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Abstract of the Dissertation

Quantum Characteristic Classes

by

Yakov Savelyev

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

Advisor: Dusa McDuff

The space of mechanical motions of a system has the structure of

an infinite-dimensional group. When the system is described by a

symplectic manifold, the mechanical motions correspond to Hamil-

tonian symplectic diffeomorphisms. Hofer in the 1990s defined a

remarkable metric on this group, which in a sense measures the

minimal energy needed to generate a given mechanical motion. The

resulting geometry has been successfully studied using Gromov’s

theory of pseudo-holomorphic curves in the symplectic manifold.

In this thesis we further extend the relationship between the theory

pseudo-holomorphic curves (Gromov-Witten theory) and Hofer ge-

omety. We define natural characteristic classes on the loop space

of the Hamiltonian diffeomorphism group, with values in the quan-
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tum homology of the manifold. In particular, we show that there

is a natural graded ring homomorphism from the Pontryagin ring

of the homology of the loop space to the quantum homology of

the symplectic manifold. These classes can be viewed as giving a

kind of virtual Morse theory for the Hofer length functional on the

loop space and give rise to some difficult and interesting questions.

We compute these classes, in some cases, by Morse-Bott type of

techniques and give applications to topology and Hofer geometry

of the group of Hamiltonian diffeomorphisms.
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Introduction

The topology and geometry of the group Ham(M,ω) of Hamiltonian sym-

plectomorphisms of a symplectic manifold M has been intensely studied by

numerous authors. This is an infinite-dimensional manifold with a remarkable

bi-invariant Finsler metric induced by the Hofer norm. As of now the deepest

insights into the topology and geometry of this group come from Gromov-

Witten invariants. Still, very little general information about this group is

known. We define some very general invariants, which will be used to study

the the topology of Ham(M,ω). For this purpose the Hofer geometry serves

a unifying role, and ultimately is what allows us to compute the invariants.

These computations can in turn be used to get Hofer geometric and topological

information. What follows is a rapid review of Hofer geometry.

0.0.1 Hofer geometry and Seidel representation

Given a smooth function Ht : M → R, 0 ≤ t ≤ 1, there is an associated time

dependent Hamiltonian vector field Xt, 0 ≤ t ≤ 1, defined by

ω(Xt, ·) = dHt(·). (0.1)
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The vector field Xt generates a path γt, 0 ≤ t ≤ 1, in Diff(M,ω). Given

such a path γt, its end point γ1 is called a Hamiltonian symplectomorphism.

The space of Hamiltonian symplectomorphisms forms a group, denoted by

Ham(M,ω).

In particular the path γt above lies in Ham(M,ω). A well-known result of

A. Banyaga [1] shows that any path {γt} in Ham(M,ω) with γ0 = id arises in

this way (is generated by Ht : M → R). Given such a path {γt}, the Hofer

length, L(γt) is defined by

L(γt) :=

∫ 1

0

max(Hγ
t )−min(Hγ

t )dt,

where Hγ
t is a generating function for the path γ−1

0 γt, 0 ≤ t ≤ 1. The Hofer

distance ρ(φ, ψ) is defined by taking the infimum of the Hofer length of paths

from φ to ψ. It is a deep theorem that the resulting metric is non-degenerate,

(cf. [5, 8]). This gives Ham(M,ω) the structure of a Finsler manifold. For

later use define also

L+(γt) :=

∫ 1

0

max(Hγ
t ), (0.2)

where Hγ
t is in addition normalized by the condition

∫
M

Hγt = 0.

A group action is called semifree if the stabilizer of every point is either trivial

or the whole group. Here is one theorem that does give some general informa-

tion about topology and geometry of Ham(M,ω).

Theorem 0.1 (McDuff-Slimowitz [12]). Let γ be a semifree Hamiltonian cir-

2



cle action on a symplectic manifold M . Then γ is length-minimizing in its

homotopy class for the Hofer metric on Ham(M,ω).

One of the motivating applications of this thesis is an extension of this

theorem to the higher-dimensional geometry of Ham(M,ω). In order to do

this, it turns out to be very natural to work on the loop group LHam(M,ω)

and its Borel S1 quotient (LHam(M,ω)× S∞)/S1. One reason for this comes

from the Seidel representation defined in [21]. This is a homomorphism

S : π1(Ham(M,ω))→ QH×2n(M), (0.3)

where QH×2n(M) denotes the group of multiplicative units of degree 2n in quan-

tum homology QH∗(M), and 2n is the dimension of M . This representation of

π1(Ham(M,ω)) is a powerful tool in understanding the symplectic geometry of

the manifold (M,ω), of Hamiltonian fibrations Xφ over S2 associated to loops

{φt} in Ham(M,ω), as well as the Hofer geometry and topology of the group

Ham(M,ω). In particular, Theorem 0.1 can be proved using the Seidel repre-

sentation as is essentially done in [16]. Working on the loop space LHam(M,ω)

allows us to use a kind of a parametric Seidel representation, which we call

quantum characteristic classes, for reasons which will be explained in Remark

0.2.

3



0.0.2 Quantum characteristic classes

Consider the free loopspace LHam(M,ω), which we will abbreviate by LHam.

We construct natural bundles

p̃ : U → LHam and p : US1 → Q ≡ (LHam× S∞)/S1. (0.4)

The fiber over a loop γ is modelled by a Hamiltonian fibration π : Xγ → S2,

with fiber M , associated to the loop γ as follows,

Xγ =
(
M ×D2

0

)
∪
(
M ×D2

∞
)
/ ∼ . (0.5)

Where the equivalence relation ∼ is: (x, 1, θ)0 ∼ (γθ(x), 1, θ)∞. Here D2
0 and

D2
∞ are two names for the unit disk D2 ⊂ C and (r, 2πθ) are polar coordinates

on D.

Let p : P → B be a bundle obtained by pullback of either p̃ : U → LHam

or p : US1 → Q, where B is a closed oriented smooth manifold. The bundle P

comes with a natural deformation class of families of symplectic forms {Ωb}

on the fibers {Xb}. We will define characteristic classes

cqk(P ) ∈ Hk(B,QH∗(M)),

by counting the number of fiber-wise or vertical J-holomorphic curves passing

through certain natural homology classes in P . Here k is the degree of the

class and the superscript q stands for quantum to distinguish it from the Chern

classes ck.
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Remark 0.2. Recall that the top Chern class of a complex vector bundle is its

Euler class, whose Poincare dual is represented by the self intersection of the

zero section. The classes cqk(P ) are also in a sense described by the self inter-

section of a natural homology class in P , playing the role of the zero section.

Except that the classical intersection is always empty and instead one keeps

track of “instanton (or quantum) corrections” to this self-intersection, coming

from the presence of vertical J-holomorphic spheres. This is the motivation

for the name quantum characteristic class, (cf. [23].)

Definition 0.3. Given fibrations Pf1 , Pf2 over B, induced by maps

f1, f2 : B → LHam(M,ω)

we define their sum Pf1 ⊕ Pf2 to be Pf2·f1, where f2 · f1 : B → LHam(M,ω)

is the pointwise product of the maps f1, f2 induced by the topological group

structure of LHam(M,ω).

We’ll show in Chapter 4 that these fibrations have a natural structure

group F and that LHam(M,ω) is the classifying space of this structure group.

Let PB,M denote the set of isomorphism classes of fibrations p : P → B with

structure group F , (in other words, isomorphism classes of the associated

principal F -bundles.)

We may now state the axioms satisfied by our characteristic classes. For

simplicity we assume here that the base B is connected.

Definition 0.4. Quantum characteristic classes are a sequence of functions

cqk : PB,M → Hk(B,QH∗(M)),
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satisfying the following axioms:

Axiom 1 (Partial normalization). cq0(P ) = S([γ]) if the fiber of p : P → B is

modelled on Xγ, where S is the Seidel representation. Further if P is trivial

then cqk(P ) = 0 for k > 0.

Axiom 2 (Functoriality). If g : B1 → B2 is smooth, then

g∗(cqk(P2)) = cqk(g
∗(P2)).

Axiom 3 (Whitney sum formula). If P = P1 ⊕ P2, then

cq(P ) = cq(P1) ∪ cq(P2),

where ∪ is the cup product of cohomology classes with coefficients in the quan-

tum homology ring QH∗(M) and cq(P ) is the total characteristic class

cq(P ) = cq0(P ) + . . .+ cqm(P ), (0.6)

where m is the dimension of B. (In practice, we mainly deal with the identity

component of LHam. In this case cq0(P ) = S([γ]) is the identity [M ] in the

quantum homology ring and so we get an expression in eq. (0.6) analogous to

the total Chern class.)

Theorem 0.5. Let (M,ω) be a closed monotone symplectic manifold, then

there exist natural non-trivial quantum characteristic classes

cqk : PB,M → Hk(B,QH∗(M)).
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We define these classes in Section 2.1 and also prove in Section 2.2 there

that they satisfy Axioms 1, 2. Axiom 3 is verified in Section 2.3.

Remark 0.6. We make no claim for uniqueness of these classes, as there are

not enough axioms here. We are missing a normalization axiom. It would be

interesting to know if one can find a suitable substitute.

0.0.3 Generalized Seidel representation

Since LHam is a topological group with product induced by the product in

Ham(M,ω), there is an induced product on homology, the Pontryagin product,

giving H∗(LHam) the structure of a ring. Let f : B → LHam be a map from

a smooth oriented closed k-manifold, and Pf the induced fibration. Define

Ψ(B, f) ≡ cqk(Pf )(B) ∈ QH2n+k(M). (0.7)

We will show that this induces a map

Ψ : H∗(LHam,Q)→ QH2n+∗(M).

The Whitney sum formula (Axiom 3) implies that Ψ is a graded ring homo-

morphism.

Theorem 0.7. Let (M,ω) be a closed, monotone symplectic manifold of di-

mension 2n. There is a natural graded ring homomorphism,

Ψ : H∗(LHam,Q)→ QH∗+2n(M), (0.8)
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where the product on the right is the quantum product and the product on the

left is the Pontryagin product, coming from the topological group structure of

Ham(M,ω).

Remark 0.8. The condition on M being monotone can likely be dropped in

most of our discussion at the price of dealing with the virtual moduli cycle.

In Chapters 2-3, we will describe these constructions and results in de-

tail and give some computations and applications. In particular we prove an

extension of McDuff-Slimowitz’s Theorem 0.1.

0.0.4 Applications from Chapter 3

We now discuss some results from Chapter 3 in more detail. We will need a

few preliminaries. Given a map

f : B → LHam or f : B → Q = (LHam(M,ω)× S∞)/S1,

where B is as before, we call

L+(f) ≡ max
b∈B

L+(γb), (0.9)

the positive max-length measure of f , where γb is either the loop f(b) ∈ LHam

or the S1 equivariant loop f(b) ∈ Q. More precisely, in the second case let

q : LHam × S∞ → Q denote the S1 quotient map. Then f(b) = q(γb, sb) for

some (γb, sb) and any two choices are related by an action of S1 and hence the

corresponding loops γb have the same length.
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We define the virtual index of a one parameter subgroup γ : S1 → Ham(M,ω)

by

I(γ) =
∑

1≤i≤n
ki≤−1

2(|ki| − 1), (0.10)

where ki are the weights of γ on the normal bundle at the max set Fmax of H

and the signs are chosen s.t. ki ≤ 0. We will justify this in Remark 0.10.

We shall see in Section 1.1.3 that a map f̂ : Y → Ham(M,ω), where

q : Y → B is a principal S1 bundle induces a cycle f : B → Q.

Theorem 0.9. Let (M,ω) be a compact monotone symplectic manifold and

let f̂ : Y → Ham(M,ω) be equivariant with respect to a right action by γ :

S1 → Ham(M,ω) on Ham(M,ω), such that I(γ) = dimB and e1/2 dimB 6= 0,

(or dimB = 0) where e is the Euler class of the S1 bundle Y → B. Then the

induced cycle f : B → Q is essential in the oriented bordism group BordI(γ)(Q)

and moreover it minimizes the positive max-length measure in its bordism class.

Remark 0.10. In [22] Ustilovsky gives a formula for the Hessian i.e. the

“second variation formula” for the Hofer length functional and its positive,

negative variants. We might try to define the index of a Hofer geodesic γ to be

the dimension of the maximum subspace of the tangent space to γ (in LHam)

on which the corresponding Hessian for the positive Hofer length functional is

negative definite. This index could well be infinite as we are working on the

loop space of the infinite dimensional space Ham(M,ω). However, Theorem 0.9

suggests that at least for the geodesic coming from a circle action that satisfies

hypotheses of the theorem the index must be finite. The heuristic argument

for this, as well as for necessity of the virtual index condition of the theorem,
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is the following. Up to the action of S1, all the loops in the image f(B) are

of the form f̂(y) ◦ γ for y ∈ Y by our assumption that f̂ : Y → Ham(M,ω)

is S1 equivariant. Since the Hofer metric is bi-invariant all these loops have

the same index as γ. Moreover, we should get a certain vector bundle over

the image f(B) whose fiber over the equivariant loop f(b), b ∈ B, is “the”

maximum negative definite subspace of the tangent space to f(b), with respect

to the corresponding Hessian. This is slightly wrong as there is no way to

canonically pick out this negative definite subspace. However, we can fix such

a subspace of the tangent space at γ and then use the fact that all the other

loops are translates of γ of the form f̂(y)◦γ up to the action of S1 to construct

this bundle locally and glue to get a global bundle. Let’s call this ND bundle.

If the rank of this ND bundle, given by the index, is bigger than dimB we

can push the zero section off of itself and then “exponentiate” to produce a

deformation of the cycle f : B → Q which reduces the max length measure; an

apparent contradiction. On the other hand if the index is equal to dimB, then

there is an obstruction to reducing the max length measure by such a local

move coming from the Euler class of the ND bundle. Lastly, if the index is

strictly less than dimB there is still an obstruction coming from the Euler class

but it is no longer in the top cohomology of B and therefore while the cycle

f : B → Q may minimize the max-length measure locally and maybe even in

its homotopy class it, it may be unreasonable to hope that it is minimizing in

the entire bordism class.

Remark 0.11. This heuristic argument suggests that a necessary condition

for minimality of f : B → Q above is that the index is equal to dimB. This
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condition is local; on the other hand the conclusion of Theorem 0.9 is global.

Nevertheless, to prove it we compute the “leading order” contribution to the

top quantum characteristic class of the associated bundle p : Pf → B, in terms

of the Euler class of a vector bundle analogous to the ND bundle above. A bit

more precisely, this bundle will be an obstruction bundle for a certain moduli

space of holomorphic curves, (cf. Section 3.2).

Example for Theorem 0.9

Consider the Lie group homomorphism f̂ : S3 → Ham(CPn, ω), given by

s·([z0, z1, . . . , zn]) = [s(z0, z1), . . . , zn] for all s ∈ S3 = SU(2), [z0, . . . , zn] ∈ CPn.

We can form an S1 bundle h : S3 → S2 by taking the quotient of SU(2)

by the right action of the diagonal S1 subgroup θ 7→ (eiθ, e−iθ). If we take

γ : S1 → Ham(CPn, ω) to be the subgroup

eiθ · [z0, z1, . . . , zn] = [eiθz0, e
−iθz1, z2, , . . . , zn],

acting on Ham(CPn, ω) on the right then the map f̂ is S1 equivariant for the

two actions. The weights of γ at the max = [1, 0, 0, . . .] are −2,−1,−1, . . . and

so I(γ) = 2. Thus, by Theorem 0.9 the associated cycle

fh : S2 → Q

is essential and minimizes the max-length measure in its bordism class.
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But there is another cycle we can assign to f̂ . This is the cycle

f : S2 → LHam(CPn, ω)

obtained from f̂ : S3 → Ham(CPn, ω) by slicing S3 into a bouquet of circles,

(cf. Section 1.8). One can show that this cycle is essential by more elementary

methods (cf. Kedra-McDuff and Reznikov; [7] and [20]), but these arguments

do not show that it minimizes the max-length measure. The only non trivial

characteristic class of Pf is cq2(Pf ). Computing this directly is difficult, but we

may use the following theorem proved in Section 3.3.

Theorem 0.12. Let (M,ω) be a spherically monotone, compact symplectic

manifold, f̂ : S2k+1 → Ham(M,ω) a smooth map, and

fh : CPk → Q, f : S2k → LHam

obtained from f̂ as in Example 1.8. Then the only possibly non-trivial charac-

teristic classes of Pfh and Pf in degree other than 0 are the top characteristic

classes cq2k(Pfh), cq2k(Pf ) and

Ψ(fh,CPk) = Ψ(f, S2k) ∈ QH2n+2k(M). (0.11)

Note that cq(Pfh) and cq(Pf ) are computed via PGW invariants of two

topologically very different fibrations, as f and fh are not even homologous

in Q. So there is no obvious apriori reason for (0.11) to hold. Using this and
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Theorem 3.4 we deduce that for our f : S2 → LHam(CPn, ω)

Ψ(S2, f) = [pt]⊗ q−mmaxtHmax ∈ QH2n+2(CPn),

where mmax =
∑

i ki = −2 − (n + 1) is the sum of the weights at the max

and Hmax is the maximum value of the normalized Hamiltonian generating γ.

Using the above theorem we can deduce the following.

Corollary 0.13. The above map f : S2 → LHam(CPn, ω) is minimal in its

rational homology class for the max-length measure.

Remark 0.14. The crucial part of the above calculation is that f̂ : SU(2)→

Ham(CPn, ω) is S1-equivariant in an appropriate way, and so we may apply

Theorem 0.9. One may try to extend the calculation by taking

f̂ : SU(n)→ Ham(CPn−1, ω),

and consider some associated cycle fh : SU(n)/S1 → Q. However, the non-

vanishing condition on the Euler class in Theorem 0.9, e1/2(dimSU(n)−1) 6= 0

will never be satisfied because of the topology of the group SU(n), as was

explained to me by Dusa McDuff. There may of course be other examples,

possibly not even coming from Lie group actions.

0.0.5 Some questions

Question 0.15. Does f : S2 → LHam(CPn, ω) remain minimal under the

iterated Pontryagin product, with respect to the max-length measure, i.e. is

fk : (S2)k → LHam(CPn, ω) minimal in its homology class?
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A computation using Theorem 0.7 shows that the lower bounds coming

from characteristic classes (Proposition 3.1) would grow to infinity but it is

not clear if they stay sharp.

The following theorem is a slight reformuluation of McDuff-Slimowitz [12].

Theorem 0.16. Let γ : S1 → Ham(M,ω)) be a Hamiltonian circle action

generated by a Morse Hamiltonian H. Suppose γ is a local minimum of the

Hofer length functional. Then it is a global minimum in its homotopy class.

Proof. (Sketch) It is well known that the max, min level sets of a Hamiltonian

circle action are connected. Thus, since H is Morse there is a unique max and

min. Consider the following theorem.

Theorem 0.17 (McDuff-Lalonde, [9]). Let Ht, t ∈ [0, 1] be a Hamiltonian

defined on any symplectic manifold M , and γ = φt the corresponding isotopy.

Assume that each fixed extremum of Ht is isolated among the set of fixed ex-

trema. If γ is a stable geodesic, (i.e. a local minimum of the length functional)

there exist at least one fixed minimum p and one fixed maximum P at which

the differential of the isotopy has no non constant closed trajectory in time less

than 1.

In our case this says that when γ is a local minimum of the Hofer length

functional and is generated by a Morse Hamiltonian the linearized flow at max

and min corresponding to γ has no non-constant periodic orbits with period

less than 1. This condition is called semifree at max and min. On the other

hand this puts us in position to apply the following theorem.

Theorem 0.18 (McDuff-Tolman [16]). Let γ be a Hamiltonian circle action

with semifree maximal fixed point set and generating function H. Then there
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are classes aB ∈ H∗(M) such that

S(γ) = [Fmax]⊗ q−mmaxtHmax +
∑

B∈HS
2 |ω(B)>0

aB ⊗ q−mmax−c1(B)tHmax−ωB

Here S is the Seidel representation of eq. (0.3), Hmax denotes the maximum

value of H and Fmax denotes the max level set. This expression implies that the

positive Hofer length of the loop γ is bounded below by Hmax. (cf. Proposition

3.1.) Reversing γ and applying the same theorem, we similarly get that the

negative Hofer length of γ is bounded below by −Hmin. Together this implies

the Hofer length of γ is bounded below by Hmax −Hmin.

Question 0.19. Can the condition on H being Morse in Theorem 0.16 be

dropped or relaxed?

The answer would be yes for example if the condition on extrema being

isolated in Theorem 0.17 could be dropped. (One can likely at least relax the

condition on extrema to being displaceable.)

We can think of Theorems 0.16 and 0.9 as local to global, rigidity type

of phenomena in Ham(M,ω). One may wonder to what extent this can be

extended. One question which motivated this Thesis is the following.

Question 0.20. Let G be a closed k-dimensional Lie group and h : G →

Ham(M,ω) a Lie group homomorphism (perhaps with finite kernel). Suppose

h is a local minimum for a “natural volume functional” induced by the Hofer

metric on Ham(M,ω). Is h necessarily a global minimum in its homotopy

class? Homology class?

There are a few natural notions of volume in a Finsler manifold; one that
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is often used is the Hausdorff k-measure but it may not be the easiest to work

with. We refer the reader to [19] for a discussion of these notions.

As stated the question may be very hard. The reason the Hofer length

has been so accessible is the close connection to spectral invariants, and Floer

and quantum homology of M , but it is possible that these connections can be

extended to higher dimensional volume measures on Ham(M,ω).
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Chapter 1

Preliminaries

1.1 Setup for quantum characteristic classes.

In this section we describe constructions of certain natural fibrations and dis-

cuss some relevant properties and examples which will come in use later.

Let Q be the Borel S1 quotient of LHam, Q = (LHam × S∞)/S1, where

the action of S1 on S∞ is by multiplication by eiτ , for τ ∈ S1 and on LHam

by (τ · γ)(θ) = γ(θ + τ). Let q denote the quotient map

q : LHam× S∞ → Q. (1.1)

1.1.1 Fibrations over LHam and Q

There is a natural fibration over LHam:

p̃ : U → LHam
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where,

U = LHam×M ×D2
0 ∪ LHam×M ×D2

∞/ ∼, (1.2)

and the equivalence relation∼ is: (γ, x, 1, θ)0 ∼ (γ, γθ(x), 1, θ)∞. Here, (r, 2πθ)

are polar coordinates on D2, and γθ denotes the element of the loop γ at time

θ. The orientation on M ×D2
0 is taken to be the natural positive orientation

and on M ×D2
∞ is taken to be negative. There is a natural S1 action on U :

τ · (γ, x, r, θ)0,∞ = (τ · γ, x, r, θ − τ)0,∞, (1.3)

where, τ ∈ S
1

and (τ · γ)θ = γθ+τ , i.e. the standard S1 action on the loop

space. It can be quickly checked that this is well defined under the equivalence

relation ∼. Thus, the diagonal action ρ of S1 on LHam×S∞ lifts to a diagonal

action ρ̃ on the product fibration

p̃× id : U × S∞ → LHam× S∞. (1.4)

This gives a quotient bundle

p : US1

= (U × S∞)/S1 → Q. (1.5)

The fiber Xq(γ,s) of US1
over q(γ, s) (see 1.1) is the total space of the Hamil-

tonian bundle Xγ, (cf. (0.5)).

Definition 1.1. A Hamiltonian bundle is a bundle with symplectic fiber,

whose transition maps are Hamiltonian. A Hamiltonian bundle map is

a bundle map which preserves the Hamiltonian bundle structure.
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Remark 1.2. We show in Chapter 4 that the structure group of p̃ : U →

LHam over the component containing the loop γ, may be reduced to the

group Fγ of Hamiltonian bundle maps of the fiber Xγ, which are identity

over D2
0 and a neighborhood of 0 ∈ D2

∞. A very similar description holds

for the structure group of p : US1 → Q, in particular it consists of certain

Hamiltonian bundle maps. The groups Fγ are isomorphic for all γ and we

just refer to the groups as F . As already mentioned in the Introduction and

proved in Chapter 4, the space LHam is the classifying space for F . (More

precisely, the component of the loop γ in LHam is the classifying space for

Fγ.) We call a fiber bundle p : P → B, with fiber having the structure of a

Hamiltonian fibration π : X → S2 and structure group F an F-fibration. The

structure group of the bundle pulled back from p : US1 → Q is also determined

in Chapter 4 and it also consists of special Hamiltonian bundle maps. We will

call both types of bundles simply by F -fibration and will make it clear in each

case which type of bundle we mean.

1.1.2 Families of Symplectic forms on an F-fibration

Let p : P → B be an F -fibration. Fix an area form α on the base S2 of

π : X → S2 once and for all. Since the fibers M are canonically oriented

as symplectic manifolds and since the transition maps of π : X → S2 are

Hamiltonian and hence preserve that orientation, this induces an orientation

σ on the fibers X of P , which is again preserved by the structure group F of

the bundle P . Thus, since B is oriented P inherits a well defined orientation.

Definition 1.3. Let π : X → S2 be a Hamiltonian fibration with fiber (M,ω).
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We say that a symplectic form Ω on X is ω-compatible if it extends ω on

the fibers.

Let A consist of all ω-compatible symplectic forms Ω on X inducing the

orientation σ, (note, the cohomology class of Ω is not fixed). Since F acts on

A, we have the associated bundle k : KP → B with fiber A.

Definition 1.4. Let p : P → B be an F-fibration. A family of symplectic

structures {Ωb} on P is called admissible if it is a section of KP .

Lemma 1.5. The space of admissible families {Ωb} on p : P → B is connected

and non-empty.

Proof. We show that the fiberA of the bundleK is at least weakly contractible,

i.e. has vanishing homotopy groups. It will follow from obstruction theory that

the space of sections is connected and non-empty.

Let h : Sk → A be a continuous map. We denote h(s) by Ωs. Let Ω0 ∈ A.

The path

Ωt,s = tΩ0 + (1− t)Ωs, t ∈ I = [0, 1]

may not lie in A, as Ωt,s may be degenerate for some t, so we will need to

compensate. For t, s ∈ I × Sk, let Hort,s denote the horizontal subbundle of

TX with respect to Ωt,s, i.e. Hort,s is the symplectic orthogonal to the vertical

tangent bundle of π : X → S2.

Let Ωh
t,s denote the horizontal part of Ωt,s, i.e. Ωh

t,s is zero on the the vertical

subbundle of TX and coincides with Ωt,s on Hort,s. Then

Ωh
t,s = ft,s · π∗(α), where ft,s : X → R is smooth.
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Recall that α is the fixed area form on S2. Set

C = | inf
t,s∈I×Sk

(inf
X
ft,s)|+ 1

and define

φ(t) =


0 if t ∈ [0, 1/3];

3(t− 1/3) if t ∈ [1/3, 2/3];

1 if t ∈ [2/3, 1];

and

η(t) =


3t if t ∈ [0, 1/3];

1 if t ∈ [1/3, 2/3];

−3(t− 2/3) + 1 if t ∈ [2/3, 1].

Consider the following homotopy of the map h,

F (t, s) = φ(t)Ω + (1− φ(t))Ωs + η(t)Cπ∗(α).

Then F (1, x) is the constant map to Ω0 and F (0, x) = h(x). Since that Ωs

and Ω induce the same orientation on X, f0,s, f1,s > 0. Using this, it is clear

that the form F (t, x) is non-degenerate on X for every t, x, and so F (t, x) is a

map into A. Thus, all the homotopy groups of A vanish.

This discussion shows that we may choose an admissible family {Ωb} on P

and moreover any two such families are deformation equivalent.

We will now construct a special family that will be crucial in applications

to the Hofer metric. As the first step we define a family of symplectic forms
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{Ω̃∞γ } on LHam×M ×D2
∞,

Ω̃∞γ (x, r, θ) = ω + d
(
η(r)Hγ

θ (γ−1
0 x)

)
∧ dθ −max

x
Hγ
θ (x)dη ∧ dθ − ε · 2rdr ∧ dθ,

for an ε > 0. (Recall that M ×D2
∞ has the negative orientation.) Here, Hγ

θ is

the generating Hamiltonian for γ−1(0) ◦ γ, normalized so that

∫
M

Hγ
θ ω

n = 0

for all θ, and η : [0, 1]→ [0, 1] is a smooth function satisfying

0 ≤ η′(r),

and

η(r) =


1 if 1− δ ≤ r ≤ 1,

r2 if r ≤ 1− 2δ,

for a small δ > 0. The last 2 terms are needed to make the sum non-degenerate.

The following geometric notion will be important to us

Definition 1.6. The area of a Hamiltonian fibration π : X → S2 or π :

X → D2, together with an ω-compatible symplectic form Ω is defined by:

area(X,Ω) = Vol(X,Ω)/Vol(M,ω) =

∫
X

Ωn+1

(n+ 1)
∫
M
ωn
. (1.6)

The area of Ω̃∞γ on M ×D2
∞ is L+(γ) + ε.
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By definition of ∼, (x, θ)0 7→ (γθ(x), θ)∞. Thus,

∂

∂θ
7→ (γ0)∗(XHθ

γ
) +

∂

∂θ
,

∂

∂x
7→ (γθ)∗(

∂

∂x
) and

∂

∂r
7→ − ∂

∂r
.

It follows that the gluing relation ∼ pulls back the form Ω̃∞γ to the form

Ω̃0
γ = ω + ε · 2rdr ∧ dθ,

on the neighborhood of the boundary M ×∂D2
0, which extends to the form Ω̃0

γ

on M ×D2
0 with area ε. Then {Ω̃γ} on U is given by gluing

(LHam×M ×D2
0, Ω̃

0
γ) ∪ (LHam×M ×D2

∞, Ω̃
∞
γ )/ ∼ . (1.7)

The area of each fiber is

area(Xγ, Ω̃γ) = L+(γ) + 2ε. (1.8)

We pull back the family {Ω̃γ} on U to a family {Ω̃(γ,s)} on U×S∞ via projection

to U . The S1 action ρ̃ does not act by a symplectomorphism from the fiber

X(γ,s) to the fiber X(τ ·γ,τ ·s). The reason for this is that we broke the symmetry

in the construction by pulling the loop γ back by γ0 to start at the identity.

This was done in order to get control of the area of the fiber X(γ,s) in terms

of the Hofer length of the loop γ, which will be used later. We can fix this

problem by averaging. Define a family {Ω̃S1

(γ,s)} on U × S∞ by

Ω̃S1

(γ,s) =
1

2π

∫
S1

ρ̃(τ)∗Ω̃(θ·γ,θ·s) dτ. (1.9)
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On (LHam× S∞)×M ×D2
∞ this form is

Ω̃S1

(γ,s) = ω −max
x

Hγ
θ (x)dη ∧ dθ − ε · 2rdr ∧ dθ

+
1

2π

∫
S1

(
d(η(r)Hγ

θ (γ(τ)−1x)) ∧ dθ
)
dτ. (1.10)

It follows that each Ω̃S1

(γ,s) is symplectic and

area(X(γ,s), Ω̃
S1

γ,s) = L+(γ) + 2ε

as before. Thus, the family Ω̃S1

(γ,s) on U ×S∞ passes down to a family {Ωb} on

the quotient bundle p : US1 → Q with the

area{Ωb} = L+(γ) + 2ε. (1.11)

1.1.3 Equivariant cycles in LHam

Let B be oriented compact and smooth. Up to homotopy, every cycle f : B →

Q arises as follows. Let g : Y → B be a smooth principal S1 bundle. And let

f̂ : Y → Ham(M,ω) be a map. Define

o : Y → LY (1.12)

to be the map which sends x ∈ Y to the loop γx, γx(θ) = x · θ, also let

f ′ : LT → LHam be the map induced by f̂ : Y → Ham(M,ω). Set f̃ = f ′ ◦ o,

then

f̃ : Y → LHam (1.13)
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is S1 equivariant. Let c : Y → S∞ be an S1 equivariant map. (The S1

equivariant homotopy class of this map is uniquely determined.) Consider the

product map

f̃ × c : Y → LHam× S∞,

this is again an S1 equivariant map under the diagonal S1 action and so induces

a map on the quotients: f : B → Q, whose homotopy class is independent of

the choice of the classifying map c.

Definition 1.7. We will call f : B → Q smooth, if it comes from a smooth

map f̂ : Y → Ham(M,ω).

Clearly any map f : B → Q can be perturbed to be smooth.

Example 1.8. Let’s apply the above construction to a map f̂ : S2k+1 →

Ham(M,ω). We can associate to it two cycles in Q, by slicing S2k+1 by circles

in two different ways. The first cycle, fh : CPk → Q is obtained from the

Hopf fibration h : S2k+1 → CPk. The second f : S2k → Q is obtained from

the trivial fibration pr : S2k × S1 → S2k and the composition f̂2 = f̂ ◦ t :

S2k × S1 → Ham(M,ω), where

t : S2k × S1 → S2k+1

is any fixed degree 1 map. The maps f and fh are not homologous since any

such homology would project to a homology in CP∞, for the classifying maps

of the bundles pr : S2k × S1 → S2k and h : S2k+1 → CPk.

Remark 1.9. Given a smooth map f : B → Q the pullback bundle pf : Pf →

B by f of the bundle p : US1 → Q can be given the following tautological

25



reformulation, which will be useful to us. The map f comes from a smooth

map f̂ : Y → Ham(M,ω) for a certain smooth oriented principal S1 bundle

g : Y → B. This induces a map f̃ : Y → LHam, where f̃ is as in eq. (1.13).

Consider the pullback bundle

p ef : P ef → Y (1.14)

by f̃ of the bundle p̃ : U → LHam. In other words

P ef = (Y ×M ×D2
0) ∪ (Y ×M ×D2

∞)/ ∼,

where (y, x, 1, θ)0 is equivalent to (y, f̃t,θ(x), 1, θ)∞. This is a smooth bundle

with the pullback of the S1-action ρ̃ on U given by

θ′ · (y, x, r, θ)0,∞ = (θ′ · y, x, r, θ − θ′)0,∞. (1.15)

The quotient by the S1 action on this bundle is the bundle pf : Pf → B. Thus,

when f : B → Q is smooth the bundle pf : Pf → B and the family {f ∗(Ωb)}

of symplectic forms on this bundle are smooth.

1.1.4 Natural embeddings into an F-fibration.

Now, let f : B → Q be as usual, f̃ : Y → LHam the associated S1-equivariant

map (cf. eq. (1.13)) and consider the associated fibration P ef (cf. eq. (1.14)).

There are natural embeddings

Ĩ0,∞ : Y ×M → Y ×M ×D2
0,∞, (1.16)
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given by including into the fiber over 0 ∈ D2
0,∞ and thus induced embeddings

Ĩ0,∞ : Y ×M → P ef . These maps are S1 equivariant under the action of ρ̃

(cf. eq. (1.15)) and hence there are induced embeddings I0,∞ : B ×M → Pf ,

which be used later.

A special case

If we consider Q as LHam bundle over CP∞, there is a natural map i∗ :

H∗(LHam) → HS1

∗ (LHam) induced by inclusion of the fiber. Given a cycle

f ′ : B → LHam, the bundle Pf induced by the cycle f = i◦f ′ : B → Q can be

easily seen to be isomorphic to the pullback by f̃ of the bundle U over LHam,

i.e.

Pf ' (B ×M ×D2
0) ∪ (B ×M ×D2

∞)/ ∼,

where for (b, x, θ)0 in the boundary of B×M ×D2
0, (b, x, θ)0 ∼ (b, f ′b,θ(x), θ)∞,

and the embeddings

Iz : B ×M → Pf , (1.17)

defined above are now defined for all z ∈ S2. (This embedding is only well

defined up to isotopy for z in the equator ∂D2
0,∞ ∈ S2.)

The rest of this section essentially sets up for Section 3.2 and its reading

may be postponed until then. On the other hand, it may help to clarify the

above constructions.

1.1.5 Example of an F-fibration

Suppose now we have a map f̂ : Y → Ham(M,ω), where q : Y → B is an

oriented principal S1 bundle. Suppose further that the map f̂ is S1 equivariant
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with respect to the S1 action on Y and S1 action on Ham(M,ω) corresponding

to the right action by a subgroup γ : S1 → Ham(M,ω) on Ham(M,ω). Let us

understand the fibration Pf for the induced map

f : B → Q.

First, we can identify Xγ with S3×S1 M , where S1 acts diagonally on S3×M

by

e2πiθ · (z1, z2;x) = (e−2πiθz1, e
−2πiθz2; γ(e2πiθ)x),

using complex coordinates on S3. To see this, write [z1, z2;x] for the equiva-

lence class of the point (z1/r, z2/r;x) ∈ S3×M , where r is the norm of (z1, z2).

We identify D0 ×M with {[1, z;x] : |z| ≤ 1, x ∈ M} naturally and D∞ ×M

with {[z, 1;x] : |z| ≤ 1, x ∈ M} via the orientation reversing reflection. The

gluing map is then

[1, e2πiθ;x] ∼ [e−2πiθ, 1; γ(e2πiθ)x],

which is consistent with the previous definition. There is an S1 action β on

Xγ given by

e2πiθ′ · [z1, z2;x] = [z1, e
2πiθ′z2;x]. (1.18)

Lemma 1.10. The bundle pf : Pf → B is isomorphic to the bundle h :

Y ×S1 Xγ → B, where S1 is acting by β on Xγ.

Proof. Let f̃ : Y → LHam be as above (cf. eq. (1.13)) so
(
f̃(y) = f̂(y) ◦ γ

)
:

28



S1 → Ham(M,ω). We set f̂(y) ◦ γ ≡ γy. We get

P ef = Y ×M ×D2
0 ∪ Y ×M ×D2

∞/ ∼, (1.19)

where (y, x, 1, θ)0 ∼ (y, γtθ(x), 1, θ)∞. We construct an S1 equivariant bundle

map t from p ef : P ef → Y to the trivial bundle pr : Y × Xγ → Y , where the

S1 action ρ̃ on P ef is as in eq. (1.15) and the diagonal S1 action α on Y ×Xγ

given by β on Xγ.

In coordinates we have

Y ×Xγ = Y ×M ×D2
0 ∪ Y ×M ×D2

∞/ ∼, (1.20)

where (y, x, 1, θ)0 ∼ (y, γθ(x), 1, θ)∞. The needed map k : P ef → Y × Xγ is

then defined as follows:

k(y, x, r, θ)∞ = (y, f̂(y)−1(x), r, θ)∞

k(y, x, r, θ)0 = (y, x, r, θ)0. (cf. eqs. (1.19), (1.20))

This is a well defined bundle map, as is shown by the following diagram,

(y, x, θ)0
∼ //

k

��

(y, γyθ (x), θ)∞

k
��

(y, x, θ)0
∼ // (y, γθ(x) = f̂(y)−1 ◦ γyθ (x), θ)∞.
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In coordinates of eq. (1.20) the S1 action α on Y ×Xγ is given by

θ′ · (y, x, r, θ)0 = (y · θ′, x, r, θ − θ′)0 (1.21)

θ′ · (y, x, r, θ)∞ = (y · θ′, γ−1(θ′)x, r, θ − θ′)∞. (1.22)

It is now not hard to check that the map k is S1 equivariant with respect

to S1 actions ρ̃ and α. (cf. eq. (1.15)) Finally, we conclude that

Pf ' Y ×S1 Xγ.

An admissable family of symplectic forms on Pf

Suppose Pf is as in Lemma 1.10. Using this lemma we can put an admissible

family {Ωb} on p : Pf → B, b ∈ B and a compatible family of almost complex

structures {Jb} as follows. Let α be the standard contact form on the unit

sphere S3, normalized so that dα = h∗τ , where h : S3 → S2 is the Hopf map

and τ is a standard area form on S2 with area 1. If H : M → R denotes the

normalized Hamiltonian generating γ, the closed 2-form

ω − (maxH + ε)dα + d(Hα)

on S3×M descends to a form ω̃ on S3×S1M , which is symplectic for an ε > 0.

Let J be any S1-invariant almost complex structure on M and J0 the standard

S1 invariant complex structure on C2. Then J × J0 is also S1-invariant, and

its restriction to S3 preserves the contact planes kerα. It is not hard to see
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that J × J0 descends to an almost complex structure J̃ on the quotient Xγ

which coincides with J on the fibers M . By construction, if J is compatible

with ω, then J̃ is compatible with ω̃.

The form ω̃ and the complex structure J̃ are invariant under the S1 action

β on Xγ and therefore give rise to a family {Ωb} and a compatible family {Jb}

on Pf = Y ×S1 Xγ.

1.2 PGW-invariants of an F-fibration

Let p : P → B be an F -fibration and {Ωb} an admissible family of symplectic

forms on P .

Definition 1.11. We call a family {Jb} of fiberwise {Ωb}-compatible com-

plex structures π-compatible if π : (Xb, Jb)→ (S2, j) is holomorphic for each b

and each Jb preserves the Ωb-orthogonal subspaces of TXb.

Let {Jb} be a π-compatible family of almost complex structures. Consider

the following moduli space

M∗
0(P,A, {Jb}) = {pairs (u, b)},

where

• b ∈ Bk.

• u is a Jb-holomorphic, simple curve u : (S2, j) → Xb ⊂ P representing

class A ∈ j∗(H
sect
2 (X)) ⊂ H2(P ), where Hsect

2 (X) are section classes

and j∗ is induced by inclusion of fiber. (The subspace j∗(H
sect
2 (X)) is
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unambiguous, since the structure group F preserves section classes of

X.)

An element of the above moduli space will be called loosely a fiber holomorphic

curve. For details of the following discussion see for example [11, Sections 6.7,

8.4] or [2]. Given an element (u, b) of the moduli space M∗
0(P,A, {Jb}) there

is the associated real linear Cauchy-Riemann operator

Du,b :
{
ξ ∈ Ω0(S2, u∗TP )|dp(ξ) ≡ const

}
→ Ω0,1(S2, u∗TXb) (1.23)

of index 2n+k+2c1(A), where c1 is the vertical Chern class of the the fibration

p : P → B. A π-compatible family {Jb} is called regular for A, if the operator

Du,b is surjective for every tuple (u, b), where u ∈ M∗
0(P,A, {Jb}). The set

of regular π-compatible families for A will be denoted by Jreg(A) and the

set of all families by J . From now on regular family {Jb} always refers to a

π-compatible regular family.

Lemma 1.12. 1. If {Jb} ∈ Jreg(A) then M∗(P,A; {Jb}) is a smooth man-

ifold of dimension

dimM∗(P,A; {Jb}) = 2n+ k + 2c1(A).

2. The set Jreg(A) is of the second category in J .

Suppose now we have an oriented smooth cobordism C between B1, B2.

Let PC be a symplectic fibration over C. We denote by Pi the restriction of

PC over Bi. Suppose we have regular families {J ib} on Pi. Let {JCb } be family
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on PC restricting to {J ib} on Pi. We then have the corresponding moduli space

M∗(PC , A; {JCb }).

We again say that {JCb } is regular if the associated Cauchy-Riemann oper-

ator is surjective. The space of regular families {JCb } will be denoted by

Jreg(A; {J1
b }, {J2

b }), and the space of all families by J (A; {J1
b }, {J2

b }).

Lemma 1.13. 1. If {JCb } is regularM∗(PC , A; {JCb }) is a smooth oriented

manifold with boundary

∂M∗(PC , A; {JCb }) =M(P2, A, {J1
b })−M∗(P1, A, {J2

b }).

2. The set Jreg(A; {J1
b }, {J2

b }) is of the second category in J (A; {J1
b }, {J2

b }).

Let

M∗
0,l(P,A, {Jb}) = {equivalence classes of tuples (u, z1 . . . zl)} ,

where u ∈ M∗(P,A; {Jb}) and z1, . . . , zl are pairwise distinct points in S2.

The equivalence relation is (u, z1, .., zl) ∼ (u′, z′1, . . . , z
′
l) if there exists φ ∈

PSL(2,C) s.t. u′ ◦ φ = u and φ(zi) = z′i.

For a regular family {Jb}, this is a manifold of dimension

2n+ k + 2c1(A) + 2l − 6, (1.24)
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where k is the dimension of the base B. Consider the evaluation map

ev :M∗
0,l(P,A; {Jb})→ P l.

Similarly, we have evaluation maps evC : M∗(PC , A; {JCb }) → PC . For these

maps to represent pseudocycles we need some conditions on M .

Proposition 1.14. Let (M,ω) be spherically monotone. Then the maps ev

and evC above are pseudocycles for generic regular π-compatible families {Jb}

and {JCb }.

Proof. Since we only consider curves which lie in the fibers of p : P → B,

any bubbles must lie in the fiber. Next note that a stable map into (Xb, Jb),

representing a section class of π : Xb → S2 must consist of a principal part

which is a section, together with “bubbles” which lie in the fibers M of π :

Xb → S2; this is fairly immediate but see [13, Lemma 2.9]. By assumption

that M is monotone, these bubbles must have positive Chern number. Using

this, one can show that for a generic π-compatible family the evaluation map

is a pseudocycle by standard arguments in [11, Chapter 6].

1.2.1 PGW invariants

Under the assumptions of Prop 1.14, we define parametric Gromov-Witten

invariants by

PGW P
0,l(a1, . . . , al;A) = [ev] · (a1 × . . .× al),

where · denotes intersection pairing in P l and a1, . . . , al ∈ H∗(P ).
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1.3 Quantum homology

The flavor of quantum homology we use is the following. Let Λ := Λuniv[q, q−1]

be the ring of Laurent polynomials in a variable q of degree 2 with coefficients

in the universal Novikov ring. Thus, its elements are polynomials in q of the

form

∑
ε∈R, l∈Z

λε,l · qltε #{λε,l 6= 0|ε ≥ c} <∞ for all c ∈ R, (1.25)

where λε,l ∈ Q. Set

QH∗(M) = QH∗(M ; Λ) = H∗(M)⊗Z Λ.

Let us now define a valuation ν : QH∗(M)→ R as follows,

ν(
∑
A

bA · qlAtεA) := sup
bA 6=0

εA,

where A is an abstract index.

Recall that the quantum intersection product on QH∗(M) is defined as

follows. For a, b ∈ H∗(M)

a ∗M b =
∑

A∈HS
2 (M)

(a ∗M b)A ⊗ q−c1(A)t−ω(A),

where (a ∗M b)A ∈ Hi+j−2n+2c1(A)(M) is defined by the duality

(a ∗M b)A · c = GWM
0,3(a, b, c;A), for all c ∈ H∗(M).

35



The product is then extended by linearity to all of QH∗(M). This product

can be shown to be associative (see [11, Chapter 11, Section 1] for details) and

gives QH∗(M) the structure of a graded commutative ring with unit [M ].
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Chapter 2

Quantum characteristic classes

In this chapter we will define our characteristic classes and verify the axioms

stated in Introduction.

2.1 Definition of QC classes

Let X as before be a Hamiltonian fibration: π : X → S2 with monotone fiber

M , and p : P → B be a smooth F -fibration with fiber X, classified by a map

into LHam, cf. Remark 1.2. The following is a crucial ingredient in the defi-

nition of QC classes and plays the role of the 2 dimensional cohomology class

of the curvature form in Chern-Weyl theory. Let MHam denote the universal

M bundle over BHam(M,ω). There is a unique class [Ω] ∈ H2(MHam) called

the coupling class such that

i∗([Ω]) = [ω],

∫
M

[Ω]n+1 = 0 ∈ H2(BHam(M,ω))

where i : M → MHam is the inclusion of fiber, and the integral above denotes

the integration along the fiber, (see [7, Section3]). Note from (1.2) that the
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total space P of the bundle p : P → B has another submersive projection to

B × S2 and the resulting bundle M ↪→ P → B × S2 is clearly Hamiltonian,

i.e. the transition maps are fiberwise Hamiltonian symplectomorphisms.

Definition 2.1. We denote by C ∈ H2(P ), the pullback of the class [Ω] above,

by the classifying map of the natural Hamiltonian fibration

M ↪→ P → B × S2.

Set

QHB
∗ (M) = H∗(B ×M)⊗ Λ,

cf. eq. (1.25).

Definition 2.2. We define the total quantum characteristic class of p :

P → B by

cq(P ) =
∑

A∈j∗(Hsect
2 (X))

bA ⊗ q−cvert(A)t−C(A) ∈ QHB
∗ (M). (2.1)

Here,

• Hsect
2 (X) denotes the section homology classes of π : X → S2 as in

Section 1.2.

• The map j∗ : Hsect
2 (X)→ H2(Pf ) is induced by inclusion of fiber.

• The coefficient bA ∈ H∗(B ×M) is the transverse intersection of

ev :M0,1(P,A; {Jb})→ P
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with I0(B×M) (see eq. (1.17)). More formally, bA is defined by duality

bA ·B×M c = [ev] ·P I0∗(c),

for c ∈ H∗(B ×M).

The above definition works essentially without change for an F -fibration

classified by a map into LHam×S1 S∞ = Q.

Remark 2.3. To deduce that the condition (1.25) on the coefficients is sat-

isfied we need to show that there are only finitely many homology classes

A ∈ H2(P ) which have representatives with area less then c for every c > 0, (for

a fixed Riemannian metric on P ) For then in particular there are only finitely

many homology classes represented by vertical {Jb}-holomorphic curves with

E(A) = Ωb(A) = C(A) + π∗(αb)(A) ≤ c

for every c > 0, which would imply the finiteness condition. To prove the above

one can use geometric measure theory and compactness results for currents,

(see [4]), it is also very evident intuitively). Alternatively, one can use Gromov

compactness.

Notation 2.4. Let us from now on shorten notation by setting

q−cvert(A)t−C(A) ≡ eA,

where it presents no confusion.

For a regular family {Jb}, M∗
0,1(P, j∗(A), {Jb}) is a smooth manifold of
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dimension

(2n+ 2) +m+ 2c1(A)− 4 = (2n+ 2) +m+ 2cvert(A),

where m = dimB, (cf. eq. (1.24)). It follows that

deg bA = 2n+m+ 2cvert(A). (2.2)

In particular, a class A contributes only if 2cvert(A) ≤ 0.

Every element e =
∑

j∗(A) bA ⊗ eA ∈ QHB
∗ (M) defines a linear functional

on H∗(B) (where Hk(B) = Hk(B,Z)/ Tor) with values in QH∗(M) defined as

follows. If a ∈ Hk(B), then e(a) ∈ QH∗(M) is given by

e(a) =
∑
A

∑
i

(bA · (a⊗ e∗i )) ei ⊗ eA, (2.3)

where {ei} is a basis for H∗(M), {e∗i } a dual basis for H∗(M) with respect to

the intersection pairing and · is the intersection pairing on H∗(B ×M).

Remark 2.5. Let us check the degree of e(a). We have that bA · (a ⊗ e∗i ) is

non-zero when

2n+m+ 2cvert(A) + deg a+ 2n− deg ei = 2n+m

so we get deg ei = 2n+ deg a+ 2cvert(A) and

deg e(a) = deg ei − 2cvert(A) = 2n+ deg a. (2.4)
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Definition 2.6. We define the k-th quantum characteristic class

cqk(P ) ∈ Hom(Hk(B), QH∗(M)) = Hk(B,QH∗(M)),

to be the restriction of the functional cq(P ) to Hk(B).

In these terms, the functional cq(P ) is just the sum

cq(P ) = cq0(P ) + cq1(P ) + . . .+ cqm(P ),

where m is the dimension of B. When γ is contractible, Axiom 1 implies that

cq0(P )(pt) = [M ] is the multiplicative identity in the quantum homology ring.

The analogous expression for Chern classes is called the total Chern class.

Interestingly, in our “quantum” setting the total class has a nice geometric

interpretation and this plays a role in proving the corresponding “Whitney

sum formula” in Section 2.3.

Example 2.7. A loop γ : S1 → Ham(M,ω) can be viewed as a map fγ : pt→

LHam. The corresponding fibration Pfγ over pt has fiber Xγ and cq(Pfγ ) =∑
j∗(A) bA ⊗ q−cvert(A)t−eω(A) ∈ QH2n(M), since H∗(pt ×M) ' H∗(M) and eq.

(2.4) implies that the degree of the element cq(Pfγ ) is 2n. In these terms, the

Seidel element corresponding to γ is defined to be

S(γ) = cq(Pfγ ). (2.5)

This element depends only on the homotopy class of γ, and Seidel [21] proved

that this defines a homomorphism S : π1(Ham(M,ω))→ QH2n(M).

41



Recall from the introduction that for a smooth k-cycle f : B → Q,

Ψ(B, f) ≡ cqk(Pf )([B]).

Lemma 2.8. The characteristic classes cqk(P ) of p : P → B are independent of

the choice of the admissible family {Ωb}, and moreover Ψ(B1, f1) = Ψ(B2, f2)

if f1 : B1 → Q is is oriented cobordant to f2 : B2 → Q, in particular Ψ is well

defined map on H∗(LHam,Q).

Proof. To prove that cqk(P ) are independent of the choice of the admissible

family {Ωb} note that by Lemma 1.5 any two such families are smoothly ho-

motopy equivalent. The homotopy {Ωt
b} gives an admissible family of forms

on p : P × I → I at which point we may apply Theorem 1.13 and Proposition

1.14.

To prove the second statement consider a smooth oriented cobordism F :

C → Q between (B1, f1) and (B2, f2). The proof is just a simple consequence

of Theorem 1.13. The construction in Section 1.1.1 yields an F -fibration PF

over C restricting to the F -fibrations Pi over Bi. Moreover, for c ∈ H∗(M)

the class I0([C]⊗ c) in PF restricts to the corresponding classes I0([Bi]⊗ c) in

Pi, cf. eq. (1.17). Let

Ψ(Bi, fi) =
∑
A

biA ⊗ eA

be the corresponding elements in QH∗(M). We need to show that b1
A = b2

A.

Consider the intersection numbers

biA ·M c ≡ [eviA] ·P I0([Bi]⊗ c),
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where eviA are the evaluation maps

eviA :M0,1(Pi, A, {J ib})→ Pi

for regular families {J ib}. Let

evFA :M0,1(PF , A, {JCb })→ PF

be the evaluation map with {JCb } a regular family restricting to {J ib} on Pi.

When the dimension of c is such that the intersection numbers above are

nonzero, Theorem 1.13, and Proposition 1.14 imply that evFA ∩ I([C] ⊗ c)

is a one-dimensional cobordism between the oriented 0-dimensional manifolds

ev1
A∩I0(B1⊗c), ev2

A∩I0(B2⊗c), assuming things are perturbed to be transver-

sal. Thus, the intersection numbers ev1
A · I0(B1 ⊗ c), ev2

A · I0(B2 ⊗ c) coincide.

To conlcude that Ψ is well defined on H∗(LHam,Q) we may use Theorem

3.7, which implies that the rational homology of LHam is generated by cycles

f : B → X, where B is a closed oriented smooth k-manifold (in fact a product

of spheres). Moreover, the relations in the rational homology are generated by

maps of smooth cobordisms.

2.2 Verification of axioms 1 and 2

To verify Axioms 1, 2 we are going to need the following Proposition.

Proposition 2.9. Let p : P → B be an F-fibration and f : C → B a smooth
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k-cycle representing a ∈ H∗(B). Then

cqk(P )(a) = Ψ(f ∗P ) ≡ cqk(f
∗P ([C])).

Proof. Let {Jb} be a regular family for A curves in P . We have maps

M∗
0,1(P,A; {Jb}) ev // P

p

��
C

f // B

(2.6)

Perturb f : C → B to be transverse to the pseudocycle

p ◦ ev :M∗
0,1(P,A, {Jb})→ B,

and consider the commutative diagram

Z
pr1 //

pr2

��

M∗
0,1(P,A, {Jb})

ev

��
f ∗(P )

��

// P

p

��
C

f // B

,

where Z is the pullback of the diagram. By the transversality above Z is a

smooth manifold and can be tautologically identified with M∗
0,1(P ′, A, {J ′b}),

where p′ : P ′ → C is the pullback bundle f ∗(P ) over C and {J ′b} = {f ∗(Jb)}.

Moreover, the evaluation map ev′ : M∗
0,1(P ′, A, {J ′b}) → P ′ is just the map

pr2 and is a pseudocycle since ev is a pseudocycle. The dimension of this
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pseudocycle is

dim[ev] + k −m = (2n+m+ 2c1(A)− 2) + k −m = 2n+ k + 2c1(A)− 2,

wherem is the dimension ofB and this is the expected dimension ofM∗
0,1(P ′, A, {J ′b}).

Thus, ev : M∗
0,1(P ′, A, {J ′b}) → P ′ is a pseudocycle of the correct dimension.

We show that the family {J ′b} is regular. The linearized Cauchy-Riemann

operator for b in the intersection of p ◦ ev with f has the form:

Du,b : Ω0
B ≡

{
ξ ∈ Ω0(S2, u∗TP )|p∗(ξ) ≡ const

}
→ Ω0,1(S2, u∗TXb).

By the regularity assumption on {Jb} this operator is onto. Moreover, by

regularity we have

p∗(kerDu,b) = p∗ ◦ ev∗(TuM0,1(P, Jb)). (2.7)

Thus, by the transversality assumption we must have that

p∗ : kerDu,b → TbB/f∗(TC)|b (2.8)

is onto. Denote by DC
u,b the restriction of the operator Du,b to the subspace

Ω0
C ≡

{
ξ ∈ Ω0(S2, u∗TP |p∗(ξ) ≡ const ∈ f∗(TC)|b)

}
.

To show that {J ′b} is regular we must show that DC
u,b is also onto. Let ṽ ∈ Ω0

B.
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By (2.8) there exists ṽk ∈ kerDu,b and vC ∈ f∗(TC)|b, s.t.

p∗(ṽ) = p∗(ṽk) + vC . (2.9)

Therefore, we get that ṽ − ṽk ∈ Ω0
C , and so Du,b(ṽ) = DC

u,b(ṽ − ṽk). Since Du,b

is onto, it follows that DC
u,b is also onto and so {J ′b} is regular.

By definition,

cqk(P )(a) =
∑
A

∑
i

bA · (a⊗ e∗i )ei ⊗ eA,

and

cqk(P
′)([C]) =

∑
A

∑
i

b′A · ([C]⊗ e∗i )ei ⊗ eA.

To finish the proof, we note that by the above discussion

bA ·B×M (a⊗ ei) ≡ [ev] ·P I0∗(a⊗ ei)

= [ev′] ·P ′ I0∗([C]⊗ ei)

≡ [b′A] ·C×M ([C]⊗ ei).

2.2.1 Verification of Axiom 1

To prove the first statement just apply Proposition 2.9 to i : pt→ B. To prove

the second statement note that if P ' X × B then we can take a constant

family of regular compatible almost complex structures {Jreg} and this family

is clearly parametrically regular . It follows that the total characteristic class
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is

cq(P ) =
∑
A

(B ⊗ b′A)⊗ eA,

where b′A is the transverse intersection of ev : M0,1(X,A, Jreg) → X with

the fiber M0 ⊂ X over 0. As a functional on H∗(B), cq(P )(a) = 0 unless

deg(a) = 0.

2.2.2 Verification of Axiom 2

If f : C → B represents a ∈ Hk(B1) as before, then

g∗cqk(P2)(f∗[C]) = cqk(P2)(g∗f∗[C]) = Ψ(f ∗g∗P2),

where the last equality holds by Proposition 2.9, and

cqk(g
∗P2)(f∗[C]) = Ψ(f ∗g∗P2),

again by Proposition 2.9.

2.2.3 Proof of Theorem 0.7 assuming Axiom 3

Definition 2.10. The Pontryagin product

f1 ? f2 : B1 ×B2 → LHam

of two maps f1, f2 : B1, B2 → LHam is defined by

f1 ? f2(b1, b2, θ) = f2(b2, θ) ◦ f1(b1, θ).
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(The order is indeed reversed.)

For i = 1, 2, let fi : Bi → LHam be as before. Let ki be the dimension of

Bi. Consider the maps,

f̃i : B1 ×B2 → LHam, f̃i = fi ◦ pri for i = 1, 2,

where pri : B1 ×B2 → Bi are the component projections. Clearly,

Pf1?f2 ' P ef1 ⊕ P ef2 ≡ P ef2· ef1

(see Definition 0.3). By Axioms 2 and 3,

Ψ(B1 ×B2, f1 ? f2) ≡ cqk1+k2
(Pf1?f2)(B1 ×B2)

=
∑

i+j=k1+k2

pr∗1(cqi (Pf1)) ∪ pr∗2(cqj(Pf2))(B1 ×B2)

= pr∗1(cqk1(Pf1)) ∪ pr
∗
2(cqk2(Pf2))(B1 ×B2)

= cqk1(Pf1)(B1) ∗ cqk2(Pf2)(B2)

= Ψ(B1, f1) ∗Ψ(B2, f2).

Remark 2.11. Under the Pontryagin product, the group ring of π1(Ham(M,ω))

over Q is H0(LHam,Q). The restriction of Ψ to degree zero,

Ψ0 : H0(LHam,Q)→ QH2n(M),
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is a ring homomorphism

S = Ψ0 : Q[π1(Ham(M,ω))]→ QH2n(M),

in view of eq. (0.3). Thus, Theorem 0.7 is an extension of the Seidel homo-

morphism S to the entire Pontryagin ring H∗(LHam,Q).

2.3 Proofs of more technical claims.

In this section we prove that the characteristic classes cqk satisfy Axiom 3 of

Definition 2.1. To this end we will need a splitting formula for PGW -invariants

arising from the connected sum operation on two F -fibrations. To help clarify

the picture we first explain why P1 ⊕ P2 is the connected sum of P1, P2 in an

appropriate way.

Definition 2.12. Let P1, P2 be two F-fibrations classified by f 1, f 2 : B →

LHam. Define

P1#P2 ≡ (B ×M ×D2
0) ∪ (B ×M × S1 × I) ∪ (B ×M ×D2

∞)/ ∼, (2.10)

where the equivalence relation is

(b, x, 1, θ)0 ∼ (b, f 1
b,θ(x), θ, 0) ∈ B ×M × S1 × I

(b, x, 1, θ)∞ ∼ (b, (f 2
b,θ)
−1(x), θ, 1) ∈ B ×M × S1 × I.

It is then not hard to construct a natural isomorphism between P1 ⊕ P2

and P1#P2. Given classes A and B in j∗H
sect
2 (X1) ⊂ H2(P1) respectively
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j∗H
sect
2 (X2) ⊂ H2(P2), there is a natural section class A#B in H2(P1#P2).

To define this class one represents A and B by sections coinciding in the fiber

over∞ for X1
b and respectively the fiber over 0 for X2

b (this can be made more

precise using the definition above). It can be directly checked that the class

A#B is independent of choices and satisfies

cvert(A#B) = cvert(A) + cvert(B) and CP1#P2(A#B) = CP1(A) + CP2(B).

Given a ∈ H∗(B ×M), we will denote the class (IPz )∗(a) ∈ H∗(P ) by a for

shorthand and similarly for P1, P2.

Theorem 2.13. Let P1, P2 be two F-fibrations classified by f 1, f 2 : B →

LHam, P = P1 ⊕ P2 their connected sum, A ∈ H2(P1), B ∈ H2(P2) as in

Definition 2.1. Then for all a1, . . . , ak ∈ H∗(B ×M), and any integer 0 ≤ l ≤

k,

PGW P
0,k(a1, . . . , ak;C)

=
∑
i

A1#B1=C

PGW P2
0,l+1(a1, . . . , al, ei;A1)

· PGW P1
0,k−l+1(e∗i , al+1, . . . , ak;A2), (2.11)

where {ei} is a basis for H∗(B ×M), {e∗i } is the dual basis.

Proof. Set K = B ×M . Suppose we have two J-holomorphic curves u1, u2

into Pf1 and Pf2 in class A1, A2 intersecting in K, (where we identify K with

it’s embedding in Pf1 by I∞ and in Pf2 by I0), then u1, u2 lie in the respective

fibers X1
b , X

2
b over the same point b ∈ B. We can then glue them to get a curve
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in the fiber X1
b#X2

b ' Xf2(b)·f1(b) over b of the fibration P1 ⊕ P2 by exactly

same argument as in Section 11.4 of [11].

One then shows that for generic families {J1
b }, {J2

b } the moduli spaces

M∗(Pf1 , A1; {J1
b }) and M∗(Pf2 , A2; {J2

b })

are regular and the evaluation map

M∗(Pf1 , A1; {J1
b })×M∗(Pf2 , A2; {J2

b })→ K ×K

which takes (u1, u2) 7→ (u1
∞(0), u2

0(0)) is transverse to the diagonal. The rest

of the proof is exactly the same as the proof of the corresponding splitting

statement in Chapter 10 of [11].

Remark 2.14. Note that since all holomorphic curves of P1, P2, P1#P2 come

from section classes (of the fiber X1, X2, X1#X2 respectively) they are nec-

essarily transverse to the divisor K and intersect it in a single point. This

formula is then “essentially” a special case of the formula given by Ionel and

Parker [6] for general symplectic sums along a codimension 2 submanifold, see

also Li and Ruan [10] for a different approach.

2.3.1 Verification of Axiom 3

In what follows we think of H∗(B,QH∗(M)) as the space of linear functionals

onH∗(B) with values inQH∗(M). In particular an element inH∗(B,QH∗(M))

can be of mixed degree. Thus, by the Kunneth formula and Poincare duality

H∗(B,QH∗(M)) is naturally identified with QHB
∗ (M) via (2.3). However to
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avoid confusion for an element a ∈ QHB
∗ (M) we will write PD(a) when we

think of it as an element of H∗(B,QH∗(M)). Consider the following elements

a, b ∈ H∗(B ×M) ⊂ QHB
∗ (M)

a =
∑
i

ai ⊗mi, a′ =
∑
j

a′j ⊗m′j, ai, a
′
i ∈ H∗(B),mi,m

′
j ∈ H∗(M),

then

PD(a) ∪ PD(a′) = PD

(∑
i,j

(ai ∩ a′j)⊗mi ∗m′j

)
, (2.12)

where ∗ is the homology quantum product. We will need the following simple

Lemma.

Lemma 2.15. If Ptr = B × (M × S2) and a, b as above, then

PD(a) ∪ PD(b) = PD

(∑
A

(PD(a) ∪ PD(b))A e
A ∈ QHB

∗ (M)

)
,

(PD(a) ∪ PD(b))A =
∑
k,l

PGW Ptr
0,3 (a, a′, ek,l;A)e∗k,l,

(2.13)

where {ek,l = bk ⊗ el} is a basis for H∗(B ×M).

Proof. Let {J reg} be the constant family of regular complex structures on Ptr

compatible with a constant admissible family {Ω}. Then the family {J reg} is

itself parametrically regular. We have

∑
k,l

PGW Ptr
0,3 (a, b, ek,l;A)e∗k,l =

∑
k,l

∑
i,j

PGW Ptr
0,3 (ai ⊗mi, a

′
j ⊗m′j, ek,l;A)e∗k,l.
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As oriented manifolds,

M∗
0,3(Ptr, A; J reg) ' B ×M∗

0,3(tr, A; {J reg}). (2.14)

Moreover the diagram,

B ×M∗
0,3(M × S2, A, J reg) evtr //

��

P 3
tr ' B3 × (M × S2)3

��
B

diag // B3

commutes. Hence, [evPtr ] = [diag]⊗ [evM×S
2
] as a cycle in B3×(M×S2)3 with

the orientation pulled back from the orientation on tr3 via the identification

tr3 ' B3 × (M × S2)3, where evtr, evM×S
2

are the evaluation maps from

M∗
0,3(tr, A, {J reg}) and M∗

0,3(M × S2, A, J reg), respectively.

Therefore,

∑
k,l

PGW Ptr
0,3 (ai ⊗mi, a

′
j ⊗m′j, ek,l;A)e∗k,l

=
∑
k,l

(
[evtr] · (ai ⊗ a′j ⊗ bk)⊗ (mi ⊗m′j ⊗ el)

)
(bk ⊗ el)∗

=
∑
k,l

[diag]⊗ [evM×S
2

] · (ai ⊗ a′j ⊗ bk)⊗ (mi ⊗m′j ⊗ el)(bk ⊗ el)∗

=
∑
k

((ai ∩ a′j) · bk)b∗k ⊗
∑
l

GWM×S2

0,3 (mi,mj, el;A)e∗l

= (ai ∩ a′j)⊗
∑
l

GWM×S2

0,3 (mi,mj, el;A)e∗l ,

where we used that [diag] · ai ⊗ a′j ⊗ bk = (ai ∩ a′j) · bk. Summing over all

A ∈ Hsect
2 (M × S2) we get the desired equality.
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Given an F -fibration P , define mP : H∗(B ×M)→ QHB
∗ (M) by

mP (a) =
∑
A,i

PGW P
0,2(a, ei;A)e∗i ⊗ eA, (2.15)

where ei are as in Theorem 2.13, and extend by linearity to all of QHB
∗ (M).

Lemma 2.16. If P = P1 ⊕ P2 then,

mP = mP1 ◦mP2 .

Proof. By (2.15),

mP1 ◦mP2(a) =
∑
C

∑
i,A#B=C

PGW P2
0,2(a, ei;A) · PGW P1

0,2(e∗i , ej;B)e∗j ⊗ eC

=
∑
i,C

PGW P
0,2(a, ej, C)e∗j ⊗ eC = mP (a),

where we used Theorem 2.13 for the second equality.

Lemma 2.17. For an F-fibration P

PD(mP (a)) = PD(cq(P )) ∪ PD(a).

Proof. It suffices to prove this for a simple class a ∈ QHB
∗ (M). Using Theorem
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2.13 with P2 = P and P1 = tr = B × (M × S2) we get:

PD(mP (a)) = PD

(∑
j,C

PGW P
0,2(a, ej;C)e∗j ⊗ eC

)

= PD

( ∑
i,j,A#B=C

PGW P
0,1(ei;A) · PGW Ptr

0,3 (e∗i , a, ej;B)e∗j ⊗ eC
)

=
∑

i,A#B=C

PGW P
0,1(ei;A) · (PD(e∗i ) ∪ PD(a))B ⊗ e

C

= PD(cq(P )) ∪ PD(a),

where we used Lemma 2.15 for the next to last equality.

Verification of Axiom 3

Using the above lemmas we get,

PD(cq(P )) = PD(mP (B ×M)) = PD(mP1 ◦mP2(B ×M))

= PD(cq(P1)) ∪ PD(cq(P2)).
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Chapter 3

An equivariant approach to computation

3.1 QC classes and the Hofer geometry

Let p : Pf → B be a smooth F -fibration. We explain here how cq(Pf ) gives rise

to lower bounds for the positive max-length measure L+(f) = maxb∈B L
+(fb);

this will be used later in this Chapter. We will assume that the family {Ωb}

on Pf has been chosen so that condition (1.11) is satisfied. Let f : B → Q be

a general smooth cycle. Define a valuation

ν : QH∗(M), QHB
∗ (M)→ R by ν

(∑
A

bA · tεAqlA
)

:= sup
bA 6=0

εA, (3.1)

and bA is in H∗(M) or H∗(B ×M). Our next proposition is a direct general-

ization of Seidel’s, (see [14]).

Proposition 3.1.

ν(cq(Pf )) ≤ min
(B,f)∈[H]

(
max
b∈B

L+(γb)

)
, (3.2)
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where [H] represents the homotopy class of maps f : B → Q and γb is the loop

f(b) (this is defined up to an action of S1). Moreover,

ν(Ψ(B, f)) ≤ min
(B,f)∈[H]

(
max
b∈B

L+(γb)

)
, (3.3)

where [H] now denotes the bordism class of maps f : B → Q.

Proof. Let

cq(P ) =
∑
A

bA ⊗ q−cvert(A)t−C(A).

If bA 6= 0 in H∗(B ×M) then there is a Jb-holomorphic curve u : (S2, j) →

Xb ⊂ Pf in class A ∈ HS
2 (Pf ). On the other hand [Ωb] = C+π∗([αb]), for some

area form α on S2, where [Ωb] is the cohomology class of Ωb in H2(Xb). Since

Ωb tames Jb, we get

0 < [Ωb](A) = (C + π∗(αb)) (A) = C(A) + area(p−1(b),Ωb).

Therefore,

−C(A) < area(p−1(b),Ωb) = L+(γb) + 2ε ≤ max
b∈B

L+(γb) + 2ε (3.4)

for all A. Passing to the limit in A and ε we get ν(cq(Pf )) ≤ maxb∈B L
+(γb).

Since the left hand side of (3.4) depends only on the homotopy class of f ,

we get the inequality 3.2. Inequality 3.3 follows by the same argument and

Lemma 2.8.
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3.2 QC classes of some symmetric F-fibrations

Let q : Y → B be a principal S1-bundle and f̂ : Y → Ham(M,ω) an S1-

equivariant map with respect to the right action of some subgroup γ : S1 →

Ham(M,ω) on Ham(M,ω). Recall from Section 1.1.5 that we have an induced

cycle f : B → Q, and an induced fibration p : Pf → B. In this section, we give

an expression for the “leading-order term” contribution to the total quantum

characteristic class cq(Pf ) and give a proof of Theorem 0.9. This extends the

calculation for S1 actions in [16, Theorem 1.10].

By Lemma 1.10, Pf can be identified with h : Y ×S1 Xγ → B. The bundle

Y ×S1 Xγ comes with an admissible family {Ωb} and a compatible family {Jb}

constructed in Section 1.1.5.

To understand the behavior of fiber holomorphic curves in Pf , we need to

first understand J̃ holomorphic curves in Xγ, where J̃ is the almost complex

structure described in Section 1.1.5.

Each fixed point x of the S1-action γ gives rise to a J̃-holomorphic section

of Xγ defined by

σx = S3 ×S1 {x} ⊂ Xγ.

Denote by Fmax the maximal fixed point set of the Hamiltonian S1-action

γ on M , i.e. the maximal set of the generating Hamiltonian H of γ. Let

σmax ∈ H2(Xγ) denote the homology class of the section σx for x ∈ Fmax. For

each x ∈ Fmax we have a J̃ holomorphic σmax curve. An important observation

due to Seidel is that these are the only J̃-holomorphic curves in that homology

class (cf. [16, Lemma 3.1]); and so the moduli space of these unparametrized

curves is identified with Fmax. Since the S1-action β (see eq. (1.18)) on
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Xγ maps each section σx to itself, it follows that the unparametrized moduli

spaceM∗
0,0(Pf , σmax; {Jb}) can be identified with B ×Fmax. In particular it is

a compact manifold. Let E be the obstruction bundle over this moduli space.

The fiber of E at (b, x) ∈ B × Fmax is the cokernel of the operator

Du,b :
{
ξ ∈ Ω0(S2, u∗TPf )|dpf (ξ) ≡ const

}
→ Ω0,1(S2, u∗TXb),

where u : S2 → Xb parametrizes the section σx ⊂ Xb. We write Dvert
u,b for the

restriction of Du,b to Ω0(S2, u∗TXb).

Lemma 3.2.

cokerDvert
u,b ' cokerDu,b. (3.5)

Proof. Since the map

pf ◦ ev :MPf
0,1(σmax; {Jb})→ B

is a submersion, the homomorphism

dpf : kerDu,b → TbB

is onto. It easily follows that Dvert
u,b and Du,b have the same image.

Thus, the fiber Eb of the obstruction bundle E is cokerDvert
u,b . The funda-

mental class of M∗
0,0(Pf , σmax; {Jregb }) is identified with PDB×Fmaxe(E), see

[11, Chapter 7.2]. We thus have the following direct generalization of [16,

Theorem 1.9].
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Proposition 3.3. Let f : B → Q and the obstruction bundle E be as above.

Then

cq(Pf ) = PDB×F e(E)⊗q−mmaxtHmax+
∑

A∈HS
2 |ω(A)>0

bσmax +A
⊗q−mmax−c1(A) tHmax−ω(A),

where mmax = cvert(σx) =
∑

i ki and Hmax is the maximum value of the nor-

malized Hamiltonian generating γ.

Proof. Since the evaluation map ev : M∗
0,1(Pf , σmax, {Jb}) → Pf intersects

I0(B ×M) transversally at B × Fmax, it can be deduced from the above dis-

cussion that the class corresponding to the transverse intersection of

evreg :M∗
0,1(Pf , σmax, {Jreg})→ Pf

with I0(B ×M) is PDB×F e(E) ∈ H∗(B ×M).

By [16, Lemma 3.1] there are no contributions from sections σmax + A

with ω(A) < 0; this also follows from the argument in the proof of Theorem

0.12.

We need to understand cokernel of the linearized Cauchy-Riemann operator

Dvert
u,b : Ω0(S2, u∗TXb)→ Ω0,1(S2, u∗TXb),

where u : S2 → Xb parametrizes the section σx ∈ Xb, x ∈ Fmax as before.

The complex normal bundle N(σx) of σx inside TXb can be identified with the

bundle

(TxM,Jx)×S1 S3 → S2
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and so splits into a sum of complex line bundles

⊕ni=1Lki , (3.6)

where the degree of Lki is ki. In other words each S1 invariant summand

Vi ' C of TxM , on which S1 is acting by v 7→ e−2πikiθv, gives rise to the

summand Lki of N(σx). Thus,

TXb|σx = (⊕ni=1Lki)⊕ L2 ≡ L,

where L2 is the tangent bundle to σx. Since x ∈ Fmax, ki ≤ 0 for all z.

By proof of [16, Lemma 3.2] the operator Dvert
ux,b

is complex linear and is

the Dolbeault operator ∂̄ on TXγ|σx , with respect to a holomorphic struc-

ture for which the splitting (3.6) is holomorphic. Thus, cokernel of Dvert
ux,b

is

H0,1

∂̄
(S2, L) ' (H1,0

∂̄
(S2, L∗))∗. The latter can be identified with (H0(S2, L∗ ⊗

Kx))
∗, where Kx = T ∗(σx) denotes the canonical bundle of σx.

Set

Eb,x,i = H0(S2, L∗ki ⊗Kx).

This latter space can be identified with the space of degree ni ≡ −ki−2 homo-

geneous polynomials in X, Y , where X, Y denote the homogeneous coordinates

on CP1. Thus, a section in H0(S2, L∗ki ⊗Kx) is completely determined by its

holomorphic ni-jet over 0 ∈ D2
0 ⊂ S2. Therefore,

Eb,x,i '
⊕

0≤j≤ni

Hom
(
(T0σx)

⊗j, Kx|0 ⊗ L∗ki |0
)
'
⊕

0≤j≤ni

(Kx|⊗j0 )⊗ (Kx|0 ⊗ L∗ki |0)
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The cokernel Eb,x of Dvert
ux,b

is then

Eb,x =
⊕
i

E∗b,x,i, (3.7)

whose real dimension is the virtual index of γ, defined by

I(γ) =
∑

1≤i≤n
ki≤−1

2(−ki − 1). (3.8)

Let K̃ be the bundle Y ×S1 C and set K = pr∗1K̃, where pr1 : B×Fmax → B,

and pr2 : B × Fmax → Fmax are the projections. Then K is the bundle over

B × Fmax whose fiber over (x, b) = Kx|∗0, where Kx = T ∗σx ⊂ Xb, (cf. eqs.

(1.18), (1.21)). We also have natural bundles Li over B × Fmax coming from

the bundles Lki above. Note that e(Lj) and e(K) are agebraically independent

in the cohomology ring of B ×M . The Euler class of E is given by

e(E) =
∏
i

∏
0≤j≤ni

((j + 1)e(K) + e(Li)).

=
∏
i

(ni + 1)! e
P
i(ni+1)(K) + mixed terms.

(3.9)

We can thus rewrite eq. (3.9), using that ni = −ki − 2, as

e(E) =
∑

0≤p≤ I(γ)
2

ep(K) ∪ ap, (3.10)

where ap are in H
I(γ)

2
−p(B × Fmax), consisting of sums of products of classes

e(Li) with some coefficients.
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Theorem 3.4. Let f̂ : Y → Ham(M,ω) be as above and B = Y/S1. Every

non-zero term

ep(K) ∪ ap ∈ H∗(B × Fmax)

in the expansion for e(E) gives rise to a non-trivial characteristic class cq2p(Pf ).

Moreover, it gives rise to cycles a ∈ HS1

2p (LHam), minimizing the positive max-

length measure in their bordism class.

Proof. If e is the Euler class of q : Y → B, then since K is isomorphic to

pr∗1(Yγ ×S1 C) it follows that the Poincare dual of ep(K) ∪ ap is of the form

PDB(e)⊗ PDFmax(ap|[pt]×Fmax) ∈ H∗(B ×M),

where PD(e) ∈ H∗(B) and (ap|[pt]×Fmax)∗ is thought of as a class in H∗(M) via

inclusion of Fmax into M . Since the generating function H of γ is necessarily

a perfect Morse-Bott function (see [15]) the inclusion of Fmax into M can be

shown to be injective on homology. The first part of the theorem is then

immediate from our assumption, the definition of the characteristic classes

cqk(Pf ), and Theorem 3.3. We prove the second statement. For some a ∈

H2p(B) we have that 0 6= cq2p(Pf )(a). By Proposition 2.9

cq2p(Pf )(a) = Ψ(f ◦ g, C),

where g : C → B is a smooth map representing the rational homology class of

a. Thus, the cycle f ◦ g : C → Q is essential in the bordism group by Lemma

2.8. Let us see that it minimizes the max-length measure. By Theorem 3.3,

ν(Ψ(f ◦ g, C)) = Hmax. On the other L+(f ◦ g) = Hmax, since all the loops in
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the image Im(f) ⊂ Q have positive Hofer length Hmax. Thus, by Proposition

3.1 f ◦ g minimizes the measure L+(f) in its homology class.

3.2.1 Proof of Theorem 0.9

Since e(K̃) = e 6= 0, the p = Iγ
2

term in the expansion of e(E) is non-zero.

Thus, by Theorem 3.4, the cycle f : B → Q is essential and minimizes the

measure L+(f) in its bordism class.

3.3 Proof of Theorem 0.12

Consider the fibration h : S2k+1 → CPk. Homotop f̂ : S2k+1 → Ham(M,ω),

so that it takes the set h−1(Dc) to id, where D ⊂ CPk is an open ball. The

new map will still be denoted by f̂ . Let q : CPk → S2k be the quotient map,

squashing CPk −D to s0 ∈ S2k. There is an induced quotient map

q|B × id : (h−1(D̄) ' D̄ × S1)→ S2k × S1.

Since

f̂
(
(q × id)−1(s0 × S1)

)
= f̂(h−1(∂D̄)) = id,

there is then an induced map

f̃ : S2k × S1 → Ham(M,ω)

and the associated map

f2 : S2k → LHam.
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We will show now that cq(Pfh) = cq(Pf2). On the other hand, we show in

Lemma 3.6 below that f is homotopy equivalent to f2.

The restriction of Pfh to D is the pullback by q of the fibration Pf2 over S2k.

By (2.2), a section class A ∈ HS
2 (X) contributes to cq(Pf ) only if cvert(A) ≤ 0;

moreover, if cvert(A) = 0, the class A only contributes to the degree zero class

cq0(A) and so is not relevant to us. When cvert(A) < 0, the monotonicity of M

implies that −C(A) > 0 in this case, because X ' M × S2, (since f and fh

map into components of Q corresponding to contractible loops in Ham(M,ω)

by construction). Put an admissible family {Ωb} on Pf2 as in Section 1.1.2, so

that the area of the fiber Xb over b ∈ S2k is

L+(f(b)) + 2ε

with ε < −C(A). Let {Jb} be a compatible regular family. The proof of

Proposition 3.1 implies that the area of each fiber of p : Pf2 → S2k is at least

−C(A) whenever there is a {Jb}-holomorphic A-curve in that fiber. Thus, no

element of the moduli space M∗
0(Pf2 , A; {Jb}) lies in the fiber over s0, since

the area of Ωs0 is 2ε.

Pullback by q the families {Ωb}, {Jb} to Pfh over D̄. The restriction of

{q∗Ωb} over ∂D̄ is by construction the constant family restricting to a split

symplectic form, i.e. ω + π∗(α), with area 2ε on each fiber, since Ωs0 has that

property.

Since f̂ is the constant map to id on Dc, the family {q∗Ωb} over D̄ can

be extended to a family {Ω̃b} on Pfh such that the area of each fiber X over

Dc is 2ε. To see this note that the fibers of Pfh|Dc can be identified with the
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product M ×S2, up to an action of S1 which rotates the base S2 and fixes M .

Since the constant family {q∗Ωb} over ∂D̄ restricts to a split form on the fibers

X ' M × S2, which is invariant under this S1 action, there is an extension

{Ω̃b} of {q∗Ωb} to Dc. Pick any extension {J̃b} of {q∗(Jb)} which is compatible

with {Ω̃b}. By the above discussion, there are no {J̃b}-holomorphic A-curves

over Dc. Thus, {J̃b} is regular, since it is regular for curves over D as it is

a pullback of a regular family {Jb} there. Moreover, q pushes forward the

moduli space M∗
0,1(Pfh , A; {J̃b}) to the moduli space M∗

0,1(Pf2 , A, {Jb}) i.e.

the diagram

M∗
0,1(Pfh , A; {J̃b}

u7→eq◦u//
��

M∗
0,1(Pf2 , A; {Jb})

��
CPk // S2k

commutes, where q̃ is a lift of q which is defined on Pfh|D.

By definition

cq(Pf2) =
∑
A

bA ⊗ eA ∈ QHS2k

∗ (M),

cq(Pfh) =
∑
A

b′A ⊗ eA ∈ QHCPk
∗ (M),

where bA is the transverse intersection of

ev :M∗
0,1(Pfh , A, {J̃b})→ Pfh

with I0(CPk ×M), and b′A is the transverse intersection of

ev :M∗
0,1(Pf2 , A, {Jb})→ Pf2
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with I0(S2k ×M). Since the above moduli spaces lie over contractible subsets

of CPk and S2k

bA = [pt]⊗ bMA ∈ H∗(CPk ×M)

b′
M
A = [pt]⊗ b′MA ∈ H∗(S2k×M),

for some bA, b
′
A ∈ H∗(M). The above discussion implies that bMA = b′MA . The

conclusion follows.

Remark 3.5. This proof makes extensive use of monotonicity. It is not obvi-

ous to me if this theorem is true in a situation where one must use methods

of the virtual moduli cycle.

Lemma 3.6. The maps f and f2 above are freely homotopy equivalent.

Proof. The map f is induced from a composition of maps of pairs

(D2k × S1, ∂D2k × S1)
t−→ (S2k+1, pt)

bf−→ (Ham(M,ω), id).

On the other hand, f2 is the induced map from the composition of maps of

pairs

(D2k × S1, ∂D2k × S1)
i−→ (S2k+1, h−1(Dc))

bf−→ (Ham(M,ω), id).

Clearly, we can homotop f̂ through maps of pairs to a map f̂ ′ : (S2k+1, Oc)→

(Ham(M,ω), id), where O ⊂ h−1(D) is an open ball which does not contain
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[pt]. Then f is homotopic to a map induced from the composition

(D2k × S1, ∂D2k × S1)
i−→ (S2k+1, Oc)

bf ′−→ (Ham(M,ω), id),

and f2 is induced from

(D2k × S1, ∂D2k × S1)
t−→ (S2k+1, Oc)

bf ′−→ (Ham(M,ω), id).

Thus, we just need to show that i is homotopic via maps of pairs to t. To see

this one can use degree.

3.4 The Hopf algebra structure of H∗(LHam,Q)

This section is mostly an excursion, which studies the relationship of the ho-

momorphism Ψ with the Pontragin ring structure of H∗(LHam,Q). It may be

interesting to the reader in order to understand how the use of S1-symmetry

in this chapter relates to the bigger picture of QC classes.

The Milnor-Moore theorem states that a connected co-commutative Hopf

algebra A over a field of characteristic zero is generated by its primitive ele-

ments. A primitive element is an element a ∈ A such that its coproduct is

1 ⊗ a + a ⊗ 1. More precisely it says that A is isomorphic as a Hopf algebra

to the universal enveloping algebra U(P (A)), where P (A) denotes the associ-

ated Lie algebra of its primitive elements. In other words the only relations in

U(P (A)) are the ones of the form

a⊗ b− (−1)pqb⊗ a = ab− (−1)pqba,
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where the product on the right is the product in the Hopf algebra. When A

is the rational Hopf algebra of an H-space, Cartan-Serre theorem states that

the Lie algebra of primitive elements consists of spherical classes. In fact, we

have the following.

Theorem 3.7. [Milnor-Moore [18], Cartan-Serre [3]] Let X be a connected

H-space. Denote by π∗(X,Q) ⊂ H∗(X,Q) the Lie sub-algebra of the as-

sociated algebra of the ring, generated by the image of the Hurewitz map

h : π∗(X) → H∗(X,Q) and denote by U(π∗(X,Q)) the universal enveloping

algebra of π∗(X,Q). Then

H∗(X,Q) ' U(π∗(X,Q)),

as rings (in fact as Hopf algebras).

For [γ] ∈ π1(Ham(M,ω), id), let L[γ] ⊂ LHam denote the component con-

taining the loop γ. As a space

L[γ] = Ω
[γ]
id Ham(M,ω)× Ham(M,ω).

Hence,

π∗(X
[γ]) ' π∗(Ham(M,ω))⊕ π∗(Ω[γ]

id (Ham(M,ω))).

Combining this with Theorem 3.7, (L[γ] is not a connected H-space naturally

but is homeomorphic to one) we get

H∗(L
[γ],Q) ' U(π∗(Ham(M,ω),Q))⊗ U(π∗(Ω

[γ]
id (Ham(M,ω)),Q))
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as rings. By Lemma 3.8 below, Ψ vanishes on

H∗(Ham(M,ω),Q) ' U (π∗(Ham(M,ω),Q))

for ∗ > 0. On the other hand Ψ(H0(Ham(M,ω),Q) is generated over Q by

[M ], the multiplicative identity element; see Example 2.11. Combining this

with Theorem 0.7, we see that rationally Ψ is only interesting on

U(π∗(Ωid(Ham(M,ω)),Q)) ⊂ H∗(LHam),

which is the free graded commutative algebra on π∗(Ωid(Ham(M,ω)). How-

ever, working on the free loop space allows us to pass to the S1 equivariant

homology of LHam, using which we were able to do computations in this

Chapter.

Define i[γ] : Ham(M,ω) → Lγ to be the inclusion which takes an element

φ ∈ Ham(M,ω) to the loop φ ◦ γ.

Lemma 3.8. If k > 0, Ψ(f) = 0 for f : Bk → i[γ](Ham(M,ω)), where .

Proof. This follows from the fact that for a map

f : Bk → iγ(Ham(M,ω)) ⊂ Lγ

f(b) = φb ◦ γ, where φb ∈ Ham(M,ω),

the fibration Pf is isomorphic to a trivial F -fibration by an isomorphism which

is a Hamiltonian bundle map on each fiber, and so the relevant invariants

vanish by Axiom 1. Let c[γ] be the constant map f : B → L[γ] to the loop γ.
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We trivialize Pf as follows:

Pf = (B×M×D2)0∪f (B×M×D2)∞
tr−→ Pc[γ] = (B×M×D2)′0∪c[γ](B×M×D

2)′∞,

tr(b, x, z)0 := (b, x, z)′0 and tr(b, x, z)∞ := (b, φ−1
b (x), z)′∞,

where φb ∈ Ham(M,ω) is as above. This map is easily seen to be well defined.
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Chapter 4

Structure group of F-fibrations

This chapter is concerned with the structure groups of the fibrations p̃ : U →

LHam and p : US1 → Q, which is indirectly used for the proof of Lemma 1.5.

Another goal here is to prove that p̃ : U → LHam is universal for its structure

group.

Proposition 4.1. The structure group of p : U → LHam over the component

of the loop γ can be reduced to the group Fγ of Hamiltonian bundle maps of

Xγ which are identity over D2
0 and over a small neighborhood of 0 ∈ D2

∞ in

coordinates of eq. (0.5).

This proposition follows immediately from Lemma 4.5 proved later in this

section. For γ : S1 → Ham(M,ω) let [γ] denote its equivalence class in

π1(Ham(M,ω), id).

Proposition 4.2. Let Q[γ] denote a connected component of Q. The structure

group of p : U [γ] → Q[γ] may be reduced to the group of Hamiltonian bundle

maps of πγ : Xγ → S2, which sit over rotations the base S2, with the axis of

rotation corresponding to 0 ∈ D2
0, 0 ∈ D2

∞. Moreover, elements of this group

act as id× rot on M ×D2
0 ⊂ Xγ and by identity on the fiber over 0 ∈ D2

∞.
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The proof will be given after some preliminaries. To make the discussion

more transparent we work with connections, which to us will be just smooth

or continuous functors. In fact, there is a natural such connection on p̃ : U →

LHam.

Remark 4.3. Part of the motivation for working with connections is that I

hoped there may be an infinite dimensional Chern-Weyl theory, relating to

QC classes, that may emerge from such a viewpoint. As of now I don’t know

if such a development is possible.

4.0.1 The path groupoid

A topological category is a small category in which the set of all objects and

the set of all morphisms are topologized, so that the source and target maps

and all structure maps are continuous. Let p : P → B be a bundle with fiber

X, where B is a topological group. Let C(B) be a topological groupoid whose

objects are the points of B. The morphisms from a to b are defined to be

C(a, b) = P (a, b),

the space of continuous paths from a to b, i.e. maps m : [0, 1] → B s.t.

m(0) = a and m(1) = b. The composition law

C(a, b)× C(b, c)→ C(a, c)

is defined as follows. Let ma,b : [0, 1] → B be a path with endpoints a, b and

mb,c : [0, 1]→ B be a path with endpoints b, c. Then mb,c ◦ma,b : [0, 1]→ B is
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defined by

mb,c ◦ma,b(t) = mb,c(t) ·m−1
b,c (0) ·ma,b(t).

This path clearly has endpoints a, c and is continuous. This is essentially the

only natural way to define a composition law for paths in a topological group.

The topology on the set of morphisms i.e. the free path space of B is taken to

be the compact open topology.

4.0.2 The category D(P,B, p)

We also define a topological category D(P,B, p), whose space of objects is

homeomorphic to B with elements: manifolds Xb = p−1(b) for b ∈ B. The

space of morphisms from Xa to Xb is defined to be

D(Xa, Xb) = Homeo(Xa, Xb),

the space of homeomorphisms from Xa to Xb. The composition law is just the

composition of homeomorphisms.

Topology on the space of morphisms of D(P,B, p)

For each b ∈ B, let Ub ⊂ B be an open set with a trivialization φb : Ub×X →

p−1(Ub). Let now a, b ∈ B. Any morphism whose source is the fiber Xu1 with

u1 ∈ Ua and target Xu2 with u2 ∈ Ub can be identified via the trivializations

φa, φb with a homeomorphism from X to X. Thus, the set of such morphisms

is identified with Ua×Ub×Homeo(X,X), which we will denote by D(Ua, Ub). It

has a natural topology, where the topology on Homeo(X,X) is the compact-
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open topology. The basis for a topology on the set of all morphism then

consists of open sets in D(Ua, Ub) for all a, b ∈ B. Clearly, a different choice of

trivializations gives rise to equivalent topologies.

4.0.3 Connections

Definition 4.4. Let p : P → B be as above. An abstract connection is

defined to be a continuous functor F from the category C(B) to D(P,B, p)

The map F (m) : p−1(m0) → p−1(m1) will be called the parallel transport

map. The name of the connection is the name of the corresponding functor.

(e.g. F ) The word abstract in abstract connection will often be dropped. We

may define the holonomy group of an abstract connection exactly the same

way as for usual smooth connections on G-bundles, using the parallel transport

maps.

Lemma 4.5. The structure group of p : P → B over a connected component

can be reduced to the holonomy group Hol(F ) of the connection F on this

component.

Proof. Let {Ui} be a cover of B by contractible open sets and Hi : Ui×I → B

be a free homotopy, which at time 0 is the constant map to b0 and at time 1

is the inclusion map of Ui. Then parallel translating by F , along the paths of

the homotopy hi,x(t) = Hi(x, t), gives a trivialization tri : Ui ×X → p−1(Ui).

The transition map trij : Ui
⋂
Uj ×X → Ui

⋂
Uj ×X is by construction and

functoriality of F given by parallel translation by F along the loops h−1
j,x ◦hi,x.

Here ◦ is the multiplication in the groupoid C(B).
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4.0.4 A connection FU on p : U → LHam

The space LHam is a topological group and we may take the topological

groupoid C(LHam) defined as above, except that we take the morphisms in

the groupoid to be smooth in the sense below.

Definition 4.6. We define a map m : [0, 1] → LHam to be smooth if it

is locally constant at the endpoints and the associated map m̃ : [0, 1] × S1 →

Ham(M,ω) is smooth.

The groupoid C(LHam) is topologized as a subspace of continous maps

with its compact open topology.

The parallel transport map.

Let m : I → LHam be a path. We define the map FU(m) = tm from the fiber

Xm0 over m(0) = m0, to the fiber Xm1 over m(1) = m1 as follows. We have

Xm0 = M ×D2
0 ∪m0 M ×D2

∞,

Xm1 = M ×D2
0 ∪m1 M ×D2

∞

If r, θ are polar coordinates on D2, then

tm(x, r, θ)0 = (x, r, θ)0 and tm(x, r, θ)∞ = (mr,θ ◦m−1
0,θ(x), r, θ), (4.1)

where mr,θ denotes the element of the loop mr = m(r) at time θ.
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This is well defined under the gluing since the diagram:

(x, 1, θ)0
∼ //

tm
��

(m0,θ(x), 1, θ)∞

tm
��

(x, 1, θ)0
∼ //
(
m1,θ ◦m−1

0,θ ◦m0,θ(x) = m1,θ(x), 1, θ
)
∞,

commutes. We leave it to the reader to verify that this gives a a continuous

functor FU : C(LHam)→ D(U,LHam, p), which assigns to γ ∈ LHam the fiber

Xγ and to a morphism m : I → LHam from γ0 to γ1 the map tm : Xγ0 → Xγ1 .

We denote by LHamγ the component of the loop γ in LHam.

Lemma 4.7. The group Hol(FU) is isomorphic to the group C(γ, γ) of auto-

morphisms of the object γ in C(LHam).

Proof. By construction of the connection FU , the natural surjective holonomy

map hol : AutC(γ)→ Hol(F ) has no kernel.

Let E denote the space of all smooth paths in LHam based at γ, (see

Definition 4.6). This is a contractible space with a free continuous action of

the group AutC(γ) acting by left multiplication using the topological groupoid

structure of C(LHam). Moreover, this action fixes the fibers of the projection

k : E → LHam given by evaluating at the endpoint and is transitive on the

fibers. It follows that k : E → LHam is the universal AutC(γ)-bundle. In

other words

BAutC(γ) = BHol(FU) = LHamγ. (4.2)

In fact, we have.

Proposition 4.8. The bundle p̃ : U → LHamγ is the associated bundle to the
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universal principal AutC(γ)-bundle k : E → LHamγ.

Proof. This follows from the proof of Lemma 4.5. The details are left to the

reader.

4.0.5 Proof of Proposition 4.2

Recall that the bundle p : US1 → Q is the quotient by the S1 action ρ̃ of

the bundle p × id : U × S∞ → LHam × S∞, (cf. Section 1.1.1). Let Vi be a

contractible open set in Qγ and

gi : Vi × S1 → LHam× S∞

a local trivialization of the principal S1 bundle h : LHam×S∞ → Qγ. Let Hi

be a free homotopy of the map gi : Vi × 0→ LHam×S∞ to the constant map

to (γ0, s0). As before, the connection F then induces a map

ti : Vi ×Xγ0 → p−1(gi(Ui × 0)),

by parallel translating along the paths of the homotopy Hi. The transition

maps tij have the form:

tij(u, x) = (u, t−1
j ◦ ρ̃(θij)

−1 ◦ ti(x))

where θij comes from the transition maps gij : Vi ∩ Vj × S1 → Vi ∩ Vj × S1,

gij(u, θ) = (u, θ + θij). By construction, this is a Hamiltonian bundle map of

πγ : Xγ → S2 to itself which sits over the rotation by θij of the base and fixes
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the fibers over 0 and infinity.
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