
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Coherent Quasiparticle Transport in

Multi-Antidot Structures with

Potential Applications to Quantum

Information

A Dissertation Presented

by

James Albert Nesteroff

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

May 2009



Stony Brook University

The Graduate School

James Albert Nesteroff

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Dmitri V. Averin – Dissertation Advisor
Professor, Department of Physics and Astronomy

Ismail Zahed – Chairperson of Defense
Professor, Department of Physics and Astronomy

Vladimir J. Goldman
Professor, Department of Physics and Astronomy

Leon Takhtajan
Professor, Department of Mathematics

Stony Brook University

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Coherent Quasiparticle Transport in
Multi-Antidot Structures with Potential
Applications to Quantum Information

by

James Albert Nesteroff

Doctor of Philosophy

in

Physics

Stony Brook University

2009

The two dimensional electron gas in the regime of the Fractional
Quantum Hall Effect is one of the hallmarks of condensed matter
physics. One of its main characteristic features is that quasipar-
ticle excitations of this system exhibit both fractional charge and
fractional ”anyonic” exchange statistics. Experiments involving
resonant quasiparticle tunnelling through Quantum Antidots have
demonstrated the potential to manipulate individual quasiaprti-
cles. It is also known that the anyonic exchange statistics of the
quasiparticles can be exploited for use in Quantum Information.
The basic building block for this type of Quantum Information
processing is the FQHE qubit which is formed from two tunnel
coupled quantum antidots. In the first part of this dissertation, a
model describing the coherent tunnelling of quasiparticles of quan-
tum hall liquids in a system consisting of multiple antidots will be
discussed. The main result is that the anyonic exchange statistics
of these quasiparticles is manifested directly in the DC tunnel con-
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ductance of these systems even in the absence of quasiparticle ex-
change. Most notably, it will be shown that in tunnelling through
a line of three antidots, the statistics should be exhibited as a
non-vanishing resonant peak of the tunnel conductance. The sec-
ond half will be dedicated in part to exploring the potential use of
FQHE qubits in applications involving Quantum Information. To
begin with, the Quantum Antidot Electrometer will be discussed
as a detector for quantum measurements of FQHE qubits. Next,
the non-trivial aspects of wave function reduction will be examined
as well as the coherent synchronization of oscillations in a contin-
uously measured double qubit system. The dissertation concludes
with an examination of a different paradigm in Quantum Infor-
mation processing namely that of adiabatic quantum computation
(AQC). Due to the ground state evolution of AQC it is expected
that this scheme provides a measure of protection against envi-
ronmental decoherence. The stability of this scheme of quantum
computation is assessed with respect to decoherence induced by
low frequency noise which is of particular relevance to solid state
implementations of AQC.
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Chapter 1

Introduction

Ever since its discovery in 1982 by Tsui, Störmer, and Gossard [1] the Frac-
tional Quantum Hall Effect (FQHE) has become one of the cornerstones of con-
densed matter physics. The FQHE is found in low-temperature, 2-dimensional
electron gas systems (2DEG). This effect refers to the simultaneous quantiza-
tion of the Hall Resistance RH in simple fractions of h/e2 and vanishing of the
magnetoresistance as shown in Fig. 1.1. What makes this effect so unique, lies
in the fact that it arises due to non-perturbative many-body correlations of the
electrons. Furthermore, this is in direct contrast to the underlying physics of
its predecessor, the Integer Quantum Hall Effect (IQHE) [2] wherein one finds
the formation of plateaus in the Hall Resistance occurring at RH = h/(je2),
where j is an integer. This can be explained by a non-interacting electron
model whereby each of the plateaus correspond to the complete filling of j
Landau levels. To gain insight into the reason for the strongly interacting
nature of the FQHE, consider the case when only the lowest Landau-Level
is completely filled, corresponding to the j = 1 IQHE. Further increasing
the magnetic field implies that more states are made available then there are
electrons. In this highly degenerate ground state, the interactions between
electrons become important and the net result is a strongly correlated elec-
tron liquid. These correlations were explained by Laughlin’s [3] variational
wave function which incorporates the effects of electron-electron interaction.
One of the most fascinating predictions to come from Laughlin’s theory is that
the low energy excitations or quasiparticles of primary quantum Hall liquids,
where the filling factor is ν = 1/(2j + 1), have both fractional charge [3, 4]
e∗ = νe and, even more unusual, fractional (or anyonic) exchange statistics
[5, 6].

In 1995, one aspect of these quasiparticles, namely the fractional charge,
was experimentally confirmed by Goldman and Su [7]. Their experiment uti-
lized quantum antidots, which are lithographically defined potential hills in
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Figure 1.1: The Integer and Fractional Quantum Hall effects. Whenever the
magnetic field is tuned such that the filling factor ν is either integral (IQHE)
or fractional (FQHE) the Hall resistance RH = Rxy (shown in red) reaches
a plateau with value h/(e2ν). When the Hall Resistance is quantized the
magnetoresistance Rxx vanishes. Figure courtesy of V. Goldman.

a 2DEG. In an antidot, the combined action of the electric and magnetic
fields effectively localizes quasiparticles into orbits about the potential hill.
By studying the tunnel conductance of a single antidot coupled to two oppos-
ing edge states in the limit in which the temperature is small compared to
the energy gap of quasiaprticles on the antidot, which requires that the size
of the antidot is small enough, they were able to deduce the charge of the
quasiparticles. Subsequent experiments observed this charge fractionalization
in shot noise measurements involving edge state tunnelling [8, 9].

The situation concerning the experimental confirmation of fractional ex-
change statistics of quasiparticles is somewhat more uncertain. Currently,
experiments [10, 11] demonstrating the unusual flux periodicity of the conduc-
tance of a quasiparticle interferometer can be interpreted as a manifestation
of fractional quasiparticle exchange statistics [12, 13]. However, this is not
universally accepted [14, 15].

On a separate but equally intriguing path of development, there has been
interest for some time in the implementation of quantum computation (QC)
based on anyonic exchange statistics [16–19]. In this “topological” QC two or
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more particles possessing anyonic exchange statistics are intertwined with one
another. Braiding the particles translates into unitary transformations of the
system wave function, which are then used as gate operations to implement
quantum logic.

A practical implementation of this form of QC was proposed [20] using
antidots operating in the primary FQHE regime as qubits. Here, a single
FQHE qubit consists of two antidots with the basis states being defined as a
single quasiparticle localized on one antidot or the other. In order to perform
gate operations structures containing multiple antidots are required, where
intertwining particles can be accomplished through an adiabatic transfer of a
quasiparticle from one antidot to another.

The aforementioned uses of antidots illustrate their versatility in both
charge transport experiments and quantum computation and information. Re-
flecting this ”duality”, this thesis is comprised of two parts. In the first part,
we investigate the conductance of quasiparticle transport in structures involv-
ing multiple antidots. Up until now, only single antidot transport has been
studied from both an experimental [7, 21–23] and theoretical [24, 25] perspec-
tive, where multi-antidot transport has remained an open question. Thus,
in Chapter 2, we present a model for correlated quasiparticle transport in a
serially coupled double-antidot. It is shown that the strongly correlated na-
ture of the edge states to which this system is coupled is exhibited in the DC
conductance peaks. However, the anyonic statistics of quasiparticles on the
antidots does not manifest itself in this system. In Chapter 3, we extend our
model of multi-antidot transport to systems consisting of three antidots in
which the effects of the fractional exchange statistics of the quasiparticles en-
ter directly into the tunnel conductance. We propose an experimentally viable
setup which should allow for the unambiguous determination of the fractional
exchange statistics of quasiparticles.

The second half of the thesis is dedicated to an exploration of some pos-
sible applications involving the use of antidots in Quantum Information. The
goal of Chapter 4 is to analyze the use of the Quantum Antidot Electrometer
(QAE) as a measurement device for a single FQHE qubit in the framework
of linear measurement theory [26, 27]. The emphasis here is on showing how
the Luttinger liquid effects from the edge states determine the measurement
characteristics of this detector. Chapters 5 and 6 investigate two interesting
aspects of quantum measurement involving antidots as qubits.

The final chapter of the thesis examines two interrelated topics. The first
concerns adiabatic quantum computation (AQC), a paradigm of QC wherein
a system of qubits is initially prepared in the ground state of some known and
relatively simple Hamiltonian. Quantum computations are performed then by
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evolving system Hamiltonian slowly enough so that it remains in the ground
state throughout the duration of the computation. The structure of the total
Hamiltonian is such so that at the end of the computation the ground state of
the system represents the solution to some complex computational problem.
The main advantage of performing QC this way is that adiabatic evolution
implies that there is some measure of protection against environmentally in-
duced decoherence. However, in cases where the decoherence is caused by
low frequency noise, which is typical for implementations with solid state flux
qubits, this protection as we shall show is not complete.

Our model for evaluating the performance of AQC in a noisy environment
concerns the dynamics of the system in the vicinity of the anti-crossing be-
tween the two lowest energy levels of the system Hamiltonian and is thus
mapped onto the Landau-Zener problem in the presence of an environment. A
secondary focus of this chapter examines the behavior of Landau-Zener tran-
sitions in the presence of a simple environment made up of a single Harmonic
oscillator. Besides serving as an aid to understanding the modifications to
LZ transitions in two level systems coupled to environments, such a model
can also be realized in current experiments involving coupled qubit-oscillator
systems [28–30]. We show that non-trivial modifications to the LZ transition
probability occur when the oscillator is prepared in a thermal state, which is
realizable in current experiments [30]. Furthermore, these modifications are
most pronounced when the thermal occupancy of the oscillator states is large.

The outline for the remainder of this chapter is as follows. In the next
section, we present an overview of the FQHE as well as the hydrodynamic
theory of the edge states, and conclude with a discussion of antidots and the
quantum antidot electrometer. In Section 1.2, we briefly discuss quantum
information theory including the use of antidots as qubits and conclude with
an introduction to the concept of AQC.

1.1 The Fractional Quantum Hall Effect

As pointed out earlier, both the IQHE and FQHE occur in systems in
which electrons are confined to move in two dimensions. The physics of a
non-interacting 2DEG with a magnetic field B applied perpendicular to it can
be described in terms of Landau-Levels (LL). Assuming the electrons are free
to move within the x-y plane and the magnetic field points in the z-direction,
the single particle energies for the N -th LL (neglecting spin) are given by

EN = Ez + ~ωo(N + 1/2) (1.1)
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where, ωo = eB/m∗ is the cyclotron frequency, m∗ is the effective mass of
the electrons, and Ez is the energy in the z-direction. Each LL has a large
degeneracy associated with it. The degeneracy per unit area of a level is given
by D = B/φo, with φo = h/e being the quantum of magnetic flux. From
this, one can define the filling factor ν = hnd/(eB) which is the ratio of the
electron concentration nd to the number of states per unit area. By increasing
the magnetic field, the number of states available in the LL increases and, since
the electron concentration is independent of the magnetic field, ν decreases.
When the field is tuned such that only the lowest LL is filled, a further increase
of B implies that there are more states available than there are electrons to
fill them. This produces qualitatively new electron-electron correlations.

The above discussion implies that to understand the underlying physics
of the FQHE, where ν < 1, one needs to take into account the effect of
many-body interactions in a non-perturbative manner. In his seminal work
[3], Laughlin was able to find the ground states for primary FQHE liquids
with ν = 1/(2j + 1) and j = 1, 2, ... which are given via the ”Laughlin” wave
function, which in its unnormalized form is,

ψj(zk) =
∏

k<l

(zk − zl)
1/νe−

∑N
k
|zk|2

4 . (1.2)

Although, strictly speaking, this is an approximate wave function describing
electrons with short-range interactions. Nevertheless, Eq. (1.2) provides excel-
lent agreement when compared to the exact ground state wave function found
from numerical finite size studies and to experimental results.

One of the most fascinating predictions afforded by the Laughlin wave
function is that the low-energy excitations or quasiparticles of the ground state
of primary quantum Hall liquids have both fractional charge and fractional
exchange statistics. The former property can be seen by considering the wave
function for a ”quasihole” excitation located at a point zo in the liquid, which
is given by

ψ(zo) =
∏

i

(zi − z0)ψj(zi). (1.3)

The interpretation of the above equation is that it describes a small depletion
region formed in the quantum hall liquid. The charge of this quasiparticle was
determined to be equal to e∗ = νe [3, 5].

In order to determine the exchange statistics of the particles, Arovas et
al. [5] calculated the phase accumulated by the wave function, when one
quasiparticle is adiabatically encircled by another. Consider the Laughlin wave
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function for two quasiholes located at points z and z′,

ψ(z′, z) =
∏

i

(zi − z′)(zi − z)ψj(zi). (1.4)

In the case when z is fixed, adiabatically bringing z′ around a closed loop
(enclosing the particle at z) implies that the wave function (1.4) becomes,

ψ[z′(t), z] = ψ[z′, z]eiφ. (1.5)

The phase acquired by the wave function corresponds to the adiabatic, or
Berry’s phase, this is given by,

φ = i

∮
< ψ[z′(t), z]| d

dt
|ψ[z′(t), z] > dt (1.6)

and φ = φAB + γ. The first part, φAB is the Aharonov-Bohm (AB) phase
acquired by the quasiparticle as it encircles an area enclosing the magnetic

field B with vector potential
−→
A or,

φAB =
e∗

~

∮ −→
A · dl =

2πe∗Φ
eφo

(1.7)

where φo is the flux quantum and Φ is the enclosed flux. The part γ =
2πν is the change of phase φ due to the presence of the second quasiparticle.
Therefore, the exchange statistics of these particles can be found by considering
only half a revolution of z′ thereby implying that,

ψ(z′, z) = e−iπνψ(z, z′) (1.8)

where θ = πν and the sign of the exponent is dependent on the direction in
which z′ was rotated. Thus, Eq. (1.8) shows that for the exchange statistics
of quasiparticles of primary FQHE liquids can be fractional (i.e. θ = π/m,
m = 3, 5, ...). Note that all of the above arguments hold for quasielectrons as
well. The fact that these particles can exhibit fractional exchange statistics
is a direct result of the two dimensional nature of this system. In fact, the
very notion that particles in two dimensions could possess statistics that are
between fermions (θ = π) and bosons (θ = 0, 2π) had been predicted from
general considerations [31, 32]. One way to understand the unusual exchange
statistics of these particles is to think of the quasiparticle located at z to be
an infinitely small flux tube with flux φo. When the charge e∗, located at z′,
is rotated around the particle the total AB phase picked by the wave function
is 2πν. Therefore, the exchange statistics of the quasiparticles can be thought
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of as the exchange of a particle of charge e∗ and a flux tube [32].

1.1.1 Edge States and the Chiral Luttinger Liquid

We now turn our attention to a different aspect of the FQHE, namely the
properties of edge states. The liquid is confined by some potential which pro-

duces an electric field
−→
E at the edge as shown in Fig. 1.2a. For the sake of

Skipping Orbits

E

x

y

Energy

x

Landau−Level

B

E

a) b)

Figure 1.2: (a) Schematic of a Quantum Hall sample. The electric field due
to the confinement potential points inward and the combined action of the
electric and magnetic field cause the electrons to execute skipping orbits along
the edge. (b) In the quantum mechanical picture, the Landau levels bend
upward near the edge of sample causing the electrons to acquire a net velocity
that depends on which side of the sample the electron is on.

simplicity, consider the case of the IQHE. The confining potential causes the
energy of the Landau Levels to acquire a spatial dependence [33], the behavior
of which is schematically represented in Fig. 1.2b. From a semiclassical view-
point, the combined action of the electric and magnetic fields implies that the
electrons near the edges of the sample skip off of the wall created by the confine-
ment potential and acquire a velocity whose magnitude is given by v = E/B,

where E = |−→E |. Therefore, the effect of the confinement potential is to create
a persistent current which flows along the sample boundary. Furthermore, the
direction or chirality of this current is fixed by the sign of the magnetic field
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and, due to the strength of the magnetic field, electron transport along the
edges can be considered as quasi-one dimensional.

In the FQHE regime, Wen [34–38] suggested the Chiral Luttinger Liquid
(CLL) theory which is an effective low energy description of the edge states.
In this description, the underlying assumption is that the strongly correlated
nature of the electron system extends all the way to edge states. To see this one
can use the following heuristic argument. Consider the Laughlin wave function
given in Eq. (1.2) and confine the electron coordinate to a one-dimensional
circle of radius R which one can imagine to be the edge of the sample. Thus,
zk = Reiφk where φk is the angular coordinate along the disk of the circle. The
wave function describing the outside edge of the circle is then given by,

ψj ∼
∏

k<l

(eiφk − eiφl)1/ν . (1.9)

What is important to notice is the wave function that it resembles, up to a nor-
malization constant, is the same ground state wave function of the Calogero-
Sutherland model which describes interacting one dimensional electrons1.

One of the main characteristics of the Luttinger (or Tomonaga-Luttinger)
model is that the low energy excitations of the electron gas are described
in terms of bosonic excitations. Due to the fact that the electron dispersion
relation is linearized about the two Fermi points ±kf , the model describes both
left and right moving electrons. However, because of the chirality of the FQHE
liquid, edge state electrons propagate in opposite directions on opposing sides
of the sample. Furthermore, tunnelling between these states is exponentially
suppressed as a function of the distance between them. Thus, backscattering
between opposing edge states is negligible unless they are brought into close
proximity with one another.

In the hydrodynamic formulation of CLL2, the edge excitations of an FQHE
droplet exist in the form of surface wave, that propagates in only one direc-
tion, as shown schematically in Fig. (1.3). Since the FQHE liquid is both
incompressible and irrotational, the dynamics of the wave can be described by
the classical wave equation,

∂tρ(x) = u∂xρ(x) (1.10)

1The direct correspondence between the Laughlin wave function and Calogero-
Sutherland model, especially in the comparison of the electron correlation functions of the
two models, requires a more subtle argument than that presented here and is discussed at
length in [39].

2The main focus of this work will be on CLLs of primary Quantum Hall Liquids, however
the theory has been extended to more generic types FQHE states see, for example Ref. [38].
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x

h(x)

Unperturbed Edge

Figure 1.3: Surface wave formation at the boundary of an FQHE liquid: here
h(x) is the displacement of the edge of the liquid and x is the coordinate along
the edge.

where u = E/B is the propagation velocity of the wave and ρ(x) is the density
at the position x along the edge. The vertical displacement of the edge of the
liquid is,

h(x) = n−1
d ρ(x) =

ρ(x)

νD
(1.11)

where, D as before is defined as the degeneracy of the LL per unit area. Finally,
the Hamiltonian for the wave is given by,

H =
e

2

∫
dxV (x)ρ(x) =

π~u
ν

∫
dxρ2(x), (1.12)

where V (x) = Eh(x) is the linearized potential along the edge. The transfor-
mation of Eqs. (1.10) and (1.12) into momentum space gives

ρ̇(kn) = −iuqnρ(kn), (1.13)

H =
hu

ν

∞∑
n=1

ρ(kn)ρ(−kn), (1.14)

where we have used

ρ(x) =
1√
L

∞∑
n=1

e−iknxρ(kn), (1.15)

with L being the length of the edge and kn = 2πn/L. In order to quantize
the theory, it is necessary to compare Eqns. (1.13) and (1.14) with canonical
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equations of motion for a coordinate q(kn) and momentum p(kn),

q̇(kn) =
∂H

∂p(kn)
(1.16)

−ṗ(kn) =
∂H

∂q(kn)
. (1.17)

A comparison with (1.13) and (1.14) allows the identification q(kn) = ρ(kn)
and,

p(kn) =
ih

νkn

ρ(−kn), (1.18)

and finally to quantize we employ [q(kn), p(kn)] = i~ which gives,

[ρ(kn), ρ(−kn′)] =
νq

2π
δkn,−kn′ . (1.19)

The above equation implies that the low energy gapless excitations of the edge
states are bosonic in nature. The fermion field operators on an edge l can be
defined through standard bosonization techniques as,

ψ̃l(x, t) =
1√
2πα

ξle
i√
ν

φl(x,t)
. (1.20)

which destroys an electron at a point x on edge l. The chiral boson fields φl de-
scribe edge fluctuations, 1/α is the momentum cut-off of these fluctuations, and
is related to the electron density at the edge: ρl(x, t) = (

√
ν/2π)∂φl(x, t)/∂x.

The fields φl can be decomposed in the standard way into the individual
“magneto-plasmon” oscillator modes

φl(x, t) =
∞∑

n=1

1√
n

[
an(t)eikn(x+iα) + H.c.

]
. (1.21)

Another excitation supported by the edge states is given by the operator,

ψl(x, t) =
1√
2πα

ξ̃le
i
√

νφl(x,t) . (1.22)

which destroys a quasiparticle of charge e∗ at a point x on edge l. Here the
“Klein factors” ξ̃l account for the mutual statistics of the quasiparticles on
different edges. The operator defined in (1.22) destroys a particle of charge e∗

at the position x. On the same edge, the quasiparticle operators satisfy the
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exchange relations

ψl(x)ψ†l (x
′) = eiπν sgn(x−x′)ψ†l (x

′)ψl(x), (1.23)

which show that for ν = 1 the quasiparticles are fermions while for ν =
1/(2n + 1) and n > 1 the operators have anyonic exchange statistics.

One of the most interesting predictions of this theory concerns the unusual
low temperature behavior of the tunnel density of states (DOS). Consider, for
example, the DOS for adding a particle at a point x on the edge at energy E,

fν(E) =

∫ ∞

−∞
dte−iEt/~〈ψ(x, t)ψ†(x, 0)〉, (1.24)

where the correlator of the field operator at zero temperature is given by

〈ψ(x, t)ψ†(x, 0)〉 = 〈ψ†(x, t)ψ(x, 0)〉 =
1

2πα

(
α

α + iut

)g

. (1.25)

The substitution of (1.25) into (1.24) reveals that fν(E) ∼ Eg−1θ(E). For
electrons, g = 1/ν, implies that the tunnel density of states vanishes as the
energy lowers. This type of behavior in the DOS is one of the hallmarks of
Luttinger liquids. Physically, this result is due to the existence of strong inter-
particle correlations and creates a dynamic energy barrier for the addition or
removal of particles. One avenue in which to experimentally probe the behavior
of the DOS is through transport measurements. However, experiments to date
[40–43] have shown some discrepancies between the theoretical predictions
of the current and differential conductance (see, e.g. [44]) and observation.
Overall, the experiments involving non-resonant tunnelling between ν = 1/3
edge states [40–42], of primary interest in this work, seem to provide some
evidence of CLL behavior in the edge states. On the other hand, for cases
concerning resonant tunnelling [43, 45] and for filling factors other than ν =
1/3 the evidence is more ambiguous.

1.1.2 Antidots

As mentioned earlier, a quantum antidot (QAD) is a small lithographically
defined potential hill (or depletion region) formed in a 2DEG. The electric
field from the potential acts in concert with the external magnetic field to
trap quasiparticles into localized edge states that orbit about the antidot.

Quantitatively, the spectrum of these energy levels is quite complex even
when assuming a simple model for the antidot potential [21, 46]. However, the
general features of this spectrum can be understood by considering a smooth
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Figure 1.4: Schematic of a quantum antidot. The combination of the electric
field, from the potential hill, and the magnetic field traps quasiparticles into
localized edge states.

potential as a perturbation [21]. Taking the case of the lowest LL, the in-
troduction of the QAD potential implies that the degeneracy of this state is
broken and the LL is split into single particle states as illustrated in Fig. 1.4.
From a semiclassical viewpoint [7, 21], the quantization of these bound states
satisfies the Born-Sommerfeld quantization condition,

BSm = mφo, (1.26)

where Sm is the area of the orbital. This condition implies that each state on
the antidot encloses m flux quanta.

When the antidot is placed between two opposite edge states, it becomes
possible to resonantly tunnel from one edge to the other through the localized
states that exist on the antidot. Tunnelling between the edges and the antidot
occur when the edge states are close enough to the antidot bound states such
that quasiparticle backscattering is significant enough to cause a quasiparticle
to be transferred between the two systems.

One application of resonant tunnelling in antidots is the Quantum Antidot
Electrometer [7, 21, 22]. A schematic of such a setup is shown in Fig. 1.5.
Here the edges are brought into the proximity of the antidot due to negatively
biased gate electrodes which deplete the electron gas around them. Applying
a bias to the system shifts the chemical potentials of the edges relative to the
antidot states. In the low temperature limit, when the temperature is smaller
than the energy splitting between consecutive states on the antidot, the quasi-
particles can transit from one edge to another whenever the antidot state lies
in between the chemical potentials of the edges. In this regime, the transport
phenomena in occurring in antidots are very similar to those associated with
the Coulomb blockade in tunnelling of individual electrons [47], despite the fact
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Figure 1.5: Schematic of the Quantum Antidot Electrometer. The edge state
tunnelling in this device is controlled by negatively biased gate electrodes.

that the mechanism of quasiparticle localization on an antidot is microscop-
ically quite different from the corresponding features of electron localization
in quantum dots. For instance, in close analogy to the Coulomb-blockade os-
cillations of the conductance in a the quantum dot [48], the antidot exhibits
periodic conductance oscillations with each period corresponding to addition
of one quasiparticle to the antidot [7, 21–23]. The position of the energy levels
of the antidot are controlled through a global back-gate potential. However,
conductance oscillations can also be observed by changing the magnetic field.
In this case, the position of the energy levels with changing magnetic field is
modified so as to ensure that the quantization condition (1.26) is satisfied. By
determining the period of the conductance oscillations as both a function of
magnetic field and back gate voltage, it is possible to measure the charge of
the quasiparticles.

1.2 Quantum Information

The field of Quantum Information (QI) deals with both the processing
(Quantum Computation) and the extraction (Quantum Measurement) of in-
formation in quantum mechanical systems. The fundamental building block of
any QI processing system is the qubit or quantum bit. Similarly to its classical
counterpart the qubit consists of two computational basis states, |0, 1〉. The
main difference between the classical and quantum versions of the bit lies in
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the fact that the later can exist in a superposition of the two states, whereas
the former can be in either one state or the other.

In Quantum Computation (QC), logical gate operations consist of unitary
transformations on the qubit wave function. As first pointed out by Deutsch
[49], the advantage that a Quantum Computer has over a classical one rests in
its ability to exploit the inherit superposition of qubit states and act on these
states all at once. This so-called quantum parallelism implies that for certain
classes of problems, quantum computers will out perform classical computers
[50]. Examples of these types include problems involving prime factorization
and search [51–53].

One of the biggest obstacles to overcome in implementing any scheme of
QC is the issue of environmentally induced decoherence. The entanglement
of the qubit with some external environment causes a loss of phase coherence
between the amplitudes of the qubit basis states. The result is a degradation of
the quantum computer’s overall performance. In reality, a complete isolation
of a quantum system from the environment is impossible and thus decoherence
is an ever present problem in QC applications. As such, one of the aims in
developing a practical QC scheme is to minimize the effects of decoherence as
much as possible. One such approach to achieving this is AQC [54–58], a topic
which will be touched upon at the end of this section.

At the terminus of a quantum computation it is necessary to perform a
measurement of the qubit system wave function. As is well known, any at-
tempt to measure a quantum system necessarily disrupts it. The simplest
model describing Quantum Measurement involves the process of wave func-
tion collapse [59, 60]. In this process, the state of the measured system is
instantaneously localized into one of the basis states of the observed quantity.
This inherently destroys any phase coherence that may exist between the wave
function amplitudes of the measured system in other bases. Such a form of
measurement is known as projective.

In a larger sense, the act of quantum measurement relays information about
the state of the quantum system to the macroscopic world. Therefore, in order
to extract information out of a quantum system it is necessary to entangle the
system of interest with a macroscopic measurement device. Thus, the act of
measuring a quantum system and obtaining information about the state of
that system implies that the measured system will undergo decoherence which
is caused by the coupling to the detector. This back-action dephasing is a
necessary and unavoidable part of the measurement process.

In terms of the above discussion projective, or strong, measurements de-
cohere the measured system instantaneously. On the opposite side of the
spectrum are weak measurements. For this type of measurement the detector
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is coupled only weakly to the measured system. The system is then continu-
ously measured and information about its state is obtained via the detector
gradually over time. Back-action dephasing due to the detector still takes
place when utilizing a weak measurement scheme, however the resulting wave
function collapse is not instantaneous. In this case, it makes sense to define
a rate at which information about the states of the measured system is ac-
quired by the detector. However, quantum mechanics places a limit on this
information acquisition rate. The best one can do is retrieve information from
the measured system at the same rate as the detector back-action destroys it.
Such a measurement is known as quantum limited.

For the rest of this section, we discuss in more detail the various aspects
of quantum information used in the thesis. Next, we will detail the use of the
quantum antidot as a qubit. In Section 1.2.2 we examine in more detail quan-
tum measurement, particularly in the context of mesoscopic devices. Finally,
we will conclude with a brief introduction to AQC.

1.2.1 Quantum Antidots as Qubits

As mentioned at the beginning of this chapter, a practical way of imple-
menting topological QC utilizing the anyonic exchange statistics of FQHE
quasiparticles is via antidots [20]. The schematic of an FQHE qubit is illus-
trated in Fig. 1.6a. To form a qubit, two antidots are placed within close

|0>

|1>

a) b)

Figure 1.6: (a) An FQHE qubit consisting of two antidots with tunnel energy
∆, bias energy ε and energy gap between localized quasiparticle states ∆∗. (b)
The basis states of this qubit correspond to a quasiparticle being localized on
one antidot or the other.

proximity to one another to allow quasiparticle tunnelling between them. It
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is assumed that the largest energy scale in the system is the energy gap ∆∗

between the localized quasiparticle states on the antidots which is also less
than the quasiparticle excitation gap. This assumption means that the qubit
basis states are defined by a quasiparticle localized on one antidot or the other,
as shown in Fig. 1.6b.

In order to perform gate operations with this type of qubit, one exploits
the anyonic nature of the quasiparticles whereby exchanging quasiparticles
translates into unitary transformations of the qubit wave function. To do this
requires an array of multiple antidots with quasiparticles being transferred
from one antidot to another adiabatically. For example, in the case shown
in Fig. 1.6a, quasiparticle transfer between the antidots is accomplished by
changing the gate bias ε so that the time rate of change ε̇ is much smaller than
the energy gap between the eigenstates of the system.

However, as with any type of qubit there are always sources of decoherence.
In the particular case of FQHE qubits, decoherence stems from two different
mechanisms. One the one hand, Coulomb interaction between the localized
charge hopping between the antidots and the gate electrodes causes energy
dissipation due to the finite resistance of the metallic electrodes. One the other,
the charge on the antidot is coupled via Coulomb interaction to the density
fluctuations from the edge state. Such types of interactions are described by
a Hamiltonian of the form shown in (1.12). Qualitatively, decoherence via the
edge states is caused by dissipation through the chiral plasmon modes, see Eq.
(1.21). This is similar to decoherence described by the well known spin-boson
model (see e.g. [61]). We will discuss this point in more detail in the next
Chapter.

1.2.2 Mesoscopic Measurements

The term mesoscopic refers to systems that have particle numbers and
length scales which are somewhere in between the microscopic and the more fa-
miliar macroscopic world. The advent of solid state quantum information pro-
cessing has motivated studies into mesoscopic structures for use as both mea-
surement devices (detectors) and qubits. Particular examples of mesoscopic
detectors include, Quantum Point Contacts [62, 63], Single Electron Transis-
tors (SETs) [64, 65], superconducting SETs [27], and dc-SQUIDs [27, 66] to
name but a few.

Given the multitude of mesoscopic detectors available, it is helpful to
have a means by which to assess their measurement characteristics. Within
the context of continuous weak measurements such an assessment is possible
[26, 27, 67]. In the case where the detector is measuring a qubit, a generic
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description of the combined system is given by the Hamiltonian,

H = Hd + Hq + CQσz (1.27)

where, Hd,q are the Hamiltonians of the detector and qubit, respectively. The
last term describes the coupling of the two systems with coupling strength C.
Here, Q is some quantity associated with the detector. For example, in the
case of an SET detector this might represent the amount of excess charge on
the island. If the coupling strength between the two systems is weak enough
and the detector remains in a stationary state, the output of the detector I
(again, in the case of a SET, this would represent the tunnelling current) is
only slightly perturbed by the coupling to the qubit. So, to first order in the
coupling, the detector output is given by

〈I〉 = Io + Cλ〈σz〉, (1.28)

where Io = Tr[Iρo] is the output of the detector in the absence of the qubit and
ρo is the stationary density matrix of the detector. Similarly, 〈σz〉 = Tr[σzρq]
where ρq represents the qubit’s density matrix. Finally, the quantity, λ is
known as the linear response coefficient and is given by,

λ =
4π

~
Im SIQ, (1.29)

where,

SIQ =
1

2π

∫
dτΘ(τ)〈I(0)Q(τ)〉, (1.30)

represents the cross-correlation between the input and output of the detector.
Note that 〈...〉 = Tr[...ρo] and the time dependence of the both quantities is
governed by the detector Hamiltonian in (1.27). In deriving this, it was as-
sumed that the response time of the detector is much faster than the dynamics
of the qubit [26, 27, 67]. The meaning behind Eq. (1.28) is that the detector
acts as a linear amplifier. In other words, the relatively small signal associated
with the qubit is taken in at the input Q of the amplifier and then transferred
to the output having been multiplied by a gain Cλ.

In order to characterize the measurement efficiency of the detector it is nec-
essary to take into account its noise properties. First, consider the fluctuations
of the detector input Q. For weak detector-qubit coupling the fluctuations in
Q cause the suppression of the phase coherence between the basis state am-
plitudes of the qubit. This decoherence rate can be found via lowest-order
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perturbation theory in the detector-qubit coupling,

Γd =
πC2

~2
SQ, (1.31)

where

SQ =
1

2π

∫
dτ〈δQ(τ)δQ(0)〉 (1.32)

is the zero frequency spectral density of the noise associated with Q and
δQ(t) = Q(t) − 〈Q〉. Thus, Eq. (1.31) represents the back-action dephasing
of the detector on the qubit. The assumption of instantaneous detector re-
sponse implies that the amplifier’s input noise is effectively δ-correlated [26, 27]
meaning that its spectral density is white.

The other quantity needed for understanding of the measurement process
is the measurement time of the detector. As one can see by inspection of Eq.
(1.28), the detector produces two different output currents depending on the
state of the qubit which differ by ∆I = 2Cλ. In the presence of noise, a finite
time is required to distinguish between these states. This is given by,

τm =
8πSI

C2λ2
, (1.33)

where, SI is the same as Eq. (1.32) with Q replaced by I and represents the
detectors output noise. As was mentioned earlier, quantum mechanics sets
a definite restriction on the rate at which information is extracted from the
qubit versus the rate with which the system’s coherence is destroyed. Since
for low frequencies all of the noise spectra discussed above are constant, one
can obtain the inequality, SISQ ≥ |SIQ| [26, 27] which implies,

2τmΓd ≥ 1. (1.34)

The meaning of this inequality is that the best one can do, when weakly
measuring a quantum system, is to extract information at the same rate as the
coherence is destroyed by the back-action dephasing of the detector. Another
figure of merit for gauging the efficiency of quantum detectors is the energy
sensitivity [26, 27], which is given by

ε =
4π

|~λ|
[
SISQ − (Re SIQ)2

]1/2
. (1.35)

Employing the Schwartz Inequality once again means that ε ≥ ~/2. Such
detectors in which 2τmΓd = 1 are known as ideal or quantum limited. Equality
in the relation (1.34) also implies that the energy sensitive is equal to ~/2. In

18



this case, the detector does not add anymore dephasing to the qubit than is
required to extract information from the system.

1.2.3 Adiabatic Quantum Computation

Adiabatic Quantum Computation [54–58] offers the possibility of reducing
the effects of decoherence by performing computations in the ground state
of a system of qubits. As suggested by its name, AQC relies heavily on the
adiabatic evolution of a quantum system in order to keep the system as much
as possible in its ground state during the overall time of the computation. The
main advantage of this scheme is that if the energy gap between the ground
and first excited state is large enough it provides some measure of protection
against decoherence.

This ground-state evolution is a consequence of the slow evolution of the
Hamiltonian. The question is what are the conditions under which this can
occur? The answer is provided by the Adiabatic Theorem [68]. Let H(t)
be some time dependent Hamiltonian. Next, assume that the Hamiltonian
varies over some time interval t ∈ [ti, tf ] and a definite energy gap, E1(t) −
E0(t), exists between the instantaneous ground state energy E0(t) and the first
excited state E1(t). The condition for adiabatic evolution, that the transition
probability between the two states is small, is then given by [68]

g2
m À max

ti≤t≤tf
〈ψ1(t)|∂H

∂t
|ψ0(t)〉 gm = min

ti≤t≤tf
[E1(t)− E0(t)] (1.36)

where ψ0,1(t) are the instantaneous ground and first excited eigenstates of H(t)
and we have set ~ = 1. This condition can be understood as follows. Imagine
transforming H(t) into the basis of its instantaneous eigenstates |ψk(t)〉, where
k is an index that labels the states. The result is that the Hamiltonian will
consist of two parts, a diagonal matrix consisting of the energies Ek(t) plus
an additional term that generates transitions between different states. In the
case of the two lowest-lying energy states, the condition (1.36) means that if
the system is prepared in the ground state ψ0(t), then over the entire time
interval the transitions to the excited state are negligible.

The implementation of AQC begins by specifying an initial Hamiltonian,
Hi and preparing the system in its ground state |ψ(ti)〉 at some initial time ti.
Next, the system is evolved in time until t = tf according to the Hamiltonian,

H(t) = [1− s(t)]Hi + s(t)Hf (1.37)

where s(t) vanishes at t = ti and is equal to 1 when t = tf . Thus, H(t) interpo-
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lates between the initial Hamiltonian and the final Hf which is chosen in such a
way that its ground state |ψ(tf )〉 represents the solution to the computational
problem. A successful result implies that the evolution is done slow enough
that H(t) remains as close as possible to its ground state throughout the entire
evolution, that is, the condition (1.36) is met. Here, quantum computation is
performed through the unitary evolution of the ground state wave function.
Due to the ground state evolution of AQC it is expected that this scheme of
QC provides a measure of protection against environmental decoherence. In
Chapter 7 of this thesis, we study its stability with respect to decoherence
induced by low frequency noise.
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Part I

Antidot Transport
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Chapter 2

Correlated FQHE quasiparticle
transport in a double-antidot
system

The focus of the chapter is to explore quasiparticle transport in a system
consisting of two tunnel coupled antidots. Since Quantum antidots formed in
a 2D electron system offer a possibility of localizing and controlling the trans-
port of individual quasiparticles [7, 21–23], such control made possible the first
direct observation of the fractional quasiparticle charge in tunnelling through
an antidot [7, 21]. This observation was later extended to the regime of bal-
listic quasiparticle transport [8, 9, 69]. The goal of the work [70] presented
in this chapter is to develop a theory of correlated quasiparticle transport in
a double-antidot system. As pointed out in Chapter 1, the double-antidot
system was discussed previously [20] as a qubit, information in which is en-
coded by individual quasiparticles. Such qubit is similar to superconducting
charge qubits [71–73] which are based on the dynamics of individual Cooper
pairs. As in the case of Cooper pairs [74, 75], the transport measurements
on the quasiparticle qubit can be done more easily than direct measurements
of the qubit dynamics. Transport measurements would constitute the first
step towards experimental development of the FQHE qubits. More generally,
understanding the transport properties of multi-antidot systems, in particular
the role of Coulomb interaction for localization of individual quasiparticles,
and the significance of the edge-state decoherence, should also be important
for other, more complicated types of suggested FQHE qubits [76, 77] which
also require control over individual quasiparticles.

In the next section we will begin with a discussion of the model for a
double antidot system including transport between the edges and the antidot.
Included in this section will be a detailed discussion of the effects of deco-
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(a) (b)

Figure 2.1: Quasiparticle tunnelling in the double-antidot system: (a) the real-
space geometry (not to scale) of quasiparticle transfer between the opposite
edges of the FQHE liquid; (b) energy diagram of the transfer.

herence induced by the edge states on quasiparticle transport between the
antidots. The remainder of the chapter is dedicated to calculating the tunnel
rates and conductance of the system in the limits of both strong and weak
edge state induced decoherence.

2.1 Model

The system we consider consists of two antidots in series between two
opposite edges of a primary quantum Hall liquid with the filling factor ν =
1/(2m + 1) (Fig. 2.1a). The antidots are tunnel-coupled to each other and to
the edges, which play the role of quasiparticle reservoirs. The quasiparticle
current through the antidots is driven by the transport voltage V applied
between the edges. The focus of this work is on the regime when all relevant
energies are smaller than the energy gap ∆∗ of the antidots (see below), and
the transport can be described completely in terms of the transfer of individual
quasiparticles. This regime is relevant, e.g., for the operation of this system
as a qubit. The main elements of the model of the double-antidot system in
this case can be outlined as follows.

2.1.1 Antidots

An antidot formed at a point ζ in a primary quantum Hall liquid with
the filling factor ν = 1/(2m + 1) can be described as a collection of n quasi-
hole excitations created at this point. Microscopically, the unnormalized wave
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function of this configuration is [3, 4]:

ψ({zj}) =
∏

j

(zj − ζ)nψm({zj}) , (2.1)

where ψm({zj}) is Laughlin’s wave function, given in Eq. (1.2), of the un-
perturbed quantum Hall liquid and, in the standard notations, the antidot
position ζ in the two-dimensional plane and the electron. The number n of
the quasiholes is related to the geometric radius R of the antidot: R ' √

2n`,
where ` is the magnetic length.

In what follows, we make use only of the general qualitative features of the
wave function (2.1). For instance, in agreement with the typical experimental
situation (see, e.g., [7, 21]), we assume that the antidot is relatively large:
n À 1. This means that addition or removal of individual quasiparticles
(here and below, this term will be used to describe processes with varying n:
n → n ± 1), does not change the antidot parameters noticeably. Indeed, the
variation of the antidot radius in this case is δR ∝ `/

√
n and is small not only

on the scale of R, but, more importantly, on the scale of the magnetic length
`.

The general form of the antidot energy En as a function of n is determined
by the interplay of Coulomb interaction and an external potential used to
create the antidot. However, for large n, and in some small range of variation
of n around the minimum of En, one can always approximate this dependence
as quadratic. This defines the characteristic energy gap ∆∗ ≡ ∂2En/∂n2 which
gives the energy interval of variation of the chemical potential µ of the system
between the successive additions of individual quasiparticles to the antidot.
For the system shown in Fig. 2.1a, the antidots exchange quasiparticles with
the edges, and µ is defined by the edge chemical potential. In the situation of
the antidot, when all the energies are dominated by the Coulomb repulsion,
the energy gap ∆∗ for changing the number of quasiparticles is approximately
related to the energy gap for the antidot excitations at fixed n: ∆∗ ' ~u/2πR,
where u is the velocity of the excitations encircling the antidot. In general,
e.g. in the case of quantum dots, the two types of energy gaps can be very
different.

We assume that the gap ∆∗ is sufficiently large for both antidots of the
double-antidot system, so that in the reasonably large range of variation of
µ both antidots are characterized by some well-defined numbers nl, l = 1, 2,
of the quasiparticles. In this regime, the non-vanishing conductance of the
double-antidot system requires that µ is close to resonances in the both anti-
dots. At resonance, Enl

' Enl+1, and each antidot can in principle be in one
of two states which differ by the presence or absence of one “extra” quasiparti-
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cle. The resulting four double-antidot states are relevant for the quasiparticle
transport. We will use the notation for these states that gives the number of
extra quasiparticles on each antidot

|ij〉 ≡ |n1 + i, n2 + j〉 , i, j = 0, 1 , (2.2)

and talk about the “first” and the “second” quasiparticle on the antidots dis-
regarding the background nl quasiparticles. Counting the antidot energies En

from the energy of the state with no extra quasiparticles, we can parameterize
the energies εij of the four states as

ε00 = 0 , ε11 = 2ε + U , ε10 = ε− δ , ε01 = ε + δ . (2.3)

Here U is the interaction energy between the extra quasiparticles on the two
antidots while ε and δ give the energies εl (Fig. 2.1b) of the single-quasiparticle
states localized at the two antidots, ε1,2 = ε ∓ δ. The energies ε and δ are
defined relative to the common chemical potential of the edges for vanishing
bias voltage V between them. A non-vanishing bias voltage shifts the energies
(2.3). Experimentally, the antidot energies are controlled by the back-gate
voltage or magnetic field [7, 21, 22]. The degree to which these fields couple to
the energy difference δ depends on the degree of asymmetry between the two
antidots. In the following, we present the results for quasiparticle conductance
of the system as a function of ε for fixed δ, as would be appropriate for identical
antidots. These results can be generalized to non-identical antidots by taking
a “cross-section” in the space of ε and δ along the direction appropriate for a
given degree of the antidot asymmetry.

If the two antidots are sufficiently close, so that the distance between their
edges is on the order of magnetic length `, the quasiparticle states localized
around them overlap and hybridize. This effect can be accounted for by the
tunnel coupling −∆ of the antidots. The phases of the antidot states can
always be chosen to make ∆ real. This coupling affects only the singly-occupied
states |10〉 and |01〉. The single-quasiparticle part of the Hamiltonian is then:

H = ε− δσz −∆σx , (2.4)

where σ’s are the Pauli matrices. Equation (2.4), together with the part of
Eq. (2.3) describing states with zero and two quasiparticles, gives the main
part of the antidot energy controlling the quasiparticle transport. In what
follows, we assume that all contributions to this energy and the temperature
T are small;

∆, εl, U, T ¿ ∆∗. (2.5)
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In this regime, tunnelling through the antidots can be discussed in terms of
correlated transfer of individual quasiparticles. Since the gap, ∆∗, is domi-
nated by Coulomb interaction, i.e. has the same origin as the quasiparticle
interaction energy U , the most restrictive part of the assumption (2.5) is the
condition on U . This condition can still be satisfied due to the difference be-
tween stronger quasiparticle repulsion on the same site and weaker repulsion
on different sites.

2.1.2 Antidot-edge tunnelling

Similarly to the tunnel coupling between the antidots, if the edges of the
FQHE liquid are not far from the antidots on the scale of the magnetic length
`, there is a non-vanishing amplitude for quasiparticle tunnelling between the
edge and the nearest antidot. The tunnelling between the lth edge and antidot
can be described quantitatively with the standard tunnel Hamiltonian

H
(l)
T = Tlψ

†
l ξl + h.c. , (2.6)

where ψ, ψ† and ξ, ξ† are the creation/ahhihalation operators for quasiparticles
at, respectively, the edges and the antidots. Denoting the position along the
edge as x and taking the tunnelling points for both edges to be at x = 0, the
edge quasiparticle operators ψl can be expressed in the standard bosonisation
approach as [34]

ψl(t) = (1/2πα)1/2ξ̃le
i
√

νφl(0,t) . (2.7)

Here the “Klein factors” ξ̃l account for the mutual statistics of the quasiparti-
cles in different edges, φl are the chiral bosonic fields which describe the edge
fluctuations propagating with velocity u, and 1/α is their momentum cut-off
as given in Eq. (1.21). The edge fluctuations result in the fluctuations of elec-
tron density at the edge: ρl(x, t) = (

√
ν/2π)∂φl(x, t)/∂x. For our approach,

we limit this discussion to a perturbative treatment of the antidot-edge tun-
nelling (2.6). In this case, the statistical Klein factors in (2.7) for the edge
operators would cancel out in the perturbation expansion and can be omitted.

The quasiparticles at the antidots should be described in general by the
expressions similar to Eq. (2.7). The condition (2.5) of the large antidot energy
gap ∆∗ ensures, however, that the fluctuations of the edges around the antidots
are suppressed, i.e. the magneto-plasmon oscillations are not excited out of
their ground state |0〉. In this regime of the “quantized” edge, the general
quasiparticle operators (2.7) reduce to just the statistical Klein factors up to
a normalization constant. Indeed, as one can see directly from Eq. (1.21) by
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bringing the φ-part of (2.7) into the normal form,

〈0|ei
√

νφ|0〉/(2πα)1/2 = (πR)−1/2 . (2.8)

Including this normalization constant in the tunnel amplitude Tl, we see that
the operators ξl for quasiparticles at the antidots consist solely of the Klein
factors. The appropriate set of properties of the quasiparticle Klein factors ξ
depends on the specific geometry of each edge-state tunnelling problem. Non-
trivial examples of this can be found in [78–83]. As follows from the discussion
in the preceding Section, in tunnelling between the quantum antidots, the op-
erators ξl should account for the “hardcore” property of the quasiparticles; in
the given range of external parameters only one extra quasiparticle can oc-
cupy one antidot. In general, these operators should also describe the anyonic
exchange statistics of the FQHE quasiparticles [84], but the geometry of the
double-antidot system (Fig. 2.1a) does not permit quasiparticle exchanges,
and the exchange statistics of the tunnelling particles is irrelevant. Since the
hardcore property makes the quasiparticle occupation factors equivalent to
those of the fermions, and the actual exchange statistics is irrelevant, the an-
tidot quasiparticle operators ξ, ξ† can be treated as fermions. Together with
Eqs. (2.7) and (1.21) for the edge quasiparticles, this defines completely the
tunnel Hamiltonian (2.6).

2.1.3 Edge-state decoherence

Tunnelling of charged quasiparticles through the antidot system couples
to all gapless charged excitations that exist in the system. In the case of
the FQHE liquid, excitations in the bulk of the liquid are suppressed by the
energy gap, and only the edges support gapless excitations. In contrast to all
other possible mechanisms of decoherence (e.g., plasmons in metallic gates,
or charged impurities in the substrate) the edges play the role of reservoirs
in transport measurements and as a matter of principle can not be removed
from the antidots. In this Section, we estimate the strength of this unavoidable
edge-state decoherence for quasiparticle tunnelling through the double-antidot
system.

The spectrum of the gapless edge excitations of one edge consists of magneto-
plasmon oscillations (1.21) with the Hamiltonian:

H0 = (hu/L)
∞∑

n=1

na†nan . (2.9)

We assume that the antidot system is symmetric, and a quasiparticle sitting on
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the first antidot creates a potential Vl(x) along the lth edge. The quasiparticle
dynamics governed by the Hamiltonian (2.4) is coupled then to the fluctuations
of electron densities ρl(x) at the edges through the interaction Hamiltonian

Hint =
1

2
σze

∫
dxV (x)(ρ1(x)− ρ2(x)) , (2.10)

where V (x) = V1(x)−V2(x) is the change of the potential along the edges due
to quasiparticle transfer between the antidots. Since the edge-antidot distance
and the distance between the antidots are on the order of antidot radius R,
this radius sets the range of the potential V (x). The edge velocity u can be
expected to be similar for the external edges and the antidots. This means
that the condition (2.5) of the large energy gap implies that the characteristic
wavelength of the edge excitations which can exchange energy with the quasi-
particles on the antidots is much larger than the range of the potential V (x):
~u/ε À ~u/∆∗ ' R. The interaction energy (2.10) can be expressed then as

Hint =
e

2
σz(ρ1(0)− ρ2(0))

∫
dxV (x) , (2.11)

where, as follows from Eq. (1.21), the densities ρl are

ρl(0) =
i
√

ν

L

∞∑
n=1

√
n(an − a†n) . (2.12)

The strength of interaction (2.11) can be characterized by the typical tran-
sition rate Γd between the eigenstates of the antidot Hamiltonian (2.4) in-
duced by the edges. Straightforward calculation of the “Golden-rule” rate
using Eqs. (2.9), (2.11), and (2.12) gives:

Γd =
ν3

4π~
α2κ2|〈σz〉|2 ∆E

1− e−∆E/T
, (2.13)

where ∆E is the energy difference between the two states, 〈σz〉 is the matrix
element of σz between them. The dimensionless factor κ characterizes the
overall “intensity” of the antidot-edge potential,

κ ≡
(

νe

4πεε0

)−1 ∫
dxV (x) . (2.14)

The precise form of the potential V (x) and the value of κ depend on the
details of configuration of the metallic gates that define the edges and screen
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the antidot-edge interaction. However, normalized as in Eq. (2.14), κ should
be on the order of 1. For instance, assuming as a crude model of the system
electrostatics that the antidot-edge interaction is confined to the interval d '
2R in which the edge is a tunnel-limited distance ` away from the antidot, one
can estimate κ as (2/π) ln(2R/`), i.e., κ ' 2 for realistic R/` ' 10.

The factor α in (2.13) is the “fine structure constant” of the edge excita-
tions,

α ≡ e2

4πεε0~u
, (2.15)

and is the main parameter controlling the strength of decoherence Γd through
the velocity u of the edge excitations. The dielectric constant ε is fixed by the
material (GaAs) of the structure, ε ' 10, and in the realistic range of possible
velocities u, 104 ÷ 105 m/s [22], α should vary in the range between 2 and 20.
In the most relevant case of the FQHE liquid with the filling factor ν = 1/3,
and for the edge-antidot coupling intensity estimated above, the quality factor
∆E/~Γd of the quasiparticle dynamics changes then roughly between 0.1 and
10. This means that in the case of strong edge confinement that produces
large velocity u, the quasiparticle dynamics on the antidots can be quantum-
coherent provided that all other decoherence mechanisms are sufficiently weak.
In the opposite case of smooth confinement with low velocity u, the already
unavoidable edge-state decoherence is strong enough to completely suppress
the coherence of the quasiparticle states on different antidots, and quasiparticle
transfer processes between them are incoherent.

2.2 Tunnelling rates

As was mentioned above, the discussion in this work is limited to the
regime in which the transport through the double-antidot system can be in-
terpreted as the correlated transfer of individual quasiparticles. Besides the
condition (2.5) on antidot energies, this also requires that the antidots are
coupled only weakly to the edges, so that the edge-antidot tunnelling can
be treated as a perturbation leading to an incoherent transfer of individual
quasiparticles. The quasiparticle transport through the antidots is governed
then by the kinetic equation similar to that for Coulomb-blockade transport in
quantum dots with discrete energy spectrum [85–87]. This Section calculates
the relevant tunnelling rates in the two limits of strong and weak edge-state
decoherence.
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2.2.1 Strong decoherence

If the edge-state decoherence is sufficiently strong, the quasiparticle trans-
fer between the antidots can be treated as incoherent and described by the
sequential tunnelling rate obtained by perturbation theory in the tunnel am-
plitude ∆. To calculate this rate, it is convenient to express the density op-
erators ρl of the two edges through one effective density ρ which satisfies the
same relation (2.12): ρ1(0)−ρ2(0) =

√
2ρ(0), so that the edge-antidot coupling

(2.11) is:

Hint = ~u ν
κα√

2
ρ(0) σz . (2.16)

Next, one can perform a unitary transformation which converts the fluctua-
tions of the energy of the quasiparticle basis states |10〉 , |01〉 induced by (2.16)
into a fluctuating phase of the tunnelling matrix elements of the tunnelling part
of the Hamiltonian (2.4),

−∆σx → −∆
∑
±

σ±e±i
√

gφ(0,t), g =
ν3κ2α2

2π2
, (2.17)

where φ(x, t) is the bosonic field given by same the Eq. (1.21). Then, the
rate Γ∆ of the anidot-antidot tunnelling can be expressed in the lowest non-
vanishing order in the amplitude ∆ as:

Γ∆ = 2∆2Re

∫ 0

−∞
dteiEt〈ei

√
gφ(0,t)e−i

√
gφ(0,0)〉 , (2.18)

where 〈...〉 is the average over the equilibrium fluctuations of φ and E = ±2δ
is the energy difference (depending on the direction of tunnelling) between
the quasiparticle states localized on the antidots. The standard evaluation of
Eq. (2.18) (see, e.g., [88, 89]) gives,

Γ∆(E) = γfg(E) , γ ≡ 2π∆2/ωc , (2.19)

fg(E) ≡ 1

2πΓ(g)
(2πT/ωc)

g−1 |Γ(g/2 + iE/2πT )|2 e−E/2T ,

where Γ(z) is the gamma-function and ωc = ~u/2α is the cut-off energy of
the edge excitations. The function fg(E) gives the energy dependence of the
tunnelling rate (see Fig. 2.2) and is defined to coincide with the Fermi dis-
tribution function for g = 1. The power g determines the behavior of the
transition rate at large energies |E| À T : Γ∆(E) ∝ E(g−1) on the “allowed”
side of the transition (E < 0), and Γ∆(E) ∝ E(g−1)e−E/T on the “forbidden”
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side (E > 0), when the transition has to overcome the energy barrier E. This
asymptotic behavior of the tunnelling rates, together with Eq. (2.19), is valid
at |E| ¿ ωc.

The rates Γl, l = 1, 2, of the antidot-edge tunnelling are obtained through a
similar calculation starting with the tunnel Hamiltonian (2.6). They are given
by the same expression (2.19):

Γl(E) = γlfν(E) , γl ≡ 2π|Tl|2/ωc . (2.20)

In general, the long-range Coulomb interaction should generate corrections to
g which move it away from the “quantized” value g = ν [90–92]. However, in
contrast to the quasiparticle tunnelling between the antidots, which is changed
qualitatively by decoherence created by the Coulomb interaction with the edge,
the Coulomb corrections for the antidot-edge tunnelling are expected to be
small and will be neglected in this work.
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Figure 2.2: Energy dependence of the antidot-antidot (2.19) and antidot-edge
(2.20) tunnelling rates. The normalization factor is Γ0 = γ(2πT/ωc)

g−1.

Thus, in the regime of strong edge-state decoherence, the overall trans-
port of quasiparticles through the double-antidot system can be described
as a combination of successive antidot-edge transitions (2.20) and incoherent
transitions (2.19) between the antidots.
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2.2.2 Weak decoherence

For sufficiently strong edge-state confinement, the edge-induced relaxation
rate (2.13) will be smaller than the antidot energies. If other decoherence
mechanisms, including the decoherence created by incoherent antidot-edge
tunnelling are also weak on the scale of the antidot energies,

Γd, Γl ¿ ∆, δ, U, T, (2.21)

the quasiparticle dynamics on the antidots is quantum-coherent. It is char-
acterized by the stationary eigenstates |k〉, k = 1, 2, of the double-antidot
Hamiltonian (2.4):

H|k〉 = (ε + (−1)kΩ)|k〉, Ω ≡ (δ2 + ∆2)1/2,

|k〉 = c1k|10〉+ c2k|01〉, (2.22)

for which the probabilities λlk of finding the quasiparticle on the lth antidot
are:

λlk = |clk|2 = [1 + (−1)l+kδ/Ω]/2 . (2.23)

In the coherent regime (2.21), the double-antidot system can be viewed
as a quasiparticle qubit [20]. The current through the qubit is described in
terms of tunnelling to/from the eigenstates (2.22). The corresponding tun-
nelling rates are found from the tunnel Hamiltonian (2.6), in which, as was
discussed in Sec. 2.1.2, the quasiparticle creation/annihalation operators ξ, ξ†

act as fermions. This means that the tunnel matrix elements for the quasipar-
ticles can be calculated in the standard way. In particular, for each eigenstate
(2.22), the matrix element is independent of the occupation factor of the other
eigenstate. Explicitly, the tunnelling rate Γlk from the lth edge into the state
|k〉 is

Γlk = 2|Tl|2|〈k|ξ†l |0〉|2Re

∫ 0

−∞
dteiEt〈ψ†l (t)ψl(0)〉 . (2.24)

Here |0〉 denotes the empty eigenstate and E is the appropriate tunnelling
energy which includes in general the eigenenergies (2.22) and the interaction
energy U . The quasiparticle matrix elements are |〈k|ξ†l |0〉|2 = λlk, and thus,

Γlk(E) = λlkΓl(E), (2.25)

where the rates Γl(E) are given by Eq. (2.20). In the practically important
case of FQHE liquid with ν = 1/3, the energy dependence of the transition
rates (2.25) is illustrated by the g = 1/3 curve in Fig. 2.2. The peak of the
tunnelling rate at ε ' 0 is the consequence of the Luttinger-liquid correlations
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of the edge quasiparticles. Conductance calculations presented in the next
Section show that this peak manifests itself as additional resonant features of
the qubit conductance.

2.3 Conductance of the double-antidot system

In both situations of strong and weak decoherence, the conductance asso-
ciated with tunnelling of individual quasiparticles through the double-antidot
system can be calculated by solving the kinetic equation for quasiparticle oc-
cupation probabilities of the antidot states. Similarly to the case of tunnelling
through one antidot [7, 21–25], the conductance as a function of the common
energy ε of the antidot states should exhibit the resonant tunnelling peaks.
For the double-antidot system, the peak structure is, however, more compli-
cated, reflecting the transition between the low-temperature regime in which
each peak corresponds to addition of one quasiparticle to the system of anti-
dots, and a possible “large-temperature” regime, when the single-quasiparticle
peaks are merged, and each conductance peak is associated with addition of
two quasiparticles. In this Section, we calculate the corresponding conductance
line shapes. Quantitatively, these line shapes are determined by the interplay
between the quasiparticle repulsion energy U on the two antidots and tunnel
coupling ∆ between them. The calculations below are focused mostly on the
more typical case of large repulsion energy U À ∆ ' δ.

2.3.1 Strong decoherence

For strong edge-state decoherence, coherent mixing of the quasiparticle
states on the two antidots is suppressed, and the quasiparticle dynamics is
described by kinetic equations for the occupation probabilities pij of the states
|ij〉 (2.2) localized on the antidots. The probabilities evolve due to incoherent
jumps of quasiparticles at the rates Γ∆ (2.19) and Γl (2.20) between these
states. The stationary quasiparticle current I through the antidots is found
in this regime from the balance of the forward/backward transition across any
of the three tunnel junctions of the system, e.g., from the transitions between
the antidots:

I = eν[p10Γ∆(2δ)− p01Γ∆(−2δ)] . (2.26)

In general, the quasiparticle current I can be calculated by the direct numerical
solution of the kinetic equation. The results of such solution for the linear
conductance G = dI/dV |V =0 are shown in Fig. 2.3 (in all numerical results
presented below we take ν = 1/3). Qualitative behavior of the system can be
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understood by analyzing the limits where the simple analytical expressions for
the conductance can be obtained.

The first limit is Γ∆ ¿ Γl, where the antidot-antidot tunnelling is the bot-
tleneck for the current flow. In this case, to the zeroth-order approximation
in Γ∆, the current is vanishing, and one can use in Eq. (2.26) the equilibrium
probabilities pij = (1/Z)e−εij/T , Z =

∑
ij e−εij/T , obtaining for the conduc-

tance

G =
(eν)2γ

T

fg(2δ)e
δ/2T

e−ε/T + e−(ε+U)/T + 2 cosh(δ/T )
. (2.27)

Equation (2.27) describes the “coalesced” conductance peak that corre-
sponds to the addition of two quasiparticles to the antidots. At large temper-
atures, T ≥ U , the peak has a usual thermally-broadened shape with width
proportional to T . At T ¿ U , however, the peak shape (2.27) is quite unusual:
the conductance is constant between the point ε ' 0, when the first quasipar-
ticle is added to the antidots, and the point ε ' −U of addition of the second
quasiparticle, forming the plateau of width U – see Fig. 2.3. The conductance
plateau remains flat until the temperature is lowered to T ' U/ ln[Γl(U)/Γ∆],
when the thermal suppression of the antdot-edge tunnelling rate makes it com-
parable to Γ∆ at the center of the plateau, ε ' −U/2, despite the fact that the
two rates are very different at ε ' 0. In this temperature range, a dip develops
in the center, which separates the plateau into two peaks, one at ε ' 0 and
the other at ε ' −U , with decreasing temperature (Fig. 2.3). Each peak cor-
responds to addition of one quasiparticle to the double-antidot system. Note
that the resonant peaks occur when the gate bias energy ε is equal to “minus
energy” of the antidot state, so that the total energy of the state relative to
the chemical potential of the edges is zero.

The shape of such single-quasiparticle peaks can be described in the op-
posite limit of strong antidot-antidot tunnelling Γ∆ À Γl. In this limit, the
general kinetic equations for three probabilities p00, p10, p01 relevant at ε ' 0,
e.g.,

ṗ00 = Γ1(−ε1)p10 + Γ2(−ε2)p01 − [Γ1(ε1) + Γ2(ε2)]p00, (2.28)

and similar equations for the other probabilities, can be reduced to two equa-
tions for the effective two-state system. The strong antidot-antdot tunnelling
that couples the singly-occupied states |10〉 , |01〉, maintains the relative equi-
librium between them: p10/p01 = e−2δ/T , making it possible to treat these two
states as one. The effective transition rates between this state and the state
|00〉 are obtained as the weighted average of the transition rates in starting
kinetic equations, e.g. (2.28). The standard calculation of the current through
a two-state system gives then the resonant peak of the double-antidot con-
ductance at ε ' 0 (associated with addition of the first quasiparticle to the
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Figure 2.3: Conductance of the double-antidot system in the regime of
overdamped quasiparticle transport. Conductance is normalized to G0 =
(eν)2Γ∆(2δ)/T . Different curves correspond to different ratios of the
antidot-antidot and antidot-edge tunnelling rates. From top to bottom:
Γ∆(2δ)/Γ2(0) = 10−4, 10−3, 10−2, 10−1.

antidots),

G =
(eν)2Γ1(ε1)Γ2(−ε2)f(2δ)/T

Γ1(ε1) + Γ2(ε2) + Γ1(−ε1)f(−2δ) + Γ2(−ε2)f(2δ)
, (2.29)

where f(E) = f1(E) is the Fermi distribution function. For instance, if the
two antidot states are aligned, δ = 0,

G =
(eν)2

T

γ1γ2

γ1 + γ2

fν(ε)

1 + 2e−ε/T
. (2.30)

The conductance peak at ε ' −U associated with the addition of the
second quasiparticle is given by an expression similar to Eq. (2.29) with an
appropriate shift of energy ε → ε + U . In particular, for δ = 0, this expression

35



reduces to

G =
(eν)2

T

γ1γ2

γ1 + γ2

fν(ε + U)

2 + e−(ε+U)/T
. (2.31)

The conductance peak (2.30) is asymmetric around ε = 0, since in the tun-
nelling dynamics underlying this peak, only one quasiparticle can tunnel off the
antidots, while there are two available states for tunnelling onto the antidots.
Still, the “quasiparticle-quasihole” symmetry makes the two peaks, (2.30) and
(2.31), at δ = 0 symmetric images of each other with respect to a “mirror”
reflection ε+U/2 → −(ε+U/2). For δ 6= 0, the condition Γ∆ À Γl is violated
at sufficiently low temperatures T ¿ δ, and Eq. (2.29) becomes invalid. In
this case, the antidots are effectively out of resonance, and conductance peaks
are suppressed exponentially with temperature at all gate bias energies ε.

2.3.2 Weak decoherence

If the edge-state decoherence is sufficiently weak and allows for quantum-
coherent transfer of quasiparticles between the two antidots, the kinetic equa-
tion for quasiparticle transport should be written not in the basis of states,
(2.2), but in the basis of the hybridized states (2.22). As follows from the
estimates of the edge-state decoherence in Sec. 2.1.3, even in this regime, the
edge-induced relaxation rate Γd (2.13) should be strong enough, Γd À Γl, to
maintain the equilibrium distribution of quasiparticles over the antidot states
in the process of tunnelling. This means that if E

(n)
k is the energy of the state

|k〉 when there are n quasiparticles on the antidots, the probability that this

state is occupied is ρk(n) = (1/Zn)e−E
(n)
k /T , Zn =

∑
k e−E

(n)
k /T . The quasi-

particle tunnelling is reduced then to the dynamics of the total number n of
quasiparticles on the antidots, described by the probability distribution p(n).
The rates of tunnelling transitions n → n± 1 in this dynamics are:

Γ±(n) =
∑

l=1,2

Γ±l (n), Γ±l (n) =
∑

kq

ρk(n)Γl(k, q, n, n± 1) . (2.32)

where the partial transitions rates Γl(p, k, n, n±1) from the state p of n quasi-
particles into the state k of n± 1 quasiparticles are given by the appropriate
tunnelling rates (2.25) between the lth edge and antidot. The solution of the
simple kinetic equation

ṗ(n) =
∑
±

[
Γ∓(n± 1)p(n± 1)− Γ±(n)p(n)

]
, (2.33)
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gives then the stationary quasiparticle current through the system:

I = νe
∑

n

[
Γ+

1 (n)P (n)− Γ−1 (n− 1)P (n− 1)
]

. (2.34)
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Figure 2.4: Conductance of the double-antidot system in the regime of the
underdamped quasiparticle dynamics. Conductance is plotted in units of G0 =
(eν)2Γ1(0)/∆. The curves show the two main resonant conductance peaks at
ε = Ω and ε = −(U + Ω), and a weak kink at ε = −Ω that is made visible by
the Luttinger-liquid singularity in the tunnelling rates. The upper and lower
curves are, respectively, the conductance with and without equilibration on
the antidots.

Equation (2.33) shows that the stationary probability distribution p(n)
satisfies the “detailed balance” condition p(n)Γ+(n) = p(n + 1)Γ−(n + 1) even
in the presence of the non-vanishing bias voltage V . Using this condition, and
expanding both p(n) and the tunnelling rates Γ(n) to first order in V , one
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finds the linear conductance G of the quasiparticle qubit,

G = η
(eν)2

T

∑
n

wn
Γ+

1 (n)Γ+
2 (n)

Γ+
1 (n) + Γ+

2 (n)
. (2.35)

Here wn = Zn/Z is the equilibrium probability to have n quasiparticles on the
antidots, Z =

∑
n Zn, and the factor η gives the fraction of the voltage V that

drops across the edge-antidot junctions. Equation (2.35) can be understood
in terms of forward jumps of quasiparticles in the left junction contributing to
the current only if they are followed by the forward jumps in the right junction.
As an example, at temperatures T ¿ U , and ε ' −Ω one can limit the sum
in Eq. (2.35) to one term n = 0. The conductance G is then,

G =
(eν)2

T

η

1 + 2e−ε/T cosh(Ω/T )
·

∑
q,k Γ1q(ε + (−1)qΩ)Γ2k(ε + (−1)kΩ)∑

l,m Γlm(ε + (−1)mΩ)
, (2.36)

where the tunnelling rates Γqk are defined in Eq. (2.25).
For comparison, one can calculate the conductance in the same regime

T ¿ U , ε ' −Ω, but without equilibration on the antidots, i.e. assuming that
the edge-state decoherence is very weak, Γd ¿ Γl. As before, the antidots
can be occupied in this regime at most by one quasiparticle at a time, and
straightforward solution of the kinetic equation describing the occupation of
individual energy eigenstates due to transitions (2.25) gives the conductance,

G =
(eν)2

T

∆2

2Ω2

ηγ1γ2

1 + 2e−ε/T cosh(Ω/T )
·

∑
±

fν(ε± Ω)

γ1(1∓ δ/Ω) + γ2(1± δ/Ω)
. (2.37)

Equation (2.37) describes the resonant conductance peak that corresponds to
the addition of the first quasiparticle to the antidot. The second quasiparticle
peak at ε = −(U + Ω) is described by the similar expression. At low temper-
atures, T ¿ Ω, only the lowest energy eigenstate with energy −Ω contributes
to the conductance (2.37). In this case, the equilibration on the antidots does
not have any effect, and Eqs. (2.36) and (2.37) coincide. As one can see from
Fig. 2.4, which plots the conductance obtained by numerical solution of the
full kinetic equation, the difference between the two regimes, with and with-
out relaxation, remains very small even at moderate temperatures. At larger
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Figure 2.5: Conductance of the symmetric (δ = 0) antidot qubit exhibiting
two resonant conductance peaks at ε = ∆ and ε = −(U +∆). Both peaks have
kinks at ε = −∆ and ε = −(U −∆) caused by the Luttinger-liquid singularity
in the tunnelling rates. The inset shows the conductance for the special value
of interaction energy U = 2∆, when the two kinks coincide producing very
small but visible additional conductance peak. Conductance is normalized as
in Fig. 2.4.

temperatures, Ω ¿ T ¿ U , and δ = 0, Eq. (2.37) reduces to Eq. (2.30) for the
conductance in the overdamped regime. The only difference between the two
results is the factor η in Eq. (2.37) which implies that the part of the applied
bias voltage that drops across the region of the quantum-coherent quasiparticle
dynamics does not contribute to the linear conductance.

Besides the two main resonant peaks, the curves in Fig. 2.4 exhibit also a
small kink at ε ' −Ω. This kink appears at the intermediate temperatures and
is the result of the transfer of the first quasiparticle added to the antidots not
through the more probable ground state of the qubit but through the excited
state with energy Ω. One could see, however, by plotting the conductance of
the double-antidot system for tunnelling electrons (the tunnelling rates given
by the g = 1 in Fig. 2.2) that the contribution of the excited state to the
conductance is not sufficient by itself to produce such a kink. The kink in
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the conductance appears only when the contribution from the excited state
is amplified by the Luttinger-liquid singularity in the quasiparticle tunnelling
rate (seen in the g = 1/3 curve in Fig. 2.2 as a peak at zero energy). It becomes
somewhat more pronounced in the conductance peaks of the “symmetric”
qubit with δ = 0 shown in Fig. 2.5. In this case, the kinks appear on both
peaks: at ε = −∆ and ε = −(U − ∆). The second kink is due to transport
through the ground state of the qubit in the regime when the main contribution
to conductance comes from the excited state. As shown in the inset in Fig. 2.5,
at the special value of the interaction energy U ' 2∆, the two kinks coincide
and form a weak additional peak of the qubit conductance.

2.4 Conclusion

We have calculated the linear conductance G of the double-antidot system
in the regime of weak quasiparticle tunnelling through the antidots. Depending
on the strength of the edge-state decoherence, the tunnelling can be coherent or
incoherent. In the incoherent regime, the two resonant conductance peaks that
correspond to the two antidot states are spaced by the quasiparticle interaction
energy U . In the coherent regime, this spacing is increased to U + 2Ω, where
2Ω is the gap between the energy eigenstates of the double-antidot system.
This regime of quasiparticle dynamics is also characterized by the Lorentzian
dependence of the system conductance, G ∝ (1 + δ2/∆2)−1, on the energy
difference δ between the antidots. In the quantum-coherent regime, the double-
antidot system can be used as a quasiparticle qubit.
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Chapter 3

Transport in Multi-Antidot
Systems

In the last chapter we discussed transport in a system consisting of two
sequentially tunnel coupled antidots. However, due to the geometry of that
particular setup, the exchange statistics of the quasiparticles did not influence
the conductance. More specifically, the particular geometry that was consid-
ered did not allow for the possibility for quasiparticles to be exchanged. Here,
we consider [84] the situation when quasiparticles can tunnel between multiple
antidots. The main motivation for this is to explore how the anyonic exchange
statistics of the enter into the conductance of these systems and to propose a
method to determine the exchange statistics of these particles. As mentioned
in Chapter 1, recent experiments [10, 11] demonstrating unusual flux period-
icity of conductance of a quasiparticle interferometer can be interpreted as
a manifestation of the fractional statistics [12, 13], this interpretation is not
universally accepted [14, 15]. There is a number of different theoretical propos-
als (see, e.g., [80, 81]) suggesting more complicated tunnel structures where
the statistics should manifest itself through noise properties. Partly due to
complexity of noise measurements, such experiments have not been performed
successfully up to now. Here, we show that coherent quasiparticle dynamics
in multi-antidot structures should provide clear signatures of the quasiparti-
cle exchange statistics in dc transport properties. Most notably, in tunneling
through a line of three antidots, statistics should manifest itself directly as a
non-vanishing resonant peak of the tunnel conductance which would vanish if
the tunneling particles had fermionic exchange statistics.

In the next section we start by discussing the general model of a multiple
anti-dot system and also introduce the concept of hard-core anyons. The
section will then conclude with a method for calculating the matrix elements of
the tunnel Hamiltonian between states of one and two quasiparticles occupying
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(a)

(b)

Figure 3.1: Tunneling of anyonic quasiparticles between opposite edges of
an FQHE liquid through triple-antidot systems with quasi-1D dynamics of
anyons: (a) loop with periodic boundary conditions; (b) open interval. Quasi-
particles tunnel between the edges and the antidots with characteristic rates
Γ1,2. The antidots are coupled coherently by tunnel amplitudes ∆.

the antidot system, which is used to determine the conductance. In the last
section we explicitly evaluate the conductance for a system consisting of a
line of antidots and discuss its relevance to the measurement of the anyonic
exchange statistics of the quasiparticles.

3.1 Model

As mentioned earlier, the overall goal of this work is to extend the theory
developed in chapter 2 to structures where the statistics of the quasiparticles
does indeed affect the conductance. The two simplest structures that exhibit
this property consist of three antidots and have quasi-1D geometry with either
periodic or open boundary conditions (Fig. 3.1). Below, we focus mostly on
the conductance of these structures, although the main elements of our ap-
proach are valid for more general 1D systems of anyons. A technical issue that
needed to be resolved is to calculate the tunnel conductance of these struc-
tures is that the second-quantized field operators of anyons defined through the
Wigner-Jordan transformation [93–96], are not fully sufficient in the situations
of tunnelling. As we show below, to obtain correct matrix elements for anyon
tunneling, one needs to keep track of the appropriate boundary conditions of
the anyonic wavefunctions which are not accounted for in the field operators.

Specifically, we consider the antidots coupled by tunneling among them-
selves and to two opposite edges of the quantum Hall liquid (Fig. 3.1). The
edges play the role of the quasiparticle reservoirs with the transport voltage
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e∗V applied between them. To focus the discussion on the regime of coher-
ent transport of individual quasiparticles we assume that the antidot-edge
coupling is weak and can be treated as a perturbation. Quasiparticle trans-
port through the antidots is governed then by the kinetic equation similar
to that for Coulomb-blockade transport of electrons through quantum dots
with a discrete energy spectrum [85–87] and was discussed in the previous
chapter. In addition, coherent quasiparticle dynamics requires that the relax-
ation rate Γd created by direct Coulomb antidot-edge coupling is weak. As
was discussed previously, this condition should be satisfied if the edge-state
confinement, which determines the velocity of the edge propagation, is suf-
ficiently strong [70]. The model presented here follows along the same lines
as in Chapter 2 namely that we assume all quasiparticle energies on the an-
tidots, tunnel amplitudes ∆, temperature T , Coulomb interaction energies U
between quasiparticles on different antidots, are much smaller than the energy
gap ∆∗ for excitations on each antidot. This condition ensures that the state
of each antidot is characterized completely by the occupation number n of the
relevant quantized state localized at this antidot. In any given range of the
backgate voltage or magnetic field (which produces the overall shift of the an-
tidot energies - see, e.g., [7, 21–23]), there can be at most one quasiparticle on
each antidot, n = 0, 1. This “hard-core” property of the quasiparticles means
that they behave as fermions in terms of their occupation factors, despite the
anyonic exchange statistics. All these assumptions can be summarized as:
Γd, Γj ¿ ∆, U, T ¿ ∆∗.

Under these conditions, the antidot tunneling is dominated by the quasi-
particle energies on the antidots. The quasi-1D geometry of the antidot sys-
tems we consider makes it possible to introduce quasiparticle “coordinate” x
numbering successive antidots; e.g., x = −1, 0, 1 for systems in Fig. 3.1. The
quasiparticle Hamiltonian can be written then in the second-quantized form
as

H =
∑

x

[εxnx − (∆xξ
†
x+1ξx + h.c.)] +

∑
x<y

Ux,ynxny , (3.1)

where εx are the energies of the relevant localized states on the antidots (taken
relative to the common chemical potential of the edges at V = 0), ∆x is the
tunnel coupling between them, Ux,y is the quasiparticle Coulomb repulsion,
and nx ≡ ξ†xξx. From the point of view of the standard edge-state tunneling
theory, the quasiparticle operators ξ†x, ξx in (3.1) can be understood as the
Klein factors left in the standard operators for the edge-state quasiparticles
when all the edge magneto-plasmon modes are suppressed by the gap ∆∗ as
pointed out in the discussion in Section 2.1.2. In 1D structures, the Wigner-
Jordan transformation expresses them in terms of the Fermi operators cx in a
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way that produces the necessary exchange statistics πν [93]:

ξx = eiπ(ν−1)
∑

z<x nzcx , ξyξx = ξxξye
iπνsgn(x−y), (3.2)

with similar relations for ξ†.

3.1.1 Hard-core Anyons

Anyonic exchange statistics creates an effective interaction between the
quasiparticles which can be understood as the Aharonov-Bohm (AB) inter-
action between a flux tube “attached” to one of the particles and the charge
carried by another. Quasiparticle transport in antidots is also affected by their
Coulomb interaction U . In the antidot loop (Fig. 2.1a), however, the Coulomb
interaction is constant Ux,y = U , and the interaction term in the Hamilto-
nian (3.1) reduces to Un(n − 1)/2, with n =

∑
x nx – the total number of

the quasiparticles on the antidots. In this case, the Coulomb interaction con-
tributes to the energy separation between the group of states with different
n, but does not affect the level structure for given n, which is determined by
the “single-particle” part of the Hamiltonian (3.1). The hard-core property
of quasiparticles limits n to the interval [0, 3]. For n = 0 and n = 3, the
system is in the “empty” and “completely filled” state with respective ener-
gies E0 = 0 , E3 =

∑
x εx + 3U . The spectrum E1k of the three n = 1 states

|1k〉 =
∑

x φk(x)ξ†x|0〉, is obtained as usual from the Hamiltonian (3.1). In the
case of the uniform loop, εx = ε, ∆x = ∆, with an external AB phase ϕ, one
has φk(x) = eikx/L1/2 and

E1k = ε−∆ cos k , k = (2πm + ϕ)/L , (3.3)

where m = 0, 1, 2, and the length of the loop is L = 3.
Anyonic statistics of the quasiparticles can be seen in the n = 2 states,

|2l〉 = (1/
√

2)
∑

xy ψl(x, y)ξ†yξ
†
x|0〉. The fermion-anyon relation (3.2) suggests

that the structure of stationary two-anyon wavefunctions should coincide up
to the exchange phase with that for free fermions:

ψl(x, y) =
eiπ(1−ν)sgn(x−y)/2

√
2

det

(
φq(x) φq(y)
φp(x) φp(y)

)
. (3.4)

Here φs are the single-particle eigenstates of the Hamiltonian (3.1). (The states
(3.4) are numbered with the index l of the third “unoccupied” eigenstate of
(3.1) complementary to the two occupied ones q, p.) The boundary conditions
for the φs are affected by the exchange phase in Eq. (3.4). To find them,
we temporarily assume for clarity that coordinates x, y are continuous and
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lie in the interval [0, L]. Subsequent discretization does not change anything
substantive in this discussion. The 1D hard-core particles are impenetrable
and can be exchanged only by moving one of them, say x, around the loop
from x = y + 0 to x = y − 0 (Fig. 3.2a). Since the loop is imbedded in the
underlying 2D system, such an exchange means that the wavefunction acquires
the phase factor eiπν , in which the sign of ν is fixed by the properties of the
2D system, e.g. the direction of magnetic field in the case of FQHE liquid.
Next, if the second particle is moved similarly, from y = x + 0 to y = x − 0,
the wavefunction changes in the same way, for a total factor ei2πν . Equation
(3.4) shows that only one of these changes can agree with the 1D form of the
exchange phase. As a result, the wavefunction (3.4) satisfies different boundary
conditions in x and y:

ψl(L, y) = ψl(0, y)eiϕ, ψl(x, L) = ψl(x, 0)ei(ϕ+2πν). (3.5)

Conditions (3.5) on the wavefunction (3.4) mean that the single-particle func-
tions φ in (3.4) satisfy the boundary condition that correspond to the effective
AB phase ϕ′ = ϕ + π − πν, i.e. the addition of an extra quasiparticle to the
loop changed the AB phase by π − πν, where −πν comes from the exchange
statistics and π from the hard-core condition. This gives the energies of the
two-quasiparticle states (3.4) as U + E1q + E1p, where, if the loop is uniform,
the single-particle energies are given by Eq. (3.3) with ϕ → ϕ′. In this case,∑

k E1k = 0, and the energies E2l of the two-quasiparticle states can be written
as:

E2l = 2ε + U −∆ cos l , l = (2πm′ + ϕ− πν)/3 , (3.6)

where m′ = 0, 1, 2.

(a) (b)

0,L

xy
x

y

Figure 3.2: Exchanges of hard-core anyons on a 1D loop: (a) real exchanges
by transfer along the loop embedded in a 2D system; (b) formal exchanges
describing the assumed boundary conditions (3.5) of the wavefunction.
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3.1.2 Tunnel Matrix Elements

One of the consequences of the above discussion is that the sign of ν in
the 1D exchange phases of Eqs. (3.2) and (3.4) can be chosen arbitrarily for a
given fixed sign of the 2D exchange phase. Reversing this sign only exchanges
the character of the boundary conditions (3.5) between x and y. This fact has
simple interpretation. Although the 1D hard-core anyons can not be exchanged
directly, formally, coordinates x and y in Eq. (3.4) are independent and one
needs to define how they move past each other at the point x = y. Depending
on whether the x-particle moves around y from below or (as in Fig. 3.2b) from
above, its trajectory does or does not encircle the flux carried by the y particle,
and the boundary condition for x is or is not affected by the statistical phase.
The choice made for x immediately implies the opposite choice for y (Fig. 3.2b),
accounting for different boundary conditions (3.5). This interpretation shows
that in calculation of any matrix elements, the participating wavefunctions
should be taken to have the same boundary conditions. While this requirement
is natural for processes with the same number of anyons, it is less evident for
tunneling that changes the number of anyons in the system. Indeed, the most
basic, tunnel-Hamiltonian, description of tunneling into the point z of the
system leads to the states

ξ†z|1k〉 = (1/
√

2)
∑
xy

ψk(x, y)ξ†yξ
†
x|0〉 , (3.7)

ψk(x, y) = [φk(x)δy,z − eiπ(1−ν)sgn(x−y)δx,zφk(y)]/
√

2 .

One can see that Eq. (3.7) automatically implies specific choice of the bound-
ary conditions which physically corresponds to the tunneling anyon not being
encircled by anyons already in the system. This means that in the calculation
of the tunnel matrix elements with the states (3.4), one should always pair the
coordinate of the tunneling anyon with the discontinuous one in (3.5). With
this understanding, the tunnel matrix elements are obtained as

〈2l|ξ†z|1k〉 =
√

2
∑

x

ψ∗l (x, z)φk(x) . (3.8)

For instance, in the case of uniform loop with states (3.3) and (3.6), we get
up to an irrelevant phase factor

〈2l|ξ†z|1k〉 = (2/3) cos[(k − l)/2] . (3.9)

Specific anyonic interaction between quasiparticles can be seen in the fact
that the matrix elements (3.9) do not vanish for any pair of indices k, l. In the
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fermionic case ν = 1, one of the elements (3.9) always vanishes for any given
k, since the two-particle state after tunneling necessarily has one particle in
the original single-particle state. By contrast, the tunneling anyon can shift
existing particle out of its state.

The matrix elements involving empty or fully occupied states coincide
with those for fermions. Taken together with Eqs. (3.8) and (3.9) for tran-
sitions between the partially filled states, they determine the rates Γj(E) =
γjfν(E)|〈ξ†z〉|2 of tunneling between the jth edge and the antidots, where γj is
the overall magnitude of the tunneling rate, and fν(E) is given by Eq. (2.20).
Similarly to what was done in chapter 2 the rates Γj(E) can be used in the
kinetic equation to calculate the conductance of the antidot system. Anyonic
statistics of quasiparticles affects the position and amplitude of the resonant
peaks of conductance through the shift of the energy levels by quasiparticle
tunneling (described, e.g., by Eq. (3.6)) and through the kinetic effects caused
by the anyonic features in the matrix elements (3.8). In the case of the antidot
loop (Fig. 3.1a), however, effects of statistics are masked by the fact that the
external AB flux ϕ through the loop is essentially random, since the antidot
area is much larger than the area of the loop and ϕ can not be controlled
by variations of external magnetic field on the relevant scale of one period of
conductance oscillations. Below, we present the results for conductance for
the similar case of a line of antidots (Fig. 3.1b), the conductance of which is
insensitive to the AB phase, and shows effects of fractional statistics in the
tunneling matrix elements.

3.2 Conductance of the Antidot Line Junction

As before, the quasiparticle Hamiltonian is given by Eq. (3.1). In this ge-
ometry, the interaction energy U1 ≡ U1,0 = U0,−1 between the nearest-neighbor
antidots is in general different from the interaction U2 ≡ U1,−1 between the
quasiparticles at the ends. The localization energies on the antidots can be
written as εj = ε + xδ + 2λ|x|. We consider first the unbiased line, δ = 0.
At low temperatures, T ¿ ∆, U , only the ground states of n quasiparti-
cles with energies En participate in transport: E0 = 0, E1 = ε + λ − ω,
E2 = 2ε + 3λ − ω̄ + (Ua + Ub)/2, and E3 = 3ε + 2Ua + Ub + 4λ, where
ω = (∆2

1 + ∆2
2 + λ2)1/2 and ω̄ is given by the same expression with λ replaced

by λ̄ = λ − (U1 − U2)/2. In this regime, the linear conductance G consists
of three resonant peaks, with each peak associated with addition of one more
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quasiparticle to the antidots,

G =
(eν)2

T

γ1γ2

γ1 + γ2

anfν(En+1 − En)

1 + exp[−(En+1 − En)/T ]
, (3.10)

where an ≡ |〈n+1|ξ†0|n〉|2. The amplitudes a0, a2 are effectively single-particle,
and thus, independent of the exchange statistics: a0 = (ω + λ)/2ω, and a2 =
(ω̄ − λ̄)/2ω̄. By contrast, the amplitude a1 of the transition from one to two
quasiparticles is multi-particle, and is found from Eqs. (3.4) and (3.8) to be
strongly statistics-dependent,

a1 =
∆2

1∆
2
2

(ω + λ)ω(ω̄ − λ̄)ω̄
cos2(πν/2) . (3.11)

In particular, a1 vanishes in the case of electron tunneling (ν = 1), but is
non-vanishing in the case of fractional statistics, e.g., for ν = 1/3, when
cos2(πν/2) = 3/4. We illustrate this in Fig. 3.3 which shows the tunnel
conductance G of the antidot system. This was obtained by solving the ki-
netic equation in the case of weak edge state induced relaxation similarly to
what was done in section 2.3.2. Qualitatively, the vanishing amplitude a1 for
electrons can be understood as a result of destructive interference between the
two terms in the wavefunction which correspond to different ordering of the
added/existing electron on the antidot line. Fractional statistics of quasipar-
ticles makes this destructive interference incomplete. Finite bias δ 6= 0 along
the antidot line suppresses this interference making the effect of the statistics
smaller. One can still distinguish the fractional statistics by looking at the
dependence of the amplitude of the middle peak of conductance on the bias δ
shown in the right inset in Fig. 3.3.

3.3 Conclusion

In conclusion, we have developed a model of coherent transport of anyonic
quasiparticles in systems of multiple antidots. In antidot loops, addition of
individual quasiparticles shifts the quasiparticle energy spectrum by adding
statistical flux to the loop. In the case without loops, energy levels are insen-
sitive to quasiparticle statistics, but the statistics still manifests itself in the
quasiparticle tunneling rates and hence dc tunnel conductance of the antidot
system.
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Figure 3.3: Linear conductance G of the antidot line in a ν = 1/3 FQHE
liquid (Fig. 3.1b) as a function of the common antidot energy ε relative to the
edges. In contrast to electrons (ν = 1, left inset), tunneling of quasiparticles
with fractional exchange statistics produces non-vanishing conductance peak
associated with transition between the ground states of one and two quasipar-
ticles. The maximum of this peak is shown in the right inset (ν = 1/3 – solid,
ν = 1 – dashed line) as a function of the bias δ. The curves are plotted for
∆1 = ∆2, λ = 0, γ1 = γ2; conductance is normalized to G0 = (eν)2Γ1(0)/∆1.
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Chapter 4

Quantum Measurement with an
Antidot Electrometer

Quantum computing based on quasiparticles of the fractional quantum Hall
effect represents both an exciting application of quantum antidots and a viable
alternative to other current approaches in QC. The motivation for this chapter
is the following: in utilizing this particular scheme of quantum computation
one needs to read out the final qubit state. As discussed below, the most
natural solution to the problem of measuring FQHE qubits is to employ the
quantum antidot electrometer (QAE) as a measurement device, as it operates
in the exact same low temperature and high magnetic field conditions as FQHE
qubits. This chapter is dedicated to an analysis of the QAE, operated as a
linear amplifier, as a quantum detector for FQHE based qubits.

As shown in chapter 1, the characteristics of a quantum detector operating
as a linear amplifier can be given in terms of its transport properties. In
order to discuss transport, we model the QAE in the spirit of chapters two
and three. Here again, we consider the experimentally relevant regime when
both the temperature T and the bias e∗V are much less than the energy gap
between single quasiparticle states on the antidot. This means that there can
only be either n = 0 or 1 additional quasiparticles on the antidot. This also
implies that the bosonic excitations of the edge states encircling the antidot
are completely suppressed. Taken as a whole, these assumptions mean that
the problem consists of a single resonant energy level ε coupled to two opposing
edges states with chemical potentials µ1,2, as shown in Fig. 4.1. The tunnelling
between the lth edge and antidot can be described quantitatively with the
standard tunnel Hamiltonian

H
(l)
T = Tlψ

†
l ξ + h.c. , (4.1)
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Figure 4.1: (a) Geometry of the QAE with the quasiparticle transfer rates Γ1,2

between the edge states and antidot (b) Energy diagram with µ1,2 being the
chemical potentials of the edge states and ε is the energy of the resonant level.

where ψ, ψ† and ξ, ξ† are the creation/annihalation operators for quasiparticles
at, respectively, the edges and the antidot. In the regime when Γj ¿ T ,
individual quasiparticle transport occurs via correlated tunnelling between the
edges and antidot.

The simplest setup for which the QAE can be used as a detector is when
the resonant energy level is sensitive to the state of the qubit. This can be
accomplished if the QAE is coupled to the qubit electrostatically so that vari-
ations in the qubit’s state cause the potential (and hence ε) to vary yielding
an output current I from the detector which depends on the state of the qubit.
In a case of a weakly coupled detector, when the variations of the energy level
are small on the scale of e∗V and Γj and its response faster than the qubit dy-
namics, we can analyze the QAE from the viewpoint of linear amplifier theory
[26, 27].

It is interesting to point out the similarities between the QAE acting as
a detector and the single electron transistor (SET) which has been used as a
detector for solid state QC [64, 65, 97–99]. The SET consists of a small metallic
island tunnel coupled to two electrodes which serve as electron (Fermi-Liquid
or FL) reservoirs. The SET is operated in the limit where the energy to add an
electron to the island, or charging energy EC , is larger than the temperature
and the resistances of the tunnel junction between the island and electrodes are
greater than h/e2. When the bias energy eV is above the Coulomb Blockade
threshold eVt but less than EC electron transport can occur via correlated
sequential tunnelling through a single resonant level. The tunnel current I can
be controlled by an external bias Vg capacitively coupled to the island. The
use of the SET as a detector relies on making Vg (and therefore I) sensitive
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to the state of the qubit. All this makes the principle of operation of the SET
and QAE as detectors quite similar. The main new element is that in this
case the role of the electrodes for tunnelling of quasiparticles is played by the
edge states and therefore the Chiral Luttinger Liquid (CLL) properties of the
edge states come in play. Therefore, this affords us the opportunity to explore
how the strongly interacting nature of the edge states affects the measurement
characteristics of the QAE.

The main quantities needed to analyze the QAE as a linear quantum de-
tector are the zero frequency spectral densities of the charge SQ and current
SI noise, the current charge cross correlation noise SIQ and the linear response
coefficient λ. Previous studies have focused on transport through a single an-
tidot coupled between two CLL edge states [24, 25] as well as the resonant
level model considered here [88]. The current noise characteristics have also
been studied previously [100] for quantum dots coupled to non-chiral Luttinger
Liquid leads as well as antidots operated in the FQHE regime [101, 102]. How-
ever, the Luttinger Liquid effects on the other transport properties mentioned
above have remained unexplored. In the next section we will detail the calcu-
lations of the noise characteristics of the QAE and section 4.3 we will assess
its measurement efficiency in various limiting cases.

4.1 Noise Calculation

In what follows, we calculate the noise characteristics utilizing the sequen-
tial tunnelling approximation. The starting point for the calculation is the
kinetic equation for the occupancy of the resonant level,

ρ̇0 = −Γ+(ε)ρ0 + Γ−(ε)ρ1 (4.2)

ρ̇1 = Γ+(ε)ρ0 − Γ−(ε)ρ1 (4.3)

where ρ0,1 are the occupation probabilities of the antidot and Γ±(ε) are the
rates of quasiparticle transfer onto or off of the antidot calculated to lowest
order perturbation theory in the tunnel Hamiltonian (4.1). These are given
similar to before as,

Γ±(ε) =
∑
j=1,2

Γ±j (ε) , Γ±j (ε) = γjfν(±(ε− µj)). (4.4)

where fν(E) and γj are given by Eqs. (2.19) and (2.20), respectively. This
approximation is valid as long as γj(ωc/2πT )1−ν ¿ T [88]. From here on
out we will change the notation of the energy of the resonant level so that
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ε → ε− (µ1 + µ2)/2 which then gives ε− µ1,2 = ε∓ e∗V/2. In the subsequent
discussions we will detail the calculations of the noise and transport properties
discussed above.

In the case of the QAE detector, the energy of the resonant level ε depends
on the state of the qubit. More specifically this implies that the qubit-detector
interaction can be modelled in the same way as was discussed in Chapter 1,

Hint(t) = CQ(t)σz (4.5)

where, C is the interaction strength, Q = e∗n counts the excess charge on the
antidot, and σz is the Pauli matrix.

The origin of the back-action dephasing for the QAE can be seen by in-
specting (4.5). Fluctuations of the occupancy of the resonant level cause the
off-diagonal matrix elements of the density matrix describing the qubit to de-
cay. In the limit of weak detector-qubit coupling the back-action dephasing
rate can be found to lowest order in (4.5) and is given by,

Γd = πC2SQ, (4.6)

where,

SQ =
(e∗)2

2π

∫
dτ〈δn(τ)δn(0)〉 (4.7)

is the zero frequency spectral density of the charge noise, δn(t) = n(t) − 〈n〉,
and 〈...〉 = Tr[...ρ̄⊗ ρE] with ρ̄ and ρE being the equilibrium density matrices
of the antidot (obtained from the stationary solution to the kinetic equation)
and the edges, respectively. To calculate the spectral densities of the charge
and current noise we follow the method given in [103, 104]. The result for the
charge noise can be given in terms of the transition rates in Eq. (4.4),

SQ =
(e∗)2

2π

Γ+(ε)Γ−(ε)

Γ3
T

(4.8)

where, ΓT = Γ+(ε) + Γ−(ε).
With the QAE acting as a detector, the output current I yields information

about the state of the qubit. In this case, the measurement time, or time
needed to distinguish between the two states is given by

τm =
8πSI

λ2C2
, (4.9)
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here,

SI =
1

2π

∫
dτ〈δI(τ)δI(0)〉. (4.10)

Quantitatively, since the resonant level ε is modified depending on the state of
the qubit, the linear response coefficient can be related to the output current
as, λ = e∗δI/δε, where δA represents the variation of the quantity A.

The current through the antidot can be obtained from the solution to the
kinetic equation and is given by,

I = e∗
(
γ+

1 − γ−1
)
, (4.11)

where γ
+(−)
1 = Γ

+(−)
1 (ε)Γ−(+)(ε)/ΓT and correspond to transitions which take a

quasiparticle from edge 1(2) to edge 2(1) via the resonant level on the antidot.
Using this we can then find the current noise which is given by,

SI = S0 − (e∗)2

πΓT

[
(γ+

1 )2g(ε− e∗V/2) + (γ−1 )2g(e∗V/2− ε)
]

(4.12)

where,

S0 =
(e∗)2

2π

(
γ+

1 + γ−1
)

(4.13)

and, g(x) = 1 + ex/T . In the limit of vanishing bias e∗V → 0, Eq. (4.12)
reduces down to,

SI =
T

π
G(ε) (4.14)

where,

G(ε) =
(e∗)2

T

γ1γ2

γ1 + γ2

fν(ε)

1 + e−ε/T
(4.15)

is the differential conductance. This result is simply a statement of the
fluctuation-dissipation theorem.

Finally, we turn our attention to the calculation of the current - charge
cross correlation,

SIQ = − e∗

2π

∫
dτ [〈I(τ)n(0)〉 − 〈I〉〈n〉] . (4.16)

In a similar fashion to what was done for the other noise spectra the cross
correlation noise can be written in terms of the charge noise,

Re SIQ =
(
γ+

1 − γ−1
) (

Γ2
+ − Γ2

−
Γ+Γ−

)
SQ (4.17)
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As discussed in Chapter 1, in terms of linear response theory the two figures of
merit [27] that characterize the performance of the QAE as a quantum detector
are the measurement efficiency which is given in terms of the properties as,

η =
λ2

16π2SISQ

, (4.18)

and the energy sensitivity given by,

ε =
4π

|λ|
[
SISQ − (Re SIQ)2

]1/2
. (4.19)

In the next section we will present results for both the energy sensitivity and
efficiency in two special cases.

4.2 Results

4.2.1 Low Temperature Limit

The most natural operational regime for the detector is in the low temper-
ature limit. Here, the system is less susceptible to thermal transitions which
can degrade its performance. In the case of the QAE, this low temperature
regime corresponds to the large bias limit e∗V À T .

In order calculate the transport properties we will need the asymptotic
forms of the tunnelling density of states,

fν(E) ∼ 1

Γ(ν)

(
E

2πT

)ν−1

θ

(
− E

2πT

)
(4.20)

where θ(x) is the Heaviside function. This shows that for filling fractions of
primary quantum hall liquids, the tunnel density of states exhibits a power
law decay for E À T , as mentioned in chapter 2.

Utilizing Eq. (4.20), the current can be found from Eq. (4.11),

I =
e∗

Γ(ν)

γ1γ2(x̄− ε̄)ν−1(x̄ + ε̄)ν−1

γ1(x̄− ε̄)ν−1 + γ2(x̄ + ε̄)ν−1
(4.21)

where x̄ = e∗V/4πT and ε̄ = ε/2πT . We can then use this expression to write
the current noise, given by Eq. (4.12), as

SI =
e∗I
2π

[
1− 2γ1γ2(x̄− ε̄)ν−1(x̄ + ε̄)ν−1

[γ1(x̄− ε̄)ν−1 + γ2(x̄ + ε̄)ν−1]2

]
. (4.22)
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The linear response coefficient can be found using (4.21),

λ = e∗
dI

dε
= (ν − 1)

e∗

2πT

I

(x̄2 − ε̄2)2

[
γ1(x̄− ε̄)ν − γ2(x̄ + ε̄)ν

γ1(x̄− ε̄)ν−1 + γ2(x̄ + ε̄)ν−1

]
. (4.23)

Finally, using Eqns. (4.4) and (4.17) the low temperature charge noise and
charge - current cross correlation spectrum are,

SQ =
(e∗)2

2π

γ1γ2(x̄− ε̄)ν−1(x̄ + ε̄)ν−1

(γ1(x̄− ε̄)ν−1 + γ2(x̄ + ε̄)ν−1)3
(4.24)

and,
Re SIQ =

[
γ1(x̄− ε̄)ν−1 − γ2(x̄ + ε̄)ν−1

]
SQ. (4.25)

There are two interesting cases which yield rather simple results for the mea-
surement efficiency and energy sensitivity. The first case is found by an in-
spection of the result for the current noise, Eq. (4.22). When the condition
such that,

γ1(x̄− ε̄)ν−1 = γ2(x̄ + ε̄)ν−1 (4.26)

is met, the current shot noise is said to be reduced, i.e. SI reaches a minimum
value of e∗I/(4π). Shot noise suppression has been recently studied in trans-
port through antidots coupled to CLL edge states [100–102]. In the case of
fermions, ν = 1, suppression only occurs when the tunnel amplitudes between
the edges and the antidots are the same (i.e. γ1 = γ2). However, in the case
of CLL shot noise suppression can occur even when the tunnel amplitudes are
asymmetric. One way to understand this behavior is to notice that the tunnel
rate for CLL edge states are dependent on the energy difference (in the low
temperature limit) between the chemical potential of the edge and the reso-
nant level, for example γ1(x̄− ε̄). Therefore, even if γ1 6= γ2 the biases can be
tuned in such a way that the tunnel rates then become symmetric.

The question now becomes, how does the condition of shot noise suppres-
sion affect the measurement characteristics of the QAE? For one, inserting Eq.
(4.26) into the expression for the current-charge cross correlation noise (4.17)
reveals that Re SIQ = 0. As can be seen from Eqs. (4.18) and (4.19) this
means that η = ε−2. This results in a simple expression for the measurement
efficiency,

η =
(1− ν)2

2π2

[
γ1

T

αν−2
ν

Γ(ν)

]2 (
e∗V
4πT

)2ν−4

, (4.27)

where, αν = 2R
1

1−ν (1+R
1

1−ν )−1 and R = γ2/γ1 describes the tunnel asymmetry
between the two edges. For primary quantum hall liquids, the above equation
reveals that η has a power law decay for increasing bias. Furthermore, due to

57



the constraints of the sequential tunnelling approximation namely, γ1 ¿ T ,
the detector will not reach the quantum limit, η = 1.

Another limit that needs to be mentioned is the situation when,

γ1(x̄− ε̄)ν = γ2(x̄ + ε̄)ν , (4.28)

here, as can be seen from Eq. (4.23), the linear response coefficient vanishes.
From the point of view of operating the QAE as a quantum detector this
implies that η vanishes and, consequently, ε diverges. Clearly, the QAE will
not work as a linear amplifier whenever ε̄ is tuned such that the condition
(4.28) is satisfied.

4.2.2 Symmetric Voltage Drop, ε = 0

The next case to consider is when the resonant level is tuned (either by
a back-gate voltage or magnetic field) in such a way that the voltage drop
between ε and one edge is equal to the voltage drop between the level and the
other edge, thus ε = 0. It is interesting to analyze the back-action noise in the
limit of large biases e∗V À T, γj, Utilizing the asymptotic properties of the
Gamma function in the limit of e∗V/T →∞ we have,

SQ =
(e∗)2

2π

γ1γ2

(γ1 + γ2)3
Γ(ν)

∣∣∣∣
e∗V
2πT

∣∣∣∣
1−ν

, (4.29)

where the prefactor (ωc/2πT )1−ν has been absorbed into the tunnel rates γj.
In the case of ν = 1, Eq. (4.29) is independent of the bias voltage [65].
However, for ν = 1/(2n + 1) the above equation shows that the charge noise
and thus the back action dephasing rate of the qubit vary as V 1−ν . Thus,
for filling fractions of primary quantum hall liquids, the dephasing rate of the
qubit actually increases for larger biases in contrast to FL edge states.

One of the most striking examples of CLL behavior can be found in the
response coefficient. In the limit where ε = 0, an explicit expression for this
can be found:

λ = G(x)

(
R− 1

R + 1

)
Fν(x), (4.30)

where we have defined,

Fν(x) = 2 sinh2
( x

2T

) [
1− 2

π
coth

( x

2T

)
Im ψ

(ν

2
+ i

x

2πT

)]
, (4.31)

with ψ(z) being the digamma function and x = e∗V . Note also the appearance
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of the conductance G(x) in Eq. (4.30), this is reflective of the fact that λ is
a conductance in the sense that it measures the variation of the current via
respect to ε versus the differential conductance that measures the variation of
the current to changes in the bias.

In the case when ν = 1 (i.e. the edges are described by Fermi-Liquids)
then,

Im ψ

(
ν

2
+

ix

2πT

)
=

π

2
tanh

( x

2T

)
(4.32)

and implies that F (x) = 0, and therefore λ vanishes. It is also important
to note that this result is independent of the tunnel rate asymmetry R. The
physical picture for this result can be thought of as follows: the rates γ+(−)

describe forward (backward) transition between the two edges whereas the
response coefficient looks at the variations of these rates as the energy of the
resonant level is varied. In the case of Fermi-Liquid edge states the variation
of both the forward and backward transitions are the same. This situation
also occurs in the case of symmetric junctions R = 1 and is independent of
ν. However, if there is any asymmetry between the junctions at all then, in
the case of edge states described by CLL, λ has the behavior illustrated in
Fig. (4.2). The reason for this can be seen by considering the behavior of the
current as a function of ε, as shown in Fig. (4.3). When, R = 1 the I exhibits
a peak about ε = 0, thereby causing λ to vanish. However, as R is increased
the peak shifts and thus causing the response coefficient to be non-vanishing.
For large bias voltages e∗V À T the response coefficient decays due to the
power law behavior of the transition rates and is given by,

λ =
(e∗)2

2πT

γ1γ2

γ1 + γ2

1− ν

Γ(ν)

R− 1

R + 1

( x

2πT

)ν−2

, (4.33)

whereas for small biases e∗V ¿ T , λ vanishes as x2. However, in between
the two extremes, the detector’s response obtains a maximum occurring at
approximately e∗V ∼ 2T . As before, we can analyze the current in the limit
of large biases the result is,

I = e∗
γ1γ2

γ1 + γ2

1

Γ(ν)

∣∣∣ x

2πT

∣∣∣
ν−1

. (4.34)

The above equation shows that when ν 6= 1, the current decays as a function
of the applied bias [88] which reflects the underlying power law decay of the
transition rates for CLL. Similarly, we can obtain the large bias result for the
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Figure 4.2: The linear response coefficient, in units of Go = (e∗)2Γ+
1 (0)/T ,

as a function of the applied bias for various values of the tunnel asymmetry
parameter R.

current noise,

SI =
e∗I
2π

[
1− 2γ1γ2

(γ1 + γ2)2

]
. (4.35)

This result has the same form as that of the shot noise for resonant tunnelling
between two Fermi-Liquid leads [65, 100, 103]. Furthermore, Eq. (4.35) shows
that for symmetric tunnel rates γ1 = γ2 the shot is suppressed to the value
F = 2π(SI/e

∗I) = 1/2, where F is known as the Fano factor.
In the large bias regime one can obtain a relatively simple expression for

the efficiency. Inserting, Eqs. (4.35), (4.33), (4.29) into Eq. (4.18) we have,

η =

(
1− ν

4πΓ(ν)

)2
(1−R)2

1 + R2

( x

2πT

)2ν−4

. (4.36)

The above result shows that the measurement efficiency falls off for large biases
as ∼ (x/2πT )2ν−4 which implies that this is clearly not the proper regime to
operate this as a quantum detector. As shown in Fig. (4.4), the behavior of η
is similar to that of the response coefficient and shows that the detector obtains
maximum efficiency for relatively small bias voltages, again e∗V ∼ 2T . Also,
due to the fact that η is proportional to the response coefficient this implies
that the detector can only operate when there exists some tunnel asymmetry
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Figure 4.3: The current I, in units of Io = e∗Γ+
1 (0) as a function of the

resonant level energy for various values of the tunnel asymmetry parameter R.
The parameters for this plot are T = e∗V and ν = 1/3.

between the edges and the antidot, R 6= 1.
Similar to the measurement efficiency, an analytical result in the limit of

large biases can be found for the energy sensitivity. For this we need the large
bias limit of the current-charge noise spectrum, Eq. (4.17). This is given by,

Re SIQ = (γ1 − γ2)
(e∗)2

2π

γ1γ2

(γ1 + γ2)3
, (4.37)

which is independent, in this limit, of the bias and therefore, the CLL behavior
of the edges. This yields the energy sensitivity in the large bias limit,

ε =
4πT

γ1

Γ(ν)

1− ν

√
2R

R2 − 1

( x

2πT

)2−ν

, (4.38)

which diverges when R = 1 due to the fact that λ vanishes. This also shows
that for large biases, the energy sensitivity scales as x2−ν and thereby increases
when operated in the FQHE regime. This is due solely to the large bias
behavior of the response coefficient as both Re SIQ and the product SISQ are
independent of ν. The behavior of ε as a function of bias is shown in Fig. (4.5).
As in the case of the measurement efficiency, the inverse of energy sensitivity
also peaks in the intermediate bias range of e∗V ∼ 2T . This behavior is again
due to the CLL effects of the edges and largely controlled by the response

61



0 2 4 6 8 10
0

1

2

3

x 10
−4

e*V/T

η

ν = 1/3

γ = .1T

R = 65

3

2

4

Figure 4.4: The measurement efficiency as a function of the applied bias for
different values of the tunnel asymmetry. Note that γ = γ1 + γ2.

coefficient.

4.3 Conclusions

In conclusion, the measurement characteristics of QAE have been assessed
in both the low-temperature (or large-bias) regime, and in case when ε = 0.
For low temperatures, the CLL properties of the edge states make it possible
to tune the QAE (via the back gate voltage) in such a way to make the QAE a
symmetric detector. At this bias point the shot noise is minimized. In the case
when ε = 0, it was shown that both the measurement efficiency and the energy
sensitivity of the QAE peak when the bias is e∗V ∼ 2T . Outside of this regime,
η and ε exhibit ν dependent power law decays for large biases and vanish
quadratically for small biases. The fact that the detectors characteristics peak
when operating at this point is due to the CLL behavior of the edge states.
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Chapter 5

Parametric Oscillations in a
Continuously Measured Double
Qubit System

The properties of a QAE acting as a linear quantum detector were illus-
trated in the last chapter. In general, the operation of a linear detector can be
summarized as follows: consider two reservoirs (made up of electrons, quasipar-
ticles, cooper pairs, or magnetic flux quanta) coupled by a tunnel barrier. The
flux of the particles between the reservoirs is controlled by measured quantum
system. A qubit can be coupled to the detector in such a way that the tunnel
barrier’s amplitude is modulated by the state of the qubit, i.e. t(σz), where
σz is the basis-forming variable of the qubit. Since σ2

z = 1, the variation of
the amplitude with the state of the qubit can be written as, t(σz) = to + δσz.
In the case of continuous measurement of a qubit, the spectral density [27]
of the detector exhibits a peak at the frequency corresponding to coherent
oscillations between the two basis states of the qubit.

Recently, work has been done on so-called quadratic quantum measure-
ments [105–107]. One particular realization of is provided by two qubits cou-
pled to a single detector wherein the tunnel amplitude is modified according
to,

t(σ1
z , σ

2
z) = to + δ1σ

1
z + δ2σ

2
z + λσ1

zσ
2
z . (5.1)

An example of such a setup is illustrated in Fig. (5.1). Concerning the output
spectral density of the detector the second and third terms of the above equa-
tion result in spectral peaks at frequencies Ω1,2 and correspond to coherent
oscillations in individual qubits. The addition of the non-linear coupling term
λ gives rise to the existence of spectral peaks occurring at frequencies which
are sums and differences of the single qubit resonance frequencies and can be
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Qubit 1 Qubit 2Detector

t

Figure 5.1: Schematic of a generic mesoscopic detector coupled to two qubits.
The tunnel amplitude t between the two reservoirs of the detector is modulated
by the location of the charges (or flux) in the qubits.

physically interpreted as mixing of oscillations in the qubits. In the case of
two non-interacting qubits the Hamiltonian is given by

HQ =
1

2

∑
j=1,2

(
εjσ

j
z + ∆jσ

j
x

)
(5.2)

where ∆j are the tunnel amplitudes between the basis states σz|±〉 = ±|±〉
of the qubits and εj are their biases. The above discussion implies that peaks
in the detector output will occur at frequencies Ω1,2 and Ω1 ± Ω2 with Ωj =

± (
ε2
j + ∆2

j

)1/2
/2 being the eigenenergies of the j-th qubit. Therefore, the

non-linear coupling of the detector to the qubits implies that the oscillations
of the two qubits are coupled together in the detector output.

We consider the question of what is the quantum mechanical analogue of
the classical parametric interaction between two oscillators. This question can
be addressed in the case whereby the oscillation frequency of one qubit is close
to being twice that of the other, e.g. Ω2 = Ω1/2. Such a non-linear coupling
of two modes of frequency Ω and 2Ω is encountered in classical parametric
oscillators. However, the behavior of the two qubit system is quite different
from its classical counterpart. The particular choice of parameters for the
qubits implies that the spectral peak which represents oscillations occurring in
the qubit with the smaller frequency and the peak for the collective oscillations
in the two qubits at the frequency Ω1 − Ω2 will overlap. As we will show, not
only are these peaks degenerate, but an interference between these two modes
of oscillation is setup. This interference can be also controlled by the strength
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of the non-linear coupling to the detector.
In the next section we will briefly outline the model used to describe quan-

tum measurements of a coupled qubit system with a mesoscopic detector, a
more detailed discussion can be found in Refs. [105, 106].

5.1 Model

Here, we consider the following system consisting of two non-interacting
FQHE qubits (albeit the model can easily describe other types of charge or flux
based qubits) whose Hamiltonian is given by (5.2). The qubits are continuously
monitored by a mesoscopic detector whose tunnel amplitude is modulated by
the states of the qubits as in Eq. (5.1). Specifically, this implies that the total
Hamiltonian for the system is given by,

H = HD + HQ + HT , (5.3)

where HD describes the detector and

HT = t(σ1
z , σ

2
z)ξ

† + H.c (5.4)

is the detector/qubit system interaction. In this case, particle transfer be-
tween the two reservoirs is described by the operator ξ†. This model is appli-
cable to detectors where particles are transferred between reservoirs in a single
step. Examples of detectors which fall into this class include, Quantum Point
Contacts, DC Superconducting Quantum Interference Devices (SQUIDs), and
SETs operating in the cotunnelling regime.

The overall goal is to describe the dynamics of the qubit system. This
can be done by deriving the reduced density matrix for this system which is
found in a compact form with the help of some assumptions concerning the
detector. First, one assumes that the detector is weakly coupled to the qubit
system and thus HT can be treated to lowest order in perturbation theory.
Furthermore, if the dynamics of particles tunnelling between the reservoirs of
the detector is much faster than that of the qubit dynamics then this implies
that the measurement dynamics are described by the correlators,

γ+ =

∫ ∞

0

dτ〈ξ(τ)ξ†(0)〉 γ− =

∫ ∞

0

dτ〈ξ†(τ)ξ(0)〉 (5.5)

which also describe the rate of forward and backward transitions between the
reservoirs of the detector i.e. Γ± = 2 Re γ±. Finally, it is important to point
out that the fast dynamics of the detector also implies that the tunnel time
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between the reservoirs is much smaller than the temporal evolution of the
measured system. In the case of a Quantum Point Contact this tunnel time is
set by the bias energy eV between the two reservoirs meaning and therefore
should be much larger that the energy largest energy scale of the qubit-system
for the correlators (5.5) to hold.

The evolution of the density matrix is most easily expressed in the limit
where the detector induced dephasing rates are small in comparison to the
eigen energies En of the qubit system (5.2). In this approximation scheme, the
equations for the diagonal elements of the qubit system density matrix evolve
as,

ρ̇nn = −γ
∑

p6=n

|t̂np|2 (ρnn − ρpp) , (5.6)

where γ = (Γ+ + Γ−) represents damping induced in the qubit system due to
the coupling to the detector and n is the index of the eigenstate of the qubit
system, HQ|n〉 = En|n〉. On the other hand, the off-diagonal elements of the
density matrix behave according to,

ρ̇nm = − (iωnm + κnm) ρnm +
∑

(p,q)

ρpq Re(t̂†npt̂qm), (5.7)

where,

κnm =
γ

2

(
∣∣t̂mm − t̂nn

∣∣2 +
∑

p6=m

∣∣t̂mp

∣∣2 +
∑

p6=n

∣∣t̂np

∣∣2
)

(5.8)

is the dephasing caused by coupling to the detector, and ωnm = En − Em.
The summation in the third term of Eq. (5.7) is over the eigenstates of the
qubit system satisfying the resonance condition En−Em = Ep−Eq, such that
(n,m) 6= (p, q).

The important quantity we want to compute is the spectral density of the
equilibrium current fluctuations of the detector-qubit system, S(ω) which are
given by,

S(ω) = So + 2

∫ ∞

0

dt cos ωt
(〈I(0)I(t)〉 − 〈I〉2) , (5.9)

where the current correlator is given by,

〈I(0)I(t)〉 = Tr
[
IeLt [Iρo]

]
. (5.10)

Here, I = (Γ+ − Γ−) t̂†t̂ is the operator that describes the detector current
due to the coupling to the qubits, ρo is the steady-state solution to Eqs. (5.6),
and eLt [Iρo] is the evolution operator for the density matrix of the reduced
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detector-qubit system undergoing the evolution described by Eqs. (5.6) and
(5.7). The first term in (5.9) represents the shot and thermal noise of tunnelling
through the detector,

So = γ Tr
[
t†tρo

]
. (5.11)

In the next section, we calculate the spectral density of the detector output
specifically in the case when Ω2 ≈ Ω1/2.

5.2 Results

Before delving into the peak structure of the output current spectrum we
will give explicit expressions for the eigenvalues and eigenvectors of the two
qubit Hamiltonian (5.2), as these will be needed for the calculations. In the
case of ε1,2 = 0 and ∆2 = ∆1/2, the energies and associated eigenvectors are,

E1,2 = ±3∆1

4
|1, 2〉 =

1

2

[|φ+
1 〉 ∓ |φ+

2 〉
]

(5.12)

E3,4 = ±∆1

4
|3, 4〉 =

1

2

[|φ−1 〉 ± |φ−2 〉
]

(5.13)

where we have defined |φ±1 〉 = (|+ +〉 ± | − −〉) and |φ±2 〉 = (|+−〉 ± | −+〉).
In order to calculate the spectral density we note that the evolution of the

current operator in the correlation function Eq. (5.10) is governed by the time
evolution of the density matrix for the qubit system. Therefore, the matrix
elements of the current operators obey the same dynamical equations as (5.6)
and (5.7) with the initial condition,

Iij(0) = Iij [ρo]jj . (5.14)

The steady-state density matrix of the qubit system is found by solving for
the stationary solution to the density matrix equations (5.6) and (5.7). As
expected, the detector completely decoheres the system and therefore the off-
diagonal elements vanish. Solving for the diagonal elements yields the station-
ary solution,

ρo = Î/4 (5.15)

where Î is the identity matrix. This implies that the detector acts as an infinite
temperature heat bath and thus completely mixes the eigenstates of the qubit
system.
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5.2.1 Peak structure for ω = ∆1 and ω = ∆1 + ∆2

The first case to consider is the peak that occurs at the frequency ω ≈
3∆1/2. This corresponds to transitions between the states |1〉 and |2〉 and
represents collective oscillations in the two qubits occurring at the frequency
∆1 + ∆2. Using (5.7) the matrix elements of the current operator evolve
according to,

İ12(t) = −(κ + iΩ+)I12(t) (5.16)

where, Ω+ = 3∆1/2. The above equation shows that the matrix elements of
the current operator between the two eigenstates exhibit damped oscillations
at the frequency corresponding to transitions between parallel and anti-parallel
configurations of the two qubits. The damping of these oscillations is due to
the coupling of the qubit system to the detector. The spectral density at this
frequency can be found by inserting the solution to Eq. (5.16) and its complex
conjugate into the expression for the current noise Eq. (5.9) which gives,

S(ω) = So +
1

4

2a2
2κ

(ω − 3∆1/2)2 + κ2
, (5.17)

where a2 = 2(Γ+ − Γ−) Re(t0λ
∗ + δ1δ

∗
2) represents the amplitude of collective

qubit oscillations [105, 106] and κ = Γ(|δ1|2 + |δ2|2 + |λ|2). Therefore, we see
from the above equation that the spectral peak located at 3∆1/2 is described
by a simple Lorentzian with amplitude a2/2κ and width given by κ.

The spectral peak at ω ≈ ∆1 can be found in a similar way to the previous
case. Here, however, the energy spectrum of the qubit system is such that
transitions between states 1 and 4 as well as 3 and 2 all occur at the same
frequency, namely ∆1. Thus, the density matrix equations can be found to be,

İ14(t) = −(κ + ı∆1)I14 + Γ|δ2|2I32 (5.18)

İ32(t) = −(κ + ı∆1)I32 + Γ|δ2|2I14. (5.19)

We find that the spectral density is,

S(ω) = So +
1

4

4a2
11κ1

(ω −∆1)2 + κ2
1

, (5.20)

where κ1,2 = Γ
(
λ2 + δ2

1,2

)
is the width of the peak and a11 = 2(Γ+−Γ−) Re(toδ

∗
1+

λδ∗2). This peak represents oscillations which occur between the basis states
of the qubit with the larger energy splitting. At resonance, the peak has an
amplitude given by a2

11/κ1.
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5.2.2 Peak structure for ω = ∆1/2

We now turn our attention to the final peak in the output spectrum of
the detector. Here, there are three separate energy intervals which satisfy the
resonance condition equality, Ei − Ej = ∆2 = ∆1/2. We can then write the
evolution equations for the matrix elements of the current operator as,

İ34 = −(ı∆2 + κ)I34 + Γ Re(λ∗δ2)I42 + Γ Re(λ∗δ2)I13 (5.21)

İ42 = −(ı∆2 + κ)I42 + Γ Re(λ∗δ2)I34 + Γ|δ1|2I13 (5.22)

İ13 = −(ı∆2 + κ)I13 + Γ Re(λ∗δ2)I34 + Γ|δ1|2I42, (5.23)

where Γ = (Γ+ + Γ−). The equations for the resonance condition, Ei − Ej =
−∆1/2, are the complex conjugates of the previous equations. As was done in
all other cases, the output spectrum can be obtained by finding the solution
to Eqns. (5.21)-(5.23) combined with the above stated initial conditions into
the expression for the current density. Instead of presenting the full result
we will instead, for the sake of clarity, discuss a few particular limiting cases.
The first case concerns the limit where the non-linear coupling of the qubits
to the detector λ vanishes. By inspection of the dynamical equations one sees
that these are of the same form as those contributing to the spectral peak
at ω ≈ ∆1, see Eqns. (5.18) and (5.19). Therefore, the peak at ω ≈ ∆1/2
corresponds to coherent oscillations between the basis states of the smaller
qubit and has the same form as (5.20),

S(ω) = So +
1

4

4a2
12κ2

(ω −∆1/2)2 + κ2
2

, (5.24)

with a12 = 2 (Γ+ − Γ−) Re[t∗0δ2 + λ∗δ1] representing the amplitude of oscilla-
tions in the smaller qubit.

The next limit to explore is the case where the linear coupling of the larger
qubit to the detector vanishes, δ1 → 0. By inspection of the dynamical equa-
tions one sees that here both collective oscillations between the two qubits and
oscillations occurring in the qubit of smaller frequency are directly coupled to
one another. This coupling of the two oscillatory modes has interesting conse-
quences for the composition of the spectral peak. In particular, the solutions
to Eqs. (5.21)-(5.23) are given by,

I34(t) =
e−i∆2t

8

[√
A1e

−γ1t +
√

A2e
−γ2t

]
(5.25)

I42(t) =
e−i∆2t

4
√

8

[√
A1e

−γ1t −
√

A2e
−γ2t

]
, (5.26)
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Figure 5.2: The maximum of the detector output spectrum (solid line) at
ω ≈ ∆1/2 as a function of λ. This has two contributions: one corresponding to
constructive interference between collective and single qubit oscillations with
amplitude A1/(4γ1) (dotted) and the other represents destructive interference
(dashed) having an amplitude A2/(4γ2). The arrow indicates the point at
which A2 vanishes.

and I13(t) = I42(t). Here, we have defined

Am =
[
a2 + (−1)m+1

√
2a12

]2

γm = κ + (−1)mα, (5.27)

with α =
√

2Γ Re(λδ∗2). The time dependence of the current matrix elements
shows that oscillations between the parallel and antiparallel configurations of
the two qubits, I34(t) as well as single qubit transitions, I42(t) and I13(t) have
the same frequency. However, the main difference between the two modes lies
in the fact that they decay at different rates, as can be seen by inspecting the
bracketed expressions of Eqs. (5.25) and (5.26) and that their amplitudes are
different. Using these expressions we then find that the resulting spectral peak
is given by

S(ω) = So +
1

4

∑
m=1,2

Amγm

(ω −∆1/2)2 + γ2
m

. (5.28)

Here, we see a rather unique situation with has thus far not been encoun-
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tered in any of the other peaks which we have studied. While the spectral
peak consists of two overlapping Lorentzians, the amplitudes of those peaks
exhibit, constructive A1 and destructive A2 interference between the single
qubit and collective oscillations. This effect can be traced back to the cou-
pling of these modes found in the time evolution of the matrix elements of the
current operator.

An interesting consequence of this interference between the two oscillatory
modes is that by varying either δ2 or λ, the strength of the interference can
be controlled. In order to study this behavior we will look at the peak’s
maximum, S(∆1/2). Here we assume that the detector is ideal which implies
that Γ− = arg(t0λ) = arg(toδ2) = 0. First, consider the case when λ = 0. Here,
both amplitudes are the same Am = 2a2

12 and therefore the maximum is given
by 4So. This result is characteristic of ideal linear detectors and represents the
maximum signal to noise ratio allowed by quantum mechanics. For finite λ the
two contributions to the spectral peak behave quite differently, as illustrated
in Fig. (5.2).

Let us first look at the case where the m = 2 contribution vanishes. Here,
this implies by an inspection of Eq. (5.27) that a2 =

√
2a12. When the

detector is ideal this occurs whenever the strength of the non-linear coupling
to the detector is such that λ1 =

√
2δ2. This condition also implies that the

maximum of the m = 1 term in Eq. (5.28) reaches a height of 2a2
12/γ1, where

γ1 = Γ(δ2
2). The reason for this is directly related to the modal interference. In

the absence of this, the degeneracy of the single qubit and difference frequencies
implies that the peak should obtain a maximum height of 6So, which is the sum
of the linear and non-linear contributions. However, the interference between
these two modes adds an additional factor of 2

√
2a2a12/γ1 whose height when

λ = λ1 is given by 2So.
Finally, as shown in Fig. (5.2) the peak height can be made even larger

and maximizes at a value of approximately 10So. To understand the origin
for this we note that the dominant contribution to the maximum stems from
the m = 1 term in Eq. (5.28). Maximizing this with respect to λ we find
that S(∆1/2) = 10So which occurs at λ2 = 4δ2/(3

√
2). More insight into the

reason for this peak height can be gained by investigating the evolution of
the current matrix elements, Eq. (5.25) and (5.26). The assumption that A2

is vanishingly small implies that all matrix elements have the same damped
oscillatory behavior given by γ1. However, this particular choice of λ means
that γ1 = 10κ2/18. The important point to note is that the damping rate
of these oscillations is nearly two times smaller than in the previous case.
This implies that the width of the spectral peak when λ is chosen to be λ2

should narrower than at λ1, as is shown in Fig. (5.3). Furthermore, one
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Figure 5.3: The spectral peak for λ = λ1 (solid) and λ = λ2 (dashed) about
ω = ∆1/2.

would expect that based on this fact alone the peak height at λ2 should be
approximately 16So. However, tuning the non-linear coupling to this point
reduces the amplitude by about two-thirds of its height at λ1.

The last case to explore is the influence of a non-vanishing linear coupling
to the larger qubit δ1. A solution of the dynamical equations reveals that
the spectral peaks can be written in the same form as Eq. (5.28) with the
amplitudes and widths of the Lorentzians given by,

Am = a2
2 + 2a2

12 + (−1)m+12
√

2a2a12 cos(θ) (5.29)

γm = κ− β + (−1)mΩ (5.30)

where we have defined 2β = Γ|δ1|2, Ω =
√

α2 + β2, and cos(θ) = α/Ω. Quali-
tatively, the main effect of finite δ1 is reduce the overall coupling between the
single qubit and collective oscillations. As a result maximum height that the
spectral peak can obtain is reduced with increasing δ1 as illustrated in Fig.
(5.4).
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Figure 5.4: S(∆2) in units of So for various values of δ1. Here, we assume that
as before δ2 = .09to.

5.3 Conclusions

In this chapter we have studied a system of two non-interacting, unbiased,
qubits coupled non-linearly to an ideal detector. The focus of the analysis
was on the regime in which the tunnel amplitude between the basis states
of one qubit is twice that of the other. This particular bias point allows for
the coherent coupling of two distinct oscillatory modes: ones which occur
between the basis states of the ”weaker” qubit with the smaller oscillation
frequency and that which represents collective oscillations between the qubits
occurring at the difference frequency, ∆1 −∆2. Furthermore, we have shown
that the strength of the non-linear coupling between the detector and qubit
system controls both the interference between the modes and their damping
rate. When this interference is maximized, the spectral peak at ω ≈ ∆1/2
has a maximum peak height of approximately 10So, which is well above the
quantum limited detection threshold for linear detectors.
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Chapter 6

Tunnelling without Tunnelling:
Wave Function Reduction in a
Mesoscopic Qubit

In Chapter 4, the implementation of a Quantum Antidot electrometer as a
readout device for qubits based on antidots was discussed. In what follows we
demonstrate that the developed theory of a Quantum Detector can be used to
study the some of the unusual properties of the quantum measurement process.
In particular, we consider the following question: Can a quantum mechanical
particle tunnel through an infinitely high barrier? From the point of view of
unitary evolution based on the Schrödinger equation the immediate answer to
this question is no. However, a careful consideration of the situation reminds
us that this is not the only way in which a quantum mechanical system can
evolve. The probabilistic nature of the wave function implies that evolution
can also take place via ”wave function reduction”.

In its most basic form, wave function reduction is the random process of
realizing one specific outcome of a measurement and was initially envisaged
as completely suppressing quantum coherences described by the wave func-
tion. It was understood, however, later (see, e.g, [108–111]) that this is not
true in the case of “morally best” [109–111] or, in more modern and descrip-
tive language, quantum-limited measurements, in which the wave function of
the measured system changes coherently for any given outcome of the mea-
surement. These changes can contradict the Schrödinger equation despite
the fact that the measurement process as a whole is governed by this equa-
tion. They can be described formally as generic “quantum operations” within
the approach based on positive operator-valued measures (POVM) [112]. All
“counter-intuitive” quantum-mechanical phenomena arise from such an evo-
lution of the wave function in the measurement process. The best known
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example is given by the EPR correlations [113] which violate the principle of
“no action at-a-distance” as quantified by the Bell’s inequalities [114]. From
the perspective of the wave-function reduction, the EPR correlations appear
for a specific random outcome of the local spin measurement. On average, the
measurement does not create action-at-a-distance in a sense that the correla-
tions do not violate the relativistic causality.

More recently, the process of wave-function reduction was described quan-
titatively [62, 115] for mesoscopic solid-state qubits measured with practical
scattering detectors [116]. This process underlies “temporal” Bell inequali-
ties [117–120] which characterize quantum uncertainty in the qubit state in
the process of coherent quantum oscillations between the two macroscopically
distinct configurations.

The purpose of this work is to suggest a sequence of quantum transforma-
tions and the corresponding Bell-type inequality which would demonstrate this
uncertainty in a more direct way, by violating intuition which is based on wave
evolution governed by the Schrödinger equation. For mesoscopic structures
with their small geometric dimensions, violation of this intuition provides, ar-
guably, more dramatic illustration of the wave-function reduction than the
non-locality of conventional Bell’s inequalities discussed, e.g., in [121–123].

6.1 Model

We begin by considering a single qubit with the two basis states given by
|j〉, with j = 1, 2 coupled to a detector, a typical setup of this is shown in
Fig. 1. These states differ by some amount of magnetic flux or an individual
elementary charge (i.e. electron, Cooper-pair, or an FQHE quasiparticle),
which are localized on either side of a tunnel barrier. The barrier couples
these states and has a tunnel amplitude ∆ > 0. When the qubit operates
at its resonance point, where the relative bias ε between the two basis states
vanish, the Hamiltonian describing this system is then given by

H = −vσz −∆σx (6.1)

where, σx,z are the Pauli matrices. The additional bias energy v represents the
low frequency noise inherent in both charge and flux qubits. We model this
noise by assuming that v is a random variable that is Gaussian distributed
with amplitude vo and stationary in time.

Initially, due to assumed weak, but unavoidable, relaxation processes the
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qubit is in the ground state of (6.1),

ρ =

(|c1|2 c1c2

c2c1 |c2|2
)

, (6.2)

where, the probability amplitudes c1,2 are given by the relations c2
1,2 = (1 ±

v/Ω)/2, with Ω2 = v2+∆2. The transformation cycle begins by rapidly raising
the tunnel barrier, ∆ → 0, so that the qubit is ”frozen” in the state (6.2).

I

(b)

V
|2>|1>

∆

q

(a)

w (q)
2

w (q)
1

|1> |2>

Figure 6.1: (a) The probability distributions wj(q) of a given detector output
q, when the qubit is in the state |j〉, j = 1, 2. (b) A schematic of one particular
way of realizing a qubit measurement using a QPC detector. The two qubit
states |j〉 are localized on the opposite sides of a tunnel barrier and, in general,
are coherently coupled by tunnelling across this barrier with coupling strength
∆. The flow of the current I through the QPC is driven by the applied
voltage V and plays the role of the detector output. Transfer of the qubit
charge between the states |j〉 changes the scattering amplitudes for the QPC
electrons incident on the constriction.

The next step in the process is to perform a partial measurement of the σz

operator on the initial state (6.2), which we will describe next.

6.1.1 Wave Function Reduction

Quantitatively, we can describe this process from the point of view of condi-
tional evolution of the wave function. This involves specifying the probability
wj(q) of obtaining an output q from the detector when the state of the qubit
is |j〉. In the simplest case, these probabilities can be assumed to be two
Gaussian peaks of width σ that are separated by a distance 2∆q. Increasing
the separation of the peaks results in a stronger measurement. The result of
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the measurement yields some information about the state of the qubit and is
then used to update the probability amplitudes of the initial wave function
[62, 115],

cj(q) →
cj

√
wj(q)√

w1(q)|c1|2 + w2(q)|c2|2
. (6.3)

The above equation shows that specifying the detector output increases the
degree of localization in the σz basis because of information provided by the
measurement; a process which is distinctly different from that of the unitary
Schrödinger-equation-based evolution. It is important to note that the above
evolution leaves the system in a pure state even though the detector, as a
matter of principle, introduces back-action dephasing to the system. In the
case of a quantum-limited, detector this dephasing arises due to the averaging
over all possible measurement outcomes.

For non-ideal detectors additional dephasing is introduced into the system
causing further loss of information. Taking into account the detector non-
ideality, one can write the state of the qubit after measurement as

ρ =

(
ρ11(q) ρ12(q)e

−γ+2ıvτm/~

ρ12(q)e
−γ−2ıvτm/~ ρ22(q)

)
, (6.4)

where, ρjj(q) = |cj(q)|2 and ρ12(q) = ρ21(q) = c1(q)c2(q). The degree of the
detector non-ideality is characterized by the parameter γ which vanishes for an
ideal detector. The phase factor in the off-diagonal elements takes into account
the evolution of the system under the influence of the noise for a period of time
τm before, during, and after the measurement.

The aim of the remaining steps of the cycle is to reverse the shift in the
tunnel amplitudes caused by the partial measurement. This is accomplished
by creating a non-vanishing tunnel amplitude for some appropriate period of
time. In other words, realizing a fraction of the regular coherent oscillations
in which the charge or flux oscillates between the qubit basis states.

6.1.2 Transformation Cycle

Consider, first, the case of vanishing noise v = 0 and an ideal detector.
Here, the transformation is complete in the sense that the state of the qubit
after measurement (6.4) will be returned to its initial form (6.2). The most
direct way to implement this is if the qubit structure is such that the tunnel
amplitude ∆′(t) can acquire a non-vanishing phase (e.g. in superconducting
qubits, where the tunnel amplitude is controlled via quantum interference, can
have any complex value). A transformation from the state (6.4) directly to
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(6.2) can be readily accomplished by making arg ∆′ = π/2. In the diagram
(Fig. 2a) in which the qubit states are represented in the language of spin-
1/2, such a tunnel amplitude corresponds to a rotation about the y axis. The
diagram shows then directly that the angle of rotation turning ρ into ρ should
have the magnitude:

∫
|∆′(t)|dt/~ = (π/2− θ)/2 , θ = tan−1(λ), (6.5)

where λ =
√

w2(q)/w1(q).
In a more typical situation when the qubit structure allows only for the real

tunnel amplitude ∆, the y-axis rotation Ry = exp{−iσy

∫ |∆′(t)|dt/~} (6.5)
can be simulated if the rotation Rx = exp{iσx

∫
∆(t)dt/~} around the x axis

of the same magnitude (6.5) is preceded and followed by the rotations around
the z-axis: Ry = R−1

z RxRz, where the z-rotation Rz = exp{iσzπ/4} can be
created by the pulses of the qubit bias:

∫
ε(t)dt/~ = ±π/4. Such a three-step

sequence can be simplified into two steps (Fig. 2b) by changing the order of
rotations: first, the x-rotation by π/4 followed by one z-rotation:

∫
∆(t)dt/~ = π/4 ,

∫
ε(t)dt/~ = (π/2− θ)/2 . (6.6)

To take into account noise in the transformation cycle, we note that the
time in between each pulse is in general finite. For the case of the two-
step cycle, we model the noise by adding an additional noise induced rotation
U = exp{ivτRσz/~} where τR is the total time elapsed before and after the
z axis rotation. We have assumed that the applied pulses are short and the
effect of the noise during the rotations is negligible.

6.2 Results

In the case of vanishing noise, all of the transformations bring the measured
state of the qubit back to its initial state, where σx = −1. In all cases the com-
pletion of the cycle that started with a shift of the wave function amplitudes
due to the state reduction involves part of a period of coherent oscillations
that reverses this shift. However, coherent oscillations are known to actually
transfer the charge or flux between the two basis states. Thus, because the
cycle as a whole is closed, this fact shows that the changes in the qubit state
caused by wave function reduction can not be interpreted only as the changes
in our knowledge of the probabilities of the state of the qubit, but involves an
actual transfer of charge or flux in the absence of the tunnelling amplitude.
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Figure 6.2: Diagram of the two possible transformations of the qubit state
|ψ1〉 into |ψ0〉 after the measurement-induced state reduction |ψ0〉 → |ψ1〉: (a)
direct one-step y-axis rotation (6.5); (b) projection on the z − y plane of the
two-step transformation (6.6).

To see this more quantitatively, one can derive the Bell-type inequality,
a violation of which should show that understanding of the state reduction
solely in terms of the probability changes can not be correct. The inequality is
obtained by assuming that the process of switching off the tunnelling amplitude
∆ in the beginning of the cycle does not lead to the state (6.2) but localizes
the qubit in one of the basis states, i.e., produces an incoherent mixture of the
qubit basis states with some probability p to be in the state |1〉. This process
would provide then an alternative, classical description of the evolution during
the measurement process, in which the qubit state is “objectively” well defined
and coincides with one of the basis states. It is, however, unknown to us and
the measurement gradually provides information about this unknown state.
A convenient way of comparing such a classical description with quantum
evolution is provided by the probability of reaching the wrong final state, in
this case σx = −1.

In what follows, we will determine the probability of reaching the state
σx = −1 for both the quantum and classical evolution under the influence
of both low-frequency noise and detector non-ideality, in order to assess the
stability of the cycle under these more realistic conditions. We start from the
case when the phases accumulated during both the measurement and rotation
cycle can be removed. In principle this can be accomplished, for example, by
employing a spin echo technique, and is equivalent to setting τM,R = 0.

In the case of classical evolution the probability p(−) to find the qubit in
the state σx = −1 can be found by applying the transformation sequence to
the incoherent state with the initial density matrix now given by ρ = p|1〉〈1|+
(1−p)|2〉〈2|. The measurement part of the cycle acts as follows: for a detector
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output q the probability changes as

p → pw1(q)/(pw1(q) + (1− p)w2(q)). (6.7)

Applying the same transformations as to the state (6.2), one sees that the
probability p(−)(q) of ending up in the state σx = −1, given the measurement
outcome q, is

p(−)(q) = w1(q)w2(q)/[(w1(q) + w2(q))(pw1(q) + (1− p)w2(q))]. (6.8)

The final step involves averaging over all possible measurement outcomes q,
p(−) =

∫
σ(q)p(−)(q)dq. Note that the detector non-ideality does affect the

measurement outcome as the off-diagonal elements of the initial state were
assumed to vanish. The probability of obtaining an outcome from the detector
during the measurement process σ(q) is given by

σ(q) = w1(q)ρ11 + w2(q)ρ22, (6.9)

where ρjj are the initial probabilities for the system to be in the state j. For
the classical case these are simply ρ11 = p and ρ22 = 1− p. Finally we find,

p(−) =

∫
dq

w1(q)w2(q)

w1(q) + w2(q)
. (6.10)

Equation (6.10) shows that the probability of classical evolution to end up in
the wrong state is finite and independent of the initial probability p. Further-
more, the expression is general in the sense that it is given only in terms of the
probabilities that are characteristic of the detector and therefore could apply
to any type of quantum measurement device.

Turning to the quantum evolution, the probability p(σx = −1) of ending
up in the state σx = −1 is found by applying the transformation sequence to
the measured state (6.4). Next, the average is taken over both the noise and
the measurement outcome. To average over the outcome we can use Eq. (6.9)
but with ρjj corresponding to the diagonal elements of the initial state (6.2).
This yields:

p(σx = −1) = p(−)

[
1−

√
2α

π
eαKo (α) e−γ

]
, (6.11)

where K0(x) is the modified Bessel function of the second kind and α =
∆2/(4v2

0). The second expression in the bracket corresponds to the off-diagonal
matrix elements of (6.2) after averaging over the noise, with the factor e−γ de-
scribing the additional dephasing caused by a non-ideal detector. Consider
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first the limit of strong noise, α → 0. In this case, the noise completely de-
phases the state (6.2) and thus, p(σx = −1) ≈ p(−). In the opposite limit of
vanishing noise, Eq. (6.11) reduces to p(σx = −1) = p(−)(1 − e−γ). When
the detector is ideal (γ = 0), we see that the transformation cycle completely
returns the qubit back to σx = 1, whereas for non-ideal detectors, there is
always a non-vanishing probability of end up in the wrong state. Therefore,
in order to distinguish quantum coherent evolution from that which is inco-
herent, it is necessary to have a detector which operates close to the quantum
limited regime, γ ¿ 1, and noise which is weak enough so that the initial state
is not completely dephased, as illustrated in Fig. 6.3. Furthermore, one must
employ weak measurement, i.e. if one of the probabilities wj(q) is zero, the
measurement is projective implying that p(σx = −1) = p(−) = 0 and therefore
impossible to distinguish the two types of evolution. This conclusion should be
independent of the specific form of the employed transformation cycle, since
projective measurement is always expected to fully separate different com-
ponents of the initial state of the measured system and completely suppress
quantum coherence between them.

The discussion above means that observation of the probability of the state
σx = −1 smaller than p(−),

p(σx = −1) < p(−) (6.12)

at the end of the transformation cycle proves that all transformations in this
cycle, including the wave function reduction, are quantum coherent. Combined
with the non-vanishing transfer of charge or flux during the “oscillation” step
[(6.5), (6.6)] of the cycle, this fact implies that the wave function reduction
induces similar transfer across the tunnel barrier separating the qubit basis
states even if the corresponding tunnel amplitude is zero.

6.3 Conclusions

The purpose of this Chapter was to investigate the counter-intuitive prop-
erties of wave function reduction. More specifically, we considered a qubit
subject to low-frequency noise measured by some general mesoscopic detec-
tor. A series of quantum transformations and associated Bell-type inequality
were suggested to illustrate the possibility that charge or flux can be trans-
ferred between two states separated by an infinitely high barrier. Moreover, we
have shown that such an effect is relatively robust against both detector non-
ideality and the low-frequency environmental noise present in state-of-the-art
qubit systems.
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Figure 6.3: The difference between the classical and quantum ”error” prob-
abilities, Eqns. (6.10) and (6.11) respectively, plotted as a function of the
noise amplitude vo/∆ for an ideal detector γ = 0 for various values of the
measurement strength ∆q/σ.
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Chapter 7

Landau-Zener Transitions and
Decoherence in Adiabatic
Quantum Computation

7.1 Introduction

In this chapter, we turn our attention to a different paradigm in the field
of quantum information, namely that of Adiabatic Quantum Computation.
As was mentioned in Chapter one, AQC involves an adiabatic transformation
of the ground state Hamiltonian HS of a qubit register in order to perform
computations. One begins by preparing the system in the ground state of a
known initial Hamiltonian Hi and slowly evolves the system towards some final
Hamiltonian Hf , the ground state of which represents the solution to the prob-
lem. The most important restriction is that the evolution must occur slowly
enough so that the system remains as close as possible to the instantaneous
ground state of the total Hamiltonian HS.

In general, the performance of an adiabatic algorithm depends on the struc-
ture of the energy spectrum of HS. In this work, we will consider the situation
which is typical for complex problems involving both search and optimization
[124] where the performance is limited by the anti-crossing of the two lowest
energy levels of the system. In the vicinity of the anti-crossing the problem is
mapped to the usual Landau-Zener problem.

The classic Landau-Zener (LZ) [125–127] problem concerns non-adiabatic
transitions in a two level system with a linearly time dependent potential. The
Hamiltonian for such a case is given by

Ho(t) =
1

2
(vtσz + ∆σx) , (7.1)
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where σx,z are the Pauli matrices, v is known as the sweep rate, and ∆ is
the coupling between the eigenstates |±〉 of σz. The instantaneous or adia-
batic energies of (7.1) are given by, E±(t) = ±(1/2)

√
(vt)2 + ∆2 and form an

avoided crossing with an energy gap given by gm = ∆, as shown in Fig. 7.1.
The time dependent problem can be solved exactly [125–127] and its evolution

−

E

vt
∆/2

|−>

|+>

|φ>

|φ>

+

Figure 7.1: Energy levels of the Hamiltonian (7.1) as a function of vt. The
solid lines correspond to the adiabatic energies while the dashed correspond
to the diabatic energies, Ed(t) = ±vt. Note that in the limit when vt À ∆
the two energies coincide.

from t = [−∞,∞], in the adiabatic basis of (2.1), is given by

U(∞,−∞) =

(
exp (−ıΦ)

√
qLZ −√pLZ√

pLZ exp (ıΦ)
√

qLZ

)
. (7.2)

Here
pLZ = exp

(−π∆2/2v
)

(7.3)

represents the LZ-probability to make a transition across the adiabatic states
and qLZ = 1− pLZ . Finally, Φ is known as the Stokes’ phase and is given by

Φ = π/4 + arg Γ (1− ıδ) + δ (ln δ − 1) (7.4)
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where, δ = ∆2/2v and Γ(z) is the Gamma function.
In the limit when δ ¿ 1, Eq. (7.2) shows that p ≈ 1. This implies

that if the system is initially (t = −∞) prepared in the ground state it will
then transit very nearly unimpeded across the energy gap. However, in the
opposite limit δ À 1, p → 0, and thus throughout the entire evolution the
system remains close to the instantaneous ground state |φ−〉.

One of the main advantages that this scheme offers for quantum compu-
tation is the protection against environmentally induced decoherence. This is
due to the energy gap that exists between the ground and excited states of
HS. It is also important to point out that it allows for the ground state to
maintain its coherence properties for times which are much longer than that
of single qubit without benefit of ground state protection. For the two state
approximation, this particular feature of AQC remains intact, as has been
previously demonstrated in Ref. [124], even if the temperature and/or deco-
herence strength are much larger than the energy gap. However, one question
that can be immediately raised is how does decoherence affect the performance
of an AQC algorithm? This question has particular relevance when it comes
to discussing the practical implementation of AQC of which one particularly
promising approach is to utilize solid state qubits.

In light of the above discussion one needs to understand what happens
when the Hamiltonian describing LZ transitions given in (7.1) is coupled to
some environmental system. The simplest case one can imagine is when Ho(t)
is coupled to an environment HB consisting of a single two level system,

H = Ho(t) + HB + λσxτx HB =
W

2
τz, (7.5)

where τx,z are the Pauli matrices describing the environment, λ is the coupling
strength, and W is the energy splitting of the environmental spectrum. As
shown in Fig. 7.2(b) the two level crossing splits into four anti-crossings whose
energy gaps are modified by the coupling λ to the environment. An environ-
ment with a continuous spectrum turns the anticrossing point into a contin-
uous region of some width W (Fig. 7.2c) within which incoherent tunnelling
between the two qubit states can take place. Thus for such typical models of
the environment, the gap no longer exists in the “qubits+environment” sys-
tem. The broadening W is directly related to the decoherence time of the qubit
states. Any uncertainty W in the energy of an energy eigenstate makes the
accumulated phase of this state also uncertain in time τdecoh ∼ 1/W . Since
the broadening W typically increases with the number of qubits, while the
minimum gap gm decreases, any realistic large-scale system will eventually fall
into the incoherent regime W À gm. This means that studies of the adiabatic
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Figure 7.2: Broadening of the energy levels of a closed system (a) due to
coupling to an environment made of (b) a single two-state system, or (c)
infinitely many degrees of freedom with a continuous energy spectrum. In
general, the coupling to an environment splits a single anticrossing into M2

anticrossings where M is the number of environment energy eigenstates. For
the environment with a continuous spectrum, the anticrossing turns into a
continuous transition region of width W .

theorem do not apply to such realistic situations and therefore new ways of
understanding the performance of AQC become necessary.

This chapter is dedicated to pursuing two interrelated topics. In the next
section we study Landau-Zener transitions coupled to a simple environment.
In particular, our interest will focus on the modification to the LZ transition
probability when Ho(t) is coupled to an environment consisting of a single
harmonic oscillator. In this system only coherent transitions between the var-
ious energy levels can take place which leads to a dramatic modification of
the LZ probability. We will also show how the phase accumulated during non-
adiabatic transitions (e.g. the Stokes’ phase) through the energy gaps leads to
interference effects which appear, for example, in the qubit’s transition prob-
ability. These effects, known as Stückelberg oscillations, have been recently
observed in solid state qubits [128, 129].

In the second part of this chapter, we study the evolution of an adiabatic
quantum computer in the “incoherent” regime by developing a corresponding
description of Landau-Zener transitions for W À gm [130].
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7.2 Landau-Zener transitions in a coupled qubit-

oscillator system

In this section we investigate the coupling of a qubit undergoing Landau-
Zener Transitions to an environment consisting of a single harmonic oscillator.
Aside from the understanding garnered by exploring non-adiabatic transitions
in this type of system, a secondary motivation concerns its experimental rel-
evance particularly in the field of circuit quantum electrodynamics (CQED)
[28, 29]. In analogue to cavity QED where atoms interact with quantized elec-
tromagnetic fields, superconducting charge [28] or flux [29] qubits play the role
of atoms that are strongly coupled to a quantized harmonic oscillator which
is embedded in the circuit. Recently, work has been done towards studying
LZ transitions in these types of systems (see for example [131–133]) including
proposals for utilizing LZ transitions to generate single photons at microwave
frequencies [133] and to create [132] an entanglement of the qubit-oscillator
states. However, studies thus far focus on the case when the oscillator is at
zero temperature. In what follows we will show how coupling the qubit to an
oscillator initialized in a thermal state will lead to the modification of the LZ
transition probability as well as to the appearance of Stückelberg oscillations
which could be experimentally observed in CQED systems.

7.2.1 Model

The model considered in this section follows the recent work done on LZ
transitions in CQED systems [131–133] and is characterized by,

H(t) =
vt

2
σz + Ωa†a +

∆

2
σx +

λ

2
σx

(
a† + a

)
(7.6)

where Ω is the frequency of the oscillator and λ is the coupling strength be-
tween the two systems. In experimental applications both the energy sweep
rate v and the tunnel coupling ∆ can be tuned. The diabatic states of this
system, i.e. those which diagonalize the first two terms of (7.6), are given by
|n,±〉 = |±〉 ⊗ |n〉 where |±〉 are the eigenstates of σz and |n〉 are the energy
eigenstates of the harmonic oscillator. The associated diabatic energies are,

E±
n (t) = ±vt

2
+ Ωn. (7.7)
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In the calculations that follow we will assume that initially, the combined
qubit-oscillator system starts out in the state described by the density matrix

ρ(t → −∞) = |+〉〈+| ⊗ ρosc, (7.8)

where
ρosc =

∑
n

ρn|n〉〈n|. (7.9)

Here |n〉 are the eigenstates of the oscillator with energy En = Ωn and ρn is the
occupation probability of the state |n〉. In the case of a thermal distribution
of oscillator states, ρn = e−βΩn/Z with β = 1/T and Z =

∑
m e−βΩm is the

partition function.
The quantity of primary interest is the survival probability of the qubit, or

the probability that once initialized in the state |+〉 that at t →∞ the qubit
will remain in that state. For an isolated qubit, i.e. setting λ = 0 in (7.6),
this is simply the LZ transition probability given in (7.3). For non-vanishing
coupling the survival probability is found evolving the system from t = −∞
to t = ∞ beginning with the state (7.8) and summing over all the oscillator
states. This is given by,

Psurv =
∑
m,n

ρn|〈m, +|U(∞,−∞)|n, +〉|2 (7.10)

where U(∞,−∞) = T exp[−i
∫∞
−∞ H(t′)dt′] and T is the usual time ordering.

The above equation implies that the survival probability for the qubit is simply
a sum over all possible transitions between states |n+〉 and |m+〉 weighted by
the occupation probability of the state |n+〉 which in turn is determined by
the temperature T of the oscillator.

Due to the complexity of the system Hamiltonian (7.6) a full analytical
result for the survival probability is not possible. However, in the following
discussions we will be able to find analytical results in various limiting cases.

7.2.2 Survival Probability when ∆ = 0

In this we consider the case in which the coupling between the basis states
of the qubit ∆ vanishes. Then the Hamiltonian (7.6) reduces to,

H(t) =
vt

2
σz + Ωa†a +

λ

2
σx(a

† + a). (7.11)

The energy spectrum of the system as a function of vt is shown schematically
in Fig. 7.3. The effect of the final term in (7.11) is to couple the diabatic states
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Figure 7.3: Energy diagram illustrating the anticrossings (solid lines) between
the different diabatic energy levels (dashed lines) of the Hamiltonian (7.11). In
the limit when the width of the anti-crossings are smaller than the separation
between consecutive diabatic energy levels (which is Ω) transitions between
the crossings can occur independent of one another. In this case, there are two
possible paths that contribute to Psurv: (a) direct transitions which begin and
end on the same diabatic state and (b) indirect transitions which go between
|n + 1, +〉 and |n− 1, +〉.

|n, +〉 and |n±1,−〉 and therefore causes the energy spectrum to exhibit anti-
crossings between these states whenever t = ±Ω/v = ±to.

In the limit when λ ¿ Ω, the avoided crossings are well separated from one
another. To calculate transition amplitudes between the diabatic states we can
then employ the independent crossing approximation (ICA) [134]. Under the
ICA, due to separation of the avoided crossings, the dynamics of the system
near the vicinity of an anticrossing can be well described by the standard two
level Landau-Zener problem and each crossing is treated as independent of all
others. This is illustrated in Fig. 7.4 near the crossing between two diabatic
energy levels, |n, +〉 and |n + 1,−〉. At their intersection, the adiabatic ener-
gies form an avoided crossing with an energy gap given by ∆En = λ

√
n + 1.

Around the anti-crossing, the propagator in the adiabatic basis is given by

Un(∞,−∞) =

(
exp (−ıΦn)

√
qn − sgn(λ)

√
pn

sgn(λ)
√

pn exp (ıΦn)
√

qn

)
. (7.12)

Here, pn = e−πδn and qn = 1 − pn represent the probabilities to make a
transition or to remain in the adiabatic state respectively, and δn = ∆E2

n/2v.
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Figure 7.4: Energy diagram of the anti-crossing between two diabatic energy
levels (dashed) and the corresponding adiabatic energy levels (solid).

The Stokes’ phases are given by

Φn =
π

4
+ arg Γ (1− iδn) + δn (ln δn − 1) . (7.13)

Note also that transitions between states |n, +〉 and |n − 1,−〉 are given by
Eqns. (7.12) and (7.13) with n → n− 1.

Next, we turn our attention to determining the survival probability for the
qubit using Eq. (7.10). Utilizing Eq. (7.10) the survival probability can be
written as a sum of two separate contributions,

Psurv = P0 + P2 (7.14)

where,

P0 =
∑
n=0

ρn|〈n, +|U(∞,−∞)|n, +〉|2 (7.15)

corresponds to direct transitions which begin and end on the same diabatic
state, as illustrated in Fig. 7.3a. The other term P2 corresponds to transitions
between diabatic states with the emission of two photons wherein the system
begins in the state |n + 1, +〉 and ends up in |n− 1, +〉, in Fig. 7.3b. This is
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given by,

P2 =
∑
n=2

ρn|〈n− 2, +|U(∞,−∞)|n, +〉|2. (7.16)

The fact that the survival probability separates into two separate terms is a
direct result of the σx coupling of the qubit to the oscillator. It is important
to note that transitions to states of higher energies (eg. transitions between
states |n, +〉 and |m, +〉 where E+

m > E+
n ) are forbidden since the crossings

must proceed forward in time. The fact that transitions from states of lower
to higher energy are forbidden is a general feature of multilevel (LZ) problems
and is known as the ”no-go” theorem [134–137] whose validity is independent
of the width of the level crossing. The ”no - go” theorem has also been applied
recently to dissipative LZ transitions [131, 138].

The direct transitions can be easily calculated using the ICA,

|〈n, +|U(∞,−∞)|n, +〉|2 = pn−1pn (7.17)

which is simply the product of the transition probabilities across the individual
anti-crossings located at points B and C in Fig. 7.3a. Inserting this result
into Eq. (7.15) and summing over all the oscillator states yields,

P0 = e−
πλ2

4v
sinh (βΩ/2)

sinh (βΩ/2 + πλ2/4v)
. (7.18)

As one can see from the above equation in the limit when the oscillator is at
zero temperature then Pd = exp(−πλ2/2v) which is simply the LZ transition
probability to make a transition at the anti-crossing between the states |0, +〉
and |1,−〉. In fact, it has been shown that this result holds even when the ICA
fails (see e.g. Refs. [131, 133, 134, 138]). For non-vanishing temperatures, Eq.
(7.18) shows that in the limit adiabatic limit when v ¿ λ2, the transition
probability decays to zero.

The indirect transition rates can be found in the same way and are given
by,

P2 = e−2βΩ

[
1− Pd sinh

(
βΩ

2

)
F (β, λ)

]
(7.19)

where,

F (β, λ) =
Pd

sinh
(

βΩ
2

+ πλ2

2v

) −
sinh

(
πλ2

4v

)

sinh
(

βΩ
2

+ πλ2

4v

) . (7.20)

One of the most important observations to make about Eq. (7.19) concerns its
behavior in the adiabatic limit, v ¿ λ2. In this case, P2 does not vanish but in
fact asymptotically approaches a temperature-dependent value of exp(−2βΩ).
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Qualitatively, the main reason for this can seen by inspecting indirect transi-
tion path in Fig. 7.3b. Consider the case where the system begins in the state
|n + 1, +〉. The first anti-crossing that the system approaches is at the point
A in the figure. Since the probability of transiting across the gap is goes as
e−πλ2(n+2)/2v, in the adiabatic limit, any transition will be strongly suppressed.
Therefore, the system will adiabatically evolve along the lower energy level
of the crossing and end up in the state |n,−〉. At the next crossing, located
at point D, transitions across the gap are again exponentially suppressed and
thus the system will end up in the state |n− 1, +〉. So, in the adiabatic limit,
|〈n− 1, +|U(∞,−∞)|n + 1, +〉| → 1 up to irrelevant phase factors. Since the
survival probability is the sum of both direct and indirect transitions this will
approach the value exp(−2βΩ) in the adiabatic limit. In Fig. 7.5, the behavior
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0.4
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0.8
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λ2/2v

P
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T = 6Ω

2Ω

Ω

.5Ω

Figure 7.5: Survival probability as a function of λ2/2v for various oscillator
temperatures. The dotted lines are obtained by a numerical solution of the
propagator in Eq. (7.10) with λ = .02Ω and the solid lines are the survival
probability found using the ICA.

of the survival probability is shown as a function of λ2/2v for various values
of the temperature. The dotted lines shown in Fig. 7.5 compare the results
obtained from the numerical evaluation of the propagator in Eq. (7.10) to the
ICA. For comparison λ, has been set to .02Ω and shows excellent agreement
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with the results obtained from the ICA.

7.2.3 Survival Probability when ∆ 6= 0

The next step in the analysis is to consider the case when ∆ is non-vanishing
and ∆, λ ¿ Ω so that the ICA applies. In this case, the possibility exists that
non-adiabatic transitions between states of the same photon number but with
different ”spin”, that is transitions between the diabatic states |n, +〉 and
|n,−〉. As will be shown, this simple modification to the Hamiltonian has
rather interesting consequences for the survival probability.

In the case of ∆ 6= 0, the survival probability (7.10) has three different
contributions to it at finite oscillator temperature,

Psurv = P0(∆) + P2(∆) + P1(∆), (7.21)

where the first and second terms of the above equation have the same form as
Eqns. (7.15) and (7.16), respectively, and

P1(∆) =
∑
n=1

ρn|〈n− 1, +|U(∞,−∞)|n, +〉|2, (7.22)

corresponds to transitions between diabatic states which have the same qubit
state but differ by one photon.

Consider first, the calculation of the propagators contributing to P0(∆),

|〈n, +|U(∞,−∞)|n, +〉|2 = pn−1pnpLZ (7.23)

where, pLZ is the LZ probability given in Eq. (7.3) and corresponds to the
transition across the anti-crossing connecting the diabatic states |n,±〉. Since
this is independent of the oscillator state, the contributions to the survival
probability at finite temperature from direct transitions can be related to those
in the case of vanishing ∆ as P0(∆) = pLZP0, where P0 is given by Eq. (7.23).

Similarly, the contributions from P2(∆) are also related in the same way
as P2(∆) = pLZP2. This implies that in the adiabatic limit when ∆ À v,
the survival probability no longer saturates but decays asymptotically toward
zero as transitions across the energy gap between the diabatic states |n,±〉 are
exponentially suppressed.

Finally, we turn our attention to the calculation the contribution stemming
from Eq. (7.22). To calculate the propagator, Sn = |〈n−1, +|U(∞,−∞)|n, +〉|2,
we note that there exists two paths to go from |n, +〉 to |n− 1, +〉, with am-
plitudes Sn

1,2, as shown in Fig. 7.6. Therefore,
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Figure 7.6: Energy level diagram for one photon transitions. The crossings of
the diabatic states occur at t = ±Ω/v, 0. As indicated by the arrows there are
two possible paths whose amplitudes are Sn

1,2 connecting the states |n, +〉 and
|n−1, +〉. The dynamical flux, ΦD

n , is the area enclosed by the adiabatic states
of the Hamiltonian (7.11), εn±(t), between the diabatic crossings at ±Ω/v.

Sn = |Sn
1 |2 + |Sn

2 |2 + 2 Re(Sn
1 S̄n

2 ) (7.24)

where S̄ denotes the complex conjugate of the amplitude. By utilizing the
propagator given by Eq. (7.12), we can then calculate the amplitudes of each
path by taking the product of transition amplitudes at each crossing. These
are given by,

Sn
1,2 = −Θλ,∆

√
qn−1pn−1qLZeı(ΦD

1,2(n)+χn−1
1,2 ). (7.25)

Here we have defined Θλ,∆ = sgn(λ) sgn(∆). The quantities ΦD
1,2(n) are the

dynamical phases accumulated as the system evolves along the adiabatic eigen-
states εn±(t) of the Hamiltonian (7.6) and χn−1

1,2 correspond to the Stokes’
phases picked up at each crossing whenever the system makes a transition
between two diabatic states. These are given by χn−1

1 = Φ − Φn−1 and
χn−1

2 = −χn−1
1 . Thus, Eq. (7.24) becomes,

Sn = 4qn−1pn−1qLZ cos2

(
φn−1

2

)
, (7.26)
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where φn−1 = ΦS
n−1−ΦD

n and represents the total flux enclosed by the adiabatic
energies εn±(t) between the two crossing points ±to. This has two contribu-
tions, one from the Stokes’ phases, given by ΦS

n−1 = χn−1
1 −χn−1

2 , and the other
from the dynamical phase [139],

ΦD
n =

∫ to

−to

dt [εn+(t)− εn−(t)] . (7.27)

The combined action of both phase contributions controls the interference
between the between the paths Sn

1,2 and leads to oscillations in the survival
probability of the qubit, when the oscillator is at a finite temperature. These
are the well known Stuckelberg Oscillations. Finally, inserting Eq. (7.26) into
(7.22) yields,

P1(∆) = 8q sinh

(
βΩ

2

) ∑
n=1

qn−1pn−1 cos2

(
φn−1

2

)
e−(n+1/2)βΩ. (7.28)

To understand the above equation further, consider the survival probability
of the qubit in the low temperature limit (T ¿ Ω). Here, to good approxima-
tion, it is only necessary to consider the occupancy of ground and first excited
state of the oscillator system. The energy spectrum of this system is similar
to that shown in Fig. 7.6. Therefore, Eq. (7.28) reduces to,

Psurv = P0(∆) + 4ρ1q
2
0p0 cos2(φ0/2). (7.29)

Consider the case in which both ∆ and λ are held fixed and the sweep rate v
is varied. An inspection of Eq. (7.29) reveals that whenever v is tuned such
that φ0 = (2n+1)π with n = 0, 1, 2, ... the second term vanishes which implies
that the paths between |1+, +〉 and |0+, +〉 interfere destructively. However, in
the case of φ0 = 2nπ the paths exhibit constructive interference. This means
that the path interference can be controlled by tuning the sweep rate which
in turn changes the amount of ”flux” enclosed by the adiabatic states between
different paths. In a sense, the physics of this system are very similar to that of
a Mach-Zender Interferometer (MZ). Here, an incoming optical signal is split
into two paths via a beam splitter, each having a different path length. These
signals are then recombined through another beam splitter. An interference
is setup between the two signals which depends on the path length difference.
In our case, the role of the beam splitters are played by the crossings at times
±to and path interference is adjusted by modifying the flux φ0. This type of
analogy between LZ transitions and MZ has been proposed previously [140]
and observed more recently in experiments with flux [129] and charge [128]
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qubits under strong AC driving conditions.
In general, due to the complex form of the phase φo it is difficult to obtain

a simple relation for which sweep rate can be tuned such that interference
can be observed. However, in the case when ∆ = λ, all four of the anti-
crossings between the diabatic states |0,±〉 and |1,±〉 have the same energy
gap ∆E = λ. This implies that the Stokes’ phase contribution cancels out in φ0

and so one only needs to consider the dynamical phase ΦD
0 in (7.27). Exploiting

the fact that λ ¿ Ω allows this to be easily calculated yielding φ0 = Ω2/v.
Thus constructive (destructive) interference occurs when the sweep rate is

v = Ω2/(mπ) (7.30)

where m is an even (odd) integer. This implies that when the survival proba-
bility is plotted as a function of sweep rate with λ held fixed this will exhibit
oscillatory behavior, as illustrated in the lower curve of Fig. 7.7. Finally, we
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T/Ω = 1.5

Figure 7.7: Survival probability when ∆ = λ plotted as a function of λ2/(2v)
where λ is held fixed at .02Ω and the sweep rate v is varied. Here the
Stückelberg oscillations are clearly visible. Two different temperature regimes
are shown and the comparison is made between the analytical expressions
(solid lines) and the full numerical solution (dotted) to the propagator in Eq.
(7.10).

consider the case for arbitrary temperatures. As the temperature is increased
so does the occupation probability for energy levels above the ground state.
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Therefore, as illustrated in Fig. 7.7, the amplitude of the Stückelberg oscilla-
tions increases with the temperature of the oscillators state. Furthermore, as
can be seen by inspecting Eq. (7.28) the oscillations are composed of a number
of path interferences between separate groups of diabatic states differing by
one photon, as in Fig. 7.6. In these higher photon number states, the energy
gaps of the anticrossings are no longer equal as in the low temperature case.
This implies that the condition for constructive/destructive interference (7.30)
is not valid and the result is that each of the oscillations exhibit interference
maxima or minima at different values of the sweep rate. This leads to a slight
phase shift in the oscillation pattern of the survival probability when compared
against the low temperature case, as shown in Fig. 7.7.

In the limit of v ¿ λ an approximate expression can be developed for
the survival probability. In this case, dominant term in Eq. (7.28) is n = 1
whereas all others are exponentially suppressed in this limit. Therefore, in this
limit the survival probability is,

Psurv = P0(∆) + P2(∆) + 4ρ1q
2
0p0 cos2(φ0/2) (7.31)

which is the same as the low temperature case, Eq. (7.29), except with the
addition of the two-photon transition term P2(∆) which contributes for finite
temperatures. The above equation implies that in the adiabatic limit only path
interference in the between the two lowest lying diabatic states contribute to
the Stückelberg Oscillations.

7.2.4 Conclusions and Experimental Prospect

As eluded to at the beginning of this section these results have relevance to
current experiments in CQED [28, 29]. In these systems, the role of the qubit
is played by a Cooper Pair Box [28, 141], or Josephson charge qubit [142].
Here, a superconducting island is coupled by two Josephson tunnel junctions
to superconducting reservoirs. In the regime when the number of cooper pairs
on the island differs by one, the system can be described by the two state
Hamiltonian,

HQ =
1

2
(EJσz + ∆σx) (7.32)

where, EJ is the Josephson energy and ∆ is the electrostatic energy of the
island. The Josephson energy can be modified by applying an external flux bias
Φb to the system so that Ej = EJ,max cos(πΦb). As pointed out in Refs. [131–
133] Φb can be modified such that the linear sweep required for LZ transitions
can be emulated. Furthermore, ∆ can be tuned via an external gate bias Vg

coupled to the island via a capacitance Cg. The gate bias induces a charge
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on the island ng = VgCg/e so that ∆ = 4EC(ng − 1/2), where EC is the
coulomb charging energy. The resonator in these systems is realized by a
superconducting transmission line which is then capacitively coupled to the
qubit. The total Hamiltonian for this system is given by,

H = HQ + Ωa†a +
λ

2

(
a† + a

)
[σx + ng − 1/2] , (7.33)

where λ is the coupling strength between the qubit and the oscillator. Experi-
mentally [28], coupling strengths of λ/Ω ≈ 10−3 are common in these systems.
Furthermore, recent experiments [30] allow for the possibility of initializing
the oscillator in a thermal state. Here, the cavity can be populated in either
a thermal state or coherent state by applying the appropriate drive signals to
the oscillator. As one can see the case in which ∆ = 0 is obtained by setting
the charge qubit to its degeneracy point (ng = 1/2) which is also the point in
which qubit decoherence is minimized [142]. In fact, for this case the asymp-
totic limits v << λ of the survival probability apply to cases where the cavity
is initialized in a coherent state such as,

|ψcoh〉 = e−|α|
2/2

∑
n

αn

√
n!
|n〉 (7.34)

then in the adiabatic limit,

Psurv = 1− e−〈N〉 [1 + 〈N〉] , (7.35)

where, 〈N〉 = |α|2 is the average photon number of the state.
Turing to the case in which ∆ 6= 0 such a situation can occur whenever the

qubit is tuned off of its degeneracy point. However, some care should be taken
in this case for two reasons. First, as shown in the Hamiltonian (7.33) off the
degeneracy point an additional coupling term comes into play which tends to
shift the equilibrium position of the oscillator. Anticipating this ∆ was chosen
in this work such that λ(ng − 1/2)/2 ∼ λ2. Therefore effect of this term is
negligible and the Hamiltonian given by (7.11) is an excellent approximation.

Secondly, tuning the qubit off of its resonance point dramatically increases
the decoherence rate in the qubit [143]. Since the Stückelberg oscillations
arise due to the fact the system maintains coherence throughout the entire
evolution, the detuning of nq should be relatively small.

To summarize, this section has focused on LZ transitions in a qubit coupled
to a harmonic oscillator. It has been shown that the coupling of the qubit to
the oscillator system allows for the possibility of drastic modifications to the
survival probability of the qubit due to the fact that the coupling causes a

99



single anticrossing to split into multiple anticrossings. When the oscillator is
initialized in a thermal state described by some temperature T , the system
can transit coherently between the different diabatic states. In case when
∆ = 0 the survival probability saturates in the adiabatic limit and this value
is directly related to the temperature of the oscillators thermal state. For non-
vanishing ∆, multipath interference leads to the appearance of Stückelberg
oscillations in the survival probability when plotted as a function of the sweep
rate v. Increasing the temperature of this state causes the amplitude of these
oscillations to increase.

7.3 Decohernce in Adiabatic Quantum Com-

putation

In the next part of the Chapter we concentrate on the Landau-Zener tran-
sitions in the presence of decoherence, which is the opposite case to that was
considered before. As pointed out at the beginning of this Chapter the moti-
vation here is to evaluate the performance of AQC when the qubit system is
subject to strong decoherence. To this end, we consider a model in which LZ
transitions occur in the presence of an environment with a continuous spectrum
in contrast to the previous case. We use the model of decoherence appropri-
ate for solid-state circuits, where the AQC approach is particularly promising.
One characteristic feature of such a model is that it should allow for non-
Markovian, in particular low-frequency, environmental noise. Previous studies
have mainly considered Markovian environments [56, 124, 144, 145]. A correct
description of the interaction with a low-frequency environment, which has the
strongest effect on the AQC algorithms [146], requires a non-perturbative or
strong-coupling theory of the environment-qubit interaction.

Another feature of our “solid-state” approach is the assumption that the
environment responsible for decoherence is in equilibrium at some temperature
T , and is sufficiently large to enforce (on some time scale) the equilibration
among the qubit states at the same temperature. Even the low-frequency noise
that dominates the decoherence of the solid-state qubits (see, e.g., [147, 148])
comes usually from equilibrium sources [149]. Previous studies of the AQC
decoherence used models that do not account directly for such equilibration
[56, 144, 150–152]. Since environment temperature can not be reduced indefi-
nitely, for a sufficiently large system, T will inevitably be larger than the min-
imum gap gm. This means that in contrast to closed systems, Landau-Zener
transitions in the presence of decoherence are intrinsically linked to thermal
excitations out of the ground state, making it necessary to consider the two
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types of the transitions simultaneously.

7.3.1 Model

Quantitatively, we introduce the decoherence as usual by adding the bath
HB and the interaction Hamiltonian Hint to the Hamiltonian HS of the qubit
register: Htotal=HS + HB + Hint. As discussed above, we use the two-state
approximation near the anticrossing, assuming that gm is much smaller than
the energy gaps separating the first two from the other levels. This two state
approximation is in general valid for the minimum gaps that result from first
order quantum phase transitions. For the second order quantum phase tran-
sitions, other methods become necessary, see e.g. [153].

HS = −(εσz + gmσx)/2, Hint = −Qσz/2, (7.36)

where σ’s are the Pauli matrices, Q is an operator of the environmental noise,
ε ≡ E(s−sm) with E À gm defining the energy scale which characterizes the
anticrossing at s = sm. Independent couplings of individual qubits to their
environments produce only the σz-coupled noise in the two-state model (7.36)
[124]. We assume that the noise is Gaussian so that we do not need to specify
HB explicitly. Then, all averages can be expressed in terms of the spectral
density:

S(ω) =

∫ ∞

−∞
dt eiωt〈Q(t)Q(0)〉,

where 〈...〉 denotes averaging over the environment. Gaussian noise is expected
if the environment consists of a large number of degrees of freedom all weekly
coupled to the system [61].

In the regime of incoherent Landau-Zener transitions considered here, both
the environment-induced broadening W of the two basis states of the Hamil-
tonian (7.36) and temperature T are taken to be much larger than gm. This
means that the time (∼ 1/W ), during which the two states lose their relative
phase coherence, is much smaller than the typical tunnelling time (∼ 1/gm)
which implies that the tunnelling between these states will be incoherent. In
particular, the off-diagonal elements of the density matrix ρ of the system
(7.36) vanish within the time τdecoh ∼ 1/W so that ρ reduces to diagonal
elements, i.e. to ρz ≡ p0− p1, which is governed by the usual kinetic equation

ρ̇z = −Γ(ρz − ρ∞), (7.37)

where Γ = Γ01 + Γ10 and ρ∞ = [Γ10 − Γ01]/Γ. Here we use the standard
notations: |0〉 and |1〉 are the two eigenstates of σz with eigenvalues ∓1, re-

101



spectively, pj is the occupation probability of state |j〉, and Γij is the rate of
tunnelling from state |i〉 to |j〉.

The physics behind such an incoherent tunnelling is the same as for macro-
scopic resonant tunnelling (MRT) of flux in superconducting flux qubits which
has been studied experimentally [149] and theoretically [154]. In particular,
the transition rates have the structure of resonant peaks of width W in the
vicinity of the anticrossing point. These rates can be explicitly calculated by
a perturbation expansion in gm and assuming Gaussian noise [154]:

Γ01(ε) =
g2

m

4

∫
dteiεt exp

{∫
dω

2π
S(ω)

e−iωt−1

ω2

}
. (7.38)

The rate of the backward tunnelling is determined by the relation Γ10(ε) =
Γ01(−ε). In the case of white noise, S(ω) = S(0), Eq. (7.38) gives the tun-
nelling peak in the form of a Lorentzian line-shape:

Γ01(ε) =
1

2

g2
mW

ε2 + W 2
, W =

1

2
S(0) . (7.39)

On the other hand, in the situation characteristic for practical solid-state
qubits when the noise is dominated by the low-frequency components, Eq. (7.38)
reduces to a shifted Gaussian [154]:

Γ01(ε) =

√
π

8

g2
m

W
exp

{
−(ε− εp)

2

2W 2

}
, (7.40)

W 2 =

∫
dω

2π
S(ω), εp = P

∫
dω

2π

S(ω)

ω
.

For the environment in thermal equilibrium, the width W and the position εp

of the Gaussian are related by [154]:

W 2 = 2Tεp . (7.41)

These theoretical results have been experimentally confirmed in flux qubits
[149].

7.3.2 Results

Let us first study the kinetic equation (7.37) in two extreme cases. In the
small-T regime ρ∞ ' sgn ε which implies, with the initial condition ρz(0) = 1,
that the right hand side of (7.37) is nonzero only for ε > 0. This leads to the
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ground state probability

pG = 1− e−γtf , (7.42)

γ ≡ 1

tf

∫ ∞

0

Γ(ε)
dε

ε̇
=

1

tf

∫ ∞

−∞
Γ01(ε)

dε

ε̇
. (7.43)

We shall see later that under relatively general conditions ε̇ ∝ 1/tf and there-
fore γ is independent of tf . These equations assume that the range of ε is
large enough to effectively cover the whole peak of Γ01, therefore justifying
infinite integration limits. In particular, the range of ε should be larger than
(among other energies) the cutoff energy of the environment excitations. In
the opposite large-T regime, one has |ε| ¿ T and hence ρ∞ = 0 in Eq. (7.37)
for energy ε within some relevant interval around the anticrossing point ε = 0
(this condition is made more precise below). The ground state probability is
then

pG =
1

2

(
1− e−2γtf

)
. (7.44)

Because of the thermal excitations, pG approaches 1/2 in the slow-evolution
limit. For the intermediate T regime, pG always falls between (7.42) and (7.44),
therefore these equations give, respectively, upper and lower bounds for the
probability of success (see Fig. 7.8 and discussion below).

An important feature of (7.38) is that for uniform evolution, i.e., ε̇ =
const ≡ ν, it gives γtf = 1

ν

∫∞
−∞ Γ01(ε)dε = πg2

m/2ν, independently of S(ω),
leading in the small-T regime to the same Landau-Zener probability (7.42) as in
the decoherence-free case. This result extends the recent proofs [131, 138, 155]
that at T = 0 Landau-Zener probability is unaffected by decoherence. The
physical reason for this is that the decoherence changes only the profile of
the transition region while keeping the total transition probability the same.
Therefore, in the two extreme regimes, the ground state probabilities (7.42)
and (7.44) are completely independent of the form of the noise spectrum S(ω).

At intermediate temperatures, on the other hand, the quantitative tf -
dependence of the probability pG is sensitive to the specific form of S(ω) and
therefore to the tunnelling rates. For Gaussian rates (7.40) and uniform evolu-
tion, pG calculated from Eq. (7.37) is shown in Fig. 7.8. The curves characterize
the transition between the low- (7.42) and high- (7.44) temperature limits. At
small evolution times when tf ¿ γ−1 all curves coincide, with pG = γtf in
the linear approximation, independently of temperature T . The temperature
dependence of pG appears only in the second-order terms in γtf . For slow
evolution, tf ≥ γ−1, pG varies from 1 to 1/2 with temperature T – see inset
in Fig. 7.8. If the evolution is infinitely slow, the occupation probabilities of
the states |0〉 and |1〉 should always reach the local thermal equilibrium. This,
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Figure 7.8: The occupation probability pG of the ground state as a function of
the dimensionless evolution time γtf for different temperatures T in the case
of the Gaussian tunnelling rates (7.40). The inset shows the dependence of pG

on T/W for γtf = 1; 1.5; 2; 3; 5 from lower to upper curves respectively.

however, is not the relevant regime for the present discussion. In the rele-
vant case, the rate ν is comparable to the maximum tunnelling rates Γ, and
therefore becomes much larger than the tunnelling rates as the system moves
away from the resonance, so that the local equilibrium is not maintained. This
means that, strictly speaking, the large-T result (7.44) is valid for any tf only
for T À E. Asymptotic analysis of the evolution equation for the case of the
Gaussian rates (7.40) shows that in the more interesting regime when T À W
but T ¿ E, the ground-state probability is:

pG =
1

2
+

W√
2T

[ln γtf ]
1/2. (7.45)

This equation describes the increase of pG towards the local equilibrium at
sufficiently large evolution time tf , and corresponds to the large-T part of the
two curves with larger γtf in the inset in Fig. 7.8.
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7.3.3 Relevance to AQC

We now use the results presented above to discuss the performance of AQC
in the incoherent regime gm ¿ W,T . For this, one needs to distinguish global
and local adiabatic evolutions. In the global scheme, the adiabatic evolution is
uniform, ε̇ = const = E/tf , and Eqs. (7.42) and (7.44) show that the required
computational time tf ' γ−1 = 2E/πg2

m coincides with the decoherence-free
case independently of decoherence and temperature T . Even if the large T
reduces pG to ' 1/2, to find correct solution, one only needs to repeat the
computation process on average two times.

Global adiabatic evolution, however, does not yield the optimal perfor-
mance in coherent AQC. Indeed, for the case of adiabatic Grover search [151],
the global adiabatic scheme yields the complexity of the classical exhaustive
search, i.e., tf = O(N), where N (= 2n) is the size of data base. In the
more efficient local scheme [151], one takes ε̇(t) = αg(t)2, so that the adiabatic
condition is satisfied uniformly (the system slows down in the region of small
gap) and the computation time is tf = π/αgm which for the case of adiabatic
Grover search yields the optimal O(

√
N) performance. The local evolution

plays crucial role for the scaling analysis of the AQC [151, 156, 157], although
in some cases it is only assumed implicitly. In general, however, finding the
gap g(s) is as hard as solving the original problem, and only in some cases,
e.g, the adiabatic Grover search, g(s) is independent of the final solution and
can be found a priori analytically.

The enhanced performance of the local scheme comes at a price of its
stronger sensitivity to decoherence. A qualitative reason for sensitivity of local
AQC is that although decoherence does not change the total integral transition
probability, it distributes it over a much larger energy interval W À gm,
making it necessary to slow down the evolution for a longer period of time. If
one uses the same ε(t) as in the decoherence-free case, the average tunnelling
rate (7.43) is dominated by the vicinity of the point ε = 0. Quantitatively,
ε̇ = αg2 and tf = π/αgm yield (tf ε̇)

−1 = gm/πg2 ≈ δ(ε), which together with
(7.43) and (7.38) give γ ≈ Γ01(0) ∝ g2

m. Therefore the computation time is
tf ' γ−1 ∝ g−2

m , which is similar to the performance of the global scheme with
the only possible enhancement compared to the global case being a prefactor.
In the case of white noise, Eq. (7.39) leads to γ = g2

m/2W , while for the low-
frequency noise, Eq. (7.40) gives γ =

√
π/8(g2

m/W )e−W 2/8T 2
. Notice that in

the latter case, lowering T with constant width W [149] does not shorten the
computation time.
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7.3.4 Conclusions

To summarize, we have studied the decoherence effects on AQC due to gen-
eral non-Markovian environments in the strong decoherence regime, in which
the broadening of the energy levels completely smears out the anticrossing
region. Our strong-coupling treatment shows that global AQC remains unaf-
fected by strong decoherence W > gm and is independent of the type of noise,
while the local AQC provides only a prefactor improvement of the algorithm
running time in this regime and does not change the scaling of this time with
gm as compared to the case without decoherence. Thus, the local AQC can
only maintain its properties if W < gm. Since W ∼ 1/τdecoh, and tf ∼ 1/gm

for the local scheme in the weak-decoherence regime, the computation time
is limited by the decoherence tf < τdecoh in the same way as in gate model
QC. Therefore, the advantageous scaling of the local AQC requires phase co-
herence throughout the evolution as in the gate model. Insensitivity of AQC
to decoherence only holds for the global scheme and does not apply to local
AQC. It should be emphasized that our results are based on the fact that
the two-state model holds, which the broadening of the energy levels and also
thermal excitation do not mix the lowest two states with other excited states.
For stronger noise or higher temperatures, one needs to take higher states into
consideration.
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Chapter 8

Conclusions

The work in this dissertation has examined the applications of Quantum
Antidots in both charge transport experiments and Quantum Information.
The first part of the dissertation presented a model to describe coherent quasi-
particle transport in structures involving multiple antidots. The main result
is that the anyonic exchange statistics of these quasiparticles is manifested
directly in the DC tunnel conductance of these systems even in the absence of
quasiparticle exchange. Most notably, it was shown that in tunnelling through
a line of three antidots, the statistics should be exhibited as a non-vanishing
resonant peak of the tunnel conductance and represents an experimentally vi-
able approach to determining the anyonic exchange statistics of quasiparticles
from the Fractional Quantum Hall effect. The second half of the dissertation
examined possible applications of quantum antidots in Quantum Information.
The use of the quantum antidot electrometer was discussed as a potential
detector for FQHE qubits. It was shown that the CLL effects of the edge
states entered into the measurement characteristics of the detector. Finally,
the non-trivial aspects of wave function reduction in measurements of a single
qubit was examined as well as the coherent synchronization of oscillations in
a continuously measured double qubit system. Finally, we evaluated the per-
formance of adiabatic quantum computation in the presence of low frequency
noise which is particularly applicable to solid state AQC implementations. We
showed that in the presence of decoherence, caused by low frequency noise, the
insensitivity of AQC to decoherence only holds for the global scheme and does
not apply to local AQC.

There are several possible directions in which to extend the work done in
this dissertation. As far as charge transport with multiple antidots is con-
cerned, it would be interesting to extend the theory to include quasiparticles
to filling fractions other than those belonging to primary quantum hall liq-
uids. This would allow for the possibility to examine how the statistics of
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these quasiparticles enter into the DC conductance of multi-anitdot systems.
Another avenue of exploration is to examine the measurement characteristics
of the QAE in the co-tunnelling regime. It has been shown previously that
the single electron transistor in this regime can be made to approach the limit
of an ideal detector [99]. Therefore, it is only natural to question whether the
QAE can reach this limit. Furthermore, having a detector which could operate
in this regime would be a great benefit to Quantum Computation based on
FQHE quasiparticles.
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