Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Cache-Oblivious Data Structures for
Massive Data Sets

A Dissertation Presented

by
Haodong Hu

to

The Graduate School

in Partial Fulfillment of the
Requirements
for the Degree of

Doctor of Philosophy

in
Computer Science
Stony Brook University

December 2007

Stony Brook University
The Graduate School

Haodong Hu

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy, hereby recommend
acceptance of this dissertation.

Michael A. Bender, Dissertation Advisor
Associate Professor, Computer Science Department

Joseph S.B. Mitchell, Chairperson of Defense
Professor, Computer Science Department and
Applied Mathematics and Statistics Department

Martin Farach-Colton
Professor, Computer Science Department

at Rutgers University

Xianfeng David Gu
Assistant Professor, Computer Science Department

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Dissertation

Cache-Oblivious Data Structures for
Massive Data Sets

by
Haodong Hu

Doctor of Philosophy
in
Computer Science
Stony Brook University
2007

The cache-oblivious model [39, 50] is one of the most successful models of a
memory hierarchy. The cache-oblivious model allows progreers to reason about
a simple two-level memory model without knowing any memoaygmeters, but
to prove results about a multilevel memory model. Thus, rigms and structures
based on the cache-oblivious model have the advantagetédnptaindependence
and simultaneously optimal on all levels of a memory hidrgrcThedisk-access
model (DAM) [4], another successful memory model, assumes a two-leget-m
ory model with the full knowledge of memory parameters. Like DAM model,
the performance of the cache-oblivious model is measuretdmgory (or block)
transfers between two adjacent memory levels with blookBiz

In this dissertation, we build highly efficient, optimizealohe-oblivious struc-
tures in support of cache-oblivious B-trees and other alietiies. We improve
two common fundamental cache-oblivious structures: acstatche-oblivious
search tree irvan Emde Boas layout (VEB) [59, 60] andpacked-memory array
(PMA) [16] for dynamically maintaining sorted elements in memoryon disk.
Specifically, the VEB supports search asymptotically oatiynin O(1+ loggN)
memory transfers. The PMA supports the operations insdetiel in an array of
sizeN in O(1+ (log”N)/B) amortized memory transfers and range query obn-
secutive elements optimally @(1+ L/B) memory transfers.

The VEB and PMA are used as basic building blocks in many cabligious
B-trees and dictionaries; see e.g., [1,13-19,21,24,23181,52]. One of thdy-
namic cache-oblivious B-trees, proposed by Bender, Duan, lacono, and Wu [18],
combines both the VEB as the top search tree and the PMA asttoerbdynamic
structure. Specifically, this dynamic B-tree supportsaearO(1+ logg N) mem-
ory transfers, deletion and insertion@{1+ logg N + (log? N) /B) amortized mem-
ory transfers, and scanslotonsecutive elements optimally@(1+loggN+L/B)
memory transfers. Thus, any improvements to the VEB layadttae packed-
memory array immediately translate to improvements to eaatlivious B-trees
and other dictionaries.

In this dissertation, we present the following results:

We prove tight bounds on the cost of cache-oblivious seagcand propose a
generalized van Emde Boas layout to optimize the searching cost in the cache-
oblivious structures. we show that there is no cache-ahliwisearch structure
can guarantee that a search performs fewer thatotgg N memory transfers, i.e.,
IlgeloggN is the lower bound. The upper bound is achieved by the geredal
VEB layout, whose expected memory transfers between anietwets of the mem-
ory hierarchy arbitrarily close tdlge+O(lglgB/IgB) |loggN + O(1). That is,
we achieve the factor, which optimally approaches4gl.443 as the block sizB
increases. The work appears in Chapter 2 and is publishd@]n [

We give the firstadaptive packed-memory array (APMA), theoretically and
practically optimizing PMA's performance on most commopuhpatterns. Like
the traditional PMA, any pattern of updates costs dBlyog?N) amortized ele-
ment moves an®(1+ (log?N)/B) amortized memory transfers per update. How-
ever, the adaptive PMA adjusts to the input pattern and thergerforms better
on many common input distributions achieving o@ylogN) amortized element
moves andD(1+ (logN)/B) amortized memory transfers. We analyze sequential
inserts, where the insertions are to the front of the APMAmimer inserts, where
the insertions “hammer” on one part of the APMA, random itssevhere the inser-
tions are after random elements in the APMA, and bulk insertere for constant
a € [0,1], N® elements are inserted after random elements in the APMA. Wik
appears in Chapter 3 and is published in [25].

We develop theartially deamortized packed-memory array (PDPMA) to re-
duce the worst-case cost in the PMA. As the traditional PNW&,RDPMA has the
same update cost 6f(1+ (log”N) /B) amortized memory transfers. However, for a
single update, the traditional PMA has the worst-case doS{N) element moves
andO(1+ N/B) memory transfers. It is not feasible for industrial apgiiza be-
cause one insertion might trigger the rebalance of the whalabase. Therefore,
our partially deamortized PMA is designed for the purposeost reduction in the
worst case and achieves the worst-case performace of ormgelip®(1/NIlogN)
element moves an@(1+ (+/NlogN)/B) memory transfers. This work appears in
Chapter 4.

We present the firgitomic-key B-tree to support atomic keys of different sizes
in the B-tree with the theoretical guarantee. There existynpaactical B-trees in
support of variable-length keys. However, none of them hlageretical guarantee
and their practical performance degrades when keys aredlovayy in length. Our
atomic-key B-tree is efficient in this respect. Specifical first give an algorithm
for building a static atomic-key B-tree. On a dictionaryrokeys having aver-
age sizek, the expected cost to search for a random ke9(igk/B] 09, g/ N)
memory transfers, under the assumption that all keys ametsssh with uniform
probability. The cost to build this tree @(N) operations an®(N + Nk/B) mem-
ory transfers. We then show how to build a dynamic atomicEsee with a better
performance oD(N/f + Nk/B) memory transfers, where= max{2, [B/k]}. In
this dynamic structure, the expect cost to search for rankkeya stays the same.
The cost to insert an arbitrary keyis the cost to search for plus a tree-update
cost of O([k/B] |091+[B/fq N) amortized memory transfers. This work appears in
Chapter 5.

In summary, we contribute to the theory of the searching togthe cache-
oblivious model by presenting the generalized VEB layoue dgvelop two dy-
namic cache-oblivious structures: the adaptive PMA angérgally deamortized
PMA to overcome the traditional PMA's deficiencies and malpgactical. We also
propose the atomic-key B-tree in support of atomic keys vatiable length, whose
structure is as close as possible to the traditional B-triedevinaving performance
guarantees.

For my parents.

Contents

List of Algorithms

List of Figures

Acknowledgements

1

Introduction

11
1.2

OVEeIVIEW s

Results.

Cache-Oblivious Searching Cost

2.1
2.2
2.3
2.4

Lower Bound for Cache-Oblivious Searching

Upper Bound forvan Emde Boas Layout.
Upper Bound for the Generalized van Emde Boas Layout

Conclusion,

Adaptive Packed-Memory Array

3.1
3.2
3.3
3.4
3.5

Structures and Algorithms for Adaptive PMA
Analysis of Sequential and Hammer Insertions.
Analysis for Random and Bulk Insertions
ExperimentalResults
Conclusion

Partially Deamortized Packed-Memory Array

4.1
4.2

One-Phase Rebalance inPMA

Description of Partially Deamortized PMA

Vii

4.3 Conclusion 114

5 Atomic-key B-tree 115
5.1 StaticStructure 116
5.2 Dynamic Strcuture 126
5.3 Dynamic Structure Using Indirection 133
5.4 Optimal Static Structure by Dynamic Programming 142
55 Conclusion 144

Bibliography 145

viii

List of Algorithms

a b~ WD B

Predictoriinsers) 60
Rebalance.unevan{ 63
Rebalance.leftward.interval(leftboound) 105
Rebalance.rightward.interval(rightbound) 105
rightbound.windowg) oL 107

List of Figures

1 The predictor. Each cell contains a marker elenxetite leaf node

in the APMA wherex resides, and the count numb¢x). 61
2 In the simple case, the shaded region is rebalanced jestRifase

1 of nodeu,, which starts from Density, _») = 0 (left) and ends at

Densityu;_2) =12 (right). 66
3 In the simple case, the shaded region is rebalanced jestRifase

2 of nodeu,, which starts from Density, _») = 1,2 — 1,1 (left)

and ends at Density,_2) =1, 2 (right). 67
4 Phase 1 of nodey starts from Densitfu, _») = 0 (left) and ends at
Density(u;_2) = 1,_2 (right). The shaded region is rebalanced. . . . 69

5 Phase 2 of nodey starts from Densitu,_») = p,_; (left) and ends

at Densityu,_») = 1,_2 (right). The shaded region is rebalanced. . . 69
6 Phase 3 of nodey starts from Densityu, 2) =21, 2—Tp_1—pPr-1

(left) and ends at Density,_2) = T¢_» (right). The shaded region

isrebalanced. 70
7 Subphase 1 starts from Density 3) = p,—» (left) and ends at

Density(u,_3) = 1,3 (right). The shaded region is rebalanced. . . . 72
8 Subphase 2 starts from Density 3) > p,—2 (left) and ends at

Density(u;_3) = 1,_3 (right). The shaded region is rebalanced. . . . 73

9 Phase 1 oy starts from Densitju;_1) = p;j (left) and ends at
Density(ui_1) = Ti—1 (right). The marker element is indicated
by a black dot. The region that is rebalanced at the end oftiheg
isshaded. 77

10

11

12

13

14

15

16

17

18

Phase 2 ofj; starts from Densitfu;_1) = 2p;j+1 (left) and ends at
Density(u;_1) = Tj_1 (right). The marker elementis indicated by

a black dot. The region that is rebalanced at the end of theepisa
shaded. 78
Phase 3 dfi starts from Densityu;_1) = Ti_1 — pi—1 (left) and ends

at Densityu;_1) = Tj_1 (right). The marker elementis indicated

by a black dot. The region that is rebalanced at the end oftias
isshaded. 80
The tail-insert stage af_» starts from Densityu;_4) > pi;1 (left)

and ends at Densityi_4) = Tj_4 (right). The marker elementis
indicated by a black dot. At the end of the tail-insert stafja; o,
nodeuj_iisrebalanced. oL L. 81
Subphase 1 of Phase 3 starts from Defsity) = 2t;_1 — 2pj_1 —

4pi11 (left) and ends at Densityi_2) = 1j_2 (right). The marker
elementix is indicated by a black dot. The region that is rebalanced
atthe end of Subphase lisshaded. 83
Subphase 2 of Phase 3 starts from Defity) = 4pj. 1+ Ti_2 —

Ti—1 (left) and ends at Densityi_2) = Ti_2 (right). The marker
elementx is indicated by a black dot. At the end of Subphase 2,
nodeu;, the parent ot _4, isrebalanced. 84
Subphase 1 of Phase 2 starts from Defsity) = pi—1 (left) and

ends at Density;_») = 1j_2 (right). The marker elementis in-

dicated by a black dot. The region that is rebalanced at tdeoén
Subphase lisshaded. 85
Subphase 2 of Phase 2 starts from Deqgity) = 1;_> — pj—1 (left)

and ends at Density;_2) = 1j_2 (right). The marker elementis
indicated by a black dot. The region that is rebalanced atigleof
Subphase 2isshaded. 86
Subphase 3 of Phase 2 starts from Defity) = 4pj 1+ Ti_2 —

Ti—1 (left) and ends at Densityi_2) = Ti_2 (right). The marker
elementx is indicated by a black dot. At the end of Subphase 3,
nodeujisrebalanced. 86
An illustration showing the tree divided at heightlogN]. 89

Xi

19

20

21

22

23

24

25
26

27
28

29

30

31

32
33
34

35
36
37

Phase 1 of node starts from Densityu, _,) = 1,1 (left) and ends

at Densityu,_») = 1> (right). The shaded region is rebalanced. . . 91
Phase 2 of nodg starts from Densitju,_») = 1, (left) and ends at
Density(u,_2) = Ty (right). The shaded region is rebalanced. . . . 91
The densities of nod®’s descendants at the beginning of Phase 2
ofnodeu,. e 92

Sequential inserts: average moves per insert dividedg My The
array size grows to two million and4 million elements are inserted. 97
Sequential inserts: the running time to insert up.tortillion ele-

Random inserts: average moves per insert divided by Idhe

array size grows to two million and4 million elements are inserted. 98
Random inserts: the running time to insert up.tbrillion elements. 98
Bulk inserts: average moves per insert divided y.Ig he array

size grows to two million and.4 million elements are inserted. . . . 99
Bulk inserts: the running time to insert up t@ illion elements. . 99
Multiple sequential inserts: average moves per inseitied by

IgN. The array size grows to two million and4lmillion elements

areinserted. 100
Multiple sequential inserts: the running time to ins@rta14 mil-
lionelements. 100

Half random, half sequential inserts: average movesrnzeri di-
vided by IgN. The array size grows to two million and4lmillion

elementsareinserted. L . 100
Half random, half sequential inserts: the running timangert up

to L4 millionelements. 100
The pattern of one-phase rebalance. 04.1
Single leftward intervals. 410
PDPMAmodel. 109

The greedy algorithm for the root node of a static treedayo . . . 117
The greedy algorithm for the root node of a dynamic treeuday . . 126
The first se§; includesCp and partofCy. 130

Xii

38
39

40

41
42

The sef includes the right part o1 and the left part o€;. . . . 130
The bottom layer structure, including type-1 groups aygetll

OrOUPS. . o o o e e e e e e e e 135
The top layer structure: a greedy tree layout based oo fhsattom

layer. 138
The top tree layout has the leaf nodes trimmed. 140
The optimal structure by the dynamic programming.143

Xiii

Acknowledgements

Foremost, | am deeply grateful to my supervisor, professarhikel A. Bender,
who guides me through research and shares with me a lot okpestese. Under
his advise, | have gained the research insight and becanezassful researcher.

| express my gratitude to the professors who served on my dtte@s: pro-
fessor Martin Farach-Colton from Rutgers University andf@ssors Jie Gao, Xi-
anfeng David Gu, Joseph Mitchell, and Steve Skiena at StaonplBUniversity.
Their thoughtful advices are great help for completing nssdrtation.

I would like to thank the coauthors in my published papersfgasors Gerth
Stalting Brodal at University of Aarhus, Rolf Fagerberg ativérsity of Southern
Denmark, John lacono at Polytechnic University, Alejandbpez-Ortiz at Univer-
sity of Waterloo, Ron Y. Pinter and Firas Swidan at Israetitate of Technology,
Steve Skiena at Stony Brook University, and my friends SiAaat Chinese Uni-
versity of HongKong and Dongdong Ge at Stanford Universityas both fun and
productive to work with them.

| appreciate faculty and Staff in the Computer Science Diepant at Stony
Brook University. Their kindness and help are unforgettdahings during my time
at Stony Brook.

| thank all friends including Ziyang Duan, Yonatan FogelnXii, Marc Tchi-
boukdjian, Yue Wang, and professor Ker-l Ko, with whom | dissed and gained
interest in research.

Finally, | wish to thank my parents. They have always sumzband encour-
aged me to do my best in all matters of life. To them | dedidaitethesis.

Chapter 1

Introduction

1.1 Overview

Hierarchical Memory Models. Traditionally, algorithms were designed to run
efficiently in arandom access model (RAM) computation, which assumes a flat
memory with uniform access times. However, as hierarchicamory systems
become steeper and more complicated, algorithms are Biogha designed as-
suming more accurate memory models; see e.g., [2-7, 9, 485581-63]. Two
of the most successful memory models aredisk-access model (DAM) and the
cache-oblivious mode!.

The DAM model, developed by Aggarwal and Vitter [4], is a tlewel mem-
ory model, in which the memory hierarchy consists of an maémemory of size
M and an arbitrarily large external memory partitioned inkacks of sizeB. Al-
gorithms are designed in the DAM model with full knowledgetio¢ values oB
andM. Because memory transfers are relatively slow, the pedaoa metric is the
number of memory transfers. The main disadvantage of aéwel-memory model
is that the programmer must focus efforts on a particuleellefa given hierarchy,
resulting in programs that are not portable and suited felomsa modern multilevel
hierarchy.

The cache-oblivious model, developed by Frigo, Leisergwokop, and Ra-
machandran [39, 50], allows programmers to reason aboub-detvel memory hi-
erarchy but to prove results about an unknown multilevel wmnhierarchy. As

CHAPTER1. Introduction 2

in the DAM model, the objective is to minimize the number ofmuay transfers
between two levels. The main idea of the cache-obliviousehisdhat by avoiding
any memory-specific parametrization (such as the bloclssthe cache-oblivious
algorithm has an asymptotically optimal number of memoaynsfers between all
levels of an unknown, multilevel memory hierarchy.

The theory of cache-oblivious algorithms is based on thalidache model of
Frigo, Leiserson, Prokop and Ramachandran [39, 50], whisbiraes both optimal
page replacement strategy and fully associative cacheleWtis model may su-
perficially seem unrealistic, Frigo et al. show that it carsimeulated essentially by
any memory system with a small constant-factor overheads;lifiwe run a cache-
oblivious algorithm on a multilevel memory hierarchy, wenasse the ideal-cache
model to analyze the number of memory transfers between gaclof adjacent
levels.

Optimal cache-oblivious algorithms have memory perforogai.e., number
of memory transfers) that is within a constant factor (iretegent ofB andM) of
the memory performance of the optimal DAM algorithm, whiatolwsB andM.
There exist surprisingly many (asymptotically) optimatica-oblivious algorithms;
seee.g., [1,8,13-16,18,26-28, 30, 33,39,47,48,50, 1,57

I/O-Efficient Searching. A fundamental problem in computer science is how to
search efficiently among comparison-based totally-ordered elements on disk. The
classic I/O-efficient search tree in the DAM modeBig¢ree [10, 32]. The basic idea
of B-tree is to maintain a balanced tree dfelements with the node fan-o
which is designed to fit into one memory block. The B-tree heigit logs N,
and a search optimally h&1) +logg N memory transfers (block cost). However,
B-tree is designed with full knowledge of the block sReand therefore is only
optimized for a two-level memory model. Although theorelig B-tree can be
extended to fit a multilevel memory model, the resulting dtiee becomes much
more complex than the original B-tree. Furthermore, as thmaberk of levels in
the memory hierarchy grows, the constant factor of the seewst in an optimal
k-DAM structure turns out to be bigger.

A static cache-oblivious search tree, proposed by Prok6j f8so performs

CHAPTER1. Introduction 3

searches ir®(loggN) memory transfers. It is built as follows: Embed a com-
plete binary tree wittN nodes in memory, conceptually splitting the tree at half its
height, thus obtainin@®(+/N) subtrees each wit®(v/N) nodes. Lay out each of
these trees contiguously, storing each recursively in nmgmbhis type of recur-
sive layout is called aan Emde Boas layout (VEB) because it is reminiscent of
the recursive structure of the van Emde Boas tree [59, 60yvener, the constant
factor of memory performance in the VEB search tree is mughdsithan that of
the B-tree in the DAM model. It would be interesting to narrthwe gap between
the VEB search tree and the B-tree in a multilevel memoryanidry.

The static cache-oblivious search tree is a basic buildiagkiof essentially
all cache-oblivious search structures, including the &igic) cache-oblivious B-
tree of Bender, Demaine, and Farach-Colton [16], its sificglions and improve-
ments [18, 30, 51], and other cache-oblivious search stres{1,14,15,15,27,28].
Thus, any improvements to the static cache-oblivious estracture immediately
translate to improvements to these dynamic structures.

Ordered Sparse Array. A classical problem in data structures and databases is
how to maintain a dynamic set df elements in sorted order in&(N)-sized array,
which has been known for over two decades and studied untferediit names,
including sparse arrays [43, 44], sequential file mainteadb64—66], and list la-
beling [34—37]. The problem is also closely related to theeoimaintenance prob-
lem [13, 34,36, 58].

The 1/0O-efficient and cache-oblivious version of the spansay is called the
packed memory array (PMA) [16, 17], which maintain®l elements in sorted order
in a®(N)-sized array. The idea is to interspe@E\) empty spaces or gaps among
the elements so that only a small number of elements needstafed around on an
insert or delete. This data structure effectively simdadibrary bookshelf, where
gaps on the shelves mean that books are easily added ande@mid\supports
the operations insert/delete ®(1+ (log?N)/B) amortized memory transfers and
scans oL consecutive elements ®(1+ L/B) memory transfers.

The packed-memory array is an efficient and promising datectsire, but
it also has weaknesses. The main weakness is that the PMérperfelatively
poorly on some common insertion patterns such as sequirsiats. For sequential

CHAPTER1. Introduction 4

inserts, the PMA performs near its worst in terms of the nurobelements moved
per insert. Moreover, sequential inserts are common, atréds in databases are
frequently optimized for this insertion pattern. It would better if the PMA could
perform near its best, not worst, in this case.

In contrast, one of the PMA's strengths is its performanceammon insertion
patterns such as random inserts. For random inserts, the fvidrms extremely
well with only O(logN) element moves per insert and oyl + (logN)/B) mem-
ory transfers. This performance surpasses the guaramieabftrary inserts.

The PMA has been used in cache-oblivious B-trees [16—1331concur-
rent cache-oblivious B-trees [24], cache-oblivious giiBitree [21], and scanning
structures [13]. A sparse array in the same spirit as the PNA mwdependently
proposed and used in the locality-preserving B-tree of,[&hough the asymp-
totic space bounds are superlinear and therefore infarithret linear space bounds
of the earlier sparse-array data structures [43, 64—66{lmBMA [16, 17].

Balanced Search Tree. One of the most fundamental data structures for main-
taining data on disk is a balanced search tree, which kedpsrdarder and sup-
ports operations such as search, insert, delete and rarge Qe classic external-
memory search structure is B-tree [10, 32], which supporsaach optimally in
O(1) +logg N memory transfers and the operations insert/delete asyitgity op-
timally in O(logg N) memory transfers in the DAM model. Common variants, such
as B"-tree and B-tree [32, 45] are more implementable and have the samerperfo
mance.

B-trees are balanced search trees where all nodes (excegiblyothe root)
have fanou(B) and the leaves are all at the same depth. Insertions andbdelet
are supported with a simple balancing scheme. If a blockagud, it is split into
multiple blocks. If the block is too empty, then either thedd borrows keys from
a neighboring block, or else the block is merged with a neiginig block.

One of main deficiencies of the B-tree is that it cannot takkadvantage
of disk prefetching. The nodes in the B-tree may scattersauth a disk in any
order. Thus, each fetch of a B-tree node requires a randoknsedsk. Random
block accesses perform two orders of magnitude more sldvally sequential block
accesses. In this respect, B-tree performs inefficiendfyeeially for range queries.

CHAPTER1. Introduction 5

In contrast, thelynamic cache-oblivious B-tree supports nearly optimal range
gueries by combining the above packed-memory array steictGpecifically, a
range query in the cache-oblivious B-tree involves a seaireHeaf block followed
by a scan within an array. The first dynamic cache-obliviotise®® achieves the
asymptotically optimal searching cost®flogg N). This B-tree, designed by M. A.
Bender, E. Demaine, and M. Farach-Colton [16], appearsaogotex to get good
practical performance. Subsequently, Rahman, Cole, amdaRd51] proposed
and implemented another cache-oblivious B-tree based ponextial trees, which
supports insertion and deletion@{logg N + log logN) memory transfers. Another
two related simplifications are obtained by Bender, Duanpna, and Wu [18]
and simultaneously by Brodal, Fagerberg, and Jacob [30fh Bbthese achieves
insert/delete performance @(loggN + (log?N)/B) amortized memory transfers
and scans of consecutive elements optimally@(1+ L/B) memory transfers.

The cache-oblivious B-tree [18] combines two cache-obligistructures in a
fairly simple way: a static search tree stored in a van EmdasBayout and the
packed-memory array. Specifically, the structure inclualeatic complete binary
tree with®(N) leaves, stored according to the van Emde Boas layout, antkega
memory structure representing the elements. The struotarmetains a fixed one-
to-one correspondence between the cells in the packed-mgestracture and the
leaves in the tree. Some of these cells/leaves are occupieldiments, while oth-
ers are blank. Therefore, operations are executed by aftsearch through the top
index tree, and insert, delete and scan in the bottom patladery array while
updating the top index tree. However, this cache-obliviBdsee also inherits defi-
ciencies from both the VEB layout and the PMA.

Search Tree with Variable-Length Keys. The B-tree, as described in an algo-
rithms textbook, is a dynamic dictionary designed to starg-sized keys. For
unit-sized keys and memory blocks of sBethe B-tree supports searches and up-
dates at a cost @d(loggN) memory transfers.

Industrial-strength B-trees, unlike textbook B-treeqmurt keys of different
sizes. In many applications, such as file systems and da&sbdtionaries are
implemented using B-trees, even though the keys may haferetit sizes. For
example, Berkeley DB [56] allows individual keys to be agjtaas 4 GB.

CHAPTER1. Introduction 6

The B-tree operations still work correctly even when keygettdifferent sizes.
That is, neither splitting, merging, nor searching regkéeys to have identical sizes.
However, they have no nontrivial performance guarantees.

There already exist dynamic dictionaries designed to stifierent-size keys,
the most famous of which is thetring B-tree [38]. (See Refs. [22, 29] for cache-
oblivious string dictionaries.) In the string B-tree, theyk are chopped up and
distributed among different nodes of the data structurearches and updates of
a keyk run in O(|k|/B+loggN) memory transfers. Thus, the additional cost to
access a key is just the additive cosf,|k|/B], to read ke plus the cost to search
in a B-tree, which is optimal.

The string B-tree is different from the B-tree because, astimeed above,
the keys are chopped up. B-trees cannot attain the efficiehthye string B-tree.
However, despite their performance limitations and lagkeformance guarantees,
implementers often prefer to base applications such asylitesms and databases,
on B-trees.

We call a B-tree that supports different-size keysatomic-key B-tree. The
keys are atomic in the sense that the keys are stored and uetegbin their en-
tirety.

1.2 Results

The B-tree has been the dominant external-memory dictyaheta structure for the
last three decades, but it has several weaknesses degitadiegformance. First,
the search cost in a B-tree is only optimized for a two-levehmry model. The

B-tree’s performance degrades in a multilevel memory mooehich data locality

is required at many levels of granularity. The B-tree canakeé advantage of disk
prefetching. Finally, the B-tree’s performance guarasteely apply when keys
have unit or fixed length.

In this dissertation we address the above issues. We gezeetiad van Emde
Boas layout so that as the numbkeof levels in the memory hierarchy grows, the
search-performance of our cache-oblivious structurdivel#o an optimak-DAM
structure tends to zero.

The dynamic cache-oblivious B-tree solves some of the problof B-trees

CHAPTER1. Introduction 7

listed above. It performs efficient range queries and maistdata locality at all
granularities. Our solutions, such as the generalized vadeBoas layout, solve
these problem optimizing the search constants.

We also present two improved versions of the packed-menroay:ahe adap-
tive PMA and the partially deamortized PMA, and thereforoeatically improve
the dynamic part in the cache-oblivious B-tree. We devéhefirst atomic-key B-
tree having performance guarantees, which is as close abf@® the traditional
B-tree while supporting atomic keys with variable lengths.

In Chapter 2, we first give an analysis of the static cache#obis search
tree in VEB layout, proving that searches perform at mc(§1~23/\/§) logg N +
O(1) expected memory transfers; the expectation is taken orgy the random
placement of the data structure in memory. This analysighs to within a 14+-0(1)
factor.

We then present a class géneralized van Emde Boas layouts that opti-
mizes performance through the use of uneven splits on thghhei the tree.
For any constant > 0, we optimize the layout achieving a performance of
lge+ €+ O(lglgB/lgB)]logg N + O(1) expected memory transfers. As before,
the expectation is taken over the random placement of treesdaicture in mem-
ory. Our new search structure serves to disprove the commelgef that even splits
yield the best results in the worst case. We suggest theargnuineven splits can
yield better worst-case performance.

Finally, we demonstrate that it is harder to search in thbeablivious model
than in the DAM model. Previously the only lower bound for rebing in the
cache-oblivious model was the lgy lower bound from the DAM model. We
prove a lower bound of lglogg N memory transfers for searching in the average
case in the cache-oblivious model. Thus, for laBy@ur upper bound is within a
factor of 1+ 0(1) of the optimal cache-oblivious layourt.

In Chapter 3, we propose aadaptive packed-memory array (abbreviated
adaptive PMA or APMA), which adapts to common insertion patterns. We first
show that the APMA has the “rebalance property”, which eestinat any pattern of
insertions cost onlY(1+ (log?N)/B) amortized memory transfers a@ilog®N)
amortized element moves. Because the elements are kepitéau swder in the
APMA, as with the PMA, scans df elements cosD(1+ L/B) memory transfers.

CHAPTER1. Introduction 8

Thus, the adaptive PMA guarantees a performance at leasbdsag that of the tra-
ditional PMA. We next analyze the performance of the APMAemgbme common
insertion patterns.

We show that forsequential inserts, where all the inserts are to the front
of the array, the APMA makes onl®(logN) amortized element moves and
O((logN/B) + 1) amortized memory transfers.

We generalize this analysis kammer inserts, where the inserts hammer on
any single element in the array.

We then turn taandom inserts, where each insert occurs after a randomly
chosen element in the array. We establish that the insertishis again only
O(logN) amortized element moves a@d(logN/B) + 1) amortized memory
transfers.

We generalize all these previous results by analyzing tee atbulk inserts.

In the bulk-insert insertion pattern, we pick a random eleime the array
and performN® inserts after it fora € [0, 1]. We show that for all values of
a € [0,1], the APMA also only perform®(logN) amortized element moves
andO(1+ (logN)/B) amortized memory transfers.

We next perform simulations and experiments, measuringenermance of
the APMA on these insertion patterns. For sequential irsestof roughly
1.4 million elements, the APMA has over four times fewer eletmaoves
per insertion than the traditional PMA and running timeg #ra nearly seven
times faster. For bulk insertions of4lmillion elements, wheré(N) = N°®,
the APMA has over two times fewer element moves per insettian the
traditional PMA and running times that are over three tinzessdr.

In Chapter 4, we propose thmrtially deamortized packed-memory array

(PDPMA) for the purpose of decreasing the worst rebalance cost oinseetion.
The partially deamortized PMA guarantees that the insaldtd cost per update is
at mostO(v/NlogN) element moves an@(1+ (v/NlogN)/B) memory transfers
while keeping the same update cost@flog’N) amortized element moves and
O(1+ (log?N)/B) amortized memory transfers as the traditional PMA.

We first give a better rebalance algorithm, calbe-phase rebalancénlike
the rebalance in the traditional PMA, which includes onensafahe array to

CHAPTER1. Introduction 9

compress the elements and another scan to evenly spaceitineng$ out, we
implement a one-phase rebalance in one scan of the arrdysway, we not
only perform rebalance efficiently, but also decompose addiglance into
small scans of leaves independently.

e We then propose the structure of the partially deamortiZdd Bnd analyze
its performance. The idea of this structure is to decompbeadbalance
of size bigger tha®2(v/NlogN) into smaller scans of siz®&(1/NlogN) by
using our one-phase rebalance. After each smaller scany &leenent is
inserted. In this way, we deamortize the insert cosbt@/NlogN) in the
worst case.

In Chapter 5, we develop the firatomic-key B-tree that has performance
guarantees. The objective is to design a data structureoas es possible to
the traditional B-tree. The performance of such structueetids on the average
IengthIA< of the keys. In particular, the traditional B-trees have pleeformance
O((Q/B] '091+[B/f<1 N) when all keys have the same sizeWe come up the same
bound when the keys have the same size and extend the bounidl #neskeys have
different sizes.

e We first give an algorithm for buildingstaticatomic-key B-tree. On a dictio-
nary ofn keys having average sikethe expected cost to search for a random
key isO([k/B] |091+[B/fq N) memory transfers, under the assumption that all
keys are searched with uniform probability. The cost toditfils tree iSO(N)
operations an®(N + Nk/B) memory transfers.

To understand why this bound achieves our objective of reodifferent-
size keys with the efficiency as same-size keys, we shoulg iplseveral
values for the average key-sikelf k = O(1), then the expected search cost
is O(logg 1 N), the performance for a B-tree storing unit-size keys. On the
other hand, ifk = O(B), then the expected search cosOgog,N). This

is reasonable because the keys are so big that the brancutay fs just
constant, but sufficiently small that the access time forvargnode is just
O(1). If the average key size i©(B), then again the branching factor is
constant, but now the expected node access c@fis/B]), which isQ(1).

In principle, it is nonoblivious that these bounds could bleievable because

CHAPTER1. Introduction 10

different regions of the key space can have varying averaysizes.

e We then show how to build dynamicatomic-key B-tree. The expect cost
to search for random keys stays the same. The cost to insarbdrary key
K is the cost to search farplus a tree-update cost 6f([k/B] 09, . 5/ N)
amortized memory transfers. Thus, the update cost is daedrzy the ex-
pected search cost.

As an intermediate step in this construction, we first preaaratomic-key
B-tree, in which the cost to insert a ke&yis the cost to search far plus an
update cost 0®(([B/k] + [k/B]) 109, gk N) amortized memory transfers.

We achieve our better bounds and then applying the techmfjliaedirec-
tion” on this first dynamic atomic-key B-tree. The objectigedo divide the
keys into groups, choose a representative from each growpthen build a
dynamic atomic-key B-tree just on these representativeehs. Unfortu-
nately, this strategy does not work because the averagedepfthe repre-
sentatives can be much larger than the average key sizelayall Instead,
we use a somewhat more and efficient use of indirection tadta potential
problem.

e Finally, we give a dynamic-programming algorithm for cansting a static,
atomic-key search tree having the minimum expected seasth €he algo-
rithm takes as input the keys, ..., Ky, their sizes, and their search probabil-
ities py, ..., pn. The algorithm use®(BN?) operations.

Roadmap. The rest of this dissertation is organized as follows. Inféa2, we
prove tight bounds on the cost of cache-oblivious searchimdjpropose a gener-
alized vEB layout. In Chapter 3, we give the first adaptivekedememory array,
which automatically adapts to common insertion patterns. &80 show that our
experiment results match the asymptotic bounds from owrétieal results. In
Chapter 4, we design the partially deamortized packed-mgway. In Chap-
ter 5, we first present a static atomic-key B-tree, and themvpeove it to build a
dynamic atomic-key B-tree.

Chapter 2

Cache-Oblivious Searching Cost

In this chapter, we focus on a fundamental problem of seagclGiven a set oN
ordered elements, design a data structure which does segaogeration efficiently.
Here, we measure “efficiency” by memory transfers (block)coscause memory
transfers are relatively slow.

Previous Work. A simple information-theoretic argument showsddéH- O(1) is
a lower bound in searching for an element ambingjements as follows (See [33]):

Lemma 1 Starting from an initially empty cache, at ledsggN + O(1) memory
transfers is required to search for a desired element, inatberage case.

Proof. A general query element encodesay + 1) +O(1) =IgN + O(1) bits of
information, because it can be any of tReslements or in any of thE + 1 posi-
tions between the elements. The addi(@) comes from Kolmogorov complexity
(See [49]). Each block read reveals where the query elenmsiatrfiong thosB el-
ements, which is at most(8B+ 1) = IgB -+ O(1) bits of information. Thus, the
number of block reads is at leggg N+ O(1))/(IlgB+O(1)) =logg N+ O(1). I

In the disk access model (DAM), with knowledge of the blode®, the clas-
sic searclB-tree with fan-outB, which is designed to fit into one memory block,
optimally achieves searching performanceglbigi- O(1) memory transfers. There-
fore, theB-tree is optimal for searching in a two-level memory modelLbynma 1.

1An earlier version appears in [12].

11

CHAPTER2. CO Searching Cost 12

However, we know modern machines have multilevel memoryanihies, which
can be modeled by extending the DAM modekttevels. Ask grows, the search
costs of the optimat-level DAM search structure will increase for sure.

In this chapter, we present results in our published FOC®mHR]. We
first obtain the lower bound of searching in cache-obliviswiactures by showing
that as the numbée of levels in the memory hierarchy grows, an optirkdDAM
structure has the search cost tending eldgg N. Next, we propose a generalized
van Emde Boas layout which is a constant approximation wttereonstant lg
is better than that in the original VEB layout. Therefore, damultilevel memory
hierarchy, a simple cache-oblivious structure almosticafgs the performance of
an optimal parameterizddlevel DAM structure.

2.1 Lower Bound for Cache-Oblivious Searching

In this section, we prove lower bounds for the cost of cadbledous comparison-
based searching. The problem we consider is the averagefcusicessful searches
amongN distinct elements, where the average is over a uniformiligton of the
search key on theN input elements. For lower bounds, average case complexity i
stronger than worst case complexity, so our bounds alsy éppie worst case cost.
We note that our bounds hold even if the block sizes are knovthd algorithm,
and that they hold for any memory layout of data, including sypecific placement
of a single data structure.

Formally, our model is as follows. Given a se0f N elementsq; < --- < Xy
from a totally ordered universe,search structurdor Sis an arrayM containing
elements frons, possibly with several copies of each. s&arch algorithnfor M
is a binary decision tree where each internal node is laheideithery < M[i] or
y < M]i] for some array indek and each leaf is labeled with a numbex 3 < N.

A search on a key proceeds in a top-down fashion in the tree, and at each adtern
node advances to the left child if the comparison given byahel is true, otherwise

it advances to the right. A binary decision tree is a correerch algorithm if for
anyx € S the path taken by a search on key x; ends in a leaf labeled Any
such tree must have at led$teaves, and by pruning paths not taken by any search
for x1,...,Xn, We may assume that it has exadilyeaves.

CHAPTER2. CO Searching Cost 13

To add I/Os to the model, we divide the arfdyinto contiguouslocksof size
B. An internal node of a search algorithm is saicditwesghe block containing the
array index in the label of the node. We define the 1/0O cost of a search thée t
number of distinct blocks d accessed on the path taken by the search.

The main idea of our proof is to analyze the I/O cost of a givearsh al-
gorithm with respect to several block sizes simultaneouglg first describe our
method for the case of two block sizes. This will lead to a loweund of
1.207log N block transfers. We then generalize this proof to a largenterk
of block sizes, and prove that in the limit kgrows, this gives a lower bound of
lgelogg N ~ 1.443log; N block transfers.

Throughout this section, we assume that block sizes are ngosidéwo and
that blocks start at memory addresses divisible by the biiok. This reflects
the situation on actual machines, and entails no loss ofrghtye as any cache-
oblivious algorithm at least should work for this case. Thsuanption implies that
for two block sizedB1 < By, a block of sizeB; is contained in exactly one block of
sizeB;.

Lemma 2 ([46, Section 2.3.4.5]For a binary tree with N leaves, the average
depth of a leaf is at leasgN.

Lemma 3 If a search algorithm on a search structure for block sizegsaBd B,
where B = B:° and1 < c¢ < 2, guarantees that the average number of block reads
is at mos®logg, N anddlogg, N, respectively, then

1
> :
02 2/c+c—2+3/(clgBy)

Proof. LetT denote the binary decision tree constituting the searabristhgn.
Our goal is to transforni into a new binary decision treE by transforming each
node that accesses a new sigeblock in T into a binary decision tree of small
height, and discarding all other nodesTin A lower bound on the average depth
of leaves inT’ then translates into a lower bound on the average numbeook$l
accesses iff .

To count the number of I/Os of each type (sBgblocks and sizé, blocks)
for each path iT, we mark some of the internal nodes by tokenandt,. A node

CHAPTER2. CO Searching Cost 14

v is marked iff none of its ancestors accesses theBiz@lock accessed by, i.e.

if vis the first access to the block. The nodmay also be the first access to the
sizeB; block accessed by In this casey is marked byro, else it is marked byj;.
Note that the word “first” above corresponds to viewing eaathpn the tree as a
time line—this view will be implicit in the rest of the proof.

For any root-to-leaf path, ldi; denote the number of distinct siBg blocks
accessed and lef denote the number af tokens on the path, far=1,2. By the
assumption stated above Lemma 2, a first access to &8siakck implies a first
access to a siz®; block, so we havée, = ap andb; = a; + ap.

We transformT into a new binary decision treE in a top-down fashion. The
basic step in the transformation is to substitute a markel& wevith a specific bi-
nary decision tre@, resolving the relation between the search keynd a carefully
chosen subse&d, of the elements. More precisely, in each step of the transdoer
tion, the subtree rooted ais first removed, then the trég is inserted at’s former
position, and finally a copy of one of the two subtrees rootedti@children ofv is
inserted at each leaf @f. The top-down transformation then continues downwards
at the leafs offy. When the transformation reaches a leaf, it is left unchdngbe
resulting tree can contain several copies of each leaf of

We now describe the trek, inserted, and first consider the case of a nede
markedt,. We let the subse®, consist of the at mod®, distinct elements in the
block of sizeB; accessed by, plus everyzB—Bthh element in sorted order among the
at mostB, distinct elements in the block of siB» accessed by. The size of5, is
at mostB; + B,/ (B2/(2B1)) = 3B;.

The treeT, is a binary decision tree of minimal height resolving thextiein
of the search key to all keys inS,. If we haveS, = {z1,2,...,z}, with elements
listed in sorted order and< 3B;, this amounts to resolving which of the at most
6B1 + 1 intervals

(—0;21), [z, (z522),..., (7], (Z;®)

thaty belongs to (we resolve for equality because we chose to <aiv< and <
comparisons in the definition of comparison trees, and wahahdle both types of
nodes in the transformation). The tr&ehas height at mogig(6B; + 1)|, since a
perfectly balanced binary search treeynwith one added layer to resolve equality

CHAPTER2. CO Searching Cost 15

questions, will do. A8, is a power of two, I¢8B;) is an integer and hence an upper
bound on the height.

For the case of a nodemarkedty, note thatv in T has exactly one ancestor
u markedt, that accesses the same siZeblock B asv does. When the treg,
was substituted fou, the inclusion inS, of the 2B; evenly sampled elements from
B ensures that below any leaf @f, at mostzB—Bz1 — 1 of the elements if8 can still
have an unknown relation to the search key. The Tyas a binary decision tree of
minimal height resolving these relations. Such a tree hemat 2% — 1= g2 —1
leaves and hence height at mos%gasBl andB, are powers of two.

Since in both caseg, resolves the relation between the search keyd all
sampled elements, the relation between the search key amdetment accessed at
v is known at each leaf df,, and we can choose either the left or right child/¢d
continue the transformation with.

When we in the top-down transformation meet an unmarkedratenodev
(i.e. anode where the siB block accessed at the node has been accessed before),
we can similarly discard together with either the left or right subtree, since we al-
ready have resolved the relation between the searcl &y the element accessed
atv. This follows from the choice of trees inserted at markedasodvhen we ac-
cess a sizd3, block B, for the first time at some nodg we resolve the relation
between the search kgand all elements in the si block[3; accessed at(due
to the inclusion of all of31 in §)), and when we first time access a kepinoutside
1, we resolve all remaining relations betweeand elements ifi,.

The treeT’ resulting from this top-down transformation is a binary idiem
tree. By construction, each searchlihends in a leaf having the same label as the
leaf that the same searchTirends in (this is an invariant during the transformation),
soT’ is a correct search algorithmTfis.

By the height stated above for the inserfigdrees, it follows that if a search
for a keyy in T corresponds to a path containiag anda, tokens of typer; and
To, respectively, then the searchTihcorresponds to a path with length bounded by
the following expression.

B B
azlg(8B1) +a1lg B_i = b21g(8By1) + (b1 —b)lg B_j

B B
= by {Ig(SBl) ~Ig B—ﬂ +hylg B—i

CHAPTER2. CO Searching Cost 16

The coefficients ob, andb; are positive by the assumpti®y < B, < B12, so
upper bounds oty and by, imply an upper bound on the expression above. By
assumption, the average values over all search pathsarfidb, are bounded by
dlogg, N anddlogg, N = (3logg, N)/c, respectively.

If we prune the tree for paths not taken by any search for the ke. .., xn
the lengths of root-to-leafs paths can only decrease. Tudtieg tree hasl leaves,
and Lemma 2 gives a N lower bound on the average depth of a leaf. Hence, we
get

IgN < glogBlN {Ig(881) lg— } —|—6IogBlNIg—

= glogBlN[S-l-lgBl—(c—l)IgBl]+6logBlN(c—1)IgBl
= 0OIgN[3/(clgB1)+1/c—(c—1)/c+(c—1)]
= 0dlgN[3/(clgB1)+c+2/c—2].

It follows thatd > 1/[3/(clgB;1) +c+2/c—2]. O

Corollary 4 If a search algorithm on a search structure guarantees, fbblack
sizes B, that the average number of block reads for a seaatmms®logg N, then
d>1/(2v2—2)~1.207.

Proof. Lettingc=+/2 in Lemma 3, we geb > 1/[2v/2—2+3/(+/2IlgB1)]. The
lower bound follows by lettindg; grow to infinity. L]

Lemma 5 If a search algorithm on a search structure for block sized33, . . ., By,
where B=B,% andl=c; < ¢, <--- < ¢ < 2, guarantees that the average number
of block reads for a search is at masbgg, N for each block sizeBthen

1

g1 2 lg(8K) '
i;T _{HZ'gBj_k

6>

Proof. The proofis a generalization of the proof of Lemma 3 for twodbi sizes,
and we here assume familiarity with that proof. The tramsfation is basically the
same, except that we have a tokgn = 1,... Kk, for each of the& block sizes.

CHAPTER2. CO Searching Cost 17

Again, a nodev is marked if none of its ancestors access the Biz&lock
accessed by, i.e. if vis the first access to the block. The nodmay also be the
first access to blocks of larger sizes, and we mably T;, whereB; is the largest
block size for which this is true. Note thaimust be the first access to the si&g
block accessed byfor all j with 1 < j <.

For any root-to-leaf path, ld; denote the number of distinct siBg blocks
accessed and let denote the number of tokens on the path, far=1,... k.
We haveb; = Y-%_ aj. Solving fora;, we getay = b anda; = b —bi;q, for i =
1,...,k—1.

As in the proof of Lemma 3, the transformation proceeds inpadown fash-
ion, and substitutes marked nodeby binary decision tree§,. We now describe
the treesl, for different types of nodeg.

For a noder markedty, the tre€l, resolves the relation between the query key
y and a seg, of size(2k — 1)B;, consisting of thé3; elements in the block of size
B, accessed at, plus fori = 2,... k every 2iailth element in sorted order among
the elements in the block of si& accessed at This tree can be chosen to have
height at mosflg(2(2k— 1)B; +1)] < Ig(8kBy).

For a noder markedt;, i <k, let Bj be the block of siz&; accessed by, for
1<j<k Fori+1<j <k, Bjhas been accessed before, by the definition.of
We now consider two cases. Case | is tfat; is the only block of sizeB; 1 that
has been accessed ins[gle By the definition of the tre@, inserted at the ancestor
u of v wherey was first accessed, at mdat,;1/2B; — 1 of the elements i1
can have unknown relations with respect to the searctyké&fe treel, inserted at
v resolves these relations. It can be chosen to have heigkdsitlg?gill. Casellis
thatBj1 is not the only block of siz8; 1 that has been accessed insfije Then
consider the smallegtfor which 3j1 is the only block of sizeBj 1 that has been
accessed insidg. When we first time accessed the second block of Bjzeside
Bk at some ancestar of v, this access was necessarily insftje;, and a Case |
substitution as described above took place. Hence aTireeas inserted which
resolved all relations between the search key and elemefis i, and the empty
tree can be used fdr, i.e.vand one of its subtrees can simply be discarded.

For an unmarked node there is a tokem; on the ancestau of vin T where
the sizeB; block 3; accessed by was first accessed. This gave rise to a ffge

CHAPTER2. CO Searching Cost 18

in the transformation, and this tree resolved the relatlmetsveen the search key
and all elements iff8;, either directly (= k) or by resolving the relations for all
elements in a block containirfgy (1 <i < k), sov and one of its subtrees can be
discarded.

After transformation and final pruning, the length of a rtmieaf path in the
final tree is bounded by the following equation.

k— k—1

aylg(8kBy) + Z '“ = blg(8KkBy) +1gBy > (b — biy1)(Cir1— 1)
= i=1

9(8K) S
= lgBy _b <l+ I Bl)+b1(02—1) +§bi(ci+1—ci>—bk(ck—l>]

= g(8Kk)
For alli, the average value of over all search paths is by assumption bounded
by dlogg N = (dlogg, N)/ci, and the coefficient ob; is positive, so we get the
following bound on the average number of comparisons on @isgeath.

k-1

1 1 lg(8k

8logg, NIg By [Za (Cit1—G) + (2+ ?g(Bl) _ck)}
i=1

k—1
Cir1 , 1 l9(8Kk)
= JdlIgN 2+——~) —Kk]|.
J [IZ_; Ci JrCk(- lgBy1
By Lemma 2 we have

k—1

Giy1 1 lg(8k)
E —k| >
OlgN [i_l o +Ck <2+ 9By k| >IgN,

and the lemma follows. []

Theorem 6 If a search algorithm on a search structure guarantees, 1bbkck
sizes B, that the average number of block reads for a searah nsostdlogg N
thend > Ige~ 1.443

CHAPTER2. CO Searching Cost 19

Proof. Letk be an integer, and far= 1,...,k defineB; = 2<t-1. |n particular,
we haveB; = B1% with ¢; = (k41— 1)/k. Consider the following subexpression of
Lemma 5.

k-1
2 |g(8k)) Ci+1
< (14 Y
Ck(21gB; IZ_; C

Lettingk grow to infinity Lemma 5 implie® > 1/In2 =Ige. (]

2.2 Upper Bound for van Emde Boas Layout

In this section we give tight analyses of the cost of searchira binary tree stored
with van Emde Boas layout [50]. As mentioned earlier, in te8Vayout, the tree is
split evenly by height, except for roundoff. Thus, a tree@fjhth is splitinto a top
tree of height h/2| and bottom tree of heighh/2]. Publications [16, 18, 30] show
that the number of memory transfers for a search is ghom theworst casewe
give a matching configuration showing that this analysigistt We then consider
the average-case performance over starting positiongdfdl in memory, and we
show that the expected search cost(is-23/v/B)logg N+ O(1) memory transfers,
which is tight within a 1+ 0(1) factor. We assume that the data structure begins at
a random position in memory; if there is not enough space the data structure
“wraps around” to the first location in memory.

A relatively straightforward analysis of this layout shatvat in the worst case
the number of memory transfers is no greater than four timasdf the optimal
cache-size-awarkyout. More formally,

CHAPTER2. CO Searching Cost 20

Theorem 7 Consider an(N — 1)-node complete binary search tree that is stored
using the Prokop VEB layout. A search in this tree has merransfer cost of

4 .
(4_ m) logg N in the worst case.

Proof. The upper bound has been established before in the litergtay18, 30].
For the lower bound we show that this value is achieved asyticptly. Let the
block size beB = (22<—1) /3 for any odd numbek and consider a tre€ of size
N—1, whereN = 2™ for some constamh. Number the positions within a block
from 0 toB— 1. As we recurse, we eventually obtain subtrees of size- 2% — 1
and one level down of sizé2- 1. We align the subtree of sizdB3hat contains
the root of T so that its first subtree of siz& 2 1 (which also contains the root of
T) starts in positiorB — 1 of a block. In other words, any root-to-leaf search path
in this subtree crosses the block boundary because thesraothe last position
of a block. Consider thg(2<+1)/3+ 1)th subtree of size’2- 1. The root of
this tree starts at positioB — 1+ (2K —1)(2¢+1)/3 = 2B — 1, which is also the
last position of a block. Thus, any root-to-leaf search patthis subtree crosses
the block boundary. Observe that because trees are laicboséecutively, and B

is a multiple of the block size, all other subtrees of siBesart at positiorB — 1
inside a block and share the above property (that we can findtae-leaf path that
has cost 4 inside this sizeB3ubtree). Notice that a root-to-leaf path acces$es 2
many size-B subtrees, and if we choose the path according to the abow#opos
we know that the cost inside each siZg Qubtree is 4. More precisely, each size
2X— 1 subtree on this path starts at posit®n 1 in a block. Thus, the total search
costis 4 2™, Because®"" =N and B = 2 — 1, we have

4loggN lgB

=4)IogBN.

. m fd
42 logg(3B+ 1) lg(3B+1

Furthermore, we bound the parameteBldg(3B+ 1) as follows:

lgB - lgB
lg(3B+1) lg3B
1198
lg3+IgB
1

1- .
2+I1gB

CHAPTER2. CO Searching Cost 21

Therefore, the total search cost hdd 4 1/(2+1gB))loggN memory transfers in
the worst case. [

However, few paths in the tree have this property, which sstgthat in prac-
tice, the Prokop VEB layout results in a much lower memoayfer cost assuming
random placement in memory.

In Theorem 9, appearing shortly, we formalize this notioinstFhowever, we
give the following useful inequality to simplify the proof.

Claim 8 Let B be a power d?, t and t be positive numbers satisfying<t’ < 2t,
VB/2<t <+/B,andtt > B. Then

t+t/ 3\ lgt+Igt’
< — | =
2+ B _2(1—|— \/E) TE

Proof. Because?+ (t')2 < 5tt’/2 for allt/2 < t’ < 2t, we have

/
t+t’§31/%. (1)
Definex = tt’ and define
3\ lgx 3 /x
fX)=2(1+——2) >=—2->,/2.
% <+\/E)|QB B\[z

We will show thatf(x) > 0 for B < x < 2B. First, we calculate the second
derivative of f (X).

v 3\ 1 3 1
P = Z(Hﬁ; X2INB ' 2v/2B X372

Because < 2B (i.e.,x/2 < \/2B), we obtain

£(x) < X—lz [3@ 2 <1+ i) i] .

4\/2B vB/ InB

By removing the term-6/(1/BInB), we boundf” (x) as follows:

., 1/3 2
<D =—__")<o.
Fo=e\z/8 me)=°

CHAPTER2. CO Searching Cost 22

Thus, we establish that(x) is convex in the rang® < x < 2B. Because both
f(B) and f(2B) are greater than zero, we obtdifx) > 0 for B < x < 2B, which is

equivalent to
3 /x 3\ lgx
2+ 4/ =<2(1+— | —.
+B\[2— <+\/E) 9B

From (1) and the above inequality, we obtain the follows:

t+t/ 3 lgx
24+ —<2|11+—=) —.
B S <+\/§)|QB

[

Theorem 9 Consider a path in arfN — 1)-node complete binary search tree of
height h that is stored in VEB layout, with the initial pagarsing at a uniformly
random position in a block B. Then the expected memoryfeanest of the search
is at mos®2(1+ 3/v/B)loggN.

Proof. Although the recursion proceeds to the base case wherehageseight
1, conceptually we stop the recursion at the level of dethiéne each recursive
subtree has at mo& nodes. We call those subtreestical recursive subtrees
because they are recursive subtrees in the most "impottearel of detail. Let the
number of nodes in a subtr@ebe |T|. Therefore, any critical recursive subtrée
has|T| nodes, whera/B/2 < |T| < B. Note that because of roundoff, we cannot
guarantee thai| > +/B. In particular, if a tree haB + 1 nodes and its height is
odd, then the bottom trees have heigifiit/2|, and therefore contain roughlyB/2
nodes. Then there are exacfly — 1 initial positions for the upper tree that results
in T being laid out across a block boundary. Similarly thereBare T |+ 1 positions

in which the block does not cross a block boundary. Hencdptted expected cost
of accessing is

2IT|-1) B-[T|+1 _ |T|-1
142
B B M

Now we need two cases to deal with the roundoff/B/2 < |T| < /B for the
critical recursive subtre€, then we consider the next larger level of detail. There
exists another critical recursive subtfEeimmediately abovd on the search path
in this level of detail. Notice thaf ||T’| > B. Because otherwise we would consider

CHAPTER2. CO Searching Cost 23

the coarser level of detail for our critical recursive sebtr Because we cut in the
middle, we know that @’| > |T| > |T’|/2. From Claim 8 the expected cost of
accessing andT’ is at most

T-1 T-1 3 Y lg(IT(|T’])
1 1 <2(1+= |21 U
g it =21t 5) T e

For+/B < |T| < B for the critical recursive subtrek, we show that the cost of
accessing is less than 2L+ 1/+/B)Ig|T|/IgB. Definef(x) as follows:

_ lgx 1 Xx—1

By calculating

/) 2 1
. —)<
T ege\ M E) <0

we know f (x) is convex. Because both(+/B) and f (B) are greater than zero, we
obtain f(x) > 0 for the entire ranga/B < x < B. Thus, considerindg (|T|), we
obtain that the expected cost of accesding

TI-1 1 1g/T|
< —_).
5 <21 B g8

Combining the above arguments, we conclude that althoughrttical recur-
sive subtrees on a search path may have different sizes,etimected memory-
transfer cost is at most

;2(“%) 'ij—y :2<1+%) logg N.

This is a factor of 21+ 3/+/B) times the (optimal) performance of a B-tree. [

1+

2.3 Upper Bound for the Generalized van Emde Boas
Layout

We now propose and analyzeganeralized van Emde Boas laydw#ving a better
search cost. In the original VEB layout, the top recursivietr®e and the bottom

CHAPTER2. CO Searching Cost 24

recursive subtrees have the same height (except for rofynduffirst glance this
even division would seem to yield the best memory-transfst.cSurprisingly, we
can improve the van Emde Boas layout by selecting differergHts for the top
and bottom subtrees.

The generalized VEB layout is as follows: Suppose the camimary tree
containdN — 1= 2"—1 nodes and has height= IgN. Letaandb be constants such
that 0< a< 1 andb = 1—a. Conceptually we split the tree at the edges below the
nodes of depthah]. This splits the tree into p recursive subtreef height[ah],
andk = 2/@ pottom recursive subtrees height |bh|. Thus, there are roughly?
bottom recursive subtrees and each bottom recursive subdrgains roughlyN®
nodes. We map the nodes of the tree into positions in the byregcursively laying
out the subtrees contiguously in memory. The base casedeadavhen the trees
have one node, as in the standard VEB layout.

We find the values o& andb that yield a layout whose memory-transfer cost
is arbitrarily close tdlge+ O(IglgB/IgB)|logg N+ O(1) fora=1/2—¢& and large
enoughN. We focus our analysis on the first level of detail where reimersubtrees
have size at most the block siBeln our analysis memory transfers can be classified
in two types. There ar@’ path-length memory transfersvhich are caused by
accessing different recursive subtrees in the level ofiiditthe analysis, and there
are ¢ page-boundary memory transfemshich are caused by a single recursive
subtree in this level of detail straddling two consecutil@cks. It turns out that
each of these components has the same general recursivssirprand differs
only in the base cases. The total number of memory trandgetsmosty + ¢ by
linearity of expectation.

The recurrence relation obtained contains rounded-afise}- | and|-]) that
are cumbersome to analyze. We show that if we ignore the aftiogerators, then
the error term is small. We obtain a solution expressed mgesf a power series
of the roots of the characteristic polynomial of the recocee We show for both
and¢ that the largest root is unique and hence dominates all otloés, resulting
in asymptotic expressions in terms of the dominant root.

Using these asymptotic expressions, we obtain the maittraamely a layout
whose total cost is arbitrarily close flye+ O(IglgB/IgB)]logg N + O(1) as the
split factora= 1/2— & approaches /2 and forN large enough. This performance

CHAPTER2. CO Searching Cost 25

matches the lower bound from the Section 2.1 up to low-orefens.

Causes of Memory Transfers: Path-Length and Block-Bounday-
Crossing Functions

We let 3 (x) denote the expected block cost of a search in a tree of heigho
begin, we explain the base case for the recurrence, whemtine &ee is a critical
recursive subtree. Recall thatatical recursive subtreés a recursive subtree of
size less tham. If a critical recursive subtree crosses a block boundas the
block cost is 2; otherwise the block cost is 1. As in the Theoge the expected
block cost of accessing a critical recursive subfresf size|T| =t — 1 and height
x=Igtis

t-2 . 22
1+ -2-1 .
B "B

Thus, the base case is whi@ < B, which means that< B and 1< x < IgB.

We next give the recurrence for the block cegk) of a treeT of heightx. By
linearity of expectation, the expected block cost is at nitwst of the top recursive
subtree plus the bottom recursive subtree, i.e.,

8(x) < B([ax]) + B([bX]),

forx>IgB,%fora+b=1,0<a<b<1.

We decompose (an upper bound on) the coss ©f) into two pieces. Let
7 (X) be the number of critical recursive subtrees visited alongo#-to-leaf path
(v stands for “vertical”), i.e.,

q/(x):{ v([ax])+ v ([bx), x>IgB;

2
1, 1<x<IgB. 2)

Let c(x) be the expected number of critical recursive subtrees ditrafblock
boundaries along the root-to-leaf path¢tands for “crossing”), i.e.,

C(x):{ (C([axDJrc(bej), x> IgB;

3
2X—-2)/B, 1<x<IgB. ®)

2We cannot claim equality, i.e., thatx) = 3 ([ax]) + 3 (| bx|), because the leaf node of the top
recursive subtree and root node of a bottom recursive sibtre belong to the same block. Thus,
an equal sign in the recurrence might double count one metramgfer.

CHAPTER2. CO Searching Cost 26

Observe that boti (x) and ¢ (x) are monotonically increasing. By linearity of
expectation, we obtain
B(X) <V (X)+ C(X)

forall x> IgB.
The recurrences for (X) andc (x) are both of the form

F(x) =7 ([ax]) + 7 ([bx]).
As we will see, it is easier to analyze a recurrence of the form
G (X) = G (ax) + g (bx),

where the roundoff error is removed. In the next few pagesshmv that7 (x)
can be approximated hy(x) asx increases. Afterwards, we show how to calculate

G (X).

Roundoff Error Is Small

We next show that as increases, the difference betwegrix) and g (x) can be
bounded. To quantify the difference betwer(x) andg (x) — see Theorem 13 —
we use functiong(x) andd(x) defined recursively below:

Definition 10 Let a< min{1/2,1—2/IgB}. Define the recursive functiof(x)
andd(x) as follows:

0, x<lgB;
BX) =)
B(ax+1)+1, x>IgB.
< .
5(x) = 1 , x<lgB;
S(ax+1)(1+2aP¥-2/IgB), x> IgB.

The following lemma gives upper and lower bound$6f).

Lemma 11 For all x > Ig B, the functiorf3(x) satisfies
2

B~
c.r .1 4)

- >
a’x — IgB ~ 2ax

CHAPTER2. CO Searching Cost 27

Proof. For parameten, define thenth interval |, to be

L lgB 1 IlgB—1—-a—..-—a™?
" l2ar1 " 1-a’ an '

We now prove the following inequality for ak > Ig B:

1 1 B(x)—-1 1 1 B(x)

We establish (5) in two parts.
1. We first show that the inequality holds for aland allx € Ip,.
2. We then explain that the intervialul; Ul2U- - - covers the intervdllgB, o).

We now prove the first part, showing by inductionmthat (5) holds for alh
and allx € I,.
Base CaseThe base case is when

a 1
lo=|=zlgB+-——,IgB|.
Becausea < 1/2,
! >0
1-a
Therefore, becausec lg,
a 1
—lgB<x——— <IgB. 6
5lgB<x—7—<lg (6)

Becausex < IgB and from Definition 10p3(x) = 0. Observe that (6) is equivalent
to (5) whenB(x) = 0. Therefore, (5) holds in the base case.

Induction step:Assume that (5) holds for theth intervall,,. We will show
that (5) also holds for then+ 1)st intervall,,.1, i.e., when

L IlgB 1 IgB-1-a—---—a"
XCImi= 20 "1 @ an+1 ’
or equivalently when
IlgB 1 lgB—1—a—---—a"
= 4= <x<) 7
2an 1_a " antl 0

CHAPTER2. CO Searching Cost 28

Multiplying by a and adding 1 to both sides of (7), we see that (7) is equivatent

lgB 1 lgB—1—a—-.-—a™?
— 4+ — <ax+1<
2a”*1+1—a_ tis an ’

i.e.,
ax+1el,.

Thus, by induction (pluggingx+ 1 for x in (5)), we obtain

1 1 Blax+1)—-1 1 1 B(ax+1)
. z < - < - .
2IgB<a) <ax+1 1—a—|gB<a)

Noticing thatB(ax+ 1) = B(x) — 1 by Definition 10 and

1 1
1)—— —afx——
(ax+1) T a a(x 1—a>’

we establish

1 1\ PX-2 1 1\ P01
Z = < .~ < =
2IgB<a) _a(x 1_a)_IgB<a))

which is equivalent to (5) fox € I,y 1.

We now prove the second part, thgf_,1n covers the intervallg B, »). This
claim follows whena < 1—2/IgB, which is guaranteed whe®> 16. The claim
follows because intervals overlap, i.e., the right endpofrthe |, is between the
left and right endpoints of thig 1, that is,

gB 1 lgB—1-a—---—a" ! IgB—1—-a—..-—a"
< < :
2" 1-a~™ an = a1
We have now established that (5) holds fonal IgB.

We next show that (5) is equivalent to the lemma statement,(4). Taking
inverses on both sides of (5), we have

abf(x)-1 1 aB®x)
> >
IgB — 1 ~IgB
X_ -
l1-a
i.e.,
1 aB(X)*Z 1
2 IgB — 2a
2 a 9 2ax— ——_
axX—13 1-

CHAPTER2. CO Searching Cost 29

Because > IgB anda < 1—2/IgB, we havex > 2/(1—a), i.e.,a’x/2 > a®/(1—

a). Therefore, the left side of the above inequality is less tBga’x). The right

side is greater than/12ax) because /(1 — a) > 0. Thus, we prove the following
2 ghv-2

> >i
a’x — IgB ~ 2ax

for all x > IgB as claimed. L]
The following lemma gives the properties and the upper bairdgx).

Lemma 12 The functiond(x) has the following properties:

(1) 1fB(x) = B(y), thend(x) = &(y).
(2) Forall x> IgB,
(ax+1)d(ax+ 1) < axd(x).

(3) Forall x> IgB,

1+O<m—71>|gs):“o(ugis)'

Proof. (1) This claim follows from Definition 10.
(2) This claim follows from Definition 10 0d(x) and Lemma 11

5(x) < exp[a

which is

aB0-2 1
> .
lgB — 2ax

(3) Recall that from Definition 10, we have

3(x) 1 ZaB(X)*Z

O(ax+1) lgB

for all x > IgB. Furthermore, becausetly < € is true for anyy > 0, we bound the
functiond(-) as follows

(8)

() < ex ZaB(X)_2
O(ax+1) — P lgB

CHAPTER2. CO Searching Cost 30

For simplification, we defin® be the polynomiaiix+a~1+---+1. In the
following, we show there exists some big integesuch that,.1 = a™1x+a" +
---+1< IgB. First of all, becausa < 1, a" is arbitrary small whem goes to
infinity. Thus, ifn is big enough, then

lgB

n+1, _ '9b
a X< > 9)

for fixed numbex. Second, for bid > 16, we have 1(1—a) < (IgB)/2. Thus,

1 lgB

is true for all integen. Therefore, combining both (9) and (10), we obtain thateher
exists some big integersuch that

Pr1=a"Ix+a"+---+1<IgB,

which means, by Definition 10 db(x), 8(P,y1) = d(@ix+a"+---+1) = 1.
Therefore d(x) can be expressed as the multiplicatiomef 1 items, i.e.,

3(x) d(ax+1) d(ax+av 4.4 1)

(X) = 6(aX+ 1) 6<a2X+ ax—+ 1) 6<an+1x+ an++1)

Using the tern®, in the above equation, we get the simplified version

(11)

To boundd(x), we give the upper bound f&(PR,)/8(P1) first. Notice that
R.+1=aR +1, Replacing«by R in (8), we have the upper bound
ab(R)-2
lgB

3(R)
O(P+1)

<exp [2

We claim thatB(R) =n+1—i for all 0 <i <n+1. We prove this claim by
induction. The base case is féf. 1. From Definition 10 andP,;1 < IgB, we have
B(Pr+1) = 0. Assume the claim holds for sone We prove the claim holds for
P_1. Becausd® =aR_1+ 1, we have3(P_1) = B(P) + 1 from Definition 10 of
B(x). Therefore, by induction, we obtap(P_1) =B(P)+1=n+1—i+1=

CHAPTER2. CO Searching Cost 31

n+1— (i—1) as claimed. Thus, each of those itedi&)/6(P 1) has the upper

bound .
an—|—1
exp{z igB }

Therefore, we obtain

n anfifl _ i n P4
3(x) <exp|2) e exp IgBZa .

i=0

Because

we prove that

o0 < 0| 2~ 3ygs)

as claimed.]

Theorem 13 (Roundoff Error) ForO<a<b<landat+b=1, let
F(x) =7 ([ax]) + # (|bx]) and G (x) = G (ax) + G (bX).

Then for B> 8, all x > 1, and constant ¢, we have

(%) < 6 (x8(x)) < ¢ [”O(@ia) } x+0(1).

Proof. First recall thatr (x) andg (X) are monotonically increasing. Thus, from
[ax] < ax+ 1 and|bx| < bx, we have

F(X) < 7 (ax+1) + 7 (bx). (12)

We provefr (X) < g (x&(x)) inductively. The base case is whercx < IgB,
whered(x) = 1 from Definition 10 andr (X) = g (X). Thus, 7 (x) < G (xd(X)) is
true when 1< x <IgB.

Assuming7 (x) < G (xd(x)) is true for 1< x <'t, we prove it is true for k
X < (t—1)/b. Noticing that(t — 1)/b < min{t/b, (t — 1)/a} (becauséd > a), we

CHAPTER2. CO Searching Cost 32

haveax+1 <t andbx<tforall 1< x< (t—1)/b. Thus, by assumption and (12),
we obtain

7 () < 6((ax+1)d(ax+1)+ 6 (bxd(bx), 1<x<(t—1)/b (13)
From Condition (2) in Lemma 12 ariifbx) < &(x), we obtain
G ((ax+1)8(ax+1)) < 6 (axd(x)) and ¢ (bxd(bxX) < 6 (X3(x)). (14)
Pluging (14) into (13), we derive that
7 (x) < 6 (Ad(X) + 6 (X)) = 6 (0B(X)), L<x< (t—1)/b.

Therefore, after two inductive steps, it is true for

t—1-b
1<X§ T,

and aftem inductive steps, it is true for all

t—1-b—---—b"1 t—(1-b")/(1-b)
1<x< o = o .
Therefore, as long @s> 1/(1—b) = 1/a, we haver (x) < g (xd(x)) for all x > 1.
Thus, we need 1B > 1/a, which holds wherB > 8 anda > 1/3.
Furthermore, ifg (x) < cx+ O(1), then by Condition (3) in Lemma 12, we

obtain the following:

F(X) < 6 (x3(x)) < cx8(X) +O(1) < c[1+O(1/IgB)|x+ O(1).

Bounding the Path-Length Function

We now determine the constant in the search €g&igg N), for given values oh
andb. To do so, we assume

a:i and b:i, (15)

oK qm

CHAPTER2. CO Searching Cost 33

for positive real numben > 1 and relatively prime integera andk. Plugging (15)
intoa+ b= 1, we obtain g€+ 1/g™ = 1. Define

n=k—m. (16)

Observe that becaugke> m(sincea < b), nis positive. We now have the simplified
formula
=q"+1. (17)

The rationale behind this assumption is that this additistracture helps us
in the analysis while still being dense; that is, for any gieeand b satisfying
a+b=1, we can findd andb’ defined as (15) that are arbitrary closeatandb.
Because there exits a real numlbesuch thata = b", we choose rational number
k/m, (k,m) = 1 as close as desired to Let q=b Y™ Thena = 1/¢* and
b’ =1/q™. We call such arja, b) pair atwin power pair

As before we analyze (x) first. We ignore the roundoff based on Theorem 13.
Furthermore, we normalize the range for whiglix) = 1 by introducing a function

H(x) H(ax) +H(bx), x> 1; (18)
1, 0<x<1.

Note that?’ (xlIgB) < H(xd(xIgB)) by Theorem 13.
First we state a primary lemma of the subsection, which weeplater.

Lemma 14 Let(1/g%,1/9™) be a twin power pair, and let & k—m. Then for any
constant > 0 and

= (éq% Zk: qk‘)/ (k&l—nq”*l),

i=nt+1

when x> O(k/€) we have
H(x) < (c1+&)g+O(1).

Corollary 15 For any constant > 0, the number (x) of recursive subtrees on a
root-to-leaf path is bounded by

(c1+€)dloggN +O(1),

when N> BOk/e)

CHAPTER2. CO Searching Cost 34

We obtain the main upper-bound result by showing thaf ~ Ige for some
twin power pair.

Theorem 16 (Path-Length Cost) For any constang > 0, the number of recursive
subtrees on a root-to-leaf path is

(lge+¢€)loggN+0O(1) ~ 1.443logs N+ O(1),
as the split factor a= 1/2 — § approached /2.

Proof. Choose the twin power pair=1/g¢ andb = 1/¢** such that

1 1
S
which is equivalent to
=g+l

The approximate solution for the above equation is

In2
~1+—
q + k?

for k — . Therefore, we have

1 1

=159~ 242k (19)

From Lemma 14, fom= k— 1 (and therefore = 1), we have

k _ k—l
e <q1+§qk'> (1) = g

Thus, for largek, we obtain

k k 1 k—o00
C1q =

_ i—|e
g-1, 1 2~ 9

g1
That is, for a givere/2 > 0, we can choose a big const&asuch that

cgf <lge+ €/2, (20)

CHAPTER2. CO Searching Cost 35

for all k > k.
From Corollary 15, for a giverg/8 > 0 and the above constakd, we can
choose big constam x such that

7 (x) < (c1+¢/8)q¢logg N+ O(1), (21)
for all N > Ng x. Plugging (20) into (21) and noticing thef = 1/a < 4, we obtain
7 (x) < (lge+¢€)loggN+0O(1) ~ 1.443 logs N + O(1)

as claimed.
Noticing that for bigk > ke, we see that the split fact@arapproaches /2 by
(19). In particular, as long as that

E<}— 1 In2
—2 2+In2/ke 4k +Ind’

it suffices that the split factaa=1/2 —&.]

To complete the proof of Lemma 14, we establish some pragsediH (X).
SinceH (x) is monotonically increasing, we can bound the vat(e) /x for g' <
x < g1 as follows:

i i+1
H(d) < H(x) < H(d)' 22)
ql+l X ql
Let Hmin be the lower bound anbimax be the upper bound dfi(q')/q', wheni
is larger than a given integgr Noticing that the left part in Inequality (22) is
H(q) /g1 > Hmin/q and the right part in Inequality (22) (g 1) /q" < qHmax

we obtain

< gH
q X < JFmax

whenx is bigger tharg.
We give the recurrence &f(-). From (18), we have that far> 0,

H(d) = H(ad ™) +H(bd ™). (23)
Plugging (15) into (23) and sinae= k — m, we obtain

H <qi+1) —H <qi7k+1) +H <qi+nfk+l). (24)

CHAPTER2. CO Searching Cost 36

For the sake of notational simplicity, we denote= H (q'~%*1). Therefore, (24) is
equivalent to
Uik = Ajpn+0Qj. (25)

We define the characteristic polynomial function of Reaucee(25) asv(x) = x< —
X"—1. Letry,rop,...,rk be the (possibly complex) roots af(x). We claim below
that these roots are all unique.

The following four lemmas supply basic mathematical knalgke behind the
proof of Lemma 14.

Lemma 17 The k roots of \ix) = x< —x" — 1 are unique, when k and n are relatively
prime integers such thdt< n < k.

Proof. We prove this lemma by contradiction. If a raobf w(x) is not unique,
then(x—r)? is a factor ofw(x), andx—r is a factor ofw/(x) = kx*~1(x<~" — n/k).
Thus,r is either 0 or a root of" — n/k. But 0 is not a root ofv(x). Therefore,

k=" = n/k, (26)

which meangr| < 1 (because < k).

On the other hand, becausés a root ofw(x), w(r) = r"(rk-"—1) —1=0.
Plugging (26) intaw(r) = 0, we obtairr" = k/(n—k), which meansr| > 1 (because
|k| > |k—n|). This is the contradiction. Therefore, every rootgk) is unique. L[]

Becausav (x) = kx¥*"1 —nx"~1 > 0 whenx > 1 andq is a root ofw(x) greater
than 1 (see Equation (17)), there is one unique realqoof of w(x). Without loss
of generality, let1 = q.

We now show that if thé roots of the characteristic polynomial function of a
series are unique, then the series in question is a linedbioation of power series
{r\} of the roots.

Lemma 18 Consider a serieda;} satisfyingoy.s = Ztoldiaprs for complex
numbers dand any integer s, and letyyro,...,rx be the k unique roots of the
characteristic function k) = x€ — Z::Ol diX for the series(a;}. Then there exists
complex numbers;¢ccy, . ..,k such that for all i,

k
a =Y cjri. (27)
=1

CHAPTER2. CO Searching Cost 37

Proof. First we show that we can fintdl, ¢y, ..., ¢ such that for the base values
of aj, aj = Z'j‘zlcjrij foralli=0,...,k— 1. This can be derived by observing that
the determinant of the Vandermonde matrix

1 rg --- ri_l

1 ro --- rkfl
V= 2

1 rk-t

is nonzero, and tha, cy, . .., Cc are the solution of the system of linear equations
(ap,d1,...,0k-1) = (C1,Cp,...,Ck)V.

Now we show that for ali > 0,

K
L ol
o= cjrj.
i—1
Define)
o i
B._Zc,rj.
-1

We show that{a;} and{f;} are the same recursive series. We know fhat a;
when 0<i < k—1. Because,ro,...,rg are thek unique roots of the character-
istic functiong(x), we know that the power seriésij} satisfies the same recursive
formula as{a;}. Thus{pB;} satisfies the same recursive formula (for @l O,
bis= Eikz_ol dibis) by linearity. Now observe that tHebase values together with
the inductive formula uniquely determine the series ana¢@an= 3; for all i > 0.

]

Hence we can solve Recurrence (25) by findinthat satisfya; = Z‘le c,-r‘j
fori=0,...,k—1. The base cases ¢6;}}} are determined by the original def-
inition of aj = H(g ~**1). Because & q**1 < 1fori =0,...,k— 1, we obtain
H(g 1) = o; = 1.

Lemma 19 The dominant root (i.e., the root with the largest absolwtug) for
W(X) = XK —x"—1isr = g. All other roots p,r3,...,rx have absolute value less
than g.

CHAPTER2. CO Searching Cost 38

Proof. We first show that all other roots have magnitude less th&@uppose that
the magnitude of a roat; (other tharry) is |rj| = d. We show thatl < g. Sincer;
is a root we have

1=|(rf "= rf =i " =2 = (I -) dt = d<—d", (28)

which meansw(d) = dX —d" — 1 < 0. Becausewn(q) = 0 andw/(x) = kx<1 —
nX~1 > 0 whenx > q > 1, we obtainw(x) > 0 for all realx > g. Therefored < g,
i.e., no root has magnitude strictly greater tlgan

Now we prove by contradiction that # g. Assume thatl = q. Then, (28)
becomes an equation, since=dX —d" by (17). Thus,

=1 =" - 1.
From the triangle inequality it follows thaf‘ is a real number. Therefore, we have
ri"=gM. Thus, for some integer< s<m-—1, we have

rj =qe™-1m

However, becausm andn are relatively prime,
nv/—1
rjn _ qnGZTrs /m o+ qn.

Thereforer{(ri"—1) # q"(q™—1) =1, i.e.,w(rj) # 0. This is contradiction be-
causerj is a root ofw(x). O

In the following lemma, we calculate the coefficientfor the dominant root
r1 = qusing the inverse of a Vandermonde matrix.

Lemma 20 The coefficientcin Lemma 18 is

n k

(Soa 3) ot
i=1 i=n+1

Proof. We first give more notation. Ldtands be positive integers such that

1 <t,s<k We defineSs as the sum of the products ofdifferent roots not

includingrs, that is,

Ss= Z FigFiy - - - Fi - (29)

i1<ip<...<ite{1,2,....k}—{s}

CHAPTER2. CO Searching Cost 39

We define
S1=1, (30)
and
S1=0. (31)
We first give and solve the recurrence . We denote the coefficient of
XLinw(x) = XK —x'—1 =[], (x—1)) as [X - Thus, we have the well
known equation:

Z Fighip- .- Ty = (_1>t[[xk_t]]w(x)' (32)
i1<io<..<ire{1,2,...k}
Each product of roots in the summation in (32) either incudg= q) or it does
not, i.e.,
> Figlip Ty = S1+09-11. (33)

i1<i2<...<it€{l,2,...,k}

Thus, from (32) and (33) we obtain the recurrence
S1+0S-11= (1" X Py (34)

Because coefficients in(x) are 0 except foﬁxk]]w(x) = land[X"y = [[xo]]w(x) =
—1, we divide Recurrence (34) into two parts and solve eachraggly. Recall
from (16) thatm = k—n. The first part is wheh € [1,m— 1] and the second part is
whent € [m ,k—1]. (Thus, whert = m, we need to confirm that the solution in the
first part matches that in the second part.)

We solve the first part whene [1,m—1]. The base case is= 1, that is,

St1+0d%1 = [X Yy =0 (35)
Observe that by (29) and (33), we have

d ri=S1+9%1 and) =S (36)

1<i<k 2<i<k

Thus, from (36), we confirm th& 1 = 1, and therefore from (35), we obtain

Si1=-0q (37)

CHAPTER2. CO Searching Cost 40

Because from (34),
S1+098-11=0 (1<t<m-1), (38)
we also obtain, from (37) and (38),
S1= (-9 (39)
We now solve the second part whiea [m,k — 1]. We start fronk, that is,
Sca+0S11 = (D [y = (D (40)
Observe that by (29) and (33), we have
rirg...rek=S1+9&%-11 and rorz...rg=3S11. 41
From (41), we confirm tha ;1 = 0, and therefore from (40), we obtafia_; 1 =
(—1)k-1/q. Because by (34),
§+11+081=0 (m<t<k-1),
we obtain
S1=(-1'd" (42)
We now examine the special case wheremand[x"],, = —1, that s,
Sn1+0Sn-11 = (—D"[Xyy
= (-p™. (43)

We solved for allS 1 without using (43). We now confirm that our solution
is consistent with (43). Notice that we get the solution ie finst part,Sy_11 =
(—)™1, and the solution in the second pa&t,1 = (—1)™g". In the following,
we verify the solutions 08,11 andSy 1 satisfy (43). Plugging

Sn11=(—q)™* and Spi=(-1)"g "
into (43), we obtain

Sn1+0Sn-11 = (-1)"g "+q(-q)™*
ml_qn+m
= g

CHAPTER2. CO Searching Cost 41

Becausej is a root ofw(x), i.e.,

q“=q™"=q"+1,

we confirm (43).
In summary, for all I<t < k-1, we have

—q)t, ifl<t<m-—1;
S1— (Q)t o Msts (a4
(=D'g*, ifm<t<k-1
We now give even more notation. Define
k
g(x) = [[(x—ri). (45)

We haveg(r1) = g(q) =w(q), because

is a sum ok terms, buk — 1 of these are 0 whex=r1 = g. Thus, we obtain

k
(=1 g(r1) = (=) kit —nrt) = T [(ri —r0). (46)
i—2

Now we are ready to calculate the valuecof To do so, we define the Vander-
monde matrix/:

1 rg --- riil

17, rk-1
V= 2

1 e --- rt_l

Recall that (27) can be expressed as

(c1,Cp,...,Ck)V = (0p,01,...,0k 1) .

Recall also that

CHAPTER2. CO Searching Cost 42

(because k1 < 1). Thus,
(c1,...,q) = (1,1,..., 1)V, (47)

i.e.,c; can be calculated from the inverse mawix?.
In order to calculat&/ 1, we first present the well known result on how to
calculate the determinafM | of Vandermonde matri¥ .

1 r{ --- rifl
1 ro --- rk_l
V= | 2 = T e (48)
N 1<s<t<k
1 e --- rllz_l

We now give the inverse &f. LetA; j be the submatrix of the transpose of the
Vandermonde matri¥ with theith column andjth row removed, that is,

1 1 ... 1 1 ... 1
rp - ri—.a rliga - Tk
-1 j-1 -1 j-1 j—1
r r == r r

A” — 1 2 i—1 i+1 k
ji+1 j+1 j+1 j+1 j+1
r{ 2 - fiog Tigr o Tk
k=1 k-1 k=1 k-1 k—1
r{ = I = o Ny Tigg 0 Tk

Thus,V~! can be represented by the determinantgfandV, i.e.,

(DAL o ()R A

VETU (DY 2Ar2| - (—1)FT2A|
Vi : :

(“D)MMAL o (DMK AY

N N

1<s<t<k

by

CHAPTER2. CO Searching Cost 43

Thus, from (47)c; is the sum of the first column of inverse matyix?, that is,
k

a=(T — || > -0™iA

e —r
l<s<t<k L7 'S j=1

(49)

To calculatecy, we first find|Aq j|, which is given by the following claim:

Claim 21
Al =Scj1 [] (e=r).
2<s<t<k
Proof. Whenj=1,
r2 Ik
|Ara| = :
k—1 k—1
P Mk
By moving the common factors, .. ., rg out, we obtain
1 - 1
|Ar1| =r2---rk S
k—2 k—2
r2 N rk

where the matrix is the transpose of Vandermonde matrixzefisi- 1. Thus, from
(29) and (48), we obtain
Aval=ra-re J[(re—rd)=Scu1r [] (e—rs).
2<s<t<k 2<s<t<k
The case whem > 2 is more complicated than that= 1. In the following, we
only considerj = 2 because the other cases are analogous.

To solve|Aq |, we first perform matrix operations so that the first column
1

0
becomes . Recall that

1 1 1
2 2 2
r r r
2 3 k
A1z =) . .
k—1 k—1 k—1
rs = rs e

CHAPTER2.

CO Searching Cost

44

Beginning from the second row, we multiply each row-bgy and add it to the next

row.

A2

gl

2
rs

0

0

1

ra(rg—rp)

k—2
rs

1
r
rz(ra—r2)

(r3—r2) r§2(ra—r)

1

2
Ik

r2(rg—ro)

k-2
Ik

(re—r2)

For the second row, we multiply the first row by% and add it to the second row.

A2

g

1
0
0

0

1 1
rs—r3 r2—rs
r3(rg—ra) ra(ra—rp)
r52(rs—r2) r§2(ra—r)

1
r2—r2
r2(re—ro)

k-2
Nk

(re=r2)

In this way, we reduce the dimension|é§ »| tok—2, i.e.,

A1z =

r5—r5
ra(rz3—ro)
r52(r3—r2)

2 2
rz(ra—r2)

k-2

ry “(ra—r2)

rg—rs
r2(re—rz)

k—2

re “(re—r2)

By moving out the common factorg —ro,...,rx—r» in each column, we obtain:

Ava| = [](ri—r2)

k

i=3

rs+ro

2 2
rs ry

Now by splitting the first row, we obtain:

ra

k r%

Azl =[] (ri—r2) .
i=3 k5 ,

r3_

Mk
2
Ik

k-2
Mk

F4+1r2

Me+r2
2

Ik
k—2
Ik

(50)

CHAPTER2.

After moving out the common factors, ...

CO Searching Cost

45

,I'k, the first term in (50) is a Vander-

monde matrix of siz& — 2. For the second term in (50), we move out the common
factorr; in the top row. Thus, using (48) we have

k

H(—I)r

i=3

i [(re=rs +r2H | —T2)

2<s<t<k

Tk H (re—rs)
3<s<t<k
1 1 1
2 2 2
r3 Ig M
k— k—2 k—2
r3 r4 “ e rk
1 1 1
2 2 2
r r r
k—2 k 2 k—2
r3 r4 “ e rk

Notice that the determinantin (51) is a formAsf, of sizek — 2. By the same
method, we compute the determinant in (51) as

1

1

1

4Tk H (re—rs)

3<s<t<k
1
K 2
+ra]J(ri—ra)|
=4 k: 2
ry

Thus, by plugging (52) into (51) we obtain

A1 2]

k k

Iy

+rars[[(ri—r2) [J(ri—ra)|]
i=3 i=4

r3---r+rara--n) [[(re—rs)

2<s<t<k

(52)

CHAPTER2. CO Searching Cost 46

With one more recursion, we obtain

= (rg---rg+rarg---rc+rarars---ry) H (re—rs)

2<s<t<k
1 1
k k k ré rl%
rarara [[(ri—r2) [Joi—ra) [Jri-ra)| >
i=3 i=4 i=5 k: , - <
r R 1

Repeating recursive steps and recalling ab 1 = rarg---rg+rarg---rg+---+
rorz---rg—1 from the definition of§ s in (29), we obtain

Arl=Sc21 J[(re—rs).
2<s<t<k

We thus establish the claim.]
By combining Claim 21 and (49) we obtain

o - (IT -)(i 500 [] <rtrs>). (53)

I<i<j<k i=1 2<s<t<k

Multiplying through and separating two cases in (44), we obtain

ci= [(rj—r)” <Z+ Z) DS (54)

2<j<k =1 i=nt1

Plugging (44) into (54), we have

n k
o= [[rj-rp™ [Z(—l)k“q—‘ + D <—1>k+1qk—‘] . (55)

2<j<k i=1 i=n+1

Plugging (46) into (55), we solve fax:

01:<Zq +Zq)/(kd<_1—nqn_l)- (56)

i=n+1

Thus, the value of; is as claimed in Lemma 14. U]
After establishing the properties Bif(x), we give the proof of Lemma 14.

CHAPTER2. CO Searching Cost 47

PROOF OFLEMMA 14: To complete the proof we only need to show that
H(x) < (c1+€)d%+0(),

whenx > O(k/e).
Observe thaH (x) is monotonically increasing and for eagh> 1, we have
x < q/'°%* < gx. Thus, we boundH (x) as follows:

H(x) < H(g"%*) = aigg 41, (57)

where the second equality is the definitioropf We denotg/log, x] +k—1 asi to
simplify notation in the rest of the proof. Recall thgt= E'le Cj rij and thar; =q
is the dominant root. Thus, we have

K i
. r.
a—i' =c1+) ¢ <—') : (58)
q " \q

Because; is the dominant root and the other roots have absolute vasssthan 1,

we have
k Y k
S () <o(g)
j=2
Becausé = [log, x| +k—1, we haveq' > x. Thus, for anye > 0, we can choose
x > O(k/€) such that the last term in (58) is arbitrary small, that is,

a(y) =0

Therefore, we obtain; = (¢; +€)g'. Combining with (57), we have
H(x) < (c1+g)g %Xk, (59)
Finally, pluggingg®%* < gxinto (59), we obtain, fox > O(k/g),
H(x) < (c1+€)a

as claimed. []

CHAPTER2. CO Searching Cost 48

Bounding the Block-Boundary Crossing Function

We now give the memory-transfer cost from block-boundanssings, and we
show that it is dominated by the the memory-transfer costftlee path length. We
consider the case whem> 1/4, which includes the best layouts. Using similar
reasoning for computing the path-length cost, we obtairdhewing theorem:

Theorem 22 (Boundary Crossing Cost)The expected number of block-boundary
induced memory transfets(x) on a search is at most @IgB/1gB)loggx when
1/4<a<1/2.

Proof. The idea to bound (x) is the same as that in bounding the path-length
cost. That is, we solve the same Recurrence (25) exceptddrdbe case; (0 <
i <k—1), which from (3) is
2qi7k+l|gB . 2
B
instead of 1.

Thus, we obtain the new value of coefficiegtwhich is similar to (53):

K ogKig _
(11 rlr) (Z”EZHY“SHJ I1 <rsrt>)~

1<i<j<k 1! i=1 2<s<t<k

Multiplying through and separating the numerator, we have

k i—k
1 20 *lgB .
a = [I ri—r 2 B (-1 Scia
a<j<k 1T Lo
2 1 - i+1
-5 I /=2 (-D"'scia (60)
a<j<k 1 T

Because the second term in (60) &g B = O(1/B) by (53), we obtain

k_oqd*igB ,
¢ = (T rl) (Z - <—1>'+1s<_i71> o(3) @

2<j<k i=1
In order to bounda;, we count the number of terms in the summation in (61),
i.e., the number of values ofsuch that
zqi—k|g B 1
B IgB’

CHAPTER2. CO Searching Cost 49

That is, we determine the smallest valua,afuch that
ik o lg(B/IgB) .1 glgB

gB = IgB ’
Thus, we solve that
i—k>|n<1—|g|—gB)|g—e (62)
lgB /lgq’

We now estimate the previous expression. Recall tiathx) > —xfor 0 < x < 1.

Thus, from (62), we have

Ig elglgB
‘IgqlgB

If we denote

vk IgeIgIgB (63)

nglg B’
then we have

1 .
od*IgB SIg—B’ when 1<i <v;
1 .
B >— whenv <i<Kk.
lgB
Separating the summation in (61)watwe obtain
CéL < H Z | B I+1S(i1
2<j<k M= 9
2q|7k|gB) 1
+ 11 - Z 5 (1810 <§) . (69
2<j<k M-z

Again, from (53), the first term in (64) is less thegy |gB = O(1/IgB). Thus, we
have

k 2qi7k|gB

¢ < <| B)+ 11— 12 S (DFSCn (69)

2<j<k

Observe that 9 “19 B/ B<1for1<i<k We separate into the two casespi
in (65) as we do earlier in (54), to obtain

1 1)kt
Cl<O<IgB) + H

2<j<k J

(Z qfi + Z qki))

v<i<n i>n+1 i>v

CHAPTER2. CO Searching Cost 50

Because bothy ' andg! are less thagX, we obtain
1
C’1<O<I B) k“H Zq
9 2<j<k M= v<|<k

Plugging (46) and (63) into the above inequality, we have

1 0) lgelglgB
[<)
= O('QB) kg T—ng L IgqigB

We now prove the second term in (66)0¢lglgB/IgB). Recalling thatX =
1/afrom (15), we have

(66)

lga

lga=—-- (67)
and 1
q”:qk—lza—l. (68)
Taking logs in (68), we obtain
_lg/a-1) ©9)
lgqg
Plugging (67) into (69), we obtain
lg(1/a—1)
=k——F—-—= 70
9(1/a) 7o

Notice that the functiorf (x) =Ig(x—1)/lgxis increasing fox > 1 becausé’(x) >
0 forx > 1. Therefore, by the assumptiar> 1/4 and (70), we have

n<k=— < —. (71)
g
Thus, observing thaf 1 > g"1 > 1 and the above (71), we obtain
ka1 —ng"t > kg t— kkl>k/5 (72)

Combining (15), (67) and (72), we have

K
q lge 15klge —5lge
< = = < .
kgk-1—ng'-llgg~ aklga alga < 10lge

CHAPTER2. CO Searching Cost 51

Finally, from (66) we obtain

1 lglgB lglgB
h < i 2397 A b
Cl‘o<lgB)+o<lgB) O(IgB)’

as claimed. []

Now we present the main Theorem, which we obtain by combifimgorem
16 and 22.

Theorem 23 (Generalized VEB Layout) The expected cost of a search in the gen-
eralized VEB layout is at mo$Sige+ 0(1)] logg N+ O(lglgB/IgB)logg N + O(1).

Applicability of Numerical Results. We have found that numerical simulations
provide empirically valuable information (See Lemma 14)tba behavior of a
specific choice of parameters for the generalized VEB laydidwever an ever
present concern is the validity of a —necessarily finite—t fido studying asymp-
totic behavior. We now give a theorem showing that by usingernical methods
in a limitedx range we get valid bounds on the functiah&), v (x), ¢ (x) for all
possible values of.

Theorem 24 Let a and b be constants such tlat a<b < 1,a+b=1. Let H(x)
be a monotonically increasing function whose domain iskadl matural numbers,
and let H(x) satisfy the recursive condition() = H([ax]) +H(|bx|), for x > a.
If there exist constantss 0, t > 2 and t> a, such that Hx) < cx in the range x
[t—1,t/a], then Hx) <cxforallx>t—1.

Proof. First we prove for the purpose of induction that if
t
H(x) <cx fort' > 2 andx € [t —1,t'],
then

[t t-1
< — - — .
H(x) <cx forxe[t 1,m|n{b, 3 H

c [t min v -1
y) b? a b

For any

CHAPTER2. CO Searching Cost 52

we know that
t—1<t<at' <ay<t'—1landt<bt' <by<t/

which means
t—1<J[ay] <t'andt—1< |by| <t

Therefore

H([ay]) +H([by])
clay] +c|by]
< c[(ay+by)] =cy.

t,<t’—1<m| tt'—1
b b’ a

forallt’ >t/a> 1/a, and we proved that ifl (x) < cxin rangex € [t — 1,t'], then
H(x) <cxinrangex e [t —1,(t'—1)/b]. A simple induction shows that for all

H(y)

IN

We know that

—1-b—.-.—p?

t/
t-1<x< o :

we haveH (x) < cx. Because

1 (o]
U> 2= gm0

i=0

itis true thatH (x) < cxforall x >t —1.]

2.4 Conclusion

This chapter gives upper and lower bounds on the cost of ealolvdous search-
ing; our bounds are tight to within low-order terms. Speaeific we show a
lower bound of IggloggsN memory transfers and an upper boundlgfe+ € +
O(lglgB/lgB)]logg N + O(1) expected memory transfers in the cache-oblivious
model. In contrast, searching uses onlyddl+ 1 memory transfers in the DAM
model. Interestingly, this lgmultiplicative slowdown in the cache-oblivious model

CHAPTER2. CO Searching Cost 53

compared to the DAM model comes about because the DAM modebhig two
levels of memory rather then because the memory parameeesignown in the
cache-oblivious model.

We find it intriguing that this constant ggplays such a fundamental role in
cache-oblivious searching. It would be appealing to findrgoser derivation of Ig
that provides more insight. The current derivation is, wpdjanore technical than
necessary, but it remains an open question how to simplify.

Chapter 3
Adaptive Packed-Memory Array?

In this chapter we study a classic problem in databases auntistes, which is how
to maintains a dynamic set df elements in sorted order in@N)-sized array.

Previous Work. The cache-oblivious version of the above problem is called
packed memory array [16,17]. The PMA maintaslements in sorted order
in a®(N)-sized array. It supports operations insert, delete, aad.s8pecifically,

to insert an element after a given element or to deletex costsO(IogzN) amor-
tized element moves ar@(1+ (log?N)/B) amortized memory transfers, wheie

is the number of elements that fit within a memory block. Beeatlhe elements
are stored physically in sorted order in memory or on dis&,RIMA can be used

to support extremely efficient range queries. To scalements after a given el-
ementx costs©(1+L/B) memory transfers. One of the PMAS strengths is its
performance on common insertion patterns such as randognsnsFor random
inserts, the PMA performs extremely well with orfB(logN) element moves per
insert and onlyO(1+ (logN)/B) memory transfers. This performance surpasses
the guarantees for arbitrary inserts.

However, the PMA performs relatively poorly on some comnresertion pat-
terns such as sequential inserts. For sequential inseet$MA performs near its
worst in terms of the number of elements moved per insert. AM&'s difficulty
with sequential inserts is that the insertions “hammer” ol part of the array,

1An earlier version appears in [25].

54

CHAPTER3. Adaptive PMA 55

causing many elements to be shifted around. AlthoGglog®N) amortized el-
ements moves an@(1+ (log?N)/B) amortized memory transfers is surprisingly
good considering the stringent requirements on the dater,atds relatively slow
compared with traditional B-tree inserts.

In the rest of chapter we propose an adaptive packed-menmay & our
PODS paper [25], which overcomes these deficiencies of duititvnal PMA. The
adaptive PMA adapts to insertion patterns and is optimiped@dmmon insertion
patterns such as sequential inserts, random inserts, dkdnierts. It gives the
largest decrease in the cost of sparse arrays/sequeldiaildintenance in almost
two decades.

3.1 Structures and Algorithms for Adaptive PMA

In this section we introduce the adaptive PMA. We first explaow the adaptive
PMA differs from the traditional PMA. We then show that botMRs have the

same amortized boundd(log?N) element moves an@(1+ (log?N)/B) memory

transfers per insert/delete. Thus, adaptivity comes aktra asymptotic cost.

Description of Traditional and Adaptive PMAs. We first describe how to insert
into both the adaptive and traditional PMAs. HencefoRRA with no preceding
adjective refers to either structure. When we insert an efemafter an existing
elementx in the PMA, we look for a neighborhood around elemetttat has suf-
ficiently low density, that is, we look for a subarray that is not storing too many
or too few elements. Once we find a neighborhood of the apatepdensity, we
rebalance the neighborhood by spacing out the elements, incluglintn the tra-
ditional PMA, we rebalance by spacing out the elements gvdnl the adaptive
PMA, we may rebalance the elementsevenly based on previous insertions, that
is, we leave extra gaps near elements that have recentlynbards after them.

We deal with a PMA that is too full or empty, as with a tradibhash table.
Namely, we recopy the elements into a new PMA that is a coh&ator larger
or smaller. In this chapter, this constant is stated as 2. edew the constant
could be larger or smaller (say2) with almost no change in running time. This
is because most of the cost from element moves come fromaretxs rather than

CHAPTER3. Adaptive PMA 56

from recopies.

We now give some terminology. We divide the PMA ir®gN/logN) seg-
ments, each of sizeéd(logN), and we let the number of segments be a power of
2. We call a contiguous group of segmentsiadow. We view the PMA in terms
of a tree structure, where the nodes of the tree are windows.rdot node is the
window containing all segments, and a leaf node is a windawtaining a single
segment. A node in the tree that is a window bs8gments has two children, a
left child that is the window of the first 2! segments and a right child that is the
window of the last 21 segments.

We let the height of the tree g so that 2 = ©(N/logN) andh = IgN —
lglgN +O(1). The nodes at each heighthave arupper density threshold 1, and a
lower density threshold p,, which together determine the acceptable density of keys
within a window of 2 segments. As the node heightreasesthe upper density
thresholdslecreaseand the lower density thresholdsrease Thus, for constant
minimum and maximum densiti€s;,,, andD,.,, we have

Dun=P0 <+ <Ph<Th < - <To= Dy (73)

The density thresholds on windows of intermediate powe&arke arithmeti-
cally distributed. For example, the maximum density thoéglof a segment can be
set to 10, the maximum density threshold of the entire array.tg the minimum
density threshold of the entire array t@0and the minimum density of a segment
to 0.1. If the PMA has 32 segments, then the maximum density tbtésti a single
segmentis D, of two segments is.9, of four segments is.8, of eight segments is
0.7, of 16 segments is.0, and of all 32 segments is5)

More formally, upper and lower density thresholds for nodekeight/ are
defined as follows:

Tr = Th+(To—Th)(h—4)/h (74)
Pe = Pn—(pPh—pPo)(h—£)/h. (75)

Moreover,

2pn < Th, (76)

CHAPTER3. Adaptive PMA 57

because when we double the size of an array that becomesriee,dke new array
must be within the density threshdddObserve that any values of, T, po, and
pn that satisfy (73)-(76) and enable the array to have €idd) will work. The
important requirement is that

T—1— T =0(pr—pr-1) = O(1/logN).

We now give more details about how to insert elemeatter an existing ele-
mentx. If there is enough space in the leaf (segment) contairjrigen we rear-
range the elements within the leaf to make roomyfoif the leaf is full, then we
find the closest ancestor of the leaf whose density is wittnpgermitted thresh-
olds and rebalance. To delete an elementve removex from its segment. If
the segment falls below its density threshold, then, asrbefee find the smallest
enclosing window whose density is within threshold and latee. As described
above, if theentirearray is above the maximum density threshold (resp., bdiew t
minimum density threshold), then we recopy the keys into aARNtwice (resp.,
half) the size.

We introduce further notation. L&ap(u,) denote the number of array posi-
tions in nodeau, of height?. Since there are/Zegments in the node, the capacity is
O©(2'logN). Let Gapsu,) denote the number of gaps, i.e., unfilled array positions
in nodey,. Let Densityu,) denote the fraction of elements actually stored in node
Uy, i.e., Densityu,) = 1— Gapsu,)/Cap(uy).

Rebalance. We rebalance a nodeu, of height/ if u, is within threshold, but we
detect that a child nodg _1 is outside of threshold. Any node whose elements are
rearranged in the process of a rebalancswept. Thus, wesweep a nodeu, of
height? when we detect that a child node_; is outside of threshold, but now
need not be within threshold. Note that with this rebalarateeme, this tree can
be implicitly rather than explicitly maintained. In thisseg a rebalance consists of
two scans, one to the left and one to the right of the insegmint until we find a
region of the appropriate density.

There are straightforward ways to generalize (76) to furtduce space usage. Introducing
this generalization here leads to unnecessary complicatipresentation.

CHAPTER3. Adaptive PMA 58

In a traditional PMA we rebalance evenly, whereas in the adaPMA we
rebalance unevenly. The idea of the APMA is to store a smaillerber of elements
in the leaves in which there have been many recent insertsvet, since we
must maintain the bound @(log®N) amortized element moves, we cannot let the
density of any child node be too high or too low.

Property 25 (rebalance property) After a rebalance, if each noge(@xcept the
root of the rebalancing subtree) has density withjis parent’s thresholds, then we
say that the rebalance satisfies tirabalance property. We say that a nodeyus
within balance or well balanced if u, is within its parent’s thresholds.

The following theorem shows if each rebalance satisfiesabalance prop-
erty, then we achieve good update bounds. The proof is ésletitat in [16, 17],
but the rebalance property applies to a wide set of rebalgrsshemes.

Theorem 26 If the rebalance in a PMA satisfies the rebalance propertgnthn-
serts and deletes take(IDg?N) amortized element moves and13- (log”N)/B)
amortized memory transfers.

Proof. Letu, be a node at level. A rebalance oty is triggered by an insert or
delete that pushes one descendant ng@s each heighit=0,...,/ — 1 above its
upper threshold; or below its lower thresholg;. (If this were not the case, then
we would rebalance a node of a lower height than

Consider one particular such node Before the sweep afi’s parentu; . 1,

Density(uij) > 1, or Densityu) < pj.
After the sweep ofii, 1, by the rebalance property,
Pi+1 < Density(uj) < Tj41.

Therefore we need at least

(Ti — Tiv1)Cap(ui)
inserts or at least

(Pi+1—pi)Capui)

CHAPTER3. Adaptive PMA 59

deletes before the next sweep of nagle . Therefore the amortized size of a sweep
of nodeu;, 1 per insert into child node; is at most
Capui+1) Cap(ui+1) } { 2 2 }
max , = max ,
{ (Ti — Ti+1)Cap(ui) (Pi+1— pi)Cap(ui) Ti—Tiv1 Pis1—Pi
= O(logN).

When we insert an element into the PMA, we actually insealnt ©(logN)
such nodesi;, one at each level in the tree. Therefore the total amorisiasl of
a rebalance per insertion into the PMAG¢log? N). Thus, the amortized number
of element moves per insert @(log?N). Because a rebalance is composed of a
constant number of sequential scans, the amortized nunibeemory transfers
per insert iSO(1+ (log’?N)/B), as promised. O

Observe that Theorem 26 applies to both insertions andidiedein contrast,
we focus only on insertions in the rest of the chapter, forgake of simplicity.
However, it is likely that, with only minor modifications tbe predictor, the same
bounds for common insertion distributions can be made ttyappleletion distri-
butions and to distributions combining both operationseréldoes not seem to be
any significant additional difficulties in dealing with datms.

Prediction. In apredictor data structure we keep track of a small collection of
elements, calletharker elements, that directly precede elements recently inderte
into the APMA. The predictor stores a pointer to those leatasof the APMA
(i.e.,©(logN)-sized segments of the array) that contain marker elemEatsach
marker element, we count the number of recently insertemhai¢s that directly
follow the marker.

We give terminology for prediction. For an elementet insert number 1(x)
denote a count from 0 to |dg estimating the number of inserts aftein the last
O(log®N) inserts. The predictor is designed so that

¢ |(x) is always an underestimate of the number of inserts, and

¢ | (x) never grows above Idg.
Below, we explain why and how these properties are enfordagthermore, if
elemenix is not in the predictor, then we defihéx) = 0.

We now define the insert numbkju,) of a nodeu, at level? in the APMA.
Specifically, let insert numbefu,) be the sum of the insert numbers of elements in

CHAPTER3. Adaptive PMA 60

Algorithm 1 Predictor.insery)

1: if 3 a cellc such that.element= x then
2. SWAP(, c.nextcell) { if Cis not the head pointer. }

3: c.count+ c.count+1
4: if c.count> logN then
5: tailpointercount« tailpointercount— 1
{When C.count is at the maximum logN. .. }
6 c.count« c.count—1 { We decrease the tail's count instead of increasing C.count. }
7. endif
8: else
9: if headpointenextcell= tailpointerthen
10: tailpointercount« tailpointercount— 1
{ Decrease tail's count when no free space. }
11: else
12: headpointer— headpointenextcell
13: headpointeelement— x
14: headpointecount— 1
15: headpointeteaf — x.leaf { In other cases, create a new cell for new element. }
16: end if
17: end if

18: if tailpointercount= 0 then
19: tailpointer< tailpointernextcell { The tail cell is removed when its count drops to zero. }
20: end if

u,. When rebalancing a node, we reallocate elements uneverdpgits descen-
dant leafs according to their insert numbers. The largeingert number, the fewer
elements are allocated.

We now explain how the predictor determines (1) which eleishémstore as
marker elements and (2) what the count numbers are for eaateat. To do so,
we explain how to implement the predictor.

The predictor is a circular linked list, stored in an arragepredictor contains
BlogN cells, for constanB. Two pointers, a head pointer and a tail pointer, indicate
the front and the back of the linked list. Each cell in the uliac linked list stores a
marker element. Associated with are two pieces of data, (1) a pointer to the leaf
node in the APMA where currently resides and (2) the count numbgr) (see
Figure 1).

CHAPTER3. Adaptive PMA 61

When a new elementis determined to be a marker element, it is inserted into
the predictor;x is inserted at the head of the linked list (where the headtpoi
points). When an elememtis no longer needed as a marker element, it is deleted
from the predictor; before is deletedx will always be stored at the tail of the
linked list (where the tail-pointer points).

When a new elementis inserted into the APMA after an elemeqtwe first
check whethexk is a marker element (i.e., stored in the predictork i§ a marker
element, we stor& and its auxiliary information one cell forward in the APMA
(unlessx is already at the head of the predictor). kebe the element displaced
by x. We storew (and auxiliary information) in the cell vacated ky We also
increase the elements count number by 1 unless it is already at the maximum
O(logN). Letzbe the element stored in the tail of the predictok i already at the
maximumO(logN), then we decremerats count number instead of incrementing
X's count number. (This decrement is one reason why the caxmber ofx is an
underestimate.)

If X is not a marker element, then there are two cases. If therenapgy cells
in the predictor, then we storeat the head of the predictor. If there are no empty
cells in the predictor, then we decrease the count numbeftioé element stored in

‘eleme%'t leaf | Count

Tail Pointer

Header Pointel

Figure 1. The predictor. Each cell contains a marker elemettie leaf node in the APMA
wherex resides, and the count numbéx).

CHAPTER3. Adaptive PMA 62

the tail) instead of storing in the predictor. (This lack of space is another reason
why the count number ofis an underestimate.)

This decrement may reduce the count numbertofO. If so, we delete from
the predictor. A new free cell space is now available forfatnserts.

The predictor algorithm is engineered to tolerate “randaiser in the inser-
tions. By random noise, we mean that some of the insertionsmaafollow an
insertion distribution (such as head insert, hammer ingerk insert, etc). Our
guarantees still apply even if as much as a constant fraofiamsertions are after
random elements in the APMA. To understand why our predicterates random
noise, observe that a few arbitrary inserts will not be stanethe predictor unless
the tail count drops below zero. If a poor choice of elemennifact, stored in the
predictor, it will soon be swapped to the tail if no new insdallow.

Uneven Rebalance. Now we present the algorithm for uneven rebalance (See
Algorithm 2). Assume that nodas_; andv,_; are left and right children ofi,

at level/ and that there arm ordered element§xs, Xo, ..., Xm} stored inu,. The
uneven rebalance performs as follows:

e If 1(x;) =0 foralli € [1,m], then we perform an even rebalance for this node
Uyp.

e Otherwise, we perform an uneven rebalance. Our unevenamtmlis de-
signed so that, the bigger the insert numbers, the more gapsawe. Specif-
ically, we minimize the quantity

‘ (U—2) 1(ve—1)
Gapsui—1) Gapgv-1)

; (77)

subject to the constraint that the rebalance property neisalbisfied. When
we rebalance, weplit at an element x;, meaning that we put elements
{X1,...,%} inu_1 and{X+1,...,Xm} in vy,_1. The objective is to find the
indexi to minimize

Yioal) Sl) ’ 78)

Cap(u;1)—i Cap(v;—1) — (m—i)

subject to the constraints that

CHAPTER3. Adaptive PMA 63

NS [Caﬁuf—l)ph Cap(uz,l)w], (79)
/I density of left child is within parents’ threshold
NS [m— Cap(vy-1)ty, m— CaF(Ve—l)Pe} : (80)

Il density of right child is within parents’ threshold

e We recursively allocate elementsup_; andv,_4’s child nodes and proceed
down the tree until we reach the leaves. Once we know the nuoflede-
ments in each leaf, we rebalangein one scan.

For example, in the insert-at-head case, the insert numiifergght de-
scendants are always 0. Thus, minimizing the simplified alye quantity
1 (us—1)/Gapguy—1)| means maximizing Gaps,_1).

Algorithm 2 Rebalance.unevemy)
1: Up_1 < uy's left child;

2: Vy_1 < U/’s right child;

3: if (uy_1 is empty) or ¢,_ is empty)then

4: return;

5. end if

6: splitnum«— max{Cap(u,—1)pe,m— Cap(Vy_1)T¢};

Z?pzhitl.numl (Xj) - Z'in:splitnum+l I (Xj> .
Cap(us_1) —splitnum Capv,_1) — (m—splithum)’
8: for i = splitnum to mif Cap(u,—1)t,,m— Cap(vy—1)p,} do

le:ﬂ (X)) B ZT:i—HI (X)) _
Caplu_1)—i Capvy_1)—(m—i)|’
10: if optvalue> curvaluethen

7. optvalue—

9: curvalue—

11: optvalue— curvalue;
12: splithnum«i;

13: endif

14: end for

150 Up—1 «— {X17 . ~7Xsplitnum};
16: Vp_1 < {Xsplitnurml, cee ,Xm};
17: Rebalance.unevewmy 1);
18: Rebalance.unevew(1);

CHAPTER3. Adaptive PMA 64

Now we show how to implement the rebalance so that there isymptotic
overhead in the bookkeeping for the rebalance. Specifithynumber of element
moves in the uneven rebalance is dominated by the size oébdsancing node, as
described in the following theorem:

Theorem 27 To rebalance a nodeyiat level? unevenly requires @ap(u,)) op-
erations and @1+ Cap(uy) /B) memory transfers.

Proof. There are three steps to rebalancing a ngdenevenly. First, we check
the predictor to obtain the insert numbers of the elemertstéal in all descendant
nodes ofu,. Because the size of the predictoQglogN), this step take®(logN)
operations and(1+ (logN)/B) memory transfers. Second, we recursively de-
termine the number of elements to be storediis children, grandchildren, etc.,
down to descendent leaves. Naively, this procedure G$éSapu,)) operations
andO(1+¢Cap(us)/B) memory transfers; below we show how to perform this pro-
cedure inO(Cap(uy)) operations an®(1+ Capuy)/B) memory transfers. Third,
we scan the nodey putting each element into the correct leaf node. Thus, #sis |
step also take®(Cap(uy)) operations an@®(1-+ Capu,)/B) memory transfers.

We now show how to implement the second step efficiently. Wietlva ele-
ments in the predictareighted elements and the remaining elemeumtsvei ghted.
Recall that only weighted elements have nonzero insert eusnbn the first step,
we obtain all information about which elements are weight€den, we start the
second step, which is recursive. At the first recursive lewel determine which
elements are allocated to the left and right childremofi.e., we find the index
minimizing (78). At first glance, it seems necessary to chatkdicesi in order
to get the minimum, which take3(Cap(uy)) operations, but we can do better. Ob-
serve that when the indexs in a sequence of unweighted elements between two
weighted elements, the numerator in (78) does not changl. t@edenominator
changes, and it does so continuously. So in order to minifTige at the first re-
cursive level, it is not necessary to check all elements mhenp. It is enough to
check which two contiguous weighted elements the indexbetween such that
(78) is minimized. Since there are at m&@togN) weighted elements, the num-
ber of operations at each recursive level is at n@$gN). Furthermore, because
there arel recursive levels, the number of operations in the wholerseeosl step

CHAPTER3. Adaptive PMA 65

is at mostO(/logN), which is less that©(Capu,)). By storing these weighted
elements contiguously during the rebalance, we ol@git+- Capu,) /B) memory
transfers. 0

3.2 Analysis of Sequential and Hammer Insertions

In this section we first analyze the adaptive PMA for the satjakinsert pattern,
where inserts occur at the front of the PMA. Then we genexdhe result to ham-
mer inserts.

For sequential inserts, we prove the following theorem:

Theorem 28 For sequential inserts, the APMA hagl6gN) amortized element
moves and QL+ (logN)/B) amortized memory transfers.

We give some notation. In the rest of this section, we assinaeut is the
leftmost node at levet andv,_; is the right child ofu,. Recall that leaves have
height 0. Suppose that we ins@&ttelements in the front of an array of sizél
(c>1). Since we always insert elements at the front, rebalancesr only at the
leftmost nodey, (0 < ¢ < h). If we know the number of sweeps of in the process
of inserting thes@&l elements, then we also know the total number of moves.

In order to bound the number of sweeps at each level, we neesl matation.
Fork </, let Ak (¢,i) be the number of sweeps of the leftmost nageat level
K between thei — 1)th sweep and thigh sweep of node,. We imagine a virtual
parent nodes, . ; of the root node,, whereuy,, 1 has size 2N. Thus, the time when
the root nodeuy, reaches its upper threshaid, after we insertN elements, is the
time when the virtual parent node performs the first rebaambus Ak (h+1,1) is
the number of sweeps of nodg at levelk during the insertion of thedg elements
(0 <k < h). Since each sweep af costs ZlogN moves, the total number of

moves is:)

> 2k (h+1,1)2logN.
k=0

This quantity is the sum of the sweep costs at each level tbatvirtual node needs

CHAPTER3. Adaptive PMA 66

its first rebalance. Thus, the amortized number of elemernesis

h

%ZM(thl,l)ZKlogN. (81)
k=0

Sequential Inserts with Only Upper Thresholds. For pedagogical reasons, we
now consider the simpler case of a PMA with no lower-boundgholds and show
that Theorem 28 holds in this special case. This lack of ldweemd thresholds
makes it significantly easier to achieve the bounds from Tdre®8. By providing
this simpler analysis we give insight into the origin of Therm 28’s bounds and
why the subsequent analysis is more complicated.

Lemma 29 For sequential inserts, the APMA with no lower-bound thadgh has
O(logN) amortized element moves and13-logN/B) amortized memory trans-
fers.

Proof. Recall thata(¢,1) is the number of sweeps of the leftmost chilgd at
level k until ancestor node, performs its first rebalance. Observe that just before
u, performs the first rebalance;_, reaches its threshoid_,. We want to find the
number of sweeps afx beforeu,_; reaches its upper threshald .

! ‘ te ‘ ‘ Ue ‘

N O\

-1 U1

/\ :S

T—2 0

Figure 2: In the simple case, the shaded region is rebalanced just afte
Phase 1 of nodg,, which starts from Density,_») = 0 (left) and ends
at Densityuy_») = 1> (right).

We decompose this process into two phases. Phase 1 ends Hwefafirst
rebalance of noda,;_; when we havea,_»2/~2 elements in the left childy_» of
u,_1 and 0 elements in the right chilg_» of u,_1 (see Figure 2). According to
our uneven-rebalance strategy, since all inserts are téethehild, we allocate

CHAPTER3. Adaptive PMA 67

T,_12!72 elements tov,_» and (1,_» — Ty_1)2/~2 elements tay,_, at the end of
Phase 1, i.e., we give the maximum allowed number of elenterite right child.
Now we consider Phase 2, which takes place between the firalarece and the
second rebalance of_1 (see Figure 3). Since the right chid_» of u,_1 already
has densityt;_1, whenu,_, reaches its thresholg_, again, the density af,_; is
(ty—2+T1,-1)/2 > 141 at the end of Phase 2, which is above its upper threshold.

To summarize, the first time that we rebalange; is when we move elements
fromuy_o intov,_,. This rebalance is triggered becawse; is above its threshold.
The next timeu,_» goes above its threshotd_», u,_1 is also above its threshold
Ty_1, and we trigger the first rebalancewf Thus, there are at most two sweeps of
nodeu,_, before it reaches its threshatd 1. That is

N (6,1) < Ao (£ —1,1) + Ak (0 —1,2). (82)

-1 Up_1 Ug—1 ‘

BTASAS

(7—[72 77'(,1) To—2 Te—1

Figure 3: In the simple case, the shaded region is rebalanced just afte
Phase 2 of nodg,, which starts from Density,_»2) = T/_2 — 11 (left)
and ends at Density,_2) = t,_» (right).

To calculate (81), we first show thag (¢ —1,2) < Ak (¢ —1,1). Recall that
Nk (¢ — 1,2) is the number of sweeps of the leftmost child at levelk between
ancestor nodel,_;’s first sweep (rebalance) and second sweep. The above in-
equality is true because at the end of both phages reaches its threshold, but
the first phase starts with,_, having density 0 (an empty data structure), and
the second phase starts with » having densityt,_» — 1,_1. Thus, by plugging
Nk(£—1,2) < Ak (¢—1,1) in (82), we have the recurrence

M((&l) S 29\&(6_ 17 1)'

CHAPTER3. Adaptive PMA 68

The amortized number of element moves is

h h
%ZM(M 1L,1)2NgN = 3 ag(h+1,1)2¢"
k=0 k=0
h
> [22k(h, 1)]2<"
k=0
h
Z [2h7K+1fA[K(K, 1)] 2K7h

k=0

IA

IA

h
=) 2=0(logN).
k=0

[

Sequential Inserts in APMA with Lower and Upper Thresholds. We now con-
sider the general case of a PMA with both the lower- and uppend thresholds
and are ready to prove Theorem 28.

PROOF OF THEOREM 28: The proof is a generalization of the proof of
Lemma 29; we bound((¢,1), the number of sweeps of the leftmost chiid at
level k until the ancestor node, performs the first rebalance. The difficulty with
both the lower- and upper-bound thresholds is that we musirdpose the time
before the first rebalance of into more than 2 phases, and thus we obtain a more
complicated recurrence to solve. We decompose this prongsshree phases.
Phasei of node u; (1 <i < 3), starts after th¢i — 1)th sweep olu,_1 and ends at
theith sweep olu,_1. At the end of the last phase; performs its first rebalance,
which is the third sweep af;_;. Thus, we have at most three sweeps of nade
before the first rebalance of:

Nic(£,1) < A (£ — 1, 1) + A (£ — 1,2) + A (£ — 1,3).

Now we prove the above claim analyzing the densities in ehels@

I) We consider the densities of child nodes » andv,_» of uy,_1 at the end of
Phase 1. The first rebalancewf ; occurs (see Figure 4) when_, reaches
its upper threshold,_». For sequential inserts, we allocate as many free

CHAPTER3. Adaptive PMA 69

I -E

0 0 T—2

Figure 4: Phase 1 of node, starts from Densityu,—») = O (left) and
ends at Densitju,_») = T,_» (right). The shaded region is rebalanced.

spaces as possible tp_», while ensuring that,_» andv,_, have densities
betweenp,_; andt,_;. Thus, after the first rebalance, which happens after
T,_2Cap(uy_») inserts, we have densities:

Density(u,—2) = pr-1,
Densityvy_2) = Ty_2—pPr—1.

It is immediate that the density settingwf ; is legal; we now explain why
the above density setting of_» is legal, i.e., satisfies the rebalance property.
Notice thatp, 1 < T, 2 —pr-1 < Ty_1, Since Py_1 < Ty_1 < Ty by (73)
and (76) andy_» — 1,1 = O(1/logN) < py—1 by (73) and (74).

[wd Jeez—pe) P I G

Pe—1 To—2

Figure 5: Phase 2 of node, starts from Densitu,_») = py—1 (left) and
ends at Densitju,_») = T,_» (right). The shaded region is rebalanced.

II) We now consider the densities of child nodes , andv,_, at the end of
Phase 2. Wheny,_» reaches its threshold again, Phase 2 of nadends
(see Figure 5). Afteu,_, does the second rebalance, which happens after

CHAPTER3. Adaptive PMA 70

(ty—2—pr—1)Capuy_») inserts, we have densities:

Densit;(uz,z) = 2'[5,2 —Pr—1—Tp_1,

Density\vy_2) = T/_1.

It is immediate that the density setting\of ; is legal; we now show that the
density setting ofi;_» is legal. Notice thap, 1 <2t 2—pr-1—Ty_1 <T/_1,
because @ 1 <1y 2<Ty 2+ (Ty_2—Ty_1) by (73) and (76) and (@, o —
To-1) = O(1/logN) < p,—1 by (73) and (74).

o C TN

£—1 up_1

g
/\ A

(2102 — Te—1 — pe—1) Te—2

Figure 6: Phase 3 of node, starts from Densitju;_») = 2T/-2—Ty_1—
p¢—1 (left) and ends at Density,_2) = T,—2 (right). The shaded region
is rebalanced.

[I) Now we consider the densities of child nodes , andv,_, at the end of
Phase 3. When,_» reaches its threshold a third time, which happens after
(Tr—1—Tr_2+pr—1)Capuy_») inserts, Phase 3 of nodeends (see Figure 6).
Whenu,_1 does the third sweep, the densitywf ; is (T/—2+1/-1)/2 >
T/_1, SOU,_1 is above threshold. Thus, the end of Phase 3 is the first redmla
of uy.

Thus, there are at most three sweepsi,ofi before the first rebalance of,
that is,

Ni(€,1) < ANk (£—1,1) + Nk (£ — 1,2) + N (£ — 1,3). (83)
We cannot simply use the boumg(¢,1) < 3nk (¢ — 1,1) for our analysis, since

this bound naively leads t@(N'°9(3/2)) amortized moves, which is far from our
goal of O(logN).

CHAPTER3. Adaptive PMA 71

To establish our bound, we prove the following recurrencesPhase 2 and
Phase 3:
Nk(0—1,2) <27k (¢ —2,2), (84)
and
(£~ 1,3) < Ak(£—1,2). (85)
Solving (83), (84), and (85) will yield the desired bound.
We already showed (83); now we show (84). We proceed by bngadRhase
2 into two subphases. The first subphase begins when Phaggn® biee., after
the first rebalance afi,_1, and it ends after the next sweepwf ,. The second
subphase begins when the first subphase ends, and it endthafteext another
sweep olu,_». We will show that at the end of Subphasei2,, is above threshold,
meaning that Subphase 2 ends with a sweap of, i.e., Phase 2 ends as well.

e At the beginning of Subphase 1, nagle 3 has densityp,_» by the rebalance
property. (Since insertions are at the beginning of theyawa wantu,_3 to
be as sparse as possible, and the rebalance property segiteaha rebalance
Densityu,—3) > p¢—2.) The sweep ofi,_, is triggered once the density of
u,_3 reachesty_3 (see Figure 7). At the end of Subphase 1, afters; —
pr—2)Cap(u,—3) inserts, the density af,_3 andv,_3 are:

Density(u;_3) = 2p/_1—pPr—2+Tr—3— T2,

Densityvy_3) = Ty_».

It is immediate that the density of_3 is legal; we show that the density
of uy_3 is legal too. Notice thap, > < 2py_1—pPr2+Ty_3—Tp_2 < Ty_2,
because@, » < 2p;,_1andty > <1, 3by(73)and p, 1 <1/ 1 <Ty_2and
Tp-3—T;_2=0(1/logN) < p,_2 by (73) and (76).

We now show that the number of sweepswfin Subphase 1 is equal to
Nk (¢ —2,2). Observe that Subphase 1 is exactly Phase 2 of the mode
because they both start with the nagdes having densityp,_» and end with

the nodeu,_3 having densityt,_3. Although in Subphase 1 and Phase 2 of
nodeu,_1, nodev,_3 has different densities, this difference does not matter
because the density of_3 does not affect when Subphase 1 and Phase 2 of
nodeu,_; end.

CHAPTER3. Adaptive PMA 72

Ug—1 Up_1 ‘

I :/\

/’Zluézl:]7'£2 Pe—1 Wz Pe—1

I:] 2001 — po—2 > pr—2 I:] 2pg—1 = Po—2 > P2

pPe—2 Te-3

Figure 7: Subphase 1 starts from Density_3) = p,—» (left) and ends at
Density(u;—3) = T,_3 (right). The shaded region is rebalanced.

e At the beginning of Subphase 8y 3 has density g/ 1 —pr 2+ T/ 3—
Ty_2 > Pr—2, and the subsequent sweepwf , is triggered once the den-
sity of u,_3 reaches,_3 again (see Figure 8). Since the densitypf; is
T/_», the density ofi,_» is (ty_3+1y_2)/2 > 1y_» at the end of Subphase 2,
souy_» is above its upper threshold. Thus, the end of Subphase @ ss\teep
of up_1.

We now prove that the number of sweepsupfin Subphase 2 is less than
Nk (¢ — 2,2), because both Subphase 2 and Phase 2 of nodeend with
nodeu,_3 reaching its upper threshotd_3, but Subphase 2 starts with node
u,_3 having density greater tham_» while Phase 2 of node,_, starts with
nodeu,_3 having densityp,_».

Thus, there are at most two subphases in Phase 2 ofutp@hel each subphase
has the number of sweeps of nageat most (¢ — 2,2), which shows (84). Since
Recurrence (84) has the base cagék,2) = 1, we obtain the solution

A(f—1,2) <27, (86)

Now we establish the recurrence in (85). Both Phase 2 anceRhard with
nodeu,_» reaching its upper threshaotd », while Phase 3 starts with the node »
having density 2> —T1,_1 — pys_1 > pr—1. Phase 2 starts with node_, having
densitypy_1.

CHAPTER3. Adaptive PMA 73

/\ N
[H |]
—
HD Lol]

(> pg_2) Tp_o Tg_3 Te—2

Figure 8: Subphase 2 starts from Density_3) > p,_» (left) and ends at
Density(u,—3) = T,—3 (right). The shaded region is rebalanced.

We now establish the desired bound. Plugging (86) and (85)&8), we have

IN

Nk (€, 1) Nx(€—1,1) + Ak (£ —1,2) + 2k(£ - 1,3)

< Ax(l—1,1)42.20x1
< 2€—K+1‘ (87)

Finally, the amortized number of moves is

h h
%ZNK(M 1,1)2logN = > 2 (h+1,1)2< "
k=0 k=0
h h
<) (@72 =% "4=0(logN).
k=0 k=0

Observe that after any insert the elements are moved fromtayoous group,
and the moves can be performed with a constant number of.s@desefore the
amortized number of memory transfersdél + (logN)/B).]

Hammer Inserts. We now consider the hammer insertion distribution, where we
always insert the elements at the same rank. We show thantigsss from se-
guential insertion distribution (Theorem 28) applies here

CHAPTER3. Adaptive PMA 74

Theorem 30 When inserted elements have fixed rank (hammer insertHRNA
has QlogN) amortized element moves and1G- (logN)/B) amortized memory
transfers.

Proof. In the hammer-insert case, we always insert new elemergs afgiven
elementx. Notice that in the rebalancing subtree rooted,athere is a unique path
from the leaf node containing the elemerib the root nodel,. Let nodey; (i < ¢)
be the ancestor of at leveli, and lety; be u;’s sibling. An important difference
between this proof and the proof of Theorem 28 is thai and siblingvi_1 may
now be either left or right children af, fori < ¢.

Recall that, as in the proof of Theorem 28, for leweK ¢, Ak (¢,t) is the
number of sweeps of the leftmost nodeat levelk between thét — 1)th sweep
and thetth sweep of node.

Intuitively, we want to use a similar argument as in the prafofheorem 28, to
show that (¢,1) is bounded as in (87), up to a constant factor, that is, fostzon

B,
-Nk(& 1) < 8267K+1.

This approach comes close to working, but requires a mucle temhnical
generalization. In particular, as we show, RecurrencepdBa (85) still hold, but
there is one value af+ 1 below which Recurrence (84) might not.

In the following, we explain why there may exist a node1 below which
Recurrence (84) does not hold. Then we explain that

Ne(i+1,2) = O(2F17%),

which is the same as the solution of Recurrence (84) up tostaotfactor. Finally,
we explain why the analysis from Theorem 28 still applieshewhen there exists
such a nodej ;1.

We first explain why there may exist a nodg 1 for which Recurrence (84)
does not hold. To do so, we examine the density of the ehiédter the first sweep
of uj+1 and demonstrate that Dengitl) can be different with sequential inserts and
hammer inserts. With sequential inserts, a rebalancettripst as few elements as
possible iny; and as many elements as possiblg;iwithout disobeying the upper
and lower density thresholds. With hammer inserts, we alttw to be as sparse
as possible while still maintaining the rebalance property

CHAPTER3. Adaptive PMA 75

But now we have an additional constraint, timmer constraint, that node
X must remain iry;. What we mean by this additional constraint is the following
Suppose that; is a left child, andy is a right child. In a rebalance we try to put as
few elements as possibletinand as many elements as possible irBut if the last
element iny; is X then we cannot reduce the densityuwfany further — the next
element to move intg; is X, but thenv; becomesj;.

To summarize, there are two cases in which hammer insertsdiffay from
sequential inserts. The first case is whegns a left child andx is the rightmost
element inu; after a sweep ofi 1. The second case is whenis a right child and
x is the leftmost element ig; after a sweep ofi ;1. In both cases Recurrence (84)
may not hold foruij;1. (If x is not in one of these two positions at the end of
a rebalance, then the critical constraint is the rebalamopepty rather than the
hammer constraint, as with sequential inserts.)

We now explain that in both cases, the number of sweepgsloétween the first
sweep and the second sweepugfi, Ak (i + 1,2), still has the solutio®(2'+1%).
When nodey; is a right child andx is the leftmost element in;, the bound fol-
lows from the analysis in Theorem 28 because the insertrpatfes; matches the
sequential-insert case. The difficult case is whgeis a left child andk is the right-
most element iny; after the first sweep afi, 1. We call this thetail-insert case.
This case corresponds to a stage beginning after any swagp;oivhen the ele-
mentx is the rightmost element in; and ending when nodg reaches its upper
threshold, i.e., at the next sweepwpf1. We call this interval théail-insert stage
of u;. Below, we give a bound on the number of sweepskah the tail-insert case.

We prove the following claim. The proof is similar to Theor@®, but signif-
icantly more technical.

Claim 31 Consider the tail-insert stage of:uthe stage starts after one sweep of
Ui+1 and ends just before the next sweep;gfiuand x is the rightmost element in
u; at the beginning of the stage. Then the number of sweeps efipatliring the
stage is @2'~X).

Proof. We give more details of what happens during the tail-indages During
the tail-insert stage, new elements are inserted &ftére rightmost element af;
at the beginning of the stage. At the end of the stage, mpdeaches its upper

CHAPTER3. Adaptive PMA 76

threshold, which triggers the next sweep of nogdeg. Observe that sweeps occur-
ring during the tail-insert stage do not involvg u;’s sibling. This is because the
tail-insert stage ends whenreaches its upper threshold, which triggers the sweep
of ui.1. We will bound the number of sweeps af during the tail-insert stage of
Ui.

Below, we show that it suffices to prove Claim 31 when theitekrt stage
begins with Densitfu;) = pij+1. To do so, we show that the fewer elements there
are iny; at the start of the tail-insert stage, the more sweeps thiflreenof ux (de-
scendant ofj;) during the stage. That is, the number of sweepg0$ maximized
when noday; starts with density;. 1, the lowest density possible after a sweep of
Uit

We now explain why the worst case is when Density= pj;1. Recall that
X is in uk, and since all inserts are afterthey are all inuk. If nodeu; has a low
density at the beginning of the stage, then more elementsearserted aftex and
into ux without triggering a sweep af 1, which means that there are more sweeps
of ux during the stage.

We present additional notation. We defingi,t) to be the number of sweeps
of ux between thet(— 1)th and theth sweep ofy; since the beginning of the tail-
insert stagé. We definePhase t of u; to be the phase starting after the—(1)th
sweep ofu; and ending at th&th sweep oly; since the beginning of the tail-insert
stage. Thus, by the above two definitions, the number of ssvefyg in the Phase
t of u; equalsck(i,t). To simplify the proof, we constrain the density threshalgls
Th, Po, andpy, as follows:

To—Th=pPh—pPo and To < 5po. (88)

For example, settingo = 0.16, p, = 0.32,1, = 0.64 andty = 0.8 satisfies (73)-(76)
and (88). Therefore, by (74) and (75), for angg@ < h we obtain

T+pe=To+pPo=Th+pn and T, <5p,. (89)

Observe that for any choice of constaptsandtyg, there exists a constafif such
thattg < Bpo. In this proof, we adopt the constraint that< 5pg for the sake of

3Thus,c(i,t) is defined analogously tw (i,t), except that we begin counting from the begin-
ning of the tail-insert stage rather than from the first inseo the APMA.

CHAPTER3. Adaptive PMA 77

relative simplicity; we will explain why the results alsorpathrough if we choose
some bigger constant instead.

To establish Claim 31, we decompose the sequence of inserefore the
first sweep ofu; .1 since the beginning of the tail-insert stage into phasas, s
defined above. By the similar analysis to that of Theorem 28show that there
are at most three phases of nagi®efore the first sweep af ., 1.

Now we prove that there are at most three phases of the tail-insert stage
of u;; we do so by analyzing the densities in each phase.

i+ 1 p
it ® Yyt ® Uit

. [/\ . /
N "\
~ o]

2pi41 —pi p; 2piv1 — pi Ti—1

Figure 9: Phase 1 ofy starts from Densitju,_1) = p; (left) and ends
at Densityui_1) = Ti_1 (right). The marker elementis indicated by a
black dot. The region that is rebalanced at the end of thegpkashaded.

I) Consider the densities of child nodes 1 andv;_; of nodey; at the end of
Phase 1 ofi. The first sweep ofl; occurs, wheny;_1 reaches its threshold
Ti_1 (see Figure 9). After the first sweep af (which is the beginning of
Phase 2), we claim that the marker elemeisteither the leftmost element of
the right child ofu; or the rightmost element of the left child of.

We now prove this claim. Notice that the number of elements; inefore
x is 2pi+1Capui—1) and the number of elements in after x is (Tj_1 —

pi)Capui—1). To see why, observe that by assumption the phase begins when

Density(u;) = pi+1. Since all inserts are after the number of elements be-
fore x stays the same. A rebalance of naglés triggered whemi_1 reaches
its threshold, aftefti_1 — pj)Cap(u_1) elements have been inserted.

It is legal foru;_1 andv;_1 to contain 9;j1Cap(ui_1) elements andti_; —
pi)Capui—1) elements, and therefore the sweep at level is constrained by

CHAPTER3. Adaptive PMA 78

the hammer constraint (not density constraints). Markemehtx is always
stored in the child having the smaller density (by the hamaoogrstraint).
Thus, if there are more elements befarthan afterx, thenx is in the right
child of u; (uj_1 is a right child). Otherwisex is in the left child ofu; (uj_1 is
a left child).

In the first case, whenr is the leftmost element of the right child of, the
insert pattern intayi_1 in Phase 2 is exactly the head-insert case. Thus, by
Theorem 28, the number of sweepswpfin Phase 2 is given by (i,2) =
0(2%).

In the following we consider the second case, whasa the rightmost ele-
ment of the left child oly;. Thus, after the first sweep of, by the hammer
constraint, we have the the following densities:

Densityui_1) = 2pit+1,

Density(vi_1) = Ti—1—pi-

Uit1 ‘ L Uit1 ‘

S v e N /
A N
0]

2piy1 Ti-1 7 Pi Ti—1 Ti—-1 = Pi

Figure 10: Phase 2 ofiy; starts from Densitju,_1) = 2p;;1 (left) and
ends at Densityu;_1) = 1;_1 (right). The marker elementis indicated
by a black dot. The region that is rebalanced at the end of tlasepis
shaded.

II) Now (for the above second case) we consider the densifiehild nodes
U1 andv;_1 of nodey; at the end of Phase 2. The second sweap otcurs
whenu;_1 reaches its upper threshold again (see Figure 10). Reedlhth
the beginning of the phase, we chose to put the marker elemehe child
of u; having the smaller density, and since we are in the secor tas was

CHAPTER3. Adaptive PMA 79

the left child ofu;. Thus, by the hammer constraint,
20i+1 <Ti—1—Pi- (90)

Whenu;_1 reaches its threshold, the number of elements aftery; is the

number of elements ig_1 afterx (the new elements inserted in Phase 2) plus
the number of elements in_1, i.e.,

(Tica—2piv1)Cap(ui—1) + (Ti—1 —pi)Capvi-1). (91)

Observe that (91) is greater than1Cap(vi—1) by (90). Therefore, the sec-
ond sweep oly; is constrained by the rebalance property, not the hammer
constraint. In particular, after the second sweep;phodev;_; has density

Ti, the upper threshold of its pareat nodeu;_1 has (the remaining) den-
sity Ti—1+ (Ti—1 — pi) — Tj, Which equalg;_; — pj_1 by (89). Thus, after the
second sweep, we have the following densities:

Densityui—1) = Ti—1—pi-1,
Density(vi_1) = T;.

[I) We now consider the densities of child nodas; andv;_1 of nodeuy; at
the end of Phase 3. (We focus on the above second case in liwifhg),
but the first case is now essentially the same.) The third gwég; occurs
whenu;_1 reaches its threshold for a third time (see Figure 11). Wlen
does the third sweep, the densitywpfs (Ti_1 +T;)/2 > Tj, Soy; is above its
upper threshold. Thus, the end of Phase 3 is the first sweap p$ince the
beginning of the tail-insert stage.

We have therefore shown that (for the second case) theret anes three
sweeps ofy; before the first sweep af, 1, that is,

For the first case, we have the similar recurrence

Celi+1,1) < ce(i,1) +0(27%) + ¢«(i,3). (93)

CHAPTER3. Adaptive PMA 80

T 2N

o u; ‘ ‘ Vi) Ui ‘ ‘ Vi

i

|
/\
N s I

Ti—1 — Pi—1 T; Ti—1 Ti

Figure 11: Phase 3 ofj; starts from Densityu;_1) =T1;_1— pi_1 (left) and
ends at Densitjy;_1) = Tj_1 (right). The marker elementis indicated
by a black dot. The region that is rebalanced at the end of hlasepis
shaded.

As we will show in (94), Recurrence (93) in the first case isialty bounded by
Recurrence (92). In the rest of this appendix, we only needd@n (92).

Until now, the proof has been similar to the proof of Theoresn Blowever,
if we continue to decompose Phase 2, we find that in the wosst iteere are three
subphases. Furthermore, we cannot use the recurtgic®) < c¢(i,2) to prove
our bound as in Theorem 28, because the recurrence is traedoweak.

To establish our bound, we instead prove the following nemaes for Phases
2and 3:

cx(i,2) < ce(i—1,1) + c(i —3,1) +O(2 %), (94)

and
cw(i,3) < (i —3,1)+0(2"7%). (95)

Before we establish Recurrences (94) and (95), we provetloeving claim, which
describes a subphase in both Phases 2 and 3:

Claim 32 Consider a tail-insert stage of , starting atDensity(ui_2) = 4pj11
and ending when nodg_» reaches its upper threshold. The number of sweeps of
Uk during this stage is at most (i — 3,1).

PROOF OFCLAIM 32: We first give the densities of nodas 3, Uj_4, Vi_3, and
V;_4 at the beginning of the tail-insert stagewf,. We show that the rebalance is
constrained by the upper density thresholdg of andv,_4, that is, at the beginning
of the tail-insert stage, Density_3) = Ti_2 and Densityv;_4) = Tj_3.

CHAPTER3. Adaptive PMA 81

i—2 ‘ 4pit1 [‘ ‘ > Ti—2 L4 ‘
i—3 ‘ Ti2 > 3pit1 O o H >Ti—3 e ‘

- Ui—a Vi—4a Ui—q

Figure 12: The tail-insert stage af;_» starts from Densit{u;_4) > pi1
(left) and ends at Density;_4) = Ti_4 (right). The marker elementis
indicated by a black dot. At the end of the tail-insert stafyg; 0,, node
Ui_1 is rebalanced.

The tail-insert stage af;_» begins after a sweep of_», and therefore by the
rebalance property

Densityvi_3) <Tj—» and Densityv_4) <Tj_3.
From (89), we obtain
Density(vi_3) <5pj_» and Densityv;_4) < 5p;j_3
From (73), we obtain
Density(vi_3) <5pj+1 and Densityv;_4) < 5pj;1. (96)

Now we bound the densities af_3 anduj_4s. The number of elements in_sz is
the number of elements iR_» minus the number of elementsvn 3 (and similarly
for uj_4), that is,

Densityui_3) = 2Densityuj_2) —Density(v;_3), (97)
Density(ui_4) = 2Densityui_3) —Density(Vi_4). (98)

From (96), we obtain
Density(Ui—3) > 8pj+1— 5Pi+1 = 3Pi+1- (99)
Now from (96) and (99),

Density(Ui_4) > 6pj+1—5Pi+1 = Pit1. (100)

CHAPTER3. Adaptive PMA 82

Inequalities (99) and (100) show that at the beginning ofstiage, the densi-
ties ofu;_3 andu;_4 are above the lower bound threshofiis, andp;_3, respec-
tively, which means tha¥;_3 andv;_4 are at their parents’ upper thresholds, i.e.,
Density(vi_3) = Tj_2 and Densityvi_4) = Tj_3.

We now explain that when nodg_4 reaches its upper threshold, then, also
reaches its upper threshold (see Figure 12). This is beveluse Densityu;_4) =
Ti_4, we already have Densityi_4) = 1j_3. Therefore,u;_3 is above its upper
threshold. We already have Density 3) = Tj_», and thereforey;_» is also above
its upper threshold.

Therefore, the number of sweepswpfin the tail-insert stage afi_» is equal
to the number of sweeps ok in the tail-insert stage ofi_4 (sinceu;_4 is the
rightmost grandchild of;_»; see Figure 12). By the definition of the tail-insert
stage, the number of sweepswgfin the tail-insert stage afi_4 (which starts with
Density(Ui—4) > pi+1) is less tharck (i — 3,1) (the number of sweeps of; in the
tail-insert stage ofi;_4 that starts with Densify;_4) = pj_3). L]

Now we are ready to prove (95). To do so, we give the densifidsecsibling
nodesu;_» andv;_» at the beginning of Phase 3. Recall that Phase 3 starts with
nodeu;_1 having densityj_1— pj_1, Vi_1 having density;, and the marker element
x residing inu;_;. Since the number of elements befardoes not change, node
U1 thus has @i 1Capu;_1) elements beforeand(tj_1 —pi—1—2pi+1)Capui—1)
elements (the remaining elements) aker

We now show that the number of elements aktés smaller than the number
of elements beforg in nodeu;_1. Becausd;_1 < 5p;_1 by (89), we obtain

Ti—1— Pi—1— 2Pi+1 < 4pi—1— 2Pi1.
Fromp;_1 < pi+1 by (73), we have
Ti—1—Pi-1— 2Pi+1 < 2Pj41- (101)
Equation (101) says that the number of elements aftesmaller than the number
of elements beforg Thus, the marker elemenrtresides in the right child afi_1,
which isu;j_».
We now break Phase 3 gfinto subphases and bound the number of sweeps of

Uk in the subphases. Subphasd Phase 3 ofj; is the period between tHé— 1)th
andtth sweeps ofi_1.

CHAPTER3. Adaptive PMA 83

Now there are two cases. Case A is that ngde has density;_1, i.e., this
level is constrained by the rebalance property. Then we loale one subphase in
Phase 3 ofj because when;_» reaches its upper threshaid », then its parent
ui—1 has densityti_1 +Ti_2) /2 > Ti_1, which means the end of Phase 3.

In the following, we consider Case B when the sweep at leve? is con-
strained by the hammer constraint. In Case B, we decomposgePhinto two
subphases as follows:

Ce —
/ \ _ \
- ‘ Ui—2 Ji2 Ui

i—2 ‘ Vi

2 ‘ L]

4pita 2Ti—1 — 2pi—1 — 4pit1 4pit1 Ti-2

Figure 13: Subphase 1 of Phase 3 starts from Derfsjty,) = 21j_1 —
2pi_1 —4pi+1 (left) and ends at Densitw_2) = Ti_» (right). The marker
elementx is indicated by a black dot. The region that is rebalancebeat t
end of Subphase 1 is shaded.

e We consider the densities af » andv;_» at the beginning and end of Sub-
phase 1 (see Figure 13). At the beginning of Subphase 1, ecéthe ham-
mer constraint, the density of the left child 5 is 4p; 1 (since the number of
elements beforeis alwaysp;1Cap(u;) — see the beginning of the appendix)
and the density of the right chilg_» is 2t _1 — 2p;j_1 — 4pj.1 (the remaining
elements in nodg;_;). At the end of Subphase 1, node» reaches its upper
thresholdrtj_».

Notice that during Subphase 1, the marker elenxestthe first element in
nodeu;_» and thus withinu;_» we have the head-insert case. Therefore, by
Theorem 28, there a@(2'~2*) sweeps ofl in Subphase 1.

e We now consider the densities af » andv,_» at the beginning and end of
Subphase 2 (see Figure 14). The beginning of Subphase hisafigr the
sweep of node;_;. By the rebalance property, the density of the right child
at the beginning of Subphase 2tis1 because before the sweep its density
wasTi_»2 (> Tj_1). After the sweep of node, _1, the marker elementmoves
to the left child ofui_1. Therefore, the left child becomes node, and

CHAPTER3. Adaptive PMA 84

Density(Ui—2) = 4Pj+1+ (Ti—2 —Tj—1).

Subphase 2 ends when nagle, reaches its upper threshald ,. Because
the density ofv;_» is already at parent;_1’s thresholdr;_1, the end of Sub-
phase 2 is the end of Phase 3.

i-1 | |

ZANINREV o ¢

Sl AR o Sl
<

dpiv1 Tiio —Tia Ti—1 dpiy1 Tio2 — 4IJ+1 Ti—1

Figure 14: Subphase 2 of Phase 3 starts from Derfsity,) = 4pj+1 +
Ti_2 — Tj—1 (left) and ends at Density;_2) = T;_2 (right). The marker
elementx is indicated by a black dot. At the end of Subphase 2, npde
the parent ofj_1, is rebalanced.

We now prove that the number of sweepsupfin Subphase 2 is less than
Ck(i—3,1), the number of sweeps from Claim 32. Both Subphase 2 and the
tail-insert stage ofl,_» in Claim 32 end when nodg_» reaches its threshold
Ti—2.

However, Subphase 2 starts with more elements after theemakimenix

than does the tail-insert stagewpf , and the same number of elements before
the marker element In particular, Subphase 2 hagj4,Capu;_2) elements
before andti_> —1j_1)Cap(u;j_2) elements aftex. In contrast, the tail-insert
stage ofu;_ has 4;;1Capui_2) elements before and no elements atter

Thus, the number of sweeps af in Subphase 2 is at most the number of
sweeps ol in the tail-insert stage afij_» because fewer elements can be
inserted intay;_» beforeu;_»’s upper threshold is reached.

In summary, there are at most two subphases in Phase 3 andhtibenof sweeps of
Uk in these two subphases is at mogfi — 3,1) plusO(2'~2-%), which establishes
(95).

We now prove (94). To do so, we decompose Phase & wito three sub-
phases, and we analyze the densities; 0of andv;_» in each subphase.

CHAPTER3. Adaptive PMA 85

e We consider the densities af » andv,_» at the beginning and end of Sub-
phase 1 (see Figure 15). At the beginning of Subphase 1, ®émsh) =
pi—1 and Densityv;_») = 4pi+1 — pi—1 by the rebalance property.

Here and below we assume that; 4 — pi_1 < Tj_1. The alternative, that
4pi+1 — Pi—1 > Ti_1, is the simple case. Then Dengiy 2) = Tj_1. As a
consequence, there are only two subphases in Phase;2asfd the recur-
rence is simpler.

Subphase 1 ends with the density wf, reaching its upper threshold
Ti_2. The number of sweeps afx in Subphase 1 is exactly equal to
Ck(i—1,1) because both of them start at Dengiky) = pi—1 and end with
Density(uj_2) = Tj_2.

4pit1 — pi-1 pi-1 4pit1 — pi—1 Ti—2

Figure 15: Subphase 1 of Phase 2 starts from Derfsijty,) = pi_1 (left)
and ends at Density;_») = Tj_» (right). The marker elementis indi-
cated by a black dot. The region that is rebalanced at the Efdin
phase 1 is shaded.

e We next consider the densities of » andv;_» at the beginning and end
of Subphase 2 (see Figure 16). The beginning of Subphaseighisafter
the rebalance ofi_;. Notice that there arep. 1Capui_2) elements before
the marker elementand(Ti_2 — pi—1)Capui_2) elements after. Because
Ti_2 < 5pj_» by (89), we obtain

Ti—2— Pi-1 < OPi—2 — Pi-1-.
Because;_» < pi_1 < pi+1 by (73), we have
Ti—2—Pi—1 <4Pit1. (102)

Equation (102) says that the number of elements aftetess than the num-
ber of elements beforein nodeu;_;. Therefore, the marker elemenwill be

CHAPTER3. Adaptive PMA 86

in the right child ofu;_1 after the sweep. By the same argument as in Phase 3,
we assume the sweep at level 2 is constrained by the hammer constraint.
Otherwise, Densitlw;_») = 1i_1, and there are only two subphases in Phase
2.

Thus, we consider the case thaty is still below its parent’s threshold, i.e.,
Phase 2 needs a third subphase before it finishes.

We now bound the number of sweepsfin Subphase 2. Since the marker
elementx is the leftmost element in;_», and thus withiny_» we have the
head-insert case. Therefore, by Theorem 28, ther©&2e 2 ¥) sweeps of
Uk in Subphase 2.

i [|
LS. TN

4pit1 Tico — pi_1 4pita Ti2

Figure 16: Subphase 2 of Phase 2 starts from Derfgity,) = Ti_2 — pi—1
(left) and ends at Density;_») = Ti_» (right). The marker elementis
indicated by a black dot. The region that is rebalanced atetitk of
Subphase 2 is shaded.

e Finally, we consider the densitiesf 2 andv;_» at the beginning and end of
Subphase 3 (see Figure 17). Subphase 3 is same as Subph&@2®8. By
the same argument, the number of sweepgof Subphase 3isy(i —3,1).

i—1 ’ ® U1

I rrea—
Y s e BN ey e
dpit1 Tic2 —Tic1 T dpit1 Tic2 —4Apiy1 1,

Figure 17: Subphase 3 of Phase 2 starts from Dertsjty,) = 4pi; 1+
Ti_» —Ti_1 (left) and ends at Densify;_») = Ti_» (right). The marker
elementx is indicated by a black dot. At the end of Subphase 3, npde
is rebalanced.

CHAPTER3. Adaptive PMA 87

In summary, there are at most three subphases in Phase Zeamahtiver of sweeps
in these three subphases is at mogti — 1,1) plus O(2'~3-¥) plus ck(i — 3,1),
which establishes (94).

We can now prove our desired bound. Plugging (94) and (95) (@), we
obtain

Ce(i+1,1) < ce(i,1) + ce(i—1,1) +2¢¢(i —3,1) + O(2 7).

We prove our bound by induction. Assurag(j,1) < B2/~ for j <i and the
constant irD(2' %) is a. If we chooseB bigger than 4, then

Ce(i+1,1) < P2 K4p21 K4 2p2 3K 2K

= Lzlszi—uazi—“

< BziJrlfK)

Thereforecy (i +1,1) < B2 1K is true for alli > 0, as claimed. O

Finally, we show why, given Claim 31, the analysis from Theor28 applies
to hammer inserts. Recurrence (84) is true above an inteateatbdey;, that is,

9\[}(([- 17 2) < 2€—i—29\[K(i + 17 2)

Moreover, by Claim 31,
M((I +1, 2) S BziJrlfK

for some constarft at nodeu;. Therefore,
A (€—1,2) <B2' L
Thus, the solution for Recurrence (83) is
N (£, 1) < 20K+,

and the theorem follows. []

CHAPTER3. Adaptive PMA 88

3.3 Analysis for Random and Bulk Insertions

In the previous section we analyze the sequential and hanm®ertion distribu-
tions, where the inserts hammer on one part of the PMA. Indbition we first
analyze random insertion distribution, where we insetrafandom elements in
the array. Then we generalize all of these distributionscamgider the bulk inser-
tion distribution.

The bulk insertion distribution for functioN®, 0 < a < 1, is defined as fol-
lows: pick a random element and ins&f elements after it; then pick another
element and repeat. Bulk insert generalizes all distrimstseen so far: Far =0,
we have random inserts, and k= 1, we have sequential or hammer inserts.

Random Inserts. We now give the performance for the traditional PMA and
APMA with random inserts. In the traditional PMA or APMA, da@nsertion
causes only a small number of elements to be moved or triggeesopying of
the entire array.

Theorem 33 ([23,43]) Consider random insertions into a traditional PMA or
APMA, in which each new element is inserted after a randomete in the PMA
or APMA. Whenever the density of the entire array is belownthgimum density
threshold, then each insert causefl@@N) element moves and(O+ (logN)/B)
memory transfers with high probability, i.e., probabilpglynomially small in N.
Specifically, each insert causegddogN) element moves and(O+ a(logN)/B)
memory transfers with probability at least- 1/N?.

Even simpler rebalance schemes perform well under randserts) as shown
in [23,43]. Publications [23, 43] show that there @é@ogN) moves with high
probability for random inserts, even with the following gil@ rebalance proce-
dure: When we insert an elemgnafter an element, we simply push the elements
to the right or left to make room for. The maximum number of elements moved
is O(logN) with high probability. Thus, for the traditional PMA, as lpm@as the
density thresholds in the leaves is a constant less than deee no big rebalances
in the tree.

CHAPTER3. Adaptive PMA 89

Bulk Inserts. For bulk inserts, we have the following theorem:

Theorem 34 For bulk inserts with fN) = N® (0 < a < 1), the APMA achieves
O(logN) amortized element moves and1a- (logN)/B) memory transfers.

AN

Figure 18: An illustration showing the tree divided at heiglitlogN].

The intuition for Theorem 34 is as follows: Conceptually,dwde the virtual
tree into a top tree witt®O(N/(f(N)logN)) leaves, each of which is the root of
a bottom treeT with ©(f(N)) leaves, i.e.@(f(N)logN) array positions. Thus,
we split the virtual tree at heiglit = [alogN]. Bulk inserts can be analyzed by
looking at the process as a combination of random and hammserts: random
inserts in the top treA with big leaf nodes of sizé¢(N)logN and hammer inserts
in a bottom tre€Tl of size f(N)logN. In an insertion, we randomly choose a leaf
node of top treéA and do a hammer insert at the bottom subtree of the chosen leaf
node ofA.

We first show thatf (N) = N% (0 < a < 1) hammer inserts intd costs
O(logN) amortized moves when all the nodes are well balanced. Therexw
plain that thesd (N) inserts trigger at most one rebalance in the top &e&hus,
from the point of view ofA, there is a big element of siZigN) inserted, and this
big insert cost©(logN) amortized moves in the leaf node.

We prove the following lemma fof (N) = N©.

CHAPTER3. Adaptive PMA 90

Lemma 35 Consider inserting fN) = N® elements after a fixed element x in sub-
tree T of size NlogN. Suppose that at the beginning of these insertions, eadf no
in T is well balanced. Then, the amortized number of moveglsg®) and the
amortized number of memory transfers i€lQ- (logN)/B).

Proof. We first show that all sweeps during the insertiond\8felements occur

in subtreeT. Because the root node is well balanced, the density of tbieisat
mostty 1. Thus, before rooty goes outside of its upper threshold, we can insert
at least{ty — Ty 1) (N®logN) = ©(N®) elements without triggering sweeps above
levelh'.

Now we give some assumptions and notation. For simplicityagsume that
there are sequential insertions within (We know from the proof of Theorem 30
that sequential inserts and hammer inserts have the saysiamxcept at one level
of the recurrence relations.) Now we denote the leftmosenod at levell asu;.

As in the proof of Theorem 30, we usé& (4,i) to denote the number of sweeps of
nodeu at levelk between théi — 1)th andith sweep ofu,. Thus, the amortized
number of element moves is at most
1
N > 2 +1,1)2logN. (103)
k=0

We bound (103) by considering the worst case wheu,diave density as high
asTy,.1, 0< ¢ < h. The time wheny, does its first rebalance is the time when;
reaches its upper threshal@d ;. This period can be decomposed into two phases,
as before:

e Phase 1 of noda, starts with nodey,_» having densityt,_; and nodev,_»
having densityt,, 1. Phase 1 ends with node_» having densityt, ». Thus,
after the first rebalance af,_1 (see Figure 19), which occurs aftary_» —
T,_1)Cap(uy_») inserts, we have densities:

Densityu;_2) = Ty,
Densityv,_2) = Ty_1.

e Phase 2 of node, starts with nodeu,_», having densityt, and ends with
nodeu,_» having densityt,_». When nodeay,_; does its second sweep (see

CHAPTER3. Adaptive PMA 91

T(+1 ‘ ‘ ‘

Figure 19: Phase 1 of node, starts from Densityu,_») = 1,1 (left) and
ends at Densityu,_») = T,—2 (right). The shaded region is rebalanced.

Figure 20), which occurs after, » —1,)Capu,_») inserts, the density of
nodeu,_1 is (Ty—2+T1s—1)/2 > 141, SO nodeu,_1 is above its threshold.
Thus, the end of Phase 2 is the first rebalance of mpde

f/\ F

l—1 To42 ‘ Te+2

/\

Figure 20: Phase 2 of node, starts from Densitju,_») = 1, (left) and
ends at Densityu,_») = T,—2 (right). The shaded region is rebalanced.

-2 , _

Thus, we have recurrenc (¢,1) < Ak (¢ —1,1) + Ak (¢ — 1,2). However,
we cannot use the straightforward bound(4,1) < 2ak(¢ —1,1) as we did in
Lemma 29. When we try to use this bound, we obtain the solutip(’,1) <
2!=%+1 Thus, we obtain an amortized number of moves

i "
1 / K 1 H —Kk+25K
S Ak +1,1)2%0gN < o3 27224 og
k=0 k=0
= O(log*N),

which is greater than our goal 6f(logN). Instead, we need a tighter analysis.
Now we analyzenk (¢ — 1,2) in more detail. The boundi (¢ — 1,2) is the

number of sweeps of nodr at levelk between the first and second sweeps,of.

After the first rebalance af,_1, we have Density,_») = 1,1 and Densityv,_3) =

CHAPTER3. Adaptive PMA 92

Ty_» according to our rebalance strategy for the sequentiakimattern, i.e., both
V;_» andv,_3 already have densities as high as their parents’ upperhibicks (see
Figure 21). The time when,_1 does its next sweep is the time when , reaches
its threshold. Because_3 has densityty_», this is also the first time whew_»
does its next sweep, and becawse, has densityty_3, this is also the first time
whenu,_3 does its next sweep, i.e., boty_»(¢ —1,2) anday_3(¢ —1,2) are 1.
This process continues a number of levels down the tree teetsgrdined below,
but not to the leaves.

(-2 ‘ ‘ ‘ Te—1

E

Te+2

/\

Figure 21: The densities of node,’s descendants at the beginning of Phase 2 of npde

The process does not continue to the leaves because aftirsthebalance
of u;_1, the density of each leftmost child is decreasing from topdtiom. Thus,
at some level — j, nodeu,_j may be so sparse that there are not enough elements
to fill its right child v,_;_, to densityt,_j. Specifically, we claim that as long as
Density(u,—j) > T, then we can fill,_;_1 to densityt,_j. Because

Densityu,—j) > Ty
> (th+pn)/2
= (T—j+pe-j)/2

by (74) and (75), we can fiN,_;_, to densityt,_; while keeping the density of
U,—j—1 great tharp,_j. Thus, there is only one sweepwf_; in Phase 2 oty i.e.,

Ny—j(—1,2) = 1.

CHAPTER3. Adaptive PMA 93

We now calculate the lowest levekuch that Densitiuy) > ty. First, we give
the densities of the nodes above lexelfter the first rebalance of_;.

Claim 36 Forlevel/— j > x,
Density(Us—j) = T/, 302_j_1- (104)

The proof of this claim is by induction op The base case is= 2. Eq. (104)
is satisfied because Density_») = 1,. Now assume that the claim is true for level
¢ —j and all levels above. We show that the claim is also true feelle— j — 1.
Because — j > x, Densityu,_j) > (t,—j +pr—j)/2. Thus, we can fill,_j_; to
densityt,_j. Thus, we obtain

Densityu,—j—1) = 2Densityu,_;)— Densityv,_j_1)
20y 302 1~ To]
= Tsz2i1-j-2:

So (104) is true for leved — j — 1.

Now we need solve the inequality

Ty 32i-2_j—1 = Th (105)
to determinex. Ineq. (105) is equivalent to
3.272_j_1<h-v.

Because < h' = alogN for some fixed constant, j = IglgN —O(1). That is, the
lowest level thaix can be is? —IglgN + Ay, whereAq is a constant that depends
only ona. Thus, we have formula

Ax(0—1,2) =1 (106)

for/—1>k>/—I1glgN+ Aq.

For those levels lower thaih—IgIgN + A4, we use simple but straightforward
bounds: each sweep of a node costs at most two sweeps ot ithilef assuming
that each node is within balance. Thus, we have formula

N0 —1,2) < 2071919 Pha K (107)

CHAPTER3. Adaptive PMA 94

forO<k </—IglgN+Aq.
Combining (106) and (107), we obtain

Nx(€—1,2) <

[Zﬁflglg N+)\u*K‘|) (108)
Now we are ready to boungk (¢, 1) by using (108):

A(0,1) < A(f—1,1)+A(0—1,2)
-1
< A+) Ak, 2)
i=K
-1
= 1+ 2«(i,2)
i=K
(-1
< 1+Z"2if|g|gN+)\a*K‘|
i=K
(-1
< f—K+1+ Z 2ifIgIgN+)\a7K
i=K+IglgN—Aq

< E_K+1+2€—|g|gN+)\a—K‘

Finally, we establish that the amortized number of movemémt theseN®
elements is at most

h/
N—la > a(H,1)2logN

k=0
1 [alogN] [alogN]
S Na Z (h’_|<-|-1)2"logN-|-W Z M =IgIgN-+Aa—K oK [og
K=0 k=0
= O(logN).

Now we bound the number of memory transfers. Observe thetafiy insert,
the elements moved from a contiguous group, and the movdsecaarformed with
a constant number of scans. Therefore the amortized nurhbeeraory transfer is
O(1+ (logN)/B).]

Based on Lemma 35, Theorem 34 is proved as follows.

PROOF OFTHEOREM 34: We consider each bottom subtieeSuppose that
an ancestor of the root af does a rebalance. Then the rootTohas density at

CHAPTER3. Adaptive PMA 95

mostty 1. Thus, we can insert at leasty — Ty 1)©(N® logN) = ©(N®) elements
without triggering sweeps above levg] i.e., inserting\N® elements ifT triggers at
most one rebalance in top subtrke

Now we consider aound of N® inserts into some bottom subtrde We
show that there ar®(logN) amortized element moves in the APMA. Recall that
we use the predictor to store recent inserts. For theNif'sinserts, the predictor
only uses one cell. When the next' inserts start to hammer, the predictor uses
the second cell to store new elements. After the count numbise second cell
reaches loty, which means there are ldbgnew elements at the second position,
the count number in the first cell begins to decrease. Thuspat 2logN inserts
remove the first cell, meaning that the hammer-insert pattarts after the first
2logN inserts. Thus, we divide thd® inserts in the round into two parts: the first
2logN ones and th&l® — 2logN subsequent ones. This is one dividing point.

The second dividing point is when some insert triggers alaeloa in the top
subtreéA. We assume the second dividing point is after the first one.alternative
is similar to the following analysis, although somewhati@aslhese two dividing
points split the round into three parts. We analyze the cbiteorebalance in the
bottom subtred for these parts as follows:

1. The rebalance cost for the first part, the insertion of tis€ 2ilogN elements,
is at most Bi® logN. To see why, observe that there exists a nddef size
NY, such that these 2ldgelements trigger at most one rebalance ahbmvey
an argument similar to that above. This rebalance is withiand therefore
costs at mosN“logN. Thus, the total cost is the cost of this rebalance, at
mostN®logN, plus the cost of the rebalances belolwat most(2logN —
1)NC,

2. The second part is from th@logN)th element insert to the element insert
triggering the rebalance in the top subtree The total cost is at most the
worst-case cost in Lemma 35, which@gN® logN).

3. The third part is from the element insert triggering thieatance in the top
subtreeA to the last element insert of thebl¥ elements. From Lemma 35,
the cost is less than the cost to insertMdfi elements in subtre® whose
ancestor did the rebalance, whichO§N® logN).

CHAPTER3. Adaptive PMA 96

Thus, without counting the rebalance cost in the top sulftréee average cost
for each round iI©(N%logN)/N% = O(logN). If we can show that the average cost
in the top subtred is also log\, then the theorem is proved.

From the view point of top subtred, the bulk insert is similar to random
inserts of “big elements” of sizH® in A, because big element triggers at most one
rebalance imA and a leaf node of sizB®logN is a black box that ha®(logN)
amortized moves. So the bulk insert is: randomly choosefantade inA, a black-
box operation to insefl® elements in the leaf node, each wWiliilogN) moves. If
the leaf node reaches its threshold, then a rebalance geted at most once iA.
Thus, as in Theorem 33, we ha@€logN) element moves in the top subtraeAs
before, the memory-transfer bound follows because allagioas are to contiguous
groups of elements.]

3.4 Experimental Results

In this section we describe our simulation and experimesttady. We show that
our results are consistent with the asymptotic bounds fioenprevious sections
and suggest the constants involved. We also demonstrdtdhéhbookkeeping for
the adaptive structure has little computational overhead.

We ran our experiments as follows: For each insert patteenpggan with
an empty array and added elements until the array contameghly 14 million
elements. We began our measurements once the array had Bastal00000.
We recorded the amortized number of element moves per iasavell as the run-
ning times. We considered the sequential, hammer, randachpalk insertion
distributions from the previous sections. We also addedentn the distributions,
combining, for example, the hammer and random distribgtishowing that the
predictor is resilient to this noise. Each graph plots thermediate data points in
a single run.

We ran our experiments on a Pentium 4 CPU 3.0GHZ, with 2GB oMRA
running Windows XP professional, and a 100G ATA disk drivewr @le contained
up to 21 keys, and the total memory used was up # GB. We implemented a
search into the PMA as a simple binary search. The binargkseeais appropriate
since our experiments were small enough that they did nolwevwaging to disk.

CHAPTER3. Adaptive PMA 97

Consequently, the search time was dominated by the inedii® into the PMA.

The adaptive PMA is ultimately targeted for used in cachivmus and
locality-preserving B-trees, where the search time besomlatively more expen-
sive because the data structures do not fit in main memonhidrcase the binary
search will be too slow because it lacks sufficient data lpca{The number of
memory transfers for the PMA insert@(1+ (logN)/B), which is dominated by
the cost of a binary searcB(log[N/B]), as well as the optimal external-memory
search costD(1+loggN).) Thus, our next round of experiments on larger data sets
is to be run with the objective of speeding up inserts in theheaoblivious B-tree.

Head-Insert pattern comparison between APMA and traditional PMA Head-Insert pattern comparison between APMA and traditional PMA

" traditional PA with head-insert —— ' j j j " traditional PNIA with hea-insert —+— '
APMA with head-insert ---- 120 L APMA with head-insert ---x-—- _|

IgN
R
5 R
: ;
\

average movements for APMA and PMA over
the total time (second) during allinserts
@
3

-]

KR

. K)))))
200000 400000 600000 800000 1e+006 1204006 1.4e+006 200000 400000 600000 800000 164006 1204006 14e+006
The Number of Inserted Elements

The Number of Inserted Elements

Figure 22: Sequential inserts: average movEgure 23: Sequential inserts: the running

per insert divided by I§l. The array siz&ime to insert up to % million elements.
grows to two million and ¥ million elements
are inserted.

Sequential insertsWe first compared the adaptive and traditional PMAS on
sequential insertions. For sequential inserts of rougMyniillion elements, the
APMA has four times fewer element moves per insertion thartridditional PMA
and running times that are nearly seven times faster.

Figure 22 shows the average number of element moves in thesPMAe
x-axis indicates the number of inserted elements up4atillion. They-axis in-
dicates the number of element moves divided bM.lg~or both the adaptive and
traditional PMA, we choose the upper and lower density tiokts as follows:

10 =0.92,1,=0.7, pr = 0.3, andpg = 0.08. In our experiments, we double when
the array gets too full. Thus, before doubling, the array dexssity over 07 and

CHAPTER3. Adaptive PMA 98

after, the array has density oveBB. (By increasing the array size by onlylat¢€)-
factor for constantg, we can make the density of the entire array at I1€hste)py,
with only a small additive increase in the number of elememtsed. Thus, we can
have an array whose density is always arbitrary close to 10% The roughly flat
line shows the performance of the APMA. These experimerggest that the con-
stant in front of the IgN (see Theorem 28) is roughly2for the density thresholds
chosen. Because we are measuring number of element moees rédsults are ma-
chine independent. Figure 23 gives the running times foreagperiment. Observe
that the APMA runs almost 7 times faster even though the ameartnumber of
element moves is only 4 times smaller. Hence, the overheatidcadaptive PMA
is small. We suspect that this decrease has to do with cactsogs; the APMA
has a smaller working set than the traditional PMA.

Random-Insert pattern comparison between APMA and traditional PMA Random-Insert pattern comparison between APMA and traditional PMA

Waditional PMA with random-insert —— j j j Traditional PMA with random-inse
'APMIA with random-insert —x— "APMA with random-insef

35+

25

X.,
QarVR B
r e [
X
15+ B

average movements for APMA and PMA over g N
ond) during all inserts

the total time (sec

05

L L L L L L L L L L L L L L
200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006
The Number of Inserted Elements The Number of Inserted Elements

Figure 24: Random inserts: average movddgure 25: Random inserts: the running
per insert divided by I§l. The array sizetime to insert up to % million elements.
grows to two million and ¥ million ele-

ments are inserted.

Random insertsi-or random insertions the traditional PMA performs slightl
better than the APMA because there is seemingly no advairageeven rebal-
alances and because the traditional PMA has less overheadarilom insertions
of 1.4 million elements with the same density thresholds and aseis Figures
22 and 23, both the adaptive and traditional PMAs have thes sssymptotic per-
formance (see Theorem 33). The traditional PMA's constaeatrsto be less than
10% smaller. Figures 24 and 25 show that both the amortizetbeu of element
moves and the running times are comparable, with the toaditiPMA performing

CHAPTER3. Adaptive PMA 99

slightly better, as expected. Figure 25 indicates that tiakkeeping overhead for
the APMA is small.

Bulk-Insert pattern comparison between APMA and traditional PMA, Bulk size f(N)=N~0.6 Bulk-Insert pattern comparison between APMA and traditional PMA, Bulk size f(N)=N"0.6

" raditional PMA with bulkcinsert —— | j j j " traditional PMA with bulkinsert —+— '
APMA with bulk-insert ---x--- APMA with bulk-insert ---x---

overlg N

average movements for APMA and PMA
o ®
T T T T
x
%
x
X
X
X
¥
¥
%
¥
%
*
x
. i . .
d) during all insert

2 sof
60 [

40 |

the total time (second) during all inser

s X

I

X

L L L L L L L —Se-x) L L L L L L
200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 200000 400000 600000 800000 1e+006 1.2e4006 1.4e+006
The Number of Inserted Elements The Number of Inserted Elements

Figure 26: Bulk inserts: average moves pdfigure 27: Bulk inserts: the running time to
insert divided by IdN. The array size growsinsert up to 14 million elements.

to two million and 14 million elements are

inserted.

Bulk inserts We next investigated the bulk-insert distribution, conipgboth
the adaptive and traditional PMAs. For bulk insertions ef fnillion elements,
the APMA has roughly B times fewer element moves per insertion than the tra-
ditional PMA and running times that are oved3imes faster. Figure 26 shows
the average number of elements moves in the PMAs with the samegholds as
in Figure 22 and bulk parametsi’-®. The roughly flat line shows the performance
of the APMA. These experiments suggest that the constanvim 6f the IgN (see
Theorem 34) is roughly 4 for the chosen density thresholdskank parameter.
Figure 27 shows the running times of the traditional and adapPMAs.

Multiple sequential insertsWe next consider a distribution that performs se-
guential inserts into multiple parts of the array at once. fifég chooseR random
elements and then insert one element at a time after one ¥ ttiesen elements.
As long as the number of chosen elemeRtis less than the number of elements
stored in the predictor, most predictions are good and thieimeance of APMA
remainsO(logN). Figures 28 and 29 compare the performance of the traditiona
and adaptive PMAs when we choose 5 fixed elements. The APMAiscase
has a performance only slightly worse than that in the settplénsert case while
tradition PMA still performs much worse.

CHAPTER3. Adaptive PMA 100

Bulk-similar-Insert pattern comparison between APMA and traditional PMA, 5 fixed elements are chosen Bulk-similar-Insert pattern comparison between APMA and traditional PMA, 5 fixed elements are chosen
12
traditional PMA with bulk-similar-inses tradifional PMA with bulk-simil
'APMA with bulk-similar-insert -~ 'APMA with bulk-simi

z 100
> 10
a;; @
¢ H
£ 2
s S e
L 8 =
;
b 3
: 4l g eof
s 3
2 &
H Y
H

£
§ af s
3 k]
£ ORI SV e--3 e 3= 3¢ - S 2
s - >
o £
g
3 20
g 2

-
NS *
o X
0 o Lemegex ™|
200000 400000 600000 800000 14006 12e+006 1.4e+006 200000 400000 600000 BO000D 1e+006 12e+006 1.4e+006
The Number of Inserted Elements The Number of Inserted Elements

Figure 28: Multiple sequential inserts: avfigure 29: Multiple sequential inserts: the
erage moves per insert divided byNg The running time to insert up to.4 million ele-
array size grows to two million and4. mil- ments.

lion elements are inserted.

Half random and half sequential insert&inally, we analyze a distribution
that adds noise to sequential inserts. We decide randondyhghto insert a new
element at the front of the PMA or after a random element. Traighly half of
the inserted elements form random noise. Figures 30 and Bpa@ the perfor-
mance of the traditional PMA and APMA. The roughly flat curmeFigure 30 is
the performance of APMA, which is slightly worse than thatandom inserts and
better than that in sequential inserts, while the perfogeasf traditional PMA is
about 3 times worse than that of random inserts.

Half-Random-Half-Head-Insert pattern comparison between APMA and traditional PMA Half-Random-Half-Head-Insert pattern comparison between APMA and traditional PMA
8 70
"traditional PMA with half-random-half-head-nsert —— ' Traditional PMA with half-random-half-head-nsert —+— '
APMA with half-random-half-head-insert —x-— 'APMA with half-random-half-head-insert —-—
z 7r 60
=
g 2
3 6| 4 §
<§(E 50
a ®
‘2(’g\ 40
z B
< a4t 4 £
s 8
2 8 sl
s @
5 3l
§° £
g oo s e [SRV . st Ko et e Kl
2 5 20
@ 2 @
g 2
g
ot 10
B
,«/)C"X'”)(“)6
o o L
200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006
The Number of Inserted Elements The Number of Inserted Elements

Figure 30: Half random, half sequential infigure 31: Half random, half sequential in-
serts: average moves per insert divided bgrts: the running time to insert up tatnil-
IgN. The array size grows to two million andion elements.

1.4 million elements are inserted.

CHAPTER3. Adaptive PMA 101

3.5 Conclusion

We introduced an adaptive packed-memory array. The adaptiwA guarantees
a performance at least as good as that of the traditional PM#Ale simultane-
ously adapting to common insertion distributions. Thus,ddaptive PMA always
achieves at mod(log?N) amortized element moves a@i1+ (log?N)/B) mem-
ory transfers per update, but it achieves oBIfogN) amortized element moves
andO(1+ (logN)/B) memory transfers for sequential inserts, hammer insents, r
dom inserts, and bulk inserts. Our simulations and experisn@e consistent with
these asymptotic bounds. Several open problems remainexXaonple, can we
show some type of working-set property for an adaptive PMAf&ps such an
investigation will require study into the design of otheeghictors. The next step in
this research is to use the adaptive PMA in a cache-oblivBstree and to measure
the speedup obtained for updates.

Chapter 4

Partially Deamortized
Packed-Memory Array

In this chapter we introduce thpartially deamortized packed-memory array
(PDPMA) for the purpose of decreasing the worst-case coghefinsertion. The
idea of such a deamortized data structure is to retain tHepezormance of the
traditional PMA in the amortized sense, while achievingdretvorst-case bounds.
In fact, Willard [66] gives an algorithm to deamortize a dandata structure. How-
ever, in addition to appearing too complex to implementdégmortized data struc-
ture has poor data locality. Bender, Cole, Demaine, andchaCalton [13] give a
better worst-case bound, but it is still unlikely to be impkntable.

One of the deficiencies in the traditional PMA is that one @gtrinsertion
might trigger a rebalance of the whole array, which c@t§l) element moves. In
contrast, the amortized number of element mo@gog?N), is not bad. When
we do such an insertion in a massive database, one insetggering a scan of
the whole database is infeasible. Our partially deamaitpacked-memory array
is a cache-oblivious data structure whose insert/delete mer update is at most
O(+v/NlogN) element moves an@(1+ (v/NlogN)/B) memory transfers, while
having the same performance®f1+ (log’N)/B) amortized memory transfers as
the traditional PMA.

Before presenting the partially deamortized PMA structuve give an im-
proved rebalance algorithnr@ne-phase rebalancevhich plays the same role as
the original rebalance algorithm in the traditional PMAf Bia key to design the

102

CHAPTER4. Partially Deamortized PMA 103

partially deamortized PMA.

4.1 One-Phase Rebalance in PMA

In the traditional PMA, we naively rebalance a node (see @hapfor a definition
of rebalance) as follows: we compress all elements to th@éet of the node with-
out adding empty spaces; we then evenly space out thosergiempeceeding from
right to left. This rebalance algorithm requires two phasesl each phase needs to
scan the whole node. In contrast, the one-phase rebalarfoerpe a rebalance in
a single scan. That is, we move elements directly to theil fiastinations without
the intermediate step of compressing elements at one ehe o¢balance interval.
So our expected one-phase rebalance performs more etfydiean the traditional
PMA and plays a key role in the partially deamortized PMA.

We first introduce some terminology about positions of tlerents between
rebalances. Recall that the PMA is divided ir@N/logN) segments, each of
which has siz&©(logN). Because all the elements in a segment can be adjusted at
an additional cost 0®(1+ (logN)/B) memory transfers, the rebalance algorithm
only needs to keep track of which segment an element belangather than its
actual position in the PMA. In the following, we consider whisegment an ele-
ment resides in instead of its actual position. We say thaganent isrightward
(leftward) if it includes an element at the beginning of a rebalanceclvimoves to
another segment aight (left) side of this segment at the end of rebalance. Recall
that we call a contiguous group of segmenigadow. Similarly, we say that a win-
dow isrightward (leftward) if it includes an element at the beginning of rebalance,
which moves to another segmentraght (left) side of this window at the end of
rebalance. Like that a segment canbe¢hrightwardand leftward and can baei-
therrightwardnor leftward, there also exist a both rightward and leftwarddaw,
and a neither righward nor leftward window. To simplify nida, we call the both
rightward and leftward segmentsaurce segment, and the neither rightward nor
leftward segment aink segment. Specifically, if a window does not include any
rightward (leftward) segment, we calllgftward (rightward) interval. Therefore,

a subarray of a rebalancing node is composed of rightwaeihals and leftward
intervals in turn (see Figure 32).

CHAPTER4. Partially Deamortized PMA 104

-0 /e |N|o| /e |0l]I

@ : Neither Rightward nor Leftward Segment - Rightward Segment
@ : Both Rightward and Leftward Segment : Leftward Segment

Figure 32: The pattern of one-phase rebalance.

We give further notation. In the rest of this section, we assthatu, is a node
of height?, whose left and right children ate_1 andv,_;.When reblancing a node
uy of heighth/, for any nodeu, in the subtree rooted aty, we let the number of
elements in the nod& before the rebalance be Elfat). Noticing that EImfuy) is
stored in nodey,, we getitinO(1). Because we do rebalance evenly, the number of
elements in a nodey after rebalance, which we denote E§pl, is computable at
the beginning of the rebalance. Basically, ffilvsegmen§ and jth segmens;, the
number ExptS) is the same as Ex{#) except for roundoff. Let a window starting
from Ith segment and ending eth segment b&\,. Same as the above definitions,
EImt(W,) and ExptW;) are the number of elements in windMy, before and
after a rebalance. Notice that number EMit) is not available directly. However,
we can find it inO(logN) by tracing along the path from the leaf to the root until
the least common ancestor of segmehiands.

N PP PP PP PIPIPIPIPIL IS

|<— The right-bound segment is a sourse segment.—>|

NP P PIPIPIPIPIPPIPIPIPIPIPIN

|<— The right-bound segment is a leftward segmeﬂt.—>|

Figure 33: Single leftward intervals.

One-phase Rebalance for an Interval. For the purpose of simplification, we
first study the case of rebalancing a single leftward inferyi@en the left-bound
segmentSy and the right-bound segme8t. Because the left-neighbor segment
of & is a rightward segmeng, cannot be either a rightward segment or a source

CHAPTER4. Partially Deamortized PMA 105

segment. By the definition of the leftward interval, the segt& is not a leftward
segment. Thus, it must be a sink segment. On the other haadjgtt-bound
segmen® can be either a leftward segment or a source segment (see Bgu

Starting from the left-bound segme®t, we calculate the number of elements
moving to S from its right-neighbor segmers;. Observe that it is possible that
some elements move & from its left-neighbor segment becauggis a sink seg-
ment. We cannot calculate it directly by Ex§) — EImt(S). Furthermore, be-
causeS might be a source segment, i.e., some elements may move dhisof
leftward interval at the place of segme®t we do not know exactly who is the
rightmost element in this interval.

Algorithm 3 Rebalance.leftward.interval(leftbound)

1: i < leftbound+- 1.

.] « the last segment in the rebalancing noge

W < the window starting frong and ending a§;.

: Scan and move EIrfitVfj) — Expt(W;) elements td&_1.

: while Expt(S) > EImt(S) do
Scan and move Ex() — EImt(S) elements fron§.1 t0 S.
i —i+1.

end while

OO RN

Algorithm 4 Rebalance.rightward.interval(rightbound)
1: i « the first segment in the rebalancing nagle

2. | < rightbound- 1.

3: Wj — the window starting frong and ending as;.

4: Scan and move EIrfij) — Expt(W;) elements t&j 1.

5: while Expt(S;) > EImt(Sj) do

6: Scan and move Ex{fj) — EImt(S;) elements fron§;_; to §;.
7 J—]—1.

8: end while

However, we know the rightmost element in the rebalancindeng,. We
consider the windowV;,, starting fromS; and ending at the last segmentug.
Because no elements will move out of the rightmost segmeuny jrithe elements
that move out of the windowV., only exist at the place of segme®t. Thus, the
number of elements that move$gis EImt(\Wi.,) — Expt(Wi.,). Therefore, we scan

CHAPTER4. Partially Deamortized PMA 106

and move ElmiW.) — Expt(Wie) elements tds from S to finish sweeping the
segmen.

We now proceed the second segm&nt Notice that the segmeis; has its
status changed from the original leftward segment to a saghnent now. Fur-
thermore, we know§; only receives elements from its right-neighbor segment
S becauses) is a sink segment. The number of elements that the seg&ent
expect from the segmer® is Expt(S;) — EImt(S;). Thus, we scan and move
Expt(S1) — EImt(S;) elements from segmeg to finish sweepings;. Repeat this
process until all segments in the leftward interval are sw@&fpus, this algorithm
rebalances the leftward interval in one scan. Similarlwefknow the right-bound
segment of a rightward interval, this algorithm performes tbalance in one scan
of the interval also (see Algorithms 3 and 4).

One-phase Rebalance in General. We now study the general case. As men-
tioned above, in general, the rebalancing node has thepafteghtward intervals
and leftward intervals in turn (see Figure 32). The problerhaw to find those
bounds between the rightward and leftward intervals witrsmanning the whole
node. In the following, we present the algorithm about figdinose bounds. We
start from the first segmef. Ifitis in a leftward interval, then we use Algorithm 3
as a subroutine to sweep this interval until we reach thedegment which is in
a rightward interval. Thus, without loss of generosity, 8swane the first segment
S is in a rightward interval. Notice that we cannot use the abalgorithm 4 as
a subroutine because we do not know the right-bound segnfi¢hisarightward
interval.

Now we present another subroutine (see Algorithm 5), whiogetiis the left-
bound segmeng, of a rightward interval and whose output is a window starting
from § and ending a8, which is the right-bound segment of a rightward interval
(see Claim 37). Recall th&, is the left bound of a rightward interval, so we have
EImt(S) > Expt(sp). Thus, lines 2—38 in Algorithm 5 show that we trace up the
tree fromSy until we find the nearest ancestowhich satisfies either Elrfir) <
Expt(u) or the rightmost leaf ofi is a source segment. There always exists one
ancestor because we know that the root node is such an anebste Elm{root) <
Expt(root). Next, we go down the tree by checking the same condition lidd c

CHAPTER4. Partially Deamortized PMA 107

nodes. That is, if a windoW ending at the rightmost leaf ofs left child satisfies
Elmt(W) < Expt(W), we go down tas's left child. Otherwise, we move ta@s right
child (see lines 5—12 in Algorithm 5).

Algorithm 5 rightbound.window§)

u < parent ofS.
while Elmt(u) > Expt(u) do
if The rightmost leaf ofi £ a source segmetiten
u < parent ofu.
else
BREAK;
end if
end while/* Now Elmt(u) < Expt(u). */
while uis not a segmerto

=

©CXNOa RN

10: W «— awindow fromS to the rightmost leaf ofi's left child.
11: if EImt(W) < Expt(W) then

12: u < left child of u.

13: else

14: u < right child of u.

15: end if

16: end while

17: S « u.

18: return a window starting frorfy and ending a8.

We give the following claim showing th& is the right-bound segment of a
rightward interval.

Claim 37 The segment $h Algorithm 5 is the right bound of a rightward interval
and the cost to find’$s O(logN).

Proof. There might exist several segments that are the right-beagdhent of a
right interval. We want to show that the segm8hnteturned by Algorithm 5 is one
of them.

Assume that the tree nodds the nearest ancestor such that the windlgyw
from & to the rightmost leafs of u satisfies EImWo) < ExptWoy) or S is a
source segment. We first prove tl&must be one of leaf nodes of the tree node

There are two cases. In this first case that Bikgt) < Expt(Wey), the right-
most leafS must be either a leftward segment or a sink segmen§ i$ a sink

CHAPTER4. Partially Deamortized PMA 108

segment, then it is a right-bound segment of a right intet¥&, is a leftward seg-
ment, then there is at least one segn®&nwhich is a right-bound segment of a right
interval, betweeryy andS because&y is a rightward segment. In the second case
thatS is a source segment, it is similar to the case gas a leftward segment.

We then trace down the tree. The rightmost leaf segmeunteft child must
be a rightward segment because if it is one of other three setgnnodau is not
the nearest ancestor as we find in Algorithm 5. Thus, we knewetbxists at least
one segmer in the right child of nodeu. Similarly, when we choose the left child
or the right child in Algorithm 5, we always guarantee tharthexists at least one
segmenS in the corresponding node. Thus, when the nodees down along the
path, it becomes a leaf segment. Therefore, it must be omeesg@ which is the
right-bound segment of a rightward interval.

The cost to find8 is O(logN) because we spend time in an around trip between
leaf nodes and the root. L]

Although the window which subroutine returns might just bgiregle right-
ward interval starting frongy, it is also possible that the window includes other
leftward intervals inside. We show that as long as it is nanhgle interval, Algo-
rithm 5 always can find a bound segment inside because wheraesedown the
tree, we always choose the child which has at least one sédgshirside. Thus,
this subroutine will split a window into two smaller windowBy recursively using
Algorithm 5, we finish a rebalance in one scan.

4.2 Description of Partially Deamortized PMA

In this section, we describe the structure of the partiadigrdortized PMA.

We first review the traditional PMA. Recall that we view thaditional PMA
in terms of a tree structure, where the nodes of the tree ar@omis (i.e., a contigu-
ous group of segments). The tree node at heigilatve an upper density threshald
and a lower density threshapd, which together determine the acceptable density of
keys within a window. Assume that the height of the tree4slgN —IglgN+O(1).
For the root node at heightand leaf nodes at height 0, we select four initial density
values oftg, Th, po, andpy, from (0, 1] such thapp < pn < Th < To. Thus, we define

CHAPTER4. Partially Deamortized PMA 109

upper and lower density thresholds for nodes at heigtstfollows:

Ty = Th+(to—Th)(h—£)/h
Pr = Ph—(Ph—po)(h—20)/h.

Observe that as the node heiglmcreases, the upper density threshalddecrease
and the lower density thresholg@gincrease, i.e.,

Po<PL< - <Ph<Th < - <T1 < Tp.
Another important observation is that
T 1—Tp=0(p;—pr-1) = O(1/logN).

In the partially deamortized PMA, we split the virtual tree height & =
[lgN/2] (see Figure 34). Hence, the tree is conceptually dividea antop tree
A with ©(v/N/IgN) leaves, each of which is the root of a bottom tigewith
O(v/N) leaves, i.e.@(v/NIgN) array positions. The intuition of splitting tree near
half height is that we want to separate big rebalances doguim the top treeA
from small rebalances occurring in the bottom trees.

size VN lg N

Ug

Figure 34: PDPMA model.

CHAPTER4. Partially Deamortized PMA 110

Thresholds. We set the thresholds on the top t&e@and bottom trees separately.
Recall that in the traditional PMA the difference of denshtyesholds between any
two adjacent levels igto — 1) /h and (pr — po) /h. (For simplification, we choose
Ph— Po = Th — To.) In the partially deamortized PMA, we set a bigger gap at the
nodeuy. To do so, we evenly split the intervigdo, pn] and[th, To] into h+ 1 steps
instead of the originah steps, and therefore each step has size

_ To—Th Ph—Po
A= h+1 <0r h+1)

Thus, we have the series of thresholds for nodes at each level

Po< - <(Pr<Pw)<Pr1< - <Ph<Th< - <(Tp<Tp)<Tpi1<---<To.

More formally, we set the density thresholds at each leve¢pkfor the node, at
height# as follows:

— LA <)
_J ot 0</l< By (109)
Th+(h—0)A h<ti<h
and
< .
. Po+ (A 0</l<hy (110)
ph—(h—=0)A h<t<h.

Observe that the threshold difference betwagn andu; 1 is 33, where we will
set the thresholds for nodg. Specifically, the node; at heighti has two sets
of thresholds. If we view; as the root of a bottom tree, then its upper and lower
thresholds are
T,=Tp,1—A and pp=pp_1+A

If we view uy, as the leaf node of the top trédethen its upper and lower thresholds
are
Ty =Tpra+A and py =pri1—A.

Insert. Now we give the detail about how to insert a new elemeafter the
existing element in the partially deamortized PMA. Recall in the traditioRAIA,
we check whether the leaf node where the elenyeistinserted is full. If full,
we trace up the tree until the nearest ancestor within tiotdshand then evenly

CHAPTER4. Partially Deamortized PMA 111

rebalance it. In the partially deamortized PMA, we checlhlibe leaf node of a
bottom tree and the leaf node of the top theavhere elemeny inserts. We try to
rebalance early before the leaf node of the top A&ecomes too full.

Specifically, we assume the existing elemei in a leaf node (segment)
of a bottom tred; rooted at node&;. The nodey is also a leaf node of the top tree
A. When we insert an elemeygafter the element, we check the density af, the
leaf node ofT;, and the density afi;, the leaf node oA. Thus, there are three cases
as follows:

1. The naive case is that both leaf nodgsindug are within thresholds. Thus,
we adjust elements ing to accommodate the new elemgmnwith the cost of
element moves at mo€i(logN).

2. Segmentyg is out of thresholds while nodg, is within thresholds, i.eg; <
Densityu,) < 1. In this case, we only need to perform rebalance in the
bottom treeT; because the top trek is still well rebalanced after the new
elementy is inserted. Notice that we have

Pr < P < Densityuy) <1y < Tj.

Thus, the nearest ancestornugfwhich is within thresholds must be under the
bottom tree€T;. So it is consistent with the fact that we do not need rebalanc
in the top treeA. Thus, the cost of element moves is at m@§t/NlogN).

3. The leaf nodey; of the top treeA is out of thresholds. Without loss of gen-
erosity, we assume that Density) > ;7. In this case, no matter whether
nodeug is within or out of thresholds, we are going to perform bigaielnce
in the top treéA.

Rebalance in the Top Tree. Notice that any rebalance in the top tr&eosts at
leastQ(+/NlogN) element moves. In order to achieve the goal that every ihseart

at mostO(v/NlogN) element moves, we need decompose the rebalance process.
The idea is using the one-phase rebalance in the Sectioindd.iscan perform a
rebalance by sweeping each leaf node once. Assume thejdeatnodes in the
rebalancing node in the top trée Because there are at m&ty/N/logN) leaf
nodes inA, j is at mostO(v/N/logN). Thus, we can decompose this rebalance
into j phases. In each phase, one leaf node is swept and a new elenmsetrted,

CHAPTER4. Partially Deamortized PMA 112

that is, we inserf new elements during thogephases. Thus, each of them costs
©(v/NlogN) element moves. For thogeelements, we use different insert algo-
rithm. When we insert an element, if we detect it is in a phdserebalance in the
top treeA, we only do rebalance in the bottom tree if necessary and tlohexk
the leaf node in the top tree. Furthermore, we mark thoskements so that they
will not be counted in the following phases of the rebalamcthe top treéA. That

is, we treat thosg elements ashadowsof existing elements until the end of the
rebalance in tred.

We now show that it is consistent that we insgrtlements using different
insert algorithms. First of all, thoseelements will not trigger rebalance above the
root node of the bottom tree. Because at the beginning of tstepinase, we have
the density of the root node, of each bottom tree at most,. Thus, nodey; allows

Cap(uy)(th—Tw) = (VNlogN)A
= O(VN)

extra insertions before triggering the rebalance in thettepA. Therefore, those

j (< v/N/logN) elements will not trigger rebalances above nogesven if all

j elements are inserted in the same bottom tree. Secondiguglh leaf nodes
in the top treeA get extra shadow elements after the rebalance, they dreighiin
thresholds. Notice that each leaf node in a rebalancing matie top treéA has the
density at most;, . ; after the rebalance, if we do not count thehadow elements.
Thus, even in the worst case of inserting phadow elements in one single leaf
node, we have the density of that leaf node at most

Tn1Cap(up) + |
Cap(up,)
Tht1+ N

- logN - v/NlogN

T + —s—,
h+1 Iogz N

Density(u;) =

which is less than the upper threshojgd Therefore, both the top tree and bottom
trees are well rebalanced after thphases, each of which includes one sweep of a
leaf node in the top treA and one insertion of a shadow element in a bottom tree.

CHAPTER4. Partially Deamortized PMA 113

We analyze the amortized rebalance cost per insertion etidelin the fol-
lowing theorem.

Theorem 38 To insert/delete an element, the partially deamortized Pidideves

at most @v/NlogN) element moves and(@NlogN/B) memory transfers. In the
amortized sense, the partially deamortized PMA has thetifldlgtete performance
in O(log?N) amortized element moves andl@?N/B) amortized memory trans-
fers per update.

Proof. We already show that in the worst case, the partially dearsartPMA
achieves at mosd(v/NlogN) element moves an@(1/NlogN/B) memory trans-
fers for a single insert.

We now show that in the amortized sense, the performanceeopditially
deamortized PMA is as good as the traditional PMA. For refida occurring in
the bottom trees, the cost is the same as that in the traditRiiA. For rebalances
occurring in the top tree, there are two differences. Ondesupper and lower
thresholds, which are slightly lower in the partially deatized PMA. However, it
is essentially the same because both have steps dD§lzdogN) between any two
adjacent levels. The other is that the leaf node in the t@ptraight have additional
shadow elements up tp< O(v/N/logN) after the rebalance. We calculate the
number of elements inserted in the nadg¢ > h) in the top treeA between two
concatenated rebalances. If there @arehadow elements inserted after the first
rebalance, the number of element that we can insert befeneetkt rebalance is

T,Cap(uy) — (tr+1Cap(uy) + j) = Cap(u)A — j.

Thus, the amortized rebalance cost per insertion at npde

Capu) _ Cap(uy)
Capu)A—]j — Capu)A—O(v/N/logN)
1

= A_O(/N/(Caru) logN))’ ()

Observe that Cdjp,) > Capu,) = O(v/NlogN) for ¢ > h. Plugging this inequality
into (111), we obtain
Capuy) < 1
Capu)A—j ~ A—O(1/log?N)

= O(logN),

CHAPTER4. Partially Deamortized PMA 114

becausé = O(1/logN).

In summary, the amortized rebalance cost per insertioncit eade either in
the top tree or bottom tress @(logN). Notice that when we insert or delete an
element, we insert or delete withib(logN) different tree nodes containing this
element. Therefore, the total amortized rebalance cosingertion or deletion is
O(log®N) element moves, the same as the cost in the traditional PMA. [J

4.3 Conclusion

We design the partially deamortized PMA using one-phasealepce scheme,
which is as good as the traditional PMA in the amortized sevisiée having the
worst-case bound, i.e., at madty/NlogN) element moves an®(v/NlogN/B)
memory transfers for a single insert. Therefore, this stmecovercomes one of
deficiencies in the traditional PMA, that is, one insert ntitslgger the rebalance
of the whole database. However, this structure cannot ableptneven rebalances,
as presented in Chapter 3. It is interesting open problemtbaesign a structure
combining the advantages of both the partially deamorti2iéd\ and the adaptive
PMA. Such a structure would adapt to common insertion pagtand would have
a good bound on the maximum cost of a single insert.

Chapter 5
Atomic-key B-tree

In this chapter, we present atomic-key B-tree that supports different-size keys.
The essential feature of an atomic-key B-tree is that keg/stared and manipulated
in their entirety. That is, entire keys are stored in datacttre nodes, and entire
keys are sent to the comparison function.

As explained earlier in this thesis, the B-tree is a dynangtahary storing
unit-sized keys. For disk-block-siZ& the B-tree supports searches and updates
with a cost ofO(logg N) memory transfers.

Although B-trees still work correctly with different-sizeys, they lack (non-
trivial) performance guarantees. Roughly speaking, ietsds to store small keys in
nodes near the top of the tree: when keys are smaller, moregecstored in a node,
thus increasing the branching factor and dividing the $egpace into a larger num-
ber of pieces. However, one cannot simply put the smalleat kethe root node:
our other objective is to choose keys that are roughly umfgdistributed from the
dictionary so that when the search space is divided intcegidte largest piece is
as small as possible. Standard algorithms for building aachtaining B-trees do
not take these considerations into account.

In this chapter, we explain how to build an atomic-key B-the&ing strong
performance guarantees even when keys have different sifeschieve the fol-
lowing type of guarantees. Consider two dictionarien kéys having average size
k, where the keys have different sizes in the first and the ségedrsthe second.
Our atomic-key B-tree performs operations in the first dicéiry at least as effi-
ciently as the traditional B-tree performs operations mmskcond. An atomic-key

115

CHAPTER5. Atomic-key B-Tree 116

B-tree cannot attain the efficiency of the string B-tree, unltke the string B-tree,
it retains the structure of the traditional B-tree.

5.1 Static Structure

In this section, we consider the problem of constructingaéicstree layout orN
different-size, atomic keys. We use greedy algorithm toegate the tree layout,
called a static atomic-key B-tree, and guarantee the s@ardébrmance in this tree
layout is as efficient as that in the traditional B-tree whepskhave the same size.

We give some notation before presenting the greedy layossude that the
average length of thes¢ keys{k;} is k. For block sizeB, we define

f= max{3, {EJ } (112)

The idea of our greedy layout is to store small keys near thetthe tree and
big keys near the bottom. We keep the tree structure as ctosethe traditional
B-tree.

We now give the following greedy algorithm to create the noade.

Greedy Algorithm. Divide theN keys intof sets{C; }o<i<f_1 and therefore each

set containdN/f keys. The firsN/f keys go in the first sety, the nextN/f keys

go in the second s€l;, and so on. For each set except for the first and the last sets,
we pick therepresentative key r; to be the minimum-length key in each set; we do
not need a representative from the first and the last sets.\ido8tore thesd — 2
representativesr;}1<ij<f_2 in the root node of the tree layout as indices. In this
way, we create the root node of the static atomic-key B-t8&e (Figure 35).

In the following Lemmas 39 and 40, we estimate the size of dlo¢ mode in
the case that the average lenith B/3 and the case that> B/3. Before that, we
introduce additional notation. L&t be the average length of keys in ttike setC;
andk! be the minimum-length key in the Bt

Lemma 39 Suppose thakt < B/3. Then the root node has size strictly less than B
and thus fits within a single memory block.

CHAPTER5. Atomic-key B-Tree 117

K1 K:N/j K’N/f+l Tf—2]: - HN*N/]#»I"' KN

T‘f—Q

The root node

Figure 35: The greedy algorithm for the root node of a static tree layout

Proof. In the case that < B/3, by (112) we have

a2}]

Because the total length df keys is the sum of the length of keys in each set
C,0<i< f-1,we have

A

¢ = Nk.

f—1
i=0
Replacing the average key lengthby the smallest key lengtkl for eachi, we

obtain f

AN

K < Nk.

Il
o

Simplifying the above equation and noticing tHat B/R, we have

f-1
Y K< fk<B. (113)
i=0

Because we storé— 2 representatives in the root node, the root node has size

which is less thamB by (113). Thus, the root node fits in one memory block.[]

Lemma 40 Suppose thdt > B/3. Then the root contains a single key whose length
is at mosBk and therefore fits in at mo#BR/B} memory blocks.

CHAPTER5. Atomic-key B-Tree 118

Proof. Inthe case that > B/3, by (112) we have

o 3]}

Thus, the root node has fanout 2 and contains only a singteseptative key
from the middle se€;. Noticing that the length of keys in the g is strictly less
than the total length of thH keys, we have

N

Nk > & —
= 137

i.e., ¢ < 3k. Thus, the root node fits in at mofak/B] memory blocks. O

We give more notation. Suppose that thdse?2 representative keys seperate
N keys intof — 1 sets{S }1<i<f—1 and therefore each set becomes a child of the
root node. Assume that the average length of each chilf} sek;.

Greedy Layout. We recursively apply the above greedy algorithm to eachdchil
set§ and thus generate the greedy layout for our static atomi@keee.

We now analyze the search cost in this static atomic-keyeB-tr Theorem 42.
Assume that the search pattern is uniformly distributed, @very key has the same
probability to be searched. We need the following claim toify the proof in
Theorem 42:

Claim 41 For all x; > 0 and x> 0, we have
f—1

14X 1+x
;t‘m(% %) = in@2+1/%

with the constraints
f-1 f-1
Zti =1 and Ztixi = X.
i=1 i=1

Proof. Leth(x) the function defined fox > 0 be

1+X
") = s 1%

CHAPTER5. Atomic-key B-Tree 119

The inequality we want to prove can be rewritten as

f-1 f-1
Ztih()(i) <h (Ztixi) .
i=1 i=1

The above inequality holds as long as the functi@x) is concave.
To prove the functiorh(X) is concave, we show that its second derivative is
less than zero. We first calculate its first derivative, i.e.,

2+1/x)+(1+x)/(2x2+x).

o IN(
() = 22+ 1/x)

Therefore, its second derivative is

_ 24 2x— (3x+1)In(2+1/x)

(2x2 +x)2In3(2+1/x) (114)

h// (X)

Becausex > 0, we have li2+1/x) > 0. Thus, we show that the numerator of (114)

is less than zero, i.e.,
2+ 2X

1+3x
Lety = 1/x. Becauseis greater than zero, the rangeyaf also in(0,). Thus,
by replacing ¥x by y in the above inequality, we show that fpr> 0,

2y+2_2_i
y+3 7 y+3

In(2+1/x) >

In(2+y) > (115)

We calculate the derivative of the left part in (115):

(In(2+y)) = % >0

and the derivative of the right part in (115):

4\’ 4
2— = > 0.
< y+ 3) y?+6y+9
Thus, both Ii2+y) and 2— 4/(y+ 3) are monotonically increasing. Furthermore,

we show that 4
In(2 "'>02-—).
(n@+y))' = (2= =)

CHAPTER5. Atomic-key B-Tree 120

This is because
1 4

>
2+y ~ Y2+ 6y+9’

which is equivalent tg” + 6y+9 > 4y+8, i.e.,y>+2y+1> 0. Therefore, I(2+y)
increases faster than24/(y+ 3) in (0,). Notice that at the zero, (2+Y) has
value In2~ 0.69 greater than the value-24/3 ~ 0.67 of 2— 4/(y+ 3) at zero.
Thus, we obtain (115) i(0,).

In summary, the second derivativetgk) is less than zero arfx) is concave.
Therefore, the claim holds. [

Theorem 42 The greedy layout of a static tree in the DAM model has theatgde

search cost: A
k

Proof. In this greedy layout, the root nodeconsists off —2 (> 1) keys. Thus,
the root node ha$ — 1 children{T;}1<i<f_1, each of which is a subtree on the set
S.

We prove this theorem by induction dh Assume that for the subtre&sof
size|S| (less tharN elements), the search cost is

k
1+ Yom i

for some constart (> 0). We show that the search cost applies to the tree of size
N also.

The expected search cost in the tfee= (R, Ty,...,Tf—_1) is the number of
block transfers to fetch the root no&eplus the expected search cost in the corre-
sponding subtre&. We first calculate the number of block transfers to fetch the
root nodeR. By Lemmas 39 and 40, we know that in the case khatB/3, the size
of the root node is less thdd in the case thak > B/3, the size of the root node is
at most[3k]. In summary, the number of block transfers to fetch the rooleris at
most 1+ 3k/B. Thus, to prove the theorem, we show that for the same carstan

-l - v
3k El ki K
i=1

subject to the constraints:

CHAPTER5. Atomic-key B-Tree 121

e the tree containhl keys

f—1
> Is|=N (117)
i=1
¢ the total length of all keys is
f—1
> |5k =Nk (118)
i=1
e and by construction
. 2N
V|,O<|S|<T (119)

To simplify, we introduces = ki /B, x = k/B andt; = |S|/N. Thus, Equa-
tion (117) becomes

f—1
dti=1, (120)
i=1
Equation (118) becomes
f—1
Ztixi =X, (121)
i=1
Equation (119) becomes
Vi,0<t < % (122)
and Equation (116) becomes
f—1
1+3x+ thi(1+xi) l0g. 1/ (tiN) < c(1+X)10gy, 1/« N. (123)

i=1

To show (123), we simplify its left side first. By (122), we abt thatt;N <
2N/f. Thus, we have

f—-1 f—-1

1+3x+CY ti(14%)10gy, 1y (tN) < 143x+C) ti(1+x)10g,, 1/ (2N/).
i=1 i=1

CHAPTER5. Atomic-key B-Tree 122

Moving In(2N/ f) out of the summation in the above inequality, we obtain

f-1
1+3x+C) ti(1+%)10gy, 1 (N)
i=1
f—1
< 1+3x+cin(@2N/f)> 't
i=1

1+

,m (124)

Plugging the inequality in Claim 41 into (124), we obtain

f-1
1+3x+CY ti(1+4%)10gy, 1/ (N) < 143x+cIn(2N/f)
i=1

1+x
In(2+1/x)
Simplying the above inequality, we obtain

f—1

14+3X+C) ti(1+%)10gy, 15 (tiN)
i—1
< c(1+X)l0gy,1/xN+1+3x—c(1+X)logy 1/x(f/2) . (125)

To prove the theorem, we need find the constastich that the right part in
(125) is less thas(1+x)log, 4 x N, that is

1+3x—c(1+x)logy 1 (f/2) <O0.

Therefore, we derive that

1+ 3xIn(2+1/x)
~— 1+x In(f/2)

Becaus€1+3x)/(1+x) =3—-2/(1+X) < 3, itis equivalent to find the constant

such that
c> 3In(2+ 1/x)
— In(f/2)

To find such constartt, we give the following claim.

Claim 43 For x=k/B and f=max{3,|B/k|}, we have a constant c independent
of x and f, such that
S 3In(2+ 1/x)

=*7In(f/2) (126)

CHAPTER5. Atomic-key B-Tree 123

PROOF OFCLAIM 43: There are two cases.
The first case is wheB/k < 3. In this case, we have= 3 and /x> 3. Thus,

we can choose
3In5

In(3/2)

such that (126) is true.
The second case is wh&k > 3. In this case, we have= |B/k| = [1/x]
and 1/x > 3. Therefore, we have

In(2+1/x) < In(3+ [1/x]) < _
In(f/2) — In(f/2) — In(f/2) In(f/2) — In(3/2)
The first inequality is by Ix < 1+ |1/x]; The second inequality follows from
|1/x] > 3; the third equation is fronf = |1/x]| and the last inequality follows by
the fact that 1i2f) /In(f /2) is monotonically decreasing arfd> 3. Thus, we can
choosec = 3In6/1n(3/2) such that (126) is true.
In summaryc = 3In6/1In(3/2) is the constant that (126) is always true in any

case. 0

In(2|1/x]) In(2f) < In6

In conclusion, by (125) and for the constarftom Claim 43, we prove that

f—-1

1+3X+C) ti(1+4%)10gy, 15 (tN) < c(14X)l0gy, 1 kN,
i—1

which is equivalent to (116). L]
To simplify the notation for the search cost, we have theofwiihg corollary:

Corollary 44 The greedy layout of a static tree in the DAM model has theagpe

search cost: A
k

Proof. By Theorem 42, we have the expected search cost for the gtapoiyt
of a staic tree is

O ((1-1— k/B) Iog(2+B/f() N) .

k k k
—| < —< —

Because

CHAPTER5. Atomic-key B-Tree 124

B B B
*H— e <+M)

we obtain that the search cost is equivalent to
k

Building the Tree. We explain how to build the static tree layout efficiently and
analyze the building cost fod atomic keys of different sizes.
We first give the cost to read thobkkeys in the following lemma.

and

[

Lemma 45 For N keys scattered on disk, it takes

Nk
O(N+§>

memory transfers to read them, whérés the average length of N keys.

Proof. Each leaf node in our structure may scatter on disk. For eaglkik it
costs[K;/B] + 1 block transfers to read. Thus, the total cost of block fiemsds at
most

N Ki Ki Nk
ZUEW +1) <N+) =N+

as claimed.]

The naive solution is that we build the tree one level by onelld.e., we
generate the root node for &ll keys first, then we generate all child nodes of the
root node. We continue generating the grandchild nodesean#éxt level until
the leaf nodes. To generate the root node, we need to scah kalys to pick
the right representatives. Noticing that for all keys in tidld nodes of the root
node (in the second level), they do not share common keygefdre, to pick the
representatives for all child nodes of the root node takestst of scanning ail

CHAPTER5. Atomic-key B-Tree 125

keys. In general, to pick the representatives at each leesd o scan alN keys
once. Because there are roughlyggg/;(N levels, the cost of the naive solution is

Nk

We present the better algorithm whose cost is linear. To daveagive two
algorithms to do the preprocessing job.

e Preprocess thbl keys, such that we can get the average length of keys be-
tween theth andjth keys in timeO(1). The cost to do this preprocessing is
O(N+Nk/B) and the space i©(N).

This preprocessing can be done by scan &kys and store the total length
of keys from the 1st key to thi¢h key into theth slot of an array of sizal.

e Preprocess thd keys, such that we can get the minimal-length key between
theith andjth keys in timeO(1). The cost to do this preprocessingIsN +
Nk/B) and the space i®(N).

This problem is known as tHeange Minimum Query (RM{R0,31,41]. The
idea of this algorithm is to reduce RMQ to theast Common Ancestor (LCA)
by constructing a Cartesian trees [40]. Surprisingly, ti&lproblem can be
reduce back to the special case of RMQ, called RMEor this special case,
we can construct it in linear time by using indirection andwaer query in
O(1).
Given the above two algorithms, we are ready to build the ¥Weée start from
the root node. By using the first algorithm, we obtain the agerkey sizék of all
N keys inO(1). Thus, we calculaté = max{3, [B/k]} in O(1). Next, We need to
pick f —2 representative keys from the s¢@}ic(1 1_2). For eaclC;, we calculate

its boundary
N . N
{I T (i+1) T}
in O(1). Therefore, the minimal-length key in the above intervahis representa-

tive key from the se€;. By the second algorithm, we obtain it@(1). Therefore,
the total cost to generate the root node is the cost to findefpresentatives and the

CHAPTER5. Atomic-key B-Tree 126

cost to store those representatives into the root nodg, i.e.

O(f—2)+0 <Size(root)) .

B
For each child of the root node, we recursively do the abcye sitil the leaf node.
In summary, The total cost to build the tree is the cost to filhdepresentatives
and the cost to move each representative to the right tree iBetause the number
of representative keys (N) and the the cost to move each representative key to
the right tree node i®(N + Nk/B) memory transfers by Lemma 45, we have the
following lemma.

Lemma 46 The cost to build the greedy layout for a static atomic-kaye®-in the

DAM model is R
Nk
o(n+'g)

5.2 Dynamic Strcuture

memory transfers.

In this section, we consider the problem how to generate amjntree layout
for givenN keys{Ki}icj1,nj, €ach of which has different length and is atomic. We
present the greedy algorithm of creating the root node. Bexthe same greedy
algorithm applies to all child nodes, we focus on the rootenodthe rest of this
section.

K1 H,]V/2f K;V/Qerl L HN+17N/2j"" KN

T‘f—l

The root node

Figure 36: The greedy algorithm for the root node of a dynamic tree layou

In order to support insert/delete operations in the atdkeicB-tree, we need
to modify our greedy layout in Section 5.1. Assume fhat the average length of

CHAPTER5. Atomic-key B-Tree 127

theN keys andB is the block size. We define

f= max{z, EJ } (227)

and divide theN keys intof + 1 sets{Ci}ic[o 1), €ach of which containsl/f keys
except for the first se€y and the last se€s. We let the first and last set as half
many as the set in the middle, i.€Cp| = |Cs| = N/(2f). The reason that we treat
the first and last sets differently is that we do not pick thEesentative keys from
them. For thef — 1 sets in the middle{Cy,...,Cs_1}, we pick representative keys
{rities,r) from each set and store them in the root node as the index ({§eeRB6).
In Section 5.1, we pick the minimal-length key as a represdest key. However,
to guarantee the length of the root node, we can choose anyl@ase length is the
order of the average key lengthof a middle seC;. In this way, we gain flexibility
to choose representative keys and therefore we obtain tteifiky to keep the tree
balanced.

We give two lemmas to state this problem as follows.

Lemma 47 Suppose thak < B/2. If we choose a representative kgyfrom each
middle set €such that r = O(&), then the root node has sizgB) and thus fits
within constant memory blocks.

Proof. If k< B/2, by definition we have

a2} -[2]

Because the total length of th¢ keys is the sum of the length of each €&t
0<i < f,we obtain

I\.)|Z
':i|z
\/

— N
ZT
i=1 i=1

Suppose that we choose a representatifeom the setC; such thatr; < 3¢ for
some constarft. Then, the above equality becomes

f

p
=
AV

1N
£

==

IX
[

CHAPTER5. Atomic-key B-Tree 128

which is equivalent to
f—1
> ri<Bfk.
i=1

Notice thatf = |B/k|, i.e., fk < B, we obtain that

which means that the length of the root nod®id) and therefore the root node
fits in the constant memory blocks. L]

Lemma 48 Suppose thdt > B/2. Then the root contains a single key whose length
is O(k) and therefore fits in ¢k/B) memory blocks.

Proof. If k> B/2, by definition we have

e}

Thus, the root node has fan-out 2 and contains only a singtesentative from the
setC;. Since the set; of sizeN/2 is a subset of thil keys, the total length dfl
keys is larger than the total length of the €gt i.e., Nk > ¢1N/2. Suppose that we
choose the representativesuch that, < [3¢;. Then, we have

~ riN

> -

Nk > 52’
which is equivalent ta; < 2Bk. Therefore, the root node fits @(k/B) memory
blocks.]

Because the representative key is not necessary to be thmahilength key
in the seC;, we have the flexibility to chooge such that it is closer to the key in the
middle ofC;. The following lemma gives us the sense how close the reptatsee
key can be to the middle key @.

Lemma 49 The number of keys in the sgt(@ <i < f — 1), whose size is less than
3¢ for some constarfi, is at least

)3

CHAPTER5. Atomic-key B-Tree 129

Proof. We divide the se€; into two subsetsCi; andCi>. The seiCi; contains
keys of size less tha¢ and the seCi> contains keys of size bigger th@g;. We
denote the number of keys @; be # and the number of keys @G> be #%.

We estimate the numbeg #h this way. If we do not count the first s€f; and
replace the length of each key in the secondgby the smaller lengti8é;, we
have that the total length of keys@is bigger than the number of keys@yp times
the smaller lengtiBé;, that is,

N
Téi > #36;.

Because #= N/f —#, we obtain

N N 1\ N
mzyog=(1p) ¥

[

Now we give the algorithm to choose the representative keisidynamic
layout. Instead of choosing the minimal-length key in theolghsetC;, we choose
the minimal-length key in a smaller subset. Specificallyppse that the sei;
starts from thel(i —1/2)N/f|th key and ends at thgi + 1/2)N/f]th key. The
smaller subset is an interval

(3503

that is, we choose the minimal-length key from the abovevaleas the represen-
tative key. From Lemma 49, we know that the representatiyerdeechoose has the
length less thaBc;.

Thus, we guarantee that the representatiygé <i < f — 1) is chosen from the
setC; such that there are at leddt/2— 1/(2p3))N/f keys at its left and right sides.
Suppose thosé— 1 representatives separate théeys intof sets{S }ic[1 1}, each
of which belongs to one child of the root node. We have thefalhg lemma:

Lemma 50 For all child sets § 1 <i < f, our greedy layout guarantees that

(p)eme ()Y

CHAPTER5. Atomic-key B-Tree 130

S

Co . o

Figure 37: The first setS; includesCy and part ofC;.

Proof. According to the greedy algorithm, we know that the firstSeand the
lastSy are different from middle child sefsS }<i<t—1.

We first consider the first s&;, which is the set of keys at the left sideraf It
contains two parts. One part is the wholeGgtand the other is the keys at the left
side ofry in C; (See Figure 37). From Lemma 49, we can choose the repragentat
r1 such that the number of keys at the left sideof betweer(1/2—1/(2B))N/f
and(1/2+1/(2p))N/f. Thus, we obtain

N (L LVN_ o N 1 1N
2t " \2728)F ="M=\ 2728/ T

that is,
1\N 1\N
—— =< < — | —.
(1 23) f=lsls <1+ZB) f (128)
The above result applies to the last Setoo.
S;
Cia ° o ()

Figure 38: The setS includes the right part dfi_; and the left part of;.

Now we consider the middle child s&t (2 <i < f — 1), which is the set of
keys betweem;_1 andr;. It contains two parts (See Figure 38). One part is the keys
at the right side of;_1 in C,_1 and the other is the keys at the left siderpin C;.

By the same reason from Lemma 49, we obtain

1 1)\N 1 1\N
2(5-m) =525)

1\ N 1\ N
(1—5) % <lsl< (”E) N (129)

that is,

CHAPTER5. Atomic-key B-Tree 131

Combining both (128) and (129), we obtain that for all chidtss, 1 <i < f,
the results hold. O

In summary, the greedy layout guarantee two propertiehtrdot node:

1) The root node is not too big, that is,
Size(root) < O (B+k),
2) Each child se§ includes keys

S| =O(N/f).

The greedy algorithm applies to all tree nodes. In this waygarrantee that each
tree node maintains the above two properties. Thereforehave the following
theorem.

Theorem 51 The greedy layout for dynamic atomic-key B-tree in the DAM&ho
has the expected search cost:

O ((1-1— k/B) Iog(2+B/f() N) .

Proof. The proof is similar to Theorem 42. L]

Building the Tree. Recall that in the previous section, we build the static tree
layout in linear time. The algorithm to build the dynamicgtdayout is essentially
the same, except that we need to find representative keysnralles subset. We
also use the same two algorithms to do the preprocessing jolbailding the static
tree. The detail is given as follows.

We start from the root node. By using the first preprocessiggrahm,
we obtain the average key-sieof all N keys in O(1). Thus, we calculate
f = max{2,B/k} in O(1). Next, We need to pick — 1 representative from the
sets{Ci}icy,1)- For eactCi, we calculate its boundary

N

a—ya$ﬂ+ua7

CHAPTER5. Atomic-key B-Tree 132

in O(1). From Lemma 49, we know at least one representative keyseixighe

interval
. 1\N /. 1\N
K"?s)?('*z—sH’

for given constanfi. Therefore, the minimal-length key in the above interval is
one of eligible representative keys from the gt By the second preprocessing
algorithm, we obtain it irO(1). Therefore, the total cost to generate the root node
is the cost to find the representatives and the cost to stose tiepresentatives into
the root node, i.e.,

O(f>+o<8ize(root)) ‘

B

For each child of the root node, we recursively do the abeye sitil the leaf node.

In summary, The total cost to build the tree is the cost to flnkepresentatives and
the cost to move each representative to the right tree noglealBe the number of
representative keys 8(N) and the the cost to move each representative key to the
right tree node i©(N + Nk/B) memory transfers, we prove the following lemma.

Lemma 52 The cost to build the greedy layout for the dynamic atomjcBeree

in the DAM model is A
Nk
O(N+—

Insertion. We propose our insert algorithm. When we insert an key inédite,
we first search the right place to insert. Then, we check vérdtie child se§
(where the new key resides) has the size betwik3f),5N/(3f)] (we choose
B =3/2). Ifitis not, we need rebuild this child node according ur greedy
algorithm, such tha® € [N/(2f),3N/(2f)] (we choosd} = 2).

In this way, we can inse®(N/f) keys between rebalances. We show that
during those inserts, property (1) is always true by giving following lemma.
Assume that the average length of a tree node right afterrthéqus rebuild isk
and the average length of a tree node just before the nextdebi .

memory transfers.

CHAPTER5. Atomic-key B-Tree 133

Lemma 53 For inserts between rebuild of a tree node, they can lowertrerage
key size at most constant factor, i.e.,

K=0Q(k).

Proof. This is because before the next rebuild, there are at @AY f) keys
inserted. Noticing that the number of keys under the treeemethaing®(N/f),
the average key siz€ is at least a constant times the original average keyAIsize
even if we do not count the length of newly inserted keys. L]

Thus, our dynamic tree layout still maintains two propertiiring inserts.
Therefore, the search cost remains the same and the ardartigeper insertion is

O(N +Nk/B) B k
—NT 10955/ N =0 <<§ + E) 10912, 8/k N) :

5.3 Dynamic Structure Using Indirection

In the previous section, we built the dynamic atomic-key&etin linear time (see
Lemma 52). However, its structure loses data locality aedetiore the amortized
insert cost is not as good as the traditional B-tree in the taat keys have the unit
length. Specifically, when keys have the unit length, ourasiyic atomic-key B-tree
has amortized insert cost Blogg N memory transfers while the traditional B-tree
has insert cost of lggN memory transfers. To preserve the data locality and im-
prove the insert performance of atomic-key B-tree, we ugelevel of indirection
and hence the resulting structure has two layers.

Bottom Layer. The bottom layer includes d\ keys, clustered into small groups.
In each group, elements are stored in consecutive memock$ldVe cluster those
N keys as follows: starting from the first key, we store it in fmst group. If the
length of the first group is smaller than block s¢2, then we store the second
key in the first group also. That is, as long as the total lendtine first group is
smaller tharB/2, we can store the next key. In another word, the first grodgs &n

CHAPTER5. Atomic-key B-Tree 134

its total length is bigger thaB/2. We next start putting keys in the second group,
and so on.
In general, each group satisfies the following three progeert

1) If all keys are less thaB/2, then the total length of this group must be in
[B/2,3B/2].

2) If there exists one key bigger th&j 2, then the total length of other keys in
this group must be less théh

3) At most one key whose length is greater tiB2.

Given the above three properties, we present the layoutatf geoup. We
store keys in this group as the one-level B-tree. Specifica# store all keys less
thanB/2 into the root node in order. Because the total length ofdtkeys of length
less tharB/2 is at most 8/2, they are stored in at most three contiguous memory
blocks. For the key whose length is bigger th#2, it is the only child of the root
node. In the case there is no keys of length less Byah this group only includes
a single key of length bigger thdsy2 and therefore it is stored in the root node of
this one-level B-tree.

For theN keys, we split them into groups by the above way. The groups ma
scatter on disk and the order between groups are saved bgsadgointers. We
count the number of groups in the following lemma.

Lemma 54 The number of groups for the N keys is at nitiéf f.

Proof. Notice that the total length dfl keys isNk and the total length of each
group is bigger thaB/2. Therefore, the number of groups is at most

Nk 2N
< — .
{B/J ~ |B/K]

On the other hand, since each group contains at least onthkaymber of groups
is at mostN. Thus, the number of groups is at most

min{N,%},

which is equal to R/ f by (127).]

When we insert/delete a key, we first do insert/delete ojersin the bottom
group. To simplify notations, we classify groups into twésg, that is, a group

CHAPTER5. Atomic-key B-Tree 135

satisfying the property (1) is calldgpe-1 group and a group satisfying the property
(2) or (3) is calledype-11 group (See Figure 39). In the following, we give a scheme
to do split/merge operations among groups while keepinggaees of each group.

——

| " |) |
i e ey (A
|
| [(A —
| S EEETINE L >pe |
L - _---o)
Type-I group Type-1I groups

Figure 39: The bottom layer structure, including type-I groups ancetjipgroups.

We first give some notation. Let the newly inserted keyKipew, the unique
key of length bigger thaB/2 in a group beK. and the set of keys of length less
thanB/2 in a group beS.. Assume that the total length of keys in the Setis

Size(S-).
We first give the scheme how to insert a key in the type-Il group

1. Ifthe inserted keXnewhas length bigger tha/2, then it causes the instant
split of this type-Il group. Each of the resulting two grougmtains either
K< or Knew. In this case, the two new groups are both type-Il groups.

2. If the inserted keXnew has length less thaB/2, we check the total length
of keys which are less thaBy'2 in this group. We have

Size(Knew) + Size(S<) < 3B/2,

because Siz&new) < B/2 and Siz¢S-) < B by the property (2).

Furthermore, if
SizgKnew) + Sizg S<) < B,

this group is still a type-Il group and we do not need split it.

On the other hand, if
B < SizgKnew) + SizgS<) < 3B/2,

we separate them into two parts: the Sgtof keys at the left side of the key
K- and the se8_ of keys at the right side of the kd¢... Thus, we have

B < Size(S.) + Sizg(S!) < 38/2, (130)

CHAPTER5. Atomic-key B-Tree 136

because
KnewU% = SISUS£ .
Without loss of generosity, we assume that 8¢ > SizgS.). Thus, by
(130), we obtain
B/2 < SizgS.) <3B/2 and Siz¢Sl) <B.
Therefore, we can split this type-Il group into two groupsedype-I group
{S.} and one type-Il grougK. (JS!}.
We next present how to insert a key in the type-I group.

1. If the inserted keXnew has length bigger thaB/2, then it is same as the
second case of inserting in the type-Il group. That is, et do not need
to split this group, or this group can be split into one typgdup and one

type-II group.
2. Ifthe inserted keXnew has length less thaB/2, we have

Size(Knew) + Size(S<) < 2B, (131)

because SiZ&new) < B/2 and Siz€S<) < 3B/2 by the property (1). This
group need to be split as long as S&aew) + SizgS<) > 3B/2. Now we
separate those keys into two sets as follows. We put the &ysbkthis group
into the first seS’S. Observe that the length of the first key is less tBd8.
We continuously put the second key irﬁg and so on, until the first time
when the total length of the s&t is bigger tharB/2. Other keys belong to
the second sed’. Thus, because each key has length less By@ywe have
B/2 < SizgS.) <B. (132)

Noticing the fact

Knew| JS<=S.(<,
and by (131), we obtain

3B/2 < SizgS.) + SizgS7) < 2B. (133)

Therefore, by (132) and (133), we get

B/2 < SizgS) < 3B/2.

In summary, this group can be split into two type-I groups.

CHAPTER5. Atomic-key B-Tree 137

Now we present the scheme how to do merge operation. When bt de
key from a group, we do not need merge if the k&y is still in this group. We
need to do merge operation as long as there is only th€Ssgtin the group and
SizgSc) < B/2. Thus, the operation to merge a $&t } of length less thaiB/2
with the adjacent group is same as the operation to insery afidength less than
B/2 into the adjacent group. The split might follows right aftesert operations.

Therefore, the bottom groups dynamically support openatiosert/delete in
O(1) memory transfers. Notice that the bottom groups are dyraipimaintained.
Thus, we do not need extra time to construct the group strestéurthermore, the
bottom layer improves the cost to read thdskeys as follows.

Lemma 55 With the bottom layer, the cost of block transfers to read islae
improved to
N Nk
O —-+—=1.

Proof. Because there are at most 2f groups forN keys (by Lemma 54) and
the total length of representative leaf keys is less finThus, by Lemma 45, the
cost to read those groups is

N Nk
o118).

Top Layer. We first give more notation. We divide the type-Il group inteot
subtypes, that is, one only contains one key of length bitigeen B/2, named a
type-ll(a) group; the other contains keys of length lessitBA2 and one key of
length bigger thaB/2, named a type-li(b) group. Recall that the only key which
is not stored in the root nodes at the bottom layer is the kiggés thanB/2) in
the ll(b) group. Thus, We view the keys in root nodes at thedmotlayer as the
upper bottom layer and therefore the keys (bigger thBp2) in the 11(b) groups as
thelower bottom layer.

The top layer is a dynamic greedy layout on all keys at the uppgom layer
(See Figure 40). We classify the keys at the top bottom layer group as a set
because keys in each set are still stored in contiguous nyelhacks. Thus those

[

CHAPTER5. Atomic-key B-Tree 138

The top greedy tree layout

ﬁ o b ! $
‘ < B/é ‘ ‘ ‘ ‘ ‘ ‘ ‘ > B/2 ‘ D# Upper bottom layer

Figure 40: The top layer structure: a greedy tree layout based on thiedttpm layer.

sets either contain keys less tHaf2 or only one key bigger thad/2. To simplify
notation, we call the set of all keys less tH&f®? thetype-1 set and the set containing
only one key bigger thaB/2 thetype-11 set. Notice that the number of sets is same
as the number of groups, i.e., at modt/Z group. We give the following lemma
about the average length of keys at the upper bottom layer.

Lemma 56 The average length of keys at the upper bottom layer is at igst
wherek is the average length of all N keys.

Proof. Let the number of keys at the lower bottom layer heahd the number
of keys at the upper bottom layer be. #Thus, we have #+ #, = N. Notice that
for each key at the bottom layer, there is at least one cavreBpg key at the upper
bottom layer because of the property of the type-Il(b) grothus, we have #< #5.
Therefore,

> N/2.

Because that the total length of keys at the upper bottonr iaya mostNk.
We obtain that the average length of keys at the upper botger is at most

Nk Nk -
< — =%k
#y — N/2 2
]
In the following, we present the greedy algorithm to build tree on keys at

CHAPTER5. Atomic-key B-Tree 139

the upper bottom layer i®(N/f 4+ Nk/B) memory transfers, by utilizing those at
most N/f upper bottom sets. In this algorithm, we ignore the keys atdwer
bottom layer.

We first check the two preprocessing algorithms.

e The algorithm to get the average length betwéénand jth keys inO(1).
The construct time is improved ®(N/ f + Nk/B) because the time to read
those sets is improved by Lemma 55.

e The algorithm to get the minimum-length key betwa#nand jth keys in
O(1) (RMQ). The number of keys at the upper bottom layer might Iss le
thanN and the cost to read them is reduce@®(®/ f -+ Nk/B) by Lemma 55.
Thus, the construct time is improved@§N/ f + Nk/B).

To guarantee the search cost, we still use the same greeatytlahy to build
each tree node. Notice that the keys in each bottom set aiedsito contiguous
memory blocks. If a tree node only contains keys in one or ®ts,sve do not need
branch this tree node and therefore it is treated as a lea (mmtause the keys in
this tree node can be fetched in contiguous memory blockghis way, we “trim”
the original tree structure by utilizing the bottom sets.

The purpose of “trimming” the tree is to reduce the cost ofding the tree to
O(N/ f +Nk/B) memory transfers. It can be achieved by guaranteeing théeum
of leaf nodes in a trimmed tree at m@¢N/f). To do so, we make sure that each
leaf node crosses two bottom sets or at least reach the bguofla set because
there are at mosD(N/ f) bottom sets.

We need additional preprocess algorithm to tell whetheea trode contains
keys in one or two sets i®(1). It can be done by creating an array andithecell
stores the set where tlih key resides. Notice that the cost to create the array is
O(N/B) block transfers. Thus, the total cost is dominant by the tmstad keys,
i.e.,O(N/f 4+ Nk/B) memory transfers.

Previously, we recursively build the greedy layout untiirmgée key. We now
present an algorithm that we stop the recursive step at ant@e whose the keys
are at most in two sets (See Figure 41). Given a tree node, steliieck how many
sets crossed by the third preprocessing algorithi@(if). If it crosses more than
two sets, we use the same greedy algorithm to branch thisit@e. Specifically,
we fetch representative keys as the indices to its child&arting from the first

CHAPTER5. Atomic-key B-Tree 140

representative key which we calculateO(1) time, we takes addition&(1) time

to calculate the number of sets crossed by the first childreTaee three cases. The
first case is the number of crossed sets is more than 2. Theneeg take next
recursive step for this child; The second case is that thebeumf crossed sets is
2. In this case, we treat this child as a leaf node. The difficage is the third case
where the child node just fits in one set. We need additiogairahm to deal with
this case, because we require that each set is crossed bgia? heaf nodes.

The top greedy tree layout

Figure 41: The top tree layout has the leaf nodes trimmed.

We now present how to deal the case that the child node fitsenseh We
calculate the second representative key. By the same rehsosecond child may
have three cases. One case is that the second child fits iareset also. In this
case, we merge the first and second children without extralseast by removing
the first representative key in the tree node, because thaficssecond children
must belong to the type-I set (the root node of the type-ifimup) and it takes at
most three memory transfers to read the type-I set. As lorlgeasext child fits in
the same set, we keep merging them together without extraomyetmansfer. The
other two cases are that the second child crosses at leasetailoAssume that the
set where the first child resides3gs. Then, the sef; must be a type-I set because it
includes more than one key. Now we merge part of keys in thensbchild into the

CHAPTER5. Atomic-key B-Tree 141

first child by replacing the first representative key by trat key inS;. Thus, the
first child reaches the boundary of the Set After the merge operation, the search
cost may change at this node because the size of the tree hadged and the
number of keys in the first and second children changed. Hexvexe argue that
those changes do not affect the search cost by checking theroperties of the
greedy layout. The first property is that the size of the tregenmust beéO(B + R)
(wherek is the average length of keys under this tree node). Thisiesliecause
we replace the old key by the last keySn which is less thaiB/2 by the property
of the type-I set. The second property is that each childtaaamber of keys less
thanO(N/f). For the second child, it satisfies because the number ofikeye
second child decreased. For the first child, the number of kely may bigger than
O(N/f). But we know that the first child fits in a type-I set and therefib can be
fetched in at most three memory transfers. Thus the mergaib@e increases the
search cost at most one memory block at a leaf node.

In summary, we construct a dynamic greedy tree layout suahdhch leaf
node crossing two sets or just reaching the boundary of ané&\&enow calculate
the number of leaf nodes in this tree layout. Notice that deahnode crosses
one boundary of sets and there are no common keys among léas.n8ecause
there are at mostN/ f sets, the number of leaf nodes is also at nm@gk/f).
Furthermore, for each tree node, it has at least two childraerefore, the number
of all inner tree nodes is less than the number of leaf nodesthe number of all
tree nodes is at mo&(N/f).

Thus, the time to calculate all representative key®(sl/ f) and the time to
store all representative keys is at m@§N/ f + Nk/B) block transfers. Therefore,
the total time to build the tree layout@N/ f +Nk/B) memory transfers.

Search. To search an element in the structure, we first search thenrtbe top
layer. Then we go to the corresponding bottom groups foltbiae the leaf node
and the other group pointed by the predecessor of the lea&f. nod

Insert. To insert a key in the structure, we first search for the rigat@. Then
we insert it into the corresponding group. If it becomes a ðe lower bottom
level, we finish insert operation. Otherwise, it appearbaupper bottom level and

CHAPTER5. Atomic-key B-Tree 142

we insert it also in the top layer. The additional operat®when the bottom group
split. However it only affects at most two leaf nodes at thelayer. We can split
the leaf node if it crosses more than two sets.

Theorem 57 To insert a key in the dynamic atomic-key B-tree, the numbamaor-
tized memory transfers is

k
O <<1+ E) Iogz+B/;<N> .

Proof. For each tree node of keys and average lengkhwe can inser®(N/f)
keys before rebuilding the tree node. The cost to rebuildréeis

O(N/f +Nk/B).

Thus, the amortized cost to insert a key into a tree node is

N/f +Nk/B fk
o<—N/f >:o<1+§>.

Noticing thatf = max{2, B/k}, we haveO(fk/B) = O(1+k/B). Thus, the amor-
tized cost to insert a key in to a tree nod@igl + k/B). Because there are roughly
O(log,. gk N) levels in the tree layout, we have the amortized cost to irzskey
in the tree layout at most

k
o) <<1+ E) '092+B/|‘<N> .

5.4 Optimal Static Structure by Dynamic Program-
ming

[

In this section, we give the optimal static search structoréN atomic keys, each
of which has different size.

CHAPTER5. Atomic-key B-Tree 143

We need some notation. Assume that the set of keyis<i<n and the
length of the key; is Siz€k;). Each key has the probabilify to be searched. Let
Ki j be the total length of key$ki,Kit1,...,Kj} andP j = Zigrg pr. We define
T(i, j,b) the optimal static search tree for kelys, ki, 1, ...,K;j} with the root node
of size up tdb, andc(i, j, b) the average searching cost of kgys,Ki11,...,Kj}.

Our goal is to find the optimal tre& (1,N,B) such that the search cost
c(1,N,B) is minimized. Notice that the tree for a larger set of keyscanestructed
by joining trees for smaller sets. An optimal search tredHersek;, ...,k whose
root occupies space less th8ris constructed by joining optimal trees for the set
Kr+1,---,Kj With space less tha®— Sizgk;) in the root and an optimal tree for the
setkKj,...,Kr_1 (See Figure 42).

Hi, 1, B) Hr+1, j, B-S7)

Figure 42: The optimal structure by the dynamic programming.

Therefore, by dynamic programming, we can construct thengbpsearch tree
as follows:

. P if Kij <b;
C('? J?b) = min
i<r<j{c(i,r,B)+PR+c(r+1,j,b—Sizgk;))} otherwise.
The cost of this dynamic programming@Bn®).
In [11], a faster dynamic-programming scheme is proposetis $cheme
could also apply here with a cost of Bn®), with a = 2+1log2/log(B+1).

CHAPTER5. Atomic-key B-Tree 144

5.5 Conclusion

We construct both static and dynamic atomic-key B-treesnigalr time. The dy-
namic atomic-key B-tree supports the operations searshrtiand delete in

o i8] 00, 1))

amortized memory transfers. The update cost matches thia¢ tfaditional B-tree
when keys have the unit size. Therefore, our atomic-keyeB-ts a generalized
version of the B-tree in the respect of key size. However,aiostruct the corre-
sponding cache-oblivious version of the atomic-key B-texaains open. It would
be especially interesting to find the structure for a dynaraahe-oblivious atomic-
key B-tree.

Bibliography

[1] P. Agarwal, L. Arge, A. Danner, and B. Holland-Minkley. nCcache-
oblivious multidimensional range searching. Pnoc. 19th ACM Symp. on
Comp. Geom. (SOC@Gpages 237-245, 2003.

[2] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model hierarchi-
cal memory. InProc. of the 19th Ann. ACM Symp. on Theory of Computing
(STOC) pages 305-314, 1987.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical mem with block
transfer. InProc. 28th Ann. IEEE Symp. on Foundations of Computer Seienc
(FOCS) pages 204-216, 1987.

[4] A. Aggarwal and J. S. Vitter. The input/output complegxdf sorting and
related problemsCommunications of the ACN1(9):1116-1127, 1988.

[5] B. Alpern, L. Carter, E. Feig, and T. Selker. The unifornemmory hierarchy
model of computationAlgorithmicg 12(2—-3):72-109, 1994.

[6] M. Andrews, M. A. Bender, and L. Zhang. New algorithms the disk
scheduling problem. liProc. 37th Ann. Symp. on Foundations of Computer
Science (FOCS$pages 580-589, 1996.

[7] M. Andrews, M. A. Bender, and L. Zhang. New algorithms the disk
scheduling problemAlgorithmica 32(2):277-301, 2002.

[8] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minklegnd J. I. Munro.
Cache-oblivious priority queue and graph algorithm agians. InProc.
34th Ann. ACM Symp. on Theory of Computing (ST@&ges 268—276, 2002.

145

BIBLIOGRAPHY 146

[9] R. D. Barve and J. S. Vitter. A theoretical framework foemory-adaptive
algorithms. InProc. 40th Ann. Symp. on Foundations of Computer Science
(FOCS) pages 273-284, 1999.

[10] Bayer, R. and McCreight. Organization and maintenavickarge ordered
indexes.Acta Informatica 1:173-189, 1972.

[11] P. Becker. A new algorithm for the construction of opdirb-trees.Nordic J.
of Computing1(4):389-401, 1994.

[12] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, Hl. Hlacono, and
A. Lopez-Ortiz. The cost of cache-oblivious searching.Phac. 44th Ann.
Symp. on Foundations of Computer Science (FOg&)es 271-280, 2003.

[13] M. A. Bender, R. Cole, E. Demaine, and M. Farach-Colt@ctanning and
traversing: Maintaining data for traversals in a memorydmehy. InProc.
10th Ann. European Symp. on Algorithms (ESAjume 2461 o NCS pages
139-151, 2002.

[14] M. A. Bender, R. Cole, and R. Raman. Exponential stmgguor cache-
oblivious algorithms. IrProc. 29th International Colloquium on Automata,
Languages, and Programming (ICALR)plume 2380 olLNCS pages 195—-
207, 2002.

[15] M. A. Bender, E. Demaine, and M. Farach-Colton. Effitigee layout in a
multilevel memory hierarchy. IProc. 10th Ann. European Symp. on Algo-
rithms (ESA)volume 2461 oL NCS pages 165173, 2002.

[16] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cachhvious B-
trees. InProc. 41st Annual Symposium on Foundations of Computen&eie
(FOCS) pages 399-409, 2000.

[17] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cachhvious B-
trees.SIAM Journal on Computin@5(2):341-358, 2005.

[18] M. A. Bender, Z. Duan, J. lacono, and J. Wu. A localitggerving cache-
oblivious dynamic dictionary. IProc. of the 13th Annual Symposium on
Discrete Mathematics (SODA)ages 29-38, 2002.

BIBLIOGRAPHY 147

[19] M. A. Bender, Z. Duan, J. lacono, and J. Wu. A localitggerving cache-
oblivious dynamic dictionaryJournal of Algorithms3(2):115-136, 2004.

[20] M. A. Bender and M. Farach-Colton. The LCA problem ré&ed, 2000.

[21] M. A. Bender, M. Farach-Colton, and B. Kuszmaul. Cacldivious string B-
trees. InProc. 25th Symp. on Principles of Database Systems (PQi28gs
233-242, 2006.

[22] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul. Gaclblivious string
B-trees. In S. Vansummeren, editBODS pages 233-242. ACM, 2006.

[23] M. A.Bender, M. Farach-Colton, and M. Mosteiro. Ingentsort isO(nlogn).
In Proc. 3rd International Conference on Fun with Algorithnk4JN), pages
16-23, 2004.

[24] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszimaloncurrent
cache-oblivious B-trees. IRroc. 17th Ann. Symp. on Parallelism in Algo-
rithms and Architectures (SPAA)ages 228—-237, 2005.

[25] M. A. Bender and H. Hu. An adaptive packed-memory ardayProc. 25th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Retaldys-
tems (PODS)pages 20-29, 2006.

[26] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, &dH. Randall.
An analysis of dag-consistent distributed shared-memigorithms. InProc.
8th Ann. ACM Symp. on Parallel Algorithms and Architect&RAA) pages
297-308, 1996.

[27] G. S. Brodal and R. Fagerberg. Cache oblivious distidibusweeping. In
Proc. 29th International Colloquium on Automata, Langus,gend Program-
ming (ICALP) volume 2380 oL NCS pages 426-438, 2002.

[28] G. S. Brodal and R. Fagerberg. Funnel heap - a cacheiobdivpriority
queue. InProc. 13th Ann. International Symp. on Algorithms and Compu
tation (ISAAC) volume 2518 oLNCS pages 219-228, 2002.

BIBLIOGRAPHY 148

[29] G. S. Brodal and R. Fagerberg. Cache-oblivious strictjaharies. InProc.
17th Annual ACM-SIAM Symposium on Discrete Algorithpages 581-590,
2006.

[30] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache obbvsaarch trees via
binary trees of small height. Iaroc. 13th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA)pages 39-48, 2002.

[31] Cole and Hariharan. Dynamic LCA queries on tréesCOMP: SIAM Journal
on Computing34, 2005.

[32] Comer, D. The ubiquitous B-Tre&CM Computing Survey41(2):121-137,
1979.

[33] E. D. Demaine. Cache-oblivious algorithms and datacstires. Lecture Notes
from the EEF Summer School on Massive Data Sets, 2002.

[34] P.F. Dietz. Maintaining order in a linked list. BiTOC pages 122-127. ACM,
1982.

[35] P. F. Dietz, J. I. Seiferas, and J. Zhang. A tight lowenrwbfor on-line mono-
tonic list labeling. InProc. 4th Scandinavian Workshop on Algorithm Theory
(SWAT) volume 824 ofLecture Notes in Computer Sciengages 131-142,
1994.

[36] P. F. Dietz and D. D. Sleator. Two algorithms for maintag order in a list.
In Proc. 19th Ann. Symp. on Theory of Computing (ST®ayes 365-372,
1987.

[37] P. F. Dietz and J. Zhang. Lower bounds for monotoniddébetling. InProc.
2nd Scandinavian Workshop on Algorithm Theory (SWA®lume 447 of
Lecture Notes in Computer Sciend990.

[38] Ferragina and Grossi. The string B-tree: A new datacsting for string search
in external memory and its applicatiod®\CM: Journal of the ACV46, 1999.

BIBLIOGRAPHY 149

[39] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandtache-oblivious
algorithms. InProc. 40th Ann. Symp. on Foundations of Computer Science
(FOCS) pages 285-297, 1999.

[40] Gabow, Bentley, and Tarjan. Scaling and related tegpes for geometry
problems. IISTOC: ACM Symposium on Theory of Computing (STO@34.

[41] Harel and Tarjan. Fast algorithms for finding neareshemn ancestors.
SICOMP: SIAM Journal on Computing3, 1984.

[42] J.-W. Hong and H. T. Kung. I/O complexity: The red-bluebble game. In
Proc. 13th Ann. ACM Symp. on Theory of Computation (ST@&)jes 326—
333, 1981.

[43] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table inpéntation of pri-
ority queues. IrProc. 8th Internationl Colloquium on Automata, Languages,
and Programming (ICALR)volume 115 ofLecture Notes in Computer Sci-
ence pages 417-431, 1981.

[44] 1. Katriel. Implicit data structures based on local nganizations. Master’s
thesis, Technion — Israel Inst. of Tech., Haifa, May 2002.

[45] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Search-
ing. Addison-Wesley, Reading, Massachusetts, 1973.

[46] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms
volume 1. Addison—Wesley, 3rd edition, 1997.

[47] P. Kumar. Cache oblivious algorithms. In U. Meyer, la@ers, and J. Sibeyn,
editors, Algorithms for Memory Hierarchies, LNCS 262pages 193-212,
2003.

[48] P. Kumar and E. Ramos. /O efficient construction of Mwidiagrams. Un-
published manuscript, July 2002.

[49] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and its ap-
plications Springer, 2nd edition, 1997.

BIBLIOGRAPHY 150

[50] H. Prokop. Cache-oblivious algorithms. Master’s tagPepartment of Elec-
trical Engineering and Computer Science, Massachusetiuite of Technol-
ogy, June 1999.

[51] N. Rahman, R. Cole, and R. Raman. Optimised predecelsdarstructures
for internal memory. InProc. 5th Int. Workshop on Algorithm Engineering
(WAE) volume 2141, pages 67-78, 2001.

[52] V. Raman. Locality-preserving dictionaries: theorydaapplication to clus-
tering in databases. IRroc. 18th Symp. on Principles of Database Systems
(PODS) pages 337-345, 1999.

[53] C. Ruemmler and J. Wilkes. An introduction to disk drivedeling. IEEE
Computer27(3):17-29, 1994.

[54] J. E. Savage. Extending the Hong-Kung model to memasalchies. IrProc.
1st Ann. International Conference on Computing and Contbiies, volume
959 ofLecture Notes in Computer Scienpages 270-281, 1995.

[55] S. Sen and S. Chatterjee. Towards a theory of cacheegiffialgorithms. In
Proc. 11th Ann. ACM-SIAM Symp. on Discrete Algorithms (SPPAges
829-838, 2000.

[56] S. Software. The berkeley database.

[57] S. Toledo. Locality of reference ibU decomposition with partial pivoting.
SIAM Journal on Matrix Analysis and Applicatiqris3(4):1065-1081, 1997.

[58] A. K. Tsakalidis. Maintaining order in a generalizedKed list. Acta Infor-
maticg 21(1):101-112, 1984.

[59] P. van Emde Boas. Preserving order in a forest in legs ltigarithmic time.
In Proc. 16th Ann. Symp. on Foundations of Computer Scienc€§@ages
75-84, 1975.

[60] P. van Emde Boas. Preserving order in a forest in less ltigarithmic time
and linear spacdnformation Processing Letter§(3):80-82, 1977.

BIBLIOGRAPHY 151

[61] J. S. Vitter. External memory algorithms and data dtrees: dealing with
massive dataACM Computing Survey83(2), 2001.

[62] J.S. Vitter and E. A. M. Shriver. Algorithms for pardlleemory I: Two-level
memories Algorithmica 12(2—-3):110-147, 1994.

[63] J. S. Vitter and E. A. M. Shriver. Algorithms for pardll@emory II: Hierar-
chical multilevel memoriesAlgorithmicg 12(2—3):148-169, 1994.

[64] D. Willard. Maintaining dense sequential files in a dgmea environment (ex-
tended abstract). IRroc. 14th Ann. Symp. on Theory of Computing (STOC)
pages 114-121, 1982.

[65] D. E. Willard. Good worst-case algorithms for insegtiand deleting records
in dense sequential files. Proc. International Conference on Management
of Data (SIGMOD) pages 251-260, 1986.

[66] D. E. Willard. A density control algorithm for doing iegtions and deletions
in a sequentially ordered file in good worst-case titméormation and Com-
putation 97(2):150-204, 1992.

