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Abstract of the Dissertation

The Physics of Complex Systems in
Information and Biology

by

Dylan Walker

Doctor of Philosophy

in

Physics

Stony Brook University

2008

Citation networks have re-emerged as a topic intense interest in the

complex networks community with the recent availability of large-

scale data sets. The ranking of citation networks is a necessary

practice as a means to improve information navigability and search.

Unlike many information networks, the aging characteristics of ci-

tation networks require the development of new ranking methods.

To account for strong aging characteristics of citation networks, we

modify the PageRank algorithm by initially distributing random

surfers exponentially with age, in favor of more recent publica-

tions. The output of this algorithm, which we call CiteRank, is
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interpreted as approximate traffic to individual publications in a

simple model of how researchers find new information. We opti-

mize parameters of our algorithm to achieve the best performance.

The results are compared for two rather different citation networks:

all American Physical Society publications between 1893-2003 and

the set of high-energy physics theory (hep-th) preprints. Despite

major differences between these two networks, we find that their

optimal parameters for the CiteRank algorithm are remarkably

similar. The advantages and performance of CiteRank over more

conventional methods of ranking publications are discussed.

Collaborative voting systems have emerged as an abundant form

of real-world, complex information systems that exist in a vari-

ety of online applications. These systems are comprised of large

populations of users that collectively submit and vote on objects.

While the specific properties of these systems vary widely, many

of them share a core set of features and dynamical behaviors that

govern their evolution. We study a subset of these systems that

involve material of a time-critical nature as in the popular exam-

ple of news items. We consider a general model system in which

articles are introduced, voted on by a population of users, and

subsequently expire after a proscribed period of time. To study

the interaction between popularity and quality, we introduce sim-

ple stochastic models of user behavior that approximate differing

user quality and susceptibility to the common notion of popular-
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ity. We define a metric to quantify user reputation in a manner

that is self-consistent, adaptable and content-blind and shows good

correlation with the probability that a user behaves in an optimal

fashion. We further construct a mechanism for ranking documents

that take into account user reputation and provides substantial

improvement in the time-critical performance of the system.

The structure of complex systems have been well studied in the

context of both information and biological systems. More recently,

dynamics in complex systems that occur over the background of the

underlying network has received a great deal of attention. In par-

ticular, the study of fluctuations in complex systems has emerged

as an issue central to understanding dynamical behavior. We ap-

proach the problem of collective effects of the underlying network

on dynamical fluctuations by considering the protein-protein inter-

action networks for the system of the living cell. We consider two

types of fluctuations in the mass-action equilibrium in protein bind-

ing networks. The first type is driven by relatively slow changes in

total concentrations (copy numbers) of interacting proteins. The

second type, to which we refer to as spontaneous, is caused by

quickly decaying thermodynamic deviations away from the mass-

action equilibrium of the system. As such they are amenable to

methods of equilibrium statistical mechanics used in our study. We

investigate the effects of network connectivity on these fluctuations

by comparing them to different scenarios in which the interacting
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pair is isolated form the rest of the network. Such comparison al-

lows us to analytically derive upper and lower bounds on network

fluctuations. The collective effects are shown to sometimes lead to

relatively large amplification of spontaneous fluctuations as com-

pared to the expectation for isolated dimers. As a consequence of

this, the strength of both types of fluctuations is positively corre-

lated with the overall network connectivity of proteins forming the

complex. On the other hand, the relative amplitude of fluctuations

is negatively correlated with the equilibrium concentration of the

complex. Our general findings are illustrated using a curated net-

work of protein-protein interactions and multi-protein complexes

in bakers yeast with experimentally determined protein concentra-

tions.
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Chapter 1

Introduction

Complex systems are comprised of a large number of heterogenous compo-

nents that interact with one another. Complex systems are unique insomuch

as they exhibit collective behavior that cannot be understood completely by

understanding the local interactions between individual subcomponents. The

study of complex systems has its historical origins in several converging fields.

Formally, the mathematical study of complex networks underlying such sys-

tems can be traced to the development of graph theory in the early eighteenth

century, with the pioneering work by Leonhard Euler on the famous Konigs-

berg Bridge Problem. Over the past several decades, advances in the study of

complex systems have emerged in the fields of mathematics, statistical physics,

computer science, game theory, biology, library science, and sociology.

With the growth of availability of large-scale data sets, complex systems

have become an exciting interdisciplinary field of research that requires the

development of new tools, methods and modeling techniques to better under-

stand the complex dynamics of the world that surrounds us. In information
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systems, the continuing development of online data repositories and emerg-

ing interactive systems provide unprecedented opportunity to study complex

systems in ways that were never before possible. In biology, high throughput

experimental techniques have yielded a wealth of novel empirical data that

challenges our conventional understanding of life and sheds new light on the

complexity of biological processes.

Throughout the past decade, the study of complex systems has been dom-

inated by a focus on underlying network structure. Recent focus on processes

that occur on the backbone of the underlying network have unveiled new ar-

eas of theoretical interest. This thesis examines a few studies in information

and biological systems focused on the central theme of dynamics of complex

systems. This chapter introduces some basic notions and conventions of com-

plex networks that will serve as a foundational context for the chapters that

follow. Finally, an outline of the remaining chapters is provided with a brief

description of the studies presented and how they relate to the overarching

focus.

1.1 Complex Networks

In general, networks are abstract representations of a relational structure that

describe how items (nodes) relate to one another. In mathematics, a network

or graph G = (V, E) is a pair of finite sets of vertices (or nodes) V and edges

E of connections between vertices. Defined in a less rigorous way, nodes and

edges in a network can contain a variety of simple and more complex data

structures. A node or edge may be defined to have several properties beyond
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its unique identifier such as color and value, for example. In this text we will

adopt the loose definition of networks and supplement a description of explicit

properties wherever necessary. We will further make mention of several classes

of networks that are conventionally recognized. In directed networks, edges

originate from one node and terminate at another. By contrast, in undirected

networks, edges (and thus implied relationships) between nodes are symmetric

in that they do not originate from one node and terminate at another, but

implicitly “go both ways”. Weighted networks contain edges with numerical

values that tend to represent the strength of a relationship, whereas edges in

unweighted networks may be considered as equal strength and characterized

with unit weight to indicate existence. It should be noted that the above

statements are not rigorous principles to which networks must adhere, but

rather standard conventions that are assumed throughout much of complex

network literature.

Networks can be symbolically represented or stored in a number of ways, a

few of which are delineated here. An adjacency list for a network G, contains,

for each node u, a list of adjacent nodes {vi} = {v1, v2, . . . , vk} for which

there is an edge (u, vi). Similarly, an edge list is simply a list of all edges

{(u, v)}. The aforementioned structures are useful for storing networks that

are sparsely populated (i.e., those for which the ratio |E|/|V |2 is relatively

low). Alternatively, an adjacency matrix is a matrix:

Aij =

⎧⎪⎨
⎪⎩

1 If an edge i → j exists;

0 otherwise.
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The adjacency matrix can be used to efficiently store dense networks and is

a useful expression in analytical manipulations of networks, irrespective of

the means of actual network storage. For undirected networks, the adjacency

matrix is necessarily symmetric. A generalization of the adjacency matrix for

weighted networks can be constructed by inserting the weight of the (i, j) edge

in place of unity.

1.2 Examples of Networks

Complex networks are abundant in the natural world, with examples spanning

several disciplines of study. Perhaps the most familiar example of a complex

network is that of the world wide web, the directed network of hyperlinks that

connect one webpage to another. Similarly, a well-known example of a physical

network is the internet, the set of physically connected autonomous systems

through which online data is routed. More abstract examples of information

networks include citation networks, formed by a set of publications that cite

on another, and co-actor networks, in which two actors are connected if they

have co-starred in one or more performances. This latter type of network has

become a well-known example in popular culture of a network that exhibits

small-world behavior, as illustrated by the six degrees of Kevin Bacon game,

that we will discuss briefly in the next section.

In the domain of social science, friendship networks describe connections

between people that declare themselves as friends and are useful in the study

of the structure of social relationships [1].

In ecology, food web networks describe the complex predator-prey relations
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that govern the behavior of natural ecosystems and have been the subject of

extensive scientific studies [2, 3]

In biology, gene regulatory networks detail the interactions between the

genes of a species that regulate one another to produce the coordinated bi-

ological activity necessary to sustain life. The study of genetic regulatory

networks has emerged as an important topic of both empirical and analytical

studies, [4–6].

The above represent just a few examples of the multitude of complex net-

works that exist in our world. Indeed, there can be little doubt that the

detailed study of complex networks is integral to our scientific understanding

of a variety of systems. While the study of these systems has in the past been

regulated to their respective disciplines, the necessity to develop a common set

of techniques and descriptive language has led to a recent convergence and,

ultimately, the formation of the interdisciplinary field of complex networks.

1.3 Network Structure and Properties

While the topology and features of small networks can be easily characterized

graphically, the visualization of larger networks in a manner that reveals both

local and global properties is significantly more challenging. An alternative

description of network properties can be accomplished through the definition

of several metrics that help to elucidate critical characteristics and distinguish

the topological nature of large networks from one another. Several such metrics

are defined below that have proven to be indispensable to our understanding

of large networks.
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1.3.1 Degree

The degree of a node i in a network is defined as the number of edges for

which that node is a participant. For directed networks, this concept can be

generalized to the in- and out-degree of a nodes, corresponding to the number

of edges that terminate and originate from that node, respectively.

In terms of the adjacency matrix, the in-degree of the jth node can be

defined by:

kin
j =

∑
i

Aij (1.1)

Similarly, the out-degree of the ith node is defined:

kout
i =

∑
j

Aij (1.2)

Figure 1.1: An illustration of in- and out-degree of the large colored node is
shown in the two panels above. In panel (a), the out-degree of the node is
kout = 3. In panel (b), the in-degree of the node is kin = 3.

For undirected networks, ki = kin
i = kout

i for all nodes in the network and
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we simply speak of degree. For directed networks, the total degree is given by

the sum of in- and out- degrees, ki = kin
i +kout

i . An illustration of in- and out-

degree is provided in fig. 1.1. For large networks, it is useful to consider the

degree distribution, P (k), that describes the statistical distribution of degrees

for all nodes within a network.

Of particular interest is the finding that many real world networks exhibit

long-tailed degree distributions that appear to be approximately power law

in nature, P (k) ∼ k−γ for some positive exponent γ. Networks exhibiting

power law degree distribution are often referred to as scale-free, as the degree

of a typical node in the network cannot be characterized by a single scale, a

consequence of the diverging first moment of the degree.

Network size (nodes) γin γout Reference

www 2 × 108 2.1 2.71 Broder (2000)[7]
E.coli (metabolic) 778 2.2 2.2 Jeong (2000)[8]
Movie co-actor 2.12 × 105 2.3 2.3 Barabasi

(1999)[9]
Word co-occurence 4.62 × 105 2.7 2.7 Cancho

(2001)[10]

Table 1.1: A few examples of networks that exhibit power law degree distri-
butions. For the directed networks shown above, γin (γout) corresponds to
the power law exponent for in- (out-) degree distributions. For undirected
networks in the table, the two are equal.

A few examples of networks with power law degree distribution are given

in table 1.1. From the standpoint of statistical physics, power law distribu-

tions are particularly interesting as they are typically associated with critical

behavior. Recently a great deal of study has been devoted to identify plausible

mechanisms that generate power law degree distributions. A review of power

7



law behavior and generative mechanisms is provided by the author of [11].

One notable mechanism for generating power law degree distributions is a

rich-get-richer phenomenon first generalized by Yule [12] and later studied in

the context of complex networks by Barabasi and Albert under the name of

Preferential Attachment [13]. In preferential attachment, complex networks

are generated from smaller core networks by the successive addition of nodes.

Nodes are created and attached to the network via a single edge to an existing

node with probability proportional to the degree of the existing node.

Pr{new node n ↔ i} =
ki∑
j kj

(1.3)

In many systems, this mechanism can be associated with an intuitively plausi-

ble scenario. For example, in the world wide web, it might seem reasonable to

assume the probability to link to a webpage proportional to the chance to visit

that page. We will revisit a form of the preferential attachment mechanism in

chapter 3, in the context of popularity.

Beyond the degree distribution, there are a number of other metrics that

help to reveal and characterize the topological properties of complex networks.

Two networks with identical degree distributions may exhibit vastly different

topologies. One distinguishing topological property of networks is the assorta-

tivity, the extent to which nodes in the network tend to be connected to other

nodes with similar degree. An illustration of two networks with identical de-

gree distribution, but different assortativity is shown in fig. 1.2.

A more microscopic view of topological properties can be attained through

the examination of network motifs. A network motif is a small subgraph of a
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Figure 1.2: The topology of two networks with identical degree distributions.
The assortative network features high degree nodes that tend to connect to
one another and clump together. In contrast, in the disassortative network,
nodes with high degree tend to be connected to nodes with low degree.

Figure 1.3: An illustration of several network motifs that commonly occur in
directed complex networks.

few nodes that are connected together in a particular pattern. Motifs are par-

ticularly significant in the study of dynamical properties of complex systems,

as they may be related to the function of a subsystem and, in isolation, lend

themselves to tractable studies of dynamical behavior. An illustration of a few
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network motifs in directed networks is provided in fig. 1.3. In undirected net-

works, one popular topological metric that is based on motifs is the clustering,

the ratio of the number of triangles in a graph to the number of unordered

triplets.

1.3.2 Connectedness

The connectedness of a network generally describes how nodes in the network

are connected to one another through pathways. A simple pathway of length

L in a network from some node u to another node v is defined as a sequence

of adjacent nodes originating from u and ending in v, {u, u1, . . . , uL−1, v} in

which no node is repeated. Pathways that are not simple, (i.e, ones that

involve the repetition of a vertex), arise due to the existence of cycles. A cycle

is a pathway that begins and terminates with the same node. In general, for

two arbitrarily chosen nodes in a networks many pathways may exist between

them.

A component of a network is a subset of nodes in the network that can all

be reached from one another through pathways of any length. We say that

all nodes in a component are connected to one another. An illustration of

components of a network is show in panel (b) of fig. 1.4.

A geodesic path from u to v is the shortest path connecting u to v whose

length will be referred to as the distance between u and v. An illustration of

a geodesic path is shown in panel (a) of fig. 1.4. An interesting property of

any network is the average distance between all nodes in components of the

network.
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Figure 1.4: Panel (a) illustrates a geodesic path from node u (green) to v
(red) via intermediary nodes (orange). Panel (b) illustrates two separate com-
ponents of a single complex network. All nodes of each components are reach-
able from any other nodes in that component.

The study of the connectedness of real world networks has revealed a va-

riety of networks that exhibit relatively low average distance d ≤ 6. In the

literature, such networks are commonly referred to as small-world networks. In

a famous 1969 study of social connectedness, Stanley Milgram [14] conducted

an experiment in which several randomly selected individuals from cities in the

United States were given a letter detailing the nature of the study and a con-

tact destination. Participants were asked to forward the letter to the contact,

if known personally, or to a personal acquaintance that they believed likely

to know the contact. The chain of intermediary acquaintances was recorded

as the letter passed from one individual to the next. The remarkable result

of the study showed that the average pathway between the original recipient

and contact destination was approximately L ∼ 6, resulting in the popular

notion of six degrees of separation. In the example of movie co-star networks,

this notion has received wide popularity in the form of various trivia games in
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which the player is challenged to connect two actors to one another by citing

pathways of co-stars. For example, one might challenge a player to connect

Arnold Schwarzenegger to Bruce Willis. One solution is as follows: Arnold

Schwarzenegger was in The Terminator with actor Michael Biehn. Michael

Biehn was in Planet Terror with Bruce Willis. Thus, Arnold Schwarzenegger

has a Bruce Willis number of 2. An online implementation of this game is

available through the University of Virginia’s Computer Science Department

(oracleofbacon.org).

1.3.3 Randomness and Graphs

Attempts to understand the topological features of complex networks has led

to the introduction of generative approaches that involve randomness. Indeed,

early generative studies of graph structure focused on random graph forma-

tion, popularized by the well-known Erdős-Rényi (ER) Model [15], in which

every pair of nodes is connected by an edge with a fixed probability p. While

this model is a useful stepping stone in understanding both connectedness

and stochasticity of graph generation as a function of the parameter p, it un-

fortunately fails at reproducing many of the features of real world networks.

In particular, the limiting degree distribution of the ER model is Poissonian

and it cannot produce graphs with small-world properties or scale-free degree

distributions.

In 1998, Watts and Strogatz (WS) introduced the first successful model of

random graph generation that can lead to graphs with small world properties

[16]. The model begins with an ordered ring graph in which each node is con-
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Figure 1.5: An illustration of the Watts-Strogatz Model for random graph
generation. The model begins with an ordered ring network in which each
node is connected to precisely k neighbors. With probability p, every edge is
randomly rewired, resulting in the generation of a random graph. In the limit
p → 0, the graph is simply ordered, while, in the limit p → 1, the random
graph is equivalent to one produced by the ER model described in the text.
For intermediary values of p, the model produces graphs with both small-world
properties and high clustering.

nected to exactly k nearest neighbors on the ring. Each edge is subsequently

randomly rewired with probability p. In the limit p → 0, the graph is un-

changed and possesses a homogeneous degree distribution, while in the limit

p → 1, the graph is completely random and equivalent to the ER case. In

between these two extremes, however, the model generates graphs with high

clustering and low average path lengths known as the small-world property.

An illustration of the WS model is provided in fig. 1.5. Unfortunately, the

WS model does note produce scale-free degree distributions typical of many

real-world networks.

While more recent generative models, such as the aforementioned pref-

erential attachment model, and various other models, such as duplication
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and deletion models studied by the authors of [17–19], do successfully pro-

duce scale-free graphs, they are reliant upon the plausibility of their inherent

generation mechanisms, which may not be realistic for all types of networks.

Furthermore, these models do not explicitly address many of the topological

features of graphs and associated metrics previously discussed.

An alternative approach to random graph generation was derived by Hol-

land and Leinhardt [20] and throughout the past several decades has been

generalized to a class of ensemble models commonly referred to as Exponential

Random Graph Models (ERG). In ERG models, one considers an ensemble of

all graphs with N nodes, and introduces the partition function:

Z =
∑
G

e−H(G) (1.4)

where the sum is carried out over the ensemble of graphs. The probability

of realizing some particular graph G is then given by the standard statistical

relation:

P (G) =
e−H(G)

Z
(1.5)

The effective hamiltonian, H(G), may then be defined as a linear combination

of any number of desired topological features. For example, to encourage the

realization of a graph with high clustering, we can include a term H(G) =

−αT T (G) + . . . where T (G) is the number of triangles in the graph G. The

associated weight αT characterizes the relative importance of this feature with

respect to other terms in the hamiltonian. Thus, ERG models attempt to

define a phase space for graphs, in analogy with proven methods of statistical

physics. One advantage of such a method is that it allows for the generation
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of several graphs with similar topological features. The study of ERG models

is an active topic of research [21, 22]. Unfortunately, in many situations ERG

models are not feasible. Furthermore, it may not be entirely clear which

features of a graph are significant and ERG models cannot, in general, account

for features that are not put into the hamiltonian “by hand”.

One application of randomization that can help us discover which features

are significant in a network is the random edge rewiring approach introduced

by Maslov and Sneppen [23, 24]. In this approach, edges in a network are

rewired in a manner that conserves both in- and out- degree distribution. This

is accomplished by several edge-swapping iterations in which two edges are

randomly selected, A → B and C → D, and subsequently swapped such that

A → D and C → B, provided that the resultant edges do not already exist (if

so, the swap is abandoned). The resulting edge-shuffled version of the network

provides a null model whose topological features may be directly compared

to those of the original network. For any topological feature that appears θ

times in the original network and θr times in the randomized network, the

quantity of interest is the ratio θ/θr, whose value is ∼ 1 when the feature

occurs no more in the real network than as expected by random chance in

a network with the same in- and out- degree distributions. This rewiring

technique can be extended to conserve local topological properties in the null

model by prohibiting any edge exchanges that alter those properties.

As an illustration of this technique, the assortativity of a network can be

quantified by considering degree-degree correlations, d(k0, k1), the number of

nodes with degree k0 connected to neighbors with degree k1. A plot of the

correlation profile, d(k0, k1)/dr(k0, k1) for the internet (autonomous systems
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Figure 1.6: A correlation profile of the internet (autonomous systems level)
derived from the random edge rewiring technique discussed in the text. The
x-axis represents a nodes of degree k0, while the y-axis represents the de-
gree of its neighbor, k1. For any point (k0, k1), the intensity is given by
d(k0, k1)/dr(k0, k1), the ratio of occurrences in the real network to those in
a randomized network with the same in- and out- degree distribution. The
plot displays that nodes in the internet tend to be connected to neighbors with
significantly different degree, indicating that the internet is a relatively disas-
sortative network. This figure is reproduce from [24] with permission from the
authors.

level) is reproduced with permission from the authors in fig. 1.6 Evidently,

the internet is somewhat disassortative, as connections between nodes of equal

degree are significantly under-represented in the range k ≤ 100 than one would

expect by random chance.
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1.4 Network Algorithms

The study of networks has led to the development of several algorithms that

address a variety of issues, including optimization and search. While a com-

plete review of graph algorithms is beyond the scope of this text, we will briefly

mention a few relevant graph algorithms.

Traversal in networks is the process by which an object moves from one

node of the graph to another adjacent node by traveling through an adjacent

edge. Mathematically, traversal in a directed or undirected graph can be

accomplished through the multiplication of an initial occupation vector by

the adjacency matrix. Explicitly, if p[t] (a vector of length N) describes a

distribution of objects that “live” on the N nodes of a network at time t, and

objects traverse an edge at each time step, then:

p[t + 1] = A · p[t] (1.6)

describes the distribution of the objects on the N nodes at the next time step,

t + 1. Where the matrix A is the adjacency matrix described in eq. 1.1. The

movement of objects along a graph can be generalized to a stochastic process

with the introduction of random variables and accompanying probabilities that

describe the behavior of the motion. We will see an example of this in chapter

2, in the context of random walks on citation networks.

One common problem related to traversal is that of find the shortest path

between any two nodes in a network. As it turns out, the calculation of the

shortest path from a source node to a destination node is computationally
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no longer than the calculation from a source node to any other node in the

network. Several algorithms exist to efficiently compute shortest paths with

computation times that depend on the type of data structures employed.

A fast algorithm for computing shortest path distances in unweighted

graphs is the Burning Algorithm [25]. This algorithm is so named because

it models the spread of a fire from a source node s to other nodes in the

graph. At each time step, the fire traverses from each burning node, along all

edges, to unburnt nodes. At each step, we retain the list of unburnt nodes and

the burning time step, t. When a node is burnt, it is removed from the list

of unburnt nodes and the distance from the source is recorded in a distance

matrix:

d[s, j] = t (1.7)

The burning algorithm can be accomplished with a series of matrix multiplica-

tions and in O(D) time where D is the largest shortest path from originating

from node s in the network. However, the burning algorithm is not appropriate

for weighted networks.

Several algorithms exist for shortest path determination in weighted net-

works. These algorithms typically take advantage of a property of shortest

path problems referred to (in computer science) as optimal substructure. Prob-

lems with optimal substructure are those for which the solution can be con-

structed from the optimal solutions of subproblems. Such problems can effec-

tively be solved using algorithms that take a greedy approach to the solution

of subproblems. In the context of shortest paths, greedy algorithms find the

shortest path from a source node s to an end node e by first finding the shortest
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paths from s to neighboring nodes and then iterating.

One well known fast algorithm for shortest path determination in a weighted

network from a node s to all other nodes is Dijkstra’s Algorithm [26]. In the

algorithm, the current estimate of shortest path distance d[s, j] for all nodes

is maintained and initially set as infinite (except for d[s, s] = 0). A list, Q,

is maintained of all nodes whose shortest path distance estimate is not yet

“finalized”. At teach time step, the node u = min(Q) with the minimum

distance estimate is finalized and the node is removed from Q. Its outgoing

neighbors are then explored {vi}. For each neighbor, the distance estimate is

updated according to:

d[s, vi] = min(d[s, vi], d[s, u] + w(u, vi)) (1.8)

where w(u, vi) is the weight of the outgoing edge from u to vi. That is, if the

pathway from s to vi that includes the intermediary node u is shorter than the

current estimate for the shortest path from s to vi, it replaces it as the current

estimate. This procedure is then repeated, until all nodes are removed from

Q. The running time of Dijkstra’s algorithm depends on the data structure

employed to implement the list Q. For an implementation that uses a binary

heap for Q, the running time is O(NlogN +ElogN) for N nodes and E edges.

Unfortunately, Dijkstra’s algorithm cannot be used for networks that include

negative weights. For such networks, other algorithms such as the Bellman-

Ford Algorithm [27] are preferred. A more efficient pathfinding algorithm that

involves heuristic estimations of distance from nodes to path endpoints is the

well-known A* Algorithm [28] that is used extensively in artificial intelligence
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applications.

Beyond traversal and path-finding algorithms, there are countless other

graph algorithms that will not be mentioned here. One notable group of algo-

rithms are those that attempt to find community structure within networks.

A community can be loosely defined as a group of nodes within a network

that are densely interconnected relative to connections to nodes outside of the

community. Over the past two decades, the detection of community structure

has been recognized as vital to the understanding of many complex systems.

An overview of these algorithms is beyond the scope of this text, however a

good review of community structure detection can be found here [29].

1.5 Outline

The remaining chapters of this work will focus on the study of three specific

complex systems.

In chapter 2, we study the dynamics of citation networks. The ageing

characteristics of citation networks are explored and the effect of aging on the

conventional method of ranking is discussed. The diffusive ranking method of

PageRank is considered and its positive attributes are discussed. A modified

version of the PageRank algorithm, called CiteRank, is introduced to account

for aging effects and to rank articles according to relevance to modern research.

Optimization of the parameters of the CiteRank algorithm is discussed and

the performance is compared to that of PageRank. The structure of recent

citation growth is explored through the introduction of a mean-field model

that explains differences in recent citation accrual in two age regimes that
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correspond to direct and indirect means of dominant article discovery.

In chapter 3, we study time-critical collaborative document voting systems

that occur in a variety of implementations in real online systems. A general

model of the system is presented with the introduction of two simple models

of user behavior that serve to characterize quality and popularity in mixed

populations of users. Issues of ranking through voting mechanisms are dis-

cussed and an estimate for cooperation of the population is presented. The

effects of popularity on rank performance are examined and nonlinear herding

effects are observed and characterized by a mean-field model. A mechanism

for user reputation is introduced that is self-consistent, content-independent

and adaptive. Finally, a method of ranking articles is introduced that accounts

for user reputation and provides a significant improvement in the time-critical

rank performance.

In chapter 4, we study fluctuations in mass-action equilibrium of protein-

protein-interaction (PPI) networks of living cells. We identify two types of

fluctuations that arise from total protein concentration changes and changes

in bound concentration as a result of thermal kinetics that we respectively

refer to as driven and spontaneous fluctuations. Fluctuations are calculated

for a real curated PPI network of Baker’s Yeast. The collective effects of the

underlying network are explored through the introduction of isolated dimer

models that provide an upper- and lower-bound to fluctuation amplitudes.

Amplification of fluctuations that arise as a consequence of collective effects

are found to be highly significant. Finally, we compare noise amplitude of

dimers to the simple predictors of abundance and network connectivity.
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Chapter 2

Traffic Models and Ranking in

Citation Networks

2.1 Background

A class of information networks that arise naturally in a variety of information

systems are citation networks. Citation networks are typically formed in doc-

ument publication systems where documents cite pertinent information from

existing publications. Real-world citation networks can arise from systems that

are quite diverse in character, such as patent systems, legal cases, and scien-

tific journals. Despite this diversity, citation networks share some common

characteristic features that distinguish them from other types of information

networks.

Unlike objects in many modern information systems, documents in citation

networks are rarely modified after the point of publication. Because of this,

aging effects in citation networks can be significantly pronounced. Both the
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information and citations in published documents can only depend on earlier

works. Consequently, the topology of a citation network exhibits a natural

time-arrow such that chains of citations naturally flow backwards in time to

older publications. These issues have serious implications on the study of

citation networks and will be addressed further in this chapter.

Serious quantitative study of scientific publication networks can be per-

haps traced to several pioneering studies in the early 1960s. Eugene Garfield

formed the Institute for Scientific Information (ISI) in 1960, and produced

the Science Citation Index (SCI), the first systematic large-scale index of ci-

tations between scientific papers. While the advent of the SCI was intended

as a useful tool for scientific researchers to trace citations between papers, the

SCI allowed for the quantitative study and evaluation of research publications.

That citation data might be used as a means of ranking articles, journals and

even authors is a notion that has existed for some time within scientific pub-

lishing. However, with the advent of large-scale indexes such studies became

statistical in nature. The authors of [30] studied and pioneered some of the

precedents for bibliometrics in common use today, such as rank by number

of incoming citations and journal impact factor. The authors of [31] and [32]

recognized the network description of citation indices.

Modern citation network analysis has matured significantly with the growth

of data access and availability. At present, the various citation indices (SCI

and others) maintained by ISI has grown into the Web of Science, an online

database containing citation data from more than 8,700 journals in a wide

range of fields throughout the sciences, arts and the humanities [33]. Alternate

online citation databases exist as well, such as Scopus.
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In light of the vast growth in scientific publications and online accessibility,

it is not surprising that the issue of information search, ranking and retrieval

has come to the forefront of citation network analysis. Several freely available

engines have been developed to search scientific literature, such as CiteSeer,

and CiteBase, that rank publications based on their incoming citations. Other

engines, such as Google Scholar, use ranking schemes that are not known to

the public.

In this chapter, we examine two real-world citation networks, all Physi-

cal Review Journals up to 2003 (physrev), and a snapshot of the preprints

in the Physics High Energy Theory arXiv (hep-th). The weaknesses of stan-

dard ranking by incoming citations are discussed. We consider application of

the PageRank algorithm to citation networks and remark on its strength and

weaknesses. The problem of aging in citation networks is considered and a

new traffic-based algorithm, CiteRank, is presented to rank scientific publica-

tions by their current relevance. The advantages of CiteRank over traditional

methods of ranking scientific publications are discussed.

2.2 Real Citation Networks

Throughout this chapter we examine two real-world citation networks

• Hep-th: An archive snapshot of the “high energy physics theory” archive

( http://arxiv.org/archive/hep-th ) from April 2003 (preprints ranging

from 1992 to 2003). This dataset, containing around 28,000 papers and

350,000 citation links, was downloaded from [34]. We know the actual

date of appearance of each of the entries in the preprint archive and thus
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the age of each node is known with the resolution of 1 day.

• Physrev: Citation data between journals published by the American

Physical Society. These journals include Phys. Rev Series I (1893-1912),

Phys Rev. Series II (1913-1969), Phys Rev. Series III (1970-present).

The latter is comprised of five topical sections: Phys. Rev. A,B,C, D

and E (1990-2003). Additionally included are Phys. Rev. Lett., Rev.

Mod. Phys., and Phys. Rev. Special Topics, Accelerators and Beams

(1990-2003). This dataset contains around 380,000 papers and 3,100,000

citation links. We know only the year in which each paper was published

and it ranges from 1893 to 2003.

These networks are, on the surface, quite different in nature. The Physical

Review citation network (physrev) is comprised of a large number of peer-

reviewed publications acquired over a period close to a hundred years. The

high-energy physics archive citation network (hep-th) is comprised completely

of a much smaller number of topically similar electronically submitted publi-

cation preprints, with no associated form of peer review.

General Features of the Citation Networks

In general, citation network are directed and we will adopt the convention for

the directed adjacency matrix:

Aij =

⎧⎪⎨
⎪⎩

1 if article j cites article i;

0 otherwise.

The in- and out- degree is accordingly defined in the standard manner,
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kin
i =

∑
j Aij and kout

j =
∑

i Aij . The in-degree for the two citation networks

is shown in Fig. 2.1.
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Figure 2.1:

For both networks, it has a broad distribution that is approximately fit

by a power law of exponent β = 3. The power law form is in agreement

with several in-degree studies of various citation networks. However, in a

recent study of the physrev dataset [35], the author argues that a log-normal
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distribution may better fit the precise nature of in-degree distribution. Studies

of various generative models, that attempt to explain the long-tail behavior by

modeling the growth of citations, are not conclusive. One possible reason for

this failure is the inability for generative models to account for extreme cases,

where publications experience citation growth that is far from the typical.

Such cases are likely represented in datasets, like physrev, that span large

periods of time over which the practice of science and scientific publishing

has drastically evolved. If this is true, then small deviations from power law

behavior in the tail of the data may be negligible. These issues aside, an

observations of typical citation growth are noteworthy and relevant to the

details of this study. Specifically, publications with high citations tend to

be cited more frequently, a rich-get-richer phenomenon recognized early on

by Merton and termed “cumulative advantage” [36]. We will return to this

phenomenon later, both in the concept of publication visibility and aging.

Another property of interest for citation networks is the distribution of

in-degree according to the publication age. While the in-degree of a particular

paper is a function that monotonically increases with age, the average in-

degree of papers of a particular age is not similarly constrained. The number

of citations versus publication age is shown in Fig. 2.2 for the Physrev citation

network.

Old publications in this distribution are heavily skewed both by the approx-

imate exponential growth rate of articles and the emergence of new physical

review journals. A particularly striking feature of this distribution that is not

explained by growth in publications is the sharp drop-off in citations for papers

that are only a few years old. It is intuitively clear that newer publications on
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Figure 2.2: Average number of citations versus age of publications in the
Physrev citation network. The x axis is the age of the publication. The y axis
is the average number of citations for publications of a given age.

the average cannot compete with older ones in terms of raw citations alone,

by the simple fact that they have not existed long enough to accrue as many

citations. This observation is relevant to the task of ranking publications for

the purposes of search, where it is precisely the newer publication that are

likely to be pertinent to modern research. These consideration lead naturally

to the problems inherent in the traditional method of ranking publications, by

raw number of citations.
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Ranking Publications

As previously mentioned, the interpretation of incoming citations as a measure

of relative quality amongst papers in the network is a common practice. While

naively, there seems to be some merit to this method, several issues preclude

the use of raw number of citations as a “good” indicator of quality. As was

shown in the prior section, new publications do not typically achieve large

number of citations until they have existed for times in excess of several years or

even decades. Indeed, the average age of the top ten papers ranked according

to kin is 31 years in the case of the physrev network, and 3.8 years in the case

of the hep-th network. Furthermore, the treatment of all citations as equal is

“too democratic”. A more reasonable ranking metric should account for the

quality of citing publications. In other words, citations originating from an

eminent paper should contribute to the quality of a cited publication more

than those originating from a lesser known paper.

The problem of ranking citation networks is not entirely divorced from

that of ranking other information networks. In the analogous network of the

world wide web, ranking of websites according to number of incoming links

also suffers from the same issue of over-democratization. Sergey Brin and

Lawrence Page addressed this issue with the well-known PageRank algorithm

[37], the core of Google webpage ranking.

PageRank is a diffusive network algorithm that is mathematically equiva-

lent to the simulation of a population of random walkers diffusing along the

links of the network. In the algorithm, a population of random walkers are

initially distributed homogeneously across the network. Each random walker,
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situated at a node in the network will, with probability α, jump to a random

page in the network and with probability 1 − α follow an outgoing link to a

neighboring node.

The PageRank number of a website is defined as the cumulative traffic

through the node. Unlike ranking by in-degree, PageRank captures the self-

consistent popularity of websites, because the number of random walkers oc-

cupying a given node is proportional to the in-degree of the node. Sites with

high popularity (large PageRank number) have high occupancy and the traffic

flowing out of the site through its outgoing links is proportional to the occu-

pancy. Consequently, a link from a popular site contributes to the PageRank

number of the linked site more than a link from a less popular site. Moreover,

in PageRank, the effect of a link from a site that has a large number of outgo-

ing links is diminished. In the context of a citation network this feature is in

accordance with the notion that the citations from a publication collectively

represent the preceding work and inspiration upon which that publication has

been based. In other words, an incoming citation from a paper with 100 out-

going citations is “less meaningful” than one from a paper with only a few

outgoing citations.

While PageRank is mathematically equivalent to a diffusion process, no

such process is actually simulated to evaluate PageRank on a network. The

calculation of PageRank for a network is performed by a computationally

efficient and guaranteed convergent matrix equation:

P = αI + (1 − α)αW + (1 − α)2αW 2 + (1 − α)3αW 3 + . . . (2.1)
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where I is identity and W is defined as the transfer matrix:

Wij =

⎧⎪⎨
⎪⎩

1
kout

j
if j links to i;

0 otherwise.

The first term in the PageRank corresponds to the uniform distribution of

random walkers across the network. Each of the terms that follow correspond

to random walkers that arrive at a site by following chains of links of length

one, two, three, and so forth. The parameter α represents the probability that

a walker will cease to follow a chain of links and simply jump to a new site in

the network at random. In application of PageRank to the web, Google selects

this parameter to be α � 0.15 in agreement with the notion that a typically

web surfer will follow approximately 1/0.15 = 6 hyperlinks before abandoning

their search.

Figure 2.3: A feed-forward loop of length four. In citation networks, feed-
forward loops are intimately related to indirect article discovery.

Ranking of publications in a citation network with the PageRank algorithm

was first considered, for the physrev network, by the authors of [38]. In this

study, the authors conjecture that the parameter α is closely related to the

number of feed-forward loops in the network. A feed-forward loop in a citation

network of length four is diagramed in Fig. 2.3.
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Such a structure clearly suggests that the author of the leftmost paper in

fig. 2.3 has read both the intermediary papers and the paper that completes

the loop . An analysis of feed-forward loops in the physrev and hep-th net-

works is shown in Fig. 2.4. The feed-forward loops were analyzed using a

modification of the burning algorithm discussed in chapter 1.

For both networks, we find a sharp drop off in feed-forward loops of length

L > 2, in good agreement with the finding in [38], supporting the choice of

parameter α � 0.5 of the PageRank algorithm.

We apply the PageRank algorithm to the physrev and hep-th citation net-

works. The results for the top ten publications for both networks are show in

tables 2.1 and 2.2.

Comparison to the more traditional method of ranking by kin is presented

in Fig. 2.5. The two are well correlated, a result that can be understood on

the basis that the larger the number of citations a paper has, the more likely

it is to receive traffic from random walkers.

While the PageRank algorithm for citation networks addresses the issue

of self-consistent popularity, it is nonetheless still susceptible to problems of

aging. The mean age of the top ten publications according to PageRank is

∼ 43 years in the physrev network and ∼ 9 years in the hep-th network. Such a

ranking is certainly useful as the papers in the top ten list represent undeniably

significant advances in their respective scientific fields. Nearly all of the papers

within the top ten for both networks show a broad range of citation activity,

with citations from papers of all ages represented. Recent citations represent

only a small fraction of total citations for these papers. With this in mind it is

natural to interpret the PageRank of a publication as a “lifetime achievement
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Figure 2.4: The x axis is length L of the citation chain. The y axis is the
fraction of citations chains of length L that are feed-forward loops. Circles
(squares) are the results for the physrev (hep-th) citation network. The ap-
pearance of feed-forward loops of length L > 2 drops off sharply for both
networks.

award” [38]. In order to achieve a ranking that is more relevant to lines of

current research, the issue of aging must be explicitly accounted for.

Aging in citation networks has serious implications on the network struc-

ture. The existence of a time-arrow in citation networks implies the absence
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Figure 2.5: A scatter plot of the average PageRank as a function of the kin

for both the physrev and hep-th citation networks. In both cases, the average
PageRank is well correlated with the in-degree. This arises because the larger
the in-degree of a paper, the more likely it is easy to receive visits from a
random walker in the network.

of directed loops that are typically present in other networks such as the world

wide web. This means that random walkers diffusing on the network will tend

to pile up on older papers, as there is no mechanism beyond random hopping

to travel to earlier papers. Furthermore, aging significantly alters the spectral

properties of the adjacency matrix which lie at the heart of the PageRank al-

gorithm. The absence of directed loops means that the adjacency matrix can

have only zero eigenvalues. To address these issues, we present the CiteRank
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algorithm.

The CiteRank Algorithm

The success of the PageRank algorithm can be attributed, in part, to its

ability to capture the behavior of people randomly browsing the network of web

pages. The assumption that a typical web-surfer starts at a randomly selected

webpage might be not completely unreasonable for the WWW, but it needs to

be modified for citation networks. As all of us know, researchers typically start

“surfing” scientific publications from a rather recent publication that caught

their attention on a daily update of a preprint archive, a recent volume of

a journal, or, perhaps, was featured in a news article in the popular media.

Thus a more realistic model for the traffic along the citation network should

take into account that researchers “surfing” the citation network preferentially

start their quests from recent papers and progressively get to older and older

papers with every step.

We introduce the CiteRank algorithm, an adaptation of the PageRank al-

gorithm to citation networks. Our algorithm simulates the dynamics of a large

number of researchers looking for new information. Every researcher, indepen-

dent of one another, is assumed to start his/her search from a recent paper or

review and to subsequently follow a chain of citations until satisfied or satu-

rated with information. Explicitly, we define the following two-parameter Cit-

eRank model of such a process, allowing one to estimate the traffic Ti(τdir, α)

to a given paper i. A recent paper is selected randomly from the whole popu-

lation with a probability that is exponentially discounted according to the age
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of the paper, with a characteristic decay time of τdir.

At every step of the path, with probability α the researcher is satis-

fied/saturated and halts his/her line of inquiry. With probability (1 − α)

a random citation to an adjacent paper is followed. The predicted traffic,

Ti(τdir, α), to a paper is proportional to the rate at which it is visited (down-

loaded) if a large number of researchers independently follow such a simple-

minded process.

While we interpret the output of the CiteRank algorithm as the traffic,

its utility ultimately lies in the ability to successfully rank publications. High

CiteRank traffic to a publication denotes its high relevance in the context of

currently popular research directions, while the PageRank number is more of

a “lifetime achievement award”.

However, the more refined CiteRank algorithm surpasses both the conven-

tional ranking, by number of citations, and the PageRank in its characteriza-

tion of relevancy. Unlike the PageRank algorithm, the age of a citing paper is

intrinsically accounted for: the effect of a recent citation to a paper is greater

than that of an older citation to the same paper. Recent citations indicate the

relevancy of a paper to current lines of research.

An algorithmic description of the aforementioned model can be understood

as follows. Let ρi represent the probability of initially selecting the ith paper

in a citation network:

ρi = e−agei/τdir (2.2)

The probability that the researcher will encounter a paper by initial selection

alone is given by ρ. Similarly, the probability of encountering the paper after
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following one link is (1 − α)W · ρ. The CiteRank traffic of the paper is then

defined as the probability of encountering it via paths of any length. That

is, given an initial distribution of new papers, ρ, and transfer matrix, W , the

CiteRank traffic is given by:

T = I · ρ + (1 − α)W · ρ + (1 − α)2W 2 · ρ + · · · (2.3)

Practically, we calculate the CiteRank traffic on all papers in our dataset

by taking successive terms in the above expansion to sufficient convergence

(< 10−10 of the average value).

Parameters of the CiteRank Model

In order to assess the viability of this ranking scheme and to select optimal

parameters (τdir, α), we need a quantitative measure of its performance on

real citation networks. Of course, evaluating the performance of any ranking

scheme is a delicate, but often necessary, matter. One way to select the best

performing α and τdir is to optimize the correlation between the predicted

traffic, Ti(τdir, α) and the actual traffic (e.g., downloads). Unfortunately, the

actual traffic data for scientific publications are not readily available for these

networks. However, it is reasonable to assume that traffic to a paper is pos-

itively correlated with the number of new citations it accrues over a recent

time interval, Δkin.

For lack of better intuition we first assume a linear relationship between

actual traffic and number of recent citations accrued. This corresponds to a

simple-minded scenario in which every researcher downloading a paper will,
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with a certain small probability, add it to the citation list of the manuscript

he/she is currently writing. It should be noted that we make no attempt to

model network growth.

In order to compare CiteRank with actual citation accrual, we constructed

an historical snapshot of both networks used in this study. In both cases,

the most recent 10 percent of papers are pruned from the network. This

corresponds to the last 4 years (2000-2003) in the physrev network and last

1 year in the hep-th network. The CiteRank traffic, Ti, of the remaining 90

percent of the papers is then evaluated and correlated with their actual accrual

of new citations, Δkin, originating at the most recent 10 percent of papers. The

linear correlation of CiteRank traffic with recent citations for both networks

is presented in Fig. 2.6.

Despite these significant differences in the nature of the networks con-

sidered, the general features of their correlation contours are outstandingly

similar. In both cases, a single sharp peak in correlation is evident for partic-

ular values of the parameters. The value of the optimal parameters for both

networks are:

hep-th: α = 0.48, τdir = 1 year

physrev: α = 0.50, τdir = 2.6 years

Remarkably, the value of α is nearly the same for the rather different networks

considered and is in agreement with that proposed in [38] on purely empirical

grounds. The difference in optimal parameter τdir for these networks is in

agreement with the common-sense expectation of faster response time (and

hence faster aging of citations) in preprint archives compared to peer-reviewed
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Figure 2.6: The Pearson (linear) correlation coefficient between the number of
recent citations accrued (Δkin) and CiteRank traffic (Ti) is calculated over the
parameter space of the CiteRank model for the hep-th (A) and physrev (B)
network. Both networks exhibit peaks in correlation coefficient in the α-τdir

plane. The highest correlation is achieved for α = 0.48, τdir = 1 year in the
hep-th network and α = 0.50, τdir = 2.6 years, in the physrev network.

publications. Another feature of Fig. 2.6 is that, in both networks, large values

of the correlation coefficient are concentrated along a diagonally-positioned

ridge. In other words, the best choice of α for a given τdir seems to rise

linearly with τdir, a behavior that will be revisited later in this chapter.
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While the correlation contour plots shown in Fig. 2.6 are a promising indi-

cation that the CiteRank model of traffic with optimized parameters provides

a good zero-order approximation to the actual traffic along a citation network,

they are to some extent predicated on the assumption of a linear relation-

ship between actual traffic and Δkin. One might readily ask how this model

fares in the absence of such an assumption. While the assumption of a linear

relationship may be unreasonable, a positive, monotonic relationship between

these quantities is certainly expected. There is a statistical correlation method

precisely adapted for such a situation, namely, the Spearman rank correlation.

Under this relaxed correlation measure, only the rank of Ti are correlated with

the rank of Δkin. Numerical changes in Ti that do not lead to reordering have

no effect on the value of the rank correlation coefficient. Another rationale

for using rank correlations is that our ultimate goal is ranking publications,

not modeling the traffic. Thus, we are currently not interested in individual

Ti’s, but only in their relative values. Spearman correlation contour plots are

constructed for both networks and shown in Fig. 2.7.

The optimal values for both networks are:

hep-th: α = 0.31, τdir = 1.6 year

physrev: α = 0.55, τdir = 8 years

These results roughly confirm the prediction of α ∼ 0.5 from fig. 2.6, how-

ever there is a more appreciable discrepancy in τdir between linear and rank

correlation for both networks.
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Figure 2.7: The Spearman rank correlation coefficient between recent citations
accrued (Δkin) and CiteRank traffic (Ti) for the hep-th (A) and physrev (B)
network. Both networks exhibit similar behavior. There are more extended
regions of good correlation relative to the linear correlation contours of fig. 2.6.
This broadening is expected as a consequence of the more relaxed correlation
measure. The highest rank correlation occurs for α = 0.31, τdir = 1.6 years,
in the hep-th network and α = 0.55, τdir = 8 years, in the physrev network.

Qualitative Comparison of CiteRank to PageRank

We apply the CiteRank algorithm to the physrev and hep-th citation networks.

The results for the top ten publications for both networks are show in tables

2.1 and 2.2.
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A qualitative examination of CiteRank performance over the unmodified

PageRank algorithm can be accomplished by direct comparison on the net-

works in question. As an example of this, the scatter plot of CiteRank vs.

PageRank for all papers in the physrev network is shown in Fig. 2.8.

Figure 2.8: The scatter plot of CiteRank vs. PageRank for all papers in
the physrev network. Two sectors of the data are distinguished according
to the CiteRank to PageRank ratio: CR

PR
> 2 (above the dashed green line)

and CR
PR

< 1/2 (below the dashed red line). The average publication year of
papers in these sectors is 2000 and 1973, respectively. The sophistication of
CiteRank goes beyond simple age classification, however. Particular examples
that illustrate this sophistication are marked above and discussed in the main
body of the text.

The positive correlation between the two algorithms is clearly evident in
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the plot. Two sectors of the data are distinguished according to the ratio of

CiteRank to PageRank, CR
PR

. Papers with a relatively large (small) ratio have

been marked comparatively higher (lower) by the aging effects inherent to the

CiteRank algorithm. These sectors are distinguished in Fig. 2.8 above (below)

the dashed green (red) line, respectively. In accordance with our claim that

the CiteRank algorithm ranks papers of current relevance in research higher,

the average publication year of papers in the high- (low-) ratio sector is found

to be 2000 (1973). Of course, CiteRank is more sophisticated than a simple re-

ranking according to publication age. For one thing, recent citations contribute

greatly to a paper of any age. A particularly good example of this is the famous

1935 Einstein, Podolsky, Rosen paper [39](EPR) which receives both a large

CiteRank and CR
PR

ratio despite its age. A quick glance at citing papers reveals

approximately fifty citations to this paper throughout this year (2007) alone,

indicating its clear connection to current lines of research. Another notable

example of a publication in the high-ratio sector is a review paper of out-of-

equilibrium pattern formation[40] by Cross and Hohenberg (C-H). It has a high

ratio, despite being significantly older than papers in this sector. This paper

is a good example of a class of review papers that serve to summarize the state

of affairs regarding a particular topic that is of continuing interest to research.

They are clearly of great use to the modern researcher and thus obtain their

high CR
PR

by virtue of recent citations. Of further interest are papers that

received high PageRank (lifetime achievement) but have a relatively low CR
PR

ratio. The wealth of these papers cover undeniably fundamental advancements

in physics. Two explicit examples of this are the Feynman, Gell-Mann paper

on Fermi interactions [41] (F-G) and the well known Cabibbo paper on leptonic
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decay [42] (Cab). The low CR
PR

of these papers can be explained by a dearth of

recent citations, which in turn is likely due to the incorporation of fundamental

discoveries and advancements into textbooks and other published works that

include more recent developments in addition to historical context.

A better physical understanding of the sophistication of the CiteRank al-

gorithm may be gleaned from a simple quantitative analysis of the traffic

dynamics in terms of its parameters. In both panels of Fig. 2.6, over a broad

range of parameters, the optimal value of α(τdir) for a given value of τdir is

positively correlated with τdir. This is an indication that these two param-

eters are entangled. In fact, this is to be expected as it is some admixture

of the two parameters which leads to the exposure of a given paper to the

researcher. An intuitive picture of this entanglement can be understood in

terms of the penetration depth, which is a measure of how far back in time a

random researcher following rules of the CiteRank algorithm is likely to get.

The penetration depth is affected by both τdir - the average age of the initial

paper at which he/she started following the chain of citations, and 1/α - the

mean number of steps on this chain of citations. For small τdir and large α,

the penetration depth is small, implying that only very recent papers receive

traffic. On the other hand, for large τdir and small α, the penetration depth is

very large, indicating that most of the traffic is directed towards older papers.

To better understand how α and τdir influence the age distribution of Cit-

eRank traffic, we performed the following quantitative analysis. Let Ttot(t)

denote the CiteRank model traffic to papers written exactly t years ago, where

the meaning of the additional subscript shall be made clear in the lines that

follow. As described by Eq. 2.3, two distinct processes contribute to Ttot(t).
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The first is the “direct” traffic Tdir(t) due to the initial selection of papers in

this age group, which is proportional to exp(−t/τdir). The second is the “in-

direct” traffic Tind(t) arriving via one of the incoming citation links, which is

given by Tind(t) = (1−α)
∫ t

0
Ttot(t

′)Pc(t
′, t)dt′, where Pc(t

′, t) is the fraction of

citations originating from papers of age t′ that cite papers of age t. It should

be noted that Pc(t
′, t) is an empirical distribution and, as such, is a measured

property of the citation network under consideration. The integral takes into

account the fact that incoming links to papers of age t can originate from all

possible intermediate times. According to [35] and our own findings, Pc(t
′, t)

is reasonably well approximated by the exponential form 1
τc

exp(−(t − t′)/τc).

Taking the Fourier transform of the equation Ttot(t) = Tdir(t) + Tind(t), we

have

Ttot(ω) = Tdir(ω) + (1 − α)Ttot(ω)Pc(ω). (2.4)

Solving Eq. 2.4 and taking the inverse Fourier transform, yields

Ttot(t) ∼ (τc − τdir) exp(−t/τdir) + (1 − α)τdir exp(−αt/τc). (2.5)

Thus, the traffic arriving at the subset of papers of age t is given by the

superposition of two exponential functions.

Having an approximate analytical expression for Ttot(t), we are now in a

position to better understand what determines the optimal values of α and

τdir.

Fig. 2.9 shows the age distribution of the number of recently acquired

citations, Δkin, for papers in the physrev dataset. The approximate CiteRank

traffic, given by Eq. 2.5, is also displayed. It is calculated using the empirically
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Figure 2.9: The age distribution of newly accrued citations Δkin (blue) for
the physrev network. Theoretical predictions [2.5] for the CiteRank traffic are
calculated for the optimal τdir = 2.6 and three values of α = 0.2 (dot-dashed
line), 0.5 (thick solid line), and 0.9 (dashed line). In agreement with Fig.2.6,
the optimal value, α = 0.5, provides the best agreement with Δkin. All curves
are normalized so that the sum of all data points is equal to 1.

determined value τc = 8 years, optimal τdir = 2.6 years and three values of

α = 0.2, 0.5 and 0.9. As one would expect, the profile of 〈Δkin〉 vs t best

agrees with the CiteRank plot for the optimal value α = 0.5 [? ]. Fig. 2.9 also

provides some clues to the positive correlation between near-optimal choices

of α and τdir, visible as diagonal “ridges” in Fig. 2.6 A and B. Indeed, if

the value of α is chosen to be large, the contribution from the second term is
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diminished; the use of a larger value of τdir can partially compensate for the

loss of CiteRank traffic to older papers, and would thus be in reasonably good

agreement with the Δkin data.

Another encouraging observation is that, like Eq. 2.5, the age distribution

of recently acquired citations shown in Fig. 2.9 has two regimes characterized

by two different decay constants of about 5 and 16 years, with a crossover

point around t = 15 years. Our interpretation of this fact is that papers are

found and cited via two distinct mechanisms: researchers can either find a

paper directly or by following citation links from earlier papers. For each of

these mechanisms, the probability that a given paper is found decays with its

age but the characteristic decay time for the direct discovery is shorter. While

very recent papers, especially the ones altogether lacking citations, are for the

most part discovered directly, older papers are mostly discovered by following

citation links.

2.3 Conclusion and Outlook

Understanding the dynamics of citation networks is a challenging problem that

touches on methods of statistical physics and the study of complex systems.

Ranking publications is a difficult but necessary task that is vital to the search

and navigation of the immense and ever growing body of scientific work. As we

have shown, current methods of ranking impact of publications suffer from a

number of undesirable features. The traditional method of ranking by incom-

ing citations is shown to be both overly democratic, in treating all citations

equally, and preferentially weighted towards older papers. Ranking according
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to the PageRank algorithm addresses the the issue of over democratization

via self-consistent popularity, but does not explicitly account for aging. Thus,

while PageRank is useful to gauge the lifetime achievement of publications,

it is not a good ranking algorithm to gauge the relevance of a publication

to modern research. The CiteRank algorithm successfully addresses issues of

aging and self-consistent popularity in a manner that is adaptable to natural

variations in the properties of citation networks (such as aging timescale and

degree distribution).

Motivated by the interpretation of CiteRank as a model of traffic, the age-

dependent citation structure of the networks was analytically modeled using a

mean-field method that was shown to be in good agreement with the empirical

structure. The simple model reveals two distinct age regimes corresponding

to likely citation via direct and indirect methods of discovery.

As with all real citation network studies, the results we obtain for real-

world citation networks are susceptible to effects of data incompleteness, as

the networks do not include citations to publications in external journals. In

some extreme cases, this may lead to spurious ranking, particularly for the

case of an esteemed publication with only a few outgoing citations to the

known network. This effect could be partially alleviated with the inclusion of

immediate downstream publications external to the network, whose CiteRank

might be ignored.

Future extensions of this work might be developed to address the estima-

tion of journal impact. One future direction of study that seems promising

and feasible is the evolution of a CiteRank over long periods of time. For

large citation networks this could be achieved by time-resolving the network
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to points throughout its history.
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Title Ref CR PR KR kin

Self-Consistent Equations
Including Exchange and
Correlation Effects

Phys. Rev.
140 A1133
(1965)

1 3 1 3104

Inhomogeneous Electron
Gas

Phys. Rev.
136 B864
(1964)

2 4 2 2340

Can Quantum-Mechanical
Description of Physical
Reality Be Considered
Complete?

Phys. Rev.
47 777
(1935)

3 22 84 492

Self-interaction correc-
tion to density-functional
approximations for many-
electron systems

Phys. Rev.
B 23 5048
(1981)

4 15 3 2079

Pattern formation outside
of equilibrium

Rev. Mod.
Phys. 65
851 (1993)

5 46 19 829

Self-organized criticality:
An explanation of the 1/f
noise

Phys. Rev.
Lett. 59
381 (1987)

6 21 30 699

Bose-Einstein Condensa-
tion in a Gas of Sodium
Atoms

Phys.
Rev. Lett.
75 3969
(1995)

7 97 16 874

Teleporting an unknown
quantum state via dual
classical and Einstein-
Podolsky-Rosen channels

Phys.
Rev. Lett.
70 1895
(1993)

8 250 82 495

Ground State of the Elec-
tron Gas by a Stochastic
Method

Phys. Rev.
Lett. 45
566 (1980)

9 32 4 1778

Theory of Superconductivity Phys. Rev.
108 1175
(1957)

10 2 5 1364

Table 2.1: The top ten articles according to CiteRank in the physrev citation
network. For each article, the CiteRank (CR), PageRank (PR), kin Rank (KR)
and number of citations, kin are displayed.
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Title Ref CR PR KR kin

The Large N Limit of Su-
perconformal Field Theories
and Supergravity

Adv.
Theor.
Math.
Phys. 2
231 (1998)

1 2 1 2414

Anti De Sitter Space And
Holography

Adv.
Theor.
Math.
Phys. 2
253 (1998)

2 6 2 1775

An Alternative to Compact-
ification

Phys.
Rev. Lett.
83 4960
(1999)

3 11 9 1032

String Theory and Noncom-
mutative Geometry

Jour. High
En. Phys.
9909 32
(1999)

4 13 7 1144

Gauge Theory Correlators
from Non-Critical String
Theory

Phys.
Lett. B428
105 (1998)

5 8 3 1641

Monopole Condensation,
And Confinement In N=2
Supersymmetric Yang-Mills
Theory

Nucl.
Phys.
B426 19
(1994)

6 1 4 1299

Dirichlet-Branes and
Ramond-Ramond Charges

Phys.
Rev. Lett.
75 4724
(1995)

7 3 6 1155

M Theory As A Matrix
Model: A Conjecture

Phys. Rev.
D 55 5112
(1997)

8 7 5 1199

String Theory Dynamics In
Various Dimensions

Nucl.
Phys. B
443 85
(1995)

9 4 8 1114

Large N Field Theories,
String Theory and Gravity

Phys.Rept.
323 183
(2000)

10 29 11 807

Table 2.2: The top ten articles according to CiteRank in the hep-th citation
network. For each article, the CiteRank (CR), PageRank (PR), kin Rank (KR)
and number of citations, kin are displayed.
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Chapter 3

Time-Critical Collaborative

Document Voting Systems

3.1 Background

Many modern studies of collaborative filtering, ranking and recommendation

systems owe a good deal to their academic ancestor, the study of voting sys-

tems. Early mathematical studies of voting systems were formalized in the

eighteenth century in the context of methods of decision making of a body

politic in an election. In general terms, an election describes the procedure by

which constituents (or users) cast a ballot to exhibit their preference for a set

of options. While the most common perception of an election is the simple

scenario by which a single winner is declared by majority rule, a variety of

election systems have been defined that break from this common paradigm.

Many systems involve a ballot in the form of an ordered list of preferences.

The problem of determining the most amenable choice/s from a list of many
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such ballots is well connected to the modern problem of rank aggregation from

a large set of partial rankings.

While an extensive examination of the advantages and drawbacks to various

voting systems lies beyond the scope of this text, a good summary may be

found in [43].

Recently, several online systems based on collaborative ranking have be-

come popular as a means to identify time-critical information. These include

news aggregation systems such as Digg, Reddit, and others. While the details

of these systems may differ, they share a set of common dynamical features

and as such are instances of a general class of time-critical collaborative ranking

systems.

In these systems, users may introduce new items and cast their vote on

existing ones. Frequently, the community of users is relatively persistent, while

items are both rapidly introduced and effectively expire after a short period

of time. The main output of many of these time-critical systems is a ranked

list of current headlines that serves as a common starting point for the user

community. As a consequence, popularity effects can be a significant factor in

the ranking dynamics. That popularity effects play a role in user behavior is

a well-accepted observation that many have noted in the scientific community

[44, 45]. These negative popularity effects have been qualitatively discussed in

the context of information cascades and herding behavior. Recent quantitative

models of popularity effects due to social connections present in the Digg

system have been studied by Lerman [46]. In contrast to these studies, we

examine popularity effects in a more general model that is applicable to a

wide variety of systems, even in the absence of explicit social connections.
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We further address the time-critical rank performance of the system and its

dependence on the population of users.

In this work we follow a reputation-based approach to time-critical col-

laborative ranking and investigate the dynamic interplay between quality and

popularity through the introduction of simple user models. In particular, we

address the question: What are the positive effects of popularity, if any? How

well can a mixed user population successfully rank time-critical information?

Time-critical systems share much in common with standard collaborative

ranking systems that exist in various forms throughout the web (e.g., collabo-

rative movie ratings such as Movielens[47], Netflix [48]; collaborative product

recommendation such as epinion.com, amazon.com; and many others) and

have been a topic of intense study in several communities throughout the past

decade. Despite this, relatively little attention has been paid to the time-

critical performance.

Time-critical systems differ from standard user-based collaborative systems

in several aspects. As is often the case with collaborative ranking, convergence

of item ranks to their proper order is guaranteed only in the limit of large times.

For news aggregation systems, this is clearly unacceptable as news items cease

to be news in the large time limit. Furthermore, many machine learning

approaches to collaborative systems are content-based and often require the

existence of a training data set that is a typical representation of the data as a

whole. Not only must such training sets be painstakingly built by hand, but in

time-critical systems, the nature of typical data is subject to change and there

is little guarantee that the content of the past will be a good representation of

future content.
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Some alternative approaches to collaborative ranking do not depend on

content stability, but rather on user persistence, through the introduction of

user reputation [49]. These reputation approaches are more amenable to time-

critical systems, because user communities tend to be more stable. Neverthe-

less, they are not immune to the problem of a changing environment. Indeed,

a robust reputation approach should be both content-blind and adaptive.

In the study that follows, we investigate a simple model of time-critical

collaborative ranking for a mixed user population. We present a natural mea-

sure of user reputation that exploits the innate feedback between popularity

and quality.

3.2 The Model

We consider a system of N users voting on M objects. Any user may cast a

vote for any object once and only once. At each time step, ΔM new articles

are introduced (by random users) into the system and the oldest ΔM articles,

with age given by amax, expire. Each article is randomly assigned a fitness f

in the range (0, 1).

The situation is depicted in figure 3.1. At each time step, in random order,

each user casts a single vote for an article of their choice, with a probability

dictated by their behavior. We define two types of users that vote stochasti-

cally according to simple behaviors. A quality user of quality β will vote for

an article j with probability:

Pq =
fβ

j∑
j′ f

β
j′

(3.1)
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Figure 3.1: A diagram of article birth and expiration in the simulation. At
each time step, ΔM new articles are born and the oldest ΔM articles with
age given by amax expire.

where the sum extends over all living articles for which the user has not yet

voted. Similarly, a popularity user will vote for an article j with probability:

Pp =
vj∑
j′ vj′

(3.2)

where vj is the total number of votes received by article j. A general population

mixture of quality and popularity users may be described as:

N = np +
∑

β

nq,β (3.3)

A rough measure of the time-critical performance of the system at any

instant, for a given population mixture, is the rank correlation of article votes

with article fitness for all living articles:

Rv(t) = rankcorr({fj}, {vj}) ∀j{aj < amax} (3.4)
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For any population mixture, the rank correlation converges to a relatively

stable value, Rv(t∞), for simulation times well beyond the maximum article

age. Unless otherwise specified, in the rest of this chapter, we will refer to the

the steady state rank performance simply as the “rank performance” or “rank

correlation” of the system.

It is important to note that the peak rank performance of an arbitrary

population is limited by the size of population, N , and is a direct consequence

of ties within the ranking. Indeed, even in the case of a fully cooperating

population of users, the minimum number of votes required to provide a full

ranking of M articles is given by the critical nc
v = M(M + 1)/2, where the

ith best article receives exactly i votes. The constraint that no user may vote

multiple times on the same article implies that population sizes N < nc
v will

necessarily be suboptimal. Any comparison of performance across differing

population sizes must take this limitation into account. For fully cooperating

populations of sizes below or above this critical value, the best achievable rank

correlation, Rbest can be found from a simple algorithm where each vote is cast

in such a way that the new correlation is maximized.

The best achievable rank correlation is displayed as a function of number

of votes cast nv, for several article set sizes , M , in fig. 3.2. As can be seen in

the inset of the figure, the relevant quantity for any article set size is nv/M , in

accordance with the common sense notion that the number of votes necessary

to achieve the best possible rank correlation scales linearly with the article set

size.

Needless to say, in the case of real collaborative systems, explicit user

cooperation is not typically present. However, the effective cooperation of any
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Figure 3.2: The best achievable rank performance given the number of votes.
The x-axis is the number of votes cast, nv and the y-axis is the maximal rank
performance achievable by distributing nv votes across M articles. The results
are calculated, using the straightforward algorithm described in the text, for
several cases where the number of articles is given by M = 100, 200, 300, 500.
The inset shows the same figure with the x-axis scaled to nv/M , revealing
that only the ratio of number of votes to number of articles is relevant in
determining the best achievable rank performance.

population may be defined as the ratio of its rank performance relative to the

best possible, C = R/Rbest.

For the simple case where all users in the population vote for the best article

possible (all quality users with β → ∞), the effective cooperation versus nv/M
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Figure 3.3: The effective cooperation versus the ratio of votes cast to article
set size, nv/M , for a population of “best” quality users (β → ∞). The scatter
plot is generated from several simulations of population sizes ranging from
N = 2 to 200, with an article set size of M = 200. The number of votes
cast scales linearly with population size, as can be seen from the inset. The
effective cooperation of small populations is significantly higher, indicating
that incidental cooperation is easier to achieve for small populations. For
large populations, the cooperation tends to saturate about an average value
of ∼ 0.62 and is relatively insensitive to the size of the population.

is displayed in fig. 3.3. Apparently, small populations achieve an incidental

cooperation more easily than large populations. For large populations, the

cooperation is insensitive to the size of the population, with an average value

of C ∼ 0.62.

59



3.3 Negative Effects of Popularity

To understand the qualitative effects of popularity, we consider only simple

population mixtures comprised of np popularity users and nq quality users, all

with quality β = 1. We define the quality fraction, Q = nq/N , and determine

how the steady-state rank correlation depends on quality fraction.
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Figure 3.4: An example of negative popularity effects. The steady-state rank
performance as a function of number of popularity users, np, for a simulation
with constant number of quality users, nq = 100. The dashed line indicates
the average rank performance of quality users alone. In all cases, the addition
of popularity users leads to a decrease in the rank performance of the system.
The results shown are a typical example of the effect of increasing number of
popularity users on the rank performance of the system.

The results, for a range of population fractions are displayed in figure

3.4. In all cases, it is clear that the overall rank performance of the system
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decreases as the number of popularity users in the population grows. In other

words, the existence of popularity always leads to a deleterious effect. This

is particularly problematic because, in real world systems where top-ranked

articles are displayed as an output, popularity effects are often unavoidable.

While quality users within the model behave independent of one another,

popularity users by definition respond to the actions of the population as a

whole. A popularity user responds both to the behavior of quality users and

to the behavior of other popularity users. Thus, popularity users interact

with the population and are susceptible to nonlinear effects that arise as a

consequence of that interaction.

To quantitatively assess the nonlinear effects of popularity , we consider

the case of a fixed number of popularity users and variable number of quality

users of constant quality β = 1. Under these circumstances, we avoid the

problem of comparing complex populations of differing size by examining the

rank performance of the popularity users alone. To accomplish this, for each

article i, we differentiate votes cast by popularity users from those cast by

quality users:

vi = vp
i + vq

i (3.5)

The rank performance of popularity users is simply the steady state rank

correlation of popularity votes with article fitness for all live articles, Rp
v(t∞).

The results for M = 1000 articles and a fixed population of popularity

users np = 100 are displayed in fig. 3.5. As the fraction of fitness users Q

increases, the rank performance of votes cast by popularity users (displayed

as (+)’s in the figure) improves. The effect is an example of herding behavior
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Figure 3.5: The rank performance versus the fraction of quality users, Q, in
the population. The simulation was performed with a constant number of
popularity users np = 100 and varying number of quality users nq. The (+)’s
display the rank performance for votes cast by the entire population of users.
The (x)’s display the rank performance for votes cast by only the popular-
ity users. As the number of fitness users increases, the rank performance of
popularity users Rp increases, displaying a clear “herding” behavior as quality
users guide popularity users to articles with high fitness. For small quality
fraction, Q ≤, the herding effect is approximately linear with Q. For quality
fractions Q > 0.2, the herding effect becomes sublinear, indicating that ex-
perts (or herders) are most effective when they constitute less than 20% of the
population.

and may be intuitively described as follows. When the number of quality users

is small, popularity users vote according to a random feedback loop. Initially,
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the number of votes for all articles is approximately constant and popularity

users are equally likely to vote for any article. Because the number of quality

users is small, v ∼ vq and there is relatively no correlation between the innate

fitness of an article, f and the probability to receive a vote. As the system

evolves, popularity users become arbitrarily biased in favor of articles with

many votes, in a rich-get-richer phenomenon.

When the number of quality users is sufficiently large, however, the initial

distribution of votes from quality users is biased towards articles with high

fitness, while the distribution of popularity votes remains homogeneous. As

the system evolves, popularity users respond to the bias of high fitness. In this

way, quality users herd popularity users to higher fitness articles.

For quality fractions Q ≤ 0.2, the herding is linear with Q, as indicated in

the figure. For quality fractions Q > 0.2, herding becomes sublinear with Q,

indicating that the addition of more quality users yields herding that is less

effective. Slower herding behavior is a direct consequence of the saturating

cooperation seen in fig. 3.3, as a large number of quality users have lower

incidental cooperation. Evidently, a group of experts (quality users) yield the

most “value” when they constitute less than 20% of the population.

While the addition of popularity users to a population negatively effects

the rank performance of the system, the deleterious effects of popularity are

mitigated by herding. To better understand the source of nonlinear herding

effects, we consider a mean-field deterministic model of vote evolution.
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3.4 Mean-Field Model for Mixed Populations

While the behavior of a numerical model of mixed populations is stochastic in

nature, according to the definitions of user behavior, it is nonetheless possible

to derive a mean-field deterministic model. In the derivations that follow,

we adopt an article-centric approach and consider the number of quality- and

popularity-user votes received by a particular article. The variable t denotes

the age of the article we consider. When it is necessary to explicitly refer to

the age of other articles, we will employ the notation aj [t] to refer to the age

of the jth article when the ith article is age t. While this notation may seem

confusing, it is employed solely as an explicit reminder that live articles in the

model have varying age. In addition, we consider the time evolution of new

articles after the system has been running for long periods of time (larger than

several times the maximum article age), so that we may assume steady state

dynamics.

Consider the number of quality votes received by the ith article as a func-

tion of time step:

vq
i [t] = vq

i [t − 1] +
∑

q-users m

(1 − Ami)
fi∑

j (1 − Amj)fj
(3.6)

The first summation extends over all m quality users. The coefficient (1−Ami)

is nonzero only when the mth user has not yet voted for the ith article. The

sum in the denominator extends over all the articles j in the selection pool.

In general this sum depends on the user in question, through the coefficent

(1 − Amj) as well as the fitness of the articles in the selection pool for that
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user. In the mean-field case, we assume that the sum in the denominator is

approximately constant:s

A =
∑

j

(1 − Amj)fj (3.7)

equivalent to the case where the fitness distribution of articles in the selection

pool of all users is on the average the same. Given the quality fraction of the

population Q = nq/N , we replace the sum over quality users with (QN−vq
i [t−

1]), the amount of quality users that have not yet voted for the ith article, with

the tacit assumption that vq
i [t] ≤ QN so that this term is positive definite.

The number of quality votes received by the ith article is thus

vq
i [t] = vq

i [t − 1] +
(QN − vq

i [t − 1])fi

A
(3.8)

or simply

vq
i [t] = QNfi/A + (1 − fi/A)vq

i [t − 1] (3.9)

The above equation is a finite geometric series with the solution:

vq
i [t] = QN(1 − [1 − fi/A](t+1)) (3.10)

Similarly, we can calculate the number of popularity user votes received by

the ith article:

vp
i [t] = vp

i [t − 1] +
∑

p-users m

(1 − Ami)(v
p
i [t − 1] + vq

i [t − 1])∑
j (1 − Amj)(v

p
j [aj [t − 1]] + vq

j [aj [t − 1]])
(3.11)
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Where the first sum extends over all m popularity users. The variable aj [t] is

the age of the jth article at time t. The sum in the denominator is simply the

total number of votes cast up to time t − 1 for all articles excluding those for

which the mth user has already voted. Under the mean-field assumption, we

treat this as a quantity independent of m and t:

B =
∑

j

(1 − Amj)(v
p
j [t − 1] + vq

j [t − 1]) (3.12)

The sum over popularity users can be replaced by the quantity ((1 − Q)N −
vp

i [t − 1]), so that the number of popularity user votes received by the ith

article is

vp
i [t] = vp

i [t − 1] + ((1 − Q)N − vp
i [t − 1])

vp
i [t − 1] + vq

i [t − 1]

B
(3.13)

In population growth models, the above equation is a form of an inhibited

growth equation. Unlike in population growth models, however, the number of

votes is guaranteed to be a monotonically increasing quantity. In general, such

equations are not analytically tractable and can express a wealth of nonlinear

dynamical phenomena. However, the model is certainly numerically viable.

In comparison to the stochastic simulation, the mean-field model yields com-

parable predictions for vote evolution. Indeed, the herding that occurs with

increasing population fraction can be examined using the mean field model.

Consider the popularity vote evolution of two articles with the same birth

date, but vastly different fitness. Numerical computation of the mean field

popularity vote of eq. 3.13 can be accomplished for any quality fraction, Q.
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Figure 3.6: The expected number of votes as a function of article age as pre-
dicted by the mean-field model for articles with fitness f = 0.1 (red) and
f = 0.9 (green) and different quality fractions. The vote evolution is a sig-
moidal function of time, up to the saturation point (where the expected num-
ber of popularity votes is equal to the number of popularity users and thus
cannot increase). The maximum difference between f = 0.1 and f = 0.9
sigmoids grows as the quality fraction, Q, increases.

In fig. 3.6, we examine the mean field prediction for popularity vote evo-

lution of two articles with fitness f = 0.1, 0.9 for different quality fractions.

When the quality fraction is low (Q ≤ 0.10), there is little difference in the

vote evolution curves for articles of differing fitness and hence, popularity users

do not distinguish between articles of differing fitness. As quality fraction in-
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creases, the difference in expected number of votes for articles of differing

fitness also increases and herding occurs. For long times, the vote evolution

of any article saturates to the maximum number of votes, which cannot ex-

ceed the number of popularity users. Prior to saturation point, the expected

number of votes as a function of time is sigmoidal with a precise shape that

is determined by the fitness and the mean field constants A and B. Using

this model, one can gain a qualitative understanding of the dependence of

herding behavior on the quality fraction, Q. Effective herding occurs when

there is a significant difference between the vote evolution curves of articles

with differing fitness. Because articles have a finite lifetime in the simulation,

the evolution curves presented in fig. 3.6 will be abbreviated at t = amax.

Optimal herding occurs for Q values that are large enough to achieve signif-

icant difference between the vote evolution curves of all articles of differing

fitness. As can be seen from the figure, for larger Q values, the vote evolution

is slower and may be abbreviated by the article lifetime prior to achieving the

maximal separation between article vote curves. This qualitatively explains

the transition from linear to sublinear herding behavior seen in fig. 3.5.

With an approximate understanding of the dynamics of popularity, we

now turn to the issue of whether it is possible to differentiate between users

of quality based on their historical behavior.

3.5 Dynamic User Reputation

In real collaborative voting systems, the precise nature of the user population

is not known. In general it is reasonable to expect the population to consist
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of users with varying quality. Furthermore, we expect varying susceptibility

of the population to the article popularity. In terms of the assumptions en-

compassed by our simple models of user behavior, we can therefore expect

a real system to behave approximately similar to a population with qual-

ity fraction Q = nq/N of quality users with a distribution of user qualities

{β}nq = (β1, β2, . . . , βnq).

Given such a population with no a priori knowledge of its makeup and no

knowledge of the innate fitness of articles, we would like to investigate whether

it is possible, using only explicitly observable metrics of the system, to recover

the makeup of the user population. Because we treat the user population as

relatively persistent (i.e., all users participate actively in the system over long

periods of time), we can exploit observations of user behavior of periods of

time. Specifically, we wish to quantify the reputation of all users within the

population, using a user based metric, Si that we will refer to as the user score.

A common sense notion of reputation suggests several properties to which the

user score should adhere:

Reputation should increase with user quality: The scores of any two

users i and j should obey Si > Sj if user i has higher quality than user

j, βi > βj. This implies that user score should increase monotonically

with user quality.

Reputation should be mutable and adaptive: In real-world systems the

quality of a given user may change throughout time. In accordance with

the first property, the user score must be capable of reflecting such a

change. This implies that user score must not depend too heavily on the
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“old” behavior of the user.

Reputation should be content-blind: Because the nature of article con-

tent is subject to change, the scoring of users must not depend in any

way on the properties of article content.

We can define a user score that satisfies the above properties by considering

the order in which an article accrues votes from users. Without much loss of

generality, we assume a system with reasonable rank performance, so that high

fitness articles are likely to receive a large number of votes. This is true even

for many systems with somewhat low quality fractions, as a consequence of

the herding behavior described in the prior section.

For illustrative purposes, consider the case of an article with high fitness

fi and isolate three quality users of quality {β1, β2, β3}, in order of decreasing

quality. At each time step, the probability that the three users have voted for

article i is (fβ1

i /
∑

j fβ1

j , fβ2

i /
∑

j fβ2

j , fβ3

i /
∑

j fβ3

j ) in order of decreasing prob-

ability. In the case where all three of the users vote for the article, the likeliest

order of votes received by the ith article is simply (m1, . . . , m2, . . . , m3), where

the dots represent possible votes by other users. In other words, the three

users vote on the article in the same relative order as their qualities. The

position of the mth user in this ordering can thus be recovered by counting

the number of users that follow user m to article i.

We can further extend this notion to include all articles. In other words,

we count the total number of users, Fm, that follow user m to any article. The

number of followers has some features that make it an ideal candidate for user

scoring. On the average, the Fm increases monotonically with βm, the user
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quality. Furthermore, Fm does not depend on the content of articles in the

system. Unfortunately, Fm for any user grows with the lifetime of the system.

Furthermore, in real systems, the activity of users may vary as a function of

time. What really matters is not the number of followers, but the proportion of

followers a user accrues. This suggests a normalization by the average number

of followers, Fm/〈Fm〉.
While the number of followers can be used as a measure of user reputation,

it is in some sense, too democratic. A user that is followed by several other

“good” users should be valued higher than a user that is followed by several

“mediocre” users. This reasoning is in line with the notions of self-consistence

introduced in the CiteRank system of chapter 2. Accordingly, we can weight

each follower by it’s user score to attain an update rule for the score of any

user.

Figure 3.7: An illustration of the user score update rule. When a user um′

casts a vote to an article Ai, the score of users that previously voted for that
article (u1, . . . , uk), are updated by the additive term Su

m′/〈Su〉
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As illustrated in fig. 3.7, for each vote that is cast m′ → i, by any user m′

to any article i, we update the user scores of prior users that voted for article

i:

∀m→i : Su
m = Su

m + Su
m′/〈Su〉 (3.14)

where the term Su
m′/〈Su〉 is computed at the time the vote is cast. The above

equation counts the number of followers of user m weighted by the relative

score of the followers. At any instant, the relevant quantity of interest to

determine the quality of a user m is Su
m/〈Su〉.

Having devised a method to score users according to their quality, it is

natural to ask how the user score compares to an empirical measure of user

performance. One simple empirical measure of user performance is the prob-

ability that a user votes for the best article possible.

A comparison of user score to the probability a user votes for the best

possible article is present in fig. 3.8 as a function of β/M . The probability to

vote for the best article is estimated as the fraction of times a vote was cast

to the best article over the total votes cast by that user. In real systems, of

course, the fitness of articles are not known, and thus the probability to vote

for the best article cannot be estimated. Nonetheless, as the figure affirms,

the user score is a good proxy for user quality.

Given the user score as a proxy for user quality, it is possible to examine

the effects of popularity in a different light. Specifically, we can ask how the

addition of popularity users to a population effects the user score. To do so,

we consider two groups of quality users: low quality users with quality βL and

high quality users with quality βH . We examine how the average user score
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Figure 3.8: The solid line depicts the probability that a quality user of quality
β/M will vote for the best article possible. The probability was estimated as
the fraction of votes cast for best articles over total votes cast, in a numerical
simulation containing M = 150 live articles, for 1000 time steps. The small
circles depict a scatter plot of user score, Su, (normalized for best fit) against
user quality β/M for nq = 100 quality users voting on M = 150 live articles,
for 1000 time steps. The plot clearly indicates that user score, as defined in
the text, is well correlated with the probability to vote for the best article, a
reasonable empirical measure of user quality.

of low and high quality users changes as popularity users are added to the

system.

The difference between average user score of high and low quality users as

a function of the number of popularity users, np, is presented in fig. 3.9 for

a system of n
βL

= n
βH

= 25. As can be seen from the figure, the addition of

popularity users helps distinguish low quality users from high quality users.
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Figure 3.9: The difference between normalized user score of low (βL = 1) and
high (βH = 5) quality users as a function of increasing number of popularity
users, np. The simulation was performed for population size of n

βL
= n

βH
= 25

and averaged over several trials. The results shown are a typical example of
the effect of popularity user addition and are qualitatively similar for a range
of high and low user qualities and population sizes.

The results shown are a typical example of popularity effects on user score and

are consistently reproducible for a range of user populations.

Intuitively, this effect can be understood by considering popularity users as

a “background field of followers”. On the average, high quality users receive

more popularity followers than low quality users and consequently receive a

high user score. In this way, popularity users provide useful feedback on the

quality of other users in the population. In order to take advantage of this

positive benefit of popularity, it is necessary to integrate user score into a
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method for ranking articles. Given a method of assessing user quality, we

would like to utilize this information to optimize the ranking of articles in the

system.

3.6 An optimal method for ranking articles

Conventionally, the live articles in the system are ranked according to the

raw number of votes received, irrespective of the type or quality of users from

which the votes originated. A better method for ranking articles should take

into account the quality or reputation of users.

To incorporate user reputation, we define the article score Sa
i . For each vote

that is cast by a user m to an article i, the article score is updated according

to:

Sa
i = Sa

i + Θ(
Su

m

〈Su
m〉

− su
c )

Su
m

〈Su
m〉

(3.15)

where the additive the additive term is evaluated at the time the vote is cast.

The coefficient, Θ(Su
m/〈Su

m〉 > su
c ) is a step function whose value is 1 when

Su
m/〈Su

m〉 > su
c and 0 otherwise and is included to ignore the noise effects from

users with relative user score below some critical value. While the inclusion of

this cutoff is not strictly necessary, it guards against the influence of a large

number of low-scored users voting coherently, as occurs with populations of

popularity users.

A comparison of the rank performance of the article score with that of

raw votes alone is presented in fig. 3.10 as function of time, as an example

of a typical scenario. The critical users score was heuristically chosen to be
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Figure 3.10: The rank performance over time for a typical system. The solid
red line depicts rank performance using ranking by raw number of votes. The
solid blue line depicts rank performance using weighted votes according to
the article score scheme defined in the text, with a cutoff of su

c = 0.8. The
article score ranking scheme, which assumes no prior knowledge about the user
population, provides a significant performance advantage of (approximately
∼ 10% in the above example). Dotted lines depict long-term averages for
both ranking schemes. The use of user reputation in the article score scheme
confers an advantage over ranking by only quality user votes.

su
c = 0.8. As can be seen from the figure, the performance of the article score

is significantly better than the rank performance for raw votes alone, providing

an average improvement in rank performance of ∼ 10%. Moreover, the article

score rank performance is significantly better than the rank performance for

votes cast by only quality users. For a population of quality user with varying

qualities, {βi}, this is to be expected, as the vote of a high quality user con-

tributes more to an article’s score than that of a low quality user, through the
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use of user reputation (user score).

It should be noted that the effects of popularity are not excluded in the

article score ranking scheme, as popularity users may contribute to the score

of other users and may achieve high user score through herding. In fact, as we

have seen, popularity users help to distinguish quality users from one another.

3.7 Conclusion

Understanding the dynamics of time-critical collaborative systems is an essen-

tial problem intimately linked to topics that span the fields of complex systems

and computer science. The performance of such systems is intimately related

to topics of recommendations, reputation, cooperation and rank aggregation.

We have presented a general model of time-critical collaborative systems that

is amenable to several real-world collaborative systems in operation today.

Popularity effects in these systems are often unavoidable and present a

potentially worrisome obstacle to good performance. As we have seen, left

untreated, popularity effects negatively impact the collaborative rank perfor-

mance. At the same time, the existence of a small percentage of high quality

users can mitigate popularity effects through herding behavior. We have de-

rived a mean field model of vote evolution in mixed populations. A detailed

examination of the dynamical properties of this model are a topic for future

consideration.

Of further note is the finding that popularity effects can be harnessed,

through the introduction of user reputation, to help distinguish the quality of

users.
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We have presented a method for estimating user reputation in a self-

consistent manner that is both adaptable and independent of the nature or

type of content within the system. Using this method, we have shown that

the scoring of users is well correlated with their probabilistic behavior.

Finally, we have presented a method to dynamically rank documents that

accounts for user reputation and provides significant improvement (∼ 10%) in

the rank performance of the system. The examination of systems with more

realistic user behavior is a topic of future study.
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Chapter 4

Dynamical Fluctuations and

Noise in Protein Binding

Network

4.1 Background

The study of dynamical fluctuations in complex systems has emerged as a

topic of intense interest germane to the fields of biology [6], financial systems

[50], traffic in information [51] and transportation [52] networks, and many

others. Of particular interest is the nature of collective effects that arise as

a consequence of the connectivity of the underlying network. By examining

such fluctuations we can understand when the underlying network plays an

important role and when, if possible, it may be ignored. A good candidate

arena to study dynamical fluctuations is that of biomolecular processes taking

place in cells.
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A variety of biomolecular systems involve large numbers of interacting ele-

ments. The processes by which living systems sustain the functions necessary

for life are quite complex. Within the cell this complexity arises from sys-

tems of gene expression, protein structure and protein-protein interaction. In

the process of protein synthesis, expressed genes are transcribed from DNA

to mRNA by RNA polymerase and are subsequently translated by the ribo-

some into protein expression. Expressed proteins undergo post-translational

changes and interact with one another chemically to accomplish the biologi-

cal functions of the cell. Throughout this process, several levels of complex

interactions exist that may be viewed from a network perspective are briefly

summarized here.

Genetic regulation is the process by which an expressed gene (or RNA

or protein product) up- or down- regulates the expression of other genes. Ge-

netic regulatory networks are therefore described by directed networks in which

edges may carry positive or negative signs. These networks display rich topo-

logical features, such as positive and negative feedback loops, that can lead

to a wealth of nonlinear dynamical behavior. The resulting gene expression is

stochastic and may be viewed as the summary output of the complex processes

that occur in genetic regulatory networks. From a functional standpoint, ge-

netic regulatory networks help the cell dynamically respond to changing intra-

and inter-cellular environments. Studies of fluctuations in genetic regulatory

networks have recently been undertaken [53–55], though they are typically

limited to understanding of simple topologies.

Metabolic networks describe the set of chemical reactions that break down

molecules into metabolites (catabolic) or construct molecules from metabolites
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(anabolic) with the assistance of enzymes in order to sustain the life of the cell.

In the network representation, nodes are metabolites and edges are directed

chemical reactions that transform one metabolite into another. Studies of

fluctuations in metabolite concentration have recently been performed by the

authors of [56]. These studies focus on linear metabolic pathways and small

motif extensions therefrom.

On the other hand, reversible binding interactions occur between proteins

and are governed by inter-protein affinity and kinetics. These binding in-

teractions describe the formation of multi-protein complexes of n-mers from

constituent monomer proteins. Proteins exist in several copy numbers within

the cell and at any instant the number of all monomers and higher order

complexes with the cell are stochastic quantities. The equilibrium values of

protein copy numbers are dictated by the Law of Mass Action which states

that the equilibrium concentration of a multi-protein complex is proportional

to reactant concentrations. In this chapter, we study fluctuations in a network

of reversible dimer interactions.

4.2 Network Description of Protein Protein

Interactions

We adopt a network description of protein protein interactions (PPI) for a

reversible dimer network of N distinct proteins represent by nodes. Edges

are undirected and represent reversible binding interactions. The network is
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described by an NxN symmetric adjacency matrix:

Aij =

⎧⎪⎨
⎪⎩

1 if protein i binds to protein j;

0 otherwise.

Each unique entry in the adjacency matrix correspond to the formation of

a dimer (ij) from constituent proteins i and j. All dimers and monomers

represented in the network may exist with multiple copy number within the

cell. At any instant, the dynamical system may be described by the set of all

protein instantaneous free ({F ∗
i }) and bound dimer ({D∗

ij}) copy numbers. In

this work, we treat the volume of the cell as constant and assume unit volume

for simplicity. Thus, throughout this chapter, we will use the terms “copy

number” and “concentration” interchangeably. The system at any instant is

described by the state variables given by {Ci}, the set of total protein copy

numbers, {D∗
ij}, the set of copy numbers for all dimers (ij) and {F ∗

i }, the set

of free protein copy numbers. At any instant, the system is constrained by

mass conservation:

Ci = F ∗
i +

∑
i�=j

D∗
ij + 2D∗

ii (4.1)

so that F ∗
i is not an independent variable. The latter term in the above

equation pertains to homodimers, dimers that are formed from two copies of

the same protein.

The dynamical equation that governs the rate of formation of a dimer from

its constituent proteins is determined by chemical kinetics and is given by the
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simple balance relation

d

dt
D∗

ij = r
(on)
ij F ∗

i F ∗
j − r

(off)
ij D∗

ij (4.2)

where the r
(on)
ij and r

(off)
ij are the kinetic rate constants for association and

dissociation.

From the above equation it is clear that dynamic equilibrium is achieved

when the left hand side vanishes so that

Dij =
FiFj

Kij
(4.3)

where we have adopted the convention that unstarred variables denote equi-

librium concentrations. The term Kij = r
(off)
ij /r

(on)
ij is referred to as the disso-

ciation constant. At a given temperature, it is related to the binding energy,

εij , of a dimer by εij = −kBT ln(Kij/K
(0)).

An alternate and very useful examination of the system that does not

explicitly involve time dependence can be accomplished with the introduction

of the partition function

Z({Ci}) =
∑
{D∗

ij}
NS({D∗

ij}) exp(−
∑
i<j

εijD
∗
ij

kBT
) (4.4)

where the sum extends over all possible occupation states D∗
ij for a particular

set of total protein abundances Ci. The combinatorial factor NS({D∗
ij}) counts

the number of microstates of individual labeled proteins resulting in a given

occupation state {Dij}. For example, for a single heterodimer AB, NS(D∗
AB)
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is the combinatorial factor:

NS(D∗
AB) =

(
CA

D∗
AB

)(
CB

D∗
AB

)
D∗

AB! =
CA!CB!

D∗
AB!F ∗

A!F ∗
B!

(4.5)

Using the Stirling’s approximation for factorials in NS({D∗
ij}) one gets a

concise expression for the free energy of a given occupation state {D∗
km}:

G =
∑

(km)εE

{εkmD∗
km + kBTD∗

km[log(D∗
km) − 1]} (4.6)

+ kBT
N∑

i=1

{F ∗
i [log(F ∗

i ) − 1] − Ci[log(Ci) − 1]}

(4.7)

where the first sum runs over all E edges (dimers) and the second sum runs

over all nodes (proteins) in the network. For brevity we have suppressed

volume-dependent entropy terms that are not relevant to our discussion here.

The requirement of zero first derivative of the free energy with respect to

dimer copy number relates equilibrium free (Fi) and bound (Dij) concentra-

tions in the system via Dij = FiFj/Kij, the same equilibrium relation found

by considering the dynamical equation 4.2. Insertion of equilibrium dimer

concentration into the conservation of mass (eq. 4.1), gives the Law of Mass

Action (LMA):

Fi =
Ci

1 +
∑

j AijFj/Kij

(4.8)

The above set of nonlinear equations, while not analytically tractable, readily

yield a numerical solution (via iteration) for equilibrium free concentrations

and, in accordance with eq. 4.3, equilibrium dimer concentrations as well. It
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should be further noted that the above approach is further extendible to sys-

tems involving higher-order multi-protein complexes. For a simple illustration

of this, consider a system of homogenous dissociation in which a protein A

participates in dimer AB and trimer ABC. The free concentration of protein

A is thus determined by FA = CA/(1 + FB/Kd + FBFC/K2
d).

Throughout this chapter, we will make use of both the temporal and par-

tition function formalisms in order to assess the effect of fluctuations.

We are generally interested in studying fluctuations of any of the inde-

pendent state variables {Ci} or {D∗
ij}. From the standpoint of their role in

the cell, fluctuations in the former are quite different from fluctuations in

the latter. Total protein concentrations in the cell are regulated by the vari-

ous mechanisms that control protein expression as a function of the changing

intra- and extra-cellular environment. Such regulation is a consequence of

the complicated systems of genetic regulatory networks and is further influ-

enced by stochasticity in systems of protein production and degradation. We

will not study these systems here, but rather we adopt empirical estimates

of total protein abundance and fluctuation as an input and examine the ef-

fect of fluctuating abundance on the protein binding network. We will refer

to fluctuations in protein binding that arise as a result of total abundance

fluctuations as driven fluctuations. Conversely, fluctuations in dimer concen-

tration occur even when total protein concentration is static, as a result of the

thermal kinetics of protein-protein collisions and binding energy. We will refer

to this latter type as spontaneous fluctuations. It should be further remarked

that these two types of fluctuations differ in typical magnitude and timescales.

Driven fluctuations are usually somewhat larger than the spontaneous noise.
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They also change relatively slowly on timescales (tens of minutes) that are

large compared to the relaxation time of the mass action equilibrium which

are rarely slower than seconds.

In general, for either type of fluctuation we are interested in calculating the

noise in dimer concentration as quantified by the deviation from equilibrium,

δDij. The magnitude of the noise is given by the second moment of, 〈δD2
ij〉 =

〈(D∗
ij − Dij)

2〉.

4.3 The Empirical PPI Network

To illustrate general principles with a concrete example, in this study, we used

a curated genome-wide network of PPI in baker’s yeast (S. cerevisiae), which,

according to the BIOGRID database [57], were independently confirmed in at

least two published experiments. A genome-wide set of protein abundances for

bakers yeast was experimentally studied in [58, 59] during log-phase growth

of the medium. Protein abundances were found to be highly variable, ranging

over orders of magnitude from copy numbers of 50 up to 106. We retain only

interactions in the PPI network between proteins of known total concentration,

yielding a network of 4085 heterodimers formed from 1740 constituent proteins.

The same network was previously used by others in [60, 61].

Another assumption (justified in these earlier studies) is that in the absence

of large-scale experimental data on the strength of protein-protein interactions

we use a set of evolutionary-motivated [61] dissociation constants:

Kij =
max(Ci, Cj)

20
(4.9)
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for all interactions in our network. The evolutionary-motivated association

is defined to be the weakest association strength necessary to keep a sizable

fraction of the rate-limiting protein in a given interacting pair bound in the

dimer. The denominator 20 is chosen to reproduce the average association

strength, 〈1/Kij〉 = 1/5 nM, in a set of experimentally measured dissociation

constants from the PINT database [62], which are assumed to be representative

for all biologically functional interactions among yeast proteins. This choice is

further justified by a relative lack of sensitivity of equilibrium concentrations

to details of assignment of dissociation constants to individual interactions

(see Fig. 5 in Ref. [61]).

To incorporate the effect of higher-order multi-protein complexes in our

study, we use a list of manually curated yeast protein complexes obtained from

the MIPS CYGD [63] database (May 2006) formed from 3 or more constituent

proteins with known total concentration, yielding a set of 81 multi-protein

complexes formed from 2004 constituent proteins. While the constituents of

multi-protein complexes are known, the detailed structure of their binding is

not. In light of this, we assume a constant dissociation of 5nM for binding

within multi-protein complexes and a minimum number of binding interactions

necessary to cohere the constituents. Under these assumptions, it is possible

to include the effect of multi-protein complexes on free and dimer equilibria

using the techniques described in the previous section.
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4.4 Driven Fluctuations

The effect of large scale (twofold) static changes in total protein abundance on

network equilibria concentration has recently been studied by the authors of

[61]. In the study, the authors performed a series of numerical experiments in

which they systematically perturbed the individual protein abundance of all

proteins within the network by a factor of two, Ci → 2Ci, and observed the

resulting cascading change in all equilibrium free concentrations. In particular,

they found that such waves of perturbation exponentially decay with network

distance from the source of the perturbation. Interpreting such large total

concentration changes as cellular signals, the biological implications of this

finding suggest that problems of cross-talk between functional systems are

naturally mitigated by this decay. Interestingly, the authors noted that despite

this general decay with network distance, the discovery of several proteins at

larger network distances (∼ 4) that exhibited significant free concentration

changes (∼ 20%) in response to the source perturbation. The authors dubbed

the pair of source perturbed protein and responding protein as “concentration-

coupled”. While it is not clear that these concentrated coupled pairs are

employed for real cellular signaling, their existence suggests that the network

response to changes in protein abundance can be significant.

In contrast to large scale static perturbation, small perturbations of total

protein concentration within the cell occur as a consequence of stochasticity in

production and degradation and possibly as a result of noise originating in ge-

netic regulatory systems. This latter variety of fluctuation may be considered

as a type of intra-cellular noise in protein abundance. The relative response
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of free concentration of proteins to changes in total abundance was originally

presented by the authors of [60] for the response Fm to small static changes in

total concentrations Ck. It is quantified by the matrix

Λkm =
∂Ck

∂ log Fm

= Dkm(1 − δkm) + Ckδkm (4.10)

which follows directly from the mass conservation equation eq. 4.1. In the

above formula and in the derivation that follows, we have omitted the homod-

imer case for the sake of simplicity, though it require only a trivial modification.

It follows that an arbitrary number of small perturbations δCm add up to

δFi

Fi
=

∑
(Λ−1)imδCm . (4.11)

Due to bilinear dependence of Dij on Fi and Fj , one also has

δDij

Dij

=
δFi

Fi

+
δFj

Fj

. (4.12)

Thus, in general, the amplitude of driven fluctuations is given by:

〈δD2
ij〉

Dij
= Dij〈(

∑
k

(Λ−1)ikδCk +
∑
m

(Λ−1)jmδCm)2〉 (4.13)

The evaluation of the above expression requires the full matrix of cross-correlations

〈δCkδCm〉 which is currently experimentally unknown. Indeed, measurement

of the noise profile of cross-correlations presents a significant challenge to the

empirical community. Despite this current lack of knowledge, it is nonetheless

still possible to examine two interesting cases of noise profiles.
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For the simplest case of uncorrelated driving fluctuations 〈δCkδCm〉 ∝
C2

kδmk (the so-called intrinsic noise [6]), the driven response becomes:

(〈δD2
ij〉

Dij

)
int

∝ Dij

∑
k

[(Λ−1)ik + (Λ−1)jk]
2C2

k (4.14)

Alternatively, for completely coherent driving fluctuations (so called ex-

trinsic noise), 〈δCkδCm〉 ∝ CkCm, the driven response becomes:

(〈δD2
ij〉

Dij

)
ext

∝ Dij

∑
k

[((Λ−1)ikCk)
2 + ((Λ−1)jkCk)

2 + 2Λ−1
ik Ck

∑
m

Λ−1
jmCm]

(4.15)

Empirical examinations of noise in protein abundance were considered by

the authors of [59] who examined cell-to-cell variability and found variability in

relative protein abundances of δCi/Ci ∼ 20%. With this assumption, the con-

stant of proportionality in the above equations for driven intrinsic and extrinsic

noise in dimer concentration is (0.2)2. Of particular interest, is the magnitude

of the response of driven dimer noise δD/D to the incident driving noise δC/C.

The relative response is characterized by the ratio (δD/D)/(δC/C). The re-

sults for intrinsic and extrinsic driven noise amplitudes are presented in fig.

4.1. As can be seen in the figure, the intrinsic noise response is significantly

larger than the extrinsic case. Evidently, in most cases, coherent driving fluc-

tuations lead to fluctuations in dimer concentration that tend to cancel one

another, yielding a smaller response. In the intrinsic case, the opposite seems

to be the case, as the amplitude of the dimer response is magnified relative to

that of the driving fluctuations.

90



10
0

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

D

(δ
 D

/D
)/

 (
δ 

C
/C

)

Figure 4.1: The driven driven noise response for intrinsic (red X’s) and extrin-
sic (blue circles) incident fluctuations in total abundance in the PPI network
of S. Cerevisiae. The results are shown for dimers with equilibrium concen-
tration D ≥ 1 copy per cell. In general, the noise response to intrinsic driving
fluctuations is significantly larger than in the extrinsic case. In most cases,
extrinsic driving fluctuations lead to fluctuations in dimer concentration that
tend to cancel one another, as evidenced by a response that is typically less
than unity. In contrast, intrinsic driving fluctuations lead to dimer response
that is amplified relative to the amplitude of the driving noise.

4.5 Spontaneous Fluctuations

As previously mentioned, spontaneous fluctuations in free and bound protein

concentrations occur even while the total abundance of all proteins within the

network remains fixed. These fluctuations arise as a consequence of chemical
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kinetics and thermal stochasticity of molecular collisions and, as such, are well

suited to a statistical physics treatment. Employing the partition function

approach of eq. 4.4 and the corresponding free energy of eq. 4.7, we can

calculate the generalized susceptibility from the second derivative of the free

energy with respect to dimer concentration.

Γ(ij)(km) =
Dij

kBT

∂2G

∂Dij∂Dmk
(4.16)

= δikDij/Fi + δjmDij/Fj + δikδjm.

where Γ is an E × E matrix that characterizes the response of the system

to perturbations and the pair indices (ij) denote dimers (edges) within the

network. The last term in the above connects the perturbative response of

neighboring dimers that share a common constituent protein. In accordance

with the Fluctuation Dissipation Theorem (FDT) [64] and as derived by the

author of [65] for an arbitrary network of reversible chemical reactions, the

spontaneous noise for a dimer (ij) is given by the corresponding diagonal

element of the inverse susceptibility:

η ≡ 〈δD2
ij〉

Dij
=

(
Γ−1

)
(ij)(ij)

(4.17)

Of particular note is that spontaneous noise is independent of temperature, a

well-known outcome of FDT. Furthermore, a direct consequence of eq. 4.17

is that spontaneous fluctuations for a dimer linked to the rest of the network

involve contributions from other dimers, through the inverse of Γ, the so-called

collective effects of the network. To address the impact of collective effects on
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the noise, it seems natural to compare the noise of a dimer in the network to the

noise for an isolated dimer (isol-F ) with the same equilibrium concentrations

Fi, Fj , and Dij. Such an isolated dimer corresponds to a matrix Γ that is

diagonal and has a trivial inverse such that:

ηisol−F = [Γ(ij)(ij)]
−1 = [

Dij

Fi

+
Dij

Fj

+ 1]−1 (4.18)

It can further be shown that the real noise of a dimer in the network always

exceeds the isolated dimer noise prediction, η > ηisol−F, by the following con-

vexity argument.

For brevity, we assume the edge notation μ = (ij), ν = (mk). The matrix

Γ is symmetrized by the diagonal matrix:

Qμν =
√

Dμνδμν (4.19)

and is diagonalized by a unitary transformation U so that:

Γ = QUΓDU−1Q−1 (4.20)

From the convexity of the functional form f(x) = x−1 it follows that

Γ−1
μμ ≥ (Γμμ)−1 (4.21)

where

Γ−1
μμ =

∑
α

U2
μα(ΓD)−1

αα (4.22)
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and

(Γμμ)−1 = (
∑

α

U2
μα(ΓD)αα)−1 (4.23)

Clearly then, collective effects act to amplify thermal fluctuations. This is

related to propagation of static perturbations, studied in [60], as fluctuations

from neighboring dimers contribute to a dimer’s own noise. We define the

amplification factor for a dimer (ij):

R = η/ηisol−F (4.24)

A cumulative histogram of amplification factors for the PPI network of baker’s

yeast is examined in Fig. 4.2.

Collective amplification of thermal noise presents a worrisome theoretical

possibility. Can amplification occur without limit? To address this question,

it is fruitful to develop an alternative formalism in which the magnitude of

fluctuations are calculated directly from the partition function. Using Eq. 4.4

it is straightforward to show, by a change of variables, that higher moments of

Dij can be related to the lower moments evaluated at a reduced system size.

Indeed, in calculation of 〈Dij〉 the combinatorial factor containing Ci!Cj!/Dij !

becomes DijCi!Cj!/Dij! = CiCj(Ci − 1)!(Cj − 1)!/(Dij − 1)!. As a result one

has the following exact equality:

〈Dij〉|Ci,Cj
= CiCj

Z(Ci − 1, Cj − 1)

Z(Ci, Cj)
(4.25)

Here for the sake of brevity we omitted the concentrations other than Ci and

Cj as parameters of the statistical sum Z({Ck}). A similar expression for a
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Figure 4.2: Cumulative histogram of amplification factors for spontaneous
(thermal) noise of equilibrium dimer concentrations Dij in the PPI network of
S. Cerevisiae. Collective effects lead to significant noise amplification relative
to the isolated case. Amplification factors range as high as 20, while, for the
bulk of the dimers in the network, amplification is of order 1.

higher moment

〈Dij(Dij − 1)〉 = Ci(Ci − 1)Cj(Cj − 1)
Z(Ci − 2, Cj − 2)

Z(Ci, Cj)

may be rewritten as

〈Dij(Dij − 1)〉 = 〈Dij〉|Ci,Cj
〈Dij〉|Ci−1,Cj−1

(4.26)
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where the latter moment is evaluated in a system for which the copy number

of proteins i and j (Ci and Cj) are reduced by exactly one. It follows that

apart from Eq. 4.17, the noise may be alternatively expressed as:

η = 1 + 〈Dij〉|Ci−1,Cj−1
− 〈Dij〉|Ci,Cj

(4.27)

The above expression for thermal noise hints at an intimate connection between

the dynamic and static perturbations of the mass-action equilibrium. This

connection can be made even more explicit by expanding the 2nd term to first

order in total concentration:

η � 1 − Dij [(Λ
−1)ii + (Λ−1)jj + 2(Λ−1)ij ] (4.28)

where we have expressed the derivatives of the expansion using the definition

of the matrix Λ given ineq. 4.10.

It should be remarked that, despite the approximation used in Eq. 4.28,

this approach is in good agreement with the FDT formalism first introduced.

One notes that this expression for noise explicitly depends only on the total and

dimer concentrations used to define the matrix Λ. This suggests the definition

of a new isolated model (isol-C ), consisting of an isolated (ij) dimer formed

by proteins with the same Ci, Cj and Dij . This is only possible through

changes in the dissociation constant and free concentrations of constituent

proteins i and j. It is important to mention that this model is distinct from

the isol-F benchmark defined earlier, in which each isolated dimer has the

same equilibrium free and dimer concentrations (yet different Ci and Cj) as
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the corresponding dimer in the network. For an isol-C dimer, the matrix Λ is

2x2 and trivially invertible. The noise is given by:

ηisol−C =

(
Dij

Ci − Dij
+

Dij

Cj − Dij
+ 1

)−1

(4.29)

A comparison with the isol-F model reveals that a dimer in the isol-C model

has an equilibrium free concentration F̃i = Fi +
∑

k Dik and similarly for pro-

tein j. In other words, the contribution of neighboring dimers to the noise of

dimer (ij) has been included by absorbing them into an effective free concentra-

tion. Thus, while the isol-F model completely ignores the effect of neighboring

dimers, the isol-C model brings neighboring sources of noise one step closer

to dimer (ij). Consequently, the noise of a dimer in the isol-C model always

exceeds the noise of a corresponding dimer in the real network. The real noise

for a dimer in a network falls somewhere between the bounds of these two

isolated dimer scenarios.

A summary of the real noise amplitude and that of the lower- and upper-

bound models is given in Fig. 4.3. The actual spontaneous fluctuations

achieved are a result of real network topology and the distribution of total

protein concentration. It is natural to ask how these fluctuations compare to

their minimally and maximally achievable values. This suggests the coordinate

transformation:

η ≡ (1 − ζ)ηisol−F + ζηisol−C (4.30)

A histogram of ζ for the PPI network of yeast is shown in Fig. 4.4. Of

particular note is the large pileup against the upper limit of amplification. In

real PPI networks, it would seem that collective effects lead to amplification
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Figure 4.3: A comparison of the noise in a network dimer to two isolated dimer
models defined in the text. (a) The isol-F model: Each dimer (ij) is isolated
and has the same protein free- (Fi, Fj) and dimer- concentrations (Dij) as the
corresponding dimer in the network. This model ignores the contribution of
other dimers to the noise of dimer (ij) (b) The noise of a dimer (ij) in the
network is given by the (ij), (ij) diagonal element of the inverse of the matrix
Γ as described in the text. (c) The isol-C model: Each dimer (ij) is isolated
and has the same protein total- (Ci, Cj) and dimer- concentrations (Dij) as
the corresponding dimer in the network. The real noise is bound below and
above by the isolated models ηisol−F < η < ηisol−C
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Figure 4.4: Histogram of the spontaneous noise coordinate ζ in the PPI net-
work of bakers yeast. The coordinate describes the position of noise amplitude
relative to its lower (ζ = 0) and upper (ζ = 1) limits described in the text.

quite close the maximally achievable limit.

Given numerical calculations for the spontaneous and driven noise studied

above, it is natural to ask how the noise amplitude relates to simple predic-

tors such as abundance and network connectivity (number of connections a

dimer has to the network). With high statistical significance, we find that the

relative amplitude (
√
〈δD2

ij〉/Dij) of both spontaneous and driven (intrinsic)

noise is negatively correlated with dimer abundance Dij (Spearman coefficient

of r = −0.98, r = −0.45, respectively). Furthermore, we found that rela-
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tive amplitude of both spontaneous and driven (intrinsic) noise are positively

correlated with dimer connectivity (r = 0.42, r = 0.33). These results are con-

sistent with the overall scenario that we investigated above in which any type

of noise propagates throughout the network and where the existence of net-

work connections(both direct and, to some extent, indirect) to noisy partners

positively contribute to fluctuations of individual dimers.

4.6 Conclusion and Outlook

We have presented a formalism to study dynamical fluctuations in protein

binding networks and have characterized the collective network effects on

driven and spontaneous noise. For the case of driven noise, we have quantified

the collective effects of the network in terms of correlations in total abundance

fluctuations. The empirical measurement of total abundance fluctuations in

real cells are currently unknown and are a topic for future investigation. We

have calculated the dimer noise response for the two important cases of in-

dependent (intrinsic) and coherent (extrinsic) driving fluctuations in the real

PPI network of S. cerevisiae. The response to extrinsic fluctuations is, in most

cases, less than unity, while the response to intrinsic fluctuations tend to be

amplified. The ramifications of this result hint at both a robustness to coher-

ent fluctuations and susceptibility to independent fluctuations that remains to

be understood in a biologically meaningful context.

For the case of spontaneous noise, the introduction of an isolated dimer

model (isol-F) allows us to quantify collective network effects in terms of noise

amplification factors that are found to be quite significant, ranging as high as

100



20 for the most extreme cases. The definition of an alternate isolated dimer

model (isol-C) that absorbs the noise contribution from neighboring dimers

into an effective free concentration allow for the specification of an upper

bound on spontaneous dimer noise.

For both spontaneous and intrinsic driven noise, there is a positive corre-

lation with noise amplitude and network connectivity, in agreement with the

common-sense notion that fluctuations in neighboring dimers contribute to

the noise of a dimer. Possible extensions of this work include more detailed

examination of correlation between noise and a dimer’s local topology, as well

as the study of protein fluctuations that are functionally related.
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