume rendering techniques presented in this work.

value is replaced.

Hegeman et al. [52] have proposed a two-pass approach for strongly forward

scattering with GPU acceleration. Harris and Lastra [51] have used a similar ap-

proach to render clouds. Kniss et al. [69] have introduced a volume lighting model

for GPU-accelerated volume rendering with forward scattering using a single pass

based on half angle slicing. Riley et al. [133] have extended this method to render

atmospheric phenomena.

1.4 Contributions

The major contributions of this work to medical and scientific visualization re-

search are various volume rendering techniques and methods based on lattice repre-

sentation, which improves the speed, quality, and performance of volume rendering

with different optical models. As shown in Figure 1.6, the techniques in this work

use lattice for volume representation because of the simplicity and efficiency of the

lattice structure explained in Section 1.1. Moving from left to right, the algorithms

become more complex and the image quality becomes better. The CC lattice is

the simplest and most popular lattice for volume representation because most scan-

ning modalities only produce rectilinear grid data and many scientific computations

use CC discretization. For rendering CC lattice volumes without scattering, three

techniques of GPU acceleration are presented in this work:

CHAPTER 1. Introduction 19

• A ray tracing technique for rendering terrain data has been developed with

GPU acceleration. An elevation map and a texture map on the 2D CC lattice

are used to compactly store the terrain model. Real time rendering speed is

achieved on the GPU by projecting the cell boundaries.

• A hybrid CC lattice volume rendering algorithm has been developed with

CPU and GPU parallelism. Unlike pure GPU based methods, the hybrid ren-

dering method explores the computation power of both CPU and GPU. The

CPU is more flexible and can access complicated data structures in the system

memory and the GPU is specifically designed for graphics computation as an

SIMD machine. The algorithm uses the CPU for empty space skipping and

early ray termination and the GPU for sampling, shading and compositing.

Workload balancing is achieved by querying GPU idling status and changing

the algorithm complexity on the CPU.

• A GPU based object order ray-casting algorithm has been developed for

rendering large CC lattice volume datasets, such as the visible human CT

datasets. The basic single pass GPU ray-casting algorithm cannot handle high

resolution CC lattice volume beyond graphics card memory capacity. The

proposed algorithm organizes the volume in a min-max octree data structure

and projects octree nodes that can be stored in graphics memory in front-to-

back order. Empty space skipping and early ray termination are employed to

improve rendering speed.

For amorphous objects such as clouds and smoke, the self shadow effect is an

important visual cue. Two techniques for rendering smoke with single scattering

are presented. The smoke data is produced with the computational fluid dynamics

(CFD) model, lattice Boltzmann method (LBM), which simulates the flow field on

a 3D CC lattice.

• A half angle splatting technique has been developed, which is a multi-pass

algorithm that slicing the lattice volume perpendicular to the half angle direc-

tion. The half angle direction is half way between the light direction and the

view direction (or inverted view direction). The splats are projected twice for

light map attenuation and viewing ray integration.

• A lighting volume technique has been accelerated on the GPU, which avoids

the popping artifact of the half angle splatting method. An OpenGL based

CHAPTER 1. Introduction 20

method has been used to render the LBM simulation results distributed on

a GPU cluster. A more efficient method with a CUDA implementation has

been proposed for rendering smoke with a single GPU.

To further improve the image quality, global illumination effects such as soft

shadows, indirect illumination and color bleeding must be computed, which is ex-

tremely slow because the computation of multiple scattering events on a single op-

tical path is time consuming. A novel volumetric global illumination framework

based on the FCC lattice is presented. The new method has two passes. In the first

pass, photons are emitted from light sources and the photon energy is distributed in

the scene, illuminating the media. In the second pass, a ray tracing method is used

to generate the final image.

• For volumetric objects where the dominant effect is diffusion, a new algo-

rithm to trace photons on the lattice links has been proposed. The photon

direction is discretized to one lattice link direction and the optical events

only occur on the lattice sites. The angular discretization greatly simplifies

the computation of optical events, photon storage, and radiance estimation.

Therefore, the new algorithm achieves 1-2 orders of magnitude faster render-

ing speed than conventional photon mapping method.

• To mitigate the ray effect caused by the discretization of scattering directions

when accurate directions are needed for specularity, an enhanced algorithm,

specular photon tracing, has been developed where every photon is associated

with its accurate direction. The O-Buffer data structure has been exploited for

compact photon storage and efficient photon query in radiance estimation.

Finally, a new computer aided polyp detection pipeline for virtual colonoscopy

has been developed. The new pipeline is based on analyzing the electronic biopsy

images produced with the volume rendering technique. Compared with the con-

ventional shape based method, the new CAD pipeline reduces the information from

3D to 2D so that the analysis speed is greatly improved. And the shape analysis is

only executed on suspicious regions obtained during the image analysis stage for

false positive reduction. The resulting system has achieved 100% sensitivity and a

comparable false positive rate of the best shape analysis method.

Chapter 2

Volume Rendering CC Lattices

without Scattering

In this chapter, several new algorithms will be presented to accelerate the ren-

dering of volumes on the Cartesian Cubic (CC) lattice without scattering. To render

a volume without scattering, the most time consuming part is the application of the

reconstruction filter (or the interpolation filter). The 3D CC lattice is the most fre-

quently used lattice in practice. The generator matrix of the CC lattice is simply the

3× 3 identity matrix. Each site of the CC lattice has 6 nearest (axial) neighbors,

12 secondary (minor diagonal) neighbors and 8 tertiary (major diagonal) neighbors.

The 3D CC lattice can be directly stored in a 3D texture on the GPU and trilinear

interpolation is natively supported by the texture hardware. Therefore, rendering

volumes on 3D CC lattices can be efficiently accelerated on GPUs.

2.1 Ray Tracing Height Fields

Terrain rendering has many important applications, such as flight simulation,

battlefield visualization, mission planning, and GIS. Terrain data usually come in

the form of two complementing datasets: a color or texture image and an elevation

map (i.e., height field). There are two approaches to render terrain. One approach

is rasterization. A triangle mesh or other geometric primitives are constructed from

the elevation map and can be rendered by commodity graphics hardware. Another

21

CHAPTER 2. Volume Rendering CC Lattices without Scattering 22

approach is ray tracing. The terrain model for ray tracing can be either simply an

elevation map or a true 3D volume representation created from an elevation map.

Rasterization is currently the more popular approach. It achieves fast rendering

speed and high image quality by using state-of-the-art graphics hardware and vari-

ous level-of-detail techniques [56, 86].

However, ray tracing has some advantages over rasterization. Terrain models

for ray tracing are usually more compact than terrain models for rasterization. A

typical terrain model for ray tracing is simply an elevation map, which requires less

storage space and consumes less memory than a triangle mesh. The elevation map is

defined on a 2D lattice, usually 2D Cartesian lattice. Every site of the elevation map

is assigned a height value that can be represented with a floating point number or

quantized to be a fixed point number. Instead, a vertex of the triangle mesh requires

at least 3 floating point numbers to store the position and sometimes needs another

3 floating point numbers to store the normal information. More importantly, ray

tracing provides more flexibility than hardware rendering. For example, ray tracing

allows us to operate directly on the image/z-buffer to render special effects such

as terrain with underground bunkers, terrain with shadows, and fly-through with

fish-eye view. In addition, it is easy to incorporate clouds, haze, flames, and other

amorphous phenomena with terrains by ray tracing.

Typically, terrain surfaces are either piecewise height planes [20] which may

not provide satisfying image quality, or triangle meshes [111] rendered by conven-

tional ray-triangle intersection algorithms which did not exploit the regularity of

height-field data. Paglieroni and Petersen [119] developed a special cone-like vol-

ume data structure to accelerate ray traversal for height fields. The terrain surface is

computed analytically by bilinear or bicubic interpolation. Lee et al. [76] proposed

an efficient ray-casting algorithm by exploiting vertical ray coherence. Cohen-Or

et al. [20] presented a comprehensive fly-through system for voxel-based terrain,

where the terrain surface is represented by piecewise height planes which may not

provide satisfying image quality if the voxel projection size is bigger than the pixel

size. Wan et al. [154] used a prefiltered, antialiased true 3D volume terrain repre-

sentation for high quality terrain rendering.

In this section, a rasterization-tracing hybrid terrain rendering method is pre-

sented which has the features of both rasterization and ray tracing. This algorithm

CHAPTER 2. Volume Rendering CC Lattices without Scattering 23

is specially designed for next generation graphics hardware.

2.1.1 Surface Reconstruction

Figure 2.1 shows the framework of the surface reconstruction method. Z1, Z2,

Z3, Z4 are the four grid points and their heights of a cell in the elevation map. For

each cell, there are two intersection points between the ray and the cell boundaries:

one entry and one exit point. Let P1 be the entry point and P2 be the exit point.

Figures 2.1(a) and 2.1(b) show two possible situations of a ray passing through a

cell. To simplify the presentation, our algorithm is demonstrated for the situation

illustrated at Figure 2.1(a). Extension to the situation of Figure 2.1(b) is straight-

forward. Let Q1 and Q2 be the projections of P1 and P2 on lines Z1Z2 and Z3Z4,

respectively, along the height direction. Therefore, P1Q1 and P2Q2 are the offsets

of P1 and P2, respectively, to the terrain surface along the height direction. If the

heights of point P1 or P2 are below any heights of Z1, Z2, Z3, and Z4, the ray possibly

hits the terrain surface in this cell. Then, the offsets of P1 and P2 are computed.

Z1

Z
2

Z
3

Z
4

P2

P1

Q
1

Q2

(a)

Z1

Z
2

Z
3

Z
4

P
2

P1

Q
1

Q2

(b)

Figure 2.1: Two cases of a ray passing through a cell.

Figure 2.2 shows the method for reconstructing triangles in the cell. There

are two triangles in a cell, triangle Z1Z2Z3 and triangle Z2Z3Z4. To compute the

intersection point of the ray and triangle Z1Z2Z3, point Z4 to Z5 so that Z1, Z2, Z3,

Z5 are coplanar. It is easy to see that Z5 = Z3 +Z2 −Z1. Let C be the central point

of line Q1Q2. If the intersection point I is inside triangle Z1Z2Z3, then

P1Q1

P2Q2
=

Q1I

Q2I
≤ Q1C

Q2C
. (2.1)

CHAPTER 2. Volume Rendering CC Lattices without Scattering 24

Project line P1P2 onto the base plane of the terrain. Let a be the projection of line

Q1C, b the projection of line Q2C. Let dy1 be the projection of Q1Z2 and dy2 the

projection of Q2Z3. Then,
Q1C

Q2C
=

a

b
=

dy1

dy2
. (2.2)

Therefore, if P1Q1 ×dy2 ≤ P2Q2 ×dy1, the intersection point is inside the triangle

Z1Z2Z3, and the real intersection point of the ray and the triangle mesh is found.

Otherwise, repeat the process for triangle Z2Z3Z4.

Z1

Z
2

Z3

Z
4

P2

P1

Z
5

(a)

dy2

Z1

Z
2

Z3

P2

P
1

Z
5

I
Q1

Q2

a

b
dy1

(b)

Figure 2.2: Triangle reconstruction. (a) Z4 is moved to Z5; (b) test whether the intersection

point is inside the triangle Z1Z2Z3.

2.1.2 Rasterization-Tracing Hybrid Rendering on GPU

In this sub-section, the method of rendering the triangle mesh with program-

mable GPU is presented. As shown in Figure 2.2, only the two intersection points,

P1 and P2, of each ray with cell boundaries need to be computed, where P2 is the first

intersection point which is below the terrain surface and P1 is the last one which is

above the terrain surface. P1 and P2 can be computed efficiently using rasterization

and fragment processors of the GPU.

All the cell boundaries can be combined into 4n rectangles for an n×n height

field, n rectangles perpendicular to the x axis, n rectangles perpendicular to the y

axis, and 2n rectangles perpendicular to the x = y plane. When projecting all these

rectangles onto the screen, each fragment is an intersection point of the ray and

a boundary plane of a cell. Each vertex of the rectangle is assigned a 3D texture

coordinate relative to the bounding box of the height field. The r texture coordinate

CHAPTER 2. Volume Rendering CC Lattices without Scattering 25

of fragment P is the distance from the fragment center to the base plane of the

height field. In the fragment program, the s and q texture coordinates are used to

retrieve the height of Q from the elevation texture, where line PQ is perpendicular

to the base plane and Q is on the terrain surface. If P is higher than Q, the fragment

is discarded. Otherwise, we find an intersection point which is below the terrain

surface. The fragment with the s and q texture coordinates, length of PQ and depth

value is written to the floating point pixel buffer without loss of precision. The

depth test is used to get the nearest fragment to the view point. Thus, after the first

pass, the first sampling point P2 is obtained which is below the terrain surface. The

ray must intersect with the triangle in the cell containing P2.

In the second pass, all the rectangles are projected again. In the fragment pro-

gram, the depth value of each fragment is subtracted by the depth value computed

at the first pass for this fragment. The depth test guarantees that the intersection

point P1 which is the nearest to P2 is saved in the buffer. Finally, in the third pass,

the fragment program uses the attributes of P1 and P2 to interpolate the position of

the intersection point and retrieve the color value from the texture.

This algorithm has the following features:

1. It has the features of both rasterization methods and ray tracing methods.

Compared with traditional projection methods, it dramatically reduces the

number of geometric primitives to be rasterized. In our algorithm, only O(n)

rectangles are rendered, while traditional triangle mesh methods need to ren-

der O(n2) triangles. Compared with conventional ray tracing methods, it

avoids the expensive ray traversal process.

2. It takes full advantage of the GPU. Except for the rasterization program and

texture mapping which have been widely used in practice, the GPU also pro-

vides powerful fragment processors which are specially designed for vector

operations. Traditional triangle mesh methods do not take advantage of this.

This algorithm has the trivial parallel nature of ray tracing methods. Thus, it

can take advantage of the newly available fragment programs.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 26

(a) California terrain. (b) Grand canyon terrain.

Figure 2.3: Rendering results of the rasterization-tracing hybrid algorithm.

2.1.3 Results

The rasterization-tracing hybrid rendering algorithm is demonstrated with two

real terrains: a 512× 512 southern California terrain (as shown in Figure 2.3(a)),

and a 4096×2048 Grand Canyon terrain (as shown in Figure 2.3(b)). Each terrain

model consists of an elevation map and a corresponding aerial photographic map of

the same resolution. The image resolution is 500×400.

The rasterization-tracing hybrid rendering algorithm has been implemented on

the software simulator of NVIDIA GeforceFX. The rendering cost of our algorithm

includes two parts. One is the cost of rectangle rasterization. The other is the

cost of the fragment program. Assume the resolution of the height field is n ×
n. In our algorithm, only about 4n rectangles are rendered. Commodity graphics

hardware can render more than 1M rectangles per second. Thus, the cost of the

rasterization can be ignored and the total cost is determined by the efficiency of the

fragment program and the number of fragments generated. In our implementation,

the fragment program in the first pass includes 4 instructions and in the second pass

less than 100 instructions. Therefore, the total number of fragment instructions

executed in one frame is less than 4 f1 + 100 f2, where f1 and f2 are the number of

fragments generated in each pass. With the screen resolution of 640× 480, f2 is

approximately 30K. The total number of fragments generated by our algorithm in

the first pass with the Grand Canyon terrain is about 10M. Thus, the total number of

fragment instructions executed for one frame is 70M. For the GeforceFX card which

has 8 fragment processors running at 500MHz, it can execute about 4G fragment

CHAPTER 2. Volume Rendering CC Lattices without Scattering 27

instructions per second. Thus, the hardware is expected to render about 60 frames

per second. This is much faster than the CPU version of the algorithm.

2.2 GPU-CPU Hybrid Volume Ray-casting

Many techniques have been exploited for accelerating volume rendering in

software, such as empty space skipping and early ray termination [79]. Knittel [70]

has described an architecture and implementation that makes extensive use of MMX

and streaming SIMD instructions for perspective ray-casting on a PC.

Empty space skipping and early ray termination techniques have also been

implemented on graphics hardware. Li and Kaufman [82] have used bounding

contours to skip empty and invisible voxels to accelerate 2D texture-based vol-

ume rendering. They [83] also used a box growing method to partition the volume

into sub-volumes for empty space skipping. The sub-volumes are then culled and

clipped against an orthogonal opacity map. The opacity map is efficiently updated

by the GPU in every frame. Krüger and Westermann [73] have proposed a method

to accelerate volume rendering based on early ray termination and empty space

skipping in a GPU-based multi-pass ray-casting approach. Roettger et al. [134]

have proposed an adaptive pre-integration method to implement hardware accel-

erated ray casting, which automatically subsumes the space leaping acceleration

techniques. The early ray termination is implemented based on the occlusion query

and the early z-test using an intermediate rendering pass. Xue et al. [171] have em-

ployed isosurface-aided acceleration techniques for slice-based volume rendering.

Stegmaier et al. [144] have presented a framework for the hardware accelerated vi-

sualization of volumetric data based on a single-pass ray-casting approach. Their

system exhibits very high flexibility and allows for an easy integration of non-trivial

volume rendering techniques. However, these GPU-based methods do not use any

computational power of the CPU.

CPU-based direct volume rendering methods are not suitable to generate high-

quality images in real-time due to the lack of parallelism and hardware support for

trilinear interpolation and local illumination. The GPU-based methods can provide

comparable image quality with high rendering frame rates, however they are not

flexible enough to be used in different applications, due to the limit of graphics

CHAPTER 2. Volume Rendering CC Lattices without Scattering 28

hardware. These pure CPU-based and pure GPU-based direct volume rendering

methods have their weaknesses. Westermann and Sevenich [164] have proposed to

combine the processing power of the CPU and the GPU to accelerate volume ray-

casting. They have computed the ray entry points and exiting points using texture

mapping, and the results are read back from the GPU. Then, the ray traversal is per-

formed in software. The main drawback of this method is that on current graphics

hardware the performance of read back is poor and the GPU pipeline is stalled by

data transferring. Thus, CPU and GPU cannot work in parallel in this method.

The GPU-CPU hybrid volumetric ray-casting algorithm presented in this sec-

tion is different from Westermann and Sevenich’s method [164]. It uses the CPU

to compute the ray entry points and determine when a ray is terminated. The GPU

is used for ray traversal. In this way, the power of the CPU and the GPU are fully

exploited, meanwhile the CPU and the GPU can work in parallel. Compared with

other pure GPU-based methods, the main difference is that our algorithm uses the

CPU to do empty space skipping, which is overlapped with the other computation

on the GPU.

2.2.1 Algorithm Overview

The CPU programming models are generally serial and do not adequately ex-

pose data parallelism in their applications. The recent CPUs allow some data par-

allel execution, but the degree of parallelism exploited by the CPU is much less

than that of the GPU. The CPU targets general-purpose programs. Therefore, they

do not contain specialized hardware for particular functions, such as trilinear inter-

polation. The GPU, however, implements special-purpose hardware for particular

tasks, which is far more efficient than a general-purpose programmable solution

could ever provide. Consequently, the GPU is more suitable for tri-linear interpo-

lation and local illumination computation. The CPU memory system is optimized

for minimum latency, and it contains several levels of cache memory to minimize

this latency. Moreover, a large fraction of the CPU’s transistors and wires are used

to implement complex control functionalities such as branch prediction and out-of-

order execution. Therefore, the CPU is more suitable to implement some complex

and elaborate algorithms.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 29

Our algorithm fully exploits advantages of both the CPU and the GPU and

makes them work in parallel to accelerate the volumetric ray-casting. The basic idea

of the GPU-CPU hybrid volumetric ray-casting method is straightforward. It uses

the GPU to do streamed trilinear interpolation, local illumination and compositing,

and uses the CPU to do ray traversal and maintain elaborate data structures. For

example, empty space leaping and early ray termination are done on the CPU side,

because additional special data structures can make these techniques more efficient.

Various pre-computed data structures have been proposed in software to

rapidly traverse or skip over the empty voxels that have no contribution to the

rendered image, such as octree [74, 79], K-d tree [146], bounding convex poly-

hedrons [5], and proximity clouds [17]. The min-max octree structure [74] allows

changing the classification interactively, hence is used here. One leaf cell of the

min-max octee corresponds to a cubical region with one voxel on each of its eight

corners. For each cell of the min-max octree, the minimum and maximum density

values of the voxels belonging to the node are stored. Given a transfer function,

a cell can be efficiently classified as empty, opaque, or translucent. A leaf cell is

empty, if its eight voxels have zero opacity values. A leaf cell is opaque if the

opacity values of its eight voxels are greater than some threshold, such as 0.99 in

the current implementation. Otherwise, the cell is classified as translucent. For a

non-leaf cell, if its children cells are all empty, it is classified as an empty cell. If

its children cells are all non-empty, it is classified as an object cell. Otherwise, it is

classified as a partial cell.

In order to take the advantage of the parallelism between the CPU and the

GPU, the rays are grouped into small tiles [72]. Each tile of rays corresponds to

a square region on the image plane. Our algorithm is applied on each tile in se-

quence. Given a view point and a volumetric object enclosed by a bounding box,

the algorithm of constructing the tile structure is described as follows:

1. A tile T0 corresponding to the whole image plane is initialized and put into

the queue Q.

2. If Q is empty, the algorithm is terminated.

3. Pop a tile Ti from the head of Q.

4. Cast four rays at the corner of the tile Ti to test whether they intersect with

the bounding box B.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 30

1. If all of four rays do not intersect the bounding box, and the projection

of the bounding box is outside the tile, goto Step 2.

2. If all of four rays intersect the bounding box and the size of Ti is greater

than 64×64, the tile is subdivided into four smaller tiles.

3. If only one or two rays intersect with the bounding box and the size of

Ti is greater than 16× 16, the tile is subdivided into four smaller tiles

which are then pushed into Q.

4. Otherwise, the tile is put into a list and goto Step 2.

As a result, a list of tiles are generated with a size varied from 64× 64 to

16× 16. Moreover, most of the rays within the tiles intersect the bounding box.

The tile whose four corner rays all intersect with the bounding box is marked as

full, which will be processed first in the following steps. If the camera is located

inside the object, the rays are simply grouped into tiles with the size of 64×64.

Early ray termination is efficient only when the transfer function is opaque,

in which most of the rays will be terminated before leaving the volume. Thus, if

the transfer function is semi-transparent, the early ray termination is not employed,

which makes the algorithm even simpler.

The flowchart of the GPU-CPU hybrid volumetric ray-casting algorithm is

shown in Figure 2.4. After the tile construction, a ray determination step is executed

on the CPU to compute ray entry points and normalized ray directions. In this step,

space leaping is employed to make the ray entry points close to the object boundary.

Then, a multi-slab rendering algorithm shown in yellow in Figure 2.4 is applied. At

last, the holes are filled in the last step. For a semi-transparent transfer function,

the early ray termination is not employed, which makes the ray termination step

a little different from that for an opaque transfer function. The tile construction,

ray determination, and ray termination algorithms are executed on the CPU. The

slab rendering and hole filling steps are mainly executed on the GPU. In these two

steps, the CPU is only used to issue some non-block OpenGL commands. The

detail of the ray determination, multi-slab rendering, and hole filling algorithms are

described in the following sections.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 31

Ray Determination

Slab Rendering

Hole Filling

Yes

Tile Construction

Are all rays
terminated?

No

Ray Termination

Multi-pass slab
rendering

Z-Cull

Figure 2.4: The flowchart of our GPU-CPU hybrid volumetric ray-casting algorithm.

2.2.2 Ray Determination

After the tile construction, the ray entry point and the normalized ray direction

for each ray of the tile are calculated. Although the GPU is more suitable and

efficient for this kind of linear computation [164], our method still uses the CPU to

do these computations to avoid transferring data back from the GPU to the CPU,

because the ray directions are needed to do ray traversal on the CPU. The readback

from the GPU is very slow on the current graphics hardware. For an image with the

resolution of 512×512, 6MB of data needs to be read back from the GPU, which is

even slower than directly computing them on the CPU using SSE instruction sets.

Moreover, the readback operation will stall the graphics pipeline. Thus, the GPU

is fed from the CPU with a stream of rays stored in two 2D floating point textures:

one for ray entry points and the other for normalized ray directions. This means

that the GPU is working as a coprocessor of the CPU.

First, the position of each pixel on the image plane is calculated, along with

the normalized ray direction. The main problem is the normalization of the ray

direction, which requires many instructions to compute the distance between the

camera and each pixel position. The good thing is that if the distance from the

CHAPTER 2. Volume Rendering CC Lattices without Scattering 32

camera to the image plane and the angle of the field of view are both fixed, the

distance between the camera and each pixel on the image plane is also fixed for

every frame. Thus, the reciprocals of distances between the camera and pixels on

the image plane are pre-computed and used to scale the ray direction to obtain the

normalized ray direction.

Second, the first intersection point of each ray with the object boundary is

computed. Using the min-max octree structure, this computation can be done very

efficiently. Instead of computing the first intersection point of each ray with the real

object boundary, the intersection point of each ray with the cell nodes of the min-

max octree is first computed. The parameter lmin is used to control the minimal level

of cells that the ray can reach, which means that when the ray hits a non-empty cell

with level equal to lmin, the ray traversal is stopped. Whether moving these points

to the exact object boundary is based on the workload of the CPU.

Lakare and Kaufman [75] have proposed a method to exploit the ray coher-

ence to accelerate ray-casting using detector rays. It is observed that a group of

rays usually traverse the same distance before intersecting the object boundary. To

compute the first intersection points for a tile of rays, a group of detector rays are

cast first. For each detector ray, it returns the distance from the view point to the first

intersection point. The distance information is then used to conservatively estimate

the depth values for the neighboring rays. The detector rays are cast interspersedly

from the pixels on the image plane.

This method can be easily incorporated with the min-max octree. The traversal

of the detector rays can be accelerated with the min-max octree. After the depth

values are returned by the detector rays, the algorithm for spreading the depth values

for other rays is as follows. For each detector ray, its depth value is propagated to

its eight neighboring rays. The depth values for the non-detector rays are initialized

with a very large value. While propagating the depth value, it is compared with the

depth value of the neighboring ray, and the smaller of the two values is kept. After

the depth values are obtained, the first intersection points are estimated.

This method combined with the min-max octree only achieves an efficient con-

servative estimation for the first intersection points. Whether applying an accurate

empty space leaping after this step or not depends on the workload of the CPU and

the GPU.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 33

2.2.3 Multi-pass Slab Rendering and Hole Filling

After the ray determination step, all of the ray entry points and normalized

ray directions are computed and stored in two 2D floating point textures. After

these two textures are uploaded to the GPU, the ray integration can be done by the

GPU. However, it is not known how far each ray of the tile will travel before being

terminated or leaving the volume at this step. The simple and efficient solution is

using the GPU to do multi-pass slab rendering, and using the CPU to decide when

the multi-pass slab rendering should be terminated on the GPU in the meantime.

In order to make the multi-pass slab rendering more efficient, the rays within

each tile are further divided into quads. Each ray quad consists of 2× 2 rays. It is

observed that if one of the four rays is terminated, the other rays are likely termi-

nated in the following slab rendering pass. Consequently, the ray quad is the basic

unit in the multi-pass slab rendering step.

After the empty space leaping in the ray determination step, some rays may

already leave the volume. For each quad of the tile, it is checked whether its four

rays have already left the volume or not. If so, the quad is marked as terminated.

If only some part of the four rays leave the volume, the quad is marked as a hole.

Otherwise, the quad is marked as non-terminated. If a tile does not contain any

terminated quads and hole quads, the tile is called a full tile. Otherwise, it is called

a partial tile. The multi-pass slab rendering algorithm is applied on the full tiles

until all full tiles become partial tiles. This is done by employing slab rendering on

the GPU, and in the meantime the ray termination is performed on the CPU. The

ray termination and slab rendering algorithms are the same for full tiles and partial

tiles. The only difference is that the early Z-cull step is skipped for the full tiles,

because it does not need to modify the depth values to cull the terminated quads for

the full tiles in the slab rendering.

2.2.3.1 Early Z-Cull

On current graphics hardware, before a fragment reaches the fragment proces-

sor, the z-cull unit is used to compare the fragment’s depth with a corresponding

value that already exists in the depth buffer. If the fragment’s depth is greater, the

CHAPTER 2. Volume Rendering CC Lattices without Scattering 34

fragment will not be visible, and the fragment program is not executed by the frag-

ment processor. The depth buffer is initialized to one at the beginning. In the ray

termination step, it will generate two lists containing the terminated quads and hole

quads respectively. Because the depth buffer is modified, the three color channels

are masked in this step. For the terminated quad, its corresponding quad is rendered

with a depth value of zero. As a result, the depth values corresponding to the ter-

minated rays are all set to zero. And, the corresponding fragments will be culled

before they reach the fragment processors in the following slab rendering passes.

The hole quad is rendered with depth value of 0.4, because the hole quads still need

to be rendered to trigger fragment programs in the hole filling step. By this tech-

nique a quad with the depth value smaller than 0.4 can be rendered to trigger hole

filling fragment programs for the hole quad in the final step. After the depth values

are modified to enable early z-cull, the quads corresponding to the partial tiles are

rendered to trigger the slab rendering fragment program.

2.2.3.2 Slab Rendering

When the fragments pass the early z-cull test and reach the fragment proces-

sor, the fragment program is executed on the GPU. In the fragment program, N

uniformly sampled points along the rays of sight are processed. At each sampling

point, trilinear interpolation is used to obtain the density value and gradient, and

then post-classification is used to obtain the color for the sampling point. The gra-

dient is computed for each voxel with central difference and uploaded to the GPU

along with its density values using a 3D RGBA texture. Two lights are used to cal-

culate the local illumination at each sampling point. One light is put at the camera

position, the other is from the opposite direction of view up.

In one slab rendering pass, some rays may saturate their opacity values or leave

the volume, which should be terminated, while the others still need to be processed

in the following slab rendering pass. After the CPU issues the OpenGL commands

to render the quads to trigger the fragment program, it starts to detect which non-

terminated quad becomes terminated, and which non-terminated quad becomes a

hole quad after the slab rendering on the CPU. The slab rendering fragment program

and ray termination are performed in parallel on the GPU and the CPU respectively.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 35

2.2.3.3 Ray Termination

In order to accurately determine where a ray should be terminated on the GPU,

the ray also needs to be uniformly sampled on the CPU using the same sampling

distance as that on the GPU. At each sampling point, the density value should also

be tri-linear interpolated. The opacity value is then queried through the same opac-

ity transfer function and accumulated along the ray. When the accumulated opacity

value exceeds the predefined threshold, the ray should be terminated on the GPU.

It is obvious that the CPU and the GPU do some overlapping work in this method,

which is inefficient. Moreover, performing the tri-linear interpolation on the CPU

causes a loss in performance.

As mentioned before, each leaf cell of the min-max octree is defined as the

cubical region with voxels on its eight corners. Given a transfer function, it is

classified as opaque, when the density values of its eight voxels are all greater than

0.99. The following equation is used to do front-to-back compositing on the GPU:

αdst = αsrc(1−αdst)+αdst = αsrc +αdst(1−αsrc) (2.3)

It is noted that the accumulated opacity value is greater than the source opacity

value. When a ray passes through an opaque cell, the sampling point in this cell has

an opacity value greater than 0.99, so does the accumulated opacity value. Thereby,

a ray should be terminated if it passes through an opaque cell. In this method, the

time consuming trilinear interpolation is avoided. The main task of this method is to

compute the cells that are pierced by the ray, which can be efficiently obtained using

a 3D digital differential analyzer (3DDDA) [2]. Given two endpoints of the ray, this

algorithm generates a 6-connected line, which includes all of the cells pierced by

the ray.

For each non-terminated quad, our method checks whether the quad contains

any ray that will be terminated after the corresponding slab rendering pass. If all

four rays of the quad should be terminated after this slab rendering pass, it is marked

as terminated and put into a list storing the new generated terminated quads. If all

four rays of the quad are not terminated after this slab rendering pass, it is un-

changed. Otherwise, the quad is marked as a hole and put into a list storing the new

generated hole quads. The two lists will be used in the early Z-Cull step to modify

the corresponding depth values.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 36

For each partial tile, if the number of the non-terminated quads is less than a

predefined threshold, the whole tile of rays is terminated, and the tile is removed

from the partial tile list. This threshold value can also be used to control the balance

between the CPU and the GPU. If the partial tile list is empty, the multi-pass slab

rendering algorithm is terminated.

For semi-transparent transfer functions, the early ray termination is not as ef-

ficient as for opaque transfer functions. Consequently, it is unnecessary to test

whether a ray pierces an opaque cell, because the volume only contains very few

opaque cells, or it may not contain any opaque cells. To make this checking more

efficient, the length for each ray is computed in the ray determination step. This

value is subtracted by 0.5N for each slab rendering pass, where 0.5 is the sampling

distance. If this value is less than 0.5N after the current slab rendering pass, the

corresponding ray is terminated.

2.2.3.4 Hole Filling

After the multi-pass slab rendering, the hole quads still need to be processed.

For each non-terminated ray within the hole quads, the point where the ray leaves

the volume is computed. Then, the space leaping is employed from both ends of

the ray based on the workload of the CPU and the GPU. And the length of the ray

segments are stored in a 2D texture and uploaded to the GPU.

Before the hole filling fragment program on the GPU, the depth values of

the terminated rays within the hole quads are modified to cull the corresponding

fragments. Then a bounding box enclosing all hole quads is computed and rendered

with a depth value of 0.2 to trigger the hole filling fragment program. The hole

filling fragment program is very similar to the slab rendering fragment program.

The only difference is that the hole filling fragment program has different travel

steps based on the length of the corresponding ray segment.

2.2.4 Dynamic Workload Balancing

The workload balance of the CPU and the GPU is crucial to the GPU-CPU

hybrid algorithm. The ideal situation is that the programs running on the CPU

and the GPU take almost the same time for rendering one frame. In our method,

CHAPTER 2. Volume Rendering CC Lattices without Scattering 37

NVIDIA’s performance toolkit is used to access the gpu idle counter to determine

if the GPU is underload. The gpu idle counter contains the percentage of time the

GPU is idle since the last call. If the gpu idle counter is greater than zero, the

workload of the CPU should be reduced, and some work is passed to the GPU.

On the other hand, if the GPU is always busy, some work needs to be passed to the

CPU. The basic idea to balance the workload of the CPU and the GPU is controlling

the degree of the empty space skipping on the CPU. The more empty voxels are

skipped, the less work needs to be done by the GPU.

The ways to adjust the workload of the CPU and the GPU are described as

follows:

1. Ray traversal in the min-max octree: To reduce the workload on the CPU,

stop the rays at high level partial cell before reaching the object cells, where

the first intersection points are computed.

2. Computing the first intersection point: when computing the intersection point

between the ray and the cell, the ray does not go inside the cell. To increase

the workload on the CPU, let the ray move into the cell and reach the real

object boundary.

3. Computing the existing point and employing empty space skipping from the

existing point in the reverse direction: this way increases the workload on the

CPU and efficiently decreases the workload on the GPU.

4. For a partial tile, if the number of the non-terminated quads is less than a

threshold, the whole tile rays are terminated. A larger threshold can be used

if the workload of the GPU need to be reduced. A smaller threshold results

in the tiles being terminated quickly on the CPU. Therefore, the workload of

the GPU is increased.

2.2.5 Implementation and Results

All images shown in this subsection have a resolution of 512×512. The sam-

pling distance is 0.5, which is good enough to generate high quality images for

all tested data sets. Most of the experiments have been conducted on a 3.0GHz

Intel Pentium IV PC, with 1G RAM and a NVIDIA Quadro FX 3400 graphics

card (PC1). Another 2.4GHz Intel Pentium IV PC, with 1G RAM and a NVIDIA

CHAPTER 2. Volume Rendering CC Lattices without Scattering 38

Geforce 6800 Ultra graphics card (PC2) is used to demonstrate workload balance.

Both PCs are running the Windows XP operating system.

(a) Opaque Engine (b) Semi-transparent

Engine

(c) Opaque foot (d) Semi-transparent

foot

Figure 2.5: Volume rendering of the engine and human foot data sets.

The two data sets in Figure 2.5 are rendered both with an opaque transfer

function ((a) and (c)) and a semi-transparent transfer function ((b) and (d)) on both

PC1 and PC2. Table 2.1 lists the rendering time in frames per second (fps). The

CPU on PC1 is faster than that on PC2. Thus, accurate empty space skipping is

employed on PC1 and coarse empty space skipping is employed on PC2. Because

the GPU on PC2 is faster than that on PC1, similar performance has been achieved

on both PC1 and PC2. The performance on PC1 is a little better than that on PC2,

because the PC1 uses PCI Express which is faster than AGP8 used by PC2, and the

CPU on PC1 is also faster than that on PC2. When the semi-transparent transfer

function is applied on PC1, the performance drops a little, because the early ray

termination is not efficient at this situation, while the performance on the PC1 for

the two cases is nearly the same. Because the 3DDDA algorithm is not performed

on the CPU when the semi-transparent transfer function is applied.

Table 2.1: Average rendering speed for the engine and human foot data sets.

Data Set Size Opaque Transparent

PC1 PC2 PC1 PC2

Engine 256×256×128 21.9 18.9 17.8 18.0

Foot 152×256×220 19.8 16.5 16.3 13.6

NVIDIA Geforce 6 series cards support dynamic branching in the fragment

CHAPTER 2. Volume Rendering CC Lattices without Scattering 39

program, which makes it possible to implement a single-pass GPU-based volumet-

ric ray-casting algorithm. The lego car, lobster and human tooth data sets are used

to compare the GPU-CPU hybrid algorithm with the pure GPU-based ray-casting

algorithm. In Figures 2.6(a) and 2.6(b), two semi-transparent lobsters are rendered

with the two different methods from the same view point, respectively. The dif-

ference between the two images can not be observed. For the lego car and human

tooth data sets, the resulting images by the GPU-CPU hybrid method are shown

in Figures 2.6(c) and 2.6(d). The performance of the GPU-CPU hybrid volumetric

ray-casting algorithm (HRC) and pure GPU-based volumetric ray-casting algorithm

(GRC) is listed in Table 2.2 in frames per second (fps), which shows that the GPU-

CPU hybrid algorithm is faster than the pure GPU-based ray-casting algorithm. The

experiments are conducted on PC1.

(a) Lobster (HRC) (b) Lobster (GRC) (c) Lego Car (d) Human Tooth

Figure 2.6: Volume rendering of the lobster, lego car, and tooth data sets.

Table 2.2: Average rendering speed for the lobster, lego car, and tooth data sets.

Data Set Size HRC GRC Speedup

Lego Car 256×256×128 19.1 16.5 15.8%

Lobster 152×256×220 28.3 20.4 39.1%

Tooth 128×128×256 32.8 16.9 94.1%

Virtual colonoscopy uses a computer visualization system to virtually navigate

within a colon model. The volume rendering method can display more details than

the surface-based rendering method when the camera is located close to the colon

surface. Moreover, the volume rendering method does not need to extract a surface

model in pre-processing. The GPU-CPU hybrid volumetric ray-casting is efficient

CHAPTER 2. Volume Rendering CC Lattices without Scattering 40

(a) 20.4fps (b) 18.3fps

Figure 2.7: (a) A close up view of a polyp; (b) A view of the colon from a camera parallel

to the centerline.

for the virtual colonoscopy applications, because the colon surface is rendered with

an opaque transfer function. The data sets used to test the GPU-CPU hybrid ap-

proach for the virtual colonscopy system are all real patients’ CT data sets. The

size of the CT data sets is usually 5123. It is impossible to pre-compute the gradi-

ent and store them on the GPU memory. Thus, the gradient is estimated on-the-fly

at each sampling position with central difference. Figure 2.7 shows two different

views inside a human colon. Figure 2.7(a) rendered at 20.4 fps is a close up view of

a polyp, in which the camera is very close to the colon wall. The viewing direction

for Figure 2.7(b) is nearly parallel to the centerline, which is rendered at 18.3 fps.

Because the camera for the left image is much closer to the colon surface than that

for right image, the ray determination time for Figure 2.7(a) is shorter than that for

Figure 2.7(b). The number of hole pixels for Figure 2.7(a) is 18,369 (7.0%), and

the number for Figure 2.7(b) is 23,913 (9.1%). Because there are fewer hole pixels

in Figure 2.7(a) than those in Figure 2.7(b), the rendering time of Figure 2.7(a) is a

little less than that of Figure 2.7(b).

For the virtual colonoscopy system, the camera moves along a pre-defined cen-

terline. All camera parameters of the fly-through navigation can be pre-computed

from the centerline. The GPU-CPU hybrid volumetric ray-casting algorithm can

benefit from these pre-computed camera parameters. After the CPU renders the list

of quads to issue the hole filling fragment program, it can do ray determination for

the next frame. Thus, the GPU-CPU hybrid method can fully take the advantage

of the parallelism between the CPU and the GPU to achieve a real-time rendering

speed with high quality for virtual colonoscopy.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 41

2.3 Ray-casting Large Datasets with GPUs

In this section, a GPU-based object-order ray-casting algorithm [54] is pre-

sented for the rendering of large volumetric datasets, such as the Visible Human CT

datasets. High resolution CT data is highly demanded by many current medical ap-

plications. The typical size of contemporary clinical 16bit CT data is about 256MB

(5123 voxels). The photographic volumetric datasets have color information, which

are usually larger than the CT and MRI datasets of the same resolution. Moreover,

the size of datasets will likely keep increasing at a high rate due to the advance of

scientific devices. The rendering of large volumetric datasets is a classical problem

in visualization.

Volumetric datasets used in a variety of fields usually contain many regions

that are classified as transparent or empty. Object-order approaches are well-suited

for skipping empty regions. However, the hidden volume removal is inefficient

compared with the ray-casting method. Mora et al. [103] proposed a CPU-based

object-order ray-casting algorithm to take the advantages of both image-order and

object-order approaches for orthogonal projection.

In the algorithm presented in this section, a volumetric dataset is decomposed

into small sub-volumes called cells, which are organized using a min-max octree

structure. The cells are classified as empty cells or non-empty cells. The non-empty

cells are loaded into video memory or AGP memory, as many as possible. Then,

the cells are projected from front to back and composited using the GPU. In order

to make the cell projection more efficient, a propagation method is investigated to

sort the cells into layers such that all cells in one layer can be projected simultane-

ously. Weiskopf et al. [162] have proposed to split the volume into bricks to achieve

constant frame rates in 3D texture based volume rendering. Parker et al. [120] have

used the similar idea of volume bricks to render isosurface in large volume datasets

on the CPU. In this section, the presented method renders large volume datasets

that are beyond GPU memory capacity with ray-casting method. A cell grouping

method is used to reduce the OpenGL context switches for early ray termination.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 42

2.3.1 Algorithm Overview

A cell is a cubical region of a sub-volume containing N ×N ×N voxels. A

cell is classified as empty, if all voxels of the cell are invisible based on the transfer

function. Otherwise, it is classified as non-empty. The min-max ocree [167] is

used to organize the cells for efficient classification. Each leaf node of the min-max

octree contains a cell, as well as the minimum and maximum density values of the

cell. Each interior node only contains the minimum and maximum density values

found in that node’s subtree.

The non-empty cells are projected onto the image plane in a front-to-back or-

der. A fragment program is used to do ray integration for each projected cell on-the-

fly, in which a volumetric ray-casting algorithm is performed. Each cell is stored in

a 3D texture. Since the volumetric ray-casting algorithm requires a neighborhood

of voxels for proper interpolations and gradient calculations, the neighboring vox-

els of the cell need to be stored in the 3D texture. Thus, for each cell the resolution

of the corresponding 3D texture is (N +2)× (N +2)× (N +2).

Although the cells can be hierarchically sorted using the min-max octree struc-

ture, a more efficient propagation algorithm is used to sort cells. The cells are

front-to-back sorted and grouped into layers. The cells within the same layer can

be projected simultaneously, which dramatically improves the performance of the

cell projection algorithm on the GPU. The cell sorting and projection algorithms

take the advantage of the parallelism between the CPU and the GPU. When a layer

of cells is determined, they can be projected immediately to trigger fragment pro-

grams to be executed on the GPU. The CPU then can be used to generate the next

layer of cells.

Although a large number of cells are classified as empty cells, which do

not need to be uploaded to the GPU, the 3D textures corresponding to the non-

empty cells are still too large to be fitted in video memory. Some non-empty

cells need to be transferred to video memory on-the-fly. The OpenGL extension

pixel buffer object (PBO) defines an interface to using buffer objects for pixel data,

which dramatically improves the texture uploading performance. By using this ex-

tension, the GPU can asynchronously pull the data from the AGP memory using

DMA (Direct Memory Access). Therefore, a three-level structure is used to store

the cell data in video memory, AGP memory, and system memory as shown in

CHAPTER 2. Volume Rendering CC Lattices without Scattering 43

Figure 2.8. Suppose that M 3D textures can be allocated in video memory and N

buffers of the same size can fit in AGP memory, and the first 20 buffers are used

as a memory pool for transferring data on-the-fly. First M random non-empty cells

are uploaded to video memory. Then, the other M−20 non-empty cells are copied

into AGP buffers. The rest of non-empty cells are still resident in system memory.

For each cell, a flag is used to indicate whether its corresponding data is resident in

video memory, AGP memory, or system memory. Thus, the size of the dataset that

can be rendered by the algorithm is only limited by the size of the system memory.

Cell 1

AGP
Memory

System
Memory

Video
Memory

Cell 2

Cell L

Buffer 1

Buffer K

Texture 2

Texture M

DMA

Texture 1

Buffer 20

Figure 2.8: The three-layer structure used to store the cell data.

The overview of our algorithm is shown in Figure 2.9. The min-max octree

construction, classification, and texture loading are performed in the pre-processing

step, which is view independent. The cell sorting algorithm organizes cells into lay-

ers. When a layer of cells are generated, it first checks whether all non-empty cells

reside in video memory. If any non-empty cell within the layer is not resident in

video memory, it is uploaded on-the-fly. Before uploading, it must be determined

which 3D texture object is used to store the data, and the current data stored in

that 3D texture is replaced. A replacement queue is used to hold the cells that are

already projected and can be switched out. When a layer of cells is sent to the

GPU, it cannot be put into the replacement queue immediately, because the frag-

ment program executed on the GPU might not have finished. The NVIDIA OpenGL

extension NV fence is used to determine whether the cell projection of a layer of

cells is finished on the GPU. This extension introduces the concept of a ”fence” to

the OpenGL command stream. Once the fence is inserted into the command stream,

CHAPTER 2. Volume Rendering CC Lattices without Scattering 44

it can be queried whether it is finished. After all OpenGL commands for cell pro-

jection of the layer of cells are issued, a fence is appended to the commands. Then,

the state of the fence is queried after every layer of cells is projected. If the fence is

completed, the cells before the fence are inserted into the replacement queue, and a

new fence is appended to the OpenGL commands stream. In case the replacement

queue is empty, a random 3D texture is chosen, of which the corresponding cell has

not been projected.

Octree Construction

Classification

Texture Loading

Are all cells
projected?

Exit

Generating a layer of
cells

Projecting the non-
empty cells in the layer

Yes

No

View
Independent

View
Dependent

Uploading non-resident
cells

Figure 2.9: Overview of GPU-based object-order ray-casting algorithm.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 45

Exiting Points
Computation

Depth Modification

Volumetric
Ray-Casting

Color
Accumulation

EPT

ACT

RIT

Pass 1:

Pass 2:

Pass 3:

Pass 4:

Occlusion Query

Figure 2.10: Cell projection pipeline.

2.3.2 Cell Projection

When orthogonal projection is used, every cell projection on the image plane

is given by the same hexagon shape per viewing direction. This projection can be

computed once, and then used as a template for all cells, which can be obtained by

translation. The rays intersecting with the cell are then determined by the cell pro-

jection efficiently. However, when perspective projection is applied, the situation

becomes more complicated. The cell projections on the image plane are different,

and the pre-computed template can not be used any more, which make the CPU-

based object-order ray-casting algorithm inefficient. The good thing is that the cell

projection can be efficiently implemented on the recent graphics card even when

perspective projection is used, which makes it possible to implement a fast object-

order ray-casting algorithm on the GPU.

The cell projection algorithm is implemented using fragment programs run-

ning on the GPU. When a cell is rendered, a number of fragments are generated,

which corresponds to the rays intersecting with that cell. For every non-empty

CHAPTER 2. Volume Rendering CC Lattices without Scattering 46

cell that has to be projected, the rendering pipeline is shown in Figure 2.10. The

algorithm consists of four rendering passes for each cell. The modelview matrix

and projection matrix remain unchanged for all four rendering passes. Hence, the

fragments generated at the same window position in the four rendering passes cor-

respond to the same ray intersecting with the cell.

OpenGL provides pixel buffers (pbuffer for short) for off-screen rendering.

Combined with the render texture extension, it allows the color buffer of the pbuffer

to be used for both rendering and texturing. Three pbuffers are used as rendering

targets for different render passes in the algorithm. The first pbuffer, the rendering

target of the first rendering pass, is used to store the exiting points of the rays that

intersect with the projected cell. It is also bound to a 2D RGB floating point texture,

named exiting points texture (EPT), which is accessed in the third rendering pass to

compute the length of each ray segment and normalized ray direction. The second

pbuffer is made up of a depth buffer and a color buffer, which are the rendering tar-

gets of the second and third rendering pass, respectively. The depth buffer is used

to implement early ray termination with the early-z test technique [73]. This op-

timization is valid only when the fragment program does not modify the fragment

depth. Thus, a separate rendering pass is used to modify the depth values based on

the opacity values. The color buffer is used to store the result of the ray integration,

which is bound to a 2D RGBA floating point texture, named ray integration texture

(RIT) and accessed in the last rendering pass. The third pbuffer is the rendering

target of the last rendering pass, which is used to accumulate the color values. It

is bound to a 2D RGBA floating point texture in the second rendering pass, which

is named color accumulation texture (CAT). Its opacity values are accessed in the

second rendering pass to modify the depth values accordingly for culling the frag-

ments whose corresponding rays have already saturated their opacity values. The

cell projection algorithm is described as follows:

• Pass 1 (Exiting Points Computation): In the first rendering pass, the exit-

ing points for the rays intersecting with the projected cell are computed by

only rendering the back faces of the cell. For each vertex of the cell, its tex-

ture coordinates in the corresponding 3D texture space are assigned as its

primary color. The fragment program is straightforward, which just passes

the fragment’s primary color as output. In the rasterization stage, the texture

CHAPTER 2. Volume Rendering CC Lattices without Scattering 47

coordinates for each fragment are interpolated, which are the coordinates for

the exiting point of the ray in the texture space.

• Pass 2 (Early Ray Termination): The opacity value of the fragment is ac-

cessed through the CAT. For any fragment whose opacity value exceeds 0.99,

the depth value is set to one. As a consequence, if the depth test is set to

GREATER, the corresponding fragment in the third rendering pass is discard.

• Pass 3 (Volumetric Ray-Casting): The front faces of the cell are rendered to

compute the entry points for the rays using the same method as Pass 1. In the

fragment program, the exiting point is obtained through accessing the exiting

point texture (EPT). The normalized ray direction and length of ray segment

are computed in the 3D texture space. The ray is then evenly sampled with a

sampling distance 0.5 to do ray integration. It is impossible to pre-compute

the gradient information and store them on the GPU for large datasets. Thus,

the gradient on each sampling point is calculated on the fly. The densities

at six neighboring positions are fetched to estimate the gradient with central

difference.

• Pass 4 (Color Accumulation): The front faces of the cell are rendered again to

generate corresponding fragments. In the fragment program, the color value

and opacity value of the projected cell are accessed through ray integration

texture (RIT), and returned as color output directly. OpenGL blending is

enabled in this rendering pass for accumulating the color and opacity values.

When all non-empty cells are projected, the CAT holds the final image. In

fact, the rendering Pass 2 is not need to be executed for every layer. In the current

implementation, it is enabled every other two layers.

Because the rendering context is switched three times during the cell projec-

tion, this may cause a significant loss in performance on current GPUs. In order to

decrease the number of rendering context switching, more cells need to be projected

in each rendering pass to improve the performance of the cell projection. Thus, a

cell sorting algorithm is devised, which allows to project a layer of cells each pass.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 48

2.3.3 Cell Sorting

For a given viewing direction vector in the octree coordinate system, the signs

of the coordinates determine the order in which the eight children are visited when

parallel projection is used. When perspective projection is used, visibility order of

the eight children can still be determined by the location of the camera relative to

the octree. However, the octree structure only allows to project at most four cells

in one pass for some viewing directions. As many cells as possible needed to be

projected in each pass to decrease the number of rendering context switching.

The main idea of the algorithm is to divide the cells into layers and only deter-

mine the visibility order of layers. The cells within the same layer can be projected

at the same time. It is observed that the cells that have the same distance to the cam-

era can be projected together. However, using the Euclidean distance from the cells

to the camera to do the cell sorting is inefficient. In order to improve the perfor-

mance, the Manhattan distance is used instead of the Euclidean distance. Moreover,

the Manhattan distance between a source cell and the other cells is used to group

the cells into layers. A source cell is determined first for a given view point, which

is the closet cell to the camera. Then a propagation method is used to compute the

Manhattan distance for the other cells. The cells that have the same Manhattan dis-

tance to the source cell are put into the same layer. In the following, the cell sorting

algorithm is first described in the 2D case, and then extend it to 3D.

In the 2D case, the whole object can be represented with a square, and the

camera can be set up around the square. The closest cell to the camera is determined

based on the camera’s location with respect to the square. If the camera is located at

the corner region as shown in the right image of Figure 2.11, the closest cell is the

corresponding corner cell shown in grey. Otherwise, the closest cell is on the edge

of the square that is opposite to the camera as shown in the left image of Figure

2.11. The closest cell can be obtained by shooting a ray perpendicular to the edge.

The intersected cell is the closest cell. If the ray intersects two cells, the two cells

are both used as source cell. In Figure 2.11, the Manhattan distance of each cell is

shown as the number in each square box. It is observed that the cells show a very

clear layer structure. It is also noted that each layer consists of more cells by using

the Manhattan distance than using the Euclidean distance. In fact, it is unnecessary

to explicitly compute the Manhattan distance. From the Figure 2.11, it is clear that

CHAPTER 2. Volume Rendering CC Lattices without Scattering 49

the source cell is made up of the first layer. And, the second layer consists of the

edge neighboring cells of the source cell. Thus, a propagation method is used to

group the cells into layers from the source cell C0.

1. Let C0.visited = 1 and put C0 into a list L0. Set the other cells to be un-visited.

2. For each cell Ci in the list L0

1. Obtain the four edge neighboring cells Ci j(j = 0,1,2,and3) of Ci. If

Ci j.visited is 0, let Ci j.visited = 1 and put Ci j into the list L1.

2. Project the non-empty cells of L0. If all non-empty cells are projected, the

algorithm is terminated.

3. Copy L1 to L0, and goto 2.

14 13 12 11 10 9 10 11 12 13

13 12 11 10 9 8 9 10 11 12

12 11 10 9 8 7 8 9 10 11

11 10 9 8 7 6 7 8 9 10

10 9 8 7 6 5 6 7 8 9

9 8 7 6 5 4 5 6 7 8

8 7 6 5 4 3 4 5 6 7

7 6 5 4 3 2 3 4 5 6

6 5 4 3 2 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

9 10 11 12 13 14 15 16 17 18

8 9 10 11 12 13 14 15 16 17

7 8 9 10 11 12 13 14 15 16

6 7 8 9 10 11 12 13 14 15

5 6 7 8 9 10 11 12 13 14

4 5 6 7 8 9 10 11 12 13

3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Figure 2.11: A layer of cells with same Manhattan distance can be projected together.

By using this sorting algorithm, each layer of the cells have the same Manhat-

tan distance to the source cell. The cells within the same layer do not occlude each

other, and can be projected at the same time. This algorithm can be easily extended

to the 3D case. In the 3D case, the closest cell still can be found efficiently based

on the region where the camera is located with respect to the volumetric dataset.

The propagation process is almost the same, except that six nearest cells are used

for propagation in the 3D case.

CHAPTER 2. Volume Rendering CC Lattices without Scattering 50

If the camera is located inside the dataset, the sorting algorithm becomes even

simpler. The source cell is the cell where the camera is located. Moreover, the order

information is only propagated along with the viewing direction of the camera. The

cell projection of the starting cell is implemented a little different from that of the

other cells. Only one rendering pass is needed to implement the projection of the

starting cell. The rendering target is the third pbuffer used for color accumulation.

The back faces of the starting cells are rendered to trigger the fragment program,

which also give the exiting points of the corresponding rays. The camera position

is passed to the fragment program as an uniform parameter. The ray direction is

computed by using the exiting points and camera position. Then, the ray is evenly

sampled to do ray integration from the camera position. Thus, the presented algo-

rithm can be used for fly-through applications, such as virtual colonoscopy.

2.3.4 Implementation and Results

Our object order ray casting algorithm is implemented using C/C++, and frag-

ment programs are implemented using Cg [92]. The experiments have been con-

ducted on a 3.0GHz Intel Pentium IV PC, with 2G RAM and a NVIDIA Quadro

FX 3400 graphics card. The information of the datasets used in the experiments is

listed in Table 2.3.

The size N of the cell is crucial to our algorithm. A smaller N is efficient for

empty space skipping, but inefficient for the cell projection executed on the GPU.

Because using a smaller N will increase the number of rendering context switches,

which decreases the performance. It also increases the number of texture object

switches because the cells are stored in separate 3D textures. A smaller N will result

in the projection of the cell covering less pixels on the image plane, which degrades

the efficiency of the volumetric ray casting because of poor caching. Moreover,

for each cell normalized ray direction and length of the ray segment are needed to

be computed for the rays intersecting with that cell. A larger N can decrease such

computation. In our current implementation, N = 64 for the purpose of the trade-off

between empty space skipping and cell projection on the GPU.

The full resolution Visible Human CT datasets is used to test the algorithm

with various transfer function. About half of the cells are empty and skipped after

CHAPTER 2. Volume Rendering CC Lattices without Scattering 51

Table 2.3: Datasets used in the experiments.

Dataset Dimension Size

Visible Male 512×512×1887 0.71GB

Visible Female 512×512×1734 0.65GB

Brain 1080×1110×158 0.93GB

(a) 3.1 fps (b) 1.8 fps (c) 3.5 fps

Figure 2.12: Visible Human CT datasets rendering results.

the classification. Thus, most cells are fitted into video memory and AGP memory.

Only a small number of cells are still resident in system memory. Our object order

ray casting algorithm is capable of rendering such large datasets at several frames

per second on a commodity PC. Some resulting images are shown in Figure 2.12,

which are all rendered at the resolution of 512× 1024. In Figure 2.12(a), the skin

of the Visible Male is shown with an opaque transfer function. In Figure 2.12(b),

the bone structure and some organs are shown using a semi-transparent transfer

CHAPTER 2. Volume Rendering CC Lattices without Scattering 52

function. In Figure 2.12(c), the bone of the Visible Female is shown with an opaque

transfer function. It is natural that higher rendering speed has been achieved with

the opaque transfer functions than a translucent transfer function. Because more

cells are skipped in object-space and fewer cells need to be projected.

Another segmented photographic volumetric dataset is used to demonstrate

the efficiency of the algorithm. Compared with the CT datasets, volume rendering

for photographic datasets requires an opacity transfer function in non-linear color

space, which is more complicated than that for CT datasets. The CIE Luv color

model is used to obtain a perceptually uniform representation of the color volume,

and assign an opacity value for each voxel using the method proposed by Ebert et al.

[31]. Thus, each voxel of this dataset contains RGB color, opacity and segmentation

information. In order to render segmented datasets, each cell is assigned with a

list of labels that are used for labeling the voxels in the cell. When an organ is

chosen for rendering, only the cells containing the corresponding label are loaded

into video memory for projection. These cells usually can be fitted into the video

memory without on-the-fly transferring data, which allows to interactively explore

the segmented organs. Figure 2.13 shows some resulting images rendered from

the segmented brain dataset with a resolution of 512× 512. A top view of the full

resolution brain dataset is shown in Figure 2.13(a). The segmented brain stem and

ventricle can be rendered in real-time shown in Figures 2.13(b) and (c), because all

the related cells can be fitted in video memory.

(a) 1.5 fps (b) 21.8 fps (c) 23.1 fps

Figure 2.13: Brain dataset of the Korean Visible Human.

Chapter 3

Volume Rendering CC Lattices with

Single Scattering

The volume optical model without scattering effects is simple and efficient to

implement. However, it does not have any shadow effects. In practice, shadow is an

important visual cue for many amorphous objects such as clouds, and smoke. This

kind of natural phenomena is becoming more and more important in recent years.

The game and movie industry need physically based flow simulation to generate

realistic scenes with wind, and flowing fluids. Moreover, scientists in various fields

such as mechanical engineering requires physically accurate simulation and visu-

alization techniques to understand the characteristics and properties of flows in the

real world. In this chapter, algorithms for rendering volumes with single scattering

on CC lattices are presented.

The volumes being rendered are produced with the Lattice Boltzmann Method

(LBM), which is a relatively new computational fluid dynamics (CFD) model

[147, 169]. Inspired by cellular automata, it models Boltzmann particle dynam-

ics on a lattice [99]. The Boltzmann equation expresses how the average number

of flow particles with a given velocity changes between neighboring sites due to

inter-particle interactions and ballistic motion. The LBM is second-order accurate

in both time and space, and thus in the limit of zero-time step and lattice spacing,

it yields the Navier-Stokes equation for an incompressible fluid. The LBM uses 3D

cubic lattices of various link configurations. Figure 3.1 shows two 3D lattices used

53

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 54

in LBM; both lattices have the same configuration of sites but different link config-

urations connecting neighboring sites. The D3Q13 LBM has 12 linked neighbors

for each site, while in the D3Q19 LBM, each site has 18 linked neighbors. The

attributes associated with each lattice site are the particle distributions representing

the probability of particle presence with a given velocity. Particles stream synchro-

nously along lattice links in discrete time steps. Between streaming steps, they

undergo collision.

ic
if

(a) D3Q13 lattice.

ic
if

(b) D3Q19 lattice.

Figure 3.1: (a) D3Q13 and (b) D3Q19 LBM.

The particle distribution fi is associated with the link i corresponding to the

velocity vector ci. The macroscopic fluid density ρ(x, t) and velocity u(x, t) are

computed from the particle distributions:

ρ =
∑

i

fi (3.1)

u =
1

ρ

∑

i

fici. (3.2)

With the BGK collision model [169], the Boltzmann dynamics can be represented

as a two-step process of collision and ballistic streaming. Taken together they can

be represented as:

fi(x+ ci, t
+) = fi(x, t)−

1

τ(fi(x, t)− f
eq
i (ρ,u))

(3.3)

fi(x+ ci, t +1) = fi(x+ ci, t
+) (3.4)

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 55

where the local equilibrium particle distribution is given by

f
eq
i (ρ,u) = ρ(A+B(ci ·u)+C(ci ·u)2 +Du2). (3.5)

The constant τ represents the relaxation time scale determining the viscosity of the

flow, while A-D are constant coefficients specific to the chosen lattice geometry.

The equilibrium distribution is a local distribution whose value depends only on

conserved quantities: mass ρ and momentum ρu. The attributes of lattice site x are

updated synchronously with the above equations at each time step t.

The LBM method excels due to its very efficient and simple computing

process, unmatched by solver-based CFD simulators. This simplicity also makes

the LBM very amenable to GPU acceleration [35, 81, 84, 128, 159, 160].

Because the LBM is defined on 3D CC lattices, the simulation results are 3D

volumes defined on CC lattices. Several methods presented in this chapter uses the

GPU and GPU cluster for volume rendering with single scattering. In addition, a

ray tracing method for continuous ray refraction on the CC lattice is developed to

render the heat shimmering and mirage phenomena.

3.1 Dispersion Visualization with Half Angle Splat-

ting

In this section, a system is presented for visualizing the propagation of dis-

persive contaminants with an application to urban security [128]. In particular, air-

borne contaminant propagation in open environments characterized by sky-scrapers

and deep urban canyons is rendered. The data is the simulation result based on the

Multiple Relaxation Time Lattice Boltzmann Model (MRTLBM), which can effi-

ciently handle complex boundary conditions such as buildings. In the simulation,

massive amounts of results are generated. These numbers are hard to understand

by most scientists. With visualization, the user can better analyze the simulation

results of flow fields through streamlines. Realistic visualization in real time can

help trainees and emergency services personnel (end users) better understand the

situation and make decisions in real events. The visualization has two parts. The

first is to render buildings with textures. Because the simulation is executed on the

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 56

GPU and most of the texture memory is used to store simulation data, there is little

room to store textures of the buildings. Instead, noise textures and a smart shader

are used to help texturing the buildings. The second part of the visualization is to

render smoke with self-shadows in real-time.

3.1.1 Texturing Buildings

Textures for city models are usually captured together with the geometry. For

example, Wang et al. [156] have generated both geometry and texture from a large

set of registered images taken automatically. On the other hand, Früh and Za-

khor [39] have implemented texture capturing as a separate video based process

parallel to geometry scanning. All these methods, however, generate huge amounts

of texture data since every building gets its own texture. There are several ap-

proaches to reduce the number of textures. Wonka et al. [170] have done so by

creating a detailed semantic based geometry using grammars, which is textured

with few repeated textures. Legakis et al. [77] have concentrated on brick patterns

by synthesizing textures using a cell based method. Another approach common

to commercial solutions is to concentrate on landmarks, which are postprocessed

by hand using CAD applications or taken from libraries. Other parts of the city

model are left without texture. In contrast, texturing is not part of the model gen-

eration process in the presented system. Instead, pictures of the real buildings are

incorporated into the geometry.

The city model consists of plain geometry only. To improve the visual appear-

ance, building façade textures are used to resemble the look of the actual city. This

leads to two problems: the textures themselves need to be created and rendered and

the geometry has to be augmented with texture coordinates.

Façade textures are prepared by hand from pictures taken on site. Since texture

memory is a scarce resource, only a very small amount of actual distinct façade

textures can be used. The trade-off is between a larger number of low resolution

textures and a smaller number of high resolution textures. Since blurry artifacts

introduced in the former case are more disturbing than visual repetitiveness in the

latter one, a few high resolution textures are used.

To reduce the repetitiveness of this approach, the programmable fragment

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 57

shading capability of modern graphics hardware has been exploited by implement-

ing a texture-aging-and-variation shader. This shader changes the overall appear-

ance of a façade texture by adding dirt and cracks without affecting major features

such as windows. To do so, it needs an appropriate opacity map stored in the alpha

channel of the façade texture. In total it uses five textures per façade, one of which

is the façade texture itself.

Since texture memory is the most important constraint, the shader and its data

are designed for versatile use. Thus, information about color and intensity of dirt

added to the façade is split into color parameters and grey scale textures. This

enables the shader to produce very different results with the same textures, and thus

reduces the overall number of textures needed.

For each façade three grey scale “noise” textures are used to add three dif-

ferently colored layers of dirt. The term noise is quoted since statistical or Perlin

noise [121] usually does not give best results. Patterns of corrosion or erosion found

in nature are more suitable, as shown in Figure 3.2. Dirt is added by means of color

replacement. For each dirt layer the shader has a base color and a dirt color. The

more the local original façade color is similar to the base color, the more the actual

fragment color is dragged towards the dirt color. The similarity is attenuated by the

respective noise texture.

(a) Plain façade. (b) Variations with Perlin noise. (c) Variations with corrosion patterns

Figure 3.2: Façade variation using one set of textures.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 58

Additionally, one more grey scale texture is used to attenuate the façade tex-

ture’s intensity directly, simulating cracks. Bump maps were tested for this purpose,

but results indicated that, besides the necessary three color channels instead of one,

high resolution maps are needed in order to make them visually effective. Again,

for versatile use a parameter attenuates the impact of the intensity texture.

Due to the layering, the perceived final texture resolution is higher than the

individual layer resolutions. Since the façade texture already has high resolution,

the noise textures do not need to (see Figure 3.2). Additionally, due to the nature

of a noise texture it can be shrunk and tiled across the whole facede without ob-

vious artifacts. Shrinking factors up to 2 give good results. Thus, the impact of

noise textures on texture memory can be kept to a minimum without sacrificing

effectiveness.

The second problem to be addressed is texture coordinate generation. This

includes the following steps: separation of buildings into façades, choice of a façade

texture, and finally the actual texture coordinate generation for all five textures per

façade.

The first step has no general solution. Its implementation depends highly on

the input geometry. In the city model, buildings generally follow a box shape. This

allows to associate the building’s triangles with a façade based on their normals.

Therefore, the k-means clustering algorithm [3] is used to get four groups of simi-

larly aligned triangles. These four groups form two opposite wide façades and two

narrow ones.

Subsequently, a façade texture has to be chosen. Since a limited number of

original façade textures are available, they must be fit to multiple buildings. This is

done by first registering the prepared façade textures with their respective original

buildings to get an estimate of the respective physical floor height h f and window

width w f . The façade texture assigned to a building is the one that can be fitted best

using only multiples of h f and w f . The four noise textures are chosen randomly

from a given set.

Finally, texture coordinates and shader parameters have to be generated. The

façade texture coordinates are computed directly from the number of floors and

windows that the chosen façade yields. Noise textures on the other hand are less

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 59

restricted. To increase vividness of the result, starting from the façade texture coor-

dinates, the coordinates are transformed randomly using rotation, translation, and

scaling in a given range. The shader parameters are generated randomly as well ex-

cept for the base colors, which are attributes of the façade textures. Dirt colors are

varied in the red and green channels only since blue colors are not found in natural

dirt.

(a) Plain facade closeup view. (b) Facade variation closeup

view.

Figure 3.3: Closeup view using nearest neighbor interpolation.

3.1.2 Smoke

The LBM simulation computes the position and velocity of smoke particles

with the coarse interactions of the fluid with the scene. The particles can be rendered

using OpenGL points after reading back the positions from the GPU to the main

memory and sorting them into slices by the CPU. Each particle is projected onto the

image plane as a textured splat, which can be accomplished on graphics hardware

efficiently. Textured splats add the small-scale interactions and visual details to the

final image. However, the original textured splats method does not take into account

the shadows among splats, although the shadows of all the splats can be cast onto

other scene objects. Kniss et al. [69] have proposed a shading model for volumetric

shadows and translucency. Instead of slicing the volume in the view direction, this

method adopts the half angle slicing technique, as shown in Figure 3.4. The angle

between the light direction l and the half angle direction h and the angle between

h and the view direction (or inverted view direction if the angle between l and v is

larger than π
2
) v are both θ. For each slice, the light map is computed. All slices are

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 60

projected to the image plane in a front to back or back to front order as in texture

based volume rendering, using a light map for shading. In Kniss et al.’s model, the

volume is stored in a 3D texture and the 3D texture hardware can be exploited to

reconstruct each slice efficiently. In this case, the volume is a series of particles and

the slices are reconstructed by splatting.

Figure 3.4: Half angle slicing.

Fig. 3.4 demonstrates the smoke rendering algorithm. First, the view direction

v and the light direction l are determined and the half direction h is computed. To

reconstruct the volume, the half space coordinate system must be established. h is

the z-axis. The cross product of h and v is the x-axis. The origin is the center of

the bounding box of the simulation. Then, the bounding box of the volume in the

half space coordinate system is computed. This bounding box is sliced into n slabs

with slicing planes perpendicular to the z-axis of the half space coordinate system.

Thus, each slab has a start and an end z-value. For each particle, the z coordinate

in the half space is computed and used to sort it into one slab. This bucket sorting

costs O(m logn) time, where m is the number of particles. In each slab, the particles

are rendered using the textured splats method into the density map for the current

slice. The slice is projected onto the image plane and its density map and light map

are used for shading. In the half space, the light map of the next slice is computed

by attenuating the current light map with the density map.

Because a particle is treated as a Gaussian sphere of diameter d, the final area

covered by one splat on the image plane should be a circle. Therefore, the area of

one splat projected onto the slicing plane is an ellipse with minor axis of length d

and major axis of length d/cos(θ), where θ is the angle between slicing plane and

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 61

viewing plane. In the half space coordinate system, the major axis is parallel to the

y-axis and the minor axis is parallel to the x-axis. cos(θ) is the dot product of the

half direction and the view direction. When projected onto the light plane (plane

perpendicular to the light direction), the area covered by this ellipse is a circle of

diameter d. This is because the angle between the light plane and the half plane is

also θ. Therefore, the light transport is correctly computed in the half space. Figure

3.5 shows how the Gaussian reconstruction kernel for one splat is projected on the

three planes.

Figure 3.5: The projected spherical gaussian kernel on different planes.

3.1.3 Results

Figure 3.6: Snapshots of smoke dispersion simulation in the West Village area of New

York City.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 62

Figure 3.6 shows several snapshots of the dispersion simulation procedure at

time steps 247 and 319. Figure 3.7 shows closeup views of the buildings and smoke

during the simulation. Figure 3.8 shows the simulation results of a 10-block area

rendered by our visualization program, where red (blue) streamlines indicate up-

ward (downward) streaming. The LBM model consists of 90×30×60 lattice sites

with lattice spacing of less than 5 meters. The building GIS models are at 1 meter

resolution in the West Village. The smoke particles with initial temperature and ve-

locity are generated at the upper left corner of the bounding box. The air flows from

left to right. The 6 images are snapshots of the scene at 6 different time steps. For

a 640×640 image, each time step, the simulation costs 81 milliseconds, rendering

the buildings costs 16 milliseconds, and rendering smoke costs 31 milliseconds.

For texturing our program uses 4 different façade textures of size up to 512×
512 consuming 2.25MB in total. Additionally 10 different noise textures of size

256× 256 are used, adding 640KB. Thus, less than 3MB of texture memory are

used for visualizing the buildings.

Figure 3.7: Closeup views of buildings and smoke.

3.2 Smoke Rendering with Lighting Volume

In physically-based flow modeling, previous work usually employs a uniform

grid to discretize the simulation domain, and then applies numerical computations

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 63

Figure 3.8: Smoke and streamlines representing dispersion simulation results in the West

Village area of New York City.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 64

to solve the Navier-Stokes equations. For large-scale simulations, it is inefficient to

maintain a uniform grid with high resolution spanning the entire domain. To achieve

interactive performance and at the same time optimize the use of resources, the

multi-resolution LBM has been exploited that offers high resolution computation

in areas of interest (for example, near a solid body) and places low resolution grids

in other areas or faraway boundaries. Interfaces between the grids with different

resolutions are properly treated to satisfy the continuity of mass and momentum.

This level-of-detail scheme is implemented by a 3D block-based grid structure

consisting of a coarse grid and one or more fine grids. The global flow behavior

in the whole simulation space is roughly modeled by the LBM simulation on the

coarse grid with relatively low consumption of resources. For regions of interest,

the LBM computation is performed on the corresponding fine grids superposed on

the coarse one. These grids are implemented as separate blocks instead of tree-style

recursive structures. The global simulation on the coarse grid determines the flow

properties at grid interfaces and then defines boundary conditions of the fine grids at

each time step. Therefore, the simulation on the fine grids obeys the correct global

flow behavior. Meanwhile, it supplies rich visual details in the regions of interest by

utilizing small grid spacing and small time intervals, and by introducing vorticity

confinement. A fine grid is easily initiated and terminated at any time while the

global simulation is running. Moreover, a fine grid is able to move along a moving

object, to model small-scale turbulence caused by the object-fluid interactions.

The multi-resolution LBM computes the flow field in the simulation domain

[179]. When a fluid source (for example, a smoke inlet) is placed and begins to

release smoke, the smoke density constructs a scalar volumetric dataset. The evo-

lution of this density volume is modeled by an advection-diffusion equation and

computed by a back-tracing algorithm based on the method of characteristics. The

monotonic cubic interpolation [37] is used for computing the back-tracing density

values at positions off the regular grid sites. This high-order interpolation scheme

slows the generation of the density volume, however, it fixes the over-shooting prob-

lem of the trilinear interpolation method and provides clearer visual details.

Because the flow field is computed on the adaptive structure, the velocities

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 65

used in the back-tracing algorithm are chosen from the computation results of dif-

ferent grids. Obviously, the velocities computed in the fine grids have higher pri-

ority than those of the coarse grid. We use the rectangular bounding box of the

fine grid to find if the back-tracing point is inside or outside of the fine grid. Then,

the velocity computed from the fine grid or from the coarse grid are used in back-

tracing, respectively. Consequently, the smoke density values in regions of interest

are computed and stored in a higher-resolution volume, which provides more details

of the smoke dispersion. We have also implemented the back-tracing algorithm and

the monotonic cubic interpolation on the GPU. This greatly accelerates the smoke

volume generation compared with the CPU version.

Volumetric objects in the real world, such as smoke, and gas, are illuminated

by light sources. The global illumination of participating media requires substantial

computing resource due to its intrinsic complexity and it cannot achieve interactive

speed in our case. Therefore, ray-tracing with single scattering is used to render

the volume, which computes shadows - one of the most important illumination

effects. The presented method is based on the method suggested by Kajiya and Von

Herzen [67], which is a two-step numerical algorithm for volume rendering with

self-shadows.

The algorithm has two steps: (1) a lighting volume is calculated that stores the

light intensity of each voxel; (2) one ray is cast from each pixel on the image plane

to compute the color of that pixel. As shown in Figure 3.9, the lighting volume (blue

box) is oriented facing the light source so that the light direction is perpendicular

to the lighting volume slices (green lines), and tightly bounds the density volume

(black box). For point vi on slice i, its lighting intensity is calculated by attenuating

the lighting intensity of vi−1 on slice i− 1, where vi−1 is the projection of vi on

the slice i− 1 and the straight line pass through vi and vi−1 is parallel to the light

direction.

In order to achieve interactive speed, it is imperative to accelerate the render-

ing process with the GPU. In the first step, the lighting volume is computed slice

by slice. The pixels on every slice are calculated in parallel. The first slice is ini-

tialized with the intensity of the light source. Every other slice is calculated by

attenuating the intensity of the previous slice with opacities defined by the density

values interpolated from the density volume. In the ray-casting pass, each ray starts

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 66

Density
volume

Lighting
volume

i
i-1

View point

ray

Entry point

Exit point

Light
direction

Figure 3.9: Lighting volume calculation.

Table 3.1: Smoke rendering performance.

Experiment Volume Resolution Rendering Time (msec)

Figure 3.10 82×82×82 52

Figure 3.11 100×50×50 42

Figure 3.12 50×50×50 36

from the front faces of the volume bounding box and stops at either the back faces

or the surface of the polygonal objects inside the volume. A face of the bounding

box is a front (back) face if and only if the dot product of its normal and the view

direction is less (greater) than 0. To calculate the termination points, the polygo-

nal objects and the back faces are projected onto the image plane with depth test.

This method computes the depth information of the possible ray termination points.

When a ray is cast into the volume, color and opacity values are accumulated at

each sampling point, where the lighting intensity is interpolated from the lighting

volume for shading.

Figures 3.10, 3.11 demonstrate the rendering results of simulating smoke pass-

ing through a sphere at different time steps, with a fine grid surrounding the sphere,

superposed on the coarse grid. In Figure 3.12, the fine grid is controlled by the user.

(a) At first, no fine grid is used; (b)-(c) A fine grid is used to model small-scale

details around the sphere; (d) The fine grid is terminated and small-scale details

disappear. The rendering performance is reported in Table 3.1.

The speed of the multi-pass lighting algorithm is reduced because every slice

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 67

(a) (b) (c)

Figure 3.10: Smoke passing a static sphere.

(a) (b) (c)

Figure 3.11: Smoke passing a sphere moving towards the smoke inlet.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 68

(a) (b)

(c) (d)

Figure 3.12: Smoke passing a sphere with user controlled fine resolution grid.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 69

is written to the framebuffer, copied to the 3D texture and read back in the frag-

ment program. Moreover, the OpenGL pipeline is stalled at the end of every pass

waiting for texture copy. Therefore, a new method with the NVIDIA CUDA toolkit

has been implemented. CUDA uses the C programming language with some ex-

tensions for multi-threading computation on GPU. It allows the program to write

data to multiple memory addresses in one thread (scattering), which is the feature

needed to compute the lighting volume more efficiently. For a lighting volume of

resolution x× y× z, a CUDA kernel program is called with x× y threads. Each

thread calculates one lighting ray. z voxels on a single lighting ray are calculated

in a loop of the kernel program and written to the lighting volume. The kernel

program is called only once and the entire volume is obtained. Therefore, it is

more efficient than the multi-pass OpenGL algorithm. Currently, CUDA cannot

share texture with OpenGL. Thus, the resulting lighting volume is copied from the

CUDA memory to an OpenGL pixel buffer object and then to a 3D texture. This

procedure is extremely fast because only high-bandwidth GPU memory is involved

and the comparatively slower PCI-express bus is not used for data transfer.

In the ray-casting step, previous methods trace rays in both the density volume

and the lighting volume. Each ray needs to maintain the current sampling position

and ray direction in both volumes. At each sampling point, the program calculates

two trilinear interpolations, which is inefficient. We propose a new method of trac-

ing rays only in one volume. Recall that when calculating the lighting volume, the

density volume must be sampled with trilinear interpolation. We store the density

s(p) along with the light intensity L(p) for each point p in the lighting volume. The

light texture is thus changed to store both light intensity and density. Krüger and

Westermann [73] have implemented ray-casting for volume rendering on the GPU

with empty space skipping and early ray termination. However, empty space skip-

ping requires an additional data structure (such as min-max octree) to be calculated

and stored on the GPU. Our simulation generates different density volumes in each

step. Calculating the data structure for empty space skipping costs more time than

rendering one frame. The dispersion volume is highly transparent and the opacity

of most rays is not saturated. Early ray termination is not efficient in this case.

Therefore, our ray-casting algorithm is a simple one-pass algorithm without empty

space skipping or early ray termination.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 70

The CUDA based method has been tested to render the LBM simulation re-

sults using a model of New York City from 7th Avenue to 6th Avenue and from 59th

Street to 57th Street. This small region contains 6 blocks and tens of buildings. The

test platform is a PC with a Geforce 8800 GTX graphics card with 768MB memory

and two Xeon 3.6GHz CPU (although the experiment code is not multi-threaded).

The resolution of the simulation grid is 128×64×64. Figure 3.13 shows the navi-

gation snapshot images of resolution 600×800 inside the city blocks. The average

time for producing one frame is 57 milliseconds, in which the simulation costs 30

milliseconds, rendering smoke costs 7 milliseconds, and rendering buildings and

roads costs about 20 milliseconds.

3.3 Volume Rendering for Urban Security on GPU

Cluster

In an emergency of airborne hazardous releases in urban environments such

as New York City, quick response is necessary to save lives and reduce property

damages. Emergency management personnel need to get the information of plumes

in real-time for possible remediation and evacuation. Furthermore, it is extremely

helpful to predict the propagation of airborne contaminants, even hours and days in

advance running the simulation in accelerated real-time. The potential dispersion

propagation under different conditions can also be used for training purposes. In

practice, the airborne releases are moved by the air flows and propagate in the en-

vironment. The flow field of the atmosphere high above the buildings is roughly

described by the local meteorological conditions. The meteorological data usu-

ally has the resolution in about several to 30 kilometers and the frequency in many

minutes or hours. This very coarse data is hard to be used for estimating the disper-

sion propagation, because of its low resolution. The complicated hypsography in

urban environments characterized by sky-scrapers and deep urban canyons makes

subtle changes in the flow field in the scale of several meters, which is not captured

in the meteorological model. The flow details in this fine resolution have great im-

pact on the dispersion propagation and cannot be neglected. Therefore, a system

has been developed based on LBM, which uses the meteorological data or other

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 71

Figure 3.13: Snapshots of navigation in New York city blocks on a single GPU.

user defined data on a very coarse grid as the boundary condition of the simulation.

However, it simulates the flow in the fine resolution at several meters and tracks the

dispersion in the detailed flow field.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 72

3.3.1 Background

Propelled by the fast advancement in recent years of the GPUs, modern GPU’s

high computational-power, and high-level programming interface, general-purpose

computation on GPUs (GPGPU) have become an active research area. Researchers

have mapped several simulations, linear algebra operations, and a broad range of

other computations on the GPU [45, 118]. Many of these GPU-based implemen-

tations have achieved around an order of magnitude speed-up over their software-

version counterparts. Some researchers have also used multiple GPUs either in a

GPU cluster [35, 57] or on a multiple-graphics-card PC [40, 48] to solve larger-

scale computations. In Section 3.1, the simulation results were read out from the

GPU, stored to disks and later rendered off-line. In this section, a more compli-

cated volume rendering is presented for multi-resolution LBM simulation on the

GPU cluster. The real-time online rendering is coupled with the simulation on the

same GPU cluster. In so doing, there is no need for reading out the whole simula-

tion volume from the GPUs and dumping them to disks, further allowing the user

to monitor the simulation in running-time.

Since the simulation data is located on a cluster of GPUs, the GPUs are also

used to render the volume and each GPU renders a partial frame for one subvolume.

Many methods have been proposed for compositing the partial frames with general

or special-purpose graphics hardware for distributed volume rendering [58,87,110].

In this section, the compositing tree [141] is used for better network performance.

The simulation computes the flow field in each step and traces the dispersion

particles to generate density volumes. Although the flow field can be visualized as

streamlines, realistic rendering of the dispersion volume gives the user an intuitive

understanding of the dispersion distribution. The buildings of the simulated urban

area are represented by polygons and textured with facadlets created from photos

of the real buildings. The final result composites the dispersion volume and the

buildings with their facade.

3.3.2 Volume Rendering on a GPU Cluster

The density volumes generated in the simulation are distributed on the cluster

nodes. Transferring volume data to a single node for rendering is inefficient and

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 73

unnecessary. Because the simulation is implemented on GPUs, the volume can also

be rendered on the same GPUs to avoid transferring large amounts of data between

GPUs and main memory. In the rest of this subsection, the rendering algorithm

on a single GPU is explained, followed by the discussion of the architecture of

distributed volume rendering on a GPU cluster.

The algorithm on a single GPU is similar to the one described in Section 3.2

except the ray casting step. In the ray-casting step, previous method traces rays

in both the density volume and the lighting volume. Each ray needs to maintain

the current sampling position and ray direction in both volumes. At each sampling

point, the program calculates two trilinear interpolations, which is inefficient. In

this section, a new method of tracing rays only in one volume is presented. Re-

member that when calculating the lighting volume, the density volume must be

sampled with trilinear interpolation. Density s(p) is stored together with the light

intensity L(p) for each point p in the lighting volume. This can be easily achieved

by saving density s to the alpha bits of the framebuffer. The light texture is thus

changed to store both light intensity and density. The lighting volume calculations

is summarized as follows:

1. The light coordinate system is constructed with z being the light direction and

its origin is the center of the density volume. The resolution of the lighting

volume Resl(x,y,z) is calculated according to the user defined sampling rate

and the size of the density volume bounding box. An off-screen pbuffer is

created with the lighting volume slice resolution.

2. The polygonal mesh of the buildings is transformed to this space and pro-

jected onto the pbuffer. Because only depth is needed in calculating the light-

ing volume, modern GPUs can process the mesh very fast.

3. The density volume and lighting volume are stored in two 3D textures tex-

Density and texLight respectively, and the transfer function is stored in a 1D

texture texTransFunc. Initialize the light intensity of slice 0 with the intensity

of light source. Sample the texDensity and save it to slice 0. Let i=1.

4. For slice i, draw a rectangle of the pbuffer size associated with the proper

coordinates in the texDensity and texLight. The fragment program retrieves

the light intensity L and density s of the previous slice. Then, s is translated

to opacity τ by lookup texTransFunc. Attenuate L with s to get the light

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 74

intensity L′ of the current pixel. Sample texDensity for the density s′ of the

current pixel. Output s′ and L′ to pbuffer.

5. Copy the contents in pbuffer to slice i of texLight.

6. i = i+1. If i < Resl.z, go back to step 4.

Krüger and Westermann [73] have implemented ray-casting for volume ren-

dering on the GPU with empty space skipping and early ray termination. How-

ever, empty space skipping requires an additional data structure to be calculated

and stored on the GPU. The simulation generates different density volumes in each

step. Calculating the data structure for empty space skipping costs more time than

rendering one image. The dispersion volume is highly transparent and the opacity of

most rays is not saturated. Early ray termination is not efficient in this case. There-

fore, a new ray-casting algorithm has been designed without empty space skipping

and early ray termination for this application. The algorithm [73] draws the front

faces of the volume bounding box to trigger the fragment program, which does not

work when the image plane intersects with the front face. It also draws the intersec-

tion polygon of the image plane with the bounding box. The algorithm further [73]

reads the direction of the rays in every rendering pass, which flushes the volume

data in the texture cache. The proposed algorithm calculates the direction in the

vertex program and normalizes the direction vector in the fragment program. Al-

though it uses 3 additional instructions for vector normalization, it reduces memory

bandwidth consumption. In this application, the result of volume rendering must be

correctly blended with the mesh of the urban environments. Starting from the im-

age plane, each ray may or may not enter the volume before reaching the building

surface. The occluded part of the volume need not be sampled in the volume ren-

dering. This can be accomplished by comparing the polygon depth with the depth

of the sampling point in the fragment program. The early z test is exploited to cull

occluded fragments, which requires writing one fragment for one sampling point.

In general, our ray-casting algorithm on the GPU has the following steps:

1. Draw the mesh and the back face of the density volume’s bounding box and

transform the vertices to the eye space in the vertex program. Use depth test

to store the nearest fragment’s depth value of each pixel in a 2D texture named

texExit, which is the end point of the ray.

2. If the bounding box intersects with the image plane, calculate the intersection

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 75

polygon. This polygon and the front face of the bounding box are the proxy

geometry. Draw the proxy geometry with the same vertex program used in

step 1. The generated fragments are the start points of the rays. For each

pixel, the fragment program retrieves the end point depth from texExit, which

is subtracted from the input depth. The result is the length of the ray segment

inside the volume and not occluded by the mesh. This length is divided by

the step size to calculate the number of sampling points or steps on the ray

segment. The result is normalized by the maximum possible sampling points

m and stored in the depth buffer.

3. Calculate the coordinates of the proxy geometry vertices in texLight. Also,

calculate the view point coordinates eyeLS in the texLight, which is a uniform

parameter in the vertex program of the next step.

4. Given the maximum number of steps n of the rays, draw the proxy geom-

etry n times. In the vertex program, calculate the ray direction dirLS with

input coordinates posLS in texLight and eyeLS. Output posLS, dirLS and

the current step number j as texture coordinates. The output clip coordi-

nate zc is carefully computed by zc = (2 j
m
− 1)wc so that the normalized

device coordinate zw (or depth) is
j

m
. The meaning of zc, zw are defined in

OpenGL specification. If a ray segment has k(k < n) sampling points, the

(k + 1)th to nth fragments of the pixel are culled by early z test. In the frag-

ment program, normalize the input dirLS and calculate the sampling position

pos=posLS+dirLS*stepNumber*stepSize. Fetch the light intensity and den-

sity from texLight to calculate the color and opacity. The color and opacity

are written to the framebuffer for front-to-back compositing.

The described algorithm does not calculate fragments occluded by the mesh or out-

side the light volume and thus is very efficient.

The GPU cluster has one master node, a group of simulation and rendering

nodes (i.e., work nodes), and a group of compositing nodes. Figure 3.14 shows

the architecture. The master node sends a message of rendering parameters such

as a transformation matrix to rendering nodes in each frame. The rendering nodes

exchange light images in a chain. Each rendering node renders a partial frame of

the density volume of one block. The generated images are read from the GPU and

transferred to the compositing nodes on the lowest level of the compositing tree.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 76

Render 0 Render 1 Render 2 Render 3

Master

Composite 1

Partial frame Light image Control message

Composite 2

Composite 0

Figure 3.14: A sample GPU cluster of 4 work nodes for simulation and rendering, 3 com-

positing nodes and 1 master node.

Every compositing node receives two partial frames and composites them together

on the GPU. If the compositing node is not the top level node, then the compositing

result is sent to the parent node. The master node is responsible for rendering the

buildings with facadlets and compositing them with the volume rendering result.

The simulation of flow field partitions the space into x× y× z blocks of the

same resolution, each assigned to the GPU of one node. A sort-last strategy for

distributed volume rendering has been exploited. The first task is to compute the

lighting volume of each block. Due to space partitioning, a block might be occluded

by other blocks in the light direction. The light intensity of the blocks first slice can-

not be initialized with the light source. Instead, it is the last slice of the neighboring

block in the light direction that decides the initial lighting. In the worst case, one

block can be occluded by O(max(x,y,z)) blocks. This means that the lighting vol-

ume of certain blocks cannot be computed before the computation of O(max(x,y,z))

blocks finishes, which is inefficient. It is observed that the simulation traces the

dispersion in the flow field and each simulation step corresponds to a short time in

the real world. Therefore, the density volume does not change too much in several

steps. The algorithm sorts the blocks in ascending order Bi(i = 0,1, ...,x×y×z−1)

of the distance from block centers to the light source. For each frame, the last slice

of block Bi’s lighting volume is read from the GPU to compute the light intensity

of the first slice of Bi+1. The result is transferred to the node of block Bi+1. This

method is not 100% accurate but still produces visually pleasant results. Initially,

every node gets one copy of the geometry of buildings and calculates the same

shadow volume independently. The shadow volume is stored on the GPU and used

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 77

in the following lighting volume calculation, as long as the light direction does not

change.

As demonstrated in Figure 3.15, each block is occluded by one or more blocks

from the light except block 1. The blue dashed boxes are the lighting volumes

of block 0 and 1. The red triangle of lighting volume 1 is outside block 1 and

the density is 0 inside it. Therefore, the light intensity of the last slice of lighting

volume 1 is equivalent to that of the interface (brown line) between block 0 and

1. Similarly, the green triangle of lighting volume 0 is outside block 0. The light

intensity on the brown line is equivalent to that of the first slice of lighting volume

0. Here, the first slice of lighting volume 0 is decided by the last slice of lighting

volume 1.

1

2 3

Image Plane 0

Figure 3.15: Example configuration of 2×2 nodes in 2D.

There are two types of network communication for rendering except for the

control messages from the master node to the rendering nodes. One is transferring

partial frames, the other is lighting images. To exploit the parallelism between

network communication and GPU computation and rendering, the non-blocking

message passing routines of MPI are used. Each compositing node has two fan-in

and one fan-out, which reduces the possibility of network collision.

3.3.3 Results

The simulation and visualization system is demonstrated with the Times

Square area in New York City, from 8th Avenue to Park Avenue and from 42nd

Street to 60th Street. This region is approximately 1.46 kilometers×1.19 kilome-

ters and has 75 blocks and more than 800 buildings. The GPU cluster is composed

of 16 simulation/rendering nodes, 15 compositing nodes and 1 master node for a

user interface. Each node is equipped with two 3.2GHz Xeon CPUs, but only one

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 78

is used. Each node has 2GB memory and one NVIDIA QuadroFX 4500 GPU of

512MB graphics memory. The nodes are connected with a Gigabit Ethernet. Note

that the compositing nodes have the same configuration as computation nodes, al-

though they are used mainly for their network bandwidth. The finer grid of the

simulation is arranged to tightly enclose the Times Square area and its resolution is

320×100×280 at the grid spacing of 4.25 meters. The spacing of the coarse grid

is twice that of the finer grid and the resolution is 180×100×160.

Figure 3.16 shows the overview of the simulation results at different time steps,

where the wind is blowing from the right to the left. Figure 3.16(a)-(c) are the snap-

shots during navigation at different time steps. Figure 3.16(d)-(f) shows the bird-eye

views at 3 ascending time steps. For each step, the simulation on the GPU cluster

runs in 485 milliseconds including 2 steps in the finer grid and 1 step in the coarse

grid. Thus, it computes 42.9 million LBM cells per second with 16 nodes. As a

comparison, the previous system [35] calculates 49.2 million LBM cells per second

on 32 nodes without integrated rendering. Note that the system uses ZippyGPU for

fast development and can be further optimized. The volume rendering costs 107

milliseconds and the most time-consuming step is calculating the lighting volume.

Because current GPUs do not support rendering to 3D texture, each slice of the

lighting volume must be calculated and copied back to the texture with glCopyTex-

SubImage3D function call, which is very slow on current GPU architecture.

3.4 Volumetric Refraction for Heat Shimmering and

Mirage

Various natural phenomena involve hot objects, dynamic flows and heat trans-

fers, such as melting, dissolving, shimmering and mirage, which are of great inter-

est to researchers in computer graphics and scientific simulations. For simulating

these phenomena, it is imperative to provide a correct and efficient modeling of the

heat transfer as well as the interaction between the objects and the flow. Zhao et

al. [178] have presented a physically-based method that provides a basic framework

for modeling these thermal phenomena. A heat transfer model has been introduced

between the heat source objects and the ambient flow environment, which includes

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 79

(a) (b) (c)

(d) (e) (f)

Figure 3.16: Smoke dispersion simulated in the Times Square Area of New York City.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 80

conduction, convection and radiation. The heat distribution of the objects is rep-

resented by a novel temperature texture. The simulated thermal flow dynamics

models the air flow interacting with the heat by a hybrid thermal lattice Boltzmann

model (HTLBM). The computational approach couples a multiple-relaxation-time

LBM (MRTLBM) with a finite difference discretization of a standard advection-

diffusion equation for temperature.

In this framework, the temperature variation resulting from the interaction be-

tween the heat sources and the surrounding air is computed from the method de-

scribed above. The changes in the index of refraction of the air are attributed to

such temperature variation. Refraction, which produces the shimmering phenom-

ena, occurs when light rays cross the interface between regions that have different

indices of refraction. The relation between the angle of incidence θ1 and the angle

of refraction θ2 is described by Snell’s Law:

n1

n2
=

sinθ2

sinθ1
(3.6)

where n1 and n2 are the corresponding indices of refraction of the two materials,

and the incident ray and the refracted ray stay in the same plane.

For air, the dependence of the index of refraction on temperature and pressure

can be empirically described by the following equation [85]:

n =
c1 ∗Pa∗ (1.0+Pa∗ (60.1−0.972∗T)∗10−10)

1.0+ c2 ∗T
(3.7)

where c1 = 0.0000104 and c2 = 0.00366 and n is the index of refraction of air. The

constant pressure of the air, Pa, is measured in Pascal and the temperature, T , in

Celsius.

A light ray traverses the temperature volume with a small step size. At each

step, the gradient of the temperature field is calculated by trilinear interpolation

at the hit point, which defines the normal N of the interface. Then, the index of

refraction is determined by Equation 3.7. By bending the light ray using Snell’s Law

(Equation 3.6), the new resulting ray direction is obtained, and the ray is traversed

to the next hit point. When bending the ray, total reflection may occur, which causes

a mirage. The presented algorithm includes this situation: When calculating θ2 in

Equation 3.6, if |sinθ2| > 1, total reflection occurs. As a consequence, the ray

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 81

direction is changed to the total reflection direction at the point. Therefore, the

effects of a mirage is naturally included in this model.

A heat source object is voxelized and each voxel is assigned a segmentation

flag: inside or outside. For each ray, if a sampling point is inside the object, the

nonlinear ray tracing stops and returns the color of the object texture.

The nonlinear ray tracing through the temperature volume is implemented on

the GPU and coupled with the simulation. By executing the whole simulation cycle

(including both computation and rendering) on the GPU, the data does not need

to be read from the GPU, which could be a major bottleneck on current GPU ar-

chitecture. For every image pixel, a ray is shot from the eye to its position. The

information of all rays is stored in a 2D texture (each texel corresponds to one ray)

and is processed by a fragment program. On current GPUs, the Shader Model 3.0

allows loops, dynamic branching, and program lengths of up to 65535 instructions.

Using these facilities, the GPU implementation only needs a single pass of frag-

ment processing to iteratively forward the rays and compute their refractions until

they terminate. This allows for a much easier GPU implementation than a previous

GPU-based non-linear raycaster [161] which required multiple rendering passes.

Figure 3.17 illustrates the shimmering effects easily observed in a desert on

a sunny day. The ground is heated up rapidly by the sun and the heat rises to the

air. Due to the non-uniform and dynamic distribution of the air temperature, the

original background landscape in Figure 3.17(a) and its zoom-in view in Figure

3.17(c) appear distorted to the observer. In Figure 3.17(b) and in the corresponding

zoom-in view in Figure 3.17(d), heat comes up from the ground and shimmering

is clearly visible on the bush at the center of the scene. The images in Figure 3.17

are rendered with a NVIDIA Geforce 6800 Ultra card. The 3D simulation lattice

size is 50× 50× 50. For rendering an image of 400× 400 pixels, the GPU-based

nonlinear ray-casting takes 104 milliseconds for each frame. For comparison, the

software implementation of the same algorithm takes 3034 milliseconds and the

GPU version is 29.1 times faster.

Mirage occurs when some rays are bent by total reflection, a situation which

is handled naturally in the presented algorithm. In Figure 3.18, comparing with a

static desert scene (Figure 3.18(a)), a phantom body of water appears in the desert

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 82

(a) (b)

(c) (d)

Figure 3.17: Desert shimmering.

(a) (b) (c)

Figure 3.18: Mirage in a desert.

CHAPTER 3. Volume Rendering CC Lattices with Single Scattering 83

(a) (b) (c)

Figure 3.19: Mirage over water.

with shimmering (Figure 3.18(b)) and may become larger (Figure 3.18(c)). In Fig-

ure 3.19, a real photo is compared with the simulated mirage effect. Figure 3.19(a)

is a real photo taken in Finland. Figure 3.19(b) shows an original scene with no

mirage. Using it as the background and starting the simulation, the mirage effect

similar to the real photo (in Figure 3.19(a)) appears, as shown in Figure 3.19(c).

Chapter 4

Volumetric Global Illumination on

FCC Lattice

In this chapter, a novel volumetric global illumination framework based on

the Face-Centered Cubic (FCC) lattice is described. An FCC lattice has important

advantages over a Cartesian lattice. It has higher packing density in the frequency

domain, which translates to better sampling efficiency. Furthermore, it has the max-

imal possible kissing number (equivalent to the number of nearest neighbors of each

site), which provides optimal 3D angular discretization among all lattices. A new

GPU-accelerated two-pass (illumination and rendering) global illumination scheme

on an FCC lattice is presented. This scheme exploits the angular discretization to

greatly simplify the computation in multiple scattering and to minimize illumina-

tion information storage. The GPU has been utilized to further accelerate the ren-

dering stage. The new framework is demonstrated with participating media and

volume rendering with multiple scattering, where both are significantly faster than

traditional techniques with comparable quality.

84

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 85

4.1 Background

Direct volume rendering algorithms reconstruct a continuous function, which

is projected to a 2D image. This procedure involves dimension reduction thus in-

evitably loses some information. To capture more details, many lighting and illumi-

nation methods have been developed. Local illumination models omit sophisticated

effects such as multiple scattering and indirect illumination for the sake of render-

ing speed. However, they are the dominant light-object interaction for participating

media (smoke, clouds) and many translucent materials. To cope with these effects,

volumetric global illumination techniques are required in order to present important

visual features [143].

This chapter describes a new volumetric global illumination framework, which

exploits both spatial and angular discretization on lattices. In computer graphics,

spatial discretization has been well-studied to simplify the calculation of light-

object interaction, but angular discretization has not been fully exploited. Specifi-

cally, the FCC lattice is adopted because it has better sampling efficiency compared

with the CC lattice and it provides optimal angular discretization among all lat-

tices. Furthermore, a new two-pass algorithm is presented to render participating

media and volumes with multiple scattering. The idea of this algorithm is that the

traced photons only move along the lattice links. We call these photons “diffuse

photons”. Here, the phase function is discretized on the lattice links to simplify

the diffuse photon tracing and radiance estimation. The storage of diffuse photons

is minimized by storing the number of photons on lattice links. For flexibility and

extensibility, we also implemented tracing photons with accurate direction, which

are called “specular photons” in this paper. The O-Buffer data structure proposed

by Qu and Kaufman [129] has been exploited to reduce the storage space of specu-

lar photons. Our volumetric global illumination framework is capable of producing

high quality images and is significantly faster than traditional methods. This general

and flexible framework can be extended to render hybrid scenes with both volumes

and surface objects.

The proposed volumetric global illumination framework is a new two-pass

rendering algorithm on FCC lattices. In the first pass, photons are emitted from light

sources and the photon energy is distributed in the scene, illuminating the media. In

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 86

the second pass, a ray tracing method is used to generate the final image. At each

sampling point x on the ray of direction −ω, the radiance R(x,ω) is estimated by

the photons in a small neighborhood of x for shading.

4.2 FCC Data Structure

As shown in Figure 4.1(a), an FCC lattice consists of simple CC cubic cells

with additional sampling points (blue) located at the center of each cell face. Ac-

cording to the lattice definition described in Section 1.1, any FCC lattice site can

be constructed via linear combination of three basis vectors. As shown in Fig-

ure 4.1(b), another construction of the FCC lattice has basis vectors vx = (1,0,0),

vy = (0,1,0) and vz = (0.5,0.5,
√

2/2), which can be obtained by defining an appro-

priate rotated coordinate system. This construction can be viewed as interleaving

2D square grids (red and green semi-transparent slices), where slice 2i+1 is shifted

from slice 2i by vz. The second construction in Figure 4.1(b) can be obtained by

rotating the first one in Figure 4.1(a) π
4

about the z axis. The distance between two

adjacent lattice sites is 1 and the origin O = (0,0,0).

x

y

z

(a)

x

y

z

(b)

Figure 4.1: Two constructions of an FCC lattice.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 87

4.2.1 Storage and Indexing

An FCC lattice is stored in a 3D array of dimension (nx,ny,nz).The array stores

the lattice layer by layer and each layer has nx · ny sites, which are stored in row

major. Given a lattice site that is on layer k, row j, and is the i-th lattice site, its

coordinates in the FCC lattice are represented as a 3-tuple (i, j,k). This lattice site

is the (k ·ny ·nx + j ·nx + i)th element of the array.

This definition scheme is adopted due to its simplicity, where the FCC lattice

can be decomposed into two interleaved sub cubic lattices with a deviation vec-

tor of v = (0.5,0.5,
√

2/2). This representation provides a framework that enables

quick indexing and efficient implementation of many basic lattice operations. For

instance, the mapping from an arbitrary FCC lattice site of index (i, j,k) to its cor-

responding CC coordinates (x,y,z) can be defined by the following equations:

x = i+(k mod 2)/2,

y = j +(k mod 2)/2,

z =
√

2k/2. (4.1)

4.2.2 Nearest Site

Finding the nearest FCC lattice site can be implemented by first looking for

two neighbors having the shortest Euclidean distance to the sample point in the

two sub cubic lattices using Equation 4.1, then selecting the closer one between

them. Given a point PC = (x,y,z) in Cartesian space, find the nearest FCC lat-

tice site PFCC = (i, j,k) that has the minimum distance dmin to PC. The two

nearest layers to PC are k0 = FLOOR(z/vz.z) and k1 = k0 + 1. Construct a 2D

coordinate system on layer k0, where the origin is the first lattice site of k0 at

((k0 mod 2) · vz.x,(k0 mod 2) · vz.y,k0 · vz.z). The coordinate of PC in this coordi-

nate system is (x0,y0):

x0 = x− (k0 mod 2) · vz.x

y0 = y− (k0 mod 2) · vz.y. (4.2)

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 88

Therefore, the nearest site on layer k0 is PFCC0 = (i0, j0,k0):

i0 = FLOOR(x0 +0.5)

j0 = FLOOR(y0 +0.5) (4.3)

and the square distance d2
0 from PC to PFCC0 is

d2
0 = (x0 − i0)

2 +(y0 − j0)
2 +(z/vz.z− k0)

2 ∗ vz.z
2. (4.4)

Similarly, the coordinate of PC in layer k1 is (x1,y1):

x1 = x− (k1 mod 2) · vz.x

y1 = y− (k1 mod 2) · vz.y. (4.5)

The nearest site on layer k1 is PFCC1 = (i1, j1,k1):

i1 = FLOOR(x1 +0.5)

j1 = FLOOR(y1 +0.5) (4.6)

and the square distance d2
1 from PC to PFCC1 is

d2
1 = (x1 − i1)

2 +(y1 − j1)
2 +(z/vz.z− k1)

2 ∗ vz.z
2. (4.7)

The nearest site PFCC is:

PFCC = (d2
0 < d2

1)∗PFCC0 +(d2
0 >= d2

1)∗PFCC1. (4.8)

4.2.3 Links and Neighbors

Given a lattice site PFCC = (i, j,k), the 12 links li and neighbors Ni (i =

0,1, · · · ,11) are defined in Table 4.1. The 12 links can be grouped into 3 sets.

One set is located on layer i. The other two sets are located on layer i−1 and i+1.

In Figure 4.2, the 3 sets of links are represented by red, green and blue arrows, re-

spectively. Figure 4.2(b), 4.2(c) and 4.2(d) show the projection of the 3 sets on the

plane z = 0. Note that the links are carefully numbered so that the inverse link of li

is l11−i, which simplifies the diffuse photon tracing.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 89

(a)

x

y

()0,0,1:
0

l

()0,1,0:
1

l

()0,1,0:
10

−l

()0,0,1:
11

−l

(b)

x

y

2

2
,

2

1
,

2

1
:

2
l

−

2

2
,

2

1
,

2

1
:

3
l

−−

2

2
,

2

1
,

2

1
:

5
l

−

2

2
,

2

1
,

2

1
:

4
l

(c)

−

2

2
,

2

1
,

2

1
:

6
l

−−

2

2
,

2

1
,

2

1
:

7
l

−−

2

2
,

2

1
,

2

1
:

8
l

−−−

2

2
,

2

1
,

2

1
:

9
l

x

y

(d)

Figure 4.2: Projection of 12 links and neighbors of an FCC lattice site on the plane z = 0.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 90

Table 4.1: Link vectors and neighbors of FCC lattice sites.

No. Link vector Neighbor

0 vx (i+1, j,k)
1 vy (i, j +1,k)

2 vz ∗ (1,1,1) (i+ k mod 2, j + k mod 2,k +1)
3 vz ∗ (−1,1,1) (i+ k mod 2−1, j + k mod 2,k +1)
4 vz ∗ (1,−1,1) (i+ k mod 2, j + k mod 2−1,k +1)
5 vz ∗ (−1,−1,1) (i+ k mod 2−1, j + k mod 2−1,k +1)

6 vz ∗ (1,1,−1) (i+ k mod 2, j + k mod 2,k−1)
7 vz ∗ (−1,1,−1) (i+ k mod 2−1, j + k mod 2,k−1)
8 vz ∗ (1,−1,−1) (i+ k mod 2, j + k mod 2−1,k−1)
9 vz ∗ (−1,−1,−1) (i+ k mod 2−1, j + k mod 2−1,k−1)

10 −vy (i, j−1,k)
11 −vx (i−1, j,k)

4.2.4 Closest Link

Given an arbitrary normalized vector d = (x,y,z) in Cartesian space and a lat-

tice site PFCC = (i, j,k), find the link li of PFCC that has the minimum angle between

d and li. (This can be used to trace specular photons.) This can be accomplished

with the method described below:

First, construct a new coordinate system x′y′z′ by rotating the x and y axes −π
4

through axis z. The transformation matrix from coordinate system xyz to x′y′z′ is

denoted as M:

M =

√
2

2
−

√
2

2
0√

2
2

√
2

2
0

0 0 1

. (4.9)

In this coordinate system, the 12 FCC lattice links can be grouped into 3 sets. As

shown in Figure 4.3, the links in each of the sets are located in the x′y′, y′z′ and

z′x′ plane, and colored in red, green and blue, respectively. Figure 4.3(a) shows the

x′y′, y′z′ and z′x′ planes. Figure 4.3(b), 4.3(c), 4.3(d) show the 3 sets of links in red,

green and blue, respectively.

Let d′ = M ·d. Then check the projection of d′ on the planes x′y′, y′z′ and z′x′.

The links l0, l1, l11 and l10 are in the quadrant 0, 1, 2 and 3 of plane x′y′, respectively.

The links l2, l5, l9 and l6 are in the quadrant 0, 1, 2 and 3 of plane y′z′, respectively.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 91

(a)

l0

l1

l11

l10

(b)

l2

l5

l9

l6

(c)

l4

l8

l7

l3

(d)

Figure 4.3: 12 links grouped into 3 sets in the transformed coordinate system.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 92

Table 4.2: The positions of links in projection planes.

plane quadrant link

x′y′ 0 l0
x′y′ 1 l1
x′y′ 2 l11

x′y′ 3 l10

y′z′ 0 l2
y′z′ 1 l5
y′z′ 2 l9
y′z′ 3 l6

z′x′ 0 l4
z′x′ 1 l8
z′x′ 2 l7
z′x′ 3 l3

The link l4, l8, l7 and l3 are in the quadrant 0, 1, 2, 3 of plane z′x′, respectively. The

correspondence is summarized in the Table 4.2.

The closest links lx′y′ , ly′z′ and lz′x′ on the three projection planes can be easily

calculated by checking the sign of the transformed coordinate d′. The cosines be-

tween d′ and lx′y′ , ly′z′ and lz′x′ can be calculated with dot products and the maximum

cosine corresponds to the closest link.

Another simple method is to group all links in two sets: one including l0, l1,

l11 and l10, the other including all others. For the second set, each of them lies in

one quadrant of the coordinate system xyz and the angle between the link and any of

the xy, yz and zx planes is π
4
. Therefore, the closest link of d is the one in the same

quadrant of d. Define a 3D vector b = d < 0 such that b.x = d.x < 0, b.y = d.y < 0

and b.z = d.z < 0. The closest link is lxyz = l2+b.x+b.y·2+b.z·4. For the first set, the

method described above can be used and the closest link is lx′y′ = ld′.x<0+(d′.y<0)∗10.

Then, compare these two closest links in the two sets and choose the one with

maximum dot product.

The geometric layout of the FCC lattice also gives rise to its higher angular

discretization granularity than both CC and body-centered cubic (BCC) lattices,

which is important for our rendering framework. Each site in the FCC lattice has

direct links to a total of 12 nearest neighbors, in contrast to 8 and 6 in the BCC and

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 93

CC lattices, respectively. This is the best angular discretization rate that any 3D

regular lattice can achieve, since in R3 the maximum number of spheres of radius 1

that can simultaneously touch the unit sphere (i.e., the kissing number) is 12 [22].

This unique feature has important implications for sampling and interpolation, as

we will discuss further below. For example, when a particle is scattered at an FCC

lattice site, it has 12 possible moving directions, which is 50% more than a BCC

lattice and 100% more than a CC lattice. In addition, the 12 links of an FCC lattice

site are symmetric under rotation and reflection, which supports a relatively simple

computational framework. Figure 4.4(a) shows the cuboctahedron defined by the

12 closest neighbors (red spheres) of a FCC site (green sphere), while Figure 4.4(b)

shows the Voronoi cell of an FCC lattice site (green sphere), which is essentially a

rhombic dodecahedron.

(a) (b)

Figure 4.4: (a) Cuboctahedron composed of 12 neighbors; (b) The Voronoi cell of the FCC

lattice.

Finally, the reciprocal lattice of FCC yields its representation in the frequency

domain, which is essentially a BCC lattice [150]. As it will be described in the next

section, this property gives rise to its near-optimal sampling behavior that is capable

of reconstructing original signals with a minimum number of samples. It has been

shown in the literature [150] that the FCC sampling scheme requires 13.4% and

23% fewer samples in R2 and R3 domain compared to CC lattices, respectively.

Thus, the FCC lattice presents a much more efficient spacial sampling scheme over

the traditional CC lattice.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 94

4.3 Sampling on FCC

In any lattice used for volume visualization, the lattice sites are discretized or

sampled from Rn, and an efficient, preferably optimal, sampling scheme is para-

mount. An optimal lattice structure captures information in the hyper-volume Rn

using the least number of sampling points. Assuming an isotropic and band-limited

sampling function, the resulting frequency support of a sampling point is a hyper-

sphere, surrounded by a set of alias replicas. Hence, the most efficient sampling

scheme arranges the replicated (hyper-spherical) frequency response as densely as

possible in the frequency domain to avoid overlapping of the aliased spectra. As

demonstrated in multi-dimensional signal theory [29] an optimal sampling scheme

is obtained when the frequency response of the sampling lattice is an optimal sphere

packing lattice [22]. Optimal sampling lattices can achieve up to 13.4%, 29.3%,

and 50% of savings in 2, 3 and 4 dimensions, and they have been used in volume

visualization [33, 112, 150] with high quality image results.

In three dimensions there are infinite optimal sphere packings including the

FCC lattice and the HCP (hexagonal closed packing). The spatial equivalent of

the FCC lattice in the frequency domain is the BCC lattice, which is the inverse

Fourier transform of the FCC and vice-versa. The FCC lattice in the spatial domain

corresponds to the BCC lattice in the frequency domain which is not an optimal

sphere packing, and the FCC lattice achieves about 23% of savings over the CC

lattice in terms of sampling efficiency. It was chosen for our global illumination

framework because it is the lattice that maximizes uniform angular discretization

with its kissing number of 12. The HCP is another candidate with an optimal kissing

number of 12. In strict mathematical definition, HCP is not a lattice but can be

defined as the union of the lattice L with generation vectors (1,0,0), (1/2,
√

3/2,0)

and (0,0,
√

8/3) and the translate L+(1/2,1/
√

12,
√

2/3). However, it has a bias

towards the z-direction. For any link with direction d = (dx,dy,dz) such that dz 6= 0,

the link of direction −d does not exist. When a ray or photon moves from one

of such links and is not absorbed or scattered at the lattice site, it cannot continue

straight along its original direction. Therefore, HCP is not symmetric and thus

unsuitable for use in our framework.

Given the initial assumption that the represented function is hyper-spherically

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 95

frequency domainspatial domain

Fourier

transform

main spectrum

replica

1

Figure 4.5: Hexagonal lattice and its Fourier transformation.

band-limited, the ideal choice for the reconstruction function is also a radially sym-

metric kernel. We have studied a set of Gaussian reconstruction filters and have

found that the relatively narrow Gaussian f (r) = e−2r2
, offers good frequency be-

havior and reasonable overlap between neighboring sites.

4.4 Diffuse Photon Tracing

For volumetric objects where the dominant effect is diffusion, a new algorithm

to trace photons on the lattice links has been developed. The volumetric objects are

sampled in a finite region of the FCC lattice. As shown in Figure 4.6 on a hexagonal

lattice, when a photon is emitted from a light source, the nearest lattice site to the

first hit point on the lattice boundary is calculated and the moving direction of the

photon is discretized to one of the link directions. The photon will be traced on

the links between lattice sites and its path is composed of line segments of lattice

links. Figure 4.6(a) shows the photon path in green color in the real medium. Figure

4.6(b) shows the photon path on a hexagonal lattice. The circles represent lattice

sites and the black line segments represent lattice links. The red circle is the nearest

lattice site to the photon intersection point with the medium boundary. The photon

path is composed of the green lattice links.

A photon emitted from the light sources has an arbitrary direction ω. The ac-

curate photon direction is stochastically converted to one of the lattice links at the

volume boundary. An FCC lattice site xi has 12 closest neighboring sites of equal

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 96

(a) (b)

Figure 4.6: Illustration of tracing photons on a hexagonal lattice.

distance, which forms a cuboctahedron as shown in Figure 4.4(a). The ray origi-

nated from site xi with direction ω intersects the cuboctahedron centered at point v

on one of its 14 faces. Denoting the vertices of the face containing v as v0,v1, · · · ,vm

(m = 2,3) in counterclockwise order and letting ωk = vk − xi, the probability of the

photon direction to be changed to ωk is defined as the barycentric coordinates [38]:

pk =
wk
∑

k wk

, wk =
∏

t 6=k−1,k

A(v,vt ,vt+1) (4.10)

where A(v,vt ,vt+1) is the area of triangle v,vt ,vt+1. The barycentric coordinates of

v are well defined with Equation 4.10 because all the faces of the cuboctahedron

are regular polygons. Equation 4.10 implicitly replies on ω because the intersection

point v is decided by ω. pk is a continuous function of ω. It guarantees that pk = 1

when ω = ωk.

When arriving at a lattice site xi from direction ω j the photon might be ab-

sorbed, be scattered or continue moving along the extended link of ω j. The absorp-

tion and the scattering coefficients, σa(xi,ω j) and σs(xi,ω j), represent the proba-

bilities of such events. (Please note that this approximation is only correct when the

link length l is small compared to 1/σt . The actual absorption probability should be

exp(−
∫ l

0
σa(xi,ω j))ds. Because the links on an FCC lattice are of identical length,

σa, σs and σt are used here for convenience.) The Russian roulette technique [124]

is used to determine whether the photon is absorbed, scattered or transmitted. In

detail, the program generates a random number ξ ∈ [0,1) and the photon:

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 97

is absorbed if ξ ∈ [0,σa(xi,ω j)),

is scattered if ξ ∈ [σa(xi,ω j),σa(xi,ω j)+σs(xi,ω j)),

is transmitted if ξ ∈ [σa(xi,ω j)+σs(xi,ω j),1).

(4.11)

In contrast to the deterministic procedures of absorption and transmission, sto-

chastic scattering requires further processing. In traditional methods, a phase func-

tion f (x,ω,ω′) is utilized to describe the probability of a photon being scattered at

location x with an input direction ω and an output direction ω′. The computation

of the new direction is performed using importance sampling. In the widely used

models such as the Schlick model [8], the probability depends on cos(θ) = ω ·ω′

only, thus the importance sampling returns the value of cos(θ). In order to com-

pute ω′, a local coordinate system at the scattering position has to be constructed to

convert spherical angles to direction vectors, which is computationally expensive.

In the lattice illumination framework, the computation of the scattering process

is greatly simplified because photons only move along discretized lattice links.

Here, the continuous phase function f (x,ω,ω′) is discretized to f (i, j,k), which

represents the probability of a photon located at site xi being scattered from the in-

put link ω j to the new output link ωk. In practice, this discrete phase function is

constructed as a 2D table of n×n resolution to represent all possible combinations

of input/output links on a lattice site (n = 12 for FCC lattices). The generation

of the discrete phase function via sampling and normalizing the continuous phase

function is described by the following equation:

f (i, j,k) =
f (xi,ω j,ωk)

∑n−1
t=0 f (xi,ω j,ωt)

. (4.12)

A more accurate method is to calculate the integral over the angular space Ω defined

in Equation 4.13, which can be solved numerically for arbitrary continuous phase

function.

f (i, j,k) =

∫

Ω
closest(ω,ωk) f (xi,ω j,ω)dω

closest(ω,ωk) =

1 if the closest link to ~d is ωk,

0 otherwise.
(4.13)

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 98

Importance sampling of discrete phase functions is simply a binary search for a

given random number ξ such that
∑k

t=0 f (i,ω j,ωt) ≤ ξ and
∑k+1

t=0 f (i,ω j,ωt) > ξ.

The complexity of this binary search is O(log(n)), which is very efficient because

n is usually very small (n = 12 for FCC lattices).

After determining the photon behavior of each encounter, the activity infor-

mation on the lattice sites is saved. Basically, a stored photon represents a possible

light path from the light sources to its location. This information is used in the

following rendering pass, where the irradiance of sampling positions is estimated

with the stored light paths within a small neighborhood. The lattice-based frame-

work enables us to store photons in a 3D array and the position of the photons is

implicitly defined by their index in the array. Moreover, the quantized directions are

encoded in a byte using the link index. Since the link vectors are known a-priori,

an optimized solution for photon direction storage is adopted, where photons with

the same direction are grouped together. Here, a 1D array E(ω j) of n elements is

used for a lattice site xi, such that E(ω j) is the total energy of the photons at xi

with direction ω j. Due to the employed Russian roulette technique [124], the pho-

ton energy does not change until it is absorbed. Therefore, the stored photons all

have the same energy and only the integral number of photons need to be stored at

link (i, j). Given the maximum possible number of photons stored on the links, the

unsigned byte or short format can be used to represent the actual photon counts in-

stead of storing individual floating point energy values. In other words, all photons

are stored in a 4D integer array E(i,ω j) with three dimensions of site position and

one dimension for link direction.

After the recording of diffuse photons, rays are traced from the image plane

into the FCC lattice to collect irradiance values. At each sampling point x, the

radiance is estimated by the photons inside a small spherical region centered at x.

With the 4D array of photon numbers, the radiance in Equation 1.15 is calculated

with the following simplified formula:

R(x,ω) =
∑

X

∑

j

σs(x,ω j) f (x,ω,ω j)g(x′− x)E(x′,ω j)dx′ (4.14)

where ω is the reverse ray direction, f is the continuous phase function and X is

the set of lattice sites in the search region. g is a normalized smoothing filtering

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 99

function used for removing high-frequency noise. Because the lattice sites are po-

sitioned regularly, searching for the lattice sites in a sphere is simple and efficient.

In the experiments, the medium is isotropic and the phase function only depends

on the angle between the ray direction and the lattice link ω j. The dot product of

ω and ω j can be pre-computed and reused for all the sampling points on one ray

in the rendering process, which yields an efficient implementation of the radiance

estimation.

This new algorithm greatly simplifies the computation of photon-volume in-

teraction and photon storage. Therefore, the program can trace millions of photons

in a short time, which is good for improving image quality by removing the sto-

chastic noise and variance without excessive smoothing in the radiance estimation.

Moreover, this method is general and can use arbitrary phase functions including

those of strong backward scattering.

4.5 Specular Photon Tracing

The method described in Section 4.4 is capable of calculating multiple scat-

tering events for participating media and volumes where diffusion is the dominant

effect. However, specular reflection and refraction may exhibit ray effects when dis-

cretized rays hit smooth specular surfaces. This effect has been discovered by the

radiative heat transfer community [15] and found to be caused by the discretization

of scattering directions when accurate directions are needed for specularity.

To mitigate this ray effect, an enhanced algorithm called specular photon trac-

ing has been developed, where every photon is associated with its accurate direction

ω and start position x. In each time step, the photon moves on the FCC lattice and

the new sampling position is calculated by x = d ×ω where d is the step size. The

lighting properties σa and σs are sampled to decide whether the photon is absorbed,

scattered or transmitted at x (Equation 4.11). If the photon is scattered, the new

direction ω is computed with the continuous phase function. The Russian roulette

technique is again used to avoid photon energy change.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 100

The O-Buffer data structure [129] is used to store the photon information com-

pactly, where each lattice site stores a sequence of photons in its Voronoi cell (Fig-

ure 4.4(b)). For each stored photon at position x, the nearest lattice site xi is com-

puted and only the offset o from x to xi is stored. The offset o is quantized into

256 levels in each axis so that o can be compactly represented in 3 bytes. This

3-byte representation increases the photon position accuracy by 256 times of the

lattice resolution, while it only needs 25% of the storage space of the traditional

floating point representation. Because the search radius for the radiance estimation

is usually much larger than the link length, it is good enough for most rendering

applications. The Voronoi cell (Figure 4.4(b)) of an FCC lattice site is a rhombic

dodecahedron. Assuming a unit distance between neighboring sites, the distance

from the lattice site to the vertices of its Voronoi cell is
√

2
2

. The maximum error

introduced by this offset quantization scheme is
√

3
2
· 1

255
·
√

2
2

.

For photon direction encoding, vectors ω are converted to spherical coordi-

nates and represented with 2 bytes [60]. Because the photon energy does not

change, only one byte is used to record the color channel of the photon. In total, the

storage space of one photon is just 6 bytes.

In the rendering pass, the radiance at each sampling point is estimated with the

photons stored in the lattice photon O-Buffer. For a spherical search neighborhood

S with radius r, the lattice sites in the sphere S′ of radius r+
√

2
2

are retrieved because

the maximum distance from a lattice site to the photons stored in it is
√

2
2

. Then, the

photons stored in these lattice sites are visited. If the distance to the sampling point

x is larger than r, the photon is discarded. The radiance at x is summed over all the

photons inside S with:

R(x,ω) = E
∑

p

σs(ωp,x) f (x,ω,ωp)g(xp − x) (4.15)

where xp and ωp are the photon position and direction, respectively. The term E

is the energy of the photon, which is the same for all photons since the Russian

Roulette scheme is used.

The diffuse photon tracing algorithm is capable of tracing multi-million pho-

tons in seconds. With the FCC lattice, the photons move on the lattice links and

are scattered only on the lattice sites. Therefore, the most time consuming steps in

traditional methods such as sampling the lighting properties, calculating scattered

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 101

directions with phase functions are greatly simplified. Its major disadvantage is the

ray effect, which cannot be neglected in certain cases, for example, in reflection, re-

fraction or scattering on specular surfaces, and hard shadows. The specular photon

tracing solves this problem but is much slower.

4.6 Implementation

The algorithms presented in Sections 4.4 and 4.5 have been implemented

to render participating media and volumetric datasets. Since the reconstruction

process in the current scanning modalities such as MRI and CT only produce recti-

linear data, the FCC data we used are generated by resampling existing rectilinear

volumes or voxelizing geometric objects. Currently, a windowed sinc filter has been

used, although a better filter such as B-spline could be used.

The incremental triangle voxelization method [27] has been to voxelize polyg-

onal models to the FCC lattice. The original method was proposed for volumes of

CC lattices, but the employed distance-based method enables its direct application

to the FCC lattice.

For surface voxelization, the volume density of a lattice site p is determined

by the distance between p and its closest triangle. Each triangle is processed in the

following manner. For each lattice site p in the neighborhood of the triangle, the

distance d between p and the triangle is computed. The distance d is positive if p

is in the normal direction of the triangle, or negative if p is in the reverse direction.

If |d| is smaller than the previously stored absolute value of the distance, |d| re-

places the previous stored value and the density of p is updated with the following

equation:

density =

1 if d < −W,

0 if d > W,

0.5× (1− d
W

) otherwise,

(4.16)

where W is the width of the oriented box filter. While for a CC lattice the optimized

width was estimated to be 2
√

3 voxel units [27], we estimate that for an FCC lattice,

the optimized width of the filter is decreased to 2 lattice units. Based on the surface

voxelization result, the interior of the solid is voxelized using seed growing.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 102

For inhomogeneous participating media, such as clouds and smoke, the ab-

sorption coefficient σa(x) and scattering coefficient σs(x) typically do not rely on

the light direction, although our algorithm is capable of rendering anisotropic me-

dia. The volume data of the medium usually defines the density field ρ(x) of parti-

cles. We assume that the σa(x) and σs(x) are proportional to the local density ρ(x).

For FCC lattices where the lattice links have unit lengths, it implies:

σa(x,ω j) = σaρ(x), and σs(x,ω j) = σsρ(x). (4.17)

where σa and σs are user-defined scaling coefficients. In real world phenomena,

most practical participating media are isotropic and the phase function f (x,ω,ω′)

does not vary upon position x. In our implementation, f (x,ω,ω′) = f (ω ·ω′) is

described with the Schlick model [8]. The participating medium is represented

with an FCC lattice of densities and all the coefficients are calculated by scaling

ρ(x).

Our algorithms support chromatic participating media, where the coefficients

σa(x,λ) and σs(x,λ) are wavelength-dependent. It is implemented by defining scal-

ing factors of absorption and scattering in RGB channels. The photons emitted from

the light sources can be red, green or blue randomly. The photon tracing program

calculates σa(x,λ) and σs(x,λ) with proper scaling factors in the color channel of

the traced photons. In the rendering pass, the opacity value α of a sampling point is

the average extinction of those in three channels:

α =
1

3
(σt(x,λr)

d +σt(x,λg)
d +σt(x,λb)

d) (4.18)

where d is the step size.

For general volume datasets, transfer functions have been exploited to define

lighting properties from the density field. Some 2D transfer functions might also

use the gradient information. Our framework is general and capable of integrating

any transfer function as long as the input data (density, gradient or any other data)

of the transfer function is defined on the lattice. In our current implementation, a

1D transfer function is defined for σa and σs in each RGB channel. Equation 4.18

can be used to compute the opacity α or a separate transfer function can be defined

for α.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 103

Following the photon tracing computation, a single-pass ray-casting approach

is employed on the GPU to render the diffuse photon tracing results. An algorithm

similar to [73] is used, except that the sampled volume density is used for obtaining

the scattered coefficient as well as transparency values to composite the final radi-

ance results. Here, in addition to the density volume, an additional photon storage

volume that records the diffuse photon distribution on each lattice site is sampled

to composite ray values. Both the density and the diffuse photon volumes are FCC

lattices, stored and indexed as described in Section 4.2. The diffuse photon storage

table is essentially a 12-element array, each of which records the number of pho-

tons stored along 12 different lattice links. A two-byte unsigned short is allocated

for each such node to provide a count of up to 65536. To compute the radiance

estimation at each sampling point, dot-products of each lattice link with the current

viewing ray are used to weight individual diffuse radiance value, which is given

by indexing the photon distribution previously computed on the lattice. The 12

weighted values are then summed up to yield the final contribution. Filtering on all

lattices uses the Gaussian kernel of size 2 and the sum is normalized at the end.

4.7 Results

The presented algorithms have been implemented on a 3.4GHz PC with 3GB

memory and a Geforce 8800 GTX graphics card. All the resulting images are of

512×512 resolution and cropped in Figures 4.7-4.11.

Figure 4.7 demonstrates the rendering results of participating media with our

algorithms. A single light of white color is placed on top of the smoke dataset. The

original data is 100×100×40 and we sampled it into a 108×100×56 FCC lattice

with a windowed sinc filter. The algorithms used are: (a) ray casting; (b) our diffuse

photon tracing; (c) our diffuse photon tracing with strong backward scattering; (d)

our specular photon tracing; (e) and (f) our multi-channel diffuse photon tracing.

Table 4.3 gives the time of different algorithms used to render the corresponding

images. From left to right, the columns represent the algorithm used, the number

of photon traced (in millions), photon tracing time (in seconds), and rendering time

(in seconds) on the CPU and the GPU. (DPT: diffuse photon tracing; SPT: specular

photon tracing.)

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 104

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Inhomogeneous smoke rendered with global illumination (multiple scattering)

and an anisotropic phase function.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 105

Table 4.3: Times used to render the smoke in Figure 4.7.

Photon Photon CPU GPU
Algorithm count tracing rendering rendering

Figure 4.7(a) ray casting N/A N/A 20.6 1.0

Figure 4.7(b) DPT 1.0 11.3 48.1 2.4

Figure 4.7(c) DPT 1.0 11.7 48.1 2.4

Figure 4.7(d) SPT 0.1 27.0 729.0 N/A

Figure 4.7(e) multi-channel DPT 3.0 48.5 52.7 2.6

Figure 4.7(f) multi-channel DPT 3.0 48.6 52.7 2.6

In Figure 4.7(b), the eccentricity coefficient k of the Schlick phase function is

set to 0.2. The absorption and scattering coefficients are σa = 0.08 and σs = 0.2,

respectively. Figure 4.7(c) uses the same coefficients except that the eccentricity k is

−0.5 for strongly backward scattering. The photon tracing of 1 million photons and

subsequent rendering passes cost about 11 and 48 seconds on the CPU, respectively.

With GPU acceleration, the time of the rendering stage is reduced to 2.4 seconds.

This performance is significantly faster than the original photon mapping method

[63], where tracing 10K photons in a cloud model of similar size takes 8 seconds on

an HP computer of 16 180MHz PA-8000 processors, while rendering a 1024 pixel

wide image takes 92 seconds. Note that although a higher resolution is used in

Jensen and Christensen’s method [63], the complexity of the algorithms is mainly

determined by the number of photons, of which our example generates 100 times

more. A major further enhancement of our implementation can be achieved by

incorporating empty space skipping or adaptive sampling techniques that are used

by Jensen and Christensen [63].

Figure 4.7(d) has been rendered using specular photon tracing with the same

medium properties as Figure 4.7(b), and the rendering time is similar to traditional

photon mapping methods [63]. With our compact FCC O-Buffer data structure, 5.8

million stored photons only consume 35MB of memory space. The search radius

for radiance estimation is changed from 2.0 to 3.0 to remove the stochastic vari-

ance. Given the same number of photons, diffuse photon tracing is approximately

21 times faster than specular photon tracing and the corresponding rendering pass is

15 times faster. We observed that the image produced from our lattice-based frame-

work using diffuse photon tracing (Figure 4.7(b)) is comparable to the image using

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 106

specular photon tracing (Figure 4.7(d)), and has a similar quality and appearance

of those computed with traditional photon mapping methods (such as Figure 12.10

of [124]). However, our framework has much better performance.

In Figure 4.7(e), the absorption coefficient is wavelength dependent and the

values in RGB channels are σa = (0.08,0.15,0.3), while the scattering coefficient

is the same as in Figure 4.7(b). The time of the rendering pass increases to 52.7

seconds mainly because the radiance estimation is performed in 3 channels. In

Figure 4.7(f), the scattering coefficient in the blue channel has been changed to 0.4

and the eccentricity coefficient k has been changed to 0.5. In Figures 4.7(e) and

4.7(f), the upper part of the smoke is grey but the lower part under the shadow of

the upper part becomes orange because of the different absorption and scattering

coefficients in the RGB channels.

Figure 4.8: Cloud rendered with our diffuse photon tracing.

Figure 4.8 demonstrates another example of participating media, in which the

resolution of the data is 96×74×143. The eccentricity coefficient k of the Schlick

phase function is 0.2. The absorption and scattering coefficients are σa = 0.05 and

σs = 0.1, respectively. One million photons have been traced in 12.7 seconds and

the rendering pass amounted to 98.5 seconds on the CPU and 5.5 seconds on the

GPU.

Figure 4.9 displays the foot of the visible human CT data. The original data is

1283 and the resampled FCC lattice is 128× 128× 180. Figure 4.9(a) is rendered

using a ray casting method with local illumination. Figure 4.9(b) has been rendered

using our diffuse photon tracing algorithm. The bone appears semi-translucent and

brighter and has soft self-shadows due to multiple scattering. In Figure 4.9(c), the

muscle and soft tissue are displayed with red color with the absorption coefficient

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 107

similar to 4.9(a).

Figure 4.10 and Figure 4.11 are the rendering results of the engine and lobster

data, respectively. The original engine data is 128× 128× 64 and the resampled

FCC lattice is 136× 136× 98. Figure 4.10(a) has been rendered using ray casting

with local illumination and Figure 4.10(b) and 4.10(c) have been rendered with our

framework and indeed the objects appear substantially different. In Figure 4.10(b),

the material absorbs green and blue photons faster and becomes more red gradu-

ally through the light direction. In Figure 4.10(c), the high density region appears

saturated red for emphasis and the surrounding region is less saturated red due to

color bleeding. The material of the objects is easily controlled and changed using

user specified transfer functions. The original lobster data is 128× 127× 28 and

the resampled FCC lattice is 114× 113× 35. In Figure 4.11(b), the lobster shell

absorbs green and blue photons faster than red ones and scatters red photons more

than green and blue ones. The shell appears red and the muscle casts soft shadows

onto itself. Figure 4.11(c) displays the data from a different camera position.

(a) (b) (c)

Figure 4.9: Global illumination of a CT scan of the visible human foot.

In the presented framework, a photon is saved at every step of the first pass,

regardless of whether it is scattered or not. A stored photon represents a possible

path from the light sources. In the ray tracing pass, the radiance estimation actu-

ally calculates the density of photon paths at the sampling positions. In contrast,

the traditional photon mapping method uses the probabilistic sampling technique to

calculate the step size, and the expected step size is 1/σt . Usually σt is small and

tracing a photon can generate many more stored photons in our algorithms than in

photon mapping. Moreover, the FCC lattice provides a more efficient data structure

to store photons. In diffuse photon tracing, each lattice site stores multiple photons.

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 108

(a) (b) (c)

Figure 4.10: Global illumination of an industrial CT scan of an engine.

(a) (b) (c)

Figure 4.11: Global illumination of a CT scan of a lobster.

Table 4.4: Rendering time of the foot, engine and lobster data in Figures 4.9, 4.10 and 4.11.

Photon Photon CPU GPU
Algorithm count tracing rendering rendering

Figure 4.9(b) DPT 1.0 27.0 98.0 4.7

Figure 4.9(c) multi-channel DPT 3.0 86.1 118.6 5.8

Figure 4.10(b) multi-channel DPT 9.0 136.4 110.6 5.4

Figure 4.10(c) multi-channel DPT 9.0 147.9 110.7 5.4

Figure 4.11(b) multi-channel DPT 3.0 26.9 40.7 2.0

Figure 4.11(c) multi-channel DPT 6.0 53.9 37.9 1.9

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 109

In radiance estimation, the contribution of multiple photons on a lattice link is com-

puted jointly. Suppose the radiance estimation searches photons in the spherical

neighborhood S, and there are k0 sites and k1 photons inside S. It costs O(k0) time

for diffuse photon tracing and O(k0 + k1) for specular photon tracing. However, it

costs O(k1 + logn) time with the k-d tree data structure in photon mapping, where n

is the total number of photons. Also, the k-d tree need to be built before the render-

ing pass, which costs O(n logn) time. However, our algorithms do not need such a

preprocessing step.

There are other simplified lighting models for participating media and vol-

umes [51, 52, 69, 133]. For all these methods, only forward scattering is considered

and lighting values are propagated from slice to slice. The value of each pixel is

calculated by sampling and attenuating neighboring pixels (up to 4) on the previ-

ous slice. In other words, forward scattering is calculated in several directions in

the 2π solid angle. Our algorithms can handle scattering within the entire 4π solid

angle. Also, our methods can store photons from multiple light sources in one vol-

ume, while previous methods do not support multiple light sources. The method of

Max [96, 98] is more accurate than ours but runs slowly.

The idea of tracing photons on the lattice links is general and might be applied

to other lattices such as the CC lattice. However, a CC lattice site only has 6 near-

est neighbors, which is not enough for discretizing some kinds of phase function.

Consider a strongly forward scattering phase function (for example, the eccentricity

coefficient of the Schlick phase function is large). On the CC lattice, a photon arriv-

ing from a link can only move forward on its original direction or be scattered to 4

directions perpendicular to its incoming direction. The resulting image will be very

similar to that rendered with single scattering. Although we can add links between

the secondary or tertiary neighbors, this solution needs to calculate and store the

absorption and scattering probabilities of links with varying length (1,
√

2 and
√

3),

thus making the photon tracing algorithm more complicated and time consuming.

Instead, a FCC lattice site has 12 nearest neighbors, which is sufficient in photon

tracing (in previous systems, only 4 or 5 directions are used for forward scattering).

The link length in the FCC construction is uniform, which greatly simplifies the

computation and storage: the absorption and scattering probabilities on 12 links of

a site are the same and stored only once on the site. Moreover, the FCC lattice has

CHAPTER 4. Volumetric Global Illumination on FCC Lattice 110

better sampling efficiency than the CC lattice. With the same number of sites, FCC

captures 23% more information. In addition, the maximum distance of an arbitrary

point to its nearest site is
√

2
2

in FCC instead of
√

3
2

in CC, which means 18.4% less

quantization error of photon positions with the O-Buffer data structure.

Chapter 5

Volume Rendering for Virtual

Colonoscopy

In this chapter, an important application of 3D CC lattice volume rendering,

computer aided polyp detection (CAD) for virtual colonoscopy, is presented. Vir-

tual colonoscopy is based visualizing the CT scanning of the patient’s abdomen,

which is a 3D CC lattice volume. The CAD pipeline uses a GPU accelerated 3D

CC lattice volume rendering technique to calculate the electronic biopsy image of

the colon, which reduces the information from a 3D CC lattice to a 2D CC lattice.

Then, the image analysis methods are used on the 2D CC lattice for polyp detec-

tion. Because of the regularity of 2D CC lattice, analyzing the electronic biopsy

image is more efficient than the conventional shape analysis methods executed on

the triangle mesh of the colon surface.

Colorectal cancer is the second leading cause of cancer-related deaths in the

United States. Most colorectal cancers are believed to arise within benign adeno-

matous polyps that develop slowly over the course of many years [125]. Evidence-

based guidelines recommend the screening of adults who are at average risk for

colorectal cancer, since the detection and removal of adenomas has been shown to

substantially reduce the incidence of cancer and cancer-related mortality. There-

fore, some researchers have advocated screening programs to detect polyps with

a diameter of less than one centimeter [91]. However, most people do not follow

this advice because of the discomfort and inconvenience of the traditional optical

colonoscopy (OC).

111

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 112

To encourage people to participate in screening programs, virtual colonoscopy

(VC), also known as computed tomographic colonography (CTC), has been pro-

posed and developed to detect colorectal neoplasms by using a computed tomog-

raphy (CT) scan. VC is minimally invasive and does not require sedation or the

insertion of a colonoscope, though a minimal bowel preparation is necessary. VC

exploits computers to reconstruct a 3D colon model from the CT scans taken of the

patient’s abdomen, and create a virtual fly-through of the whole colon to help radi-

ologists navigate the model for diagnosis. Pickhardt et al. [125] have demonstrated

that the performance of a VC compares favorably with that of a traditional optical

colonoscopy. Because of the complex structure of the colon surface, the inspection

is prone to errors, and the radiologist needs to navigate forth (from rectum to ce-

cum) and back (from cecum to rectum) to improve the accuracy of the inspection.

A single examination usually generates 400-700 512×512 CT images, which need

10-15 minutes to be interpreted by a radiologist conducting 3D VC [65].

The anticipated long interpretation effort of the VC screening procedure sug-

gests a computer-aided detection (CAD) approach. A CAD scheme that automati-

cally detects the locations of the potential polyp candidates could substantially re-

duce the radiologists’ interpretation time and improve their diagnostic performance

with higher accuracy. However, the automatic detection of colonic polyps is a very

challenging task because the polyps can have various sizes and shapes. Moreover,

there are numerous colon folds and residual leftover colonic materials on the colon

wall that mimic polyps and could result in false positives (FPs). A CAD scheme

should have the ability to identify true polyps and eliminate the FPs.

A novel pipeline for computer aided polyp detection based on CC lattice vol-

ume rendering has been developed. Traditionally, the polyps are detected by the

shape features such as shape index and curvedness. However, the computation

of shape features is very expensive on the colon triangular mesh. The new CAD

pipeline uses direct volume rendering to generate electronic biopsy images, which

reduces the information on a 3D CC lattice to a 2D CC lattice. Then the polyp

detection is implemented by image analysis techniques on the 2D CC lattice, which

is much faster than calculating shape features in 3D.

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 113

5.1 The CAD Pipeline

Colon Surface Extraction

Conformal Colon Flattening

Segmentation and Digital
Cleansing

Clustering

Virtual Colonoscopy

Segmented and Cleansed Colon

Colon Triangle Mesh

Flattened Colon Mesh

Suspicious Patches

Volumetric Ray Casting

Flattened Biopsy Image

Reduction of False
Positives

CAD Results

Dicom Images

Cleansed
Colon

Volume

Colon
Triangle

Mesh
and

Colon
Centerline

Diagnosis

Figure 5.1: CAD pipeline.

Figure 5.1 shows the flow of the pipeline CAD. First, for segmentation and

digital cleansing of the colon, an iterative partial volume segmentation algorithm

is applied. Then, a topologically simple colon surface is extracted for conformal

colon flattening. The electronic biopsy colon image is then generated using the

flattened colon and a volumetric ray casting algorithm. After that, our clustering

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 114

algorithm and reduction of FPs are performed. All of these processes are performed

automatically in the pipeline.

Digital cleansing aims to segment the colon lumen from a patient abdominal

data set acquired using CT and an oral contrast agent for colonic material tagging,

and to cleanse the colon lumen of all tagged material, so that a cleansed virtual colon

model can be constructed. In this pipeline, an iterative partial volume segmentation

algorithm [158] is applied first. The voxels in the colon lumen are classified as air,

mixture of air with tissue, mixture of air with tagged materials, or mixture of tissue

with tagged materials. Then, the interface layer is identified by the dilation and

erosion method.

For colon surface extraction, a new volume based topological denoising algo-

rithm is used to remove tiny handles (i.e., topological noise) from the segmented

colon [53, 55]. Then, an enhanced dual contour method [177] is applied to extract

a simplified smooth colon surface while preserving the topology of the finest reso-

lution colon surface.

Virtual dissection is an efficient visualization technique for polyp detection, in

which the entire inner surface of the colon is displayed as a single 2D image. The

straightforward method [155] starts with uniformly resampling the colonic central

path. At each sampling point, a cross section orthogonal to the path is computed.

The central path is straightened and the cross sections are unfolded and remapped

into a new 3D volume. The isosurface is then extracted and rendered for polyp

detection. However, this method results in severe distortions. Several methods have

been developed that are either area preserving [7] or angle preserving [49, 53].

An angle preserving method is applied in the pipeline, because radiologists

identify polyps mainly based on the shape information, and the lost area and vol-

ume information can reconstructed by referring back to the original volumetric data.

Haker et al.’s method [49] can only handle genus 0 surfaces and maps the colon to a

parallelogram. Nevertheless, our method [53] is more general and capable of han-

dling high genus surfaces, and it maps the colon surface to a rectangle. Moreover,

because the method of Haker et al. [49] is based on the shape information com-

puted from the colon surface, it requires a highly accurate and smooth surface mesh

to achieve good mean curvature estimation.

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 115

In order to compute the conformal map between the colon surface and a rectan-

gle, its gradient field is computed first. Mathematically, this gradient field is called

holomorphic 1-form. Then, the conformal mapping can be obtained by integration.

Each gradient field of a conformal map is a pair of tangential vector fields with spe-

cial properties, such as the curl and laplace are zero everywhere. All such vector

fields form a linear space. A basis of this linear space is constructed by solving a

linear system derived from these properties. The global distortion from the colon

surface to the parametric rectangle is minimized, which is measured by harmonic

energy. The details of our flattening algorithm can be found in the paper [53].

The holomorphic 1-form based conformal mapping method is pretty slow. A

discrete Ricci flow based conformal mapping method for colon flattening has been

developed. Ricci flow has a simple physical intuition. Given a surface S with a

Riemannian metric g, the metric induces the Gaussian curvature function. If the

metric g is changed, then the Gaussian curvature will be changed accordingly. The

Ricci flow deforms g in the following way: at each point, g is locally scaled to

a new metric ḡ such that the scaling factor is proportional to the curvature at the

point. Because of this locally isotropic deformation, the deformation is a conformal

metric deformation such that angles measured by g are equal to that measured by ḡ.

After the deformation, the new metric ḡ induces a new curvature function. Both the

metric and the curvature evolve while the deformation process is repeated. And the

curvature evolution is like a heat diffusion process. Eventually, the Gaussian curva-

ture function is constant everywhere. For a surface with a cylinder topology such as

the colon, the result Gaussian curvature function is 0 everywhere. In practice, the

colon surface is represented with a triangular mesh. Therefore, the discrete Ricci

flow is computed where the Riemannian metric is replaced with the circle packing

metric. The details of the algorithm can be found at [127].

We have used CUDA to accelerate the discrete Ricci flow on the GPU. With the

Geforce 8800GTX graphics card, a colon mesh with 160,000 faces can be flattened

in less than 10 seconds. In comparison, the holomorphic 1-form method in [53]

needs 7 minutes to flatten a colon.

As assumed in previous CAD literature, the colonic polyps usually have an

elliptic curvature of the peak subtype, i.e., the shape at the top section of a regular

polyp (toward the colon wall) is more likely to be a spherical cap. Because of the

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 116

(a) (b)

Figure 5.2: (a) Closeup endoscopic view of a polyp; (b) Zoom-in view of the same polyp

in the flattened colon image.

angle preservation of our colon flattening algorithm, the elliptic shape of a colonic

polyp shown in Figure 5.2(a) is preserved in the flattened image as shown in Figure

5.2(b).

After a high resolution flattened electronic biopsy image is rendered, the RGB

values of the given pixel and its twelve neighboring pixels form a 39-dimensional

local feature vector. The principal component analysis (PCA) is applied to the local

vector series to determine the dimension of the feature vectors and the associated

orthogonal transformation matrix (i.e., the K-L transformation matrix). The PCA

on the training data sets shows that a reasonable dimension of the feature vectors is

7, where the summation of the first 7 principal components variances is more than

96.5% of the total variance. The mean vector of these feature vectors is computed

and used as the representative vector V of the feature vectors belonging to polyps.

The square root of the variance of these feature vectors is also computed and used

as a threshold T for vector similarity in the clustering.

After the clustering algorithm, the pixels classified belonging to a polyp are

marked. A labeling algorithm is used to extract the connected components on this

image. Since only polyps with a diameter larger than 5 millimeters are significant in

diagnosis, a component whose pixel number is below such a threshold is classified

as a false-positive finding. Consequently, many small components are removed.

The false-positive findings can be further reduced by analyzing the shape fea-

tures, such as the shape index and curvedness [176] and volumetric texture fea-

tures [175]. The computation of these features for the entire volume is time consum-

ing. In this pipeline, these features are computed on the suspicious areas marked in

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 117

cluster step for FP reduction, rather than for the entire colon.

5.2 Direct Volume Rendering of Flattened Colon

The result of the flattening algorithm is a triangulated rectangle where the

polyps are also flattened. The rendering of the flattened colon image is crucial

for the detection of polyps. Haker et al. [49] use color-coded mean curvature to vi-

sualize the flattened colon surface. Although it can show the geometry information

of the 3D colon surface, it is still unnatural for the physicians to detect the polyps.

The shape of the polyps is a good clue for polyp detection. In this section, two di-

rect volume rendering techniques is used to render the flattened colon image. Each

pixel of the flattened image is shaded using a fragment program executed on the

GPU, which allows the physician to move and zoom a viewing window to inspect

the entire flattened inner colon surface. The idea of the rendering algorithm is to

map each pixel of the flattened image back to the 3D colon surface, i.e., the volume

space. The pixel is shaded using a volumetric ray-casting algorithm in the volume

space.

To render the endoscopic views, the transfer function is designed so that the

colon wall appears to be red, just like the endoscopic views in traditional virtual

colonoscopy. In order to perform the ray-casting algorithm, the ray direction needs

to be determined for each vertex of the 3D colon surface first. A number of cameras

are uniformly placed on the central path of the colon. The ray direction of a vertex

is then determined by the nearest camera to that vertex.

The camera registration algorithm starts with approximating the central path

with a B-spline and resampling it into uniform intervals. Each sampling point rep-

resents a camera. Each vertex is then registered with a sampling point on the central

path. The registration procedure is implemented efficiently by first dividing the 3D

colon surface and central path into N segments. The registration is then performed

between the correspondent segments of colon and the central path. The division of

the 3D colon is done by classifying the vertices of the flattened 2D mesh into N

uniform segments based on their height. As a consequence, the vertices of the 3D

colon mesh are also divided into N segments. Then, N − 1 horizontal lines on the

flattened 2D mesh, which uniformly divide the 2D mesh into N segments. Each

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 118

traced horizontal line corresponds to a cross contour on the 3D mesh. In fact, it

is unnecessary to really trace the horizontal lines. For each horizontal line, the in-

tersection points of the horizontal line and edges intersecting with it are computed.

For each intersection point, the corresponding 3D vertex of the 3D colon mesh is

then interpolated. The centroid of these interpolated 3D vertices is computed and

registered with a sampling point of the central path. Therefore, the central path is

also divided into N segments, and each segment of the 3D colon mesh corresponds

to a segment of the central path. Although the division of the 3D colon surface and

the central path is not uniform as that of the 2D mesh, it does not affect the accuracy

of the camera registration.

For each vertex of a colon surface segment, the nearest sampling point in its

corresponding central path segment is computed and the neighboring two segments

are obtained. This algorithm is efficient because for each vertex, the comparison

is performed only with a small number of sampling points on the central path. For

each vertex, the B-spline index of the sampling points is stored, instead of its 3D

coordinates.

To generate a high-quality image of the flattened colon, only coloring the ver-

tices of the polygonal mesh and applying linear interpolation is not sufficient. The

color for each pixel of the 2D image is computed using a fragment program on the

GPU. For each vertex of the flattened polygonal mesh, its corresponding 3D co-

ordinates and camera index are passed through texture coordinates to the fragment

program. When the flattened polygonal mesh is rendered, each pixel of the flattened

image will obtain its barycentric interpolated 3D coordinates and camera index. Its

3D position may not be exactly on the colon surface, but very close to the colon

surface. Because the direct volume rendering method is used, it does not affect

the image quality. The interpolated camera index is used to look up its corespon-

dent sampling point on the central path. Then, the ray direction is determined and

volumetric ray casting algorithm is performed using an opaque transfer function.

Since the flattened image is colored per-pixel, it can provide the physician

with a high-quality zoom-in view of a suspicious area on the flattened image in

real-time. Because each vertex is registered with a sampling point on the central

path, the flattened colon image can be easily correlated with the navigation of a

virtual colonoscopy system. The correlated 3D view of the suspicious area can be

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 119

also shown simultaneously.

In the canonical volumetric ray casting algorithm, a ray is shot for each pixel

on the image plane. The direction of the ray is defined by the positions of the

viewpoint and the pixel. When the ray hits the boundary of the volume, the ray

starts to accumulate color and opacity values while stepping inside the volume. In

the CAD pipeline, a constrained volumetric ray casting algorithm can be used to

generate the 2D biopsy image. In this method, the gradient at the intersection point

is defined as the direction of the ray. In the volumetric ray-casting algorithm, the

sampling distance is 0.5mm. Because the physicians are only interested in a thin

layer (20mm) beneath the colon surface, each ray is only allowed to traverse up to

40 steps. Moreover, because the colon wall protrudes into the lumen, some rays may

enter the colon lumen again. In order to avoid rays re-enter the colon lumen, these

rays are terminated in the ray-casting algorithm using the segmentation information

of the colon lumen.

5.3 Polygon Assisted Colon Rendering

When navigating or flying through the colon interior, the colon wall is rendered

with a direct volume rendering method. Because of the large size of the colon

volume data and the inherent complexity of volume rendering, it is very hard to

achieve interactive frame rates with a software implementation. 3D texture-based

volume rendering [13] is a popular volume rendering method that can achieve real-

time speed on commodity graphics hardware (GPU). However, the rays shot from

the image plane have different sampling rates due to the planar proxy geometry. Ray

casting [73] has been implemented on the GPU, which has a coherent sampling rate

for all rays. To achieve interactive speed, the two common acceleration techniques,

empty-space skipping and early ray termination, have been used.

The polygonal mesh has been exploited by us to help direct volume render-

ing [5]. The polygonal mesh representing the object boundary is extracted from

the volume in the second step of our pipeline. Each vertex is associated with its

coordinates in volume texture space. The mesh is projected onto the image plane

for calculating the entry points of rays, and the empty space between the image

plane and the object boundary is skipped. The detection result is also stored in a

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 120

(a) (b)

Figure 5.3: A closeup view of a polyp rendered (a) without coloring, and (b) with coloring.

2D image, in which polys are colored in yellow and normal colon wall is colored

in red. When the flattened mesh is projected on the image, 2D texture coordinates

are computed by interpolation, which is used to access the resulting image to de-

termine the color of the ray. This method is very efficient because the GPU is very

fast in rasterizing triangles onto the image plane. The algorithm has two passes. In

the first pass, the mesh is rendered and the rasterization hardware interpolates the

texture coordinates for each fragment. In this pass, the depth test is enabled so that

only the nearest intersection points are preserved in the framebuffer. In the second

pass, the fragment shader reads back the intersection point for each pixel on the im-

age plane and a standard ray casting is performed from this point. A polyp rendered

with our method with and without coloring is shown in Figure 5.3. The rendering

frame rates for a 512 by 512 image is about 17-20 per second.

5.4 Results

The polyp detection pipeline has been implemented in C/C++ and all of the

experiments have been run on a 3.6 GHz Pentium IV PC with 3G RAM and one

NVIDIA Quadro 4500 graphics board. Figure 5.4 shows a colon dataset of 512×
512×460 resolution rendered with a transfer function for endoscopic view. Figure

5.4(a) includes the rectum of the colon at the left end. Figure 5.4(c) includes the

cecum of the colon at the right end.

Figure 5.5(a) shows the electronic biopsy image of the flattened colon of the

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 121

(a)

(b)

(c)

Figure 5.4: A flattened image for a whole colon data set.

same dataset. For a 4000×196 image, the GPU renders the results images in about

300 milliseconds. Figure 5.5(b) shows the result of the clustering algorithm. The

result of the reduction of FPs with shape analysis and 3D texture analysis is given

in Figure 5.5(c).

The CAD pipeline has been demonstrated and tested with 52 CT data sets from

the National Institute of Health (NIH). Along with the raw colon CT images, there

are VC reports, OC reports, pathology reports, and OC videos available for viewing.

In addition, another 46 CT data sets along with VC reports and OC reports obtained

from Stony Brook University Hospital (SBUH) has also been used in testing. The

specialists’ VC and OC reports for the NIH and SBUH data sets have been used to

evaluate the CAD pipeline.

Ten of the 52 NIH data sets are used for training the clustering algorithms,

to compute the K-L matrix and the representative vector V . The rest of the data

sets are used for testing, which exhibits consistent results. The electronic biopsy

images are all generated with the same biopsy transfer function. The clustering

algorithm is 100% sensitive to polyps, and no polyp from the 42 NIH data sets and

the 46 SBUH data sets was missed. The polyps are colored using the volumetric

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 122

(a)

(b)

(c)

Figure 5.5: Results of (a) rendering, (b) clustering and (c) FP reduction.

ray casting algorithm with a translucent biopsy transfer function. The polyps are

shown in similar colors on the 2D image, which will not be missed by the clustering

algorithm.

Table 5.1: Experimental results of the CAD pipeline.

Data Source Total Polyps FP per data set FP Reduction

NIH 58 3.1 96.3%

SBUH 65 2.9 97.1%

The experimental results are shown in Table 5.1, which are confirmed using

VC reports and OC reports. There are 58 polyps in the 42 NIH data sets. 96.3%

FPs are eliminated in the reduction step. Our method has an average FP number of

3.1 per NIH data set after the FP reduction. There are 65 polyps in the 46 SBUH

data sets. 97.1% FPs are eliminated in the reduction step. The presented method

has an average FP number of 2.9 per SBUH data set. The best shape analysis based

systems [43, 148, 157, 176] achieved 2− 3 FPs per dataset with 100% sensitivity.

The experiment results show that the proposed method achieved similar results as

these systems.

In summary, our 3D CC lattice volume rendering based polyp detection is

CHAPTER 5. Volume Rendering for Virtual Colonoscopy 123

different from previous shape based methods, as we detect suspicious patches on a

2D CC lattice electronic biopsy image of the colon. The FPs are further reduced in

a subsequent step by shape analysis, which are only performed on the suspicious

patches. The adenomatous and malignant polyps in the volume rendered biopsy

images have different densities compared with normal tissues. Our system is 100%

sensitive to these polyps with a very low FP rate. The detection results are stored

on a 2D CC lattice, which can be easily integrated into the VC system to highlight

the polyp locations on the colon wall during navigation. The regularity of 2D and

3D CC lattices simplifies the computation, thus our CAD pipeline is more efficient

than traditional shape based methods.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, several techniques and algorithms have been presented for ren-

dering volumes on lattices with various optical models. For the simple absorption

and emission model without scattering, the GPU has been exploited for improved

rendering speed:

• A rasterization-tracing hybrid height field rendering method on GPU that

exploits the advantages of both image-based and object-based techniques,

which reconstructs a triangle mesh from the elevation map of a height field.

• An efficient GPU-CPU hybrid volumetric ray-casting algorithm for direct

volume rendering, which exploits both the computation power and flexibility

of the GPU and the CPU. Space space skipping and early ray termination are

performed on the CPU, and ray traversal and compositing are implemented

on the GPU. The parallelism between the CPU and the GPU has been ex-

ploited and a workload balancing algorithm has been exploited to keep both

the CPU and GPU busy.

• A GPU-based object-order ray-casting algorithm for rendering large volumet-

ric datasets that cannot be stored in the GPU memory. The volume dataset

is decomposed into small cells, and organized using a min-max octree struc-

ture. The empty cells are skipped immediately after the classification, while

non-empty cells are rendered in front-to-back order. A cell sorting algorithm

124

CHAPTER 6. Conclusions and Future Work 125

is designed allowing to project a layer of cells in parallel.

The 3D CC lattice volume rendering algorithms exploit the parallel architecture,

high computation power, and native support of 3D CC lattice storage and inter-

polation of the GPU. The described algorithms produce high quality images at

interactive or real time speed, which previously was only available on high-end

workstation or specially designed graphics hardware.

The LBM models Boltzmann particle dynamics on a CC lattice and gener-

ates simulation results on the same CC lattice. The efficient and simple computing

process of LBM makes it easy to be parallelized on the GPU and GPU cluster.

Therefore, algorithms have been developed to render the smoke and amorphous ob-

jects produced by the LBM flow simulation on the same GPU or GPU cluster. To

incorporate the shadow effect, the single scattering optical model is used. Specifi-

cally, a half angle splatting method has been accelerated on a single GPU. Also, ray

tracing with single scattering has been accelerated with OpenGL both on a single

GPU and on a GPU cluster using the lighting volume method. To further improve

the rendering speed, a CUDA based method has been implemented, which does

not have the frequent context switching as in the OpenGL based implementation.

The described methods have achieved interactive speed and been integrated with

the LBM simulation into a complete system.

To further improve image quality in volumetric global illumination, it has been

accelerated with a novel framework based on FCC lattices. Benefitting from the

unique geometric and sampling properties of FCC lattices, algorithms have been

developed that can render participating media and volumes with multiple scattering

effects. The new diffuse photon tracing algorithm renders high quality images at

a speed significantly faster than conventional methods. To solve the ray effects in

the diffuse photon tracing method, a memory efficient specular photon tracing algo-

rithm has been described, which can be easily plugged into the traditional rendering

software package.

The 3D CC lattice volume rendering technique has also been applied for

computer-aided polyp detection for virtual colonoscopy. Different from previous

shape based methods, the system first detects polyps on 2D electronic biopsy im-

ages rendered from conformally flattened colons. Then the expensive shape analy-

sis is applied on suspicious areas to reduce false positives. Our system is 100%

CHAPTER 6. Conclusions and Future Work 126

sensitive to malignant polyps and the false positive rate is as low as the best shape-

based method, while it is much faster than shape-based methods. The detection re-

sults can be easily integrated to the virtual colonoscopy system to highlight polyps

and save the diagnostic time of radiologists. The 3D CC lattice volume rendering

of the entire flattened colon costs about 300 milliseconds. It reduces the informa-

tion from a 3D CC lattice to a 2D CC lattice. The image analysis is much faster

than conventional shape analysis methods because of two reasons. First, the image

analysis processes 2D information, while the shape analysis methods processes in-

formation in 3D. Second, the electronic biopsy image is stored on a 2D CC lattice,

while the shape analysis methods processes the triangle mesh of the colon surface.

The 2D CC lattice is much simpler and more efficient to process because of its

regularity. In comparison, the data structure of a triangle mesh is more complex.

6.2 Future Work

In the future, the global illumination framework on FCC lattices can be ex-

tended to render hybrid scenes of volumetric datasets and surface objects with spec-

ular reflection and refraction. The current implementation only uses 12 links to the

nearest sites on the FCC lattice. For future efforts, it is possible to incorporate

the links connecting the secondary and tertiary neighbors to increase the angular

discretization granularity. With these additional links, the phase function can be

discretized with even higher precision thus more accurate radiance estimation will

be obtained. In doing so, a total of 42 neighbors with distance less than
√

3 will

have to be considered and different link lengths will participate in the computation

of the absorption and scattering coefficients. Hence, a more efficient data structure

will be required for diffuse photon storage.

The GPU and the GPU cluster can be further investigated to accelerate the

rendering of FCC lattices. Currently, only the rendering pass in the diffuse photon

tracing algorithm is accelerated on the GPU. With CUDA, accelerating the photon

tracing pass on the GPU is possible and may significantly improve the performance.

Because the global memory accessing instruction is two orders of magnitude slower

than normal computation instructions on the CUDA-enabled GPU, directly map-

ping the photon tracing pass to the GPU might be inefficient. One possible idea is

CHAPTER 6. Conclusions and Future Work 127

to decompose the entire volume into many small blocks. Each of the blocks is small

enough to be stored on the shared memory (or in-chip cache) of a multiprocessor.

Also, because the photons are stored on the lattice sites, the 3D/4D photon array can

also be stored in the shared memory. The global memory will be used for the com-

munication between blocks. There is one photon queue for each multiprocessor in

the global memory, which saves all the photons entering the block at the boundary.

The CPU will be used to schedule the photon tracing process of blocks. During the

tracing process, the density array will be loaded to shared memory first. Then, the

computation kernel reads the densities or lighting properties and writes the photon

arrays in the shared memory. When a photon leaves one block, it can be written to

the photon queue of the block to be entered. This algorithm can also be generalized

for ray tracing surface objects with the bounding volume hierarchy data structure.

The bottleneck of the ray tracing pass is the expensive Gaussian filter used

for radiance estimation, which is slow even on the GPU. A possible solution is to

use the photon splatting method. First, in the ray space, the transmittance volume

can be calculated using CUDA with an algorithm similar to the lighting volume

calculation algorithm. Then, the photons of each lattice site can be splatted together

with a Gaussian kernel.

The FCC and BCC lattices have not been frequently used in computer graphics

and visualization. One major reason is the lack of multi-resolution and hierarchical

data structure on FCC and BCC lattices. Preliminary study has shown that hierar-

chical FCC and BCC lattices can be constructed from the hierarchical CC lattice.

For example, one CC lattice can be decomposed into two interleaving FCC lattices.

Given a CC lattice where a lattice site has index (i, j,k), the sites with odd index

sum i+ j+k (odd sites) form an FCC lattice, while the even sites form another FCC

lattice. Therefore, given a hierarchical CC lattice, a hierarchical FCC lattice can be

easily obtained by decomposing levels of CC lattices. The BCC lattice is similar.

The next step is to study how to resample a fine level FCC to get a coarse level

FCC. More interestingly, the CC, FCC and BCC lattices can be mixed together for

a multi-resolution representation. This requires to study the algorithms and meth-

ods of resampling one lattice to get another lattice, and the reconstruction filter at

the boundaries between two lattices. A possible method is to study the Voronoi

cells of CC, FCC and BCC lattices. Similar to the mipmap of 2D/3D textures, the

CHAPTER 6. Conclusions and Future Work 128

overlapping volume of the Voronoi cells in coarse level and fine level can be cal-

culated and used as the weights. More complicated resampling kernel can also be

used.

In traditional computer graphics, light is treated as bunches of rays. A ray is

simply a path along which energy is transmitted from one point to another in the

environment. The optical path of a ray is a sequence of straight-line segments. At

the vertices of line segments, certain optical events such as emission, reflection,

refraction, and absorption occur and change the ray direction. This treatment ne-

glects the wave properties of light and is described with laws of geometric optics.

However, geometric optics cannot model other important light effects such as dif-

fraction, interference, polarization, and Doppler effect. All these effects due to the

the wave character of the light can be described with physical optics or wave optics.

The Huygens-Fresnel Principle states that each point of an advancing wave front is

in fact the center of a fresh disturbance (or wavelet) and the source of a new train

of waves. The advancing wave as a whole may be regarded as the sum of all the

secondary waves arising from points in the medium already traversed. The ampli-

tude of the wave at any given point equals the superposition of the amplitudes of all

the secondary wavelets at that point. A wide range of optical phenomena including

reflection, refraction, and diffraction can be simulated on the FCC lattices with the

Huygens-Fresnel Principle.

Angular discretization has not been well studied in computer graphics, al-

though it has important applications such as BRDF, phase function in computer

graphics. One commonly used technique to represent angle dependent functions is

the spherical harmonics. However, spherical harmonics is not a local representa-

tion. A spherical function f (θ,φ) is expanded as a linear combination of an infinite

set of orthonormal spherical functions Y m
l (θ,φ):

f (θ,φ) =

∞
∑

l=0

l
∑

m=−l

f m
l Y m

l (θ,φ). (6.1)

This representation becomes less accurate when l is truncated. In practice, l is

always truncated at some value. If a better accuracy is needed, the more basis func-

tions are needed, and the resampling operations becomes more complicated. This

is inconvenient, especially compared with the image representation. When a higher

CHAPTER 6. Conclusions and Future Work 129

resolution of the image is used, the complexity of the interpolation operation on the

image does not change. A possible method for angular discretization is to define

a set of sampling points and a good filter on the sphere domain. However, (θ,φ)

(latitude and longitude) is not a good representation of the sphere domain because

of singularity and oversampling. A better method is to study the regular tessella-

tion (discretization) of the unit sphere surface, which does not have the singularity

and oversampling problems. There are only three regular tessellations on a sphere:

square tiling, triangular tiling and hexagonal tiling (dual to triangular tiling). Then,

spherical Fourier transformation can be used to study the properties of three regular

tessellation in the frequency domain and design a good filter.

Tessellation, discretization, and lattice are three closely related topics. A lat-

tice represents a regular discretization of an Rn domain. The Voronoi cells of the

lattice sites tessellate the Rn domain with a regular pattern. CC lattices are widely

used for multi-dimensional image representations. Other lattices such as FCC and

BCC lattices have their own advantages, but have not been well studied. There are

many possibilities to exploit different lattices to discretize or tessellate the definition

domain of general computation problems beyond volume rendering, for example,

LBM on FCC lattices, hexagonal image processing, and finite element methods.

Bibliography

[1] K. Akeley. Reality engine graphics. SIGGRAPH, pages 109–116, 1993.

[2] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing.

Eurographics, pages 3–9, 1987.

[3] M. R. Anderberg. Cluster analysis for applications. Number 19 in Probabil-

ity and Mathematical Statistics. Academic Press, New York, 1973. xiii+359

pages.

[4] M. Artner, T. Möller, I. Viola, and M. E. Gröller. High-quality volume ren-

dering with resampling in the frequency domain. EuroVis, pages 85–92, June

2005.

[5] R. S. Avila, L. M. Sobierajski, and A. E. Kaufman. Towards a comprehensive

volume visualization system. Visualization, pages 13–20, 1992.

[6] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduction to Volume

Rendering. Prentice Hall PTR, Upper Saddle River, NJ07458, 1998.

[7] A. V. Bartroli, R. Wegenkittl, A. Konig, and E. Groller. Nonlinear virtual

colon unfolding. Visualization, pages 411–418, October 2001.

[8] P. Blasi, B. L. Saëc, and C. Schlick. A rendering algorithm for discrete

volume density objects. Computer Graphics Forum, 12(3):201–210, 1993.

[9] J. F. Blinn. Light reflection functions for simulation of clouds and dusty

surfaces. SIGGRAPH, pages 21–29, 1982.

130

CHAPTER 6. Conclusions and Future Work 131

[10] R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill

Book Company, New York, NY, USA, 1986.

[11] P. Bunyk, A. E. Kaufman, and C. T. Silva. Scientific Visualization, chapter

Simple, Fast, and Robust Ray Casting of Irregular Grids, pages 30–36. IEEE

Computer Society, 1999.

[12] G. Burns. Solid State Physics. Academic Press, 1985.

[13] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and to-

mographic reconstruction using texture mapping hardware. Symposium on

Volume Visualization, pages 91–98, 1994.

[14] H. Carr, T. Theußl, and T. Möller. Isosurfaces on optimal regular samples.

Symposium on Data Visualisation, pages 39–48, 2003.

[15] J. C. Chai, H. S. Lee, and S. V. Patankar. Ray effect and false scattering in

the discrete ordinates method. Numerical Heat Transfer Part B, 24:373–389,

1993.

[16] S. Chandrasekhar. Radiative Transfer. Dover Publications, 1960.

[17] D. Cohen and Z. Sheffer. Proximity clouds: An acceleration technique for

3D grid traversal. The Visual Computer, 11:27–38, 1994.

[18] M. F. Cohen and D. P. Greenberg. The hemi-cube: A radiosity for complex

environments. SIGGRAPH, 19(3):31–40, July 1985.

[19] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image Synthesis.

Academic Press Professional, Boston, MA, 1993.

[20] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar. A real-time photo-realistic

visual flythrough. IEEE Transactions on Visualization and Computer Graph-

ics, 2(3):255–265, 1996.

[21] J. Comba, J. T. Klosowski, N. Max, J. S. B. M. C. T. Silva, and P. L. Williams.

Fast polyhedral cell sorting for interactive rendering of unstructured grids.

Eurographics, 18(3):369–376, 1999.

CHAPTER 6. Conclusions and Future Work 132

[22] J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere Packings, Lattices, and

Groups. Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[23] R. L. Cook. Stochastic sampling in computer graphics. ACM Transactions

on Graphics, 5(1):51–72, 1986.

[24] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. SIGGRAPH,

pages 137–145, 1984.

[25] R. Crawfis and N. Max. Texture splats for 3D scalar and vector field visual-

ization. Visualization, pages 261–266, 1993.

[26] B. Csébfalvi. Prefiltered Gaussian reconstruction for high-quality rendering

of volumetric data sampled on a body-centered cubic grid. Visualization,

pages 311–318, 2005.

[27] F. Dachille and A. Kaufman. Incremental triangle voxelization. Graphics

Interface, pages 205–212, May 2000.

[28] D. Dudgeon and R.Mersereau. Multidimensional Signal Processing. Pren-

ticeHall, New Jersey, NJ, USA, 1984.

[29] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal

Processing. Prentice Hall Professional Technical Reference, 1990.

[30] D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley and Sons,

second edition, 1999.

[31] D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo. Designing effective

transfer functions for volume rendering from photographic volumes. IEEE

Transactions on Visualization and Computer graphics, 8:183–197, April

2002.

[32] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume ren-

dering using hardware-accelerated pixel shading. Workshop on Graphics

Hardware, pages 9–16, 2001.

[33] A. Entezari, R. Dyer, and T. Moller. Linear and cubic box splines for the

body centered cubic lattice. Visualization, pages 11–18, 2004.

CHAPTER 6. Conclusions and Future Work 133

[34] A. Entezari and T. Möller. Extensions of the Zwart-Powell box spline for

volumetric data reconstruction on the Cartesian lattice. IEEE Transactions

on Visualization and Computer Graphics, 12(5):1337–1344, 2006.

[35] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high

performance computing. In Proceedings of ACM/IEEE Supercomputing,

page 47, 2004.

[36] R. Farias, J. S. B. Mitchell, and C. T. Silva. ZSWEEP: An efficient and

exact projection algorithm for unstructured volume rendering. Symposium

on Volume Visualization, pages 91–99, 2000.

[37] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of smoke. SIGGRAPH,

pages 15–22, 2001.

[38] M. S. Floater, K. Hormann, and G. Kós. A general construction of barycen-

tric coordinates over convex polygons. Advances in Computational Mathe-

matics, 24(1–4):311–331, January 2006.

[39] C. Früh and A. Zakhor. Constructing 3D city models by merging aerial and

ground views. IEEE Computer Graphics and Applications, 23(6):52–61,

November/December 2003.

[40] J. Fung and S. Mann. Using multiple graphics cards as a general purpose par-

allel computer : Applications to computer vision. International Conference

on Pattern Recognition, 1:805–808, 2004.

[41] M. P. Garrity. Raytracing irregular volume data. Workshop on Volume Visu-

alization, pages 35–40, 1990.

[42] R. Geist, K. Rasche, J. Westall, and R. J. Schalkoff. Lattice-Boltzmann light-

ing. Rendering Techniques, pages 355–362, 2004.

[43] S. B. Göktürk, C. Tomasi, B. Acar, C. F. Beaulieu, D. S. Paik, R. B. Jeffrey,

J. Yee, and S. Napel. A statistical 3D pattern processing method for com-

puter aided detection of polyps in CT colonography. IEEE Transactions on

Medical Imaging, 20(12):1251–1260, 2001.

CHAPTER 6. Conclusions and Future Work 134

[44] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modelling the

interaction of light between diffuse surfaces. SIGGRAPH, 18(3):213–222,

1984.

[45] GPGPU. http://www.gpgpu.org.

[46] B. Grünbaum. The emperor’s new clothes: full regalia, g-string, or nothing?

Mathematical Intelligencer, 6(4):47–56, 1984.

[47] B. Grünbaum and G. C. Shephard. Tilings and Patterns: An Introduction. W.

H. Freeman, 1989.

[48] R. Gulde, M. Weeks, S. Owen, and Y. Pan. Parallel computing with multi-

ple GPUs on a single machine to achieve performance gains. Workshop on

General-Purpose Computing on Graphics Processors, 2004.

[49] S. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis. Nondistorting flat-

tening maps and the 3D visualization of colon CT images. IEEE Transac-

tions on Medical Imaging, 19:665–670, December 2000.

[50] T. C. Hales. Cannonballs and honeycombs. Notices of the American Mathe-

matical Society, 47(4), April 2000.

[51] M. J. Harris and A. Lastra. Real-time cloud rendering. Computer Graphics

Forum, 20(3), 2001.

[52] K. Hegeman, M. Ashikhmin, and S. Premože. A lighting model for general

participating media. Symposium on Interactive 3D Graphics and Games,

pages 117–124, 2005.

[53] W. Hong, X. Gu, F. Qiu, M. Jin, and A. Kaufman. Conformal virtual colon

flattening. Symposium on Solid and Physical Modeling, pages 85–93, 2006.

[54] W. Hong, F. Qiu, and A. Kaufman. GPU-based object-order ray-casting for

large datasets. In Proceedings of International Workshop on Volume Graph-

ics, pages 177–185, 2005.

CHAPTER 6. Conclusions and Future Work 135

[55] W. Hong, F. Qiu, and A. Kaufman. A pipeline for computer aided polyp

detection. IEEE Transactions on Visualization and Computer Graphics,

12(5):861–868, September–October 2006.

[56] H. Hoppe. Smooth view-dependent level-of-detail control and its application

to terrain rendering. Visualization, pages 35–42, 1998.

[57] D. Horn, M. Houston, and P. Hanrahan. ClawHMMer: A streaming HMMer-

Search implementation. Supercomputing, pages 11–19, 2005.

[58] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.

WireGL: A scalable graphics system for clusters. SIGGRAPH, pages 129–

140, 2001.

[59] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for

non-diffuse environments. SIGGRAPH, pages 133–142, 1986.

[60] H. W. Jensen. Global illumination using photon maps. Workshop on Render-

ing, pages 21–30, 1996.

[61] H. W. Jensen. Rendering caustics on non-lambertian surfaces. Computer

Graphics Forum, 16(1):57–64, 1997.

[62] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A. K.

Peters, Ltd., Natick, MA, USA, 2001.

[63] H. W. Jensen and P. H. Christensen. Efficient simulation of light transport

in scences with participating media using photon maps. SIGGRAPH, pages

311–320, 1998.

[64] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. A practical

model for subsurface light transport. SIGGRAPH, pages 511–518, 2001.

[65] C. D. Johnson and A. H. Dachman. CT colonography: The next colon screen-

ing examination? Radiology, 216(2):331–341, 2000.

[66] J. T. Kajiya. The rendering equation. SIGGRAPH, pages 143–150, 1986.

CHAPTER 6. Conclusions and Future Work 136

[67] J. T. Kajiya and B. P. V. Herzen. Ray tracing volume densities. SIGGRAPH,

pages 165–174, 1984.

[68] A. E. Kaufman. Volume visualization: Principles and advances. SIGGRAPH

Course notes, July 1997.

[69] J. Kniss, S. Premože, C. Hansen, P. Shirley, and A. McPherson. A model

for volume lighting and modeling. IEEE Transactions on Visualization and

Computer Graphics, 9(2):150–162, April–June 2003.

[70] G. Knittel. The ULTRAVIS system. Symposium on Volume Visualization,

pages 71–79, 2000.

[71] K. Kreeger, I. Bitter, F. Dachille, B. Chen, and A. Kaufman. Adaptive per-

spective ray casting. Symposium on Volume Visualization, pages 55–62,

1998.

[72] S. Krishnan, C. T. Silva, and B. Wei. A hardware-assisted visibility-ordering

algorithm with applications to volume rendering. EG/IEEE TVCG Sympo-

sium on Data Visualization, pages 233–242, 2001.

[73] J. Krüger and R. Westermann. Acceleration techniques for GPU-based vol-

ume rendering. Visualization, pages 287–292, 2003.

[74] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factor-

ization of the viewing transformation. SIGGRAPH, pages 451–458, 1994.

[75] S. Lakare and A. Kaufman. Light weight space leaping using ray coherence.

Visualization, pages 19–26, 2004.

[76] C. Lee and Y. G. Shin. An efficient ray tracing method for terrain rendering.

Pacific Graphics, pages 180–193, 1995.

[77] J. Legakis, J. Dorsey, and S. J. Gortler. Feature-based cellular texturing for

architectural models. SIGGRAPH, pages 309–316, 2001.

[78] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics

and Applications, 8(3):29–37, 1988.

CHAPTER 6. Conclusions and Future Work 137

[79] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graph-

ics, 9(3):245–261, 1990.

[80] M. Levoy and R. Whitaker. Gaze-directed volume rendering. Symposium on

Interactive 3D Graphics, pages 217–223, 1990.

[81] W. Li, Z. Fan, X. Wei, and A. Kaufman. Flow simulation with complex

boundaries. GPU Gems II: Programming Techniques for High-Performance

Graphics and General-Purpose Computation, pages 747–764, 2005.

[82] W. Li and A. Kaufman. Accelerating volume rendering with texture hulls.

Symposium on Volume Visualization, pages 115–122, 2002.

[83] W. Li, K. Mueller, and A. Kaufman. Empty space skipping and occlusion

clipping for texture-based volume rendering. Visualization, pages 317–324,

October 2003.

[84] W. Li, X. Wei, and A. Kaufman. Implementing lattice Boltzmann computa-

tion on graphics hardware. The Visual Computer, 19(7–8):444–456, 2003.

[85] D. R. Lide. Handbook of Chemistry and Physics. CRC Press LLC, 84 edi-

tion, 2003.

[86] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.

Turner. Real-time, continuous level of detail rendering of height fields. SIG-

GRAPH, pages 109–118, 1996.

[87] S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable in-

teractive volume rendering using off-the-shelf components. Symposium on

Parallel and Large-Data Visualization and Graphics, 2001.

[88] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D

surface construction algorithm. SIGGRAPH, pages 163–169, 1987.

[89] C. H. Luis Ibanez and C. Roux. Ray-tracing and 3D objects representation

in the BCC and FCC grids. International Workshop on Discrete Geometry

for Computer Imagery, pages 235–242, 1997.

CHAPTER 6. Conclusions and Future Work 138

[90] C. H. Luis Ibanez and C. Roux. A vectorial algorithm for tracing discrete

straight lines in n-dimensional generalized grids. IEEE Transactions on Vi-

sualization and Computer Graphics, 7:97–108, April–June 2001.

[91] J. S. Mandel, J. H. Bond, T. R. Church, D. C. Snover, G. M. Bradley,

L. M. Schuman, and F. Ederer. Reducing mortality from colorectal can-

cer by screening for fecal occult blood. New England Journal of Medicine,

328(19):1365–1371, 1993.

[92] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A system

for programming graphics hardware in a c-like language. SIGGRAPH, pages

896–907, 2003.

[93] S. Matej and R. Lewitt. Efficient 3D grids for image reconstruction using

spherically-symmetric volume elements. IEEE Transactions on Nuclear Sci-

ence, 42(4):1361–1370, 1995.

[94] S. Matej and R. Lewitt. Practical considerations for 3-d image reconstruc-

tion using spherically symmetric volume elements. IEEE Transactions on

Medical Imaging, 15(1):68–78, 1996.

[95] O. Mattausch. Practical reconstruction schemes and hardware-accelerated

direct volume rendering on body-centered cubic grids. Master’s thesis, Insti-

tute of Computer Graphics and Algorithms, Vienna University of Technol-

ogy, May 2004.

[96] N. Max. Optical models for direct volume rendering. IEEE Transactions on

Visualization and Computer Graphics, 1(2):99–108, 1995.

[97] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for ef-

ficient visualization of 3D scalar functions. Workshop on Volume Visualiza-

tion, 24(5):27–33, 1990.

[98] N. L. Max. Efficient light propagation for multiple anisotropic volume scat-

tering. Workshop on Rendering, pages 87–104, 1994.

[99] G. G. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate

lattice-gas automata. Physical Review Letters, 61:2332–2335, 1988.

CHAPTER 6. Conclusions and Future Work 139

[100] M. Meißner, U. Kanus, and W. Straßner. Vizard II, a PCI-card for real-time

volume rendering. Workshop on Graphics Hardware, pages 61–67, 1998.

[101] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer,

M. Doggett, P. Forthmann, and R. Proksa. Vizard II: A reconfigurable in-

teractive volume rendering system. Workshop on Graphics Hardware, pages

137–146, 2002.

[102] R. M. Mersereau. The processing of hexagonally sampled two-dimensional

signals. IEEE Proceedings, 67:930–949, June 1979.

[103] B. Mora, J. P. Jessel, and R. Caubet. A new object-order ray-casting algo-

rithm. Visualization, pages 203–210, October 2002.

[104] J. Morey and K. Sedig. Archimedean kaleidoscope: A cognitive tool to

support thinking and reasoning about geometric solids. Geometric Modeling:

Techniques, Applications, Systems and Tools, pages 376–393, 2004.

[105] K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet buffer-

based splatting. Visualization, pages 239–245, 1998.

[106] K. Mueller, T. Möller, and R. Crawfis. Splatting without the blur. Visualiza-

tion, pages 363–370, 1999.

[107] K. Mueller, T. Möller, J. E. Swan II, R. Crawfis, N. Shareef, and R. Yagel.

Splatting errors and antialiasing. IEEE Transactions on Visualization and

Computer Graphics, 4(2), April–June 1998. ISSN 1077-2626.

[108] K. Mueller and R. Yagel. The use of hexagonal grids to improve the effi-

ciency of the algebraic reconstruction technique (ART). Annual Conference

of the Biomedical Engineering Society, 1996.

[109] K. Mueller and R. Yagel. Anti-aliased 3D cone-beam reconstruction of low-

contrast objects with algebraic methods. IEEE Transactions on Medical

Imaging, 18(6):519–537, 1999.

CHAPTER 6. Conclusions and Future Work 140

[110] S. Muraki, E. B. Lum, K. Ma, M. Ogata, and X. Liu. A PC cluster system

for simultaneous interactive volumetric modeling and visualization. Sympo-

sium on Parallel and Large-Data Visualization and Graphics, pages 95–102,

2003.

[111] F. K. Musgrave. Grid tracing: Fast ray tracing for height fields. Technical

Report Technical Report YALEU/DCS/RR-639, Yale University, 1988.

[112] N. Neophytou and K. Mueller. Space-time points: 4D splatting on efficient

grids. Symposium on Volume Visualization, pages 97–106, 2002.

[113] N. Neophytou and K. Mueller. Post-convolved splatting. EuroVis, pages

223–230, May 2003.

[114] T. Nishita and E. Nakamae. Continuous tone representation of 3-D objects

taking account of shadows and interreflection. SIGGRAPH, 19(3):23–30,

July 1985.

[115] K. L. Novins, F. X. Sillion, and D. P. Greenberg. An efficient method for

volume rendering using perspective projection. Workshop on Volume Visual-

ization, pages 95–102, 1990.

[116] NVIDIA Corporation. NVIDIA OpenGL extension specifications, 2003.

[117] M. O’Keeffe and B. Hyde. Crystal Structures I: Patterns and Symmetry.

Mineralogical Society of America, 1996.

[118] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,

and T. J. Purcell. A survey of general-purpose computation on graphics hard-

ware. Eurographics State of the Art Reports, pages 21–51, August 2005.

[119] D. W. Paglieroni and S. M. Petersen. Height distributional distance trans-

form methods for height field ray tracing. ACM Transactions on Graphics,

13(4):376–399, 1994.

[120] S. Parker, P. Shirley, Y. Livnat, C. Hansen, P.-P. Sloan, and M. Parker. Inter-

acting with gigabyte volume datasets on the Origin 2000. The 41st Annual

Cray Users Group Conference, 1999.

CHAPTER 6. Conclusions and Future Work 141

[121] K. Perlin. An image synthesizer. SIGGRAPH, pages 287–296, 1985.

[122] H. Pfister and A. Kaufman. Cube-4: a scalable architecture for real-time

volume rendering. Symposium on Volume Visualization, page 47, 1996.

[123] H. Pfister, A. Kaufman, and F. Wessels. Towards a scalable architecture for

real-time volume rendering. Workshop on Graphics Hardware, pages 123–

130, August 1995.

[124] M. Pharr and G. Humphreys. Physically Based Rendering: From Theory

to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2004.

[125] P. J. Pickhardt, J. R. Choi, I. Hwang, J. A. Butler, M. L. Puckett, H. A. Hilde-

brandt, R. K. Wong, P. A. Nugent, P. A. Mysliwiec, and W. R. Schindler.

Computed tomographic virtual colonoscopy to screen for colorectal neo-

plasia in asymptomatic adults. The New England Journal of Medicine,

349(23):2191–2200, December 2003.

[126] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray tracing on program-

mable graphics hardware. SIGGRAPH, pages 703–712, 2002.

[127] F. Qiu, Z. Fan, X. Yin, A. Kaufman, and X. Gu. Colon flattening with discrete

ricci flow. MICCAI Workshop on Virtual Colonoscopy, pages 97–101, 2008.

[128] F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. Yoakum-Stover,

A. Kaufman, and K. Mueller. Dispersion simulation and visualization for

urban security. Visualization, pages 553–560, 2004.

[129] H. Qu and A. Kaufman. O-buffer: A framework for sample-based graphics.

IEEE Transactions on Visualization and Computer Graphics, 10(4), July–

August 2004.

[130] H. Ray and D. Silver. The race II engine for real-time volume rendering.

Workshop on Graphics Hardware, pages 129–136, 2000.

[131] C. Rezk-Salama. Volume Rendering Techniques for General Purpose Hard-

ware. PhD thesis, University of Erlangen-Nuremberg, 2002.

CHAPTER 6. Conclusions and Future Work 142

[132] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive

volume rendering on standard PC graphics hardware using multi-textures

and multi-stage rasterization. Workshop on Graphics Hardware, pages 109–

118, 2000.

[133] K. Riley, D. S. Ebert, M. Kraus, J. Tessendorf, and C. D. Hansen. Efficient

rendering of atmospheric phenomena. Symposium on Rendering, pages 374–

386, 2004.

[134] S. Roettger, S. Guthe, D. Weiskopf, T. Erlt, and W. Strasser. Smart hardware-

accelerated volume rendering. EuroVis, pages 231–238, 2003.

[135] H. E. Rushmeier and K. E. Torrance. The zonal method for calculating light

intensities in the presence of a participating medium. SIGGRAPH, pages

293–302, 1987.

[136] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering

system for large meshes. SIGGRAPH, pages 343–352, 2000.

[137] M. Segal and K. Akeley. The OpenGL graphics system: A specification

(version 1.4), 2002.

[138] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar vol-

ume rendering. Workshop on Volume visualization, pages 63–70, 1990.

[139] F. Sillion and C. Puech. A general two-pass method integrating specular and

diffuse reflection. SIGGRAPH, pages 335–344, 1989.

[140] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illu-

mination solution for general reflectance distributions. SIGGRAPH, pages

187–196, 1991.

[141] C. T. Silva, A. Kaufman, and C. Pavlakos. PVR: High-performance volume

rendering. IEEE Computational Science & Engineering, 3(4):18–28, Winter

1996.

CHAPTER 6. Conclusions and Future Work 143

[142] C. T. Silva, J. S. B. Mitchell, and P. L. Williams. An exact interactive time

visibility ordering algorithm for polyhedral cell complexes. Symposium on

Volume Visualization, pages 87–94, 1998.

[143] L. M. Sobierajski and A. E. Kaufman. Volumetric ray tracing. Symposium

on Volume Visualization, pages 11–18, 1994.

[144] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexiable vol-

ume rendering framework for graphics-hardware-based raycasting. Volume

Graphics, pages 187–195, 2005.

[145] C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering

for volume visualization. Symposium on Volume Visualization, pages 83–90,

1994.

[146] K. R. Subramanian and D. S. Fussell. Applying space subdivision techniques

to volume rendering. Visualization, pages 150–159, 1990.

[147] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Be-

yond. Numerical Mathematics and Scientific Computation. Oxford Univer-

sity Press, 2001.

[148] R. M. Summers, C. D. Johnson, L. M. Pusanik, J. D. Malley, A. M. Youssef,

and J. E. Reed. Automated polyp detection at CT colonography: Feasibility

assessment in a human population. Radiology, 219(1):51–59, 2001.

[149] J. Sweeney and K. Mueller. Shear-warp deluxe: the shear-warp algorithm

revisited. Symposium on Data Visualisation, pages 95–104, 2002.

[150] T. Theußl, T. Möller, and M. E. Gröller. Optimal regular volume sampling.

Visualization, pages 91–98, 2001.

[151] T. Theußl, T. Möller, and M. E. Gröller. Reconstruction schemes for high

quality raycasting of the body-centered cubic grid. Technical Report TR-

186-2-02-11, Vienna University of Technology, December 2002.

CHAPTER 6. Conclusions and Future Work 144

[152] D. V. D. Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. V. de Walle.

Hex-splines: A novel spline family for hexagonal lattices. IEEE Transactions

on Image Processing, 13(6):758–772, June 2004.

[153] J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to

the rendering equation: A synthesis of ray tracing and radiosity methods.

SIGGRAPH, pages 311–320, 1987.

[154] M. Wan, H. Qu, and A. Kaufman. Virtual flythrough over a voxel-based

terrain. Virtual Reality, page 53, 1999.

[155] G. Wang and M. W. Vannier. GI tract unraveling by spiral CT. SPIE,

2434:307–315, 1995.

[156] X. Wang, S. Totaro, F. Taillandier, A. Hanson, and S. Teller. Recovering fa-

cade texture and microstructure from real-world images. Workshop on Tex-

ture Analysis and Synthesis at ECC, pages 145–149, 2002.

[157] Z. Wang, Z. Liang, L. Li, X. Li, B. Li, J. Anderson, and D. Harrington.

Reduction of false positives by internal features for polyp detection in CT-

based virtual colonoscopy. Medical Physics, 32(12):3602–3616, 2005.

[158] Z. Wang, Z. Liang, X. Li, L. Li, D. Eremina, and H. Lu. An improved

electronic colon cleansing method for detection of colonic polyps by virtual

colonoscopy. IEEE Transactions on Biomedical Engineering, 53(8):1635–

1646, 2006.

[159] X. Wei, W. Li, K. Mueller, and A. Kaufman. The lattice Boltzmann method

for gaseous phenomena. IEEE Transactions on Visualization and Computer

Graphics, 10(2):164–176, March–April 2004.

[160] X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and A. Kaufman. Blowing

in the wind. Symposium on Computer Animation, pages 75–85, July 2003.

[161] D. Weiskopf, T. Schafhitzel, and T. Ertl. GPU-based nonlinear ray tracing.

Computer Graphics Forum, 23(3):625–634, 2004.

CHAPTER 6. Conclusions and Future Work 145

[162] D. Weiskopf, M. Weiler, and T. Ertl. Maintaining constant frame rates in 3d

texture-based volume rendering. Computer Graphics International, pages

604–607, 2004.

[163] R. Westermann. The rendering of unstructured grids revisited. Symposium

on Visualization, pages 65–74, 2001.

[164] R. Westermann and B. Sevenich. Accelerated volume ray-casting using tex-

ture mapping. Visualization, pages 271–278, 2001.

[165] L. Westover. Footprint evaluation for volume rendering. SIGGRAPH, pages

367–376, 1990.

[166] H. Widjaya, T. Möller, and A. Entezari. Voxelization in common sampling

lattices. Pacific Graphics, page 497, 2003.

[167] J. Wilhelms and A. V. Gelder. Octrees for faster isosurface generation. ACM

Transactions on Graphics, 11:201–227, July 1992.

[168] P. L. Williams. Visibility-ordering meshed polyhedra. ACM Transactions on

Graphics, 11(2):103–126, 1992.

[169] D. A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann

Models: An Introduction. Springer-Verlag, 2000.

[170] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture.

ACM Transactions on Graphics, 22(3):669–677, July 2003.

[171] D. Xue, C. Zhang, and R. Crawfis. iSBVR: Isosurface-aided hardware ac-

celeration techniques for slice-based volume rendering. Volume Graphics,

pages 207–215, 2005.

[172] R. Yagel. Volume rendering polyhedral grids by incremental slicing. Tech-

nical Report OSU-CISRC-10/93-TR35, Ohio State University, 1993.

[173] R. Yagel and A. Kaufman. Template-based volume viewing. Computer

Graphics Forum, 11(3):153–167, 1992.

CHAPTER 6. Conclusions and Future Work 146

[174] R. Yagel, D. M. Reed, A. Law, P. Shih, and N. Shareef. Hardware assisted

volume rendering of unstructured grids by incremental slicing. Symposium

on Volume Visualization, pages 55–62, 1996.

[175] H. Yoshida, Y. Masutani, P. MacEneaney, D. T. Rubin, and A. H. Dachman.

Computerized detection of colonic polyps in CT colonography based on vol-

umetric features: A pilot study. Radiology, pages 327–336, January 2002.

[176] H. Yoshida and J. Näppi. Three-dimensional computer-aided diagnosis

scheme for detection of colonic polyps. IEEE Transactions on Medical Imag-

ing, 20(12):1261–1274, 2001.

[177] N. Zhang, W. Hong, and A. Kaufman. Dual contouring with topolgy-

preserving simplification using enhanced cell representation. Visualization,

pages 505–512, October 2004.

[178] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y.-C. Kuo, A. Kaufman, and K. Mueller.

Visual simulation of heat shimmering and mirage. IEEE Transactions on

Visualization and Computer Graphics, 13(1):179–189, 2007.

[179] Y. Zhao, F. Qiu, Z. Fan, and A. Kaufman. Flow simulation with locally-

refined LBM. In Proceedings of ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games, pages 181–188, 2007.

[180] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA volume splatting.

Visualization, pages 29–36, 2001.

[181] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. SIG-

GRAPH, pages 371–378, 2001.

