

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Design and Optimization of Node Architecture for

Application Specific Multi-hop Wireless Networks

A Dissertation Presented

by

Sangkil Jung

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2007

Copyright by
Sangkil Jung

2007

Stony Brook University

The Graduate School

Sangkil Jung

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Sangjin Hong, Dissertation Advisor
Professor, Department of Electrical & Computer Engineering

Thomas G. Robertazzi, Chairperson of Defense
Professor, Department of Electrical & Computer Engineering

Hang-Sheng Tuan,
Professor, Department of Electrical & Computer Engineering

Hongshik Ahn
Professor, Department of Applied Mathematics

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Design and Optimization of Node Architecture for
Application Specific Multi-hop Wireless Networks

by

Sangkil Jung

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2007

In this dissertation, we focus on the design and optimization of the node ar-

chitecture for target specific applications under the 802.11-based multi-hop wireless

network that has been recently spotlighted from the public domain. We consider two

target applications: compression and packet aggregation algorithms on the Wireless

Mesh Network (WMN), and a multi-modal tracking system underlying the multi-hop

wireless network.

To conduct the design and optimization tasks of the compression and packet ag-

gregation, we propose a profile-based network and hardware co-simulation method to

characterize the global WMN performance as well as the real-timing nodal behaviors.

iii

The WMN is equipped by a dedicated hardware platform possibly configured as a

network processor. For the compression, RObust Header Compression (ROHC) is

adopted. The co-simulation method integrates the network level simulator, NS-2 and

hardware level simulator, SystemC. In this approach, we first insert the modules of

ROHC and packet aggregation algorithms into the network simulator hierarchy, and

measure the packet arrival times. Then, the corresponding hardware architecture is

designed by SystemC for profiling the hardware delay appeared in encoding and de-

coding packets. Finally, the traced hardware delays are applied into the network level

simulator to extract real-timing WMN behaviors changed by the hardware operation

in each mesh router. Additionally, to accurately predict the capacity of a hardware

design, we propose a numerical analysis method by using the open Jackson queueing

network. The modeled queue systems are one-to-one mapped into the constructed

hardware components to characterize the concurrent operations and interactional re-

lationship between encoding and decoding paths in ROHC.

For the tracking system, we develop a multi-modal sensor-based tracking model

where acoustic sensors mainly track the target objects and visual sensors compensate

the tracking errors. We initially discover a network synchronization problem caused

by the different location and traffic characteristics of multi-modal sensors, and non-

synchronized arrival of the captured sensor data at a processing Server. We show

the improved tracking accuracy from visual compensation in ideal case is severely

degraded when the synchronization problem is involved in real situations. For the

possible solution for the problem, we differentiate the service level of sensor traffic

iv

based on Weight Round Robin (WRR) scheduling at the Routers. The weighting

factor allocated to each queue is calculated by a proposed Delay-based Weight Allo-

cation (DWA) algorithm. In addition, to numerically predict the number of success of

the visual compensation, we propose a Statistical Estimation Algorithm (SEA) which

is based on traffic measurement, random generation of transmission delay for sensor

data, and statistical estimation. Based on the SEA, we propose an on-line version of

the SEA called Statistical Estimation and Adaptation Algorithm (SEA2), in which

the acoustic sensor’s object sampling interval is automatically adapted to achieve a

certain level of tracking accuracy.

v

To my LORD who has thus far helped me, church, and family

Table of Contents

List of Figures x

List of Tables xvi

Acknowledgements xvii

1 Introduction 1

2 Network/Hardware Cross-layer Evaluation for Compression and Packet
Aggregation on Wireless Mesh Networks 7

2.1 Introduction . 7

2.2 Related Works . 13

2.2.1 Network and Hardware Co-simulation 13

2.2.2 Compression and Packet Aggregation 13

2.2.3 Functional Analysis of ROHC and Packet Aggregation 17

2.2.4 Hardware Realization . 19

2.2.5 Voice over IP (VoIP) . 20

2.3 Preliminary Works . 22

2.3.1 Effect of ROHC . 23

2.3.2 Effect of Packet Aggregation Cooperating with ROHC 25

2.3.3 Effect of Processing Time of ROHC and Packet Aggregation . 32

2.4 Hardware Architecture Design and Evaluation 37

vii

2.5 Network/Hardware Co-simulation Method 45

2.6 Numerical Analysis of the Hardware Design 50

2.6.1 Queueing Model . 51

2.6.2 Numerical Model Design . 53

2.6.3 Performance Evaluation . 60

3 Node Algorithm Design and Optimization for Accurate Object Track-
ing in Multi-modal Tracking System 64

3.1 Introduction . 64

3.2 Background and Problem Definition 70

3.2.1 Tracking by Particle Filter . 70

3.2.2 Tracking by Visual Sensor . 72

3.2.3 Target Application Model . 73

3.2.4 Visual Compensation Effect 74

3.2.5 Network Synchronization Problem in the Application Model . 76

3.3 Network Synchronization for Object Tracking 78

3.3.1 Configuration of Wireless Tracking Network 78

3.3.2 Time-based Packet Aggregation of Acoustic Sensor Data . . . 79

3.3.3 Visual Compensation Considering Network Synchronization . 81

3.3.4 Definition of Success and Fail Conditions 83

3.3.5 Impact of Network Synchronization Problem 85

3.3.6 Possible Solutions for Network Synchronization Problem . . . 88

3.3.7 Behavior Analysis of the Tracking System 94

3.4 Statistical Estimation and Adaptation for Visual Compensation . . . 97

viii

3.4.1 Motivation . 97

3.4.2 Statistical Estimation Algorithm (SEA) 98

3.4.3 Statistical Estimation and Adaptation Algorithm (SEA2) . . . 108

3.4.4 Algorithm Validation and Discussion 111

4 Conclusion and Future Works 124

4.1 Conclusion . 124

4.2 Future Works . 126

ix

List of Figures

2-1 Overall architecture of a wireless mesh network. 8

2-2 Encoder and decoder state transition diagrams in ROHC. 15

2-3 Interaction between functional blocks via wireless link. 17

2-4 Functional complexity of compression (a) and decompression (b). . . 18

2-5 Simulation scenario constructed by wireless mesh routers. The router

drawn by rectangle is gateway, and red points represent senor and voice

traffic sources . 23

2-6 Sensor throughput and the number of voice calls supported when only

ROHC is used or not. 24

2-7 Sensor throughput and the number of voice calls supported when single

data type is delivered over daisy-chain network. 27

2-8 Sensor throughput and the number of voice calls supported when mul-

tiple data type is delivered over grid network. 29

2-9 R-factor distribution of voice sources appeared in grid topology. . . . 30

2-10 Sensor throughput and the number of voice calls supported when mul-

tiple data type is delivered over daisy-chain network with multiple

channels. 30

x

2-11 Sensor throughput and the number of successful voice calls affected by

processing overhead: single data type under daisy-chain topology. . . 33

2-12 Sensor throughput and the number of successful voice calls affected by

processing overhead: multiple data type under daisy-chain topology. . 34

2-13 Sensor throughput and the number of successful voice calls affected by

processing overhead: multiple data type under grid topology. 35

2-14 R-factor distribution appeared in the WMN built by GPP-installed

commercial products. 36

2-15 Hardware architecture for ROHC and packet aggregation, which is

modeled and simulated by SystemC. 37

2-16 Temporal and operational sequence of the hardware architecture. We

assume three PEs are used to manipulate each component of the system. 38

2-17 Drop rate (%) on encoding path of the hardware architecture. The

dropping is caused by the lack of processing power against the large

traffic volume injected into the hardware modules. 41

2-18 Sensor throughput and the number of voice calls supported by the

hardware architecture: single data type under daisy-chain topology. . 42

2-19 Sensor throughput and the number of voice calls supported by the

hardware architecture: multiple data type under grid topology. 43

2-20 Sensor throughput and the number of voice calls supported by the

hardware architecture: multiple data type under daisy-chain topology. 44

xi

2-21 R-factor distribution appeared in the WMN equipped by the hardware

architecture. 44

2-22 Network/hardware co-simulation model for ROHC and packet aggre-

gation. The integration is done by NS-2 and SystemC. 45

2-23 Procedure for performing network/hardware co-simulation. 46

2-24 Trace file format created during the co-simulations. 47

2-25 Distribution of packet processing time of ROHC and packet aggrega-

tion at router 2. Encoding and decoding times scatter 0.671 to 22.839

µs, and 0.557 to 1.137 µs, respectively 49

2-26 Sensor throughput and the number of voice calls obtained from the ap-

plication of the constant hardware processing time, and network/hardware

co-simulation method. 50

2-27 Numerical model of the hardware architecture for ROHC and packet

aggregation, which is constructed by open Jackson queueing network.

The arrival rate of each queue is modeled by general or poisson sin-

gle/bulk arrival, and the service rate of Node i (µi) follows the process-

ing delay of the hardware architecture in Figure 2-16. 54

xii

2-28 Density function for the inter-arrival time of compressing and decom-

pressing packets. Since the inter-arrival time of the compressing pack-

ets consists of two patterns, i.e., single or bulk arrival in (a), we repre-

sent it as general-arrival (G/M/1) or poisson-bulk-arrival (M [K1]/M/1).

The arrival pattern of decompressing packets in (b) is modeled by

poisson-arrival with bulk size K2. 58

2-29 Hardware and numerical analysis results for ROHC and packet ag-

gregation module. The average processing time of numerical model

approaches to the time of hardware simulated from NS-2/SystemC co-

simulation. 61

2-30 Average processing delay of ROHC and packet aggregation module for

three cases: (1) only parser processing delay increases to 1000 ns, (2)

the processing times of both encoder and decoder are incremented to

1000 ns, and (3) three components (parser, encoder, and decoder) slow

down to 1000 ns. 62

3-1 Target application model for the object tracking. It consists of an

acoustic sensor and two visual sensors to capture the object informa-

tion. The dashed line means the lost of the acoustic signal in the

middle of object moving. 73

3-2 Sampling time sequence of an acoustic sensor and visual sensors. Red

arrow is the acoustic sampling time and the blue is the sampling point

of the visual sensors. 74

xiii

3-3 Tracking accuracy when the two visual sensors assist the PF-based

tracking task. Red line represents the real object movement, and the

blue line is the trajectory estimate obtained by associating an acoustic

sensor with two visual sensors. 75

3-4 Delay factors causing the network synchronization problem in the track-

ing model. 77

3-5 An example of the wireless tracking network. 78

3-6 Packet flowing example appearing in the tracking model. 81

3-7 An example of success and fail cases in the tracking model. 84

3-8 Daisy-chain scenario of the tracking model. Acoustic senors, visual

sensors and Routers are denoted by Ai, Vi, and Ri (i = 0, 1, ...), re-

spectively. 85

3-9 Impact of network synchronization problem in the tracking system.

Here, we set ∆tv = 10∆ts. 87

3-10 Reference model for traffic differentiation. 89

3-11 Simulation results when traffic differentiation model is applied to the

tracking system, where ∆ts = 0.2 and ∆tv = 10∆ts. 91

3-12 Estimated trajectory of a target object under traffic differentiation model. 93

3-13 Tree scenario of the tracking system. Due to a line-of-sight character-

istics of visual sensors, we install 4 visual sensors. 95

3-14 SCR results achieved from daisy-chain scenario. 115

3-15 SCR results achieved from tree scenario when the image size is 20Kbytes.116

xiv

3-16 Packet flowing example possibly appearing in the tracking system. . . 116

3-17 Histogram of transmission delay of multi-modal sensor data in daisy-

chain and tree scenarios. 117

3-18 Transition rules of the SEA. 118

3-19 Procedural illustration of the SEA2. 119

3-20 SCR results achieved by simulations and mathematical calculation of

the SEA: daisy-chain scenario. 120

3-21 SCR results achieved by simulations and mathematical calculation of

the SEA: tree scenario. 121

3-22 Acoustic sampling interval variation in the SEA2, where tscr=90%. . . 122

3-23 Acoustic sampling interval variation in the SEA2. tscr is changed to

30, 60 and 90% during the simulations. 123

xv

List of Tables

2.1 Simulation parameters. 22

2.2 Pentium 4 and RouterBOARD specification and measured processing

times for ROHC encoding and decoding functions. 32

2.3 Arithmetic average values of K1 and K2
1 for Node 2, and K2 values for

Node 3. 61

xvi

Acknowledgements

I am now looking back on the first year in Stony Brook. I was so nervous and strived

to adapt myself to the change in the new surroundings. From that time, the laborious

studies and lonely life have not seemed to overcome. Though, my sincere God has

looked on me with His love and embraced, and I was able to recline on His bosom.

His endless love makes me enter into rest and rise again with the new power. Thus,

I first shall give thanks to Him and praise His name. From the time when I was

leaving the home, my parents have prayed for me, given their love, and encouraged

me to keep going my way. My brothers and sister have kept praying for my study

and endurance in hard time as well. I thank God for allowing this precious family,

and would like to say I love them so much. I can not forget the church members who

have comforted and prayed for me for the last four and a half years here. Especially,

I would like to appreciate Pastor Taejun Suk for his unceasing prayer, and my lovely

brother Yougjun Lee without whom I can not finish the long race in this strange land.

I also have thanksgiving to my fellow workers, Dongsan Lee, Kyunghoon Kim, and

Seunghwan Choi. I also give thankful words to Yousung church members who are like

my family. They have prayed for me and helped me to build healthy spirit and soul.

I am deeply grateful to my advisor, Prof. Sangjin Hong, for his concern and

advice. He has given the right direction to tackle the problems in my research works,

and helped complete this dissertation. When I first started my research in Mobile

Systems Design Laboratory, I worked with Kyoung-Su Park, Junhee Mun, Jinseok

Lee, Yuntai Kyong, and Shung Han Cho. I additionally give thankful words to them.

I also express my gratitude toward Prof. Thomas G. Robertazzi, Prof. Hang-Sheng

Tuan, and Prof. Hongshik Ahn for their endeavors to listen and comment on this

dissertation as the committee members.

For the final acknowledging words, I would like to include the Bible Word, Psalm

23 that has been staying in heart and giving the strength to my soul and spirit.

“The LORD is my shepherd, I shall not want.

He makes me lie down in green pastures; He leads me beside quiet waters.

He restores my soul; He guides me in the paths of righteousness For His name’s sake.

Even though I walk through the valley of the shadow of death, I fear no evil, for You

are with me; Your rod and Your staff, they comfort me.

You prepare a table before me in the presence of my enemies; You have anointed my

head with oil; My cup overflows.

Surely goodness and lovingkindness will follow me all the days of my life, And I will

dwell in the house of the LORD forever.”

Chapter 1

Introduction

Ever since the Internet has emerged, the conventional network has become compli-

cated and specialized to satisfy various user requirements. For example, target specific

applications such as compression, aggregation, audio/video, security and object track-

ing have gradually hosted the wireless networks as well as the traditional wire-line

networks.

Since each mobile host could send data at 300Mb/s rate in the next generation

wireless LAN environment such as 802.11n, the handling of an application-specific

function in a network processor could have processing limitation and make a signifi-

cant impact on the overall network performance. This means that we need to know

how the capacity and working behavior of a single node router affects the overall net-

work performance in addition to the impact of the global network behavior. In other

words, an accurate analysis of a network should be obtained from not only the over-

all network characteristics but also the capacity of a single node router. Hardware

1

implementation and evaluation for the RObust Header Compression (ROHC) and

packet aggregation is one example to understand the nodal behavior in a multi-hop

wireless environment such as the Wireless Mesh Network (WMN) [1]. The ROHC

is a compression algorithm to alleviate the packet header overhead compared with

small-size payload in wireless environment featured by high error rate and long Round

Trip Time (RTT). The packet aggregation also fosters the radio resource savings by

collecting the compressed packets in a specific amount, which leads to the reduction

of data transmissions and MAC header overhead.

In order to investigate the real-timing characteristics of a WMN adopting the

hardware realization of the ROHC and packet aggregation, we propose a profile-based

network/hardware co-simulation method in this chapter. To justify that the hardware

realization is essential for WMN backhaul routers, we preliminarily conduct extensive

simulation studies by using NS-2 [2]. From the simulation under the user application

like 20Bytes UDP sensor data and voice encoded by G.729a codec, we observe that the

packet aggregation without ROHC improves WMN performance, but it produces large

variation and unstable results. This disadvantage can be eliminated by associating the

packet aggregation with ROHC such that 40 packet aggregation with ROHC provides

high and reliable sensor throughput and successful voice calls. However, if ROHC and

packet aggregation are processed by a general purpose processor (GPP), which is a

software-driven implementation, even the association of the two algorithms cannot

provide the significant WMN performance enhancement due to the processing power

limitation of the GPP. We show the processing overhead problem gets alleviated by

2

the proposed hardware architecture.

The co-simulation method integrates a network level simulator (NS-2) and a hard-

ware level simulator (SystemC), and is performed by 3 step profiling procedures. In

the first step, we insert the modules of ROHC and packet aggregation algorithms into

the network simulator hierarchy, and measure the packet arrival times. Then, in step

2, the measured times are injected into the SystemC module to record the hardware

processing time. In the final step, we recursively apply the hardware processing time

into the NS-2 simulation to profile the network level simulation results that include

the nodal behaviors. Since the simulation-based or real implementation of the hard-

ware architecture is a time-consuming task, we can use a numerical analysis model

to predict the capacity of the hardware architecture. For this work, we use the open

Jackson queueing network consisting of G/M/1, M [K]/M/1, M/M/1, M/M/∞ queue

systems, where G means a general arrival, M is a poisson arrival or an exponential

service, and M [K] is an arrival with bulk size K. In the model, each queue is one-to-

one mapped into the corresponding hardware element to characterize the concurrent

and parallel operation of the hardware system.

In object tracking applications, acoustic sensors have been widely used due to the

advantages such as the low cost of deployment and flexibility. However, they are not

only sensitive to reverberant indoor environment which frequently generates extraor-

dinary signals, but also have difficulty in satisfying the requirement of consistent data.

Thus, other type of sensor to assist the acoustic operation is necessary to obtain more

reliable data. Among a variety of sensors, a visual sensor can be a good candidate

3

to collect consistent and reliable data. In a multi-modal tracking environment, the

audio-video joint processing provides more accurate object movement estimation by

mutually complementing the errors occurring in the middle of tracking. As a kind of

the multi-modal system, we developed a tracking application model in which acoustic

sensors mainly track the objects and visual sensors compensate the tracking errors

inherent in the acoustic estimate [3] [4]. It has advantage such as the on-the-fly error

correction with low computing complexity. When an acoustic sensor with adjacent

microphones is sampling object signal, the Particle Filter (PF) algorithm [5] associ-

ated with the acoustic sensor obtains the object coordinates. A visual sensor supports

the tracking task by correcting the PF estimation error based on the localization al-

gorithm with parallel projection model. Since the processing overhead of PF is a

few microseconds [6] and the localization algorithm for visual compensation is rarely

performed compared with the PF calculation, the tracking model can minimize the

overall processing overhead. Based on the developed tracking application model, we

initially discover a network synchronization problem caused by the unbalanced deliv-

ery time among multiple sensor types. For example, visually captured image size is

larger than the acoustic sensor data size, so that visual images arrive at a processing

Server later than acoustic sensor data. In this situation, the Server performs the

visual compensation only when the sampling times of the sampled data satisfy the

successful condition for visual compensation. We show the improved tracking accu-

racy from visual compensation in ideal case is severely degraded when the network

synchronization problem is involved in real situations. For the possible solution for

4

the non-synchronization problem in a network, we separate the network queues to

differently serve the sensor traffic and non-sensor traffic. The traffic differentiation

model is achieved by Weight Round Robin (WRR) where the weights are allocated

based on the proposed Delay-based Weight Allocation (DWA) algorithm. We also

investigate the behavior of the tracking system in terms of acoustic sampling interval

and visual image size. In addition, in order to estimate the number of success of visual

compensation anticipated in the multi-modal tracking system, we propose a Statisti-

cal Estimation Algorithm (SEA). The SEA takes the acoustic sampling interval and

transmission delays of multi-modal sensor data as the algorithmic parameters. To

formulate the algorithm, we investigate the transmission delays between the multi-

modal sensors and the Server. From the observation, the delays are modeled by

Gaussian and Exponential Probability Density Function (PDF). The SEA generates

random values to mimic the delays in real environment from the PDFs, and based on

the results, it changes its status according to the transition rules. There are R, L, B,

and U modes and s and f states in the transition rules. Another proposed algorithm,

Statistical and Estimation and Adaptation Algorithm (SEA2) is suitable for answer-

ing how to maintain the tracking system at a certain level of tracking accuracy. The

SEA2 is able to maintain the tracking accuracy by automatically adapting acoustic

sampling interval since the accurate tracking depends on the success in the visual

compensation which subsequently depends on the acoustic sampling interval. The

algorithm is composed of Phase 1 and Phase 2. In the first Phase, it runs the SEA

to obtain an initial sampling interval. Then, exponential increase and decrease of the

5

obtained interval are performed to fast adapt the sampling interval to accomplish the

target tracking accuracy level.

The outline of this dissertation is as follows. In Chapter 2, we illustrate the

network/hardware cross-layer evaluation for compression and packet aggregation on

wireless mesh networks. The node algorithm design and optimization for accurate

object tracking in multi-modal tracking system is explained in Chapter 3. In Chapter

4, we finally conclude the research works in this dissertation, and mention the future

works.

6

Chapter 2

Network/Hardware Cross-layer

Evaluation for Compression and

Packet Aggregation on Wireless

Mesh Networks

2.1 Introduction

The Wireless Mesh Network (WMN) [1] has recently emerged as a self-configured, low

cost, and multiple purpose communication network. It consists of two types of nodes,

i.e., mesh routers and mesh clients as shown in Figure 2-1. Mesh routers become

merge points of traffic from peer mesh routers or mesh clients. Among the routers,

a network service provider might select some as gateways for edge points to connect

7

802.11
networks

sensor
networks

cellular
networks

mesh
clients

mesh
backhaul

Internet

gateway
routers

mesh
routers

802.11e
networks

Figure 2-1: Overall architecture of a wireless mesh network.

the outside network. The network constructed by the mesh and gateway routers is

called mesh backhaul. Mesh clients access the internet and a processing server, or

communicate with other mesh clients via mesh routers. Various types of wireless

technology such as WLAN, sensor network, and cellular network might be configured

for the mesh client networks.

The WMN capacity is enhanced by the hardware platform refinement, efficient

algorithm development, network configuration optimization, etc. For example, a sin-

gle mesh router could be equipped with network processor to manipulate the CPU-

intensive algorithms such as QoS, encryption, and fire-walling. The network processor

has a lot of advantages like wire speed implementation and software programmability

of specific functions, and consists of several Processing Elements (PE) to handle pack-

ets in parallel or pipeline processing. A new metric for establishing routing path helps

the selection of high-throughput path from a source to a destination, and a power-

8

saving router scheduling algorithm extends the overall lifetime of battery-powered

WMN. Furthermore, the adoption of efficient hop-by-hop communication algorithm

like CRTP, RObust Header Compression (ROHC) [7] and packet aggregation could

be alternative solutions for the high throughput and real-timing packet delivery.

As algorithms for general or special applications (such as compression, aggrega-

tion, security, audio/video processing modules, etc.) in communication networks have

become more complicated, hardware supports for these algorithms are becoming es-

sential parts in the network system design. Before performing hardware/software

partitioning and constructing real hardware implementation for an algorithm, it is

necessary to anticipate not only the efficiency of the hardware implementation, but

also overall network performance affected by the hardware under the system con-

straints such as speed, complexity and power consumption. Therefore, we strongly

believe that it is necessary to have a new type of network simulation methodology

for evaluating and optimizing the networks by considering network protocol behavior,

application characteristics, and hardware structures.

In this chapter, we propose a network and hardware co-simulation method that is

performed and evaluating the real-timing behaviors of WMNs featured by a dedicated

hardware platform. In this approach, the co-simulation architecture is implemented

by incorporating NS-2 [2] simulator to model the network behavior and SystemC [8]

node-level simulator to emulate the hardware behaviors. We use ROHC and packet

aggregation for the target algorithms underlying a hardware platform since the so-

phisticated hop-by-hop operations in ROHC provide robustness and radio resource

9

savings in a WMN, but it requires hardware support to manipulate the processing-

intensive functions. Before advancing to the co-simulation formulation, we first draw

the motivation for the hardware realization of the two algorithms in the preliminary

works, in which the performance enhancement from ROHC and packet aggregation is

initially investigated under small-sized UDP sensor and G.729a encoded voice data.

These works are conducted by inserting ROHC and packet aggregation functions into

the network module hierarchy within NS-2. In packet aggregation, a fixed number

(called aggregation level) of compressed packets are collected to make a large MAC

payload data. To explore the output patterns from the simulator, we use various

WMN scenarios like the daisy-chain and grid topologies equipped with single and

multiple channels. From the extensive simulations, we reach the following results: (1)

ROHC itself supports insignificant sensor throughput and voice calls, (2) only packet

aggregation without ROHC improves WMN performance, however, its performance

has unpredictable patterns under various network and data type environments, and

(3) the packet aggregation is required to be cooperating with ROHC to support con-

spicuous WMN performance in reliable manner. However, the advantages from the

algorithm cooperation do not include the algorithm processing overhead on a general

purpose processor (GPP). This aspect is investigated by measuring the ROHC exe-

cution time from Intel Pentium 4 and RouterBOARD [9], and applying the measured

time into NS-2 simulations. From the simulations, we find the high and reliable WMN

performance severely deteriorates as the processing overhead in a single mesh router

increases. To overcome this problem, we design a hardware architecture for the ROHC

10

and packet aggregation algorithms, which is conducted by SystemC. The hardware

consists of three Processing Elements (PE) configured by packet classifier, parser,

en decoder, (de)aggregator, CRC and memory modules. The architecture is con-

figure by 1 Ghz master clock and 333 Mhz, 16Bytes/cycle read/write single memory

BUS structure to reduce the complexity. From this configuration, we get the constant

hardware processing times for the two algorithms, and observe a WMN performance

after applying the processing times to daisy-chain and grid network scenarios. Based

on the previous network configuration and hardware design, the cross-layer evaluation

work is conducted by three step profiling procedures. In the first step, we run NS-2

simulation and profile the arrival time of packets to be compressed or decompressed.

The second step is the hardware level simulation in which the profiled packet arriving

time and other information such as encoding or decoding identifier are processed in

hardware modules. While handling packets in this step, the hardware processing de-

lay should record for each packet. Then, the profiled processing time of the hardware

components subsequently applies to NS-2 simulation in step 3. At this final step,

we can obtain the network level simulation results containing the hardware module

delays. From the co-simulation method, we measure the hardware encoding and de-

coding times which are distributed between 671 ns and 22839 ns, and between 557 ns

and 1137 ns, respectively. The sensor throughput and voice quality are also observed

from the co-simulations, from which we understand how overall WMN performance

is affected by the hardware operations in each mesh router.

In order to characterize the concurrent operations as well as the interaction be-

11

tween encoding and decoding paths in the hardware architecture, we conduct the nu-

merical analysis by using open Jackson queueing network [10] consisting of G/M/1,

M [K]/M/1, M/M/1, and M/M/∞ queue systems, where G means a general arrival,

M is a poisson arrival or an exponential service, and M [K] is an arrival with bulk size

K. Each queue is mapped into the corresponding hardware element. Since the hard-

ware architecture increases the processing power such that there is no packet drop

in the ROHC and packet aggregation module, it is feasible to regard the numerical

model as a non-blocking queueing network. From the analysis model, we can get

the average system size (Li) and average system waiting time (Wi) for the individ-

ual queue. With sum of the waiting time of each queue and globalized waiting time

derived by γi and little’s formula, we derive the average system waiting time of com-

pression and decompression paths as Wc and Wd, respectively, where γi is the arrival

rate from outside of the queueing network. From the derived average system waiting

time, we can predict the degree of speedup from the designed hardware installation.

To validate the accuracy of the numerical model, we use the network/hardware co-

simulation method. From the co-simulation results, we show the proposed numerical

model accurately predicts the processing delay of the hardware architecture.

The research works in this chapter are based on our previous research outcomes

from [11–15].

12

2.2 Related Works

2.2.1 Network and Hardware Co-simulation

Conventional algorithm design strictly considers a software perspective targeting net-

work processor or general purpose processor. However, it is envisioned that the

hardware capability is becoming a limiting factor as algorithms are getting compli-

cated; for example, aggregation, compression, mobility support, and multiple interface

router. In order to investigate the impact of the hardware capability such as speed,

complexity and power consumption of a platform on an overall network performance,

it is necessary to integrate hardware features in a network-level simulation model.

This work is done by integrating node-level [16–18] and network-level [2, 19, 20] sim-

ulators. The importance of this co-simulation framework has recognized by [21–26].

As indicated in [25,26], the integration of NS-2 and SystemC is much easier to bench-

mark specialized hardware and processors affecting network performance due to their

highly coupled simulation frameworks. However, it is not open to research domain,

and hard to use for find-grained hardware component mapping in an architecture

design, which will be captured by the co-simulation method proposed in this chapter.

2.2.2 Compression and Packet Aggregation

The research works on network compression in [27–30] are based on delta coding which

shows poor performance in high error rate and long round trip time (wireless) links. In

order to achieve the stable compression advantage in wireless environment, ROHC [7]

13

has been proposed. The authors in [31] evaluate GSM encoded voice with ROHC

under wireless link. They show ROHC cuts the bandwidth for voice communication

over wireless links in half. [32] proposes routing-assisted header compression algorithm

in ad-hoc wireless environment. The algorithm relies on information from routing

protocol, in which all the ad-hoc nodes update a context information depending on

the current network topology and the routing path. Authors from [33] mention static

configuration of the ROHC parameters, and propose negotiated dynamic parameter

setup of ROHC under UMTS radio networks.

ROHC is currently standardized and built in software-driven commercial wireless

products. It provides compression profiles for RTP/UDP/IP, UDP/IP, ESP/IP, etc.

In these protocol suits, there are statistically unchanged fields like source/destination

IP addresses and TCP ports. Some fields like IP identifier field are changed in a spe-

cific pattern, and other fields such as UDP checksum are randomly changed. ROHC

performs hop-by-hop operations, so that its operations should work between only

two nodes and remain transparent to the other network entities. The network nodes

maintain a Context which is a collection of states such as current status of static and

dynamic header field in a stream.

The encoder (compressor) and decoder (decompressor) operate based on three

states as shown in 2-2. The encoder has Initialization and Refresh (IR), First Order

(FO), and Second Order (SO) states. The encoder should start in IR state where

it sends the complete packets containing static and dynamic field information to

establish a new Context. In FO state, static fields are recognized between encoder

14

IR FO SO

(a) Encoder states

No
Context

Static
Context

Full
Context

Context not
established

Successful packet
decompression

No dynamic
context

Successful
decompression
of packets

Repeated
failure to
decompress

Repeated
failure to
decompress

(b) Decoder states

Figure 2-2: Encoder and decoder state transition diagrams in ROHC.

and decoder while the dynamic fields are not. The SO state performs more reduction

of information by establishing dynamic fields as well as static fields in the Context.

In this case, only minimum information to advance the normal sequence of encoded

header fields is delivered. In case of decoder, it makes transition between No Context,

Static Context, and Full Context in response to the packet information from encoder.

In No Context state, any decoding information in the decoder Context is not available.

After a decoder receives IR packet, it moves to Full Context state where the decoder

moves down to Static Context state, repeatedly No Context state whenever error

conditions happen. In Static Context state, the decoder might receive FO packet

from encoder. At this point, it moves back to Full Context after restoring the Context

information from the FO packet.

In wireless network, various communication link status could be existing. There-

fore, the ROHC adopts three modes to offer the fast adaptation in the link changes;

Unidirectional mode (U-mode), bidirectional Optimistic mode (O-mode), and bidi-

rectional Reliable mode (R-mode). In U-mode, an encoder begins in IR state and

15

autonomically moves up to the other states after it successfully sends a specific num-

ber of IR and FO packets. The decoder downwards to lower states when its time-out

mechanism indicates a transition, or feedback packet is received from a decoder. In

O-mode, an encoder can change its state transition by autonomic approach of U-mode

and decoder’s feedback requesting for error recovery or indicating the successful Con-

text update. The R-mode frequently uses feedback channel to avoid the information

damage in the Context. The encoder can change it states only after it receives feed-

back from a decoder, so that this mode provides highest confidentiality in wireless

communications.

When small-sized packets like sensor and VoIP are delivered on a network, the

relatively large packet header size causes the waste of network resources to deliver

a unit number of payload data. To resolve this problem, some researchers propose

packet aggregation methods. [34] mentions end-to-end and hop-by-hop aggregation,

and hybrid aggregation schemes on wireless mesh network with CRTP compression

algorithm. Two aggregation algorithms, namely, forced and adaptive algorithms are

proposed to mention 802.11-based protocol overhead and the importance of the packet

aggregation in an ad-hoc network in [35]. The effective delivering of voice signals over

IP networks based on packet aggregation is proposed in [36]. [37] investigates the

relationship between the number of voice sources, out-link rate and certain teletraffic

metrics in wireless networks based on aggregation schemes of multiple VoIP flows.

Even though these research works enhance the quality of voice and data transmission

over radio link, their solutions are software-driven approach, and do not mention the

16

effect of hardware design of compression and aggregation under multi-hop wireless

mesh networks, which is mentioned in this chapter.

2.2.3 Functional Analysis of ROHC and Packet Aggregation

In this section, we analyze interaction between compression, decompression, and ag-

gregation as well as functional complexity of ROHC. Even if the behaviors of ROHC

and packet aggregation depend on design decision, the analysis can provide funda-

mental insight the reason why the adoption of ROHC and packet aggregation affects

the multi-hop mesh network performance.

compressed data

compressed data piggybacked feedback

comp decomp

feedback

comp decomp

aggregation
policy

deaggregation

aggregation
policy

deaggregation

compressed data

Figure 2-3: Interaction between functional blocks via wireless link.

We first look into the interaction between compression, decompression, and packet

aggregation in Figure 2-3. After compressing a packet header, a mesh router ag-

gregates the compressed packets according to its aggregation policy. Peer routers

receiving the aggregated packet perform deaggregation and decompression, sequen-

17

tially. In the meanwhile, it sends a feedback packet in the form of piggyback. In

this interaction, we note that aggregation policy and the frequency of the feedback

affect the mesh network performance. A multi-hop mesh network could differently

responses to the number of aggregated packet and aggregation policy. Since the radio

resources in a wireless environment is essential factor for communication, we need to

decide which mode of ROHC must be used for a mesh network. In this chapter, we

use U and O modes so that compressor and decompressor respond to peer routers

while saving the radio resources. Another factor for the mesh network performance

find or create context get feedback packet decide state (IR, FO, SO) encoding (WLSB)

fill out compressed header fields CRC encoding decide packet types in each state

decode feedback data & change context find profile CRC decodingfind context

decoding (WLSB)make feedback data (piggyback feedback)
send to peer
compressor

send to peer
decompressor

(a) compression

(b) decompression

Figure 2-4: Functional complexity of compression (a) and decompression (b).

is the functional complexity of compression and decompression modules. We break

down the ROHC functions in several steps in Figure 2-4. In conjunction with the

elaborated and sophisticated interaction between compressor and decompressor, the

functional steps lead to the increase of complexity for the compression algorithm,

which requires relatively high memory access for context, profile and feedback and

computation power such as WLSB and CRC calculation. Therefore, in the following

section, we measure the ROHC execution time on a GPP, and verify the impact of

18

ROHC processing time in a single mesh router on overall mesh network performance.

2.2.4 Hardware Realization

Network processor has been highlighted as the wire speed and programmable alter-

native to ASIC implementation in current multi-demanding network service envi-

ronment. It places between network and switch fabric interfaces, and undertakes a

processing-intensive or application specific functionalities independent of general pur-

pose processor (GPP). The authors in [38] perform the evaluation of Differentiated

Service [39] implementation on IXP1200 [40] network processor. They identify the

processing bottleneck in micro-engines and SRAM in the classification module as well

as SDRAM in IP forwarding engine. The MPLS implementation in the same net-

work processor is investigated in [41], in which the authors Label Switching Router

(LSR) in the processor provides smaller or larger processing delay against an IP router

according to packet size and outgoing link rate.

In the next generation cellular network, Base Station System (BSS) has to handle

large volume of voice and data, in which the complicated functions in ROHC becomes

a processing overhead in a GPP. Therefore, [42] designs a network processor incorpo-

rated with primary ROHC function block to resolve the drawbacks of the software-

driven ROHC implementation targeting Xilix Vertex-E (FPGA) and IBM CU-11

(ASIC). It analyzes required memory bandwidth for ROHC functions, and measures

hardware resource usage of the ROHC functional components. However, each com-

ponent has to interact with memory and other components to compress/decompress

19

a packet, which may cause systematic variation on the hardware performance. This

aspect will be examined in this chapter.

Even though the previous research outcomes mention the performance improve-

ment by hardware realization in the form of network processor, their results are con-

cerned with wired networks or one-hop based cellular networks. In order to explore

the impact of the hardware design in multi-hop wireless mesh network, we observe the

effect of the ROHC and packet aggregation in our previous work [13]. However, its

evaluation is only based on single data type, UDP, and the hardware architecture is

partially designed such that only encoding path of the ROHC is implemented. Thus,

in [11], we evaluate the hardware platform of the two algorithms by using proposed

network/hardware co-simulation method. The hardware platform consists of full di-

mension of the compression and decompression paths. Additionally, we numerically

analyze the hardware architecture by using queueing model in [12].

2.2.5 Voice over IP (VoIP)

IP networks transfer voice data cheaper than PSTN network by sharing network re-

sources, so that it has recently been popular for voice transmission. In order to trans-

form analog to digital signal, VoIP applications use codec such as G.729a, G.723.1

etc, which creates almost constant bit rate voice data, but has different traffic char-

acteristics. For example, G.729a generates 20 bytes packets by the 20 ms interval;

G.723.1 does 30 bytes packet by 38.46 ms interval. The G.729a codec is popularly

used by VoIP applications like Zyxel Prestige and Senao S7800H. When a VoIP ap-

20

plication uses silence suppression where no packet is transmitted when silence in a

call is detected, it reduces 50% network traffic generated. In this chapter, we assume

a VoIP application uses G.729a codec and the silence suppression is used to save the

limited wireless resource by reducing void data created during silence period. In order

to measure voice quality, we use R-factor for G.729a as indicated in [43] as follows.

R = 94.2− 0.024(dnetwork + 85)

− 0.11(dnetwork − 92.3)H(dnetwork − 92.3)

− 11− 40ln[1 + 10(enetwork

+ (1− enetwork)edejitter)]

, where dnetwork is network delay, enetwork is network loss, edejitter is jitter loss, and

H(x) =





1, if x > 0

0, otherwise.

In this calculation, it is assumed that voice play starts after 60ms dejitter buffer

delay. If the R-factor is over 70, VoIP applications obtain tolerable (good) quality for

communication. [44] indicates good quality of voice call is sustained by below 150 ms

network delay and 0.05 of network plus jitter loss, and very sensitive to the losses. In

this chapter, a voice call is considered as success call if R-factor is over 70.

21

2.3 Preliminary Works

This section investigates the effect of ROHC and packet aggregation when they are

applied to multi-hop WMNs. The evaluation works are performed by NS-2 under

sensor and voice traffic.

Table 2.1: Simulation parameters.

traffic type sensor data (Constant Bit Rate),
voice traffic encoded by G.729a codec

payload size 20 bytes
interface card type 802.11g (54Mb/s) PC card

queue size 200 packets
wireless error uniformly distributed random

bit error rate (BER) = 0.0005
routing protocol AODV

We modify and port real implementation of ROHC [45] into the simulator, and

use simulation parameters as shown in Table 2.1 throughout this section. For sensor

data, we assume each sensor is composed of Mica Mote [46] or Telos Mote [47], and all

the sensors generate aggregated Constant Bit Rate (CBR) sensor traffic. Each voice

is encoded by G.729a codec, and consists of two uni-directional flows, i.e., caller and

callee. Therefore, a call is considered as success when two flows have more than 70 R-

factor values. For data transmission, single and multiple channel 802.11g (54Mb/s)

wireless links are used for mesh routers. We use 0.0005 for uniformly distributed

random bit error rate (BER) for the wireless link error.

Daisy-chain and grid topologies are used for the simulations as shown in Figure

2-5, where we assign router id to each mesh router for readability. For the daisy-

22

n-121 n…
hop 1 hop n-1

3

hop 2

(a) Daisy-chain topology with single or multiple
channel

1 2 3

7654

8 9 10 11

141312

0

15

(b) Grid topology with single channel

Figure 2-5: Simulation scenario constructed by wireless mesh routers. The router
drawn by rectangle is gateway, and red points represent senor and voice traffic sources

chain topology, single and multiple channel are installed, and router n has a role in a

gateway. The grid topology uses single channel for the communications. Since there

is severe channel interference among router transmission in the topology, we place

gateway functions into router 0 and router 15, so that half of the routers access wired

network through router 0, and the other half do via router 15. In these simulation

works, we assume that the configured WMNs are fully utilized, so that sufficient

amount of sensor and voice data are created during the simulations.

2.3.1 Effect of ROHC

In this section, we identify the effect of ROHC itself on the WMN performance.

The ROHC behaviors are observed under single channel daisy-chain topology which

23

delivers sensor or voice data. The daisy-chain topology is composed of 1 to 7 hop

counts. For sensor data, we assume 40 Telos Motes are attached into router 1 and a

sensor server is accessed via gateway, so that total 10Mb/s sensor traffic is forwarded

to the sever. In case of voice traffic, 100 voice calls generated by G.729a codec are

randomly located on the topology.

hop

1 3 5 7

th
ro

ug
hp

ut
 (

kb
/s

)

0

50

100

150

200

250

300

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

20

40

60

80

100

w/ ROHC (UDP)
w/o ROHC (UDP)
w/ ROHC (voice)
w/0 ROHC (voice)

Figure 2-6: Sensor throughput and the number of voice calls supported when only
ROHC is used or not.

Figure 2-6 shows simulation results for the case only ROHC is used (w/ ROHC)

or not (w/o ROHC). We find out the high sensor throughput is achieved under 1 hop

scenario for both w/ ROHC and w/o ROHC. However, as the hop count increases,

the throughput shows steep degradation, which stems from the channel interference

inherent in 802.11-based MAC protocol. Regardless of this gradual throughput degra-

dation, we observe the WMN with ROHC attains more throughput than non-ROHC

network. The actual ROHC usage gain in sensor throughput is 20% for all the differ-

ent hop scenarios. In case of voice call, the WMN does not support successful voice

calls. From the measurement of voice quality parameters, we find this is because

24

voice quality is mainly affected by large enetwork value which results from a lot of

wireless collision when 100 voice calls contend to use the limited wireless channel.

This phenomenon causes each voice flow to have R-factor value smaller than 70.

2.3.2 Effect of Packet Aggregation Cooperating with ROHC

In this section, it is observed how the packet aggregation accelerates the WMN per-

formance. This work is performed under two types of data scenarios, single data type

(sensor or voice) delivered by the same network configuration as Section 2.3.1 and

multiple data types composed of both sensor and voice. In multiple data transmission,

we have two network scenarios: (1) single channel grid topology, where we assume 4

Mica Motes generate constant UDP-sensor data within the wireless coverage of each

mesh router except for two gateways that have destinations of the Motes, and 50

voice sources are randomly positioned on the network, and (2) 2 and 3 hop daisy-

chain topology equipped with multiple channel interface, in which it is assumed that

20 Telos Motes construct sensing region under each mesh router except the gateway

router, and 200 voice calls are randomly located on the topology. In this section,

we use a simple next-hop based aggregation algorithm, in which each mesh router

maintains aggregation table containing peer routers as the next hop. The table keeps

aggregation level which means how many compressed or normal packets are collected.

After a router searches the packet’s next hop based on its destination, the packets

are added into accumulation buffer until the number of aggregated packets reaches

the aggregation level. Immediately after arriving at the aggregation level, the mesh

25

router sends the aggregated packet to its next-hop router.

In the following subsections, we show only packet aggregation (aggregation w/o

ROHC) improves WMN performance, however, its performance has unpredictable as-

pect when network environment and data type (sensor or voice) change. On the other

hand, packet aggregation cooperating with ROHC (aggregation w/ ROHC) provides

high and reliable sensor throughput and successful voice calls under an appropriate

aggregation level even in an extreme WMN environment.

Single Data Type Scenario

In Figure 2-7, we compare WMN performance from various aggregation level (20

to 40) when packet aggregation w/o ROHC or w/ ROHC is used at mesh routers

to process the sensor or voice traffic. For comparison, the simulation results from

Section 2.3.1 are also included. We can understand that packet aggregation w/o

ROHC provides significant improvement for sensor throughput and successful voice

calls as denoted by red point lines. In one hop scenario, around 27 times sensor

throughput and 100 times voice call improvements are achieved at 40 aggregation

level compared with the case without aggregation. Even if the absolute value of

the sensor throughput decreases as the number of hop count increases, the relative

sensor throughput gain compared with the two non-aggregation cases is maintained

by more than 25 times improvement. For the voice calls, the aggregation provides

significant improvement in the number of successful voice calls by keeping the R-

factor value over 70 except for aggregation level 20 that shows steep degradation in

26

hop

1 3 5 7

th
ro

ug
hp

ut
 (

kb
/s

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

aggr 40 (w/ ROHC)
aggr 30 (w/ ROHC)
aggr 20 (w/ ROHC)
aggr 40 (w/o ROHC)
aggr 30 (w/o ROHC)
aggr 20 (w/o ROHC)
w/o aggr (w/ ROHC)
w/o ROHC

(a) Sensor throughput

hop

1 3 5 7

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

20

40

60

80

100

120

aggr 40 (w/ ROHC)
aggr 30 (w/ ROHC)
aggr 20 (w/ ROHC)
aggr 40 (w/o ROHC)
aggr 30 (w/o ROHC)
aggr 20 (w/o ROHC)
w/o aggr (w/ ROHC)
w/o ROHC

(b) Number of voice calls

Figure 2-7: Sensor throughput and the number of voice calls supported when single
data type is delivered over daisy-chain network.

7 hop scenario as indicated by red rectangle point in Figure 2-7(b). The effect of

aggregation is accelerated by reduction of packet size contributed by ROHC. The

actual gain from packet aggregation w/ ROHC compared to packet aggregation w/o

ROHC is over 20% on aggregation level 40, and 12% for aggregation level 20 for

sensor throughput. The voice calls of aggregation w/ ROHC case have similar trends

27

to those of aggregation w/o ROHC. However, 20 aggregation w/ ROHC supports 60

voice calls which is an outstanding improvement compared with 20 aggregation w/o

ROHC. The small gap of voice calls between packet aggregation w/ ROHC and w/o

ROHC is to be the random placement of voice sources.

Multiple Data Type Scenario

In this scenario, each mesh router accepts data from both sensor and voice sources,

so that WMN is more heavily loaded and realistic than single source scenarios in

previous sections.

Figure 2-8 shows sensor throughput and successful voice calls supported by the

single channel grid network. In Figure 2-8(a), we can observe that the aggregation

w/o ROHC provides significant throughput improvement similar to Figure 2-7(a).

However, the achieved throughput has unstable and large variance among WMN

routers in all the aggregation levels. In the aggregation w/ ROHC, the unstable

throughput is gradually balanced as the aggregation level increases. Note that in

aggregation level 40, the aggregation w/ ROHC provides approximately same total

sensor throughput (160kb/s) generated by 4 Mica Motes for all the mesh routers.

In case of voice, we find out the number of successful voice calls is severely affected

by aggregation level and whether ROHC exists or not as shown in Figure 2-8(b).

40 aggregation w/ ROHC supports almost all the injected voice calls; however, the

aggregation w/o ROHC achieves around zero calls. This result stems from loss,

delay, and jitter sensitiveness of voice traffic, that is, as aggregation level increases,

28

router id

1 2 3 4 5 6 7 8 9 10 11 12 13 14

th
ro

ug
hp

ut
 (

kb
/s

)

0

20

40

60

80

100

120

140

160

aggr 40 (w/ ROHC)

aggr 30 (w/ ROHC)

aggr 20 (w/ ROHC)

aggr 40 (w/o ROHC)

aggr 30 (w/o ROHC)

aggr 20 (w/o ROHC)

w/o aggr (w/ ROHC)

w/o ROHC

(a) Sensor throughput

aggr40 aggr30 aggr20 w/ ROHC w/o ROHC

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

10

20

30

40

50

60

w/ ROHC
w/o ROHC
w/o aggr

(b) Number of voice calls

Figure 2-8: Sensor throughput and the number of voice calls supported when multiple
data type is delivered over grid network.

aggregated packet size in aggregation w/o ROHC increases faster than w/ ROHC,

which in sequence, leads to small R-factor value due to large values of dnetwork, enetwork,

and edejitter.

Figure 2-9 shows the R-factor distribution of each voice flow in the grid topology

with 40 aggregation level. Since the grid topology accepts 50 voice calls, and one

voice call is composed of two uni-directional flows, 100 R-factor values are plotted

29

voice flow

0 20 40 60 80 100

R
-f

ac
to

r

10

20

30

40

50

60

70

80

90

aggr 40 (w/ ROHC)
aggr 40 (w/o ROHC)

Figure 2-9: R-factor distribution of voice sources appeared in grid topology.

in the figure. We can understand why the aggregation w/ ROHC provides higher

voice quality than w/o ROHC case. Most of the voice flows in the aggregation w/

ROHC are around the 80 R-factor. Though, the voice flows in aggregation w/o ROHC

denoted by red triangle achieve R-factor values below 70 with large variations.

th
ro

ug
hp

ut
 (

kb
/s

)

0

500

1000

1500

2000

2500

3000

3500
nu

m
be

r
of

 v
oi

ce
 c

al
ls

10

20

30

40

50

60

70

80

router1 (2hop)
router2 (2hop)
router1 (3hop)
router2 (3hop)
router3 (3hop)
voice (2hop)
voice (3hop)

aggr 40 (w/o ROHC)aggr 40 (w/ ROHC)

Figure 2-10: Sensor throughput and the number of voice calls supported when mul-
tiple data type is delivered over daisy-chain network with multiple channels.

30

For the case mesh routers are equipped with multiple interfaces, we plot the results

for sensors and voices in Figure 2-10, in which we show only 40 aggregation level case.

Similar to grid scenario, aggregation w/ ROHC shows higher sensor throughput than

aggregation w/o ROHC in 2 hop and 3 hop scenarios. In case of voice, we accomplish

around 70 successful voice calls in 2 hop network, and around 40 calls in 3 hop case

when a WMN adopts both ROHC and packet aggregation indicated by aggr 40 (w/

ROHC). However, the network with only aggregation (aggr 40 (w/o ROHC)) shows

different results. We have below 20 voice calls in 2 hop scenario, and around 40 calls

in 3 hop network. If we compare this result with Figure 2-7(b), we find the voice

call change from 2 hop and 3 hop case is unexpected. Since the supported voice

calls are 100 for 1 and 3 hop cases in Figure 2-7(b), we might guess we can get 100

calls in hop 2, and this is true. However, the guess is not applicable to the multiple

data type environment with multiple channels in Figure 2-10. Note the voice sources

in 2 hop topology reside in narrower space than those in 3 hop case, and the voice

quality is affected by the sensor data. We infer the real-timing sensitiveness of voice

is highly affected by this combinational network circumstances, which leads to the

unexpected result in the voice quality measurement. Another factor to affect the

high and reliable performance from ROHC and packet aggregation is the processing-

intensive characteristics of the ROHC algorithm. In following section, we investigate

this aspect.

31

2.3.3 Effect of Processing Time of ROHC and Packet Aggre-

gation

When we run the complex ROHC and packet aggregation algorithms in a GPP-

based system, we need to identify the encoding or decoding overhead, and the overall

performance of a WMN. In order to conduct these works, we first measure the ROHC

encoding (compression) and decoding (decompression) times in Intel Pentium 4 and

RouterBOARD 230.

Table 2.2: Pentium 4 and RouterBOARD specification and measured processing times
for ROHC encoding and decoding functions.

system type Pentium 4 RouterBOARD

CPU speed 3.2 Ghz 266 Mhz
main memory 1 Gbytes 256 Mbytes

peripheral devices L2 cache: 2 Mbytes BIOS: 2 Mbytes
operating system Linux Linux

ROHC proce- UDP/IP 10.107µs/11.904µs 66.774µs/50.938µs
ssing time Voice
per packet (RTP/ 26.613µs/21.260µs 248.929µs/168.258µs
(en/decoding) UDP/IP)

Table 2.2 shows the the system specifications of the two commercial products and

the measured times. The RouterBOARD is suitable for building up an enterprise

WMN by installing multiple 802.11 b/g/a Wi-Fi interface cards. The measured en-

coding and decoding times are the average values from 3000 packets. Voice processing

time is larger than UDP time since the GPPs in both products need to handle RTP

fields in addition to UDP/IP. Note the increment of RouterBOARD processing time

from UDP/IP to RTP/UDP/IP is larger than that of Pentium 4. In order to inves-

32

tigate the effect of the single router’s processing overhead on WMN performance, we

apply the measured processing times into NS-2 simulations. This application from

real measurement to NS-2 is justified from [44] where the authors use RouterBOARD

and click router [48] for wireless mesh testbed, and indicate the number of voice calls

in the real testbed is almost same as NS-2 simulations. The simulation results in this

section include the waiting time to (de)aggregate packets as well as ROHC processing

time. We assume that a mesh router uses 40 aggregation level.

hop

1 3 5 7

th
ro

ug
hp

ut
 (

kb
/s

)

0

2000

4000

6000

8000

10000

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

20

40

60

80

100

120

no-delay (UDP)
pentium4 (UDP)
routerboard (UDP)
no-delay (voice)
pentium4 (voice)
routerboard (voice)

Figure 2-11: Sensor throughput and the number of successful voice calls affected by
processing overhead: single data type under daisy-chain topology.

Figure 2-11 to 2-13 show the simulation results after we apply the measured ROHC

processing times to the NS-2 simulations. The simulations are performed based on

the scenarios described in Section 2.3.1 and 2.3.2. In the figures, we also plot no-delay

case, which is the ideal case that ROHC encoding and decoding have no processing

times, so that a GPP has zero time to handle the encoding and decoding functions.

Figure 2-11 is for the daisy-chain topology with single data type and single channel

interface. We can observe that in one hop case, the sensor throughput in no-delay case

33

no-delay pentium4 routerboard

th
ro

ug
hp

ut
 (

kb
/s

)

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

20

40

60

80

router1 (2hop)
router2 (2hop)
router1 (3hop)
router2 (3hop)
router3 (3hop)
voice (2hop)
voice (3hop)

Figure 2-12: Sensor throughput and the number of successful voice calls affected by
processing overhead: multiple data type under daisy-chain topology.

is around 2.4 and 5.8 times larger than Pentium 4 and RouterBOARD, respectively.

However, as the hop count increases (channel interference increases), the processing

overhead has minor effect on the sensor throughput achievement. In case of voice call,

we do not obtain the outstanding increase of successful voice calls from ROHC and

packet aggregation in both Pentium 4 and RouterBOARD in more than one hop count

scenarios. However, if the interference is eliminated by adopting multiple interface

as shown in Figure 2-12, we understand processing overhead has major impact on

the sensor throughput and voice performance. In ideal case, more than 2Mb/s sensor

throughput is achieved throughout the 2 and 3 hop cases, and around 70 and 40 voice

calls are supported in both cases. In case of Pentium4, we can observe that there

is a significant drop in the throughput and the voice calls. If the RouterBOARD is

used, the degradation is more serious such that the WMN supports below 500 kb/s

in sensor throughput and zero voice call.

Figure 2-13(a) and Figure 2-13(b) show the sensor throughput and voice calls un-

34

router id
1 2 3 4 5 6 7 8 9 10 11 12 13 14

th
ro

ug
hp

ut
 (

kb
/s

)

40

60

80

100

120

140

160

180

no-delay
pentium4
routerboard

(a) Sensor throughput

no-delay pentium4 routerboard

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

10

20

30

40

50

60

(b) Number of voice calls

Figure 2-13: Sensor throughput and the number of successful voice calls affected by
processing overhead: multiple data type under grid topology.

35

der grid topology with multiple data type scenario. For the sensor data stream, the

GPP in Pentium 4 provides lower throughput than the ideal case, and the Router-

BOARD processor shows significant performance degradation with large variation

among the routers. In case of the voice having real-timing characteristics, there ex-

ists more serious deterioration of the supported calls in the two commercial products.

voice flow

0 20 40 60 80 100

R
-f

ac
to

r

0

10

20

30

40

50

60

70

80

90

100
no-delay
pentium4
routerboard

Figure 2-14: R-factor distribution appeared in the WMN built by GPP-installed
commercial products.

Figure 2-14 shows the R-factor distribution appeared in the grid topology equipped

by the Pentium 4 and RouterBOARD. The figure gives the reason why high voice

quality is not supported in the two commercial products. The R-factor values in

Pentium 4 have variations between 40 and 80, where most of the values are below

70. In case of RouterBOARD, all the R-factor values are smaller than 70. Note

Pentium 4 processor is not appropriate but RouterBOARD has relatively suitable

36

processor for mesh routers in small/large enterprise mesh networks. Here, we have

insight that we can not obtain the high and reliable performance achievement from

the two algorithms due to the lack of processing power if we construct a wireless mesh

network by using current software-driven commercial products, and adopt ROHC and

packet aggregation to enhance the mesh performance.

2.4 Hardware Architecture Design and Evaluation

22~60Bytes 20Bytes 264Bytes 5Bytes

Context_mem Feedback_mem

Endecoder Aggregator

Aggr_cacheCRC

Clock

Deaggregator Parser

Parser_mem Payload_mem

Pkt_classifier

slow_memory slow_memory slow_memory

parser

crc_emulate

aggregationendecoder

slow_memory

slow_memory

deaggregation

sc_clock

pktclassifier

clk

clk

clk

aggrmem_port

clk

aggr_port

cm_port fm_port

clk

pmm_port

endecoder_port

headqueue_port pmm_port

crc_port

clkclk

clk

clk

clk

deaggr_port

parser_port

parser_port

clk

Aggr_cache

Feedback_mem

Aggr_cache

Feedback_mem

Clock

Context_mem

ClockClockClock

Parser_mem Payload_mem

Clock

Aggregator

Clock

Aggregator

Endecoder

Payload_memContext_mem

Parser

Parser_mem Payload_mem

Parser

Deaggregator

Deaggregator

Clock

Clock ClockCRC

Clock

CRC

Clock

Clock

Figure 2-15: Hardware architecture for ROHC and packet aggregation, which is mod-
eled and simulated by SystemC.

The hardware architecture design is conducted by SystemC, which makes it pos-

sible to design and simulate concurrency, parallelism and real-time communication of

37

a hardware system. Figure 2-15 shows the proposed hardware architecture, in which

we separate ROHC functions as packet classifier, deaggregator, parser, en decoder,

CRC, aggregator and memory modules. Each module is concurrently executed while

accessing memory for parser, payload, ROHC context, feedback, and aggregator.

6~12ns

Parser Endecoder

3ns / cycle (memory)

1ns / cycle (master) Packet classifier
/Deaggregator

6~12ns

Parser_
cache
write

10ns

Classifier Context_mem
read

context_mem
write

Payload_mem
write

Parser

200ns 51ns

CRC

121ns

51ns

6ns

Feedback_mem
write

3ns

10ns

Deaggregator

Aggregator

10ns6ns

Aggregator
_cache
write

6ns

Payload_meme
read

Aggregator

Feedback_mem
read

3ns

encode

201ns

CRC

121ns

Parser_
cache
read

Compression
function

Decompression
function

Common function

decode

101ns

6ns

Aggregator
_cache
read

PE1 PE2 PE3

Figure 2-16: Temporal and operational sequence of the hardware architecture. We
assume three PEs are used to manipulate each component of the system.

We also present the operational steps and the processing delay of each hardware

component in Figure 2-16. We obtain the delay times for the components after ana-

lyzing the iterative FPGA en decoder implementation proposed in [42] which break-

downs resource usages of each ROHC functional component made by FPGA and

ASIC implementation. As indicated in Figure 2-16, the designed hardware system is

composed of 3 Processing Elements (PEs). PE1 handles packet classifier and deag-

38

gregator. The next complicated parts, i.e., parser, en decoder, CRC are handled by

PE2. And the aggregator is done by PE3. In realistic implementation, the 3 PEs

independently manipulate the allocated functional modules.

When a packet from routing module (upper layer) or MAC (lower layer) arrives

at ROHC and packet aggregation unit, packet classifier first identifies whether the

packet is forwarded toward encoding or decoding path. On the encoding path, a

packet is directly forwarded to the parser. However, an aggregated packet from MAC

layer is first handled by the deaggregator which extracts each compressed packet

by the amount of aggregation level and passes the packet to the parser. After the

separate processing, the packets from routing module or deaggregator are buffered

into parser memory. As soon as the parser is available for a packet, it detaches

packet header fields. Here, we assume the payload of a packet waiting for encoding

has already saved into payload memory by a router processor in front of ROHC and

packet aggregation module, and the payload is attached into the compressed header

at the end of encoding procedure. Therefore, while a packet is manipulated by the

parser, payload of the packet is saved into payload memory only if the packet is on

decoding path; otherwise, the memory access is jumped over. After parsed, the packet

is processed by en decoder, which performs encoding and decoding. The en decoder

accesses the context and feedback memory while encoding and decoding packets. CRC

module is also called by the en decoder to check or fill out the CRC field in a ROHC

header. When the en decoder uses ROHC context, it accesses context memory before

starting encoding or decoding. The fetched context information becomes a critical

39

section; therefore, other packets can not proceed to en decoder while a packet is

encoding or decoding. This exclusive usage of context information is necessary since

it is possible for more than one packets to access the same context contents. In case

a decoded packet contains feedback data, en decoder accesses feedback memory to

save the data, which is sequentially used during encoding process to determine the

ROHC mode or state. After finishing en decoding procedure, the modified context is

saved into context memory. All the encoded headers are then attached by payload

after accessing payload memory, and the completed packet is put into aggregator

cache. In case of the decoded header, it is forwarded into routing module for the next

manipulation. Note that we do not access the payload memory at the end of decoding

path since we assume the routing module at the upper layer handles the payload after

finishing routing-related works such as routing table lookup, internal switching, etc.

If the number of encoded packets reaches an aggregation level, the aggregator creates

an aggregated packet and forwards it to MAC layer. We define the parser, payload,

context, and feedback data size as 22-60, 20, 264, and 5 bytes, respectively. In this

design, we use 1 ns for the master clock cycle, and 3 ns for memory access which

models the 333 Mhz and 16 bytes/cycle read and write memory BUS. This means

that access time for parser memory is 6-12 ns; payload memory is 6 ns; context

memory is 51 ns; feedback memory is 3ns; aggregator cache is 6 ns. Note that

memory accesses for 5 memories are not overlapped by making each access parallel

to computation units. This means the designed architecture uses single BUS system

which reduces the hardware complexity. From the architecture design, we get the

40

incoming rate (CBR) into ROHC module (Mb/s)

500 600 700 800 900 1000 2500

dr
op

 r
at

e
(%

)

0

10

20

30

40

50

60

70

80

16KB
32KB
64KB
128KB
256KB
512KB
1024KB

Figure 2-17: Drop rate (%) on encoding path of the hardware architecture. The
dropping is caused by the lack of processing power against the large traffic volume
injected into the hardware modules.

estimated processing time for encoding as 680 ns, and decoding as 556 ns.

In order to observe the performance of the hardware architecture installed into

a single mesh router, we get the drop rate (%) at the parser cache on encoding

path under various Constant Bit Rate (CBR) rate as shown in Figure 2-17. The

drop rate implies the degree of processing speedup taking place when the built-in

processor safely handle the incoming packets. In the figure, we plot the drop rate

for various parser memory sizes. Until the 500 Mb/s arriving rate, the hardware

tolerates for the packet processing. However, dropping starts at the point of 600 Mb/s

in 16 and 32 kbytes parser memory size. At the extreme case of 2.5 Gb/s arriving

rate, most of the packets are dropped within the hardware. This indicates ROHC

hardware implementation to cut down the processing time must be carefully designed

41

to support the next generation wireless networks that have high traffic volume by

adopting MIMO and high bandwidth radio links. However, the voice applications

in 54Mb/s 802.11g do not generate such a high traffic volume, so that the packet

dropping does not exist at the ROHC and packet aggregation hardware modules.

hop

1 3 5 7

th
ro

ug
hp

ut
 (

kb
/s

)

0

2000

4000

6000

8000

10000

nu
m

be
r

of
 v

oi
ce

 c
al

ls

90

92

94

96

98

100

102

no-delay (UDP)
hardware (UDP)
no-delay (voice)
hardware (voice)

Figure 2-18: Sensor throughput and the number of voice calls supported by the
hardware architecture: single data type under daisy-chain topology.

Figure 2-18 to 2-20 show the sensor throughput and the number of voice calls sup-

ported under various scenarios when the estimated processing times of the hardware

architecture for encoding and decoding packets are applied to NS-2 simulations. We

understand the proposed hardware design provides the similar trends as the no-delay

case in all the scenarios by effectively speeding up the processing components within

the ROHC and packet aggregation algorithms.

Figure 2-21 shows the R-factor distribution achieved from grid topology with

multiple data types when the hardware architecture is adopted into the WMN. We

observe the R-factor values from the hardware have almost the same pattern as the

42

router id

1 2 3 4 5 6 7 8 9 10 11 12 13 14

th
ro

ug
hp

ut
 (

kb
/s

)

156

157

158

159

no-delay
hardware

(a) Sensor throughput

no-delay hardware

nu
m

be
r

of
 v

oi
ce

 c
al

ls

0

10

20

30

40

50

60

(b) Number of voice calls

Figure 2-19: Sensor throughput and the number of voice calls supported by the
hardware architecture: multiple data type under grid topology.

43

no-delay hardware

th
ro

ug
hp

ut
 (

kb
/s

)

0

500

1000

1500

2000

2500

3000

3500

nu
m

be
r

of
 v

oi
ce

 c
al

ls

35

40

45

50

55

60

65

70

75

router1 (2hop)
router2 (2hop)
router1 (3hop)
router2 (3hop)
router3 (3hop)
voice (2hop)
voice (3hop)

Figure 2-20: Sensor throughput and the number of voice calls supported by the
hardware architecture: multiple data type under daisy-chain topology.

voice flow

0 20 40 60 80 100

R
-f

ac
to

r

55

60

65

70

75

80

85

no-delay
hardware

Figure 2-21: R-factor distribution appeared in the WMN equipped by the hardware
architecture.

44

no-delay case regardless of a few low values around the 60 R-factor.

2.5 Network/Hardware Co-simulation Method

The network and hardware co-simulation is conducted by devising profile-based co-

simulation method which merges network level simulator (NS-2) and hardware level

simulator (SystemC).

LL

IFq

ROHC &
packet

aggregation

MAC

NetIF

Network level
(NS-2)

Hardware level
(SystemC)

channel

Figure 2-22: Network/hardware co-simulation model for ROHC and packet aggrega-
tion. The integration is done by NS-2 and SystemC.

Figure 2-22 shows the overall architecture of the proposed co-simulation method.

Network layer hierarchy including ROHC and packet aggregation module is configured

45

by NS-2, and hardware level design is conducted by SystemC. In the co-simulation, a

packet has to be manipulated with hardware level operations as well as network level

operations when a packet from routing module or MAC enters ROHC and packet

aggregation module.

Step 1: Network level simulation

LL IFq
ROHC &
packet

aggregation
MAC NetIF

Step 3: Network level simulation

Step 2: Hardware level simulation

� Profile packet arrival time from
IFq or MAC layer to ROHC &
packet aggregation module

� Inject the profiled packet arrival
time from network simulation into
hardware module of ROHC and
packet aggregation

� Profile packet processing time
within hardware components

LL IFq
ROHC &
packet

aggregation
MAC NetIF

� Apply the packet processing
time from hardware simulation to
network level simulation while
running network level simulation

� Profile the final results from the
co-simulation

Figure 2-23: Procedure for performing network/hardware co-simulation.

For the cross-layer work, we use 3 step profiling procedures which are illustrated

in Figure 2-23. Since we focus on reducing the processing overhead of the ROHC and

packet aggregation functions, the profiling parameter becomes processing time in the

co-simulation. In step 1, we first run NS-2 simulation, and profile packet arrival time

from routing module (LL/IFq) or MAC layer to the ROHC and packet aggregation

module. The profiled packet arriving time is injected into SystemC model in step 2,

46

which is done by packet classifier in the hardware architecture. According to inter-

packet arrival time generated by NS-2, the packet classifier passes over the profiled

packets to deaggregator if it is from MAC layer; otherwise, to parser. At the end of

hardware level processing where a packet processed by all the hardware components

comes out, hardware level processing delay is profiled again. Then, the processing

time obtained from the hardware components recursively applies to NS-2 simulation

in step 3; that is, when the ROHC and packet aggregation module receives packets

from LL/IFq or MAC in network level simulator, it handles the packets according to

processing delay created in step 2. After the third NS-2 simulation, we can profile

the final NS-2 simulation results which include hardware module delay.

D _o94 1.032735000 2 12 S 21.000000
D _o94 1.033295140 2 13 S 22.000000
D _o94 1.033471360 0 11 S 23.000000
D _o94 1.033648550 2 14 S 24.000000
U _o94 1.034235824 1 0 S 0.000000
U _o94 1.034235824 1 1 m 1.000000
U _o94 1.034235824 1 2 m 2.000000
U _o94 1.034235824 1 3 m 3.000000

D _o94 1.032735000 2 12 S 21.000000 672.000000000
D _o94 1.033295140 2 13 S 22.000000 672.000000000
D _o94 1.033471360 0 11 S 23.000000 672.000000000
D _o94 1.033648550 2 14 S 24.000000 672.000000000
U _o94 1.034235824 1 0 S 0.000000 557.000000000
U _o94 1.034235824 1 1 m 1.000000 1113.000000000
U _o94 1.034235824 1 2 m 2.000000 1669.000000000
U _o94 1.034235824 1 3 m 3.000000 2225.000000000

���������	
���	���
	���� ���������	
���	���
	�����
�

���������	��

��
���������

��������������	����

��������������	��

��	������

�
������

�������	������

������	�

�������
�������

�	����

�	��
����

Figure 2-24: Trace file format created during the co-simulations.

Figure 2-24 shows the trace file format to profile the co-simulation parameters.

The trace file from NS-2 contains the profiling data such as packet direction, agent ID,

network level simulation time, etc. to represent the network level behaviors. Based

on the NS-2 profiles, the SystemC creates the profiling data containing the packet

processing time consumed in the hardware modules. The recorded hardware times

47

are subsequently read from NS-2 to apply the hardware delay into the network level

simulation in step 3.

We envision this co-simulation method is applicable to other conventional algo-

rithm design that needs to consider hardware capability, where the profiling parameter

becomes power consumption, complexity, etc. For example, consider a power critical

architecture design such as battery powered wireless networks. The design approach

to this system could have two perspectives: single mesh router and network perspec-

tives. If we want to add a new algorithm into a single router, we can profile the

power consumption in a single router from hardware simulation and apply the profile

to the network level simulations. Based on this profile information, the feasibility of

the algorithm within a limited power capacity can be suggested.

We perform the co-simulation under 2 hop daisy-chain topology to get the perfor-

mance difference between the application of the constant hardware delay in Section

2.4 and the network/hardware co-simulation method. Here, single channel interface

instead of multiple channel is used, and we assume 8 Telos Motes generate UDP-

sensor traffic within each mesh router radio range, and 100 voice calls are randomly

positioned.

Figure 2-25 shows the hardware level processing time profiled at the end of step

2 in router 2. We can observe that the processing times for encoding and decoding

scatter along the simulation. The encoding times are between 671 ns and 22839

ns, and decoding times reside between 557 ns and 1137 ns. The delay variations

are different compared with the constant hardware delays obtained in the previous

48

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

simulation time

pa
ck

et
 p

ro
ce

ss
in

g
tim

e
(u

s)

compression
decompression

Figure 2-25: Distribution of packet processing time of ROHC and packet aggregation
at router 2. Encoding and decoding times scatter 0.671 to 22.839 µs, and 0.557 to
1.137 µs, respectively

section, which is caused by the concurrent operations among PE1, PE2 and PE3. The

reason why packet processing times for decoding (decompression) have narrow range

over the encoding (compression) is that deaggregated packets are injected into the

hardware modules by short interval, and the packets waiting for encoding have long

inter-packet arrival times. This fact forces the packets for encoding to be preempted

by the decoding packets. Therefore, the packets to be encoded wait for computation

in memory relatively larger amount of time than packets to be decoded.

Figure 2-26 shows sensor throughput and the number of voice calls achieved from

the co-simulation, in which we also plot the outputs from the application of constant

hardware processing time. The two methods show different sensor throughput but

the same number of voice calls. The co-simulation method supports more sensor

49

UDP 1 UDP 2 voice

U
D

P
 th

ro
ug

hp
ut

 (
kb

/s
)

/ n
um

be
r

of
 v

oi
ce

 c
al

l

0

20

40

3500

3550

3600

hardware model
co-simulation

Figure 2-26: Sensor throughput and the number of voice calls obtained from the appli-
cation of the constant hardware processing time, and network/hardware co-simulation
method.

throughput since the concurrently operating hardware module consumes shorter time

than the constant hardware processing time. Note the number of voice call supported

in the mesh network in this scenario decreases from 100 to 37 and has no difference

in the two simulation methods since greedy sensor traffic monopolizes mesh network

resources. This co-simulation results tell us how overall WMN performance might be

changed by the concurrent operations of hardwares installed into mesh routers.

2.6 Numerical Analysis of the Hardware Design

This section illustrates the proposed numerical analysis model suitable for predicting

the processing delay of designed hardware architecture. Even if the target application

in this section is the compression algorithm in wireless environment, we envision

the numerical analysis procedure is applicable to other applications that need the

50

hardware assistance.

2.6.1 Queueing Model

Since our numerical model is derived from open Jackson queueing network [10], this

subsection illustrates the average system size and system waiting time of: (1) general-

arrival, exponential-service, single-server queue (G/M/1), (2) poisson bulk-arrival,

exponential-service, single-server queue (M [K]/M/1) where K is bulk size, (3) poisson-

arrival, exponential-service, single-server queue (M/M/1), and (4) poisson-arrival,

exponential-service queue with unlimited server capacity (M/M/∞). In the queue

systems, µ is a service rate, and λ is an arrival rate.

In G/M/1, there is no assumption on the arrival pattern except successive inter-

arrival time is independent and identically distributed (IID). Let qi be a steady-state

arrival point probability, that is, the probability that an arriving customer finds n

customers in the queue system. Then,

qi =
∞∑

j=1

qjpji, (2.1)

where
∑∞

i=1 qi = 1. Let P be the matrix form of the pij, then

P =




1− x0 x0 0 0 0 ...

1−
1∑

i=0

xi x1 x0 0 0 ...

1−
2∑

i=0

xi x2 x1 x0 0 ...

...
...

...
...

...




,

51

where xi is an instance value of Xn that is the number of customers serviced during

an inter-arrival time (T) of nth and (n + 1)th customers, and

xm = Pr(Xn = m) =

∫ ∞

0

e−µtµt)m

m!
dC(t), (2.2)

where µ is the service rate, C(t) is a cumulative distribution function (CDF) of T

which is assumed to be IID random variable. From Equation (2.1), we can find

qi = (qi−1x0 + qix1 + qi+1x2 + ...) = 0, i ≥ 1. Denote Aqi = qi+1. Then, we have

qi−1(A − x0 − Ax1 − A2x2 − A3x3 − ...) = 0, from which we have A =
∑∞

m=0 xmAm.

Note the right term is simply a probability generating function of xm, and denote

it as β(z). Then we have z = α(z) = L[µ(1 − z)], where L(z) is a Laplace-Stieltjes

Transform of CDF of T . Let r0 be a single root value of the equation such that

0 < r0 < 1. Then, qn = (1 − r0)r
n
0 , (n ≥ 0, λ/µ < 1). Consequently, average system

size (L) and average waiting time (W) for G/M/1 are:

L =
r0

1− r0

, W =
1

µ(1− r0)
. (2.3)

When an arrival occurs according to poisson distribution but contains bulk cus-

tomers with size of K, and single server’s service rate follows exponential distribution,

a system is designed by M [K]/M/1. If K is geometrically distributed, the average

system size is

L =
ρ + rE[K2]

2(1− ρ)
, (2.4)

where ρ = λE[K]/µ, and E[X] means arithmetic average of X. In case K is a

52

constant value,

L =
K + 1

2

ρ
′

1− ρ′
(ρ

′
= λK/µ). (2.5)

The general M/M/1 queue system has single arrival with poisson distribution and

exponentially distributed service time in a single server. Its average system size and

waiting time are

L =
λ

µ− λ
, W =

1

µ− λ
. (2.6)

If a queue system has a server with unlimited capacity, infinite number of customers

can be serviced at a time. This model is represented by M/M/∞ which has

L =
λ

µ
, W =

1

µ
. (2.7)

2.6.2 Numerical Model Design

This section constructs a numerical model for the hardware architecture proposed

in Section 2.4, and estimates average hardware processing delay from the numeri-

cal model. Since the model is composed of 7 components and each component is

connected in series, we use open Jackson queueing network [10]. Each node of the

network is modeled by G/M/1, M [K]/M/1, M/M/1, or M/M/∞. Figure 2-27 shows

the numerical model for hardware model of ROHC and packet aggregation, where we

model PE1 components by 4 nodes, PE2 by 3 nodes, and PE3 by 1 node, and service

rate (µ) of each queue model follows the processing time from the hardware architec-

ture. The figure indicates nodes on compression path by red line and decompression

53

10ns

10ns

32ns

24ns 379ns

279ns

6ns

Node 1: G/M/1

Node 2: M[K1]/M/1

Node 3: M[K2]/M/1

�1 Node 4:
M/M/1

251ns

Node 5:
M/M/1

compression

decompression

PE1 PE2 PE3

parser

encoder

decoderpacket classifier +
deaggregator +
parser memory

packet classifier

parser memory

Node 6:
M/M/�

Node 7:
M/M/�

aggregator

packet classifier

�2

�3

Node 8:
M/M/1

Figure 2-27: Numerical model of the hardware architecture for ROHC and packet
aggregation, which is constructed by open Jackson queueing network. The arrival
rate of each queue is modeled by general or poisson single/bulk arrival, and the
service rate of Node i (µi) follows the processing delay of the hardware architecture
in Figure 2-16.

path by blue line. General Jackson network assumes there is no limit in queue ca-

pacity, which establishes non-blocking system, for example, if a network is built up

by a sequential two stations and customers at station 1 have to wait until customers

in station 2 are completed, the queue network is called blocking system. Since the

hardware speeds up the processing power such that there is no packet drop in the

ROHC and packet aggregation module in which each components are concurrently

executed, our numerical model is non-blocking queueing network.

Let µi be the service rate at Node i, and λi be the total average arrival rate from

outside or other nodes to Node i. To satisfy flow balance at each node, λi in the

54

Jackson network is represented by

λi = γi +
m∑

j=1

λjrji, (2.8)

where m is the number of nodes in the network, γi is arrival rate from outside of the

network, rij is transition rate such that the packets finished at Node i go to Node j

with probability of rij, where we have probability ri0 that a packet leaves the network

at Node i. Equation (2.8) is rewritten as vector form like:

−→
λλλ = −→γγγ +

−→
λλλR. (2.9)

In our model, all the packets from previous node are totally injected into the next

node with probability of 1 except Node 5 in which we assume 50 % of the outgoing

packets are on compressing path, and the rest are on decompressing path. Therefore,

R in our model has following form.

55

R =




0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0.5 0.5 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




.

Since our model has at least one node with non-zero ri0 value and all the nodes have

no absorbing states which have only arrival but no departure, Equation (2.9) can be

solved as
−→
λλλ = −→γγγ (I−R)−1, where I is an 8×8 identity matrix. Let Ni be the random

variable that represents the number of packets at Node i in steady state. Jackson has

proved the joint probability function of Ni is

Pr(N1 = n1, N2 = n2, ..., Nm = nm)

= pn1,n2,...,nm

= (1− ρ1)ρ
n1
1 (1− ρ2)ρ

n2
2 ...(1− ρm)ρnm

m

, (2.10)

where ρi = λi/µi. In our numerical model, individual node has average system

size Li = ρi (1 − ρi), and from little’s formula, the average system waiting time

Wi = Li/λi. In order to estimate average compression and decompression processing

delay within the hardware, we derive average system waiting time of a packet before

56

the packet departs from the queueing network. Let the average system waiting time

of compression and decompression paths be Wc and Wd, respectively. Then, they are

sum of waiting time of each queue system or globalized waiting time calculated by γi

and little’s formula. We define them as:

Wc = W1 + (L2 + L4 + L5 + L6 + L8)/γ2,

Wd = (L3 + L5 + L7)/γ3,

(2.11)

where W1 = 1/µ1(1 − r0) for Node 1 is calculated from Equation (2.3), and Li

(i = 2, ..., 8) follows Equation (2.4) to Equation (2.7).

We differently model PE1 components for compression and decompression paths,

which results from the inequivalent arrival traffic pattern on the two paths. Figure

2-28 shows the density function for inter-arrival time of packets to be compressed and

decompressed, which is measured from NS-2 simulator under 40 aggregation level.

Note there exist two arrival patterns on the compression path. The inter-arrival

times for around 50% of compressing packets are near to zero, which means packets

with bulk size K1 simultaneously arrive whenever an arrival occurs. Actually, the bulk

size measured from the simulation is different for each bulk arrival, so that we assume

that K1 is geometrically distributed random variable. The rest of the compressing

traffic has arbitrarily distributed inter-arrival time. Therefore, we model the traffic

pattern with bulk size K1 as M [K1]/M/1 with µ1 = 10 ns, the other one as G/M/1

with µ2 = 10 ns. To cover parser memory write/read, we model the parser memory

as a separate M/M/1 queue with µ4 = 24 ns.

57

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

0.5

1

1.5

2

2.5

3
x 10

4

inter−arrival time (compression)

de
ns

ity

(a) Inter-arrival time of compressing packets.

0 2 4 6 8 10 12 14 16 18

x 10
−3

0

20

40

60

80

100

120

140

inter−arrival time (decompression)

de
ns

ity

(b) Inter-arrival time of decompressing packets.

Figure 2-28: Density function for the inter-arrival time of compressing and decom-
pressing packets. Since the inter-arrival time of the compressing packets consists
of two patterns, i.e., single or bulk arrival in (a), we represent it as general-arrival
(G/M/1) or poisson-bulk-arrival (M [K1]/M/1). The arrival pattern of decompressing
packets in (b) is modeled by poisson-arrival with bulk size K2.

58

Let K2 be the aggregation level. Then, a packet from MAC contains K2 number of

compressed packets. We can infer there exist bulk packets with size K2 when an arrival

happens on the decompression path. Therefore, we model Node 3 as M [K2]/M/1

queue with µ3 = 32 ns which includes packet classifier time (10 ns), deaggregator

time (10 ns), and parser memory write/read time (12 ns). The measured inter-arrival

time of packets with bulk size K2 = 40 on the decompression path is shown in Figure

2-28(b). The decompressing packet’s arrival is similar to exponential distribution if

we ignore some exceptional cases like 9 and 10 inter-arrival times.

In the Jackson network, the internal flow could not be poisson. Actually, if there

is feedback from one node to any nodes, the internal flows can not be modeled by

poisson distribution. However, fortunately, the Equation (2.11) holds regardless of

the internal flow’s traffic pattern, and a Jackson network behaves as if its nodes were

independent poisson-based queueing system. From this consequence, we can model

Node 5, 6, 7, and 8 by using M/M/1 and M/M/∞ queue systems. The parser (Node

5) is designed by M/M/1 since it simply accepts compressing and decompressing

packets from Node 3 and Node 4 and services the packets. The service time (µ5) for

Node 5 is 251 ns. Since the parser does not release a packet until the encoder or

decoder completes a compressing or decompressing, we use M/M/∞ queue system

for en decoder. The two queue systems have µ6 = 379 ns and µ7 = 279 ns, which

include CRC and context memory access times. The aggregator uses aggregation

cache, so that we make use of M/M/1 for the aggregator in which we include only

cache access time, so that µ8 = 6 ns.

59

2.6.3 Performance Evaluation

In this section, we evaluate the accuracy of the numerical model by comparing the

numerical analysis results with simulation results from NS-2/SystemC co-simulations.

Since the queueing network accepts traffic from outside and the traffic determines

the behavior of the network, we need to define arrival pattern and parametric values

for entry points, i.e., Node 1, 2, and 3 for our numerical model. To do this work, we

analyze packet arrival time profiled from NS-2 simulations with respect to 10, 20, 30,

and 40 aggregation levels. The simulation is performed under daisy-chain topology

consisting of 3 mesh routers, and the data is measured at an intermediate router.

Let G be a matrix that contains γi (i = 1, ..., 8) which is arrival rate at Node i

from outside of the network. Then, we have

G =




1539.4 990.6 653.4 0 0 0 0 0

2545.5 533.1 327 0 0 0 0 0

2838.9 376.3 218.1 0 0 0 0 0

2924.5 285.07 163.60 0 0 0 0 0




,

where the first row is for aggregation level 10, the second one is for 20, and so on.

For Node 1, we get r0 values of G/M/1 for 4 aggregation levels. Let −→ρρρ be a vector

including r0’s. Then, we obtain −→ρρρ = (0.044, 0.022, 0.028, 0.0104).

We show parametric values related with K1 and K2 in Table 2.3. Since traffic to

Node 2 is assumed to be geometric, we measure E(K1) and E(K2
1) from simulations.

We use half of the aggregation level for K2 values of Node 3 since the values give

60

Table 2.3: Arithmetic average values of K1 and K2
1 for Node 2, and K2 values for

Node 3.

Aggregation level 10 20 30 40

E(K1) 5 7 9 12
E(K2

1) 32 67 121 207
K2 5 10 15 20

optimal results in the mathematical calculation of Wd. This adjustment of the values

results from the assumption of exponential arrival for real traffic pattern from outside

of Node 3.

aggregation level
0 10 20 30 40 50

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(µ
s)

0

2

4

6

8

10

12

14

16

numerical (comp)
hardware (comp)
numerical (decomp)
hardware (decomp)

Figure 2-29: Hardware and numerical analysis results for ROHC and packet aggre-
gation module. The average processing time of numerical model approaches to the
time of hardware simulated from NS-2/SystemC co-simulation.

In order to validate the accuracy of the numerical model, we conduct extensive NS-

2/SystemC co-simulation introduced in Section 2.5. In Figure 2-29, we plot average

compression (comp) and decompression (decomp) processing time (µs) from hardware

61

and numerical models. The results from the hardware are derived from NS-2/SystemC

co-simulation, in which we average hardware level processing delays on around 106

packets generated at the end of the co-simulations. We find out our numerical model

closely approaches the simulation results at the aggregation level 10. Even if the

difference between two models gets larger as the aggregation level increases, it is

around 3 µs in worst case (40 aggregation level) which is consider to be small value.

parser endecoder parserEndecoder

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

(µ
s)

0

5

10

15

20

25

30

35

40

45

50

numerical (comp)
hardware (comp)
numerical (decomp)
hardware (decomp)

Figure 2-30: Average processing delay of ROHC and packet aggregation module for
three cases: (1) only parser processing delay increases to 1000 ns, (2) the process-
ing times of both encoder and decoder are incremented to 1000 ns, and (3) three
components (parser, encoder, and decoder) slow down to 1000 ns.

To observe the accuracy of our numerical model when the processing delay of

a hardware component is changed, we shows numerical and simulation results in

Figure 2-30 under 40 aggregation level, where we provide three cases. In the first

case denoted by parser, only parser’s processing delay increases from 251 ns to 1000

ns. The second case (endecoder) means both encoder and decoder’s processing delay

62

increases to 1000 ns. The case that processing delays of the three components (parser,

encoder, decoder) extend to 1000 ns is denoted by parserEndecoder. We can observe

the numerical model results closely match to the co-simulation results such that in

the worst case, parserEndecoeer, the difference is around 8 µs.

Consequently, from the accuracy of our numerical model, we can answer following

questions without any implementations or simulations; (1) how much processing time

the proposed hardware architecture consumes under a specific aggregation level and

(2) if we adjust the processing time of any hardware component such as parser or

en decoder, how much processing delay the hardware architecture shows. From this

information, we can configure the hardware by adjusting each components’ charac-

teristics under the bottom line of a total hardware system delay.

63

Chapter 3

Node Algorithm Design and

Optimization for Accurate Object

Tracking in Multi-modal Tracking

System

3.1 Introduction

In addition to sensor devices passively and single-functionally operating in general

sensor networks, more complicated functions such as object tracking and reliable

monitoring functions are added into the sensor nodes to construct a navigation and

surveillance system.

For tracking methods, the authors in [49] propose the time-delay estimation meth-

64

ods that approximate location based on the time delay of arrival of signals at the

receivers. On the other hand, direct tracking methods are proposed in [50] [51],

in which the frequency-averaged output power of a steered beamformer are used.

These two traditional tracking methods have the drawbacks under the reverberant

indoor environment which frequently generates extraordinary signals. In order to

overcome this problem, Particle Filtering(PF)-based state-space approaches are pro-

posed in [5, 52–54]. The PF method considers to be a powerful methodology for

nonlinear and non-Gaussian signal processing problems [5,55–59]. However, in many

PF-based tracking systems, initial state is not clear, so that PF tracking system may

have lost the target object even with a known dynamic model. Moreover, incor-

rect dynamic model and corrupted observation lead to continuous wrong estimation

of the object trajectory which is called trajectory divergence problem. Other than

the PF-based models, the tracking systems with visual cameras are also investigated

in [60–62]. In these research efforts, multiple cameras are used to extract the real

position information of the target objects.

If multiple types of sensor data are combined, the weakness of each type of sensor

can be compensated by other types and also they can assist each other to have better

measurement. Moreover, they are more adaptive and robust in diverse environment

as a specific sensor can be less sensitive to a certain condition of environment.

The authors in [63] have proposed PF-based tracking architecture for the multi-

modal sensor fusion to track people in video-conference application. They use video

data for the main modality and the audio signal for a complementary operation.

65

However, the video image processing requires high processing complexity, so that in

real-timing environment with high volume of images, the method may have processing

overhead that can result in the degradation of tracking accuracy. In order to reduce

the computational complexity, we have developed a new tracking system model in

which the low computational acoustic-based PF primarily tracks the objects and

two visual sensors solve the unclear initial state and trajectory divergence problems

inherent in the PF algorithm [3]. However, the previous work assumes that both

visual sensors capture the tracking space with no time difference, the PF and visual

algorithms activate as soon as the acoustic and visual sensors are sampling object

information, and the visual compensation results are immediately applying to the next

PF state generation. However, the assumptions are not applicable to real situations

since the sampling and calculation points generally locate in different places, and the

non-synchronized sampling and data arrival take place in the middle of tracking. This

chapter addresses a network synchronization problem caused by the absence of the

aforementioned assumptions. After both visual sensors capture the tracking space

independently, they need to send the images to a processing Server. At the different

time, the PF estimates from acoustic sensors also arrive at the Server with different

transmission delay. The Server should determine whether the visual compensation

process needs to be performed based on the acoustic and visual sampling times. If

the Server generates the compensated position estimation based on PF estimates

and visual images, it sends feedback data to acoustic sensor to correct the possible

estimation errors in the PF calculation. In order to model the developed tracking

66

system, we configure a distributed wireless tracking network in which Routers have a

role in backbone nodes and acoustic sensors are sampling object information under the

communication range of the Routers. Both visual sensors are located at appropriate

positions to efficiently capture the tracking space with sufficiently different angles.

When the Routers deliver the acoustic data, they use the proposed time-based packet

aggregation algorithm. In the algorithm, a Router checks whether the sampling time

of the packet is the most recent one after it receives a packet from an acoustic sensor.

If it is true, the packet is saved for future aggregation operation. After the Router

receives new sampling times from all the acoustic sensors, it aggregates all the packets

and sends the aggregated packet to a Server. Based on the aggregation algorithm, the

PF estimates from acoustic sensor are efficiently delivered to a Server with removing

unnecessary network resources consumed to deliver a number of acoustic data.

From the simulation study, we show the increased tracking accuracy from joint

operation of multiple sensor types severely deteriorates when acoustic sensors use

short sampling interval, and non-sensor traffic volume flowing the wireless tracking

network increases. For the possible solutions of the performance degradation, we

propose a traffic differentiation model. The basic idea of the model is that we can

solve the skewed transmission delay among the sensor traffic and non-sensor traffic

by adopting different network queues and Weighted Round Robin (WRR) scheduling

mechanism at Routers. The weight allocated to each queue is obtained by a proposed

Delay-based Weight Allocation (DWA) algorithm. In the differentiation model, we

first get the transmission delay from multi-modal sensors to a Server. Based on the

67

ratio of the obtained delay, we allocate normalized scheduling weight to each network

queue. From the simulations, we show the differentiation model can mitigate the

network synchronization problem, so that the tracking system provides the sustainable

support of visual sensors to correct the PF estimation errors.

To represent the success or fail of a visual compensation by a numeric value,

we define a new performance metric, Successful Compensate Rate (SCR) which is

applicable to the tracking system. The SCR is the ratio of the number of PF-error

correction assisted by visual sensors over total number of PF-estimate generation

from acoustic sampling. The SCR has a role in gauging the accuracy of the tracking

task.

Additionally, we propose an algorithm, Statistical Estimation Algorithm (SEA)

to approximate the number of success to appear in the multi-modal system. In the

observation of the tracking system, we identify the SCR of the visual compensation

depends on key factors: the sampling interval of acoustic sensors and the transmission

delay of multi-modal sensor data. Based on this aspect, the SEA approximates the

SCR by using the two key factors as the algorithm parameters.

For the algorithm formulation, we first observe the transmission delay between

the multi-modal sensors and the Server. The observation results reveal that the delay

from visual sensors to the Server is modeled by Gaussian Probability Density Function

(PDF), and delay from Server to acoustic sensor follows Exponential PDF. From

the PDFs, the SEA generates random values to imitate the delay in real situation.

Then, it uses the random values and pre-determined acoustic sampling interval as

68

parameters, and determines the next status according to transition rules that have

four modes (R, L, B, and U) and two states (s and f). The transition rules have

restrictions that only state-to-mode transition is allowed and there are no mode-to-

mode, state-to-state, and mode-to-state transitions. After establishing a tracking

system, it is necessary to maintain the system at a given level of tracking accuracy.

This objective can be achieved by controlling the acoustic sampling interval or the

transmission delays since the tracking accuracy depends on the success of visual

compensation. Thus, we propose another algorithm, Statistical and Estimation and

Adaptation Algorithm (SEA2). The algorithm controls the acoustic sampling interval

to adapt the level of tracking accuracy since the parameter is simple to adjust and

mainly affects the success of the visual compensation. In the parameter adjustment,

SEA2 uses the SEA algorithm to obtain an initial sampling interval (∆t0s) and consists

of Phase 1 and Phase 2. Since the SEA requires the mean and standard deviation for

the PDFs, the Phase 1 perform the estimation of the population parameters. Based

on the estimation, the SEA is executed to obtain ∆t0s. In Phase 2, the algorithm uses

exponential increase or decrease of ∆t0s to fast reach the target tracking accuracy

level.

The validation of both algorithms is performed by NS-2 [2] simulations by con-

structing daisy-chain and tree scenarios. We verify the algorithmic accuracy of the

SEA by showing the mathematical calculation in the SEA properly approximates the

simulated SCR results. For SEA2 validation, we observe how the SEA2 automatically

adjusts acoustic sensors’ sampling interval to achieve a target SCR. The simulation

69

results show the sampling interval adjustment is well performed when we set up the

target SCR to 90%. In order to observe the real-timing adaptation capability of the

SEA2, we change the target SCR in the simulations from 30% to 60 and 90%. The

results indicate SEA2 also has a confidential adaptation mechanism in the real-timing

case.

The research works in this chapter are based on our previous research outcomes

from [4] [64].

3.2 Background and Problem Definition

3.2.1 Tracking by Particle Filter

Particle Filtering (PF) [5] is a powerful method for sequential signal processing for

nonlinear and non-Gaussian problems. It is broadly used in applications that need

the tracking and detection of random signals. The algorithm is also based on its

operations on representing relevant densities by discrete random measures composed

of particles and weights, and computes integrals by Monte Carlo methods [57]. In

the tracking problem based on PF, the measuring outputs from an acoustic sensor

are bearings or angles (Zt) on the grid along the perpendicular coordinates at time

t. Based on the angle information, we can get the estimated position (x̃t, ỹt) and

velocity (ṽx,t, ṽy,t) in the cartesian coordinate system. At the next acoustic sampling

time, t+1, we can get the next angle (Zt+1) and corresponding outputs based on the

previous PF estimates. In this tracking method, we obtain more accurate position

70

estimates as we increase the number of particles.

Tracking Problems

In PF-based tracking applications, there are two key problems preventing accurate

tracking process. The first one is the initial state problem where initial state may

not be reliable and sometimes is not existing. For example, in the beginning of

the tracking or when the signal from an object re-appears after silence movement or

blocking obstacle, we can consider the cases as the initial state problem. Since the PF

application assumes the initial state is clearly given, the PF approximation outputs

will show significant deviation from the real object trajectory in the presence of the

initial state problem. The trajectory divergence problem is another key problem that

appears in many PF applications. The object dynamic model could change in the

middle of tracking even with the given initial state. The change with or without the

initial state results in the tracking to be diverged. Since the next PF estimation is

based on the current state vector, the deviated state vector in current time will lead

to further erroneous tracking in the wrong direction.

Possible Solutions

The aforementioned tracking problems can be solved by multiple dynamic model

[65,66], multiple acoustic sensor detection [67], and audio-visual multi-modal tracking

algorithm [63]. Especially, the last multi-modal algorithm has recently been active

research domain due to its accuracy and fast implementation. In [63], the visual

sensor mainly tracks the object and an acoustic sensor supports the tracking when

71

the object disappears from the visual space. However, in realtime point of view, the

complexity of image processing becomes an overhead factor. Therefore, our approach

in this chapter is to adopt a low computing acoustic sensor for the main tracking

device, and the visual sensor compensates the tracking deviation caused by acoustic-

based PF outcomes.

3.2.2 Tracking by Visual Sensor

Visual localization algorithm is performed to extract the object position estimation

from captured visual image. It is based on the parallel projection model [68], which

simply approximates the position with a known reference point, Pr(xr, yr). Arbitrary

point on a camera or an estimate obtained by PF algorithm could be the reference

point. The localization algorithm assumes both cameras can capture the target object

at the same time. In the algorithm, the reference point is projected on the viewable

planes of both cameras, and the object points appeared in the camera sensing planes

are also projected on the viewable planes. Let the projected point of reference point

be P i
v = (xi

v, y
i
v) and the projected point of sensing plane be P i

s = (xi
s, y

i
s), where i is

the camera id and takes 1 and 2. Then, we can obtain the distance ∆di between the

projected points as ∆di = P i
vP

i
s . If we assume the each viewable plane of camera 1

and 2 forms x and y cartesian coordinate respectively, the estimated object position

is obtained by Pe(xe, ye) = (xr ±∆d1, yr ±∆d2).

72

visual
sensor 1

visual
sensor 2

acoustic
sensor

lost path
sensed path

Figure 3-1: Target application model for the object tracking. It consists of an acoustic
sensor and two visual sensors to capture the object information. The dashed line
means the lost of the acoustic signal in the middle of object moving.

3.2.3 Target Application Model

The target application model in our approach is based on the integration of an acoustic

sensor and two visual sensors as shown in Figure 3-1. A three dimensional acoustic

localizer is located at an acoustic sensor to get the direction of arrival (DOA) [69]. The

localizer detects two angle components (azimuth angle θ, elevation angle φ) from the

arrival time difference between embedded adjacent microphones. The PF associated

with acoustic sensor mainly obtains the coordinate information of the moving object,

and supportive tasks such as position initialization, detecting of silent movement, and

compensation of the deviated tracking from acoustic signal are done by two visual

sensors. The visual sensors require to be located in appropriate positions to capture

the object with sufficient angles which are used in the localization algorithm in Section

73

3.2.2.

3.2.4 Visual Compensation Effect

st∆

t∆ vt∆
t∆

ti+1
ti+2 ti+3 ti+4 ti+5

ti+6 ti+7 ti+8

Figure 3-2: Sampling time sequence of an acoustic sensor and visual sensors. Red
arrow is the acoustic sampling time and the blue is the sampling point of the visual
sensors.

In the visual compensation process, the operation of visual sensors are independent

of the acoustic sensor’s operation. Figure 3-2 shows an example of sampling time

sequence possibly occurring in the application model. The acoustic sensor samples

the object signal by ∆ts interval and the visual sensors capture the tracking space

every ∆tv. In this case, both sampling tasks have the time difference ∆t. If the ∆t is

in [0, ∆ts], the visual localization algorithm can be successfully performed to correct

the tracking error in the PF-estimate. Here, the visual localization algorithm uses the

PF estimate for the reference point. For example, if we consider the compensation at

time ti+5, acoustic estimate at ti+4 becomes the reference point.

We observe the advantage of the visual compensation assisting the PF-based track-

ing system in the remainder of this section. The advantage appears when the multi-

modal sensors independently operate like Figure 3-2. For the observation, we use

non-linear model with semi-triangular movement where an acoustic sensor is placed

74

at (0,0) of a cartesian coordinate.

9.5 10 10.5 11 11.5 12 12.5 13 13.5
9.5

10

10.5

11

11.5

12

12.5

13

13.5

(a) Without visual compensation (Only PF-
based tracking)

9.5 10 10.5 11 11.5 12 12.5 13 13.5
9.5

10

10.5

11

11.5

12

12.5

13

13.5

(b) Visual compensation(∆tv=50∆ts)

9.5 10 10.5 11 11.5 12 12.5 13 13.5
9.5

10

10.5

11

11.5

12

12.5

13

13.5

(c) Visual compensation(∆tv=10∆ts)
9.5 10 10.5 11 11.5 12 12.5 13 13.5

9.5

10

10.5

11

11.5

12

12.5

13

13.5

(d) Visual compensation(∆tv=5∆ts)

Figure 3-3: Tracking accuracy when the two visual sensors assist the PF-based track-
ing task. Red line represents the real object movement, and the blue line is the
trajectory estimate obtained by associating an acoustic sensor with two visual sen-
sors.

Figure 3-3 shows the simulation results for the various sampling interval of visual

sensors. The ∆tv takes 50, 10, or 5 times longer than the sampling interval of acoustic

sensors. The target object is moving along the red line, and the trajectory estimate

is indicated by blue line. In Figure 3-3(a), only PF-based estimate has large devia-

tion from real object movement. However, when we associate two visual sensors with

an acoustic sensor creating the PF estimate, we can increase the tracking accuracy

75

in proportion to the visual sampling frequency. When ∆tv=50∆ts, the trajectory

estimate roughly follows the object movement with large variation as shown in Fig-

ure 3-3(b). As we increase the visual sampling frequency to 10∆ts, the trajectory

estimate is almost the same as the object movement as shown in Figure 3-3(c). In

more visual sampling frequency like ∆tv=5∆ts, the trajectory estimate becomes more

accurate as shown in Figure 3-3(d). Note the processing overhead of PF is a few mi-

croseconds as indicated in [6], and the localization algorithm for visual compensation

is performed rarely compared with the PF calculation. Therefore, our application

model can minimize the overall processing overhead for the tracking task as well as

provide the accurate tracking task.

3.2.5 Network Synchronization Problem in the Application

Model

Even if we have mentioned the visual compensation provides significant improvement

in tracking accuracy in previous section, it requires some assumptions: (1) two visual

sensors capture the tracking space with no time difference, (2) as soon as acoustic

and visual sensors are sampling object information, the PF and visual localization

algorithms should calculate the position estimation without time delay, and (3) the

visual compensation results are immediately applying to the next PF state generation.

However, the sampling and the calculation points generally locate in different places,

so that there exists a synchronization problem caused by the data transmission delay

in the tracking system.

76

visual sensor 1

visual sensor 2

acoustic sensor

Router

Server

ti ti+2

ti+1

1vx 2vx
z

y

Figure 3-4: Delay factors causing the network synchronization problem in the tracking
model.

Figure 3-4 indicates the factors to be considered in the tracking model at the

network point of view. At ti, an acoustic sensor receives the object signal, and the

visual sensor 1 and 2 take the image at time ti+1 and ti+2, respectively. Based on

concepts in the previous section, ti+1 = ti + ∆t1 and ti+2 = ti + ∆t2, where ∆t1 and

∆t2 are sampling time difference between acoustic and visual sensor 1 and 2. If we

assume the PF calculation is done at acoustic sensor, and the visual localization is

done at a remote computing machine, namely, Server, the PF-based position estimate

and the visually sampled data need to be sent to the Server via network Routers. In

this situation, the image frames taken by visual sensor 1 and 2 arrive at the Server

after xv1 and xv2 delays, and the PF estimate requires transmission delay z to arrives

at the Server. Additionally, the visual compensation estimate at the Server needs

to be re-sent to the acoustic sensor with delay y for the adjustment of the next PF

calculation. We define a tracking problem caused by the network transmission delay

77

in visual compensation process as network synchronization problem. The independent

data transmission delay in addition to sampling time difference among multi-modal

sensors causes the network synchronization problem, so that we address how to tackle

the problem in the remainder of this chapter.

3.3 Network Synchronization for Object Tracking

3.3.1 Configuration of Wireless Tracking Network

In order to support the tracking task, we consider a wireless tracking network con-

necting the multi-modal sensors and a Server. This is a type of distributed wireless

network since the algorithm processing points are distributed in the network to sup-

port the tracking task.

Server

Router

acoustic
sensor

visual
sensor 1

visual
sensor 2

object

Figure 3-5: An example of the wireless tracking network.

Figure 3-5 shows an expected configuration of the tracking network. Routers are

communicating each other by wireless channel and the last mile Router is connected

to a Server. More than one acoustic sensor sample and send the object information

78

to the Router. Two visual sensors are connected to Routers and independently send

the visual image to the Server. The PF calculation is done at the acoustic sensor

and the visual localization algorithm having more complexity is performed at the

Server. The localization algorithm could be performed at the Routers. However, as

we have indicated in [70], the fully distributed tracking architecture has large end-

to-end transmission delay of the visual image since the visual sensors have to send

the same image to all the Routers, which causes heavy traffic in the network. Note

the image size from a visual sensor is relatively larger than the packet from acoustic

sensor. For example, when we capture the visual space by IP camera [71], the size

of image frame is within the range of 30 to 55 KBytes. Therefore, we adopt the

server-based architecture to reduce the duplicate transmission of the same image as

well as to use the high computational power of the Server.

3.3.2 Time-based Packet Aggregation of Acoustic Sensor Data

The first problem to be solved for the network synchronization is how to deliver to

the Server the object information from more than one acoustic sensor in a timely

manner. For this problem, we propose a time-based packet aggregation algorithm as

described in Algorithm 1. Whenever a packet from an acoustic sensor is coming to the

Router, the Router first checks the sampling time (ti) of the packet is the most recent

one. The received packet is inserted into a Queue until the Router receives packets

having the most recent sampling time from all the acoustic sensors. If ti of the packet

is older than the previously saved sampling time (Ti), the packet is dropped. If the

79

Algorithm 1: Time-based packet aggregation algorithm to deliver the data
packets from more than one acoustic sensor.

Pi: a packet currently arriving at a Router. It is originated from acoustic
sensor i.
Qi: a packet being queued in a Queue. It belongs to acoustic sensor i.
Pa: an aggregated packet to be sent to the next hop Router.
na: the number of acoustic sensors in the range of the Router.
Pa = {∅}, Ti = 0, i=1...na

// Check the sampling time of the incoming packet is the latest

one

c=0
for i=1 to na do

ti = sampling time of Pi

if Ti < ti then
c = c+1

else drop(Pi)

end
// Make an aggregated packet based on sampling time

if c is equal to na then
for i=1 to na do

dequeue(Qi)
ti = sampling time of Qi

Ti = ti
Pa = {Pa ∪Qi}

end
send(Pa)
Pa = {∅}

else
enqueue(Pi)

end

Router receives the packets with the latest time, it makes an aggregated packet (Pa)

and sends it to the next hop Router. At this point, we need to save the sampling

time of the dequeued packet (Ti = ti) for the next comparison of the sampling times.

We assume that the sampling point of the acoustic sensors are same, which can be

realized by regularly sending SYN packets from the Router to acoustic sensors to

adjust the distorted sampling point. By using the aggregation algorithm, we can

80

reduce the network traffic and end-to-end delay of the acoustic sensor data as well

as simplify the visual compensation process since the acoustic data can arrive at the

Server at the same time. Since the sampling interval at acoustic sensors relatively

larger than the transmission delay between acoustic sensors and a Router, we can

ignore the impact of waiting time to aggregate packets from acoustic sensors.

3.3.3 Visual Compensation Considering Network Synchro-

nization

1
1
vx 1

2
vx 1

3
vx 1

4
vx 1

5
vx 1

6
vx

2
1
vx 2

2
vx 2

3
vx 2

4
vx 2

5
vx 2

6
vx

1y

1z

1
7
vx

2
7
vx

2y 3y

2z 3z 4z

t1

t2

t3

t4 t5 t6 t7

t8

t9 t10 t11 t12 t13

t14

t15 t16 t17 t18 t19 t20

t21

Figure 3-6: Packet flowing example appearing in the tracking model.

The next problem in the tracking task is to identify visual compensation in network

synchronization point of view. To clarify the point, we show a packet flowing example

in Figure 3-6 possibly appearing in the system. This traffic pattern could happen

in a situation that an object’s signal frequently disappears, so that visual image is

sent as many as possible to detect the object trajectory. Similar to Figure 3-2, the

acoustic sampling times are denoted by red arrows and blue arrows are for visual

image capturing points. We additionally add red points to represent the calculation

81

of the visual localization algorithm at the Server side. Since the visual compensation

estimates are re-sent to the acoustic sensor for the next PF adjustment, we add the

black arrows to represent the feedback arrival at the acoustic sensor. The visual

sensor 1 and 2 send the captured image frame to the Server with delay xv1
i and xv2

i ,

respectively. When a Router is ready to send an aggregated acoustic packet to a

Server, it also sends the packet with transmission delay zk. After finishing visual

localization algorithm, the Server sends the compensated PF-estimate to the acoustic

sensor. This feedback transmission takes yj delay. Here, i,j, and k represent the

generation sequence of the multi-modal data. Note that the delay size of multi-

modal sensor data is different in times since the tracking network has a number of

delay factors like router capacity and background traffic volume. In other words,

the transmission delay takes randomness property. If we compare this example with

Figure 3-2, the visual compensation process needs to be differently interpreted. For

example, the t9 in Figure 3-6 could be a successful visual sampling time under the

illustration of Figure 3-2 since it is within t8 to t14, which means ∆t is within the [0,

∆ts]. However, in this example, the sampling time t7 of the second visual sensor is

not between t8 and t14 due to the different image capturing point of visual sensors.

This indicates the first assumption in Section 3.2.5 does not valid in real situation.

Therefore, the image from second visual sensor may give the wrong information to

the estimation procedure. In this case, we would better use visual images captured

at t10 and t11 since they more precisely contain the tracking space between t8 and

t14. Even if the visual images seem to capture the tracking space in timely manner,

82

they do not provide good information with the visual compensation process when we

consider the transmission delay (y2) of feedback data that reaches the acoustic sensor

at t15. The arriving point is between t14 and t21 that is a new acoustic sampling

period. For y2 delay time, the object can have abrupt moving behavior in which case

the information at t15 can also give the negative information to the PF estimation.

Fortunately, we have another feedback arrival at t20, and the feedback gives a right

information to the next PF calculation at t21. This complicated situation takes place

since the second and third assumptions in Section 3.2.5 are not applicable to the real

environment.

3.3.4 Definition of Success and Fail Conditions

To clearly define when the visual localization algorithm can be executed and what is

the success in the visual compensation process, we make two conditions as follows.

• Condition 1 : The Server sees that the sampling times of both visual sensors

are later than the acoustic sampling time of previously arrived acoustic data.

At this point, the Server performs the localization algorithm.

• Condition 2 : The compensated estimate should be feedbacked to acoustic sen-

sors before the next acoustic sampling time.

If above conditions are satisfied at the same time, we define this case as success in the

visual compensation process. We regard other cases not following above conditions

as fail even if it actually does not mean the failure of the algorithm calculation.

83

acoustic
sensor

router server

�

(a) success

router server router
visual

sensor 1,2server

ti+2

ti+3

ti

router server

visual
sensor 1,2

visual
sensor 1,2

visual
sensor 1,2

� �

(b) fail

(c) fail (d) fail

�

ti+1

acoustic
sensor

acoustic
sensor

acoustic
sensor

ti

ti+1

ti
ti+1

ti+2

ti+2

ti
ti+1

ti+3

ti+3

Figure 3-7: An example of success and fail cases in the tracking model.

Figure 3-7 shows the message flowing diagram between sensors, Router and Server,

and possible success and fail cases occurring in the tracking model. In the figure, the

messages related with acoustic sensors are directly delivered from source to destination

since they are delivered by UDP. On the other hand, the visual sensor data need

reliability so that TCP is used for the transferring. Since the visual image size is

larger than Maximum Transmission Unit (MTU) size, more than one packet are

exchanged between visual sensors and a Server. Similar to Figure 3-6, we use red and

blue arrows, and red point to indicate the generation of the acoustic, visual sampling,

and the execution point of localization algorithm. We can find out only Figure 3-7(a)

satisfies the Condition 1 and Condition 2 at the same time. Note in Figure 3-7(c)

84

and (d), the final result is not success due to the network synchronization problem

even if the localization algorithm calculation at the Server side is successful.

3.3.5 Impact of Network Synchronization Problem

R2 R3 R4R1 serverR0

A0

A1 A2

A3

A4 A5

A6

A7 A8

A9

A10 A11

A12

A13 A14

V1

V2

Figure 3-8: Daisy-chain scenario of the tracking model. Acoustic senors, visual sensors
and Routers are denoted by Ai, Vi, and Ri (i = 0, 1, ...), respectively.

In this section, we investigate the impact of the network synchronization problem

by simulation study. We use NS-2 simulator to build up a scenario of the developed

tracking system as shown in Figure 3-8. Even if its configuration is simple in terms

of Routers, the tracking complexity is affected by the number of acoustic sensors and

tracking objects. Since the acoustic sensor-Router communication delay is separate

from the Router-Router transmission and can be minimized by packet aggregation,

we believe it suffices to configure a line of Routers for characterizing the impact

of network synchronization and traffic pattern analysis of the developed tracking

system. Five Routers are communicating each other with 54Mb/s 802.11a single

channel wireless link with 0.0005 uniformly distributed Bit Error Rate (BER). We

turn off the RTS/CTS to reduce the network traffic overhead. Three acoustic sensors

are located within the communication range of each Router to send and receive data.

85

The wireless channel between acoustic sensor and Router is different to the channel

of Router-Router links to reduce the interference. We assume each acoustic sensor

is tracking five moving objects. The Server is connected to last mile router R4, and

two visual sensors are attached onto R1 and R3 to effectively capture the tracking

space with different angles. The image frames generated by visual sensors are fixed by

40KByte size and we generate 10Kb/s, 0.5Mb/s, and 1Mb/s non-sensor (background)

traffic by Constant Bit Rate (CBR). For the visual sampling interval, we set it up

as ∆tv=10∆ts, where ∆ts takes various values: 0.1, 0.2, 0.3, and 0.4 seconds. The

simulation time is 200 seconds.

Figure 3-9 shows how many visual compensation process can be successful when

the network synchronization is considered in the tracking system. It plots the number

of success in visual compensation at each acoustic sensor. The black point lines are for

the ideal case achieved based on the Figure 3-2. For example, if the acoustic sensors

are sampling the object signal with ∆ts = 0.1 second, correspondingly ∆tv = 1.0

second, we expect the visual compensation in ideal case is performed 200 times.

However, Figure 3-9(a) indicates that in real situation represented by red point line,

no visual compensation is performed when ∆ts = 0.1. This is due to the transmission

delay of sensor data, especially, visual images. Note 10Kb/s background traffic could

be considered to be equal to a network with only multi-modal sensor traffic. When

we measure the transmission delays of 40KBytes visual image under even lower 1kb/s

background traffic, we obtain 0.117 and 0.035 seconds of transmission delay for visual

sensor 1 and 2. Since the visual sensor 1 is far away from the Server, its delay is

86

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

nu
m

be
r

of
 s

uc
ce

ss
fu

l v
is

ua
l c

om
pe

ns
at

io
n

0

50

100

150

200

250
0.1, ideal
0.2, ideal
0.3, ideal
0.4, ideal
0.1, net
0.2, net
0.3, net
0.4, net

(a) Background traffic: 10Kb/s

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

nu
m

be
r

of
 s

uc
ce

ss
fu

l v
is

ua
l c

om
pe

ns
at

io
n

0

50

100

150

200

250
0.1, ideal
0.2, ideal
0.3, ideal
0.4, ideal
0.1, net
0.2, net
0.3, net
0.4, net

(b) Background traffic: 0.5Mb/s

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

nu
m

be
r

of
 s

uc
ce

ss
fu

l v
is

ua
l c

om
pe

ns
at

io
n

0

50

100

150

200

250
0.1, ideal
0.2, ideal
0.3, ideal
0.4, ideal
0.1, net
0.2, net
0.3, net
0.4, net

(c) Background traffic: 1Mb/s

Figure 3-9: Impact of network synchronization problem in the tracking system. Here,
we set ∆tv = 10∆ts.

87

larger than that of the second visual sensor and we can conjecture the compensation

performance mainly depends on the large delay of the visual sensor 1. This result

indicates that we can not realize visual compensation when we try to track a fast

moving object with ∆ts = 0.1 even in no background traffic. When the background

traffic increases to 0.5Mb/s and 1Mb/s, the visual sensors can not assist the PF-based

object tracking in small ∆ts values. Especially, the network synchronization problem

leads to around zero visual compensation for all the ∆ts values in 1Mb/s background

environment as shown Figure 3-9(c).

3.3.6 Possible Solutions for Network Synchronization Prob-

lem

Adjustment of Sampling Time

A simple solution for the network synchronization is achieved from changing the sam-

pling interval of acoustic sensors. For example, in the existence of 1Mb/s background

traffic in the previous section, we can eliminate the non-synchronization by increas-

ing the ∆ts to 0.8 second. This solution makes it satisfied with both Conditions

mentioned in Section 3.3.4. However, this solution has difficulty in supporting the

visual-assisted tracking for fast moving objects, so that there exists a limitation of

tracking accuracy.

88

Traffic Differentiation Model

Network transmission delay, especially, the large image exchanging delay among both

visual sensors and a Server is critical to the network synchronization. From this fact,

we propose a sensor traffic differentiation model by using Weighted Round Robin

(WRR) scheduling mechanism to be installed into Routers. The basic idea of the

model is that we can balance the network delay among the multi-modal sensor traffic

and non-sensor traffic by using WRR, and eliminate the non-synchronization problem

appearing in the tracking network.

µ
classifier

visual
sensor 2

visual
sensor 1

acoustic
sensor

non-sensor
traffic

wa

wn

wv1

wv2

Figure 3-10: Reference model for traffic differentiation.

Figure 3-10 shows the reference model for the traffic differentiation. It has four

separate queues and each queue is assigned to visual sensor 1 and 2, acoustic sensor,

and miscellaneous non-sensor traffic. The feedback from a Server to acoustic sensors

delivering visual localization results is assigned to the second queue. If the service

rate of a Router is µ, each queue is served by a service weight factor wv1, wv2, wa, or

wn. Here, we propose a weight allocation algorithm, Delay-based Weight Allocation

(DWA) to determine the weight factor. In DWA, we first categorize the traffic into

89

sensor and non-sensor traffic and assign weight into them. Let cs and cn be the

allocated weights for sensor and non-sensor traffic and cs + cn = 1. Then, we need

to perform fine grained weight allocation of cs into the three different sensor queues,

which is conducted based on the transmission delay of each sensor type. The fine

grained weight allocation is done by two rounds. In the first round, we need to

measure the transmission delay from multi-modal sensors to a Server. Here, we will

follow the notation of Figure 3-4. Each value can be easily obtained since at the

Service side, we can know the generation time and the arrival time of the sensor data.

In the second round, we can obtain the weight allocation based on the measured

delays. Let’s define the total measured delay dt as:

dt = xv1 + xv2 + z. (3.1)

Based on the dt, we get the weight factors as follows.

w
′
v1 = cs · xv1

dt

, w
′
v2 = cs · xv2

dt

,

w
′
a = cs · z

dt

, w
′
n =

cn

cs

· dt,

(3.2)

where w
′
n is obtained from dt based on the ratio of the categorized weight allocation.

In order to normalize them, we define wt = w
′
v1 + w

′
v1 + w

′
a + w

′
n, and get the final

90

DWA formula as:

wv1 =
w
′
v1

wt

, wv2 =
w
′
v2

wt

,

wa =
w
′
a

wt

, wn =
w
′
n

wt

,

(3.3)

where wv1 +wv1 +wa +wn = 1. The accomplished DWA weight factor is now applied

for the service differentiation in the next router executions.

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

nu
m

be
r

of
 s

uc
ce

ss
fu

l v
is

ua
l c

om
pe

ns
at

io
n

0

20

40

60

80

100

120

Normal, bg=0.5Mb/s
DWA, bg=0.5Mb/s
Normal, bg=1.0Mb/s
DWA, bg=1.0Mb/s

Figure 3-11: Simulation results when traffic differentiation model is applied to the
tracking system, where ∆ts = 0.2 and ∆tv = 10∆ts.

Figure 3-11 shows the simulation result under the 0.5Mb/s and 1.0Mb/s back-

ground traffic environments when traffic differentiation model is applied into the

tracking system. We compare the the number of success of the proposed model with

that of normal case in which only one queue serves the sensor and non-sensor traffic.

For the categorized weights, we set them up by cs : cn = 0.9 : 0.1 to support the fast

transmission of the sensor data. In the first round, we assign the identical weight for

91

each queue such as wv1 = wv2 = wa = wn = 0.25. In the second round, the initial

weights are changed to wv1 = 0.732, wv1 = 0.222, wa = 0.043, and wn = 0.003 by

means of DWA calculation. The simulation result is obtained only when ∆ts = 0.2.

Note that as indicated in Section 3.3.5, the tracking system achieves no number of

success in visual compensation at ∆ts=0.1 since the pure transmission delay of visual

sensor 1 is larger than 0.1 second. Thus, ∆ts=0.1 case is not plotted in the figure.

We also do not plot the cases of ∆ts=0.3, 0.4 under 0.5Mb/s and 1Mb/s background

since we achieve the same number of success as the ideal case when we apply the

traffic differentiation model into the tracking system. When we remind that there

are no success in Figure 3-9(c) in any ∆ts values, we understand the differentiation

model can efficiently mitigate the non-synchronization in network. To save the space,

we do not plot the case of 10Kb/s background situation since the result is same as

Figure 3-9(a). When we observe the plot for 0.5Mb/s background traffic case, the

differentiation model applying the DWA achieves almost the same as the ideal case

even if the normal case which reflects the network synchronization problem shows the

unbalanced visual compensation. Since the acoustic sensor 0 to 5 are far from the

Server, their packet transmission delays are larger than the delays of other acoustic

sensors. Therefore, we obtain the unbalanced curve in normal case. For the 1.0Mb/s

background environment, differentiation model also provides more number of success

than the normal case even if the result is affected by the background traffic volume.

In order to investigate how the trajectory estimate of object movement changes

when the differentiation model is applied, we show the tracking results in Figure

92

9.5 10 10.5 11 11.5 12 12.5 13 13.5
9.5

10

10.5

11

11.5

12

12.5

13

13.5

(a) Acoustic sensor 0 to 11

9.5 10 10.5 11 11.5 12 12.5 13 13.5
9.5

10

10.5

11

11.5

12

12.5

13

13.5

(b) Acoustic sensor 12 to 14

Figure 3-12: Estimated trajectory of a target object under traffic differentiation
model.

3-12. This is the result only for DWA,bg=1.0Mb/s case in Figure 3-11. Since the

differentiation model provides the same results as the ideal case in DWA,bg=0.5Mb/s,

the trajectory estimation in the case is almost the same as the real object movement.

The trajectory estimation in Figure 3-12(a) reveals that the differentiation model

provides reasonably accurate tracking outcome in acoustic sensor 0 to 11 even with

93

a little bit large deviation from real object movement. Note that the trajectory

estimation of acoustic sensor 0 to 11 under non-differentiation model has the result

in Figure 3-3(a) since the normal one queue model achieves around zero success in

visual compensation. The acoustic sensor 12 to 14 show better trajectory estimation

in Figure 3-12(b) since they are assisted with more success of visual compensation.

3.3.7 Behavior Analysis of the Tracking System

From the observation of the developed tracking system, we can understand the suc-

cessful visual compensation mainly depends on the sampling interval of the acoustic

sensor and the image transmission delay. Therefore, in this section, we investigate

the accuracy of a tracking system in terms of the two parameters.

Performance Metric

In order to represent the success and fail cases mentioned in Section 3.3.4 by a numeric

value, we define a new performance metric applicable to the tracking system. We call

it Successful Compensation Rate (SCR) and define it as:

SCR =
ns

nt

, (3.4)

where ns is the number of success in visual compensation that satisfies both Condi-

tions in Section 3.3.4 and nt is the total number of sampling of an object signal at

an acoustic sensor. If total running time of the tracking system is T , nt = T/∆ts. If

a tracking model achieves large SCR value, the PF algorithm is highly compensated

94

by localization algorithm, so that we can more accurately track the target object.

Therefore, the SCR metric can be a gauge to determine the tracking accuracy of

the established tracking system. Note the accomplished SCR reflects the network

synchronization problem.

Simulation Setup

server

R1 R4

R2 R5

R6

R7

R0
R3

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

V1

V2

V4

V3

Figure 3-13: Tree scenario of the tracking system. Due to a line-of-sight characteristics
of visual sensors, we install 4 visual sensors.

In order to observe the system behaviors, we perform the simulations based on

the scenarios in Figure 3-8 and a more complex tree scenario as shown in Figure

3-13. Visual sensors generate image frame of 20, 40, and 60 KBytes size. We observe

the behaviors based on the acoustic sampling interval of 0.1, 0.15, 0.2, 0.3, and 0.4.

For the tree scenario, we set up the same communication link as Figure 3-8, and

only two acoustic sensors work in the communication range of each Router. Each

acoustic sensor tracks five objects. We assume that both branches of the tree can not

95

guarantee the line-of-sight characteristics of a visual sensor, so that we install two

visual sensors for each branch.

Simulation Results

Figure 3-14 shows the simulation results achieved from daisy-chain scenario. We plot

the SCR variations of 15 acoustic sensors. Let’s assume the both tracking scenarios

need SCR = 0.6 to detect the object trajectory. Then, in 20KBytes image size, the

acoustic sensors do not need to capture the object signal with ∆ts < 0.3 since the

network synchronization problem blocks the on-time transmission of the sensor data

for the visual compensation. If the visual sensors generate 40KBytes image, only

ts = 0.4 supports the expected SCR value. In case of 60KBytes, all the simulated

sampling times do not support the stable object tracking.

For the tree scenario, we plot only SCR result for 20KBytes image size in Figure 3-

15 since the other cases support no visual compensation. This is because the complex

network configuration leads to the large transmission delay of the visual image to a

Server. Even in 20KBytes, only acoustic sensor 4 and 5 which are near the Server

support the expected SCR = 0.6.

96

3.4 Statistical Estimation and Adaptation for Vi-

sual Compensation

3.4.1 Motivation

In the proposed tracking system, it is necessary to investigate the number of success

of visual compensation to appear in the middle of tracking. This objective can be

done by measuring the SCR achievement by simulation or system setup. However,

the two measuring methods are time consuming task, but a mathematical estimation

method could be a good tool for the investigation. Therefore, we formulate a SCR

estimation algorithm in the following section.

Another question in the tracking system could be how to maintain the tracking

system at a certain level of tracking accuracy. From the previous observation of

the tracking system, we expect the success in visual compensation depends on the

sampling interval of the acoustic sensor and the transmission delay, i.e., xv1, xv2, y,

and z. However, the tracking system shows different behaviors in times since the delay

factor has randomness property. Therefore, the maintaining of the accuracy could

not be an easy part since the accurate tracking depends on the success in the visual

compensation that subsequently depends on the sampling interval of the acoustic

sensor and the transmission delay. Fortunately, the acoustic sampling interval is

a predictable parameter since we can set it up in the acoustic sensor by a certain

value. Thus, we can perform the maintenance by controlling the sampling interval.

In order to do the adaptation of the parameter in real-time manner, the next section

97

proposes an adaptation algorithm by using the previously formulated SCR estimation

algorithm.

3.4.2 Statistical Estimation Algorithm (SEA)

In this section, we explain a Statistical Estimation Algorithm (SEA) to predict the

SCR variation in the multi-modal tracking system.

Before we illustrate the algorithmic details of the SEA, we first investigate a

packet flowing example in Figure 3-16. Similar to Figure 3-6, this traffic pattern

could happen in a situation that visual images are sent as many as possible since the

acoustic signal of an object frequently disappears. The transmission delays xv1
i , xv1

i ,

yj, and zk take random values according to the status of the tracking network. From

the figure, we can guess xv1
i and xv2

i are the key factors to make a visual compensation

successful. The acoustic sensor samples the object signal every ∆ts interval. When we

observe the time period between t1 and t7, it satisfies the both Conditions in Section

3.3.4. In this period, the acoustic sensor successfully receives the feedback from the

Server, so that the SCR increases. In the time period between t7 and t11, the Server

does not perform the localization algorithm since the visual sampling times t4 and

t5 of xv2
2 and xv1

2 are earlier than the acoustic sampling time t7, which violates the

Condition 1 in Section 3.3.4. At this point, we need to define another condition to

simplify the compensation process.

• Condition 3 : Only one association of acoustic sensor and visual sensor data is

permitted in a ∆ts period.

98

For example, in time period t7 to t11, we do not perform the visual compensation

process since z2 has already used in the comparison with xv1
2 and xv2

2 even if xv1
3 , xv2

3 ,

and z2 satisfy the Condition 1. Based on the Condition 3, we can match the current

acoustic data with the recent visually sampled image in case there are many possible

visual images that are feasible for the localization algorithm. We also perform quick

decision of executing the localization algorithm without a complicated algorithm to

match the sampling times of acoustic and visual data. According to the Condition 1

to Condition 3, we can figure out why we do not perform the localization algorithm

and increase the SCR in the third and fourth periods.

From this example, we can get an insight that SCR could be estimated by well-

defined prediction model if packet transmission delays between multi-modal sensors

and Server are correctly modeled and generated in the model.

Observation and Approximation of Packet Transmission Delay

We start deriving the SEA from the approximation of xv1
i , xv2

i , and yj. For this work,

we observe the transmission delay variations from NS-2 simulations which has the

daisy-chain and tree scenarios like Figure 3-8 and 3-13, and obtain the Probability

Density Functions (PDF) to generate random values to predict the transmission de-

lays. Here, we do not measure zk and find its PDF since ∆ts includes the zk in the

SEA operation.

Figure 3-17 shows the histogram of transmission delays, xv1
i and yj (i, j=1,2,3,...).

For the measurement, we use daisy-chain and tree topologies with 20Kbytes visual

99

image size and ∆ts = 0.1. We plot the delays only for visual sensor 1 and acoustic

sensor 0 on both topologies since other visual sensor and acoustic sensors have similar

distribution patterns.

The histograms of the visual sensor in Figure 3-17(a) and 3-17(b) show Gaussian-

like distributions with bi-modality and uni-modality in daisy-chain and tree topolo-

gies. In general, it is reasonable to assume that an internet traffic follows Exponential

PDF for the transmission delay. However, our measurement does not follow the as-

sumption. This is because the obtained histogram is not for a set of one packet delay

but for the delay of one image file. For example, 20 KBytes image files are delivered

by 20 separate packets each of which has 1000 Bytes size. Therefore, we can not

say that the transmission delay of 20 KBytes image follows the Exponential PDF.

To more clearly explain why we get the Gaussian-like PDF, let’s consider a statistic

example where we pick up 20 samples from a population having an arbitrary PDF.

Then, the sum of 20 samples becomes a random variable, and the random variable

approximately follows Gaussian distribution according to the Central Limit Theorem

(CLT) [72]. Similar to this example, we can say that the transmission delay of 20

KBytes image file is a random variable summing transmission delays of 20 separate

packets, and the random variable follows a Gaussian PDF according to the CLT. Even

if the distribution with bi-modality is not the actual Gaussian PDF, we approximate

the distribution as Gaussian in the SEA, which might give an estimation error in the

SEA calculation.

100

Let X be the random variable for xv1
i and xv2

i . Then, X has PDF fX(x) as follows.

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (3.5)

where µ is the expected value and σ is the standard deviation.

For the acoustic sensor, the histogram is close to Gamma PDF with appropriate

shape (k) and scale (θ) parameters. Let’s define Y as the random variable for yj.

Then, Y has following PDF:

fY (y) = yk−1 ey/θ

θkΓ(k)
, y > 0, (3.6)

where k > 0, θ > 0. Note the Exponential PDF can be formulated from Gamma

PDF with k = 1, θ = 1/λ, where λ is a rate of the Exponential distribution. In order

to simplify the random number generation for yj in the SEA, we use Exponential

PDF instead of Gamma PDF. The Exponential assumption is reasonable in that an

internet traffic generally follows the Exponential PDF. In the validation section, this

simplification is proven to be reasonable. Finally, we can determine the PDF for Y

as:

fY (y) =





λe−λy , y ≥ 0,

0 , y < 0.

(3.7)

101

Formulation of the SEA

Based on the previous PDF approximation, we explain the details of the SEA in

this section. SEA is composed of four modes, Right (R), Left (L), Both (B), and

Unreachable (U) and two states, success (s) and fail (f). Each mode except for U

mode contains two states.

The meaning of the R, L, and B is well explained in Figure 3-16. Let’s look at

the red dashed lines that are vertically drawn at t1, t7, t11, t15, and t20. The sampling

times of xv1
i and xv2

i are placed along the lines with three different forms: (1) the

sampling times are located at the right-hand side of the line such as (xv1
1 , xv2

1), (2)

they are at the left-hand side of the line like (xv1
2 , xv2

2), (xv1
5 , xv2

5), and (xv1
7 , xv2

7),

and (3) they are crossly placed on both sides such that the sampling time of xv1
4 is

at the right-hand side and that of xv2
4 is at the left-hand side based on the line at

t11. We define the first case as R mode, second one as L mode, and third one as B

mode. Once the mode is determined, we can find whether the compensation process

is success or fail within the mode after refereing to the size of yj. Note that the yj

can be created only if a server successfully performs the localization algorithm by

using xv1
i , xv2

i , and zk as parameters. If we have a success like y1 that safely reaches

an acoustic sensor, we call this case as s state; otherwise, f state. In s state, we can

increase the SCR value. Note three modes in Figure 3-16 are unreachable to the next

mode in some cases. For example, the s state in R mode between t1 and t7 can not

yield R or B mode due to the traffic characteristics in the tracking network. Here, we

define the unreachable case as U mode. We can guess the four modes and two states

102

arbitrarily happen in real situations. This uncertain mode and state occurrences are

effectively modeled by state transition rules in the SEA.

Figure 3-18 shows the state transition rules between modes and states in the SEA.

Each mode is represented by colored rectangle, and the s and f states are indicated

by circle inside of the rectangle. For example, Rs and Rf stand for s and f states in R

mode. In the figure, the solid arrow lines indicate possible mode-state transitions, and

the dashed arrow lines stand for U mode. As drawn by the arrow lines, the transitions

are allowed only from state-to-mode, and there are no mode-to-mode, state-to-state,

and mode-to-state transitions. The transition rules in the state-to-mode are based on

∆ts and random values of transmission delay following the Gaussian and Exponential

PDFs of random variables X and Y . X can take four different values: xl
i, xs

i , xl
i+1,

and xs
i+1. The subscript i and i + 1 represent the current and next image frame

captured by a visual sensor. Whenever two visual sensors send the captured image

frames, the transmission delays of the images depend on the current status of the

tracking network. According to the size of the delay, we assign the superscript l and

s. For example, if the transmission delay of visual sensor 1 is larger than that of

visual sensor 2 for ith image, that is, xv1
i > xv2

i , we determine l and s as follows:

xl
i ← xv1

i , xs
i ← xv2

i . (3.8)

The (i + 1)th image also follows the l and s decision of ith image. Therefore, in this

103

case, we have:

xl
i+1 ← xv1

i+1, xs
i+1 ← xv2

i+1. (3.9)

The reason why we need (i + 1)th image frame is clarified when we explain the

operation of the SEA in this section. The random variable Y takes a value yj. In the

transition rules, we use α to indicate what percent of xv1
i and xv2

i is slanted toward the

right-hand side of the red dashed line explained in Figure 3-16. For example, at t15,

around 60% of xv1
5 is slanted to the right-hand side of the red line; but around 20% for

xv2
5 . Then, α ≈ 0.6 for xv1

5 and α ≈ 0.2 for xv2
5 . Since it is difficult to determine α for

each situation, we can fix it to a constant value obtained from heuristic mathematical

calculation. From the transition rules of the SEA, we can approximate the next status

of the tracking network based on the current status.

To help the understanding of the transition rules in the SEA, we explain the details

by comparing Figure 3-16 with Figure 3-18. Figure 3-16 starts from R mode since

xv1
1 and xv2

1 are right-hand side of the red dashed line at t1. According to Equation

(3.8), we have:

xl
1 ← xv1

1 , xs
1 ← xv2

1 , (3.10)

where xv1
1 > xv2

1 . Since y1 occurs within ∆ts, we have a success, and current state

becomes Rs. Here, we have a transition rule: Rs takes place if and only if xl
1+y1 ≤ ∆ts

and xs
1 + y1 ≤ ∆ts, which subsequently results in L mode in the next ∆ts period.

104

In Figure 3-16, we can understand why the transition from Rs to B or R mode is

unreachable. For Rs to B transition, the sampling of z2 has to take place between

t4 and t5. However, this case does not take place since current state is Rs, and

the arrival point of y1 should exist after t5. Due to the same reason, Rs can not

be reachable to R mode. Similar to this example, we can figure out why Ls is

unreachable to R and B mode. We are now in L mode, and xv1
2 and xv2

2 are now used

to determine the next status. Here, we require the next transmission delays xv1
3 and

xv2
3 to determine a transition. Note we do not know the next delays in real situations.

However, in the SEA, we can obtain the estimate values for the next delays by using

the pre-determined Gaussian and Exponential PDFs under the assumption that we

have known the PDF parameters: µ and σ of Gaussian PDF, and λ of Exponential

PDF. We are now able to generate the next delays xv1
3 and xv2

3 from the PDFs, and

determine the current state. If following rule is satisfied, current state becomes Ls.

αxl
2 + xl

3 + y2 ≤ ∆ts ∧ αxs
2 + xs

3 + y2 ≤ ∆ts. (3.11)

Otherwise, the current state becomes Lf . Here, we assume xv1
2 > xv2

2 , and according

to Equation (3.8) and (3.9), the superscript l and s have been determined as follows.

xl
2 ← xv1

2 , xs
2 ← xv2

2

xl
3 ← xv1

3 , xs
3 ← xv2

3 .

(3.12)

Unfortunately, time period (t7, t11) does not satisfy Equation (3.11). Therefore, Lf

105

becomes the current state. Now, we have to decide the next mode. We realize (t7,

t11) period is under the following condition which is the third or-combined transition

rule in CLf3.

(αxl
2 < ∆ts ∧ αxs

2 < ∆ts) ∧

(αxl
2 + xl

3 ≤ ∆ts) ∧

(αxl
2 + xl

3 + y2 > ∆ts) ∧

(αxs
2 + xs

3 < ∆ts).

(3.13)

Equation (3.13) now results in B mode in the next ∆ts period. Once we enter the B

mode, we heuristically define the mode always transits to f state. This is why the

Bs yields only U mode. For example, if we assume that xl
4 ← xv1

4 and xs
4 ← xv2

4 ,

the condition αxs
2 + xs

3 ≤ ∆ts causes xs
4 to start at the left-hand side from t11 line.

This leads to fail since it does not satisfy Condition 1. Even though we illustrate the

mode and state transition from one typical example, we believe the other transition

rules in Figure 3-18 cover almost all the transitions appeared in the tracking system,

which will be verified in Section 3.4.4.

The Algorithm 2 describes the pseudo code of the SEA, which is based on the

transition rules in Figure 3-18. In the algorithm, we assume the population parame-

ters for X and Y have already known such that X has (µv1, σv1) and (µv2, σv2) for

visual sensor 1 and 2, and Y has λy. Based on the parameters, we generate Gaussian

random numbers from Equation (3.5) and Exponential numbers based on Equation

(3.7). After we have five random numbers, we determine xl
i, xs

i , xl
i+1, xs

i+1 by compar-

106

Algorithm 2: Pseudo code of the SEA
Input: µv1, σv1, µv2, σv2, λy, ∆ts
Output: SCR

SCR←0;
foreach ∆ts do

// random number generation for X and Y
xv1

i ← Gausrnd (µv1, σv1), xv1
i+1 ← Gausrnd (µv1, σv1) ;

xv2
i ← Gausrnd (µv2, σv2), xv2

i+1 ← Gausrnd (µv2, σv2) ;
yj ← Exprnd (λy);

// determine xl
i, xl

i+1, xs
i, xs

i+1

if xv1
i > xv2

i then
xl

i ← xv1
i , xl

i+1 ← xv1
i+1, xs

i ← xv2
i , xs

i+1 ← xv2
i+1;

else
xl

i ← xv2
i , xl

i+1 ← xv2
i+1, xs

i ← xv1
i , xs

i+1 ← xv1
i+1;

end

// determine next mode and update SCR
switch mode do

case R
if xl

i + yj < ∆ts and xs
i + yj < ∆ts then

SCR←SCR+1, mode ← L;
else

if xl
i > ∆ts and xs

i > ∆ts then mode ← R;
else mode ← B;

end
case L

if αxl
i + xl

i+1 + yj ≤ ∆ts and αxs
i + xs

i+1 + yj ≤ ∆ts then
SCR←SCR+1, mode ← L;

else
if αxl

i > ∆ts and αxs
i > ∆ts then

mode ← R;
else if αxl

i < ∆ts and αxs
i < ∆ts then

if αxl
i + xl

i+1 > ∆ts then
if αxs

i + xs
i+1 > ∆ts then mode ← L;

else mode ← B;
else

if αxl
i + xl

i+1 + yj > ∆ts then
if αxs

i + xs
i+1 < ∆ts then mode ← B;

else mode ← R;
end

end
else

mode ← B
end

end
case B

if xl
i > ∆ts and αxs

i > ∆ts then mode ← R;
else if xl

i < ∆ts and αxs
i < ∆ts then mode ← L;

else
mode ← B;

end
end

end
end

107

ing xv1
i with xv2

i . Then, modes and states are exchanged according to the transition

rules.

3.4.3 Statistical Estimation and Adaptation Algorithm (SEA2)

In this section, we propose a Statistical Estimation and Adaptation Algorithm (SEA2)

to answer the system maintenance problem mentioned in Section 3.4.1. If we are given

a target SCR (tscr) that represents a level of tracking accuracy, the objective of this

algorithm is to achieve the tscr in a real-time manner. SEA2 uses the SEA to get

the initial acoustic sampling interval. Therefore, we need to predict the population

parameters of the PDFs to start the algorithm.

Figure 3-19 shows the procedural illustration of the SEA2 that is composed of

two Phases. The prediction of population parameters is done in Phase 1, and the

automatic adaptation of acoustic sampling interval is performed in Phase 2.

The SEA2 is performed between acoustic sensors and a Router based on two

message types: PT TSRQ and PT TSRP. When we remind the tracking system con-

figuration, the acoustic sensors and a Router have n-to-1 mapping, where one Router

needs to control n acoustic sensors to adjust the acoustic sampling interval. In Phase

1, the Router sends PT TSRQ every ∆ta interval to synchronize the arrival of re-

sponse message PT TSRP from n acoustic sensors. Generally, we set up ∆ta to a

larger value than the acoustic sampling interval, so that a number of compensation

processes are performed within ∆ta. As soon as receiving the request packet, acoustic

sensors set the sampling interval to ∆tcs
2i (i=0,1,2...) which means an exponential de-

108

crease of a constant sampling interval ∆tcs. The exponential factor i increases by 1

from 0 whenever acoustic sensors receive PT TSRQ, and ∆tcs is set to a reasonably

large value. The main reason we use the exponential decrease is to fast advance to

Phase 2, which is beneficial for finding the acoustic sampling interval to achieve tscr.

Actually, SEA is more sensitive not to the size of population parameters but to the

acoustic sampling interval, so that we do not have to consume much time to obtain

accurate population parameters in Phase 1. Note that we achieve 100% SCR when

the acoustic sampling interval is sufficiently large. Therefore, as we exponentially

reduce the sampling interval, the SCR also decreases in proportion to the interval.

Since acoustic sensors have different size of sampling interval within ∆ta, they per-

form ni number of sampling, which is denoted by ni
∆tcs
2i . In Phase 1, acoustic sensors

measure SCR value within ni
∆tcs
2i , and send the information to the Router.

Let’s define the estimated means and standard deviations of X in Phase 1 as (µ̂v1,

σ̂v1) and (µ̂v2, σ̂v2), and the estimated mean of Y as λ̂y. To obtain (µ̂v1, σ̂v1) and (µ̂v2,

σ̂v2), the Server piggybacks the transmission delays of visual images in the feedback

packet. When a Router is relaying the feedback to acoustic sensors, it can obtain the

transmission delay, and subsequently (µ̂v1, σ̂v1) and (µ̂v2, σ̂v2). The acoustic sensors

measure the SCR and transmission delay from the Server to itself, and send them to

the Router by using PT TSRP. Then, the Router uses the received delay to obtain

the λ̂y. This procedure continues until we have SCR< γ, where γ is a confidence level

and set by a constant value. The estimated parameters for X and Y are obtained

from averaging the measured delays so far. Now, we can run the SEA to obtain an

109

initial acoustic sampling interval ∆t0s. For the input parameters of the SEA, we use

the estimated population parameters as follows.

µv1 ← µ̂v1, σv1 ← σ̂v1,

µv2 ← µ̂v2, σv2 ← σ̂v2,

λ ← λ̂y.

(3.14)

Algorithm 3: Adjustment algorithm of the acoustic sampling interval ∆tis
Data: e1 ← 0, e2 ← 0

if SCR < tscr − ε then
∆tis ← ∆tis + δ × 2e1 and e1 ← 0, e2 ← e2 + 1;

else if SCR > tscr + ε then
∆tis ← ∆tis − δ × 2e2 and e1 ← e1 + 1, e2 ← 0;

else
e1 ← 0, e2 ← 0;

end

Phase 2 starts with sending ∆t0s from a Router to acoustic sensors. Different from

Phase 1, the Router receives the SCR from the acoustic sensors for κ∆ta and controls

the sensors to adapt the sampling interval ∆tis (i = 1, 2, ...) based on Algorithm 3,

where κ is a constant positive integer. We maintain ∆tis for a longer period κ∆ta

since the tracking network fluctuates in times and it is not sufficient to determine the

object sampling interval only by observing one ∆ta period. In Algorithm 3, in order

to do fast adjustment of the sampling interval from the continuous miss from tscr,

we use exponential increase and decrease of the acoustic sampling interval by δ2e1 or

δ2e2 , where e1 and e2 alternately increase according to their conditions, and δ should

be set to a proper value. If δ is too small, we do not get the advantage of fast increase

110

and decrease; otherwise, the measured SCR keeps deviated from the tscr. If the SCR

measured for κ∆ta is less than tscr − ε, we perform increment; otherwise, decrement

is done. The ε is a statistical tolerance error which reflects the fluctuation of tracking

network traffic. We recommend 5% tolerance error to sufficiently include the network

fluctuation.

3.4.4 Algorithm Validation and Discussion

In order to conduct the validation of the proposed algorithms, we use NS-2 simu-

lator. We configure daisy-chain and tree-based tracking system like Figure 3-8 and

3-13 except for the multiple channel for Router-Router communication and the single

channel for acoustic sensor-Router communication. From the use of different chan-

nel, we can minimize the channel interference among the Routers. In the scenarios,

each acoustic sensor is sampling 5 objects. 20 Kbytes or 40 KBytes visual image is

generated by visual sensors and delivered by 1000 Bytes TCP packets.

Validation of the SEA

We verify that the SEA accurately estimates the SCR by comparing simulation results

with mathematical calculation of the SEA. To do this work, we obtain SCR results (%)

for five different acoustic sampling intervals (∆ts): 0.1, 0.15, 0.2, 0.3, 0.4. In order to

observe precise variation in short ∆ts cases, we include the result of ∆ts = 0.15. It is

possible to track high speedy objects and obtain more accurate tracking information

on the same objects if ∆ts gets shorter. As visual image size increases, we also get

111

more information from the image, so that we can increase the accuracy of visual

localization algorithm at a Server.

Figure 3-20 and Figure 3-21 plot SCR results from the simulation and numerical

calculation. We first observe the SCR from simulations drawn by solid lines with

black points. The plots indicate that small SCRs are achieved in acoustic sensors far

from the Server, short ∆ts, and small visual image size. These results are obvious

since the Condition 1 to Condition 3 in Section 3.3.4 and Section 3.4.2 are well

satisfied under the above tracking system environment. Especially, Figure 3-21(b)

shows that all the SCRs are very small since the tree scenario and larger image size

cause non-synchronization between multi-modal sensors. The SCR estimates from

the SEA are drawn by dotted lines with white points in the figures. For the input

population parameters (µv1, σv1), (µv2, σv2), and λy for the SEA, we use the measured

values from simulations. We can observe that almost all SEA calculation results are

close to the simulation results except for some cases like ∆ts = 0.15 in Figure 3-20(a),

and ∆ts = 0.3 in Figure 3-20(b) and 3-21(a), which have around 20% deviation from

the simulation results.

Validation of the SEA2

For the validation of SEA2, we observe how the SEA2 automatically adapts the

acoustic sampling interval to accomplish a given tscr. To do this work, we run NS-2

simulations for 2400 seconds, and measure the sampling interval variations every 10

seconds interval. In Phase 1, the confidence level γ is set to 90%, and SEA2 starts

112

its running by setting the initial sampling interval ∆tcs as 1.2 second. In Phase 2, the

statistical tolerance error ε is set to 5%, and δ for controlling the exponential increase

and decrease level is set to 0.01. We fix κ = 4 for SCR observation interval.

Figure 3-22 shows the automatic adjustment of the acoustic sampling interval

to achieve tscr = 90%. To obtain the plots, we run simulations ten times and take

average values. The results are observed at each Router to prevent the plotting all

the acoustic sensors’ sampling intervals, which is reasonable since the router controls

the acoustic sensor behaviors within its communication range. In Figure 3-22(a),

we understand R0 to R3 achieve 90% SCR at around ∆ts = 0.19. However, R4

accomplishes it at shorter value, ∆ts = 0.16 since R4 directly connects to the Server

and fast exchanges sensor data with the Server. Note we achieve 60% SCR at ∆ts =

0.15 and around 100% SCR at ∆ts = 0.2 in Figure 3-20(a). This indicates that SEA2

correctly adapts the acoustic sampling interval to achieve 90% target SCR. When the

visual image size increases to 40Kbytes in daisy-chain topology as shown in Figure

3-22(b), ∆ts saturates to between 0.30 and 0.35 after fluctuating for initial simulation

time duration. The correctness of this adaptation is also verified in Figure 3-20(b).

As a tracking scenario is complicated to tree and the file size is large, the ∆ts shows

a larger variations as shown in Figure 3-22(c) and 3-22(d). However, the adaptation

to achieve 90% SCR is verified to be correct if we compare the results with Figure

3-21(a) and 3-21(b). In the worst scenario like tree and 40Kbytes image size, 90%

SCR is achieved when ∆ts > 0.65. From these results, we have knowledge that we

should reduce the visual image size to increase successful compensation rate in case

113

we have to construct a complicated tracking environment.

In order to observe real-timing adaptation capability of the SEA2, we change tscr

during simulations, and observe the acoustic sampling interval variations as shown

in Figure 3-23, where we include only 20Bytes image cases for daisy-chain and tree

topologies. When simulations start, we fix tscr to 30%. After simulation time reaches

800 seconds, we change the tscr to 60%. Finally, tscr = 90% when the time becomes

1600. In Figure 3-23(a), we observe SEA2 is efficiently adaptive to the changes of tscr.

The ∆ts variations at 30% and 60% tscr are around 0.02 in worst case, which is expect

to be tolerable when we compare it with the exponential increase and decrease level

(δ) which is set to 0.01. Figure 3-23(b) indicates SEA2 provides confidential acoustic

sampling interval adaptation mechanism even if the acoustic sampling interval varia-

tion in tree is larger than that of daisy-chain scenario.

114

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
C

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1
0.15
0.2
0.3
0.4

(a) image size: 20KBytes

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
C

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1
0.15
0.2
0.3
0.4

(b) image size: 40KBytes

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
C

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1
0.15
0.2
0.3
0.4

(c) image size: 60KBytes

Figure 3-14: SCR results achieved from daisy-chain scenario.

115

acoustic sensor

0 1 2 3 4 5 6 7 8 9 10 11

S
C

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1
0.15
0.2
0.3
0.4

Figure 3-15: SCR results achieved from tree scenario when the image size is 20Kbytes.

st∆

increase SCR

x x x

1
1
vx 1

2
vx 1

3
vx 1

4
vx 1

5
vx 1

6
vx

2
1
vx 2

2
vx 2

3
vx 2

4
vx 2

5
vx 2

6
vx

R ���� L ���� B ���� L ���� L ����

1y

1z
2z 3z 4z 5z

1
7
vx

2
7
vx

t1

t2t3 t4 t5 t6

t7

t8 t9 t10

t11

t12 t13 t14

t15

t16 t17 t18 t19

t20

Figure 3-16: Packet flowing example possibly appearing in the tracking system.

116

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

250

300

350

400

450

packet transmission time

fr
eq

ue
nc

y

(a) xv1
i , daisy-chain

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

20

40

60

80

100

120

140

160

180

200

packet transmission time

fr
eq

ue
nc

y

(b) xv1
i , tree

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

packet transmission time

fr
eq

ue
nc

y

(c) yj at acoustic sensor 0, daisy-chain

0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12

14

16

18

20

packet transmission time

fr
eq

ue
nc

y

(d) yj at acoustic sensor 0, tree

Figure 3-17: Histogram of transmission delay of multi-modal sensor data in daisy-
chain and tree scenarios.

117

Rs

Rf

Ls

Lf Bf

si
s
i

s
i

si
l
i

l
i

tyxx

tyxx

∆≤++

∧∆≤++

+

+

1

1

α
α

s
s
is

l
i txtx ∆<∧∆>

2LfC

3LfC

1LfC

R mode L mode B mode

s
s
is

l
i txtx ∆≤∧∆≤

∧∆≤+ si
l
i tyx

si
s
i tyx ∆≤+

s
s
is

l
i txtx ∆>∧∆> α

Bs

∧∆< s
l
i tx s

s
i tx ∆<α

U

U
U

U
UU

U

{ }
()

()
()
() �

�

�

�
�

�

�

�
�

�

�
�

�

�

∆≥+∧

∆≤+∧

∆>++∧

∆<∧∆<

∨

∆>∧∆>=

+

+

+

s
s
i

s
i

s
l
i

l
i

sj
l
i

l
i

s
s
is

l
i

s
s
is

l
iLf

txx

txx

tyxx

txtx

txtxC

1

1

1

1

α
α

α
αα

αα ()
()
()s

s
i

s
i

s
l
i

l
i

s
s
is

l
iLf

txx

txx

txtxC

∆>+∧

∆>+∧

∆<∧∆<=

+

+

1

1

2

α
α

αα

{ }
() () (){ }
() () ()

()
{ }
{ }s

s
is

l
i

s
s
is

l
i

s
s
i

s
i

sj
l
i

l
is

l
i

l
is

s
is

l
i

s
s
i

s
is

l
i

l
is

s
is

l
i

s
s
is

l
iLf

txtx

txtx

txx

tyxxtxxtxtx

txxtxxtxtx

txtxC

∆<∧∆>∨

∆<∧∆>∨

��

�
�
�

��

�
�
�

∆<+∧

∆>++∧∆≤+∧∆<∧∆<
∨

∆≤+∧∆>+∧∆<∧∆<∨

∆<∧∆>=

+

++

++

αα
αα

α

αααα

αααα

αα

1

11

11

3

s
l
i tx ∆>

s
s
i tx ∆>∧ s

l
i tx ∆>

s
s
i tx ∆<∧α

Figure 3-18: Transition rules of the SEA.

118

acoustic sensor Router

PT_TSRQ 0

PT_TSRQ 1

PT_TSRP 1
PT_TSRQ 2

PT_TSRP 2

PT_TSRQ i

PT_TSRP i

�

,SCR if γ<
PT_TSRQ

PT_TSRQ

PT_TSRP

PT_TSRQ

PT_TSRP

0
0 stm ∆

Phase 1

Phase 2

�2
2 stm ∆

)(0
st∆

)(0
st∆

)(1
st∆

at∆
020

c
stn ∆

121

c
stn ∆

121 −
∆

− i

c
st

in

PT_TSRQ

PT_TSRP

)(0
st∆

�

at∆⋅κ

1
1 stm ∆

at∆⋅κ

�

PT_TSRQ

PT_TSRP

)(1
st∆

PT_TSRQ)(2
st∆

0
0 stm ∆

1
1 stm ∆

�
�

run SEA to get
0
st∆

calculate
1
st∆

calculate
2
st∆

Figure 3-19: Procedural illustration of the SEA2.

119

acoustic sensor

2 5 8 11 14

S
C

R
 (

%
)

0

20

40

60

80

100

120
0.1-sim
0.1-SEA
0.15-sim
0.15-SEA
0.2-sim
0.2-SEA
0.3-sim
0.3-SEA
0.4-sim
0.4-SEA

(a) Daisy-chain, 20 KBytes

acoustic sensor

2 5 8 11 14

S
C

R
 (

%
)

0

20

40

60

80

100

120
0.1-sim
0.1-SEA
0.15-sim
0.15-SEA
0.2-sim
0.2-SEA
0.3-sim
0.3-SEA
0.4-sim
0.4-SEA

(b) Daisy-chain, 40 KBytes

Figure 3-20: SCR results achieved by simulations and mathematical calculation of
the SEA: daisy-chain scenario.

120

acoustic sensor

1 3 5 7 9 11

S
C

R
 (

%
)

0

20

40

60

80

100

120
0.1-sim
0.1-SEA
0.15-sim
0.15-SEA
0.2-sim
0.2-SEA
0.3-sim
0.3-SEA
0.4-sim
0.4-SEA

(a) Tree, 20 KBytes

acoustic sensor

1 3 5 7 9 11

S
C

R
 (

%
)

0

20

40

60

80

100
0.1-sim
0.1-SEA
0.15-sim
0.15-SEA
0.2-sim
0.2-SEA
0.3-sim
0.3-SEA
0.4-sim
0.4-SEA

(b) Tree, 40 KBytes

Figure 3-21: SCR results achieved by simulations and mathematical calculation of
the SEA: tree scenario.

121

time

0 40 80 120 160 200 240

ac
ou

st
ic

 s
am

pl
in

g
in

te
rv

al

0.16

0.18

0.20

0.22

0.24

1.00

1.20

R0
R1
R2
R3
R4

(a) Daisy-chain, 20 KBytes

time

0 40 80 120 160 200 240

ac
ou

st
ic

 s
am

pl
in

g
in

te
rv

al

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1.00
1.20

R0
R1
R2
R3
R4

(b) Daisy-chain, 40 KBytes

time

0 40 80 120 160 200 240

ac
ou

st
ic

 s
am

pl
in

g
in

te
rv

al

0.25

0.30

0.35

0.40

0.45

0.50

0.55
1.00
1.20

R0
R1
R2
R3
R4
R5

(c) Tree, 20 KBytes

time

0 40 80 120 160 200 240

ac
ou

st
ic

 s
am

pl
in

g
in

te
rv

al

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

R0
R1
R2
R3
R4
R5

(d) Tree, 40 KBytes

Figure 3-22: Acoustic sampling interval variation in the SEA2, where tscr=90%.

122

time

0 40 80 120 160 200 240

ac
ou

st
ic

 s
am

pl
in

g
in

te
rv

al

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
1.00
1.20

R0
R1
R2
R3
R4

SCR=30% SCR=60% SCR=90%

(a) Daisy-chain, 20 KBytes

time

0 40 80 120 160 200 240

ac
ou

st
ic

 s
am

pl
in

g
in

te
rv

al

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36
1.00
1.20

R0
R1
R2
R3
R4
R5

SCR=30% SCR=60% SCR=90%

(b) Tree, 20 KBytes

Figure 3-23: Acoustic sampling interval variation in the SEA2. tscr is changed to 30,
60 and 90% during the simulations.

123

Chapter 4

Conclusion and Future Works

4.1 Conclusion

This dissertation has tackled the design and optimization problems appearing in the

node (hardware) architecture design of RObust Header Compression (ROHC) and

packet aggregation over Wireless Mesh Networks (WMNs), and the object tracking

applications supported by multi-modal sensors.

To design an appropriate node architecture and investigate the impact of sin-

gle node on the global WMN performance, we have proposed network/hardware co-

simulation methodology that integrates the network level simulator, NS-2 and the

node level simulator, SystemC. Based on the co-simulation method, we have verified

that the hardware realization of the ROHC and packet aggregation algorithms suffi-

ciently provides the high processing power, and resolves the processing overhead prob-

lems taking place in the general purpose processors of Pentium 4 and RouterBOARD.

124

From the evaluation of the co-simulation method, we have shown the hardware en-

coding and decoding times scatter from a few hundreds nanoseconds to a few tens

of thousands nanoseconds, which is different from the estimated constant hardware

processing time. We also have shown the sensor throughput and voice quality in the

co-simulation method present different results compared with the simulations applied

by constant hardware delays. This result tells us how overall WMN performance can

be changed by the hardware operations in each mesh router. The numerical analysis

model to predict the hardware capacity also has been proposed based on the open

Jackson queueing network. In the analysis model, we have derived average system

waiting time of compression and decompression paths after obtaining the average

system size and average system waiting time for the individual queue. By using

the network/hardware co-simulation method, we have shown the proposed numerical

model accurately predicts the processing delay of the hardware architecture.

In the object tracking application where an acoustic sensor has a role in the main

modality and two visual sensors perform the error correction, we have first discov-

ered the network synchronization problem caused by the sampling time difference

and randomness property of transmission delay of multi-modal sensor data. For the

possible solution of the network synchronization problem, we have proposed a traffic

differentiation model to differently serve the sensor traffic and non-sensor traffic. The

differentiation model serves the traffic types by Weight Round Robin (WRR). The

weighting factors of the scheduling mechanism are determined by the proposed Delay-

based Weight Allocation (DWA) algorithm. We have shown that the differentiation

125

model efficiently mitigates the unbalance in transmission delay and supports high

level of visual compensation. In the tracking system, the estimation of the success

in visual compensation has been conducted by the Statistical Estimation Algorithm

(SEA). We have shown that the SEA properly approximates the number of success by

hand calculation without simulation or system setup. Another question in the track-

ing system could be how to maintain the tracking system at a certain level of tracking

accuracy. This question has been answered by the proposed algorithm, Statistical and

Estimation and Adaptation Algorithm (SEA2). From the simulations based on the

daisy-chain and tree tracking scenario, we have shown the SEA2 properly adapts the

sampling interval of acoustic sensors to maintain the tracking system at the target

accuracy level.

4.2 Future Works

Even if the proposed network/hardware co-simulation method makes it possible to

reassess the global wireless network performance in terms of the hardware behaviors

in a single node, the method follows the off-line based evaluation procedures. The 3

profiling steps should be manually performed, so that it is not applicable to the large

scale network analysis. Moreover, the method only suggests the processing delay as

the profiling parameter. Therefore, in the future work, we can build up the on-line ver-

sion of the co-simulation method where automatic profiling procedures are performed.

The possible works could be the integration of the kernels of NS-2 and SystemC, and

the developments of the hardware mapping function and hardware module library.

126

We can also add the trace file management modules to record the various profiling

parameters such as power and delay. Since the automatic co-simulation method may

require a high processing power to be executed, we can adopt the parallel processing

of the co-simulation for the high speed simulations by porting the co-simulation tools

to a multi-processor computing environment.

In case of tracking system, we can migrate the simulation works into the real im-

plementation of the tracking network and verify the impact of the network synchro-

nization problem and the correct operations of the SEA and SEA2. For the possible

Router system, we can use the pre-installed RouterBOARD and the Pentium-based

Linux could be a good candidate for the Server system.

.

127

Bibliography

[1] I. F. Akyildiz. “A Survey on Wireless Mesh Networks”. IEEE Radio Communi-
cations, September 2005.

[2] Network Simulator-2 (NS-2). http://www.isi.edu/nsnam/ns.

[3] Jinseok Lee, Sangjin Hong, We-Duke Cho. “Enhancing Particle Filtering Per-
formance in Tracking through Visual Information Association”. submitted to
EURASIP Journal on Advances in Signal Processing.

[4] Sangkil Jung, Jinseok Lee, Sangjin Hong, and We-Duke Cho. “On addressing
Network Synchronization in Object Tracking with Multi-modal Sensors”. sub-
mitted to EURASIP Journal on Advances in SIgnal Processing.

[5] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. “A Tutorial on Particle
Filters for Online Non-linear/Non-gaussian Bayesian Tracking”. IEEE Transac-
tions on Signal Processing, 50(2):174 – 188, February 2002.

[6] Sangjin Hong, Jinseok Lee, Akshay Athalye, and Petar M. Djuric. “Design
Methodology for Domain-Specific Parameterizable Particle Filter Realizations”.
IEEE Transactions on Circuits and Systems-I, 2007.

[7] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L-E.
Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki,
K. Svanbro, T. Wiebke, T. Yoshimura, H. Zheng. “Robust header compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed”,
RFC 3059, July 2001.

[8] SystemC. http://www.systemc.org.

[9] RouterBOARD. http://www.routerboard.com.

[10] Donald Gross and Carl M. Harris. “Fundamentals of Queueing Theory”. John
Wiley & Sons.

[11] Sangkil Jung, Sangjin Hong, and Kyungtae Kim. “Network/Hardware Cross-
Layer Evaluation for ROHC and Packet Aggregation on Wireless Mesh Network”.
submitted to ACM/Springer Wireless Networks.

128

[12] Sangkil Jung and Sangjin Hong. “Numerical Analysis of Hardware Architecture
for High-Speed and Reliable Data Transmission on Wireless MESH Networks”.
submitted to ACM/Springer Mobile Networks and Applications.

[13] Sangkil Jung, Sangjin Hong, Peom Park. “Effect of RObust Header Compres-
sion (ROHC) and Packet Aggregation on Multi-hop Wireless Mesh Networks”.
In IEEE International Conference on Computer and Information Technology,
September 2006.

[14] Sangkil Jung, Sangjin Hong, and Kyungtae Kim. “Voice Transmission Enhanc-
ing Model on Wireless Mesh Networks”. In IEEE International Conference on
Communications, June 2007.

[15] Sangkil Jung, Sangjin Hong, Kyungtae Kim, Junghoon Jee and Eunah Kim.
“On Achieving High Performance Wireless Mesh Network with Data Fusion”. In
IEEE International Symposium on a World of Wireless Mobile and Multimedia
Networks, June 2007.

[16] Powerimpact. http://ee.ucla.edu/PowerImpact.

[17] David Brooks, Vivek Tiwari, Margaret Martonosi, and Wattch. “A Framework
for Architectural-level Power Analysis and Optimizations”. In International Syp-
mosium on Computer Architecture, June 2006.

[18] A. Sinha and A. P. Chandrakasan. “JouleTrack: A Web based Tool for Software
Energy Profiling”. In Design Automation Conference, 2001.

[19] GloMoSim. http://pcl.cs.ucla.edu/projects/glomosim.

[20] MaRS. http://www.cs.umd.edu/projects/netcalliper/software.html.

[21] A. Chatelain, Y. Mathys, G. Placido, A. La Rosa, L. Lavagno. “High-Level
Architectural co-Simulation Using Esterel and C”. In International Symposium
on Hardware/Software Codesign, pages 189–194, 2001.

[22] G. Nicolescu, S. Yoo, A. A. Jerraya. “Mixed-Level Cosimulation for Fine Gradual
Refinement of Communication in SoC Design”. In Design, Automation and Test
in Europe (DATE), pages 754–759, 2001.

[23] H. Park, W. Liao, K.H. Tam, M.B. Srivastava, L. He. “A Uni-
fied Network and Node Level Simulation Framework for Wireless Sen-
sor Networks”. Technical Report TR-UCLA-NESL-200309-02, CENS,
http://nesl.ee.ucla.edu/document/show/26, September 2003.

[24] V. Aue, J. Kneip, M. Weiss, M. Bolle, and G. Fettweis. “MATLAB based code-
sign framework for wireless broadbandcommunication DSPs”. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, pages 1253–1256,
2001.

129

[25] Hardware/Software/Network Co-Design Tool (HSN). http://eda.sci.univr.it/.

[26] Gallo P. Poncino M. Martini S. Ricciato F. Fummi F., Perbellini G. A. “Timing-
accurate Modeling and Simulation Environment for Networked Embedded Sys-
tems”. In Design Automation Conference, pages 42–47, 2003.

[27] V. Jacobson. “Compressing TCP/IP Headers for Low-speed Serial Links”, RFC
1144, February 1990.

[28] M. Arnau, A. Calveras, and J. Paradells. “A Controlled Overhead for TCP/IP
Header Compression Algorithm over Wireless Links”. In International Confer-
ence on Wireless Communications, 1999.

[29] S. Casner and V. Jacobson. “Compressing IP/UDP/RTP Headers for Low-speed
Serial Links”, RFC 2508, February 1999.

[30] L. Jonsson, M. Degermark, H. Hannu, and K. Svanbro. “Evaluation of CRTP
Performance over Cellular Radio Links”. In IEEE Personal Communications,
2000.

[31] Stephan Rein, and Frank H.P. Fitzek. “Voice Quality Evaluation for Wireless
Transmission with ROHC”. In IASTED conference on Internet and Multimedia
Systems and Applications, 2003.

[32] Ranjani Sridharan. “A Robust Header Compression Technique for Wireless Ad
Hoc Networks”. In MobiHoc, Annapolis, Maryland, USA, June 2003.

[33] A.C. Minaburo, K.D. Singh, L. Toutain, Nuaymi, L. “Proposed Behavior for Ro-
bust Header Compression over a radio link”. In IEEE International Conference
on Communications, June 2004.

[34] Kyungtae Kim, Sangjin Hong. “VoMESH: Voice over wireless MESH net-
worksVoMESH: Voice over wireless MESH networks”. In IEEE Wireless Com-
munications and Networking Conference, 2006.

[35] M. N. D. G. Ashish Jain, Marco Gruteser. “Benefits of packet aggregation in
ad-hoc wireless network”. Technical Report CU-CS-960-03, Department of Com-
puter Science, University of Colorado at Boulder, 2003.

[36] N. H. Hideaki Yamada. “Voice Quality Evaluation of IP-based Voice Stream
Multiplexing Schemes”. In Local Computer Networks, 2001.

[37] R. Komolafe, O. Gardner. “Aggregation of VoIP Streams in a 3G Mobile Net-
work: A Teletraffic Perspective”. In European Personal Mobile Communications
Conference, 2003.

[38] Y. Lin, Y. Lin, S. Yang, and Y. Lin. “DiffServ over Network Processors: Imple-
mentation and Evaluation”. In IEEE Symposium on High Performance Inter-
connects Hot Interconnects, 2002.

130

[39] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. “An Architecture
for Differentiated Services”, RFC 2475, December 1998.

[40] E. J. Johnson and A. R. Kunze. “IXP1200 Programming”. Intel Press, 2002.

[41] R. Persaud, D. Sabath, G. Berghoff, and R. Schanko. “Performance Evaluation
of MPLS and IP on an IXP1200 Network Processor”. In IEEE International
Conference on Advanced Information Networking and Applications, 2006.

[42] David E. Taylor, Andreas Herkersdorf, Andreas Doering, and Gero Dittmann.
“Robust Header Compression (ROHC) in Next-Generation Network Processors”.
IEEE/ACM Transactions on Networking, 13(4):755–768, August 2005.

[43] R. Cle and J. Rosenbluth. “Voice over IP performance Monitoring”. ACM
Computer Communication Review, 31, April 2001.

[44] D. Niculescu, S. Ganguly, K. Kim, R. Izmailov. “Performance of VoIP in a
802.11-based Wireless Mesh Network”. In IEEE Infocom, April 2006.

[45] ROHC-Robust Header Compression. http://rohc.sourceforge.net.

[46] Mica Motes. http://www.xbow.com.

[47] Telos Motes. http://www.moteiv.com.

[48] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. “The click
modular router”. ACM Transactions on Computer Systems, 18, August 2000.

[49] C. H. Knapp and G. C Carter. “The Generalized Correlation Method of Estima-
tion of Time Delay”. submitted to IEEE Trans. on Acoustic, Speech, and Signal
Processing, 4:320–327, 1976.

[50] J. H. Dibiase, H. F. Silverman, and M. S. Brandstein. “Robust Localization in
Reverberant Rooms”. In Microphone Arrays : Signal Processing Techiniques and
Applications.

[51] N. Strobel, T. Meier, and R. Rabenstein. “Speaker localization using steered
filtered-and-sum beamforemrs”. In Erlangen Workshop on Vision, Modeling,
and Visualization, pages 195–202, 1999.

[52] J. Vermaak and A. Blake. “Nonlinear Filtering for Speaker Tracking in Noisy
and Reverberant Environments”. In IEEE International Conference on Acoustic,
Speech, Signal Processing, May 2001.

[53] D. B. Ward and R. C. Williamson. “Particle Filter Beamforming for Acoustic
Source Localization in a Reverberant Environment”. In IEEE International Con-
ference on Acoustic, Speech, Signal Processing, May 2002.

131

[54] C. Jue, J. P. Le Cadre, and P. Perez. “Sequential Monte carlo Methods for
Multiple Target Tracking and Data Fusion”. IEEE Trans. Signal Processing,
50:309–325, February 2002.

[55] Jinseok Lee, Jaechan Lim, Sangjin Hong, Peom Park. “Tracking an Object in 3-
D Space using Particle Filtering based on Sensor Array”. In IEEE International
Conference on Computer and Information Technology, September 2007.

[56] P. M. Djurić and J. H. Kotecha and J. Zhang and Y. Huang and T. Ghirmai
and M. F. Bugallo and J. Miguez. “Particle Filtering”. IEEE Signal Processing
Magazine, 20:19–38, September 2003.

[57] A. Doucet, N. de Freitas, and N. Gordon, Eds. “Sequential Monte Carlo Methods
in Practice”. Springer Verlag, 2001.

[58] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “A novel approach to nonlinear
and non-Gaussian Bayesian state estimation”. IEE Proceedings-F Radar and
Signal Processing, 140(2):107–113, April 1993.

[59] J. Carpenter, P. Clifford, and P. Fearnhead. “An improved particle filter for
non-linear problems”. IEE Proceedings-F Radar and Signal Processing, 146:2–7,
1999.

[60] Ryuzo Okada, Yoshiaki Shirai and Jun Miura. “Object Tracking Based on Op-
tical Flow and Depth”. In IEEE/SICE/RSJ International Conference, pages
565–571, December 1996.

[61] S. Khan and M. Shah. “Consistent Labeling of Tracked Objects in Multiple
Cameras with Overlapping Fields of View”. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 25(10):1355–1360, October 2003.

[62] A. Bakhtari, M. D. Naish, M. Eskandari, E. A. Croft and B. Benhabib. “Active-
Vision based Multisensor Surveillance - An Implementation”. IEEE Trans. on
Systems, Man and Cybernetic - Part C : Application and Riviews, 36(5):668–680,
September 2006.

[63] D. N. Zotkin, R. Duraiswami and L. S. Davis. “Joint Audio-Visual Tracking
Using Particle Filters”. EURASIP Journal on Applied Signal Processing, pages
549–552, 2003.

[64] Sangkil Jung, Sangjin Hong, and We-Duke Cho. “Statistical Estimation and
Adaptation for VIsual Compensation in Object Tracking”. submitted to Inter-
national Journal of Distributed Sensor Networks.

[65] M. S. Arulampalam, B. Ristic, N. Gordon and T. Mansell. “Bearings-only Track-
ing of Manoeuvring Targets Using Particle Filters”. EURASIP Journal on Ap-
plied Signal Processing, 2004.

132

[66] Y. Boers and J. N. Driessen. “Interacting Multiple Model Particle Filter”. IEE
Proceedings - Radar, Sonar and Navigation, 150:344–349, October 2003.

[67] A. S. Chhetri, D. Morrell and A. P. Suppappla. “Scheduling Multiple Sensors
using Particle Filters in Target Tracking”. In IEEE Workshop on Statistical
Signal Processing, pages 549–552, September 2003.

[68] J. Lee, S. Hong, P. Park, W. D. Cho. “Object Tracking Based on RFID Coverage
and Visual Compensation in Wireless Sensor Network”. In IEEE International
Symposium on Circuits and System, 2007.

[69] M. Stanacevic, G. Cauwenberghs. “Micropower Gradient Flow acoustic Local-
izer”. In Solid-State Circuits Conference, pages 69–72, 2003.

[70] Jinseok Lee, Sangkil Jung, Yuntai Kyong, Xi Deng, Sangjin Hong, and We-Duke
Cho. “Data Traffic Analysis in Wireless Fusion Network with Multiple Sensors”.
In IEEE International Midwest Symposium on Circuits and Systems, August
2007.

[71] 4XEM PTZ Pan/Tilt/Zoom IP Network Camera.
http://www.4xem.com/products/wired/IPCAMWPTZ/index.html.

[72] A. Leon-Garcia. “Probability and Random Processes for Electrical Engineering”.
Addision Wesley, 2001.

133

