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Thecache-oblivious model [39, 50] is one of the most successful models of a

memory hierarchy. The cache-oblivious model allows programmers to reason about

a simple two-level memory model without knowing any memory parameters, but

to prove results about a multilevel memory model. Thus, algorithms and structures

based on the cache-oblivious model have the advantage of platform independence

and simultaneously optimal on all levels of a memory hierarchy. Thedisk-access

model (DAM) [4], another successful memory model, assumes a two-level mem-

ory model with the full knowledge of memory parameters. Likethe DAM model,

the performance of the cache-oblivious model is measured bymemory (or block)

transfers between two adjacent memory levels with block sizeB.

In this dissertation, we build highly efficient, optimized cache-oblivious struc-

tures in support of cache-oblivious B-trees and other dictionaries. We improve

two common fundamental cache-oblivious structures: a static cache-oblivious

search tree invan Emde Boas layout (vEB) [59, 60] andpacked-memory array

(PMA) [16] for dynamically maintaining sorted elements in memoryor on disk.

Specifically, the vEB supports search asymptotically optimally in O(1+ logBN)

memory transfers. The PMA supports the operations insert/delete in an array of

sizeN in O(1+(log2N)/B) amortized memory transfers and range query ofL con-

secutive elements optimally inO(1+L/B) memory transfers.
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The vEB and PMA are used as basic building blocks in many cache-oblivious

B-trees and dictionaries; see e.g., [1,13–19,21,24,27,28,30,51,52]. One of thedy-

namic cache-oblivious B-trees, proposed by Bender, Duan, Iacono, and Wu [18],

combines both the vEB as the top search tree and the PMA as the bottom dynamic

structure. Specifically, this dynamic B-tree supports search in O(1+ logBN) mem-

ory transfers, deletion and insertion inO(1+ logBN+(log2N)/B) amortized mem-

ory transfers, and scans ofL consecutive elements optimally inO(1+ logBN+L/B)

memory transfers. Thus, any improvements to the vEB layout and the packed-

memory array immediately translate to improvements to cache-oblivious B-trees

and other dictionaries.

In this dissertation, we present the following results:

We prove tight bounds on the cost of cache-oblivious searching and propose a

generalized van Emde Boas layout to optimize the searching cost in the cache-

oblivious structures. we show that there is no cache-oblivious search structure

can guarantee that a search performs fewer than lgelogBN memory transfers, i.e.,

lgelogBN is the lower bound. The upper bound is achieved by the generalized

vEB layout, whose expected memory transfers between any twolevels of the mem-

ory hierarchy arbitrarily close to[ lge+O(lg lgB/ lgB) ] logBN + O(1). That is,

we achieve the factor, which optimally approaches lge≈ 1.443 as the block sizeB

increases. The work appears in Chapter 2 and is published in [12].

We give the firstadaptive packed-memory array (APMA), theoretically and

practically optimizing PMA’s performance on most common input patterns. Like

the traditional PMA, any pattern of updates costs onlyO(log2N) amortized ele-

ment moves andO(1+(log2N)/B) amortized memory transfers per update. How-

ever, the adaptive PMA adjusts to the input pattern and therefore performs better

on many common input distributions achieving onlyO(logN) amortized element

moves andO(1+(logN)/B) amortized memory transfers. We analyze sequential

inserts, where the insertions are to the front of the APMA, hammer inserts, where

the insertions “hammer” on one part of the APMA, random inserts, where the inser-

tions are after random elements in the APMA, and bulk inserts, where for constant

α∈ [0,1], Nα elements are inserted after random elements in the APMA. This work

appears in Chapter 3 and is published in [25].
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We develop thepartially deamortized packed-memory array (PDPMA) to re-

duce the worst-case cost in the PMA. As the traditional PMA, the PDPMA has the

same update cost ofO(1+(log2N)/B) amortized memory transfers. However, for a

single update, the traditional PMA has the worst-case cost of O(N) element moves

andO(1+ N/B) memory transfers. It is not feasible for industrial application be-

cause one insertion might trigger the rebalance of the wholedatabase. Therefore,

our partially deamortized PMA is designed for the purpose ofcost reduction in the

worst case and achieves the worst-case performace of one update inO(
√

N logN)

element moves andO(1+(
√

N logN)/B) memory transfers. This work appears in

Chapter 4.

We present the firstatomic-key B-tree to support atomic keys of different sizes

in the B-tree with the theoretical guarantee. There exist many practical B-trees in

support of variable-length keys. However, none of them havetheoretical guarantee

and their practical performance degrades when keys are longor vary in length. Our

atomic-key B-tree is efficient in this respect. Specifically, we first give an algorithm

for building a static atomic-key B-tree. On a dictionary ofn keys having aver-

age sizêk, the expected cost to search for a random key isO(⌈k̂/B⌉ log1+⌈B/k̂⌉N)

memory transfers, under the assumption that all keys are searched with uniform

probability. The cost to build this tree isO(N) operations andO(N+Nk̂/B) mem-

ory transfers. We then show how to build a dynamic atomic-keyB-tree with a better

performance ofO(N/ f +Nk̂/B) memory transfers, wheref = max{2,
⌈

B/k̂
⌉

}. In

this dynamic structure, the expect cost to search for randomkeys stays the same.

The cost to insert an arbitrary keyκ is the cost to search forκ plus a tree-update

cost ofO(⌈k̂/B⌉ log1+⌈B/k̂⌉N) amortized memory transfers. This work appears in

Chapter 5.

In summary, we contribute to the theory of the searching costin the cache-

oblivious model by presenting the generalized vEB layout. We develop two dy-

namic cache-oblivious structures: the adaptive PMA and thepartially deamortized

PMA to overcome the traditional PMA’s deficiencies and make it practical. We also

propose the atomic-key B-tree in support of atomic keys withvariable length, whose

structure is as close as possible to the traditional B-tree while having performance

guarantees.
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Chapter 1

Introduction

1.1 Overview

Hierarchical Memory Models. Traditionally, algorithms were designed to run

efficiently in arandom access model (RAM)of computation, which assumes a flat

memory with uniform access times. However, as hierarchicalmemory systems

become steeper and more complicated, algorithms are increasingly designed as-

suming more accurate memory models; see e.g., [2–7, 9, 42, 53–55, 61–63]. Two

of the most successful memory models are thedisk-access model (DAM) and the

cache-oblivious model.

The DAM model, developed by Aggarwal and Vitter [4], is a two-level mem-

ory model, in which the memory hierarchy consists of an internal memory of size

M and an arbitrarily large external memory partitioned into blocks of sizeB. Al-

gorithms are designed in the DAM model with full knowledge ofthe values ofB

andM. Because memory transfers are relatively slow, the performance metric is the

number of memory transfers. The main disadvantage of a two-level memory model

is that the programmer must focus efforts on a particular level of a given hierarchy,

resulting in programs that are not portable and suited for use on a modern multilevel

hierarchy.

The cache-oblivious model, developed by Frigo, Leiserson,Prokop, and Ra-

machandran [39, 50], allows programmers to reason about a two-level memory hi-

erarchy but to prove results about an unknown multilevel memory hierarchy. As

1
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in the DAM model, the objective is to minimize the number of memory transfers

between two levels. The main idea of the cache-oblivious model is that by avoiding

any memory-specific parametrization (such as the block sizes) the cache-oblivious

algorithm has an asymptotically optimal number of memory transfers between all

levels of an unknown, multilevel memory hierarchy.

The theory of cache-oblivious algorithms is based on the ideal-cache model of

Frigo, Leiserson, Prokop and Ramachandran [39, 50], which assumes both optimal

page replacement strategy and fully associative cache. While this model may su-

perficially seem unrealistic, Frigo et al. show that it can besimulated essentially by

any memory system with a small constant-factor overhead. Thus, if we run a cache-

oblivious algorithm on a multilevel memory hierarchy, we can use the ideal-cache

model to analyze the number of memory transfers between eachpair of adjacent

levels.

Optimal cache-oblivious algorithms have memory performance (i.e., number

of memory transfers) that is within a constant factor (independent ofB andM) of

the memory performance of the optimal DAM algorithm, which knowsB andM.

There exist surprisingly many (asymptotically) optimal cache-oblivious algorithms;

see e.g., [1,8,13–16,18,26–28,30,33,39,47,48,50,51,57].

I/O-Efficient Searching. A fundamental problem in computer science is how to

search efficiently amongN comparison-based totally-ordered elements on disk. The

classic I/O-efficient search tree in the DAM model isB-tree [10,32]. The basic idea

of B-tree is to maintain a balanced tree ofN elements with the node fan-outB,

which is designed to fit into one memory block. The B-tree has height logBN,

and a search optimally hasO(1)+ logBN memory transfers (block cost). However,

B-tree is designed with full knowledge of the block sizeB and therefore is only

optimized for a two-level memory model. Although theoretically B-tree can be

extended to fit a multilevel memory model, the resulting structure becomes much

more complex than the original B-tree. Furthermore, as the numberk of levels in

the memory hierarchy grows, the constant factor of the search cost in an optimal

k-DAM structure turns out to be bigger.

A static cache-oblivious search tree, proposed by Prokop [50], also performs



CHAPTER1. Introduction 3

searches inΘ(logBN) memory transfers. It is built as follows: Embed a com-

plete binary tree withN nodes in memory, conceptually splitting the tree at half its

height, thus obtainingΘ(
√

N) subtrees each withΘ(
√

N) nodes. Lay out each of

these trees contiguously, storing each recursively in memory. This type of recur-

sive layout is called avan Emde Boas layout (vEB) because it is reminiscent of

the recursive structure of the van Emde Boas tree [59, 60]. However, the constant

factor of memory performance in the vEB search tree is much bigger than that of

the B-tree in the DAM model. It would be interesting to narrowthe gap between

the vEB search tree and the B-tree in a multilevel memory hierarchy.

The static cache-oblivious search tree is a basic building block of essentially

all cache-oblivious search structures, including the (dynamic) cache-oblivious B-

tree of Bender, Demaine, and Farach-Colton [16], its simplifications and improve-

ments [18,30,51], and other cache-oblivious search structures [1,14,15,15,27,28].

Thus, any improvements to the static cache-oblivious search structure immediately

translate to improvements to these dynamic structures.

Ordered Sparse Array. A classical problem in data structures and databases is

how to maintain a dynamic set ofN elements in sorted order in aΘ(N)-sized array,

which has been known for over two decades and studied under different names,

including sparse arrays [43, 44], sequential file maintenance [64–66], and list la-

beling [34–37]. The problem is also closely related to the order-maintenance prob-

lem [13,34,36,58].

The I/O-efficient and cache-oblivious version of the sparsearray is called the

packed memory array (PMA) [16,17], which maintainsN elements in sorted order

in aΘ(N)-sized array. The idea is to intersperseΘ(N) empty spaces or gaps among

the elements so that only a small number of elements need to beshifted around on an

insert or delete. This data structure effectively simulates a library bookshelf, where

gaps on the shelves mean that books are easily added and removed. It supports

the operations insert/delete inO(1+(log2N)/B) amortized memory transfers and

scans ofL consecutive elements inΘ(1+L/B) memory transfers.

The packed-memory array is an efficient and promising data structure, but

it also has weaknesses. The main weakness is that the PMA performs relatively

poorly on some common insertion patterns such as sequentialinserts. For sequential
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inserts, the PMA performs near its worst in terms of the number of elements moved

per insert. Moreover, sequential inserts are common, and B-trees in databases are

frequently optimized for this insertion pattern. It would be better if the PMA could

perform near its best, not worst, in this case.

In contrast, one of the PMA’s strengths is its performance oncommon insertion

patterns such as random inserts. For random inserts, the PMAperforms extremely

well with only O(logN) element moves per insert and onlyO(1+(logN)/B) mem-

ory transfers. This performance surpasses the guarantees for arbitrary inserts.

The PMA has been used in cache-oblivious B-trees [16–19, 21,30], concur-

rent cache-oblivious B-trees [24], cache-oblivious string B-tree [21], and scanning

structures [13]. A sparse array in the same spirit as the PMA was independently

proposed and used in the locality-preserving B-tree of [52], although the asymp-

totic space bounds are superlinear and therefore inferior to the linear space bounds

of the earlier sparse-array data structures [43,64–66] andthe PMA [16,17].

Balanced Search Tree. One of the most fundamental data structures for main-

taining data on disk is a balanced search tree, which keeps data in order and sup-

ports operations such as search, insert, delete and range query. The classic external-

memory search structure is B-tree [10, 32], which supports asearch optimally in

O(1)+ logBN memory transfers and the operations insert/delete asymptotically op-

timally in O(logBN) memory transfers in the DAM model. Common variants, such

as B+-tree and B∗-tree [32, 45] are more implementable and have the same perfor-

mance.

B-trees are balanced search trees where all nodes (except possibly the root)

have fanoutΘ(B) and the leaves are all at the same depth. Insertions and deletions

are supported with a simple balancing scheme. If a block is too full, it is split into

multiple blocks. If the block is too empty, then either the block borrows keys from

a neighboring block, or else the block is merged with a neighboring block.

One of main deficiencies of the B-tree is that it cannot take full advantage

of disk prefetching. The nodes in the B-tree may scattered through a disk in any

order. Thus, each fetch of a B-tree node requires a random disk seek. Random

block accesses perform two orders of magnitude more slowly than sequential block

accesses. In this respect, B-tree performs inefficiently, especially for range queries.
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In contrast, thedynamic cache-oblivious B-tree supports nearly optimal range

queries by combining the above packed-memory array structure. Specifically, a

range query in the cache-oblivious B-tree involves a searchof a leaf block followed

by a scan within an array. The first dynamic cache-oblivious B-tree achieves the

asymptotically optimal searching cost ofO(logBN). This B-tree, designed by M. A.

Bender, E. Demaine, and M. Farach-Colton [16], appears too complex to get good

practical performance. Subsequently, Rahman, Cole, and Roman [51] proposed

and implemented another cache-oblivious B-tree based on exponential trees, which

supports insertion and deletion inO(logBN+ log logN) memory transfers. Another

two related simplifications are obtained by Bender, Duan, Iacono, and Wu [18]

and simultaneously by Brodal, Fagerberg, and Jacob [30]. Both of these achieves

insert/delete performance inO(logBN +(log2N)/B) amortized memory transfers

and scans ofL consecutive elements optimally inO(1+L/B) memory transfers.

The cache-oblivious B-tree [18] combines two cache-oblivious structures in a

fairly simple way: a static search tree stored in a van Emde Boas layout and the

packed-memory array. Specifically, the structure includesa static complete binary

tree withΘ(N) leaves, stored according to the van Emde Boas layout, and a packed-

memory structure representing the elements. The structuremaintains a fixed one-

to-one correspondence between the cells in the packed-memory structure and the

leaves in the tree. Some of these cells/leaves are occupied by elements, while oth-

ers are blank. Therefore, operations are executed by a binary search through the top

index tree, and insert, delete and scan in the bottom packed-memory array while

updating the top index tree. However, this cache-obliviousB-tree also inherits defi-

ciencies from both the vEB layout and the PMA.

Search Tree with Variable-Length Keys. The B-tree, as described in an algo-

rithms textbook, is a dynamic dictionary designed to store unit-sized keys. For

unit-sized keys and memory blocks of sizeB, the B-tree supports searches and up-

dates at a cost ofO(logBN) memory transfers.

Industrial-strength B-trees, unlike textbook B-trees, support keys of different

sizes. In many applications, such as file systems and databases, dictionaries are

implemented using B-trees, even though the keys may have different sizes. For

example, Berkeley DB [56] allows individual keys to be as large as 4 GB.
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The B-tree operations still work correctly even when keys have different sizes.

That is, neither splitting, merging, nor searching requirekeys to have identical sizes.

However, they have no nontrivial performance guarantees.

There already exist dynamic dictionaries designed to storedifferent-size keys,

the most famous of which is thestring B-tree [38]. (See Refs. [22, 29] for cache-

oblivious string dictionaries.) In the string B-tree, the keys are chopped up and

distributed among different nodes of the data structure. Searches and updates of

a keyκ run in O(|κ|/B+ logBN) memory transfers. Thus, the additional cost to

access a keyκ is just the additive cost,⌈|κ|/B⌉, to read keyκ plus the cost to search

in a B-tree, which is optimal.

The string B-tree is different from the B-tree because, as mentioned above,

the keys are chopped up. B-trees cannot attain the efficiencyof the string B-tree.

However, despite their performance limitations and lack ofperformance guarantees,

implementers often prefer to base applications such as file systems and databases,

on B-trees.

We call a B-tree that supports different-size keys anatomic-key B-tree. The

keys are atomic in the sense that the keys are stored and manipulated in their en-

tirety.

1.2 Results

The B-tree has been the dominant external-memory dictionary data structure for the

last three decades, but it has several weaknesses degradingits performance. First,

the search cost in a B-tree is only optimized for a two-level memory model. The

B-tree’s performance degrades in a multilevel memory modelin which data locality

is required at many levels of granularity. The B-tree cannottake advantage of disk

prefetching. Finally, the B-tree’s performance guarantees only apply when keys

have unit or fixed length.

In this dissertation we address the above issues. We generalize the van Emde

Boas layout so that as the numberk of levels in the memory hierarchy grows, the

search-performance of our cache-oblivious structure relative to an optimalk-DAM

structure tends to zero.

The dynamic cache-oblivious B-tree solves some of the problems of B-trees
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listed above. It performs efficient range queries and maintains data locality at all

granularities. Our solutions, such as the generalized van Emde Boas layout, solve

these problem optimizing the search constants.

We also present two improved versions of the packed-memory array: the adap-

tive PMA and the partially deamortized PMA, and therefore automatically improve

the dynamic part in the cache-oblivious B-tree. We develop the first atomic-key B-

tree having performance guarantees, which is as close as possible to the traditional

B-tree while supporting atomic keys with variable lengths.

In Chapter 2, we first give an analysis of the static cache-oblivious search

tree in vEB layout, proving that searches perform at most 2
(

1+3/
√

B
)

logBN +

O(1) expected memory transfers; the expectation is taken only over the random

placement of the data structure in memory. This analysis is tight to within a 1+o(1)

factor.

We then present a class ofgeneralized van Emde Boas layouts that opti-

mizes performance through the use of uneven splits on the height of the tree.

For any constantε > 0, we optimize the layout achieving a performance of

[lge+ ε + O(lg lgB/ lgB)] logBN + O(1) expected memory transfers. As before,

the expectation is taken over the random placement of the data structure in mem-

ory. Our new search structure serves to disprove the common belief that even splits

yield the best results in the worst case. We suggest the contrary: uneven splits can

yield better worst-case performance.

Finally, we demonstrate that it is harder to search in the cache-oblivious model

than in the DAM model. Previously the only lower bound for searching in the

cache-oblivious model was the logBN lower bound from the DAM model. We

prove a lower bound of lgelogBN memory transfers for searching in the average

case in the cache-oblivious model. Thus, for largeB, our upper bound is within a

factor of 1+o(1) of the optimal cache-oblivious layout.

In Chapter 3, we propose anadaptive packed-memory array (abbreviated

adaptive PMA or APMA), which adapts to common insertion patterns. We first

show that the APMA has the “rebalance property”, which ensures that any pattern of

insertions cost onlyO(1+(log2N)/B) amortized memory transfers andO(log2N)

amortized element moves. Because the elements are kept in sorted order in the

APMA, as with the PMA, scans ofL elements costO(1+L/B) memory transfers.
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Thus, the adaptive PMA guarantees a performance at least as good as that of the tra-

ditional PMA. We next analyze the performance of the APMA under some common

insertion patterns.

• We show that forsequential inserts, where all the inserts are to the front

of the array, the APMA makes onlyO(logN) amortized element moves and

O((logN/B)+1) amortized memory transfers.

• We generalize this analysis tohammer inserts, where the inserts hammer on

any single element in the array.

• We then turn torandom inserts, where each insert occurs after a randomly

chosen element in the array. We establish that the insertioncost is again only

O(logN) amortized element moves andO((logN/B)+1) amortized memory

transfers.

• We generalize all these previous results by analyzing the case ofbulk inserts.

In the bulk-insert insertion pattern, we pick a random element in the array

and performNα inserts after it forα ∈ [0,1]. We show that for all values of

α ∈ [0,1], the APMA also only performsO(logN) amortized element moves

andO(1+(logN)/B) amortized memory transfers.

• We next perform simulations and experiments, measuring theperformance of

the APMA on these insertion patterns. For sequential insertions of roughly

1.4 million elements, the APMA has over four times fewer element moves

per insertion than the traditional PMA and running times that are nearly seven

times faster. For bulk insertions of 1.4 million elements, wheref (N) = N0.6,

the APMA has over two times fewer element moves per insertionthan the

traditional PMA and running times that are over three times faster.

In Chapter 4, we propose thepartially deamortized packed-memory array

(PDPMA) for the purpose of decreasing the worst rebalance cost of oneinsertion.

The partially deamortized PMA guarantees that the insert/delete cost per update is

at mostO(
√

N logN) element moves andO(1+(
√

N logN)/B) memory transfers

while keeping the same update cost ofO(log2N) amortized element moves and

O(1+(log2N)/B) amortized memory transfers as the traditional PMA.

• We first give a better rebalance algorithm, calledone-phase rebalance. Unlike

the rebalance in the traditional PMA, which includes one scan of the array to
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compress the elements and another scan to evenly space the elements out, we

implement a one-phase rebalance in one scan of the array. In this way, we not

only perform rebalance efficiently, but also decompose a bigrebalance into

small scans of leaves independently.

• We then propose the structure of the partially deamortized PMA and analyze

its performance. The idea of this structure is to decompose the rebalance

of size bigger thanΩ(
√

N logN) into smaller scans of sizeO(
√

N logN) by

using our one-phase rebalance. After each smaller scan, a new element is

inserted. In this way, we deamortize the insert cost toO(
√

N logN) in the

worst case.

In Chapter 5, we develop the firstatomic-key B-tree that has performance

guarantees. The objective is to design a data structure as close as possible to

the traditional B-tree. The performance of such structure depends on the average

length k̂ of the keys. In particular, the traditional B-trees have theperformance

O(
⌈

k̂/B
⌉

log1+⌈B/k̂⌉N) when all keys have the same sizek̂. We come up the same

bound when the keys have the same size and extend the bound even if the keys have

different sizes.

• We first give an algorithm for building astaticatomic-key B-tree. On a dictio-

nary ofn keys having average sizek̂, the expected cost to search for a random

key isO(⌈k̂/B⌉ log1+⌈B/k̂⌉N) memory transfers, under the assumption that all

keys are searched with uniform probability. The cost to build this tree isO(N)

operations andO(N+Nk̂/B) memory transfers.

To understand why this bound achieves our objective of storing different-

size keys with the efficiency as same-size keys, we should plug in several

values for the average key-sizek̂. If k̂ = O(1), then the expected search cost

is O(logB+1N), the performance for a B-tree storing unit-size keys. On the

other hand, ifk̂ = O(B), then the expected search cost isO(log2N). This

is reasonable because the keys are so big that the branching factor is just

constant, but sufficiently small that the access time for a given node is just

O(1). If the average key size isΩ(B), then again the branching factor is

constant, but now the expected node access cost isO(⌈k̂/B⌉), which isΩ(1).

In principle, it is nonoblivious that these bounds could be achievable because
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different regions of the key space can have varying average key sizes.

• We then show how to build adynamicatomic-key B-tree. The expect cost

to search for random keys stays the same. The cost to insert anarbitrary key

κ is the cost to search forκ plus a tree-update cost ofO(⌈k̂/B⌉ log1+⌈B/k̂⌉N)

amortized memory transfers. Thus, the update cost is dominated by the ex-

pected search cost.

As an intermediate step in this construction, we first present an atomic-key

B-tree, in which the cost to insert a keyκ is the cost to search forκ plus an

update cost ofO((⌈B/k̂⌉+⌈k̂/B⌉) log1+⌈B/k̂⌉N) amortized memory transfers.

We achieve our better bounds and then applying the techniqueof “indirec-

tion” on this first dynamic atomic-key B-tree. The objectiveis to divide the

keys into groups, choose a representative from each group, and then build a

dynamic atomic-key B-tree just on these representative elements. Unfortu-

nately, this strategy does not work because the average key size of the repre-

sentatives can be much larger than the average key size of allkeys. Instead,

we use a somewhat more and efficient use of indirection to avoid this potential

problem.

• Finally, we give a dynamic-programming algorithm for constructing a static,

atomic-key search tree having the minimum expected search cost. The algo-

rithm takes as input the keysκ1, . . . ,κn, their sizes, and their search probabil-

ities p1, . . . , pn. The algorithm usesO(BN3) operations.

Roadmap. The rest of this dissertation is organized as follows. In Chapter 2, we

prove tight bounds on the cost of cache-oblivious searchingand propose a gener-

alized vEB layout. In Chapter 3, we give the first adaptive packed-memory array,

which automatically adapts to common insertion patterns. We also show that our

experiment results match the asymptotic bounds from our theoretical results. In

Chapter 4, we design the partially deamortized packed-memory array. In Chap-

ter 5, we first present a static atomic-key B-tree, and then weimprove it to build a

dynamic atomic-key B-tree.



Chapter 2

Cache-Oblivious Searching Cost1

In this chapter, we focus on a fundamental problem of searching: Given a set ofN

ordered elements, design a data structure which does searching operation efficiently.

Here, we measure ”efficiency” by memory transfers (block cost) because memory

transfers are relatively slow.

Previous Work. A simple information-theoretic argument shows logBN+O(1) is

a lower bound in searching for an element amongN elements as follows (See [33]):

Lemma 1 Starting from an initially empty cache, at leastlogBN + O(1) memory

transfers is required to search for a desired element, in theaverage case.

Proof. A general query element encodes lg(2N+1)+O(1) = lgN+O(1) bits of

information, because it can be any of theN elements or in any of theN + 1 posi-

tions between the elements. The additiveO(1) comes from Kolmogorov complexity

(See [49]). Each block read reveals where the query element fits among thoseB el-

ements, which is at most lg(2B+ 1) = lgB+ O(1) bits of information. Thus, the

number of block reads is at least(lgN+O(1))/(lgB+O(1)) = logBN+O(1).

In the disk access model (DAM), with knowledge of the block sizeB, the clas-

sic searchB-tree with fan-outB, which is designed to fit into one memory block,

optimally achieves searching performance logBN+O(1) memory transfers. There-

fore, theB-tree is optimal for searching in a two-level memory model byLemma 1.

1An earlier version appears in [12].

11
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However, we know modern machines have multilevel memory hierarchies, which

can be modeled by extending the DAM model tok levels. Ask grows, the search

costs of the optimalk-level DAM search structure will increase for sure.

In this chapter, we present results in our published FOCS paper [12]. We

first obtain the lower bound of searching in cache-obliviousstructures by showing

that as the numberk of levels in the memory hierarchy grows, an optimalk-DAM

structure has the search cost tending to lgelogBN. Next, we propose a generalized

van Emde Boas layout which is a constant approximation wherethe constant lge

is better than that in the original vEB layout. Therefore, for a multilevel memory

hierarchy, a simple cache-oblivious structure almost replicates the performance of

an optimal parameterizedk-level DAM structure.

2.1 Lower Bound for Cache-Oblivious Searching

In this section, we prove lower bounds for the cost of cache-oblivious comparison-

based searching. The problem we consider is the average costof successful searches

amongN distinct elements, where the average is over a uniform distribution of the

search keyy on theN input elements. For lower bounds, average case complexity is

stronger than worst case complexity, so our bounds also apply to the worst case cost.

We note that our bounds hold even if the block sizes are known to the algorithm,

and that they hold for any memory layout of data, including any specific placement

of a single data structure.

Formally, our model is as follows. Given a setSof N elementsx1 < · · ·< xN

from a totally ordered universe, asearch structurefor S is an arrayM containing

elements fromS, possibly with several copies of each. Asearch algorithmfor M

is a binary decision tree where each internal node is labeledwith eithery < M[i] or

y≤M[i] for some array indexi, and each leaf is labeled with a number 1≤ j ≤ N.

A search on a keyy proceeds in a top-down fashion in the tree, and at each internal

node advances to the left child if the comparison given by thelabel is true, otherwise

it advances to the right. A binary decision tree is a correct search algorithm if for

anyxi ∈ S, the path taken by a search on keyy = xi ends in a leaf labeledi. Any

such tree must have at leastN leaves, and by pruning paths not taken by any search

for x1, . . . ,xN, we may assume that it has exactlyN leaves.
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To add I/Os to the model, we divide the arrayM into contiguousblocksof size

B. An internal node of a search algorithm is said toaccessthe block containing the

array indexi in the label of the node. We define the I/O cost of a search to be the

number of distinct blocks ofM accessed on the path taken by the search.

The main idea of our proof is to analyze the I/O cost of a given search al-

gorithm with respect to several block sizes simultaneously. We first describe our

method for the case of two block sizes. This will lead to a lower bound of

1.207logBN block transfers. We then generalize this proof to a larger numberk

of block sizes, and prove that in the limit ask grows, this gives a lower bound of

lgelogBN≈ 1.443logBN block transfers.

Throughout this section, we assume that block sizes are powers of two and

that blocks start at memory addresses divisible by the blocksize. This reflects

the situation on actual machines, and entails no loss of generality, as any cache-

oblivious algorithm at least should work for this case. The assumption implies that

for two block sizesB1 < B2, a block of sizeB1 is contained in exactly one block of

sizeB2.

Lemma 2 ( [46, Section 2.3.4.5])For a binary tree with N leaves, the average

depth of a leaf is at leastlgN.

Lemma 3 If a search algorithm on a search structure for block sizes B1 and B2,

where B2 = B1
c and1 < c≤ 2, guarantees that the average number of block reads

is at mostδ logB1
N andδ logB2

N, respectively, then

δ≥ 1
2/c+c−2+3/(clgB1)

.

Proof. Let T denote the binary decision tree constituting the search algorithm.

Our goal is to transformT into a new binary decision treeT ′ by transforming each

node that accesses a new sizeB1 block in T into a binary decision tree of small

height, and discarding all other nodes inT. A lower bound on the average depth

of leaves inT ′ then translates into a lower bound on the average number of blocks

accesses inT.

To count the number of I/Os of each type (sizeB1 blocks and sizeB2 blocks)

for each path inT, we mark some of the internal nodes by tokensτ1 andτ2. A node
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v is marked iff none of its ancestors accesses the sizeB1 block accessed byv, i.e.

if v is the first access to the block. The nodev may also be the first access to the

sizeB2 block accessed byv. In this case,v is marked byτ2, else it is marked byτ1.

Note that the word “first” above corresponds to viewing each path in the tree as a

time line—this view will be implicit in the rest of the proof.

For any root-to-leaf path, letbi denote the number of distinct sizeBi blocks

accessed and letai denote the number ofτi tokens on the path, fori = 1,2. By the

assumption stated above Lemma 2, a first access to a sizeB2 block implies a first

access to a sizeB1 block, so we haveb2 = a2 andb1 = a1+a2.

We transformT into a new binary decision treeT ′ in a top-down fashion. The

basic step in the transformation is to substitute a marked nodev with a specific bi-

nary decision treeTv resolving the relation between the search keyy and a carefully

chosen subsetSv of the elements. More precisely, in each step of the transforma-

tion, the subtree rooted atv is first removed, then the treeTv is inserted atv’s former

position, and finally a copy of one of the two subtrees rooted at the children ofv is

inserted at each leaf ofTv. The top-down transformation then continues downwards

at the leafs ofTv. When the transformation reaches a leaf, it is left unchanged. The

resulting tree can contain several copies of each leaf ofT.

We now describe the treeTv inserted, and first consider the case of a nodev

markedτ2. We let the subsetSv consist of the at mostB1 distinct elements in the

block of sizeB1 accessed byv, plus every B2
2B1

th element in sorted order among the

at mostB2 distinct elements in the block of sizeB2 accessed byv. The size ofSv is

at mostB1+B2/(B2/(2B1)) = 3B1.

The treeTv is a binary decision tree of minimal height resolving the relation

of the search keyy to all keys inSv. If we haveSv = {z1,z2, . . . ,zt}, with elements

listed in sorted order andt ≤ 3B1, this amounts to resolving which of the at most

6B1+1 intervals

(−∞;z1) , [z1;z1] , (z1;z2) , . . . , [zt ;zt ] , (zt ;∞)

thaty belongs to (we resolve for equality because we chose to allowboth< and≤
comparisons in the definition of comparison trees, and want to handle both types of

nodes in the transformation). The treeTv has height at most⌈lg(6B1+1)⌉, since a

perfectly balanced binary search tree onSv, with one added layer to resolve equality
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questions, will do. AsB1 is a power of two, lg(8B1) is an integer and hence an upper

bound on the height.

For the case of a nodev markedτ1, note thatv in T has exactly one ancestor

u markedτ2 that accesses the same sizeB2 block β asv does. When the treeTu

was substituted foru, the inclusion inSu of the 2B1 evenly sampled elements from

β ensures that below any leaf ofTu, at most B2
2B1
−1 of the elements inβ can still

have an unknown relation to the search key. The treeTv is a binary decision tree of

minimal height resolving these relations. Such a tree has atmost 2B2
2B1
−1 = B2

B1
−1

leaves and hence height at most lgB2
B1

, asB1 andB2 are powers of two.

Since in both casesTv resolves the relation between the search keyy and all

sampled elements, the relation between the search key and the element accessed at

v is known at each leaf ofTv, and we can choose either the left or right child ofv to

continue the transformation with.

When we in the top-down transformation meet an unmarked internal nodev

(i.e. a node where the sizeB1 block accessed at the node has been accessed before),

we can similarly discardv together with either the left or right subtree, since we al-

ready have resolved the relation between the search keyy and the element accessed

at v. This follows from the choice of trees inserted at marked nodes: when we ac-

cess a sizeB2 block β2 for the first time at some nodeu, we resolve the relation

between the search keyy and all elements in the sizeB1 blockβ1 accessed atu (due

to the inclusion of all ofβ1 in Su), and when we first time access a key inβ2 outside

β1, we resolve all remaining relations betweeny and elements inβ2.

The treeT ′ resulting from this top-down transformation is a binary decision

tree. By construction, each search inT ′ ends in a leaf having the same label as the

leaf that the same search inT ends in (this is an invariant during the transformation),

soT ′ is a correct search algorithm ifT is.

By the height stated above for the insertedTv trees, it follows that if a search

for a keyy in T corresponds to a path containinga1 anda2 tokens of typeτ1 and

τ2, respectively, then the search inT ′ corresponds to a path with length bounded by

the following expression.

a2 lg(8B1)+a1 lg
B2

B1
= b2 lg(8B1)+(b1−b2) lg

B2

B1

= b2

[

lg(8B1)− lg
B2

B1

]

+b1 lg
B2

B1



CHAPTER2. CO Searching Cost 16

The coefficients ofb2 andb1 are positive by the assumptionB1 < B2 ≤ B1
2, so

upper bounds onb1 andb2 imply an upper bound on the expression above. By

assumption, the average values over all search paths ofb1 andb2 are bounded by

δ logB1
N andδ logB2

N = (δ logB1
N)/c, respectively.

If we prune the tree for paths not taken by any search for the keys x1, . . . ,xN,

the lengths of root-to-leafs paths can only decrease. The resulting tree hasN leaves,

and Lemma 2 gives a lgN lower bound on the average depth of a leaf. Hence, we

get

lgN≤ δ
c

logB1
N

[

lg(8B1)− lg
B2

B1

]

+δ logB1
N lg

B2

B1

=
δ
c

logB1
N[3+ lgB1− (c−1) lgB1]+δ logB1

N(c−1) lgB1

= δ lgN[3/(clgB1)+1/c− (c−1)/c+(c−1)]

= δ lgN[3/(clgB1)+c+2/c−2] .

It follows thatδ≥ 1/[3/(clgB1)+c+2/c−2].

Corollary 4 If a search algorithm on a search structure guarantees, for all block

sizes B, that the average number of block reads for a search isat mostδ logBN, then

δ≥ 1/(2
√

2−2)≈ 1.207.

Proof. Lettingc=
√

2 in Lemma 3, we getδ≥ 1/[2
√

2−2+3/(
√

2lgB1)]. The

lower bound follows by lettingB1 grow to infinity.

Lemma 5 If a search algorithm on a search structure for block sizes B1,B2, . . . ,Bk,

where Bi = B1
ci and1= c1 < c2 < · · ·< ck≤ 2, guarantees that the average number

of block reads for a search is at mostδ logBi
N for each block size Bi, then

δ≥ 1
k−1
∑

i=1

ci+1

ci
+

2
ck

[

1+
lg(8k)
2lgB1

]

−k

.

Proof. The proof is a generalization of the proof of Lemma 3 for two block sizes,

and we here assume familiarity with that proof. The transformation is basically the

same, except that we have a tokenτi , i = 1, . . . ,k, for each of thek block sizes.
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Again, a nodev is marked if none of its ancestors access the sizeB1 block

accessed byv, i.e. if v is the first access to the block. The nodev may also be the

first access to blocks of larger sizes, and we markv by τi, whereBi is the largest

block size for which this is true. Note thatv must be the first access to the sizeB j

block accessed byv for all j with 1≤ j ≤ i.

For any root-to-leaf path, letbi denote the number of distinct sizeBi blocks

accessed and letai denote the number ofτi tokens on the path, fori = 1, . . . ,k.

We havebi =
∑k

j=i a j . Solving forai, we getak = bk andai = bi −bi+1, for i =

1, . . . ,k−1.

As in the proof of Lemma 3, the transformation proceeds in a top-down fash-

ion, and substitutes marked nodesv by binary decision treesTv. We now describe

the treesTv for different types of nodesv.

For a nodev markedτk, the treeTv resolves the relation between the query key

y and a setSv of size(2k−1)B1, consisting of theB1 elements in the block of size

B1 accessed atv, plus for i = 2, . . . ,k every Bi
2B1

th element in sorted order among

the elements in the block of sizeBi accessed atv. This tree can be chosen to have

height at most⌈lg(2(2k−1)B1+1)⌉ ≤ lg(8kB1).

For a nodev markedτi , i < k, let β j be the block of sizeB j accessed byv, for

1≤ j ≤ k. For i +1≤ j ≤ k, β j has been accessed before, by the definition ofτi .

We now consider two cases. Case I is thatβi+1 is the only block of sizeBi+1 that

has been accessed insideβk. By the definition of the treeTu inserted at the ancestor

u of v whereβk was first accessed, at mostBi+1/2B1−1 of the elements inβi+1

can have unknown relations with respect to the search keyy. The treeTv inserted at

v resolves these relations. It can be chosen to have height at most lgBi+1
B1

. Case II is

thatβi+1 is not the only block of sizeBi+1 that has been accessed insideβk. Then

consider the smallestj for which β j+1 is the only block of sizeB j+1 that has been

accessed insideβk. When we first time accessed the second block of sizeB j inside

βk at some ancestoru of v, this access was necessarily insideβ j+1, and a Case I

substitution as described above took place. Hence a treeTu was inserted which

resolved all relations between the search key and elements in β j+1, and the empty

tree can be used forTv, i.e.v and one of its subtrees can simply be discarded.

For an unmarked nodev, there is a tokenτi on the ancestoru of v in T where

the sizeB1 block β1 accessed byv was first accessed. This gave rise to a treeTu
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in the transformation, and this tree resolved the relationsbetween the search key

and all elements inβ1, either directly (i = k) or by resolving the relations for all

elements in a block containingβ1 (1≤ i < k), sov and one of its subtrees can be

discarded.

After transformation and final pruning, the length of a root-to-leaf path in the

final tree is bounded by the following equation.

ak lg(8kB1)+

k−1
∑

i=1

ai lg
Bi+1

B1
= bk lg(8kB1)+ lgB1

k−1
∑

i=1

(bi−bi+1)(ci+1−1)

= lgB1

[

bk

(

1+
lg(8k)
lgB1

)

+b1(c2−1) +
k−1
∑

i=2

bi(ci+1−ci)−bk(ck−1)

]

= lgB1

[

k−1
∑

i=1

bi(ci+1−ci)+bk

(

2+
lg(8k)
lgB1

−ck

)

]

.

For all i, the average value ofbi over all search paths is by assumption bounded

by δ logBi
N = (δ logB1

N)/ci , and the coefficient ofbi is positive, so we get the

following bound on the average number of comparisons on a search path.

δ logB1
N lgB1

[

k−1
∑

i=1

1
ci

(ci+1−ci) +
1
ck

(

2+
lg(8k)
lgB1

−ck

)]

= δ lgN

[

k−1
∑

i=1

ci+1

ci
+

1
ck

(

2+
lg(8k)
lgB1

)

−k

]

.

By Lemma 2 we have

δ lgN

[

k−1
∑

i=1

ci+1

ci
+

1
ck

(

2+
lg(8k)
lgB1

)

−k

]

≥ lgN ,

and the lemma follows.

Theorem 6 If a search algorithm on a search structure guarantees, for all block

sizes B, that the average number of block reads for a search isat mostδ logBN,

thenδ≥ lge≈ 1.443.
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Proof. Let k be an integer, and fori = 1, . . . ,k defineBi = 2k+i−1. In particular,

we haveBi = B1
ci with ci = (k+ i−1)/k. Consider the following subexpression of

Lemma 5.

2
ck

(

1+
lg(8k)
2lgB1

)

+
k−1
∑

i=1

ci+1

ci
−k

=
2k

2k−1

(

1+
lg(8k)

2k

)

+

k−1
∑

i=1

k+ i
k+ i−1

−k

=
2k

2k−1

(

1+
lg(8k)

2k

)

−1+
k−1
∑

i=1

1
k+ i−1

≤ 2k
2k−1

(

1+
lg(8k)

2k

)

−1+

∫ 2k−2

k−1

1
x

dx

=
2k

2k−1

(

1+
lg(8k)

2k

)

−1+ ln2.

Lettingk grow to infinity Lemma 5 impliesδ≥ 1/ ln2 = lge.

2.2 Upper Bound for van Emde Boas Layout

In this section we give tight analyses of the cost of searching in a binary tree stored

with van Emde Boas layout [50]. As mentioned earlier, in the vEB layout, the tree is

split evenly by height, except for roundoff. Thus, a tree of heighth is split into a top

tree of height⌈h/2⌉ and bottom tree of height⌊h/2⌋. Publications [16,18,30] show

that the number of memory transfers for a search is 4 logBN in theworst case; we

give a matching configuration showing that this analysis is tight. We then consider

the average-case performance over starting positions of the tree in memory, and we

show that the expected search cost is 2(1+3/
√

B) logBN+O(1) memory transfers,

which is tight within a 1+o(1) factor. We assume that the data structure begins at

a random position in memory; if there is not enough space, then the data structure

“wraps around” to the first location in memory.

A relatively straightforward analysis of this layout showsthat in the worst case

the number of memory transfers is no greater than four times that of the optimal

cache-size-awarelayout. More formally,
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Theorem 7 Consider an(N−1)-node complete binary search tree that is stored

using the Prokop vEB layout. A search in this tree has memory-transfer cost of
(

4− 4
2+ lgB

)

logBN in the worst case.

Proof. The upper bound has been established before in the literature [16,18,30].

For the lower bound we show that this value is achieved asymptotically. Let the

block size beB =
(

22k−1
)

/3 for any odd numberk and consider a treeT of size

N−1, whereN = 2k2m+1
for some constantm. Number the positions within a block

from 0 toB−1. As we recurse, we eventually obtain subtrees of size 3B = 22k−1

and one level down of size 2k− 1. We align the subtree of size 3B that contains

the root ofT so that its first subtree of size 2k−1 (which also contains the root of

T) starts in positionB−1 of a block. In other words, any root-to-leaf search path

in this subtree crosses the block boundary because the root is in the last position

of a block. Consider the
(

(2k +1)/3+1
)

th subtree of size 2k− 1. The root of

this tree starts at positionB−1+(2k−1)(2k + 1)/3 = 2B−1, which is also the

last position of a block. Thus, any root-to-leaf search pathin this subtree crosses

the block boundary. Observe that because trees are laid out consecutively, and 3B

is a multiple of the block size, all other subtrees of size 3B start at positionB−1

inside a block and share the above property (that we can find a root-to-leaf path that

has cost 4 inside this size-3B subtree). Notice that a root-to-leaf path accesses 2m

many size-3B subtrees, and if we choose the path according to the above position

we know that the cost inside each size 3B subtree is 4. More precisely, each size

2k−1 subtree on this path starts at positionB−1 in a block. Thus, the total search

cost is 4·2m. Because 2k2m+1
= N and 3B = 22k−1, we have

4 ·2m =
4logBN

logB(3B+1)
= 4

lgB
lg(3B+1)

logBN.

Furthermore, we bound the parameter lgB/ lg(3B+1) as follows:

lgB
lg(3B+1)

<
lgB
lg3B

= 1− lg3
lg3+ lgB

< 1− 1
2+ lgB

.
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Therefore, the total search cost has 4(1−1/(2+ lgB)) logBN memory transfers in

the worst case.

However, few paths in the tree have this property, which suggests that in prac-

tice, the Prokop vEB layout results in a much lower memory-transfer cost assuming

random placement in memory.

In Theorem 9, appearing shortly, we formalize this notion. First, however, we

give the following useful inequality to simplify the proof.

Claim 8 Let B be a power of2, t and t′ be positive numbers satisfying t/2≤ t ′≤ 2t,√
B/2≤ t ≤

√
B, and tt′ ≥ B. Then

2+
t + t ′

B
≤ 2

(

1+
3√
B

)

lgt + lg t ′

lgB
.

Proof. Becauset2+(t ′)2≤ 5tt ′/2 for all t/2≤ t ′ ≤ 2t, we have

t + t ′ ≤ 3

√

tt ′

2
. (1)

Definex = tt ′ and define

f (x) = 2

(

1+
3√
B

)

lgx
lgB
−2− 3

B

√

x
2
.

We will show that f (x) ≥ 0 for B≤ x≤ 2B. First, we calculate the second

derivative of f (x).

f ′′(x) =−2

(

1+
3√
B

)

1
x2 lnB

+
3

4
√

2B

1

x3/2
.

Becausex≤ 2B (i.e.,x1/2 ≤
√

2B), we obtain

f ′′(x)≤ 1
x2

[

3
√

2B

4
√

2B
−2

(

1+
3√
B

)

1
lnB

]

.

By removing the term−6/(
√

BlnB), we boundf ′′(x) as follows:

f ′′(x)≤ 1
x2

(

3

4
√

B
− 2

lnB

)

≤ 0.
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Thus, we establish thatf (x) is convex in the rangeB ≤ x ≤ 2B. Because both

f (B) and f (2B) are greater than zero, we obtainf (x)≥ 0 for B≤ x≤ 2B, which is

equivalent to

2+
3
B

√

x
2
≤ 2

(

1+
3√
B

)

lgx
lgB

.

From (1) and the above inequality, we obtain the follows:

2+
t + t ′

B
≤ 2

(

1+
3√
B

)

lgx
lgB

.

Theorem 9 Consider a path in an(N− 1)-node complete binary search tree of

height h that is stored in vEB layout, with the initial page starting at a uniformly

random position in a block B. Then the expected memory-transfer cost of the search

is at most2(1+3/
√

B) logBN.

Proof. Although the recursion proceeds to the base case where treeshave height

1, conceptually we stop the recursion at the level of detail where each recursive

subtree has at mostB nodes. We call those subtreescritical recursive subtrees,

because they are recursive subtrees in the most ”important”level of detail. Let the

number of nodes in a subtreeT be |T|. Therefore, any critical recursive subtreeT

has|T| nodes, where
√

B/2≤ |T| ≤ B. Note that because of roundoff, we cannot

guarantee that|T| ≥
√

B. In particular, if a tree hasB+1 nodes and its heighth′ is

odd, then the bottom trees have height⌊h′/2⌋, and therefore contain roughly
√

B/2

nodes. Then there are exactly|T|−1 initial positions for the upper tree that results

in T being laid out across a block boundary. Similarly there areB−|T|+1 positions

in which the block does not cross a block boundary. Hence, thelocal expected cost

of accessingT is

2(|T|−1)

B
+

B−|T|+1
B

= 1+
|T|−1

B
.

Now we need two cases to deal with the roundoff. If
√

B/2≤ |T| ≤
√

B for the

critical recursive subtreeT, then we consider the next larger level of detail. There

exists another critical recursive subtreeT ′ immediately aboveT on the search path

in this level of detail. Notice that|T||T′| ≥B. Because otherwise we would consider
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the coarser level of detail for our critical recursive subtree. Because we cut in the

middle, we know that 2|T ′| ≥ |T| ≥ |T ′|/2. From Claim 8 the expected cost of

accessingT andT ′ is at most

1+
|T|−1

B
+1+

|T′|−1
B

≤ 2

(

1+
3√
B

)

lg(|T||T ′|)
lgB

.

For
√

B≤ |T| ≤ B for the critical recursive subtreeT, we show that the cost of

accessingT is less than 2(1+1/
√

B) lg |T|/ lgB. Define f (x) as follows:

f (x) = 2
lgx
lgB

(

1+
1√
B

)

−1− x−1
B

.

By calculating

f ′′(x) =− 2
x2 lgB

(

1+
1√
B

)

≤ 0,

we know f (x) is convex. Because bothf (
√

B) and f (B) are greater than zero, we

obtain f (x) ≥ 0 for the entire range
√

B≤ x≤ B. Thus, consideringf (|T|), we

obtain that the expected cost of accessingT is

1+
|T|−1

B
≤ 2(1+

1√
B

)
lg |T|
lgB

.

Combining the above arguments, we conclude that although the critical recur-

sive subtrees on a search path may have different sizes, their expected memory-

transfer cost is at most

∑

T

2

(

1+
3√
B

)

lg |T|
lgB

= 2

(

1+
3√
B

)

logBN.

This is a factor of 2(1+3/
√

B) times the (optimal) performance of a B-tree.

2.3 Upper Bound for the Generalized van Emde Boas

Layout

We now propose and analyze ageneralized van Emde Boas layouthaving a better

search cost. In the original vEB layout, the top recursive subtree and the bottom
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recursive subtrees have the same height (except for roundoff). At first glance this

even division would seem to yield the best memory-transfer cost. Surprisingly, we

can improve the van Emde Boas layout by selecting different heights for the top

and bottom subtrees.

The generalized vEB layout is as follows: Suppose the complete binary tree

containsN−1= 2h−1 nodes and has heighth= lgN. Leta andbbe constants such

that 0< a < 1 andb = 1−a. Conceptually we split the tree at the edges below the

nodes of depth⌈ah⌉. This splits the tree into atop recursive subtreeof height⌈ah⌉,
andk = 2⌈ah⌉ bottom recursive subtreesof height⌊bh⌋. Thus, there are roughlyNa

bottom recursive subtrees and each bottom recursive subtree contains roughlyNb

nodes. We map the nodes of the tree into positions in the arrayby recursively laying

out the subtrees contiguously in memory. The base case is reached when the trees

have one node, as in the standard vEB layout.

We find the values ofa andb that yield a layout whose memory-transfer cost

is arbitrarily close to[lge+O(lg lgB/ lgB)] logBN+O(1) for a= 1/2−ξ and large

enoughN. We focus our analysis on the first level of detail where recursive subtrees

have size at most the block sizeB. In our analysis memory transfers can be classified

in two types. There areV path-length memory transfers, which are caused by

accessing different recursive subtrees in the level of detail of the analysis, and there

are C page-boundary memory transfers, which are caused by a single recursive

subtree in this level of detail straddling two consecutive blocks. It turns out that

each of these components has the same general recursive expression and differs

only in the base cases. The total number of memory transfers is at mostV +C by

linearity of expectation.

The recurrence relation obtained contains rounded-off terms (⌊·⌋ and⌈·⌉) that

are cumbersome to analyze. We show that if we ignore the roundoff operators, then

the error term is small. We obtain a solution expressed in terms of a power series

of the roots of the characteristic polynomial of the recurrence. We show for bothV

andC that the largest root is unique and hence dominates all otherroots, resulting

in asymptotic expressions in terms of the dominant root.

Using these asymptotic expressions, we obtain the main result, namely a layout

whose total cost is arbitrarily close to[lge+ O(lg lgB/ lgB)] logBN + O(1) as the

split factora = 1/2−ξ approaches 1/2 and forN large enough. This performance
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matches the lower bound from the Section 2.1 up to low-order terms.

Causes of Memory Transfers: Path-Length and Block-Boundary-

Crossing Functions

We letB (x) denote the expected block cost of a search in a tree of heightx. To

begin, we explain the base case for the recurrence, when the entire tree is a critical

recursive subtree. Recall that acritical recursive subtreeis a recursive subtree of

size less thanB. If a critical recursive subtree crosses a block boundary, then the

block cost is 2; otherwise the block cost is 1. As in the Theorem 9, the expected

block cost of accessing a critical recursive subtreeT of size|T|= t−1 and height

x = lg t is

1+
t−2

B
= 1+

2x−2
B

.

Thus, the base case is when|T|< B, which means thatt ≤ B and 1≤ x≤ lgB.

We next give the recurrence for the block costB (x) of a treeT of heightx. By

linearity of expectation, the expected block cost is at mostthat of the top recursive

subtree plus the bottom recursive subtree, i.e.,

B (x)≤ B (⌈ax⌉)+B (⌊bx⌋),

for x > lgB, 2 for a+b = 1, 0< a≤ b < 1.

We decompose (an upper bound on) the cost ofB (x) into two pieces. Let

V (x) be the number of critical recursive subtrees visited along aroot-to-leaf path

(V stands for “vertical”), i.e.,

V (x) =

{

V (⌈ax⌉)+V (⌊bx⌋), x > lgB;

1, 1≤ x≤ lgB.
(2)

Let C (x) be the expected number of critical recursive subtrees straddling block

boundaries along the root-to-leaf path (C stands for “crossing”), i.e.,

C (x) =

{

C (⌈ax⌉)+C (⌊bx⌋), x > lgB;

(2x−2)/B, 1≤ x≤ lgB.
(3)

2We cannot claim equality, i.e., thatB (x) = B (⌈ax⌉)+B (⌊bx⌋), because the leaf node of the top

recursive subtree and root node of a bottom recursive subtree can belong to the same block. Thus,

an equal sign in the recurrence might double count one memorytransfer.
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Observe that bothV (x) andC (x) are monotonically increasing. By linearity of

expectation, we obtain

B (x)≤ V (x)+C (x)

for all x≥ lgB.

The recurrences forV (x) andC (x) are both of the form

F (x) = F (⌈ax⌉)+F (⌊bx⌋).

As we will see, it is easier to analyze a recurrence of the form

G (x) = G (ax)+G (bx),

where the roundoff error is removed. In the next few pages, weshow thatF (x)

can be approximated byG (x) asx increases. Afterwards, we show how to calculate

G (x).

Roundoff Error Is Small

We next show that asx increases, the difference betweenF (x) andG (x) can be

bounded. To quantify the difference betweenF (x) andG (x) — see Theorem 13 —

we use functionsβ(x) andδ(x) defined recursively below:

Definition 10 Let a< min{1/2,1− 2/ lgB}. Define the recursive functionβ(x)

andδ(x) as follows:

β(x) =

{

0, x≤ lgB;

β(ax+1)+1, x > lgB.

δ(x) =

{

1, x≤ lgB;

δ(ax+1)(1+2aβ(x)−2/ lgB), x > lgB.

The following lemma gives upper and lower bounds ofβ(x).

Lemma 11 For all x > lgB, the functionβ(x) satisfies

2
a2x
≥ aβ(x)−2

lgB
≥ 1

2ax
. (4)
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Proof. For parametern, define thenth interval In to be

In =

[

lgB
2an−1 +

1
1−a

,
lgB−1−a−·· ·−an−1

an

]

.

We now prove the following inequality for allx > lgB:

1
2

lgB

(

1
a

)β(x)−1

≤ x− 1
1−a

≤ lgB

(

1
a

)β(x)

. (5)

We establish (5) in two parts.

1. We first show that the inequality holds for alln and allx∈ In.

2. We then explain that the intervalI0∪ I1∪ I2∪· · · covers the interval[ lgB,∞).

We now prove the first part, showing by induction onn that (5) holds for alln

and allx∈ In.

Base Case:The base case is when

x∈ I0 =

[

a
2

lgB+
1

1−a
, lgB

]

.

Becausea < 1/2,
1

1−a
> 0.

Therefore, becausex∈ I0,

a
2

lgB≤ x− 1
1−a

≤ lgB. (6)

Becausex≤ lgB and from Definition 10,β(x) = 0. Observe that (6) is equivalent

to (5) whenβ(x) = 0. Therefore, (5) holds in the base case.

Induction step:Assume that (5) holds for thenth interval In. We will show

that (5) also holds for the(n+1)st intervalIn+1, i.e., when

x∈ In+1 =

[

lgB
2an +

1
1−a

,
lgB−1−a−·· ·−an

an+1

]

,

or equivalently when

lgB
2an +

1
1−a

≤ x≤ lgB−1−a−·· ·−an

an+1 . (7)
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Multiplying by a and adding 1 to both sides of (7), we see that (7) is equivalentto

lgB
2an−1 +

1
1−a

≤ ax+1≤ lgB−1−a−·· ·−an−1

an ,

i.e.,

ax+1∈ In.

Thus, by induction (pluggingax+1 for x in (5)), we obtain

1
2

lgB

(

1
a

)β(ax+1)−1

≤ ax+1− 1
1−a

≤ lgB

(

1
a

)β(ax+1)

.

Noticing thatβ(ax+1) = β(x)−1 by Definition 10 and

(ax+1)− 1
1−a

= a

(

x− 1
1−a

)

,

we establish

1
2

lgB

(

1
a

)β(x)−2

≤ a

(

x− 1
1−a

)

≤ lgB

(

1
a

)β(x)−1

,

which is equivalent to (5) forx∈ In+1.

We now prove the second part, that
⋃∞

n=0 In covers the interval[ lgB,∞). This

claim follows whena < 1−2/ lgB, which is guaranteed whenB > 16. The claim

follows because intervals overlap, i.e., the right endpoint of the In is between the

left and right endpoints of theIn+1, that is,

lgB
2an +

1
1−a

≤ lgB−1−a−·· ·−an−1

an ≤ lgB−1−a−·· ·−an

an+1 .

We have now established that (5) holds for allx > lgB.

We next show that (5) is equivalent to the lemma statement, i.e., (4). Taking

inverses on both sides of (5), we have

2
aβ(x)−1

lgB
≥ 1

x− 1
1−a

≥ aβ(x)

lgB

i.e.,
1

a2x− a2

1−a

≥ aβ(x)−2

lgB
≥ 1

2ax− 2a
1−a

.
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Becausex > lgB anda < 1−2/ lgB, we havex > 2/(1−a), i.e.,a2x/2 > a2/(1−
a). Therefore, the left side of the above inequality is less than 2/(a2x). The right

side is greater than 1/(2ax) because 2a/(1−a) > 0. Thus, we prove the following

2
a2x
≥ aβ(x)−2

lgB
≥ 1

2ax

for all x > lgB as claimed.

The following lemma gives the properties and the upper boundof δ(x).

Lemma 12 The functionδ(x) has the following properties:

(1) If β(x) = β(y), thenδ(x) = δ(y).

(2) For all x > lgB,

(ax+1)δ(ax+1)≤ axδ(x).

(3) For all x > lgB,

δ(x)≤ exp

[

2
a(1−a) lgB

]

,

which is

1+O

(

2
a(1−a) lgB

)

= 1+O

(

1
lgB

)

.

Proof. (1) This claim follows from Definition 10.

(2) This claim follows from Definition 10 ofδ(x) and Lemma 11

aβ(x)−2

lgB
≥ 1

2ax
.

(3) Recall that from Definition 10, we have

δ(x)
δ(ax+1)

= 1+2
aβ(x)−2

lgB

for all x> lgB. Furthermore, because 1+y< ey is true for anyy> 0, we bound the

functionδ(·) as follows

δ(x)
δ(ax+1)

≤ exp

[

2
aβ(x)−2

lgB

]

. (8)
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For simplification, we definePi be the polynomialaix+ai−1 + · · ·+1. In the

following, we show there exists some big integern such thatPn+1 = an+1x+an +

· · ·+ 1 < lgB. First of all, becausea < 1, an is arbitrary small whenn goes to

infinity. Thus, ifn is big enough, then

an+1x <
lgB
2

(9)

for fixed numberx. Second, for bigB > 16, we have 1/(1−a) < (lgB)/2. Thus,

an+ · · ·+a+1 <
1

1−a
<

lgB
2

(10)

is true for all integern. Therefore, combining both (9) and (10), we obtain that there

exists some big integern such that

Pn+1 = an+1x+an + · · ·+1 < lgB,

which means, by Definition 10 ofδ(x), δ(Pn+1) = δ(an+1x+ an + · · ·+ 1) = 1.

Therefore,δ(x) can be expressed as the multiplication ofn+1 items, i.e.,

δ(x) =
δ(x)

δ(ax+1)

δ(ax+1)

δ(a2x+ax+1)
· · · δ(anx+an−1 + · · ·+1)

δ(an+1x+an + · · ·+1)

Using the termPi in the above equation, we get the simplified version

δ(x) =
n
∏

i=0

δ(Pi)

δ(Pi+1)
. (11)

To boundδ(x), we give the upper bound forδ(Pi)/δ(Pi+1) first. Notice that

Pi+1 = aPi +1, Replacingx by Pi in (8), we have the upper bound

δ(Pi)

δ(Pi+1)
≤ exp

[

2
aβ(Pi)−2

lgB

]

.

We claim thatβ(Pi) = n+ 1− i for all 0 ≤ i ≤ n+ 1. We prove this claim by

induction. The base case is forPn+1. From Definition 10 andPn+1 < lgB, we have

β(Pn+1) = 0. Assume the claim holds for somePi . We prove the claim holds for

Pi−1. BecausePi = aPi−1 + 1, we haveβ(Pi−1) = β(Pi)+ 1 from Definition 10 of

β(x). Therefore, by induction, we obtainβ(Pi−1) = β(Pi) + 1 = n+ 1− i + 1 =
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n+ 1− (i−1) as claimed. Thus, each of those itemsδ(Pi)/δ(Pi+1) has the upper

bound

exp

[

2
an−i−1

lgB

]

.

Therefore, we obtain

δ(x)≤ exp

[

2
n
∑

i=0

an−i−1

lgB

]

= exp

[

2
lgB

n
∑

i=0

ai−1

]

.

Because
n
∑

i=0

ai−1 <
∞
∑

i=0

ai−1 =
1

a(1−a)
,

we prove that

δ(x)≤ exp

[

2
a(1−a) lgB

]

,

as claimed.

Theorem 13 (Roundoff Error) For 0 < a≤ b < 1 and a+b = 1, let

F (x) = F (⌈ax⌉)+F (⌊bx⌋) andG (x) = G (ax)+G (bx).

Then for B> 8, all x > 1, and constant c, we have

F (x)≤ G (xδ(x))≤ c

[

1+O

(

1
lgB

)]

x+O(1).

Proof. First recall thatF (x) andG (x) are monotonically increasing. Thus, from

⌈ax⌉ ≤ ax+1 and⌊bx⌋ ≤ bx, we have

F (x)≤ F (ax+1)+F (bx). (12)

We proveF (x)≤ G (xδ(x)) inductively. The base case is when 1< x≤ lgB,

whereδ(x) = 1 from Definition 10 andF (x) = G (x). Thus,F (x) ≤ G (xδ(x)) is

true when 1< x≤ lgB.

AssumingF (x) ≤ G (xδ(x)) is true for 1< x≤ t, we prove it is true for 1<

x≤ (t−1)/b. Noticing that(t−1)/b≤min{t/b,(t−1)/a} (becauseb≥ a), we
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haveax+1≤ t andbx≤ t for all 1 < x≤ (t−1)/b. Thus, by assumption and (12),

we obtain

F (x)≤ G ((ax+1)δ(ax+1))+G (bxδ(bx)), 1 < x≤ (t−1)/b. (13)

From Condition (2) in Lemma 12 andδ(bx)≤ δ(x), we obtain

G ((ax+1)δ(ax+1))≤ G (axδ(x)) and G (bxδ(bx))≤ G (bxδ(x)). (14)

Pluging (14) into (13), we derive that

F (x)≤ G (axδ(x))+G (bxδ(x)) = G (xδ(x)), 1 < x≤ (t−1)/b.

Therefore, after two inductive steps, it is true for

1 < x≤ t−1−b
b2 ,

and aftern inductive steps, it is true for all

1 < x≤ t−1−b−·· ·−bn−1

bn =
t− (1−bn)/(1−b)

bn .

Therefore, as long ast > 1/(1−b) = 1/a, we haveF (x)≤ G (xδ(x)) for all x > 1.

Thus, we need lgB > 1/a, which holds whenB > 8 anda > 1/3.

Furthermore, ifG (x) ≤ cx+ O(1), then by Condition (3) in Lemma 12, we

obtain the following:

F (x)≤ G (xδ(x))≤ cxδ(x)+O(1)≤ c[1+O(1/ lgB) ]x+O(1).

Bounding the Path-Length Function

We now determine the constant in the search costO(logBN), for given values ofa

andb. To do so, we assume

a =
1
qk and b =

1
qm , (15)



CHAPTER2. CO Searching Cost 33

for positive real numberq > 1 and relatively prime integersmandk. Plugging (15)

into a+b = 1, we obtain 1/qk +1/qm = 1. Define

n = k−m. (16)

Observe that becausek> m (sincea< b), n is positive. We now have the simplified

formula

qk = qn+1. (17)

The rationale behind this assumption is that this additional structure helps us

in the analysis while still being dense; that is, for any given a and b satisfying

a+b = 1, we can finda′ andb′ defined as (15) that are arbitrary close toa andb.

Because there exits a real numberr such thata = br , we choose rational number

k/m, (k,m) = 1 as close as desired tor. Let q = b−1/m. Then a′ = 1/qk and

b′ = 1/qm. We call such an(a,b) pair atwin power pair.

As before we analyzeV (x) first. We ignore the roundoff based on Theorem 13.

Furthermore, we normalize the range for whichV (x) = 1 by introducing a function

H(x) =

{

H(ax)+H(bx) , x > 1;

1, 0 < x≤ 1.
(18)

Note thatV (xlgB)≤ H(xδ(xlgB)) by Theorem 13.

First we state a primary lemma of the subsection, which we prove later.

Lemma 14 Let (1/qk,1/qm) be a twin power pair, and let n= k−m. Then for any

constantε > 0 and

c1 =

(

n
∑

i=1

q−i +
k
∑

i=n+1

qk−i

)

/
(

kqk−1−nqn−1
)

,

when x≥O(k/ε) we have

H(x)≤ (c1+ ε)qkx+O(1).

Corollary 15 For any constantε > 0, the numberV (x) of recursive subtrees on a

root-to-leaf path is bounded by

(c1+ ε)qk logBN+O(1),

when N≥ BO(k/ε).
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We obtain the main upper-bound result by showing thatc1qk ≈ lge for some

twin power pair.

Theorem 16 (Path-Length Cost)For any constantε > 0, the number of recursive

subtrees on a root-to-leaf path is

(lge+ ε) logBN+O(1)≈ 1.443logBN+O(1),

as the split factor a= 1/2−ξ approaches1/2.

Proof. Choose the twin power paira = 1/qk andb = 1/qk−1 such that

1
qk +

1
qk−1 = 1,

which is equivalent to

qk = q+1.

The approximate solution for the above equation is

q≈ 1+
ln2
k

,

for k→ ∞. Therefore, we have

a =
1

1+q
≈ 1

2+ ln2/k
. (19)

From Lemma 14, form= k−1 (and thereforen = 1), we have

c1 =

(

q−1+

k
∑

i=2

qk−i

)

/
(

kqk−1−1
)

=
qk−1

(q−1)(kqk−q)
.

Thus, for largek, we obtain

c1qk =
qk−1
q−1

1

k− 1
qk−1

k→∞−−−→ 1
ln2

= lge.

That is, for a givenε/2 > 0, we can choose a big constantkε such that

c1qk ≤ lge+ ε/2, (20)
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for all k≥ kε.

From Corollary 15, for a givenε/8 > 0 and the above constantkε, we can

choose big constantNε,k such that

V (x)≤ (c1 + ε/8)qk logBN+O(1), (21)

for all N≥ Nε,k. Plugging (20) into (21) and noticing thatqk = 1/a < 4, we obtain

V (x)≤ (lge+ ε) logBN+O(1)≈ 1.443 logBN+O(1)

as claimed.

Noticing that for bigk≥ kε, we see that the split factora approaches 1/2 by

(19). In particular, as long as that

ξ≤ 1
2
− 1

2+ ln2/kε
=

ln2
4kε + ln4

,

it suffices that the split factora = 1/2−ξ.

To complete the proof of Lemma 14, we establish some properties ofH(x).

SinceH(x) is monotonically increasing, we can bound the valueH(x)/x for qi ≤
x≤ qi+1 as follows:

H(qi)

qi+1 ≤
H(x)

x
≤ H(qi+1)

qi . (22)

Let Hmin be the lower bound andHmax be the upper bound ofH(qi)/qi , when i

is larger than a given integerj. Noticing that the left part in Inequality (22) is

H(qi)/qi+1 ≥ Hmin/q and the right part in Inequality (22) isH(qi+1)/qi ≤ qHmax,

we obtain
Hmin

q
≤ H(x)

x
≤ qHmax,

whenx is bigger thanq j .

We give the recurrence ofH(·). From (18), we have that fori ≥ 0,

H(qi+1) = H(aqi+1)+H(bqi+1). (23)

Plugging (15) into (23) and sincen = k−m, we obtain

H(qi+1) = H(qi−k+1)+H(qi+n−k+1). (24)
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For the sake of notational simplicity, we denoteαi = H(qi−k+1). Therefore, (24) is

equivalent to

αi+k = αi+n+αi . (25)

We define the characteristic polynomial function of Recurrence (25) asw(x) = xk−
xn−1. Let r1, r2, . . . , rk be the (possibly complex) roots ofw(x). We claim below

that these roots are all unique.

The following four lemmas supply basic mathematical knowledge behind the

proof of Lemma 14.

Lemma 17 The k roots of w(x) = xk−xn−1are unique, when k and n are relatively

prime integers such that1≤ n < k.

Proof. We prove this lemma by contradiction. If a rootr of w(x) is not unique,

then(x− r)2 is a factor ofw(x), andx− r is a factor ofw′(x) = kxn−1(xk−n−n/k).

Thus,r is either 0 or a root ofxk−n−n/k. But 0 is not a root ofw(x). Therefore,

rk−n = n/k, (26)

which means|r|< 1 (becausen < k).

On the other hand, becauser is a root ofw(x), w(r) = rn(rk−n−1)−1 = 0.

Plugging (26) intow(r) = 0, we obtainrn = k/(n−k), which means|r|> 1 (because

|k|> |k−n|). This is the contradiction. Therefore, every root ofw(x) is unique.

Becausew′(x) = kxk−1−nxn−1 > 0 whenx > 1 andq is a root ofw(x) greater

than 1 (see Equation (17)), there is one unique real rootq> 1 of w(x). Without loss

of generality, letr1 = q.

We now show that if thek roots of the characteristic polynomial function of a

series are unique, then the series in question is a linear combination of power series

{r i
j} of the roots.

Lemma 18 Consider a series{αi} satisfyingαk+s =
∑k−1

i=0 diαi+s for complex

numbers di and any integer s, and let r1, r2, . . . , rk be the k unique roots of the

characteristic function g(x) = xk−∑k−1
i=0 dixi for the series{αi}. Then there exists

complex numbers c1,c2, . . . ,ck such that for all i,

αi =

k
∑

j=1

c j r
i
j . (27)
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Proof. First we show that we can findc1,c2, . . . ,ck such that for the base values

of αi , αi =
∑k

j=1c j r i
j for all i = 0, . . . ,k−1. This can be derived by observing that

the determinant of the Vandermonde matrix

V =











1 r1 · · · rk−1
1

1 r2 · · · rk−1
2

· · · · · · · · · · · ·
1 rk · · · rk−1

k











is nonzero, and thatc1,c2, . . . ,ck are the solution of the system of linear equations

(α0,α1, . . . ,αk−1) = (c1,c2, . . . ,ck)V.

Now we show that for alli ≥ 0,

αi =
k
∑

j=1

c j r
i
j .

Define

βi =

k
∑

j=1

c j r
i
j .

We show that{αi} and{βi} are the same recursive series. We know thatβi = αi

when 0≤ i ≤ k−1. Becauser1, r2, . . . , rk are thek unique roots of the character-

istic functiong(x), we know that the power series{r i
j} satisfies the same recursive

formula as{αi}. Thus{βi} satisfies the same recursive formula (for alls≥ 0,

bk+s =
∑k−1

i=0 dibi+s) by linearity. Now observe that thek base values together with

the inductive formula uniquely determine the series and henceαi = βi for all i ≥ 0.

Hence we can solve Recurrence (25) by findingci that satisfyαi =
∑k

j=1c j r i
j

for i = 0, . . . ,k−1. The base cases of{αi}k−1
i=0 are determined by the original def-

inition of αi = H(qi−k+1). Because 0< qi−k+1 < 1 for i = 0, . . . ,k−1, we obtain

H(qi−k+1) = αi = 1.

Lemma 19 The dominant root (i.e., the root with the largest absolute value) for

w(x) = xk− xn−1 is r1 = q. All other roots r2, r3, . . . , rk have absolute value less

than q.
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Proof. We first show that all other roots have magnitude less thanq. Suppose that

the magnitude of a rootr j (other thanr1) is |r j |= d. We show thatd≤ q. Sincer j

is a root we have

1 = |(rk−n
j −1) rn

j |= |rk−n
j −1||rn

j | ≥ (|rk−n
j |−1)dn = dk−dn, (28)

which meansw(d) = dk− dn− 1 ≤ 0. Becausew(q) = 0 andw′(x) = kxk−1−
nxn−1 > 0 whenx≥ q > 1, we obtainw(x) > 0 for all realx > q. Therefore,d≤ q,

i.e., no root has magnitude strictly greater thanq.

Now we prove by contradiction thatd 6= q. Assume thatd = q. Then, (28)

becomes an equation, since 1= dk−dn by (17). Thus,

|rm
j −1|= |rm

j |−1.

From the triangle inequality it follows thatrm
j is a real number. Therefore, we have

rm
j = qm. Thus, for some integer 1≤ s≤m−1, we have

r j = qe2πs
√
−1/m.

However, becausem andn are relatively prime,

rn
j = qne2πsn

√
−1/m 6= qn.

Therefore,rn
j (r

m
j −1) 6= qn(qm−1) = 1, i.e.,w(r j) 6= 0. This is contradiction be-

causer j is a root ofw(x).

In the following lemma, we calculate the coefficientc1 for the dominant root

r1 = q using the inverse of a Vandermonde matrix.

Lemma 20 The coefficient c1 in Lemma 18 is
(

n
∑

i=1

q−i +

k
∑

i=n+1

qk−i

)

/(kqk−1−nqn−1).

Proof. We first give more notation. Lett ands be positive integers such that

1 ≤ t,s≤ k. We defineSt,s as the sum of the products oft different roots not

includingrs, that is,

St,s =
∑

i1<i2<...<it∈{1,2,...,k}−{s}
r i1r i2 . . . r it . (29)
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We define

S0,1 = 1, (30)

and

Sk,1 = 0. (31)

We first give and solve the recurrence forSt,1 . We denote the coefficient of

xt−1 in w(x) = xk− xn−1 =
∏k

i=1(x− r i) as [[xt−1]]w(x). Thus, we have the well

known equation:

∑

i1<i2<...<it∈{1,2,...,k}
r i1r i2 . . . r it = (−1)t [[xk−t ]]w(x). (32)

Each product of roots in the summation in (32) either includes r1 (= q) or it does

not, i.e.,
∑

i1<i2<...<it∈{1,2,...,k}
r i1r i2 . . . r it = St,1+qSt−1,1. (33)

Thus, from (32) and (33) we obtain the recurrence

St,1+qSt−1,1 = (−1)t [[xk−t ]]w(x). (34)

Because coefficients inw(x) are 0 except for[[xk]]w(x) = 1 and[[xn]]w(x) = [[x0]]w(x) =

−1, we divide Recurrence (34) into two parts and solve each separately. Recall

from (16) thatm= k−n. The first part is whent ∈ [1,m−1] and the second part is

whent ∈ [m,k−1]. (Thus, whent = m, we need to confirm that the solution in the

first part matches that in the second part.)

We solve the first part whent ∈ [1,m−1]. The base case ist = 1, that is,

S1,1+qS0,1 = [[xk−1]]w(x) = 0. (35)

Observe that by (29) and (33), we have

∑

1≤i≤k

r i = S1,1+qS0,1 and
∑

2≤i≤k

r i = S1,1. (36)

Thus, from (36), we confirm thatS0,1 = 1, and therefore from (35), we obtain

S1,1 =−q. (37)
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Because from (34),

St,1+qSt−1,1 = 0 (1≤ t ≤m−1) , (38)

we also obtain, from (37) and (38),

St,1 = (−q)t. (39)

We now solve the second part whent ∈ [m,k−1]. We start fromk, that is,

Sk,1+qSk−1,1 = (−1)k[[x0]]w(x) = (−1)k−1 . (40)

Observe that by (29) and (33), we have

r1r2 . . . rk = Sk,1+qSk−1,1 and r2r3 . . . rk = Sk−1,1. (41)

From (41), we confirm thatSk,1 = 0, and therefore from (40), we obtainSk−1,1 =

(−1)k−1/q. Because by (34),

St+1,1+qSt,1 = 0 (m≤ t ≤ k−1),

we obtain

St,1 = (−1)tqt−k. (42)

We now examine the special case wheret = m and[[xn]]w(x) =−1, that is,

Sm,1+qSm−1,1 = (−1)m[[xn]]w(x)

= (−1)m+1 . (43)

We solved for allSt,1 without using (43). We now confirm that our solution

is consistent with (43). Notice that we get the solution in the first part,Sm−1,1 =

(−q)m−1, and the solution in the second part,Sm,1 = (−1)mq−n. In the following,

we verify the solutions ofSm−1,1 andSm,1 satisfy (43). Plugging

Sm−1,1 = (−q)m−1 and Sm,1 = (−1)mq−n

into (43), we obtain

Sm,1+qSm−1,1 = (−1)mq−n+q(−q)m−1

= (−1)m1−qn+m

qn
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Becauseq is a root ofw(x), i.e.,

qk = qm+n = qn+1,

we confirm (43).

In summary, for all 1≤ t ≤ k−1, we have

St,1 =

{

(−q)t , if 1 ≤ t ≤m−1;

(−1)tqt−k, if m≤ t ≤ k−1.
(44)

We now give even more notation. Define

g(x) =

k
∏

i=2

(x− r i). (45)

We haveg(r1) = g(q) = w′(q), because

w′(x) =
d
dx

[

k
∏

i=1

(x− r i)

]

=
k
∑

j=1

k
∏

i=1,i 6= j

(x− r i)

is a sum ofk terms, butk−1 of these are 0 whenx = r1 = q. Thus, we obtain

(−1)k−1g(r1) = (−1)k−1(krk−1
1 −nrn−1

1 ) =
k
∏

i=2

(r i− r1). (46)

Now we are ready to calculate the value ofc1. To do so, we define the Vander-

monde matrixV:

V =













1 r1 · · · rk−1
1

1 r2 · · · rk−1
2

...
...

. . .
...

1 rk · · · rk−1
k













.

Recall that (27) can be expressed as

(c1,c2, . . . ,ck)V = (α0,α1, . . . ,αk−1) .

Recall also that

αi = H(qi−k+1) = 1 (0≤ i ≤ k−1)
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(becauseqi−k+1 < 1). Thus,

(c1, . . . ,ck) = (1,1, . . . ,1)V−1, (47)

i.e.,c1 can be calculated from the inverse matrixV−1.

In order to calculateV−1, we first present the well known result on how to

calculate the determinant|V| of Vandermonde matrixV.

|V| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 r1 · · · rk−1
1

1 r2 · · · rk−1
2

...
...

. . .
...

1 rk · · · rk−1
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤s<t≤k

(rt− rs) . (48)

We now give the inverse ofV. Let Ai, j be the submatrix of the transpose of the

Vandermonde matrixV with the ith column andjth row removed, that is,

Ai, j =

































1 1 · · · 1 1 · · · 1

r1 r2 · · · r i−1 r i+1 · · · rk
...

...
. . .

...
...

. . .
...

r j−1
1 r j−1

2 · · · r j−1
i−1 r j−1

i+1 · · · r j−1
k

r j+1
1 r j+1

2 · · · r j+1
i−1 r j+1

i+1 · · · r j+1
k

...
...

. . .
...

...
. . .

...

rk−1
1 rk−1

2 · · · rk−1
i−1 rk−1

i+1 · · · rk−1
k

































.

Thus,V−1 can be represented by the determinants ofAi, j andV, i.e.,

V−1 =
1
|V|













(−1)1+1|A1,1| · · · (−1)k+1|Ak,1|
(−1)1+2|A1,2| · · · (−1)k+2|Ak,2|

...
. . .

...

(−1)1+k|A1,k| · · · (−1)k+k|Ak,k|













=





∏

1≤s<t≤k

1
rt− rs





{

(−1)i+ j |Ai, j |
}

i, j
.
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Thus, from (47),c1 is the sum of the first column of inverse matrixV−1, that is,

c1 =





∏

1≤s<t≤k

1
rt− rs









k
∑

j=1

(−1)1+ j |A1, j |



 . (49)

To calculatec1, we first find|A1, j |, which is given by the following claim:

Claim 21

|A1, j |= Sk− j ,1

∏

2≤s<t≤k

(rt− rs).

Proof. When j = 1,

|A1,1| =

∣

∣

∣

∣

∣

∣

∣

r2 · · · rk
...

. . .
...

rk−1
2 · · · rk−1

k

∣

∣

∣

∣

∣

∣

∣

.

By moving the common factorsr2, . . . , rk out, we obtain

|A1,1|= r2 · · · rk

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
...

...
...

rk−2
2 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

,

where the matrix is the transpose of Vandermonde matrix of sizek−1. Thus, from

(29) and (48), we obtain

|A1,1|= r2 · · · rk

∏

2≤s<t≤k

(rt− rs) = Sk−1,1

∏

2≤s<t≤k

(rt− rs).

The case whenj ≥ 2 is more complicated than thatj = 1. In the following, we

only considerj = 2 because the other cases are analogous.

To solve |A1,2|, we first perform matrix operations so that the first column

becomes













1

0
...

0













. Recall that

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

r2
2 r2

3 · · · r2
k

...
...

. . .
...

rk−1
2 rk−1

3 · · · rk−1
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Beginning from the second row, we multiply each row by−r2 and add it to the next

row.

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1

r2
2 r2

3 r2
4 · · · r2

k

0 r2
3(r3− r2) r2

4(r4− r2) · · · r2
k(rk− r2)

...
...

...
. . .

...

0 rk−2
3 (r3− r2) rk−2

4 (r4− r2) · · · rk−2
k (rk− r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For the second row, we multiply the first row by−r2
2 and add it to the second row.

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1

0 r2
3− r2

2 r2
4− r2

2 · · · r2
k− r2

2

0 r2
3(r3− r2) r2

4(r4− r2) · · · r2
k(rk− r2)

...
...

...
. . .

...

0 rk−2
3 (r3− r2) rk−2

4 (r4− r2) · · · rk−2
k (rk− r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In this way, we reduce the dimension of|A1,2| to k−2, i.e.,

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r2
3− r2

2 r2
4− r2

2 · · · r2
k− r2

2

r2
3(r3− r2) r2

4(r4− r2) · · · r2
k(rk− r2)

...
...

. . .
...

rk−2
3 (r3− r2) rk−2

4 (r4− r2) · · · rk−2
k (rk− r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By moving out the common factorsr3− r2, . . . , rk− r2 in each column, we obtain:

|A1,2|=
k
∏

i=3

(r i− r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r3+ r2 r4+ r2 · · · rk + r2

r2
3 r2

4 · · · r2
k

...
...

. . .
...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now by splitting the first row, we obtain:

|A1,2|=
k
∏

i=3

(r i− r2)























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r3 · · · rk

r2
3 · · · r2

k
...

. . .
...

rk−2
3 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r2 · · · r2

r2
3 · · · r2

k
...

. . .
...

rk−2
3 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























. (50)
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After moving out the common factorsr3, . . . , rk, the first term in (50) is a Vander-

monde matrix of sizek−2. For the second term in (50), we move out the common

factorr2 in the top row. Thus, using (48) we have

|A1,2| =
k
∏

i=3

(r i− r2)r3 · · · rk

∏

3≤s<t≤k

(rt− rs)

+
k
∏

i=3

(r i− r2)r2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

r2
3 r2

4 · · · r2
k

...
...

. . .
...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r3 · · · rk

∏

2≤s<t≤k

(rt− rs)+ r2

k
∏

i=3

(r i− r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

r2
3 r2

4 · · · r2
k

...
...

.. .
...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(51)

Notice that the determinant in (51) is a form ofA1,2 of sizek−2. By the same

method, we compute the determinant in (51) as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

r2
3 r2

4 · · · r2
k

...
...

. . .
...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r4 · · · rk

∏

3≤s<t≤k

(rt− rs)

+r3

k
∏

i=4

(r i− r3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1

r2
4 · · · r2

k
...

. . .
...

rk−2
4 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (52)

Thus, by plugging (52) into (51) we obtain

|A1,2| = (r3 · · · rk + r2r4 · · · rk)
∏

2≤s<t≤k

(rt− rs)

+r2r3

k
∏

i=3

(r i− r2)

k
∏

i=4

(r i− r3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1

r2
4 · · · r2

k
...

. . .
...

rk−2
4 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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With one more recursion, we obtain

|A1,2| = (r3 · · · rk + r2r4 · · · rk + r2r3r5 · · · rk)
∏

2≤s<t≤k

(rt− rs)

+ r2r3r4

k
∏

i=3

(r i− r2)

k
∏

i=4

(r i− r3)

k
∏

i=5

(r i− r4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1

r2
5 · · · r2

k
...

. . .
...

rk−2
5 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Repeating recursive steps and recalling thatSk−2,1 = r3r4 · · · rk + r2r4 · · · rk + · · ·+
r2r3 · · · rk−1 from the definition ofSt,s in (29), we obtain

|A1,2|= Sk−2,1

∏

2≤s<t≤k

(rt− rs) .

We thus establish the claim.

By combining Claim 21 and (49) we obtain

c1 =





∏

1≤i< j≤k

(r j − r i)
−1









k
∑

i=1

(−1)i+1Sk−i,1

∏

2≤s<t≤k

(rt− rs)



 . (53)

Multiplying through and separating two cases ofSi,1 in (44), we obtain

c1 =
∏

2≤ j≤k

(r j − r1)
−1

(

n
∑

i=1

+

k
∑

i=n+1

)

(−1)i+1Sk−i,1. (54)

Plugging (44) into (54), we have

c1 =
∏

2≤ j≤k

(r j − r1)
−1

[

n
∑

i=1

(−1)k+1q−i +

k
∑

i=n+1

(−1)k+1qk−i

]

. (55)

Plugging (46) into (55), we solve forc1:

c1 =

(

n
∑

i=1

q−i +
k
∑

i=n+1

qk−i

)

/(kqk−1−nqn−1) . (56)

Thus, the value ofc1 is as claimed in Lemma 14.

After establishing the properties ofH(x), we give the proof of Lemma 14.
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PROOF OFLEMMA 14: To complete the proof we only need to show that

H(x)≤ (c1+ ε)qkx+O(1),

whenx≥O(k/ε).
Observe thatH(x) is monotonically increasing and for eachx > 1, we have

x≤ q⌈logqx⌉ ≤ qx. Thus, we boundH(x) as follows:

H(x)≤H(q⌈logq x⌉) = α⌈logq x⌉+k−1, (57)

where the second equality is the definition ofαi . We denote⌈logqx⌉+k−1 asi to

simplify notation in the rest of the proof. Recall thatαi =
∑k

j=1c j r i
j and thatr1 = q

is the dominant root. Thus, we have

αi

qi = c1+
k
∑

j=2

c j

(

r j

q

)i

. (58)

Becauser1 is the dominant root and the other roots have absolute value less than 1,

we have
k
∑

j=2

c j

(

r j

q

)i

≤O

(

k
qi

)

.

Becausei = ⌈logqx⌉+k−1, we haveqi > x. Thus, for anyε > 0, we can choose

x≥O(k/ε) such that the last term in (58) is arbitrary small, that is,

k
∑

j=2

c j

(

r j

q

)i

≤O

(

k
x

)

≤ ε.

Therefore, we obtainαi = (c1+ ε)qi . Combining with (57), we have

H(x)≤ (c1+ ε)q⌈logqx⌉+k−1. (59)

Finally, pluggingq⌈logq x⌉ ≤ qx into (59), we obtain, forx≥O(k/ε),

H(x)≤ (c1+ ε)qkx

as claimed.
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Bounding the Block-Boundary Crossing Function

We now give the memory-transfer cost from block-boundary crossings, and we

show that it is dominated by the the memory-transfer cost from the path length. We

consider the case whena≥ 1/4, which includes the best layouts. Using similar

reasoning for computing the path-length cost, we obtain thefollowing theorem:

Theorem 22 (Boundary Crossing Cost)The expected number of block-boundary

induced memory transfersC (x) on a search is at most O(lg lgB/ lgB) logBx when

1/4≤ a < 1/2.

Proof. The idea to boundC (x) is the same as that in bounding the path-length

cost. That is, we solve the same Recurrence (25) except for the base caseαi (0≤
i ≤ k−1), which from (3) is

2qi−k+1 lgB−2
B

instead of 1.

Thus, we obtain the new value of coefficientc′1 which is similar to (53):

c′1 =





∏

1≤i< j≤k

1
r j − r i









k
∑

i=1

2qi−k lgB−2
B

(−1)i+1Sk−i,1

∏

2≤s<t≤k

(rs− rt)



 .

Multiplying through and separating the numerator, we have

c′1 =
∏

2≤ j≤k

1
r j − r1

k
∑

i=1

2qi−k lgB

B
(−1)i+1Sk−i,1

−2
B

∏

2≤ j≤k

1
r j − r1

k
∑

i=1

(−1)i+1Sk−i,1 . (60)

Because the second term in (60) is 2c1/B = O(1/B) by (53), we obtain

c′1 =





∏

2≤ j≤k

1
r j − r1





(

k
∑

i=1

2qi−k lgB

B
(−1)i+1Sk−i,1

)

−O

(

1
B

)

. (61)

In order to boundc′1, we count the number of terms in the summation in (61),

i.e., the number of values ofi, such that

2qi−k lgB

B
>

1
lgB

.
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That is, we determine the smallest value ofi, such that

qi−k >
lg(B/ lgB)

lgB
= 1− lg lgB

lgB
.

Thus, we solve that

i−k > ln

(

1− lg lgB
lgB

)

lge
lgq

. (62)

We now estimate the previous expression. Recall that ln(1−x) >−x for 0< x< 1.

Thus, from (62), we have

i−k >− lgelg lgB
lgqlgB

.

If we denote

ν = k− lgelg lgB
lgqlgB

, (63)

then we have

2qi−k lgB

B











≤ 1
lgB

, when 1≤ i ≤ ν ;

>
1

lgB
, whenν < i ≤ k.

Separating the summation in (61) atν, we obtain

c′1 ≤
∏

2≤ j≤k

1
r j − r1

ν
∑

i=1

1
lgB

(−1)i+1Sk−i,1

+
∏

2≤ j≤k

1
r j − r1

k
∑

i=ν

2qi−k lgB

B
(−1)i+1Sk−i,1−O

(

1
B

)

. (64)

Again, from (53), the first term in (64) is less thanc1/ lgB = O(1/ lgB). Thus, we

have

c′1 ≤ O

(

1
lgB

)

+
∏

2≤ j≤k

1
r j − r1

k
∑

i=ν

2qi−k lgB

B
(−1)i+1Sk−i,1. (65)

Observe that 2q
i−k lgB/B≤ 1 for 1≤ i ≤ k. We separate into the two cases ofSi,1

in (65) as we do earlier in (54), to obtain

c′1≤O

(

1
lgB

)

+(−1)k+1
∏

2≤ j≤k

1
r j − r1





∑

ν<i≤n

q−i +
∑

i≥n+1, i>ν
qk−i



 .
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Because bothq−i andqk−i are less thanqk, we obtain

c′1≤O

(

1
lgB

)

+(−1)k+1
∏

2≤ j≤k

1
r j − r1

∑

ν<i≤k

qk.

Plugging (46) and (63) into the above inequality, we have

c′1≤O

(

1
lgB

)

+
qk

kqk−1−nqn−1

lgelg lgB
lgqlgB

. (66)

We now prove the second term in (66) isO(lg lgB/ lgB). Recalling thatqk =

1/a from (15), we have

lgq =− lga
k

(67)

and

qn = qk−1 =
1
a
−1. (68)

Taking logs in (68), we obtain

n =
lg(1/a−1)

lgq
. (69)

Plugging (67) into (69), we obtain

n = k
lg(1/a−1)

lg(1/a)
. (70)

Notice that the functionf (x) = lg(x−1)/ lgx is increasing forx> 1 becausef ′(x) >

0 for x > 1. Therefore, by the assumptiona≥ 1/4 and (70), we have

n≤ k
lg3
lg4

<
4k
5

. (71)

Thus, observing thatqk−1 > qn−1 > 1 and the above (71), we obtain

kqk−1−nqn−1 > kqk−1− 4k
5

qk−1 > k/5. (72)

Combining (15), (67) and (72), we have

qk

kqk−1−nqn−1

lge
lgq
≤−1

a
5
k

k lge
lga

=
−5lge
alga

≤ 10lge.
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Finally, from (66) we obtain

c′1≤O

(

1
lgB

)

+O

(

lg lgB
lgB

)

= O

(

lg lgB
lgB

)

,

as claimed.

Now we present the main Theorem, which we obtain by combiningTheorem

16 and 22.

Theorem 23 (Generalized vEB Layout)The expected cost of a search in the gen-

eralized vEB layout is at most[ lge+o(1) ] logBN+O(lg lgB/ lgB) logBN+O(1).

Applicability of Numerical Results. We have found that numerical simulations

provide empirically valuable information (See Lemma 14) onthe behavior of a

specific choice of parameters for the generalized vEB layout. However an ever

present concern is the validity of a —necessarily finite— plot for studying asymp-

totic behavior. We now give a theorem showing that by using numerical methods

in a limitedx range we get valid bounds on the functionsB (x), V (x), C (x) for all

possible values ofx.

Theorem 24 Let a and b be constants such that0 < a≤ b< 1, a+b = 1. Let H(x)

be a monotonically increasing function whose domain is all the natural numbers,

and let H(x) satisfy the recursive condition H(x) = H(⌈ax⌉)+H(⌊bx⌋), for x > α.

If there exist constants c> 0, t > 2 and t> α, such that H(x)≤ cx in the range x∈
[ t−1, t/a], then H(x)≤ cx for all x≥ t−1.

Proof. First we prove for the purpose of induction that if

H(x)≤ cx for t ′ ≥ t
a

andx∈ [ t−1, t ′ ],

then

H(x)≤ cx for x∈
[

t−1,min

{

t ′

b
,
t ′−1

a

}]

.

For any

y∈
[

t ′,min

{

t ′

b
,
t ′−1

a

}]

,
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we know that

t−1≤ t ≤ at′ ≤ ay≤ t ′−1 andt ≤ bt′ ≤ by≤ t ′,

which means

t−1≤ ⌈ay⌉ ≤ t ′ andt−1≤ ⌊by⌋ ≤ t ′ .

Therefore

H(y) = H(⌈ay⌉)+H(⌊by⌋)
≤ c⌈ay⌉+c⌊by⌋
≤ c⌈(ay+by)⌉= cy .

We know that

t ′ <
t ′−1

b
≤min

{

t ′

b
,
t ′−1

a

}

for all t ′ > t/a > 1/a, and we proved that ifH(x)≤ cx in rangex∈ [ t−1, t ′ ], then

H(x)≤ cx in rangex∈ [ t−1,(t ′−1)/b]. A simple induction shows that for all

t−1≤ x≤ t ′−1−b−·· ·−bn−1

bn ,

we haveH(x)≤ cx. Because

t ′ >
1
a

=
1

1−b
=

∞
∑

i=0

bi ,

it is true thatH(x)≤ cx for all x≥ t−1.

2.4 Conclusion

This chapter gives upper and lower bounds on the cost of cache-oblivious search-

ing; our bounds are tight to within low-order terms. Specifically, we show a

lower bound of lgelogBN memory transfers and an upper bound of[lge+ ε +

O(lg lgB/ lgB)] logBN + O(1) expected memory transfers in the cache-oblivious

model. In contrast, searching uses only logBN + 1 memory transfers in the DAM

model. Interestingly, this lgemultiplicative slowdown in the cache-oblivious model
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compared to the DAM model comes about because the DAM model has only two

levels of memory rather then because the memory parameters are unknown in the

cache-oblivious model.

We find it intriguing that this constant lge plays such a fundamental role in

cache-oblivious searching. It would be appealing to find a simpler derivation of lge

that provides more insight. The current derivation is, we hope, more technical than

necessary, but it remains an open question how to simplify.



Chapter 3

Adaptive Packed-Memory Array1

In this chapter we study a classic problem in databases and structures, which is how

to maintains a dynamic set ofN elements in sorted order in aΘ(N)-sized array.

Previous Work. The cache-oblivious version of the above problem is called

packed memory array [16, 17]. The PMA maintainsN elements in sorted order

in a Θ(N)-sized array. It supports operations insert, delete, and scan. Specifically,

to insert an elementy after a given elementx or to deletex costsO(log2N) amor-

tized element moves andO(1+(log2N)/B) amortized memory transfers, whereB

is the number of elements that fit within a memory block. Because the elements

are stored physically in sorted order in memory or on disk, the PMA can be used

to support extremely efficient range queries. To scanL elements after a given el-

ementx costsΘ(1+ L/B) memory transfers. One of the PMA’s strengths is its

performance on common insertion patterns such as random inserts. For random

inserts, the PMA performs extremely well with onlyO(logN) element moves per

insert and onlyO(1+ (logN)/B) memory transfers. This performance surpasses

the guarantees for arbitrary inserts.

However, the PMA performs relatively poorly on some common insertion pat-

terns such as sequential inserts. For sequential inserts, the PMA performs near its

worst in terms of the number of elements moved per insert. ThePMA’s difficulty

with sequential inserts is that the insertions “hammer” on one part of the array,

1An earlier version appears in [25].

54
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causing many elements to be shifted around. AlthoughO(log2N) amortized el-

ements moves andO(1+(log2N)/B) amortized memory transfers is surprisingly

good considering the stringent requirements on the data order, it is relatively slow

compared with traditional B-tree inserts.

In the rest of chapter we propose an adaptive packed-memory array in our

PODS paper [25], which overcomes these deficiencies of the traditional PMA. The

adaptive PMA adapts to insertion patterns and is optimized for common insertion

patterns such as sequential inserts, random inserts, and bulk inserts. It gives the

largest decrease in the cost of sparse arrays/sequential-file maintenance in almost

two decades.

3.1 Structures and Algorithms for Adaptive PMA

In this section we introduce the adaptive PMA. We first explain how the adaptive

PMA differs from the traditional PMA. We then show that both PMAs have the

same amortized bounds,O(log2N) element moves andO(1+(log2N)/B) memory

transfers per insert/delete. Thus, adaptivity comes at no extra asymptotic cost.

Description of Traditional and Adaptive PMAs. We first describe how to insert

into both the adaptive and traditional PMAs. Henceforth,PMA with no preceding

adjective refers to either structure. When we insert an elementy after an existing

elementx in the PMA, we look for a neighborhood around elementx that has suf-

ficiently low density, that is, we look for a subarray that is not storing too many

or too few elements. Once we find a neighborhood of the appropriate density, we

rebalance the neighborhood by spacing out the elements, includingy. In the tra-

ditional PMA, we rebalance by spacing out the elements evenly. In the adaptive

PMA, we may rebalance the elementsunevenly, based on previous insertions, that

is, we leave extra gaps near elements that have recently had inserts after them.

We deal with a PMA that is too full or empty, as with a traditional hash table.

Namely, we recopy the elements into a new PMA that is a constant factor larger

or smaller. In this chapter, this constant is stated as 2. However, the constant

could be larger or smaller (say 1.2) with almost no change in running time. This

is because most of the cost from element moves come from rebalances rather than
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from recopies.

We now give some terminology. We divide the PMA intoΘ(N/ logN) seg-

ments, each of sizeΘ(logN), and we let the number of segments be a power of

2. We call a contiguous group of segments awindow. We view the PMA in terms

of a tree structure, where the nodes of the tree are windows. The root node is the

window containing all segments, and a leaf node is a window containing a single

segment. A node in the tree that is a window of 2i segments has two children, a

left child that is the window of the first 2i−1 segments and a right child that is the

window of the last 2i−1 segments.

We let the height of the tree beh, so that 2h = Θ(N/ logN) andh = lgN−
lg lgN+O(1). The nodes at each heightℓ have anupper density threshold τℓ and a

lower density threshold ρℓ, which together determine the acceptable density of keys

within a window of 2ℓ segments. As the node heightincreases, the upper density

thresholdsdecreaseand the lower density thresholdsincrease. Thus, for constant

minimum and maximum densitiesDmin andDmax, we have

Dmin = ρ0 < · · ·< ρh < τh < · · ·< τ0 = Dmax. (73)

The density thresholds on windows of intermediate powers of2 are arithmeti-

cally distributed. For example, the maximum density threshold of a segment can be

set to 1.0, the maximum density threshold of the entire array to 0.5, the minimum

density threshold of the entire array to 0.2, and the minimum density of a segment

to 0.1. If the PMA has 32 segments, then the maximum density threshold of a single

segment is 1.0, of two segments is 0.9, of four segments is 0.8, of eight segments is

0.7, of 16 segments is 0.6, and of all 32 segments is 0.5.

More formally, upper and lower density thresholds for nodesat heightℓ are

defined as follows:

τℓ = τh+(τ0− τh)(h− ℓ)/h (74)

ρℓ = ρh− (ρh−ρ0)(h− ℓ)/h. (75)

Moreover,

2ρh < τh, (76)



CHAPTER3. Adaptive PMA 57

because when we double the size of an array that becomes too dense, the new array

must be within the density threshold.2 Observe that any values ofτ0, τh, ρ0, and

ρh that satisfy (73)-(76) and enable the array to have sizeΘ(N) will work. The

important requirement is that

τℓ−1− τℓ = O(ρℓ−ρℓ−1) = O(1/ logN) .

We now give more details about how to insert elementy after an existing ele-

mentx. If there is enough space in the leaf (segment) containingx, then we rear-

range the elements within the leaf to make room fory. If the leaf is full, then we

find the closest ancestor of the leaf whose density is within the permitted thresh-

olds and rebalance. To delete an elementx, we removex from its segment. If

the segment falls below its density threshold, then, as before, we find the smallest

enclosing window whose density is within threshold and rebalance. As described

above, if theentirearray is above the maximum density threshold (resp., below the

minimum density threshold), then we recopy the keys into a PMA of twice (resp.,

half) the size.

We introduce further notation. LetCap(uℓ) denote the number of array posi-

tions in nodeuℓ of heightℓ. Since there are 2ℓ segments in the node, the capacity is

Θ(2ℓ logN). Let Gaps(uℓ) denote the number of gaps, i.e., unfilled array positions

in nodeuℓ. Let Density(uℓ) denote the fraction of elements actually stored in node

uℓ, i.e., Density(uℓ) = 1−Gaps(uℓ)/Cap(uℓ).

Rebalance. We rebalance a nodeuℓ of heightℓ if uℓ is within threshold, but we

detect that a child nodeuℓ−1 is outside of threshold. Any node whose elements are

rearranged in the process of a rebalance isswept. Thus, wesweep a nodeuℓ of

heightℓ when we detect that a child nodeuℓ−1 is outside of threshold, but nowuℓ

need not be within threshold. Note that with this rebalance scheme, this tree can

be implicitly rather than explicitly maintained. In this case, a rebalance consists of

two scans, one to the left and one to the right of the insertionpoint until we find a

region of the appropriate density.

2There are straightforward ways to generalize (76) to further reduce space usage. Introducing

this generalization here leads to unnecessary complication in presentation.
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In a traditional PMA we rebalance evenly, whereas in the adaptive PMA we

rebalance unevenly. The idea of the APMA is to store a smallernumber of elements

in the leaves in which there have been many recent inserts. However, since we

must maintain the bound ofO(log2N) amortized element moves, we cannot let the

density of any child node be too high or too low.

Property 25 (rebalance property) After a rebalance, if each node uℓ (except the

root of the rebalancing subtree) has density within uℓ’s parent’s thresholds, then we

say that the rebalance satisfies therebalance property. We say that a node uℓ is

within balance or well balanced if uℓ is within its parent’s thresholds.

The following theorem shows if each rebalance satisfies the rebalance prop-

erty, then we achieve good update bounds. The proof is essentially that in [16, 17],

but the rebalance property applies to a wide set of rebalancing schemes.

Theorem 26 If the rebalance in a PMA satisfies the rebalance property, then in-

serts and deletes take O(log2N) amortized element moves and O(1+(log2N)/B)

amortized memory transfers.

Proof. Let uℓ be a node at levelℓ. A rebalance ofuℓ is triggered by an insert or

delete that pushes one descendant nodeui at each heighti = 0, . . . , ℓ−1 above its

upper thresholdτi or below its lower thresholdρi . (If this were not the case, then

we would rebalance a node of a lower height thanℓ.)

Consider one particular such nodeui . Before the sweep ofui ’s parentui+1,

Density(ui) > τi or Density(ui) < ρi .

After the sweep ofui+1, by the rebalance property,

ρi+1≤Density(ui)≤ τi+1 .

Therefore we need at least

(τi− τi+1)Cap(ui)

inserts or at least

(ρi+1−ρi)Cap(ui)
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deletes before the next sweep of nodeui+1. Therefore the amortized size of a sweep

of nodeui+1 per insert into child nodeui is at most

max

{

Cap(ui+1)

(τi− τi+1)Cap(ui)
,

Cap(ui+1)

(ρi+1−ρi)Cap(ui)

}

= max

{

2
τi− τi+1

,
2

ρi+1−ρi

}

= O(logN).

When we insert an element into the PMA, we actually insert into h= Θ(logN)

such nodesui , one at each level in the tree. Therefore the total amortizedsize of

a rebalance per insertion into the PMA isO(log2N). Thus, the amortized number

of element moves per insert isO(log2N). Because a rebalance is composed of a

constant number of sequential scans, the amortized number of memory transfers

per insert isO(1+(log2N)/B), as promised.

Observe that Theorem 26 applies to both insertions and deletions; in contrast,

we focus only on insertions in the rest of the chapter, for thesake of simplicity.

However, it is likely that, with only minor modifications to the predictor, the same

bounds for common insertion distributions can be made to apply to deletion distri-

butions and to distributions combining both operations. There does not seem to be

any significant additional difficulties in dealing with deletions.

Prediction. In a predictor data structure we keep track of a small collection of

elements, calledmarker elements, that directly precede elements recently inserted

into the APMA. The predictor stores a pointer to those leaf nodes of the APMA

(i.e.,Θ(logN)-sized segments of the array) that contain marker elements.For each

marker element, we count the number of recently inserted elements that directly

follow the marker.

We give terminology for prediction. For an elementx, let insert number I(x)

denote a count from 0 to logN estimating the number of inserts afterx in the last

O(log2N) inserts. The predictor is designed so that

• I(x) is always an underestimate of the number of inserts, and
• I(x) never grows above logN.

Below, we explain why and how these properties are enforced.Furthermore, if

elementx is not in the predictor, then we defineI(x) = 0.

We now define the insert numberI(uℓ) of a nodeuℓ at levelℓ in the APMA.

Specifically, let insert numberI(uℓ) be the sum of the insert numbers of elements in
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Algorithm 1 Predictor.insert(x)

1: if ∃ a cellc such thatc.element= x then
2: SWAP(c, c.nextcell) { If c is not the head pointer. }
3: c.count← c.count+1
4: if c.count> logN then
5: tailpointer.count← tailpointer.count−1

{When c.count is at the maximum logN. . .}
6: c.count← c.count−1 { We decrease the tail’s count instead of increasing c.count. }
7: end if
8: else
9: if headpointer.nextcell= tailpointerthen

10: tailpointer.count← tailpointer.count−1
{ Decrease tail’s count when no free space. }

11: else
12: headpointer← headpointer.nextcell
13: headpointer.element← x
14: headpointer.count← 1
15: headpointer.leaf← x.leaf { In other cases, create a new cell for new element. }
16: end if
17: end if
18: if tailpointer.count= 0 then
19: tailpointer← tailpointer.nextcell { The tail cell is removed when its count drops to zero.}
20: end if

uℓ. When rebalancing a node, we reallocate elements unevenly among its descen-

dant leafs according to their insert numbers. The larger theinsert number, the fewer

elements are allocated.

We now explain how the predictor determines (1) which elements to store as

marker elements and (2) what the count numbers are for each element. To do so,

we explain how to implement the predictor.

The predictor is a circular linked list, stored in an array. The predictor contains

β logN cells, for constantβ. Two pointers, a head pointer and a tail pointer, indicate

the front and the back of the linked list. Each cell in the circular linked list stores a

marker elementx. Associated withx are two pieces of data, (1) a pointer to the leaf

node in the APMA wherex currently resides and (2) the count numberI(x) (see

Figure 1).
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When a new elementx is determined to be a marker element, it is inserted into

the predictor;x is inserted at the head of the linked list (where the head-pointer

points). When an elementx is no longer needed as a marker element, it is deleted

from the predictor; beforex is deleted,x will always be stored at the tail of the

linked list (where the tail-pointer points).

When a new elementy is inserted into the APMA after an elementx, we first

check whetherx is a marker element (i.e., stored in the predictor). Ifx is a marker

element, we storex and its auxiliary information one cell forward in the APMA

(unlessx is already at the head of the predictor). Letw be the element displaced

by x. We storew (and auxiliary information) in the cell vacated byx. We also

increase the elementx’s count number by 1 unless it is already at the maximum

O(logN). Letzbe the element stored in the tail of the predictor. Ifx is already at the

maximumO(logN), then we decrementz’s count number instead of incrementing

x’s count number. (This decrement is one reason why the count number ofx is an

underestimate.)

If x is not a marker element, then there are two cases. If there areempty cells

in the predictor, then we storex at the head of the predictor. If there are no empty

cells in the predictor, then we decrease the count number ofz (the element stored in

Tail Pointer
element

Header Pointer

1 log N
2

· · ·· · ·

3

Countleaf

· · ·

Figure 1: The predictor. Each cell contains a marker elementx, the leaf node in the APMA
wherex resides, and the count numberI(x).
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the tail) instead of storingx in the predictor. (This lack of space is another reason

why the count number ofx is an underestimate.)

This decrement may reduce the count number ofz to 0. If so, we deletez from

the predictor. A new free cell space is now available for future inserts.

The predictor algorithm is engineered to tolerate “random noise” in the inser-

tions. By random noise, we mean that some of the insertions may not follow an

insertion distribution (such as head insert, hammer insert, bulk insert, etc). Our

guarantees still apply even if as much as a constant fractionof insertions are after

random elements in the APMA. To understand why our predictortolerates random

noise, observe that a few arbitrary inserts will not be stored in the predictor unless

the tail count drops below zero. If a poor choice of element is, in fact, stored in the

predictor, it will soon be swapped to the tail if no new inserts follow.

Uneven Rebalance. Now we present the algorithm for uneven rebalance (See

Algorithm 2). Assume that nodesuℓ−1 andvℓ−1 are left and right children ofuℓ

at levelℓ and that there arem ordered elements{x1,x2, . . . ,xm} stored inuℓ. The

uneven rebalance performs as follows:

• If I(xi) = 0 for all i ∈ [1,m], then we perform an even rebalance for this node

uℓ.

• Otherwise, we perform an uneven rebalance. Our uneven rebalance is de-

signed so that, the bigger the insert numbers, the more gaps we leave. Specif-

ically, we minimize the quantity
∣

∣

∣

∣

I(uℓ−1)

Gaps(uℓ−1)
− I(vℓ−1)

Gaps(vℓ−1)

∣

∣

∣

∣

, (77)

subject to the constraint that the rebalance property must be satisfied. When

we rebalance, wesplit at an element xi , meaning that we put elements

{x1, . . . ,xi} in uℓ−1 and{xi+1, . . . ,xm} in vℓ−1. The objective is to find the

index i to minimize
∣

∣

∣

∣

∣

∑i
j=1 I(x j)

Cap(uℓ−1)− i
−

∑m
j=i+1 I(x j)

Cap(vℓ−1)− (m− i)

∣

∣

∣

∣

∣

, (78)

subject to the constraints that
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i ∈
[

Cap(uℓ−1)ρℓ, Cap(uℓ−1)τℓ

]

, (79)

// density of left child is within parents’ threshold

i ∈
[

m−Cap(vℓ−1)τℓ, m−Cap(vℓ−1)ρℓ

]

. (80)

// density of right child is within parents’ threshold

• We recursively allocate elements inuℓ−1 andvℓ−1’s child nodes and proceed

down the tree until we reach the leaves. Once we know the number of ele-

ments in each leaf, we rebalanceuℓ in one scan.

For example, in the insert-at-head case, the insert numbersof right de-

scendants are always 0. Thus, minimizing the simplified objective quantity

|I(uℓ−1)/Gaps(uℓ−1)|means maximizing Gaps(uℓ−1).

Algorithm 2 Rebalance.uneven(uℓ)

1: uℓ−1← uℓ’s left child;
2: vℓ−1← uℓ’s right child;
3: if (uℓ−1 is empty) or (vℓ−1 is empty)then
4: return;
5: end if
6: splitnum←max{Cap(uℓ−1)ρℓ,m−Cap(vℓ−1)τℓ};

7: optvalue←
∣

∣

∣

∣

∣

∑splitnum
j=1 I(x j)

Cap(uℓ−1)−splitnum
−

∑m
j=splitnum+1 I(x j)

Cap(vℓ−1)− (m−splitnum)

∣

∣

∣

∣

∣

;

8: for i = splitnum to min{Cap(uℓ−1)τℓ,m−Cap(vℓ−1)ρℓ} do

9: curvalue←
∣

∣

∣

∣

∣

∑i
j=1 I(x j)

Cap(uℓ−1)− i
−

∑m
j=i+1 I(x j)

Cap(vℓ−1)− (m− i)

∣

∣

∣

∣

∣

;

10: if optvalue> curvaluethen
11: optvalue← curvalue;
12: splitnum← i;
13: end if
14: end for
15: uℓ−1←{x1, . . . ,xsplitnum};
16: vℓ−1←{xsplitnum+1, . . . ,xm};
17: Rebalance.uneven(uℓ−1);
18: Rebalance.uneven(vℓ−1);
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Now we show how to implement the rebalance so that there is no asymptotic

overhead in the bookkeeping for the rebalance. Specifically, the number of element

moves in the uneven rebalance is dominated by the size of the rebalancing node, as

described in the following theorem:

Theorem 27 To rebalance a node uℓ at levelℓ unevenly requires O(Cap(uℓ)) op-

erations and O(1+Cap(uℓ)/B) memory transfers.

Proof. There are three steps to rebalancing a nodeuℓ unevenly. First, we check

the predictor to obtain the insert numbers of the elements located in all descendant

nodes ofuℓ. Because the size of the predictor isO(logN), this step takesO(logN)

operations andO(1+ (logN)/B) memory transfers. Second, we recursively de-

termine the number of elements to be stored inuℓ’s children, grandchildren, etc.,

down to descendent leaves. Naively, this procedure usesO(ℓCap(uℓ)) operations

andO(1+ℓCap(uℓ)/B) memory transfers; below we show how to perform this pro-

cedure inO(Cap(uℓ)) operations andO(1+Cap(uℓ)/B) memory transfers. Third,

we scan the nodeuℓ putting each element into the correct leaf node. Thus, this last

step also takesO(Cap(uℓ)) operations andO(1+Cap(uℓ)/B) memory transfers.

We now show how to implement the second step efficiently. We call the ele-

ments in the predictorweighted elements and the remaining elementsunweighted.

Recall that only weighted elements have nonzero insert numbers. In the first step,

we obtain all information about which elements are weighted. Then, we start the

second step, which is recursive. At the first recursive level, we determine which

elements are allocated to the left and right children ofuℓ, i.e., we find the indexi

minimizing (78). At first glance, it seems necessary to checkall indicesi in order

to get the minimum, which takesO(Cap(uℓ)) operations, but we can do better. Ob-

serve that when the indexi is in a sequence of unweighted elements between two

weighted elements, the numerator in (78) does not change. Only the denominator

changes, and it does so continuously. So in order to minimize(78) at the first re-

cursive level, it is not necessary to check all elements in node uℓ. It is enough to

check which two contiguous weighted elements the indexi is between such that

(78) is minimized. Since there are at mostO(logN) weighted elements, the num-

ber of operations at each recursive level is at mostO(logN). Furthermore, because

there areℓ recursive levels, the number of operations in the whole recursive step
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is at mostO(ℓ logN), which is less thanO(Cap(uℓ)). By storing these weighted

elements contiguously during the rebalance, we obtainO(1+Cap(uℓ)/B) memory

transfers.

3.2 Analysis of Sequential and Hammer Insertions

In this section we first analyze the adaptive PMA for the sequential insert pattern,

where inserts occur at the front of the PMA. Then we generalize the result to ham-

mer inserts.

For sequential inserts, we prove the following theorem:

Theorem 28 For sequential inserts, the APMA has O(logN) amortized element

moves and O(1+(logN)/B) amortized memory transfers.

We give some notation. In the rest of this section, we assume that uℓ is the

leftmost node at levelℓ andvℓ−1 is the right child ofuℓ. Recall that leaves have

height 0. Suppose that we insertN elements in the front of an array of sizecN

(c > 1). Since we always insert elements at the front, rebalancesoccur only at the

leftmost nodeuℓ (0≤ ℓ≤ h). If we know the number of sweeps ofuℓ in the process

of inserting theseN elements, then we also know the total number of moves.

In order to bound the number of sweeps at each level, we need more notation.

For κ ≤ ℓ, let N κ(ℓ, i) be the number of sweeps of the leftmost nodeuκ at level

κ between the(i−1)th sweep and theith sweep of nodeuℓ. We imagine a virtual

parent nodeuh+1 of the root nodeuh, whereuh+1 has size 2cN. Thus, the time when

the root nodeuh reaches its upper thresholdτh, after we insertN elements, is the

time when the virtual parent node performs the first rebalance. Thus,N κ(h+1,1) is

the number of sweeps of nodeuκ at levelκ during the insertion of theseN elements

(0 ≤ κ ≤ h). Since each sweep ofuκ costs 2κ logN moves, the total number of

moves is:
h
∑

κ=0

N κ(h+1,1)2κ logN.

This quantity is the sum of the sweep costs at each level, until the virtual node needs
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its first rebalance. Thus, the amortized number of element moves is

1
N

h
∑

κ=0

N κ(h+1,1)2κ logN. (81)

Sequential Inserts with Only Upper Thresholds. For pedagogical reasons, we

now consider the simpler case of a PMA with no lower-bound thresholds and show

that Theorem 28 holds in this special case. This lack of lower-bound thresholds

makes it significantly easier to achieve the bounds from Theorem 28. By providing

this simpler analysis we give insight into the origin of Theorem 28’s bounds and

why the subsequent analysis is more complicated.

Lemma 29 For sequential inserts, the APMA with no lower-bound thresholds has

O(logN) amortized element moves and O(1+ logN/B) amortized memory trans-

fers.

Proof. Recall thatN κ(ℓ,1) is the number of sweeps of the leftmost childuκ at

level κ until ancestor nodeuℓ performs its first rebalance. Observe that just before

uℓ performs the first rebalance,uℓ−1 reaches its thresholdτℓ−1. We want to find the

number of sweeps ofuκ beforeuℓ−1 reaches its upper thresholdτℓ−1.

ℓ − 1

ℓ − 2

uℓ

uℓ−1

uℓ−2

ℓ

00

=⇒

uℓ

uℓ−1

uℓ−2

0τℓ−2

Figure 2: In the simple case, the shaded region is rebalanced just after
Phase 1 of nodeuℓ, which starts from Density(uℓ−2) = 0 (left) and ends
at Density(uℓ−2) = τℓ−2 (right).

We decompose this process into two phases. Phase 1 ends before the first

rebalance of nodeuℓ−1 when we haveτℓ−22ℓ−2 elements in the left childuℓ−2 of

uℓ−1 and 0 elements in the right childvℓ−2 of uℓ−1 (see Figure 2). According to

our uneven-rebalance strategy, since all inserts are to theleft child, we allocate
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τℓ−12ℓ−2 elements tovℓ−2 and (τℓ−2− τℓ−1)2ℓ−2 elements touℓ−2 at the end of

Phase 1, i.e., we give the maximum allowed number of elementsto the right child.

Now we consider Phase 2, which takes place between the first rebalance and the

second rebalance ofuℓ−1 (see Figure 3). Since the right childvℓ−2 of uℓ−1 already

has densityτℓ−1, whenuℓ−2 reaches its thresholdτℓ−2 again, the density ofuℓ−1 is

(τℓ−2+ τℓ−1)/2 > τℓ−1 at the end of Phase 2, which is above its upper threshold.

To summarize, the first time that we rebalanceuℓ−1 is when we move elements

from uℓ−2 into vℓ−2. This rebalance is triggered becauseuℓ−2 is above its threshold.

The next timeuℓ−2 goes above its thresholdτℓ−2, uℓ−1 is also above its threshold

τℓ−1, and we trigger the first rebalance ofuℓ. Thus, there are at most two sweeps of

nodeuℓ−1 before it reaches its thresholdτℓ−1. That is

N κ(ℓ,1)≤ N κ(ℓ−1,1)+N κ(ℓ−1,2). (82)

ℓ − 1

ℓ − 2

uℓ

uℓ−1

uℓ−2

ℓ

(τℓ−2 − τℓ−1)

τℓ−1

=⇒

uℓ

uℓ−1

uℓ−2

τℓ−1τℓ−2

Figure 3: In the simple case, the shaded region is rebalanced just after
Phase 2 of nodeuℓ, which starts from Density(uℓ−2) = τℓ−2− τℓ−1 (left)
and ends at Density(uℓ−2) = τℓ−2 (right).

To calculate (81), we first show thatN κ(ℓ−1,2) < N κ(ℓ−1,1). Recall that

N κ(ℓ−1,2) is the number of sweeps of the leftmost childuκ at levelκ between

ancestor nodeuℓ−1’s first sweep (rebalance) and second sweep. The above in-

equality is true because at the end of both phasesuℓ−2 reaches its threshold, but

the first phase starts withuℓ−2 having density 0 (an empty data structure), and

the second phase starts withuℓ−2 having densityτℓ−2− τℓ−1. Thus, by plugging

N κ(ℓ−1,2) < N κ(ℓ−1,1) in (82), we have the recurrence

N κ(ℓ,1)≤ 2N κ(ℓ−1,1).



CHAPTER3. Adaptive PMA 68

The amortized number of element moves is

1
N

h
∑

κ=0

N κ(h+1,1)2κ logN =
h
∑

κ=0

N κ(h+1,1)2κ−h

≤
h
∑

κ=0

[

2N κ(h,1)
]

2κ−h

≤
h
∑

κ=0

[

2h−κ+1N κ(κ,1)
]

2κ−h

=
h
∑

κ=0

2 = O(logN).

Sequential Inserts in APMA with Lower and Upper Thresholds. We now con-

sider the general case of a PMA with both the lower- and upper-bound thresholds

and are ready to prove Theorem 28.

PROOF OF THEOREM 28: The proof is a generalization of the proof of

Lemma 29; we boundN κ(ℓ,1), the number of sweeps of the leftmost childuκ at

level κ until the ancestor nodeuℓ performs the first rebalance. The difficulty with

both the lower- and upper-bound thresholds is that we must decompose the time

before the first rebalance ofuℓ into more than 2 phases, and thus we obtain a more

complicated recurrence to solve. We decompose this processinto three phases.

Phase i of node uℓ (1≤ i ≤ 3), starts after the(i−1)th sweep ofuℓ−1 and ends at

the ith sweep ofuℓ−1. At the end of the last phase,uℓ performs its first rebalance,

which is the third sweep ofuℓ−1. Thus, we have at most three sweeps of nodeuℓ−1

before the first rebalance ofuℓ:

N κ(ℓ,1)≤ N κ(ℓ−1,1)+N κ(ℓ−1,2)+N κ(ℓ−1,3).

Now we prove the above claim analyzing the densities in each phase.

I) We consider the densities of child nodesuℓ−2 andvℓ−2 of uℓ−1 at the end of

Phase 1. The first rebalance ofuℓ−1 occurs (see Figure 4) whenuℓ−2 reaches

its upper thresholdτℓ−2. For sequential inserts, we allocate as many free
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ℓ − 1

ℓ − 2

uℓ

uℓ−1

uℓ−2

ℓ

00

=⇒

uℓ

uℓ−1

uℓ−2

0τℓ−2

Figure 4: Phase 1 of nodeuℓ starts from Density(uℓ−2) = 0 (left) and
ends at Density(uℓ−2) = τℓ−2 (right). The shaded region is rebalanced.

spaces as possible touℓ−2, while ensuring thatuℓ−2 andvℓ−2 have densities

betweenρℓ−1 andτℓ−1. Thus, after the first rebalance, which happens after

τℓ−2Cap(uℓ−2) inserts, we have densities:

Density(uℓ−2) = ρℓ−1,

Density(vℓ−2) = τℓ−2−ρℓ−1.

It is immediate that the density setting ofuℓ−2 is legal; we now explain why

the above density setting ofvℓ−2 is legal, i.e., satisfies the rebalance property.

Notice thatρℓ−1 ≤ τℓ−2− ρℓ−1 ≤ τℓ−1, since 2ρℓ−1 ≤ τℓ−1 < τℓ−2 by (73)

and (76) andτℓ−2− τℓ−1 = O(1/ logN) < ρℓ−1 by (73) and (74).

ℓ − 1

ℓ − 2

uℓ

uℓ−1

uℓ−2

ℓ

ρℓ−1

(τℓ−2 − ρℓ−1)

=⇒

uℓ

uℓ−1

uℓ−2 (τℓ−2 − ρℓ−1)

τℓ−2

Figure 5: Phase 2 of nodeuℓ starts from Density(uℓ−2) = ρℓ−1 (left) and
ends at Density(uℓ−2) = τℓ−2 (right). The shaded region is rebalanced.

II) We now consider the densities of child nodesuℓ−2 and vℓ−2 at the end of

Phase 2. Whenuℓ−2 reaches its threshold again, Phase 2 of nodeuℓ ends

(see Figure 5). Afteruℓ−1 does the second rebalance, which happens after
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(τℓ−2−ρℓ−1)Cap(uℓ−2) inserts, we have densities:

Density(uℓ−2) = 2τℓ−2−ρℓ−1− τℓ−1,

Density(vℓ−2) = τℓ−1.

It is immediate that the density setting ofvℓ−2 is legal; we now show that the

density setting ofuℓ−2 is legal. Notice thatρℓ−1 < 2τℓ−2−ρℓ−1−τℓ−1 < τℓ−1,

because 2ρℓ−1 < τℓ−2 < τℓ−2 +(τℓ−2− τℓ−1) by (73) and (76) and 2(τℓ−2−
τℓ−1) = O(1/ logN) < ρℓ−1 by (73) and (74).

ℓ − 1

ℓ − 2

uℓ

uℓ−1

uℓ−2

ℓ

τℓ−1

(2τℓ−2 − τℓ−1 − ρℓ−1)

=⇒

uℓ

uℓ−1

uℓ−2 τℓ−1

τℓ−2

Figure 6: Phase 3 of nodeuℓ starts from Density(uℓ−2) = 2τℓ−2−τℓ−1−
ρℓ−1 (left) and ends at Density(uℓ−2) = τℓ−2 (right). The shaded region
is rebalanced.

III) Now we consider the densities of child nodesuℓ−2 andvℓ−2 at the end of

Phase 3. Whenuℓ−2 reaches its threshold a third time, which happens after

(τℓ−1−τℓ−2+ρℓ−1)Cap(uℓ−2) inserts, Phase 3 of nodeuℓ ends (see Figure 6).

Whenuℓ−1 does the third sweep, the density ofuℓ−1 is (τℓ−2 + τℓ−1)/2 >

τℓ−1, souℓ−1 is above threshold. Thus, the end of Phase 3 is the first rebalance

of uℓ.

Thus, there are at most three sweeps ofuℓ−1 before the first rebalance ofuℓ,

that is,

N κ(ℓ,1)≤ N κ(ℓ−1,1)+N κ(ℓ−1,2)+N κ(ℓ−1,3). (83)

We cannot simply use the boundN κ(ℓ,1) ≤ 3N κ(ℓ−1,1) for our analysis, since

this bound naively leads toO(Nlog(3/2)) amortized moves, which is far from our

goal ofO(logN).



CHAPTER3. Adaptive PMA 71

To establish our bound, we prove the following recurrences for Phase 2 and

Phase 3:

N κ(ℓ−1,2)≤ 2N κ(ℓ−2,2), (84)

and

N κ(ℓ−1,3)≤ N κ(ℓ−1,2). (85)

Solving (83), (84), and (85) will yield the desired bound.

We already showed (83); now we show (84). We proceed by breaking Phase

2 into two subphases. The first subphase begins when Phase 2 begins, i.e., after

the first rebalance ofuℓ−1, and it ends after the next sweep ofuℓ−2. The second

subphase begins when the first subphase ends, and it ends after the next another

sweep ofuℓ−2. We will show that at the end of Subphase 2,uℓ−2 is above threshold,

meaning that Subphase 2 ends with a sweep ofuℓ−1, i.e., Phase 2 ends as well.

• At the beginning of Subphase 1, nodeuℓ−3 has densityρℓ−2 by the rebalance

property. (Since insertions are at the beginning of the array, we wantuℓ−3 to

be as sparse as possible, and the rebalance property says that after a rebalance

Density(uℓ−3) ≥ ρℓ−2.) The sweep ofuℓ−2 is triggered once the density of

uℓ−3 reachesτℓ−3 (see Figure 7). At the end of Subphase 1, after(τℓ−3−
ρℓ−2)Cap(uℓ−3) inserts, the density ofuℓ−3 andvℓ−3 are:

Density(uℓ−3) = 2ρℓ−1−ρℓ−2+ τℓ−3− τℓ−2,

Density(vℓ−3) = τℓ−2.

It is immediate that the density ofvℓ−3 is legal; we show that the density

of uℓ−3 is legal too. Notice thatρℓ−2 < 2ρℓ−1−ρℓ−2 + τℓ−3− τℓ−2 < τℓ−2,

because 2ρℓ−2 < 2ρℓ−1 andτℓ−2 < τℓ−3 by (73) and 2ρℓ−1 < τℓ−1 < τℓ−2 and

τℓ−3− τℓ−2 = O(1/ logN) < ρℓ−2 by (73) and (76).

We now show that the number of sweeps ofuκ in Subphase 1 is equal to

N κ(ℓ−2,2). Observe that Subphase 1 is exactly Phase 2 of the nodeuℓ−1

because they both start with the nodeuℓ−3 having densityρℓ−2 and end with

the nodeuℓ−3 having densityτℓ−3. Although in Subphase 1 and Phase 2 of

nodeuℓ−1, nodevℓ−3 has different densities, this difference does not matter

because the density ofvℓ−3 does not affect when Subphase 1 and Phase 2 of

nodeuℓ−1 end.
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ρℓ−1 τℓ−2 − ρℓ−1

uℓ

uℓ−1

ρℓ−2

2ρℓ−1 − ρℓ−2 > ρℓ−2
uℓ−3

uℓ−2

=⇒
τℓ−2 − ρℓ−1

uℓ

uℓ−1

τℓ−3

2ρℓ−1 − ρℓ−2 > ρℓ−2
uℓ−3

uℓ−2

Figure 7: Subphase 1 starts from Density(uℓ−3) = ρℓ−2 (left) and ends at
Density(uℓ−3) = τℓ−3 (right). The shaded region is rebalanced.

• At the beginning of Subphase 2,uℓ−3 has density 2ρℓ−1− ρℓ−2 + τℓ−3−
τℓ−2 > ρℓ−2, and the subsequent sweep ofuℓ−2 is triggered once the den-

sity of uℓ−3 reachesτℓ−3 again (see Figure 8). Since the density ofvℓ−3 is

τℓ−2, the density ofuℓ−2 is (τℓ−3+ τℓ−2)/2 > τℓ−2 at the end of Subphase 2,

souℓ−2 is above its upper threshold. Thus, the end of Subphase 2 is the sweep

of uℓ−1.

We now prove that the number of sweeps ofuκ in Subphase 2 is less than

N κ(ℓ−2,2), because both Subphase 2 and Phase 2 of nodeuℓ−1 end with

nodeuℓ−3 reaching its upper thresholdτℓ−3, but Subphase 2 starts with node

uℓ−3 having density greater thanρℓ−2 while Phase 2 of nodeuℓ−1 starts with

nodeuℓ−3 having densityρℓ−2.

Thus, there are at most two subphases in Phase 2 of nodeuℓ and each subphase

has the number of sweeps of nodeuκ at mostN κ(ℓ−2,2), which shows (84). Since

Recurrence (84) has the base caseN κ(κ,2) = 1, we obtain the solution

N κ(ℓ−1,2)≤ 2ℓ−κ−1. (86)

Now we establish the recurrence in (85). Both Phase 2 and Phase 3 end with

nodeuℓ−2 reaching its upper thresholdτℓ−2, while Phase 3 starts with the nodeuℓ−2

having density 2τℓ−2− τℓ−1−ρℓ−1 > ρℓ−1. Phase 2 starts with nodeuℓ−2 having

densityρℓ−1.
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τℓ−2 − ρℓ−1

uℓ

uℓ−1

uℓ−2

uℓ−3

(> ρℓ−2) τℓ−2

=⇒
τℓ−2 − ρℓ−1

uℓ

uℓ−1

uℓ−2

uℓ−3

τℓ−3
τℓ−2

Figure 8: Subphase 2 starts from Density(uℓ−3)≥ ρℓ−2 (left) and ends at
Density(uℓ−3) = τℓ−3 (right). The shaded region is rebalanced.

We now establish the desired bound. Plugging (86) and (85) into (83), we have

N κ(ℓ,1) ≤ N κ(ℓ−1,1)+N κ(ℓ−1,2)+N κ(ℓ−1,3)

≤ N κ(ℓ−1,1)+2N κ(ℓ−1,2)

≤ N κ(ℓ−1,1)+2 ·2ℓ−κ−1

≤ 2ℓ−κ+1. (87)

Finally, the amortized number of moves is

1
N

h
∑

κ=0

N κ(h+1,1)2κ logN =

h
∑

κ=0

N κ(h+1,1)2κ−h

≤
h
∑

κ=0

(2h−κ+2)2κ−h =

h
∑

κ=0

4 = O(logN).

Observe that after any insert the elements are moved from a contiguous group,

and the moves can be performed with a constant number of scans. Therefore the

amortized number of memory transfers isO(1+(logN)/B).

Hammer Inserts. We now consider the hammer insertion distribution, where we

always insert the elements at the same rank. We show that the analysis from se-

quential insertion distribution (Theorem 28) applies here.
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Theorem 30 When inserted elements have fixed rank (hammer inserts), theAPMA

has O(logN) amortized element moves and O(1+(logN)/B) amortized memory

transfers.

Proof. In the hammer-insert case, we always insert new elements after a given

elementx. Notice that in the rebalancing subtree rooted atuℓ, there is a unique path

from the leaf node containing the elementx to the root nodeuℓ. Let nodeui (i ≤ ℓ)

be the ancestor ofx at level i, and letvi be ui ’s sibling. An important difference

between this proof and the proof of Theorem 28 is thatui−1 and siblingvi−1 may

now be either left or right children ofui for i < ℓ.

Recall that, as in the proof of Theorem 28, for levelκ ≤ ℓ, N κ(ℓ, t) is the

number of sweeps of the leftmost nodeuκ at levelκ between the(t−1)th sweep

and thetth sweep of nodeuℓ.

Intuitively, we want to use a similar argument as in the proofof Theorem 28, to

show thatN κ(ℓ,1) is bounded as in (87), up to a constant factor, that is, for constant

β,

N κ(ℓ,1)≤ β2ℓ−κ+1.

This approach comes close to working, but requires a much more technical

generalization. In particular, as we show, Recurrences (83) and (85) still hold, but

there is one value ofi +1 below which Recurrence (84) might not.

In the following, we explain why there may exist a nodeui+1 below which

Recurrence (84) does not hold. Then we explain that

N κ(i +1,2) = O(2i+1−κ),

which is the same as the solution of Recurrence (84) up to a constant factor. Finally,

we explain why the analysis from Theorem 28 still applies even when there exists

such a nodeui+1.

We first explain why there may exist a nodeui+1 for which Recurrence (84)

does not hold. To do so, we examine the density of the childui after the first sweep

of ui+1 and demonstrate that Density(ui) can be different with sequential inserts and

hammer inserts. With sequential inserts, a rebalance triesto put as few elements as

possible inui and as many elements as possible invi without disobeying the upper

and lower density thresholds. With hammer inserts, we also wantui to be as sparse

as possible while still maintaining the rebalance property.
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But now we have an additional constraint, thehammer constraint, that node

x must remain inui . What we mean by this additional constraint is the following.

Suppose thatui is a left child, andvi is a right child. In a rebalance we try to put as

few elements as possible inui and as many elements as possible invi . But if the last

element inui is x then we cannot reduce the density ofui any further — the next

element to move intovi is x, but thenvi becomesui .

To summarize, there are two cases in which hammer inserts maydiffer from

sequential inserts. The first case is whenui is a left child andx is the rightmost

element inui after a sweep ofui+1. The second case is whenui is a right child and

x is the leftmost element inui after a sweep ofui+1. In both cases Recurrence (84)

may not hold forui+1. (If x is not in one of these two positions at the end of

a rebalance, then the critical constraint is the rebalance property rather than the

hammer constraint, as with sequential inserts.)

We now explain that in both cases, the number of sweeps ofuκ between the first

sweep and the second sweep ofui+1, N κ(i +1,2), still has the solutionO(2i+1−κ).

When nodeui is a right child andx is the leftmost element inui , the bound fol-

lows from the analysis in Theorem 28 because the insert pattern of ui matches the

sequential-insert case. The difficult case is whenui is a left child andx is the right-

most element inui after the first sweep ofui+1. We call this thetail-insert case.

This case corresponds to a stage beginning after any sweep ofui+1 when the ele-

mentx is the rightmost element inui and ending when nodeui reaches its upper

threshold, i.e., at the next sweep ofui+1. We call this interval thetail-insert stage

of ui . Below, we give a bound on the number of sweeps ofuκ in the tail-insert case.

We prove the following claim. The proof is similar to Theorem28, but signif-

icantly more technical.

Claim 31 Consider the tail-insert stage of ui : the stage starts after one sweep of

ui+1 and ends just before the next sweep of ui+1, and x is the rightmost element in

ui at the beginning of the stage. Then the number of sweeps of node uκ during the

stage is O(2i−κ).

Proof. We give more details of what happens during the tail-insert stage. During

the tail-insert stage, new elements are inserted afterx, the rightmost element ofui

at the beginning of the stage. At the end of the stage, nodeui reaches its upper
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threshold, which triggers the next sweep of nodeui+1. Observe that sweeps occur-

ring during the tail-insert stage do not involvevi , ui ’s sibling. This is because the

tail-insert stage ends whenui reaches its upper threshold, which triggers the sweep

of ui+1. We will bound the number of sweeps ofuκ during the tail-insert stage of

ui .

Below, we show that it suffices to prove Claim 31 when the tail-insert stage

begins with Density(ui) = ρi+1. To do so, we show that the fewer elements there

are inui at the start of the tail-insert stage, the more sweeps there will be of uκ (de-

scendant ofui) during the stage. That is, the number of sweeps ofuκ is maximized

when nodeui starts with densityρi+1, the lowest density possible after a sweep of

ui+1.

We now explain why the worst case is when Density(ui) = ρi+1. Recall that

x is in uκ, and since all inserts are afterx, they are all inuκ. If nodeui has a low

density at the beginning of the stage, then more elements canbe inserted afterx and

into uκ without triggering a sweep ofui+1, which means that there are more sweeps

of uκ during the stage.

We present additional notation. We defineCκ(i, t) to be the number of sweeps

of uκ between the (t−1)th and thetth sweep ofui since the beginning of the tail-

insert stage.3 We definePhase t of ui to be the phase starting after the (t − 1)th

sweep ofui and ending at thetth sweep ofui since the beginning of the tail-insert

stage. Thus, by the above two definitions, the number of sweeps of uκ in the Phase

t of ui equalsCκ(i, t). To simplify the proof, we constrain the density thresholdsτ0,

τh, ρ0, andρh as follows:

τ0− τh = ρh−ρ0 and τ0≤ 5ρ0. (88)

For example, settingρ0 = 0.16,ρh = 0.32,τh = 0.64 andτ0 = 0.8 satisfies (73)-(76)

and (88). Therefore, by (74) and (75), for any 0≤ ℓ≤ h we obtain

τℓ +ρℓ = τ0+ρ0 = τh+ρh and τℓ ≤ 5ρℓ. (89)

Observe that for any choice of constantsρ0 andτ0, there exists a constantβ, such

thatτ0 ≤ βρ0. In this proof, we adopt the constraint thatτ0 ≤ 5ρ0 for the sake of

3Thus,Cκ(i, t) is defined analogously toN κ(i,t), except that we begin counting from the begin-

ning of the tail-insert stage rather than from the first insert into the APMA.
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relative simplicity; we will explain why the results also carry through if we choose

some bigger constant instead.

To establish Claim 31, we decompose the sequence of insertions before the

first sweep ofui+1 since the beginning of the tail-insert stage into phases ofui , as

defined above. By the similar analysis to that of Theorem 28, we show that there

are at most three phases of nodeui before the first sweep ofui+1.

Now we prove that there are at most three phases ofui in the tail-insert stage

of ui ; we do so by analyzing the densities in each phase.
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vi−1 ui−1

2ρi+1 − ρi ρi
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2ρi+1 − ρi τi−1
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Figure 9: Phase 1 ofui starts from Density(ui−1) = ρi (left) and ends
at Density(ui−1) = τi−1 (right). The marker elementx is indicated by a
black dot. The region that is rebalanced at the end of the phase is shaded.

I) Consider the densities of child nodesui−1 andvi−1 of nodeui at the end of

Phase 1 ofui. The first sweep ofui occurs, whenui−1 reaches its threshold

τi−1 (see Figure 9). After the first sweep ofui (which is the beginning of

Phase 2), we claim that the marker elementx is either the leftmost element of

the right child ofui or the rightmost element of the left child ofui .

We now prove this claim. Notice that the number of elements inui before

x is 2ρi+1Cap(ui−1) and the number of elements inui after x is (τi−1−
ρi)Cap(ui−1). To see why, observe that by assumption the phase begins when

Density(ui) = ρi+1. Since all inserts are afterx, the number of elements be-

fore x stays the same. A rebalance of nodeui is triggered whenui−1 reaches

its threshold, after(τi−1−ρi)Cap(ui−1) elements have been inserted.

It is legal forui−1 andvi−1 to contain 2ρi+1Cap(ui−1) elements and(τi−1−
ρi)Cap(ui−1) elements, and therefore the sweep at leveli−1 is constrained by
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the hammer constraint (not density constraints). Marker elementx is always

stored in the child having the smaller density (by the hammerconstraint).

Thus, if there are more elements beforex than afterx, thenx is in the right

child of ui (ui−1 is a right child). Otherwise,x is in the left child ofui (ui−1 is

a left child).

In the first case, whenx is the leftmost element of the right child ofui , the

insert pattern intoui−1 in Phase 2 is exactly the head-insert case. Thus, by

Theorem 28, the number of sweeps ofuκ in Phase 2 is given byCκ(i,2) =

O(2i−κ).

In the following we consider the second case, whenx is the rightmost ele-

ment of the left child ofui . Thus, after the first sweep ofui , by the hammer

constraint, we have the the following densities:

Density(ui−1) = 2ρi+1,

Density(vi−1) = τi−1−ρi .
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Figure 10: Phase 2 ofui starts from Density(ui−1) = 2ρi+1 (left) and
ends at Density(ui−1) = τi−1 (right). The marker elementx is indicated
by a black dot. The region that is rebalanced at the end of the phase is
shaded.

II) Now (for the above second case) we consider the densitiesof child nodes

ui−1 andvi−1 of nodeui at the end of Phase 2. The second sweep ofui occurs

whenui−1 reaches its upper threshold again (see Figure 10). Recall that at

the beginning of the phase, we chose to put the marker elementx in the child

of ui having the smaller density, and since we are in the second case, this was
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the left child ofui . Thus, by the hammer constraint,

2ρi+1 < τi−1−ρi . (90)

Whenui−1 reaches its threshold, the number of elements afterx in ui is the

number of elements inui−1 afterx (the new elements inserted in Phase 2) plus

the number of elements invi−1, i.e.,

(τi−1−2ρi+1)Cap(ui−1)+(τi−1−ρi)Cap(vi−1). (91)

Observe that (91) is greater thanτi−1Cap(vi−1) by (90). Therefore, the sec-

ond sweep ofui is constrained by the rebalance property, not the hammer

constraint. In particular, after the second sweep ofui , nodevi−1 has density

τi , the upper threshold of its parentui ; nodeui−1 has (the remaining) den-

sity τi−1+(τi−1−ρi)− τi, which equalsτi−1−ρi−1 by (89). Thus, after the

second sweep, we have the following densities:

Density(ui−1) = τi−1−ρi−1,

Density(vi−1) = τi .

III) We now consider the densities of child nodesui−1 and vi−1 of nodeui at

the end of Phase 3. (We focus on the above second case in the following,

but the first case is now essentially the same.) The third sweep of ui occurs

whenui−1 reaches its threshold for a third time (see Figure 11). Whenui

does the third sweep, the density ofui is (τi−1+ τi)/2 > τi , soui is above its

upper threshold. Thus, the end of Phase 3 is the first sweep ofui+1 since the

beginning of the tail-insert stage.

We have therefore shown that (for the second case) there are at most three

sweeps ofui before the first sweep ofui+1, that is,

Cκ(i +1,1)≤ Cκ(i,1)+Cκ(i,2)+Cκ(i,3) . (92)

For the first case, we have the similar recurrence

Cκ(i +1,1)≤ Cκ(i,1)+O(2i−κ)+Cκ(i,3) . (93)
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Figure 11: Phase 3 ofui starts from Density(ui−1) = τi−1−ρi−1 (left) and
ends at Density(ui−1) = τi−1 (right). The marker elementx is indicated
by a black dot. The region that is rebalanced at the end of the phase is
shaded.

As we will show in (94), Recurrence (93) in the first case is actually bounded by

Recurrence (92). In the rest of this appendix, we only need focus on (92).

Until now, the proof has been similar to the proof of Theorem 28. However,

if we continue to decompose Phase 2, we find that in the worst case there are three

subphases. Furthermore, we cannot use the recurrenceCκ(i,3)≤ Cκ(i,2) to prove

our bound as in Theorem 28, because the recurrence is true buttoo weak.

To establish our bound, we instead prove the following recurrences for Phases

2 and 3:

Cκ(i,2)≤ Cκ(i−1,1)+Cκ(i−3,1)+O(2i−κ) , (94)

and

Cκ(i,3)≤ Cκ(i−3,1)+O(2i−κ) . (95)

Before we establish Recurrences (94) and (95), we prove the following claim, which

describes a subphase in both Phases 2 and 3:

Claim 32 Consider a tail-insert stage of ui−2 starting at Density(ui−2) = 4ρi+1

and ending when node ui−2 reaches its upper threshold. The number of sweeps of

uκ during this stage is at mostCκ(i−3,1).

PROOF OFCLAIM 32: We first give the densities of nodesui−3, ui−4, vi−3, and

vi−4 at the beginning of the tail-insert stage ofui−2. We show that the rebalance is

constrained by the upper density thresholds ofvi−3 andvi−4, that is, at the beginning

of the tail-insert stage, Density(vi−3) = τi−2 and Density(vi−4) = τi−3.
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Figure 12: The tail-insert stage ofui−2 starts from Density(ui−4)≥ ρi+1

(left) and ends at Density(ui−4) = τi−4 (right). The marker elementx is
indicated by a black dot. At the end of the tail-insert stage of ui−2, node
ui−1 is rebalanced.

The tail-insert stage ofui−2 begins after a sweep ofui−2, and therefore by the

rebalance property

Density(vi−3)≤ τi−2 and Density(vi−4)≤ τi−3 .

From (89), we obtain

Density(vi−3)≤ 5ρi−2 and Density(vi−4)≤ 5ρi−3 .

From (73), we obtain

Density(vi−3)≤ 5ρi+1 and Density(vi−4)≤ 5ρi+1 . (96)

Now we bound the densities ofui−3 andui−4. The number of elements inui−3 is

the number of elements inui−2 minus the number of elements invi−3 (and similarly

for ui−4), that is,

Density(ui−3) = 2Density(ui−2)−Density(vi−3) , (97)

Density(ui−4) = 2Density(ui−3)−Density(vi−4) . (98)

From (96), we obtain

Density(ui−3)≥ 8ρi+1−5ρi+1 = 3ρi+1 . (99)

Now from (96) and (99),

Density(ui−4)≥ 6ρi+1−5ρi+1 = ρi+1 . (100)
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Inequalities (99) and (100) show that at the beginning of thestage, the densi-

ties ofui−3 andui−4 are above the lower bound thresholdsρi−2 andρi−3, respec-

tively, which means thatvi−3 andvi−4 are at their parents’ upper thresholds, i.e.,

Density(vi−3) = τi−2 and Density(vi−4) = τi−3.

We now explain that when nodeui−4 reaches its upper threshold, thenui−2 also

reaches its upper threshold (see Figure 12). This is becausewhen Density(ui−4) =

τi−4, we already have Density(vi−4) = τi−3. Therefore,ui−3 is above its upper

threshold. We already have Density(vi−3) = τi−2, and thereforeui−2 is also above

its upper threshold.

Therefore, the number of sweeps ofuκ in the tail-insert stage ofui−2 is equal

to the number of sweeps ofuκ in the tail-insert stage ofui−4 (sinceui−4 is the

rightmost grandchild ofui−2; see Figure 12). By the definition of the tail-insert

stage, the number of sweeps ofuκ in the tail-insert stage ofui−4 (which starts with

Density(ui−4) ≥ ρi+1) is less thanCκ(i−3,1) (the number of sweeps ofuκ in the

tail-insert stage ofui−4 that starts with Density(ui−4) = ρi−3).

Now we are ready to prove (95). To do so, we give the densities of the sibling

nodesui−2 andvi−2 at the beginning of Phase 3. Recall that Phase 3 starts with

nodeui−1 having densityτi−1−ρi−1, vi−1 having densityτi , and the marker element

x residing inui−1. Since the number of elements beforex does not change, node

ui−1 thus has 2ρi+1Cap(ui−1) elements beforex and(τi−1−ρi−1−2ρi+1)Cap(ui−1)

elements (the remaining elements) afterx.

We now show that the number of elements afterx is smaller than the number

of elements beforex in nodeui−1. Becauseτi−1≤ 5ρi−1 by (89), we obtain

τi−1−ρi−1−2ρi+1≤ 4ρi−1−2ρi+1.

Fromρi−1 < ρi+1 by (73), we have

τi−1−ρi−1−2ρi+1≤ 2ρi+1 . (101)

Equation (101) says that the number of elements afterx is smaller than the number

of elements beforex. Thus, the marker elementx resides in the right child ofui−1,

which isui−2.

We now break Phase 3 ofui into subphases and bound the number of sweeps of

uκ in the subphases. Subphaset of Phase 3 ofui is the period between the(t−1)th

andtth sweeps ofui−1.
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Now there are two cases. Case A is that nodevi−2 has densityτi−1, i.e., this

level is constrained by the rebalance property. Then we onlyhave one subphase in

Phase 3 ofui because whenui−2 reaches its upper thresholdτi−2, then its parent

ui−1 has density(τi−1+ τi−2)/2 > τi−1, which means the end of Phase 3.

In the following, we consider Case B when the sweep at leveli− 2 is con-

strained by the hammer constraint. In Case B, we decompose Phase 3 into two

subphases as follows:

��
��
��
��

��

i − 2

i − 1 ui−1

4ρi+1 2τi−1 − 2ρi−1 − 4ρi+1

vi−2 ui−2

=⇒

��

��
��
��
��

ui−1

4ρi+1 τi−2

vi−2 ui−2

Figure 13: Subphase 1 of Phase 3 starts from Density(ui−2) = 2τi−1−
2ρi−1−4ρi+1 (left) and ends at Density(ui−2) = τi−2 (right). The marker
elementx is indicated by a black dot. The region that is rebalanced at the
end of Subphase 1 is shaded.

• We consider the densities ofui−2 andvi−2 at the beginning and end of Sub-

phase 1 (see Figure 13). At the beginning of Subphase 1, because of the ham-

mer constraint, the density of the left childvi−2 is 4ρi+1 (since the number of

elements beforex is alwaysρi+1Cap(ui) – see the beginning of the appendix)

and the density of the right childui−2 is 2τi−1−2ρi−1−4ρi+1 (the remaining

elements in nodeui−1). At the end of Subphase 1, nodeui−2 reaches its upper

thresholdτi−2.

Notice that during Subphase 1, the marker elementx is the first element in

nodeui−2 and thus withinui−2 we have the head-insert case. Therefore, by

Theorem 28, there areO(2i−2−κ) sweeps ofuκ in Subphase 1.

• We now consider the densities ofui−2 andvi−2 at the beginning and end of

Subphase 2 (see Figure 14). The beginning of Subphase 2 is right after the

sweep of nodeui−1. By the rebalance property, the density of the right child

at the beginning of Subphase 2 isτi−1 because before the sweep its density

wasτi−2 (> τi−1). After the sweep of nodeui−1, the marker elementx moves

to the left child ofui−1. Therefore, the left child becomes nodeui−2 and
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Density(ui−2) = 4ρi+1+(τi−2− τi−1).

Subphase 2 ends when nodeui−2 reaches its upper thresholdτi−2. Because

the density ofvi−2 is already at parentui−1’s thresholdτi−1, the end of Sub-

phase 2 is the end of Phase 3.

��

�
�
�
�i − 2

i − 1 ui−1

4ρi+1 τi−2 − τi−1 τi−1

vi−2

=⇒

��

����
vi−2

4ρi+1

ui−1

τi−2 − 4ρi+1 τi−1

≥ τi−1

Figure 14: Subphase 2 of Phase 3 starts from Density(ui−2) = 4ρi+1 +
τi−2− τi−1 (left) and ends at Density(ui−2) = τi−2 (right). The marker
elementx is indicated by a black dot. At the end of Subphase 2, nodeui ,
the parent ofui−1, is rebalanced.

We now prove that the number of sweeps ofuκ in Subphase 2 is less than

Cκ(i−3,1), the number of sweeps from Claim 32. Both Subphase 2 and the

tail-insert stage ofui−2 in Claim 32 end when nodeui−2 reaches its threshold

τi−2.

However, Subphase 2 starts with more elements after the marker elementx

than does the tail-insert stage ofui−2 and the same number of elements before

the marker elementx. In particular, Subphase 2 has 4ρi+1Cap(ui−2) elements

before and(τi−2−τi−1)Cap(ui−2) elements afterx. In contrast, the tail-insert

stage ofui−2 has 4ρi+1Cap(ui−2) elements before and no elements afterx.

Thus, the number of sweeps ofuκ in Subphase 2 is at most the number of

sweeps ofuκ in the tail-insert stage ofui−2 because fewer elements can be

inserted intoui−2 beforeui−2’s upper threshold is reached.

In summary, there are at most two subphases in Phase 3 and the number of sweeps of

uκ in these two subphases is at mostCκ(i−3,1) plusO(2i−2−κ), which establishes

(95).

We now prove (94). To do so, we decompose Phase 2 ofui into three sub-

phases, and we analyze the densities ofui−2 andvi−2 in each subphase.
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• We consider the densities ofui−2 andvi−2 at the beginning and end of Sub-

phase 1 (see Figure 15). At the beginning of Subphase 1, Density(ui−2) =

ρi−1 and Density(vi−2) = 4ρi+1−ρi−1 by the rebalance property.

Here and below we assume that 4ρi+1− ρi−1 ≤ τi−1. The alternative, that

4ρi+1− ρi−1 > τi−1, is the simple case. Then Density(vi−2) = τi−1. As a

consequence, there are only two subphases in Phase 2 ofui , and the recur-

rence is simpler.

Subphase 1 ends with the density ofui−2 reaching its upper threshold

τi−2. The number of sweeps ofuκ in Subphase 1 is exactly equal to

Cκ(i−1,1) because both of them start at Density(ui−2) = ρi−1 and end with

Density(ui−2) = τi−2.
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4ρi+1 − ρi−1 τi−2
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Figure 15: Subphase 1 of Phase 2 starts from Density(ui−2) = ρi−1 (left)
and ends at Density(ui−2) = τi−2 (right). The marker elementx is indi-
cated by a black dot. The region that is rebalanced at the end of Sub-
phase 1 is shaded.

• We next consider the densities ofui−2 and vi−2 at the beginning and end

of Subphase 2 (see Figure 16). The beginning of Subphase 2 is right after

the rebalance ofui−1. Notice that there are 4ρi+1Cap(ui−2) elements before

the marker elementx and(τi−2−ρi−1)Cap(ui−2) elements afterx. Because

τi−2≤ 5ρi−2 by (89), we obtain

τi−2−ρi−1≤ 5ρi−2−ρi−1.

Becauseρi−2 < ρi−1 < ρi+1 by (73), we have

τi−2−ρi−1 < 4ρi+1 . (102)

Equation (102) says that the number of elements afterx is less than the num-

ber of elements beforex in nodeui−1. Therefore, the marker elementx will be
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in the right child ofui−1 after the sweep. By the same argument as in Phase 3,

we assume the sweep at leveli−2 is constrained by the hammer constraint.

Otherwise, Density(vi−2) = τi−1, and there are only two subphases in Phase

2.

Thus, we consider the case thatvi−2 is still below its parent’s threshold, i.e.,

Phase 2 needs a third subphase before it finishes.

We now bound the number of sweeps ofuκ in Subphase 2. Since the marker

elementx is the leftmost element inui−2, and thus withinui−2 we have the

head-insert case. Therefore, by Theorem 28, there areO(2i−2−κ) sweeps of

uκ in Subphase 2.
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Figure 16: Subphase 2 of Phase 2 starts from Density(ui−2)= τi−2−ρi−1

(left) and ends at Density(ui−2) = τi−2 (right). The marker elementx is
indicated by a black dot. The region that is rebalanced at theend of
Subphase 2 is shaded.

• Finally, we consider the densities ofui−2 andvi−2 at the beginning and end of

Subphase 3 (see Figure 17). Subphase 3 is same as Subphase 2 ofPhase 3. By

the same argument, the number of sweeps ofuκ in Subphase 3 isCκ(i−3,1).

��

����

i − 2

i − 1 ui−1

4ρi+1 τi−2 − τi−1 τi−1

vi−2

=⇒

��

����

4ρi+1 τi−1

ui−1

vi−2

τi−2 − 4ρi+1

≥ τi−1

Figure 17: Subphase 3 of Phase 2 starts from Density(ui−2) = 4ρi+1 +
τi−2− τi−1 (left) and ends at Density(ui−2) = τi−2 (right). The marker
elementx is indicated by a black dot. At the end of Subphase 3, nodeui

is rebalanced.
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In summary, there are at most three subphases in Phase 2 and the number of sweeps

in these three subphases is at mostCκ(i− 1,1) plus O(2i−3−κ) plus Cκ(i− 3,1),

which establishes (94).

We can now prove our desired bound. Plugging (94) and (95) into (92), we

obtain

Cκ(i +1,1)≤ Cκ(i,1)+Cκ(i−1,1)+2Cκ(i−3,1)+O(2i−κ) .

We prove our bound by induction. AssumeCκ( j,1) ≤ β2 j−κ for j ≤ i and the

constant inO(2i−κ) is α. If we chooseβ bigger than 4α, then

Cκ(i +1,1) ≤ β2i−κ +β2i−1−κ +2β2i−3−κ +α2i−κ

=
7
4

β2i−κ +α2i−κ

≤ β2i+1−κ .

Therefore,Cκ(i +1,1)≤ β2i+1−κ is true for alli > 0, as claimed.

Finally, we show why, given Claim 31, the analysis from Theorem 28 applies

to hammer inserts. Recurrence (84) is true above an intermediate nodeui, that is,

N κ(ℓ−1,2)≤ 2ℓ−i−2N κ(i +1,2).

Moreover, by Claim 31,

N κ(i +1,2)≤ β2i+1−κ

for some constantβ at nodeui . Therefore,

N κ(ℓ−1,2)≤ β2ℓ−κ−1.

Thus, the solution for Recurrence (83) is

N κ(ℓ,1)≤ 2ℓ−κ+1β,

and the theorem follows.
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3.3 Analysis for Random and Bulk Insertions

In the previous section we analyze the sequential and hammerinsertion distribu-

tions, where the inserts hammer on one part of the PMA. In thissection we first

analyze random insertion distribution, where we insert after random elements in

the array. Then we generalize all of these distributions andconsider the bulk inser-

tion distribution.

The bulk insertion distribution for functionNα, 0≤ α ≤ 1, is defined as fol-

lows: pick a random element and insertNα elements after it; then pick another

element and repeat. Bulk insert generalizes all distributions seen so far: Forα = 0,

we have random inserts, and forα = 1, we have sequential or hammer inserts.

Random Inserts. We now give the performance for the traditional PMA and

APMA with random inserts. In the traditional PMA or APMA, each insertion

causes only a small number of elements to be moved or triggersa recopying of

the entire array.

Theorem 33 ( [23,43])Consider random insertions into a traditional PMA or

APMA, in which each new element is inserted after a random element in the PMA

or APMA. Whenever the density of the entire array is below themaximum density

threshold, then each insert causes O(logN) element moves and O(1+(logN)/B)

memory transfers with high probability, i.e., probabilitypolynomially small in N.

Specifically, each insert causes O(α logN) element moves and O(1+α(logN)/B)

memory transfers with probability at least1−1/Nα.

Even simpler rebalance schemes perform well under random inserts, as shown

in [23, 43]. Publications [23, 43] show that there areO(logN) moves with high

probability for random inserts, even with the following simple rebalance proce-

dure: When we insert an elementy after an elementx, we simply push the elements

to the right or left to make room fory. The maximum number of elements moved

is O(logN) with high probability. Thus, for the traditional PMA, as long as the

density thresholds in the leaves is a constant less than 1, weneed no big rebalances

in the tree.
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Bulk Inserts. For bulk inserts, we have the following theorem:

Theorem 34 For bulk inserts with f(N) = Nα (0≤ α ≤ 1), the APMA achieves

O(logN) amortized element moves and O(1+(logN)/B) memory transfers.

A

T

log N − ⌈α log N⌉

⌈α log N⌉

Figure 18: An illustration showing the tree divided at height⌈α logN⌉.

The intuition for Theorem 34 is as follows: Conceptually, wedivide the virtual

tree into a top tree withΘ(N/( f (N) logN)) leaves, each of which is the root of

a bottom treeT with Θ( f (N)) leaves, i.e.,Θ( f (N) logN) array positions. Thus,

we split the virtual tree at heighth′ = ⌈α logN⌉. Bulk inserts can be analyzed by

looking at the process as a combination of random and hammer inserts: random

inserts in the top treeA with big leaf nodes of sizef (N) logN and hammer inserts

in a bottom treeT of size f (N) logN. In an insertion, we randomly choose a leaf

node of top treeA and do a hammer insert at the bottom subtree of the chosen leaf

node ofA.

We first show thatf (N) = Nα (0 ≤ α ≤ 1) hammer inserts intoT costs

O(logN) amortized moves when all the nodes are well balanced. Then, we ex-

plain that thesef (N) inserts trigger at most one rebalance in the top treeA. Thus,

from the point of view ofA, there is a big element of sizef (N) inserted, and this

big insert costsO(logN) amortized moves in the leaf node.

We prove the following lemma forf (N) = Nα.
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Lemma 35 Consider inserting f(N) = Nα elements after a fixed element x in sub-

tree T of size Nα logN. Suppose that at the beginning of these insertions, each node

in T is well balanced. Then, the amortized number of moves is O(logN) and the

amortized number of memory transfers is O(1+(logN)/B).

Proof. We first show that all sweeps during the insertions ofNα elements occur

in subtreeT. Because the root node is well balanced, the density of the root is at

mostτh′+1. Thus, before rootuh′ goes outside of its upper threshold, we can insert

at least(τh′−τh′+1)(Nα logN) = Θ(Nα) elements without triggering sweeps above

levelh′.

Now we give some assumptions and notation. For simplicity weassume that

there are sequential insertions withinT. (We know from the proof of Theorem 30

that sequential inserts and hammer inserts have the same analysis except at one level

of the recurrence relations.) Now we denote the leftmost node in T at levelℓ asuℓ.

As in the proof of Theorem 30, we useN κ(ℓ, i) to denote the number of sweeps of

nodeuκ at levelκ between the(i−1)th andith sweep ofuℓ. Thus, the amortized

number of element moves is at most

1
Nα

h′
∑

κ=0

N κ(h
′+1,1)2κ logN. (103)

We bound (103) by considering the worst case when alluℓ have density as high

asτℓ+1, 0≤ ℓ≤ h′. The time whenuℓ does its first rebalance is the time whenuℓ−1

reaches its upper thresholdτℓ−1. This period can be decomposed into two phases,

as before:

• Phase 1 of nodeuℓ starts with nodeuℓ−2 having densityτℓ−1 and nodevℓ−2

having densityτℓ+1. Phase 1 ends with nodeuℓ−2 having densityτℓ−2. Thus,

after the first rebalance ofuℓ−1 (see Figure 19), which occurs after(τℓ−2−
τℓ−1)Cap(uℓ−2) inserts, we have densities:

Density(uℓ−2) = τℓ,

Density(vℓ−2) = τℓ−1.

• Phase 2 of nodeuℓ starts with nodeuℓ−2 having densityτℓ and ends with

nodeuℓ−2 having densityτℓ−2. When nodeuℓ−1 does its second sweep (see



CHAPTER3. Adaptive PMA 91

ℓ − 1

ℓ − 2

τℓ+1

τℓ

ℓ

τℓ+1

τℓ+2

τℓ−1

=⇒ τℓ+2

τℓ−2 τℓ+1

Figure 19: Phase 1 of nodeuℓ starts from Density(uℓ−2) = τℓ−1 (left) and
ends at Density(uℓ−2) = τℓ−2 (right). The shaded region is rebalanced.

Figure 20), which occurs after(τℓ−2− τℓ)Cap(uℓ−2) inserts, the density of

nodeuℓ−1 is (τℓ−2 + τℓ−1)/2 > τℓ−1, so nodeuℓ−1 is above its threshold.

Thus, the end of Phase 2 is the first rebalance of nodeuℓ.

ℓ − 1

ℓ − 2

ℓ

τℓ+2

τℓ−1τℓ

=⇒ τℓ+2

τℓ−2 τℓ−1

Figure 20: Phase 2 of nodeuℓ starts from Density(uℓ−2) = τℓ (left) and
ends at Density(uℓ−2) = τℓ−2 (right). The shaded region is rebalanced.

Thus, we have recurrenceN κ(ℓ,1) ≤ N κ(ℓ−1,1)+N κ(ℓ− 1,2). However,

we cannot use the straightforward boundN κ(ℓ,1) ≤ 2N κ(ℓ− 1,1) as we did in

Lemma 29. When we try to use this bound, we obtain the solutionN κ(ℓ,1) ≤
2ℓ−κ+1. Thus, we obtain an amortized number of moves

1
Nα

h′
∑

κ=0

N κ(h
′+1,1)2κ logN ≤ 1

Nα

h′
∑

κ=0

2h′−κ+22κ logN

= O(log2N),

which is greater than our goal ofO(logN). Instead, we need a tighter analysis.

Now we analyzeN κ(ℓ− 1,2) in more detail. The boundN κ(ℓ−1,2) is the

number of sweeps of nodeuκ at levelκ between the first and second sweeps ofuℓ−1.

After the first rebalance ofuℓ−1, we have Density(vℓ−2)= τℓ−1 and Density(vℓ−3) =
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τℓ−2 according to our rebalance strategy for the sequential-insert pattern, i.e., both

vℓ−2 andvℓ−3 already have densities as high as their parents’ upper thresholds (see

Figure 21). The time whenuℓ−1 does its next sweep is the time whenuℓ−2 reaches

its threshold. Becausevℓ−3 has densityτℓ−2, this is also the first time whenuℓ−2

does its next sweep, and becausevℓ−4 has densityτℓ−3, this is also the first time

whenuℓ−3 does its next sweep, i.e., bothN ℓ−2(ℓ−1,2) andN ℓ−3(ℓ−1,2) are 1.

This process continues a number of levels down the tree to be determined below,

but not to the leaves.

ℓ− 2

ℓ− 3

ℓ− 4

ℓ− 5

τℓ+7 τℓ−3

τℓ+2 τℓ−2

τℓ−4τℓ+18

τℓ τℓ−1

Figure 21: The densities of nodeuℓ’s descendants at the beginning of Phase 2 of nodeuℓ.

The process does not continue to the leaves because after thefirst rebalance

of uℓ−1, the density of each leftmost child is decreasing from top tobottom. Thus,

at some levelℓ− j, nodeuℓ− j may be so sparse that there are not enough elements

to fill its right child vℓ− j−1 to densityτℓ− j . Specifically, we claim that as long as

Density(uℓ− j)≥ τh, then we can fillvℓ− j−1 to densityτℓ− j . Because

Density(uℓ− j) ≥ τh

≥ (τh+ρh)/2

= (τℓ− j +ρℓ− j)/2

by (74) and (75), we can fillvℓ− j−1 to densityτℓ− j while keeping the density of

uℓ− j−1 great thanρℓ− j . Thus, there is only one sweep ofuℓ− j in Phase 2 ofuℓ, i.e.,

N ℓ− j(ℓ−1,2) = 1.
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We now calculate the lowest levelx such that Density(ux)≥ τh. First, we give

the densities of the nodes above levelx after the first rebalance ofuℓ−1.

Claim 36 For levelℓ− j > x,

Density(uℓ− j) = τℓ+3·2 j−2− j−1. (104)

The proof of this claim is by induction onj. The base case isj = 2. Eq. (104)

is satisfied because Density(uℓ−2) = τℓ. Now assume that the claim is true for level

ℓ− j and all levels above. We show that the claim is also true for level ℓ− j −1.

Becauseℓ− j > x, Density(uℓ− j) ≥ (τℓ− j + ρℓ− j)/2. Thus, we can fillvℓ− j−1 to

densityτℓ− j . Thus, we obtain

Density(uℓ− j−1) = 2Density(uℓ− j)−Density(vℓ− j−1)

= 2τℓ+3·2 j−2− j−1− τℓ− j

= τℓ+3·2 j−1− j−2.

So (104) is true for levelℓ− j−1.

Now we need solve the inequality

τℓ+3·2 j−2− j−1≥ τh (105)

to determinex. Ineq. (105) is equivalent to

3 ·2 j−2− j−1≤ h− ℓ.

Becauseℓ≤ h′ = α logN for some fixed constantα, j = lg lgN−O(1). That is, the

lowest level thatx can be isℓ− lg lgN + λα, whereλα is a constant that depends

only onα. Thus, we have formula

N κ(ℓ−1,2) = 1 (106)

for ℓ−1≥ κ≥ ℓ− lg lgN+λα.

For those levels lower thanℓ− lg lgN+λα, we use simple but straightforward

bounds: each sweep of a node costs at most two sweeps of its left child, assuming

that each node is within balance. Thus, we have formula

N κ(ℓ−1,2)≤ 2ℓ−lg lgN+λα−κ, (107)
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for 0≤ κ≤ ℓ− lg lgN+λα.

Combining (106) and (107), we obtain

N κ(ℓ−1,2)≤ ⌈2ℓ−lg lgN+λα−κ⌉. (108)

Now we are ready to boundN κ(ℓ,1) by using (108):

N κ(ℓ,1) ≤ N κ(ℓ−1,1)+N κ(ℓ−1,2)

≤ N κ(κ,1)+
ℓ−1
∑

i=κ
N κ(i,2)

= 1+
ℓ−1
∑

i=κ
N κ(i,2)

≤ 1+

ℓ−1
∑

i=κ
⌈2i−lg lgN+λα−κ⌉

≤ ℓ−κ+1+

ℓ−1
∑

i=κ+lg lgN−λα

2i−lg lgN+λα−κ

≤ ℓ−κ+1+2ℓ−lg lgN+λα−κ.

Finally, we establish that the amortized number of movements for theseNα

elements is at most

1
Nα

h′
∑

κ=0

N κ(h
′,1)2κ logN

≤ 1
Nα

⌈α logN⌉
∑

κ=0

(h′−κ+1)2κ logN+
1

Nα

⌈α logN⌉
∑

κ=0

2h′−lg lgN+λα−κ2κ logN

= O(logN).

Now we bound the number of memory transfers. Observe that after any insert,

the elements moved from a contiguous group, and the moves canbe performed with

a constant number of scans. Therefore the amortized number of memory transfer is

O(1+(logN)/B).

Based on Lemma 35, Theorem 34 is proved as follows.

PROOF OFTHEOREM 34: We consider each bottom subtreeT. Suppose that

an ancestor of the root ofT does a rebalance. Then the root ofT has density at
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mostτh′+1. Thus, we can insert at least(τh′−τh′+1)Θ(Nα logN) = Θ(Nα) elements

without triggering sweeps above levelh′, i.e., insertingNα elements inT triggers at

most one rebalance in top subtreeA.

Now we consider around of Nα inserts into some bottom subtreeT. We

show that there areO(logN) amortized element moves in the APMA. Recall that

we use the predictor to store recent inserts. For the firstNα inserts, the predictor

only uses one cell. When the nextNα inserts start to hammer, the predictor uses

the second cell to store new elements. After the count numberin the second cell

reaches logN, which means there are logN new elements at the second position,

the count number in the first cell begins to decrease. Thus, atmost 2 logN inserts

remove the first cell, meaning that the hammer-insert pattern starts after the first

2 logN inserts. Thus, we divide theNα inserts in the round into two parts: the first

2 logN ones and theNα−2logN subsequent ones. This is one dividing point.

The second dividing point is when some insert triggers a rebalance in the top

subtreeA. We assume the second dividing point is after the first one. The alternative

is similar to the following analysis, although somewhat easier. These two dividing

points split the round into three parts. We analyze the cost of the rebalance in the

bottom subtreeT for these parts as follows:

1. The rebalance cost for the first part, the insertion of the first 2 logN elements,

is at most 3Nα logN. To see why, observe that there exists a nodeu′ of size

Nα, such that these 2logN elements trigger at most one rebalance aboveu′, by

an argument similar to that above. This rebalance is withinT, and therefore

costs at mostNα logN. Thus, the total cost is the cost of this rebalance, at

mostNα logN, plus the cost of the rebalances belowu′, at most(2logN−
1)Nα.

2. The second part is from the(2logN)th element insert to the element insert

triggering the rebalance in the top subtreeA. The total cost is at most the

worst-case cost in Lemma 35, which isO(Nα logN).

3. The third part is from the element insert triggering the rebalance in the top

subtreeA to the last element insert of theseNα elements. From Lemma 35,

the cost is less than the cost to insert allNα elements in subtreeT whose

ancestor did the rebalance, which isO(Nα logN).



CHAPTER3. Adaptive PMA 96

Thus, without counting the rebalance cost in the top subtreeA, the average cost

for each round isO(Nα logN)/Nα = O(logN). If we can show that the average cost

in the top subtreeA is also logN, then the theorem is proved.

From the view point of top subtreeA, the bulk insert is similar to random

inserts of “big elements” of sizeNα in A, because big element triggers at most one

rebalance inA and a leaf node of sizeNα logN is a black box that hasO(logN)

amortized moves. So the bulk insert is: randomly choose a leaf node inA, a black-

box operation to insertNα elements in the leaf node, each withO(logN) moves. If

the leaf node reaches its threshold, then a rebalance is triggered at most once inA.

Thus, as in Theorem 33, we haveO(logN) element moves in the top subtreeA. As

before, the memory-transfer bound follows because all rebalances are to contiguous

groups of elements.

3.4 Experimental Results

In this section we describe our simulation and experimentalstudy. We show that

our results are consistent with the asymptotic bounds from the previous sections

and suggest the constants involved. We also demonstrate that the bookkeeping for

the adaptive structure has little computational overhead.

We ran our experiments as follows: For each insert pattern, we began with

an empty array and added elements until the array contained roughly 1.4 million

elements. We began our measurements once the array had size at least 100,000.

We recorded the amortized number of element moves per insertas well as the run-

ning times. We considered the sequential, hammer, random, and bulk insertion

distributions from the previous sections. We also added noise to the distributions,

combining, for example, the hammer and random distributions, showing that the

predictor is resilient to this noise. Each graph plots the intermediate data points in

a single run.

We ran our experiments on a Pentium 4 CPU 3.0GHZ, with 2GB of RAM,

running Windows XP professional, and a 100G ATA disk drive. Our file contained

up to 221 keys, and the total memory used was up to 1.4 GB. We implemented a

search into the PMA as a simple binary search. The binary search was appropriate

since our experiments were small enough that they did not involve paging to disk.
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Consequently, the search time was dominated by the insertion time into the PMA.

The adaptive PMA is ultimately targeted for used in cache-oblivious and

locality-preserving B-trees, where the search time becomes relatively more expen-

sive because the data structures do not fit in main memory. In this case the binary

search will be too slow because it lacks sufficient data locality. (The number of

memory transfers for the PMA insert isO(1+(logN)/B), which is dominated by

the cost of a binary search,O(log⌈N/B⌉), as well as the optimal external-memory

search cost,O(1+ logBN).) Thus, our next round of experiments on larger data sets

is to be run with the objective of speeding up inserts in the cache-oblivious B-tree.
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Figure 22: Sequential inserts: average moves
per insert divided by lgN. The array size
grows to two million and 1.4 million elements
are inserted.
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Figure 23: Sequential inserts: the running
time to insert up to 1.4 million elements.

Sequential inserts.We first compared the adaptive and traditional PMAs on

sequential insertions. For sequential inserts of roughly 1.4 million elements, the

APMA has four times fewer element moves per insertion than the traditional PMA

and running times that are nearly seven times faster.

Figure 22 shows the average number of element moves in the PMAs. The

x-axis indicates the number of inserted elements up to 1.4 million. They-axis in-

dicates the number of element moves divided by lgN. For both the adaptive and

traditional PMA, we choose the upper and lower density thresholds as follows:

τ0 = 0.92,τh = 0.7, ρh = 0.3, andρ0 = 0.08. In our experiments, we double when

the array gets too full. Thus, before doubling, the array hasdensity over 0.7 and
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after, the array has density over 0.35. (By increasing the array size by only a(1+ε)-
factor for constantε, we can make the density of the entire array at least(1+ ε)ρh

with only a small additive increase in the number of elementsmoved. Thus, we can

have an array whose density is always arbitrary close to 70% full.) The roughly flat

line shows the performance of the APMA. These experiments suggest that the con-

stant in front of the lgN (see Theorem 28) is roughly 2.5 for the density thresholds

chosen. Because we are measuring number of element moves, these results are ma-

chine independent. Figure 23 gives the running times for ourexperiment. Observe

that the APMA runs almost 7 times faster even though the amortized number of

element moves is only 4 times smaller. Hence, the overhead for the adaptive PMA

is small. We suspect that this decrease has to do with cachingissues; the APMA

has a smaller working set than the traditional PMA.
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Figure 24: Random inserts: average moves
per insert divided by lgN. The array size
grows to two million and 1.4 million ele-
ments are inserted.
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APMA with random-insert

Figure 25: Random inserts: the running
time to insert up to 1.4 million elements.

Random inserts.For random insertions the traditional PMA performs slightly

better than the APMA because there is seemingly no advantagein uneven rebal-

alances and because the traditional PMA has less overhead. For random insertions

of 1.4 million elements with the same density thresholds and axesas in Figures

22 and 23, both the adaptive and traditional PMAs have the same asymptotic per-

formance (see Theorem 33). The traditional PMA’s constant seem to be less than

10% smaller. Figures 24 and 25 show that both the amortized number of element

moves and the running times are comparable, with the traditional PMA performing
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slightly better, as expected. Figure 25 indicates that the bookkeeping overhead for

the APMA is small.
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Figure 26: Bulk inserts: average moves per
insert divided by lgN. The array size grows
to two million and 1.4 million elements are
inserted.
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Figure 27: Bulk inserts: the running time to
insert up to 1.4 million elements.

Bulk inserts.We next investigated the bulk-insert distribution, comparing both

the adaptive and traditional PMAs. For bulk insertions of 1.4 million elements,

the APMA has roughly 2.3 times fewer element moves per insertion than the tra-

ditional PMA and running times that are over 3.4 times faster. Figure 26 shows

the average number of elements moves in the PMAs with the samethresholds as

in Figure 22 and bulk parameterN0.6. The roughly flat line shows the performance

of the APMA. These experiments suggest that the constant in front of the lgN (see

Theorem 34) is roughly 4 for the chosen density thresholds and bulk parameter.

Figure 27 shows the running times of the traditional and adaptive PMAs.

Multiple sequential inserts.We next consider a distribution that performs se-

quential inserts into multiple parts of the array at once. Wefirst chooseR random

elements and then insert one element at a time after one of these chosen elements.

As long as the number of chosen elementsR is less than the number of elements

stored in the predictor, most predictions are good and the performance of APMA

remainsO(logN). Figures 28 and 29 compare the performance of the traditional

and adaptive PMAs when we choose 5 fixed elements. The APMA in this case

has a performance only slightly worse than that in the sequential-insert case while

tradition PMA still performs much worse.
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traditional PMA with bulk-similar-insert
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Figure 28: Multiple sequential inserts: av-
erage moves per insert divided by lgN. The
array size grows to two million and 1.4 mil-
lion elements are inserted.
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Figure 29: Multiple sequential inserts: the
running time to insert up to 1.4 million ele-
ments.

Half random and half sequential inserts.Finally, we analyze a distribution

that adds noise to sequential inserts. We decide randomly whether to insert a new

element at the front of the PMA or after a random element. Thus, roughly half of

the inserted elements form random noise. Figures 30 and 31 compare the perfor-

mance of the traditional PMA and APMA. The roughly flat curve in Figure 30 is

the performance of APMA, which is slightly worse than that inrandom inserts and

better than that in sequential inserts, while the performance of traditional PMA is

about 3 times worse than that of random inserts.
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Figure 30: Half random, half sequential in-
serts: average moves per insert divided by
lgN. The array size grows to two million and
1.4 million elements are inserted.
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3.5 Conclusion

We introduced an adaptive packed-memory array. The adaptive PMA guarantees

a performance at least as good as that of the traditional PMA,while simultane-

ously adapting to common insertion distributions. Thus, the adaptive PMA always

achieves at mostO(log2N) amortized element moves andO(1+(log2N)/B) mem-

ory transfers per update, but it achieves onlyO(logN) amortized element moves

andO(1+(logN)/B) memory transfers for sequential inserts, hammer inserts, ran-

dom inserts, and bulk inserts. Our simulations and experiments are consistent with

these asymptotic bounds. Several open problems remain. Forexample, can we

show some type of working-set property for an adaptive PMA? Perhaps such an

investigation will require study into the design of other predictors. The next step in

this research is to use the adaptive PMA in a cache-obliviousB-tree and to measure

the speedup obtained for updates.



Chapter 4

Partially Deamortized

Packed-Memory Array

In this chapter we introduce thepartially deamortized packed-memory array

(PDPMA) for the purpose of decreasing the worst-case cost ofone insertion. The

idea of such a deamortized data structure is to retain the real performance of the

traditional PMA in the amortized sense, while achieving better worst-case bounds.

In fact, Willard [66] gives an algorithm to deamortize a similar data structure. How-

ever, in addition to appearing too complex to implement, thedeamortized data struc-

ture has poor data locality. Bender, Cole, Demaine, and Farach-Colton [13] give a

better worst-case bound, but it is still unlikely to be implementable.

One of the deficiencies in the traditional PMA is that one element insertion

might trigger a rebalance of the whole array, which costsO(N) element moves. In

contrast, the amortized number of element moves,O(log2N), is not bad. When

we do such an insertion in a massive database, one insertion triggering a scan of

the whole database is infeasible. Our partially deamortized packed-memory array

is a cache-oblivious data structure whose insert/delete cost per update is at most

O(
√

N logN) element moves andO(1+ (
√

N logN)/B) memory transfers, while

having the same performance ofO(1+(log2N)/B) amortized memory transfers as

the traditional PMA.

Before presenting the partially deamortized PMA structure, we give an im-

proved rebalance algorithm,One-phase rebalance, which plays the same role as

the original rebalance algorithm in the traditional PMA, but is a key to design the

102
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partially deamortized PMA.

4.1 One-Phase Rebalance in PMA

In the traditional PMA, we naively rebalance a node (see Chapter 3 for a definition

of rebalance) as follows: we compress all elements to the left part of the node with-

out adding empty spaces; we then evenly space out those elements, proceeding from

right to left. This rebalance algorithm requires two phases, and each phase needs to

scan the whole node. In contrast, the one-phase rebalance performs a rebalance in

a single scan. That is, we move elements directly to their final destinations without

the intermediate step of compressing elements at one end of the rebalance interval.

So our expected one-phase rebalance performs more efficiently than the traditional

PMA and plays a key role in the partially deamortized PMA.

We first introduce some terminology about positions of the elements between

rebalances. Recall that the PMA is divided intoΘ(N/ logN) segments, each of

which has sizeΘ(logN). Because all the elements in a segment can be adjusted at

an additional cost ofΘ(1+(logN)/B) memory transfers, the rebalance algorithm

only needs to keep track of which segment an element belongs to, rather than its

actual position in the PMA. In the following, we consider which segment an ele-

ment resides in instead of its actual position. We say that a segment isrightward

(leftward) if it includes an element at the beginning of a rebalance, which moves to

another segment atright (left) side of this segment at the end of rebalance. Recall

that we call a contiguous group of segments awindow. Similarly, we say that a win-

dow isrightward (leftward) if it includes an element at the beginning of rebalance,

which moves to another segment atright (left) side of this window at the end of

rebalance. Like that a segment can bebothrightwardand leftward and can benei-

ther rightwardnor leftward, there also exist a both rightward and leftward window,

and a neither righward nor leftward window. To simplify notation, we call the both

rightward and leftward segment asource segment, and the neither rightward nor

leftward segment asink segment. Specifically, if a window does not include any

rightward (leftward) segment, we call itleftward (rightward) interval. Therefore,

a subarray of a rebalancing node is composed of rightward intervals and leftward

intervals in turn (see Figure 32).
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: Leftward Segment

: Rightward Segment

: Both Rightward and Leftward Segment

: Neither Rightward nor Leftward Segment

Figure 32: The pattern of one-phase rebalance.

We give further notation. In the rest of this section, we assume thatuℓ is a node

of heightℓ, whose left and right children areuℓ−1 andvℓ−1.When reblancing a node

uh′ of heighth′, for any nodeuℓ in the subtree rooted atuh′, we let the number of

elements in the nodeuℓ before the rebalance be Elmt(uℓ). Noticing that Elmt(uℓ) is

stored in nodeuℓ, we get it inO(1). Because we do rebalance evenly, the number of

elements in a nodeuℓ after rebalance, which we denote Expt(uℓ), is computable at

the beginning of the rebalance. Basically, forith segmentSi and jth segmentSj , the

number Expt(Si) is the same as Expt(Si) except for roundoff. Let a window starting

from l th segment and ending atrth segment beWlr . Same as the above definitions,

Elmt(Wlr ) and Expt(Wlr ) are the number of elements in windowWlr before and

after a rebalance. Notice that number Elmt(Wlr ) is not available directly. However,

we can find it inO(logN) by tracing along the path from the leaf to the root until

the least common ancestor of segmentsSl andSr .

The right−bound segment is a leftward segment.

The right−bound segment is a sourse segment.

Figure 33: Single leftward intervals.

One-phase Rebalance for an Interval. For the purpose of simplification, we

first study the case of rebalancing a single leftward interval, given the left-bound

segmentS0 and the right-bound segmentSr . Because the left-neighbor segment

of S0 is a rightward segment,S0 cannot be either a rightward segment or a source
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segment. By the definition of the leftward interval, the segmentS0 is not a leftward

segment. Thus, it must be a sink segment. On the other hand, the right-bound

segmentSr can be either a leftward segment or a source segment (see Figure 33).

Starting from the left-bound segmentS0, we calculate the number of elements

moving toS0 from its right-neighbor segmentS1. Observe that it is possible that

some elements move toS0 from its left-neighbor segment becauseS0 is a sink seg-

ment. We cannot calculate it directly by Expt(S0)−Elmt(S0). Furthermore, be-

causeSr might be a source segment, i.e., some elements may move out ofthis

leftward interval at the place of segmentSr , we do not know exactly who is the

rightmost element in this interval.

Algorithm 3 Rebalance.leftward.interval(leftbound)

1: i← leftbound+1.
2: j ← the last segment in the rebalancing nodeuh′.
3: Wi j ← the window starting fromSi and ending atSj .
4: Scan and move Elmt(Wi j )−Expt(Wi j ) elements toSi−1.
5: while Expt(Si) > Elmt(Si) do
6: Scan and move Expt(Si)−Elmt(Si) elements fromSi+1 to Si .
7: i← i +1.
8: end while

Algorithm 4 Rebalance.rightward.interval(rightbound)

1: i← the first segment in the rebalancing nodeuh′ .
2: j ← rightbound−1.
3: Wi j ← the window starting fromSi and ending atSj .
4: Scan and move Elmt(Wi j )−Expt(Wi j ) elements toSj+1.
5: while Expt(Sj) > Elmt(Sj) do
6: Scan and move Expt(Sj)−Elmt(Sj) elements fromSj−1 to Sj .
7: j← j−1.
8: end while

However, we know the rightmost element in the rebalancing node uh′. We

consider the windowW1∞ starting fromS1 and ending at the last segment inuh′.

Because no elements will move out of the rightmost segment inuh′, the elements

that move out of the windowW1∞ only exist at the place of segmentS1. Thus, the

number of elements that move toS0 is Elmt(W1∞)−Expt(W1∞). Therefore, we scan
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and move Elmt(W1∞)−Expt(W1∞) elements toS0 from S1 to finish sweeping the

segmentS0.

We now proceed the second segmentS1. Notice that the segmentS1 has its

status changed from the original leftward segment to a sink segment now. Fur-

thermore, we knowS1 only receives elements from its right-neighbor segment

S2 becauseS0 is a sink segment. The number of elements that the segmentS1

expect from the segmentS2 is Expt(S1)−Elmt(S1). Thus, we scan and move

Expt(S1)−Elmt(S1) elements from segmentS2 to finish sweepingS1. Repeat this

process until all segments in the leftward interval are swept. Thus, this algorithm

rebalances the leftward interval in one scan. Similarly, ifwe know the right-bound

segment of a rightward interval, this algorithm performs the rebalance in one scan

of the interval also (see Algorithms 3 and 4).

One-phase Rebalance in General. We now study the general case. As men-

tioned above, in general, the rebalancing node has the pattern of rightward intervals

and leftward intervals in turn (see Figure 32). The problem is how to find those

bounds between the rightward and leftward intervals without scanning the whole

node. In the following, we present the algorithm about finding those bounds. We

start from the first segmentS0. If it is in a leftward interval, then we use Algorithm 3

as a subroutine to sweep this interval until we reach the firstsegment which is in

a rightward interval. Thus, without loss of generosity, we assume the first segment

S0 is in a rightward interval. Notice that we cannot use the above Algorithm 4 as

a subroutine because we do not know the right-bound segment of this rightward

interval.

Now we present another subroutine (see Algorithm 5), whose input is the left-

bound segmentS0 of a rightward interval and whose output is a window starting

from S0 and ending atS′, which is the right-bound segment of a rightward interval

(see Claim 37). Recall thatS0 is the left bound of a rightward interval, so we have

Elmt(S0) > Expt(s0). Thus, lines 2—8 in Algorithm 5 show that we trace up the

tree fromS0 until we find the nearest ancestoru which satisfies either Elmt(u) ≤
Expt(u) or the rightmost leaf ofu is a source segment. There always exists one

ancestor because we know that the root node is such an ancestor where Elmt(root)≤
Expt(root). Next, we go down the tree by checking the same condition for child
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nodes. That is, if a windowW ending at the rightmost leaf ofu’s left child satisfies

Elmt(W)≤ Expt(W), we go down tou’s left child. Otherwise, we move tou’s right

child (see lines 5—12 in Algorithm 5).

Algorithm 5 rightbound.window(S0)

1: u← parent ofS0.
2: while Elmt(u) > Expt(u) do
3: if The rightmost leaf ofu 6= a source segmentthen
4: u← parent ofu.
5: else
6: BREAK;
7: end if
8: end while/* Now Elmt(u)≤ Expt(u). */
9: while u is not a segmentdo

10: W← a window fromS0 to the rightmost leaf ofu’s left child.
11: if Elmt(W)≤ Expt(W) then
12: u← left child of u.
13: else
14: u← right child ofu.
15: end if
16: end while
17: S′← u.
18: return a window starting fromS0 and ending atS′.

We give the following claim showing thatS′ is the right-bound segment of a

rightward interval.

Claim 37 The segment S′ in Algorithm 5 is the right bound of a rightward interval

and the cost to find S′ is O(logN).

Proof. There might exist several segments that are the right-boundsegment of a

right interval. We want to show that the segmentS′ returned by Algorithm 5 is one

of them.

Assume that the tree nodeu is the nearest ancestor such that the windowW0r

from S0 to the rightmost leafSr of u satisfies Elmt(W0r) ≤ Expt(W0r) or Sr is a

source segment. We first prove thatS′ must be one of leaf nodes of the tree nodeu.

There are two cases. In this first case that Elmt(W0r) ≤ Expt(W0r), the right-

most leafSr must be either a leftward segment or a sink segment. IfSr is a sink
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segment, then it is a right-bound segment of a right interval. If Sr is a leftward seg-

ment, then there is at least one segmentS′, which is a right-bound segment of a right

interval, betweenS0 andSr becauseS0 is a rightward segment. In the second case

thatSr is a source segment, it is similar to the case thatSr is a leftward segment.

We then trace down the tree. The rightmost leaf segment ofu’left child must

be a rightward segment because if it is one of other three segments, nodeu is not

the nearest ancestor as we find in Algorithm 5. Thus, we know there exists at least

one segmentS′ in the right child of nodeu. Similarly, when we choose the left child

or the right child in Algorithm 5, we always guarantee that there exists at least one

segmentS′ in the corresponding node. Thus, when the nodeu goes down along the

path, it becomes a leaf segment. Therefore, it must be one segmentS′ which is the

right-bound segment of a rightward interval.

The cost to findS′ isO(logN) because we spend time in an around trip between

leaf nodes and the root.

Although the window which subroutine returns might just be asingle right-

ward interval starting fromS0, it is also possible that the window includes other

leftward intervals inside. We show that as long as it is not a single interval, Algo-

rithm 5 always can find a bound segment inside because when we trace down the

tree, we always choose the child which has at least one segment S′ inside. Thus,

this subroutine will split a window into two smaller windows. By recursively using

Algorithm 5, we finish a rebalance in one scan.

4.2 Description of Partially Deamortized PMA

In this section, we describe the structure of the partially deamortized PMA.

We first review the traditional PMA. Recall that we view the traditional PMA

in terms of a tree structure, where the nodes of the tree are windows (i.e., a contigu-

ous group of segments). The tree node at heightℓ have an upper density thresholdτℓ

and a lower density thresholdρℓ, which together determine the acceptable density of

keys within a window. Assume that the height of the tree ish= lgN− lg lgN+O(1).

For the root node at heighth and leaf nodes at height 0, we select four initial density

values ofτ0, τh, ρ0, andρh from (0,1] such thatρ0 < ρh < τh < τ0. Thus, we define
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upper and lower density thresholds for nodes at heightℓ as follows:

τℓ = τh+(τ0− τh)(h− ℓ)/h

ρℓ = ρh− (ρh−ρ0)(h− ℓ)/h.

Observe that as the node heightℓ increases, the upper density thresholdsτℓ decrease

and the lower density thresholdsρℓ increase, i.e.,

ρ0 < ρ1 < · · ·< ρh < τh < · · ·< τ1 < τ0.

Another important observation is that

τℓ−1− τℓ = O(ρℓ−ρℓ−1) = O(1/ logN) .

In the partially deamortized PMA, we split the virtual tree at height ~ =

⌈lgN/2⌉ (see Figure 34). Hence, the tree is conceptually divided into a top tree

A with Θ(
√

N/ lgN) leaves, each of which is the root of a bottom treeTi with

Θ(
√

N) leaves, i.e.,Θ(
√

N lgN) array positions. The intuition of splitting tree near

half height is that we want to separate big rebalances occurring in the top treeA

from small rebalances occurring in the bottom trees.

h̄ =

⌈

lg N

2

⌉

A

u0

Ti

h− h̄

uh

uh̄ of size
√

N lg N

Figure 34: PDPMA model.
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Thresholds. We set the thresholds on the top treeA and bottom trees separately.

Recall that in the traditional PMA the difference of densitythresholds between any

two adjacent levels is(τ0− τh)/h and(ρh−ρ0)/h. (For simplification, we choose

ρh−ρ0 = τh− τ0.) In the partially deamortized PMA, we set a bigger gap at the

nodeu~. To do so, we evenly split the interval[ρ0,ρh] and[τh,τ0] into h+1 steps

instead of the originalh steps, and therefore each step has size

∆ =
τ0− τh

h+1

(

or
ρh−ρ0

h+1

)

.

Thus, we have the series of thresholds for nodes at each level.

ρ0 < · · ·< (ρ~ < ρ~′) < ρ~+1 < · · ·< ρh < τh < · · ·< (τ~ < τ~′) < τ~+1 < · · ·< τ0.

More formally, we set the density thresholds at each level except for the nodeu~ at

height~ as follows:

τℓ =

{

τ0− ℓ∆ 0≤ ℓ < ~;

τh+(h− ℓ)∆ ~ < ℓ≤ h.
(109)

and

ρℓ =

{

ρ0+ ℓ∆ 0≤ ℓ < ~;

ρh− (h− ℓ)∆ ~ < ℓ≤ h.
(110)

Observe that the threshold difference betweenu~−1 andu~+1 is 3∆, where we will

set the thresholds for nodeu~. Specifically, the nodeu~ at height~ has two sets

of thresholds. If we viewu~ as the root of a bottom tree, then its upper and lower

thresholds are

τ~ = τ~−1−∆ and ρ~ = ρ~−1+∆.

If we view u~ as the leaf node of the top treeA, then its upper and lower thresholds

are

τ~′ = τ~+1+∆ and ρ~′ = ρ~+1−∆.

Insert. Now we give the detail about how to insert a new elementy after the

existing elementx in the partially deamortized PMA. Recall in the traditionalPMA,

we check whether the leaf node where the elementy is inserted is full. If full,

we trace up the tree until the nearest ancestor within thresholds and then evenly
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rebalance it. In the partially deamortized PMA, we check both the leaf node of a

bottom tree and the leaf node of the top treeA, where elementy inserts. We try to

rebalance early before the leaf node of the top treeA becomes too full.

Specifically, we assume the existing elementx is in a leaf node (segment)u0

of a bottom treeTi rooted at nodeu~. The nodeu~ is also a leaf node of the top tree

A. When we insert an elementy after the elementx, we check the density ofu0, the

leaf node ofTi, and the density ofu~, the leaf node ofA. Thus, there are three cases

as follows:

1. The naive case is that both leaf nodesu~ andu0 are within thresholds. Thus,

we adjust elements inu0 to accommodate the new elementy with the cost of

element moves at mostO(logN).

2. Segmentu0 is out of thresholds while nodeu~ is within thresholds, i.e.,ρ~′ ≤
Density(u~) ≤ τ~′. In this case, we only need to perform rebalance in the

bottom treeTi because the top treeA is still well rebalanced after the new

elementy is inserted. Notice that we have

ρ~ < ρ~′ ≤ Density(u~)≤ τ~′ < τ~.

Thus, the nearest ancestor ofu0 which is within thresholds must be under the

bottom treeTi . So it is consistent with the fact that we do not need rebalance

in the top treeA. Thus, the cost of element moves is at mostΘ(
√

N logN).

3. The leaf nodeu~ of the top treeA is out of thresholds. Without loss of gen-

erosity, we assume that Density(u~) > τ~′. In this case, no matter whether

nodeu0 is within or out of thresholds, we are going to perform big rebalance

in the top treeA.

Rebalance in the Top Tree. Notice that any rebalance in the top treeA costs at

leastΩ(
√

N logN) element moves. In order to achieve the goal that every inserthas

at mostO(
√

N logN) element moves, we need decompose the rebalance process.

The idea is using the one-phase rebalance in the Section 4.1 since it can perform a

rebalance by sweeping each leaf node once. Assume there arej leaf nodes in the

rebalancing node in the top treeA. Because there are at mostO(
√

N/ logN) leaf

nodes inA, j is at mostO(
√

N/ logN). Thus, we can decompose this rebalance

into j phases. In each phase, one leaf node is swept and a new elementis inserted,
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that is, we insertj new elements during thosej phases. Thus, each of them costs

Θ(
√

N logN) element moves. For thosej elements, we use different insert algo-

rithm. When we insert an element, if we detect it is in a phase of a rebalance in the

top treeA, we only do rebalance in the bottom tree if necessary and do not check

the leaf node in the top tree. Furthermore, we mark thosej elements so that they

will not be counted in the following phases of the rebalance in the top treeA. That

is, we treat thosej elements asshadowsof existing elements until the end of the

rebalance in treeA.

We now show that it is consistent that we insertj elements using different

insert algorithms. First of all, thosej elements will not trigger rebalance above the

root node of the bottom tree. Because at the beginning of the first phase, we have

the density of the root nodeu~ of each bottom tree at mostτ~′. Thus, nodeu~ allows

Cap(u~)(τ~− τ~′) = (
√

N logN)∆

= O(
√

N)

extra insertions before triggering the rebalance in the toptreeA. Therefore, those

j (<
√

N/ logN) elements will not trigger rebalances above nodeu~ even if all

j elements are inserted in the same bottom tree. Secondly, although leaf nodes

in the top treeA get extra shadow elements after the rebalance, they are still within

thresholds. Notice that each leaf node in a rebalancing nodein the top treeA has the

density at mostτ~+1 after the rebalance, if we do not count thej shadow elements.

Thus, even in the worst case of inserting allj shadow elements in one single leaf

node, we have the density of that leaf node at most

Density(u~) =
τ~+1Cap(u~)+ j

Cap(u~)

≤ τ~+1+

√
N

logN ·
√

N logN

= τ~+1+
1

log2N
,

which is less than the upper thresholdτ~′. Therefore, both the top tree and bottom

trees are well rebalanced after thej phases, each of which includes one sweep of a

leaf node in the top treeA and one insertion of a shadow element in a bottom tree.
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We analyze the amortized rebalance cost per insertion or deletion in the fol-

lowing theorem.

Theorem 38 To insert/delete an element, the partially deamortized PMAachieves

at most O(
√

N logN) element moves and O(
√

N logN/B) memory transfers. In the

amortized sense, the partially deamortized PMA has the insert/delete performance

in O(log2N) amortized element moves and O(log2N/B) amortized memory trans-

fers per update.

Proof. We already show that in the worst case, the partially deamortized PMA

achieves at mostO(
√

N logN) element moves andO(
√

N logN/B) memory trans-

fers for a single insert.

We now show that in the amortized sense, the performance of the partially

deamortized PMA is as good as the traditional PMA. For rebalances occurring in

the bottom trees, the cost is the same as that in the traditional PMA. For rebalances

occurring in the top tree, there are two differences. One is the upper and lower

thresholds, which are slightly lower in the partially deamortized PMA. However, it

is essentially the same because both have steps of sizeO(1/ logN) between any two

adjacent levels. The other is that the leaf node in the top treeAmight have additional

shadow elements up toj ≤ O(
√

N/ logN) after the rebalance. We calculate the

number of elements inserted in the nodeuℓ (ℓ ≥ ~) in the top treeA between two

concatenated rebalances. If there arej shadow elements inserted after the first

rebalance, the number of element that we can insert before the next rebalance is

τℓCap(uℓ)− (τℓ+1Cap(uℓ)+ j) = Cap(uℓ)∆− j.

Thus, the amortized rebalance cost per insertion at nodeuℓ is

Cap(uℓ)

Cap(uℓ)∆− j
≤ Cap(uℓ)

Cap(uℓ)∆−O(
√

N/ logN)

=
1

∆−O(
√

N/(Cap(uℓ) logN))
. (111)

Observe that Cap(uℓ)≥Cap(u~) = O(
√

N logN) for ℓ≥ ~. Plugging this inequality

into (111), we obtain

Cap(uℓ)

Cap(uℓ)∆− j
≤ 1

∆−O(1/ log2N)
= O(logN),
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because∆ = O(1/ logN).

In summary, the amortized rebalance cost per insertion at each node either in

the top tree or bottom tress isO(logN). Notice that when we insert or delete an

element, we insert or delete withinO(logN) different tree nodes containing this

element. Therefore, the total amortized rebalance cost perinsertion or deletion is

O(log2N) element moves, the same as the cost in the traditional PMA.

4.3 Conclusion

We design the partially deamortized PMA using one-phase repbalance scheme,

which is as good as the traditional PMA in the amortized sensewhile having the

worst-case bound, i.e., at mostO(
√

N logN) element moves andO(
√

N logN/B)

memory transfers for a single insert. Therefore, this structure overcomes one of

deficiencies in the traditional PMA, that is, one insert might trigger the rebalance

of the whole database. However, this structure cannot adoptthe uneven rebalances,

as presented in Chapter 3. It is interesting open problem howto design a structure

combining the advantages of both the partially deamortizedPMA and the adaptive

PMA. Such a structure would adapt to common insertion patterns and would have

a good bound on the maximum cost of a single insert.



Chapter 5

Atomic-key B-tree

In this chapter, we present anatomic-key B-tree that supports different-size keys.

The essential feature of an atomic-key B-tree is that keys are stored and manipulated

in their entirety. That is, entire keys are stored in data structure nodes, and entire

keys are sent to the comparison function.

As explained earlier in this thesis, the B-tree is a dynamic dictionary storing

unit-sized keys. For disk-block-sizeB, the B-tree supports searches and updates

with a cost ofO(logBN) memory transfers.

Although B-trees still work correctly with different-sizekeys, they lack (non-

trivial) performance guarantees. Roughly speaking, it is better to store small keys in

nodes near the top of the tree: when keys are smaller, more canbe stored in a node,

thus increasing the branching factor and dividing the search space into a larger num-

ber of pieces. However, one cannot simply put the smallest keys in the root node:

our other objective is to choose keys that are roughly uniformly distributed from the

dictionary so that when the search space is divided into pieces, the largest piece is

as small as possible. Standard algorithms for building and maintaining B-trees do

not take these considerations into account.

In this chapter, we explain how to build an atomic-key B-treehaving strong

performance guarantees even when keys have different sizes. We achieve the fol-

lowing type of guarantees. Consider two dictionaries ofn keys having average size

k̂, where the keys have different sizes in the first and the same size in the second.

Our atomic-key B-tree performs operations in the first dictionary at least as effi-

ciently as the traditional B-tree performs operations in the second. An atomic-key

115
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B-tree cannot attain the efficiency of the string B-tree, butunlike the string B-tree,

it retains the structure of the traditional B-tree.

5.1 Static Structure

In this section, we consider the problem of constructing a static tree layout onN

different-size, atomic keys. We use greedy algorithm to generate the tree layout,

called a static atomic-key B-tree, and guarantee the searchperformance in this tree

layout is as efficient as that in the traditional B-tree when keys have the same size.

We give some notation before presenting the greedy layout. Assume that the

average length of theseN keys{κi} is k̂. For block sizeB, we define

f = max

{

3,

⌊

B

k̂

⌋}

. (112)

The idea of our greedy layout is to store small keys near the top of the tree and

big keys near the bottom. We keep the tree structure as close as to the traditional

B-tree.

We now give the following greedy algorithm to create the rootnode.

Greedy Algorithm. Divide theN keys intof sets{Ci}0≤i≤ f−1 and therefore each

set containsN/ f keys. The firstN/ f keys go in the first setC0, the nextN/ f keys

go in the second setC1, and so on. For each set except for the first and the last sets,

we pick therepresentative key r i to be the minimum-length key in each set; we do

not need a representative from the first and the last sets. Nowwe store thesef −2

representatives{r i}1≤i≤ f−2 in the root node of the tree layout as indices. In this

way, we create the root node of the static atomic-key B-tree (See Figure 35).

In the following Lemmas 39 and 40, we estimate the size of the root node in

the case that the average lengthk̂≤ B/3 and the case thatk̂ > B/3. Before that, we

introduce additional notation. Let ˆci be the average length of keys in theith setCi

andk′i be the minimum-length key in the setCi.

Lemma 39 Suppose that̂k≤ B/3. Then the root node has size strictly less than B

and thus fits within a single memory block.
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· · ·· · · κN· · ·· · ·r1

· · · · · ·

The root node

N keys

r1 r2 rf−2

rf−2 κN−N/f+1
κ1 · · · κN/f κN/f+1 · · ·

Figure 35: The greedy algorithm for the root node of a static tree layout.

Proof. In the case that̂k≤ B/3, by (112) we have

f = max

{

3,

⌊

B

k̂

⌋}

=

⌊

B

k̂

⌋

.

Because the total length ofN keys is the sum of the length of keys in each set

Ci , 0≤ i ≤ f −1, we have
f−1
∑

i=0

N
f

ĉi = Nk̂.

Replacing the average key length ˆci by the smallest key lengthk′i for eachi, we

obtain
f−1
∑

i=0

N
f

k′i ≤ Nk̂.

Simplifying the above equation and noticing thatf ≤ B/k̂, we have

f−1
∑

i=0

k′i ≤ f k̂≤ B. (113)

Because we storef −2 representatives in the root node, the root node has size

f−2
∑

i=1

k′i ,

which is less thanB by (113). Thus, the root node fits in one memory block.

Lemma 40 Suppose that̂k> B/3. Then the root contains a single key whose length

is at most3k̂ and therefore fits in at most
⌈

3k̂/B
⌉

memory blocks.
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Proof. In the case that̂k > B/3, by (112) we have

f = max

{

3,

⌊

B

k̂

⌋}

= 3.

Thus, the root node has fanout 2 and contains only a single representative key

from the middle setC1. Noticing that the length of keys in the setC1 is strictly less

than the total length of theN keys, we have

Nk̂≥ ĉ1
N
3

,

i.e., ĉ1≤ 3k̂. Thus, the root node fits in at most
⌈

3k̂/B
⌉

memory blocks.

We give more notation. Suppose that thosef −2 representative keys seperate

N keys into f −1 sets{Si}1≤i≤ f−1 and therefore each set becomes a child of the

root node. Assume that the average length of each child setSi is k̂i .

Greedy Layout. We recursively apply the above greedy algorithm to each child

setSi and thus generate the greedy layout for our static atomic-key B-tree.

We now analyze the search cost in this static atomic-key B-tree in Theorem 42.

Assume that the search pattern is uniformly distributed, i.e., every key has the same

probability to be searched. We need the following claim to simplify the proof in

Theorem 42:

Claim 41 For all xi > 0 and x> 0, we have

f−1
∑

i=1

ti
1+xi

ln(2+1/xi)
≤ 1+x

ln(2+1/x)

with the constraints
f−1
∑

i=1

ti = 1 and
f−1
∑

i=1

tixi = x.

Proof. Let h(x) the function defined forx > 0 be

h(x) =
1+x

ln(2+1/x)
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The inequality we want to prove can be rewritten as

f−1
∑

i=1

tih(xi)≤ h





f−1
∑

i=1

tixi



 .

The above inequality holds as long as the functionh(x) is concave.

To prove the functionh(x) is concave, we show that its second derivative is

less than zero. We first calculate its first derivative, i.e.,

h′(x) =
ln(2+1/x)+(1+x)/(2x2+x)

ln2(2+1/x)
.

Therefore, its second derivative is

h′′(x) =
2+2x− (3x+1) ln(2+1/x)

(2x2+x)2 ln3(2+1/x)
. (114)

Becausex> 0, we have ln(2+1/x) > 0. Thus, we show that the numerator of (114)

is less than zero, i.e.,

ln(2+1/x) >
2+2x
1+3x

.

Let y = 1/x. Becausex is greater than zero, the range ofy is also in(0,∞). Thus,

by replacing 1/x by y in the above inequality, we show that fory > 0,

ln(2+y) >
2y+2
y+3

= 2− 4
y+3

. (115)

We calculate the derivative of the left part in (115):

(ln(2+y))′ =
1

2+y
> 0

and the derivative of the right part in (115):

(

2− 4
y+3

)′
=

4
y2 +6y+9

> 0.

Thus, both ln(2+y) and 2−4/(y+3) are monotonically increasing. Furthermore,

we show that

(ln(2+y))′ ≥ (2− 4
y+3

)′.
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This is because
1

2+y
≥ 4

y2+6y+9
,

which is equivalent toy2+6y+9≥ 4y+8, i.e.,y2+2y+1≥ 0. Therefore, ln(2+y)

increases faster than 2−4/(y+ 3) in (0,∞). Notice that at the zero, ln(2+ y) has

value ln2≈ 0.69 greater than the value 2− 4/3≈ 0.67 of 2− 4/(y+ 3) at zero.

Thus, we obtain (115) in(0,∞).

In summary, the second derivative ofh(x) is less than zero andh(x) is concave.

Therefore, the claim holds.

Theorem 42 The greedy layout of a static tree in the DAM model has the expected

search cost:

O

((

1+
k̂
B

)

log(2+B/k̂) N

)

.

Proof. In this greedy layout, the root nodeR consists off −2 (≥ 1) keys. Thus,

the root node hasf −1 children{Ti}1≤i≤ f−1, each of which is a subtree on the set

Si .

We prove this theorem by induction onN. Assume that for the subtreesTi of

size|Si| (less thanN elements), the search cost is

c

(

1+
k̂i

B

)

log2+B/k̂i
|Si|,

for some constantc (> 0). We show that the search cost applies to the tree of size

N also.

The expected search cost in the treeT = (R,T1, . . . ,Tf−1) is the number of

block transfers to fetch the root nodeR plus the expected search cost in the corre-

sponding subtreeTi . We first calculate the number of block transfers to fetch the

root nodeR. By Lemmas 39 and 40, we know that in the case thatk̂≤ B/3, the size

of the root node is less thanB; in the case that̂k > B/3, the size of the root node is

at most⌈3k̂⌉. In summary, the number of block transfers to fetch the root node is at

most 1+3k̂/B. Thus, to prove the theorem, we show that for the same constant c,

1+
3k̂
B

+

f−1
∑

i=1

|Si|
N

c

(

1+
k̂i

B

)

log2+B/k̂i
|Si| ≤ c

(

1+
k̂
B

)

log2+B/k̂ N (116)

subject to the constraints:
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• the tree containsN keys
f−1
∑

i=1

|Si |= N (117)

• the total length of all keys is

f−1
∑

i=1

|Si|k̂i = Nk̂ (118)

• and by construction

∀i,0 < |Si|<
2N
f

(119)

To simplify, we introducexi = k̂i/B, x = k̂/B and ti = |Si |/N. Thus, Equa-

tion (117) becomes
f−1
∑

i=1

ti = 1, (120)

Equation (118) becomes
f−1
∑

i=1

tixi = x, (121)

Equation (119) becomes

∀i,0 < ti <
2
f

(122)

and Equation (116) becomes

1+3x+c
f−1
∑

i=1

ti(1+xi) log2+1/xi
(tiN)≤ c(1+x) log2+1/x N. (123)

To show (123), we simplify its left side first. By (122), we obtain thattiN <

2N/ f . Thus, we have

1+3x+c
f−1
∑

i=1

ti(1+xi) log2+1/xi
(tiN)≤ 1+3x+c

f−1
∑

i=1

ti(1+xi) log2+1/xi
(2N/ f ).
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Moving ln(2N/ f ) out of the summation in the above inequality, we obtain

1+3x+c
f−1
∑

i=1

ti(1+xi) log2+1/xi
(tiN)

≤ 1+3x+cln(2N/ f )
f−1
∑

i=1

ti
1+xi

ln(2+1/xi)
. (124)

Plugging the inequality in Claim 41 into (124), we obtain

1+3x+c
f−1
∑

i=1

ti(1+xi) log2+1/xi
(tiN) ≤ 1+3x+cln(2N/ f )

1+x
ln(2+1/x)

.

Simplying the above inequality, we obtain

1+3x+c
f−1
∑

i=1

ti(1+xi) log2+1/xi
(tiN)

≤ c(1+x) log2+1/x N+1+3x−c(1+x) log2+1/x( f/2) . (125)

To prove the theorem, we need find the constantc such that the right part in

(125) is less thanc(1+x) log2+1/x N, that is

1+3x−c(1+x) log2+1/x( f/2)≤ 0.

Therefore, we derive that

c≥ 1+3x
1+x

ln(2+1/x)
ln( f/2)

.

Because(1+3x)/(1+x) = 3−2/(1+x) < 3, it is equivalent to find the constantc

such that

c≥ 3
ln(2+1/x)

ln( f/2)
.

To find such constantc, we give the following claim.

Claim 43 For x = k̂/B and f= max{3,⌊B/k̂⌋}, we have a constant c independent

of x and f , such that

c≥ 3
ln(2+1/x)

ln( f/2)
. (126)



CHAPTER5. Atomic-key B-Tree 123

PROOF OFCLAIM 43: There are two cases.

The first case is whenB/k̂ < 3. In this case, we havef = 3 and 1/x> 3. Thus,

we can choose

c =
3ln5

ln(3/2)

such that (126) is true.

The second case is whenB/k̂≥ 3. In this case, we havef = ⌊B/k̂⌋ = ⌊1/x⌋
and 1/x≥ 3. Therefore, we have

ln(2+1/x)
ln( f/2)

≤ ln(3+ ⌊1/x⌋)
ln( f/2)

≤ ln(2⌊1/x⌋)
ln( f/2)

=
ln(2 f )
ln( f/2)

≤ ln6
ln(3/2)

.

The first inequality is by 1/x ≤ 1+ ⌊1/x⌋; The second inequality follows from

⌊1/x⌋ ≥ 3; the third equation is fromf = ⌊1/x⌋ and the last inequality follows by

the fact that ln(2 f )/ ln( f/2) is monotonically decreasing andf ≥ 3. Thus, we can

choosec = 3ln6/ ln(3/2) such that (126) is true.

In summary,c = 3ln6/ ln(3/2) is the constant that (126) is always true in any

case.

In conclusion, by (125) and for the constantc from Claim 43, we prove that

1+3x+c
f−1
∑

i=1

ti(1+xi) log2+1/xi
(tiN)≤ c(1+x) log2+1/x N,

which is equivalent to (116).

To simplify the notation for the search cost, we have the following corollary:

Corollary 44 The greedy layout of a static tree in the DAM model has the expected

search cost:

O

(⌈

k̂
B

⌉

log1+⌈B/k̂⌉N

)

.

Proof. By Theorem 42, we have the expected search cost for the greedylayout

of a staic tree is

O
(

(1+ k̂/B) log(2+B/k̂) N
)

.

Because
⌈

k̂
B

⌉

≤ 1+
k̂
B
≤ 2

⌈

k̂
B

⌉
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and

1+

⌈

B

k̂

⌉

≤ 2+
B

k̂
≤ 2

(

1+

⌈

B

k̂

⌉)

,

we obtain that the search cost is equivalent to

O

(⌈

k̂
B

⌉

log1+⌈B/k̂⌉N

)

.

Building the Tree. We explain how to build the static tree layout efficiently and

analyze the building cost forN atomic keys of different sizes.

We first give the cost to read thoseN keys in the following lemma.

Lemma 45 For N keys scattered on disk, it takes

O

(

N+
Nk̂
B

)

memory transfers to read them, wherek̂ is the average length of N keys.

Proof. Each leaf node in our structure may scatter on disk. For each key κi , it

costs⌈κi/B⌉+1 block transfers to read. Thus, the total cost of block transfers is at

most

N
∑

i=1

(⌈κi

B

⌉

+1
)

≤ 2N+
N
∑

i=1

κi

B
= 2N+

Nk̂
B

,

as claimed.

The naive solution is that we build the tree one level by one level, i.e., we

generate the root node for allN keys first, then we generate all child nodes of the

root node. We continue generating the grandchild nodes at the next level until

the leaf nodes. To generate the root node, we need to scan allN keys to pick

the right representatives. Noticing that for all keys in thechild nodes of the root

node (in the second level), they do not share common keys. Therefore, to pick the

representatives for all child nodes of the root node takes the cost of scanning allN
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keys. In general, to pick the representatives at each level need to scan allN keys

once. Because there are roughly log2+B/k̂ N levels, the cost of the naive solution is

O

((

N+
Nk̂
B

)

log(2+B/k̂) N

)

.

We present the better algorithm whose cost is linear. To do so, we give two

algorithms to do the preprocessing job.

• Preprocess theN keys, such that we can get the average length of keys be-

tween theith and jth keys in timeO(1). The cost to do this preprocessing is

O(N+Nk̂/B) and the space isO(N).

This preprocessing can be done by scans ofN keys and store the total length

of keys from the 1st key to theith key into theith slot of an array of sizeN.

• Preprocess theN keys, such that we can get the minimal-length key between

the ith and jth keys in timeO(1). The cost to do this preprocessing isO(N+

Nk̂/B) and the space isO(N).

This problem is known as theRange Minimum Query (RMQ)[20,31,41]. The

idea of this algorithm is to reduce RMQ to theLeast Common Ancestor (LCA)

by constructing a Cartesian trees [40]. Surprisingly, the LCA problem can be

reduce back to the special case of RMQ, called RMQ+
−. For this special case,

we can construct it in linear time by using indirection and answer query in

O(1).

Given the above two algorithms, we are ready to build the tree. We start from

the root node. By using the first algorithm, we obtain the average key sizêk of all

N keys inO(1). Thus, we calculatef = max{3,
⌈

B/k̂
⌉

} in O(1). Next, We need to

pick f −2 representative keys from the sets{Ci}i∈[1, f−2). For eachCi , we calculate

its boundary
[

i
N
f
,(i +1)

N
f

]

in O(1). Therefore, the minimal-length key in the above interval isthe representa-

tive key from the setCi . By the second algorithm, we obtain it inO(1). Therefore,

the total cost to generate the root node is the cost to find the representatives and the
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cost to store those representatives into the root node, i.e.,

O( f −2)+O

(

Size(root)
B

)

.

For each child of the root node, we recursively do the above step until the leaf node.

In summary, The total cost to build the tree is the cost to find all representatives

and the cost to move each representative to the right tree node. Because the number

of representative keys isO(N) and the the cost to move each representative key to

the right tree node isO(N + Nk̂/B) memory transfers by Lemma 45, we have the

following lemma.

Lemma 46 The cost to build the greedy layout for a static atomic-key B-tree in the

DAM model is

O

(

N+
Nk̂
B

)

memory transfers.

5.2 Dynamic Strcuture

In this section, we consider the problem how to generate a dynamic tree layout

for givenN keys{κi}i∈[1,N], each of which has different length and is atomic. We

present the greedy algorithm of creating the root node. Because the same greedy

algorithm applies to all child nodes, we focus on the root node in the rest of this

section.

· · ·κN+1−N/2f· · ·· · ·· · ·r1

· · · · · ·

The root node

N keys

r1 r2 rf−1

rf−1κ1 · · · · · ·κN/2f κN/2f+1 κN

Figure 36: The greedy algorithm for the root node of a dynamic tree layout.

In order to support insert/delete operations in the atomic-key B-tree, we need

to modify our greedy layout in Section 5.1. Assume thatk̂ is the average length of
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theN keys andB is the block size. We define

f = max

{

2,

⌊

B

k̂

⌋}

(127)

and divide theN keys into f +1 sets{Ci}i∈[0, f ], each of which containsN/ f keys

except for the first setC0 and the last setCf . We let the first and last set as half

many as the set in the middle, i.e.,|C0| = |Cf | = N/(2 f ). The reason that we treat

the first and last sets differently is that we do not pick the representative keys from

them. For thef −1 sets in the middle,{C1, . . . ,Cf−1}, we pick representative keys

{r i}i∈[1, f ) from each set and store them in the root node as the index (See Figure 36).

In Section 5.1, we pick the minimal-length key as a representative key. However,

to guarantee the length of the root node, we can choose any keywhose length is the

order of the average key length ˆci of a middle setCi . In this way, we gain flexibility

to choose representative keys and therefore we obtain the flexibility to keep the tree

balanced.

We give two lemmas to state this problem as follows.

Lemma 47 Suppose that̂k≤ B/2. If we choose a representative key ri from each

middle set Ci such that ri = O(ĉi), then the root node has size O(B) and thus fits

within constant memory blocks.

Proof. If k̂≤ B/2, by definition we have

f = max

{

2,

⌊

B

k̂

⌋}

=

⌊

B

k̂

⌋

.

Because the total length of theN keys is the sum of the length of each setCi ,

0≤ i ≤ f , we obtain

Nk̂ =

f−1
∑

i=1

N
f

ĉi +
N
2 f

ĉ0+
N
2 f

ĉf ≥
f−1
∑

i=1

N
f

ĉi .

Suppose that we choose a representativer i from the setCi such thatr i ≤ βĉi for

some constantβ. Then, the above equality becomes

Nk̂≥
f−1
∑

i=1

r i

β
N
f
,
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which is equivalent to
f−1
∑

i=1

r i ≤ β f k̂.

Notice thatf =
⌊

B/k̂
⌋

, i.e., f k̂≤ B, we obtain that

f−1
∑

i=1

r i ≤ βB,

which means that the length of the root node isO(B) and therefore the root node

fits in the constant memory blocks.

Lemma 48 Suppose that̂k> B/2. Then the root contains a single key whose length

is O(k̂) and therefore fits in O(k̂/B) memory blocks.

Proof. If k̂ > B/2, by definition we have

f = max

{

2,

⌊

B

k̂

⌋}

= 2.

Thus, the root node has fan-out 2 and contains only a single representative from the

setC1. Since the setC1 of sizeN/2 is a subset of theN keys, the total length ofN

keys is larger than the total length of the setC1, i.e.,Nk̂≥ ĉ1N/2. Suppose that we

choose the representativer1 such thatr1≤ βĉ1. Then, we have

Nk̂≥ r1

β
N
2

,

which is equivalent tor1 ≤ 2βk̂. Therefore, the root node fits inO(k̂/B) memory

blocks.

Because the representative key is not necessary to be the minimal-length key

in the setCi , we have the flexibility to chooser i such that it is closer to the key in the

middle ofCi . The following lemma gives us the sense how close the representative

key can be to the middle key inCi .

Lemma 49 The number of keys in the set Ci (1≤ i ≤ f −1), whose size is less than

βĉi for some constantβ, is at least
(

1− 1
β

)

N
f
.
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Proof. We divide the setCi into two subsets,Ci1 andCi2. The setCi1 contains

keys of size less thanβĉi and the setCi2 contains keys of size bigger thanβĉi . We

denote the number of keys inCi1 be #1 and the number of keys inCi2 be #2.

We estimate the number #2 in this way. If we do not count the first setCi1 and

replace the length of each key in the second setCi2 by the smaller lengthβĉi, we

have that the total length of keys inCi is bigger than the number of keys inCi2 times

the smaller lengthβĉi , that is,
N
f

ĉi ≥ #2βĉi.

Because #1 = N/ f −#2, we obtain

#1≥
N
f
− N

β f
=

(

1− 1
β

)

N
f
.

Now we give the algorithm to choose the representative key inthis dynamic

layout. Instead of choosing the minimal-length key in the whole setCi , we choose

the minimal-length key in a smaller subset. Specifically, suppose that the setCi

starts from the[(i− 1/2)N/ f ]th key and ends at the[(i + 1/2)N/ f ]th key. The

smaller subset is an interval
[(

i− 1
2β

)

N
f
,

(

i +
1
2β

)

N
f

]

,

that is, we choose the minimal-length key from the above interval as the represen-

tative key. From Lemma 49, we know that the representative key we choose has the

length less thanβĉi .

Thus, we guarantee that the representativer i (1≤ i ≤ f −1) is chosen from the

setCi such that there are at least(1/2−1/(2β))N/ f keys at its left and right sides.

Suppose thosef −1 representatives separate theN keys into f sets{Si}i∈[1, f ], each

of which belongs to one child of the root node. We have the following lemma:

Lemma 50 For all child sets Si , 1≤ i ≤ f , our greedy layout guarantees that
(

1− 1
β

)

N
f
≤ |Si | ≤

(

1+
1
β

)

N
f
.
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C1
C0

S1

Figure 37: The first setS1 includesC0 and part ofC1.

Proof. According to the greedy algorithm, we know that the first setS1 and the

lastSf are different from middle child sets{Si}2≤i≤ f−1.

We first consider the first setS1, which is the set of keys at the left side ofr1. It

contains two parts. One part is the whole setC0 and the other is the keys at the left

side ofr1 in C1 (See Figure 37). From Lemma 49, we can choose the representative

r1 such that the number of keys at the left side ofr1 is between(1/2−1/(2β))N/ f

and(1/2+1/(2β))N/ f . Thus, we obtain

N
2 f

+

(

1
2
− 1

2β

)

N
f
≤ |S1| ≤

N
2 f

+

(

1
2

+
1

2β

)

N
f
,

that is,
(

1− 1
2β

)

N
f
≤ |S1| ≤

(

1+
1

2β

)

N
f
. (128)

The above result applies to the last setSf too.

Ci−1 Ci

Si

Figure 38: The setSi includes the right part ofCi−1 and the left part ofCi .

Now we consider the middle child setSi (2≤ i ≤ f −1), which is the set of

keys betweenr i−1 andr i. It contains two parts (See Figure 38). One part is the keys

at the right side ofr i−1 in Ci−1 and the other is the keys at the left side ofr i in Ci .

By the same reason from Lemma 49, we obtain

2

(

1
2
− 1

2β

)

N
f
≤ |Si | ≤ 2

(

1
2

+
1
2β

)

N
f
,

that is,
(

1− 1
β

)

N
f
≤ |Si | ≤

(

1+
1
β

)

N
f
. (129)
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Combining both (128) and (129), we obtain that for all child setsSi , 1≤ i ≤ f ,

the results hold.

In summary, the greedy layout guarantee two properties for the root node:

1) The root node is not too big, that is,

Size(root)≤O
(

B+ k̂
)

,

2) Each child setSi includes keys

|Si|= O(N/ f ).

The greedy algorithm applies to all tree nodes. In this way, we garrantee that each

tree node maintains the above two properties. Therefore, wehave the following

theorem.

Theorem 51 The greedy layout for dynamic atomic-key B-tree in the DAM model

has the expected search cost:

O
(

(1+ k̂/B) log(2+B/k̂) N
)

.

Proof. The proof is similar to Theorem 42.

Building the Tree. Recall that in the previous section, we build the static tree

layout in linear time. The algorithm to build the dynamic tree layout is essentially

the same, except that we need to find representative keys in a smaller subset. We

also use the same two algorithms to do the preprocessing job as in building the static

tree. The detail is given as follows.

We start from the root node. By using the first preprocessing algorithm,

we obtain the average key-sizek̂ of all N keys in O(1). Thus, we calculate

f = max{2,B/k̂} in O(1). Next, We need to pickf − 1 representative from the

sets{Ci}i∈[1, f ). For eachCi , we calculate its boundary

[

(i−1/2)
N
f
,(i +1/2)

N
f

]
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in O(1). From Lemma 49, we know at least one representative key exists in the

interval
[(

i− 1
2β

)

N
f
,

(

i +
1
2β

)

N
f

]

,

for given constantβ. Therefore, the minimal-length key in the above interval is

one of eligible representative keys from the setCi . By the second preprocessing

algorithm, we obtain it inO(1). Therefore, the total cost to generate the root node

is the cost to find the representatives and the cost to store those representatives into

the root node, i.e.,

O( f )+O

(

Size(root)
B

)

.

For each child of the root node, we recursively do the above step until the leaf node.

In summary, The total cost to build the tree is the cost to find all representatives and

the cost to move each representative to the right tree node. Because the number of

representative keys isO(N) and the the cost to move each representative key to the

right tree node isO(N+Nk̂/B) memory transfers, we prove the following lemma.

Lemma 52 The cost to build the greedy layout for the dynamic atomic-key B-tree

in the DAM model is

O

(

N+
Nk̂
B

)

memory transfers.

Insertion. We propose our insert algorithm. When we insert an key into the tree,

we first search the right place to insert. Then, we check whether the child setSi

(where the new key resides) has the size between[N/(3 f ),5N/(3 f )] (we choose

β = 3/2). If it is not, we need rebuild this child node according to our greedy

algorithm, such thatSi ∈ [N/(2 f ),3N/(2 f )] (we chooseβ = 2).

In this way, we can insertΘ(N/ f ) keys between rebalances. We show that

during those inserts, property (1) is always true by giving the following lemma.

Assume that the average length of a tree node right after the previous rebuild iŝk

and the average length of a tree node just before the next rebuild is K̂.
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Lemma 53 For inserts between rebuild of a tree node, they can lower theaverage

key size at most constant factor, i.e.,

K̂ = Ω(k̂).

Proof. This is because before the next rebuild, there are at mostΘ(N/ f ) keys

inserted. Noticing that the number of keys under the tree node remainsΘ(N/ f ),

the average key sizêK is at least a constant times the original average key sizek̂

even if we do not count the length of newly inserted keys.

Thus, our dynamic tree layout still maintains two properties during inserts.

Therefore, the search cost remains the same and the amortized cost per insertion is

O(N+Nk̂/B)

N/ f
log(2+B/k̂) N = O

((

B

k̂
+

k̂
B

)

log(2+B/k̂) N

)

.

5.3 Dynamic Structure Using Indirection

In the previous section, we built the dynamic atomic-key B-tree in linear time (see

Lemma 52). However, its structure loses data locality and therefore the amortized

insert cost is not as good as the traditional B-tree in the case that keys have the unit

length. Specifically, when keys have the unit length, our dynamic atomic-key B-tree

has amortized insert cost ofBlogBN memory transfers while the traditional B-tree

has insert cost of logBN memory transfers. To preserve the data locality and im-

prove the insert performance of atomic-key B-tree, we use one level of indirection

and hence the resulting structure has two layers.

Bottom Layer. The bottom layer includes allN keys, clustered into small groups.

In each group, elements are stored in consecutive memory blocks. We cluster those

N keys as follows: starting from the first key, we store it in thefirst group. If the

length of the first group is smaller than block sizeB/2, then we store the second

key in the first group also. That is, as long as the total lengthof the first group is

smaller thanB/2, we can store the next key. In another word, the first group ends if
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its total length is bigger thanB/2. We next start putting keys in the second group,

and so on.

In general, each group satisfies the following three properties:

1) If all keys are less thanB/2, then the total length of this group must be in

[B/2,3B/2].

2) If there exists one key bigger thanB/2, then the total length of other keys in

this group must be less thanB.

3) At most one key whose length is greater thanB/2.

Given the above three properties, we present the layout of each group. We

store keys in this group as the one-level B-tree. Specifically, we store all keys less

thanB/2 into the root node in order. Because the total length of those keys of length

less thanB/2 is at most 3B/2, they are stored in at most three contiguous memory

blocks. For the key whose length is bigger thanB/2, it is the only child of the root

node. In the case there is no keys of length less thanB/2, this group only includes

a single key of length bigger thanB/2 and therefore it is stored in the root node of

this one-level B-tree.

For theN keys, we split them into groups by the above way. The groups may

scatter on disk and the order between groups are saved by address pointers. We

count the number of groups in the following lemma.

Lemma 54 The number of groups for the N keys is at most2N/ f .

Proof. Notice that the total length ofN keys isNk̂ and the total length of each

group is bigger thanB/2. Therefore, the number of groups is at most
⌈

Nk̂
B/2

⌉

≤ 2N

⌊B/k̂⌋
.

On the other hand, since each group contains at least one key,the number of groups

is at mostN. Thus, the number of groups is at most

min

{

N,
2N

⌊B/k̂⌋

}

,

which is equal to 2N/ f by (127).

When we insert/delete a key, we first do insert/delete operations in the bottom

group. To simplify notations, we classify groups into two types, that is, a group



CHAPTER5. Atomic-key B-Tree 135

satisfying the property (1) is calledtype-I group and a group satisfying the property

(2) or (3) is calledtype-II group (See Figure 39). In the following, we give a scheme

to do split/merge operations among groups while keeping properties of each group.

Type-II groups

≤ B/2 > B/2

> B/2> B/2

Type-I group

Figure 39: The bottom layer structure, including type-I groups and type-II groups.

We first give some notation. Let the newly inserted key beKnew, the unique

key of length bigger thanB/2 in a group beK> and the set of keys of length less

thanB/2 in a group beS≤. Assume that the total length of keys in the setS≤ is

Size(S≤).

We first give the scheme how to insert a key in the type-II group.

1. If the inserted keyKnewhas length bigger thanB/2, then it causes the instant

split of this type-II group. Each of the resulting two groupscontains either

K> or Knew. In this case, the two new groups are both type-II groups.

2. If the inserted keyKnew has length less thanB/2, we check the total length

of keys which are less thanB/2 in this group. We have

Size(Knew)+Size(S≤)≤ 3B/2,

because Size(Knew)≤ B/2 and Size(S≤)≤ B by the property (2).

Furthermore, if

Size(Knew)+Size(S≤)≤ B,

this group is still a type-II group and we do not need split it.

On the other hand, if

B < Size(Knew)+Size(S≤)≤ 3B/2,

we separate them into two parts: the setS′≤ of keys at the left side of the key

K> and the setS′′≤ of keys at the right side of the keyK>. Thus, we have

B < Size(S′≤)+Size(S′′≤)≤ 3B/2, (130)
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because

Knew
⋃

S≤ = S′≤
⋃

S′′≤ .

Without loss of generosity, we assume that Size(S′≤) ≥ Size(S′′≤). Thus, by

(130), we obtain

B/2 < Size(S′≤)≤ 3B/2 and Size(S′′≤) < B.

Therefore, we can split this type-II group into two groups: one type-I group

{S′≤} and one type-II group{K>
⋃

S′′≤}.
We next present how to insert a key in the type-I group.

1. If the inserted keyKnew has length bigger thanB/2, then it is same as the

second case of inserting in the type-II group. That is, either we do not need

to split this group, or this group can be split into one type-Igroup and one

type-II group.

2. If the inserted keyKnewhas length less thanB/2, we have

Size(Knew)+Size(S≤)≤ 2B, (131)

because Size(Knew) ≤ B/2 and Size(S≤) ≤ 3B/2 by the property (1). This

group need to be split as long as Size(Knew)+ Size(S≤) > 3B/2. Now we

separate those keys into two sets as follows. We put the first key of this group

into the first setS′≤. Observe that the length of the first key is less thanB/2.

We continuously put the second key intoS′≤ and so on, until the first time

when the total length of the setS′≤ is bigger thanB/2. Other keys belong to

the second setS′′≤. Thus, because each key has length less thanB/2, we have

B/2 < Size(S′≤) < B. (132)

Noticing the fact

Knew
⋃

S≤ = S′≤
⋃

S′′≤ ,

and by (131), we obtain

3B/2 < Size(S′≤)+Size(S′′≤)≤ 2B. (133)

Therefore, by (132) and (133), we get

B/2 < Size(S′′≤) < 3B/2.

In summary, this group can be split into two type-I groups.
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Now we present the scheme how to do merge operation. When we delete a

key from a group, we do not need merge if the keyK> is still in this group. We

need to do merge operation as long as there is only the set{S≤} in the group and

Size(S≤) < B/2. Thus, the operation to merge a set{S≤} of length less thanB/2

with the adjacent group is same as the operation to insert a key of length less than

B/2 into the adjacent group. The split might follows right after insert operations.

Therefore, the bottom groups dynamically support operations insert/delete in

O(1) memory transfers. Notice that the bottom groups are dynamically maintained.

Thus, we do not need extra time to construct the group structures. Furthermore, the

bottom layer improves the cost to read thoseN keys as follows.

Lemma 55 With the bottom layer, the cost of block transfers to read N keys are

improved to

O

(

N
f

+
Nk̂
B

)

.

Proof. Because there are at most 2N/ f groups forN keys (by Lemma 54) and

the total length of representative leaf keys is less thanNk̂. Thus, by Lemma 45, the

cost to read those groups is

O

(

N
f

+
Nk̂
B

)

.

Top Layer. We first give more notation. We divide the type-II group into two

subtypes, that is, one only contains one key of length biggerthanB/2, named a

type-II(a) group; the other contains keys of length less than B/2 and one key of

length bigger thanB/2, named a type-II(b) group. Recall that the only key which

is not stored in the root nodes at the bottom layer is the key (bigger thanB/2) in

the II(b) group. Thus, We view the keys in root nodes at the bottom layer as the

upper bottom layer and therefore the keys (bigger thanB/2) in the II(b) groups as

thelower bottom layer.

The top layer is a dynamic greedy layout on all keys at the upper bottom layer

(See Figure 40). We classify the keys at the top bottom layer in a group as a set

because keys in each set are still stored in contiguous memory blocks. Thus those
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The top greedy tree layout

Lower bottom layer

≤ B/2 > B/2

> B/2> B/2

Upper bottom layer

Figure 40: The top layer structure: a greedy tree layout based on the topbottom layer.

sets either contain keys less thanB/2 or only one key bigger thanB/2. To simplify

notation, we call the set of all keys less thanB/2 thetype-I set and the set containing

only one key bigger thanB/2 thetype-II set. Notice that the number of sets is same

as the number of groups, i.e., at most 2N/ f group. We give the following lemma

about the average length of keys at the upper bottom layer.

Lemma 56 The average length of keys at the upper bottom layer is at most2k̂,

wherek̂ is the average length of all N keys.

Proof. Let the number of keys at the lower bottom layer be #1, and the number

of keys at the upper bottom layer be #2. Thus, we have #1 + #2 = N. Notice that

for each key at the bottom layer, there is at least one corresponding key at the upper

bottom layer because of the property of the type-II(b) group. Thus, we have #1≤ #2.

Therefore,

#2≥ N/2.

Because that the total length of keys at the upper bottom layer is at mostNk̂.

We obtain that the average length of keys at the upper bottom layer is at most

Nk̂
#2
≤ Nk̂

N/2
= 2k̂.

In the following, we present the greedy algorithm to build the tree on keys at
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the upper bottom layer inO(N/ f +Nk̂/B) memory transfers, by utilizing those at

most 2N/ f upper bottom sets. In this algorithm, we ignore the keys at the lower

bottom layer.

We first check the two preprocessing algorithms.

• The algorithm to get the average length betweenith and jth keys inO(1).

The construct time is improved toO(N/ f +Nk̂/B) because the time to read

those sets is improved by Lemma 55.

• The algorithm to get the minimum-length key betweenith and jth keys in

O(1) (RMQ). The number of keys at the upper bottom layer might be less

thanN and the cost to read them is reduced toO(N/ f +Nk̂/B) by Lemma 55.

Thus, the construct time is improved toO(N/ f +Nk̂/B).

To guarantee the search cost, we still use the same greedy algorithm to build

each tree node. Notice that the keys in each bottom set are stored in contiguous

memory blocks. If a tree node only contains keys in one or two sets, we do not need

branch this tree node and therefore it is treated as a leaf node (because the keys in

this tree node can be fetched in contiguous memory blocks). In this way, we “trim”

the original tree structure by utilizing the bottom sets.

The purpose of “trimming” the tree is to reduce the cost of building the tree to

O(N/ f +Nk̂/B) memory transfers. It can be achieved by guaranteeing the number

of leaf nodes in a trimmed tree at mostO(N/ f ). To do so, we make sure that each

leaf node crosses two bottom sets or at least reach the boundary of a set because

there are at mostO(N/ f ) bottom sets.

We need additional preprocess algorithm to tell whether a tree node contains

keys in one or two sets inO(1). It can be done by creating an array and theith cell

stores the set where theith key resides. Notice that the cost to create the array is

O(N/B) block transfers. Thus, the total cost is dominant by the costto read keys,

i.e.,O(N/ f +Nk̂/B) memory transfers.

Previously, we recursively build the greedy layout until a single key. We now

present an algorithm that we stop the recursive step at a treenode whose the keys

are at most in two sets (See Figure 41). Given a tree node, we first check how many

sets crossed by the third preprocessing algorithm inO(1). If it crosses more than

two sets, we use the same greedy algorithm to branch this treenode. Specifically,

we fetch representative keys as the indices to its children.Starting from the first
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representative key which we calculate inO(1) time, we takes additionalO(1) time

to calculate the number of sets crossed by the first child. There are three cases. The

first case is the number of crossed sets is more than 2. Then, weneed take next

recursive step for this child; The second case is that the number of crossed sets is

2. In this case, we treat this child as a leaf node. The difficult case is the third case

where the child node just fits in one set. We need additional algorithm to deal with

this case, because we require that each set is crossed by at most 2 leaf nodes.

≤ B/2

> B/2> B/2

> B/2

The top greedy tree layout

Figure 41: The top tree layout has the leaf nodes trimmed.

We now present how to deal the case that the child node fits in one set. We

calculate the second representative key. By the same reason, the second child may

have three cases. One case is that the second child fits in the same set also. In this

case, we merge the first and second children without extra search cost by removing

the first representative key in the tree node, because the first and second children

must belong to the type-I set (the root node of the type-II(b)group) and it takes at

most three memory transfers to read the type-I set. As long asthe next child fits in

the same set, we keep merging them together without extra memory transfer. The

other two cases are that the second child crosses at least twosets. Assume that the

set where the first child resides isS1. Then, the setS1 must be a type-I set because it

includes more than one key. Now we merge part of keys in the second child into the
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first child by replacing the first representative key by the last key inS1. Thus, the

first child reaches the boundary of the setS1. After the merge operation, the search

cost may change at this node because the size of the tree node changed and the

number of keys in the first and second children changed. However, we argue that

those changes do not affect the search cost by checking the two properties of the

greedy layout. The first property is that the size of the tree node must beO(B+ k̂)

(wherek̂ is the average length of keys under this tree node). This is true because

we replace the old key by the last key inS1, which is less thanB/2 by the property

of the type-I set. The second property is that each child has the number of keys less

thanO(N/ f ). For the second child, it satisfies because the number of keysin the

second child decreased. For the first child, the number of keys in it may bigger than

O(N/ f ). But we know that the first child fits in a type-I set and therefore it can be

fetched in at most three memory transfers. Thus the merge operation increases the

search cost at most one memory block at a leaf node.

In summary, we construct a dynamic greedy tree layout such that each leaf

node crossing two sets or just reaching the boundary of one set. We now calculate

the number of leaf nodes in this tree layout. Notice that eachleaf node crosses

one boundary of sets and there are no common keys among leaf nodes. Because

there are at most 2N/ f sets, the number of leaf nodes is also at mostO(N/ f ).

Furthermore, for each tree node, it has at least two children. Therefore, the number

of all inner tree nodes is less than the number of leaf nodes, i.e., the number of all

tree nodes is at mostO(N/ f ).

Thus, the time to calculate all representative keys isO(N/ f ) and the time to

store all representative keys is at mostO(N/ f +Nk̂/B) block transfers. Therefore,

the total time to build the tree layout isO(N/ f +Nk̂/B) memory transfers.

Search. To search an element in the structure, we first search the treein the top

layer. Then we go to the corresponding bottom groups followed by the leaf node

and the other group pointed by the predecessor of the leaf node.

Insert. To insert a key in the structure, we first search for the right place. Then

we insert it into the corresponding group. If it becomes a keyat the lower bottom

level, we finish insert operation. Otherwise, it appears at the upper bottom level and
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we insert it also in the top layer. The additional operation is when the bottom group

split. However it only affects at most two leaf nodes at the top layer. We can split

the leaf node if it crosses more than two sets.

Theorem 57 To insert a key in the dynamic atomic-key B-tree, the number of amor-

tized memory transfers is

O

((

1+
k̂
B

)

log2+B/k̂ N

)

.

Proof. For each tree node ofN keys and average lengthk̂, we can insertΘ(N/ f )

keys before rebuilding the tree node. The cost to rebuild thetree is

O(N/ f +Nk̂/B).

Thus, the amortized cost to insert a key into a tree node is

O

(

N/ f +Nk̂/B
N/ f

)

= O

(

1+
f k̂
B

)

.

Noticing that f = max{2,B/k̂}, we haveO( f k̂/B) = O(1+ k̂/B). Thus, the amor-

tized cost to insert a key in to a tree node isO(1+ k̂/B). Because there are roughly

O(log2+B/k̂ N) levels in the tree layout, we have the amortized cost to insert a key

in the tree layout at most

O

((

1+
k̂
B

)

log2+B/k̂ N

)

.

5.4 Optimal Static Structure by Dynamic Program-

ming

In this section, we give the optimal static search structurefor N atomic keys, each

of which has different size.
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We need some notation. Assume that the set of keys is{κi}1≤i≤N and the

length of the keyκi is Size(κi). Each key has the probabilitypi to be searched. Let

Ki, j be the total length of keys{κi ,κi+1, . . . ,κ j} andPi, j =
∑

i≤r≤ j pr . We define

T(i, j,b) the optimal static search tree for keys{κi,κi+1, . . . ,κ j} with the root node

of size up tob, andc(i, j,b) the average searching cost of keys{κi ,κi+1, . . . ,κ j}.
Our goal is to find the optimal treeT(1,N,B) such that the search cost

c(1,N,B) is minimized. Notice that the tree for a larger set of keys areconstructed

by joining trees for smaller sets. An optimal search tree forthe setκi , . . . ,κ j whose

root occupies space less thanS is constructed by joining optimal trees for the set

κr+1, . . . ,κ j with space less thanS−Size(κr) in the root and an optimal tree for the

setκi, . . . ,κr−1 (See Figure 42).

B

r

t(r+1, j, B−Sr)t(i, r, B)

Figure 42: The optimal structure by the dynamic programming.

Therefore, by dynamic programming, we can construct the optimal search tree

as follows:

c(i, j,b) =







Pi, j if Ki, j ≤ b;
min

i≤r≤ j {c(i, r,B)+Pi,r +c(r +1, j,b−Size(κr))} otherwise.

The cost of this dynamic programming isO(Bn3).

In [11], a faster dynamic-programming scheme is proposed. This scheme

could also apply here with a cost of O(Bnα), with α = 2+ log2/ log(B+1).
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5.5 Conclusion

We construct both static and dynamic atomic-key B-trees in linear time. The dy-

namic atomic-key B-tree supports the operations search, insert and delete in

O
(

⌈

k̂/B
⌉

log1+⌈B/k̂⌉N
)

amortized memory transfers. The update cost matches that ofthe traditional B-tree

when keys have the unit size. Therefore, our atomic-key B-tree is a generalized

version of the B-tree in the respect of key size. However, to construct the corre-

sponding cache-oblivious version of the atomic-key B-treeremains open. It would

be especially interesting to find the structure for a dynamiccache-oblivious atomic-

key B-tree.
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