

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

End-to-End Abstractions for
Application-Aware Storage

A Dissertation Presented

by

Gopalan Sivathanu

to

The Graduate School

in Partial fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2008

Copyright by
Gopalan Sivathanu

2008

Stony Brook University

The Graduate School

Gopalan Sivathanu

We, the dissertation committee for the above candidate

for the degree of Doctor of Philosophy, hereby recommend

acceptance of this dissertation.

Dr. Erez Zadok, Advisor
Associate Professor, Computer Science Department

Dr. R. Sekar, Chair-person of Defense
Computer Science Department

Dr. Rob Johnson
Assistant Professor, Computer Science Department

Dr. Remzi H. Arpaci-Dusseau
Associate Professor, Department of Computer Sciences,

University of Wisconsin-Madison

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

End-to-End Abstractions for Application-Aware Storage
by

Gopalan Sivathanu

Doctor of Philosophy
in

Computer Science

Stony Brook University

2008

Modern computer systems are a composition of several logically independent layers.
From a very simple hardware-software layering in early days, this layering in computer
systems has increased significantly over time in both its depth and complexity. For exam-
ple, in the past, file systems communicated directly with thedisk hardware, whereas today
layers such as logical volume managers, RAID, or even a network can exist in between.
Although providing many important benefits, this rampant layering has also led to the well-
explored problem of information-divide in the systems stack. Layers hide information, thus
constraining functionality and limiting the power of individual layers. A particularly strik-
ing instance of this general problem exists in the storage stack today. Modern high-end
storage systems have significant processing capabilities,but despite their potential, stor-
age systems are constrained in their functionality becausethey are oblivious of knowledge
about higher layers such as the applications using them.

In this thesis proposal, we seek to answer a simple question:how can we convey
application-level information across the diverse modern storage stack in a simple and
generic manner?We propose two flexible abstractions to solve this problem. The first
abstraction we present is the notion of type-awareness in the storage stack. In type-aware
storage, lower layers of the storage stack such as the disk are aware of the pointer rela-
tionships between disk blocks that are imposed by higher layers such as the file system.
Type-awareness enables semantics-aware optimizations inthe lower layers of the storage
stack, and also active enforcement of invariants on data access based on the pointer re-
lationships, resulting in better security and integrity. The second abstraction we evolve
is Context-Aware I/O (CAIO), a generic mechanism to propagate information end-to-end
through the storage stack. CAIO provides a simple, yet effective interface to communicate
application-dataandapplication-I/Orelationships to the storage stack, enabling interest-
ing functionality.

Through several case studies, we demonstrate the flexibility and benefits of both ab-
stractions and show that they present a simple yet effectivegeneral interface to build the
next generation of storage systems.

iii

To my father, mother, and brothers.

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Information-Gap in the Storage Stack 2
1.2 Bridging the Information-Gap: Past Approaches 3
1.3 Our Approach . 4

1.3.1 Type-Awareness . 5
1.3.2 Context-Awareness . 6

1.4 Evaluation Methodology . 7
1.5 Contributions . 7
1.6 Outline . 8

2 Background 9
2.1 Modern Storage Stack . 9
2.2 Large-scale Storage Systems .. 9
2.3 RAID levels . 10
2.4 Overview of File Systems . 11

2.4.1 The Layout of the Ext2 File System 11
2.4.2 File System Consistency . 11

3 Type-Aware Storage Infrastructure 13
3.1 Motivation . 14
3.2 Type-Safety at the Disk Level .. 15

3.2.1 Disk API . 16
3.2.2 Managing Block Pointers . 16
3.2.3 Free-Space Management . 16
3.2.4 Consistency . 17

3.3 File System Support . 17
3.3.1 Ext2TSD . 18
3.3.2 VFATTSD . 19

3.4 A Software-Level Disk Prototyping Framework 20
3.5 TSD Implementation . 21
3.6 Evaluation . 22

v

3.6.1 Test infrastructure . 22
3.6.2 Benchmarks and configurations 22
3.6.3 Postmark Results . 23
3.6.4 Kernel Compile Results . 25
3.6.5 Sprite LFS Benchmark Results 25

4 Case Study: ACCESS 30
4.1 Design . 30

4.1.1 ACCESS meta-data . 31
4.1.2 Preventing replay attacks . 31
4.1.3 ACCESS operation . 32
4.1.4 ACCESS API . 33

4.2 Path-Based Capabilities .. 34
4.3 Key Revocation and Data Recovery .35
4.4 ACCESS Prototype . 35
4.5 The Ext2ACCESS File System . 36
4.6 Evaluation . 37

4.6.1 Postmark Results . 37
4.6.2 Kernel Compile Results . 38
4.6.3 Sprite LFS Benchmark Results 38

5 Case Study: Disk-level Data Consistency 41
5.1 Inferring Dependencies from Pointers 42
5.2 An Enhanced Pointer Interface .. 43
5.3 Consistency Enforcement .45

5.3.1 Temporal Ordering of Operations 47
5.4 Bounding Commit Interval . 47
5.5 Implementation . 49
5.6 Limitations of Pointer-driven Consistency 49
5.7 Evaluation . 50

5.7.1 Postmark Results . 50
5.7.2 Compile Benchmark Results . 51
5.7.3 Micro-benchmarks . 52

6 Case Study: Discriminating Hierarchical Storage System 53
6.1 Design . 54

6.1.1 A Hierarchical Storage Architecture 54
6.1.2 Pointer-Based Optimizations .56

6.2 Attributes . 57
6.2.1 Attribute Interface . 57
6.2.2 The Ext2DHIS File System . 58

6.3 Attribute-Based Optimizations 58
6.3.1 Choosing Optimal RAID Level 59
6.3.2 Choosing Candidates for NVRAM caching 59
6.3.3 Reducing Disk Fragmentation 60

vi

6.4 Prototype Implementation .60
6.5 Evaluation . 61

6.5.1 Evaluation Setup . 61
6.5.2 Benchmarks and Configurations 61
6.5.3 DHIS Results . 62
6.5.4 RAID Placement Optimizations 63
6.5.5 NVRAM Caching . 66

7 Case Study: Secure Deletion 67
7.1 Motivation . 67
7.2 Design . 67
7.3 Prototype implementation .. 67
7.4 Evaluation . 68

8 Context-Aware I/O Infrastructure 69
8.1 The Utility of Context-Aware I/O .. . 70
8.2 Context Types . 71

8.2.1 Data-bound vs. Access-bound 71
8.2.2 Repeatable vs. Non-Repeatable 72

8.3 Generalizing the Interface .. . 72
8.4 CAIO Design . 74

8.4.1 Associating Contexts With I/O 75
8.4.2 Context Propagation . 76
8.4.3 Linux Implementation . 77
8.4.4 Application Support . 78
8.4.5 Evaluation . 78

Experiments . 78
Results . 79

9 Case Study: Working Set Identifier 81
9.1 Motivation . 81
9.2 Design . 82

9.2.1 Associating Access with Data 82
9.2.2 Working Set Identification . 83
9.2.3 Prefetcher . 84

9.3 Implementation . 85
9.4 Evaluation . 85

9.4.1 Completeness of the working-set86
9.4.2 Kernel Modules Build . 86
9.4.3 Postmark . 87

10 Case Study: Context-Aware Caching 88
10.1 Design . 88
10.2 Evaluation . 89

vii

11 Case-study: Context-Based Disk Scheduler 91
11.1 Design . 91
11.2 Implementation . 92
11.3 Evaluation . 93

12 Related Work 95
12.1 Briding the Information-gap in the Storage Stack 95

12.1.1 Extensible Systems . 95
12.1.2 Hint-Based Interfaces . 96
12.1.3 Richer Abstractions . 96
12.1.4 Inference-Based Systems . 97

12.2 Interface Between File Systems and Disks 97
12.3 Type-safety . 98
12.4 Capability-based Access Control 98
12.5 Notion of Context in Storage .. 98
12.6 File System Consistency .99

13 Conclusions 100
13.1 Lessons Learned . 100
13.2 Future Work . 101

13.2.1 Generalizing Information in Other Domains 102
13.2.2 Applications in Virtual Machine Environments 102
13.2.3 Applications in Distributed Environments 102

13.3 Summary . 102

viii

List of Figures

2.1 Modern Storage Stack . 10

3.1 Comparison of tranditional disks vs. TSDs 15
3.2 DPROTO Architecture . 20
3.3 Postmark results for TSD: 1 . 23
3.4 Postmark results for TSD: 2 . 24
3.5 Kernel compile results for TSD .. 24
3.6 Create Sprite LFS benchmarks for TSD 25
3.7 Read Sprite LFS benchmarks for TSD26
3.8 Delete Sprite LFS benchmarks for TSD 27
3.9 Random read results for TSD . 27
3.10 Random write results for TSD .28
3.11 Sequential read results for TSD 28
3.12 Sequential write results for TSD 29

4.1 Postmark results for ACCESS . 37
4.2 Kernel compile results for ACCESS 38
4.3 Create: Sprite LFS benchmark results for ACCESS 39
4.4 Read: Sprite LFS benchmark results for ACCESS 40
4.5 Delete: Sprite LFS benchmark results for ACCESS 40

5.1 Architecture of an ACE-disk .45
5.2 Postmark results for ACE-disk .. 50
5.3 OpenSSH compile results for ACE-disk 51
5.4 Create micro-benchmark results for ACE-disk 52
5.5 Unlink micro-benchmark results for ACE-disk 52

6.1 Architecture of DHIS . 55
6.2 Postmark results for DPROTO vs. regular disk 62
6.3 Postmark results: DHIS . 62
6.4 Postmark results for DHIS: RAID config 63
6.5 Microbenchmark results for DHIS .. 64
6.6 Postmark results for DHIS with NVRAM caching 66

7.1 Unlink micro-benchmark results for SDTSD 68

8.1 Hierarchical contexts .72

ix

8.2 Postmark Results for CAIO Framework 79

9.1 WorkSIDE implementation . 85
9.2 Postmark results for WorkSIDE .87

10.1 Context tree used for CA-cache testing 90

11.1 CA-schedule operation .92

x

List of Tables

6.1 RAID placement heuristics in DHIS 60

8.1 TPC-C Benchmark results for the CAIO framework 79

9.1 Compilation Working Set Statistics 86

11.1 Read micro-benchmark for CA-schedule 93
11.2 Write Micro-Benchmark for CA-Schedule 94
11.3 TPC-C results for CA-schedule .. . 94

xi

Acknowledgments
I am first thankful to my advisor Erez Zadok for his great support and guidance through-

out my five year period of PhD at Stony Brook. Erez played a great role in shaping up my
research skills by giving me a lot of guidance on how to approach a new research problem,
systematic performance evaluation, and formal paper writing. Erez provided me with the
right set of opportunities such as attending several top conferences, internship referrals,
and an excellent infrastructure in his lab. I am grateful to Erez for his trust and belief over
my skills—the freedom of work I enjoyed during my PhD is remarkable. Erez’s dedication
towards the success of his students coupled with his strong research and teaching expertise
make him a great advisor.

I thank R. Sekar, Remzi Arpaci-Dusseau, and Rob Johnson for serving in my defense
committee. I am grateful to Sekar for his valuable feedback for several of my projects
during my PhD. I am indebted to Remzi for his extraordinary help—he took the trouble
of traveling to Stony Brook for my prelims. I have also been bugging Remzi asking for
feedback for several of my ideas, and he was kind and patient enough to allocate time for
it. Such helping tendency is remarkable.

My brother Muthian Sivathanu is my main inspiration to do a PhD. He is my role model
and I have always strived to emulate him in his academic and research achievements. I am
thankful to my brother for his valuable feedback in almost all of my projects, during the
various stages of my PhD.

The comments and suggestions of the anonymous reviewers formy various submis-
sions helped improve the quality of the thesis substantially. I thank Garth Gibson who
shepherded my OSDI paper, for his extensive and detailed comments that helped improve
the quality of content in this thesis.

It was a great experience collaborating actively with Swaminathan Sundararaman,
Kiron Vijayasankar, and Chaitanya Yalamanchili, in several projects during my PhD. My
interactions with Charles Wright during the intial stages of my PhD was quite helpful
in getting accustomed to the culture and projects in the FileSystems and Storage Lab. I
am thankful to my colleagues, Sean Callanan, Abhishek Rai, and Avishay Traeger who
joined in the same semester as I did, for their company and support. Other present and
past members of the lab, Akshat Aranya, Jay Dave, Ramya Edara, Naveen Gupta, Puja
Gupta, Rakesh Iyer, Nikolai Joukov, Aditya Kashyap, Harikesavan Pathangi Krishnan,
Arun Krishnakumar, Devaki Kulkarni, Adam Martin, Kiran-Kumar Muniswamy-Reddy,
Harry Papaxenopoulos, Chaitanya Patti, David Quigley, Sunil Satnur, Josef Sipek, Rick
Spillane, Gopala Suryanarayana, Kumar Thangavelu, and Mohammad Nayyer Zubair,
have helped reviewing my papers, or involved in brainstorming sessions.

I thank my mentors, managers, and colleagues during my threeinternships, for their
contribution in making my summer internships highly enjoyable and educative. I particu-
larly thank Omer Zaki, Kaladhar Voruganti, and KK Rao in IBM Almaden, Irfan Ahmad,
Vikram Makhija, and Jennifer Anderson in VMware, and Gautham Thambidorai, Srdjan
Petrovic, and Qixiang Sun in Google.

I am thankful to Tzi-cker Chieuh, Christos Karamanolis, Patrick McDanel, Ethan
Miller, and Radu Sion for their feedback about my research.

I am fortunate to have gotten great friends at Stony Brook during my PhD. Specifi-
cally, I would like to thank Arvind Ramanathan, Prasanna-Kumar Thoguluva-Santharam,
Vasudevan Srinivasan, Sumant Sankaran, Prithviraj Subburaj, and Sridhar Madishetty for
making my experience at Stony Brook a memorable one.

Above all, mere words cannot express the boundless love, affection, support, and guid-
ance extended to me by my father and mother all these years. All credits of my accom-
plishments goes to my parents for their unparalleled efforts in guiding me in the right path.
I am blessed to have gotten brothers like Muthian and Sankaran—life without their love,
support, company, and comforting is unimaginable.

This work was partially made possible by NSF CAREER EIA-0133589 and NSF CCR-
0310493 awards.

Chapter 1

Introduction

Computer system design over the past years has revolved around the principle of layer-
ing [19]. Building systems as a hierarchy of layers enables localized and independent
innovation in the individual layers. For example, in the network protocol stack comprising
layers such as application, transport, network, and data link, each layer can independently
innovate as long as the interface exported to the other layers is intact. With the growing
complexity of today’s systems, layering has become indispensable in hardware and soft-
ware design.

Despite its obvious benefits, layered system design also comes with an inevitable side-
effect: information available at one layer is not visible atthe other layers beyond what
is permitted by the interface separating those layers. The impact of this lack of informa-
tion is becoming more pronounced in the recent years as thereis a need for individual
layers to support advanced functionality, requiring cross-layer information. This problem
is exacerbated by the fact that recent advancements in computer systems such as virtual
machine technology [7] have introduced more layers of virtualization in the systems stack,
further widening the information-gap. Past research has identified this general problem in
the context of different domains [4, 23, 55].

In the modern storage hierarchy, the general problem of information-gap between lay-
ers has hampered development of new functionality. Large-scale storage systems today
comprise diverse resources that include high processing power, hundreds of gigabytes
of RAM, solid state storage media such as flash, and hundreds or even thousands of
disks [16, 37]. Despite this advancement in storage hardware, storage systems are con-
strained in the range of functionality they can provide, because they lack information about
higher-level data semantics. Several solutions have been proposed to workaround this prob-
lem [5, 18, 53, 70, 71], but they are mostly limited in scope, and none of them have been
widely adopted.

In this thesis, we evolve a new class of abstractions and mechanisms to effectively
bridge the information-gap in the storage stack with minimal modifications to existing
hardware and software infrastructures. Our solution is to propagate minimalgenericinfor-
mation about application-level semantics across the storage stack, in an end-to-end manner.
By decoupling thegenerationof such information from how the information isusedin the

1

storage stack, our solution provides a simple and general interface for better application-
awareness in the lower layers of the storage stack. We specifically introduce two new
abstractions under this category, to encode higher-level semantics: type-awarenessand
context-awareness.

In type-aware storage, higher-layers encode structural information about data by way of
pointersand communicate it to the disk subsystem, enabling the disk to support semantics-
aware optimizations and constraints. In context-aware storage, applications can commu-
nicateapplication-dataandapplication-I/Orelationships to the storage stack by way of
logicalcontexts. In the slew of related work that aims at bridging the information-gap, our
solution explores a unique design space of techniques that are powerful, simple, and easy
to deploy. We have developed a number of case-studies using our two new abstractions,
that demonstrate our claim.

In the rest of this section, we explain at more length, the motivation behind our work,
existing solutions, and the effectiveness of our new abstractions.

1.1 Information-Gap in the Storage Stack

In a simple storage stack comprising applications, file systems, and the storage hardware,
each of the layers have different kinds of information aboutthe data they manage. Appli-
cations have extensive knowledge about the higher-level structures of data (e.g., a B-tree
stored in a file) and their access characteristics. File systems know about the organization
of data in the disk (e.g., the set of disk blocks belonging to aparticular file), and disk sys-
tems contain hardware-specific information such as currenthead position, hardware RAID
configuration, exact physical location of blocks (e.g., LBNto physical sector mapping
systems) etc.

In today’s storage stack, information available in each of these layers is not available to
any of the other layers. If there is better exchange of information among the layers of the
storage stack, a wide range of new functionality can be built. Here are some examples:

• High performance I/O-intensive applications such as databases and Web servers have
long wanted a means for controlling the placement of their data on disk [73]. How-
ever, today’s file systems do not provide mechanisms for higher level applications to
communicate their desired data layout. For example, FFS-like file systems [52] such
as Ext2 group files and directories based on generic heuristics and cannot tune their
policies for individual applications. If file systems are aware of application-level
access patterns and locality characteristics, they can perform informed placement
decisions to optimize I/O.

• Many recent systems have looked at saving power by switchingoff a subset of disks
in a large RAID array in such a way that applications can stillfunction properly
without the switched-off disks [87, 90]. These systems go togreat complexity to
identify the subset of data that is currently under use, yet these techniques are most
often approximate and too coarse-grained. If the disk system has knowledge about

2

the working-setsof data used by specific higher-level applications, they cando a
much better job at such power optimizations by being more aggressive and more
accurate.

• Reliability mechanisms (e.g., replication) at the storagesystem treat all blocks
equally. However, from an application viewpoint, data blocks have varying
importance. For example, meta-data blocks are more important than regular data as
they impact accessibility of other data. Information aboutthe semantic importance
of data items can improve the effectiveness of reliability features.

1.2 Bridging the Information-Gap: Past Approaches

Utilizing application knowledge within the lower layers ofa computer system has long
been an attractive goal in computer systems research. Many systems have been proposed
with this high-level goal of bridging the information gap between applications, the OS, and
the hardware. Most existing research in this area can be classified under the following four
categories.

Extensible systems. A very common way to bridge the information gap between appli-
cations and the system layers is to enable the system component to be dynamically exten-
sible by the application. Extensible operating systems [10, 20, 26, 41, 47, 65] are examples
of this type. There have also been proposals to extend storage hardware by enabling appli-
cations to dynamically download code [1, 62]. Extensible systems provide a lot of control
to the application, but in the process, essentially ties them together. For applications to
actually use such extensible layers, they need to have a reasonably intricate understanding
of the system, thus making them complex to design.

Hint-based systems. Another approach that has been explored to solve the information
gap problem is a more evolutionary one; provide specific primitives at the system level
that the applications can use to convey information to the operating system. Informed
prefetching [78] is an example of such a system. Researchershave also looked at the flip-
side of the problem: provide information about the operating system to the application
so that the application can make intelligent decisions [5, 31]. Most of these hint-based
approaches are often tied to a specific kind of optimization or functionality. In other words,
the information being transferred is designed with a particular purpose in mind. This in
turn limits the flexibility of such a system because each new class of functionality may
require yet another new primitive to be added to the interface.

Brand new interfaces. A large body of research that aims at bridging the information
gap examine new interfaces between file systems and disk storage [11, 17, 18, 49]. The
Object-based Storage Interface [53] is a classic example for this. Most of these interfaces
are designed with some specific applications or scenarios inmind. For example, it is hard
to implement a database in an object-based disk. Moreover, brand new interfaces require a

3

complete revamp of existing infrastructures, and hence areunlikely to be deployed in the
near future.

Inference-based systems. The final class of related work pertains to approaches that
take the extreme viewpoint along the axis of being evolutionary and less intrusive. These
systems attempt to achieve cross-layer awareness, but without explicitly communicating
it from one layer to another [70, 71]. Gray-box systems [4] fall under this category. Al-
though valuable from the viewpoint of being easily deployable and less intrusive, these
approaches have their own limitations because they are heavily constrained in terms of not
changing interfaces. This in many cases results in additional complexity, making it hard to
reason about correctness while also limiting the usage of such inferred knowledge to less
aggressive applications that can tolerate inaccuracy.

1.3 Our Approach

As described in Section 1.2, almost all existing solutions to bridge the information-gap
have one or more of the following problems: (1) They are limited in scope such that they
bridge the gap between just a sub-set of layers in the storagestack. (2) They require wide-
scale modifications to existing infrastructures making their deployment too unlikely. (3)
They are built with specific functionality in mind requiringexplicit co-ordination between
layers. In a multi-vendor setup, such coordination translates into industry-wide consensus
on the interface, a standardization process that takes years.

Our approach to solve the problem of information-gap is to propagateminimal and
genericinformation relating to data and I/O, from higher-level layers of the storage stack
to the lowest-level (the storage hardware). We evolve two generic abstractions to encode
structuralandoperationalinformation available at the application-level and communicate
it as part of I/O operations. Our first abstraction istype-awareness, which is to commu-
nicatepointers between disk blocks to the lower layers of the storage stack.Pointers
establish relationships between disk blocks in a generic manner, and are maintained by
layers such as file systems or databases. Our second abstraction is context-aware storage,
which is to communicate higher-levellogical contextof I/O operations across the storage
stack. For example, all I/O operations generated from a single user application can be
grouped under the same logical context.

The following are the three key characteristics of our approach that differentiates our
work from previous approaches.

1. The information being communicated from higher-level layers is already available at
the corresponding layers (e.g., file systems already track block pointers), and hence
communicating such information requires limited and straightforward modifications
to existing infrastructures. More specifically, the modifications required to layers
in our approach, areimplementation-level. These modifications are much easier to
make compared to thedesign-levelmodifications required with brand-new abstrac-
tions such as Object-based Storage [53].

4

2. By decoupling thegenerationof information at the higher layers from how the in-
formation isusedat the lower layers, we obviate the need for explicit coordination
between any two layers to support our abstractions. Our pointer or context informa-
tion is not generated with any specific layer or functionality in mind.

3. Our abstractions extend end-to-end across the storage stack, (i.e., from user applica-
tions to the storage hardware), hence allowing a wide-rangeof interesting function-
ality in the different layers of the storage stack.

Next, we present our two abstractions in more detail and describe several case-studies
that we built to demonstrate the generality and usefulness of our approach.

1.3.1 Type-Awareness

Pointers are the fundamental means by which modern file systems organize raw disk data
into semantically-meaningful entities such as files and directories. Pointers define three
things: (1) the semantic dependency between blocks (e.g., adata block is accessible only
through a pointer from an inode block); (2) the logical grouping of blocks (e.g., blocks
pointed to by the same indirect block are part of the same file or directory); and (3) the
importance of a block (e.g., blocks with many outgoing pointers are important because
they impact the accessibility of a large set of blocks).

Despite the rich semantic information inherently available through pointers, pointers
are completely opaque to disk systems today. We propose the notion of a type-safe disk
(TSD), a disk system that has knowledge of the pointer relationships between blocks. A
TSD uses this knowledge in two key ways. First, semantic structure conveyed through
pointers is used to enforce invariants on data access, providing better data integrity and
security. For example, a TSD prevents access to an unallocated block. Second, a TSD
can perform various semantics-aware optimizations that are difficult to provide in the cur-
rent storage hierarchy [69, 70]. A TSD extends the traditional block-based read-write disk
interface with three new primitives: block allocation, pointer creation, and pointer removal.

We demonstrate the utility of type-awareness through four prototype case studies.

A Capability Conscious Extended Storage System (ACCESS).In our first case-study,
we show that a disk system can provide better data security byconstrainingdata access to
conform to implicit trust relationships conveyed through pointers. ACCESS (A Capabil-
ity Conscious Extended Storage System) is a TSD prototype that provides an independent
perimeter of security by constraining data access even whenthe operating system is com-
promised due to an attack.

Automatic Consistency Enforcing Disk (ACE-disk). In our second case study, ACE-
disk, we show how a disk system can preserve the semantic consistency of data using
pointers. ACE-disk automatically constructs dependency groups based on pointer opera-
tions and ensures atomic commit of blocks in resolved dependency groups. We developed
a prototype ACE-disk and show how it preserves the consistency of an Ext2 file system.

5

A Discriminating Hierarchical Storage System. In the third case-study, we propose
and evaluate a hierarchical storage system, DHIS, that is capable of discriminating between
data with different access characteristics, and then customizing its layout and caching poli-
cies to each type. DHIS allows annotating pointers with a setof generic attributes that
convey various properties such as data importance, access-patterns etc. We show via a
prototype implementation that customizing policies to specific data requirements has sig-
nificant performance benefits.

A Secure Deleting Disk System. The fourth case-study is secure deletion [30], a type-
aware disk system prototype that automatically overwritesdeleted blocks. When the last
incoming pointer to a block is removed (making the block unreachable), our secure delet-
ing disk overwrites the block to provide secure deletion. Disk level secure deletion is
considered more secure, compared to existing software-level methods [69].

1.3.2 Context-Awareness

Our second abstraction is the concept ofContext-Aware I/O(CAIO), a simple and generic
way for applications to convey arbitrary information abouttheir I/O behavior and relation-
ships, without worrying about how the information will be used by the storage stack. In
CAIO, an application-levelcontextis propagated along with an I/O operation across the
entire storage stack, in an end-to-end fashion. An application-level context is represented
by one or morecontext identifiers. For example, a database application can have a unique
identifier that it can propagate along with every I/O it generates, such that any storage layer
can easily group all I/O generated by the database application.

Decoupling the generator and consumer of the context information leads to an interest-
ing challenge: when the application could conceivably use more than one possible granu-
larity of grouping I/O, how can it decide which one to use while being oblivious to how the
grouping is interpreted by the lower level? For example, a database application can group
the I/O requests it generates based on the database user, session, transaction, or query for
which the I/O is issued; but the lower layers are oblivious tothe granularity of the context.
To solve this issue, contexts in CAIO arehierarchical. With hierarchical contexts, higher
layers can encode multiple granularities of grouping, and the lower layers can decide which
granularity is the best for the particular functionality that they provide.

We have implemented the CAIO framework in the Linux kernel and evaluated its us-
ability. To illustrate the power and generality of this context abstraction, we prototyped
and evaluated three case studies, described below:

Working-Set Identifier (WorkSIDE). Our first case study is an automatic working set
identifier, WorkSIDE, which operates at the block-based storage hardware layer.Work-
SIDE automatically tracks the data working set required foran application context to run
to completion. WorkSIDE correlates contexts with the I/O and the corresponding data they
access, thus obtaining a complete view of the entire set of data items that the particular ap-
plication context requires. This working set can then be preloaded as appropriate in order

6

to improve performance and availability, or to enable poweroptimizations.

Context-Aware Disk-Level Caching. Our second case study is a context-aware cache-
placement algorithm within the disk that automatically tracks which application-level con-
texts exhibit sequential access pattern and avoids cachingrequests with that context. We
demonstrate the usefulness of both of our case-studies using prototype implementations
we built for the Linux kernel, and evaluate various workloads.

A Proportional-Share Disk Scheduler. In our third case-study, we built a context-based
proportional-share disk scheduler which shows the flexibility of using resource shares as-
sociated with logical contexts, in a disk scheduler. We haveimplemented a prototype of
our scheduler in the Linux kernel.

Overall, we find that our end-to-end abstractions enable a wide-range of functional-
ity and optimizations in the different layers of the storagestack, while requiring minimal
modifications to the storage interfaces.

1.4 Evaluation Methodology

We have implemented prototypes of both our abstractions andall the case-studies, in the
Linux kernel 2.6.15. For evaluating disk-level functionality, we built our own software-
level disk prototyping framework. Our framework operates as a pseudo device driver that
interposes between the file system and the regular disk drivers. One key challenge in this
prototyping environment is to ensure there is no performance interference between the host
application and the processing at the pseudo driver layer. By careful use of kernel isola-
tion techniques, we isolate the CPU and memory usage of the software prototype from the
“host” applications, thus providing a very close approximation of an actual hardware pro-
totype with its own processing and memory. We believe that this prototyping environment
is valuable more generally for evaluating other kinds of functionality in the storage system.

1.5 Contributions

They key contributions of this dissertation are as follows:

• Formulation of thepointerabstraction and the design of the Type-Safe Disk interface
that enables easy communication of higher-level pointers to the disk system.

• Design, implementation, and evaluation of four case-studies that demonstrate the
security functionality and performance optimizations that type-awareness enables.

• Formulation of thehierarchical contextabstraction and the Linux implementation of
the context propagation infrastructure.

• Design, implementation, and evaluation of three case-studies to demonstrate the
power and generality of the context abstraction.

7

• Implementation of a software-level framework to easily andaccurately prototype
disk-level functionality. This framework provides an interesting choice between
hardware-level prototyping and entirely simulation-based prototyping.

1.6 Outline

The rest of this thesis is organized as follows.. Chapter 2 discusses some background
information. In Chapter 3, we present the detail design, implementation, and evaluation
of type-aware storage. In Chapters 4, 5, 6, and 7, we describeour four case-studies that
use type-aware storage. Chapter 8 presents context-aware I/O. In Chapters 9, 10, and 11,
we describe the three case-studies of context-aware I/O. InChapter 12 we discuss related
work, and we finally conclude in Chapter 13.

8

Chapter 2

Background

In this section, we discuss background information about the modern storage stack, large-
scale storage systems, RAID levels, and file systems.

2.1 Modern Storage Stack

In the past file systems communicated directly with disks by using hardware-specific in-
formation such as tracks and sectors. The storage stack has evolved significantly since
then. Figure 2.1 shows an example of the modern storage stack. Disk hardware infor-
mation is virtualized through block-based interfaces suchas SCSI and ATA. Layers such
as RAID [59] or logical volume managers can exist beneath filesystems, and they aggre-
gate several independent disks. File systems are completely unaware of whether they are
communicating with a single disk system or a RAID array. In today’s storage stack, even
a network can exist between file systems and the storage hardware [13, 64, 67, 75], and
higher-level user applications are completely oblivous tothese intermediate layers.

2.2 Large-scale Storage Systems

Large-scale storage systems today comprise diverse resources that include high processing
power, hundreds of gigabytes of RAM, solid state storage media such as flash, and hun-
dreds or even thousands of disks [16]. Modern storage systems run complex software to
provide functionality such as reliability, fault-tolerance, and high performance I/O. One of
the challenges in such storage systems is to effectively manage the wide range of resources
to provide optimal performance and customizable features.However, despite the advance-
ment in storage hardware, the interface used for communicating with hardware devices
is still simple and narrow in most scenarios. For example, the SCSI interface supports
just two main primitives, blockread andwrite, resulting in the storage system being
mostly oblivious to higher-level information. This makes efficient resource management
within modern storage systems a difficult problem, as storage systems cannot discriminate
between the different kinds of information they store.

Some existing systems try to work around this problem by exporting more information
to higher-level software [18, 34]. For example, certain enterprise-class storage systems al-

9

File System

User Applications

Device Drivers

Logical Volume Managers

RAID

Network

Virtual Machine Monitor

Disk Interface

Figure 2.1:Modern Storage Stack

low higher-level software to choose the RAID level to use fora new volume, during its
creation [35]. However, this requires that the file system orhigher-level storage software
be aware of the characteristics of each volume, which could be totally tied to the internal
architecture of the specific storage systems. For example, astorage system could contain
several fine-grained RAID levels, and devices such as NVRAM and solid state memory.
Storage architectures could also be different across vendors and models, and it may be
cumbersome to customize file systems for specific storage systems. Moreover, the ab-
straction of a volume is in most cases too coarse-grained to express difference in access
characteristics across files.

2.3 RAID levels

Redundant Array of Independent Disks (RAID) is one of the most common ways used to
improve storage system performance and reliability [36, 59]. There are several configura-
tions of RAID (commonly referred to asRAID levels) that are used in practice. Each of
these configurations have their own performance, reliability, and cost characteristics. In
this section, we describe three most commonly used RAID levels.

RAID0 performs plain striping across several disks withoutany redundancy and hence
it has the lowest reliability level among the three. However, in terms of performance,
RAID0 is good for sequential and random read-write workloads. This is mainly because
I/O operations get parallelized across the individual disks when data is striped. In terms of
cost per gigabyte, RAID0 is the cheapest as there is no redundancy and the storage capacity
is the sum of the individual disk capacities.

RAID1 mirrors data across two disks. As two disks contain identical data at all times,
data reliability is better as it can tolerate a single disk failure. In terms of performance,
RAID1 has similar characteristics for both sequential and random I/O. Reads are faster
than writes as reads can be parallized across the two disks. Write speed is in tune with

10

that of a single disk, because for every write, both disks have to be updated, but in parallel.
RAID1 has the highest cost per gigabyte as the total capacityof the drives is halved due to
mirroring.

RAID5 stripes both data and parity information across threeor more drives. In principle
it is similar to having a single dedicated parity drive, but parity blocks are distributed across
all drives RAID5 can recover from single disk failures and hence has comparable reliability
to RAID1. Read performance in RAID5 is similar to that of RAID0. However, for small
random writes RAID5 performs poorly. This is because for small writes that do not span
a complete stripe, computation of new parity involves reading the old contents of the data
block and the parity block. In terms of cost per gigabyte, RAID5 is the second best among
the three, as there is a single parity block for a stripe.

2.4 Overview of File Systems

Several applications need to store data persistently on secondary storage disks. Storage
software such as file systems and databases provide a genericinterface to access storage
devices and maintain their own structures to track abstractions. For example, each file
system has its own on-disk layout. In this section, we provide a background of file systems
in general and about the layout of the Ext2 file system in particular. We also discuss briefly
a few other common storage structures that software use to manage data on disk.

File systems abstract raw disk blocks into logical entitiessuch as file and directories.
To track the set of blocks that constitute a logical file or directory, a file system uses various
forms ofmeta-data; such meta-data can be broadly classified into directories,file-specific
meta-data, and structures required for free-space management. Directories link logical file
identifiers to file specific meta-data. File-specific meta-data contains the file attributes and
links to the actual data blocks. Allocation structures include bitmaps and free-lists that
required for managing disk space. In common Unix file systemsthat follow the semantics
of the Berkeley Fast File System (FFS) [52], per-file meta-data objects are calledinodes.

2.4.1 The Layout of the Ext2 File System

The Ext2 file system which has its roots in BSD’s FFS, groups together a fixed number of
sequential blocks into a block group and the file system is managed as a series of block
groups. This is done to keep related blocks together. Each block group contains a copy of
the super block, inode and block allocation data-structures, and the inode blocks. The inode
table is a contiguous array of blocks in the block group that contains on-disk inodes. The
number of inodes and their location are statically determined during themkfsoperation.
Each inode block can contain several inodes. Each inode inside a block is treated as an
allocatableunit, and bitmaps keeps track of allocated and free inodes within a block group.

2.4.2 File System Consistency

Today’s block-based disks export a flat array-like abstraction of fixed size blocks. To man-
age data in the form of groups (e.g., a file) and to provide the notion of hierarchy (such as

11

directories), they need to manage pointers between blocks.Such pointers are vital entities
in storage and in most cases they impact the accessibility ofthe data. For example, when
an inode block is lost, all data pertaining to the corresponding files become unreachable
and hence inaccessible. More importantly, theconsistencyof these pointers determines to
a large extent the semantic consistency of the information stored in a disk. For example,
during arename operation in Ext2, a directory entry (which is a pointer to aninode block)
in a directory block is removed and added in another directory block. If the system crashes
after the removal operation is done, a file becomes inaccessible even though its data items
are intact. While complex storage software maintain strongforms of consistency such as
the consistency between the size field in an inode and the actual file size, mere pointer
consistency is sufficient in most cases. For example, if all pointers from an inode are con-
sistent, the size field can be re-constructed by just lookingat the set of pointers. In this
work, we focus on ensuring pointer consistency at the disk level.

12

Chapter 3

Type-Aware Storage Infrastructure

Type-safety is a well explored concept in the field of programming languages, with proven
benefits such as controlled access to memory. We propose to extend the property of type-
awareness and type-safety to the disk subsystem, and show that it can significantly improve
the security and functionality of the disk subsystem. Specifically, we advocate regulating
access to disk blocks to conform to well-defined rules, that are understood and enforced
by the disk itself. In building this, we leverage the fact that the semantics of most file sys-
tems today can be broadly classified into two categories: rawdata blocks, andpointersor
references that implement logical relationships between data blocks (for example, dentries-
inodes and inodes-data blocks). We define atype-awaredisk as one that can differentiate
between these two distinct types of information it stores. Once a disk has this information,
it can exploit this knowledge to provide better functionality. We believe that this simple
type-awareness could be a significant source of semantic information that can bridge the
semantic gap between file systems and storage devices. Although several existing research
projects like Object-store Disks (OSD) explore alternatives to bridge this gap, we believe
that adata-pointerabstraction is the right interface that a disk should provide to file sys-
tems. A disk that is type-aware canenforcetype safety by limiting block accesses to only
the legal set of pointers, thus preventing arbitrary block dereferencing. We call such a disk
a type-safe disk(TSD).

TSDs require a few changes to the current block-based interface. First, like any other
type-safe system, allocation and deallocation has to be under the control of the disk ssyste.
By performing block allocation and de-allocation, a TSD frees the file system from the
need for free-space management. Similar in spirit to type-safe programming languages, a
TSD also exploits its pointer awareness to perform automatic garbage collection of unused
blocks; blocks which have no pointers pointing to them are reclaimed automatically, thus
freeing file systems of the need to track reference counts forblocks in many cases.

In this chapter we present in more detail, our type-aware storage abstraction, and four
case-studies that we built to show the usefulness of our abstraction.

This chapter is organized as follows. In Section 3.1 we discuss the utility of pointer
information at the disk. Section 3.2 discusses the design and implementation of the basic
TSD framework. In Section 3.3 we describe file system supportfor TSDs. In Section 3.4
we present the software-level disk prototyping environment that we built to evaluate the
idea of TSDs and all our case-studies. We present the evaluation of our prototype imple-

13

mentation of TSD in Section 3.6.

3.1 Motivation

In this section we present an extended motivation.

Pointers as a proxy for data semantics The inter-linkage between blocks conveys rich
semantic information about the structure imposed on the data by higher layers. Most mod-
ern file systems and database systems make extensive use of pointers to organize disk
blocks. For example, in a typical file system, directory blocks logically point to inode
blocks which in turn point to indirect blocks and regular data blocks. Blocks pointed to
by the same pointer block are often semantically related (e.g., they belong to the same file
or directory). Pointers also define reachability: if an inode block is corrupt, the file sys-
tem cannot access any of the data blocks it points to. Thus, pointers convey information
about which blocks impact the availability of the file systemto various degrees. Database
systems are very similar in their usage of pointers. They have B-tree indexes that contain
on-disk pointers, and their extent maps track the set of blocks belonging to a table or index.

In addition to being passively aware of pointer relationships, a type-safe disk takes it
one step further. It actively enforces invariants on data access based on the pointer knowl-
edge it has. This feature of a TSD enables independent verification of file system opera-
tions; more specifically, it can provide an additional perimeter of security and integrity in
the case of buggy file systems or a compromised OS. As we show inSection 4, a type-safe
disk can limit the damage caused to stored data, even by an attacker with root privileges.
We believe this active nature of control and enforcement possible with the pointer abstrac-
tion makes it powerful compared to other more passive information-based interfaces.

Pointers thus present a simple but general way of capturing application semantics. By
aligning with the core abstraction used by higher-level application designs, a TSD has the
potential to enable on-disk functionality that exploits data semantics. In the next subsec-
tion, we list a few examples of new functionality (some proposed in previous work in the
context of alternative approaches) that TSDs enable.

Applications There are several possible uses of TSDs.

Selective Data Replication Since TSDs are capable of differentiating data and pointers,
they can identify metadata blocks as those blocks that contain outgoing pointers and repli-
cate them to a higher degree, or distribute them evenly across all the disks. This could
provide graceful degradation of availability as provided by D-GRAID [70].

Data colocation Using the knowledge of pointers, a TSD can co-locate blocks along
with their reference blocks (blocks that point to them). In general, blocks will be accessed
just after their pointer blocks are accessed, and hence there would be better locality during
access.

14

Intelligent Prefetching TSDs can perform intelligent prefetching of data because ofthe
pointer information. When a pointer block is accessed, a TSDcan prefetch the data blocks
pointed to by it, and store it in the on-disk buffers for improved read performance.

Disk-level security TSDs can provide new security properties using the pointer knowl-
edge by enforcingimplicit capabilities. We discuss this in detail in Section 4.

Secure deletion TSDs can perform automatic secure deletion of deleted blocks by track-
ing block liveness using pointer knowledge. We describe this in detail in Section 7.

3.2 Type-Safety at the Disk Level

Having pointer information inside the disk system enables enforcement of interesting con-
straints on data access. For example, a TSD allows access to only those blocks that are
reachable through some pointer path. TSDs manage block allocations and enforce that
every block must be allocated in the context of an existing pointer path, thus preventing
allocated blocks from becoming unreachable. More interestingly TSDs enable disk-level
enforcement of much richer constraints for data security asdescribed in our case study in
section 4.

Enforcing such access constraints based on pointer relationships between blocks is a re-
stricted form oftype-safety, a well-known concept in the field of programming languages.
The type information that a TSD exploits, however, is narrower in scope: TSDs just differ-
entiate between normal data and pointers.

We now detail the TSD interface, its operation, and our prototype implementation.
Figure 3.1 shows the architectural differences between normal disks and a TSD.

Management
Namespace

(a) Traditional Disk (b) Type−safe Disk

R
E
A
D

W
R
I
T
E

D
E
L
E
T
E
_
P
T
R

C
R
E
A
T
E
_
P
T
R

A
L
L
O
C
_
B
L
O
C
K
S

Management Management
Namespace Freespace

R
E
A
D

W
R
I
T
E

DISK/RAID DISK/RAID

Physical StoragePhysical Storage

Management Manager
Pointer

Firmware
Firmware

File SystemFile System

Freespace

Figure 3.1:Comparison of traditional disks vs. type-safe disks

15

3.2.1 Disk API

A type-safe disk exports the following primitives, in addition to the basic block-based API:

• SET BLOCKSIZE(Size): Sets the file system block size in bytes.

• ALLOC BLOCKS(Ref, Hint, Count): AllocatesCount number of new file system
blocks from the disk-maintained free block list, and creates pointers to the allocated
blocks, from blockRef . Allocated blocks need not be contiguous.Ref must be a
valid block number that was previously allocated.Hint is the block number closest
to which the new blocks should be allocated.Hint can be NULL, which means
the disk can choose the new block totally at its own discretion. Returns an array of
addresses of the newly allocated blocks, or NULL if there arenot enough free blocks
on the device.

• ALLOC CONTIG BLOCKS(Ref, Hint, Count): Follows the same semantics asAL -
LOC BLOCKS, except that it allocatesCount number of contiguous blocks if avail-
able.

• CREATE PTR(Src, Dest): Creates a pointer from blockSrc to block Dest. Both
Src andDest must be previously allocated. Returns success or failure.

• DELETE PTR(Src, Dest): Deletes a pointer from blockSrc that points to block
Dest. Semantics similar toCREATE PTR.

• GET FREE: Returns the number of free blocks left.

3.2.2 Managing Block Pointers

A TSD needs to maintain internal data-structures to keep track of all pointers between
blocks. It maintains a pointer tracking table calledPTABLE that stores the set of all pointers.
ThePTABLE is indexed by the source block number and each table entry contains the list of
destination block numbers. A newPTABLE entry is added every time a pointer is created.
Based on pointer information, TSD disk blocks are classifiedinto three kinds: (a)Reference
blocks: blocks with both incoming and outgoing pointers (such as inode blocks). (b)Data
blocks: blocks without any outgoing pointers but just incoming pointers. (c)Root blocks: a
pre-determined set of blocks that contain just outgoing pointers but not incoming pointers.
Root blocks are never allocated or freed, and they are statically determined by the disk.
Root blocks are used for storing boot information or the primary metadata block of file
systems (e.g., the Ext2 super block).

3.2.3 Free-Space Management

To perform free-space management at the disk level, we tracklive and free blocks. A TSD
internally maintains an allocation bitmap,ALLOC-BITMAP, containing one bit for every
logical unit of data maintained by the higher level software(e.g., a file system block). The
size of a logical unit is set by the upper-level software through theSET BLOCKSIZE disk

16

primitive. When a new block need to be allocated, the TSD can choose a free block closest
to the hint block number passed by the caller. Since the TSD can exploit the low level
knowledge it has, it chooses a block number which requires the least access time from the
hint block.

TSDs use the knowledge of block liveness (a block is defined tobe dead if it has no
incoming pointers) to perform garbage collection. Unlike traditional garbage collection
systems in programming languages, garbage collection in TSD happenssynchronously
during a particularDELETE PTR call which deletes the last incoming pointer to a block.
A TSD maintains a reference count table,RTABLE, to speed up garbage collection. The
reference count of a block gets incremented every time a new incoming pointer is created
and is decremented during pointer deletions. When the reference count of a block drops
to zero during aDELETE PTR call, the block is marked free immediately. A TSD per-
forms garbage collection one block at a time as opposed to performing cascading deletes.
Garbage collection of reference blocks with outgoing pointers is prevented by disallowing
deletion of the last pointer to a reference block before all outgoing pointers in it are deleted.

3.2.4 Consistency

As TSDs maintain separate pointer information, TSD pointers could become inconsistent
with the file system pointers during system crashes. Therefore, upon a system crash, the
consistency mechanism of the file system is triggered which checks file system pointers
against TSD pointers and first fixes any inconsistencies between both. It then performs
a regular scan of the file system to fix file system inconsistencies and update the TSD
pointers appropriately. For example, if the consistency mechanism creates a new inode
pointer to fix an inconsistency, it also calls theCREATE PTR primitive to update the TSD
internal pointers. Alternatively, we can obviate the need for consistency mechanisms by
just modifying file systems to use TSD pointers instead of maintaining their own copy in
their meta-data. However, this involves wide-scale modifications to the file system.

File system integrity checkers such asfsck for TSDs have to run in a privileged mode
so that they can perform a scan of the disk without being subjected to the constraints
enforced by TSDs. This privileged mode can use a special administrative interface that
overrides TSD constraints and provides direct access to theTSD pointer management data-
structures.

Block corruption When a block containing TSD-maintained pointer data-structures gets
corrupted the pointer information has to be recovered, as the data blocks pertaining to the
pointers could still be reachable through the file system meta-data. Block corruption can
be detected using well-known methods such as checksumming.Upon detection, the TSD
notifies the file system, which recreates the lost pointers from its meta-data.

3.3 File System Support

We now describe how a file system needs to be modified to use a TSD. We first describe the
general modifications required to make any file system work with a TSD. Next, we describe

17

our modifications to two file systems, Linux Ext2 and VFAT, to use our framework.
Since TSDs perform free-space management at the disk-level, file systems using TSD

are freed from the complexity of allocation algorithms, andtracking free block bitmaps and
other related meta-data. However, file systems now need to call the disk API to perform
allocations, pointer management, and getting the free blocks count. The following are the
general modifications required to existing file systems to support type-safe disks:

1. Themkfs program should set the file system block size using theSET BLOCKSIZE

primitive, and store the primary meta-data block of the file system (e.g., the Ext2
super block) in one of the TSD root blocks. Note that the TSD root blocks are a
designated set of well-known blocks known to the file system.

2. The free-space management sub-system should be eliminated from the file system,
and TSD API should be used for block allocations. The file system routine that
estimates free-space, should call theGET FREE disk API, instead of consulting its
own allocation structures.

3. Whenever file systems add new pointers to their meta-data,CREATE PTR disk prim-
itive should be called to create a TSD pointer. Similarly, the DELETE PTR primitive
has to be called when pointers are removed from the file system.

In the next two sub-sections we describe the modifications that we made to the Ext2
and the VFAT file systems under Linux, to support type-safe disks.

3.3.1 Ext2TSD

We modified the Linux Ext2 file system to support type-safe disks; we call the modified
file systemExt2TSD. The Ext2 file system groups together a fixed number of sequential
blocks into a block group and the file system is managed as a series of block groups. This
is done to keep related blocks together. Each block group contains a copy of the super
block, inode and block allocation data-structures, and theinode blocks. The inode table is
a contiguous array of blocks in the block group that contain on-disk inodes.

To modify Ext2 to support TSDs, we removed the notion of blockgroups from Ext2.
Since allocations and de-allocations are done by using the disk API, the file system need
not group blocks based on their order. However, to perform easy inode allocation in tune
with Ext2, we maintain inode groups which we callISEGMENTS. Each isegment contains
a segment descriptor that has an inode bitmap to track the number of free inodes in that
isegment. The inode allocation algorithm of Ext2TSD is sameas that of Ext2. Themkfs
user program of Ext2TSD writes the super block, and allocates the inode segment descrip-
tor blocks, and inode tables using the allocation API of the disk. It also creates pointers
from the super block to all blocks containing isegment descriptors and inodes tables.

The organization of file data in Ext2TSD follows the same structure as Ext2. When
a new file data or indirect block is allocated, Ext2TSD callsALLOC BLOCKS with the
corresponding inode block or the indirect block as the reference block. While truncating
a file, Ext2TSD just deletes the pointers in the indirect block branches in the right order
such that all outgoing pointers from the parent block to its child blocks are deleted before

18

deleting the incoming pointer to the parent block. Thus blocks belonging to truncated or
deleted files are automatically reclaimed by the disk.

In the Ext2 file system, each directory entry contains the inode number for the cor-
responding file or directory. This is a logical pointer relationship between the directory
block and the inode block. In our implementation of Ext2TSD,we create physical pointers
between a directory block and the inode blocks corresponding to the inode numbers con-
tained in every directory entry in the directory block. Modifying the Ext2 file system to
support TSD was relatively simple. It took 8 days for us to build Ext2TSD starting from
a vanilla Ext2 file system. We removed 538 lines of code from Ext2 which are mostly the
code required for block allocation and bitmap management. We added 90 lines of new
kernel code and modified 836 lines of existing code.

3.3.2 VFATTSD

The next file system we consider is VFAT, a file system with origins in Windows. Specifi-
cally, we consider the Linux implementation of VFAT. We chose to modify VFAT to sup-
port TSDs because it is sufficiently different in architecture from Ext2 and hence shows
the generality of the pointer level abstraction provided byTSDs. We call our modified file
systemVFATTSD.

The VFAT file system contains an on-disk structure called theFile Allocation Table
(FAT). The FAT is a contiguous set of blocks in which each entry contains the logical
block number of the next block of a file or a directory. To get the next block number
of a file, the file system consults the FAT entries corresponding to the previous block of
the file. Each file or directory’s first block is stored as part of the directory entry in the
corresponding directory block. The FAT entry corresponding to the last block of a file
contains anEOF marker. VFAT tracks free blocks by having a special marker inthe FAT
entry corresponding to the blocks.

In the context of TSDs, we need not use the FAT to track free blocks. All block alloca-
tions are done using the allocation API provided by a TSD. Themkfs file system creation
program allocates and writes the FAT blocks using the disk API. Modifying the VFAT
file system to support TSDs was substantially simpler compared to Ext2, as VFAT does
not manage data blocks hierarchically. We had to maintain substantially lesser number of
pointers.

In VFAT, we created pointers from each directory block to allblocks belonging to files
which have their directory entries in the directory block. Each FAT block points to the
block numbers contained in the entries present within. The TSD therefore tracks all blocks
belonging to files in the same directory block. Also, all the directory blocks and the FAT
blocks contain outgoing pointers. The disk can track the setof all metadata blocks present
in the file system by just checking if a block is a data block or areference block.

Modifying the VFAT file system to support TSD was relatively straightforward. It took
4 days for us to build VFATTSD from the VFAT file system. We added 83 lines of code,
modified 26 lines of code, and deleted 71 lines of code. The deleted code belonged to the
free space management component of VFAT.

19

RAID 5
driverdriver

RAID 1

File System

Generic Block Layer

Queue

DPROTO Request Layer

Service Thread

driver
RAID 0

Processor 1

Processor 2

Preallocated

Memory pool

Figure 3.2:DPROTO Architecture

3.4 A Software-Level Disk Prototyping Framework

In this section, we describe our generic disk functionalityprototyping framework,
DPROTO, that we built for the Linux kernel 2.6.15.

We developed DPROTO as a pseudo-device driver that stacks ontop of one or more
lower-level disk or software RAID drivers, in a single machine. One of the main chal-
langes in developing DPROTO is isolating the resources consumed by components that are
supposed to go inside the disk firmware if it were a real implementation. For example,
if the functionality being prototyped is a disk-level data compression technique, the part
of DPROTO that performs compression has to consume resources that are completely iso-
lated from that used by applications and file systems, which is difficult in a single machine
setup.

While developing DPROTO we aimed at isolating key resources, CPU and memory,
between disk-level functionality and higher-level applications. For CPU isolation, we use
a multiprocessor setup and ensure that disk-level functionality always gets executed in an
isolated processor. For memory isolation, we implemented an isolated preallocated mem-
ory pool and ensured that disk functionality never accessesmemory beyond the preallo-
cated range.

Figure 3.2 shows the architecture of DPROTO. We implementedthe pseudo-device
driver as two layer, the upper layer running in the context ofthe file system, and the lower
layer running as a separate thread bound to an isolated CPU. Disk I/O requests generated
from the file system reach the upper layer of DPROTO, which adds the request to a shared

20

queue. The lower layer services requests from the queue and eventually passes it down to
physical storage. Any disk-level functionality such as compression would be handled by
the lower-level service thread and hence runs in an isolatedCPU. All memory allocations
done by both layers of DPROTO use the preallocated memory pool. Therefore, DPROTO
requires specifying the total memory requirement for a given functionality before hand.

To test the performance of a disk-level functionality prototyped using DPROTO, the
comparison reference can be run with one processor disabledand with the appropriate
size of memory preallocated. For example, if a compression disk system is compared to
a regular disk system for a particular workload, the regulardisk run of the workload has
to be done with one processor disabled and the preallocated memory equal to the memory
requirement of the compression disk. With this procedure, the comparison becomes fair
and closely represents the results of a real implementation.

Our implementation of DPROTO had 5,790 lines of new kernel code and 350 lines of
user-level code.

3.5 TSD Implementation

We implemented a prototype TSD using our DPROTO software-level disk prototyping
framework, in the Linux kernel 2.6.15. It contains 3,108 lines of kernel code. The TSD
layer receives all block requests, and redirects the commonread and write requests to the
lower level device driver. The additional primitives required for operations such as block
allocation and pointer management are implemented as driver ioctls.

We implementedPTABLE and RTABLE as in-memory hash tables which gets written
out to disk at regular intervals of time through an asynchronous commit thread. In imple-
menting theRTABLE, we add an optimization to reduce the number of entries maintained
in the hash table. We add only those blocks whose reference count is greater than one. A
block which is allocated and which does not have an entry in theRTABLE is deemed to have
a reference count of one and an unallocated block (as indicated by theALLOC BITMAP)
is deemed to have a reference count of zero. This significantly reduces the size of our
RTABLE, because most disk blocks have reference counts of zero or one (e.g., all data
blocks have reference counts zero or one).

Memory usage. In our prototype implementation we maintained all TSD data-structures
in memory. The space overheads associated with TSD pointer tracking and free-space
management is directly related to the number of file system blocks on disk. We found
that the TSD pointer meta-data per file system block will be close to 20 bytes (with an
average of one incoming pointer per block). Assuming a file system block size of 4KB, the
total space overheads for TSDs totals upto 0.5% of the disk size. In a real firmware-level
implementation of TSDs, the entire meta-data need not be maintained in memory. At any
given time, the working-set of TSD pointers is limited to thedirectories and files being
accessed at any given time. Hence, we believe that it would besufficient if a fraction of
the TSD meta-data (about 10%) is cached in memory, and the rest of the meta-data can be
stored on secondary storage.

21

3.6 Evaluation

We evaluated the performance of our prototype TSD frameworkin the context of Ext2TSD.
We ran general-purpose workloads and also micro-benchmarks on our prototype and com-
pared them with unmodified Ext2 file system on a regular disk. This section is organized
as follows: first we talk about our test platform, configurations, and procedures. Next, we
analyse the performance of the TSD framework with the Ext2TSD file system.

3.6.1 Test infrastructure

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a 250GB, LSILogic SCSI
disk. We used Fedora Core 6, running a vanilla Linux 2.6.15 kernel. To ensure a cold cache,
we unmounted all involved file systems between each test. We ran all tests at least five
times and computed 95% confidence intervals for the mean elapsed, system, user, and wait
times using the Student-t distribution. In each case, the half-widths of the intervals were
less than 5% of the mean. Wait time is the elapsed time less CPUtime used and consists
mostly of I/O, but process scheduling can also affect it. We recorded disk statistics from
/proc/diskstats for our test disk. We analysed the following detailed disk-usage
statistics while interpreting the results: the number of read I/O requests (rio), number
of write I/O requests (wio), number of sectors read (rsect), number of sectors written
(wsect), number of read requests merged (rmerge), number of write requests merged
(wmerge), total time taken for read requests (ruse), and the total time taken for write
requests (wuse).

3.6.2 Benchmarks and configurations

Postmark We used Postmark v1.5 to generate an I/O-intensive workload. Postmark
stresses the file system by performing a series of operationssuch as directory lookups,
creations, and deletions on small files [42]. Postmark is typically configured by specifying
a number of initial files, and a fixed number oftransactions. Postmark then creates the
initial pool of files, performs the fixed number of transactions, and removes any left over
files.

Kernel Compile To simulate a relatively CPU-intensive user workload, we compiled
the Linux kernel source code. We used a vanilla Linux 2.6.15 kernel, and analyzed the
overheads of Ext2TSD, for themake oldconfig andmake operations combined.

Sprite LFS Benchmarks To isolate the overheads of individual file system operations,
we ran the entire suite of Sprite LFS benchmarks [63]. The Sprite LFS benchmarks con-
tains two sets of workloads, for meta-data and data operations. The first set deals with
small files and tests, file creation, read, and file deletion. The second set operates on large
files and performs sequential and random reads and writes.

22

 0

 100

 200

 300

 400

 500

Ext2TSDExt2NULLExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

298.8 295.5
276.3

Wait
User

System

Figure 3.3:Postmark Results: 10,000 files, sizes 100KB to 200KB, 10,000transactions.
Ext2NULL indicates the results for regular Ext2 over a NULL pseudo-device driver.

3.6.3 Postmark Results

We ran the Postmark benchmark on three setups: (1) regular Ext2 over a regular disk, (2)
regular Ext2 on DPROTO, and (3) Ext2TSD over our implementation of TSD. We used
configured Postmark with two different configurations. In the first configuration, we used
10,000 files with sizes ranging from 100KB to 200KB, and 10,000 transactions. Figure 3.3
shows the overheads of DPROTO and the TSD infrastructure forthis configuration. As
evident from the figure, Ext2 over our prototyping infrastructure DPROTO had negligible
overheads compared to Ext2 over a regular disk. However Ext2TSD ran 7% faster than
regular Ext2 inspite of a 1.3 times increase in system time. The increase in system time
is because of the deviceioctls that Ext2TSD calls for the pointer operations. From
the kernel disk I/O statistics, we found that the 10% decrease in wait time for Ext2TSD
compared to regular Ext2 is caused by more requests getting merged at the device driver
layer. This is because, block allocation is performed by TSDs in the case of Ext2TSD, and
there was better spatial locality compared to regular Ext2.

Figure 3.4 shows the results for a different configuration ofPostmark. For this we used
1000 files with sizes ranging from 1MB to 3MB, and performed 5000 transactions. In this
configuration, Ext2TSD had an elapsed time overhead of 5.7% compared to regular Ext2.
The system time overhead was 1.9 times and wait time was 5% lesser than regular Ext2.
This shows that for larger files, the savings in I/O time because of better spatial locality is
lesser compared to smaller files.

23

 0

 100

 200

 300

 400

 500

 600

 700

 800

Ext2TSDExt2NULLExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

468.0 469.6
495.1

Wait
User

System

Figure 3.4:Postmark Results: 1000 files, sizes 1MB to 3MB, 5000 transactions. Ext2NULL
indicates the results for regular Ext2 over a NULL pseudo-device driver.

 0

 100

 200

 300

 400

 500

Ext2TSDExt2NULLExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

300.4 296.5 305.2

Wait
User

System

Figure 3.5:Kernel Compile Results. Ext2NULL indicates the results forregular Ext2 over
a NULL pseudo-device driver.

24

3.6.4 Kernel Compile Results

Results for the kernel compilation benchmark is shown in Figure 3.5. Ext2TSD had a
small elapsed time overhead of 1.5% compared to regular Ext2. This was caused by a 7%
increase in system time and 60% increase in wait time. The system time increase in this
case is smaller compared to the Postmark results because kernel compile is a predominantly
CPU-intensive workload and hence has much lesser number of pointer operations. The wait
time increase is because the main compilation thread waits for the DPROTO disk thread to
complete pointer operations. The wait time increase is morepronounced here because the
time interval between I/O is larger than that of Postmark.

3.6.5 Sprite LFS Benchmark Results

We ran the entire suite of Sprite LFS benchmarks on Ext2 over aregular disk, and Ext2TSD
over our prototype TSD.

Meta-data benchmarks To generate a small file creation workload, we created
1,000,000 files, with size 4KB each, in 1,000 sub-directories. For reads, we remounted the
file system and read all the 1,000,000 files we created. For deletes, we unlinked all files.

 0

 50

 100

 150

 200

 250

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

144.2
153.5

Elapsed
User

System

Figure 3.6:Sprite LFS benchmarks: Create results

Figure 3.6 shows the overheads of Ext2TSD. Ext2TSD had an elapsed time overhead
of 6.4% compared to regular Ext2. This is because of a 61% increase in system time.
The system time increase is because of the pointer operations as this workload consists of
intensive meta-data write operations. The wait time mainlycaused by I/O, reduced by 22%
because the TSD allocation policy is favorable for small files.

25

 0

 100

 200

 300

 400

 500

 600

 700

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

461.0 447.0

Elapsed
User

System

Figure 3.7:Sprite LFS benchmarks: Read results

Figure 3.7 shows the results of the read workload. Ext2TSD performed 3% better than
regular Ext2. The system time reduced by 5% because of two reasons. First, there are
no pointer operations in a read workload. Second, the isolation technique in DPROTO
offloads part of call stack of I/O operations such as lower level SCSI driver calls, to the
DPROTO disk thread.

The delete workload results shown in Figure 3.8 shows that the elapsed time overhead
of Ext2TSD is 23% compared to regular Ext2. This is caused because of a 2.1 times
increase in system time. This increase is because of a large number of pointer deletion
operations happening within a short period of time.

Overall, even under extremely meta-data intensive workloads, the elapsed time over-
heads are moderate. In most common environments such meta-data intensive workloads
are unlikely.

Data benchmarks For generating Sprite LFS data benchmark workloads, we useda
large file of size 4GB. For random workloads we performed 10,000 random 4K reads
or writes. To eliminate cache effects, we generated a duplicate free list of random page
numbers. For sequential workloads, we performed 1,000,000sequential 4K reads on the
file.

Figure 3.9 shows the results for the random read workload. Ext2TSD had no visible
overheads for this. As this is a read workload, it generated no pointer operations. For
random write, as shown in Figure 3.10, Ext2TSD had an elapsedtime overhead of 6.7%.
This is mainly caused by a 6.7% increase in wait time. The waittime increase is because
the main benchmark thread had to wait for the DPROTO disk thread to service pointer
operations.

Figure 3.11 shows the results for sequential read. The difference in elapsed time

26

 0

 50

 100

 150

 200

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

78.3

96.7

Elapsed
User

System

Figure 3.8:Sprite LFS benchmarks: Unlink results

 0

 20

 40

 60

 80

 100

 120

 140

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

101.6 102.2

Wait
User

System

Figure 3.9:Sprite LFS benchmarks: Random read results

27

 0

 10

 20

 30

 40

 50

 60

 70

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

41.8
44.7

Wait
User

System

Figure 3.10:Sprite LFS benchmarks: Random write results

 0

 20

 40

 60

 80

 100

 120

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

80.2 78.0

Wait
User

System

Figure 3.11:Sprite LFS benchmarks: Sequential read results

28

between Ext2TSD and regular Ext2 was negligible. However, the system overhead in
Ext2TSD was 2.3 times. This was offset by a 21% reduction in wait time. As this is a
sequential workload, a very large number I/O operations were executed within a short time
interval. This resulted in making CPU overheads more visible. The CPU overheads were
due to lock contention for the request queue shared by the main benchmark thread and the
DPROTO disk thread. Our implementation uses aspin lock for this, and hence it shows
up as system time. The wait time decrease is because of betterspatial locality in the case
of Ext2TSD.

Figure 3.12 shows the results for sequential writes. The overheads of Ext2TSD were
similar to sequential reads, as our sequential write workload performed overwrites of ex-
isting file data, resulting no additional pointer operations.

 0

 20

 40

 60

 80

 100

 120

 140

Ext2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

90.5 92.4

Wait
User

System

Figure 3.12:Sprite LFS benchmarks: Sequential write results

In summary, our evaluation shows that the overheads associated with our TSD disk
infrastructure and the Ext2TSD file system is quite minimal (about 2%) for normal user
workloads. This is shown by the results of our kernel compilation benchmark. For more
I/O-intensive workloads such as Postmark and Sprite meta-data benchmarks, Ext2TSD
shows overheads as high as 23%. We used such benchmarks to show the worst case over-
heads of TSDs. However, such I/O-intensive workloads are uncommon in real scenarios.
Most of the system-time overheads were caused by pointer operations issued by the file
system. This could be reduced by aggregating the operationsand sending it to the disk
system in batches. While the allocation primitive has to be synchronous, pointer creation
and deletion can be made asynchronous.

29

Chapter 4

Case Study: ACCESS

We describe how type-safety can enable a disk to provide better security properties than ex-
isting storage systems. We designed and implemented a secure storage system called AC-
CESS (A Capability ConsciousExtendedStorageSystem) using the TSD framework; we
then built a file system on top, called Ext2ACCESS. We first motivate the need for enforc-
ing disk-level capabilities, then present a detailed design of ACCESS. Finally, we describe
our prototype implementation of ACCESS and the implementation of Ext2ACCESS, a file
system that supports ACCESS.

Protecting data confidentiality and integrity during intrusions is crucial: attackers
should not be able to read or write on-disk data even if they gain root privileges. One
solution is to use encryption [12, 89]; this ensures that intruders cannot decipher the
data they steal. However, encryption does not protect the data from being overwritten
or destroyed. An alternative is to use explicit disk-levelcapabilities to control access
to data [2, 25]. By enforcing capabilities independently, adisk enables an additional
perimeter of security even if the OS is compromised. Others explored using disk-level
versioning that never overwrites blocks, thus enabling therecovery of pre-attack data [74].

ACCESS is a type-safe disk that uses pointer information to enforce implicit path-
basedcapabilities, obviating the need to maintain explicit capabilities for all blocks, yet
providing similar guarantees.

ACCESS has five design goals. (1) Provide an infrastructure to limit the scope of confi-
dentiality breaches on data stored on local disks even when the attacker has root privileges
or the OS and file systems are compromised. (2) The infrastructure should also enable pro-
tection of stored data against damage even in the event of a network intruder gaining access
to the raw disk interface. (3) Support efficient and easy revocation of authentication keys,
which should not require costly re-encryptions upon revocation. (4) Enable applications
to use the infrastructure to build strong and easy-to-use security features. (5) Support data
recovery through administrative interfaces even when authentication tokens are lost.

4.1 Design

The primitive unit of storage in today’s commodity disks is afixed-size disk block. Au-
thenticating every block access using a capability is too costly in terms of performance and

30

usability. Therefore, there needs to be some criteria by which blocks are grouped and au-
thenticated together. Since TSDs can differentiate between normal data and pointers, they
can perform logical grouping of blocks based on the reference blocks pointing to them. For
example, in Ext2 all data blocks pointed to by the same indirect block belong to the same
file.

ACCESS provides the following guarantee: a blockx cannot be accessed unless a valid
reference blocky that points to this blockx is accessed. This guarantee implies that pro-
tecting access to data simply translates to protecting access to the reference blocks. Such
grouping is also consistent with the fact that users often arrange files of related importance
into individual folders. Therefore, in ACCESS, a single capability would be sufficient to
protect a logical working set of user files. Reducing the number of capabilities required is
not only more efficient, but also more convenient for users.

In ACCESS, blocks can have two capability strings: aread and awrite capability
(we call theseexplicit capabilities). Blocks with associated explicit capabilities, which we
call protectedblocks, can be read or written only by providing the appropriate capability.
By performing an operation on a blockRef using a valid capability, the user gets an
implicit capability to perform the same operation on all blocks pointed to byRef , which
are not directly protected (capability inheritance). If a particular reference blocki points
to another blockj with associated explicit capabilities, then the implicit capability of i is
not sufficient to accessj; the explicit capability ofj is needed to perform operations on it.

As all data and reference blocks are accessed using valid pointers stored on disk, root
blocks are used to bootstrap the operations. In ACCESS, there are three kinds of access
modes: (1) All protected blocks are accessed by providing the appropriate capability for
the operation. (2) Blocks which are not protected can inherit their capability from an
authenticated parent block. (3) Root blocks can be accessedwithout any reference block
by providing the appropriate capability, if they are protected.

4.1.1 ACCESS meta-data

ACCESS maintains a table namedKTABLE indexed by the block number, to store the
blocks’ read andwrite capabilities. During every block access it checks if the block
has aKTABLE entry. If there is aKTABLE entry, the capability provided by the user is au-
thenticated against the stored capability before performing the operation. ACCESS tracks
the list of all reference blocks that are accessed successfully in a given period of time, and
uses it to authenticate accesses to the blocks that do not have associated capabilities.

ACCESS also maintains a temporal access table calledLTABLE which is indexed by
the reference block number. TheLTABLE has entries for all reference blocks whose asso-
ciated implicit capabilities have not timed out. The timed out entries in theLTABLE are
periodically purged.

4.1.2 Preventing replay attacks

In ACCESS, data needs to be protected even in situations where the OS is compromised.
Passing clear-text capabilities through the OS interface could lead to replay attacks by a
silent intruder who eavesdrops capabilities. To protect against this, ACCESS associates a

31

sequence number with capability tokens. To read a protectedblock, the user has to provide
a HMAC checksum of the capability (Cu) concatenated with a sequence number (Su) (Hu

= HMAC(Cu +Su, Cu)). This can be generated using an external key card or a hand-held
device that shares sequence numbers with the ACCESS disk system. Each user has one
of these external devices, and ACCESS tracks sequence numbers for each user’s external
device. Upon receivingHu for a block, ACCESS retrieves the capability token for that
block from theKTABLE and computesHA = HMAC(CA +SA, CA), whereCA andSA are
the capability and sequence number for the block, and are maintained by ACCESS. IfHu

andHA do not match, ACCESS denies access. Skews in sequence numbers are handled by
allowing a window of valid sequence numbers at any given time.

4.1.3 ACCESS operation

During every reference block access, an optional timeout interval (Interval) can be pro-
vided, during which the implicit capabilities associated with that reference block will be
active. Whenever a reference blockRef is accessed successfully, anLTABLE entry is added
for it. This entry stays untilInterval expires. It is during this period of time, that we call
the temporal window, all child blocks ofRef which are not protected inherit the implicit
capability of accessingRef . Once the timeout interval expires, all further accesses tothe
child blocks are denied. This condition should be captured by the upper level software,
which should prompt the user for the capability token, and then call the disk primitive to
renew the timeout interval forRef . The value ofInterval can be set based on the security
and convenience requirements. Long-running applicationsthat are not interactive in nature
should choose larger timeout intervals.

At any instant of time when the OS is compromised, the subset of blocks whose tem-
poral window is active will be vulnerable to attack. This subset would be a small fraction
of the entire disk data. The amount of data vulnerable duringOS compromises can be re-
duced by choosing short timeout intervals. One can also force the timeout of the temporal
window using theFORCE TIMEOUT disk primitive described below.

To read a data block in ACCESS, the base pointer should be readfirst from one of
the root blocks, by presenting the appropriate capability.If the access of the root block
is successful, ACCESS will add an entry for the root block in the LTABLE . Once this is
done, all blocks pointed to by the root block that do not have associated capabilities can be
accessed until theLTABLE entry times out. In the context of a file system, the initial root
block read would be its super block, and this occurs duringmount. The temporal locality
of the initial super block access is used as an implicit capability for accessing subsequent
blocks. Whenever an implicit capability for a block needs tobe verified, the disk checks
if the reference block passed by the upper level software hasan LTABLE entry for it. If
an entry does not exist, ACCESS denies access to the block. Ifthe reference block has
anLTABLE entry, ACCESS looks up thePTABLE to find if the reference block indeed has
a pointer to the block whose implicit capability needs to be verified. The reference block
passed by the upper level software is only used for optimizing performance during the
temporal lookup.

For blocks with associated capabilities, the appropriate capability string must be pro-
vided. Each reference block can have its own read and write capabilities depending on the

32

owner of that reference block. For example, an indirect block of a particular user’s file will
have that user’s capabilities, and cannot be read by anyone other than that person.

4.1.4 ACCESS API

To design the ACCESS API, we extended the TSD API (Section 3.2) with capabilities,
and added new primitives for managing capabilities and timeouts. Note that some of the
primitives described below let the file system specify the reference block through which
the implicit capability chain is established. However, as we describe later, this is only
used as a hint by the disk system for performance reasons; ACCESS maintains its own
structures that validate whether the specified reference block was indeed accessed, and it
has a pointer to the actual block being accessed. In this section when we refer to read or
write capabilities, we mean the HMAC of the corresponding capabilities and a sequence
number.

1. SET CAPLEN(Length): Sets the length of capability tokens. This setting is global.

2. ALLOC BLOCKS(Ref, RefrorCw, Count): Operates similar to the TSDAL -
LOC BLOCKS primitive with the following two changes. (1) IfRef is protected the
call takes the write capability ofRef , Cw; (2) otherwise, the call takes the reference
blockRefr of Ref , to verify that the caller has write access toRef .

3. ALLOC CONTIG BLOCKS(Ref, RefrorCw, Count): Same as theALLOC BLOCKS

primitive, but allocates contiguous blocks.

4. READ(Bno, ReforCrw, T imeout): Reads the block represented byBno. Ref is
the reference block that has a pointer toBno. Crw is either the read or the write
capability of blockBno. The second argument of this primitive must beRef if
Bno is not protected for read, and must beCrw if Bno is protected.T imeout is the
timeout interval.

5. WRITE(Bno, ReforCw , timeout): Writes the block represented byBno. Cw is the
write capability ofBno. Other semantics are similar toREAD.

6. CREATE PTR(Src, Dest, RefsorCsw, CdworRefdw): Creates a pointer from block
Src to blockDest. If Src or Dest are protected, their capabilities have to be pro-
vided. For blocks which are not protected, the caller must provide valid reference
blocks which point toSrc andDest. Note that although the pointer is created only
from the source block, we need the write capability for the destination block as well;
without this requirement, one can create a pointer to any arbitrary block and gain
implicit write capabilities on that block.

7. DELETE PTR(Src, Dest, RefsorCsw): Deletes a pointer from blockSrc to block
Dest. Write credentials forSrc has to be provided.

8. KEY CONTROL(Bno, Cow , Cnr, Cnw, Ref): This sets, unsets, or changes the read
and write capabilities associated with the blockBno. Cow is the old write capability

33

of Bno. Cnr andCnw are the new read and write capabilities respectively. A ref-
erence blockRef that has a pointer toBno needs to be passed only while setting
the write key for a block that did not have a write capability before. For all other
operations, like unsetting keys or changing keys,Ref need not be specified because
Cow can be used for authentication.

9. RENEW CAPABILITY (Ref, Crw , Interval): Renews the capability for a given ref-
erence block.Crw is the read or write key associated withRef . Interval is the
timeout interval for the renewal.

10. FORCE TIMEOUT(Ref): Times out the implicit capabilities associated with refer-
ence blockRef .

11. SET BLOCKSIZE andGET FREE TSD primitives (Section 3.2) can be called through
the secure administrative interface discussed in Section 4.3.

4.2 Path-Based Capabilities

Capability systems often use capabilities at the granularity of objects(e.g., physical disk
blocks, or memory pages); each object is associated with a capability that needs to be
presented to gain access.

In contrast, the implicit capabilities used by ACCESS arepath-level. In other words,
they authenticate an access based on the path through which the access was made. This
mechanism of authenticating paths instead of individual objects is quite powerful in en-
abling applications to encode arbitrary trust relationships in those paths. For example, a
database system could have a policy of allowing any user to access a specific row in a ta-
ble by doing an index lookup of a 64-bit key, but restrict scans of the entire table only to
privileged users. With per-block (or per-row) capabilities, this policy cannot be enforced at
the disk unless the disk is aware of the scan and index lookup operations. With path-based
capabilities, the database system could simply encode thispolicy by constructing two sep-
arate pointer chains: one going from each block in the table to the next, and another from
the index block to the corresponding table block—and just have different keys for the start
of both these chains. Thus, the same on-disk data item can be differentiated for different
application-leveloperations, while the disk is oblivious to these operations.

Another benefit of the path-based capability abstraction isthat it enables richer modes
of sharing in a file system context. Let’s assume there aren users in a file system and
each user shares a subset of files with another user. With traditional encryption or per-
object capability systems, users has to use a separate key for each other user that shares
their files; this is clearly a key management nightmare (witharbitrary sharing, we would
needn2 keys). In our model, users can use the same key regardless of how many users
share pieces of their data. To enable another user to share a file, all that needs to be done
is a separate link be created from the other user’s directoryto this specific file. The link
operation needs to take capabilities of both users, but oncethe operation is complete, the
very fact that the pointer linkage exists will enable the sharing, but at the same time limit
the sharing to only those pieces of data explicitly shared.

34

4.3 Key Revocation and Data Recovery

ACCESS enables efficient and easy key revocation. In normal encryption based security
systems, key revocation could become pretty costly in proportion to the size of the data, as
all data have to be decrypted and re-encrypted with the new key. With ACCESS, one just
changes the capability for the reference blocks instead of the entire set of data blocks. Data
need not be modified at all while revoking capabilities. Thisis one of the main advantages
of ACCESS compared to traditional encryption-based security systems.

Secure key backup is a major task in any encryption-based data protection system.
Once an encryption key is lost, usually the data is fully lostand cannot be recovered.
This is ironical because a mechanism used for protecting data results in making the data
inaccessible. ACCESS does not have this major problem. Datais not encrypted at all,
and hence even if keys are lost, data can be retrieved or the keys may be reset using the
administrative interface described below.

Often system administrators need to perform backup and or administrative operations
for which the restricted ACCESS interface might not be sufficient. ACCESS will have a
secure administrative interface, which could be through a special hardware port requiring
physical access, in combination with a master key. Using thesecure administrative inter-
face, the administrator can backup files, delete unimportant files, etc., because the data is
not stored internally in encrypted format.

4.4 ACCESS Prototype

We extended our TSD prototype to implement ACCESS. We implemented additional hash
tables for storing theKTABLE andLTABLE required for tracking capabilities and tempo-
ral access locality respectively. All in-memory hash tables were periodically committed
to disk through an asynchronous commit thread. The allocation and pointer management
ioctls in TSD were modified to take capabilities or reference blocks as additional ar-
guments. We implemented theKEY CONTROL primitive as a newioctl in our pseudo-
device driver.

To authenticate theread andwrite operations, we implemented a newioctl,
KEY INPUT. We did this to simplify our implementation and not modify the generic block
driver. TheKEY INPUT ioctl takes the block number and the capabilities (or reference
blocks) as arguments. The upper level software should call thisioctl before every read or
write operation to authenticate the access. Internally, the disk validates the credentials pro-
vided during theioctl and stores the success or failure state of the authentication. When
a read or write request is received, ACCESS checks the state of the previousKEY INPUT

for the particular block to allow or disallow access. Once access is allowed for an opera-
tion, the success state is reset. When a validKEY INPUT is not followed by a subsequent
read or write for the block (e.g., due to software bugs), we time out the success state after
a certain time interval. This method of using anioctl for sending the credentials greatly
simplified our prototype implementation, as we did not have to modify the generic block
driver interfaces to send additional arguments during the read and write operations.

35

4.5 The Ext2ACCESS File System

We modified the Ext2TSD file system described in Section 3.3.1to support ACCESS; we
call the new file systemExt2ACCESS. To demonstrate a usage model of ACCESS disks,
we protected only the inode blocks of Ext2ACCESS with read and write capabilities. All
other data blocks and indirect blocks had implicit capabilities inherited from their inode
blocks. This way users can have a single read or write capability for accessing a whole file.
An alternative approach may be to protect only directory inode blocks. ACCESS provides
an infrastructure for implementing security at different levels, which upper level software
can use as needed.

To implement per-file capabilities, we modified the Ext2 inode allocation algorithm.
Ext2 stores several inodes in a single block; so in Ext2ACCESS we needed to ensure that
an inode block has only those inodes that share the same capabilities. To handle this, we
associated acapability tablewith every isegment (Section 3.3.1). The capability table
persistently stores the checksums of the capabilities of every inode block in the particular
isegment. Whenever a new inode needs to be allocated, an isegment is chosen using the
inode allocation algorithm of Ext2, and then the isegment isscanned for an inode block
with a matching capability for the new inode to be created. Ifa matching block is found, the
inode is allocated in that block, otherwise a free block is chosen from the isegment. When
a new block is chosen, the capability checksum for that blockis updated in the capability
table. If there are no free blocks left in the isegment, the algorithm searches forward in the
remaining isegments.

Ext2ACCESS has two file systemioctls, calledSET KEY andUNSET KEY, which
can be used by user processes to set and unset capabilities for files. Theseioctls take
the pathname as an argument. When users need to create a new protected file, they have to
call theset key ioctl before the create. Ext2ACCESS then associates the capability
with the newly created pathname, and then performs inode allocation appropriately. For
subsequent operations on the file, the user has to provide theright capability before the
operations. The life of a user’s key in kernel memory can be decided by the user. For
example, a user can call theSET KEY ioctl before an operation and then immediately
call theUNSET KEY ioctl after the operation is completed to erase the capability from
kernel memory; in this case the life of the key in kernel memory is limited to a single
operation. Ext2ACCESS uses theKEY INPUT deviceioctl of ACCESS to send the
user’s key before reading an inode block. For all other blocks, it sends the corresponding
reference block as an implicit capability, for temporal authentication.

An issue that arises in Ext2ACCESS is that general file systemmeta-data such as super
block and descriptors need to be written to all the time (and hence must have their capabil-
ities in memory). This can potentially make them vulnerableto modifications by attackers.
We address this vulnerability by mapping these blocks to root blocks and enforce that no
pointer creations or deletions can be made to root blocks except through an administrative
interface. Accordingly,mkfs creates set of pointers to the relevant inode bitmap and iseg-
ment descriptor blocks, but this cannot change after that. Thus, we ensure confidentiality
and write protection of all protected user files and directories.

Although the above solution protects user data during attacks, the contents of the meta-
data blocks themselves could be modified (for example, free block count, inode allocation

36

status, etc). Although most of this information can be reconstructed by querying the pointer
structure from the disk, certain pieces of information are hard to reconstruct. Our current
implementation does not handle this scenario, but there arevarious solutions to this prob-
lem. First, we could impose that the disk perform periodic snapshotting of root blocks;
since these are very few in number, the overhead of snapshotting will be minimal. This
enables an administrator to recover those root blocks to a previous snapshot in the event
of an attacker modifying these blocks. Alternatively, someamount of NVRAM could be
used to buffer writes to these global metadata blocks and periodically (say once a day) an
administrator “commits” these blocks to disk using a special capability after verifying its
integrity.

4.6 Evaluation

We evaluated the performance of ACCESS using our Ext2ACCESSfile system. We com-
pared Ext2ACCESS with a regular Ext2 file system mounted on a regular disk. The hard-
ware setup we used was same as that for evaluating the TSD infrastructure, described in
Section 3.6. We ran three different workloads: Postmark, kernel compilation, and Sprite
LFS meta-data benchmark. We discuss the results of our evaluation below:

4.6.1 Postmark Results

 0

 100

 200

 300

 400

 500

 600

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

395.2

319.7

Wait
User

System

Figure 4.1:Postmark Results for ACCESS

Figure 4.1 shows the results for Postmark. For this benchmark, we configured Post-
mark with 10,000 files of sizes ranging from 100KB to 200KB, and 10,000 transactions.
Ext2ACCESS performed 19% better than regular Ext2, mainly because of a 24% decrease

37

in I/O time. The difference in I/O time in this case is more than that of Ext2TSD vs. regular
Ext2 discussed in Section 3.6 because ACCESS pre-allocatesmore memory than regular
TSD for its data-structures. This results in reduced cache size making the impact of spa-
tial locality more pronounced. The system time for Ext2ACCESS was 3 times more than
that of regular Ext2 mainly because of pointer and key managementioctls issued by
Ext2ACCESS.

4.6.2 Kernel Compile Results

 0

 100

 200

 300

 400

 500

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

295.6
311.9

Wait
User

System

Figure 4.2:Kernel Compile Results for ACCESS

Figure 4.2 shows the kernel compilation results for Ext2ACCESS. As evident from the
figure, the overall elapsed time overhead of Ext2ACCESS was 5% compared to regular
Ext2. This is caused by a 29% increase in system time and 2.2 times increase in wait
time. The wait time increase in this case is because the compilation thread waits for the
disk thread to service the key management and pointer operations. The wait time is more
pronounced in this benchmark compared to Postmark, becausekernel compilation has a
small I/O component by virtue of its CPU-intensive nature.

4.6.3 Sprite LFS Benchmark Results

We ran the Sprite LFS meta-data benchmarks consisting of filecreating, reading, and file
deletion. We used the same setup as described in Section 3.6.

Figure 4.3 shows the results for the file creation phase. Ext2ACCESS had an elapsed
time overhead of 10%. The system time overhead was 110% mainly caused due to a large
number of pointer and key management operations. As this is ameta-data I/O-intensive

38

 0

 50

 100

 150

 200

 250

 300

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

169.0
185.8

Elapsed
User

System

Figure 4.3:Sprite LFS benchmark: Create results for ACCESS

workload, the system time increase is more pronounced. The wait time for Ext2ACCESS
reduced by 34% because of better spatial locality.

As shown in Figure 4.4, the elapsed time overheads for Ext2ACCESS for the read
phase was negligible. However, there is a 22% increase in system time caused by key
managementioctls. The system time increase is smaller compared to the createphase,
as this is a read-only benchmark and hence pointer operations do not occur.

Figure 4.5 shows the overheads of Ext2ACCESS for the delete phase of the Sprite LFS
meta-data benchmarks. The elapsed time overhead was 19% compared to regular Ext2.
This is because of a 149% increase in system time. The system time increase is because of
a large number of pointer deletion operations within a shorttime interval, as fileunlink
operations results in a smaller amount of I/O.

Overall, ACCESS has more system time overheads compared to regular TSD. This
is mainly because of additional key managementioctls such asKEY INPUT that
Ext2ACCESS had to call while reading meta-data. For normal user workloads (such as
kernel compilation), ACCESS has a small overhead of 5%.

39

 0

 50

 100

 150

 200

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

87.0

103.8

Elapsed
User

System

Figure 4.4:Sprite LFS benchmark: Read results for ACCESS

 0

 50

 100

 150

 200

Ext2ACCESSExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

87.0

103.8

Elapsed
User

System

Figure 4.5:Sprite LFS benchmark: Delete results for ACCESS

40

Chapter 5

Case Study: Disk-level Data Consistency

A key challenge in persistent data storage on disk is ensuring theconsistencyof data in
the face of crashes. In many cases, on-disk data is unusable unless it conforms to certain
software-specific invariants that define its consistency. For example, an on-disk B-Tree
with dangling pointers in some of its nodes cannot be used to locate data items. Simi-
larly, in a file system, a directory pointing to invalid or unallocated inodes constitutes a
consistency violation.

Given the importance of consistency, most file systems and other software that manage
on-disk storage incorporate mechanisms to ensure on-disk consistency. While some tech-
niques involve optimistically updating on-disk state and thenfixing consistency violations
based on a disk scan (e.g.,fsck), more modern techniques such as journalling [27] or
Soft updates [24] involve constraining updates in such a waythat consistency is enforced.
These mechanisms are quite complex; for example, modern filesystems owe a significant
portion of their complexity to satisfying this requirement.

This traditional approach to managing consistency entirely at the file system or software
is fraught with two key weaknesses. First, the disk system iscompletely oblivious to the
consistency of the data it stores, which constrains the range of functionality it can provide.
For example, today’s block-based disk systems cannot perform consistent snapshotting of
data. Snapshotting is a popular and useful feature in the storage industry, but consistent
snapshotting has so far been restricted only to storage systems exporting a richer NFS-
like interface [32]. Similarly, modern storage systems perform backup and asynchronous
remote mirroring [39]; consistency-awareness at the storage level can increase the utility
of these techniques.

A second problem with the current approach to consistency management is that every
file system and every software layer that manages on-disk data is forced to duplicate the
mechanisms needed to enforce consistency. This raises the bar for implementing any disk-
resident data structures. Although applications can use generic transactional libraries, it
often requires restructuring the application to be aware oftransactions and tracking trans-
action context across concurrent, asynchronous operations. For example, although the
journalling block device (JBD) layer in Ext3 provides a transactional interface, the Ext3
codebase had to go through a substantial amount of restructuring to actually use JBD [81].

To address these problems, we presentACE-Disk, anAutomaticConsistencyEnforcing
Disk, a disk system that preserves the semantic consistencyof stored data. In our approach,

41

the disk system takes responsibility for consistency management, and thus is empowered
to provide consistency-aware functionality such as snapshotting. Applications simply in-
form the disk about the relationship between various blocksthat the application already
knows about. Specifically, we advocate using aType-Safe Disk(TSD) [68], a disk system
that is aware of the pointer relationship between blocks, toget consistency, with minimal
modifications at the software-level.

Our disk-level consistency mechanism enforces the following constraint: the on-disk
version of data should always be consistent. To accomplish this, we need to discover
semantically consistent groups of blocks and commit them atomically to the disk when
they are written by higher level software such as the file system. All inconsistent block
updates should be buffered inside the disk until they becomeconsistent. For example,
when a new file is created, the corresponding directory blockand the inode block have
to be updated. When just one of the writes arrives at the disk it indicates an inconsistent
update. In that case, we need to buffer the update until the second block write also arrives.
When both the directory block and inode block writes have arrived at the disk, we need to
ensure (at the disk level) that both these blocks are committed atomically to stable storage.

In this section, we describe the main aspects of our disk-level consistency mechanism.
First, we discuss some related work. Second, we describe howupdate dependencies be-
tween blocks can be inferred from pointers. Third, we present our enhanced pointer in-
terface that make dependency inference robust. Fourth, we describe the consistency en-
forcement process a key issue in disk-level consistency enforcement. We finally detail our
prototype implementation of the system, and discuss some limitations of pointer-driven
consistency.

5.1 Inferring Dependencies from Pointers

Determining semantic relationships between blocks at the disk level requires additional
information exchange between the software layer and the disk. Today’s block-based disks
treat all stored information as opaque data and they do not have knowledge of data se-
mantics. For example, today’s disks cannot differentiate between a data and meta-data
block in a file system. We leverage the idea of Type-Safe Disks(TSDs) [68], to obtain
pointer-relationships between blocks as maintained by thehigher level software.

Pointers at the disk level not only convey structural information about data items stored
on disk, but also they enable the disk to infer dynamic relationships between blocks that
get updated. For example, when a new blocka is allocated and a pointer is created to it
from another blockb, botha andb depend on each other. If the system crashes when just
one of the blocks is updated, the disk is left in an inconsistent state. This is because, if only
blocka is updated, it would be pointing to a block with junk data (notyet written), and if
only b is updated, it becomes unreachable as there would be no incoming pointers to it.

The existing TSD interface consists of primitives for allocation and pointer operations
as discussed in Section 3.2. We discuss how each TSD primitive can be used to infer update
dependencies.

The allocation primitive internally creates a pointer to the newly allocated block, in
the reference block passed. This operation relates two blocks: the newly allocated block

42

and the reference block. Updating one of the blocks alone clearly leaves the system in an
inconsistent state; hence these two blocks constitute a dependency constraint and they have
to be committed atomically to stable storage.

The pointer creation primitive creates a pointer from any two arbitrary allocated blocks.
In this case, the source blockmustbe written subsequent to the pointer creation operation
to write the new pointer value in it. However, the destination block need not necessarily be
written, as the it is a previously allocated block. For example, while creating a new file in
the Ext2 file system, a pointer gets created from the directory block to an already allocated
inode block that contains the inode of the new file. In this case, both these blocks constitute
a dependency. This is because the directory block has to be updated with the new pointer
to the inode block, and the inode block has to be updated with valid information about
the newly created file. Failure to commit the latter will result in a directory entry pointing
to an invalid inode. As a counter example, if we consider a common index-based storage
structure, a set of index blocks point to data block. In this case, duplicating an index block
for reliability reasons would result in creation of new pointers from the duplicated index
block to the existing data blocks. Here only the index block needs to be written and not the
data blocks. Therefore, the pointer creation primitive provided by TSD does not convey
enough information to decide whether or not the source and destination blocks constitute a
dependency.

A pointer deletion operation deletes an existing pointer from blocka to blockb. This
operation has a special case: if the deleted pointer is the last incoming pointer to blockb,
we garbage collectb and it can be re-allocated during future allocation requests. In both
cases, it is clear that blocka has to be written subsequent to this operation for it to reflect
the pointer deletion. The destination blockb in the case of garbage collection need not be
written. However, it does constitute a dependency:b must not be re-allocated untila is
written. For example, when the last pointer from an inode block to a data block is deleted
during atruncate operation, re-allocating the data block to another inode before the
old inode is written could result in a state where the old inode points to the contents of a
different file. In the normal case of a pointer deletion wheregarbage collection does not
occur, we cannot infer whether the source and destination constitute a dependency for the
same reason as explained in the case of pointer creation.

5.2 An Enhanced Pointer Interface

As described in the previous section, the pointer API exported by a TSD do not always
convey enough information to make correct inferences in a generic manner. In this work,
we fine-tune the TSD API to make it more complete in terms of conveying pointer infor-
mation.

We introduce the notion of asub-blockin a TSD. We use sub-blocks to formalize
allocatableunits inside a block, as maintained by the higher-level software. For example,
in Ext2 each inode block can contain several inodes, each of them allocated and freed at the
software level. Although formalizing these units in a precise manner requires knowledge
about the unit size and offsets inside a block, we just need a rudimentary knowledge of
sub-blocks to infer dependencies. For example, to decide whether or not a create or delete

43

pointer operation constitutes a dependency we just need to know if that pointer points to
a sub-block. This intuition is based on the fact that, to preserve pointer consistency we
need to guarantee two properties: first, no pointer points tounwritten (junk) units, and
second, no allocated units become unreachable. In our inference mechanism we make use
of additional disk primitives for creating and deleting pointers to sub-blocks. Note that the
disk need not track information about sub-blocks, but it just needs to dynamically know
sub-block pointer operations by way of explicit primitives. Higher-level software call the
respective sub-block primitives while creating and deleting pointers to newly allocated or
freed sub-blocks. For example, Ext2 has to call a sub-block pointer creation primitive to
create a pointer between a directory block and inode block while creating a file. From this
we can infer that the directory and inode blocks form a dependency constraint.

We present an extended pointer interface to TSDs that captures most cases of depen-
dency inferences. In the primitives described below, the parametert refers to a logical
timestamp value for the operation. This is to let the disk know about the temporal ordering
of operations as they are issued by the higher level software. The purpose and usage of this
parameter is discussed in detail later in this section.

1. READ(Blockno): Block read primitive.

2. WRITE(Blockno, t): Block write primitive.

3. ALLOC BLOCK(Ref , t): Allocates a new blocka from the disk-maintained free-
block list and creates a pointer to it inRef . Both Ref and a constitute a write
dependency constraint.

4. CREATE PTR(Src, Dest, t): Creates a new pointer fromSrc to Dest. This primitive
does not create any dependency.

5. DELETE PTR(Src, Dest, t): Deletes an existing pointer fromSrc to Dest. If this
is the last incoming pointer toDest, Dest is garbage collected (marked free) and it
creates a new dependency between the write ofSrc and the re-allocation ofDest.

6. MOVE PTR(Src, Dest, Newsrc, t): Moves the source block of an existing pointer
from Src to Newsrc. This operation results in creation of a new dependency for
the writes ofSrc andNewsrc. This primitive is useful for handle cases such as a
rename operation in a file system, or a B-tree node split where pointers need to be
moved from one block to another.

7. ALLOC SUB BLOCK(Ref , Target, t): Creates a new pointer between blockRef
and blockTarget. Target is a block that contains multiple allocatable software-
level structures. This primitive is called when a software-level structure inTarget
is allocated. This disk does not track these structures. This creates a new write
dependency betweenRef andTarget. The disk differentiates this primitive from
theCREATE PTR primitive only to infer dependencies.

8. FREE SUB BLOCK PTR(Ref , Target, t): Deletes an existing pointer betweenRef
and Target. Target is a block that contains multiple allocatable software-level

44

structures. This primitive is called when a software-levelstructure inTarget is freed.
If this operation deletes the last incoming pointer to blockTarget, Target is garbage
collected and a new dependency is created betweenRef update and re-allocation of
Target. If the pointer deleted is not the last incoming pointer toTarget, a new
dependency is created for the update ofRef andTarget.

5.3 Consistency Enforcement

In this Section we detail how an ACE-disk guarantees consistent data commits to stable
storage. Figure 5.1 shows the overall architecture of an ACE-disk.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� ���

���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
������
���
���
���
���
���
���
���

W
R

IT
E

R
E

A
D

D
E

LE
T

E
_P

T
R

C
R

E
A

T
E

_P
T

R

A
LL

O
C

_B
LO

C
K

M
O

V
E

_P
T

R

A
LL

O
C

_S
U

B
_B

LO
C

K

F
R

E
E

_S
U

B
_B

LO
C

K

S
of

tw
ar

e
D

is
k

Index
Journal Swap GroupIn Place Data

File System / Software Layer

CacheDependency Manager

Figure 5.1:Architecture of an ACE-disk

An ACE-disk consists of five main components: (1)dependency buffer, a buffer layer
made of high-speed memory where inconsistent block updatesare buffered until the cor-
responding dependency becomes consistent; (2)buffer swap space, a swap area in the disk
which is used to swap out inconsistent buffer data when the cache is full; (3)journal space,
an area on disk which is used to ensure atomic update of resolved dependencies; (4)group
manager, which tracks the pointer operations and constructs dependencies;group index
a data-structure used by the group manager to store disjointdependencies and the blocks
affected by each of those dependencies. The buffer layer acts both as a read and write
cache, and gets invalidated during power down of the disk. All inconsistent block updates
are buffered in the cache to ensure that the state of data stored in place is always consistent.

45

The swap space is used when the number of inconsistent blocksexceed the size of the high
speed buffer memory.

When an ACE-disk infers a dependency during a pointer operation, it associates agroup
object with that dependency. This group object contains information about the set of blocks
that are affected by that dependency. We use the termsgroup objectanddependency group
interchangeably in the rest of the report to refer to a list ofblocks that needs to be commit-
ted atomically to stable storage to ensure consistency. Agroup entryrefers to a member of
a group which contains a block number and the time at which it was added. When a block
is writtenafter it is added to a dependency group, the corresponding group entry for that
block is marked “ready.” When all entries in a dependency group are ready, the group is
said to beresolved, and all blocks associated with it can be committed atomically to the
disk.

In a simple case, when the first pointer operation happens in adisk causing a depen-
dency creation between two blocksa andb, a new dependency groupG is created and both
the blocks are added to it. When write requests for botha andb have arrived at the disk,
the dependency groupG is said to beresolvedand all the blocks inG can be committed
atomically to the disk. However, if another pointer operation happens beforeG is resolved
introducing a dependency between blocksb andc, the operationextendsthe existing de-
pendency group. This is because, one of the blocks in the new dependency (blockb) is
already part of an existing dependency. Thus, in this scenario block c should be added to
groupG as well. Therefore, whenever there is a new dependency introduced between any
two blocksx andy by way of a pointer operation, one of the following three actions are
taken:

1. If bothx andy are not part of any existing dependencies, a new dependency group
is created andx andy are added to it.

2. If only one ofx or y is associated with an existing dependency groupG, then both
blocks are associated withG and are marked “not ready.”

3. If bothx andy are already associated with the same groupG, then no group action
needs to be taken. However, the entries in the group pertaining to blocksx andy
have to be marked “not ready” as a new constraint is added between the two blocks.

4. If bothx andy are associated with different groupsG1 andG2, thenG1 andG2 are
merged, and the entries forx andy are marked “not ready”

As pointer operations construct dependencies between blocks, higher-level software
must ensure that the pointer management primitives are issued to the diskbeforethe source
and destination blocks are updated. This constraint is implicitly enforced for the block
allocation primitive as a block cannot be updated before it is allocated. However for the
pointer creation and deletion primitives, higher-level software has to ensure that it follows
this ordering rule. For example, when acreate happens in Ext2, the sub-block pointer
creation primitive has to be issued for the directory and theinode blocks before the contents
of the blocks are updated.

46

5.3.1 Temporal Ordering of Operations

ACE-disk’s consistency mechanism relies on the temporal relationships between opera-
tions seen at the disk level. For example, an entry in a dependency group is marked ready
when a write arrives after the dependency creation. However, in today’s modern operating
systems and disks, operations can be re-ordered at any level. For example, file systems
today predominantly perform asynchronous I/O where block writes are buffered at the
software level and are flushed to the disk in regular intervals of time. Moreover, modern
disk device drivers re-order or merge disk requests before issuing to the disk for perfor-
mance reasons. These factors make the temporal ordering of operations that the disk sees
completely different from the order that the higher-level software issued. Therefore, unless
additional ordering information is communicated from the software-level, the disk cannot
obtain the precise temporal order of operations.

ACE-disk solves this problem by introducing two constraints on the operations: (a) all
pointer primitives take place synchronously and (b) all operations have associated logical
timestamps. These two constraints enable the disk to obtainprecise temporal ordering of
the operations. Although synchronous pointer operations may affect performance, it is
mitigated by the fact that these operations do not result in block I/O inside the disk, in the
critical path. Timestamps in this case are logical. For example they can be a monotonically
increasing sequence number. Whenever higher-level software issues a pointer operation,
it has to pass a sequence number along with it. Similarly whenthe in-memory copy of a
disk block is updated by the software, a sequence number has to be associated with the
buffer for that block. Whenever a pointer operation introduces a dependency, its sequence
number is associated with the corresponding group entries.The entries are marked ready
only when a subsequent write arrives with sequence number greater than the stored one.
Note that introducing sequence numbers with block I/O operations is simple—we have
modified the Linux kernel to support sequence numbers along with buffers whenever they
are dirtied. This modification was trivial and required changing just 50 lines of code.

When a dependency group is resolved all blocks in the group has to be committed in
place atomically. A power failure while committing a dependency group should not leave
the in place data in an inconsistent state. ACE-disk uses a logging mechanism to ensure
this. All blocks in a resolved groups are first written to a logand synced with a commit
identifier before the in place commit happens. The log is discarded when the in place
commit is complete. After a crash, an ACE-disk checks the logfor valid group data and
replays them. The log contains separate journals for each dependency group and hence
each of them are replayed after the crash to bring the system to a consistent state.

5.4 Bounding Commit Interval

The amount of data lost during a crash depends on the intervalbetween the instant a block
write arrives at the disk and the time when it is actually committed to stable storage. In
an ACE-disk, inconsistent block data gets buffered until the entire dependency group is re-
solved. ACE-disk’s mechanism of managing dependency groups allow extending a group
whenever pointer operations happen from or to a member of thegroup. Thus, during

47

normal operation, a dependency group could potentially getextended repeatedly during
a continuous workload that performs pointer operations. For example, in Ext2, for a re-
cursive directory creation workload, the entire working set would form part of the same
dependency group as all blocks branch out from the inode of the root directory. More-
over, as pointer operations always precede the block write operations, a dependency group
could never get resolved for a continuous workload. This is because before the time when
all blocks in a group are marked ready, the group could be extended several times with new
blocks or new dependencies for the existing blocks. This results in two problems. First,
large amounts of data may get lost in the event of a crash, although the on-disk state is con-
sistent. Second, excessively long dependency groups require buffering of a large number
of blocks and hence impose onerous space requirements.

Bounding the interval between dependency commits is challenging particularly at the
disk level because the disk has no knowledge about intermediate versions of block data that
are known to the higher-level software. This is because mosthigher-level software buffer
writes and hence the versions of block data that reach the disk could be a small subset of
total number of versions that the software knows about. For example, if a file is created
in Ext2, an inode block is modified. Before the inode block write is issued to the disk, if
another file is created whose inode is in the same block, the disk sees only the version of
the block updated with both inodes. Therefore, the disk cannot spawn a new dependency
group during a pointer operation for a block, when the existing group containing a block
has reached a time threshold.

Blocking pointer operations at the disk level until an existing dependency is commit-
ted could be a solution to the bounding problem, but requiresradical modifications to the
higher-level software to support it. This is because software such as file systems perform
locking of data-structures at an operation level. When a pointer operation blocks, the file
system could sleep after grabbing a lock on the data-structure which reside on a block
that needs to be committed for some dependency to resolve. This could result in a dead-
lock as the block containing the data-structure cannot be committed until the operation in
execution completes.

An ACE disk solves this problem by having new error modes for pointer creation op-
erations. The allocation and pointer management primitives could optionally return one of
the following errors to the higher-level software:SYNC BOTH, SYNC SRC, or SYNC DEST.
As the names indicate, the disk can fail a pointer operation and choose to request the higher
level software to write the source, destination, or both blocks associated with that opera-
tion. Upon receiving one of these errors the software shouldissue a write of the current
version of the corresponding blocks, and then retry the pointer operation. At the disk level,
whenever a dependency group is unresolved beyond a time threshold it isfrozen. When-
ever new dependencies are created for a block that is alreadypart of a frozen group and in
an “not ready” state, the disk returns one of three errors mentioned above, depending on
whether the block is the source, destination, or when both the source and destination blocks
exist in frozen groups in “not ready” state. This way of forcing the software to commit the
intermediate version of the data helps the disk to spawn new dependency groups for blocks
that are already ready in a frozen group. An ACE-disk ensuresthat at a block is never part
of more than two groups at a time, the older of which is frozen.This is done by ensuring

48

that a group is not frozen until all blocks in the group are notpart of any other frozen
group. This method ensures commit of dependency groups in tune with the block write
interval of the higher level software. We verified the correctness of our bounding solution
by implementing this in the Ext2 file system. Each every case,the commit interval of the
dependency groups were in tune with that of the software level write-back interval.

5.5 Implementation

We implemented a prototype ACE-disk as a pseudo-device driver in the Linux kernel 2.6.15
that stacks on top of an existing disk block driver. The pseudo device driver layer receives
all block requests, and redirects the common read and write requests to the lower level de-
vice driver after the required processing. The additional primitives required for operations
such as block allocation and pointer management are implemented as driverioctls.

To enable sequence numbers with block I/O requests, we addeda new field to the buffer
header object and therequest token object in the Linux kernel. Whenever a buffer is
marked dirty, we generate a sequence number and update it in the buffer header. When a
write is issued for a buffer, the sequence number is carried over to therequest object and
hence available to the ACE-disk pseudo-device driver. Sequence numbers are generated
by an atomic increment of a counter value. The same counter value is used during pointer
operations and modifying buffers. Our prototype ACE-disk contained 6900 lines of kernel
code of which 3060 lines of code were reused from the existingTSD prototype.

5.6 Limitations of Pointer-driven Consistency

While the update dependency information conveyed by pointers is quite rich and as we
show, sufficient to enforce consistency, it has some limitations when compared to the more
general notion of transactional consistency. Specifically, the dependency information con-
veyed by pointers is limited to a pair of blocks; e.g. if a pointer is created between two
blocks, the two blocks will be updated atomically. However,our mechanism cannot sup-
port atomic commits of an arbitrary group of blocks. For example, on creation of a new
directory (i.e. mkdir) in ext2, a pointer is created from theparent directory block to the
inode of the child directory, and the inode initialized. Then a new block is allocated for the
child directory and a pointer created between the child inode and the child directory’s new
data block. With a transactional system, these three blockswill be committed atomically.
But in our case, the first pointer creation and the initialized inode could be committed be-
fore the second pointer creation. As a result, a directory inode may end up with a state
where it has no blocks at all, which is an apparent violation of consistency.

However, we argue that this consistency problem falls undera class ofonline-patchable
consistency violations. For example, just by looking at theinitialized directory inode with
no pointers, it is unambiguous that a crash happened just before the new directory’s block
got allocated, so it’s safe to immediately allocate a new block for the directory and assign it
to the inode. Note that in contrast, a more “real” consistency problem would be a directory
pointing to the wrong inode, perhaps a regular file inode, where it is not obvious what the

49

correct state should be. Pointer consistency could lead to such transient online-patchable
consistency violations the violation is readily and unambiguously identifiable and the fix
for that is obvious as well. Most importantly, the fix to such aviolation is local, in that it
does not require looking at the global state of the file system. We believe that the pointer-
derived consistency semantics is thus a useful and simpler counterpart to the more general
transactional consistency.

5.7 Evaluation

We evaluated the performance of our prototype ACE-disk using Ext2ACE. We ran both a
general purpose workload and a micro-benchmarks on our implementation and compared
it with a regular Ext2 and Ext3 file systems running on a normaldisk. We compared our
system with Ext3 because it is a journalling file system that provides similar consistency
guarantees as ACE-disk at the software level. For all benchmarks we used Ext3 in its
default journalling mode (ordered writes mode). In this mode file meta-data alone is jour-
nalled and it is written to the journal only after the corresponding data blocks are written
directly in place.

For all benchmarks we included the file system unmount time inour calculation. This
is because ACE-disk commits dependency groups asynchronously using separate kernel
threads, and a file system unmount procedure blocks until alloutstanding threads have
completed their commit operation. This is relevant even fornormal Ext2 and Ext3 as they
commit all outstanding dirty data during an unmount.

5.7.1 Postmark Results

We configured Postmark to create 30,000 files whose sizes ranging from 512 bytes to 10
KB, and perform 250,000 operations in 200 directories. Thisworkload particularly stresses
the ACE-disk as a large number of dependencies get created and resolved during the meta-
data operations. The time taken for the Postmark benchmark for Ext2, Ext3, and Ext2ACE
are shown in Figure 5.2.

 0

 100

 200

 300

 400

 500

 600

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

197.5

533.4

275.3

Wait
User

System

Figure 5.2:Postmark Results for ACE-Disk

50

Ext2ACE on top of ACE-disk had an elapsed time overhead of 40%compared to reg-
ular Ext2 on a normal disk. Although the system time increaseis 2.6 times relatively, this
has not contributed much to the elapsed time overhead. As mentioned earlier, this overhead
is because of dependency tracking during every block write and pointer operations. The
wait time increase (32%) is predominantly because all blocks are written out twice in the
case of an ACE-disk to ensure atomic commits of dependency groups. All block data is
written out to the journal first and after the journal is synced, in-place commits happen.
Ext3 ran almost twice as slow as Ext2 because of its ordered journalling mode. Ext2ACE
is faster than Ext3 in this case because ACE-disk journals both data and meta-data blocks
and for a small file workload such as Postmark, random writes get converted to sequential
ones. The in-place commit of data in ACE-disk happens in an asynchronous manner.

 0

 10

 20

 30

 40

 50

 60

 70

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

58.3 58.7
61.1Wait

User
System

Figure 5.3:Openssh Compile Results for ACE-Disk

5.7.2 Compile Benchmark Results

To simulate a relatively CPU-intensive user workload, we compiled the OpenSSH source
code. We used OpenSSH version 4.5, and analyzed the overheads of Ext3 and Ext2ACE
for theuntar, configure, andmake stages combined. These operations in combina-
tion constitute a significant amount of CPU and I/O operations. The results for OpenSSH
compilation is shown in Figure 5.3.

The times taken by Ext2 and Ext3 for the compilation workloadare almost similar.
This is because this is a mostly CPU-intensive workload. Ext2ACE had an elapsed time
overhead of 5% compared to Ext2 and Ext3. This is because of the increase in wait time (1
sec vs. 3.4 secs). The increase in wait time is caused by the CPU context switches between
the main compilation process and the asynchronous dependency commit threads of ACE-
disk. Since this is a CPU-intensive workload, the context switch time is more pronounced
than Postmark. In a real environment, as the dependency commits are performed inside
the disk, this context switch overhead would not be seen. Thesystem time overhead is not
significant for Ext2ACE in this case because there are relatively few I/O operations that
require processing to track dependencies.

51

 0

 50

 100

 150

 200

 250

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 211.8 215.2 217.6

Wait
User

System

Figure 5.4:Create Micro-Benchmark Results for ACE-Disk

5.7.3 Micro-benchmarks

We ran two micro-benchmarks to obtain the overheads of thecreate andunlink file
system operations. We evaluated these two operations because both of them exercise the
ACE-disk’s dependency trackers and consistency enforcement mechanism. For the create
workload, we created 500 directories with 1,000 files each totaling to 500,000 files. For the
unlink workload, we removed all created files and directories. The results of thecreate
andunlink workloads are shown in Figures 5.4 and 5.5, respectively.

 0

 50

 100

 150

 200

 250

Ext2ACEExt3Ext2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 216.6 217.6 219.2

Wait
User

System

Figure 5.5:Unlink Micro-Benchmark Results for ACE-Disk

For thecreate workload, Ext2ACE had an overhead 2.7% compared to Ext2. This
is mostly caused by the increase in wait time due to the additional I/O operations writing
out block data twice for ensuring atomicity in block commits. For theunlink workload
the results of Ext2ACE is similar to Ext2 and Ext3 asunlink results in smaller number
of writes than creates, because freed blocks are not writtento the disk.

Overall ACE-disks have small overheads for normal user workloads. When the work-
load is highly I/O-intensive, more information needs to be tracked by the disk to manage
dependencies. This results in more CPU time which is mitigated by the fact that the disk
uses its own isolated CPU in a real environment.

52

Chapter 6

Case Study: Discriminating
Hierarchical Storage System

Modern large storage systems are virtually supercomputers; a typical high-end storage
system from EMC [16] or NetApp [37] has hundreds of processors, tens of gigabytes
of RAM and hundreds of disks. In tune with the increasing processing power available
at the storage systems, their functional sophistication has also increased. Today, storage
systems employ various forms of RAID for reliability and performance, use non-volatile
RAM to absorb write latency, perform dynamic block migration for load balancing, and so
on [16, 88].

Although storage systems have evolved significantly in terms of the range of function-
ality they provide, they are still constrained due to one fundamental limitation: they have
little or no information about the system layers above that use the storage system, and thus
view data simply as a flat stream of bytes. For example, they donot know what pieces
of data are more important than others, what pieces are likely to be accessed randomly
vs. sequentially, etc. Although a lot of storage-level policies such as RAID level, caching
policy, etc. can be tuned for specific kinds of usage, a typical storage system cannot fully
exploit this potential because it deals with a myriad of interleaved types of data each with
different access characteristics, and has very little information to separate these types from
each other.

In this section, we present DHIS (pronounced asthis), a DiscriminatingHierarchical
Storage system, that uses various hints specified from the higher layers about the type of
the data to select custom policies for managing the data, such as the exact RAID level,
cacheability of the data in NVRAM etc. DHIS also uses information on the logical rela-
tionship between blocks conveyed in the form of logical pointers [68] to extrapolate its type
information from one identifying block to its descendants.By being able to discriminate
between data with varying requirements, DHIS is able to balance conflicting goals such as
performance and reliability much more efficiently than traditional storage systems.

To make informed choices on the exact layout and caching policies to use for a spe-
cific piece of data, DHIS enables the layers above to annotatelogical chunks of data with
attributeson the data. For instance, the file system can specify that a given file (identi-
fied by the top-level inode block for the file) will be mostly subject to small random writes.
Given this attribute associated with the file, DHIS would make sure to not place the file in a

53

RAID-5 format, given the “small-write” performance penalty incurred in RAID-5; instead,
it may choose to place it in RAID-1 (mirroring) format.

There are five attributes that DHIS supports: importance of the data (which determines
how reliably the data should be stored), the normal access-pattern on the data (i.e., random
or sequential), the expected popularity of the data (i.e., hot or cold), whether the data is
read-mostly or write-mostly, and finally, the expected lifetime of the data (i.e., whether
it corresponds to a temporary file). Based on these five attributes, DHIS decides on the
specific redundancy and reliability scheme to use for the data, and the various forms of
caching to use (e.g., whether to cache the data in NVRAM or perhaps a faster Flash storage
layer) such that the best performance/reliability trade-off is obtained. Specifically, the
current implementation of DHIS utilizes these attributes to automatically select the RAID
level a piece of data goes to, and to decide which pieces of data to cache in NVRAM.

We evaluate DHIS using our software-level disk prototypingframework. Using this we
evaluate the various discriminating policies of DHIS and demonstrate their effectiveness.
We show that DHIS can achieve significant performance wins byexploiting higher-level
attributes. We show that the flexibility to choose RAID-levels on a per-file basis provides
significant benefits in performance, compared to the one-size-fits-all solution normally em-
ployed in today’s systems. We also show that by intelligent caching of data that is subject to
frequent random writes (e.g., meta-data blocks in a file system) in NVRAM, DHIS greatly
improves overall system performance.

The rest of this section is organized as follows: in the next sub-section, we discuss
the background of modern storage systems and type-aware storage. In Section 6.1, we
describe the design details of DHIS and show the kind of optimizations that DHIS enables.
Section 6.4 presents our disk protototyping framework and our prototype implementation
of DHIS. We evaluate our prototyping framework and our implementation of DHIS in
Section 6.5.

6.1 Design

In this section, we describe the design of DHIS in detail and discuss the optimizations that
DHIS achieves by using higher-level attributes on data. We first describe the type-aware
hierarchical storage setup that DHIS incorporates and its salient features. We then present
the set of well-defined higher-level attributes that DHIS supports, and finally we show the
kind of optimizations that these attributes enable.

6.1.1 A Hierarchical Storage Architecture

DHIS’s architecture comprises volatile and NVRAM, as well as several individual disks
aggregated using standard RAID levels. In our design, we particularly consider the three
most commonly used RAID levels: RAID0 (striping without redundancy), RAID1 (mir-
roring), and RAID5 (striping with a parity block per stripe). These three RAID levels
have varying characteristics in terms of performance, reliability, and cost per gigabyte. We
aim to use these resources within a single storage system andmanage them efficiently in a
transparent manner using higher-level hints about data andaccess semantics. DHIS exports

54

a flat namespace to higher-level storage software such as filesystems, and aggregates the
storage capacity available in the different RAID levels internally. The architecture we use
while designing DHIS is shown in Figure 6.1.

A CB
D E F
G H I
J K L

A
B
C
D

A
B
C
D

A B C P1
P2 D E F
G P3 H I
J K P4 L

RAID 0 RAID 1 RAID 5
RAM

NVRAM

Address Virtualization Layer

TSD Interface

DHIS

File System

Figure 6.1:DHIS Setup

In the rest of this section, we detail the basic design aspects of operating such a hierar-
chical storage system in a type-aware storage setup.

Virtualizing the Block Layer Namespace Although DHIS manages several disks and
RAID levels internally, it appears like a single disk systemto higher-level software. For this
purpose, it maintains a block-address virtualization layer that contains an address transla-
tion table,TTABLE, which maps the global logical block namespace to individual disk-
specific addresses. A physical address contains two parts: adisk or device identifier (e.g.,
an internal RAID device), and a physical block number withinthat device. TheTTABLE
is looked up for every I/O request, and is updated whenever blocks need to be re-mapped
to different devices. DHIS stores theTTABLE and other book-keeping structures in non-
volatile RAM and periodically writes them to the disk. Note that inbuilt non-volatile mem-
ory has been quite common in high-end storage devices for a while, and recently it is being
used even for regular hard drives [76].

Block Allocation DHIS performs free-space management at the firmware level, thereby
freeing higher-level applications from maintaining information solely for placement of data
on disk. Block allocation is done using an explicitalloc block disk primitive. This is
important for two reasons. First, higher-level software isunaware of internal disk charac-
teristics and hence cannot make correct decisions about block locality especially when the
storage system has a complex hierarchy of disk media internally. For example, an Ext2 file
system’s allocation algorithm assumes that blocks whose logical block numbers are con-
tiguous are physically contiguous as well. This may not be true in a hierarchical storage

55

system. Second, by managing free-space on disk, DHIS can exploit its knowledge of block-
liveness to proactively perform operations such as aggressive replication of hot read-only
data, to improve performance and reliability. The block allocation API optionally takes a
hint block number to allocate the new block closer to it.

One of the main design goals of DHIS is to enable placement of data blocks at the
right RAID-level based on higher level data characteristics such as access patterns, relative
importance, etc. Therefore, whenever a block is allocated by the higher-level, the disk has
to assign a logical block number for it in the global block namespace, and then allocate
a physical block in one of the RAID devices. To enable this, DHIS maintains an alloca-
tion bitmap for the logical namespace and separate bitmaps for every underlying physical
device. The block-allocation primitive performs two steps: one to allocate logical block
number and the second for a physical block number in one of thelower disks. ATTABLE
entry is added whenever a new block is allocated.

6.1.2 Pointer-Based Optimizations

Just like a TSD, DHIS tracks pointer information across blocks. DHIS includes disk
primitives, CREATE PTR(srcblk, destblk) and DELETE PTR(srcblk,
destblk) that higher-level software can use to communicate to DHIS whenever a
logical pointer is created or deleted. DHIS maintains all pointers with respect to the
global logical block namespace, and not the physical blocks. This allows DHIS to relocate
physical blocks transparently without affecting the stored pointer information.

By using pointer knowledge, DHIS performs three key optimizations as follows:

1. All higher-level meta-data blocks (identified as those having outgoing pointers) are
placed in the RAID level of highest reliability and best random-access performance.
This is because meta-data blocks are more important and accessed more frequently
compared to regular data blocks. In our setup, we use RAID1 for this purpose. Note
that as the physical destination of blocks are determined atthe time of allocation, we
do not have information about outgoing pointers for a newly created block and hence
we cannot differentiate between data and meta-data for a newly allocated block.
Only when the first outgoing pointer is created from a block, DHIS can identify it
as a meta-data block. Therefore, DHIS performs dynamic relocation of meta-data
blocks to RAID1 as and when the first pointer is created from a block.

2. As meta-data blocks need to be written to disk frequently for reliability reasons,
DHIS attempts to absorb the write latency of these blocks by caching writes in
NVRAM. As meta-data blocks constitute a small percentage ofthe total size of
storage, NVRAM caching is beneficial. DHIS flushes out the NVRAM contents
to RAID1 in configurable periodic intervals of time and also when the device is idle.

3. DHIS exploits its knowledge about block-liveness (differentiating between used and
unused blocks) to remove dead blocks (those freed by the file system) from the
NVRAM cache and the regular disk cache, for improving the cache utilization.

56

6.2 Attributes

In this section we describe the set of hints or attributes that higher-level software such as
file systems can associate with disk blocks in DHIS. Note thatknowledge about pointers at
the disk level allows DHIS to inherit attributes of a meta-data block to the sub-tree of data
blocks that it points to. For example, to set an attribute fora file, a file system just needs to
set an inheritable attribute to the per-file meta-data block, and DHIS automatically inherits
the attribute to all blocks belonging to that file.

There have been previous efforts to infer the characteristics of blocks at the disk level
without an explicit interface, by using history of accesses[88] or block correlations [46].
However, these methods are quite limited in the range of characteristics they can infer, and
often end up being too complex. For example, although it is possible to identify hot and
cold blocks using access history, information such as the relative importance of blocks with
respect to higher-level applications cannot be inferred easily. Therefore, DHIS provides an
explicit interface for communicating a set of well-defined hints or attributes that can be set
by higher-level software such as file systems.

6.2.1 Attribute Interface

Higher-level software can set attributes using an explicitdisk primitive,DHIS SETATTR,
by passing a bitmap representing the attributes. Note that attributes in DHIS are normally
set to meta-data blocks, and they qualify the characteristics of all blocks in the pointer tree
starting from that block. For example, if an Ext2 file system needs to specify the access
pattern for a file, it needs to set an appropriate attribute tothe corresponding inode block.
DHIS automatically groups blocks in the sub-tree and associates the attribute to all such
blocks. The following are the attributes that DHIS supports:

• IMPORTANCE: Determines the relative importance of a data item. Currently DHIS
supports this as a boolean attribute which indicates that anentity is more important
than others. This can potentially be extended to supports more fine-grained levels
based on the diversity in internal storage hardware. Applications can set this attribute
for source files or documents that need to be preserved with the highest level of
reliability.

• ACCESS PATTERN: Determines if the set of blocks (belonging to the sub-tree of a
meta-data block) will be accessed at random or sequential. This attribute takes three
values: not set, random, or sequential. Applications can set this attribute to files they
own based on their access pattern. For example, a simple classification of files based
on their types can enable a file system to mark video files as sequential and database
index files as random.

• HOT/COLD: Specifies the frequency in which the particular data item will be ac-
cessed. This takes either of these three values: not set, hot, and cold. Generally ap-
plications can set archival data as cold and frequently updated files such as database
write-ahead log files as hot.

57

• READ-MOST/WRITE-MOST: Indicates whether a data item will be mostly read or
written. For example, binary files such as/bin/ls in Unix will be mostly read
and will be updated only infrequently. Similarly, file system journals or database log
files will predominantly be written.

• TEMPORARY: This is a boolean attribute that indicates whether a data item is tem-
porary (i.e., short-lived) in nature. For example, object files generated by compilers
and intermediate files generated by applications such as download managers can be
classified as temporary.

Storage software such as file systems can set attributes for appropriate meta-data
blocks, using application-specific information. For example, file systems can export an
interface to user applications to set attributes at the granularity of files or directories. In
such cases, file systems have the responsibility to transform logical abstractions (such as
files) into corresponding meta-data blocks and to pass the attributes to DHIS. For example,
an Ext2 file system can export anioctl that user applications can use to set attributes
to a file identified by a path name. Ext2 can then issue aDHIS SETATTR call with the
attribute, for the inode block corresponding to the path name.

6.2.2 The Ext2DHIS File System

We have developed an attributes-aware file system to supportDHIS, as an extended form of
the Ext2TSD file system [68]. Ext2TSD is a modified Ext2 file system that supports TSD
devices. There are two main differences between a regular Ext2 file system and Ext2TSD.
First, Ext2TSD does not perform free-space management, andallocates blocks using the
TSD disk API. Second, whenever a new pointer is added or removed for a meta-data block
(such as an inode), Ext2TSD issues the correspondingCREATE PTR or DELETE PTR
calls to the disk to communicate the pointer.

We have developed Ext2DHIS as an extended Ext2TSD file systemthat includes an
ioctl interface for user applications to set attributes to files or directories. Ext2DHIS issues
DHIS SETATTR calls to the storage system whenever attributes need to set or changed. In
addition to this, we have developed a simple scheme to set basic attributes automatically for
known file name extensions, at the file system level. For example, Ext2DHIS automatically
marks files with extensions.c, .cpp, etc., as important as these may be source files.
This provides a simple means to set basic attributes withoutthe need to modify user-level
applications.

6.3 Attribute-Based Optimizations

In this section, we describe the optimizations that DHIS achieves using the well-defined
set of attributes listed above. First, we present the methodwe use to choose the right RAID
level for a given data item. Second, we describe how better NVRAM utilization can be
done by choosing the right candidates to cache. Third, we detail how information about
temporary files can aid in reducing disk fragmentation.

58

6.3.1 Choosing Optimal RAID Level

The three RAID levels that DHIS manages have different performance and reliability char-
acteristics. In this section, we first describe the key characteristics of RAID levels in DHIS
and then we detail the policies DHIS adopts to choose the right RAID level to place data.

Characteristics of RAID Levels RAID0 performs plain striping across several disks
without any redundancy and hence it has the lowest reliability level among the three. How-
ever, in terms of performance, RAID0 is good for sequential and random read-write work-
loads. This is mainly because I/O operations get parallelized across the individual disks
when data is striped. In terms of cost per gigabyte, RAID0 is the cheapest as there is no
redundancy and the storage capacity is the sum of the individual disk capacities.

RAID1 mirrors data across two disks. As two disks contain identical data at all times,
data reliability is better as it can tolerate a single disk failure. In terms of performance,
RAID1 has similar characteristics for both sequential and random I/O. Reads are faster
than writes as reads can be parallized across the two disks. Write speed is in tune with
that of a single disk, because for every write, both disks have to be updated, but in parallel.
RAID1 has the highest cost per gigabyte as the total capacityof the drives is halved due to
mirroring.

RAID5 stripes both data and parity information across threeor more drives. In principle
it is similar to having a single dedicated parity drive, but parity blocks are distributed across
all drives RAID5 can recover from single disk failures and hence has comparable reliability
to RAID1. Read performance in RAID5 is similar to that of RAID0. However, for small
random writes RAID5 performs poorly. This is because for small writes that do not span
a complete stripe, computation of new parity involves reading the old contents of the data
block and the parity block. In terms of cost per gigabyte, RAID5 is the second best among
the three, as there is a single parity block for a stripe.

RAID Placement Policies In addition to placing all meta-data blocks in RAID1 (as de-
scribed in Section 6.1.2), DHIS also adopts placement policies based on higher-level at-
tributes. Table 6.1 shows the placement policies that DHIS adopts for each combination
of attributes. The principles that we use to decide the RAID level for a data item are in
tune with the performance and reliability characteristicsassociated with each RAID level
as described above. Note that for data that isIMPORTANT andCOLD we use RAID5 ir-
respective of its access pattern and read-write characteristics because they are going to be
accessed rarely and hence performance is not a significant factor.

6.3.2 Choosing Candidates for NVRAM caching

DHIS chooses candidates for NVRAM caching to maximize the number of absorbed
writes through NVRAM. It chooses all meta-data blocks as candidates as described in
Section 6.1.2, because meta-data blocks are frequently written and have random access
patterns. Similarly, it also chooses blocks with the combination of attributesHOT,
WRITE-MOST, andRANDOM, as these are expected to benefit the most from NVRAM

59

IMPORTANT ACCESS PATTERN READ/WRITE-MOST HOT/COLD RAID Levels
No Any Any Any 0, 5, 1
Yes Any Any Cold 5, 1, 0
Yes Not set Not set Not set or Hot 5, 1, 0
Yes Random Not-set or Write-mostNot set or Hot 1, 5, 0
Yes Random Read-most Not set or Hot 5, 1, 0
Yes Sequential Any Not set or Hot 5, 1, 0

Table 6.1:RAID placement heuristics. The order of RAID levels listed in the last column
is the desired order for each combination of attributes. DHIS tries the next level when
allocation fails in one of the levels.

caching. We do not choose sequential workloads as candidates and in general they do not
benefit much from caching.

DHIS manages NVRAM buffers using a simple mechanism that caches writes when
the corresponding block is a candidate, and a asynchronous process that flushes NVRAM
buffers to disk whenever the disk is idle. When all buffers inthe NVRAM are dirty, DHIS
passes all subsequent writes to other candidates directly to disk, until NVRAM buffers are
flushed out.

6.3.3 Reducing Disk Fragmentation

A fragmented disk can yield poor performance for large files that are accessed sequentially.
This is because, when there are only fragments of free-spaceleft for allocation, large files
may end up spread out across the disk resulting in unnecessary disk seeks. Temporary files
that get created and deleted within short intervals of time could exacerbate disk fragmen-
tation thereby seriously affecting the performance of large files under some scenarios.

DHIS deals with temporary files in a different manner reducing disk fragmentation.
As DHIS is responsible for free-space management, it allocates space for block groups
with the TEMPORARY attribute set, in a segregated portion (group of blocks at the end
of the device) of RAID level 0. For blocks that are not temporary, DHIS never allocates
space from this segregated area. This ensures that temporary files that get created and
deleted never interfers with the allocation of regular files, thereby significantly reducing
disk fragmentation.

6.4 Prototype Implementation

We implemented a protoype of DHIS using our disk prototypingframework. We preallo-
cated the size of each of our data-structures,TTABLE, NVRAM cache, allocation bitmaps,
attribute and pointer management structures, and request queue, as a function of the total
storage capacity. For the three RAID levels, we stacked DPROTO on top of the regular
Linux software RAID drivers for RAID0, RAID1, and RAID5. Ourprototype of DHIS
had 2,150 lines of kernel code in addition to DPROTO.

60

6.5 Evaluation

We evaluated the performance of our prototype implementation of DHIS to get an estimate
of the benefits achieved by attribute-based RAID placement and NVRAM caching. We
first present our evaluation setup and describe the benchmarks that we used. We then show
evaluation results for DHIS’s RAID placement and NVRAM caching mechanisms.

6.5.1 Evaluation Setup

For all benchmarks, we used a 2.8GHz Xeon with 1GB RAM, and 6 250GB, LSILogic
SCSI disks. We used Fedora Core 6, running a vanilla 2.6.15 kernel.

To ensure a cold cache between benchmark runs, we unmounted all involved file sys-
tems between each test. We ran all tests at least five times andcomputed 95% confidence
intervals for the mean elapsed, system, user, and wait timesusing the Student-t distribu-
tion. In each case, the half-widths of the intervals were less than 5% of the mean. Wait time
is the elapsed time less CPU time used and consists mostly of I/O, but process scheduling
can also affect it.

We observed disk statistics from/proc/diskstats for each of our benchmarks
and used it to verify the reasons behind our results. Disk statistics provide the following
information observed by the disk for each benchmark we ran: number of read I/O requests
(rio), number of write I/O requests (wio), number of sectors read (rsect), number of
sectors written (wsect), number of read requests merged (rmerge), number of write
requests merged (wmerge), total time taken for read requests (ruse), and the total time
taken for write requests (wuse).

6.5.2 Benchmarks and Configurations

We used Postmark [82], a popular file system benchmarking tool, to test the performance
of our prototypes. Postmark is I/O-intensive and stresses the file system by creating a large
number of small files and then performing a series of file system operations such as direc-
tory lookups, creations, and deletions on them. A large number of small files is common in
electronic mail and news servers where multiple users are randomly modifying small files.
Postmark mostly generates a combination of small random reads and writes, and hence we
use this for testing performance of our implementations, under random workloads. The
working set of a Postmark benchmark is determined by the number of files to be created
initially, and their size range. For all runs of Postmark we used file sizes ranging from
400KB to 600KB. We have mentioned the exact configuration of Postmark used for each
test, along with the respective test results.

We also ran a series of micro-benchmarks to test the characteristics that Postmark does
not cover. For example, Postmark does not evaluate sequential I/O performance and over-
heads for large file workloads. Micro-benchmarks also isolate the overheads for specific
operations, and hence gives a clearer picture of the overheads. We developed a user-level
tool that performs generates one of the following workloads: random read, random write,
sequential read, and sequential write. For all runs, we used4KB read or writes on a sin-
gle 1.5GB file. For the sequential benchmarks (read and write), we performed sequential

61

r
 0

 100

 200

 300

 400

 500

DPROTOExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

373.1 386.8

Wait
User

System

Figure 6.2:Postmark results for DPROTO vs. regular disk

 0

 100

 200

 300

 400

 500

 600

 700

DHISDPROTO

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

463.4 466.3

Wait
User

System

Figure 6.3: Postmark results for Ext2DHIS over DHIS compared to Ext2 over plain
DPROTO

4K I/O on the 1.5GB file 5 times totalling to 7.5GB of I/O. For random read and write
benchmarks, we performed 20,000 and 150,000 4K I/O respectively.

6.5.3 DHIS Results

We evaluated the performance of our prototype implementation of DHIS and our optimiza-
tions for RAID placement and NVRAM caching.

Figure 6.3 shows the overheads of DHIS over regular DPROTO. We configured
DPROTO to preallocate the same amount of memory that DHIS required for storing its
data-structures (128MB). Although the elapsed times for both runs are similar, DHIS has
higher system time (13 secs vs. 49 secs) and lower wait time (449 secs vs. 416 secs)
compared to regular DPROTO. The system time increase is because of two reasons. First,
Ext2DHIS issues ioctls to the pseudo-device driver to communicate pointer information,
contributing the major component of system time. Second, the shared queue is protected
by a spin lock and hence minor contention causes a busy wait resulting in increased system
time. The reduced wait time is because of better spatial locality caused by the disk-level
block allocation scheme used by DHIS (compared to file-system–level allocation in Ext2)

62

 0

 100

 200

 300

 400

 500

 600

 700

DHISRAID 5RAID 1RAID 0

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

270.8

400.3

577.5

502.4

Wait
User

System

Figure 6.4: Postmark results for Ext2DHIS over DHIS compared to Ext2 over plain
DPROTO on RAID1 and RAID5

which co-locates blocks in a greedy fashion without taking into account future file growth.

6.5.4 RAID Placement Optimizations

To evaluate the benefits of the RAID placement optimizationsperformed by DHIS, we
used Postmark and micro-benchmarks. For all benchmarks, weobserved the time taken
for the workload on regular DPROTO stacked over individual RAID1 and RAID5 de-
vices and compared them with DHIS. While running the workload over DHIS we set the
IMPORTANT andACCESS PATTERN attributes set, so that DHIS would place them in the
optimal RAID level.

As Postmark generates mostly a random workload, we ran it with RANDOM attribute
set. For micro-benchmarks, we set theSEQUENTIAL andRANDOM attributes respectively
for sequential and random reads and writes.

Figure 6.4 shows the Postmark results for DHIS compared to DPROTO on individual
RAID1 and RAID5. As evident from the figure, DHIS performs closer to regular RAID1
as it placed the Postmark working set on its RAID1 hierarchy.DHIS has an elapsed time
overhead of 25% compared to regular RAID1 although DHIS places all data on RAID1,
for this benchmark. This is because of two reasons. First, Postmark is creates and deletes a
large number of files and hence results in a large amount of pointer operations and attribute
updates. This results in increased system time (13 secs vs. 49 secs) as seen from the figure.
Second, as pointer operations are synchronous in nature, they block until the DPROTO
service thread handles them. This results in increased waittime (386 secs vs. 452 secs).
The overheads are more pronounced for the Postmark workloadbecause Postmark is an
extreme case of I/O-intensive workload. In most common workloads DHIS performs much
more closer to the RAID1 for random workloads (as shown in themicro-benchmark results
below).

Figure 6.5 shows the micro-benchmark results for RAID placement. As shown in the
graphs, under all cases, DHIS performs close to the fastest of the two RAID levels. Note
that for the sequential write workload, DHIS performs 16% better than RAID5. This is
because DHIS places all meta-data blocks in RAID1 for maximizing reliability and better

63

 0

 50

 100

 150

 200

DHISRAID5RAID1RAID0

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

56.2

145.6

109.6 112.5

Wait
User

System

(a) Sequential Read Benchmark

 0

 50

 100

 150

 200

 250

 300

DHISRAID5RAID1RAID0

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

107.1

214.5

239.7

190.4

Wait
User

System

(b) Sequential Write Benchmark

 0

 50

 100

 150

 200

 250

DHISRAID5RAID1RAID0

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

147.0

175.1

154.5 152.5

Wait
User

System

(c) Random Read Benchmark

 0

 100

 200

 300

 400

 500

DHISRAID5RAID1RAID0

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

185.8

245.5

428.7

248.3

Wait
User

System

(d) Random Write Benchmark

Figure 6.5:Microbenchmark results for DHIS. For each benchmark we showthe time taken
for regular DPROTO directly over RAID1 and RAID5, and compared them with DHIS with
access pattern attributes

64

performance (as meta-data blocks will mostly be accessed atrandom). By placing meta-
data blocks in RAID1, DHIS has better sequential write characteristics, as random meta-
data updates (such as updating the inode) gets absorbed by RAID1 while writing to a large
sequential file on RAID5.

Therefore, by setting appropriate attributes about accesspatterns, DHIS can be made
to perform substantially better than traditional storage systems that place data without the
knowledge of their access patterns.

65

r
 0

 20

 40

 60

 80

 100

 120

DHISDPROTO

E
la

ps
ed

 T
im

e
(s

ec
on

ds
) 88.5

55.7

Wait
User

System

Figure 6.6: Postmark results for Ext2DHIS over DHIS with selective NVRAM caching
enabled compared to Ext2DHIS over DPROTO

6.5.5 NVRAM Caching

To evaluate the benefits of caching selected candidates in NVRAM, we compared DHIS
with regular DPROTO with file systems mounted in synchronousmode. DHIS choose all
meta-data blocks as candidates for NVRAM caching and hence for a synchronous work-
load most of the meta-data block writes will be absorbed by NVRAM. Figure 6.6 shows the
benefits of selective NVRAM caching. For this run, we configured Postmark to create 1000
files with sizes ranging from 10KB to 20KB, and 2000 operations. We used this smaller
configuration as we ran this workload with synchronous mountof the file system. As seen
from the figure caching meta-data selectively in NVRAM can improve write performance
significantly (37%)for random I/O-intensive workloads.

66

Chapter 7

Case Study: Secure Deletion

In this section we describe our next case study: a disk systemthat automatically performs
secure deletion of blocks that are freed. We begin with a brief motivation and then move
on to the design and implementation of ourSecure Deletion Type-Safe Disk(SDTSD).

7.1 Motivation

Data security often includes the ability to delete data suchthat it cannot be recovered [9, 30,
61]. Several software-level mechanisms exist today that delete disk data securely [40, 58].
However, these mechanisms are fundamentally insecure compared to disk-level mecha-
nisms [69], because the former do not have knowledge of disk internals and therefore
cannot guarantee that deleted data is overwritten.

7.2 Design

Since a TSD automatically tracks blocks that are not used, obtaining liveness information
about blocks is simple as described in Section 3.2. Whenevera block is garbage collected,
an SDTSD just needs to securely delete the block by overwriting it one or more times. The
SDTSD must also ensure that a garbage collected block that isnot yet securely deleted is
not re-allocated; an SDTSD achieves this by deferring the update of theALLOC BITMAP

until a block is securely deleted.
To improve performance, an SDTSD overwrites blocks in batches. Blocks that are

garbage collected are automatically added to a secure-deletion list. This list is periodically
flushed and the blocks to be securely deleted are sorted for sequential access. Once a batch
of blocks is overwritten multiple times, theALLOC BITMAP is updated to mark all those
blocks as free.

7.3 Prototype implementation

We extended our prototype TSD framework described in Section 3.5 to implement secure-
deletion functionality. Whenever a block is garbage collected, we add the block number to

67

a list. An asynchronous kernel thread wakes up every second to flush the list into a buffer,
sort it, and perform overwrites. The number of overwrites per block is configurable. We
added 403 lines of kernel code to our existing TSD prototype.

7.4 Evaluation

 0

 5

 10

 15

 20

SDTSDExt2TSDExt2

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

11.8 12.2

16.5Wait
User

System

Figure 7.1:Unlink micro-benchmark results for SDTSD

To evaluate the performance of SDTSD, we ran an unlink micro-benchmark. Figure 7.1
shows the results of this benchmark. The I/O overhead of SDTSD over Ext2TSD was 40%
compared to regular Ext2, mainly because of the additional I/O caused by overwrites for
secure deletion.

68

Chapter 8

Context-Aware I/O Infrastructure

In this chapter, we present the concept ofContext-Aware I/O(CAIO), a simple and generic
way for applications to convey arbitrary information abouttheir I/O behavior and relation-
ships, without worrying about how the information will be used by the storage stack. In
CAIO, an application-levelcontextis propagated along with an I/O operation across the
entire storage stack, in an end-to-end fashion. An application-level context is represented
by one or morecontext identifiers. For example, a database application can have a unique
identifier that it can propagate along with every I/O it generates, such that any storage layer
can easily group all I/O generated by the database application. This also enables the lower
layers of the storage stack to associate the data corresponding to the I/O with higher-level
contexts and easily track the application’s working-set.

In addition to working-set identification, application contexts also enable a new class
of functionality that uses application-I/O relationships, such as easy and flexible perfor-
mance isolation in large-scale distributed storage, and access-pattern aware caching and
prefetching within the storage hardware.

To make CAIO a generic framework, we decouple thegenerationof application-level
information from how the information isusedwithin the storage stack. Most hint-based
proposals to address the problem of information-gap in the past have tied these together.
For example, in hint-based prefetching systems, the application provides hints of its future
access, but the hints are specifically designed with prefetching in mind. The problem with
such function-specific hints is that they require coordination and agreement between the
layers involved. In a multi-vendor setup, such coordination translates into industry-wide
consensus on the interface, a standardization process thattakes years. In addition, such an
approach cannot scale in an end-to-end manner to the multi-layered storage stacks that we
have today.

Decoupling the generator and consumer of the context information leads to an interest-
ing challenge: when the application could conceivably use more than one possible granu-
larity of grouping I/O, how can it decide which one to use while being oblivious to how the
grouping is interpreted by the lower level? For example, a database application can group
the I/O requests it generates based on the database user, session, transaction, or query on
behalf of which the I/O is issued; but the lower layers are oblivious to the granularity of
the context. To solve this issue, contexts in CAIO arehierarchical. With hierarchical con-
texts, higher layers can encode multiple granularities of grouping, and the lower layers can

69

decide which granularity is the best for the particular functionality that they provide.
Even in a hierarchical context, individual levels in the hierarchy remain completely

opaque to the storage stack. For implementing functionality that needs more information
about what these levels in the context mean, contexts can be annotatedofflineat any specific
layer. In such cases, CAIO contexts will be used only as naming-identifiers to associate
higher-level semantics.

We illustrate the generality and power of the context abstraction by prototyping and
evaluating two case studies. Our first case study is an automatic working set identifier,
WorkSIDE, which operates at the block-based storage hardware layer.WorkSIDE automat-
ically tracks the data working set required for an application context to run to completion.
WorkSIDE correlates contexts with the I/O and the corresponding data they access, thus
obtaining a complete view of the entire set of data items thatthe particular application con-
text requires. This working set can then be preloaded as appropriate in order to improve
performance and availability, or to enable power optimizations. The second case study is a
context-aware cache-placement algorithm within the disk that automatically tracks which
application-level contexts exhibit sequential streamingaccess pattern and avoids caching
requests with that context. We demonstrate the usefulness of both of our case-studies using
prototype implementations we built for the Linux kernel, and evaluate various workloads.

The rest of this chapter is organized as follows. In Section 8.1 we discuss the utility of
CAIO by presenting a few potential applications. In Section8.2 we present a taxonomy of
the various kinds of contexts in storage. We detail how we generalize the CAIO interface
in Section 8.3. In Section 8.4, we describe CAIO design and application support.

8.1 The Utility of Context-Aware I/O

In this section we describe several usage scenarios that motivate tracking context informa-
tion in the different layers of the storage stack. Many of these utilities cannot be imple-
mented effectively without explicitly propagating application-level contexts. In Sections 9
and 10, we demonstrate our implementation of the first two usage scenarios described be-
low.

Working-set Aware Features Identifying working sets of data for individual applica-
tions at the lower layers of the storage stack, enables interesting functionality such as
application-aware prefetching [60], power-savings [87, 90], selective recovery of failed
hardware [50], and improved data availability [70]. We describe our implementation of
a disk-level working-set identifier and its usefulness in detail under Section 9.

Adaptive Caching and Prefetching The efficacy of caching and prefetching depends
on the ability to identify access patterns. Context can enable caching and prefetching
mechanisms to adapt their policies based on access patterns. Section 10 describes our
implementation of a context-aware disk-level caching mechanism.

70

Application-Aware Performance Isolation Scheduling algorithms at different levels of
the storage stack can leverage application-level contextsin scheduling decisions. For ex-
ample, fair share disk schedulers can enforce fairness based on higher level logical tasks as
against OS processes. Application-based resource isolation has been previously explored
in the context of a single OS in Resource Containers [22]. Contexts can enable flexible
resource isolation in an end-to-end fashion even in distributed storage.

Optimized Data Layout File systems can use higher level contexts as hints for optimal
data placement on disk. Co-locating files and directories created in the same context could
be beneficial under certain scenarios to achieve better spatial locality during reads.

Improved Accounting Context information associated with I/O operations can greatly
help in I/O trace analysis. Trace analysis for resource consumption can be more accurate
when it makes use of logical contexts pertaining to precise higher-level tasks. Contexts
can also provide valuable hints about the dependencies of I/O operations and the causal
relationships between them, for trace-based intrusion detection systems [43].

8.2 Context Types

Context in storage is quite useful as seen from the kind of functionality it enables (described
in Section 8.1). We now definecontextas follows:A context in storage is a reference or
identification used to group, on some basis, several I/O operations or data.

We now describe the types of contexts that are relevant to storage.

8.2.1 Data-bound vs. Access-bound

The two primary entities in storage are (a) data, and (b) I/O operations on data. Context in
storage is mainly used for grouping several such data items or I/O operations. Therefore
we classify context in storage broadly into two types: data-bound and access bound.

A context is said to bedata-boundif it can be used to group several data items stored
on disk, based on some metric. This grouping is independent of the way the data is ac-
cessed. For example, a data-bound context can group all blocks belonging to the same
database table or file. Data-bound contexts can group data based on arbitrary criteria such
as logical abstractions (files, directories, database tables, etc.), owning application or user,
security domains, and so on. Data-bound contexts can be usedto communicate higher-
level data-structures to the disk, and enable functionality such as fault-isolated placement
in RAID [70].

Note that the notion of data-bound contexts is similar in concept with other abstrac-
tions such as type-aware storage (Section 3) or object-based interface [53]. These other
abstractions can be used as an alternative to data-bound contexts.

Access-boundcontexts relate operations rather than the data pertainingto them. For
example, an access-bound context can group all block write operations resulting from a
single database query. Access-bound contexts enable new functionality that solely depend

71

DB Session A Database X

Table Y

Record Z

Transaction B

Query C

(a) (b) (c)

home

abc.txt

john

/

Figure 8.1: Examples of how hierarchical contexts can be constructed. (a) shows an
access-bound context hierarchy. (b) and (c) show data-bound context hierarchies.

on the characteristics of individual I/O requests. The caching and prefetching functionality
described in Section 8.1 requires access-bound contexts.

Figure 8.1 shows a few examples of context hierarchies. Figure 8.1(a) shows a possible
access-bound hierarchy for a database application. Figures 8.1(b) and 8.1(c) show data-
bound context hierarchies that communicate data abstractions.

8.2.2 Repeatable vs. Non-Repeatable

The lifetime of a context identifier is defined by the application that generates it. When
a single context identifier is used every time to refer to a particular logical context, we
call it a repeatablecontext. For example, when a context is used to group files within an
access-control domain, the same identifier has to be reused every time when operations are
performed on that domain. Applications have to generate such contexts using a determin-
istic method and may maintain persistent states to track contexts.

Non-repeatablecontexts have transient identifiers. For example, if apid is used as
a context identifier to group I/O operations generated by a particular program, every time
the program runs, the identifier becomes different, although the logical context remains the
same. Non-repeatable contexts do not require any state to bemaintained at the application-
level.

8.3 Generalizing the Interface

In this section, we describe how we can cope with arbitrary context generation process
at the application-level, and achieve independence between the generation and usage of
application-contexts. We also describe how lower layers ofthe storage stack can extend
contexts or correlate across different context types.

72

Hierarchical Contexts To achieve generality in the CAIO interface, the context genera-
tion process at the application-level must not make any assumptions about how the lower
layers use the context. However, at the application-level,there may be several different
ways to generate a context, each useful for different kinds of functionality at the lower
layers. A single application-wide context identifier an be used to easily group all data
required by the application, whereas more fine-grained context identifiers within an appli-
cation help communicate different streams of I/O requests generated by sub-components of
within same application. For example, a single DBMS-wide context can be used to group
all I/O and data that the DBMS manages. This enables functionality such as working-set
identification for the entire DBMS. On the other hand, a per database session-level context
can be used for easy performance isolation between databaseuser sessions. We use the
termcontext granularityto refer to the different possible ways to generate contextswithin
an application.

Therefore, for generalizing the interface without hampering the kind of functional-
ity it enables, we evolve a context scheme where the application can encode all possible
granularities as a single context, passing downcontext hierarchies(for access-bound and
data-bound) rather than a single identifier. For example, a DBMS can generate access-
bound contexts in granularities such as sessions, transactions, and individual queries, and
data-bound contexts in granularities such as databases, tables, and records.

Lower layers of the storage stack can use hierarchical contexts without making assump-
tions about what each of the levels in the hierarchy mean. Forexample, a caching layer
that wants to classify some context to exclude caching (e.g., sequential contexts) can track
the statistics on sequentiality at each level of the contexthierarchy, and then choose the
highest level that exhibits homogeneity in the access pattern. Depending on the specific
behavior the layer is looking at (e.g., sequentiality, correlated access of the same pieces
of data), the definition of homogeneity changes. Hierarchical contexts enable decoupling
the application from worrying about which behavioral properties the lower layers are in-
terested in; instead the application just conveys its state, and the lower layers make their
independent decisions on the notion of homogeneity they care about, based on the layers’
own per-context statistics.

Note that for a context hierarchy chain in CAIO to be meaningful, every context in
the chain should qualify a logical subset of the access or data domain qualified by its
parent context. For example, a per-query context identifiercan be a child of the transaction
identifier in which the query is a part. However, a context identifier that qualifies the class
of all select queries in a DBMS cannot be a child of any particular transaction identifier,
asselect queries can be part of any transaction.

Annotating Contexts with Semantics Certain functionality may require more informa-
tion about what each level in the hierarchy means, at some specific layer in the storage
stack. For example, a context-based proportional-share disk scheduler needs share propor-
tions to be associated with levels in the context hierarchy.For this purposeofflinemech-
anisms can be used to annotate context identifiers with functionality specific information.
For example, applications can co-ordinate with a specific file system through offlineioctls
to associate locality hints with stored context identifiers. Note that these annotations are

73

not part of the CAIO infrastructure, but can be done separately between any two layers that
needs to coordinate to implement a specific functionality. In the example of a proportional-
share disk scheduler, the application and the disk scheduler need to co-ordinate offline to
annotate context levels with share proportions.

Context Transformation With hierarchical contexts, any layer in the storage stack can
add new levels to the context chain, as long as the subset invariant is preserved. For access-
bound contexts, the subset relationship is maintained as anoperation propagates from top
to bottom. For example, aselectquery generated from a database gets transformed into
one or more file read operations at the file system, and then further transformed into several
block read operations at the device driver or the disk level.Therefore, any layer in the stack
can add new levels to communicate grouping of sub-operations at their level.

However, for data-bound contexts, subset relationship is harder to ensure across layers.
This is because the data abstractions used by higher layers in many cases are not super-
sets of the lower level abstractions. For example, an application can store several B-trees
within a single file, and hence there is no subset relationship between the abstractions used
by this application and that of the file system. Therefore generic transformation of data-
bound contexts across layers is harder to achieve; but lowerlayers can associate new data-
bound context hierarchies with I/O, if the application doesnot pass a data-bound context.
We impose a constraint that intermediate layers should not add new levels to data-bound
contexts, unless the higher-level layer did not specify a context of its own.

Correlating Across Context Types Data-bound and access-bound contexts passed by
the application can be completely independent of each otherand need not necessarily in-
dicate association between the operation and the data it operates. This makes generation
of contexts at the application-level much less complicated. However, lower layers that use
these contexts can maintain their own history information of contexts, and correlating data-
bound and access-bound contexts. Correlating context types enables useful functionality.
For example, identifying the working set of data accessed byan access-bound context can
be useful for implementing interesting optimizations as described in our first case-study
detailed under Section 9.

8.4 CAIO Design

End-to-end association of context with I/O requires passing application-generated context
with every I/O operation throughout its lifetime. We evolvea framework through which
context can be passed from an application all the way down to the storage hardware (e.g.,
a disk). In this section, we describe the changes required tothe storage stack and user
applications, to support contexts.

We propagate context in the storage stack by means ofcontext objects. A context object
contains upto two context chains, one each for data-bound and access-bound types. These
context types are based on the discussion under Section 8.2.Context objects also carry
information about the repeatability of the context chains.Repeatability is at the granularity

74

of an entire chain and not the individual context identifierswithin a chain. The structure of
a context object is shown in Listing 8.1.

s t r u c t c a i o c o n t e x t {
i n t da ta bound [MAX DATA LEVELS] ;
i n t acces sb o u n d [MAX ACCESSLEVELS] ;
s h o r t d a t a l e v e l s ;
s h o r t a c c e s sl e v e l s ;
i n t f l a g s ;

} ;

Listing 8.1: Structure of a context object. The fields datalevels and accesslevels indicate
the number of levels in the data and access-bound context chains. Flags contain informa-
tion about repeatability and inheritance properties (Section 8.4.1) for the context.

8.4.1 Associating Contexts With I/O

The CAIO framework contains a user library that exports routines to construct context
objects and add new levels of hierarchy to existing context objects. User applications can
generate context objects through these routines and associate them with I/O operations.
Our framework provides three different ways for user applications to associate contexts
with I/O operations. They are, (a) an extended system call interface (b) group contexts and
(c) context inheritance. We detail each of these mechanismsbelow.

An Extended System Call Interface We have an extended system call interface that
passes context objects along with storage primitives such as open, read, write,
unlink, etc. Each of these I/O system calls include an additional argument for the
context object. The framework also includes a wrapper library for user applications to call
these new system calls. Listing 8.2 shows an usage scenario for the extended system call
interface. Note that when there is a single context object that needs to be passed for several
system calls,group contextscan be used for better performance, as described below.

Group Contexts For applications that need to perform a several I/O operations with a
single context object, we provide a new system call for setting and unsetting contexts into
the kernel. The scope of this association is just the specificthread of execution. Therefore
applications can first set a context and then issue any numberof regular I/O system calls
(such asopen or read), and the corresponding context object will be associated with
every operation.

Context Inheritance To support easy usage of contexts in cases where the smallestgran-
ularity is a process, our framework includes a context inheritance mechanism using which
any process can set aninheritable contextinto the kernel. All child processes and threads
of such a process will then inherit the same context hierarchy. We developed this feature so

75

that there would be no modifications required to applications whose lowest context granu-
larity is a process. For example, if a project compilation task requires several applications
such asgcc, ld, binutils etc., the entire compilation task can be run through a shell
that has an inheritable context set, instead of modifying every application to pass contexts.

i n t fd ; ch a r bu f [1 2 8] ;
s t r u c t c a i o c o n t e x t ∗ c o n t e x t ;

/∗ A l l o c a t e s and s e t s top− l e v e l da tabound
∗ and accessbound i d e n t i f e r s as 1∗ /

c o n t e x t = c a i o c r e a t e c o n t e x t (1 , 1) ;

/∗ Adds a new l e v e l t o t h e a c c e s s / d a t a
∗ h i e r a r c h y wi th i d e n t i f i e r 2 ∗ /

c a i o a d d l e v e l (co n t ex t , 2 , 2) ;

/∗ CAIO sys tem c a l l i n t e r f a c e∗ /
fd = ca i o o p en (” / home / j o e / abc . t x t ” ,

O RDONLY, &c o n t e x t) ;
e r r = c a i o r e a d (fd , buf , 128 , &c o n t e x t) ;
c a i o c l o s e (fd , &c o n t e x t) ;

Listing 8.2: Passing contexts from the user-level using theCAIO extended system call
interface. Note that in this case group context (described in Section 8.4.1) can be used as
well, because a single context object is used for all calls.

8.4.2 Context Propagation

In CAIO, each layer receives contexts from the layer above and passes it to the layer below
after using them if applicable. Note that a single operationat a particular layer could
translate into multiple operations in the layers below. Forexample, a file create operation
at the file system level could result in multiple block write requests to the device driver.
Therefore it is each layer’s responsibility to propagate context objects appropriately to the
layer below. In cases where there are more virtualization layers such as software RAID or
logical volume managers (LVMs), such layers should be awareof contexts and propagate
them below. Any layer can choose to store contexts in its own structures for its needs,
before passing them down.

Hardware Interface Extensions To propagate contexts end-to-end, we extend storage
hardware interfaces to pass generic context objects along with every I/O request. For exam-
ple, the SCSI/IDEread andwrite primitives take context objects. There are a number
of proposals in the past that suggest interface extensions to disk systems for communicat-
ing higher-level semantic information [17, 49, 53, 68]. We believe that the generality of the
CAIO interface would make it easier for disk vendors to adopt.

76

Dealing with Operation coalescence Multiple logically independent I/O operations
may be coalesced into one at any layer in the stack. For example, multiple file write
operations to the contents of the same file block could resultin a single block I/O at
the disk level due to write buffering. To handle such cases, we support multiple context
objects to be associated with a single lower level I/O. Layers that receive these contexts
must process them one by one as if they were from different I/Ooperations.

Storing Contexts Repeatable contexts may need to be stored by layers to implement
optimizations that involve tracking context history, or correlating different context types.
We developed acontext-store in-memory data-structure as part of our framework
to enable easy storage of context hierarchies at any layer ofthe storage stack. A context
store manages context hierarchy in a tree structure in whicheach node represents a context
identifier of a specific level in the hierarchy identified by its depth in the tree. Each tree
node also includes aprivate datafield where information about that specific chain can
be stored. The context-store structure provides primitives for common operations such as
adding new chains and updating private data.

8.4.3 Linux Implementation

We implemented our CAIO framework in the Linux kernel 2.6.15. We added new sys-
tem calls for context-aware file I/O operations and implemented a user-level library for
applications to easily use the new system call interface. The new system calls allowed con-
text objects to be passed withopen, read, write, pread, pwrite, close, mkdir,
unlink, rmdir andreaddir operations. We modified the following objects to add
a new field to store contexts. (a)task struct which represents a running process or
thread. (b)buffer head which represents a block buffer in memory. (c)bio which
represents an I/O to a block device. Thebuffer head andbio objects can optionally
contain a list of contexts during operation coalescence.

We implemented the new system calls as wrappers to the unmodified system call han-
dlers for the operations. The wrapper system calls set the context object in thecurrent
task object before calling the unmodified handlers. Note that the wrapper calls unset the
context upon completion of a system call, so that the scope ofa passed context would
be just that system call. The different layers in the OS that service the I/O operation use
the context object from thecurrent task object and propagate it to the corresponding
buffer head andbio objects appropriately. As thetask struct object is unique to
a particular process or thread, this method works for multi-process workloads as well.

For group contexts, we added a new system call which assigns or removes the corre-
sponding context in the currenttask struct object. For inheritable contexts, we mod-
ified thefork system call to copy the context object of the parent, to the forked process.
We also implemented the context-store data-structure as part of the kernel so that any layer
such as the file system or device driver can maintain its own store.

Overall, the modifications required to implement the CAIO framework were small. We
added only 350 lines of new kernel code and 150 lines of user-level code.

77

8.4.4 Application Support

The method of generating contexts at the application-leveldepends on specific application
architectures. In general, if an application can classify its activities into distinct logical
tasks, and (or) if it can group data it uses based on some criteria, it can generate contexts
in a meaningful manner. Based on the kind of application, thegranularity and type of
contexts it can generate can vary. Some low level applications such as Unix utilities (e.g.,
ls, cat, etc.) can just provide an interface to the caller to pass contexts (e,g., command
line arguments). We have modified some basic utility programs such ascp,cat, andls to
accept contexts as command line arguments. This enables a higher level caller application
(e.g., a shell script) to group all its operations under the same context.

Context-Aware MySql We have modified the MySql DBMS [57] with InnoDB [38] as
the storage engine, to generate and propagate contexts at various granularities. MySql has
the notion of database client connections which can obtain service from the DBMS. Each
client connection gets serviced by a separate MySql thread,and can run several transac-
tions and queries. We modified MySql to pass contexts at threegranularities in the form of
a hierarchy: connection-level, transaction-level, and a single query-level. Overall the mod-
ifications required to propagate contexts across the various layers of MySql and InnoDB
were simple. We added only 30 lines of new code and modified 345lines of existing code,
mostly for passing an additional argument for a number of functions. We use our Context-
Aware MySql as an application to evaluate our framework and some of the case-studies
described in Sections 9 and 10.

8.4.5 Evaluation

We evaluated the overheads associated with passing contextobjects across the storage stack
for all file system operations. In this section we first describe our test setup and the details
of the experiments we ran. Note that the setup described in this section applies to all our
benchmarks presented under Sections 9 and 10 as well.

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a 74GB, 10Krpm,
Ultra-320 SCSI disk. We used Fedora Core 6, running a Linux 2.6.15 kernel. To ensure
a cold cache, we unmounted all involved file systems between each test. We ran all tests
at least five times and computed 95% confidence intervals for the mean elapsed, system,
user, and wait times using the Student-t distribution. In each case, the half-widths of the
intervals were less than 5% of the mean.

Experiments

In this section we describe the set of experiments and their configurations that we used for
evaluating the CAIO and the case-studies.

Postmark For an I/O-intensive workload, we used Postmark [82], a popular file system
benchmarking tool. Postmark stresses the file system by performing a series of file system
operations such as directory lookups, creations, and deletions on small files.

78

Regular CAIO

Response Time (s) Response Time (s)

Delivery 0.096 0.109

New Order 0.039 0.064

Order Status 0.033 0.29

Payment 0.000 0.000

Stock Level 0.169 0.524

Throughput (tpmC) 67.13 64.35

Table 8.1:TPC-C Benchmark results for the CAIO framework

TPC-C TPC-C [79] is an On-Line Transaction Processing (OLTP) benchmark that per-
forms small 4 KB random reads and writes. Two-thirds of the I/Os are reads. We set up
TPC-C with 50 warehouses and 20 clients. We compare our context-aware MySql run-
ning on our CAIO framework with regular MySql running on a vanilla kernel. The metric
for evaluating TPC-C performance is the number of transactions completed per minute
(tpmC). We report tpmC numbers for each benchmark.

Results

 0

 20

 40

 60

 80

 100

CAIOVanilla

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

70.9
69.8

Wait
User

System

(a) 50,000 Operations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

CAIOVanilla

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

138.9
145.5

Wait
User

System

(b) 100,000 Operations

Figure 8.2:Postmark Results for CAIO Framework

Figure 8.2 shows the overheads of our CAIO framework for Postmark for two different
number of operations. As seen from the figure the overall elapsed time overheads were
small (2% to 4%) compared to regular I/O. This overhead is mainly because of the addi-
tional user-to-kernel copies for communicating context objects from applications.

TPC-C Results The TPC benchmark results for regular MySQL and our modified
context-aware MySQL ran over the CAIO kernel is shown in Table 8.1. The workload
loads tables into a Mysql server at start-up and runs a mix of queries on these tables for a

79

user defined time. We configured the benchmark to run with five warehouses and created
two client connection which ran queries on all five warehouses for ten minutes. As seen
from throughput and response time numbers, overheads of theCAIO framework is quite
small.

80

Chapter 9

Case Study: Working Set Identifier

Our first case study is the automaticWork ing Set IDEntifier (WorkSIDE). WorkSIDE that
uses both access-bound and data-bound contexts to automatically infer the minimum set of
data items required to be available in order for an application (or a specific instance of an
application) to run to completion.

9.1 Motivation

This ability to accurately identify working sets of application contexts at a fine grained
level has various kinds of applications.

Performance The working set of the application can be preloaded into a much faster but
smaller memory hierarchy (e.g., a flash storage layer that provides about 100x better ran-
dom access read performance), thus essentially shielding the application from performance
variability due to disk access.

Availability WorkSIDE enables fault-isolated placement of applicationworking sets en-
abling truly graceful degradation during multiple disk failures similar to D-GRAID [70].
While D-GRAID could just co-locate files or directories, WorkSIDE can co-locate higher-
level application working-sets within failure domains.

Power Savings Many recent systems have looked at saving power by switchingoff a
subset of disks in a large RAID array in such a way that applications can still function
properly without the switched-off disks [87, 90]. These systems go to great complexity to
identify the subset of data that is currently under use, yet these techniques are most often
approximate and too coarse-grained. Being more informed about the application’s access
patterns and data abstractions, WorkSIDE can do a better jobat such power optimizations
by being more aggressive and more accurate.

Disconnected operation Another usage scenario for WorkSIDE is when the user wants
to preload the working set for a specific application contextin local storage for discon-
nected operation, say, in a mobile environment. This enables Coda-like hoarding [44], but

81

can be much more accurate, fine-grained and automated. For example, if the user works
only on a specific build target in a large body of source code, just the subset of source files
(and the metadata) needed for the target can be automatically preloaded to local storage.

The key to WorkSIDE is its ability to correlate a repeatable access context with the data
context it accesses. WorkSIDE achieves this by associatingwith each node of the access
context hierarchy, the aggregated set of data items that areaccessed by that context. Se-
mantic aggregation of such data is possible because data-bound contexts are hierarchical
in nature conveying data abstractions in several granularities (such as files or directories).
Tracking working set at an aggregated level enables much simpler and reliable tracking of
repeatability. For instance, if an application touches different parts of a file in its different
runs, block-level tracking may not find much of a repeatability, whereas tracking at the
file-level would indicate the pattern. Since the data context hierarchy essentially contains
information of the entire data abstraction tree, it can track this information at various gran-
ularities, and decide on which granularity provides the best trade-off between the amount
of data to be preloaded and ensuring completeness for the application.

9.2 Design

To determine the working set of a higher level logical task, WorkSIDE has to track history
of both data-bound and access-bound contexts for every task. We designed WorkSIDE
as an on-disk mechanism to demonstrate its working as part ofthe firmware of a high-
end block-based RAID storage system. WorkSIDE can potentially exist at any layer of
the storage stack such as the file system or the device driver.Through our design, we
show that even in the lowest layer of the storage stack (the storage hardware), working set
identification can be done to an acceptable level of accuracy, through context-aware I/O.

For WorkSIDE to correctly determine the working set of data for a given access-bound
context, the higher application has to pass data contexts tocommunicate the semantic or-
ganization of data. This can relate to on-disk structures such as B-trees, database tables,
files, and directories. In this section, we first detail how access-bound contexts can be as-
sociated with corresponding data-bound contexts. We then discuss a few policies that can
be adopted to determine the granularity of the working set ofa given context. Lastly, we
present our prototype implementation of WorkSIDE.

9.2.1 Associating Access with Data

WorkSIDE maintains two context stores (described in Section 8.4) to track access-bound
and data-bound contexts respectively. Each store has context trees to represent the hierar-
chy. We call tree nodes in the access and data stores asAccess-Context Nodes(ACNs) and
Data Context Nodes(DCNs) respectively. Note that, as data-bound context is mainly used
to communicate the semantic structure of data, it need not necessarily be passed by the
higher-level application for every I/O request. For example, if a DBMS uses thetable
andrecord abstractions as data-bound contexts, it may pass the context hierarchy only
when such abstractions are created (e.g., a table creation)or updated (e.g., a new record
insertion). For example, the DBMS need not pass data-bound contexts for everyselect

82

query. To handle this condition, WorkSIDE may have to map access-bound contexts ac-
companying a block I/O request with a pre-existing data-bound context hierarchy.

The following are the contents of a DCN: (a) A context identifier. (b) The number of
blocks in the entire sub-tree with the node as root. (c) A listof block numbers associated
with the context (if it is a leaf node). Every time a block I/O has an accompanying data-
bound context chain, the corresponding block number is added to the leaf DCN of the
chain. (d) A list of pointers to its child nodes. (e) A back-pointer to its parent node. This
is used to increment the number of blocks in every parent along the chain when there is a
new addition to a leaf node.

While adding a node to the tree, we enforce thesingle parentconstraint, where every
node must have at most one parent. When there is a context chain passed, that violates
this condition, we truncate the chain after the spurious node while adding it to the tree.
In almost all common cases, this would not affect the accuracy of the data-bound context
tree, as most data-abstractions already follow this rule. For example, a single block cannot
belong to more than one file (except in rare cases such as hardlinks in Ext2).

WorkSIDE also maintains a hash table,BDTABLE, to map block numbers to the cor-
responding leaf nodes in the data context tree. TheBDTABLE is used to lookup the data
context for any block when an I/O request to it does not have anassociated data-bound
context. Upon receiving a block I/O request with a access-bound context, WorkSIDE can
map the corresponding block number to any level of abstraction in the data-bound hier-
archy by just traversing through the parent back-pointers in each node in the data context
tree.

In the next section, we describe how this infrastructure is augmented with association
policies to determine the optimal granularity of associating a data-bound working set for a
given access-bound context.

9.2.2 Working Set Identification

Identifying the working set for a given node in the access-bound context tree involves
associating that ACN with one or more DCNs. Therefore every ACN in the access store
contains pointers to one or more DCNs.

Greatest-Common-Prefix Mode We designed WorkSIDE to operate under two differ-
ent modes for choosing the appropriate DCN for a given ACN. Inthe first (and simple)
mode, which we call theGreatest Common Prefix(GCP) mode, WorkSIDE maintains ut-
most one DCN per ACN. Whenever there is an I/O in the context ofan ACN, the request
block number is looked up in theBDTABLE to find the leaf DCN to which the block num-
ber is associated. The leaf DCN is associated with the ACN if the ACN did not previously
have a DCN associated. If not, the greatest common prefix nodein the tree (starting from
the root) for the new leaf DCN and the previously associated DCN is computed (using
the parent back-pointers) and associated with the ACN. The working-set is enumerated by
just traversing the sub-tree starting from the associated DCN. This method of enumerating
the working set for an ACN ensures completeness, but under some scenarios there could
be a significant number of falsely associated blocks. For example, if an access contextA

83

reads files/home/john/plan.txt and/home/john/private/list.txt, the
GCP method of association would include the entire contentsof /home/john/ in the
working set ofA. A variant of the GCP mode mitigates this problem under some sce-
narios by tracking the longest depth to traverse while enumerating blocks, along with
the ACN. With this, the working set ofA would just include files up to depth level 3
(/home/john/private).

Multi-DCN Mode In the second mode, which we call theMulti-DCN mode,
WorkSIDE tracks a list of DCNs per ACN. Every ACN has a list of duplicate elim-
inated pointers to parent DCNs. To enumerate the working setfor a given ACN,
the following procedure is used: for each DCN associated, all blocks belonging
to their immediate children are included. For example, if anACN B reads files
/home/john/plan.txt and /home/john/private/list.txt, DCNs for
/home/john and /home/john/private will be associated withB. While
enumerating the working set ofB, all files (not sub-directories) under/home/john
and /home/john/private will be included. Therefore, the multi-DCN mode of
association provides more accurate identification of working sets. However, this method
needs to track more information per ACN. In the procedure described above, we choose
the hierarchy one level above the leaf DCN for every block access. However, the number
of such levels can be configurable based on specific system andworkload requirements.

WorkSIDE can also track information required for both GCP and multi-DCN modes
simultaneously (every ACN can have both the list of parent DCNs and a single GCP node).
Based on the kind of usage scenario for the working set, enumeration process can be de-
cided dynamically to choose the optimal granularity.

9.2.3 Prefetcher

We developed an on-disk prefetching tool that uses WorkSIDEto enumerate the working
set of access-bound contexts and prefetch them into a fasterstorage. For prefetching, we
tracked the repeatability of the working set of each ACN, andfor repeatable ACNs, we
prefetch and serve the entire working set from the faster storage medium. Currently we
use RAM to cache prefetched working sets, but this could evenbe a fast secondary storage
device such as flash. While deciding whether to prefetch a working set, we take into
consideration the size of the working set and the available space in the prefetch cache. In
our design, we use a simple scheme where we prefetch working sets less than half the size
of the prefetch cache subject to remaining space availability in the cache. More advanced
algorithms such as best-fit and worst-fit can also be implemented to decide the appropriate
working sets to prefetch.

To evaluate our working-set aware prefetcher, we compiled several modules in the
Linux kernel source, ande2fsprogs package [80], with inheritable contexts. We found
that once working-sets were identified by WorkSIDE and prefetched into RAM by our
prefetcher, there were no requests sent to the disk during the compile workload. There-
fore, working-set aware prefetching of data enables turning off disk drives (and hence save
power) in the case of repeatable workloads.

84

Disk device drivers

Working set
Manager

Prefetcher

User Applications

File Systems

Disk

Context
Store

WorkSIDE Pseudo−device Driver

Figure 9.1:Prototype implementation of WorkSIDE in the Linux kernel. The prefetcher
component in WorkSIDE prefetches common working-sets intomemory to save power.

9.3 Implementation

We implemented a prototype of WorkSIDE and our prefetching tool as a pseudo-device
driver in Linux kernel 2.6.15 that stacks on top of an existing disk block driver. The pseudo-
device driver receives all block requests, and redirects the common read and write requests
to the lower level device driver, after storing context information that needs to be tracked.
Our prototype of WorkSIDE included both the GCP and multi-DCN modes of associating
data-bound contexts. It contains 3020 lines of new kernel code. Figure 9.1 shows the
architecture of our prototype.

For testing WorkSIDE, we also modified the VFS layer of the Linux kernel to encode
the pathname of the entity being operated (file or directory)along with every lower level
I/O request. File system meta-data blocks such as super blocks, bitmaps and directory
blocks have to be dealt with separately, as they may not particularly belong to a specific
application. To handle such blocks, we modified the Linux Ext2 file system to associate
a generic “common” context which can be interpreted by any layer as one that is not as-
sociated with any particular access-bound context. We callour modified Ext2 file system,
Ext2C.

9.4 Evaluation

We evaluated the correctness and performance of our prototype implementation of Work-
SIDE. For correctness we used a Linux kernel module build process, and for performance,

85

Module # Directories # Files # Blocks (4k)

Ext2 14 315 1149

Ext3 14 328 1452

ReiserFS 14 328 1432

NTFS 14 320 1769

Table 9.1: Compilation Working Set Statistics

we used the Postmark benchmark described under Section 8.4.

9.4.1 Completeness of the working-set

To verify the completeness of the working-sets identified byWorkSIDE, we implemented
a prefetch cache layer beneath the file system that prefetches the working-set for selected
access-bound contexts. We then simulated a disk crash by disallowing disk I/O from our
pseudo-device driver, and repeated the workloads for the corresponding contexts. We per-
formed this for kernel modules compiles and several micro-benchmarks, and in all cases
the prefetch cache layer serviced all I/O requests. This shows that working-sets identified
by WorkSIDE are complete.

9.4.2 Kernel Modules Build

Our goal during this test was to evaluate the correctness of the working set identification
mechanism of WorkSIDE. We untarred a vanilla Linux 2.6.15 kernel on our Ext2C file
system mounted over our WorkSIDE pseudo-device driver. We did this through a shell that
has an inheritable access-bound context set (described under Section 8.4.1), with depth one.
We then remounted the file system to eliminate cache effects and compiled the source-code
of a few file systems (Ext2, Ext3, Reiserfs, and Ntfs) under the fs/ sub-directory of the
kernel source. While compiling each file system, we used different shells with different
second-level inheritable contexts set. All compilations were done with the same top-level
hierarchy of context, but for each compilation, the second-level was different. Therefore,
we were able to track the working-set of each of the individual compilations. Note that we
initialized the build process through “make install” separately at the beginning, and
remounted the file system after each compilation. We ran thistest over WorkSIDE for both
GCP and multi-DCN modes of operation.

Under the GCP mode, we noticed that the working sets of every single file system
compilation was identified as a the root of the kernel source tree. This is because, a file
system module compilation would refer to files underinclude/ andfs/ and hence the
greatest common prefix node becomes the root of the kernel source.

When we ran the test under the multi-DCN mode, we saw WorkSIDEidentify separate
working sets for each of the file system compilation contexts. Table 9.1 shows the total
number of directories, files, and blocks associated with theworking set of each compila-
tion. We identified these by dumping the entire access-boundcontext tree of WorkSIDE
and their associated DCNs. In each compilation context, thegenerated object files were

86

 0

 50

 100

 150

 200

 250

MDCNGCPVanilla

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

170.5 173.1 176.9

Wait
User

System

Figure 9.2: Postmark Results for WorkSIDE (200 Sub-directories, 20,000 Files, and
200,000 Transactions.). This shows the overheads associated with the process of working-
set identification at the disk-level.

also included in the working set as the same inheritable context was passed for write oper-
ations as well.

We also used the Multi-DCN mode of WorkSIDE to calculate the working-sets for
kernel compilation withmake allnoconfig andmake allyesconfig. For com-
pilation usingmake allnoconfig, the size of the working-set came out to 32.6MB. Formake
allyesconfig, the working-set size was 3GB. As the object files during compilation
are created from the same context, they were included in the working-set.

9.4.3 Postmark

To evaluate the performance overheads of WorkSIDE, we used an I/O-intensive bench-
mark, Postmark. We ran our modified Postmark that passes context objects with each I/O
request, over WorkSIDE in its two modes, and compared it withregular Postmark running
on top of a normal disk. For the regular Postmark we used unmodified Ext2 as the file
system and for WorkSIDE evaluation, we used our modified Ext2C file system. Figure 9.2
shows the overheads of WorkSIDE compared to regular disks.

WorkSIDE under the GCP mode of operation had an elapsed time overhead of 1.5%
compared to regular disk. The overhead mainly consists of system time (12%) caused
because of updating context trees and tracking greatest common prefixes. Under the multi-
DCN mode of operation the elapsed time overhead was 3.7% compared to a regular disk,
caused by a 20% increase in system time. The increase in overheads compared to GCP
mode is because under the multi-DCN mode, WorkSIDE has to track multiple data nodes
per access-node. If WorkSIDE is implemented in a real disk, tracking context trees would
be done by the disk firmware and hence would not incur the host CPU overheads.

87

Chapter 10

Case Study: Context-Aware Caching

Modern large-scale storage systems have hundreds of gigabytes of built-in main mem-
ory [16], primarily for caching purposes. However, today’sstorage systems cannot adapt
their caching policies based on application-level workloads or data semantics, as they lack
information about higher level semantics. This is caused byan excessively simple disk
interface [18, 70]. Application-aware caching policies have been found to be quite useful
in the context of OS level caches [14]. Yet today’s disk systems cannot even separate inde-
pendent I/O streams generated by two different applications, making it harder to implement
application-aware caching policies.

In this section we design and evaluateContext-Aware Cache(CA-cache), an on-disk
caching mechanism that differentiates independent I/O streams using logical contexts and
tunes its caching policies based on individual access patterns.

10.1 Design

We designedCA-cacheas an on-disk LRU write-through cache layer. The goal ofCA-cache
is to identify sequential streams of I/O and disable cachingtheir data, as mostly sequential
I/O streams do not benefit from read caching. As we are interested in the access-patterns
to tune the caching policy, this application uses access-bound contexts.

Architecture CA-cacheconsists of a set of dynamically-built context trees and an LRU
cache. Each tree represents a group of hierarchical contexts with the same root context.
Each node represents the hierarchical context specified by the path from the root of the tree
to that node. Context trees are created or updated on each read request that specifies an
access-bound context.

Classification of Contexts Each node in the tree contains the following information
about a particular context: (a) the inferred access-pattern for the particular context, (b)
the block number for the last read I/O request required to track sequentiality, and (c) two
counters that track the number of successive sequential andrandom read requests in the
past. A context node is initialized as random-access upon creation. Based on the last read
request and the current request, either the sequential or the random counter is incremented

88

and the other is reset. When the values of the counters exceeda threshold, the node is clas-
sified as sequential or random as appropriate. Note that an already classified node could be
re-classified when its access pattern changes. Upon receiving any read request, the counters
in all nodes that are part of the current context are updated and the nodes are re-classified
if needed. We call the number of sequential read request required for classifying a node
as sequential, thesequential threshold. The sequential threshold is configurable, and can
range somewhere between 10 and 100. A sequential-access node is re-classified as random
upon a single out-of-order read.

Caching Methodology Our classification scheme allows for different hierarchy levels in
the same context chain to be classified differently. For example, two sub-contexts that are
part of the same parent may be doing sequential I/O in their own levels. However, since
the I/O from the sub-contexts could be received interleaved, the parent would be classified
as random.CA-cachedoes not require context identifiers to be repeatable. Therefore, it
contains a mechanism to automatically forget contexts based on a timeout. We periodically
purge context tree entries that represent inactive contexts (without any requests) beyond a
time threshold.

10.2 Evaluation

We implemented a prototype of our on-disk caching mechanismas a pseudo-device driver
in the Linux 2.6.15 kernel similar to WorkSIDE. We maintain the context trees in mem-
ory and an asynchronous kernel thread wakes up periodicallyto purge timed out context
entries. If the block is present in the LRU cache, the pseudo-device driver services the re-
quest from the cache, thereby avoiding a request to the lowerlevel. Otherwise, the request
is directed to the lower level and the cache is updated on completion of the request, if the
request belongs to a random-access context.

Read Micro-benchmark To evaluateCA-cache, we ran a micro-benchmark that gen-
erates synthetic random and sequential read workloads simultaneously and calculated the
overall throughput of the random workload. We compared the throughput results ofCA-
cachewith a vanilla LRU cache layer which treats all contexts equally. Both CA-cacheand
vanilla LRU cache used 4MB of cache (1,024 4KB pages) for thisbenchmark.

We ran a user program that generates workloads shown in Figure 10.1. The user pro-
gram has four execution contexts (threads), A, B, C, and D which use their own files for I/O.
Thread A reads a 4GB file sequentially with context{1-2-5} (see Figure 10.1). Thread B
reads a 4GB file sequentially, but it uses contexts{1-3-7} and{1-3-8} for alternate reads.
Thread C is identical to thread B, but it uses contexts{1-4-9} and{1-4-10}. Thread D
reads random locations from a 4GB file using context{1-2-6}. For thread D, we use a ran-
dom number generator that repeats itself every 1,024 reads.The threads run until any one
of the sequential threads exits after reading 4GB of data. Inour experiment, the throughput
of the random workload when run under the vanilla LRU cache was 0.098 MB per second,
whereas withCA-cache, the throughput was 7.71 MB/Sec.

89

Sequential

Random

5 6 7 8 9 10

2 3 4

1

3 4

Figure 10.1: Context tree used for CA-cache micro-benchmark. After our micro-
benchmark, CA-cache classified the grayed nodes as sequential and the rest as random.

MySQL Micro-benchmark For this benchmark, We created two identical tablesSEQ

andRAND in MySQL with 4,200,000 records each, and ran random and sequential query
logs simultaneously. The tables were approximately 233MB in size. The sequential query
log contained aselect * query on the table. For a random workload, we selected a
subset of the records at random and issued select queries based on their record IDs. To
show the benefits of caching random streams alone, we repeated the random query log
ten times. We also ran the sequential log in a loop till the random workload completed.
We determined the throughput of the random workload (numberof queries executed per
second) while the sequential workload was running in parallel. It was 266.13 queries per
second without selective caching, while it was 614.15 queries per second with selective
caching.

90

Chapter 11

Case-study: Context-Based Disk
Scheduler

Modern servers run hundreds or thousands of applications simultaneously. Inevitably some
of these applications would have higher storage performance requirements compared to
others. Critical applications using a shared storage system need to be insulated from the
impact of transient workload surges caused by other applications. A well-known model to
approach this problem is to allocate a proportional share ofresources [72, 83, 84, 86]. Such
an allocation of shares must be based on logical higher leveltasks. However, today’s stor-
age stack cannot even distinguish between independent streams of I/O requests emanating
from different logical tasks. Today, the file system can relate I/O operations with threads
of execution (e.g., an OS process) while lower levels of the storage stack cannot. However,
even threads of executions may not directly correlate with logical tasks. For example, a
database server could have a thread pool that it uses to service queries and which exact
thread services a query is not fixed. Therefore, in this case,proportional shares cannot to
assigned to the threads for achieving application-specificperformance insulation.

In this section we presentContext-Aware Scheduler(CA-schedule), a flexible
proportional-share disk scheduler that uses application-level logical contexts to identify
tasks and insulate performance for the tasks based on their resource shares.

11.1 Design

CA-schedule is a time-slice based proportional-share disk scheduler that uses resource
share allocations associated with individual logical contexts, to make scheduling decisions.
The share values for each logical context have to be preset byan offline communication
channel between the applications and the scheduler.CA-schedule decides the next I/O re-
quest to be scheduled, based on the share proportion assigned for the particular logical
context and the time each context has consumed.CA-schedule ensures that a particular
context is given the proportion of disk-time which isat leastequal to its share value, pro-
vided the context has enough I/O traffic to make use of it. Thisis irrespective of how many
distinct contexts perform I/O simultaneously and the nature of their workloads. For exam-
ple, if a particular context is assigned a 30% share value, nomatter how congested the disk

91

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
�
�
�
�

Q1

Q2

Q3

Q4

Incoming I/O Stream A

Incoming I/O Stream B

Figure 11.1:CA-schedule operation when there are two contexts A and B, each with shares
1/4 and 3/4 respectively.

is, the overall disk-time allocated for that context will atleast be 30%.
CA-schedule maintains several request queues based on the granularity of proportions

needed. If the minimum granularity of a proportion is1/n, thenCA-schedule maintains
n request queues.CA-schedule uses equal time-slices to service each of thesen queues.
However, based on the share value of a context, its requests are striped across several
queues. For example, if the value ofn is 10, and the share level for contextA is 1/2
then the requests from that context are striped across five different queues exclusively. If
we assume there are five other contexts each with share level1/10, this mechanism will
ensure that the requests of contextA will be serviced five times for every single time any
other context is serviced. The operation ofCA-schedule is shown in Figure 11.1.

CA-schedule maintains a table to map context identifiers with their share values. Upon
receiving a new request, it looks up the share value for it andadds it to the appropriate
queue. Note that it also keeps track of the queue to which the last request for a particular
context was added, so that it can determine the queue for the next request from the same
context for striping purposes.

This method works for arbitrary values ofn which should be decided based on the
total number of distinct contexts and the minimum share value that needs to be assigned.
Note thatCA-schedule only uses operation information and not the data pertaining to that
operation. Therefore, it uses access-bound or dual contexts alone. It is useful to have
repeatable contexts forCA-schedule, as otherwise, assigning share values have to be done
every time a new context identifier is used.

11.2 Implementation

We implementedCA-schedule by modifying the existing fair-share scheduler in the Linux
kernel version 2.6.15, popularly called as Complete Fair Queuing (CFQ) scheduler. The
CFQ scheduler in Linux already supported time-slice based scheduling at a per-process
level based on Linux pid. However, it associated equal shares for all processes. We mod-
ified it to perform proportional-share scheduling by havinga constant number of queues
based on the value ofn and to stripe requests on the corresponding queues, based onasso-
ciated contexts. The modification was quite simple: we modified 40 lines of existing code
and added 120 lines of new code to the scheduler.

92

(a) Sequential Read

Run 1 (Ops) Run 2 (Ops) Run 3 (Ops)

context A (1/8) Null 193k (144k) 142k (108k)

context B (5/8) 861k (861k) 728k (718k) 540k (538k)

context C (2/8) Null Null 298k (215k)

(b) Random Read

Run 1 Run 2 Run 3

Context A (1/8) Null 4k (4k) 3k (3k)

Context B (5/8) 21k (21k) 17k (17k) 12k (13k)

Context C (2/8) Null Null 6k (5k)

Table 11.1: Read micro-benchmark for CA-schedule: Each column in the table presents
the total number of 4KB reads performed in a five minute interval. The values specified in
braces is the ideal number of reads that should have been performed based on the share-
level for that context. Each row indicates a particular context run in parallel with other
contexts in that column. A “Null” value in a column indicatesthat the process for that
context was not run in parallel.

11.3 Evaluation

We evaluatedCA-schedule for random and sequential I/O operations. We assumed three
different contexts A, B, and C for all tests with share values1/8, 5/8, and2/8 respectively.
We describe the results for read and write workloads below.

Read Micro-benchmark To evaluateCA-schedule for reads, we ran 10 identical pro-
cesses for each context. For a sequential read workload eachprocess performed several
4KB sequential reads on their own file. We calculated the total number of reads com-
pleted by the threads of each context every minute. We use this as a metric to evaluate the
correctness of our proportional share scheduler. We measured the percentage slowdown
experienced by each context as other contexts were run in parallel and compared it with
each context’s share allocation. To get the total capacity of the system, we first ran one
context alone and measured the number of reads performed after 5 minutes. We then ran
multiple contexts and calculated the slowdown experiencedby each of them because of
other contexts. We then compared these slowdown percentages with the total capacity of
the system. For random read, we used the same number of identical processes and each of
them performed random 4KB reads on their own files.

Table 11.1 shows the number of operations completed by each of the contexts when run
together with other contexts. Overall the total the slowdown experienced by each context
is proportional to the share allocation.

Note that when there are no requests from a particular context, the share allocation for
that context will be proportionally distributed among all other active contexts. Therefore,
when contexts A and B are alone run without C, even if their individual share values are
1/8 and5/8 respectively, the effective proportion of resources allocated for them would be
1/6 and5/6 respectively. This can be verified based on the values shown in Table 11.1.

93

(a) Sequential Write

Run 1 (Ops) Run 2 (Ops) Run 3 (Ops)

Context A (1/8) Null 248k (204k) 200k (153k)

Context B (5/8) 1.2M (1.2M) 938k (1.02M) 536k (765k)

Context C (2/8) Null Null 373k (306k)

(b) Random Write

Run 1 Run 2 Run 3

Context A (1/8) Null 13k (14k) 10k (11k)

Context B (5/8) 84k (84k) 65k (70k) 46k (53k)

Context C (2/8) Null Null 19k (21k)

Table 11.2: Write Micro-Benchmark for CA-Schedule

Context A (1/6) Context B (5/6)

Response Time (s) Response Time (s)

Transaction 187 109

Delivery 139 80

New Order 131 77

Order Status 135 78

Payment 160 97

Throughput (tpmC) 90.33 139.65

Table 11.3:Average response time for TPC-C Benchmark

Write Micro-benchmark To generate sequential and random write workloads, we used
3 threads per context, and each of them performed 4KB write operations on their own files.
To introduce synchrony in the workloads, each process performed anfsync on their files
periodically. We set the sync frequency as 1000 for sequential writes and 50 for random
writes. The results for the write workload is shown in Table 11.2. As we can see, the
percentage slowdown of each context is in proportion to its share allocation.

The read and write micro-benchmarks detailed above depict heavily parallel workload
environments as representative of large scale systems. Hence under most parallel environ-
ments,CA-schedule provides accurate resource allocations.

TPC-C Benchmark We ran two instances of the TPC-C benchmark with two differ-
ent context identifiers, A and B, to evaluateCA-schedule under a relatively less parallel
I/O-intensive workload. Contexts A and B had share values of1/6 and5/6 respectively.
Table 11.3 shows the response time and throughput results ofthe benchmark. As seen from
the results, the performance of the contexts are not directly proportional to the share val-
ues. This is because, each instance of TPC-C does not generate enough I/O requests with
a given time to fill all the queues ofCA-schedule. Therefore, our prototype ofCA-schedule
is more beneficial for workloads that are heavily I/O intensive.

94

Chapter 12

Related Work

In this chapter, we discuss related research for the concepts, techniques, and insights used
in our abstractions and the case-studies that we developed.

12.1 Briding the Information-gap in the Storage Stack

Several systems have been proposed with the overall goal of bridging the information-gap
in the system stack. In this section, we classify existing research in this area into four
categories: extensible systems, richer abstractions, hint-based interfaces, and inference-
based systems. The related work for the case-studies for each abstraction is discussed
under their respective sections.

12.1.1 Extensible Systems

Building extensible systems are a solution to the problem ofinformation-gap in the storage
stack. Extensible operating systems [10, 65] allow applications to implement their own
policies for traditional operating system tasks, by ensuring a safe execution environment
them. A related approach is the one taken by Exokernel [20], which advocates building a
minimal operating system and have everything else be implemented in application libraries.

The notion of extensibility has also been explored at the hardware level. For example,
active disks [1, 62] enable applications to download code into the disk that is run within
the disk controller. Such code can implement arbitrary filtering of data based on applica-
tion level predicates, and even perform more sophisticatedoperations such as search [45]
without actually transferring data out of the disk subsystem. Scriptable RPC [48] proposes
making the interface of a network file server extensible so that clients can dynamically
implement flexible cache consistency and concurrency policies.

All these systems provide a lot of control to the applicationand in the process, essen-
tially ties them together. For applications to actually usesuch extensible layers, they need
to have a reasonably intricate understanding of the system,thus making them complex to
design. Nevertheless, for applications that really require such control and can utilize it
sensibly, these provide the right level of abstraction.

95

12.1.2 Hint-Based Interfaces

A more evolutionary approach that past research has explored is to provide specific primi-
tives at the system level that the applications can use to convey information to the operating
system. Informed prefetching [78] is an example of such a system. By enabling the ap-
plication to convey information on its future access pattern, the operating system acquires
knowledge about the application that it uses to perform moreintelligent prefetching. An-
other example is the Logical disk [17], which provides an interface for the applications to
encode locality hints by creating lists of blocks. Researchers have also looked at the flip-
side of the problem: provide information about the operating system to the application so
that the application can make intelligent decisions. Infokernel [5], and icTCP [31] advocate
the approach of the operating system exporting a minimal amount of internal information
which the applications then use to tune their behavior.

Previous work has also looked at the idea of conveying application knowledge through
new abstractions. Perhaps the closest to our work is the ideaof Resource Containers [22],
which allows applications to group requests into a resourcecontainer which is then treated
as a logical principal for the purposes of resource isolation. However, even Resource Con-
tainers were built with the specific goal of resource accounting.

One commonality between many of these hint-based approaches is that the hints are
often tied to a specific kind of optimization or functionality. In other words, the information
being transferred is designed with a particular purpose in mind. This in turn limits the
flexibility of such a system because each new class of functionality may require yet another
new primitive to be added to the interface.

12.1.3 Richer Abstractions

Our work is closely related to a large body of work examining new interfaces between
file systems and disk storage. For example, logical disks expand the block-based inter-
face by exposing a list-based mechanism that file systems useto convey grouping between
blocks [17]. The Universal File Server [11] has two layers where the lower layer ex-
ists in the storage level, thereby conveying directory-filerelationships to the storage layer.
More recent research has suggested the evolution of the storage interface from the current
block-based form to a higher-level abstraction. Object-based Storage Device (OSD) is one
example [53]; in OSDs the disk manages variable-sized objects instead of blocks. Object-
based disks handle block allocation within an object, but still do not have information on
the relationships across objects. Another example is Boxwood [49]; Boxwood considers
making distributed file systems easier to develop by providing a distributed storage layer
that exports higher-level data structures such as B-Trees.ExRAID [18] explores the utility
of exposing hardware specific information from a RAID deviceto the higher layers such
as the file system.

These interfaces are designed with some specific applications or scenarios in mind. For
example, it is hard to implement a database in an object-based disk. This illustrates that it
is hard to design a generic interface that is suitable for a wide-range of applications.

96

12.1.4 Inference-Based Systems

Inference-based systems take the extreme approach of making no modifications to inter-
faces, butinfer cross-layer information without explicit transfer for information across the
layers.. Gray-box systems [4] is an early example of such an approach. An application with
“gray-box” knowledge of the operating system attempt to implicitly control the operating
system behavior by tuning its workload in such a way that it takes the operating system to
a state that results in the desired policy. Another system built along the same philosophy
is semantically-smart disks [70] in which the storage system infers knowledge about the
higher layers by carefully observing traffic patterns and correlating them to higher level
operations.

Although inference-based techniques are valuable from theviewpoint of being easily
deployable and less intrusive, these approaches have theirown limitations because they are
heavily constrained in terms of not changing interfaces. This in many cases results in addi-
tional complexity, making it hard to reason about correctness while also limiting the usage
of such inferred knowledge to less aggressive applicationsthat can tolerate inaccuracy.

12.2 Interface Between File Systems and Disks

Our work is Type-Safe Disks is closely related to a large bodyof work examining new inter-
faces between file systems and storage. For example, logicaldisks expand the block-based
interface by exposing a list-based mechanism that file systems use to convey grouping be-
tween blocks [17]. The Universal File Server [11] has two layers where the lower layer ex-
ists in the storage level, thereby conveying directory-filerelationships to the storage layer.
More recent research has suggested the evolution of the storage interface from the current
block-based form to a higher-level abstraction. Object-based Storage Device (OSD) is one
example [53]; in OSDs the disk manages variable-sized objects instead of blocks. Sim-
ilar to TSD, object-based disks handle block allocation within an object, but still do not
have information on the relationships across objects. Another example is Boxwood [49];
Boxwood considers making distributed file systems easier todevelop by providing a dis-
tributed storage layer that exports higher-level data structures such as B-Trees. Unlike
many of these interfaces, TSD considers backwards compatibility and ease of file system
modification as an important goal. By following the block-based interface and augmenting
it with minimal hooks, we enable file systems to be more readily portable to this interface,
as this paper demonstrates. Others examine the storage interface by trying to keep the in-
terface constant, but move some intelligence into the disk system. For example, the Loge
disk controller implemented eager-writing by writing to a block closest to its disk arm [21].
The log-based programmable disk [85] extended this work, adding free-space compaction.
These systems, while being easily deployable by not requiring interface change, are quite
limited in the functionality they extend to disks.

A more recent example of work on improving storage functionality without changing
the interface is Semantically-smart Disk Systems (SDSs) [71]. An SDS enables rich func-
tionality by automatically tracking information about thefile system or DBMS using the
storage system, by carefully watching updates. However, semantic disks need to be tai-

97

lored to the specifics of the file system above. In addition, they involve a fair amount of
complexity to infer semantic information underneath asynchronous file systems. As the
authors point out [69], SDS is valuable when the interface cannot be changed, but serves
better as an evolutionary step towards an eventual change toan explicit interface such as
TSD.

12.3 Type-safety

The concept of type safety has been widely used in the contextof programming languages.
Type-safe languages such as Java are known to make programming easier by providing
automatic memory management. More importantly, they improve security by restricting
memory access to legal data structures. Type-safe languages use a philosophy very sim-
ilar to our model: a capability to an encompassing data structure implies a capability to
all entities enclosed within it. Type-safety has also been explored in the context of build-
ing secure operating systems. For example, the SPIN operating system [10] enabled safe
kernel-level extensions by constraining them to be writtenin Modula-3, a type-safe lan-
guage. Since the extension can only access objects it has explicit access to, it cannot
change arbitrary kernel state. More recently, the Singularity operating system [33] used a
similar approach, attempting to improve OS robustness and reliability by using type-safe
languages and clearly defined interfaces.

12.4 Capability-based Access Control

Network-Attached Secure Disks (NASDs) incorporate capability based access control in
the context of distributed authentication using object-based storage [2, 25, 54]. Temporal
timeouts in ACCESS are related to caching capabilities during a time interval in OSDs [6].
The notion of using a single capability to access a group of blocks has been explored in
previous research [2, 29, 54].

In contrast to their object-level capability enforcement,ACCESS uses implicit path-
based capabilities using pointer relationships between blocks.

12.5 Notion of Context in Storage

The idea of tagging requests with identifiers has been explored in the context of distributed
systems for performance debugging, profiling, etc. Pinpoint [15] and Magpie [8] are ex-
amples of systems in this category. Recently, Thereska et al. proposed applying a similar
idea in the context of distributed storage systems mainly for performance monitoring [77].
All these systems look at tagging requests in a causal chain with a certain identifier so that
the entirepath of a logical request (which may involve multiple physical network hops)
can be tracked. Researchers have also looked at implicitly inferring this causal knowledge
without explicit tagging [3, 28, 46] but it involves significant complexity compared to the
explicit tagging approach. These systems only operate within the scope of one logical re-

98

quest and are targeted at a specific application. In contact,CAIO allows for a more general
expression of application level semantics to cater to a widevariety of applications.

Previous work has also looked at conveying application-level grouping through new
abstractions similar to our notion of context. Perhaps the closest to our work is the idea
of Resource Containers [22], which allows applications to group requests into a resource
container which is then treated as a logical principal for the purposes of resource isolation
and accounting. However, similar to the systems discussed above, resource containers
were also built with the specific goal of resource accountingand convey information on
one specific kind of grouping.

Our work on context-aware I/O also fits into a class of other work on general solutions
for bridging the information gap across system layers. Workin this area mainly belongs in
three categories: extensible systems, hint-based interfaces, and implicit techniques to infer
information or exert control. We discuss each of these.

12.6 File System Consistency

Consistency mechanisms for file systems have been explored extensively. Early file sys-
tems such as FFS [52] relied on a global scan of disk metadata to fix consistency problems.
This mechanism, called the file system consistency check (fsck) was in popular use until
recently in the Linux Ext2 and Windows VFAT file systems. However, as increasing disk
sizes made such global scans more and more expensive, more efficient mechanisms have
become popular. Journalling, originally proposed as earlyas in the Cedar file system [27],
uses database like transactions for metadata updates. Modern file systems such as Ext3 and
Windows NTFS use journalling for file system consistency. Another technique proposed
for file system consistency is Soft Updates [24, 51], which orders updates carefully so that
pointer dependencies get updated in the right order. Soft updates is somewhat similar in
spirit to our approach since it is also pointer-based. A relatively recent study evaluated the
trade-offs between journalling and soft updates [66].

Database systems have for long used mechanisms for consistency. Consistency in
databases is enforced via transactions; the ARIES transaction based recovery mecha-
nism [56] is used quite widely in database systems. The basictechnique is to group all
related updates into a single transaction that is then committed to disk atomically, so that
the state remains consistent. As we described in Section 5.6, transactions are more general
and powerful than pointer-based consistency, but using transactions requires a fair bit of
work at the application level. Our mechanism provides a simpler yet effective alternative
to transactions, although not as general.

Consistency at the disk level has been explored in the context of Semantically-smart
disks (SDS) [71]. In that paper, the authors implement journalling underneath unmodified
Ext2 by utilizing inferred semantic knowledge. However, intheir work, the disk system
had to be aware of the specific structures at the file system level and thus was tied to a
specific file system. Further, it required a synchronous mount of the file system. Our work
explores enforcing consistency in a manner generic to the higher level software. However,
in the process, we require changing the file system or software above to use the pointer
API. We therefore view both these approaches as complementary.

99

Chapter 13

Conclusions

As Butler Lampson said, interface design is one the most complex aspects of system de-
sign, while also being the most important. Interface designers have traditionally embraced
the philosophy of minimalism—hide as much information about the layers as possible, so
that the layers can innovate and evolve independently. Thisapproach, despite all its merits,
has the downside of obscuring what a layer knows about its inputs, thus limiting function-
ality. At the other extreme, some systems have explored how to completely tie the layers
together, by having extensible layers, or exposing detailed information about the inner se-
mantics of a layer. What we have explored in this thesis is a middle-ground, where we send
a small amount of information across layers. By making the generation of the information
separate from how the information is used, we enable the layers to be independent of each
other, while still enabling arbitrary grouping and relationships to be conveyed across the
storage stack.

13.1 Lessons Learned

We now discuss four key lessons learnt through our experience in evolving and prototyping
our end-to-end abstractions and the case-studies. We believe these lessons would be useful
for future interface designers not only in the storage domain, but also more generally in
computer systems.

Lesson 1: Generalizing structural and operational information in storage is
possible.

Our pointer abstraction shows that higher-level structures such as files, directories,
database tables, or B-trees can be formalized in a generic manner by way of pointers.
The fundamental insight behind the pointer abstraction is that today’s disk systems store
data in the form of fixed size blocks. Therefore, to implementhigher-level structures on
top of this simple abstraction, relationships have to be established between these individ-
ual blocks. Most file systems and other storage software today maintain these relationships
throughexplicitpointers. Even if pointers areimplicit as in the case of extent-based storage
design, it is straightforward to generate them explicitly for communicating to the storage
stack.

100

The context-aware storage abstraction provides a means to formalizeoperationalin-
formation in addition to structural knowledge. By way of hierarchical context identifiers,
we show how application-level operational contexts can be encoded in a generic manner
even for complex storage applications such as databases.

Lesson 2: Requiring just implementation-level modifications to existing in-
frastructures is a virtue in interface design.

Both our abstractions require only implementation-level modifications to existing soft-
ware layers. Our straightforward implementations of the Ext2TSD and VFATTSD file
systems that support the type-aware storage abstractions indicate that as long as there is
not a need to redesign existing infrastructures, interfacechanges are easy to be adopted
and deployed. The limited changes that we made to the MySQL and the Linux kernel to
support hierarchical contexts corroborate this fact.

Lesson 4: Annotating pointers or contexts with application-level attributes
enables a wider range of functionality.

To support new features that need to be tuned for specific applications or storage layers,
annotating generic information with optionalattributesproves to be useful. Some of our
case-studies such as DHIS (Section 6) and CA-schedule (Section 11) use such attributes.
These case-studies show that attributes need not be part of the main interface, but can
be communicatedoffline between specific layers. For example, the share proportion for
different contexts in our CA-schedule proportional-sharedisk scheduler is set offline by
the administrator, specifically in the disk scheduler layer.

Lesson 3: Decoupling the generation of information from itsusage has its
own limitations

Although our abstractions enable a wide-range of new functionality in the storage stack,
they cannot support certain kinds of features that require precise application-specific in-
formation. For example, although type-awareness enables disks to group blocks based
on pointers, disks cannot precisely identify if a particular group represents a file, direc-
tory, or a database table. Although it is true that a large class of new functionality can be
achieved without such such knowledge, some features that needs to use more fine-grained
application-specific information cannot be implemented without help from applications.
Similarly, although context-aware storage encodes all granularities of application contexts,
lower layers cannot identify what each level in the hierarchy means, which may be needed
for certain functionality.

13.2 Future Work

In this section, we discuss potential future directions to explore in the topic addressed by
this thesis. We first talk about how the general principle behind our abstractions can extend
more broadly in other domains. We then discuss two possible future directions to develop
new applications using our abstractions.

101

13.2.1 Generalizing Information in Other Domains

What we have explored in this thesis is how structural and operational knowledge about
application data can be formalized and used to bridge the information-gap in the storage
stack. This general principle of formalizing the differentpropertiesof application data is
relevant in other domains. For example, it could be interesting to explore if security polices
can be formalized in a minimal and generic manner and propagated across the systems
stack to enable a new class of secure systems, where different layers can independently
provide security features without explicit coordination from applications.

13.2.2 Applications in Virtual Machine Environments

The growing popularity of virtual machine technology exacerbates the problem of
information-gap in the systems stack, as it introduces another layer of virtualization.
Bridging the gap in this context enables highly useful optimizations and new functionality
at the virtual machine host. For example, if the host kernel is aware of structural
information about data in virtual machines, it can implement security features such as
global anti-virus checking, intrusion detection, or access control, that cannot be bypassed
by any guest virtual machine.

13.2.3 Applications in Distributed Environments

Distributed environments present a similar scenario as virtual machines in the aspect of
information-gap. We believe that the notion of hierarchical contexts enables a wide range
of functionality in distributed systems. Starting from straightforward features such as dis-
tributed performance isolation, contexts can potentiallygo a long way in enabling more
complex and interesting functionality such as custom reliability and consistency policies
and so on.

13.3 Summary

Overall, we find that type-awareness and context-awarenessin the storage stack enables
an interesting set of new functionality and optimizations,with minimal modifications to
existing infrastructures. We believe that our abstractions explore an interesting and effec-
tive design choice in the large spectrum of work on alternative interfaces to storage. As
described in Section 13.2, we believe that the insights derived in this thesis apply broadly
in several other systems domains.

102

Bibliography

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: programming model, algorithms
and evaluation. InEighth International Conference on Architectural Supportfor Pro-
gramming Languages and Operating Systems, pages 81–91, San Jose, CA, October
1998.

[2] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D. Andersen,
M. Burrows, T. Mann, and C. A. Thekkath. Block-level security for network-attached
disks. InProceedings of the Second USENIX Conference on File and Storage Tech-
nologies (FAST ’03), pages 159–174, San Francisco, CA, March 2003. USENIX As-
sociation.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, andA. Muthitacharoen.
Performance debugging for distributed systems of black boxes. InProceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages 74–89,
Bolton Landing, NY, October 2003. ACM SIGOPS.

[4] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and Control in Gray-
Box Systems. InProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 43–56, Banff, Canada, October 2001. ACM.

[5] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E. Denehy, T. J.
Engle, H. S. Gunawi, J. A. Nugent, and F. I. Popovici. Transforming policies into
mechanisms with Infokernel. InProceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP ’03), pages 90–105, Bolton Landing, NY, October
2003. ACM SIGOPS.

[6] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh,
J. Satran, A. Tavory, and L. Yerushalmi. Towards an object store. InMass Storage
Systems and Technologies (MSST), 2003.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the Art of Virtualization. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 164–177, Bolton
Landing, NY, October 2003. ACM SIGOPS.

[8] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: Online modelling
and performance-aware systems. InProceedings of the 2003 ACM Workshop on Hot

103

Topics in Operating Systems (HotOS IX), pages 85–90, Lihue, Hawaii, May 2003.
USENIX Association.

[9] S. Bauer and N. B. Priyantha. Secure Data Deletion for Linux File Systems. In
Proceedings of the 10th Usenix Security Symposium, pages 153–164, Washington,
DC, August 2001. USENIX Association.

[10] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski, C. Cham-
bers, and S. Eggers. Extensibility, safety, and performance in the SPIN operating
system. InProceedings of the 15th ACM Symposium on Operating System Principles
(SOSP ’95), pages 267–284, Copper Mountain Resort, CO, December 1995.ACM
SIGOPS.

[11] A. D. Birrell and R. M. Needham. A universal file server. In IEEE Transactions on
Software Engineering, volume SE-6, pages 450–453, September 1980.

[12] M. Blaze. A cryptographic file system for Unix. InProceedings of the first ACM
Conference on Computer and Communications Security, pages 9–16, Fairfax, VA,
1993. ACM.

[13] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol Specification.
Technical Report RFC 1813, Network Working Group, June 1995.

[14] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and performance of
integrated application-controlled file caching, prefetching, and disk scheduling.ACM
Transactions on Computer Systems, 14(4):311–343, 1996.

[15] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem deter-
mination in large, dynamic, internet services. InProceedings of the 2002 Interna-
tional Conference on Dependable Systems and Networks (DSN 2002), pages 595–
604, Bethesda, MD, June 2002. IEEE Computer Society.

[16] EMC Corporation. Symmetrix 3000 and 5000 Enterprise Storage Systems. Product
description guide, 1999.

[17] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The logical disk: A new approach
to improving file systems. InProceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing, NY, October 2003. ACM SIGOPS.

[18] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridging the in-
formation gap in storage protocol stacks. InProceedings of the Annual USENIX
Technical Conference, pages 177–190, Monterey, CA, June 2002. USENIX Associa-
tion.

[19] E. W. Dijkstra. The structure of the ”THE”-multiprogramming system. InCommuni-
cations of the ACM, volume 11, Issue 5, pages 341–346, May 1968.

104

[20] D. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel:An operating system ar-
chitecture for application-level resource management. InProceedings of the 15th
ACM Symposium on Operating System Principles (SOSP ’95), pages 251–266, Cop-
per Mountain Resort, CO, December 1995. ACM SIGOPS.

[21] R. English and A. Stepanov. Loge : A self-organizing disk controller. HP Labs,
Technical Report, HPL91(179), 1991.

[22] G. Banga and P. Druschel and J. C. Mogul. Resource Containers: A New Facility for
Resource Management in Server Systems. InProceedings of the Third Symposium
on Operating Systems Design and Implementation (OSDI 1999), pages 45–58, New
Orleans, LA, February 1999. ACM SIGOPS.

[23] G. R. Ganger. Blurring the Line Between OSes and StorageDevices. Technical
Report CMU-CS-01-166, CMU, December 2001.

[24] G. R. Ganger, M. Kirk McKusick, C. A. N. Soules, and Y. N. Patt. Soft updates: a
solution to the metadata update problem in file systems.ACM Trans. Comput. Syst.,
18(2):127–153, 2000.

[25] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin,
E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage
architecture. InProceedings of the Eighth International Conference on Architectural
Support for Programming Langauges and Operating Systems (ASPLOS-VIII), pages
92–103, New York, NY, December 1998. ACM.

[26] Michel Gien. Evolution of the CHORUS Open Micro-kernelArchitecture. InPro-
ceedings of the IEEE Workshop on Future Trends in Distributed Computing Systems,
pages 28–30, Cheju Island, Korea, August 1995.

[27] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar File System.Com-
munications of the ACM, 31(3):288–298, 1988.

[28] C. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-based pattern classification in
buffer caching. InProceedings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI 2004), pages 395–408, San Francisco, CA, December
2004. ACM SIGOPS.

[29] H. Gobioff. Security for a High Performance Commodity Storage Sub-
system. PhD thesis, Carnegie Mellon University, May 1999. cite-
seer.ist.psu.edu/article/gobioff99security.html.

[30] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-State Memory. In
Proceedings of the Sixth USENIX UNIX Security Symposium, pages 77–90, San Jose,
CA, July 1996. USENIX Association.

[31] H. S. Gunawi and A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Deploying Safe
User-Level Network Services with icTCP. InProceedings of the 6th Symposium on

105

Operating Systems Design and Implementation (OSDI 2004), pages 317–332, San
Francisco, CA, December 2004. ACM SIGOPS.

[32] D. Hitz, J. Lau, and M. Malcolm. File System Design for anNFS File Server Appli-
ance. InProceedings of the USENIX Winter Technical Conference, pages 235–245,
San Francisco, CA, January 1994.

[33] G. Hunt, J. Laurus, M. Abadi, M. Aiken, P. Barham, M. Fahndrich, C. Hawblitzel,
O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T.Wobber, and B. Zill. An
Overview of the Singularity Project. Technical Report MSR-TR-2005-135, Microsoft
Research, 2005.

[34] IBM. IBM System Storage DS6800.http://www-03.ibm.com/systems/
storage/disk/ds6000/index.html, 2007.

[35] IBM. IBM System Storage DS8000 Turbo.http://www-03.ibm.com/
systems/storage/disk/ds8000/index.html, 2007.

[36] M. Icaza, I. Molnar, and G. Oxman. The linux RAID-1, 4, 5 code. InLinuxExpo,
Research Triangle Park, NC, April 1997.

[37] Network Appliance Inc. Network Appliance FAS6000 Series. Product Data Sheet,
2006.

[38] InnoDB. Innobase oy. www.innodb.com, 2007.

[39] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirroring done write. InProceedings
of the Annual USENIX Technical Conference, San Antonio, TX, June 2003. USENIX
Association.

[40] N. Joukov and E. Zadok. Adding Secure Deletion to Your Favorite File System.
In Proceedings of the third international IEEE Security In Storage Workshop (SISW
2005), pages 63–70, San Francisco, CA, December 2005. IEEE Computer Society.

[41] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño, R. Hunt, D. Mazières,
T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie. Application performance
and flexibility on exokernel systems. InProceedings of 16th ACM Symposium on
Operating Systems Principles, pages 52–65, October 1997.

[42] J. Katcher. PostMark: A new filesystem benchmark. Technical Report TR3022,
Network Appliance, 1997.www.netapp.com/tech_library/3022.html.

[43] S. King and P. Chen. Backtracking Intrusions. InProceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP ’03), Bolton Landing, NY, October
2003. ACM SIGOPS.

[44] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system.
In Proceedings of 13th ACM Symposium on Operating Systems Principles, pages
213–225, Asilomar Conference Center, Pacific Grove, CA, October 1991. ACM
Press.

106

[45] L. Huston and R. Sukthankar and R. Wickremesinghe and M.Satyanarayanan and
G. R. Ganger and E. Riedel and A. Ailamaki. Diamond: A StorageArchitecture for
Early Discard in Interactive Search. InProceedings of the Third USENIX Conference
on File and Storage Technologies (FAST 2004), pages 73–86, San Francisco, CA,
March/April 2004. USENIX Association.

[46] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner: Mining block correlations
in storage systems. InFAST ’04: Proceedings of the 3rd USENIX Conference on
File and Storage Technologies, pages 173–186, Berkeley, CA, USA, 2004. USENIX
Association.

[47] J. Liedtke. On micro-kernel construction. InProceedings of the Symposium on Op-
erating Systems Principles, pages 237–250, Copper Mountain, CO, December 1995.

[48] M. Sivathanu and A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Evolving RPC
for active storage. InProceedings of the 10th Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 264–276, San
Jose, CA, October 2002. ACM.

[49] J. MacCormick, N. Murphy, M. Najork, C. Thekkath, and L.Zhou. Boxwood: Ab-
stractions as the foundation for storage infrastructure. In Proceedings of the 6th
Symposium on Operating Systems Design and Implementation (OSDI 2004), pages
105–120, San Francisco, CA, December 2004. ACM SIGOPS.

[50] K. Magoutis, M. Devarakonda, and K. Muniswamy-Reddy. Galapagos: Automat-
ically discovering application-data relationships in networked systems. InProceed-
ings of the 10th IFIP/IEEE International Symposium on Integrated Network Manage-
ment, pages 701–704, Munich, Germany, May 2007. IEEE.

[51] M. K. McKusick and G. R. Ganger. Soft Updates: A Technique for Eliminating Most
Synchronous Writes in the Fast Filesystem. InProceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages 1–18, Monterey, CA, JUNE 1999.
USENIX Association.

[52] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for
UNIX. ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[53] M. Mesnier, G. R. Ganger, and E. Riedel. Object based storage. IEEE Communica-
tions Magazine, 41, August 2003. ieeexplore.ieee.org.

[54] E. Miller, W. Freeman, D. Long, and B. Reed. Strong security for network-attached
storage. InProceedings of the First USENIX Conference on File and Storage Tech-
nologies (FAST 2002), pages 1–13, Monterey, CA, January 2002. USENIX Associa-
tion.

[55] J. Mogul, l. Brakmo, D. Lowell, D. Subhraveti, and J. Moore. Unveiling the transport,
2003.

107

[56] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: a transac-
tion recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging.ACM Trans. Database Syst., 17(1):94–162, 1992.

[57] MySQL AB. MySQL: The World’s Most Popular Open Source Database.www.
mysql.org, July 2005.

[58] Overwrite, Secure Deletion Software. www.kyuzz.org/antirez/overwrite.

[59] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive
disks (RAID). InProceedings of the ACM SIGMOD, pages 109–116, June 1988.

[60] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed Prefetch-
ing and Caching. InProceedings of the 15th ACM Symposium on Operating System
Principles (SOSP ’95), pages 79–95, Copper Mountain Resort, CO, December 1995.
ACM SIGOPS.

[61] R. Perlman. Secure Deletion of Data. InProceedings of the third international IEEE
Security In Storage Workshop (SISW 2005), San Francisco, CA, December 2005.
IEEE Computer Society.

[62] E. Riedel. Active disks: Remote execution for network-attached storage. Technical
Report CMU-CS-99-177, Carnegie-Mellon University, November 1999.

[63] M. Rosenblum.The Design and Implementation of a Log-structured File System. PhD
thesis, Electrical Engineering and Computer Sciences, Computer Science Division,
University of California, 1992.

[64] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, andE. Zeidner. Internet small
computer systems interface (iSCSI). Technical Report RFC 3720, Network Working
Group, April 2004.

[65] M. Seltzer, Y. Endo, C. Small, and K. Smith. An introduction to the architecture of the
VINO kernel. Technical Report TR-34-94, EECS Department, Harvard University,
1994.

[66] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N. Soules, and
C. A. Stein. Journaling versus soft updates: Asynchronous meta-data protection in
file systems. InProc. of the Annual USENIX Technical Conference, pages 71–84, San
Diego, CA, June 2000. USENIX Association.

[67] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. NFS Version 4 Protocol. Technical Report RFC 3530, Network Working
Group, April 2003.

[68] G. Sivathanu, S. Sundararaman, and E. Zadok. Type-safedisks. InProceedings of
the 7th Symposium on Operating Systems Design and Implementation (OSDI 2006),
pages 15–28, Seattle, WA, November 2006. ACM SIGOPS.

108

[69] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Life or death at block-level. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI 2004), pages 379–394, San
Francisco, CA, December 2004. ACM SIGOPS.

[70] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Improving storage system availability with D-GRAID. InProceedings of the Third
USENIX Conference on File and Storage Technologies (FAST 2004), pages 15–30,
San Francisco, CA, March/April 2004. USENIX Association.

[71] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Semantically-Smart Disk Systems. In Proceedings of
the Second USENIX Conference on File and Storage Technologies (FAST ’03), pages
73–88, San Francisco, CA, March 2003. USENIX Association.

[72] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and C. G. Plaxton. A
proportional share resource allocation algorithm for real-time, time-shared systems.
In IEEE Real-Time Systems Symposium, December 1996.

[73] M. Stonebraker. Operating System Support for DatabaseManagement.Communica-
tions of the ACM, 24(7):412–418, July 1981.

[74] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R. Ganger.
Self-securing storage: Protecting data in compromised systems. InProceedings of
the 4th Usenix Symposium on Operating System Design and Implementation (OSDI
’00), pages 165–180, San Diego, CA, October 2000. USENIX Association.

[75] Sun Microsystems. NFS: Network file system protocol specification. Technical Re-
port RFC 1094, Network Working Group, March 1989.

[76] Seagate Technology. Momentus 5400 PSD Hybrid Hard Drives. http:
//www.seagate.com/www/en-us/products/laptops/momentus/
momentus_5400_psd_hybrid/, 2007.

[77] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek, J. Lopez, and G. R.
Ganger. Stardust: Tracking activity in a distributed storage system. InProceedings
of the Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’06), pages 3–14, Saint Malo, France, June 2006. ACM.

[78] A. Tomkins, R. Patterson, and G. Gibson. Informed Multi-Process Prefetching and
Caching. InProceedings of the 1997 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pages 100–114, Seattle, WA, June 1997.
ACM SIGOPS.

[79] Transaction Processing Performance Council. TPC Benchmark C, Standard Specifi-
cation.www.tpc.org/tpcc, 2004.

[80] T. Ts’o. E2fsprogs: Ext2/3/4 filesystem utilities, 2008. http://e2fsprogs.
sourceforge.net.

109

[81] S. Tweedie. Journaling the Linux ext2fs filesystem. InLinuxExpo Conference Pro-
ceedings, May 1998.

[82] VERITAS Software. VERITAS file server edition performance brief: A Post-
Mark 1.11 benchmark comparison. Technical report, VeritasSoftware Corporation,
June 1999.http://eval.veritas.com/webfiles/docs/fsedition-
postmark.pdf.

[83] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger. Argon: Performance
insulation for shared storage servers. InProceedings of the Fifth USENIX Conference
on File and Storage Technologies (FAST ’07), pages 61–76, San Jose, CA, February
2007. USENIX Association.

[84] C. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share Re-
source Management. PhD thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, September 1995.

[85] R. Y. Wang, T. E. Anderson, and D. A. Patterson. Virtual log based file systems for
a programmable disk. InProceedings of the Third Symposium on Operating Systems
Design and Implementation (OSDI 1999), pages 29–44, New Orleans, LA, February
1999. ACM SIGOPS.

[86] Y. Wang and A. Merchant. Proportional-share scheduling for distributed storage sys-
tems. InProceedings of the Fifth USENIX Conference on File and Storage Technolo-
gies (FAST ’07), pages 47–60, San Jose, CA, February 2007. USENIX Association.

[87] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and G. Kuenning. PARAID:
A gear-shifting power-aware RAID. InProceedings of the Fifth USENIX Conference
on File and Storage Technologies (FAST ’07), pages 245–260, San Jose, CA, February
2007. USENIX Association.

[88] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID Hierarchical
Storage System.ACM Transactions on Computer Systems, 14(1):108–136, February
1996.

[89] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure and convenient cryp-
tographic file system. InProceedings of the Annual USENIX Technical Conference,
pages 197–210, San Antonio, TX, June 2003. USENIX Association.

[90] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.Hibernator: Helping
disk arrays sleep through the winter. InProceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), pages 177–190, Brighton, UK, October
2005. ACM Press.

110

