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Abstract of the Dissertation

From Rules to Efficient Algorithms for Cyber Trust Applications

by
Katia Hristova

Doctor of Philosophy
in

Computer Science
Stony Brook University

2007

Cyber trust applications require correct and efficient algorithms for solving complex

analysis problems. We address this challenge by generating efficient algorithms and im-

plementations from high-level specifications of these problems expressed using rules. We

use extended Datalog rules to intuitively specify analysis problems in the areas of model

checking, information flow analysis, and trust management, and then generate efficient al-

gorithms and implementations systematically from the rules. Our work resulted in new

and more efficient algorithms for some problems and new and improved time and space

complexity analysis for others.

In the model checking area, we describe an efficient algorithm with improved complex-

ity analysis for linear temporal logic model checking of pushdown systems. This model

checking framework can express and check many practical properties of programs, includ-

ing many dataflow properties and general correctness and security properties. For secure

information flow analysis, we describe the development of the first linear-time algorithm

for inferring information flow types of programs for a formal type system. We also extend

the algorithm with informative error reporting to facilitate error detection and corrections.

In the area of trust management, we describe efficient algorithms for analysis of trust man-

agement policies specified in SPKI/SDSI, a well-known trust management framework de-

signed to facilitate the development of secure and scalable distributed computing systems.
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Our approach of expressing policy analysis problems as rules is much simpler than previ-

ous techniques, in addition to deriving better, more precise time complexities. We show the

efficiency of these algorithms by performing precise time and space complexity analysis

and confirming them through experiments.

Lastly, we describe a method to generate efficient algorithms for answering rule-based

queries. The method is based on the well-known magic set transformation. We apply the

method to query problems for graph reachability, as well as in model checking, information

flow analysis, and security policy frameworks.
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Chapter 1

Introduction

This thesis focuses on improving software productivity by formulating and using high-
level problem specifications that are amenable for automated code generation and analysis.
We design efficient algorithms and implementations for problems in the areas of cyber
trust, ranging from verification to trust management and computer security and privacy.
We express the problems in a high level language, and use tools that automatically gener-
ate efficient implementations from high-level specifications. Our work demonstrates that
adopting such an approach significantly cuts down the cost and time for the software de-
velopment process of the software lifecycle.

Cyber trust applications require correct and efficient algorithms for solving complex
analysis problems. We address this challenge by generating efficient algorithms and im-
plementations from high-level specifications of these problems expressed using rules. We
use extended Datalog rules to intuitively specify analysis problems in the areas of model
checking, information flow analysis, and trust management, and then generate efficient al-
gorithms and implementations systematically from the rules. Our work resulted in new
and more efficient algorithms for some problems and new and improved time and space
complexity analysis for others.

LTL Model Checking of Pushdown Systems. Model checking is a widely used tech-
nique for verifying that a property holds for a system. Systems to be verified can be mod-
eled accurately by pushdown systems (PDS). Properties can be modeled by linear temporal
logic (LTL) formulas. LTL is a language commonly used to describe properties of systems
and is sufficiently powerful to express many practical properties. Examples include many
dataflow analysis problems and various safety and security problems for programs.
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In our work the model checking problem is formulated in terms of evaluation of a Dat-
alog program. The Büchi PDS, corresponding to the product of the PDS and the automaton
representing the inverse of the property, is expressed in Datalog facts, and a reach graph
— an abstract representation of the Büchi PDS, is formulated in rules. Efficient algorithms
and data structures are generated automatically directly from the rules. We thus devel-
oped a model checker with improved time complexity guarantees and improved algorithm
understanding.

The algorithm derived in this work is essentially the same as the one presented in [35].
What distinguishes our work is that we used a novel implementation strategy for the model
checking problem that combines an intuitive definition of the model checking problem in
rules [13] and a systematic method for deriving efficient algorithms and data structures
from the rules [57], and arrives at an improved complexity analysis. We show the effective-
ness of our approach by using a precise time complexity analysis, along with experiments.

This work appeared in the 7th International Conference on Verification, Model Check-
ing and Abstract Interpretation (VMCAI), 2006 [44].

Type Inference for Secure Information Flow. Protection of the confidentiality and pri-
vacy of data is becoming increasingly important. In addition to controlling direct access
to information, it is also essential to control information flow, especially in untrusted code.
Static analysis of information flow in programs allows for fine-grained control without
runtime overhead. Denning [29, 30] proposed a lattice model that could be used to verify
secure information flow in programs. In this model, security classes are ordered in a lat-
tice, and program variables and data are each assigned a security class. The basic security
requirement is absence of information flow from higher to lower security classes. Security
classes can indicate both the level of secrecy and the level of integrity of data. Based on
Denning’s lattice model of information flow analysis, several type-based approaches have
been developed in which the security properties are formulated as type systems — formal
systems of typing rules used to reason about information flow properties of programs.

We described the design, analysis, and implementation of the first linear time algorithm
for information flow analysis expressed using a type system. This work is based on the
type system presented by Volpano et al. in [88], which formulates Denning’s lattice model
and is shown to be sound. Information flow is guaranteed to be secure for a program if the
program type checks correctly.

Given a program and an environment of security classes for information accessed by
the program, our algorithm checks whether the program is well typed, i.e., there is no infor-
mation of higher security classes flowing into places of lower security classes, by inferring
the highest or lowest security class as appropriate for each program node. We express the
analysis as a set of extended Datalog rules based on the typing and subtyping rules, and
we use a systematic method to generate specialized algorithms and data structures directly
from the extended Datalog rules. Our extended Datalog rules are Datalog rules with nega-
tion and external functions. The method described in [57] is used to generate specialized
algorithms and data structures and complexity formulas for the extended Datalog rules.
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Given a program and an environment of security types, the algorithm infers minimum
or maximum security types, as appropriate, for each program node, such that the program
type checks correctly. The algorithm traverses the program top-down multiple times to
infer minimum expression types, and then traverses the program bottom-up once to infer
maximum command types.

The generated implementation uses a combination of linked and indexed data structures
to represent program nodes, environments, and types. The implementation employs an in-
cremental approach that considers one program node at a time. The running time is optimal
for the set of rules we use to specify type inference, in the sense that each combination of
instantiations of hypotheses is considered once in O(1) time. We thus obtained an efficient
type inference algorithm.

The time complexity of the algorithm is linear in the size of the input program, times
the height of the lattice of security classes, plus a small overhead for preprocessing the lat-
tice. This complexity is confirmed through our prototype implementation and experimental
evaluation on code generated from high-level specifications for real systems.

An early version of this work appeared in the ACM SIGPLAN Workshop on Program-
ming Languages and Analysis for Security (PLAS), 2006, and a journal version of it ap-
peared as a technical report [45].

Trust Management Policy Analysis. Trust management is a unified approach to specify-
ing and enforcing security policies in distributed systems and has become increasingly im-
portant as systems become increasingly interconnected. We described a systematic method
for deriving efficient algorithms and precise time complexities from extended Datalog rules
as it is applied to the analysis of trust management policies specified in SPKI/SDSI, a well-
known trust management framework designed to facilitate the development of secure and
scalable distributed computing systems.

SPKI/SDSI [34] is based on public keys and incorporates Simple Public Key Infrastruc-
ture (SPKI) and Simple Distributed Security Infrastructure (SDSI). It provides fine-grained
access control using local name spaces and a security policy model. The SPKI/SDSI frame-
work uses name certificates to define names in principals’ local name spaces as keys or
other names, and uses authorization certificates to grant authorizations and to delegate the
ability to grant authorizations. A principal is authorized to access a resource by an autho-
rization certificate or by a chain of certificates involving naming and delegation. Designing
efficient algorithms for inferring authorizations and answering related queries is essential
for enforcing SPKI/SDSI policies.

We expressed policy analysis problems using extended Datalog, extended with list con-
structors and external functions. We represent certificates as facts, and describe rules and
queries for computing the name-reduction closure, inferring authorizations, and solving
other policy analysis problems for SPKI/SDSI. These other analysis problems include ones
about the current state of the policy, as well as ones about changes in the state that would
be caused by possible changes in the policy, such as expiration or addition of a set of cer-
tificates.
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We systematically generated specialized algorithms and data structures, together with
precise time complexity formulas, from the extended Datalog rules for computing name-
reduction closure and inferring all authorizations. The generated algorithms consider one
certificate or intermediate analysis fact at a time, and use a combination of linked and
indexed data structures to represent different certificates and intermediate values.

Other policy analysis problems are specified as additional rules and queries, and use a
method to systematically push given inputs for the analysis from queries into hypotheses
of rules, yielding specialized and simplified rules for the given queries. This is similar
to pushing demands by queries in magic set transformations [15], but instead of yielding
more complicated rules with magic predicates, we obtain simplified, specialized rules that
are much easier for generating efficient implementations and precise complexities.

Our approach of expressing policy analysis problems as extended Datalog rules is much
simpler than previous techniques for analysis of SPKI/SDSI policies. Our method also de-
rived better, more precise time complexities than before in addition to generating complete
algorithms and data structures.

This work appeared in the 9th ACM SIGPLAN international symposium on Principles
and practice of declarative programming (PPDP), 2007 [46].

Answering Rule-Based Queries Efficiently. In the last chapter of this thesis we describe
a method to generate algorithms that perform on-demand computation, i.e., algorithms to
answer rule-based queries efficiently. The described method combines a prominent bottom-
up optimization called Magic Set Transformation (MST) [15] with a systematic method for
deriving efficient algorithms and data structures from the rules [57]. The method focuses
on Datalog, which is an important logic-based programming language and can be used to
model a significant class of practical problems. We apply the method to graph reacha-
bility, trust management policy analysis, information flow analysis, and model checking
problems.

Datalog. Datalog is a database query language based on the logic programming paradigm
[22, 3]. A Datalog program is a finite set of relational rules of the form

p1(x11, ..., x1a1
) , ..., ph(xh1, ..., xhah

) → q(x1, ..., xa)

where h is a natural number, each pi (respectively q) is a relation of ai (respectively a)
arguments, each xij and xk is either a constant or a variable, and variables in xk’s must be
a subset of the variables in xij’s. If h = 0, then there are no pi’s or xij’s, and xk’s must be
constants, in which case q(x1, ..., xa) is called a fact. For the rest of the thesis, “rule” refers
only to the case where h ≥ 1, in which case each pi(xi1, ..., xiai

) is called a hypothesis of
the rule, and q(x1, ..., xa) is called the conclusion of the rule. The meaning of a set of rules
and a set of facts is the smallest set of facts that contains all the given facts and all the facts
that can be inferred, directly or indirectly, using the rules.

The extended Datalog we use is Datalog with negation and external functions.
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The rest of this thesis is organized as follows. Chapter 2 describes the implementation
and analysis for LTL model checking of pushdown systems. Chapter 3 describes the design,
analysis, and implementation of an efficient algorithm for secure information flow analysis
based on the type system. Chapter 4 describes efficient algoritms for analysis of trust
management policies specified in the SPKI/SDSI framework. Chapter 5 describes a method
for answering rule-based queries efficiently. Chapter 6 concludes.
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Chapter 2

Improved Algorithm Complexity

Analysis for LTL Model Checking of

PDS

Model checking is a widely used technique for verifying that a property holds for a
system. Systems to be verified can be modeled accurately by pushdown systems (PDS).
Properties can be modeled by linear temporal logic (LTL) formulas. LTL is a language
commonly used to describe properties of systems [26, 27, 67] and is sufficiently powerful
to express many practical properties. Examples include many dataflow analysis problems
and various safety and security problems for programs.

In order to solve the LTL model checking problem for PDSs, a Büchi automaton B,
corresponding to the property to be checked for, is constructed. The automaton B and
PDS, P, corresponding to the system to be model checked, are combined into one product
Büchi PDS BP. BP accepts the unwanted behaviors of the system, thus checking correctness
amounts to checking for emptiness of the automaton BP (i.e., showing the system has
no unwanted behavior). If BP accepts the empty language only, then true is returned.
Otherwise, an example of input that BP accepts is returned.

This chapter focuses on LTL model checking of PDS, specifically on the global model
checking problem [35]. The model checking problem is formulated in terms of evaluation
of a Datalog program [13]. The Büchi PDS, corresponding to the product of the PDS and
the automaton representing the inverse of the property, is expressed in Datalog facts, and
a reach graph — an abstract representation of the Büchi PDS, is formulated in rules. The
method described in [57] generates specialized algorithms and data structures and complex-
ity formulas for the rules. The generated algorithms and data structures are such that given
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a set of facts, they compute all facts that can be inferred. The generated implementation
employs an incremental approach that considers one fact at a time and uses a combination
of linked and indexed data structures for facts. The running time is optimal, in the sense
that each combination of instantiations of hypotheses is considered once in O(1) time.

Our main contributions are:

• A novel implementation strategy for the model checking problem that combines an
intuitive definition of the model checking problem in rules [13] and a systematic
method for deriving efficient algorithms and data structures from the rules[57].

• A precise and automatic time complexity analysis of the model checking problem.
The time complexity is calculated directly from the Datalog rules, based on a thor-
ough understanding of the algorithms and data structures generated, reflecting the
complexities of implementation back into the rules.

We thus develop a model checker with improved time complexity guarantees and im-
proved algorithm understanding.

The rest of this chapter is organized as follows. Section 2 defines LTL model checking
of PDS. Section 3 expresses the model checking problem by use of Datalog rules. Section
4 describes the generation of a specialized algorithm and data structures from the rules
and analyzes time complexity of the generated implementation. Section 5 discusses related
work and concludes.

2.1 Linear Temporal Logic Model Checking of Pushdown

Systems

This section defines the problem of model checking PDS against properties expressed
using LTL formulas, as described in [35].

2.1.1 Pushdown systems

A pushdown system (PDS) [33] is a triple (CP , SP , TP ), where CP is a set of control
locations, SP is a set of stack symbols and TP is a set of transitions. A transition is of the
form (c, s) → (c′, w) where c and c′ are control locations, s is a stack symbol, and w is a
sequence of stack symbols; it denotes that if the PDS is in control location c and symbol
s is on top of the stack, the control location changes to c′, s is popped from the stack, and
the symbols in w are pushed on the stack, one at a time, from left to right. A configuration
of a PDS is a pair (c, w) where c is a control location and w is a sequence of symbols
from the top of the stack. If (c, s) → (c′, w) ∈ TP then for all v ∈ SP

∗, configuration
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(c, sv) is said to be an immediate predecessor of (c′, wv). A run of a PDS is a sequence
of configurations conf0, conf1, ..., confn such that confi is an immediate predecessor of
confi+1, for i = 0, . . . , n − 1.

We only consider PDSs where each transition (c, s) → (c′, w) satisfies |w| ≤ 2. Any
given PDS can be transformed to such a PDS. Any transition (c, s) → (c′, w), such that
|w| > 2, can be rewritten into (c, s) → (c′, whd s′) and (c′, s′) → (c, wtl), where whd is the
first symbol in w, wtl is w without its first symbol, and s′ is a fresh symbol. This step can
be repeated until all transitions have |w| ≤ 2. This replaces each transition (c, s) → (c′, w),
where |w| > 2, with |w| − 1 transitions and introduces |w| − 1 fresh stack symbols.

The procedure calls and returns in a program correspond to a PDS [36]. First, we con-
struct a control flow graph (CFG) [4] of the program. Then, we set up one control location,
say called c. Each CFG vertex is a stack symbol. Each CFG edge (s, s′) corresponds to a
transition (i) (c, s) → (c, ε), where ε stands for the empty string, if (s, s′) is labeled with a
return statement; (ii) (c, s) → (c, s′f0), if (s, s′) is labeled with a call to procedure f , and
f0 is f ’s entry point; (iii) (c, s) → (c, s′), otherwise. A run of the program corresponds to
a PDS run.

void m()

   double d = drand48();

   if (d < 0.66):

      s(); plot_right();

      if (d < 0.33): m();


 else:

   else:

      plot_up(); m(); plot_down();


void s()

   if (drand48() < 0.5): return;

   else:

      plot_up(); m(); plot_down();


main()

   srand48(time(NULL)); s();


(a) Example program.
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m5
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m8


m3
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o


e
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e




d=drand48()


if d<0.66
 else


call s


if d<0.33


return


call m


plot_right


plot_up


call m


p
l

o
t


_
d

o
w


n


s0


s2


o


s3


s4


s5


s1


if drand48()<0.5
 else


return
 plot_up


plot-down


call_m


o


return


main1


main2


main0


o


srand(...)


call s


return


(b) Corresponding CFG.

Figure 2.1: Example program and corresponding CFG.

Figure 2.1 shows an example program and its CFG [35]. The program creates random
bar graphs using the commands plot up, plot right, and plot down. The corre-
sponding PDS is:
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CP = {c}
SP = {m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, s0, s1, s2, s3, s4, s5,

main0, main1, main2}
TP = {(c, m3) → (c, m4s0), (c, m6) → (c, m1m0), (c, m8) → (c, m9m0),

(c, m1) → (c, ε), (c, s2) → (c, ε), (c, s4) → (c, s5m0),
(c, s1) → (c, ε), (c, main2) → (c, main1s0), (c, main1) → (c, ε)}

2.1.2 Linear temporal logic formulas

Linear temporal logic (LTL) formulas [26, 27, 67] are evaluated over infinite sequences
of symbols. The standard logic operators are available; if f and g are formulas, then so are
¬f , f ∧g, f ∨g, f → g. The following additional operators are available: X f : f is true in
the next state; F f : f is true in some future state; G f : f is true globally, i.e., in all future
states; g U f : g is true in all future states until f is true in some future state.

A LTL formula can be translated to a Büchi automaton, a finite state automaton over
infinite words. The automaton accepts a word if on reading it a good state is entered
infinitely many times. Formally, a Büchi automaton (BA) is a tuple (CB, LB, TB, C0B, GB)
where CB is a set of states, LB is a set of transition labels, TB is a set of transitions,
C0B ⊆ CB is a set of starting states, and GB ⊆ CB is a set of good states. A transition is
of the form (c, l, c′), where c, c′ ∈ CB and l ∈ LB . The label of a transition is a condition
that must be met by the current symbol in the word being read, in order for the transition
to be possible. A label denotes an unconditional transition. An accepting run of a Büchi
automaton is an infinite sequence of transitions (c0, l0, c1), (c1, l1, c2), . . . , (cn−1, ln−1, cn),
where a state ci ∈ GB appears infinitely many times.

To specify a program property using an LTL formula, the program’s CFG edges are
used as atomic propositions. LTL formulas are defined with respect to infinite runs of the
program. The corresponding BA accepts an infinite sequence of CFG edges, if on reading
it, the automaton enters a good state infinitely many times. For example, the property
that plotting up is never immediately followed by plotting down is expressed by the LTL
formula F = G(plot up → X(¬plot down)). The BA∗ corresponding to ¬F is shown in
Figure 2.2. In the diagram nodes correspond to states and edges correspond to transitions
of the BA; double circles mark good states and a square marks the start state.

2.1.3 LTL model checking of PDS

Given a system expressed as a PDS P , and a LTL formula F , the formula F holds
for P if it holds for every run of P . We check whether F holds for P as follows [35].
First, we construct B — the BA corresponding to ¬F . Second, we construct BP — a
Büchi PDS that is the product of P and B, and make sure BP has no accepting run. A

∗The Büchi automaton was generated with the tool LBT that translates LTL formulas to Büchi automata
(http://www.tcs.hut.fi/Software/maria/tools/lbt/).
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c1 c2 c3 c4

c5

_

_

_

_

plot_up plot_down

plot_up

Figure 2.2: Büchi automaton corresponding to ¬G(plot up → X(¬plot down)).

Büchi PDS (BPDS) is a tuple (C, S, T, C0, G), where C is a set of control locations, S

is a set of stack symbols, T is a set of transitions, C0 ⊆ C is the set of starting control
locations, G ⊆ C is the set of good control locations. Transitions are of the form ((C ∗
S) ∗ (C ∗S∗)). The concepts configuration, predecessor, and run of a BPDS are analogous
to those of a PDS. An accepting run of the BPDS is an infinite sequence of configurations
in which configurations with control locations in G appear infinitely many times. The
product BPDS BP of P = (CP , SP , TP ) and B = (CB, LB, TB, C0B, GB) is the five-
tuple ((CP ∗ CB), SBP , TBP , C0BP , GBP ), where (((cP , cB), s), ((c′P , c′B), w)) ∈ TBP if
(cP , s) → (c′P , w)∈ TP , and there exists f such that (cB, f, c′B)∈ TB , and f is true at
configuration ((cP , cB), s); (cP , cB) ∈C0BP if cB ∈ C0B; (cP , cB) ∈GBP if cB ∈ GB .

The reach graph is analogous to the A br automaton as it is described in [37] and the R
graph in [13].

Next we construct a reach graph — a finite graph that abstracts BP . The nodes of the
graph are configurations of BP . An edge ((c, s), (c′, s′)) in the reach graph corresponds
to a run that takes BP from configuration (c, s) to configuration (c′, s′). If a good control
location in BP is visited in the run corresponding to an edge, the edge is said to be good.
A path in the reach graph is a sequence of edges. Cycles in the reach graph correspond
to infinite runs of BP . Paths containing cycles with good edges in them correspond to
accepting runs of BP and are said to be good. If the reach graph corresponding to BP has
no good paths, BP has no accepting runs and F holds for P . Otherwise, the good paths in
the reach graph are counterexamples showing that F does not hold for P .

2.2 Specifying the Reach Graph in Rules and Detecting

Good Paths

This section expresses the reach graph using Datalog rules and and describes the gen-
eration of a specialized algorithm and data structures for detecting good paths in the reach
graph.
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Expressing the Büchi PDS. The BPDS is expressed by the relations loc,
trans0, trans1, and trans2. The loc relation represents the control loca-
tions of the BPDS; its arguments are a control location and a boolean argument in-
dicating whether the control location is good. One instance of the relation exists
for each control location. The three relations trans0, trans1, and trans2 ex-
press transitions. The facts trans0(c1,s1,c2), trans1(c1,s1,c2,s2), and
trans2(c1,s1,c2,s2,s3), where ci’s are control locations and si’s are stack sym-
bols, denote transitions of the form ((c, s), (c, w)) such that, w ∈ S∗

BP and |w| = 0,
|w| = 1, and |w| = 2, respectively. or is a relation with three boolean arguments; in
the fact or(x1,x2,r), the argument r is the value of the logical or of the arguments x1
and x2.

Expressing the edges of the reach graph. The reach graph is expressed by relations
erase and edge. The fact erase(c1,s1,g,c2) denotes a run of BP from configu-
ration (c1, s1) to configuration (c2, ε). The third element in the tuple is a boolean value that
indicates whether the corresponding run goes through a good control location. The edge
relation represents the reach graph edges. edge(c1,s1,g,c2,s2) denotes an edge
between nodes (c1, s1) and (c2, s2); g is a boolean argument indicating whether the edge
is good. For a BPDS (CBP , SBP , TBP , C0BP , GBP ), erase and edge are the relation
satisfying:

i. (c1, s, g, c2) ∈erase if (c1, s) → (c2, ε) ∈ TBP , and g = true if c1 ∈ GBP and
false otherwise

ii. (c1, s1, g1 ∨ g2, c3) ∈erase if (c1, s1) → (c2, s2) ∈ TBP , and (c2, s2, g2, c3) ∈
erase, and g1 = true if c1 ∈ GBP and false otherwise

iii. (c1, s1, g1 ∨ g2 ∨ g3, c4) ∈erase if (c1, s1) → (c3, s2s3) ∈ TBP , (c2, s2, g2, c3)
∈erase, and (c3, s3, g3, c4) ∈erase, and g1 = true if c1 ∈ GBP and false

otherwise

and

i. (c1, s1, g, c2, s2) ∈edge if (c1, s1) → (c2, s2) ∈ TBP , and g = true if c1 ∈ GBP

and false otherwise

ii. (c1, s1, g, c2, s2) ∈edge if (c1, s1) → (c2, s2s3) ∈ TBP , g = true if c1 ∈ GBP

and false otherwise

iii. (c1, s1, g1 ∨ g2, c3, s3) ∈edge if (c1, s1) → (c2, s2s3) ∈ TBP , (c2, s2, g2, c3) ∈
erase, and g = true if c1 ∈ GBP and false otherwise

In model checking of programs, the relation erase summarizes the effects of proce-
dures. The three parts of the above definition correspond to the program execution exiting,
proceeding within, or entering a procedure.
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trans0(c1,s1,c2),loc(c1,g)→erase(c1,s1,g,c2)
trans1(c1,s1,c2,s2),erase(c2,s2,g2,c3),loc(c1,g1),

or(g1,g2,g)→erase(c1,s1,g,c3)
trans2(c1,s1,c2,s2,s3),erase(c2,s2,g2,c3),

erase(c3,s3,g3,c4),loc(c1,g1),or(g1,g2,g4),or(g4,g3,g)
→erase(c1,s1,g,c4)

trans1(c1,s1,c2,s2),loc(c1,g)→edge(c1,s1,g,c2,s2)
trans2(c1,s1,c2,s2,s3),loc(c1,g)→edge(c1,s1,g,c2,s2)
trans2(c1,s1,c2,s2,s3),erase(c2,s2,g2,c3),loc(c1,g1),

or(g1,g2,g)→edge(c1,s1,g,c3,s3)

Figure 2.3: Rules corresponding to the erase relation used to construct the reach graph,
and the edge relation of the reach graph.

The definitions of the erase and edge relations can be readily written as rules. These
rules are shown in Figure 2.3.

Detecting good paths. Checking that the BPDS accepts the empty language amounts to
checking that the resulting reach graph has no good paths. To find good paths in the reach
graph we use the algorithm presented in [13, Figure 4] but ignore consideration of resource
labels by the algorithm. The algorithm uses depth first search and is linear in the number
of edges in the reach graph.

2.3 Efficient Algorithm for Computing the Reach Graph

This section describes the generation of a specialized algorithm and datastructures for
computing the reach graph from the rules shown in the previous section, as well as an-
alyzing precisely the time complexity for computing the reach graph and expressing the
complexity in terms of characterizations of the facts—the parameters characterizing the
BPDS.

2.3.1 Generation of efficient algorithms and data structures

We transform the extended Datalog rules into an efficient implementation using the
method in [57] for Datalog rules. The method has three steps.

• Step 1: transform the least fixed point (LFP) specification of the extended Datalog
rules into a while-loop.

• Step 2: transform expensive set operations in the loop into incremental opera-
tions.
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• Step 3: design appropriate data structures for each set, so that operations on it can
be implemented efficiently.

These three steps correspond to dominated convergence [21], finite differencing [63],
and real-time simulation [62], respectively, as studied by Paige et al.

Auxiliary relations. For each rule with more than two hypotheses, we transform it to
multiple rules with two hypotheses each. The transformation introduces auxiliary relations
with necessary arguments to combine two hypotheses at a time. We repeatedly apply the
following transformations to each rule with more than two hypotheses until only rules
with at most two hypotheses are left. We replace any two hypotheses of the rule, say
Pi(Xi1, ..., Xiai

) and Pj(Xj1, ..., Xjaj
) by a new hypothesis, Q(X1, ..., Xa), where Q is a

fresh relation, and Xk’s are variables in the arguments of Pi or Pj that occur also in the
arguments of other hypotheses or the conclusion of this rule. We add a new rule:
Pi(Xi1, ..., Xiai

) ∧ Pj(Xj1, ..., Xjaj
) → Q(X1, ..., Xa).

1. loc(c1,g)∧trans0(c1,s1,c2)→erase(c1,s1,g,c2)
2. loc(c1,g1)∧trans1(c1,s1,c2,s2)→gtrans1(c1,g1,s1,c2,s2)
3. gtrans1(c1,g1,s1,c2,s2)∧erase(c2,s2,g2,c3)

→gtrans1e(c1,s1,c3,g1,g2)
4. gtrans1e(c1,s1,c3,g1,g2)∧or(g1,g2,g)→erase(c1,s1,g,c3)
5. loc(c1,g1)∧trans2(c1,s1,c2,s2,s3)

→gtrans2(c1,g1,s1,c2,s2,s3)
6. gtrans2(c1,g1,s1,c2,s2,s3)∧erase(c2,s2,g2,c3)

→gtrans2e(c1,s1,s2,c3,g1,g2)
7. gtrans2e(c1,s1,s2,c3,g1,g2)∧erase(c3,s2,g3,c4)

→gtrans2ee(c1,s1,c4,g1,g2,g3)
8. gtrans2ee(c1,s1,c4,g1,g2,g3)∧or(g1,g2,g4)

→gtrans2ee or(c1,s1,c4,g3,g4)
9. gtrans2ee or(c1,s1,c4,g3,g4)∧or(g4,g3,g)

→ erase(c1,s1,g,c4)
10. gtrans1(c1,g,s1,c2,s2)→ edge(c1,s1,g,c2,s2)
11. gtrans2(c1,g,s1,c2,s2,s3)→ edge(c1,s1,g,c2,s2)
12. gtrans2e(c1,s1,s2,c2,g1,g2)∧or(g1,g2,g)

→edge(c1,s1,g,c2,s2)

Figure 2.4: The reach graph expressed in rules with at most two hypotheses.

The resulting rule set for constructing the reach graph is shown in Figure 2.4. Several
auxiliary relations have been introduced. The relations gtrans1 and gtrans2 repre-
sent transitions like trans1 and trans2 respectively, but an extra argument indicates
whether the transitions start at a good control location. The relations gtrans1e and
gtrans2e, represent runs of the BPDS starting with a transition trans1 and trans2
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respectively, followed by a run represented as a fact of the erase relation. The facts
gtrans1e(c1,s1,c2,g1,g2) and gtrans2e(c1,s1,s2,c2,g1,g2) repre-
sent runs from configuration (c1, s1) to configurations (c2, ε) and (c2, s2) respectively,
where g1 and g2 indicate, respectively, whether the first control location in the run is good
and whether the rest of the run visits a good control location. The relation gtrans2ee
represents runs consisting of one transition and two runs expressed as facts of the erase
relation. The fact gtrans2ee(c1,s1,c2,g1,g2,g3) stands for a run from config-
uration (c1, s1) to configuration (c2, ε); the arguments g1, g2, and g3 are booleans indi-
cating respectively, whether the first control location in the run is good, and whether the
remaining two parts of the run visit a good control location. The relations gtrans1ee or
and gtrans2ee or represents runs like gtrans1ee and gtrans2ee, except with two
boolean arguments combined using logical or.

Fixed-point specification and while-loop. We represent a relation of the form
Q(a1, a2, ... , an) using tuples of the form [Q,a1,a2,...,an]. S with
X and S less X denote S ∪ {X} and S − {X}, respectively. We use the notation
{X : Y1 inS1, . . . , Yn in Sn|Z} for set comprehension. Each Yi enumerates elements of
Si; for each combination of values Y1, . . . , Yn, if the value of boolean expression Z is true,
then the value of expression X forms an element of the resulting set. If Z is omitted, it is
implicitly the constant true.

{[X1 Y1] . . . [Xn Yn]} denotes a map that maps X1 to Y1, . . ., Xn to Yn. dom(E) denotes
the domain set of map E, i.e., {X : [X Y ] inE}. E{X} denotes the image set of X under
map E, i.e., {Y : [X Y ] in E}. E{X} := S denotes setting the image set E{X}, of
X under map E, to S. LFP(S0, F ) denotes the smallest set S that satisfies the conditions
S0 ⊆ S and F (S) = S.

The algorithm is expressed using standard control constructs while, for, if, and
case. Program block structure is indicated by indentation. We abbreviate X := X op
Y as X op:= Y .

The input to the algorithm is the given BPDS represented by a set bpds of facts. We
define rbpds to be the set of facts in bpds represented as tuples as described above.

We use set bpds for the set of facts representing the BPDS.

rbpds = {[loc c1 g] : loc(c1,g) in bpds} ∪
{[trans0 c1 s1 c2] : trans0(c1,s1,c2) in bpds} ∪
{[trans1 c1 s1 c2 s2] : trans1(c1,s1,c2,s2) in bpds} ∪
{[trans2 c1 s1 c2 s2 s3] : trans0(c1,s1,c2,s2,s3) in bpds}

Given any set R of facts, and a extended Datalog rule with rule number n and with
relation e in the conclusion, let ne(R), referred to as resultset, be the set of all facts that
can be inferred by that rule given the facts in R. For example,
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2gtrans1(R) = {[gtrans c1 s1 g c2 s2]
: [loc c1 g] in R and [trans1 c1 g s1 c2 s2] in R},

10edge(R) = {[edge c1 s1 g c2 s2]
: [gtrans1 c1 g s1 c2 s2] in R}.

The meaning of the give facts and the rules used to compute the reach graph is
LFP({},F), where F(R) is the union of all resultsets, that is:

LFP({},F), where F(R) = rbpds ∪ 1erase(R) ∪ 2gtrans1(R) ∪
3gtrans1e(R) ∪ 4erase(R) ∪ 5gtrans2(R) ∪ 6gtrans2e(R) ∪
7gtrans2ee(R) ∪ 8gtrans2ee or(R) ∪ 9erase(R) ∪
10edge(R) ∪ 11edge(R) ∪ 12edge(R).

This least-fixed point specification of computing the reach graph is transformed into the
following while-loop:

R := {};
while exists x in F(R) - R

R with := x;
(2.1)

The idea behind this transformation is to perform small update operations in each iteration
of the while-loop.

Incremental computation. Next we transform expensive set operations in the loop into
incremental operations. The idea is to replace each expensive expression exp in the loop
with a variable, say E, and maintain the invariant E = exp, by inserting appropriate initial-
izations and updates to E where variables in exp are initialized and updated, respectively.

The expensive expressions in constructing the reach graph are all resultsets and a work-
set W. We use fresh variables to hold each of their respective values and maintain an invari-
ant for each of the resultsets, in addition to one for the workset: W = rbpds + F(R)
- R.

Ibpds = rbpds, I1erase = 1erase(R),
I2gtrans1 = 2gtrans1(R), I3gtrans1e = 3gtrans1e(R),
I4erase = 4erase(R), I5gtrans2 = 5gtrans2(R),
I6gtrans2e = 6gtrans2e(R), I7gtrans2ee = 7gtrans2ee(R),
I8gtrans2ee or = 8gtrans2ee or(R), I9erase = 9erase(R),
I10edge = 10edge(R), I11edge = 11edge(R), I12edge = 12edge(R),
W = F(R) - R.

W serves as the workset. As an example of incremental maintenance of the value of an
expensive expression, consider maintaining the invariant I2gtrans1. I2gtrans1 is the
value of the set formed by joining elements from the set of facts of the loc and trans1
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relations. I2gtrans1 can be initialized to {} with the initialization R = {}. To update
Igtrans1 incrementally with update R with:= x, if x is of the form [loc c1 g]
we consider all matching tuples of the form [trans1 c1 s1 c2 s2] and add the tuple
[gtrans1 c1 g s1 c2 s2] to I2gtrans1. To form the tuples to add, we need to
efficiently find the appropriate values of variables that occur in [trans1 c1 s1 c1
s2] tuples, but not in [loc c1 g], i.e., the values of s1, c2, and s2, so we maintain
an auxiliary map that maps [c1] to [s1 c2 s2] in the variable I2gtrans1 trans1
shown below. Symmetrically, if x is a tuple of [trans1 c1 s1 c2 s2], we need
to consider every matching tuple of [loc c1 g] and add the corresponding tuple of
[gtrans1 c1 g s1 c2 s2] to I2gtrans1 loc.

I2gtrans1 trans1 = {[[c1] [s1 c2 s2]] :
[trans1 c1 s1 c2 s2] in R},

I2gtrans1 loc = {[[c1] [g]] : [loc c1 g] in R}.

The first set of elements in auxiliar maps is referred to as the anchor and the second set
of elements as the nonanchor.

Thus, the algorithm can directly find only matching tuples and consider only combina-
tions of facts that make both hypotheses true simultaneously, and it considers each combi-
nation only once. Similar auxiliary maps are maintained for all maintained invariants that
are formed by joining elements from two relations.

All variables holding the values of expensive computations listed above and auxiliary
maps are initialized together with the assignment R := {} and updated incrementally
together with the assignment R with:= x in each iteration. When R is {}, Ibpds =
rbpds, all auxiliary maps are initialized to {}, and W = Ibpds. When a fact is added
to R in the loop body, the variables are updated. We show the update for the addition of a
fact of relation trans1 only for I2gtrans1 invariant and I2gtrans1 loc auxiliary
map , since other facts and updates to the variables and auxiliary maps are processed in the
same way. The notation E{Ys}, where E = {[Ys Xs]} is an auxiliary map, is used to
access all matching tuples of E and return all matching values of Xs.

case of x of [loc c1 g]:
I2gtrans1 ∪:= {[gtrans1 c1 g s1 c2 s2]

: [s1 c2 s2] in I2gtrans1 trans1{[c1]}};
W ∪:= {[gtrans1 c1 g s1 c2 s2]

: [s1 c2 s2] in I2gtrans1 trans1{[c1]}
| [gtrans1 c1 g s1 c2 s2] notin R};

I2gtrans1 loc with:= [[c1] [g]];

(2.2)

Adding these initializations and updates, and other similar ones for the other cases, and
replacing F(R) - R with W in (2.1), we obtain the following complete code:
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initialization;
R:={};
while exists x in W:

update using (2.2) and
other similar updates for the other cases;
W less:= x;
R with:= x;

We next eliminate dead code. To compute the resultset R, only W and the auxiliary
maps are needed; the invariants maintained for other resultsets, such as I2gtrans1 and
I10edge, are dead because F(R)-R in the while loop was replaced with W. We elim-
inate them from the initialization and updates. For example, eliminating them from the
updates in (2.2), we get:

case of x of [loc c1 g]:
W ∪:= {[gtrans1 c1 g s1 c2 s2]

: [s1 c2 s2] in I2gtrans1 trans1{[c1]}
| [gtrans1 c1 g s1 c2 s2] notin R};

I2gtrans1 loc with:= [[c1] [g]];

(2.3)

We clean up the code to contain only uniform operations and set elements.
We decompose R and W into several sets, each corresponding to a single relation
that occurs in the rules. R is decomposed to Rtrans0, Rtrans1, Rtrans2,
Rloc, Rerase, Rgtrans1, Rgtrans1e, Rgtrans2, Rgtrans2e, Rgtrans2ee,
Rgtrans2ee or, and Redge. W is decomposed in the same way. This decomposi-
tion lets us eliminate relation names from the first component of tuples, with appropriate
changes to the while clause and case clauses. Then, we apply the following three sets
of transformations.

(i) Transform operations on sets into loops that use operations on set elements. Each
addition of a set is transformed to a for-loop that adds the elements one at a time.
For example, lines 2-4 of (3) are transformed into:

for [s1 c2 s2] in I2gtrans1 trans1{[c1]}:
if [c1 g s1 c2 s2] notin Rgtrans1:
Wgtrans1 with:=[c1 g s1 c2 s2]

(ii) Replace tuples and tuple operations with maps and map operations. Specifically,
replace all for loops as follows:

for [s1 c2 s2] in I2gtrans1 trans1{[c1]}:
if [c1 g s1 c2 s2] notin Rgtrans1:
Wgtrans1 with:=[c1 g s1 c2 s2]
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is transformed into:

for [c1] in dom(I2gtrans1 trans1):
for [s1 c2 s2] in I2gtrans1 trans1{[c1]}:
if [c1 g s1 c2 s2] notin Rgtrans1:
Wgtrans1 with:=[c1 g s1 c2 s2]

We replace while loops similarly. Also, for each membership in a map test, we
replace [X Y ] notin M with Y notin M{X}. For example, the membership
test [c1 g s1 c2 s2] notin Rgtrans1 is replaced with [g s1 c2 s2]
notin Rgtrans1{c1}.

Each addition to a map M with:= [X Y ] is replaced with M{X} with:= Y . For
example, the addition to the workset Wgtrans1.

Wgtrans1 with:= [c1 g s1 c2 s2]

is replaced with

Wgtrans1{c1} with:= [g s1 c2 s2].

(iii) Test for membership before adding or deleting an element of a set. Specifically, we
replace each statement S with:= X with if X notin S then S with:= X .

Note that when removing an element from a workset, the membership test is un-
necessary, since the element is retrieved from the workset. Also, when adding an
element to a resultset, the membership test is unnecessary, since elements are moved
from the corresponding workset to the resultset one at a time, and each element is
put in the workset and thus in the resultset only once.

Data structures. After the above transformations, each firing of a extended Datalog
rule involves a constant number of set operations. Since each set operation takes worst-
case constant time in the generated code, as described below, each firing takes worst-case
constant time. Next we describe how to guarantee that each set operation takes worst-
case constant time. The operations are of the following kinds: set initialization S := {},
computing image set M{X}, element retrieval for X in S and while exists X in
S, membership test X in S and X notin S, element addition S with X , and element
deletion S less X . Membership test and computing image set are called associative
access.

A uniform method is used to represent all sets and maps, using arrays for sets that have
associative access, linked lists for sets that are traversed by loops and both arrays and linked
lists for sets that have both operations.
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• resultsets: Resultsets are represented by nested array structures. A resultset
containing tuples with a components is represented using an a-level nested array
structure. The first level is an array indexed by values in the domain of the first
component of the resultset; the k-th element of the array is null if there is no tuple
in the resultset whose first component has value k, and otherwise is true if a=1,
and otherwise is recursively an (a-1)-level nested array structure for the remaining
components of tuples in the resultset whose first component has value k.

• worksets: Worksets corresponding to relations that occur in the conclusions of
rules are represented by arrays and linked lists. Each workset is represented the same
way as the corresponding resultset with two additions. First, for each array we add
a linked list containing indices of non-null elements of the array. Second, to each
linked list we add a tail pointer, i.e., a pointer to the last element, so the list can be
used as a queue. One or more records are used to put each array, linked list, and tail
pointer together. Each workset corresponding to a relation that does not occur in the
conclusion of any rule, is represented simply as a nested queue structure (without the
underlying arrays), one level for each component of the tuples, linking the elements
(instead of array indices) directly.

• auxiliary maps: Auxiliary maps are implemented as follows. Each auxiliary
map for a relation that appears in an extended Datalog rule’s conclusion uses a nested
array structure for all components of the tuples and additionally linked lists for each
non-anchor component.Each auxiliary map for a relation that does not appear in the
conclusion of any rule uses a nested array structure for the anchor components, and
nested linked-lists for the non-anchor components.

2.3.2 Complexity analysis of the model checking problem

We analyze the time complexity of the model checking problem by carefully bounding
the number of facts actually used by the rules. For each rule we determine precisely the
number of facts processed by it, avoiding approximations that use the sizes of individual
argument domains.

Calculating time complexity. We first define the size parameters used to characterize re-
lations and analyze complexity. For a realtion rwe refer to the number of facts of r that are
given or can be inferred as r’s size. The parameters #trans0, #trans1 and #trans2
denote the number of transitions of the form ((c1, s1), (c2, ε)), ((c1, s1), (c2, s2)), and
((c1, s1), (c2, s2s3)), respectively; #trans denotes the total number of transitions.
The parameters #gtrans1 and #gtrans2 denote the number of facts of relations
gtrans1 and gtrans2, where #gtrans1=#trans1 and #gtrans2=#trans2.
Parameters #gtrans1e and #gtrans2e denote the relation sizes — #trans1
∗ #target loc trans0, and #trans2 ∗ #target loc trans0, respectively,
and #gtrans2ee denotes the corresponding relation size equal to #trans2 ∗
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#target loc trans02. The parameter #erase denotes the number of facts in the
erase relation; #erase.4/123 denotes the number of different values the forth argu-
ment of erase can take for each combination of values of the first three arguments. In
the worst case, this is the number of control locations c2 such that a transition of the form
((c1, s1), (c2, ε)) exists in the automaton. We use #target loc trans0 to denote this
number.

The time complexity for the set of rules is the total number of combinations of hypothe-
ses considered in evaluating the rules. For each rule r, r.#firedTimes stands for the
number the number of firings for the rule is a count of: (i) for rules with one hypothesis:
the number of facts which make the hypothesis true; (ii) for rules with two hypotheses: the
number of combinations of facts which make the two hypotheses simultaneously true. The
total time complexity is time for reading the input, i.e., O(#trans + #loc), plus the
time for applying each rule, shown in the second column in the table of Figure 2.5.

rule no time complexity time complexity bound
1 min(#trans0*1,#loc*#trans0.23/1) #trans0
2 min(#loc*#trans1.234/1,#trans1*1) #trans1
3 min(#gtrans1*#erase.4/123, #trans1*#target loc trans0

#erase*#gtrans1.12/34)
4 min(#gtrans1e*1, 1*#gtrans1e) #trans1*#target loc trans0
5 min(#loc*#trans2.2345/1,#trans2*1) #trans2
6 min(#gtrans2*#erase.4/123, #trans2*#target loc trans0

#erase*#gtrans2.12/345)
7 min(#gtrans2e*#erase.4/123, #trans2*#target loc trans02

#erase*#gtrans2e.12/345)
8 min(#gtrans2ee*1,1*#gtrans2ee) #trans2*#target loc trans02

9 min(#gtrans2ee or*1,1*#gtrans2ee or) #trans2*#target loc trans02

10 min(#gtrans2ee or*1,1*#gtrans2ee or) #trans2*#target loc trans02

11 #gtrans1 #trans1
12 #gtrans2 #trans2
13 min(#gtrans2e*1,1*#gtrans2e) #trans2*#target loc trans0

relation time complexity
erase O(#trans0 + #trans1*#target loc trans0 +

#trans2*#target loc trans02)

edge O(#trans1 + #trans2*#target loc trans0)

Figure 2.5: Time complexity of computing the reach graph.

Time complexity of model checking PDS. Time complexity for processing each of
the rules and computing the erase and edge relations is shown in the second table of
Figure 2.5. After the reach graph has been computed, good cycles in the reach graph
can be detected in time linear in the size of the reach graph, i.e., O(#edge). Thus, the
asymptotic complexity of the model checking problem is dominated by the time complexity
of computing the erase relation.

For a BPDS, product of P = {CP , SP , TP} where |CP | = 1, and B =
{CB, LB, TB, C0B, GB}, #target loc trans0≤|CB|, and #trans2≤|TP |∗|TB|. For
such a PDS, O(|TP | ∗ |TB| ∗ |CB|

2) is the worst case time complexity of computing the
erase relation and O(|TP | ∗ |TB| ∗ |CB|) is the worst case time complexity for computing
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the edge relation. Since only |TP | is dependent on the size of P, time complexity is linear
in the size of the P and cubic in the size of B.

2.3.3 Performance
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Figure 2.6: Results for computing the reach graph for the BPDS.

We tested the performance of our reach graph construction algorithm on two sets
of BPDS consisting of BPDS with increasing #trans. BPDS in one set also
had increasing #target loc trans0, while BPDS in the second set had constant
#target loc trans0. The time complexity for computing reach graphs for BPDS
in the first set is as shown in Figure 2.5. However, for automata in the second set time
complexity should be linear — O(#trans). If the PDS corresponds to a program,
#target loc trans0 is proportional to the total number of return points of proce-
dures in the program. Thus, our test data corresponds to checking if a property holds on
programs with an increasing number of statements and procedure calls, and programs with
an number of statements, but constant number of procedures.

Results of the experiment are shown in Figure 2.6 and confirm our analysis. We used
generated python code in which each operation on set elements is guaranteed to be constant
time on average using default hashing in python. Running times are measured in seconds
on a 500MHz Sun Blade 100 with 256 Megabytes of RAM, running SunOS 5.8. Running
times are the average over ten runs.
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2.4 Discussion

The problem of LTL model checking of PDS has been extensively researched, espe-
cially model checking PDS induced by CFGs of programs. The model checking problem
for context-free and pushdown processes is explored in [19]. The design and implementa-
tion of Bebop: a symbolic model checker for boolean programs, is presented in [9]. Burkart
and Steffen [20] present a model checking algorithm for modal mu-calculus formulas. For
a PDS with one control state, a modal-mu calculus formula of alternation depth k can be
checked in time O(nk), where n is the size of the PDS. The works [37, 36, 35, 18] describe
efficient algorithms for model checking PDSs. Alur et al. [7] and Benedikt et al. [16] show
that state machines can be used to model control flow of sequential programs. Both works
describe algorithms for model checking PDS that have time complexity cubic in size of the
BA and linear in size of the PDS; these works combine forward and backward reachability
and obtain complexity estimations by exploiting this mixture. Esparza et al. [35] estimate
time complexity of solving the model checking problem to be O(n*m3) for model check-
ing PDS with one state only, where n is the size of the PDS and m is the size of the property
BA [35]. While this is also linear in the size of the PDS, our time complexity analysis is
more precise and automatic.

The algorithm derived in this work is essentially the same as the one in [35]. What dis-
tinguishes our work is that we use a novel implementation strategy for the model checking
problem that combines an intuitive definition of the model checking problem in rules [13]
and a systematic method for deriving efficient algorithms and data structures from the rules
[57], and arrives at an improved complexity analysis. The time complexity is calculated
directly from the Datalog rules, based on a thorough understanding of the algorithms and
data structures generated, reflecting the complexities of implementation back into the rules.

An implementation of the model checking problem in logical rules is presented in [13].
The rules are evaluated using the XSB system [76]. Thus, the efficiency of the computation
is highly dependent on the order of hypotheses in the given rules. Our implementation is
drastically different, as it finds the best order of hypotheses in the rules automatically. We
do not employ an evaluation strategy for Datalog, but generate a specialized algorithm and
implementation directly from the rules.

In this chapter, we presented an efficient algorithm for LTL model checking of PDS.
We showed the effectiveness of our approach by using a precise time complexity analysis,
along with experiments. These results show that our model checking algorithm can help
accommodate larger PDS and properties. Our work is potentially a contribution not only to
the model checking problem, since the idea behind the erase relation and the reach graph
is more universal than model checking PDS. Variants of the erase relation are used in
data flow analysis techniques, as described in [71] and related work. Applications of model
checking in dataflow analysis are presented in [82, 81]. It is a topic of future research to
apply our method to dataflow analysis problems.
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Chapter 3

Efficient Type Inference for Secure

Information Flow

3.1 Introduction

Protection of the confidentiality and privacy of data is becoming increasingly important.
In addition to controlling direct access to information, it is also essential to control infor-
mation flow, especially in untrusted code. Static analysis of information flow in programs
allows for fine-grained control without runtime overhead.

Denning’s work [29, 30] was the pioneering work in the field. It proposed a lattice
model that could be used to verify secure information flow in programs. In this model,
security classes are ordered in a lattice, and program variables and data are each assigned a
security class. The basic security requirement is absence of information flow from higher
to lower security classes. Security classes can indicate both the level of secrecy and the
level of integrity of data.

Based on Denning’s lattice model of information flow analysis, several type-based ap-
proaches have been developed [80, 88, 64, 1, 10]. In these works the security properties
are formulated as type systems — formal systems of typing rules used to reason about in-
formation flow properties of programs. The work of Volpano, Irvine and Smith [80, 88]
which formulates Denning’s lattice model as a type system and shows it to be sound. Infor-
mation flow is guaranteed to be secure for a program if the program type checks correctly.
A decade after this type-based approach was introduced, the first algorithm for information
flow analysis using a type system was proposed by Deng and Smith [28]. The algorithm’s
running time is quadratic in the size of the given program.



3. EFFICIENT TYPE INFERENCE FOR SECURE INFORMATION FLOW 24

In this chapter, we describe the design, analysis, and implementation of an efficient
algorithm for information flow analysis expressed using the type system presented by Vol-
pano et al. in [88]. Our algorithm is linear in the size of the given program.

Given a program and an environment of security classes for information accessed by
the program, the algorithm checks whether the program is well typed, i.e., there is no infor-
mation of higher security classes flowing into places of lower security classes, by inferring
the highest or lowest security class as appropriate for each program node. We express the
analysis as a set of extended Datalog rules based on the typing and subtyping rules, and
we use a systematic method to generate specialized algorithms and data structures directly
from the extended Datalog rules. Our extended Datalog rules are Datalog rules with nega-
tion and external functions. The method described in [57] is used to generate specialized
algorithms and data structures and complexity formulas for the extended Datalog rules.
Given a program and an environment of security types, the algorithm infers minimum or
maximum security types, as appropriate, for each program node, such that the program
type checks correctly. The algorithm traverses the program top-down multiple times to
infer minimum expression types, and then traverses the program bottom-up once to infer
maximum command types. The generated implementation uses a combination of linked
and indexed data structures to represent program nodes, environments, and types. The im-
plementation employs an incremental approach that considers one program node at a time.
The running time is optimal for the set of rules we use to specify type inference, in the
sense that each combination of instantiations of hypotheses is considered once in O(1)
time. We thus obtain an efficient type inference algorithm.

The time complexity of the algorithm is linear in the size of the input program, times
the height of the lattice of security classes, plus a small overhead for preprocessing the lat-
tice. This complexity is confirmed through our prototype implementation and experimental
evaluation on code generated from high-level specifications for real systems.

Our main contributions are:

• A novel implementation strategy for type inference for secure information flow types.
The strategy combines an intuitive specification of type inference expressed in ex-
tended Datalog rules, and a systematic method for deriving efficient algorithms and
data structures from the extended Datalog rules [57].

• Precise and automated time complexity analysis for type inference for secure infor-
mation flow types. The time complexity is calculated directly from the extended
Datalog rules, based on a thorough understanding of the algorithm and data struc-
tures generated, reflecting the complexities of implementation back into the extended
Datalog rules.

The rest of this chapter is organized as follows. Section 2 reviews the lattice model of
analyzing information flow in programs and the type system for secure flow analysis [88],
and defines the problem of type inference for secure information flow. Section 3 expresses
type inference in extended Datalog rules, describes generation of an efficient algorithm
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and data structure from the extended Datalog rules, and discusses error reporting. Section
4 presents the time complexity analysis for the generated algorithm. Section 5 presents
experimental results. Section 6 discusses related work and concludes.

3.2 A Type System for Secure Information Flow

This section reviews the lattice model of information flow [29, 30], and a type system
based on it [88].

3.2.1 Lattice model of secure information flow

In the lattice model of information flow [30, 29] security classes form a lattice, denoted
by (SC,≤), comprising a finite set SC of security classes, and a partial order ≤. A security
class is an indication of (i) the level of secrecy of the data — how confidential the data is, (ii)
the level of integrity of the data — how trusted the data is, or (iii) a combination of these
two properties. Every program variable is associated with a security class. The security
classes of variables are determined statically and do not vary at run time. Every program
node is associated with a certification condition — a condition relating security classes of
neighboring nodes that checks whether the information flow in the node is secure.

Information is considered to flow from variable v1 into variable v2 whenever the value
stored in v1 affects the value stored in v2. Information flow may be explicit or implicit.
An explicit flow results from assigning the value of a variable to another variable. Implicit
flows reflect control dependencies. For example, an implicit flow exists from the value
of a conditional guard to the branches of the conditional. For example, in the following
if-statement:

if a=0 then b:=1 else b:=0

there is an implicit flow from variable a to variable b, since after the statement has been
executed, by the value of variable b we can determine whether the value of a is 0.

The flow relation → is a binary relation on security classes that indicates the permitted
information flows. For security classes x and y, if x → y then flow from variables of class
x to variables of class y are permitted and called secure flows. In the lattice model, the flow
relation is: x → y if x ≤ y.

The lattice model of information flow makes it possible to check conditions on both
explicit and implicit information flows by checking the certification conditions on program
constructs.
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3.2.2 Type system for secure flow analysis

The type system for secure information flow [88, 28] is based on Denning’s lattice
model of information flow. The type system guarantees that explicit and implicit flows are
secure.

The security types are assumed to form a partial order, denoted by ≤. The strict order
induced by the partial order ≤ is denoted by < . The partial order relation ≤ is extended to
a subtype relation, denoted by ⊆; the strict order induced by the partial order ⊆ is denoted
by ⊂.

Two levels of types are used:

• data types, denoted by τ , and are the security classes in the lattice;

• phrase types, denoted by ρ, include (i) data types τ , given to expressions; (ii) variable
types τ var given to variables; (iii) command types τ cmd given to commands; and
(iv) array types τ1 arr τ2 given to arrays.

A variable of type τ var stores information whose security class is type τ or lower. A
command of type τ cmd contains assignments only to variables of type τ or higher. An
array of type τ1 arr τ2 contains data of security type τ1 and has length of security type
τ2. Every array type is subject to the constraint τ2 ≤ τ1. Intuitively, an array’s contents
include its length, so the security level of the contents should be at least as high as that of
the length. To ensure that this condition holds for all global arrays, we need to check that
for all locations l, if the type of l has the form τ1 arr τ2, then τ2 ≤ τ1.

A phrase is an expression or a command generated by the following grammar:

expression e ::= x | l | n | e1 + e2 | e1 − e2 |
e1 = e2 | e1 < e2 | a[e1] | a.length

command c ::= e1 := e2 |
c1; c2 |
if e then c1 else c2 |
while e do c |
letid x := e in c |
a[e1] := e2 | allocate a[e1]

Expressions include identifiers x, locations l, integer literals n, arithmetic expressions,
and array expressions. Commands of the forms shown above are, respectively, assign-
ments, compositions, conditional commands, local variable (i.e., identifier) declarations,
array assignment, and array allocation. The array allocation command allocate a[e1]
allocates an array a of length e1.

Typing judgments are of the form λ; γ ` p : ρ, where γ is a mapping of identifiers to
security types and λ is a mapping of locations to security types. The meaning of this typing
judgment is that phrase p has type ρ, if identifiers and locations in p have security types as
assigned in γ and λ.
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(BASE) r ≤ r1

` r ⊆ r1

(REFLEX) ` ρ ⊆ ρ

(TRANS) ` ρ ⊆ ρ1, ` ρ1 ⊆ ρ2
` ρ ⊆ ρ2

(CMD)− ` ρ ⊆ ρ1

` ρ1 cmd ⊆ ρ cmd

(SUBTYPE) λ; γ ` p : ρ

` ρ ⊆ ρ1

λ; γ ` p : ρ1

Figure 3.1: Subtyping rules.

γ[x : ρ] denotes a modification of γ that assigns type ρ to identifier x and leaves other
identifier-type mappings in γ unchanged.

A typing rule has the form:

J1 J2 ... Jn

Jn+1

where Ji’s are typing judgments. The typing judgments above the line are hypotheses, and
the typing judgment below the line is the conclusion. The rule infers the typing judgment
in its conclusion, if all its hypotheses hold. A judgement holds if it is an axiom or can be
inferred by some typing rule.

The rules for subtyping are shown in Figure 3.1. The typing rules are shown in Fig-
ure 3.2. A typing rule for only one arithmetic expression is shown, since rules for the other
arithmetic expressions are defined in the same way. The typing rules correspond directly to
certification conditions in the lattice model.

The typing rule ARITH is used to infer the types of arithmetic expressions. The rule
says that if expressions e and e1 are of security type τ , then the type of the expression e+e1
is also τ . Note that if the types of e and e1 are different, it may be possible to make them the
same by coercing one or both of them to higher security types, using the subtyping rules.

The ASSIGN rule checks the explicit information flow in assignment commands. The
expressions e and e1 must have the same security type τ . If this is the case, the assignment
command is given type τ cmd. If the types of e and e1 are not the same, and the type of e1
is lower than that of e, it may be possible to coerce the type of e1 to the type of e. However,
if the type if e1 is higher than that of e, the assignment command causes information to flow
from a high security type to a place of low security class, and the command is untypable.
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(LITERAL) λ; γ ` n : τ

(ID) λ; γ ` x : τ var if γ(x) = τ var

(LOC) λ; γ ` l : τ var if λ(l) = τ

(R-VAL) λ; γ ` e : τ var

λ; γ ` e : τ

(ARRLEN) λ(a) = τ1 arr τ2

λ; γ ` a.length: τ2

(ARRACCESS) λ(a) = τ1 arr τ2, λ; γ ` e : τ3

λ; γ ` a[e] : τ1 ∨ τ3

(ARITH) λ; γ ` e : τ

λ; γ ` e1 : τ

λ; γ ` e + e1 : τ

(ASSIGN) λ; γ ` e : τ var

λ; γ ` e1 : τ

λ; γ ` e := e1 : τ cmd

(ARRALLOC) λ(a) = τ1 arr τ2, γ ` e1 : τ2

λ; γ `allocate a[e1] : τ2 cmd

(ARRASSIGN) λ(a) = τ1 arr τ2
λ; γ ` e1 : τ1
λ; γ ` e2 : τ1

λ; γ ` a[e1] := e2 : τ1 cmd

(SEQUENCE) λ; γ ` c : τ cmd

λ; γ ` c1 : τ cmd

λ; γ ` c; c1 : τ cmd

(IF) λ; γ ` e : τ

λ; γ ` c : τ cmd

λ; γ ` c1 : τ cmd

λ; γ `if e then c else c1 : τ cmd

(WHILE) λ; γ ` e : τ

λ; γ ` c : τ cmd

λ; γ `while e do c : τ cmd

(LETID) λ; γ ` e : τ

λ; γ[x : τ var] ` c : τ1 cmd

λ; γ `letid x := e in c : τ1 cmd

Figure 3.2: Typing rules for secure information flow.

The typing rules for IF and WHILE check whether the implicit flows are secure. These
rules require that the guard expressions have the same security types as the commands in the
branches or loop body, respectively, since there is an implicit flow from the guard to those
commands. In addition, the two commands in the branches of if-statements must have the
same type. As usual, coercion based on subtyping can help satisfy these constraints.

The LETID rule ensures that information flow in local variables declarations is secure.
If a local variable x is initialized to the value of expression e of type τ , the identifier-type
mapping γ is updated to map variable x to type τ while type checking the body of the



3. EFFICIENT TYPE INFERENCE FOR SECURE INFORMATION FLOW 29

letid command.
The ARRACCESS rule checks whether accesses to array elements are secure. If a is of

type τ1 arr τ2 and expression e of type τ3 indicates the index of the element of a being
accessed, the array access expression has type τ1 ∨ τ3, because there is information flow
from both a and e to the result.

The ARRALLOC rule ensures that the information flow in array allocation is secure. If
an array of type τ1 arr τ2 is being allocated, and the array’s length is equal to the value
of expression e1, then the type of e1 must be τ2, because there is information flow from
e1 to the array. If this is the case, the array allocation command is given the type τ2 cmd,
otherwise the command is untypable.

Given a program, and an environment of security types for locations accessed by the
program, type inference is the process of inferring all possible types for each program node,
if possible, so that the program is well-typed. Otherwise, type errors are reported. If the
program is well-typed with respect to the secure information flow type system presented,
information flow in the program is guaranteed to be secure.

3.3 Efficient Type Inference Algorithm and Data Struc-

tures

This section expresses type inference using extended Datalog rules and describes the
generation of a specialized algorithm and data structures for type inference from the ex-
tended Datalog rules.

Type inference is generally done by using variables for unknown types of commands
and expressions, and collecting constraints, in the form of type inequalities, that the type
variables must satisfy for the program to be well-typed. These constraints characterize
all typings of the program. The idea of our type inference algorithm is, given types for
locations, to infer the lowest or highest security type for each program node, as appropriate,
that the node can have in any typing of the program.

We define extended Datalog rules that we use to traverse the syntax tree of the program.
The algorithm traverses the program top-down multiple times to infer minimum expression
types, and then traverses the program bottom-up once to infer maximum command types.

3.3.1 Expressing type inference in extended Datalog rules

We use the following relations in our extended Datalog rules. We use two relations to
map locations and arrays to their security types:

• locenv(l,t): location l has type t.
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• arrenv(a,t1,t2): array a contains data of type t1 and has length of type t2.

Together these two relations correspond to λ in the typing rules. The relations used to
represent the syntax tree of the input program are:

• root(c): c is the outermost command of a program.

• literal(n): n is a literal.

• loc(l): l is a location.

• id(x): x is an identifier.

• arith(e,e1,e2): expression e is an arithmetic expression with subexpressions
e1 and e2 (e.g., e is e1 + e2).

• assign(c,x,e): c is the command x := e.

• if(c,e,c1,c2): c is the command if e then c1 else c2.

• while(c,e,c1): c is the command while e do c1.

• sequence(c,c1,c2): c is the command c1; c2.

• letid(c,x,e,c1): c is the command letid x := e in c1.

• arraccess(e,a,e1): e is the expression a[e1].

• arrassign(c,a,e1,e2): c is the command a[e1] := e2.

• arrlen(e,a): e is the expression a.length.

• arralloc(c,a,e1): c is the command allocate a[e1].

The following relations are used to represent inferred types of program nodes and error
messages about insecure information flow:

• type(p,t): program node p has type t. There may be multiple type facts for a
program node. It is only necessary to keep the one with the highest type inferred so
far.

• htype(c,t): the maximum type of command c is t. The maximum type for a
command is the highest type the command can have for the program to type correctly.

• error(c): the program is untypable because there may be insecure information
flow in command c. A fact of the error relation is inferred when an assignment
or array assignment statement assigns data to a location or an element of the array,
and the data has a higher security type than the location or array. As discussed in
Section 3.3. we can give more detailed error messages based on the derivation of
each inferred error(c) fact, e.g., specifying the command that caused the error.
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The functions Join(t1,t2) and Meet(t1,t2) return, respectively, the least upper
bound and the greatest lower bound of two security types t1 and t2. Join and Meet are
defined for any two security types, since the types form a lattice. We can either precompute
the least upper and greatest lower bound for each possible pair of security types, or compute
them as needed during type inference, possibly with memoization. Efficient algorithms to
compute Meet and Join are presented by Hassan et al. in [5]. The authors present three
different algorithms for computing least upper bound and greatest lower bound: one is
based on a transitive closure approach, the second is a more space-efficient method, and
the last one employs a grouping technique based on modulation — it drastically reduces the
code size, while keeping time complexity low. Time complexity of computing the complete
least upper bound and greatest lower bound relations for a lattice is O(s2×log s), where
s is the size of the lattice. Time complexity for computing least upper bound or greatest
lower bound for a single pair of types is O(log s).

The extended Datalog rules used for type inference are shown in Figures 3.3 and 3.4.
The typing rules in Figure 3.2 can be written directly as extended Datalog rules, but ef-
ficient analysis needs to follow a predetermined procedure of traversing the program top-
down multiple times to infer minimum expression types, and then traversing the program
bottom-up once to infer maximum command types using the minimum types for expres-
sion. During the top-down traversals at any point in the evaluation we keep only the mini-
mum inferred type for each expression. This is done for efficiency reasons, and it does not
affect the correctness of the algorithm since only minimum types for expressions are used
to infer maximum types for commands. We have rewritten the rules to embody this proce-
dure. The rules in Figure 3.3 infer minimum types for expressions; the rules in Figure 3.4
infer maximum types for commands.

The rules are sound and complete with respect to the typing and subtyping rules in
Section 2. Soundness is the property that if our rules infer a typing, expressed as the type
relation for expressions and the htype relation for commands, then types for expressions
and commands in it satisfy the typing rules in Section 2. With the subtyping rules, higher
expression types and lower command types also satisfy the rules. The soundness of our
type inference algorithm can be proved by a structural induction.

Completeness is the property that if a typing satisfies the typing rules in Section 2,
then our rules infer a typing too, and our inferred expression types, expressed in the type
relation, are the lowest expression types that satisfy the typing rules in Section 2, and our
command types, expressed as the htype relation, are the highest command types that
satisfy the tying rules in Section 2. The completeness of our type inference algorithm can
be proved by an induction on derivations that use our rules.

3.3.2 Generation of efficient algorithm and data structures

We transform the extended Datalog rules into an efficient implementation using the
method in [57] for Datalog rules. Two small extensions are needed, to handle negation,
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(ROOT)
1. root(c)→type(c,bottom)

(LITERAL)
2. literal(n)→ type(n,bottom)

(LOC)
3. loc(l),locenv(l,t)→type(l,t)

(ARRLEN)
4. arrlen(e,a), arrenv(a,t1,t2)→type(e,t2)

(ARRACCESS)
5. arraccess(e,a,e1),arrenv(a,t1,t2),type(e1,t3)

→type(e,Join(t1,t3))
(ARITH)
6. arith(e,e1,e2),type(e1,t1),type(e2,t2)→type(e,Join(t1,t2))

(ASSIGN ID)
7. assign(c,x,e),id(x),type(e,t1),type(c,t2),type(x,t3)

→type(x,Join(t1,t2,t3))
(ASSIGN LOC)
8. assign(c,l,e),loc(l),type(l,t1),type(e,t2),not t2⊆t1→error(c)
9. assign(c,l,e),loc(l),type(l,t1),type(c,t2),not t2⊆t1→error(c)

(ARRALLOC)
10. arralloc(c,a,e1),arrenv(a,t1,t2),type(e1,t3),not t3⊆t2→error(c)

(ARRASSIGN)
11. arrassign(c,a,e1,e2),arrenv(a,t1,t2),type(e1,t3),not t3⊆t1

→error(c)
12. arrassign(c,a,e1,e2),arrenv(a,t1,t2),type(e2,t4),not t4⊆t1

→error(c)
(SEQUENCE)
13. sequence(c,c1,c2),type(c,t)→type(c1,t)
14. sequence(c,c1,c2),type(c,t)→type(c2,t)

(IF)
15. if(c,e,c1,c2),type(e,t1),type(c,t2)→type(c1,Join(t1,t2))
16. if(c,e,c1,c2),type(e,t1),type(c,t2)→type(c2,Join(t1,t2))

(WHILE)
17. while(c,e,c1),type(e,t1),type(c,t2)→type(c1,Join(t1,t2))

(LETID)
18. letid(c,x,e,c1),type(e,t)→type(x,t)
19. letid(c,x,e,c1),type(c,t)→type(c1,t)

Figure 3.3: Extended Datalog rules for inference of minimum expression types and associ-
ated command types.

which in our rules simply requires a constant time check, and external functions, such as
Meet and Join.
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(ASSIGN ID MAX)

20. assign(c,x,e),id(x),type(x,t)→htype(c,t)
(ASSIGN LOC MAX)

21. assign(c,l,e),loc(l),type(l,t)→htype(c,t)
(ARRALLOC MAX)

22. arralloc(c,a,e1),arrenv(a,t1,t2)→htype(c,t2)
(ARRASSIGN MAX)

23. arrassign(c,a,e1,e2),arrenv(a,t1,t2)→htype(c,t1)
(SEQUENCE MAX)

24. sequence(c,c1,c2),htype(c1,t1),htype(c2,t2)→htype(c,Meet(t1,t2))
(IF MAX)

25. if(c,e,c1,c2),htype(c1,t1),htype(c2,t2)→htype(c,Meet(t1,t2))
(WHILE MAX)

26. while(c,e,c1),htype(c1,t)→htype(c,t)
(LETID MAX)

27. letid(c,x,e,c1),htype(c1,t)→htype(c,t)

Figure 3.4: Extended Datalog rules for inference of maximum command types.

Auxiliary relations. For each rule with more than two hypotheses, we transform it
to multiple rules with two hypotheses each. For example, the ARITH rule is transformed
into two rules with two hypotheses each as follows:

arith(e,e1,e2),type(e1,t1)→arithType(e,e1,e2,t1)
arithType(e,e1,e2,t1),type(e2,t2)→type(e,Join(t1,t2))

(3.1)

One auxiliary relation has been introduced — arithType(e,e1,e2,t1), which
denotes that e is an expression that performs an arithmetic operation on expressions e1
and e2, and the type of e1 is t1.

Fixed-point specification and while loop. The inputs to the algorithm are the
given program represented by a set program of facts, and the relations locenv and
arrenv, which map locations and arrays to security types. We let input be the set of
facts in program, locenv, and arrenv, represented as tuples as described above.
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input =
{[locenv l t]: locenv(l,t) in locenv} ∪
{[arrenv a t1 t2]: arrenv(a,t1,t2) in arrenv} ∪
{[root c]: root(c) in program} ∪
{[literal n]: literal(n) in program} ∪
{[loc l]: loc(l) in program} ∪
{[arrlen e a]: arrlen(e,a) in program} ∪
{[arraccess e a e1]: arraccess(e,a,e1) in program} ∪
{[arith e e1 e2]: arith(e,e1,e2) in program} ∪
{[assign c e1 e2]: assign(c,e1,e2) in program} ∪
{[arralloc c a e1]: arralloc(c,a,e1) in program} ∪
{[arrassign c a e1 e2]: arraccess(c,a,e1,e2) in program} ∪
{[sequence c c1 c2]: sequence(c,c1,c2) in program} ∪
{[if c e c1 c2]: if(c,e,c1,c2) in program} ∪
{[while c e c1]: while(c,e,c1) in program} ∪
{[letid c x e c1]: letid(c,x,e,c1) in program}

Given any set R of facts, and an extended Datalog rule with rule number n and with
relation e in the conclusion, let ne(R), be the set of all facts that can be inferred by that
rule in one step given the facts in R. Here we use as an example the extended Datalog rules
corresponding to the sequence commands. The sets ne(R) for other rules are defined in
the same way.

13type(R) = {[type c1 t]:
[sequence c c1 c2] in R,
[type c t] in R}

14type(R) = {[type c2 t]:
[sequence c c1 c2] in R,
[type c t] in R}

(3.2)

For an auxiliary relation e introduced when splitting a rule with more than two hypotheses,
let e(R) be the set of facts that can be inferred by the rule defining e in one step given the
facts in R.

The meaning of the given facts and the extended Datalog rules used for inferring min-
imum types for expressions is LFP({},F), where F(R) is the union of the input and the
set of all facts that can be inferred by all rules for computing types and errors in one
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step given the facts in R, that is:

LFP({},F), where F(R) = input ∪
1type(R) ∪ 2type(R) ∪ 3type(R) ∪ 4type(R) ∪
arraccessArrenv(R) ∪ 5type(R) ∪ arithType(R) ∪
6type(R) ∪ assignID(R) ∪ assignIdType(R) ∪
assignIdTypeType(R) ∪ 7type(R) ∪ assignLoc(R) ∪
assignLocType(R) ∪ 8error(R) ∪ 9error(R) ∪
arrallocArrenv(R) ∪ 10error(R) ∪ arrassignArrenv(R) ∪
11error(R) ∪ 12error(R) ∪ 13type(R) ∪ 14type(R) ∪
ifType(R) ∪ 15type(R) ∪ whileType(R) ∪ 16type(R) ∪
17type(R) ∪ 18type(R) ∪ 19type(R)

(3.3)

The set, O, of newly inferred facts about types is the difference between the above set and
input, i.e.,

O = LFP({},F) - input.

The resulting minimum types for expressions are the set, MIN, of maximum types, one for
each expression, in O.

The meaning of the program facts, the resulting facts above, and the extended Datalog
rules used for inferring maximum types for commands is LFP({},F’), where F’(R)
is the union of MIN, input, and the set of all facts that can be inferred by all rules for
computing htypes in one step given the facts in R, that is:

LFP({},F’), where F’(R) = MIN ∪ input ∪
assignId(R) ∪ 20htype(R) ∪ assignLoc(R) ∪ 21htype(R) ∪
22htype(R) ∪ 23htype(R) ∪ sequenceHtype(R) ∪ 24htype(R) ∪
ifHtype(R) ∪ 25htype(R) ∪
26htype(R) ∪ 27htype(R)

(3.4)
The resulting set of maximum types for commands is:

O’ = LFP({},F’) - (MIN ∪ input).

Efficient algorithms for computing O and O’ are designed in the same way, so we
show only the derivation of the algorithm for computing O. The least-fixed point expression
LFP({},F) is transformed into the following while loop:

R := {};
while exists x in F(R) - R:

R with:= x;
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The idea behind this transformation is to perform small update operations in each iteration
of the while loop.

To maintain the result set O, which does not contain the input facts, i.e., O =
R-input, we add to O every fact that is added to R except for facts that are in input.
The above while loop, plus code to maintain O, is:

R := {};
O := {};
while exists x in F(R) - R:

R with:= x;
if x not in input:

O with:= x;

(3.5)

Incremental computation. Next we transform expensive set operations in the loop
into incremental operations. The idea is to replace each expensive expression exp in the
loop with a variable, say E, and maintain the invariant E = exp, by inserting appropriate
initializations and updates to E where variables in exp are initialized and updated, respec-
tively.

The expensive expressions in type inference are all sets of facts inferred by each rule
and a workset W. We use fresh variables to hold each of their respective values and maintain
an invariant for each of these sets, in addition to one for the workset: W = F(R) - R.
Here we show the invariants maintained for the sets in (3.2). The rest of the invariants are
defined in the same way.

I13type = 13type(R)
I14type = 14type(R)

As an example of incremental maintenance of the value of an expensive expression,
consider maintaining the invariant I13type. I13type is the value of the set formed by
joining elements from the sequence and type relations. I13type can be initialized
to {} with the initialization R = {}. To update I13type incrementally with the update
R with:= x, if x is of the form [sequence c c1 c2] we consider all matching
tuples of the form [type c t] and add each new tuple [type c1 t] to I13type.
To form the tuples to be added, we need to efficiently find the appropriate values of vari-
ables that occur in [type c t] tuples, but not in [sequence c c1 c2], i.e., the
appropriate values of t, so we maintain an auxiliary map, called type1 2, that maps c
to t. Symmetrically, if x is a tuple of the form [type c t], we need to consider every
matching tuple of the form [sequence c c1 c2] and add the corresponding tuple of
the form [type c1 t] to I13type, so we need to efficiently find the value of variables
that occur in [sequence c c1 c2] but not in [type c t]. Thus, we maintain an
auxiliary map sequence1 23 that maps c to c1 and c2. These two auxiliary maps are
shown below.

type1 2 = {[[c] [t]] : [type c t] in R}
sequence1 23 = {[[c] [c1 c2]] : [sequence c c1 c2] in R}
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Since R = O ∪ input, the above two sets are equivalent to:

type1 2 = {[[c] [t]] : [type c t] in O}
sequence1 23 = {[[c] [c1 c2]]

: [sequence c c1 c2] in input}

The first set of components in an auxiliary map is referred to as the anchor and the
second set of elements as the nonanchor.

Thus, the algorithm can directly find only matching tuples and consider only combina-
tions of facts that make both hypotheses true simultaneously, and it considers each combi-
nation only once. Similar auxiliary maps are maintained for all maintained invariants that
are formed by joining elements from two relations.

All variables holding the values of expensive computations listed above and all auxiliary
maps are initialized together with the assignment R := {} and updated incrementally
together with the assignment R with:= x in each iteration. We show the update for the
addition of a fact of relation sequence only for I13type invariant and sequence1 23
auxiliary map. Other updates are processed in the same way.

case x of [sequence c c1 c2]:
I13type ∪:= {[type c1 t] : [t] in type1 2{[c]}};
W ∪:= {[type c1 t] : [t] in type1 2{[c]}

| [type c1 t] not in O};
sequence1 23 ∪:= {[[c] [c1 c2]]};

(3.6)

Adding these initializations and updates, and other similar ones for the other cases, and
replacing F(R) - R with W in (3.5), we obtain the following complete code:

initialization;
R:={};
O:={};
while exists x in W:

update using (3.6) and other similar
updates for the other cases
W less:= x;
R with:= x;
if x not in input:
O with:= x;

We next eliminate dead code. To compute the result set O, only input, W, and the
auxiliary maps are needed; R is dead because all uses of it are replaced with O and input;
the sets for maintaining other invariants, such as I13type and I14type, are dead be-
cause F(R) - R in the while loop was replaced with W. We eliminate them from the
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initialization and updates. For example, eliminating them from the updates in (3.6), we
get:

case x of [sequence c c1 c2]:
W ∪:= {[type c1 t] : [t] in type1 2{[c]}

| [type c1 t] not in O};
sequence1 23 ∪:= {[[c] [c1 c2]]};

(3.7)

The complete pseudocode for inferring minimum types of expressions and maximum
types for commands is in the Appendix.

We clean up the code to contain only uniform operations and set elements. This simpli-
fies data structure design. We decompose O and W into several sets, each corresponding to
one relation in the extended Datalog rules. For example, O is decomposed into Otype and
Oerror, where Otype contains tuples of the type relation in O and Oerror contains
tuples of the error relation in O. This decomposition lets us eliminate relation names
from the first component of tuples, with appropriate changes to the while clause and
case clauses. Then, we apply the following three sets of transformations.

(i) Transform operations on sets into loops that use operations on set elements. Each
addition of a set is transformed to a for loop that adds the elements one at a time.
For example, lines 2 and 3 of (3.7) are transformed into:

for [t] in type1 2{[c]}:
if [c1 t] not in Otype:
Wtype with:= [c1 t];

(ii) Replace tuples and tuple operations with maps and map operations. For example, the
above for loop is transformed into:

for [c] in dom(type1 2):
for [t] in type1 2{[c]}:
if [c1 t] not in Otype:
Wtype with:= [c1 t];

Transform while loops similarly. Also, for each membership in a map test, we
replace [X Y ] not in M with Y not in M{X}. For example, the membership
test [c1 t] not in Rtype is replaced with t not in Rtype{c1}.

Each addition to a map M with:= [X Y ] is replaced with M{X} with:= Y . For
example, the addition to the workset Wtype.

Wtype with:= [c1 t];

is replaced with
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Wtype{c1} with:= t;.

(iii) Test for membership before adding or deleting an element of a set. Specifically, we
replace each statement S with:= X with if X not in S: S with:= X .

Note that when removing an element from a workset, the membership test is un-
necessary, since the element is retrieved from the workset. Also, when adding an
element to a result set, the membership test is unnecessary, since elements are moved
from the corresponding workset to the result set one at a time, and each element is
put in the workset and thus in the result set only once.

3.3.3 Informative error reporting

Informative error messages are essential for determining the sources of information
flow errors and for fixing these errors and developing secure programs.

We can easily give meaningful error messages by adding rules that keep additional
information during type inference. We implement the concepts needed to produce infor-
mative error messages, as described by Deng and Smith [28], in extended Datalog rules,
and apply the method presented above to generate efficient algorithms and data structures
directly from the rules.

Following [28], we use two notions to collect information relevant to information flow
errors — the principal variables for each expression, and the security level history for
each variable. The principal variables for an expression are a minimum set of variables
in the expression that can be used to determine the type of the expression. For example,
for the expression a + b, where a and b are variables, the principal variables would be
{a,b}. Intuitively, the principal variables for an expression can provide an explanation
of the type of the expression. The security level history of a variable keeps track of the
different security levels a variable had during type inference and the principal variables of
the expression ”responsible” for each change to the variable’s security type. The type of a
variable can be inferred by use of the LETID rules. New types for variables can be inferred
by use of the ASSIGN ID rule. Each such change in the type of a variable is stored in the
security level history of the variable by keeping the old and the new type of the variable, as
well as the expression assigned to the variable in the assign commenad that caused the
changed. The type of each program node can be raised at most h times. This history can
be helpful for understanding how type errors occurred.

When a command generates a type error, the algorithm can provide the principal vari-
ables of the expressions that are part of the command, as well as the security level histories
of all variables that are part of these expressions.

We use prinVar(e,v) to denote that v is a principal variable for expression e. The
rules for computing principal variables are shown in Figure 3.5.

We use hist(v1,t,v2) to denote that, during type inference, the security type of
variable v1 changed to t, and v2 is a principal variable of the expression causing the



3. EFFICIENT TYPE INFERENCE FOR SECURE INFORMATION FLOW 40

id(x)→prinVar(x,x)

loc(l)→prinVar(l,l)

arrlen(e,a)→prinVar(e,a)

arraccess(e,a,e1)→prinVar(e,a)
arraccess(e,a,e1),prinVar(e1,v)→prinVar(e,v)

arith(e,e1,e2),prinVar(e1,v)→prinVar(e,v)
arith(e,e1,e2),prinVar(e2,v)→prinVar(e,v)

Figure 3.5: Rules for principal variables of expressions.

change. Since the security level of a variable can change only when an assignment to an
identifier occurs, we need only one rule to keep the security level history:

assign(c,x,e),id(x),type(e,t1),type(c,t2),type(x,t3),
t3 ⊂ Join(t1,t2,t3),prinVar(e,v)

→hist(x,Join(t1,t2,t3),v)

Error reports are based on the relation errReport(c,v1,t,v2), which means that
there may be insecure information flow in command c, v1 is a principal variable of e or
a variable that transitively caused the security level of a principal variable to change, t is
a new security level of v1 for a change recorded in v1’s security level history, and v2 is
a variable that directly caused the security level of v1 to change. The rules defining the
errReport relation are:

error(c),assign(c,l,e),prinVar(e,v1),hist(v1,t,v2)
→errReport(c,v1,t,v2)

error(c),arralloc(c,a,e),prinVar(e,v1),hist(v1,t,v2)
→errReport(c,v1,t,v2)

error(c),arrassign(c,a,e1,e2),prinVar(e1,v1),hist(v1,t,v2)
→errReport(c,v1,t,v2)

error(c),arrassign(c,a,e1,e2),prinVar(e2,v1),hist(v1,t,v2)
→errReport(c,v1,t,v2)

errReport(c,v1,t1,v2),hist(v2,t2,v3)→errReport(c,v2,t2,v3)

The error report consists of all inferred facts of the errReport relation in order,
together with the inferred types for variables mentioned in errReport facts.
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3.4 Complexity Analysis

This section presents time and space complexity analysis for our type inference algo-
rithm. We first analyze the complexity of the algorithm in Section 3.2 and then analyze the
additional cost of the error reporting described in Section 3.3.

3.4.1 Time complexity

We analyze the time complexity of type inference by carefully bounding the number
of facts actually used by the extended Datalog rules. For each rule we determine precisely
the number of facts processed by it, avoiding where possible approximations that use the
product of the sizes of individual argument domains.

Size parameters. We first define the size parameters used in the complexity analysis.
The number of facts of a relation r that are given or can be inferred is called r’s size. The
number of nodes in the input program is called the program size and is denoted by p. For
a relation named r, #r denotes the size of r. We also use the following additional size
parameters:

• #array: number of arrays in the program

• #cmd: number of commands in the program

• #expr: number of expressions in the program

• p: the size of the program, i.e., the number of program nodes

• s: the size of the lattice of security types

• h: the height of the lattice of security types

Analysis of time complexity. The time complexity for a set of Datalog rules is the
total number of combinations of hypotheses considered in evaluating the rules. For each
rule r, the number of firings for the rule is a count of: (i) for rules with one hypothesis:
the number of facts which make the hypothesis true; (ii) for rules with two hypotheses: the
number of combinations of facts that make the two hypotheses simultaneously true. The
total time complexity is time for reading the input, plus the time for applying each logic
rule.

It is possible to precompute all values for the functions Join and Meet in O(s2×log
s) time, and, if we do so, any of them can be looked up on O(1) time. However, this may
be unnecessary, since it is possible that not all values of these functions are needed. There-
fore, we compute the values of Join and Meet as needed and memoize already computed
values which can be looked up in O(1) time if needed again. The time complexity of
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computing Join or Meet for two security types is O(log s). The type complexity of
computing whether the subtyping relation holds between two types is O(h).

The algorithm traverses the program top-down multiple times to infer the type rela-
tion, i.e., minimum expression types, and then traverses the program bottom-up once to
infer the htype, i.e., maximum command types. Facts of the type relation for variables
can be inferred by use of the LETID rules. New types for variables can be inferred by use
of the ASSIGN ID rule. This can cause facts of the type relation for other variables to
be inferred. At any point in the evaluation at most one fact of the type relation is kept
for a program node, and that is the one with the highest type for the program node that has
been inferred so far. The type of each program node can be raised at most h times. Thus
worst case time complexity for each of the extended Datalog rules for type inference is
equal the program size multiplied by the height of the lattice of security types and the time
to compute Join and Meet, i.e., O(p×h×log s).

The additional algorithms for inferring principal variables and keeping security level
history of variables have time complexity O(p×pVars×s), where pVars is the max-
imum number of principal variables for an expression, and s is the size of the lattice
of security types. The algorithm for error reporting has worst-case time complexity
O(#error×pVars2×s), where #error is the number of information flow errors in-
ferred and #error≤(#assign + #arralloc + #arassign).

3.4.2 Space complexity

To analyze space complexity we consider the space needed beyond the space taken by
the given program, lattice, and location and array type assignment relations locenv and
arrenv. The total such space is the sum of the space needed for the result sets Otype,
Oerror, and O’htype, the worksets Wtype, Werror, and Whtype, and the space
needed for all auxiliary maps. Worksets take the same space asymptotically as the result
sets, so we will not consider them separately here. We refer to the space taken by the result
sets Otype, Oerror, and O’htype as output space. We refer to the space taken by all
auxiliary maps as auxiliary space. Here we show the space complexity computation for the
ARITH rule. Space complexity is computed in the same way for all remaining rules.

Analysis of output space. A result set is created for each relation that occurs in the
conclusion of a rule, i.e., each relation for which new facts may be inferred, namely, type,
htype, and error. The space taken by the result set for a relation is clearly bounded by
the product of the sizes of its arguments’ domains.

For the type relation, the argument domains are program constructs and types in the
security type lattice, so the output space for it is O(p×s). The argument domains of the
htype relation are commands in the program and types in the security type lattice; the
output space for it is O(#cmd×s). The argument of the error relation is a command,
so the output space for this relation is O(#cmd), which is bounded above by O(p). We
conclude that the total asymptotic output space complexity is O(p×s).
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To analyze the output space for informative error reporting, we consider the relations
prinVar, hist, and errReport. The asymptotic output space for error reporting is
dominated by the space for the errReport relation, which has four arguments - a com-
mand, two variables, and a type. The output space is O(#cmd×#id2×s).

Analysis of auxiliary space. Auxiliary maps are created only for rules that have two
hypotheses. The space needed by an auxiliary map depends on the operations that need to
be performed on it. We distinguish between two kinds of auxiliary maps — ones that need
to support the image set operation only, and ones that need to support the image operation
and membership test. For maps in the first category, space is needed for the nested arrays
for the anchors and the nested linked lists for the non-anchors. For maps in the second
category, space is needed for the nested arrays for all components and the nested linked
lists for the nonanchors, however the latter does not affect the asymptotic space needed.

Here we show the auxiliary space computation for the rules (1) for arithmetic expres-
sions. The others are very similar. Four auxiliary maps are needed for these rules: in
terms of the arguments of these rules, arith2 13 maps [e1] to [e e2], type1 2
maps [e1] to [t1], and arithType3 124 maps [e2] to [e e1 t1]. The size of
type1 2 is bounded by the size of the type relation, which is O(p×s), as discussed
above. The other two auxiliary maps need to support the image set operation only. The
space required for arith2 13 is the size of the array for the anchor plus the sum of the
sizes of all the linked lists for the non-anchor components. The former is O(#expr). The
latter is bounded by the size of the arith relation. So, the space needed for arith2 13 is
O(#expr + #arith), which is O(#expr). The space need for arithType3 124 is
calculated in the same way and is also O(#expr). Thus the total space for these auxiliary
maps is O(p×s).

Auxiliary space for type inference for information flow is summarized in Figure 3.6.
The first column gives the names of all auxiliary maps used. The second column shows
their anchors and nonanchors. The third column lists the rules that share each map. The
fourth column shows the space needed for the map.

The total auxiliary space needed is O(#array×s2+p×s). The total space complex-
ity of type inference for secure information flow is thus O(#array×s2+p×s).

3.5 Experimental Results

To experimentally confirm our time complexity calculations, we generated an imple-
mentation of our algorithm in Python. The generated implementation consists of 900 lines
of Python code. We analyzed programs of varying size, to determine how the running time
of the algorithm scales with program size. For each program, we report the CPU time
for the analysis, using Python 2.3.5 on a 500MHz Sun Blade 100 with 256 Megabytes of
RAM, running SunOS 5.8. Reported times are averaged over 10 trials. We use two security
types in these experiments, low and high. All timing data shown is for experiments with all
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auxiliary map [anchor nonanchor] rules that need it space
arrlen2 1 [[a] [e]] 4 O(#expr + #array)
arraccess2 13 [[e] [a e1]] 5 O(#expr + #array)
arraccessArrenv2 12 [[a] [t1 t2]] 5 O(#array + s)
arith2 13 [[e1] [e e2]] 6 O(#expr)
type1 2 [[e1] [t1]] 5-21 O(p×s)
arithType2 13 [[e2] [e t1]] 4 O(#expr + s)
assign2 13 [[x] [c e]] 7,8,9,20,21 O(p)
assignId2 13 [[e][c x]] 7,20 O(p)
assignIdType3 124 [[x] [c t1]] 7 O(p + s)
assignIdTypeType2 134 [[x] [c t1 t2]] 7 O(p + s)
assignLoc2 13 [[e] [c x]] 8,9,21 O(p)
assignLocType1 234 [[c] [x e t1]] 9 (O(p + s)
assignLocType3 124 [[l] [c e t1]] 8 O(p + s)
arralloc2 13 [[a] [c e1]] 10,22 O(p)
arrenv1 23 [[a] [t1 t2]] 10,11,12,22,23 O(#array×s2)
arrallocArrenv4 123 [[a] [c e1 t1]] 10,22 O(p)
arrassign2 134 [[a] [c e1 e2]] 11,12,23 O(p)
arrassignArrenv2 134 [[e1] [c a e2 t1]] 11,12 O(p+s)
sequence1 23 [[c] [c1 c2]] 13,14,24 O(#cmd)
if2 134 [[e] [c c1 c2]] 15,16,25 O(p)
ifType1 234 [[c] [c1 c2 t1]] 15,16 O(p + s)
while2 13 [[e] [c c1]] 17,26 O(#cmd + #expr)
whileType1 234 [[c] [e c1 t1]] 17 O(#expr + #cmd + s)
letid3 124 [[e] [c x c1]] 18 O(#expr + #cmd)
letid1 234 [[c] [x e c1]] 19 O(p)
letid4 123 [[c1] [c x e]] 27 O(p)
htype1 2 [[c1] [t1]] 24,25,26,27 O(p×s)
sequenceHtype2 13 [[c2] [c c1 t1]] 24 O(#cmd + s)
if3 124 [[c] [e c1 c2]] 25 O(#cmd + #expr)
ifHtype3 124 [[c2] [c e c1 t1]] 25 O(#cmd + #expr + s)
while1 23 [[c] [e c1]] 26 O(#cmd + #expr)

total auxiliary space O(#array×s2+ p×s)

Figure 3.6: Auxiliary space used for type inference.

global variables having the low security type.
Since the type system supports a relatively small number of operations, finding pro-

grams for real applications it could analyze proved a challenge. We overcame this by
analyzing programs generated from SCR specifications [43], including specifications for
real applications. SCR specifications use a tabular notation, built on top of a state machine
model, to specify the behavior of a system. We modified OSCR, a code generator for SCR
[74], to generate programs using only the operations the type system supports. This in-
volved adding an outer loop that waits for events, rather than using function calls to notify
the generated code of events. We also extended OSCR to output the abstract syntax tree of
the generated code as Datalog facts. This allows us to analyze realistic systems.

Table 3.7 gives the results for inferring minimum types of expressions and maximum
types of commands. The second column gives the program size, expressed as the number
of nodes in the abstract syntax tree. The third column gives the CPU time required to infer
minimum expression types for each program. The fourth column gives the time per fact
required to infer minimum types of expressions, which should remain constant. Indeed, it
is nearly the same for all programs except the smallest and largest; we suppose the variation
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Description of Program Number of Time to Infer Expression Types Time to Infer
Program Nodes Total (ms) Per node (µs) Command

Types(ms)
Thermostat 89 6 67 10
ralphSIS 150 10 77 14
Safety Injection System 159 12 75 16
Shutdown Control Logic 411 32 78 44
for a Nuclear Power Plant
Cruise Control System 465 36 77 50
FDIR 519 38 73 58
Contol Panel 3471 370 107 904

Figure 3.7: Time to infer minimum types for expressions and maximum types for com-
mands.

is due to the memory hierarchy. The final column gives the CPU time taken to infer the
maximum types of commands. The results show that CPU for inferring minimum time for
expressions is linear in the number of program nodes. The maximum types of commands
were inferred given the inferred minimum types of expressions. Since the input is the set
of types of all program nodes, but maximum types are inferred just for commands, the time
complexity was linear in a combination of the number of program nodes and the number
of commands in the program.

3.6 Related Work and Conclusion

A large amount of research has been done on information flow analysis since Denning’s
pioneering work [29, 30]. A survey of language-based information flow security appears in
[75]. Various analysis frameworks have been used, including abstract interpretation, e.g.,
[12, 8, 38, 39], and type systems, e.g., [88, 89, 61, 66, 78, 84, 28].

Type-based approaches have been studied extensively, because types are inherently
compositional, provide good documentation as well as correctness guarantees, and seem
more familiar to programmers (who are familiar with standard type systems). As the sur-
vey [75] shows, there are many information-flow type systems. We focus here on the ones
for which type inference algorithms have been developed. The difficulty of type inference
depends on many factors, notably whether polymorphism is allowed, and whether the se-
curity levels, which in general form a partial order, are assumed to form a lattice. Volpano,
Irvine and Smith present an information-flow type system for a simple imperative pro-
gramming language with local variables, and prove that the type system is sound [88]. The
language does not have procedures, so there is no polymorphism. A decade later, Deng and
Smith give a type inference algorithm for this language extended with arrays but without
local variables and assuming the security levels form a lattice [28]. Their algorithm uses
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explicit iteration to compute a least fixed point. The worst-case time complexity of their
algorithm is O(n2h), where n is the program size, and h is the height of the lattice. Their
time complexity analysis assumes that joins can be computed in constant time. At a high
level, their algorithm and our algorithm are very similar. The main difference is that, by
expressing the algorithm using rules and applying a systematic implementation method, we
obtain a more efficient implementation, whose worst-case time complexity is linear, rather
than quadratic, in the program size.

Type inference algorithms for languages with polymorphism typically have two main
aspects: generating sets of constraints during traversals of the program’s abstract syntax
tree, and solving (specifically, checking satisfiability of and simplifying) those sets of con-
straints. Basically, the constraints are inequalities involving meta-variables that range over
security levels.

Volpano and Smith give a type inference algorithm for the language in [88] extended
with polymorphic procedures [89]. Their constraint generation algorithm handles poly-
morphism in a simple but impractical (expensive) way: a procedure body is re-analyzed
in each calling context. As a result, the worst-case time complexity of their algorithm is
exponential in the depth of the procedure call graph. Checking satisfiability of the con-
straints is NP-complete in general, but it can be done more efficiently if the security levels
form a disjoint union of lattices. Recent work on type-based information-flow security
considers many additional features found in modern programming languages, such as dy-
namically allocated mutable objects, subclassing, method overriding, type casts, dynamic
type tests, and exceptions [61, 66, 78, 84]. Myers’ work on JFlow, an extension of Java
with type-based information-flow control, considers only intra-procedural type inference
[61], so users must annotate methods and fields. Pottier and Simonet consider type infer-
ence for an extension of ML with information-flow types [66, 78]. They use an existing
technique [83] to generate constraints and focus on solving the constraints. They give an
algorithm for solving the constraints and point out that advanced techniques will be needed
to optimize it.

Sun, Banerjee, and Naumann consider type inference for an object-oriented language
in which polymorphic types may be given for libraries but (to make type inference more
tractable) mutually recursive classes and methods in the analyzed part of the program are
treated monomorphically [84]. The inference is modular, done via a library of types that
have already been computed. The types for each module are computed incrementally, and
new results are merged into the library. The time complexity of the inference algorithm is
O(mn(s + t)3), where m is the number of methods in the unit, n is the size of the unit,
s and t are the number of distinct variables in class level and method level, respectively.
The authors use several functions to retrieve the types of fields and methods, in the library
and in the current unit. These functions can be implemented as Datalog facts, and the
type inference rules — as Datalog rules. It is our plan to extend the language our current
algorithm handles to an object-oriented language and generate an efficient algorithm for
information flow type inference for a language with more features.
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In short, while several information-flow analysis algorithms exist, they have been devel-
oped manually under different assumptions and for different language features and different
definitions of information flow, so it is difficult to compare them. Furthermore, relatively
little is known about the worst-case or typical time complexity of these algorithms.

In summary, this chapter presents an approach to systematically deriving efficient al-
gorithms for type inference for secure information flow types. We applied the approach
to a classic information flow type system [88] and obtained an efficient type inference
algorithm and a precise characterization of its time complexity. We plan to apply the ap-
proach to information flow type systems for richer programming languages, compare the
time complexity and precision of the resulting algorithms, and evaluate their performance
on real applications.
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Chapter 4

Efficient Trust Management Policy

Analysis

4.1 Introduction

Trust management is a unified approach to specifying and enforcing security policies
in distributed systems [40, 17] and has become increasingly important as systems become
increasingly interconnected. At the same time, logic-based languages and frameworks have
been used increasingly for expressing security and trust management policies, e.g., [48, 53].
For analysis and enforcement of security and trust management policies, a method for
generating efficient algorithms and implementations from policies specified using logic
rules is highly desired.

This chapter describes a systematic method for deriving efficient algorithms and precise
time complexities from extended Datalog rules as it is applied to the analysis of trust man-
agement policies specified in SPKI/SDSI, a well-known trust management framework de-
signed to facilitate the development of secure and scalable distributed computing systems.
SPKI/SDSI [34] is based on public keys and incorporates Simple Public Key Infrastruc-
ture (SPKI) and Simple Distributed Security Infrastructure (SDSI). It provides fine-grained
access control using local name spaces and a security policy model.

The SPKI/SDSI framework facilitates granting and delegating authorizations, as well
as naming. It uses name certificates to define names in principals’ local name spaces as
keys or other names, and uses authorization certificates to grant authorizations and to del-
egate the ability to grant authorizations. A principal is authorized to access a resource by
an authorization certificate or by a chain of certificates involving naming and delegation.
Designing efficient algorithms for inferring authorizations and answering related queries is
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essential for enforcing SPKI/SDSI policies.
We express policy analysis problems using extended Datalog, extended with list con-

structors and external functions. We represent certificates as facts, and describe rules and
queries for computing the reduction closure, inferring authorizations, and solving other pol-
icy analysis problems for SPKI/SDSI. These other analysis problems include ones about the
current state of the policy, as well as ones about changes in the state that would be caused
by possible changes in the policy, such as expiration or addition of a set of certificates.

We describe our method for systematically generating specialized algorithms and data
structures, together with precise time complexity formulas, from extended Datalog rules as
it is applied to computing reduction closure and inferring all authorizations. The generated
algorithms employ an incremental approach that considers one certificate or intermediate
analysis fact at a time, and use a combination of linked and indexed data structures to
represent different certificates and intermediate values. The running time is optimal for
the respective rules, in the sense that each combination of instantiations of hypotheses is
considered once in O(1) time.

We then describe other policy analysis problems as additional rules and queries, and use
a method to systematically push given inputs for the analyses from queries into hypotheses
of rules, yielding specialized and simplified rules for the given queries. This is similar
to pushing demands by queries in magic set transformations [15], but instead of yielding
more complicated rules with magic predicates, we obtain simplified, specialized rules that
are much easier for generating efficient implementations and precise complexities.

Contrasting various previous works, our rules and algorithms for policy analysis support
all aspects defined in the specification for SPKI/SDSI, including any number of resources
and accesses, names consisting of any number of identifiers, and validity intervals. We also
have a prototype implementation, and experimental results confirm our precise complexity
analysis.

A significant amount of work has been done on algorithms for SPKI/SDSI policy en-
forcement and analysis [72, 2, 34, 52, 25, 55, 41, 6, 42, 54, 49, 32]. Our approach of
expressing policy analysis problems as extended Datalog rules is much simpler than previ-
ous techniques for analysis of SPKI/SDSI policies. Our method also derives better, more
precise time complexities than before in addition to generating complete algorithms and
data structures. The method is general, with many applications beyond policy analysis. It
extends our previous method for Datalog [57] to handle list constructors, external functions,
and queries.

The rest of this chapter is organized as follows. Section 2 reviews the SPKI/SDSI trust
management framework and defines the problems of computing the reduction closure and
inferring authorizations. Section 3 expresses computing reduction closure and inferring au-
thorizations in rules, describes generation of efficient algorithms and data structures from
the rules, and precise time complexity analysis. Section 4 presents specialized policy anal-
ysis problems expressed in rules, along with precise time complexity analysis for them.
Section 5 discusses related work and concludes.
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4.2 SPKI/SDSI

In SPKI/SDSI systems, principals are the users and are identified by public keys, which
we will simply refer to as keys. Identifiers are words over a standard alphabet and are used
to refer to principals and resources. A name is a key followed by a sequence of identifiers.

SPKI/SDSI certificates are name certificates and authorization certificates. A name
certificate defines a local name in its issuer’s local name space. A name certificate is the
4-tuple (K, I, S, V ), where K is the public key of the issuer of the certificate; I is an
identifier from the local name space of the issuer; S is the name or key that the local name
KI stands for; V is the validity time interval for the certificate and is of the form [t1, t2],
where t1 and t2 are absolute time constants. The 4-tuple defines the name KI to stand
for S during validity interval V . A name certificate can only be issued by the principal to
whom the name being defined is local. We refer to certificates in which S is a name as
name-name certificates, and to ones in which S is a key as name-key certificates. A name
can correspond to a set of keys.

Principals use authorization certificates to grant permissions for accessing resources to
other principals. An authorization certificate is a 5-tuple (K, S, D, P, V ), where K is the
public key of the certificate issuer — the principal granting authorization; S is the subject
of the certificate — the key or name that is being granted authorization; D is a boolean del-
egation bit indicating if the subject is granted the right to delegate the permissions granted
by the certificate to others; P is the set of permissions, i.e., operation-resource pairs, being
granted; V is a validity interval as for name certificates.

A principal Pr has permission for an operation on a resource if there is a valid autho-
rization certificate (R, Pr, D, P, V ), where P contains the operation-resource pair, and R is
the owner of the resource involved in permission P , or if such a certificate can be inferred,
i.e., there is a chain of certificates that authorizes the access. Certificates are composed in
chains by use of the following composition rules.

• Two name certificates, such as (k1, id1, k2 id2 ids, v1) and (k2, id2, s, v2), can be
composed to infer (k1, id1, s ids, v3), where v3 is the intersection of validity inter-
vals v1 and v2.

• Two authorization certificates, (k1, k2, d1, p1, v1), where d1 = TRUE, and
(k2, s, d2, p2, v2) can be composed to infer the certificate (k1, s, d2, p3, v3), where
p3 is the intersection of authorization sets p1 and p2, v3 is the intersection of validity
intervals v1 and v2.

• An authorization certificate (k1, k2 id ids, d, p, v1) and a name certificate
(k2, id, s, v2), can be composed to infer (k1, s ids, d, p, v3), where v3 is the inter-
section of validity intervals v1 and v2.

The closure of a set of certificates contains all given certificates and all certificates that
can be inferred using the above rules. However, the closure of a set of certificates may
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be infinite. The reduction closure of a set of authorization and name certificates contains
all given certificates and all certificates that can be inferred using chains in which every
certificate after the first one has a key as its subject. For each name occurring in a set of
certificates, the reduction closure contains all name-key certificates that define the name as
a key, as in the full closure of the set of certificates. Also, for a given key, the reduction
closure contains all authorization certificates in which the key is a subject, that occur in the
full closure. Thus, the reduction closure can be used to find all keys that a name stands for,
as well as to find all permissions that a key has.

4.3 Computing Reduction Closure Efficiently

This section expresses reduction closure and authorization inference using extended
Datalog rules, and describes the generation of specialized algorithms and data structures
from the rules, we also analyze precisely the time complexities, expressing the complexities
in terms of characterizations of the given set of certificates.

4.3.1 Expressing reduction closure in rules

We use the following relations to denote certificates:

• nameCert(k,id,s,v): a given name certificate.

• authCert(k,s,d,p,v): a given authorization certificate.

• name(k,id,s,v): an inferred name certificate.

• auth(k,s,d,p,v): an inferred authorization certificate.

We use three external functions. The symbol | separates the head from the tail in a
sequence of identifiers and NIL denotes the empty list. The functions PInt(p1,p2)
and VInt(v1,v2) return the intersections of two sets of permissions, and two validity
intervals, respectively.

The rules for composing chains of certificates can readily be written as the extended
Datalog rules shown in Figure 4.1.

4.3.2 Generating efficient algorithms and data structures

We transform the extended Datalog rules into an efficient implementation using the
method in [57] for Datalog rules. A small extension is needed to handle the external func-
tions |, VInt, and PInt.
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1. nameCert(k,id,s,v)→name(k,id,s,v).
2. authCert(k,s,d,p,v)→auth(k,s,d,p,v).
3. name(k1,id1,k2|(id2|ids),v1),name(k2,id2,k3|NIL,v2)

→name(k1,id1,k3|ids,VInt(v1,v2)).
4. auth(k1,k2|NIL,TRUE,p1,v1),auth(k2,k3|NIL,d2,p2,v2)

→auth(k1,k3|NIL,d2,PInt(p1,p2),VInt(v1,v2)).
5. auth(k1,k2|(id|ids),d,p,v1),name(k2,id,k3|NIL,v2)

→auth(k1,k3|ids,d,p,VInt(v1,v2)).

Figure 4.1: Rules for computing the reduction closure.

Fixed-point specification and while-loop. The input to the algorithm is the given set
of certificates represented by a set certs of facts. We define rcerts to be the set of
facts in certs represented as tuples as described above.

rcerts = {[authCert k s d p v]:
authCert(k,s,d,p,v) in certs}

∪ {[nameCert k id s v] :
nameCert(k,id,s,v) in certs}.

Given any set R of facts, and an extended Datalog rule with rule number n and with
relation e in the conclusion, let ne(R) be the set of all facts that can be inferred by that
rule given the facts in R. For our rules we have:

1name={[name k id s v] :
[nameCert k id s v] in R},

2auth={[auth k s d p v] :
[authCert k s d p v] in R},

3name={[name k1 id1 k3|ids VInt(v1,v2)] :
[name k1 id1 k2|(id2|ids) v1] in R and
[name k2 id2 k3|NIL v2] in R},

4auth={[auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] :
[auth k1 k2|NIL TRUE p1 v1] in R and
[auth k2 k3|NIL d2 p2 v2] in R},

5auth={[auth k1 k3|ids d p VInt(v1,v2)] :
[auth k1 k2|(id|ids) d p v1] in R and
[name k2 id k3|NIL v2] in R}.

The meaning of the given set of certificates and the extended Datalog rules for reduction
closure is:

LFP({},F), where F(R)=R∪rcerts ∪
1name(R)∪2auth(R)∪3name(R)∪4auth(R)∪5auth(R)

(4.1)
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This least-fixed point specification of computing the reduction closure is transformed
into the following while loop:

R := {};
while exists x in F(R) - R:

R with := x;
(4.2)

The idea behind this transformation is to perform small update operations in each iteration
of the while-loop. After the execution of this loop R contains all facts that are given or
can be inferred by the rules. R is referred to as the resultset.

Incremental computation Next we transform expensive set operations in the loop into
incremental operations. The idea is to replace each expensive expression exp in the loop
with a variable, say E, and maintain the invariant E = exp, by inserting appropriate initial-
izations and updates to E where variables in exp are initialized and updated, respectively.

The expensive expressions in type inference are all sets of facts inferred by each rule
and a workset W. We use fresh variables to hold each of their respective values and maintain
an invariant for each of these sets, in addition to one for the workset.

I1name = 1name(R), I2auth = 2auth(R),
I3name = 3name(R), I4auth = 4auth(R),
I5auth = 5auth(R), W = F(R) - R.

As an example of incremental maintenance of the value of an expensive expression,
consider maintaining the invariant I3name. I3name is the value of the set formed by join-
ing two name certificates. I3name can be initialized to {}with the initializationR := {}.
To update I3name incrementally with update R with:= x, if x is of the form [name
k1 id1 k2|(id2|ids) v1], we consider matching tuples of the form [name k2
id2 k3|NIL v2] and add all corresponding new tuples [name k1 id1 k3|ids
VInt(v1,v2)] to I3name. To form the tuples to be added, we need to efficiently find
the appropriate values of variables that occur in [name k2 id2 k3|NIL v2] tuples,
but not in [name k1 id1 k2|(id2|ids) v1], i.e., the values of k3 and v2, so we
maintain an auxiliary map, I3name1, shown below, that maps [k2 id2] to [k3 v2].
Symmetrically, if x is a tuple of the form [name k2 id2 k3|NIL v2], we need to
consider every matching tuple of the form [name k1 id1 k2|(id2|ids) v1] and
add the corresponding tuple of the form [name k1 id1 k3|ids VInt(v1,v2)] to
I3name, so we maintain the auxiliary map I3name2 below.

I3name1 = {[[k2 id2] [k3 v2]] :
[name k2 id2 k3|NIL v2] in R},

I3name2 = {[[k2 id2] [k1 id1 ids v1]] :
[name k1 id1 k2|(id2|ids) v1] in R}.
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The first set of components in an auxiliary map is referred to as the anchor and the
second set of elements as the nonanchor.

Thus, the algorithm can directly find only matching tuples and consider only combina-
tions of facts that make both hypotheses true simultaneously, and it considers each com-
bination only once. Auxiliary maps are maintained similarly for all maintained invariants,
I4auth and I5auth here, that are formed by joining two relations.

All variables holding the values of expensive computations listed above, and auxiliary
maps, are initialized together with the assignment R := {} and updated incrementally
together with the assignment R with:= x in each iteration. We show the update for the
addition of a fact of relation name only for I3name and auxiliary map I3name2. Other
updates are processed in the same way.

case of x of [name k1 id1 k2|(id2|ids) v1]:
I3name ∪:= {[name k1 id1 k3|ids VInt(v1,v2)]

: [k3 v2] in I3name1{[k2 id2]}};
W ∪:= {[name k1 id1 k3|ids VInt(v1,v2)]

: [k3 v2] in I3name1{[k2 id2]}
| [name k1 id1 k3|ids VInt(v1,v2)] notin R};

I3name2 ∪:= {[[k2 id2] [k1 id1 ids v1]]};

(4.3)

Adding these initializations and updates, and other similar ones for the other cases, and
replacing F(R) - R with W in (4.2), we obtain the following complete code:

initialization; R:={};
while exists x in W:

update using (4.3) and
similar updates for the other cases;
W less:= x; R with:= x;

(4.4)

Next, we eliminate dead code. To compute the resultset R, only W and the auxiliary
maps are needed; the invariants maintained, i.e., I3name, I4auth, and I5auth, are
dead because F(R)-R in the while loop was replaced with W. We eliminate them from
the initialization and updates. For example, eliminating them from the updates in (4.3), we
eliminate lines 2-3.
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case of x of [name k1 id1 k2|(id2|ids) v1]:
W ∪:= {[name k1 id1 k3|ids VInt(v1,v2)]

: [k3 v2] in I3name1{[k2 id2]}
| [name k1 id1 k3|ids VInt(v1,v2)] notin R};

I3name2 ∪:= {[[k2 id2] [k1 id1 ids v1]]};

(4.5)

We clean up the code to contain only uniform operations on set elements. This sim-
plifies data structure design. We decompose R and W into several sets, each correspond-
ing to one relation in the extended Datalog rules. R is decomposed to RnameCert,
RauthCert, Rname and Rauth; W is decomposed to WnameCert, WauthCert,
Wname, and Wauth. This decomposition lets us eliminate relation names from the first
component of tuples, with appropriate changes to the rest of the code. Then, we apply the
following three sets of transformations.

(i) Transform operations on sets into loops that use operations on set elements. Each
addition of a set is transformed to a for-loop that adds the elements one at a time. For
example, lines 2-4 of (4.5) are transformed into:

for [k3 v2] in I3name1{[k2 id2]}:
if [k1 id1 k3|ids VInt(v1,v2)] notin Rname:
Wname with:= [k1 id1 k3|ids VInt(v1,v2)];

(4.6)

(ii) Replace tuples and tuple operations with maps and map operations. Specifically,
replace all for-loops as follows. (4.6) is transformed into:

for [k2 id2] in dom(I3name1):
for [k3 v2] in I3name{[k2 id2]}:
if [k1 id1 k3|ids VInt(v1,v2)] notin Rname:
Wname with:= [k1 id1 k3|ids VInt(v1,v2)];

We replace the while loop similarly. Also, we replace each [X Y ] notin M with
Y notin M{X}. Each addition to a map M with:= [X Y ] is replaced with M{X}
with:=Y .

(iii) Test for membership before adding or deleting an element to or from a set.
Specifically, we replace each statement S with:=X with ifX notin S : S with:=X .

Note that when removing an element from a workset, the membership test is unnec-
essary, since the element is retrieved from the workset. Also, when adding an element to
a resultset, the membership test is unnecessary, since elements are moved from the corre-
sponding workset to the resultset one at a time, and each element is put in the workset and
thus in the resultset only once.

After the above transformations, each firing of an extended Datalog rule involves a
constant number of set operations. Since each set operation takes worst-case constant time
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W := rcerts;
I3name1 := {}; I3name2 := {};
I4auth1 := {}; I4auth2 := {}; I5auth3 := {};
R := {};

while exists x in W:

case x of [nameCert k id s v]:
if [name k id s v] notin R:
W with := [name k id s v];

case x of [authCert k s d p v]:
if [auth k s d p v] notin R:

W with := [auth k s d p v];

case x of [name k1 id1 k2|(id2|ids) v1]:
W U:= {[name k1 id1 k3|ids VInt(v1,v2)] : [k3 v2] in I3name1{[k2 id2]}

| [name k1 id1 k3|ids VInt(v1,v2)] notin R};
I3name2 with:= [[k2 id2] [k1 id1 ids v1]];

case x of [name k2 id2 k3|NIL v2]:
W U:= {[name k1 id1 k3|ids VInt(v1,v2)] : [k1 id1 ids v1] in I3name2{[k2 id2]}

| [name k1 id1 k3|ids VInt(v1,v2)] notin R};
W U:= {[auth k1 k3|ids d p VInt(v1,v2)] : [k1 ids d p v1] in I5auth3{[k2 id2]}

| [auth k1 k3|ids d p VInt(v1,v2)] notin R};
I3name1 with:= [[k2 id2] [k3 v2]];

case x of [auth k1 k2|NIL TRUE p1 v1]:
W U:= {[auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] : [k3 d2 p2 v2] in I4auth2{[k2]}

| [auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] notin R};
I4auth1 with:= [[k2] [k1 TRUE p1 v1]];

case x of [auth k2 k3|NIL d2 p2 v2]:
W U:= {[auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] : [k1 d1 p1 v1] in I4auth1{[k2]}

| [auth k1 k3|NIL d2 PInt(p1,p2) VInt(v1,v2)] notin R};
I4auth2 with:= [[k2] [k3 d2 p2 v2]];

case x of [auth k1 k2|(id|ids) d p v1]:
W U:= {[auth k1 k3|ids d p VInt(v1,v2)] : [k3 v2] in I3name1{[k2 id]}

| [auth k1 k3|ids d p VInt(v1,v2)] notin R};
I5auth3 with:= [[k2 id] [k1 ids d p v1]];

W less:= x;
R with:= x;

Figure 4.2: Pseudocode for computing reduction closure.

in the generated code, as described below, each firing takes worst-case constant time. The
complete pseudocode for computing reduction closure efficiently is shown in Figure 4.2.

4.3.3 Time complexity analysis

We analyze the time complexity of computing reduction closure by carefully bound-
ing the number of facts actually used by the rules. For each rule we determine precisely
the number of facts processed by it, avoiding where possible approximations that use the
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product of the sizes of individual argument domains.
We first define the size parameters used in the complexity analysis. The number of facts

of a relation r that are given or can be inferred is called r’s size. For a relation named r,
#r denotes the size of r. We use the following size parameters about inferred certificates:

• nameKey — number of name certificates that have keys as subjects.

• nameKeyPerName — maximum number of name certificates, that have keys as
subject, for one name.

• namePerSubject — maximum number of name certificates for one subject.

• authD — number of authorization certificates with a delegation bit TRUE.

• authPerIssuer— maximum number of authorization certificates for one issuer.

• authPerIssuerD — maximum number of authorization certificates with delega-
tion bit TRUE for one issuer.

• authPerSubject — maximum number of authorization certificates for one sub-
ject.

In addition, we use key for the total number of different keys in the given certificates.
The time complexity for a set of Datalog rules is the total number of combinations of

hypotheses considered in evaluating the rules. For each rule r, the number of firings for the
rule is: (i) for rules with one hypothesis: the number of facts which make the hypothesis
true; (ii) for rules with two hypotheses: the number of combinations of facts that make
the two hypotheses simultaneously true. The total time complexity is time for reading the
input, plus the time for firing all rules.

The total time complexity for computing the reduction closure is time for reading the
input, which is O(#authCert + #nameCert), plus the time for applying each of the
rules. VInt(v1, v2) is computed in constant time; PInt(p1,p2) can be computed in
time O(p), where p is maximum size of a permission argument in the given authorization
certificates. List operations involving | can be performed in time O(1).

Time complexity of the rules used for name-reduction closure and inferring authoriza-
tions is as follows:

1. O(#nameCert)
2. O(#authCert)
3. O(min(#name × nameKeyPerName,

nameKey × namePerSubject))
4. O(min(authD × authPerIssuer,

#auth × authPerIssuerD))
5. O(min(#auth × nameKeyPerName,

nameKey × authPerSubject))
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The time complexity for the whole reduction closure is the sum of the time complexities
for rules 1, 2, 3, 4, and 5. The sum for rules 1 and 2 is the number of given certificates. The
sum for rules 3-5 is larger and decides the total time complexity.

To compare with previous results, suppose we eliminate the permission and validity
interval arguments, or consider only certificates with the given permission and validity
interval, as in [25, 49]. Then nameKeyPerName is the maximum number of keys a
single local name reduces to, and is key in the worst case; and authPerIssuerD is the
maximum number of keys authorized by one issuer with delegation bit TRUE, and is again
key in the worst case. Thus, our precise complexity formulas for rules 3-5 is O((#name
+ #auth) × key) in the worst case. #name+#auth is the total number of certificates
inferred and, as noted in [49], is bounded by in×key, where in is the size of the input,
i.e., the sum of the sizes of the given certificates; note that the size of a certificate might not
be a constant because its subject may be a key followed by a list of identifiers. Therefore,
the time complexity O(in × key2) from previous work [49] is an upper bound of our
more precise complexity analysis.

4.4 Specialized Policy Analysis Problems

This section discusses how to solve specialized certificate analysis problems and an-
alyze their algorithm complexities. The algorithms for computing reduction closure can
be used to solve specialized analysis problems. However, these algorithms compute all
authorizations and all name-key correspondences, given a set of certificates. This may be
unnecessary, since many policy analysis problems require computing only a few authoriza-
tions or resolving only a few names. Therefore, we use specialized extended Datalog rules
for the specialized analysis problems; these specialized rules can be used to generate an
efficient algorithm for each analysis problem, and infer only the authorizations and resolve
only the names needed for that problem. Also, the original reduction closure algorithm
does not give a direct way of solving some important policy analysis problems, specifi-
cally when questions about name certificates are asked, when sets of resources or keys are
given. There are algorithms for solving these problems in [49], but these require complex
pushdown system structures that are not inherent to the problems’ structure.

We first introduce extended Datalog rules to solve the problems and then show a way to
construct specialized rules from given rules, by pushing the constants bound by the query
into the rules. There are automatic ways of generating on-demand rules such as Magic
Set Transformation (MST) [15, 68]. MST introduces demand relations corresponding to
the query; and makes changes that limit the facts being inferred to ones demanded by
the query. We chose to push the constants in a naı̈ve manner despite the fact that MST
may do better than our technique for some problems; mainly because MST is much more
sophisticated, the order of hypotheses in the original rules may significantly change the
efficiency of the transformed rules and moreover there is no reason (except the resulting
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complexity) to prefer an order to the other before starting the transformation. By pushing
constants into the rules, we obtain simpler rules and precise complexities.

4.4.1 Policy analysis and complexity analysis in a logic framework

We consider all the analysis problems studied in [49]. All problems are solved with
respect to a given set of certificates. In the rules, we use the names “permissions” and
“resources” interchangably, in our context “permission” means an access to a resource
without loss of generalization. In the construction of rules, we leave the unknown to the
question as the last argument, and try to remain consistent on the order of keys, permissions,
etc. otherwise. The relations are named as close to the real meaning of the relation, e.g.
canAccess(K,P) stands for the relation “a key K is authorized for permission P ”. For
each problem, we first give a set of rules, followed by a Prolog-like query, that will return
the requested result.

Figure 4.3 shows all of the rules for the problems below. In the rules, owner(o,p)
denotes that o is an owner of permission p, and auth is as defined before. In the last
four analysis problems, where some certificates are removed, canAccess2 is defined in
a similar way as canAccess in the first analysis, but uses authorizations inferred using
only the remaining certificates, i.e., using an auth2 relation computed as the reduction
closure of the remaining certificates.

We introduce the notation for the auxiliary values used for the complexity analysis.

• authPerKey is the maximum number of authorizations that has a specific key as a
subject.

• ownersPerRes is the maximum number of owners for a single resource.

• l is the maximum number of identifiers occurring in a name that is the subject of a
certificate.

• identifiers is the number of distinct identifiers occurring in the certificates.

• len(N) for a name N is the length of the name N .

Authorized Access 1: Is a principal K authorized to permission P ? This is determined in
time O(ownersPerRes× authPerKey).
Authorized Access 2: Given a permission P and name N , is N authorized to P ?
Authorized Access 3: Given a permission P , what names are authorized to access P ?
These two questions are answered the same way as question 1; the preprocessing for adding
the certificates for reduction closure takes linear time in the length of the name N for
question 2; and for question 3 this procedure needs to assign a valid string of identifiers of
at most length l, which would take key × identifiersl, but the key is not bounded
either so instead of authPerKey as a factor, we have #auth. Notice that this exponential
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behaviour for the third question comes from the nature of the problem, since the set of
names authorized to access P might be an infinite set. So the precise complexities for
question 2 and 3 respectively are: O(ownersPerRes × #authPerKey + len(N))
and O(ownersPerRes× #auth + key × identifiersl).
Shared Access 1: Given two permissions P1 and P2, which principals are authorized for
both? A straightforward analysis just as above shows that the complexity for the solution
to this problem is O(key + #auth × ownersPerRes).
Shared Access 2: Given two principals K1 and K2 and a permission P , is both K1 and K2

authorized for P ? This question is answered in a constant time factor of the answer to the
Authorized Access 1 question, so it takes time O(ownersPerRes× authPerKey).
Shared Access 3: Given two principals K1 and K2 and a finite set of permissions Ps =
{P1, ..., Pn}, what is the subset of Ps that K1 and K2 are authorized for? This question
is answered using the rule in Shared Access 2, by checking for all elements in Ps, but the
permission is not bound for canAccess, so it takes O(n + #owner × authPerKey)
time.
Compromisation Assessment 1 (also called Expiration Vulnerability 1): What permis-
sions from a finite set of permissions Ps = {P1, ..., Pn} would a given principal K lose
authorization for, if a subset C ′ of the original certificate set C were to be removed? This
question is answered using canAccesswithout p being bound, checked for each element
in Ps, so it takes O(n + #owner × authPerKey) time (since #auth2, the number of
authorizations inferred not using C ′ is less than #auth, we can ignore that part).
Compromisation Assessment 2 (also called Expiration Vulnerability 2): What princi-
pals would have lost authorization for a permission P if a subset C ′ of the original certifi-
cate set C were to be removed? This question is answered using the rule in Authorization
Access 1 without binding k, by checking for all keys in the system, so it is answered in
O(key+ ownersPerRes× #auth) time (since #auth2, the number of authorizations
inferred not using C ′ is less than #auth, we can ignore that part).
Universally Guarded Access 1: Must all authorizations for permission P involve a cer-
tificate signed by principal K? We answer the negation of this question for simplicity, in
other words our rule gives a “no” for a “yes” instance and vice versa. This question is
answered using the rule in Authorization Access 1 without binding k, by checking for all
keys in the system, so it is answered in O(key+ ownersPerRes× #auth) time (since
#auth2, the number of authorizations inferred not using certificates signed by K is less
than #auth, we can ignore that part).
Universally Guarded Access 2: Must all authorizations that grant a given principal K ′ a
finite set of permissions Ps = {P1, ..., Pn} involve a certificate signed by K? Again we
answer the negation of this question for simplicity. This question is answered using the rule
in Authorization Access 1 without binding p, by checking for all elements in Ps, so it takes
O(n + #owner × authPerKey) time (since #auth2, the number of authorizations
inferred not using certificates signed by K is less than #auth, we can ignore that part).
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4.4.2 Constructing specialized rules

We demonstrate how to push constants to create specialized rules on one of the analysis
problems. Consider the rule set and the query for the problem Compromisation Assessment
2:

canAccess(k,p,t), ¬canAccess2(k,p,t)
→compromisedPrinciples(p,t,k)

Query : compromisedPrinciples(P,T,k).

Now since the permission P and time T is given when the question is asked, we push
them inside the relations on the right hand side, yielding:

canAccess(k,P,T), ¬canAccess2(k,P,T)
→compromisedPrinciples(P,T,k)

Now it is easy to observe that the conclusion expresses the constants unnecessarily,
since the hypotheses are already aware of the values of them. So we can rewrite :

canAccess(k,P,T), ¬canAccess2(k,P,T)
→compromisedPrinciples PT(k)

This new rule is the compromisedPrinciples rule specialized to constants P and
T ; it returns precisely what we are looking for, the resulting keys. Notice that this push-and-
specialize method can be applied iteratively in general, and it is particularly simple in this
case since there is no recursion. In other words, in this example canAccess(k,P,T)
can be rewritten as canAccess PT(k) by pushing the constants into hypotheses prop-
erly.

4.5 Experimental Results

To experimentally confirm our time complexity calculations, we generated an imple-
mentation of our algorithm for computing reduction closure in Python. The generated
implementation consists of 180 lines of Python code. We analyzed sets of certificates of
varying sizes, to determine how the running times of the algorithms scale with the number
of given certificates. For each certificate set, we report the CPU time for the analysis, using
Python 2.3.5 on a 1.73 GHz Pentium M processor, with 366 MHz 448 MB RAM, running
Windows XP. Reported times are averaged over 10 trials.

For the experiments we first infer all name facts using rules 1 and 3, and then infer the
authorizations by rules 2,4 and 5. This does not affect the resulting facts and was just done
for the purpose of having separate experiments for the two parts of the algorithm, so that
the effect of changing certain parameters can be seen. Also, the data was generated in such
a way that the number of given and inferred certificates are of the same order.
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Authorized Access 1:
owner(o,p), auth(o,k|NIL,d,ps,v), p in ps, t in v → canAccess(k,p,t).
Query: canAccess(K,P,T).
Authorized Access 2:
Suppose the asked given name is N = K I1 I2 .. In, add new name certificates:
(K,I1,K1|NIL,V), (K1,I2,K2|NIL,V), ...(Kn−1,In,Kn|NIL,V), where each Ki is a fresh key, V
is a validity interval satisfied at the current time T.
Query: canAccess(Kn,P,T).
Authorized Access 3:
For all keys and identifiers, construct all possible names up to l identifiers, and add new name certificates
corresponding to these names as shown above.
Query: canAccess(k,P,T).

Shared Access 1:
canAccess(k,p1,t), canAccess(k,p2,t) → sharingPrinciple(p1,p2,t,k).
Query : sharingPrinciple(P1,P2,T,k).
Shared Access 2:
canAccess(k1,p,t), canAccess(k2,p,t) → sharingResource(k1,k2,p,t).
Query : sharingResource(K1,K2,P,T).
Shared Access 3:
p in ps, sharingResource(k1,k2,p,t) → sharingResources(k1,k2,ps,t,p).
Query : sharingResources(K1,K2,{P1,P2,...,Pn},T,p).

Compromisation Assessment 1:
p in ps, canAccess(k,p,t), ¬canAccess2(k,p,t)
→ compromisedResource(k,ps,t,p).
Query : compromisedResource(K,{P1,P2,..,Pn},T,p).
Compromisation Assessment 2:
canAccess(k,p,t), ¬canAccess2(k,p,t) → compromisedPrinciple(p,t,k).
Query : compromisedPrinciple(P,T,k).

Universally Guarded Access 1:
canAccess(k1,p,t), canAccess2(k1,p,t) → needNotInvolve(p,t).
Query : needNotInvolve(P,T).
Universally Guarded Access 2:
p in ps, canAccess(k,p,t), canAccess2(k,p,t)
→ needNotInvolveMultiple(k,ps,t).
Query : needNotInvolveMultiple(K,{P1,P2,..,Pn},T).

Figure 4.3: Rules and queries for solving policy analysis problems.

Figure 4.4 shows the running times for inferring all name certificates. Two series of
sets of certificates were used. In both series the number of certificates increases, how-
ever in the first one nameKeyPerName remains constant. In the second test series
nameKeyPerName increases as the number of given certificates increase, and both of
these parameters increase at the same rate. The results show that CPU time for inferring all
name certificates is linear in the number of given name certificates, if nameKeyPerName
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Figure 4.4: Time to infer all name certificates only.
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Figure 4.5: Time to infer authorization certificates given all name certificates.

is a constant. Figure 4.5 shows the running times for inferring all authorization certifi-
cates, once name certificates have been inferred. Three series of sets of certificates were
used. In all three series the number of given certificates increases, however in the first
one authPerIssuer and nameKeyPerName remain constant. In the second test se-
ries only authPerIssuer remains constant, while nameKeyPerName increases as the
number of given certificates increases, and both of these parameters increase at the same
rate. In the third series both authPerIssuer and nameKeyPerName increase along
with the number of given certificates and at the same rate as the number of given certifi-
cates. The results show that CPU time for inferring all authorization certificates is linear in
the number of given certificates, if authPerIssuer and nameKeyPerName are kept
constant; CPU time grows faster if only authPerIssuer remains constant. These exper-
imental results confirm our time complexity analysis results. In all experiments the search
space increases along with the number of given certificates, so that the test results are not
influenced by a disproportionately small search space. The data was generated so that the
ratio of the number of keys to the number of given certificates remains the same.
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4.6 Related Work and Conclusion

Surveys of trust management are presented in [40, 17, 53]. Li et al [56] define security
analysis problems for trust management systems and analyze their complexity.

SDSI was proposed by Rivest and Lampson [72], as a public-key infrastructure that
uses linked local names. SPKI was developed concurrently; it emphasized delegation of
authorizations. These two infrastructures were merged to create SPKI/SDSI, described in
RFC 2693 [34].

The reduction closure that our algorithm computes includes all the certificates inferred
by previous algorithms [25, 49]. Clarke et al. [25] analyze the time complexity of their
algorithm to be O(n3× l), where n is the number of given certificates, and l is the length
of the longest subject in any given certificate. Jha and Reps [49] give a more precise bound
of O(in × key2), where in is the size of the input and is bound by n × l; it is more
precise because key is bound by O(n). Our complexity analysis is even more precise
because one of their key factors is nameKeyPerName in our complexity formula, which
corresponds to the maximum number of keys a single local name reduces to; while this
could be key in the worst case, it is much smaller on average in practice and is close to a
constant in large systems. Thus, our complexity analysis is more precise and informative
than using only worst-case sizes.

A different algorithm for certificate chain discovery is presented by Li et al [55]. The
algorithm as described does not accommodate names containing more than one identifier,
but it could be altered to do so. It combines forward and backward search in a graph
representation of credentials, and has a time complexity equal to that of the algorithm in
[25]. Halpern and Meyden [42, 41] define a semantics for SPKI and SDSI, that facilitates
reasoning about SPKI’s and SDSI’s design. A first-order logic semantics for SPKI/SDSI is
presented in [54] and is used to analyze the design of SPKI/SDSI.

Policy analysis for SPKI/SDSI has also been studied. Jha and Reps [49] establish a
connection between SPKI/SDSI and pushdown systems, and use existing algorithms for
model checking pushdown systems to solve analysis problems for SPKI/SDSI. A similar
approach is used in [32], but in addition, propertied of an SPKI/SDSI policy are expressed
using a first order temporal logic.

What distinguishes our work [46] is that first we use a novel implementation strategy
for reduction closure and inferring authorization that combines an intuitive definition of
certificate composition in rules and a systematic method for deriving efficient algorithms
and data structures from the rules [57]. The time complexity is calculated directly from the
rules, based on a thorough understanding of the algorithms and data structures generated,
reflecting the complexities of implementation back into the rules. We also solve known
policy analysis problems in a logic framework, and show a straightforward way of con-
structing specialized rules from our proposed solutions, which allows for easy bottom-up
computation of results. Furthermore, we present precise time complexities for our proposed
solutions. We achieve more precise worst-case time complexity guarantees that those in
previous work. Moreover, our algorithms for authorization and other analysis support any
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number of resources and types of access, as well as validity intervals and delegation; all
aspects defined in the SPKI/SDSI specification.

This method of generating efficient implementations from rules has also been applied
to problems beyond the area of policy analysis. In the model checking area, the method is
used to derive an efficient algorithm with improved complexity analysis for linear tempo-
ral logic model checking of pushdown systems [44]. This model checking framework can
express and check many practical properties of programs, including many dataflow proper-
ties and general correctness and security properties. For secure information flow analysis,
the method was used to develop the first linear-time algorithm for inferring information
flow types of programs for a formal type system [45]. The algorithm is also extended with
informative error reporting to facilitate error detection and corrections.
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Chapter 5

Answering Rule-Based Queries

Efficiently

5.1 Introduction

Much work has been directed towards finding efficient ways to evaluate logic rules and
queries. This is an important research problem since many practical problems, which may
be difficult to understand and implement otherwise, can conveniently and intuitively be
expressed in rules. Among these are deductive database queries, verification and model
checking problems, and problems in program analysis and security policy frameworks.

Logic rules allow a programmer to conveniently and intuitively express the logic under-
lying an application, without having to consider implementation details. Queries are used
to select facts of interest from facts that can be inferred, given a set of rules and facts. A
query is a question about the set of rules and facts, asking about facts of a specific relation
that can be inferred, possibly with certain constants arguments, specified by the query.

The two principal approaches to answering logic program queries are the top-down and
bottom-up methods. The bottom-up approach computes all facts that can be inferred given
a set of rules and facts and then selects the facts that have the same relation and constant
arguments as the given query. This approach is likely to perform a much larger amount
of computation than is actually needed. Thus, it may be very inefficient. The top-down
approach for answering a query is computation on demand, guided by the given query. This
approach is prone to repeated computation and infinite loops for certain kinds of programs
and data.

A number of improvements have been developed for both approaches that resolve their
major drawbacks. However, some difficult issues still remain. The efficiency of all existing
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implementations is dependent on the order of hypotheses in the given rules or on the order
of rules. Providing precise complexity analysis for answering logic program queries has
been a major challenge for existing approaches.

We describe a method that combines a prominent bottom-up optimization called Magic
Set Transformation (MST) [15] with a systematic method for deriving efficient algorithms
and data structures from the rules [57]. The method focuses on Datalog, which is an im-
portant logic-based programming language and can be used to specify a significant class of
practical problems. We apply the method to graph reachability, role based access control,
information flow analysis, and model checking problems.

The rest of this chapter is organized as follows. Section 2 introduces Datalog rules
and queries. Section 3 describes the transformation method, and Section 4 the method
for complexity calculation. Section 5 presents applications of the approach. Section 6
discusses related work and concludes.

5.2 Problem and Approach

5.2.1 Queries

We consider queries of the form

P (X1, ..., Xa)? (5.1)

where P is a relation of a arguments, and each Xi is either a constant or a variable. The
meaning of a query with respect to a set of rules and a set of facts is the set of facts that
(1) are in the meaning of the given rules and given facts and (2) have the same relation and
constant arguments as the given query. The use of queries allows the expression of only
given or inferred facts that are of interest, not all facts that are given or can be inferred.

Example. We use various graph reachabilities as running examples. We use a and b to
denote constants, i.e., specific vertices, and use u, v, and w to denote variables, i.e., any
vertices. We use edge(u,v) to denote that there is an edge from a vertex u to a vertex v,
and use path(u,v) to denote that there is path from a vertex u to a vertex v following
the edges.

The following graph reachability variants are used as examples:

edge(u,v)→path(u,v)
edge(u,w),path(w,v)→path(u,v)

(5.2)
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edge(u,v)→path(u,v)
path(w,v),edge(u,w)→path(u,v)

(5.3)

edge(u,v)→path(u,v)
path(u,w),edge(w,v)→path(u,v)

(5.4)

edge(u,v)→path(u,v)
edge(w,v),path(u,w)→path(u,v)

(5.5)

The meaning of each of these pairs of rules given a set of facts about edges is the set
of facts that contains all edge(u,v)’s given and all path(u,v)’s that can be inferred.
The set of all pairs u and v such that path(u,v) can be inferred is the transitive closure
of edges in the graph.

The rules in 5.2 and 5.3 infer paths by starting at the end edges of paths. The two rules
in 5.2 say that if there is an edge from u to v, then there is a path from u to v, and if there
is an edge from u to w and there is a path from w to v, then there is a path from u to v. The
two rules in 5.3 have the same meaning as the rules in 5.2. The only difference is that in 5.3
the order of hypotheses is reversed. The next two pairs of rules infer paths by starting at
the starting edges of paths. The two rules in 5.5 have the same meaning as the rules in 5.4.
The only difference is that in 5.5 the order of hypotheses is reversed.

Queries about paths are in one of the following four forms.

path(a,b)? path(a,v)? path(u,b)? path(u,v)? (5.6)

The meaning of path(a,b)? is the set of all path(u,v)’s that can be inferred and
that u = a and v = b, so it contain exactly path(a,b) if path(a,b) can be inferred,
and is empty otherwise. The meaning of path(a,v)? is the set of all path(u,v)’s
that can be inferred and that u = a, so it corresponds to the set of vertices reachable
from a following edges in the graph. The meaning of path(u,b)? is symmetric and
corresponds to the set of vertices that can reach a. Finally, the meaning of path(u,v)?
is the set of all path(u,v)’s that can be inferred; so it gives exactly the transitive closure,
omitting edge(u,v)’s in the meaning of the rules.

5.2.2 Efficient implementation with complexity guarantees

The problem considered in this chapter is to efficiently answer queries, i.e., compute the
meaning of queries, and provide precise time complexity guarantees for such computations.

There are two main approaches to such a computation. The first one is a brute force
strategy commonly referred to as bottom-up computation. This approach infers the mean-
ing of the set of rules and facts and then selects the facts that have the same relation and
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constant arguments as the given query. The inferred facts may be much more than the ones
in the meaning of the query. Thus, the brute force approach may be very inefficient.

The second approach for computing the meaning of a query is computation on demand,
usually referred to as top-down evaluation. The computation is guided by the given query.
It starts with the query and the rules that have the query relation in their conclusions. New
queries are generated as needed corresponding to the hypotheses of these rules and the
available bindings for their arguments. Thus, the process is driven by the meanings of
different queries. Since the computation is query specific it is likely to process fewer facts
and be more efficient than the brute force approach. However, the top-down approach may
repeatedly generate and evaluate the same subgoals, causing unacceptable performance.
For many examples of rules and facts on-demand computation does not terminate. A rule
is said to be recursive if the relation in the conclusion of the rule also occurs in a hypothesis
in the rule. If this hypothesis is the first on in the rule, the rule is left-recursive. If a left-
recursive rule is evaluated via top-down, it may cause non-termination. Moreover, even
recursion that is not left-recursion in the rules can cause non-termination.

Example. For the query path(a,v)?, brute force evaluation infers all facts, and then
selects the path facts with u=a. The on-demand strategy starts out with the query and
returns path(u,v) facts with u=a in one step where v’s are the vertices reachable from
a by traversing one edge. The second rule generates a path(v,u)? query, for each
instantiation of v. Then the first rule is used again, and so on. The evaluation is guided
by generated queries needed to compute the meaning of the original query. However, for
certain data, the on-demand evaluation of the query path(a,v)? would never terminate.
Such an example follows.

If the given facts are edge(a,b) and edge(b,a), the evaluation proceeds as fol-
lows. First the first rule generates the query edge(a,v) and the first of the given facts
is used to generate the fact path(a,b). Then the second rule generates the queries
edge(a,v)? and path(v,w)?. The first of the given facts binds v to vertex a. So
the query path(a,w)? with first argument bound to vertex a, and second argument free,
is generated again. This repeats infinitely.

A method for computing the meanings of queries is needed that combines the advantages
of the two main approaches to query evaluation. The evaluation should process as few facts
as possible. It should not depend on the order of rules and the order of hypotheses in them.

Our method is to transform a query and a rule set to a new set of rules and a fact. Given
a set of facts, the facts of the query relation that are inferred by the new set of rules include
those that are in the meaning of the query. The brute force evaluation of the new set of
rules with respect to the facts mimics on-demand evaluation of the original query and set
of rules.

For the query path(a,v)? and the set of rules in 5.2, our method produces the
following set of rules and fact.
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demand path bf(a)
demand path bf(u), edge(u,w)→demand path bf(w)
demand path bf(u), edge(u,v)→path bf(u,v)
demand path bf(u), edge(u,w), path bf(w,v)→path bf(u,v)

(5.7)
The meaning of this set of rules and the new fact, given a set of facts about edges,

contains all path(u,v) facts with u=a and only those path facts that would have been
inferred in an on-demand evaluation of the original set of rules. This set of rules infers
only paths that are reachable from vertex a. The worst-case time complexity is cubic in
the number of vertices, as in the original set of rules, however, the actual complexity is
dependent on the number of paths that are reachable from vertex a.

The method we describe consists of two steps. Step 1 defines a query specific set of
rules and is described in the next section. Step 2 performs time complexity analysis of the
set of rules and is described in Section 4.

5.3 Defining Query-Specific Rules

In this step a given set of rules and a query are transformed into a new set of rules and
a fact whose meaning when projected on the query relation includes the meaning of the
query.

Example. The query-specific for the query path(a,v)? and the set of rules in 5.2
were shown in 5.7.

Hypotheses of the demand path bf relation act as filters during the bottom-up eval-
uation of this program. They limit the number of facts that can be inferred because any
inferred instances of the relation demand path bf would have an argument, say a, such
that the query path(a,v)? would have been generated in the on-demand evaluation of
the original set of rules and query. The instances of the demand path bf relation are
the new fact whose argument is a — the bound one from the query, and the facts inferred
by the rule that has the demand path bf relation in its conclusion. This rule infers
demand path bf facts whose arguments are the vertices reachable from vertex a — the
first argument of the query.

The last two rules infer facts of the path bf relation. A fact path bf(u,v) is
inferred if u is a vertex reachable from vertex a and there is a path between u and v. The
demand path bf hypotheses in the two rules ensure that the first argument of all inferred
path bf facts is a vertex reachable from a.

The Magic Set Transformation algorithm is used to obtain such query specific sets of
rules.
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5.3.1 Magic Set Transformation algorithm

This transformation is completed in three steps [15]. During the first step annotations
are added to the query, the rules’ conclusions, and hypotheses of relations that occur in
rules’ conclusions. We refer to such relations as derived relations and such hypotheses as
derived hypotheses. They match argument bindings that will be used in the evaluation of
the rules. In the second step a new relation is created. Hypotheses using the new relation
are added to the rules, and rules with the new relation in conclusions are generated. In the
third step a fact of the new relation is added and a rule with the original query relation in
its conclusion is generated.

Step 1: Annotating bindings. Annotation is added to the query, the rules’ conclusions
and occurrences of derived relations in the rules. The purpose of the annotation is to capture
the constants in the query, and define the way these constants are used in the rules.

An argument is bound in a relation occurrence if it is a constant and free if it is a
variable. An annotation for an n-ary relation p is a string of length n, on the alphabet
{b, f}, where b stands for bound and f stands for free [15]. An annotated occurrence of
a relation p corresponds to inferring all facts of the relation with some arguments bound,
and other arguments free. For instance p bbf corresponds to computing p with the first
two arguments bound and the last argument free, i.e., such a computation would have been
demanded in a top-down evaluation. A relation annotated with only f’s corresponds to a
computation of the complete relation, thus such annotations are discarded in this algorithm.

The query relation is annotated first. Initially its annotation is an empty string. For each
argument in the query, if it is bound a b is added to the annotation, otherwise an f is added.
Occurrences of the query relation in the rules’ conclusions are annotated as the query.

Then, each derived hypothesis is annotated. Initially annotations are empty strings.
For each argument of a hypothesis we add a character to the hypothesis’s annotation as
follows: (i) if the argument is a constant, a b is added; (ii) if the argument occurs in any
of the hypotheses to the left of the current one, a b is added; (iii) if the argument occurs as
bound in the rule’s conclusion, a b is added; (iv) if none of the above cases holds, an f is
added.

Example. The query path(a,b)? is annotated to become path bb(a,b)?, since
its two arguments are bound. This annotation corresponds to computing the path relation
with both arguments bound. path(a,v)? is transformed to path bf(a,v)? and
corresponds to computing the path relation with the first argument bound. path(u,b)?
with bound second argument becomes path fb(u,b)?. path(u,v)? is not annotated
since it has no bound arguments.

For the query path bf(a,v)? and the set of rules in 5.2, the following set of rules
results:

edge(u,v)→path bf(u,v)
edge(u,w),path bf(w,v)→path bf(u,v)

(5.8)
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The conclusions are annotated as the query. In the second rule the first argument of the
path(w,v) hypothesis occurs in the edge(u,w) hypothesis to the left of it, so w’s po-
sition is marked as bound in the annotation. The rule stands for using bindings genarated by
evaluating edge(u,w) hypothesis to evaluate the path(w,v) hypothesis with a bound
first argument.

For the same query and the set of rules in 5.3, the following set of rules results:

edge(u,v)→path bf(u,v)
path(w,v),edge(u,w)→path bf(u,v)

(5.9)

In the second rule the hypothesis of the derived relation path would be evaluated without
any bindings and thus has no annotation.

For the query path(u,b)? and the set of rules in 5.2, the following set of rules
results:

edge(u,v)→path fb(u,v)
edge(u,w),path bb(w,v)→path fb(u,v)

(5.10)

The second rule stands for evaluating the edge(u,w) hypotheses and using the bindings
generated to evaluate the occurrence of the path relation with both arguments bound.

For the query path(u,b)? and the set of rules in 5.3, we get the set of rules:

edge(u,v)→path fb(u,v)
path fb(w,v),edge(u,w)→path fb(u,v)

(5.11)

The second rule stands for evaluating the path relation first with only the second argument
bound.

The annotation for the path(a,b)? query is as for the path(u,b)? query.
For the query path(u,v)? that does not have any bound arguments, we could anno-

tate the rules in 5.2 as follows:

edge(u,v)→path(u,v)
edge(u,w),path bf(w,v)→path(u,v)

(5.12)

The first rule has no annotation, and the second rule corresponds to computing the path re-
lation facts with the first argument bound. However, the binding for the argument is passed
from the edge(u,w) hypothesis, evaluated with both arguments free, and is therefore all
vertices that have incoming edge. We cannot restrict the computation in the following steps
of the transformation because of the lack of bound arguments in the query. In the following
steps we omit this query.

There are cases in which this transformation is beneficial even if the query contains no
bound arguments. When the occurrences of derived relations contain constant arguments,
their annotations can be used to restrict the computation.
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After annotating bindings, the rules may contain hypotheses of the query relation anno-
tated differently from ones that occur in the annotated conclusions of the rules. Annotating
bindings is repeated for the original rules and a new query — corresponding to the orig-
inal query relation and a different annotation of the query relation that occurred, until all
annotated relations appear in the conclusions of the rules.

Step 2: Adding demand relations. A new relation is created and hypotheses using it
are added to the rules. These new hypotheses limit the inferred facts and thus act as filters
during evaluation. We refer to them as demand relations.

A hypothesis named demand p annotation is added to each rule with a
p annotation conclusion relation. The arguments of the new hypothesis are the bound
arguments in the rule’s conclusion.

For each annotated hypothesis p annotation, a new rule is generated. Its conclu-
sion relation is demand p annotation and the conclusion’s arguments are the bound
arguments in p annotation. The body of the new rule consists of all hypotheses to
the left of the corresponding p annotation occurrence except for those without bound
arguments.

Example. The example set of rules 5.8 for the path bf(a,v)? query and the set of
rules in 5.2 is rewritten as follows:

demand path bf(u),edge(u,v)→path bf(u,v)
demand path bf(u),edge(u,w),path bf(w,v)→path bf(u,v)

For both rules a demand path bf hypothesis is added corresponding to the conclusion
relation. During evaluation the demand path bf(u) hypotheses generate bindings for
the argument u and thus limit the path bf facts inferred by the rules to ones in which the
first argument is equal to u.

The following rule is added to the set of rules. It corresponds to the annotated occur-
rence of the path relation in the second rule.

demand path bf(u), edge(u,w)→demand path bf(w)

This rule infers facts of the demand path bf relation. It provides bindings for the argu-
ments of the relation corresponding to the vertices whose outgoing paths are in the meaning
of the query. The resulting rules for the set of rules in 5.9 are:

demand path bf(u),edge(u,v)→path bf(u,v)
demand path bf(u),path(w,v),edge(u,w)→path bf(u,v)

For the path(u,b)? query, for the set of rules in 5.10 the sets of resulting rules are:

demand path fb(v),edge(u,v)→path fb(u,v)
demand path fb(v),edge(u,w),path bb(w,v)→path fb(u,v)
demand path fb(v),edge(u,w)→demand path bb(w,v)

(5.13)
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The resulting rules for the set of rules in 5.11 are:

demand path fb(v),edge(u,v)→path fb(u,v)
demand path fb(v),path fb(w,v),edge(u,w)→path fb(u,v)
demand path fb(v)→demand path fb(v)

(5.14)

Step 3: Adding a fact. The query is transformed to a fact which provides initial values
for the arguments of the relation created in the previous step of the transformation. Thus
the bindings from the query are reflected in the set of facts. The fact relation is the anno-
tated query relation prepended with demand . The arguments of the fact are the bound
arguments in the query. For example, the demand fact for the query path(a,b)? is
demand path bb(a,b); for the query path(a,v)? — demand path bf(a), and
for the query path(u,b)? — demand path fb(b).

Supplementary Magic Sets. Supplementary Magic Sets [15] is an additional transfor-
mation that is applied after MST, on the set of rules resulting from MST. This additional
transformation is concerned with removing pairs of hypotheses that occur in more than
one rule, and which cause duplication computation. In order to avoid recomputing pairs of
hypothesis, the Supplementary Magic Set transformation introduces supplementary magic
relations that are used to store intermediate results — results that have been computed and
are likely to be useful later. The supplementary magic relations are auxiliary relations with
the arguments necessary to combine two hypotheses. The transformation introduces new
rules that have pairs of hypotheses from the set of rules in their bodies, and whose con-
clusion is of the supplementary magic relations. In this work we do not need to use the
Supplementary Magic Sets transformation, since our method for generating efficient pro-
grams from rules splits all rules into ones with at most two hypotheses. For each rule with
more than two hypotheses, we transform it to multiple rules with two hypotheses each.
Moreover, we do this in all possible way and use the resulting set of rules with best time
complexity.

5.3.2 Different hypotheses orders and MST

Changing the hypotheses order in the rules does not change the meaning of a set of
rules with respect to any set of facts. The sets of rules in 5.2 and 5.3 differ in the order
of hypotheses in the second rule, but have the same meanings. However, sets of rules
produced by MST may be different for the same query and the same set of rules but with
different orders of hypotheses in the rules. For instance, the sets of rules in 5.2 and 5.3 for
the query path(u,b)? result in the different sets of rules in 5.13 and 5.14.

Different sets of resulting rules may have significantly different time complexities. In
order to determine the most efficient query-specific set of rules, we could generate all pos-
sible query-specific sets of rules and choose the one with best time complexity. This can
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be accomplished by generating all possible hypotheses orders for each rule and performing
MST for all resulting sets of rules. We describe an improvement to this strategy here. The
goal is to avoid generating results repeatedly by eliminating permutations of non-derived
hypotheses between each two derived ones.

During MST, two aspects of the resulting set of rules are influenced by different hy-
potheses orders. These are: (i) the annotation of the derived hypotheses in rules, and (ii)
the hypotheses in the bodies of the rules that have the demand relations in their conclusions.
The following algorithm would generate all versions of a rule. For each rule in the set of
rules:

• Generate all permutations of the derived hypotheses.

• Find all possible ways to place each of the remaining hypotheses before or after each
of the derived ones.

• Make one version of the rule for each permutation of derived hypotheses and each of
the ways to place remaining hypotheses.

The actual order of hypotheses that occur before a derived hypothesis or between two
derived hypotheses is not of importance. This is why we eliminate some hypotheses orders
automatically.

For example, if set A and set B constitute all non-derived hypotheses, and there is one
derived hypothesis, we assume the body of the rule is A, derived hypothesis, B.
We do not make any assumptions about the order of hypotheses in the sets A and B.

Correctness. Only hypotheses orders that would produce repeated results after MST are
eliminated. There is no resulting set of rules from MST that one can obtain by taking out
all permutations of all hypotheses, and that our algorithm would omit.

The proof is by contradiction. Let us assume that there is a resulting set of rules from
MST that is obtained by using all permutations of all hypotheses and is not obtained by our
algorithm.

Let this different resulting set of rules correspond to the following permutation of rule
and some query:

R 1, d 1, R 2, d 2...., R n, d n, R n+1→c

where R k’s stand for sets of non-derived relations or the empty set and d k’s stand for
derived relations.

MST on this rule would produce:

magic c ann, R1, d1 ann, R2, d2 ann...., Rn, dn ann, Rn+1
→ c ann

magic c ann, R1→ magic d1 ann
magic c ann, R1, d1 ann, R2→ magic d2 ann
. . .

magic c ann, R1, d1 ann, R2, d2 ann...., Rn→ magic dn ann
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We have two observations:

• Since our method uses all permutations of derived hypotheses, we have a rule in
which d 1, d 2, ..., d n appear in this same order.

• R 1, R 2, ..., R n+1 are sets of non-derived hypotheses or empty sets, but
include all non-derived hypotheses. The sets R 1, R 2,...,R n+1 constitute a
way to place all non-derived hypotheses in n+1 slots. Our method generates all such
ways. Thus, an arrangement in which the sets R 1, R 2, ..., R n+1 contain
the exact same hypotheses as ones in the example and the sets appear in the same
order, is generated by our approach.

The following are the two possibilities considered in the second observation:
Case 1: If the order of hypotheses in the R k’s is exactly the same as the one generated

by our method, then the hypotheses order in the example rule is exactly the same. The
result of MST on this rule is generated by our method. We reach a contradiction.

Case 2: If the order of hypotheses in some of the R k’s differs, we have:

R 1, d 1, R 2, d 2...., R n, d n, R n+1→ c

The annotations we obtain for d k’s are still equivalent to the ones above, since the
same hypotheses occur to the left of each of the d k’s with either order within the R k’s.
Moreover, the rules with demand relations in their conclusions contain the same hypotheses
since the same sets of hypotheses occur to the left of each d:

magic c ann, R1→ magic d1 ann
magic c ann, R1, d1 ann, R2→ magic d2 ann
. . .

magic c ann, R1, d1 ann, R2, d2 ann...., Rn→ magic dn ann

Only the particular order of hypotheses in the rules with demand relations in their con-
clusions would differ. Thus, the rules are equivalent. This is a contradiction. The result is
obtained by our method.

Any set of rules resulting from MST that is generated by taking all permutations of
hypotheses in a rule is also generated by the suggested method. The algorithm still exhaus-
tively tries all orders which produce different results after MST, however, it does so with
an improved time complexity for the transformation method.

To characterize the improvement, we introduce the following notation.

• #d: the number of derived hypotheses in a rule

• #r: the number of non-derived hypotheses in a rule

• #h: the total number of hypotheses in a rule
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#d! represents the number of permutations permutations of derived hypotheses. (#d+1)#r

is the number of different possibilities of placing the non-derived hypotheses. The number
of hypothesis orders our method generates is #d!∗(#d+1)#r. The straightforward method
of generating all possible permutations of all hypotheses produces #h! which is (#d+#r)!.
Our result is a significant improvement for rules with a small number of derived hypotheses.

5.4 Generating Efficient Implementations and Analyzing

Complexity

This section describes the generation of efficient implementation from Datalog rules
and computing precisely the time complexity of the generated algorithms, expressing the
complexity in terms of characterizations of the facts. We transform Datalog rules into
an efficient implementation using the method in [57]. For some of the applications that
required Datalog rules with some extensions, we have implemented small extensions in the
resulting algorithms as well.

5.4.1 Generating efficient implementations

Rules with multiple hypotheses. For each rule with more than two hypotheses we trans-
form it to multiple rules with two hypotheses each. For example, the set of rules in 5.7
resulting from the example set of rules in 5.2 and the path bf(a,v)? query contains a
rule with three hypotheses:

demand path bf(u),edge(u,w),path bf(w,v)→path bf(u,v)

There are 3 ways of decomposing this rule, as follows. Combining the first two hy-
potheses into a new rule produces:

demand path bfEdge(u,w), path bf(w,v)→path bf(u,v)
demand path bf(u),edge(u,w)→demand path bfEdge(u,w)

(5.15)

Combining the first and third hypotheses into a new rule we obtain:

demand path bfPath bf(u,w,v),edge(u,w)→path bf(u,v)
demand path bf(u),path bf(w,v)→demand path bfPath bf(u,w,v)

(5.16)
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Combining the second and third hypotheses results in:

edgePath bf(u,v),demand path bf(u)→path bf(u,v)
edge(u,w),path bf(w,v)→edgePath bf(u,v)

(5.17)

When calculating the time complexity for the set of rules we have to consider each of
these three ways of splitting the above rule.

5.4.2 Computing time complexity

For each rule, we determine precisely the number of facts actually processed by it,
avoiding approximations that use only the sizes of individual argument domains. Such
complexity expressions would allow us to pick the best definition of each rule in a set of
rules.

Size Parameters. We present the size parameters used for a relation P. We use P.i to
denote the projection of P on its i-th argument. We use P.I, where I = i1,i2,. . .,ik
to denote the projection of P on its i1-th, i2-th,..., and ik-th arguments. For any of the
given relations we can use the following sizes:

• relation size

#P: the number of facts that actually hold for relation P

• domain size

#D(P.i): the size of the domain from which the i-th argument of P gets its value

• argument size

#P.i: the number of different values that P.i actually takes

#P.I: the number of different combinations of values that elements of P.I together
can actually take. For I=∅, #P.I=1.

• relative argument size

#P.i/j: the maximum number of different values that P.i can actually take for
each possible value of P.j, where i6=j.

#P.I/J: the maximum number of different combinations of values that elements of
P.I together can actually take for each possible combination of values of elements
of P.J, where I∩j=∅. For I=∅, #P.I/J=1. For J=∅, we take #P.I/J=#P.I.



5. ANSWERING RULE-BASED QUERIES EFFICIENTLY 79

Example. We use as a running example the following set of rules, copied from 5.7:

demand path bf(u),edge(u,w)→demand path bf(w)
demand path bf(u),edge(u,v)→path bf(u,v)
demand path bf(u),edge(u,w),path bf(w,v)→path bf(u,v)
path bf(u,v)→path(u,v)

For the demand path bf relation, the size parameters are the following.
#demand path bf is the size of the relation, i.e., the number of vertices which
are the values of first arguments in demanded facts of the path bf relation.
#D(demand path bf.1) is the domain size for the argument of the demand path bf
relation, i.e., the number of vertices in the graph. #demand path bf.1 is the actual size
of the argument, which is the number of vertices which are the values of first arguments in
demanded facts of the path bf relation.

For the edge relation, the size parameters are the following. #edge is the size of
the edge relation, i.e., the number of edges in the graph. #D(edge.1) is the domain
size for the first argument in edge, i.e., the number of vertices in the graph. #edge.1
is the size of the first argument of the edge relation, i.e., the number of vertices that are
sources of edges. #edge.1/2 is a relative argument size and is the maximum number of
predecessors of a vertex, i.e., the maximum indegree of vertices.

Size parameters are defined similarly for the remaining relations in the set of rules.

Basic constraints. The following basic constraints hold:

#P=#P.{1,...,a} for relation P of a arguments
#P.i≤#D(P.i)
#P.I≤#P.J for I⊆J
#P.(I∪J)≤#P.I×#P.J/I and #P.I/J≤#P.J for I∩J=∅

For the running example, let vertex be the domain of the arguments of relation edge,
and thus also the domain of the arguments of path bf, demand path bf, and path.
The constraints are:

#demand path bf.1≤#D(demand path bf.1)=#vertex
#demand path bf≤#D(demand path bf.1)=#vertex
#path bf.2/1≤#path bf.2≤#D(path bf.2)=#vertex
#path bf.1/2≤#path bf.1≤#D(path bf.1)=#vertex
#path bf≤#D(path bf.1)×#D(path bf.2)=#vertex2

#path.2/1≤#path.2≤#D(path.2)=#vertex
#path≤#D(path.1)×#D(path.2)=#vertex2

#edge.1/2≤#edge.1≤#D(edge.1)=#vertex
#edge≤#D(edge.1)×#D(edge.2)=#vertex2
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Additional constraints that capture dependencies among relations and relation argu-
ments can be defined and used in the time complexity calculation. Such constraints, if
available, can provide more precise results depending on the information that is available
about the relations and their arguments.

Time complexity. The time complexity for a set of rules is the total number of firings of
the rules. For each rule r, r.#firedTimes stands for the number of firings of the rule,
i.e., r.#firedTimes is a count of:

• For rules with one hypothesis: the number of facts which make the hypothesis true.

• For rules with two hypotheses: the number of combinations of facts which make the
two hypotheses simultaneously true.

For a rule r, r.#firedTimes is calculated as follows. We use IX’s to denoted the
indices of arguments X’s in a hypothesis. If the rule has one hypothesis, say P, we have
r.#firedTimes = #P. If the rule has two hypotheses, say P1 and P2, we have:

r.#firedTimes≤min(#P1×#P2.IX2s/IYs, #P2×#P1.IX1s/IYs).
Here IY’s are the indices of arguments in P1 or P2 which occur in both hypotheses.

For any set of rules with given characteristics of facts in terms of the four kinds of size
parameters and the constraints on these sizes as described, the total time complexity for
the set of rules is the sum of #firedTimes over all rules, minimized symbolically with
respect to the given sizes and the constraints. Specifically, we can decide in what terms we
would like the complexity formula to be expressed. If a relative argument size is used but
not given. we use the corresponding non-relative argument size. If an argument size #P.I
is used but not given we use the minimum of (i) the product of domain sizes for arguments
of P that are in I and (ii) the argument size of P for arguments that are a superset of I, if
given.

Our complexity calculation method allows us to express the time complexity of sets of
rules in different parameters and make an accurate decision, depending on the characteris-
tics of the relations.

Example. We use as an example the following set of rules resulting from the example set
of rules in 5.7 and the first version of splitting the rule with three hypotheses into shorter
rules in 5.15.

demand path bf(u), edge(u,w)→ demand path bf(w)
demand path bfEdge(u,w), path bf(w,v)→ path bf(u,v)
demand path bf(u),edge(u,w)→ demand path bfEdge(u,w)
demand path bf(u),edge(u,v)→ path bf(u,v)

Each of the following complexity formulas is for the corresponding rule in the above set of
rules:
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O(min(#demand path bf×#edge.2/1, #edge ×1))
O(min(#demand path bf×#edge.2/1, #edge ×1))
O(min(#demand path bf×#edge.2/1, #edge ×1))
O(min(#demand path bfEdge×#path bf.2/1,

#path bf×#demand path bfEdge.1/2))
O(#path bf)

(5.18)

The time complexity of the set of rules is the sum of the formulas listed for each of the
rules.

When only #edge and #vertex are used as parameters in the complexity formula,
based on the basic constraints this sum is bounded by:

O(min(#vertex2, #edge) + #vertex×#edge, #edge + #vertex2)

Simplifying it further based on #edge≤#vertex2, we get O(#vertex2).
The second formula, shown in 5.18, demonstrates that the efficiency of the set of rules

is mostly dependent on the number of edges in the graph and the number of vertices which
have incoming edges. Expressing the complexity in different size parameters enables us to
make more accurate comparisons among sets of rules.

For the query path(a,v)? we obtain the algorithm with the smallest time complexity
by applying MST to the specification 5.4. We achieved an improved time complexity over
computing all paths. The following set of rules results from applying MST:

demand path bf(a)
demand path bf(x),edge(x,y)→path bf(x,y)
demand path bf(x),path bf(x,z),edge(z,y)→path bf(z,y)
demand path bf(x)→demand path bf(x)

(5.19)

The last rule never infers any new fact, so it can be removed from the set of rules with no
effect on the rules’ meaning. The second rule has three hypotheses, and splitting it into two
rules in the optimal way is by combining the first two hypotheses in a separate rule. We
thus get the following set of rules:

demand path bf(a)
demand path bf(x),edge(x,y)→path bf(x,y)
demand path bf(x),path bf(x,z)→demand path bf path bf(x,z)
demand path bf path bf(x,z),edge(z,y)→path bf(x,y)

(5.20)
Since no facts of the demand path bf relation can be inferred, and only one fact of the
relation is given, the size of this relation is 1 throught the computation. The size of the
demand path bf path bf relation can be estimated by use of the following constraint:
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#demand path bf path bf≤
#demand path bf path bf.1×#demand path bf path bf.2/1

(5.21)

The number of different values the first argument of the relation can take is 1. This is
evident from the second rule — this argument can only get values from the argument of
the demand path bf hypothesis, and we already concluded there is only one such value.
Thus:

#demand path bf path bf≤
1×#demand path bf path bf.2/1≤
#demand path bf path bf.2/1≤#edge.2

(5.22)

The time complexity for the set of rules in 5.20 is thus:

O(#edge.2/1 + #edge.2 + min(#edge×1, #edge.2×#edge.2/1))≤
O(min(#edge, #edge.2×#edge.2/1))

(5.23)
The time complexity of the algorithm generated is thus the minimum of linear in the number
of edges in the graph, and the number of vertices with incoming edges times the maximum
indegree of vertices in the graph.

For the query path(u,b)? the algorithm with the best time complexity is generated
by using the specification in 5.3 instead. The following rule set results from applying MST:

demand path fb(b)
demand path fb(y),edge(x,y)→path fb(x,y)
demand path fb(y),path fb(z,y),edge(x,z)→path fb(z,y)
demand path fb(y)→demand path fb(y)

(5.24)

The last rule never infers any new fact, so it can be removed from the set or rules with no
effect on the set’s meaning. The second rule has three hypotheses and splitting it into two
rules in the optimal way is by combining the first two hypotheses in a separate rule. We
thus get the following set of rules:
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demand path fb(b)
demand path fb(y),edge(x,y)→path fb(x,y)
demand path fb(y),path fb(z,y)→demand path fb path fb(z,y)
demand path fb path fb(z,y),edge(x,z)→path fb(z,y)

(5.25)
Since no facts of the demand path fb relation can be inferred, and only one fact of the
relation is given, the size of this relation is 1 throught the computation. The size of the
demand path fb path fb relation can be estimated by use of the following constraint:

#demand path fb path fb≤
#demand path fb path fb.1×#demand path fb path fb.2/1

(5.26)

The number of different values the first argument of the relation can take is 1. This is
evident from the second rule — this argument can only get values from the argument of
the demand path fb hypothesis, and we already concluded there is only one such value.
Thus:

#demand path fb path fb≤
1×#demand path fb path fb.2/1≤
#demand path fb path fb.2/1≤#edge.1

(5.27)

The time complexity for the set of rules in 5.24 is thus:

O(#edge.1/2 + #edge.1 + min(#edge×1, #edge.1×#edge.1/2))≤
O(min(#edge, #edge.1×#edge.1/2))

(5.28)
The time complexity of the algorithm generated using is thus the minimum of linear in the
number of edges in the graph, and the number of vertices with outgoing edges times the
maximum outdegree of vertices in the graph.

The time complexity of computing the complete path relation by the reachability def-
initions is significantly higher than the ones we obtained for queries on the path relation
using MST. The graph reachability specifications in 5.2, 5.3, 5.4, and 5.5 all have the same
first rule, and its time complexity is O(#edge). For each of these specifications the time
complexity is dominated by the second rule. The time complexity for the second rule, and
thus the whole specification is:
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specifications in 5.2 and 5.3: O(min(#edge×#path.2/1,
#path×#edge.1/2))≤
O(#edge×#edge.2)

specifications in 5.4 and 5.5: O(min(#edge×#path.1/2,
#path×#edge.2/1))≤
O(#edge×#edge.1)

(5.29)

5.5 Applications

We applied the transformation and complexity analysis to a number of analysis prob-
lems and obtained more precise algorithm complexities and better understanding for them.

We implemented the Magic Set Transformation algorithm. Python 2.3 was used for the
implementation. The algorithm first generates all relevant orders of hypotheses for each
of the given rules, and then performs the Magic Set Transformation. Finally, all sets of
rules resulting from the different hypotheses orders are output, along with time complexity
analysis for each of them. The sets of rules in all examples in this chapter were generated
automatically using our implementation.

5.5.1 Graph reachability

Graph reachability finds all vertices reachable in a graph from a given set of source ver-
tices. Graph reachability is a fundamental problem and has extensive applications in many
other problems, such as ones in program analysis, model checking and security frame-
works. The rules for transitive closure along with all different queries for it were discussed
in the previous subsection as running examples. The complexity formulas for each program
and query give specific information, which allows for a tighter complexity bound. Com-
plexity can often be expressed in terms of the out-degree or in-degree of vertices which is
significantly better than using the number of vertices in the graph. Thus, the complexity
analysis results we obtained are drastically more precise.

The time complexity of computing the complete path relation for any of the specifi-
cations is shown in 5.29. This would also be the time complexity of computing any of the
queries on paths in a graph, if we compute the complete path relation and then select the
facts that are in the meaning of the query. By use of the method described in this section, we
can transform queries that contain any bound arguments, and a reachability specification,
to a new rule set, and generate an algorithm with significantly improved time complexity.

To experimentally confirm our time complexity calculations, we generated implemen-
tations of the algorithm for the original rules and the algorithms resulting from MST in
Python. We generated implementations for the query path(a,v)? for the algorithms
generated from the rules in 5.4 and the rules resulting from MST on the rules in 5.4, as
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Figure 5.1: A comparison of CPU time for the query path(a,v)? for the algorithms
generated from the rules in 5.4 and the set of rules resulting from MST on the rules in 5.4.
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Figure 5.2: A comparison of the number of inferred facts (total of path and demand
relations) for the query path(a,v)? for the algorithms generated from the rules in 5.4
and the set of rules resulting from MST on the rules in 5.4.

well as for the query path(u,b)? for the algorithms generated from the rules in 5.3 and
the set of rules resulting from MST on the rules in 5.3. The generated implementations
consisted of 40 lines of Python code for the original sets of rules and 90 lines of Python
code for the sets of rules resulting from MST. We analyzed graphs trees of varying size,
to determine how the running time of the algorithms scales with graph size. All experi-
ments were conducted using Python 2.5 on a 794MHz Intel Pentium M 1.73GHz with 448
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Megabytes of RAM, running Microsoft Windows XP Professional.
For the experiments on the query path(a,v)? we used a dataset of binary trees that

grow in size by having a new layer of leaves added on each test run. The queries asked
were searching for paths to different vertices, but the distance between the vertex in the
query and the leaves of the tree remained constant as the tree grew.

For the experiments on the query path(u,b)? we used a dataset of binary trees that
grow in size by having a new layer of leaves added on each test run. The queries asked
were searching for paths to the same vertices, which remained equidistant from the root of
the tree regardless of the size of the tree.

Figures 5.1 and 5.3 report CPU time it took to answer the queries for each size of tree in
the data set, using each of the two generated algorithms. Reported times were averaged over
10 trials. It is evident that the CPU time to answer the query grew linearly with respect to
the number of edges in the graph for the algorithm generated from the rules resulting from
MST, and it grew polynomially for the algorithm generated from the reachability rules
without MST. As a matter of fact, the latter algorithms became impractically slow form
much smaller graphs.

Figures 5.2 and 5.4 report the number of facts that were inferred for each size of tree
in the data set, using each of the two generated algorithms. The algorithm generated from
the rules resulting from MST inferred a constant number of facts regardless of the size of
the tree, while the number of inferred facts grew polynomially for the algorithm generated
from the reachability rules without MST.
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Figure 5.3: A comparison of CPU time for the query path(u,b)? for the algorithms
generated from the graph reachability rules in 5.3 and the set of rules resulting from MST
on the specification in 5.3.

In both cases, it is evident that the algorithms generated from the rules resulting from
MST infer much fewer facts and can thus accomodate much larger graphs.
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Figure 5.4: A comparison of the number of inferred facts (total of path and demand rela-
tions) for the query path(u,b)? for the algorithms generated from the graph reachability
rules in 5.3 and the set of rules resulting from MST on the specification in 5.3.

We also conducted experiments using some of the worse sets of rules that result from
MST. We used a dataset of complete graphs that grow in size by having five new vertices,
and the corresponding edges, added on each test run. The queries asked were searching
for paths to and from the same vertices. Figures 5.5 and 5.6 report the number of facts
inferred in the process of answering the queries for each size of graph in the data set, using
each of the four generated algorithms. It is evident that the number of facts inferred in
each case was superlinear with respect to the number of vertices in the graph. However, the
number of facts inferred by the algorithms generated from the rules resulting from MST,
was larger that inferred by the algorthms generated from the reachability rules without
MST. The reason for this is that all algorithms inferred all paths in the complete graph,
but, in addition, the former algorithms inferred a number of facts of the demand relations
introduced by MST.

In both cases it is evident that the algorithms generated from the rules resulting from
MST inferred more facts and were thus more costly to use.

5.5.2 Model checking pushdown systems

In Chapter 2 of this thesis we described the design, analysis and implementation of an
algorithm for LTL model checking of PDS. The central part of the algorithm was computing
the reach graph. In that algorithm, when generating the reach graph we computed all of
its edges and then only looked for a good cycle in the graph. A more sophisticated on
demand method would be more efficient, as in many cases we never need the complete



5. ANSWERING RULE-BASED QUERIES EFFICIENTLY 88

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100 110

N
um

be
r 

of
 in

fe
rr

ed
 fa

ct
s

Graph size (number of vertices)

Original rules
Rules resulting from MST

Figure 5.5: A comparison of the number of inferred facts (including facts of demand
relations) for the query path(a,v)? for the algorithms generated from the rules in 5.2
and the set of rules resulting from MST on the rules in 5.2.
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Figure 5.6: A comparison of the number of inferred facts (including facts of demand
relations) for the query path(u,b)? for the algorithms generated from the rules in 5.4
and the set of rules resulting from MST on the rules in 5.4.

reach graph. The algorithm used to detect a good cycle can be used to guide us in computing
only the parts of the reach graph that are demanded in the search for a good cycle. In
that algorithm, there are several queries that require us to find all edges starting from one
specific vertex in the graph, that is, they require us to compute the answer to the query
edge(a1,b1,g,c2,s2)? where (a1,b1) is a configuration in the product PDS and
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demand edge bbfff(startC,startS)
demand erase bbff(c1,s1),trans0(c1,s1,c2),loc(c1,g)

→erase bbff(c1,s1,g,c2)
demand erase bbff(c1,s1),trans1(c1,s1,c2,s2),erase bbff(c2,s2,g2,c3),

loc(c1,g1),or(g1,g2,g) →erase bbff(c1,s1,g,c3)
demand erase bbff(c1,s1),trans2(c1,s1,c2,s2,s3),erase bbff(c2,s2,g2,c3),

erase bbff(c3,s3,g3,c4),loc(c1,g1),or(g1,g2,g4),or(g4,g3,g)
→erase bbff(c1,s1,g,c4)

demand erase bbff(c1,s1),trans1(c1,s1,c2,s2) →demand erase bbff(c2,s2)
demand erase bbff(c1,s1),trans2(c1,s1,c2,s2,s3) →demand erase bbff(c2,s2)
demand erase bbff(c1,s1),trans2(c1,s1,c2,s2,s3),erase bbff(c2,s2,g2,c3)
→demand erase bbff(c3,s3)
demand edge bbfff(c1,s1),trans1(c1,s1,c2,s2),loc(c1,g)

→edge bbfff(c1,s1,g,c2,s2)
demand edge bbfff(c1,s1),trans2(c1,s1,c2,s2,s3),loc(c1,g)

→edge bbfff(c1,s1,g,c2,s2)
demand edge bbfff(c1,s1),trans2(c1,s1,c2,s2,s3),erase bbff(c2,s2,g2,c3),

loc(c1,g1),or(g1,g2,g) →edge bbfff(c1,s1,g,c3,s3)
demand edge bbfff(c1,s1),trans2(c1,s1,c2,s2,s3)→demand erase bbff(c2,s2)

Figure 5.7: Rules for computing a portion of the reach graph on demand.

a1 and b1 are bound.
We used the Magic Set Transformation, to achieve on-demand computation of the reach

graph. We were able to generate complete algorithms and data structures with precise
complexity guarantees. The rule set resulting from applying MST to the rules presented
in Chapter 2 for computing the edges of the reach graph and the relevant query is shown
in Figure 5.7. Rather than computing the complete reach graph, these rules only compute
the edges starting with a certain configuration, i.e., they only compute the part of the reach
graph that is reachable from a certain configuration.

To experimentally confirm our time complexity calculations, we generated an imple-
mentation of the reach graph computation algorithm and the algorithms resulting from
MST, shown in Figure 5.7. The generated implementations consisted, respectively, of 400
and 600 lines of Python code. We analyzed PDS of varying size, to determine how the run-
ning time of the algorithms scales with PDS size. All experiments were conducted using
Python 2.5 on a 794MHz Intel Pentium M 1.73GHz with 448 Megabytes of RAM, running
Microsoft Windows XP Professional.

For the algorithm resulting from MST, we computed three parts of the reach graph,
starting from three different configurations, chosen randomly, and report the average time
for these computations.

Figure 5.8 reports CPU time it took to answer the queries for each size of tree in the
data set, using each of the two generated algorithms. Reported times were averaged over
10 trials. It is evident that the CPU time to compute the reach graph grew at a much higher
rate than the CPU time for the on-demand computation.



5. ANSWERING RULE-BASED QUERIES EFFICIENTLY 90

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900

C
P

U
 ti

m
e 

in
 s

Number of transitions

Rules resulting from MST
Rules for computing the whole reach graph

Figure 5.8: A comparison of CPU time for the algorithm that computes the complete reach
graph and the algorithm resulting from MST that computes parts of the reach graph on
demand.

5.5.3 Trust management policy analysis

In Chapter 4 of this thesis we derive an algorithm to compute the reduction closure. The
precise time complexity for this algorithm is #cert×#cert.3/{1,2,4=[]}, where
cert is the set of inferred certificates, and #cert.3/{1,2,4=[]} is the maximum
number of keys a single local name reduces to (this may be more than one, because local
names may represent groups). In the worst case, the latter may include all keys (key) that
appear in the certificates. As noted in [49], #cert is bounded by in×#key, where in
is the size of the input, i.e., the sum of the sizes of the given certificates. The auxiliary
space is used for mapping key-id pairs to key-id pairs. Our complexity analysis is more
precise and informative than using only worst-case sizes [25, 49]. Our method allows
these complexities, together with efficient algorithms that realize them, to be automatically
derived from the rules.

The algorithms for computing reduction closure can be used to solve specialized anal-
ysis problems. However, these algorithms compute all authorizations and all name-key
correspondences, given a set of certificates. This may be unnecessary, since many policy
analysis problems require computing only a few authorizations or resolving only a few
names. Therefore, we use specialized extended Datalog rules for the specialized analysis
problems; these specialized rules can be used to generate an efficient algorithm for each
analysis problem, and infer only the authorizations and resolve only the names needed for
that problem. Also, the original reduction closure algorithm does not give a direct way of
solving some important policy analysis problems, specifically when questions about name
certificates are asked, when sets of resources or keys are given. There are algorithms for
solving these problems in [49], but these require complex pushdown system structures that



5. ANSWERING RULE-BASED QUERIES EFFICIENTLY 91

are not inherent to the problems’ structure.
In Chapter 4 of this thesis, we first introduced extended Datalog rules to solve the

problems and then showed a way to construct specialized rules from given rules, by pushing
the constants bound by the query into the rules. However,

We demonstrate the use of MST to create specialized rules on one of the analysis prob-
lems. Consider the rule set and the query for the problem Compromisation Assessment
2:

canAccess(k,p,t), ¬canAccess2(k,p,t)
→compromisedPrinciples(p,t,k)

Query : compromisedPrinciples(P,T,k).

Now since the permission P and time T are given when the question is asked, we apply
MST with the query compromisedPrinciples(P,T,k)?, yielding:

demand compromisedPrinciplesfbb(p,t),canAccessfbb(k,p,t),
canAccess2bbb(k,p,t)

→compromisedPrinciples(p,t,k)
demand compromisedPrinciplesfbb(p,t)

→demand canAccessfbb(p,t)
demand compromisedPrinciplesfbb(p,t),canAccessfbb(k,p,t)

→demand canAccess2bbb(k,p,t)

These new rules are the compromisedPrinciples rule specialized to constants P and
T. Notice that MST can be applied iteratively in general, until recursion is encountered
in the rules. In other words, in this example the rules for canAccess(k,P,T) can be
rewritten by MST to yield a rule set specialized to the canAccess(k,P,T)? query,
where P and T are bound.

All specilized rules for the policy analysis problems are given in Figure 5.9.
MST yields better algorithms and time complexity results than the push-and-specialize

method described in Chapter 4 of this thesis, because in addition to pushing the constants in
the query into the hypotheses, it can also make use of any bindings of arguments acquired
from hypotheses that are to the left of any hypothesis. In the example above, the push-and-
specialize method yielded rules that still needed to evaluate the canAccess2 hypothesis
with only two bount arguments — the ones give in the query. The set of rules resulting
from MST has an addition binding for the canAccess2 hypothesis — the argument p is
bound by the hypotheses to the left of canAccess2, and thus canAccess2 needs to be
evaluated with all three arguments bound.

We limited use of MST to the non-recursive rules of specialized problems. We did not
apply MST to try and compute only certain parts of the reduction closure for the following
reason. The rules for computing the reduction the closure include 3 rules with 2 inferred
hypotheses in each. MST was only useful in some cases. Specifically, it is not useful for
the queries most frequently needed in specialized problems — find all permissions that a
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Shared Access 1:
demand sharingPrinciplebbbf(p1,p2,T),canAccessfbb(k,p1,t),
canAccessfbb(k,p2,t)

→ sharingPrinciple(p1,p2,t,k)
demand sharingPrinciplebbbf(p1,p2,T)→ demand canAccessfbb(p1,t)
demand sharingPrinciplebbbf(p1,p2,T),canAccessfbb(k,p1,t)

→ demand canAccessfbb(p2,t)
Shared Access 2:
demand sharingResourcebbbb(k1,k2,p,t),canAccessbbb(k1,p,t),
canAccessbbb(k2,p,t)

→ sharingResource(k1,k2,p,t)
demand sharingResourcebbbb(k1,k2,p,t) → demand canAccessbbb(k1,p,t)
demand sharingResourcebbbb(k1,k2,p,t),canAccessbbb(k1,p,t)

→ demand canAccessbbb(k2,p,t)
Shared Access 3:
demand sharingResources(k1,k2,ps,t), p in ps,
sharingResourcebbbb(k1,k2,p,t)

→ sharingResources(k1,k2,ps,t,p)
demand sharingResources(k1,k2,ps,t), p in ps,

→ demand sharingResourcebbbb(k1,k2,p,t)
Compromisation Assessment 1:
demand compromisedResource(k,ps,t), p in ps,
canAccessbbb(k,p,t), ¬canAccess2bbb(k,p,t)

→ compromisedResource(k,ps,t,p)
demand compromisedResource(k,ps,t), p in ps

→ demand canAccessbbb(k,p,t)
demand compromisedResource(k,ps,t), p in ps,
canAccessbbb(k,p,t)

→ demand canAccess2bbb(k,p,t)
Compromisation Assessment 2:
demand compromisedPrinciplesfbb(p,t),canAccessfbb(k,p,t),
canAccess2bbb(k,p,t)

→ compromisedPrinciples(p,t,k)
demand compromisedPrinciplesfbb(p,t)

→ demand canAccessfbb(p,t)
demand compromisedPrinciplesfbb(p,t),canAccessfbb(k,p,t)

→ demand canAccess2bbb(k,p,t)
Universally Guarded Access 1:
demand needNotinvolvebb(p,t),canAccessfbb(k1,p,t), canAccess2fbb(k1,p,t)

→ needNotInvolve(p,t)
demand needNotinvolvebb(p,t) → demand canAccessfbb(p,t)
demand needNotinvolvebb(p,t),canAccessfbb(k1,p,t)

→ demand canAccess2fbb(p,t)
Universally Guarded Access 2:
demand needNotInvolveMultiplebbb(k,ps,t), p in ps,
canAccessbbb(k,p,t), canAccess2bbb(k,p,t)

→ needNotInvolveMultiple(k,ps,t)
demand needNotInvolveMultiplebbb(k,ps,t), p in ps,

→ demand canAccessbbb(k,p,t)
demand needNotInvolveMultiplebbb(k,ps,t), p in ps,
canAccessbbb(k,p,t)

→ demand canAccess2bbb(k,p,t)

Figure 5.9: Specialized rules for solving policy analysis problems.
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certain principal is authorized to. It is not useful for this because with MST we get several
annotations of both auth and name relations and essentially end up computing the complete
relations anyways. So MST would introduce extra rules, relations and hypotheses and
would not make any positive difference in the computation.

5.5.4 Type inference for secure information flow

In Chapter 3 of this thesis, we describe the design, analysis, and implementation of an
efficient algorithm for information flow analysis expressed using the type system presented
by Volpano et al. in [88]. Our algorithm is linear in the size of the given program.

The Datalog rules used for type inference for secure information flow are shown in
Figures 3.3 and 3.4. These rules infer types for all program nodes, if such types exist, and
infer errors if there is no correct typing of the program. Using MST may seem incompatible
with the concept of type inference as the idea of type inference is to infer a typing of the
whole program, or to infer errors if such a typing does not exist. However, in some cases it
may be useful to be able to infer only the types of certain nodes or check for errors caused
by specific variables or commands. In those cases we can use MST to generate specialized
rules and algorithms. Examples of such queries are:

• Find the type of one program node only

• Find out if one assignment command causes a type error

• Find out if there is a type error associated with one variable

• Find the highest possible type for a specific command

If we query the type of root, an array, a literal, or an arrlen expression the MST
rules compute only the queried type in time O(1). If we query (or generate demand fact
for) the type of a subcommand in an if command, or a sequence, these rules would
compute only the type of the subcommand in the query and would not compute the type
of the other subcommands, saving some computation. If we query the type of a variable,
then both types of expressions and commands are demanded, which triggers propagation of
types both up and down the syntax tree. Depending on the commands in which the variable
is used, some computation may be saved, e.g., if the variable is only used in one branch of
an if command or in one subcommand of a sequence command. Queries to all other
kinds of commands and expressions can generate demand facts for the types of variables,
so the above holds.

The time complexity of type inference for the entire program is O(p×h× log s),
where p is the size of the program, i.e., the number of nodes in the program AST, h is
the height of the security type lattice, and s is the size of the security type lattice.

It is possible to precompute all values for the functions Join and Meet in O(s2× log
s) time, and, if we do so, any of them can be looked up on O(1) time. However, this may
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be unnecessary, since it is possible that not all values of these functions are needed. There-
fore, we compute the values of Join and Meet as needed and memoize already computed
values which can be looked up in O(1) time if needed again. The time complexity of
computing Join or Meet for two security types is O(log s). The type complexity of
computing whether the subtyping relation holds between two types is O(h).

The algorithm for type inference traverses the program top-down multiple times to infer
the type relation, i.e., minimum expression types, and then traverses the program bottom-
up once to infer the htype, i.e., maximum command types. Facts of the type relation
for variables can be inferred by use of the LETID rules. New types for variables can be
inferred by use of the ASSIGN ID rule. This can cause facts of the type relation for
other variables to be inferred. At any point in the evaluation at most one fact of the type
relation is kept for a program node, and that is the one with the highest type for the program
node that has been inferred so far. The type of each program node can be raised at most
h times. Thus worst case time complexity for each of the extended Datalog rules for type
inference is equal the program size multiplied by the height of the lattice of security types
and the time to compute Join and Meet, i.e., O(p×h× log s).

The time complexity of the specialized algorithm for the type(Z,t)? query is O(1)
if Z is a root, an array, a literal, or an arrlen expression, and O(pReach×h× log s) in
all other cases, where pReach stands for the sum of (i) the number of nodes in the syntax
tree that are reachable from Z, and (ii) the number of nodes that are above Z in the syntax
tree. This number may be significantly smaller than the size of the whole program.

The query type(Z,t)? asks for the type t of a specific program node Z. The set of
rules specific to it, generated by MST, is shown in Figure 5.10.

The query error(L,E)?, where L is a specific variable and E is a specific expres-
sion, can be used to check whether a certain assignment command, L:=E, causes a type
error. The rules generate demand facts for types of certain locations and expressions only.
The rules specific to this query, generated by MST, are shown in Figure 5.11. The time
complexity of the specialized algorithm for the error(L,E)? query is bounded above
by the time complexity of computing the type(Z,t)? query, as described above.

The query error(L,e)? can be used to check whether there is insecure information
flow into a specific variable L from any expression e. The rules generate demand facts for
types of certain locations and expressions only. The number of expressions whose type is
demanded is thus limited and there may be some saved computation as explained above.
The rules specific to this query, generated by MST, are shown in Figure 5.12. The time
complexity of the specialized algorithm for the error(L,e)? query is bounded above
by the time complexity of computing the type(Z,t)? query, as described above.

The query htype(C,t)? can be used to find the highest possible type t of a given
command C. Some facts of the type and htype relation are demanded, but the number
of demanded facts is limited by the rules and some computation may be saved, e.g., if
the variable is only used in one branch of an if command or in one subcommand of a
sequence command. The specialized rules for this query are shown in Figure 5.13. The
time complexity of the specialized algorithm for the htype(C,t)? query is bounded
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1. demand typebf(c), root(c)→ typebf(c,bottom)

2. demand typebf(n), literal(n)→ typebf(n,bottom)

3. demand typebf(l), loc(l),locenv(l,t)→ typebf(l,t)

4. demand typebf(e), arrlen(e,a), arrenv(a,t1,t2)→ typebf(e,t2)

5. demand typebf(e), arraccess(e,a,e1),arrenv(a,t1,t2),typebf(e1,t3)
→ typebf(e,Join(t1,t3))

demand typebf(e), arraccess(e,a,e1),arrenv(a,t1,t2)
→ demand typebf(e1)

6. demand typebf(e), arith(e,e1,e2),typebf(e1,t1),typebf(e2,t2)
→ typebf(e,Join(t1,t2))

demand typebf(e), arith(e,e1,e2)→ demand typebf(e1)
demand typebf(e), arith(e,e1,e2),typebf(e1,t1)→ demand typebf(e2)

7. demand typebf(x), assign(c,x,e),id(x),typebf(e,t1),
typebf(c,t2),typebf(x,t3)

→ typebf(x,Join(t1,t2,t3))
demand typebf(x), assign(c,x,e),id(x)→ demand typebf(e)
demand typebf(x), assign(c,x,e),id(x),typebf(e,t1)

→ demand typebf(c)
13. demand typebf(c1), sequence(c,c1,c2),typebf(c,t)→ typebf(c1,t)

demand typebf(c1), sequence(c,c1,c2)→ demand typebf(c)

14. demand typebf(c2), sequence(c,c1,c2),typebf(c,t)→ typebf(c2,t)
demand typebf(c2), sequence(c,c1,c2)→ demand typebf(c)

15. demand typebf(c1), if(c,e,c1,c2),typebf(e,t1),typebf(c,t2)
→ typebf(c1,Join(t1,t2))

demand typebf(c1), if(c,e,c1,c2)→ demand typebf(e)
demand typebf(c1), if(c,e,c1,c2),typebf(e,t1)→ demand typebf(c)

16. demand typebf(c2), if(c,e,c1,c2),typebf(e,t1),typebf(c,t2)
→ typebf(c2,Join(t1,t2))

demand typebf(c2), if(c,e,c1,c2)→ demand typebf(e)
demand typebf(c2), if(c,e,c1,c2),typebf(e,t1)→ demand typebf(c)

17. demand typebf(c1), while(c,e,c1),typebf(e,t1),typebf(c,t2)
→ typebf(c1,Join(t1,t2))

demand typebf(c1), while(c,e,c1)→ demand typebf(e)
demand typebf(c1), while(c,e,c1),typebf(e,t1)

→ demand typebf(c)

18. demand typebf(x), letid(c,x,e,c1),typebf(e,t)→ typebf(x,t)
demand typebf(x), letid(c,x,e,c1)→ demand typebf(e)

19. demand typebf(c1), letid(c,x,e,c1),typebf(c,t)→ typebf(c1,t)
demand typebf(x), letid(c,x,e,c1)→ demand typebf(c)

Figure 5.10: Specialized rules for the type(Z,t)? query.

above by the time complexity of computing the type(Z,t)? query.
In general it is hard to say whether it is worthwhile to use MST for any given query in

this application. For any of the above queries MST may or may not lead to a performance
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8. demand errorbb(l,e), assign(c,l,e),loc(l),typebf(l,t1),
typebf(e,t2),not t2⊆t1

→ errorbb(l,e)
demand errorbb(l,e), assign(c,l,e),loc(l)→ demand typebf(l)
demand errorbb(l,e), assign(c,l,e),loc(l),typebf(l,t1)

→ demand typebf(e)

9. demand errorbb(l,e), assign(c,l,e),loc(l),typebf(l,t1),
typebf(c,t2),not t2⊆t1

→ errorbb(l,e)
demand errorbb(l,e), assign(c,l,e),loc(l)→ demand typebf(l)
demand errorbb(l,e), assign(c,l,e),loc(l),typebf(l,t1)

→ demand typebf(c)

10. demand errorbb(a,e1), arralloc(c,a,e1),arrenv(a,t1,t2),
typebf(e1,t3),not t3⊆t2

→ errorbb(a,e1)
demand errorbb(a,e1), arralloc(c,a,e1),arrenv(a,t1,t2)

→ demand typebf(e1)

11. demand errorbb(a,e1), arrassign(c,a,e1,e2),arrenv(a,t1,t2),
typebf(e1,t3), not t3⊆t1→ errorbb(a,e1)
demand errorbb(a,e1), arrassign(c,a,e1,e2),arrenv(a,t1,t2)

→ demand typebf(e1)

12. demand errorbb(a,e), arrassign(c,a,e1,e2),arrenv(a,t1,t2),
typebf(e2,t4),not t4⊆t1

→ errorbb(a,e1)
demand errorbb(a,e1), arrassign(c,a,e1,e2),arrenv(a,t1,t2)

→ demand typebf(e1)

Figure 5.11: Specialized rules for the error(L,E)? query.

gain, and whether it does depends on the specific query and program structure, so it is
very difficult to analyze — we need to look at the program AST and analyze this way to
predict. This is very time consuming and takes a significant effort. Also, if there is no
performance gain and we complete MST anyways, this introduces a lot of extra rules and
hypotheses, since there are over 14 rules that infer facts of the type relation and they contain
15 recursive occurrences of the type relation. So, with MST the number of rules involved
in the computation more than doubles and the size of the given rules increases. For queries
involving the htype and error hypotheses MST is at least as costly because it causes bf
annotations of the type relation. Thus, the algoritms for computing such queriues require
computing the type(Z,t)? query as well.

5.6 Related Work and Discussion

A lot of work has been done in optimizing the evaluation of Datalog rules in search
of a strategy which combines the advantages of the brute force approach and on-demand
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8. demand errorbf(l),assign(c,l,e),loc(l),typebf(l,t1),
typebf(e,t2),not t2⊆t1

→ errorbf(l,e)
demand errorbf(l),assign(c,l,e),loc(l)→ demand typebf(l)
demand errorbf(l),assign(c,l,e),loc(l),typebf(l,t1)

→ demand typebf(e)

9. demand errorbf(l),assign(c,l,e),loc(l),typebf(l,t1),
typebf(c,t2),not t2⊆t1

→ errorbf(l,e)
demand errorbf(l),assign(c,l,e),loc(l)→ demand typebf(l)
demand errorbf(l),assign(c,l,e),loc(l),typebf(l,t1)

→ demand typebf(c)

10. demand errorbf(a),arralloc(c,a,e1),arrenv(a,t1,t2),
typebf(e1,t3),not t3⊆t2

→ errorbf(a,e1)
demand errorbf(a),arralloc(c,a,e1),arrenv(a,t1,t2)

→ demand typebf(e1)

11. demand errorbf(a),arrassign(c,a,e1,e2),arrenv(a,t1,t2),
typebf(e1,t3),not t3⊆t1

→ errorbf(a,e1)
demand errorbf(a),arrassign(c,a,e1,e2),arrenv(a,t1,t2)

→ demand typebf(e1)

12. demand errorbf(a),arrassign(c,a,e1,e2),arrenv(a,t1,t2),
typebf(e2,t4),not t4⊆t1

→ errorbf(a,e1)
demand errorbf(a),arrassign(c,a,e1,e2),arrenv(a,t1,t2)

→ demand typebf(e1)

Figure 5.12: Specialized rules for the error(L,e)? query.

computation.
The problem with the possibility of infinite loops in on-demand evaluation has been

adequately addressed by memoing techniques. Pereira and Warren [65] present a method
for memoing top-down evaluation based on Earley deduction — a top-down deduction
framework, intended for natural language processing. QSQ [87] is a method by which
goals are generated top-down, but whenever possible, goals are propagated in sets at a time,
rather than one at a time, and all generated goals and facts are memoized. The extension
tables approach [31] is very similar to QSQ, but computation is done tuple at a time. Kifer
and Lozinski have developed a method called filtering [50, 51]. It is based on constructing
a rule-goal graph. Tuples are propagated along the arcs and computation is restricted by
attaching filters to the arcs.

The XSB system [76, 24, 23] uses tabling to prevent infinite loops and to avoid repeated
computations. It is the fastest existing system for evaluation of sets of rules, and resolves
the major deficiencies of the top-down approach. However, some problems remain.

XSB’s efficiency is dependent on the order of hypotheses in the rules. Figure 5.14
shows a comparison between evaluating the query path(a,b)? for the graph reachability
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20. demand htypebf(c),assign(c,x,e),id(x),typebf(x,t)→ htypebf(c,t)
demand htypebf(c),assign(c,x,e),id(x)→ demand typebf(x)

21. demand htypebf(c),assign(c,l,e),loc(l),typebf(l,t)→ htypebf(c,t)
demand htypebf(c),assign(c,l,e),loc(l)→ demand typebf(l)

22. demand htypebf(c),arralloc(c,a,e1),arrenv(a,t1,t2)→ htypebf(c,t2)

23. demand htypebf(c),arrassign(c,a,e1,e2),arrenv(a,t1,t2)
→ htypebf(c,t1)

24. demand htypebf(c),sequence(c,c1,c2),htypebf(c1,t1),htypebf(c2,t2)
→ htypebf(c,Meet(t1,t2))

demand htypebf(c),sequence(c,c1,c2)→ demand htypebf(c1)
demand htypebf(c),sequence(c,c1,c2),htypebf(c1,t1)

→ demand htypebf(c2)

25. demand htypebf(c),if(c,e,c1,c2),htypebf(c1,t1),htypebf(c2,t2)
→ htypebf(c,Meet(t1,t2))

demand htypebf(c),if(c,e,c1,c2)→ demand htypebf(c1)
demand htypebf(c),if(c,e,c1,c2),htypebf(c1,t1)→ demand htypebf(c2)

26. demand htypebf(c),while(c,e,c1),htypebf(c1,t)→ htypebf(c,t)
demand htypebf(c),while(c,e,c1)→ demand htypebf(c1)

27. demand htypebf(c),letid(c,x,e,c1),htypebf(c1,t)→ htypebf(c,t)
demand htypebf(c),letid(c,x,e,c1)→ demand htypebf(c1)

Figure 5.13: Specialized rules for the htype(C,t)? query.
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Figure 5.14: A comparison for the query path(a,b)? for the graph reachability rules
and the same rules with the order of hypotheses changed in the second rule.

rules and the same rules, but with a changed order of the hypotheses in the second rule. For
the first set of rules, the CPU time for evaluating the query grows linearly in terms of the
number of vertices and edges in the graph, whereas for the second set of rules the growth
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Figure 5.15: A comparison for the query path(a,v)? for the graph reachability rules
and the same rules but interchanged.

is superlinear. This is a significant difference. The same is observed for the path(a,v)?
query. For the path(u,b)? and path(u,v)? queries, the difference is even more
significant.

Figure 5.15 shows a comparison between evaluating the query path(a,v)? for the
graph reachability rules and the same set of rules but with changed rule order. The dif-
ference in the evaluation time of the two sets of rules is not asymptotic, but does still
exist. The result is very similar for the path(a,b)? query. For the path(u,b)? and
path(a,b)? queries there is no notable difference in evaluation time when rule order is
changed.

In addition, all of the mentioned strategies based on top-down computation, evaluate
tuple-at-a-time, which may be a disadvantage with database applications since it can make
disk accesses inefficient [70]. Thus, improvements to bottom-up evaluation remain attrac-
tive for database applications.

Several methods exist for improving the efficiency of brute force evaluation. The main
thrust for them is to decrease the number of facts generated during the computation. The
most prominent among these is Magic Set Transformation, referred to as MST. It was first
presented in the paper [11] and developed in [14, 68, 86]. It is a rewriting method, which
we use to define a query-specific set of rules. The Alexander method [73] was proposed
independently of MST and is essentially the supplementary variant of the MST algorithm.
Seki has generalized the method to work with non-ground facts, i.e., facts whose arguments
can be variables rather than constants, and function symbols [77].

MST was developed specifically for recursive queries, however, it has been adapted to
non-recursive ones and extended to deal with SQL concepts, such as grouping, aggregation
and arithmetic conditions [47, 59]. Mumick et. al. [58] present a performance evaluation



5. ANSWERING RULE-BASED QUERIES EFFICIENTLY 100

of MST over DB2 and concludes that it performs often a lot better than standard DB tech-
niques. With these extensions the MST method has become applicable to a wider range of
problems. However, its major drawbacks remained.

The efficiency of the transformated program is dependent on the original order of hy-
pothesis in the rules. The efficiency of MST is dependent on the hypotheses order in the
input rules [11, 79, 85]. Using a different order of hypotheses in the original rules lead to
passing and using the variable bindings from the query and among hypotheses in different
ways. This can cause a difference in orders of magnitude in the complexity of the resulting
program. The efficiency of MST on a specific hypotheses order can also be influenced by
the given facts [79].

No solution currently exists for choosing the best hypotheses order for MST. Some
implementations allow the user to specify an order to be used [69]. This approach re-
quires an understanding of MST and the way certain characteristics of the data influence
the efficiency of hypotheses orders. It is time-consuming and error-prone. In some im-
plementations, if a set of rules obtained by MST is worse than the original program, the
original is used [60]. This approach fails to make use of good optimization possibilities in
many cases.

Our evaluation method addresses these drawbacks. It chooses the best hypotheses order
while taking into consideration the specific query. Also, it provides precise time complexity
analysis for the resulting sets of rules.
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Chapter 6

Conclusion

Our experience shows that many practical problems that may be difficult to understand
and implement otherwise can conveniently and intuitively be expressed using Datalog rules.
By focusing on translating problem descriptions to precise Datalog rules, the software life-
cycle gets rid of the very time consuming and costly phase of implementation. Also, if
a change in requirements occurs, it is possible to make small changes in the high-level
specifications and automatically generate a new implementation. Because the code is gen-
erated automatically it is amenable to an accurate complexity analysis. Our work resulted
in clearer and more efficient implementations, and improved time and space complexity
bounds, for some of the problems.

Our current work has been a successful step in the direction of improving software pro-
ductivity, and has led us to several problems which we hope to work on in the short run.
We plan to continue to define intuitive high-level specifications and generate automated
implementations for specifying and enforcing security policies, such as role-based access
control policies, trust management, and access policies for web ontologies, sensor net-
works, and program analysis. The method involving the MST would be further improved
by extending it to amortize the costs of MST for a sequence of queries. Our intentions are
to continue to explore possibilities for creative applications of declarative programming
and code generation from high-level specifications to tackle practical problems in different
areas of computer science.



102

Bibliography

[1] M. Abadi. Secrecy by typing insecurity protocols. In TACS ’97: Proceedings of the
Third International Symposium on Theoretical Aspects of Computer Software, pages
611–638, London, UK, 1997. Springer-Verlag.

[2] M. Abadi. On SDSI’s linked local name spaces. Journal of Computer Security, 6(1-
2):3–21, 1998.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[5] H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst., 11(1):115–146, 1989.

[6] S. Ajmani, D. E. Clarke, C.-H. Moh, and S. Richman. ConChord: Cooperative SDSI
certificate storage and name resolution. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 141–154, London, UK, 2002.
Springer-Verlag.

[7] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In CAV ’01: Proceedings of the 13th International Conference on Computer Aided
Verification, pages 207–220, London, UK, 2001. Springer-Verlag.

[8] M. Avvenuti, C. Bernardeschi, and N. D. Francesco. Java bytecode verification for
secure information flow. SIGPLAN Notices, 38(12):20–27, 2003.

[9] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs.
In SPIN, pages 113–130, 2000.



BIBLIOGRAPHY 103
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Appendix A

Appendix

A.1 Pseudocode for inferring the reach graph:

//output format in X, after inc, high-level

W := givenFacts;

loc1_2, or23_1, erase12_34 := {};

trans01_23, trans11_234 := {}, gtrans145_123, gtrans1e45_123 := {};

trans21_2345, gtrans245_1236, gtrans2e34_1256, gtrans2e56_1234:= {};

gtrans2ee45_1236, gtrans2ee_or45_123 := {};

R := {};

while exists x in W:

case x of [trans0 b1 a b2]:

//update for rule 1

W +:= {[erase b1 a good b2] : [good] in loc1_2{[b1]} | [erase b1 a good b2] notin R};

trans01_23 with:= [[b1], [a b2]];

case x of [trans1 b1 a b3 a1]:

//update for rule 2

W +:= {[gtrans1 b1 g2 a b3 a1] : [g2] in loc1_2{[b1]}

| [gtrans1 b1 g2 a b3 a1] notin R};

//update auxiliary map used in rule 2

trans11_234 with:= [[b1], [a b3 a1]];
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case x of [loc b1 good]:

//update for rule 1

W +:= {[erase b1 a good b2] : [a b2] in trans01_23{[b1]}

| [erase b1 a good b2] notin R};

//update for rule 2

W +:= {[gtrans1 b1 good a b3 a1] : [a b3 a1] in trans11_234{[b1]}

| [gtrans1 b1 good a b3 a1] notin R};

//update for rule 5

W +:= {[gtrans2 b1 good a b3 a1 a2] : [a b3 a1 a2] in trans21_2345{[b1]}

| [gtrans2 b1 good a b3 a1 a2] notin R};

//update to auxiliary map used in rules 1,2, and 5

loc1_2 with:= [[b1], [good]];

case x of [or g1 g2 good]:

// update for rule 4

W +:= {[erase b1 a good b2] : [b1 a b2] in gtrans1e45_123{[g1 g2]}

| [erase b1 a good b2] notin R};

//update for rule 8

W +:= {[gtrans2ee_or b1 a b2 g3 good]

: [b1 a b2 g3] in gtrans2ee45_1236{[g1 g2]}

| [gtrans2ee_or b1 a b2 g3 good] notin R};

// update for rule 9

W +:= {[erase b1 a good b2] : [b1 a b2] in gtrans2ee_or45_123{[g2 g1]}

| [erase b1 a good b2] notin R};

//update for rule 12

W +:= {[edge p1 a1 good pi ai] : [p1 a1 ai pi] in gtrans2e56_1234{[g1 g2]}

| [edge p1 a1 good pi ai] notin R};

//map used in rules 4, 8, 9 and 12

or23_1 with:= [[g1 g2], [good]];

case x of [gtrans1 p1 good a1 pi ai]:

//update for rule 3
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W +:= {[gtrans1e b1 a b2 g1 g2] : [g1 b2] in erase12_34{[b3 a1]}

| [gtrans1e b1 a b2 g1 g2] notin R};

//update auxiliary map used in rule 3

gtrans145_123 with:= [[b3 a1], [b1 g2 a]];

//update for rule 10

if [edge p1 a1 good pi ai] notin R:

W with := [edge p1 a1 good pi ai];

case x of [trans2 b1 a b3 a1 a2]:

//update for rule 5

W +:= {[gtrans2 b1 g3 a b3 a1 a2] : [g3] in loc1_2{[b1]} | [gtrans2 b1 g3 a b3 a1 a2] notin R};

trans21_2345 with:= [[b1], [a b3 a1 a2]];

case x of [gtrans2 b1 good a1 b2 a2 a3]:

//update for rule 11

if [edge b1 a1 good b2 a2] notin R:

W with := [edge b1 a1 good b2 a2];

//update for rule 6

W +:= {[gtrans2e b1 a a2 b4 g1 g3] : [g1 b4] in erase12_34{[b3 a1]}

| [gtrans2e b1 a a2 b4 g1 g3] notin R};

//update to auxiliary map used in rule 6

gtrans245_1236 with:= [[b3 a1], [b1 g3 a a2]];

case x of [erase b3 a1 g1 b2]:

//update for rule 3

W +:= {[gtrans1e b1 a b2 g1 g2] : [b1 g2 a] in gtrans145_123{[b3 a1]}

| [gtrans1e b1 a b2 g1 g2] notin R};

//update for rule 6

W +:= {[gtrans2e b1 a a2 b2 g1 g3] : [b1 g3 a a2] in gtrans245_1236{[b3 a1]}

| [gtrans2e b1 a a2 b2 g1 g3] notin R};

//update for rule 7

W +:= {[gtrans2ee b1 a b2 good g1 g3]

: [b1 a good g3] in gtrans2e34_1256{[a1 b3]}

| [gtrans2ee b1 a b2 good g1 g3] notin R};

//update to auxiliary map used in rules 3,6 and 7

erase12_34 with:= [[a1 b3], [g1 b2]];
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case x of [gtrans1e b1 a b2 g1 g2]:

//update for rule 4

W +:= {[erase b1 a good b2] : [good] in or23_1{[g1 g2]}

| [erase b1 a good b2] notin R};

//update to auxiliary map used in rule 4

gtrans1e45_123 with:= [[g1 g2], [b1 a b2]];

case x of [gtrans2e b1 a a2 b4 g1 g3]:

//update for rule 7

W +:= {[gtrans2ee b1 a b2 g1 g2 g3]

: [g2 b2] in erase12_34{[a2 b4]}

| [gtrans2ee b1 a b2 g1 g2 g3] notin R};

//update to auxiliary map used in rule 7

gtrans2e34_1256 with:= [[a2 b4], [b1 a g1 g3]];

//update for rule 12

W +:= {[edge b1 a1 good b4 a2] : [good] in or23_1{[g1 g3]}

| [edge b1 a1 good b4 a2] notin R};

//update to auxiliary map used in rule 12

gtrans2e56_1234 with:= [[g1 g3], [b1 a1 a2 b4]];

case x of [gtrans2ee b1 a b2 g1 g2 g3]:

//update for rule 8

W +:= {[gtrans2ee_or b1 a b2 g3 gt] : [gt] in or23_1{[g1 g2]}

| [gtrans2ee_or b1 a b2 g3 gt] notin R};

//update to auxiliary map used in rule 8

gtrans2ee45_1236 with:= [[g1 g2], [b1 a b2 g3]];

case x of [gtrans2ee_or b1 a b2 g3 gt]:

//update for rule 9

W +:= {[erase b1 a good b2] : [good] in or23_1{[g3 gt]}

| [erase b1 a good b2] notin R};

//update to auxiliary map used in rule 9

gtrans2ee_or45_123 with:= [[g3 gt], [b1 a b2]];

W less:= x;

R with:= x;
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A.2 Pseudocodes for Type Inference for Secure Informa-

tion Flow

A.2.1 Pseudocode for inferring minimum types of expressions:

W := input;

locenv1_2={}; arrlen2_1 := {}; arrenv1_23 := {}; type1_2 := {};

arraccess2_13 := {}; arraccessArrenv2_13 := {};

arith2_13 := {}; arithType2_13 := {};

assign2_13 := {}; assignIdType1_23 := {}; assignIdTypeType2_134 := {};

assignLoc2_13 := {}; assignLocType3_124 := {}; assignLocType1_234 := {};

arralloc2_13 := {}; arrallocArrenv3_124 := {};

arrassign2_134 := {}; arrassignArrenv2_134 := {}; arrassignArrenv1_234 := {};

sequence1_23 := {}; if2_134 := {}; ifType1_234 := {};

while2_13 := {}; whileType1_23 := {}; letid3_124 := {}; letid1_234 := {};

O := {};

while exists x in W:

case x of [root x]:

//update for rule 1

if [type x bottom] not in O:

W with:= [type x bottom];

case x of [literal n]:

//update for rule 2

if [type n bottom] not in O:

W with:= [type n bottom];

case x of [loc l]:

//update for rule 3

W U:= {[type l t] : [t] in locenv1_2{[l]} | [type l t] not in O};

//update for rules 8 and 9

W U:= {[assignLoc c l e] : [c e] in assign2_13{[l]} | [assignLoc c l e] not in O};

case x of [locenv l t]:

//update for rule 3
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if [loc l] in W and [type l t] not in O:

W with:= [type l t];

locenv1_2 with:=[[l],[t]];

case x of [arrlen e a]:

//updates for rule 4

W U:= {[type e t2] : [t1 t2] in arrenv1_23{[a]} | [type e t2] not in O};

//auxiliary map used for rule 4

arrlen2_1 with:= [[a], [e]];

case x of [arrenv a t1 t2]:

//update for rule 4

W U:= {[type e t2] : [e] in arrlen2_1{[a]} | [type e t2] not in O};

//update for rule 5

W U:= {[arraccessArrenv e e1 t1] : [e e1] in arraccess2_13{[a]} |

[arraccessArrenv e e1 t1] not in O};

//update for rule 10

W U:= {[arrallocArrenv c a e1 t1] : [c e1] in arralloc2_13{[a]} |

[arrallocArrenv c a e1 t1] not in O};

//update for rules 11 and 12

W U:= {[arrassignArrenv c a e1 t1] : [c e1 e2] in arrassign2_134{[a]} |

[arrassignArrenv c a e1 t1] not in O};

//update to auxiliary map used for rules 10, 11 and 12

arrenv1_23 with:= [[a], [t1 t2]];

case x of [arith e e1 e2]:

//update for rule 6

W U:= {[arithType e e2 t1] : [t1] in type1_2{[e1]} | [arithType e e2 t1] not in O};

//update to auxiliary map used for rule 6

arith2_13 with:= [[e1], [e e2]];

case x of [arraccess e a e1]:

// update for rule 5

W U:= {[arraccessArrenv e e1 t1] : [t1 t2] in arrenv1_23{[a]} |

[arraccessArrenv e e1 t1] not in O};

// update to auxiliary map used for rule 5

arraccess2_13 with:= [[a], [e e1]];

//arraccessArrenv is an auxiliary relation for the first two hypotheses of rule 5
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case x of [arraccessArrenv e e1 t1]:

// update for rule 5

W U:= {[type e t1] : [t3] in type1_2{[e1]} | [type e t1] not in O};

// update to auxiliary map mapping e1 to e and t1 where arraccessArrenv(e,e1,t1)

arraccessArrenv2_13 with:= [[e1], [e t1]];

// arithType is an auxiliary relation for the first two hypothese of rule 6

case x of [arithType e e2 t1]:

// update for rule 6

W U:= {[type e t1] : [t2] in type1_2{[e2]} | [type e Join(t1,t3)] not in O};

// update to auxiliary map used for rule 6

arithType2_13 with:= [[e2], [e t1]];

case x of [assign c var e]:

// update for rule 7

W U:= {[assignId c var e] | [assignId c var e] not in O};

// update for rules 8 and 9

W U:= {[assignLoc c var e] | [assignLoc c var e] not in O};

assign2_13 with:= [[var], [c e]];

case x of [Id x]:

// update for rule 7

W U:= {[assignId c x e] : [c e] in assign2_13{[x]} | [assignId c x e] not in O};

// assignId is an auxiliary relation for the first two hypotheses of rule 7

case x of [assignId c x e]:

// update for rule 7

W U:= {[assignIdType c x t1] : [t1] in type1_2{[e]} | [assignIdType c x t1] not in O};

//auxiliary map - maps e to c and x where assignId(c,x,e)

assignId3_12 with:= [[e], [c x]];

// assignIdType is an auxiliary relation for assignId and the third hypothesis of rule 7

case x of [assignIdType c x t1]:

// update for rule 7

W U:= {[assignIdTypeType c x t1 t2] : [t2] in type1_2{[c]} | [assignIdTypeType c x t1 t2] not in O};

//auxiliary map used for rule 7

assignIdType1_23 with:= [[c], [x t1]];

// assignIdTypeType is an auxiliary relation for assignIdType and the fourth hypothesis of rule 7
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case x of [assignIdTypeType c x t1 t2]:

// update for rule 7

W U:= {[type x t1] : [t3] in type1_2{[x]} | [type x Join(t1,t2,t3)] not in O};

//auxiliary map used for rule 7

assignIdTypeType2_134 with:= [[x], [c t1 t2]];

// assignLoc is an auxiliary relation for the first two hypotheses of rules 8 and 9

case x of [assignLoc c l e]:

//update for rules 8 and 0

W U:= {[assignLocType c l e t1] : [t1] in type1_2{[l]} | [assignLocType c l e t1] not in O};

assignLoc2_13 with:= [[l], [c e]];

// assignLocType is an auxiliary relation for assingLon and the third hypotheses of rules 8 and 9

case x of [assignLocType c l e t1]:

// update for rule 8

W U:= {[error c] : [t1] in type1_2{[c]} | not t2 <= t1, [error c] not in O};

assignLocType3_124 with:= [[e], [c l t1]];

// update for rule 9

W U:= {[error c] : [t2] in type1_2{[c]} | not t2 <= t1, [error c] not in O};

assignLocType1_234 with:= [[c], [l e t1]];

case x of [arralloc c a e1]:

//update for rule 10

W U:= {[arrallocArrenv c a e1 t1] : [t1 t2] in arrenv1_23{[a]} |

[arrallocArrenv c a e1 t1] not in O};

arralloc2_13 with:= [[a], [c e1]];

// arrallocArrenv is an auxiliary relation for the first two hypotheses of rule 10

case x of [arrallocArrenv c a e1 t1]:

// update for rule 10

W U:= {[error c] : [t3] in type1_2{[e1]} | [error c] not in O};

arrallocArrenv3_124 with:= [[e1], [c a t1]];

case x of [arrassign c a e1 e2]:

// update for rules 11 and 12

W U:= {[arrassignArrenv c a e1 t1] : [t1 t2] in arrenv1_23{[a]} |

[arrassignArrenv c a e1 t1] not in O};

arrassign2_134 with:= [[a], [c e1 e2]];
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// arrassignArrenv is an auxiliary relation for the first two hypotheses of rules 11 and 12

case x of [arrassignArrenv c a e1 t1]:

// updates for rule 11

W U:= {[error c] : [t3] in type1_2{[e1]} | not t3 <= t1, [error c] not in O};

// update auxiliary map for rule 11

arrassignArrenv2_134 with:= [[e1], [c a t1]];

// updates for rule 12

W U:= {[error c] : [t4] in type1_2{[e1]} | not t4 <= t1, [error c] not in O};

// update auxiliary map for rule 12

arrassignArrenv1_234 with:= [[e2], [c a t1]];

case x of [sequence c c1 c2]:

// update for rule 13

W U:= {[type c1 t] : [t] in type1_2{[c]} | [type c1 t] not in O};

// update for rule 12

W U:= {[type c2 t] : [t] in type1_2{[c]} | [type c2 t] not in O};

// update auxiliary map for rules 13 and 14

sequence1_23 with:= [[c], [c1 c2]];

case x of [if c e c1 c2]:

// update for rules 15 and 16

W U:= {[ifType c c1 c2 t1] : [t1] in type1_2{[e]} | [ifType c c1 c2 t1] not in O};

// update auxiliary map for rules 15 and 16

if2_134 with:= [[e], [c c1 c2]];

// ifType is an auxiliary relation for the first two hypotheses of rules 15 and 16

case x of [ifType c c1 c2 t1]:

// update for rules 15 and 16

W U:= {[type c1 t1] : [t2] in type1_2{[c]} | [type c1 Join(t1,t2)] not in O};

// update auxiliary map for rules 15 and 16

ifType1_234 with:= [[c], [c1 c2 t1]];

case x of [while c e c1]:

// update for rule 17

W U:= {[whileType c c1 t1] : [t1] in type1_2{[e]} | [whileType c c1 t1] not in O};

// update auxiliary map for rule 17

while2_13 with:= [[e], [c c1]];

// whileType is an auxiliary relation for the first two hypotheses of rule 17
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case x of [whileType c c1 t1]:

// update for rule 17

W U:= {[type c1 t1] : [t2] in type1_2{[c]} | [type c1 Join(t1,t2)] not in O};

// auxiliary map for rule 17

whileType1_23 with:= [[c], [c1 t1]];

case x of [letid c x e c1]:

// update for rule 18

W U:= {[type x t] : [t] in type1_2{[e]} | [type x t] not in O};

letid3_124 with:= [[e], [c x c1]];

// update for rule 19

W U:= {[type c1 t] : [t] in type1_2{[c]} | [type c1 t] not in O};

letid1_234 with:= [[c], [x e c1]];

case x of [type node t]:

// update for auxiliary map used in rules 4 through 19

type1_2 with:= [[node], [t]];

//update for rule 4

W U:= {[arithType e e2 t] : [e e2] in arith2_13{[node]} | [arithType e e2 t] not in O};

//update for rule 5

W U:= {[type e t1] : [e t1] in arraccessArrenv2_13{[node]} | [type e Join(t1,t)] not in O};

//update for rule 6

W U:= {[type e t1] : [e t1] in arithType2_13{[node]} | [type e Join(t1,t)] not in O};

//updates for rule 7

W U:= {[assignIdType c x t] : [c x] in assignId3_12{[node]} | [assignIdType c x t] not in O};

W U:= {[assignIdTypeType node x t1 t] : [x t1] in assignIdType1_23{[node]} |

[assignIdTypeType node node t1 t] not in O};

W U:= {[type node t1] : [c t1 t2] in assignIdTypeType2_134{[node]} |

[type node Join(t1,t2,t)] not in O};

// update for rules 8 and 9

W U:= {[assignLocType1 c node e t] : [c e] in assignLoc2_13{[node]} |

[assignLocType1 c node e t] not in O};

// update for rule 8

W U:= {[error c] : [c l t1] in assignLocType3_124{[node]} | not t <= t1, [error c] not in O};

// update for rule 9

W U:= {[error c] : [l e t1] in assignLocType1_234{[node]} | [error c] not in O};

//updates for rules 11 and 12

W U:= {[error c] : [c a t1] in arrallocArrenv3_124{[node]} | not t <= t2, [error c] not in O};

W U:= {[error c] : [c a t1] in arrassignArrenv2_134{[node]} | not t <= t1, [error c] not in O};
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W U:= {[error c] : [c a t1] in arrassignArrenv1_234{[e1]} | not t <= t1, [error c] not in O};

// update for rule 13

W U:= {[type c1 t] : [c1 c2] in sequence1_23{[node]} | [type c1 t] not in O};

// update for rule 14

W U:= {[type c2 t] : [c1 c2] in sequence1_23{[node]} | [type c2 t] not in O};

// updates for rules 15 and 16

W U:= {[ifType1 c c1 c2 t] : [c c1 c2] in if2_134{[node]} | [ifType1 c c1 c2 t] not in O};

W U:= {[type c1 t1] : [c1 c2 t1] in ifType1_234{[node]} | [type c1 Join(t1,t)] not in O};

W U:= {[type c2 t1] : [c1 c2 t1] in ifType1_234{[node]} | [type c2 Join(t1,t)] not in O};

//updates for rule 17

W U:= {[whileType1 c c1 t] : [c c1] in while2_13{[node]} | [whileType1 c c1 t] not in O};

W U:= {[type c1 t1] : [c1 t1] in whileType1_23{[node]} | [type c1 Join(t1,t)] not in O};

//updates for rules 18 and 19

W U:= {[type x t] : [c x c1] in letid3_124{[node]} | [type x t] not in O};

W U:= {[type c1 t] : [x e c1] in letid3_124{[node]} | [type c1 t] not in O};

W less:= x;

if x not in input:

O with:= x;

A.2.2 Pseudocode for inferring maximum types of commands:

assign2_13 := {}; assignId2_13 := {}; assignLoc2_13 := {};

arralloc2_13 := {}; arrenv1_23 := {}; arrassign2_134 := {};

sequence2_13 := {}; sequenceHtype1_23 := {}; if3_124 := {}; ifHtype3_124 := {};

while3_12 := {}; letid4_123 := {}; htype1_2 := {}; type1_2 := {};

W:= input U MIN;

O’ := {};

while exists x in W:

case x of [assign c var e]:

//update for rule 20

W U:= {[assignId c var e] | [assignId c var e] not in O’};

//update for rule 21

W U:= {[assignLoc c var e] | [assignLoc c var e] not in O’};

//update to auxiliary map used in rules 20 and 21

assign2_13 with:= [[var], [c e]];
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case x of [id x]:

//update for rule 20

W U:= {[assignId c x e] : [c e] in assign2_13{[x]} | [assignId c x e] not in O’};

//assignId is an auxiliary relation for the first two hypotheses of rule 20

case x of [assignId c x e]:

//update for rule 20

W U:= {[htype c t] : [t] in type1_2{[x]} | [htype c t] not in O’};

//update to auxiliary map used in rule 20

assignId2_13 with:= [[x], [c e]];

case x of [loc l]:

//update for rule 21

W U:= {[assignLoc c l e] : [c e] in assign2_13{[l]} | [assignLoc c l e] not in O’};

//assignLoc is an auxiliary relation for the first two hypotheses of rule 21

case x of [assignLoc c l e]:

//update for rule 21

W U:= {[htype c t] : [t] in r31typelt{[l]} | [htype c t] not in O’};

//update to auxiliary map used in rule 21

assignLoc2_13 with:= [[l], [c e]];

case x of [type node t]:

//update for rule 20

W U:= {[htype c t] : [c e] in assignId2_13{[node]} | [htype c t] not in O’};

//update for rule 21

W U:= {[htype c t] : [c e] in assignLoc2_13{[node]} | [htype c t] not in O’};

//update to auxiliary map used in rules 20 and 21

type1_2 with:= [[node], [t]];

case x of [arralloc c a e1]:

// update for rule 22

W U:= {[htype c t2] : [t1 t2] in arrenv1_23{[a]} | [htype c t2] not in O’};

// update to auxiliary map used in rule 22

arralloc2_13 with:= [[a], [c e1]];

case x of [arrenv a t1 t2]:

// update for rule 22
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W U:= {[htype c t2] : [c e1] in arralloc2_13{[a]} | [htype c t2] not in O’};

//update for rule 23

W U:= {[htype c t1] : [c e1 e2] in arrassign2_134{[a]} | [htype c t1] not in O’};

//update to auxiliary map used in rules 22 and 23

arrenv1_23 with:= [[a], [t1 t2]];

case x of [arrassign c a e1 e2]:

//update for rule 23

W U:= {[htype c t1] : [t1 t2] in arrenv1_23{[a]} | [htype c t1] not in O’};

//update to auxiliary map used in rule 23

arrassign2_134 with:= [[a], [c e1 e2]];

case x of [sequence c c1 c2]:

//update for rule 24

W U:= {[sequenceHtype c c2 t1] : [t1] in htype1_2{[c1]} | [sequenceHtype c c2 t1] not in O’};

//update to auxiliary map used in rule 24

sequence2_13 with:= [[c1], [c c2]];

//sequenceHtype is an auxiliary relation for the first two hypotheses of rule 24

case x of [sequenceHtype c c1 t1]:

//update for rule 24

W U:= {[htype c t1] : [c2 t2] in htype1_2{[c1]} | [htype c Meet(t1,t2)] not in O’};

//update to auxiliary map used in rule 24

sequenceHtype1_23 with:= [[c1], [c t1]];

case x of [if c e c1 c2]:

//update for rule 25

W U:= {[ifHtype c e c2 t1] : [t1] in htype1_2{[c1]} | [ifHtype c e c2 t1] not in O’};

//update to auxiliary map used in rule 25

if3_124 with:= [[c1], [c e c2]];

//ifHtype is an auxiliary relation for the first two hypotheses of rule 25

case x of [ifHtype c e c2 t1]:

//update for rule 25

W U:= {[htype c t1] : [t2] in htype1_2{[c2]} | [htype c Meet(t1,t2)] not in O’};

//update to auxiliary map used in rule 25

ifHtype3_124 with:= [[c2], [c e t1]];

case x of [while c e c1]:
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//update for rule 26

W U:= {[htype c t] : [t] in htype1_2{[c1]} | [htype c t] not in O’};

//update to auxiliary map used in rule 26

while3_12 with:= [[c1], [c e]];

case x of [letid c e x c1]:

//update for rule 27

W U:= {[htype c t] : [t] in htype1_2{[c1]} | [htype c t] not in O’};

//update to auxiliary map used in rule 27

letid4_123 with:= [[c1], [c e x]];

case x of [htype node t]:

//updates for rule 24

W U:= {[sequenceHtype c c2 t] : [c c2] in sequence2_13{[node]}

| [sequenceHtype c c2 t] not in O’};

W U:= {[htype c t1] : [c t1] in sequenceHtype1_23{[node]} | [htype c Meet(t1,t)] not in O’};

//updates for rule 25

W U:= {[ifHtype c e c2 t] : [c e c2] in if3_124{[node]} | [ifHtype c e c2 t] not in O’};

W U:= {[htype c t1] : [c e t1] in ifHtype3_124{[node]} | [htype c Meet(t1,t)] not in O’};

//update for rule 26

W U:= {[htype c t] : [c e] in while3_12{[node]} | [htype c t] not in O’};

//update for rule 27

W U:= {[htype c t] : [c e x] in letid4_123{[node]} | [htype c t] not in O’};

//update to auxiliary map used in rules 24 through 27

htype1_2 with:= [[node], [t]];

W less:= x;

if x not in input:

O’ with:= x;
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