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We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Barry McCoy – Dissertation Advisor
Distinguished Professor, C.N. Yang Institute for Theoretical Physics

Vladimir Korepin – Chairperson of Defense
Professor, C.N. Yang Institute for Theoretical Physics

Dmitri Averin
Professor, Department of Physics and Astronomy

Abhay Deshpande
Professor, Department of Physics and Astronomy

Leon Takhtajan
Professor

Department of Mathematics, Stony Brook University

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Correlation Functions of One-Dimensional
Impenetrable Anyons

by

Ionel Ovidiu Pâţu

Doctor of Philosophy

in

Physics

Stony Brook University

2009

In the last years we have witnessed the experimental realization
of many one-dimensional physical systems. This has renewed the
interest of theoretical physicists in computing relevant quantities
for such models, which are experimental accessible.

We have investigated the field-field correlation functions of a model
of one-dimensional impenetrable anyons which is relevant for sys-
tems that can be realized with edges of the electron liquids in
the Fractional Quantum Hall Effect (FQHE) regime. Varying the
statistics parameter, the correlation functions of this model, inter-
polate between the ones for impenetrable bosons and free fermions.

We have computed the large distance asymptotic behavior of the
field-field correlator at finite temperatures solving a Riemann-Hilbert
problem associated with the integrable system of nonlinear partial
differential equations characterizing the correlator. As a prelimi-
nary step we have obtained a Fredholm determinant representation
using two methods: the anyonic generalization of Lenard’s formula
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and the summation of form factors. We show that the leading
term of the asymptotics is oscillatory with the period of oscillation
proportional with the statistics parameter. Also as the statistics
parameter approaches the free fermionic point the second leading
term becomes comparable in magnitude with the leading term but
with opposite phase producing fermionic beats.
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Chapter 1

Introduction

For hard-core particles moving in two spatial dimensions, one can unambigu-
ously define the notion of braiding of the particle trajectories by introducing
the winding number n that gives the number of times the trajectory of one
particle encircles another particle. This fact makes it possible to consider
“anyonic” particles with fractional exchange statistics [36, 57], for which the
wavefunction acquires the non-trivial phase factor e±i2πκ, where κ is the “statis-
tical parameter”, whenever n changes by ±1. This situation can be contrasted
with the case of three spatial dimensions where one can define only permuta-
tions (no braiding) of point-like particles leading to only integer statistics, i.e.
κ = 0, 1 for bosons and fermions, respectively. In physical terms, the anyons in
two dimensions can be viewed as the charge-flux composites for which the sta-
tistical phase arises as the result of the Aharonov-Bohm interaction between
the charge of one particle and the flux of the other [76]. Experimentally, anyons
can be realized as quasiparticles of the two-dimensional (2D) electron liquids
in the Fractional Quantum Hall Effect (FQHE) [4]. Individual quasiparticles
are localized and controlled by quantum antidots in the FQHE regime [37],
and the transport properties of multi-antidot systems should provide direct
manifestations of their fractional exchange statistics [5]. Dynamics of individ-
ual FQHE quasiparticles attracted considerable attention (see, e.g., [6, 25]) as
a possible basis for realization of the topological quantum computation [52].

Both conceptually and in practice (e.g., in FQHE systems), the 2D anyons
can be confined to move in one dimension. There are, however, the aspects of
fractional statistics in one dimension that make its introduction more compli-
cated than in two dimensions. One is that for strictly 1D particles, a trajectory
of one particle can not wind around another, making the sign of the exchange
phase e±iπκsgn(xi−xj)/2 that the wavefunction should acquire when the particle
with coordinate xi moves past the one with xj, undetermined. The sign of this
phase depends on whether xi rotates clockwise or counter-clockwise around xj
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in the underlying 2D geometry, which also explains why the signs of the phase
change at xi = xj are opposite for the two particles in the pair: rotation of one
sense for increasing coordinate xi implies the opposite rotation for increasing
xj. This fact hindered the early attempts at direct introduction of the 1D
anyons as charge-flux composites [1, 72]. It implies that any description of the
1D anyons requires an additional convention on the choice of the sign of the
statistical phase for each pair of particles. As discussed in more details below,
this choice can be arbitrary and affects the appropriate boundary conditions
of the quantum-mechanical wavefunctions of the system of anyons.

One-dimensional impenetrable anyons in a “box” of length L are described
by the following second-quantized hamiltonian (we consider ~ = 2m = 1)

H =

∫ L

0

dx [∂xΨ
†(x)][∂xΨ(x)] ,

supplemented with the impenetrability condition on the energy eigenstates(∫
dx′ Ψ†(x)Ψ†(x′)δ(x− x′)Ψ(x′)Ψ(x)

)
|Ψ〉N = 0 ,

or
(Ψ(x))2|Ψ〉N = 0 .

The anyonic fields obey the following commutation relations

Ψ(x1)Ψ†(x2) = e−iπκε(x1−x2)Ψ†(x2)Ψ(x1) + δ(x1 − x2) ,

Ψ†(x1)Ψ†(x2) = eiπκε(x1−x2)Ψ†(x2)Ψ†(x1) ,

Ψ(x1)Ψ(x2) = eiπκε(x1−x2)Ψ(x2)Ψ(x1) ,

where ε(x) = x/|x|, ε(0) = 0 and κ ∈ [0, 1] is the statistics parameter. For
κ = 0 the previous relations are bosonic and for κ = 1 they are fermionic.
Anyonic fields can be constructed in terms of bosonic fields in the following
manner

Ψ†(x) = Ψ†B(x)eiπκ
∫ x
0 dx′ρ(x′), Ψ(x) = e−iπκ

∫ x
0 dx′ρ(x′)ΨB(x) ,

with
ρ(x) ≡ Ψ†(x)Ψ(x) = Ψ†B(x)ΨB(x) .

This type of construction is the generalization of the Fermi-Bose correspon-
dence

Ψ†B(x) = Ψ†F (x)eiπ
∫ x
0 dx′ρ(x′), ΨB(x) = e−iπ

∫ x
0 dx′ρ(x′)ΨF (x) ,
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which gives impenetrable bosonic fields in terms of canonical anticommuting
fermionic ones. Due to the fact that

ρ(x) ≡ Ψ†(x)Ψ(x) = Ψ†B(x)ΨB(x) = Ψ†F (x)ΨF (x) ,

and the wavefunctions differ only by a phase, the density-density correlation
functions of impenetrable anyons, bosons and free fermions are the same. How-
ever, the field-field correlation function

〈Ψ†(x2)Ψ(x1)〉T

of impenetrable anyons is different from the similar correlation of free fermions
and impenetrable bosons and will be the main object of study of this thesis.

Investigating the correlation functions of physical models is in general an
extremely difficult task. In our case it is possibly to perform this analysis
rigorously due to the fact that the wavefunctions of the system can be obtained
in an exact form. In the case of a N-particles eigenstate of the Hamiltonian

|Ψ〉N =
1√
N !

∫
dNz χN(z1, · · · , zN)Ψ†(zN) · · ·Ψ†(z1)|0〉 ,

the quantum mechanical wavefunction obeys

χN(z1, · · · , zi, zi+1, · · · , zN) = eiπκε(zi−zi+1)χN(z1, · · · , zi+1, zi, · · · , zN) (1.1)

and has the form

χN =
e+iπκ

2

∑
j<k ε(zj−zk)

√
N !

∏
j>k

ε(zj − zk)
∑
π∈SN

(−1)πei
∑N
n=1 znλπ(n) .

where λ′s are the quasimomenta of the particles. The individual quasimo-
menta λj depend of the boundary conditions imposed on the wavefunctions.
In contrast to particles of integer statistics, wavefunctions of the anyons sat-
isfy different quasi-periodic boundary conditions in their different arguments.
This fact was first noticed by Averin and Nesteroff in [5]. For example, in the
case of two particles, if we impose periodic boundary conditions on the first
variable

χ2(0, z2) = χ2(L, z2) , (1.2)

then from the anyonic property of the wavefunction (1.1) we obtain

χ2(z1, 0) = ei2πκχ2(z1, L) . (1.3)
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and the Bethe equations are given by

eiλjL = (−1)e−iπκ .

Analogously imposing periodic boundary conditions on the second variable

χ2(z1, 0) = χ2(z1, L) ,

implies
χ2(0, z2) = e−i2πκχ2(L, z2) ,

and the Bethe equations
eiλjL = (−1)eiπκ .

The origin of this difference can be traced back to the fact that the fractional
statistics requires braiding of particles, something that strictly speaking can
not be done in one dimension. To define the braiding of 1D particles one
needs to first adopt a convention on how the particles pass each other at
coinciding points, something that is done by choosing a specific sign of the
exchange phase eiπκε(z1−z2)/2. After that, one more choice that needs to be
made is how the 1D loop with anyons is imbedded into the underlying 2D
anyonic system. In the case of two particles, this choice is reflected in the
possibility of choosing different boundary conditions for two different anyonic
coordinates and determines how the particle trajectories enclose each other
as the particles move along the loop [5]. As reflected in Eqs. (1.2) and (1.3),
periodicity in z1 means that the trajectory of z1 does not enclose the particle
z2. This implies that z1 is itself enclosed by the trajectory of z2, producing
the twist in the boundary condition for z2 variable. The different choice of
the boundary condition would mean that the 1D loop in imbedded into the
2D system in such a way that the trajectory of z1 encloses z2. This means
that the wavefunction periodicity in both variables correspond to different but
valid physical situations.

As we have said, our main object of interest is the field-field correlation
function of impenetrable anyons at finite temperature, more specifically the
determination of the large distance asymptotic behavior. We will present two
methods of calculating the asymptotic behavior. The first method will make
use of the methods of conformal field theory and is valid only at zero and low
temperatures. The second method is more rigorous and gives the results for
any temperature and is more technically involved.

Obtaining the large distance asymptotics of correlation functions using
CFT requires the computation of the spectrum of low-lying excitations of our
model. Impenetrable anyons can be considered as the limiting case of infinite
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repulsive coupling constant of the more general model called the Lieb-Liniger
anyonic gas introduced by Kundu [56]. The model introduced by Kundu is
the generalization for arbitrary statistics κ of the Bose gas with δ-function
interaction studied by Lieb and Liniger [62]. In Chapter 2, following [66] we
study the Bethe Ansatz solution, the properties of the ground state for quasi-
periodic boundary conditions and the spectrum of low-lying excitations. The
results for impenetrable anyons are obtained by taking the limit c→∞.

The conformal field theory predictions are presented in Chapter 3. They
provide a generalization of similar results obtained in [19] using the harmonic
fluid approach.

The rigorous investigation of the field-field correlation functions of impen-
etrable anyons was performed along the lines of the original investigations of
Korepin, Slavnov, Its and Izergin [46–49, 54, 55] on impenetrable bosons. As
a first step we have derived a representation of the correlator in terms of a
Fredholm determinant of an integral operator. We will present two differ-
ent methods which produce different but equivalent results. The first method
presented in Chapter 4 and based on the results of [67] is the anyonic gen-
eralization of Lenard’s formula [59]. In the original paper, Lenard, using the
Bose-Fermi mapping introduced by Girardeau [34], was able to obtain a rep-
resentation of the correlation functions of impenetrable bosons (at zero and
finite temperature) in terms of correlation functions of free fermions. This
representation can be shown to be equivalent with the Fredholm minor of an
integral operator with the kernel being given by the Fourier transform of the
Fermi distribution function. In [67] it was shown that Lenard’s formula can
be generalized in the anyonic case making use of the Anyon-Fermi mapping.
The kernel of the integral operator is also the Fourier transform of the Fermi
distribution function but the constant appearing in front of the operator is
no longer 2/π as in the bosonic case but (1 + e±iπκ)/π. It is interesting to
note that, unlike the bosonic case, the anyonic correlator 〈Ψ†(x2)Ψ(x1)〉T de-
pends on the sign of x2 − x1. The advantage of this method is the fact that
also produces results for other 2n-point correlation functions but it cannot be
extended in the case of dynamical correlators.

In order to obtain the determinant representation for dynamical correlators
we have used the method of summation of form factors which is presented in
Chapter 5 and is based on the results obtained in [68]. A fundamental step
is constituted by the computation of the finite volume form factors in which
extreme care has to be taken in selecting wavefunctions for N and N+1 par-
ticles with similar periodicity. The summation of finite volume form factors
is performed first and then the thermodynamic limit is taken. The equiva-
lence of the determinant representation for static correlators obtained via this
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method with the results from the anyonic generalization of Lenard’s formula
is presented at the end of Chapter 5.

The integral operators that appears in the determinant representation of
the field correlator are of a special type called “integrable” [54]. This means
that the kernel of these operators can be factorized in a specific way and the
same property is shared by the resolvent kernel. As a result the determinant
representation can be used to obtain a system of integrable partial nonlinear
differential equations characterizing completely the correlation functions. This
system is the same as the one obtained by Its, Izergin, Korepin and Slavnov in
[49] which characterizes the correlation functions of impenetrable bosons but
with different boundary conditions. At zero temperature we obtain the same
ordinary differential equation of Painlevé V type obtained by Jimbo, Miwa,
Môri and Sato in their celebrated work on the one-particle reduced density
matrix (field-field correlator) of impenetrable bosons [51] but of course with
statistics dependent boundary conditions. These results were obtained in [69]
and are presented in Chapter 6.

The most important result of this dissertation, the large distance asymp-
totic behavior (including the amplitude) of the correlation functions at any
temperature, is presented in Chapter 7 and was announced in [69]. In order
to obtain the asymptotics we have solved in the appropriate limit a matrix
Riemann-Hilbert problem associated with the integrable system of differen-
tial equations. The main feature of the asymptotics of the field correlator of
impenetrable anyons is the fact that the leading term is oscillatory with the
period of oscillation proportional with the statistics parameter κ. Also as the
statistics parameter approaches the free fermionic point (κ = 1) the second
leading term becomes comparable in magnitude with the leading term but
with opposite phase producing fermionic beats.

Except some parts of Chap. 2 this dissertation is based on the papers
[66–70] written together with Vladimir Korepin and Dmitri Averin.
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Chapter 2

The Lieb-Liniger Gas of Anyons

From the historic point of view, the first continuous model of one-dimensional
anyons was introduced by Kundu in [56]. This model, which is referred in the
literature as the Lieb-Liniger gas of anyons, can be considered as an anyonic
generalization of the Bose gas with δ-function interaction and in the limit of
infinite coupling constant it reduces to impenetrable anyons. In the last years
there has been an increasing number of papers investigating the properties of
the model starting with the work of Batchelor et al.,[7–9] investigating the
properties of the ground-state and thermodynamics. The spectrum of low-
lying excitations was computed in [66] and other relevant works are [21, 39].
The correlation functions were studied using the harmonic fluid approach in
[19] and conformal field theory in [66]. Similarly to the case of the Bose gas
with δ-function interaction in the case of infinitely repulsive coupling constant
the quantity of information on the correlation functions is much more sub-
stantive and will be presented in the next chapters. In this case the relevant
papers are [20, 66–69, 73, 74].

Some of the features of the Lieb-Liniger gas of anyons will bring tears in
the eyes of the mathematically inclined. If the reader feels uncomfortable it
should be reminded that we are interested in the impenetrable case, c → ∞,
in which all the conceptual difficulties disappear.

It should be mentioned that other models of one-dimensional anyons have
been proposed [3, 10, 13, 29, 40, 65] and recently Batchelor, Foerster, Guan,
Links and Zhou have introduced the quantum inverse scattering method with
anyonic grading for models on the lattice. On the more fundamental level
regarding the construction of the Fock space and anyonic fields rigorous work
was done by Liguori and Mintchev in [60] and Ilieva and Thirring in [45].
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2.1 The model

The Lieb-Liniger gas of anyons is characterized by the second quantized Hamil-
tonian

H =

∫ L

0

dx {[∂xΨ†(x)][∂xΨ(x)] + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)} , (2.1)

where c > 0 is the coupling constant and L the length of the system. The
anyonic fields obey the equal-time commutation relations

Ψ(x1)Ψ†(x2) = e−iπκε(x1−x2)Ψ†(x2)Ψ(x1) + δ(x1 − x2) , (2.2)

Ψ†(x1)Ψ†(x2) = eiπκε(x1−x2)Ψ†(x2)Ψ†(x1) , (2.3)

Ψ(x1)Ψ(x2) = eiπκε(x1−x2)Ψ(x2)Ψ(x1) , (2.4)

where

ε(x1 − x2) =


1 when x1 > x2 ,
−1 when x1 < x2 ,

0 when x1 = x2 .
(2.5)

In the original work [56] introducing this model, the anyonic fields were realized
in terms of the bosonic fields

Ψ†(x) = Ψ†B(x)eiπκ
∫ x
0 dx′ρ(x′), Ψ(x) = e−iπκ

∫ x
0 dx′ρ(x′)ΨB(x) , (2.6)

where
ρ(x) ≡ Ψ†(x)Ψ(x) = Ψ†B(x)ΨB(x) .

Due to the fact that at coinciding points ε(0) = 0, the commutation relations
(2.2), (2.3), (2.4) are indeed bosonic. An alternative realization in terms of
the fermionic fields was proposed in [35]. However, in this case, the inter-
action term in the Hamiltonian (2.1) vanishes, since Ψ2(x) = [Ψ†(x)]2 = 0
in coinciding points (see also the discussion in [9]). One implication of this
difference is that in comparison to the bosonic representation (2.6), similar
fermionic representation with appropriate modification of the statistical pa-
rameter, effectively makes it possible to describe only the infinite repulsion
limit c→∞.

The corresponding equation of motion −i∂tΨ(x, t) = [H,Ψ(x, t)] is the
nonlinear Schrödinger equation

i∂tΨ(x, t) = ∂xΨ(x, t) + 2cΨ†(x, t)Ψ2(x, t) .

The number of particle operator Q and the momentum operator P are defined
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as

Q =

∫ L

0

dx Ψ†(x)Ψ(x) ,

P = − i
2

∫ L

0

dx
(
Ψ†(x)∂xΨ(x)− [∂xΨ

†(x)]Ψ(x)
)
.

Both of them are hermitian operators which commute with the Hamiltonian

[H,P ] = [H,Q] = 0 .

If we define the Fock vacuum as

Ψ(x)|0〉 , x ∈ [0, L] ,

the N -particle eigenstate of the Hamiltonian (and also of P and Q) can be
then written as

|Ψ〉N =
1√
N !

∫
dNz χN(z1, · · · , zN)Ψ†(zN) · · ·Ψ†(z1)|0〉 ,

where the many-body wavefunction obeys

χN(z1, · · · , zi, zi+1, · · · , zN) = eiπκε(zi−zi+1)χN(z1, · · · , zi+1, zi, · · · , zN) . (2.7)

This can be seen directly by using the exchange relation of the field operators
Ψ†(zi+1)Ψ†(zi) = eiπκε(zi+1−zi)Ψ†(zi)Ψ

†(zi+1) and interchanging the name of the
integration variables zi, zi+1. Iterating the exchanges several times we obtain

χN(z1, · · · , zi, · · · , zj, · · · , zN) = eiπκ[
∑j
k=i+1 ε(zi−zk)−

∑j−1
k=i+1 ε(zj−zk)]

× χN(z1, · · · , zj, · · · , zi, · · · , zN) . (2.8)

2.2 The equivalent quantum mechanical prob-

lem

In [9, 56], it was shown that the eigenvalue problem

H|Ψ〉N = EN |Ψ〉N , P |Ψ〉N = pN |Ψ〉N ,

can be reduced to the quantum-mechanical problem

HχN(z1, · · · , zN) = ENχN(z1, · · · , zN) , (2.9)
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PχN(z1, · · · , zN) = pNχN(z1, · · · , zN) ,

where

HN =
N∑
j=1

(
− ∂2

∂z2
j

)
+ 2c

∑
1≤j≤k≤N

δ(zj − zk) , (2.10)

and

P =
N∑
j=1

(
− ∂

∂zj

)
.

The quantum mechanical hamiltonian is the same as the one considered by
Lieb and Liniger [62] in their study of the Bose gas with δ-function interaction.
In our case the wavefunction is no longer symmetrical under the exchange of
two coordinates it obeys (2.7). Due to the fact that the interaction potential
is given by a delta function the eigenvalue problem (2.9) is equivalent with

−
N∑
i=1

(
∂2

∂z2
i

)
χN(z1, · · · , zN) = ENχN(z1, · · · , zN) , (2.11)

supplemented by the boundary condition(
∂

∂zi
− ∂

∂zj

)
χN(z1, · · · , zN)

∣∣∣∣
zi=zj+ε

−
(
∂

∂zi
− ∂

∂zj

)
χN(z1, · · · , zN) |zi=zj−ε

= 2cχN(z1, · · · , zN)|zi=zj . (2.12)

2.3 Bethe Ansatz solution

In this section we are going to construct the Bethe Ansatz solution for the
eigenvalue problem (2.11), (2.12) following the papers [9, 56]. It is easy to see
that we can construct a wavefunction with the required symmetry (2.7) in the
following manner

χN(z1, · · · , zN) = ei
πκ
2

∑
j<k ε(zj−zk)χbN(z1, · · · , zN) ,

where χbN is a symmetric wavefunction. This means that we are going to
consider the Bethe Ansatz wavefunction of the form

χN(z1, · · · , zN) = ei
πκ
2

∑
j<k ε(zj−zk)χbN(z1, · · · , zN) , (2.13)
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with

χbN(z1, · · · , zN) =
∑
π∈SN

A(λπ(1), · · · , λπ(N))e
i(λπ(1)z1+···+λπ(N)zN ) , (2.14)

where SN is the group of permutations with N elements. It is instructive to
consider first the case of two particles. In this case χ2(z1, z2) is given by

χ2(z1, z2) = e−iπκ/2
[
A(12)ei(λ1z1+λ2z2) + A(21)ei(λ2z1+λ1z2)

]
,

in the region z1 < z2 and by

χ2(z1, z2) = e+iπκ/2
[
A(12)ei(λ2z1+λ1z2) + A(21)ei(λ1z1+λ2z2)

]
,

in the region z1 > z2. In the previous expressions we have denoted A(ij) =
A(λi, λj). At the coinciding points z1 = z2 we have

χ2(z1, z2) = A(12)ei(λ1+λ2)z1 + A(21)ei(λ1+λ2)z1 .

Application of the boundary condition (2.12) gives

(eiπκ/2 + e−iπκ/2)i(λ2 − λ1)[A(12)− A(21)] = 2c[A(12) + A(21)] ,

which means that

A(21) = A(12)
λ2 − λ1 + ic′

λ2 − λ1 − ic′
,

where we have introduced
c′ =

c

cos(πκ/2)
. (2.15)

In the general case ofN particles the wavefunction χN(z1, · · · , zN) in the wedge
z1 < z2 < · · · < zi < zj < · · · < zN is given by

χN(z1, · · · , zN) = e−i
πκ
2

+iπκ
2

∑
l<m;[i,j] ε(zl−zm)[· · ·+ A(· · · ij · · · )ei(···+λizi+λjzj+··· )

+A(· · · ji · · · )ei(···+λjzi+λizj+··· ) + · · · ] ,

and by

χN(z1, · · · , zN) = ei
πκ
2

+iπκ
2

∑
l<m;[i,j] ε(zl−zm)[· · ·+ A(· · · ij · · · )ei(···+λjzi+λizj+··· )

+A(· · · ji · · · )ei(···+λizi+λjzj+··· ) + · · · ] ,
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in the wedge z1 < z2 < · · · < zj < zi < · · · < zN . At the coinciding points
zi = zj the wavefunction is given by

χN(z1, · · · , zN) = ei
πκ
2

∑
l<m;[i,j] ε(zl−zm)[· · ·+ A(· · · ij · · · )ei(···+(λi+λj)zi+··· )

+A(· · · ji · · · )ei(···+(λj+λi)zi+··· ) + · · · ] .

In the previous expressions the pair [i, j] is excepted in the sum of the statis-
tics phase of of the wavefunction. Again the application of the discontinuity
condition (2.12) gives

(eiπκ/2+e−iπκ/2)i(λj−λi)[A(· · · ij · · · )−A(· · · ji · · · )] = 2c[A(· · · ij · · · )+A(· · · ji · · · )] ,

which results in

A(· · · ji · · · ) = A(· · · ij · · · )λj − λi + ic′

λj − λi − ic′
.

Therefore the eigenfunctions of the Hamiltonian (2.10) are given by

χN =
ei
πκ
2

∑
j<k ε(zj−zk)√

N !
∏

j>k[(λj − λk)2 + c′2]

∑
π∈SN

(−1)[π]ei
∑N
n=1 znλπ(n)

×
∏
j>k

[λπ(j) − λπ(k) − ic′ε(zj − zk)] , (2.16)

where we have used the same normalization factor as for impenetrable bosons
[54].

2.4 Boundary conditions

The characteristics of the anyonic gas (2.1) depend on the boundary conditions
imposed on the system at x = 0 = L. In this work, we use two different
quasiperiodic boundary conditions which impose periodicity either directly on
the anyonic or on the bosonic fields. Equations (2.6) imply that the periodic
boundary condition for anyons correspond to twisted boundary conditions for
bosons and viceversa. In terms of the anyonic fields, the boundary condition
we use are,

periodic BC: Ψ†(0) = Ψ†(L) , (2.17)

and
twisted BC: Ψ†(0) = Ψ†(L)e−iπκ(N−1) , (2.18)
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where N is the number of particle in the system. One can see directly from
Eq. (2.6) that the external phase shift πκ(N−1) introduced into the conditions
(2.18), ensures the periodicity of the bosonic fields. As will be shown in more
details below, this means that this phase removes the anyonic shift of the
quasiparticle momenta. Below, we use the common notation for the two types
of boundary conditions:

Ψ†(0) = Ψ†(L)e−iπβκ(N−1) , β = 0, 1 . (2.19)

An important difference of the anyons with fractional exchange statistics from
the integer-statistics particles is that the boundary conditions (2.19) for the
fields do not translate directly into the same boundary conditions for the
quantum-mechanical wavefunctions of the N -anyon system [5], which have
a more complicated structure (2.20).

2.5 Bethe Ansatz equations

In this section we are going to show that the boundary conditions for the
many-anyon wavefunctions are given by

χN(0, z2, · · · , zN) = e−iπβκ(N−1) χN(L, x2, · · · , xN) ,

χN(z1, 0, · · · , zN) = ei2πκe−iπβκ(N−1) χN(z1, L, · · · , zN) ,
... (2.20)

χN(z1, z2, · · · , 0) = ei2(N−1)πκe−iπβκ(N−1)χN(z1, z2 · · · , L) ,

with the associated Bethe equations

eiλjL = eiπ(β−1)κ(N−1)

N∏
k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
. (2.21)

The Bethe equations (2.21) are similar to those obtained by Lieb and Liniger
for the Bose gas with repulsive δ-function interaction. In our case, however,
the effective coupling constant c′ (2.15) can take negative values. While it can
be shown (see, e.g., [54]) that the Bethe roots λj are real for c′ > 0 , the roots
can become complex for c′ < 0, and one gets bound states [64]. From now on
we will consider only the case c′ > 0.

The treatment in this section generalizes the approach of [5] to the case
of several penetrable particles. In physical terms, the situation we consider
corresponds to anyons confined to move along a loop with, in general, an
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external phase shift φ created, e.g., by a magnetic filed threading the loop.
We start with the case of two particles and no external phase shift, φ = 0.
The Bethe-Anzatz wavefunction (2.16) reduces in this case to the following
form: In the region I (z1 < z2) one has

χI(z1, z2) =
e−iπκ/2√

2[(λ2 − λ1)2 + c′2]
[ei(z1λ1+z2λ2)(λ2 − λ1 − ic′)

+ei(z1λ2+z2λ1)(λ2 − λ1 + ic′)] ,

and in the region II (z1 > z2):

χII(z1, z2) =
eiπκ/2√

2[(λ2 − λ1)2 + c′2]
[ei(z1λ1+z2λ2)(λ2 − λ1 + ic′)

+ei(z1λ2+z2λ1)(λ2 − λ1 − ic′)] .

The general exchange symmetry of this wavefunction given by Eq. (2.7) imply
that for fractional κ it can not satisfy the same boundary conditions in the two
coordinates. As one can see by exchanging the coordinates, if the wavefunction
is periodic in the first one, the boundary conditions in second one should have
a twist,

χ(0, z2) = χ(L, z2) → χ(z1, 0) = χ(z1, L)e2iπκ , (2.22)

and viceversa. One consequence of this is that the exact form of the Bethe
equations (2.21) depends on whether we impose periodic boundary condi-
tions on one or the other coordinate. Indeed, if one requires periodicity in
z1, χ(0, z2) = χ(L, z2), the Bethe equations are:

eiLλj = e−iπκ
2∏

k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
,

whereas the periodicity in z2, χ(z1, 0) = χ(z1, L), results in the equations that
differ by the sign of the statistics parameter κ:

eiLλj = eiπκ
2∏

k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
.

Since the Bethe equations determine the spectrum of the quasiparticle mo-
menta λj the κ shifts of different signs produce two physically different situa-
tions.

As we have said and explained in Introduction this difference is due to the
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fact that in one-dimension we cannot define properly the braiding of particles.
From a more mathematical point of view this is explained by the fact that
our anyons are on a circle and the exchange phase eiπκε(z1−z2)/2 depends on
the positions of the particles. This means that we have to chose first an
“origin” on the circle and then the direction in which the coordinate on the
circle “increases”. Depending on the way we choose this “origin” we will have
different but valid physical situations.

The situation is somewhat more complicated for larger number of particles,
as can be seen in the case of three particles. In the wavefunction (2.16), one
needs to distinguish then six regions corresponding to the six permutation of
the particles. The wavefunction (2.16) in these regions is:
Region I (z1 < z2 < z3)

χI(z1, z2, z3)

= Ae
−i3πκ

2

[
ei(z1λ1+z2λ2+z3λ3)(λ3 − λ2 − ic′)(λ3 − λ1 − ic′)(λ2 − λ1 − ic′)

−ei(z1λ1+z2λ3+z3λ2)(λ2 − λ3 − ic′)(λ2 − λ1 − ic′)(λ3 − λ1 − ic′)
+ei(z1λ3+z2λ1+z3λ2)(λ2 − λ1 − ic′)(λ2 − λ3 − ic′)(λ1 − λ3 − ic′)
−ei(z1λ3+z2λ2+z3λ1)(λ1 − λ2 − ic′)(λ1 − λ3 − ic′)(λ2 − λ3 − ic′)
+ei(z1λ2+z2λ3+z3λ1)(λ1 − λ3 − ic′)(λ1 − λ2 − ic′)(λ3 − λ2 − ic′)
−ei(z1λ2+z2λ1+z3λ3)(λ3 − λ1 − ic′)(λ3 − λ2 − ic′)(λ1 − λ2 − ic′)

]
,

Region II (z1 < z3 < z2)

χII(z1, z2, z3)

= Ae
−iπκ

2

[
ei(z1λ1+z2λ2+z3λ3)(λ3 − λ2 + ic′)(λ3 − λ1 − ic′)(λ2 − λ1 − ic′)
−ei(z1λ1+z2λ3+z3λ2)(λ2 − λ3 + ic′)(λ2 − λ1 − ic′)(λ3 − λ1 − ic′)
+ei(z1λ3+z2λ1+z3λ2)(λ2 − λ1 + ic′)(λ2 − λ3 − ic′)(λ1 − λ3 − ic′)
−ei(z1λ3+z2λ2+z3λ1)(λ1 − λ2 + ic′)(λ1 − λ3 − ic′)(λ2 − λ3 − ic′)
+ei(z1λ2+z2λ3+z3λ1)(λ1 − λ3 + ic′)(λ1 − λ2 − ic′)(λ3 − λ2 − ic′)
−ei(z1λ2+z2λ1+z3λ3)(λ3 − λ1 + ic′)(λ3 − λ2 − ic′)(λ1 − λ2 − ic′)

]
,
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Region III (z3 < z1 < z2)

χIII(z1, z2, z3)

= Ae
iπκ
2

[
ei(z1λ1+z2λ2+z3λ3)(λ3 − λ2 + ic′)(λ3 − λ1 + ic′)(λ2 − λ1 − ic′)
−ei(z1λ1+z2λ3+z3λ2)(λ2 − λ3 + ic′)(λ2 − λ1 + ic′)(λ3 − λ1 − ic′)
+ei(z1λ3+z2λ1+z3λ2)(λ2 − λ1 + ic′)(λ2 − λ3 + ic′)(λ1 − λ3 − ic′)
−ei(z1λ3+z2λ2+z3λ1)(λ1 − λ2 + ic′)(λ1 − λ3 + ic′)(λ2 − λ3 − ic′)
+ei(z1λ2+z2λ3+z3λ1)(λ1 − λ3 + ic′)(λ1 − λ2 + ic′)(λ3 − λ2 − ic′)
−ei(z1λ2+z2λ1+z3λ3)(λ3 − λ1 + ic′)(λ3 − λ2 + ic′)(λ1 − λ2 − ic′)

]
,

Region IV (z3 < z2 < z1)

χIV (z1, z2, z3)

= Ae
i3πκ

2

[
ei(z1λ1+z2λ2+z3λ3)(λ3 − λ2 + ic′)(λ3 − λ1 + ic′)(λ2 − λ1 + ic′)

−ei(z1λ1+z2λ3+z3λ2)(λ2 − λ3 + ic′)(λ2 − λ1 + ic′)(λ3 − λ1 + ic′)

+ei(z1λ3+z2λ1+z3λ2)(λ2 − λ1 + ic′)(λ2 − λ3 + ic′)(λ1 − λ3 + ic′)

−ei(z1λ3+z2λ2+z3λ1)(λ1 − λ2 + ic′)(λ1 − λ3 + ic′)(λ2 − λ3 + ic′)

+ei(z1λ2+z2λ3+z3λ1)(λ1 − λ3 + ic′)(λ1 − λ2 + ic′)(λ3 − λ2 + ic′)

−ei(z1λ2+z2λ1+z3λ3)(λ3 − λ1 + ic′)(λ3 − λ2 + ic′)(λ1 − λ2 + ic′)
]
,

Region V (z2 < z1 < z3)

χV (z1, z2, z3)

= Ae
−iπκ

2

[
ei(z1λ1+z2λ2+z3λ3)(λ3 − λ2 − ic′)(λ3 − λ1 − ic′)(λ2 − λ1 + ic′)

−ei(z1λ1+z2λ3+z3λ2)(λ2 − λ3 − ic′)(λ2 − λ1 − ic′)(λ3 − λ1 + ic′)

+ei(z1λ3+z2λ1+z3λ2)(λ2 − λ1 − ic′)(λ2 − λ3 − ic′)(λ1 − λ3 + ic′)

−ei(z1λ3+z2λ2+z3λ1)(λ1 − λ2 − ic′)(λ1 − λ3 − ic′)(λ2 − λ3 + ic′)

+ei(z1λ2+z2λ3+z3λ1)(λ1 − λ3 − ic′)(λ1 − λ2 − ic′)(λ3 − λ2 + ic′)

−ei(z1λ2+z2λ1+z3λ3)(λ3 − λ1 − ic′)(λ3 − λ2 − ic′)(λ1 − λ2 + ic′)
]
,
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Region VI (z2 < z3 < z1)

χV I(z1, z2, z3)

= Ae
iπκ
2

[
ei(z1λ1+z2λ2+z3λ3)(λ3 − λ2 − ic′)(λ3 − λ1 + ic′)(λ2 − λ1 + ic′)

−ei(z1λ1+z2λ3+z3λ2)(λ2 − λ3 − ic′)(λ2 − λ1 + ic′)(λ3 − λ1 + ic′)

+ei(z1λ3+z2λ1+z3λ2)(λ2 − λ1 − ic′)(λ2 − λ3 + ic′)(λ1 − λ3 + ic′)

−ei(z1λ3+z2λ2+z3λ1)(λ1 − λ2 − ic′)(λ1 − λ3 + ic′)(λ2 − λ3 + ic′)

+ei(z1λ2+z2λ3+z3λ1)(λ1 − λ3 − ic′)(λ1 − λ2 + ic′)(λ3 − λ2 + ic′)

−ei(z1λ2+z2λ1+z3λ3)(λ3 − λ1 − ic′)(λ3 − λ2 + ic′)(λ1 − λ2 + ic′)
]
,

where

A =
1√

6
∏

j>k[(λj − λk)2 + c′2]
.

As discussed above for the two particles, the periodic boundary conditions
can be imposed in principle on any of the wavefunction arguments. Requiring
z1 to be periodic, χ(0, z2, z3) = χ(L, z2, z3), gives

χI(0, z2, z3) = χV I(L, z2, z3) , for z2 < z3 , (2.23)

χII(0, z2, z3) = χIV (L, z2, z3) , for z3 < z2 . (2.24)

Except for the exchange-statistics phase factors, the wavefunctions in the six
regions coincide with the wavefunctions of the Bose gas with the δ-function
interaction of strength c′ (2.15). Therefore, the Bethe equations we obtain
are the same as in the bosonic case with the only difference coming from the
statistical phase factors. Conditions (2.23) and (2.24) produce six equations
each, with only three of them being independent

eiLλ1 = e−2iπκ

(
λ1 − λ2 + ic′

λ1 − λ2 − ic′

)(
λ1 − λ3 + ic′

λ1 − λ3 − ic′

)
,

eiLλ2 = e−2iπκ

(
λ2 − λ1 + ic′

λ2 − λ1 − ic′

)(
λ2 − λ3 + ic′

λ2 − λ3 − ic′

)
,

eiLλ3 = e−2iπκ

(
λ3 − λ1 + ic′

λ3 − λ1 − ic′

)(
λ3 − λ2 + ic′

λ3 − λ2 − ic′

)
.

These equations can be written in the compact form similar to Eq. (2.21):

eiLλj = e−2iπκ

3∏
k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
. (2.25)
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If the periodic boundary conditions are imposed on the second variable, χ(z1, 0, z3) =
χ(z1, L, z3), i.e.,

χV (0, z2, z3) = χII(L, z2, z3) , for z1 < z3 , (2.26)

χV I(z1, 0, z3) = χIII(z1, L, z3) , for z1 > z3 , (2.27)

we obtain either from (2.26) or (2.27) the following Bethe equations

eiLλj =
3∏

k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
. (2.28)

Finally, if we impose periodic boundary conditions on the third variable,
χ(z1, z2, 0) = χ(z1, z2, L), i.e.,

χIII(z1, z2, 0) = χI(z1, z2, L) , for z1 < z2 , (2.29)

χIV (z1, z2, 0) = χV (z1, z2, L) , for z2 < z1 , (2.30)

the resulting Bethe equations are

eiLλj = e2iπκ

3∏
k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
. (2.31)

The difference between the three forms of the Bethe equations (2.25),
(2.28), (2.31) means that the periodic boundary conditions imposed on one
variable automatically require the twisted boundary conditions on the other
variables if one wants to keep the same Bethe equations. Similarly to the
case of two particles, this can also be seen directly from the anyonic exchange
symmetry (2.7) of the wavefunction. Suppose we set the periodic boundary
conditions on the first variable:

χ(0, z2, z3) = χ(L, z2, z3) . (2.32)

Exchanging then the first two variables on both sides of Eq. (2.32) with the help
of Eq. (2.7), we get the twisted boundary conditions for the second variable:

χ(z2, 0, z3) = χ(z2, L, z3)e2iπκ . (2.33)

From (2.33), using again (2.7) we have

χ(z2, z3, 0) = χ(z2, z3, L)e4iπκ , (2.34)
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which are the twisted boundary conditions for the third variable which follow
from the periodic conditions on the first. From any of the boundary conditions
(2.32), (2.33), (2.34) we obtain the Bethe equations (2.25).

Similarly, periodic boundary conditions on the second variable give the
following boundary conditions for the three-anyon wavefunction:

χ(0, z2, z3) = χ(L, z2, z3)e−2iπκ ,

χ(z1, 0, z3) = χ(z1, L, z2) , (2.35)

χ(z2, z3, 0) = χ(z2, z3, L)e2iπκ ,

and the Bethe equations (2.28). The same can be done starting with periodic-
ity in the third variable. As in the case of two particles, we see that imposing
periodic boundary conditions on the first and the last variables produces the
Bethe equations, (2.25) and (2.31), which differ only by the sign of the statis-
tical parameter κ. As discussed in detail for the two particles, this difference
corresponds physically to different imbedding of the 1D loop of anyons into the
underlying 2D system. In the two situations, the number of particles enclosed
by the trajectories of successive particles zj, j = 1, 2, ..., N , either increases
from 0 to N−1 or decreases from N−1 to 0, as reflected in the corresponding
boundary conditions of the multi-anyon wavefunction. In contrast to this, the
requirement of periodicity of one of the “internal” variables (e.g., z2 in the case
of three particles) produces the Bethe equations and boundary conditions, e.g.
(2.28) and (2.35), that do not have this interpretation. They describe the
situations with appropriate non-vanishing external phase shift φ 6= 0, which
twists uniformly the boundary conditions of all the variables. In what follows
we use the periodic boundary conditions with respect to the first variable of
the anyonic wavefunction or introduce the external twist φ = −πκ(N − 1)
which removes the anyonic shift of the quasiparticle momenta. As follows
from this discussion discussion, the boundary conditions for the wavefunction
of N anyons are given in these two situations by Eqs. (2.20) and the Bethe
equations by (2.21).

2.6 Properties of the ground state

Bethe equations (2.21) can also be written as

λjL+
N∑
k=1

θ(λj − λk) = 2πnj + πκ(β − 1)(N − 1) , j = 1, · · · , N , (2.36)
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where

θ(λ) = i ln

(
ic′ + λ

ic′ − λ

)
,

and nj are integers when N is odd and half-integers when N is even.

2.6.1 Twisted boundary conditions

In this case (β = 1), the Bethe equations are similar to those for the Bose
gas with periodic boundary conditions [54, 62] with c′ as a coupling constant.
The ground state is characterized by the set of integers (half-integers) nj =
j − (N + 1)/2, so the Bethe equations take the form

λBj L+
N∑
k=1

θ(λBj − λBk ) = 2π

(
j − N + 1

2

)
, j = 1, · · · , N . (2.37)

From now on the superscript B will mean that the variables and physical
quantities are the same as the ones for the Bose gas with periodic boundary
conditions and coupling constant c′. In the thermodynamic limit N,L →
∞, D = N/L =const, the Bethe roots become dense and fill the symmetric
interval [−q, q]. The density of roots in this interval obeys the Lieb-Liniger
integral equation

ρ(λ)− 1

2π

∫ q

−q
K(λ, µ)ρ(µ) dµ =

1

2π
,

where K(λ, µ) = θ′(λ−µ) = 2c′/(c′2 + (λ−µ)2). The Fermi momentum q can
be obtained from the Lieb-Liniger integral equation and the particle density is

D =
N

L
=

∫ q

−q
ρ(λ) dλ .

Finally, the energy and the momentum of the ground state are

EB
0 = L

∫ q

−q
λ2ρ(λ) dλ , PB

0 = 0 . (2.38)
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2.6.2 Periodic boundary conditions

This is the case treated in [7–9]. The Bethe equations (2.36) in this case (β = 0)
are similar to those for the Bose gas with twisted boundary conditions:

λjL+
N∑
k=1

θ(λj − λk) = 2πnj − πκ(N − 1) , j = 1, · · · , N .

Introducing the notation {[...]} such that

{[x]} = γ , if x = 2π × integer + 2πγ , γ ∈ (−1, 1) , (2.39)

we can describe the ground state by the following set of the Bethe equations:

λjL+
N∑
k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πδ , j = 1, · · · , N , (2.40)

where δ = {[−πκ(N − 1)]}. Comparison of Eqs. (2.40) and (2.37) shows that
we have the following connection between the Bethe roots for periodic and
twisted boundary conditions:

λj = λBj + 2πδ/L . (2.41)

This relation is exact and holds also for the excited states if the (half)integers
in the Bethe equations are the same. In the periodic case, the ground state is
shifted by 2πδ/L, so that the Bethe roots are now distributed in the interval
[−q + 2πδ/L, q + 2πδ/L], and momentum of the ground state P0 in general
does not vanish:

P0 =
N∑
i=1

λi =
N∑
i=1

(λBi + 2πδ/L) = 2πDδ . (2.42)

The ground-state energy is:

E0 =
N∑
i=1

λ2
i =

N∑
i=1

(
(λBi )2 +

4πδλBi
L

+
(2πδ)2

L2

)
= EB

0 +
D(2πδ)2

L
, (2.43)

where we have used that the total momentum in the case of twisted boundary
conditions is zero and EB

0 in the thermodynamic limit is given by Eq. (2.38).
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2.7 Finite size corrections

In this section, we are going to calculate the finite size corrections for the energy
of the ground state and characteristics of the low-lying excitations. Based on
the results of this section, we will be able to find the large-distance asymptotics
of the correlations functions using conformal field theory. A chemical potential
h is added to the Hamiltonian (2.1) throughout this section, so that the total
Hamiltonian is

Hh =

∫ L

0

dx {[∂xΨ†(x)][∂xΨ(x)] + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)− hΨ†(x)Ψ(x)} .

2.7.1 Finite size corrections for the ground state energy

As we have seen in the previous section, the ground state of the gas of anyons
with twisted boundary conditions (β = 1) is characterized by the same set
of Bethe equations as the Bose gas with coupling constant c′ and periodic
boundary conditions. So in this case we can use the results for the Bose gas
[15–18, 54, 77]:

EB
0 = L

∫ q

−q
ε0(λ)ρ(λ) dλ− πvF

6L
+O

(
1

L2

)
, (2.44)

where ε0(λ) = λ2 − h and vF is the Fermi velocity for the Bose gas with
coupling constant c′. In the case of periodic boundary conditions (β = 0),
Eq. (2.43) then gives:

E0 = L

∫ q

−q
ε0(λ)ρ(λ) dλ− πvF

6L
+
D(2πδ)2

L
+O

(
1

L2

)
.

2.7.2 Finite size corrections for the low-lying excita-
tions

In our discussion of the low-lying excitations, we consider several different
types of excitation processes:

• Addition of a finite number ∆N of particles into the ground state of the
system.

• Backscattering: all integers nj in the set {nj} characterizing the ground-
state distribution are shifted by an integer d.
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• Particle-hole excitations: the integer nj that characterizes the particle at
the Fermi surface is modified from its value in the ground state distribu-
tion by N+ for the particle with momentum q, (or q+ 2πδ/L, depending
on the boundary conditions) or by N− at the opposite point of the Fermi
surface with momentum −q, (−q + 2πδ/L).

The central feature of the gas of anyons is that the boundary conditions for
the field operators and the wavefunctions depend on the number of particles
in the system. This means that any modification of the number of particles
in the system changes the Bethe equations and, as a result, the quasiparticle
momenta given by the Bethe roots. If we add one particle to the system of N
particles, the boundary conditions are:

χN+1(0, z2, · · · , zN , zN+1) = e−iπβκ(N−1)χN+1(L, z2, · · · , zN , zN+1) ,

χN+1(z1, 0, · · · , zN , zN+1) = ei2πκe−iπβκ(N−1)χN+1(z1, L, · · · , zN , zN+1) ,
... (2.45)

χN+1(z1, z2, · · · , 0, zN+1) = ei2(N−1)πκe−iπβκ(N−1)χN+1(z1, z2 · · · , L, zN+1) ,

χN+1(z1, z2, · · · , zN , 0) = ei2Nπκe−iπβκ(N−1)χN+1(z1, z2 · · · , zN , L) ,

and the Bethe equations become

eiλjL = e−iπκNeiπβκ(N−1)

N+1∏
k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
.

The ground states for N and N + 1 particles are characterized by the Bethe
roots satisfying different equations:

λjL+
N∑
k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πω , j = 1, · · · , N , (2.46)

λ̃jL+
N+1∑
k=1

θ(λ̃j − λ̃k) = 2π

(
j − N + 2

2

)
+ 2πω′, j = 1, · · · , N + 1 ,

where

ω = 0, ω′ = κ/2 , and ω = {[−πκ(N − 1)]}, ω′ = {[−πκN ]},

for the twisted (β = 1) and periodic (β = 0) boundary conditions, respectively,
and {[...]} is defined by Eq. (2.39). Comparing Eq. (2.46) with Eq. (2.37) we
see that

λj = λBjN + 2πω/L , λ̃j = λBj,N+1 + 2πω′/L , (2.47)
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where λBjN are the Bethe roots characterizing the ground state of a gas of N
bosons with periodic boundary conditions and coupling constant c′.

Addition of one particle to the system

For excitations of this type we assume that both before and after the addition
of a particle, the system is in the ground state. In order to calculate the energy
and momentum of this excitation, we use Eq. (2.47) which enables one to
express energy and momentum through corrections to the same characteristics
of excitations of the Bose gas.

For the energy we get from Eq. (2.47):

∆E(∆N = 1) =
N+1∑
j=1

ε0(λ̃j)−
N∑
j=1

ε0(λj)

= ∆EB(∆N = 1) + (N + 1)

(
2πω′

L

)2

−N
(

2πω

L

)2

,(2.48)

where ∆EB(∆N = 1) is the energy of the corresponding bosonic excitation.
As known in the literature (see, e.g., [15, 16, 18, 54, 77]) it is convenient to
express this energy in terms of the ”dressed charge” Z(λ):

∆EB(∆N = 1) =
2πvF
L

(
1

2Z

)2

, (2.49)

where Z = Z(q) = Z(−q), and Z(λ) is defined as solution of the equation

Z(λ)− 1

2π

∫ q

−q
K(λ, µ)Z(µ) dµ = 1 . (2.50)

From (2.48) and (2.49) we obtain

∆E(∆N = 1) =
2πvF
L

(
1

2Z

)2

+ (N + 1)

(
2πω′

L

)2

−N
(

2πω

L

)2

. (2.51)

The momentum of the excitation is:

∆P (∆N = 1) =
N+1∑
j=1

λ̃j −
N∑
j=1

λj = (N + 1)
2πω′

L
−N 2πω

L
, (2.52)

where we again used the fact that for the ground state of bosons with peri-
odic boundary conditions and any number of particles the total momentum is
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vanishing.

Backscattering

The uniform shift of the ground-state distribution in a backscattering process
can be understood as a jump of some number d of particles between the op-
posite boundaries of the Fermi surface. The Bethe equations relevant for this
process (in the case of N and N + 1 particles in the ground state) take the
form:

λdjL+
N∑
k=1

θ(λdj − λdk) = 2π

(
j − N + 1

2

)
+ 2πd+ 2πω , j = 1, · · · , N ,

λ̃djL+
N+1∑
k=1

θ(λ̃dj − λ̃dk) = 2π

(
j − N + 2

2

)
+ 2πd

+2πω′, j = 1, · · · , N + 1 . (2.53)

Again, comparison with Eq. (2.37) shows that

λdj = λBjN + 2π(ω + d)/L , λ̃dj = λBj,N+1 + 2π(ω′ + d)/L , (2.54)

and the ground states are characterized by Eq. (2.47). Using Eqs. (2.47) and
(2.54) we get the excitation energy:

N particles: ∆E(d) =
N∑
j=1

(ε0(λdj )− ε0(λj))

= N
(2πω + 2πd)2

L2
−N (2πω)2

L2
,

N + 1 particles: ∆E(d) =
N+1∑
j=1

(ε0(λ̃dj )− ε0(λ̃j))

= (N + 1)
(2πω′ + 2πd)2

L2
− (N + 1)

(2πω′)2

L2
.

This result can be rewritten using the relation Z2 = 2πD/vF (see [54],
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Chap. I.9) obtaining

N particles: ∆E(d) =
2πvF
L
Z2(d+ ω)2 − 2πvF

L
Z2ω2,

N + 1 particles: ∆E(d) =
2πvF
L
Z2(d+ ω′)2 − 2πvF

L
Z2ω′2

+
(2πω′ + 2πd)2

L2
− (2πω′)2

L2
. (2.55)

The momentum of the backscattering excitation is simply

∆P (d) = N(2πd/L) , (2.56)

expression that is valid for any number of particles N .

Particle-Hole Excitations at the Fermi Surface

In this case, the excitations we consider consist in changing the maximal (min-
imal) nj in the ground state by N±. For N particles and “excitation magni-
tude” N+ the Bethe equations are

λjL+
N∑
k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πω , j = 1, · · · , N − 1 ,

λNL+
N∑
k=1

θ(λN − λk) = 2π

(
N − N + 1

2

)
+ 2πω + 2πN+. (2.57)

From (2.57) we see that the momentum of the excitation N+ is ∆P (N+) =
2πN+/L and, similarly, for the excitation N− the momentum is ∆P (N−) =
−2πN−/L. These excitation can be considered as a special case of the general
particle-hole excitations, and we can use the results of Appendix A for them.
Using (A.4) we see that the excitation energy and momentum

∆E(N±) =
2πvF
L

N± +O
(

1

L2

)
, ∆P (N±) = ±2π

L
N±, (2.58)

coincide with those for the similar excitations of the Bose gas (see Appendix
I.4 of [54]):

∆EB(N±) =
2πvF
L

N±, ∆PB(N±) = ±2π

L
N±.
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For N + 1 particles, the energy and momentum of the excitations are given by
the same expressions as in (2.58).
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Chapter 3

Asymptotic Behavior of
Correlation
Functions from Conformal Field
Theory

The results of the previous chapter allows us to compute the asymptotics of
the correlation functions using the methods of conformal field theory. We
will consider the case of twisted boundary conditions (β = 1), or the periodic
boundary conditions (β = 0) when κ is a integer multiple of 2/(N − 1), so
that the shift in (2.41) vanishes, δ = 0, and the two boundary conditions
are equivalent – see (2.19). The main feature of this case that is important
for the direct applicability of the conformal field theory approach is that the
momentum of the ground state (2.42) of the gas of anyons is zero for these
boundary conditions. For general gapless 1+1-dimensional systems, T = 0 is a
critical point making the correlation functions decay as a power of distance at
T = 0 but exponentially at T > 0. As we have seen in the previous section, the
Lieb-Liniger anyonic gas is gapless and the excitation spectrum has a linear
dispersion law in the vicinity of the Fermi level. These features support the
expectation that the critical behavior of the anyon system is described by
conformal field theory (CFT).

CFT is a vast subject and we refer the reader to [12, 23, 33, 50] and Chap.
XVIII of [54] for more information. A conformal theory is characterized by
the central charge c (not to be confused with the coupling constant in (2.1))
of the underlying Virasoro algebra, and conformal invariance constrains the
critical behavior of the systems under consideration. The critical exponents
(the powers that characterizes the algebraic decay at T = 0) are related to
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the conformal dimensions of the operators within the CFT, so to obtain the
complete information about the critical behavior of the system we need to
calculate the central charge and the conformal dimensions of the primary fields.

3.1 Central charge

In order to find the central charge we use the fact that for unitary conformal
theories it can be found from the finite-size corrections, specifically the coeffi-
cient of the 1/L term in the expansion of the ground state energy for L→∞
[2, 14]:

E = Lε∞ −
πvF
6L

c+O
(

1

L

)
. (3.1)

Comparing this relation to Eq. (2.44) valid for the boundary conditions we
are assuming in this Section, we see that the central charge c = 1. The fact
that the central charge c = 1 means that the critical exponents can depend
continuously on the parameters of the model [12, 27, 30].

3.2 Conformal dimensions from finite size ef-

fects

Following the original idea of Cardy [22] subsequently developed in [15, 16,
18], we obtain below the conformal dimensions of the conformal fields in the
theory from the spectrum of the low-lying excitations described in the previous
Chapter. The local fields of the model can be represented as a combination of
conformal fields

φ(x, t) =
∑
Q

˜̃A(Q)φQ(z, z̄) , (3.2)

where ˜̃A(Q) are some coefficients and z = ix+vF τ , with vF the Fermi velocity
and τ the Euclidean time. The conformal fields are related to excitations with
quantum numbers Q = {∆N,N±, d}, where ∆N represents the number of
particles created by the field φ, and all the fields in the expansion (3.2) should
have the same ∆N . The quantum number d gives the number of particles
backscattered across the Fermi “sphere”, and N± characterizes the change
of the maximal or minimal nj in the Bethe equations from its values in the
ground state. While ∆N has to be the same for all the terms in the expansion,
d and N± can be different.

For two conformal fields, φQ and φQ′ , with the same conformal dimensions
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denoted ∆±, their correlation function is given by

〈φQ(z1, z̄1)φQ′(z2, z̄2)〉 =
1

(z1 − z2)2∆+(z̄1 − z̄2)2∆−
. (3.3)

Under a conformal transformation z = z(w), z̄ = z̄(w̄), it transforms like

〈φQ(w1, w̄1)φQ′(w2, w̄2)〉 =
2∏
j=1

(
∂zj
∂wj

)∆+ (
∂z̄j
∂w̄j

)∆−

× 〈φQ(z1(w1), z̄1(w̄1))φQ′(z2(w2), z̄2(w̄2))〉 . (3.4)

Using the expansion (3.2), the fact that the two conformal fields with different
conformal dimensions are orthogonal (their correlation function is zero), and
(3.3) we then have:

〈φ(z1, z̄1)φ(z2, z̄2)〉 =
∑
Q

Ã(Q)

(z1 − z2)2∆+
Q(z̄1 − z̄2)2∆−Q

, (3.5)

which is valid in the whole complex plane without the origin (z1 6= z2). Con-
formal mapping of this plane to a cylinder (periodic strip) with the help of
transformation

z = e2πw/L , w = ix+ vF τ with 0 < x ≤ L , (3.6)

applied to (3.4) gives

〈φ(w1, w̄1)φ(w2, w̄2)〉 =
∑
Q

Ã(Q)

(
π/L

sinh[π(w1 − w2)/L]

)2∆+
Q

×
(

π/L

sinh[π(w̄1 − w̄2)/L]

)2∆−Q

,

with the asymptotics

〈φ(w1, w̄1)φ(w2, w̄2)〉 ∼
∑
Q

e−
2πvF
L

(∆+
Q+∆−Q)(τ1−τ2)−i 2π

L
(∆+

Q−∆−Q)(x1−x2) .

Comparison with the spectral decomposition of the correlation function in the
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periodic strip (τ1 > τ2)

〈φ(w1, w̄1)φ(w2, w̄2)〉L =
∑
Q

|〈0|φ(0, 0)|Q〉|2e−(EQ−E0)(τ1−τ2)−i(PQ−P0)(x1−x2) ,

where |0〉 is the ground state and E0 , P0 are the energy and momentum of the
ground state, leads to

EQ − E0 =
2πvF
L

(∆+
Q + ∆−Q) , PQ − P0 =

2π

L
(∆+

Q −∆−Q) , (3.7)

assuming that both the energy and momentum gaps are of order O(1/L).
However, as we have seen in Sect. 2.7, for some of the excitations consid-
ered (addition of a particle in the system, ∆N = 1, backscattering pro-
cesses characterized by d, and particle-hole excitations at the Fermi surface
characterized by N±), the momentum gap is macroscopic. For example, if
Q = {∆N = 0, d 6= 0, N± = 0}, the momentum gap is 2kFd, kF ≡ πD, and
for Q = {∆N = 1, d = 0, N± = 0} the momentum gap is −πkFκ+ πκ/L. For
these excitations, following [15, 16, 18], the coefficients Ã(Q) will depend on
x as

Ã(Q) = A(Q)eipQx , (3.8)

where pQ is the macroscopic part of the momentum gap PQ − P0. From (3.5)
and (3.8) we obtain the generic formula for the asymptotics of correlations
functions at T = 0

〈φ(x, t)φ(0, 0)〉 =
∑
Q

A(Q)eipQx

(ix+ vF τ)2∆+
Q(−ix+ vF τ)2∆−Q

, (3.9)

where ∆±Q can be found from (3.7) and the leading term corresponds to the

smallest ∆±Q.
We also can find the low-temperature asymptotics of the correlation func-

tions if we use instead of the conformal mapping (3.6), the mapping

z = e2πTw/vF , z = x− ivF τ , (3.10)

which differ from (3.6) by interchanging the space and time variables. The
computations are similar those described above for the correlation functions
in a finite box, and the final result is

〈φ(x, t)φ(0, 0)〉T =
∑
Q

B(Q)eipQx
(

πT/vF
sinh[πT (x− ivF τ)/vF ]

)2∆+
Q
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×
(

πT/vF
sinh[πT (x+ ivF τ)/vF ]

)2∆−Q

. (3.11)

This result is valid only at temperatures close to zero.

3.3 Density-density correlation function

In the case of the density correlation function, 〈j(x, t)j(0, 0)〉, where j(x) =
Ψ†(x)Ψ(x), we have ∆N = 0 so the most general excitation is constructed by
backscattering d particles and creating a particle-hole pair at the Fermi surface
characterized by N±. Making use of (2.55,2.56,2.58), we obtain for the energy
and momentum gap of the excitation characterized by Q = {∆N = 0, d,N±}:

PN±,d − P0 = 2kFd+
2π

L
(N+ −N−) ,

EN±,d − E0 =
2πvF
L

[(Zd)2 +N+ +N−] .

Here we have taken into account only the terms of order 1 and O(1/L). Equa-
tion (3.7) gives the conformal dimensions

2∆±Q = 2N± + (Zd)2 , (3.12)

and from the general formula (3.9)

〈j(x, t)j(0, 0)〉 − 〈j(0, 0)〉2 =
∑

Q={N±,d}

A(Q)
e2ixkF d

(ix+ vF τ)2∆+
Q(−ix+ vF τ)2∆−Q

.

(3.13)
Defining θ ≡ 2Z2 = 4πD/vF , where Z = Z(−q) = Z(q), and Z(λ) given by
the integral equation (2.50), the leading terms are

〈j(x, t)j(0, 0)〉 − 〈j(0, 0)〉2 =
a

(ix+ vF τ)2
+

a

(−ix+ vF τ)2
+ b

cos(2kFx)

|ix+ vF τ |θ
.

For equal times, Eq. (3.13) takes the form

〈j(x, 0)j(0, 0)〉 − 〈j(0, 0)〉2 =
∑

Q={N±,d}

Â(Q)
e2ixkF d

|x|d2θ+2N++2N−
. (3.14)
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The presence of the oscillatory terms in this expression can be explained by
the following simple computation [18]:

〈j(x, 0)j(0, 0)〉 =
∑
Q

〈0|j(x, 0)|Q〉〈Q|j(0, 0)|0〉

=
∑
Q

|〈0|j(0, 0)|Q〉|2ei(PQ−P0)x

=
∞∑

d=−∞

ei2kF dx
∑
N±

|〈0|j(0, 0)|d,N±〉|2e
i2πx
L

(N+−N−) ,

where in the second line, we broke the sum over Q into disjoint sums charac-
terized by different macroscopic momenta. The second part of the sum gives
the power-law decay for k−1

F � x� L. The formulae (3.13) and (3.14) are the
same as in the case of a Bose gas with coupling constant c′ = c/ cos(πκ/2) and
periodic boundary conditions [18] – see Chap. XVII of [54]. This situation is
expected, since

j(x) = Ψ†(x)Ψ(x) = Ψ†B(x)ΨB(x) .

Finally, from (3.11), the finite temperature density correlation function is

〈j(x, t)j(0, 0)〉T =
∑

Q={d,N±}

B(Q)ei2kF dx
(

πT/vF
sinh[πT (x− ivF τ)/vF ]

)2∆+
Q

×
(

πT/vF
sinh[πT (x+ ivF τ)/vF ]

)2∆−Q

, (3.15)

with ∆±Q given by (3.12).

3.4 Field-field correlation function

In contrast to the density correlators, for the field correlator 〈Ψ(x, t)Ψ†(0, 0)〉,
one has ∆N = 1. For the ground states with N and N + 1 particles and the
boundary conditions considered in this Section the Bethe equations are:

λjL+
N∑
k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
, j = 1, · · · , N ,

λ̃jL+
N+1∑
k=1

θ(λ̃j − λ̃k) = 2π

(
j − N + 2

2

)
− πκ , j = 1, · · · , N + 1 .
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The shift −πκ in the second equation implies that the anyonic wavefunctions
for N and N + 1 particles live in two orthogonal sectors of the Hilbert space.
The addition of one particle produces in this case a macroscopic change in
the momentum, −πkFκ − πκ/L, which gives rise to oscillations even in the
dominant term of the field correlator.

The most general excitation is obtained by an addition of one particle to the
system, followed by the backscattering of d particles and creation of a particle-
hole pair at the Fermi surface. Using the results (2.51,2.52,2.55,2.56,2.58) with
ω = 0, ω′ = −κ/2, we obtain the following expressions for the energy and
momentum gaps of an excitation with Q = {∆N = 1, d,N±} (retaining, as
before, the terms of order 1 and O(1/L)):

P∆N=1
N±,d − P0 = 2kF (d− κ/2) +

2π

L

[
(d− κ/2) +N+ −N−

]
,

E∆N=1
N±,d − E0 =

2πvF
L

[(
1

2Z

)2

+ Z2(d− κ/2)2 +N+ +N−

]
,

so the conformal dimensions are

2∆±Q = 2N± +

(
1

2Z
± Z(d− κ/2)

)2

. (3.16)

From Eq. (3.9), the field correlator is

〈Ψ(x, t)Ψ†(0, 0)〉 =
∑

Q={N±,d}

A(Q)
e2ikF (d−κ

2
)x

(ix+ vF τ)−2∆+
Q(−ix+ vF τ)−2∆−Q

, (3.17)

or in the equal-time case

〈Ψ(x, 0)Ψ†(0, 0)〉 =
∑

Q={N±,d}

Â(Q)
e2ikF (d−κ

2
)x

|x|(d+κ
2

)2θ+ 1
θ

+2N++2N−
,

where θ = 2Z2. Again, we can heuristically justify the presence of the os-
cillatory terms in the correlation function in the same way as for the density
correlator, but for the field correlator, the complete set of states that is inserted
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between Ψ and Ψ† is from the sector with N + 1 particles

〈Ψ(x, 0)Ψ†(0, 0)〉 =
∑
Q

〈0|Ψ(x, 0)|Q〉〈Q|Ψ†(0, 0)|0〉

=
∑
Q

|〈0|Ψ(0, 0)|Q〉|2ei(PQ−P0)x

=
∞∑

d=−∞

ei2kF (d−κ
2

)x
∑
N±

|〈0|Ψ(0, 0)|d,N±〉|2e
i2πx
L

(N+−N−) .

In this case, the terms of the correlation function containing ei2kF (d−κ/2)x that
are responsible for the oscillatory behavior at x � L, exhibit dependence on
the statistical parameter.

Equation (3.17) can be compared to the result of Calabrese and Mintchev
[19], who calculated the field correlation function for anyonic gapless systems
in the low-momentum regime using the harmonic fluid approach [24, 42], ob-
taining

〈Ψ†(x, 0)Ψ(0, 0)〉 = D
∞∑

d=−∞

bd
e−2i(d+κ

2
)kF xe−2i(m+κ

2
)πε(x)/2

(Dc(x))(d+κ
2

)22K+ 1
2K

,

whereD is the density, bd unknown non-universal amplitudes, c(x) = L sin(πx/L),
and K is a universal parameter that can be expressed in terms of the phe-
nomenological velocity parameters vN , vJ as K =

√
vJ/vN . For the Lieb-

Liniger anyons,

K =
2πD

vF
=
θ

2
. (3.18)

They have checked their results in the limit c → ∞, K = 1 against the exact
results of Santachiara et al. [73], who calculated the asymptotic behavior of
the field correlator as a Toeplitz determinant, which is a generalization for
anyonic statistics of a result obtained by Lenard in [58]. We see that our
conformal field theory approach agrees with the leading asymptotics produced
by the harmonic liquid approximation but also gives the higher-order terms in
the large-distance expansion.

Using the conformal mapping (3.10) that leads to general Eq. (3.11), we
find also the finite-temperature field correlator:

〈Ψ(x, t)Ψ†(0, 0)〉T =
∑

Q={d,N±}

B(Q)ei2kF (d+κ
2

)x

(
πT/vF

sinh[πT (x− ivF τ)/vF ]

)2∆+
Q
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×
(

πT/vF
sinh[πT (x+ ivF τ)/vF ]

)2∆−Q

, (3.19)

where ∆±Q is given by (3.16).
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Chapter 4

Anyonic Generalization of
Lenard’s Formula

In this chapter we are starting the rigorous investigation of the field-field cor-
relation function for impenetrable anyons. As a first step we are going to
compute the anyonic generalization of Lenard’s formula. In [59], Lenard was
able to show, using the Fermi-Bose mapping for wavefunctions, that the re-
duced density matrices (correlation functions) of bosons interacting with hard-
core potentials can be expressed in terms of reduced density matrices of free-
fermions and vice-versa. In the particular case of zero-point interactions, this
result can be summarized in the following form: n-particle RDMs of impen-
etrable bosons are given by the n-th Fredholm minor of an integral operator
whose kernel is the Fourier transform of the Fermi distribution. In [67], mak-
ing use of the Anyon-Fermi and Anyon-Bose mappings for wavefunctions, we
were able to generalize this result for arbitrary statistics. In this case, again,
the n-particle RDMs of impenetrable anyons are given by the n-th Fredholm
minor of an integral operator whose kernel is the Fourier transform of the
Fermi distribution, however, now the constant in front of the integral operator
depends on the statistics parameter κ and is given by (1 + eiπκ)/π which can
be contrasted with the constant in the impenetrable bosons case which is 2/π.
Another interesting feature of the anyonic RDM is the fact that in this case
they depend on the sign of the difference of the arguments.

Compared with the technique presented in the next chapter, the anyonic
generalization of Lenard’s formula, has the advantage of giving results also for
n-particle correlation functions. The disadvantage is that it does not address
time-dependent correlation functions. The results presented in this chapter
are based on [67].
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4.1 From correlation functions to reduced den-

sity matrices

The one-dimensional anyons considered in this chapter are characterized by
anyonic fields Ψ†(x),Ψ(x) which obey the following commutation relations

Ψ(x1)Ψ†(x2) = e−iπκε(x1−x2)Ψ†(x2)Ψ(x1) + δ(x1 − x2) , (4.1)

Ψ†(x1)Ψ†(x2) = eiπκε(x1−x2)Ψ†(x2)Ψ†(x1) , (4.2)

Ψ(x1)Ψ(x2) = eiπκε(x1−x2)Ψ(x2)Ψ(x1) . (4.3)

Here κ is the statistics parameter, and ε(x) = x/|x|, ε(0) = 0. The commu-
tation relations become bosonic for κ = 0 and fermionic for κ = 1. For an
arbitrary Hamiltonian of the anyons confined to the interval V = [−L/2, L/2],
the N -particle eigenstates are defined as

|ΨN({λ})〉 =
1√
N !

∫
V

dz1 · · ·
∫
V

dzN χaN(z1, · · · , zN |{λ})Ψ†(zN) · · ·Ψ†(z1)|0〉 ,

(4.4)

〈ΨN({λ})| = 1√
N !

∫
V

dz1 · · ·
∫
V

dzN 〈0|Ψ(z1) · · ·Ψ(zN)χ∗aN (z1, · · · , zN |{λ}) ,

(4.5)
where χaN are the (norm one) quantum-mechanical wavefunctions of N anyons,
and {λ} is a set of quantum numbers specifying the state. The wavefunctions
χ have the anyonic symmetry

χaN(z1, · · · , zi, zi+1, · · · , zN) = eiπκε(zi−zi+1)χaN(z1, · · · , zi+1, zi, · · · , zN) , (4.6)

that reflects the field commutation relations. We are interested in computing
the finite-temperature correlation functions of anyonic fields. The simplest
example of these correlators is

〈Ψ†(x′)Ψ(x)〉 .

In the grand canonical ensemble characterized by temperature T and chemical
potential h, the field correlation function is given by following relation

〈Ψ†(x′)Ψ(x)〉T,h =
∞∑
N=1

∑
{λ}

ehN/T
e−E({λ})/T

Z(h, V, T )
〈ΨN({λ})|Ψ†(x′)Ψ(x)|ΨN({λ})〉 ,

(4.7)
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where E({λ}) is the energy of the eigenstate with quantum numbers {λ}, and
Z(h, V, T ) is the grand-canonical partition function

Z(h, V, T ) =
∞∑
N=0

∑
{λ}

ehN/T e−E({λ})/T . (4.8)

As shown in the Appendix B, the correlator at a fixed number of particles N
is given by an overlap integral of the corresponding wavefunction

〈ΨN({λ})|Ψ†(x′)Ψ(x)|ΨN({λ})〉 = N

∫
V

dz1 · · ·
∫
V

dzN−1

×χ∗aN (z1, · · · , zN−1, x
′|{λ})χaN(z1, · · · , zN−1, x|{λ}) , (4.9)

so that the correlation function (4.7) can be written as

〈Ψ†(x′)Ψ(x)〉T,h =
∞∑
N=1

∑
{λ}

ehN/T
e−E({λ})/T

Z(h, V, T )
N

∫
V

dz1 · · ·
∫
V

dzN−1

×χ∗aN (z1, · · · , zN−1, x
′|{λ})χaN(z1, · · · , zN−1, x|{λ}) . (4.10)

We will also be interested in a class of 2n-point field correlation functions
at finite temperature:

〈Ψ†(x′n) · · ·Ψ†(x′1)Ψ(x1) · · ·Ψ(xn)〉T,h . (4.11)

These correlators can be expressed similarly to Eq. (4.10)

〈Ψ†(x′n) · · ·Ψ†(x′1)Ψ(x1) · · ·Ψ(xn)〉T,h =

∞∑
N=n

∑
{λ}

ehN/T
e−E({λ})/T

Z(h, V, T )

N !

(N − n)!

∫
V

dz1 · · ·
∫
V

dzN−n

×χ∗aN (z1, · · · , zN−n, x′1, · · · , x′n|{λ})χaN(z1, · · · , zN−n, x1, · · · , xn|{λ}) . (4.12)

As one can see from (4.10) and (4.12), the correlation functions are obtained
as a combination of the wavefunctions and ensemble probabilities. In this
context, it is useful, similarly to the case of fermionic or bosonic particles, to
introduce the reduced density matrices of anyons:

Definition 1. For a statistical ensemble characterized by the probabilities pN{λ},
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the anyonic n-particle reduced density matrix is defined as

(x1, · · · , xn|ρan|x′1, · · · , x′n) =
∞∑
N=n

∑
{λ}

pN{λ}
N !

(N − n)!

∫
V

dz1 · · ·
∫
V

dzN−n

×χ∗aN (z1, · · · , zN−n, x′1, · · · , x′n|{λ})χaN(z1, · · · , zN−n, x1, · · · , xn|{λ}) , (4.13)

where the wavefunctions χaN,{λ} are normalized to one.

If the probabilities pN{λ} coincide with those in the grand canonical ensemble,

pN{λ} = eNh/T e−E({λ})/T/Z(h, V, T ), the one-particle reduced density matrix is

just the 2-point correlator (4.10), and the n-particle reduced density matrix
is the particular 2n-point correlator (4.12). These relations are exactly the
same as in the case of bosonic and fermionic statistics. A particular “anyonic”
feature of the Definition 1, is the fact that we integrate over the first N − n
arguments of the wavefunctions. In the case of bosonic and fermionic reduced
density matrices, integration over any subset of the N −n out of N arguments
produces the same result due to the parity of the wavefunctions. This is not the
case for the reduced density matrices of anyons due to the anyonic symmetry
(4.6) which in general, e.g., in the periodic or quasi-periodic situation (“anyons
on a ring”) makes different arguments of the wavefunctions inequivalent – see
discussion in the next Section.

Under a certain set of conditions, which is also made precise in the next
Section, there is a correspondence between the anyonic and the fermionic or
bosonic wavefunctions. This correspondence will be used later to express the
anyonic reduced density matrices as expansions in terms of fermionic or bosonic
ones.

4.2 Anyon-Fermi and Anyon-Bose mapping

To establish the correspondence between the wavefunctions of anyons and
fermions or bosons we define the two functions which essentially incorporate
statistical properties of the wavefunctions of different statistics in one dimen-
sion:

Aκ(z1, · · · , zN) = eiπκ
∑
j<k ε(zj−zk)/2 (4.14)

and
B(z1, · · · , zN) =

∏
j>k

ε(zj − zk) , (4.15)

where the notations are the same as in Eq. (2.2).
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The mapping between anyons and fermions or bosons is analogous to the
Bose-Fermi mapping discovered in [34], where it was noticed that any wave-
function of N fermions has a bosonic counterpart given by

χb(z1, · · · , zN) = B(z1, · · · , zN)χf (z1, · · · , zN) . (4.16)

This correspondence is valid under very general conditions, with no restric-
tions on the external or particle-particle interaction potential, except for the
requirement of the hard-core condition which should make the bosons impen-
etrable. For particles confined to a box with “hard wall” boundary conditions
(BC), bosonic and fermionic wavefunctions satisfy the same BC. In this case,
if χf is an eigenfunction of the Hamiltonian, then χb is also an eigenfunction
with the same eigenvalue. However, in the case of a ring of length L with
periodic BC for bosons, the BC for the fermions are in general different and
given by

χf (0, · · · , zN) = (−1)N−1χf (L, · · · , zN) . (4.17)

For even N , when Eq. (4.17) means that the BC for fermions and bosons
are different by a phase shift π, the relation between the eigenenergies of
the fermionic and bosonic systems is less direct. Since for non-coincident
coordinates B2 ≡ 1, the Bose-Fermi mapping (4.16) is symmetric and remains
true if the superscripts b and f are interchanged.

4.2.1 Anyon-Fermi mapping

It is straightforward to see that similarly to the Bose-Fermi mapping (4.16), the
wavefunction with anyonic symmetry (4.6) can be obtained by multiplication
of a fermionic wavefunction with the statistics factors (4.14) and (4.15) [5, 35]:

χa(z1, · · · , zN) = Aκ(z1, · · · , zN)B(z1, · · · , zN)χf (z1, · · · , zN) , (4.18)

Besides the anyonic symmetry (4.6), the wavefunction χa (4.18) satisfies the
condition

χa(z1, · · · , zN)|zi=zj = 0 for all {i, j} ∈ {1, · · · , N} . (4.19)

This means that the correspondence (4.18) is valid as long as potential energy
contains a hard-core part which ensures that the anyons are impenetrable
and condition (4.19) is indeed satisfied. Other properties of the Anyon-Fermi
mapping (4.18) are similar to those of the Bose-Fermi mapping. It is valid
for an arbitrary form of the potential energy in the particle Hamiltonian.
When the particles are confined to an interval with “hard wall” boundary
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conditions, the fermionic and anyonic systems both satisfy the same BC of the
wavefunctions vanishing at the ends of the interval. In this case, if χf is an
eigenfunction of the particle Hamiltonian, then χa is also an eigenfunction of
this Hamiltonian with the same eigenvalue. This follows from the fact that
the statistics factors (4.14) and (4.15) are constant everywhere except for the
points of coincident coordinates, where the wavefunctions vanish.

When particles are confined to a ring with periodic or quasi-periodic BC,
the properties of the Anyon-Fermi mapping are more complicated. In this case,
the anyonic wavefunction will have different boundary conditions for each of
its coordinate (see Chap. 2), the difference being given by an extra phase shift
that depends on the statistics parameter κ. Specifically, if the fermion wave
function obeys some generic quasi-periodic BC (the same in all coordinates)
which can be written as

χf (0, · · · , zN) = (−1)N−1e−iφχf (L, · · · , zN) , (4.20)

then the anyonic wavefunction obeys the following BC in its different argu-
ments

χa(0, z2, · · · , zN) = e−iφ χa(L, z2, · · · , zN) ,

χa(z1, 0, · · · , zN) = ei(2πκ−φ)χa(z1, L, · · · , zN) ,
... (4.21)

χa(z1, z2, · · · , 0) = ei(2(N−1)πκ−φ)χa(z1, z2 · · · , L) ,

where φ = φ+πκ(N−1). As for the Bose-Fermi mapping (4.16) with even N ,
the anyonic and fermionic eigenenergies are not related directly in the situation
of a ring with quasiperiodic BC. In physics terms, this difference between
anyons and fermions corresponds to the statistical magnetic flux πκ(N − 1)
through the ring produced by N one-dimensional anyons of statistics κ.

The Anyon-Fermi mapping (4.18) is not symmetric. The inverse relation
can be written as

χf (z1, · · · , zN) = A−κ(z1, · · · , zN)B(z1, · · · , zN)χa(z1, · · · , zN) . (4.22)

4.2.2 Anyon-Bose mappping

The Anyon-Bose mapping was historically the first mapping of this kind in-
troduced for one-dimensional anyons in [56]:

χa(z1, · · · , zN) = Aκ(z1, · · · , zN)χb(z1, · · · , zN) . (4.23)
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The wavefunction χa in (4.23) has the correct anyonic symmetry (4.6), and
in contrast to Anyon-Fermi mapping (4.18), need not vanish when a pair of
coordinates coincide. It should be noted, however, that without this hard-
core condition, the discontinuity of the statistics factor Aκ (4.14) at coinciding
coordinates translates into discontinuity of the wavefunctions (4.23). In this
case one needs an additional condition regularizing the wavefunctions. Also,
without the hard-core condition, the statistics factor A changes substantially
the behavior of the wavefunctions at the points of coincident coordinates (for
instance, if the particle-particle interaction is δ-functional, statistics renormal-
izes the interaction strength) and the energy eigenvalues of the bosonic and
anyonic problems are different regardless of the boundary conditions.

Other properties of the Anyon-Bose mapping (4.23) are very similar to
those of the Anyon-Fermi mapping. It is valid for arbitrary potential energy.
For particles in a box with “hard wall” BC, both wavefunctions (4.23) satisfy
the same condition χa = 0 and χb = 0 at the boundary. For particles on a
ring with generic quasi-periodic BC for bosons that can be written as

χb(0, · · · , zN) = e−iφχb(L, · · · , zN) (4.24)

(and have the same form for all other arguments of χb), the anyonic wavefunc-
tion obeys the following BC

χa(0, z2, · · · , zN) = e−iφ χa(L, z2, · · · , zN) ,

χa(z1, 0, · · · , zN) = ei(2πκ−φ)χa(z1, L, · · · , zN) ,
... (4.25)

χa(z1, z2, · · · , 0) = ei(2(N−1)πκ−φ)χa(z1, z2 · · · , L) ,

where φ = φ + πκ(N − 1). The Anyon-Bose mapping is also not symmetric.
The inverse of (4.23) is

χb(z1, · · · , zN) = A−κ(z1, · · · , zN)χa(z1, · · · , zN) . (4.26)

4.3 An important theorem

In this section, we consider an arbitrary statistical ensemble in which the
states χaN,{λ} occur with probabilities pN{λ}. The anyons are assumed to be

confined to an interval V = [−L/2, L/2], and wavefunctions are normalized
to 1: ‖χaN,{λ}‖ = 1. Our goal is to establish a relation between the reduced

density matrices ρan of anyons (4.13) and similarly defined reduced density
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matrices of bosons ρbm and fermions ρfp . The fermionic and bosonic states
that correspond to the anyonic states χaN,{λ} in the Anyon-Fermi (4.18) or

Anyon-Bose (4.23) mappings have similarly normalized wavefunctions, and we
assume that they have the same probabilities pN{λ}. This assumption is natural

under the conditions (discussed in the previous Section) for which the energies
of the states of different statistics are the same, as they are, for instance,
when the wavefunctions satisfy the “hard wall” boundary conditions and hard-
core condition on the particle-particle interaction. The relation between the
reduced density matrices is established by the following theorem:

Theorem 1. Let x1, · · · , xn, x′1, · · · , x′n be 2n coordinates in the interval V ,
and O± are the parts of the space of these coordinates in which they are ordered,
respectively, as x1 < x′1 < · · · < xn < x′n and x′1 < x1 < · · · < x′n < xn. For the
O+ ordering, one can define the subset of V : I+ = [x1, x

′
1]∪ · · · ∪ [xn, x

′
n] ⊂ V ,

and the subset I− = [x′1, x1] ∪ · · · ∪ [x′n, xn] ⊂ V for ordering as in O−. If the
conditions of validity of the Anyon-Fermi (4.18) or the Anyon-Bose mapping
(4.23) are fulfilled, the reduced density matrices of anyons can be expressed
then in terms of the reduced density matrices of fermions as

(x1, · · · , xn|ρan|x′1, · · · , x′n)± = A−κ(x
′
1, · · · , x′n)B(x′1, · · · , x′n)

×Aκ(x1, · · · , xn)B(x1, · · · , xn)
∞∑
j=0

(−1)j
(1 + e±iπκ)j

j!∫
I±

dz1 · · ·
∫
I±

dzj (x1, · · · , xn, z1, · · · , zj|ρfn+j|x′1, · · · , x′n, z1, · · · , zj) (4.27)

or bosons as

(x1, · · · , xn|ρan|x′1, · · · , x′n)± = A−κ(x
′
1, · · · , x′n)Aκ(x1, · · · , xn)

×
∞∑
j=0

(−1)j
(1− e±iπκ)j

j!

∫
I±

dz1 · · ·
∫
I±

dzj

(x1, · · · , xn, z1, · · · , zj|ρbn+j|x′1, · · · , x′n, z1, · · · , zj) . (4.28)

The subscript ± in these expressions specifies whether x1, · · · , xn, x′1, · · · , x′n
are ordered as in O+ or O−.

Proof. The proof follows that of Lenard [59], generalizing it to the anyonic
statistics. As a first step, we need a preliminary result.
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Lemma 1. For any symmetric function f(z1, · · · , zn) and a constant α,∫
V

dz1 · · ·
∫
V

dzn α
σ(I±)f(z1, · · · , zn) =

n∑
j=0

Cn
j (−1 + α)j

×
∫
I±

dz1 · · ·
∫
I±

dzj

∫
V

dzj+1 · · ·
∫
V

dznf(z1, · · · , zn), (4.29)

where Cn
j = n!

(n−j)!j! and σ(I±) is the number of variables z1, · · · , zn contained
in I±.

Proof. The L.H.S. of (4.29) can be written explicitly as

Q =
n∑

m=0

Cn
mα

m

∫
I±

dz1 · · ·
∫
I±

dzm

∫
V \I±

dzm+1 · · ·
∫
V \I±

dznf(z1, · · · , zn) ,

and combined with an obvious relation
∫
V \I± dzi =

∫
V
dzi −

∫
I±
dzi , (i =

m+ 1, · · · , n) can be further transformed into

Q =
n∑

m=0

Cn
mα

m

n−m∑
k=0

Cn−m
k (−1)k

∫
I±

dz1 · · ·
∫
I±

dzm+k

∫
V

dzm+k+1 · · ·
∫
V

dzn

×f(z1, · · · , zn) .

Collecting the terms in this expression with the same j = m + k, we obtain
the desired result

Q =
n∑
j=0

Cn
j (−1 + α)j

∫
I±

dz1 · · ·
∫
I±

dzj

∫
V

dzj+1 · · ·
∫
V

dznf(z1, · · · , zn) .

Now we can prove the Theorem 1 starting with (4.27). Using the Anyon-
Fermi mapping (4.18) we have

(x1, · · · , xn|ρan|x′1, · · · , x′n)± =

∞∑
N=n

∑
{λ}

pN{λ}
N !

(N − n)!

∫
V

dz1 · · ·
∫
V

dzN−nC(x1, · · · , xn, x′1, . . . , x′n)±

×χ∗fN (z1, · · · , zN−n, x′1, · · · , x′n|{λ})χ
f
N(z1, · · · , zN−n, x1, · · · , xn|{λ}) ,
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where
C(x1, · · · , xn, x′1, · · · , x′n)± =

A−κ(x
′
1, · · · , x′n)B(x′1, · · · , x′n)Aκ(x1, · · · , xn)B(x1, · · · , xn)

×
n∏
j=1

N−n∏
i=1

e−iπκε(zi−x
′
j)/2eiπκε(zi−xj)/2ε(x′j − zi)ε(xj − zi) .

One can see directly that

n∏
j=1

e−iπκε(z−x
′
j)/2eiπκε(z−xj)/2ε(x′j − z)ε(xj − z) =

{
−e±iπκ, z in I± ,

1, z not in I± .

This means that

C(x1, · · · , xn, x′1, · · · , x′n)± = A−κ(x
′
1, · · · , x′n)B(x′1, · · · , x′n)

×Aκ(x1, · · · , xn)B(x1, · · · , xn)(−e±iπκ)σ′(I±) ,

where σ′(I±) is the number of variables z1, · · · , zN−n in I±. Applying now
Lemma 1 with α = −e±iπκ, we obtain for the anyonic reduced density matrices

(x1, · · · , xn|ρan|x′1, · · · , x′n)± = A−κ(x
′
1, · · · , x′n)B(x′1, · · · , x′n)Aκ(x1, · · · , xn)

B(x1, · · · , xn)
∞∑
N=n

∑
{λ}

pN{λ}
N !

(N − n)!

N−n∑
j=0

CN−n
j (−1)j(1 + e±iπκ)j

×
∫
I±

dz1 · · ·
∫
I±

dzj

∫
V

dzj+1 · · ·
∫
V

dzN−n χ
∗f
N,{λ}χ

f
N,{λ} .

Interchanging the order of summations, one can notice that the sum over N
and {λ} is precisely ρfn+j. Therefore finally

(x1, · · · , xn|ρan|x′1, · · · , xn)± = A−κ(x
′
1, · · · , x′n)B(x′1, · · · , x′n)Aκ(x1, · · · , xn)

B(x1, · · · , xn)
∞∑
j=0

(−1)j
(1 + e±iπκ)j

j!

×
∫
I±

dz1 · · ·
∫
I±

dzj (x1, · · · , xn, z1, · · · , zj|ρfn+j|x′1, · · · , x′n, z1, · · · , zj) .

The proof of (4.28) is similar. In this case, we use the Anyon-Bose mapping
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(4.23), and the C± function is

C(x1, · · · , xn, x′1, · · · , x′n)± = A−κ(x
′
1, · · · , x′n)Aκ(x1, · · · , xn)

n∏
j=1

N−n∏
i=1

e−iπκε(zi−x
′
j)/2eiπκε(zi−xj)/2 .

This means that we can use Lemma 1 with α = e±iπκ. Interchanging the order
of summation and identifying the bosonic reduced density matrices ρbn+j we
obtain (4.28).

The results of Theorem 1 do not depend on the statistical ensemble used
in the computation of the reduced density matrices as long as the particles
are subject to the hard-wall boundary conditions making the state energies
independent of the statistics. They also do not depend on the form of the
interparticle potential beyond the need for the hard-core part which ensures
that the wavefunctions satisfy the hard-core condition. If both of these con-
ditions are satisfied, we can see from (4.27) and (4.28) that there is also no
explicit dependence on the length L of the confining box V , and the results
remain valid in the thermodynamic limit L→∞.

4.4 Lenard’s formula for impenetrable anyons

The Anyon-Fermi relation derived above for the reduced density matrices is
particularly useful in the situation when the radius of the hard-core interaction
is vanishingly small, and no other interactions are present. In this case, the
fermionic problem is identical to free fermions, since the hard-core potential
of zero radius effectively vanished due to antisymmetry of the wavefunctions.
The reduced density matrices ρfn coincide then with those of free fermions [59]
(see Appendix D):

(x1, · · · , xn|ρfn|x′1, · · · , x′n) =
1

πn
θT

(
x1, · · · , xn
x′1, · · · , x′n

)
, (4.30)

where θT (x, y)/π is the Fourier transform of the Fermi distribution function:

θT (x, y) =
1

2

∫ ∞
−∞

dk
eik(x−y)

1 + e(k2−h)/T
. (4.31)

At T = 0 we have

θ0(x, y) =
sin q(x− y)

x− y
, (4.32)
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where q =
√
h is the Fermi momentum.

Applying Theorem 1 and (D.4) we have

(x1, · · · , xn|ρan|x′1, · · · , x′n)± = C
∞∑
j=0

(−1)j
(1 + e±iπκ)j

j!

×
∫
I±

dz1 · · ·
∫
I±

dzj
1

πn+j
θT

(
x1, · · · , xn, z1, · · · , zj
x′1, · · · , x′n, z1, · · · , zj

)
,

where

C(x′1, · · · , xn) ≡ A−κ(x
′
1, · · · , x′n)B(x′1, · · · , x′n)Aκ(x1, · · · , xn)B(x1, · · · , xn)

(4.33)
and the subscript ± specifies particular ordering of x1, · · · , xn, x′1, · · · , x′n as
in Theorem 1. This result can be rewritten in terms of Fredholm minors using
(C.5)

(x1, · · · , xn|ρan|x′1, · · · , x′n)± =
1

πn
C(x′1, · · · , xn)

× det

(
1− γθ̂±T

∣∣∣∣ x1, · · · , xn
x′1, · · · , x′n

)∣∣∣∣
γ=(1+e±iπκ)/π

,

where the integral operator θ̂±T with kernel θT (x, y) is defined by its action on
an arbitrary function f :

(θ̂±T f)(x) =

∫
I±

θT (x, y)f(y)dy

Finally, introducing the resolvent kernel %±T (x, y) associated with the the kernel
θT (x, y), which satisfies

%±T (x, y)− (1 + e±iπκ)

π

∫
I±

θT (x− z)%±T (z, y)dz = θT (x− y) ,

and making use of (C.6), (4.12) and (4.10), we obtain

〈Ψ†(x′n) · · ·Ψ†(x′1)Ψ(x1) · · ·Ψ(xn)〉T,h,± =
C(x′1, · · · , xn)

πn
%±T

(
x1, · · · , xn
x′1, · · · , x′n

)
× det

(
1− γθ̂±T

)∣∣∣
γ=(1+e±iπκ)/π

.

In the particular case of the simplest two-point correlator, this expression
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reduces to

〈Ψ†(x′)Ψ(x)〉T,h,± =
1

π
%±T (x′, x) det

(
1− γθ̂±T

)∣∣∣
γ=(1+e±iπκ)/π

, (4.34)

and gives the correlator of two anyonic fields in terms of the Fredholm deter-
minant of the integral operator θ̂T and its resolvent kernel.
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Chapter 5

Determinant Representation for
the Correlation Functions of
Impenetrable Anyons

In this chapter we are going to obtain the determinant representation of the
time and temperature dependent field-field correlator using the summation of
form factors. The method is similar with the one used by Korepin and Slavnov
[55] in obtaining the same representation for impenetrable bosons. However,
in the case of anyons the computation of form-factors has to be done with
extra care due to the fact that the wavefunctions for systems with different
number of particles obey different quasi-periodic boundary conditions. At the
end of the chapter, in the particular case of static correlators, we show the
equivalence with Lenard’s formula. The results presented are based on [68].

5.1 The gas of impenetrable anyons

The Lieb-Liniger gas of 1D anyons with the the second-quantized Hamiltonian
given by

H =

∫ L/2

−L/2
dx
(
[∂xΨ

†(x)][∂xΨ(x)] + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)− hΨ†(x)Ψ(x)
)
,

(5.1)
was studied in Chap. 2. In the previous formula c > 0 is the coupling constant,
L is the length of normalization interval, and h is the chemical potential. In
this chapter we will be interested only in the limiting case c→∞.
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The canonical Heisenberg fields

Ψ†(x, t) = eiHtΨ†(x)e−iHt , Ψ(x, t) = eiHtΨ(x)e−iHt , (5.2)

obey the anyonic equal-time commutation relations

Ψ(x1, t)Ψ
†(x2, t) = e−iπκε(x1−x2)Ψ†(x2, t)Ψ(x1, t) + δ(x1 − x2) , (5.3)

Ψ†(x1, t)Ψ
†(x2, t) = eiπκε(x1−x2)Ψ†(x2, t)Ψ

†(x1, t) , (5.4)

Ψ(x1, t)Ψ(x2, t) = eiπκε(x1−x2)Ψ(x2, t)Ψ(x1, t) , (5.5)

where κ is the statistics parameter, which we assume to be rational, and
ε(x) = x/|x|, ε(0) = 0. The Fock vacuum is defined as usual by

Ψ(x)|0〉 = 0 = 〈0|Ψ†(x) , 〈0|0〉 = 1 , (5.6)

and the eigenstates |ΨN〉 of the Hamiltonian are

|ΨN〉 =
1√
N !

∫ L/2

−L/2
dz1 · · ·

∫ L/2

−L/2
dzN

× χN(z1, · · · , zN |λ1, · · · , λN)Ψ†(zN) · · ·Ψ†(z1)|0〉 , (5.7)

where quantum-mechanical wavefunctions have the property of anyonic ex-
change statistics:

χN(· · · , zi, zi+1, · · · ) = eiπκε(zi−zi+1)χN(· · · , zi+1, zi, · · · ) . (5.8)

Note that the sign in front of the statistical phase in this expression (+iπκ
or −iπκ) depends on the choice of ordering of the creation operators in the
definition of the eigenstates (5.7). The order of these operators adopted in
Eq. (5.7) (leading to the phase +iπκ): the particle with the first coordinate
z1 created first, then z2, etc., is convenient [5] for the subsequent calculation
of the form factors.

As we have said, we limit our discussion to the case of infinitely strong
interaction, c → ∞, which corresponds to impenetrable anyons. In general,
the eigenfunctions χN are

χN =
e+iπκ

2

∑
j<k ε(zj−zk)√

N !
∏

j>k[(λj − λk)2 + c′2]

∑
π∈SN

(−1)πei
∑N
n=1 znλπ(n)
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×
∏
j>k

[λπ(j) − λπ(k) − ic′ε(zj − zk)] , (5.9)

where c′ ≡ c/ cos(πκ/2), and reduce for impenetrable anyons to a simpler
form:

χN =
e+iπκ

2

∑
j<k ε(zj−zk)

√
N !

∏
j>k

ε(zj − zk)
∑
π∈SN

(−1)πei
∑N
n=1 znλπ(n) . (5.10)

Here SN is the group of permutations of N elements, and (−1)π is the sign of
the permutation. The energy eigenvalues

H|ΨN〉 = E|ΨN〉

are given by the sum of effectively single-particle contributions:

E =
N∑
i=1

ε(λj), with ε(λ) = λ2 − h .

The individual momenta λj depend of the boundary conditions imposed on
the wavefunctions. In contrast to particles of integer statistics, wavefunctions
of the anyons satisfy different quasi-periodic boundary conditions in their dif-
ferent arguments, the difference resulting from the statistical phase shift 2πκ
[5, 66]. In general, the quasi-periodic boundary conditions also include the ex-
ternal phase shift η (we will consider η=2π× rational), so that the boundary
conditions on the wavefunctions (5.10) are:

χN(−L/2, z2, · · · , zN) = e−iη χN(L/2, z2, · · · , zN) ,

χN(z1,−L/2, · · · , zN) = ei(2πκ−η)χN(z1, L/2, · · · , zN) ,
... (5.11)

χN(z1, z2, · · · ,−L/2) = ei(2π(N−1)κ−η)χN(z1, z2 · · · , L/2) .

The difference in the boundary conditions for different arguments of χN makes
it possible, in general, to impose the condition without the statistical phase
shift on any of the arguments zj. The precise form of the Bethe equations
for the momenta λj in the wavefunction (5.9) depends on specific choice of
the boundary conditions. The choice (5.11), in which the first coordinate z1

does not have the statistical shift in its boundary condition, gives rise to the
Bethe equations which include the full statistical contribution πκ(N − 1) to
the momentum shift of each of the anyons produced by the N−1 other anyons
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in the system [66]:

eiλjL = ei η
N∏

k=1,k 6=j

(
λj − λk + ic′

λj − λk − ic′

)
, (5.12)

where η = η − πκ(N − 1). Similarly to the wavefunctions, the general Bethe
equations (5.12) are simplified in the impenetrable limit c→∞:

eiλjL = (−1)N−1ei η . (5.13)

5.1.1 Structure of the ground state

We assume that the ground state of the gas contains N anyons, and take,
for convenience, N to be even, although this does not affect our final results.
We denote the momenta of the particles in the ground state as µj, where
j = 1, · · · , N , and introduce the notation {[...]} such that

{[x]} = γ , if x = 2π × integer + 2πγ , γ ∈ (−1, 1) . (5.14)

The Bethe equations (5.13) give then the momenta µj:

µj =
2π

L

(
j − N + 1

2

)
+

2πδ

L
, j = 1, · · · , N0 , (5.15)

where δ = {[η]}. In the thermodynamic limit L → ∞, N → ∞, N/L = D,
momenta of the particles fill densely the Fermi sea [−q, q], where q =

√
h is

the Fermi momentum and the gas density is D = q/π.

5.1.2 Thermodynamics

The thermodynamics of the Lieb-Liniger anyonic gas was considered in [8,
9]. Similarly to the structure of the ground state, all local thermodynamic
characteristics in the case of impenetrable anyons are equivalent to those of the
free fermions. At non-vanishing temperature T , the quasiparticle distribution
is given by the Fermi weight

ϑ(λ, T, h) =
1

1 + e(λ2−h)/T
. (5.16)
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and the density and energy are

D =
1

2π

∫ ∞
−∞

ϑ(λ, h, T ) dλ , E =
1

2π

∫ ∞
−∞

λ2ϑ(λ, h, T ) dλ . (5.17)

The density increases monotonically as a function of the chemical potential
h. At T = 0,we have D = 0 for h ≤ 0, and 0 < D < ∞ if 0 < h < ∞. At
non-vanishing temperature, the density is zero for h = −∞ and monotonically
increases with h for −∞ < h <∞.

5.2 Time dependent field-field correlator

In Chap. 4, we have derived the anyonic generalization of the Lenard formula,
which for impenetrable free anyons, is an expansion of the anyonic reduced
density matrices in terms of the reduced density matrices of free fermions. In
the simplest case, the correlator

(x1|ρa1|x2) = 〈Ψ†(x2)Ψ(x1)〉T (5.18)

is the first Fredholm minor of an integral operator, whose kernel is the Fourier
transform of the Fermi weight (5.16). In this chapter, we obtain the time
dependent generalization of this result. Our approach will be based on the
following considerations. We start with the zero temperature field correlator

〈Ψ(x2, t2)Ψ†(x1, t1)〉N =
〈Ψ(µ1, · · · , µN)|Ψ(x2, t2)Ψ†(x1, t1)|Ψ(µ1, · · · , µN)〉

〈Ψ(µ1, · · · , µN)|Ψ(µ1, · · · , µN)〉
,

(5.19)
where the wavefunctions are taken to be normalized as

〈Ψ(µ1, · · · , µN)|Ψ(µ1, · · · , µN)〉 = LN , (5.20)

and µ1, · · · , µN are the momenta in the ground state (5.15). Using the reso-
lution of identity for the Hilbert space of N + 1 particles

1 =
∑

all {λ}N+1

|Ψ(λ1, · · · , λN+1)〉〈Ψ(λ1, · · · , λN+1)|
〈Ψ(λ1, · · · , λN+1)|Ψ(λ1, · · · , λN+1)〉

, (5.21)

where, according to (5.20)

〈Ψ(λ1, · · · , λN+1)|Ψ(λ1, · · · , λN+1)〉 = LN+1 ,
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and the sum is over all possible solutions of the Bethe equations with N + 1
particles, we have

〈Ψ(x2, t2)Ψ†(x1, t1)〉N =
1

L2N+1

∑
all {λ}N+1

〈ΨN({µ})|Ψ(x2, t2)|ΨN+1({λ})〉

× 〈ΨN+1({λ})|Ψ†(x1, t1)|ΨN({µ})〉 . (5.22)

Defining the form factors

FN+1,N(x, t) = 〈ΨN+1({λ})|Ψ†(x, t)|ΨN({µ})〉 ,
F ∗N+1,N(x, t) = 〈ΨN({µ})|Ψ(x, t)|ΨN+1({λ})〉 , (5.23)

we can rewrite Eq. (5.22) as

〈Ψ(x2, t2)Ψ†(x1, t1)〉N =
1

L2N+1

∑
all {λ}N+1

F ∗N+1,N(x2, t2)FN+1,N(x1, t1) . (5.24)

Equation (5.24) means that in order to find the dynamic field correlator, we
need to compute the form factors and sum over all of them. After the sum-
mation, one can take the thermodynamic limit. In general, such a summation
of form factors is extremely difficult. The main simplification which makes
it possible to perform this summation in the model of anyons we consider
here, is the fact that, similarly to the problem of impenetrable bosons [54, 55],
the local thermodynamic properties of particles with δ-function interaction
are identical with those of free fermions regardless of the actual exchange
statistics. Finally, the finite-temperature correlator can be obtained from the
zero-temperature result using the standard argument developed for the Bose
gas (see, e.g., Appendix XIII.1 of [54]), which is also applicable in the case of
anyons.

5.2.1 Form factors

As a first step in carrying out the program outlined above, we compute the form
factors. In the definition (5.23) of the form factors, the eigenstates |ΨN({µ})〉,
|ΨN+1({λ})〉 have, respectively, N and N + 1 particles. Although the set {µ}
represents in (5.23) momenta in the ground state of N particles, our calculation
below is valid also when |ΨN({µ})〉 is not the ground state. As before, we
assume for convenience that N is even. We denote by {µj} the momenta of
the anyons in the N -particle eigenstate, and by {λj} the momenta in the N+1
eigenstate.
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Using the definition (5.7) for the eigenstates with N and N + 1 anyons

|ΨN({µ})〉 =
1√
N !

∫
dNz χN(z1, · · · , zN |{µ})Ψ†(zN) · · ·Ψ†(z1)|0〉 ,

〈ΨN+1({λ})| = 1√
N + 1!

∫
dN+1y 〈0|Ψ(y1) · · ·Ψ(yN+1)χ∗N+1(y1, · · · , yN+1|{λ})

one can write the form factor as

FN+1,N(x, 0) =
1√

(N + 1)!N !

∫
dN+1y dNz χ∗N+1(y1, · · · , yN+1|{λ})

× χN(z1, · · · , zN |{µ})〈0|Ψ(y1) · · ·Ψ(yN+1)Ψ†(x)Ψ†(zN) · · ·Ψ†(z1)|0〉 . (5.25)

A direct application of the anyonic commutation relation (2.2) and Eq. (5.6)
described in more details in Appendix E, reduces this expression to

FN+1,N(x, 0) = 〈ΨN+1|Ψ†(x)|ΨN〉 (5.26)

=
√
N + 1

∫
dNz χ∗N+1(z1, · · · , zN , x|{λ})χN(z1, · · · , zN |{µ}) .

An important feature of Eq. (5.26) is that the order of the creation operators
chosen in Eq. (5.7) makes the “free” coordinate x in (5.26) the last argument of
the wavefunction χN+1. This ensures that both wavefunctions, χN and χN+1,
have the same phase shifts (2.20) at the boundary of the normalization interval
in all other variables zj. Since these phase shifts are canceled in Eq. (5.26),
the expression under the integrals over zj is periodic in each of the variable
[5]. This feature is the necessary consistency condition for the Hilbert spaces
of anyon wavefunctions with different numbers of particles, and is important
in what follows for the appropriate calculation of the form factors (5.26).

The sets of momenta {µj} and {λj} in the wavefunctions χN and χN+1 in
(5.26) are determined by the Bethe equations (5.13) as

µj =
2π

L

(
mj +

1

2

)
+

2πδ

L
, δ = {[η − πκ(N − 1)]}, j = 1, · · · , N, mj ∈ Z ,

(5.27)

λj =
2π

L
nj +

2πδ′

L
, δ′ = {[η − πκN ]}, j = 1, · · · , N + 1, nj ∈ Z . (5.28)

These equations show that

λj − µk =
2π

L

(
l − κ+ 1

2

)
, l ∈ Z , (5.29)
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which means that λj and µk never coincide except in the trivial case κ = 1,
when we have a gas of non-interacting fermions. In all other situations, λj and
µk are different. This difference between them comes from the phase shift due
to the hard-core condition on the added particle described by the factor 1/2
in (5.29), and the extra anyonic statistical phase added to the anyon system
together with the particle [5]. This difference between λj and µk plays an
important role in the following calculations. Using the identity

e+iπκ
2
ε(x−y)ε(y − x) = cos (πκ/2) ε(y − x)− i sin (πκ/2) , (5.30)

we can rewrite the anyonic wavefunction (5.10) as

χN(z1, · · · , zN |{µ}) =

∏
j>k [cos (πκ/2) ε(zj − zk)− i sin (πκ/2)]

√
N !

×
∑
π∈SN

(−1)πei
∑N
n=1 znµπ(n) .

Using this expression for both of the wavefunctions in (5.26) we obtain

FN+1,N(x, 0) =
1

N !

∑
π∈SN+1

∑
σ∈SN

(−1)π+σe−ixλπ(n+1)

×
∫ L/2

−L/2

N∏
n=1

dzn [cos (πκ/2) ε(x− zn) + i sin (πκ/2)] e−i
∑N
n=1 zn(λπ(n)−µσ(n)) .

Integration by parts in this equation produces the boundary terms in the
following form

e−izn(λπ(n)−µσ(n))

−i(λπ(n) − µσ(n))
(cos (πκ/2) ε(x− zn) + i sin (πκ/2))

∣∣∣∣zn=L/2

zn=−L/2
=

e−i
πκ
2 e−i

L
2

(λπ(n)−µσ(n))

i(λπ(n) − µσ(n))

(
1 + e+iπκeiL(λπ(n)−µσ(n))

)
.

All these terms vanish due to Eq. (5.29). Then, using the relation

dε(x− zn)

dzn
= −2δ(x− zn) ,
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we obtain the following expression for the form factors

FN+1,N(x, 0) =
[2i cos(πκ/2)]N

N !
exp

{
ix

[
N∑
j=1

µj −
N+1∑
j=1

λj

]}

×
∑

π∈SN+1

∑
σ∈SN

(−1)π+σ

N∏
j=1

1

λπ(j) − µσ(j)

. (5.31)

This expression differs from the corresponding result for impenetrable bosons
[54, 55] by the spectrum of the momenta which now include the statistical shift,
and by the overall [cos(πκ/2)]N factor. For κ = 0, both differences disappear,
and Eq. (5.31) reproduces, as should be, the case of the Bose gas. We trans-
form this equation following the corresponding steps for bosons [54, 55]. One
can see directly that the sums over permutations in (5.31) can be written in
the form of a determinant:

1

N !

∑
π∈SN+1

∑
σ∈SN

(−1)π+σ

N∏
j=1

1

λπ(j) − µσ(j)

=

(
1 +

∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

,

(5.32)
with

Mα
jk =

1

λj − µk
− α

λN+1 − µk
, j, k = 1, · · · , N , (5.33)

reducing Eq. (5.31) to

FN+1,N(x, 0) = (2i cos(πκ/2))N exp

{
ix

[
N∑
j=1

µj −
N+1∑
j=1

λj

]}
(

1 +
∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

. (5.34)

The determinant part of this equation can also be written as(
1 +

∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

=
∑

π∈SN+1

(−1)π
N∏
j=1

1

λπ(j) − µj
, (5.35)

as one can see directly from the L.H.S. of (5.32) by noticing that due to the
permutations π of λj, all permutations of µj give identical contributions to the
sum over π ∈ SN+1.

Alternatively, one can introduce a fictitious momentum µN+1, and obtain
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the following representation [63] of the form factor in terms of this momentum:

FN+1,N(x, 0) = (2i cos(πκ/2))N exp

{
ix

[
N∑
j=1

µj −
N+1∑
j=1

λj

]}

× lim
µN+1→∞

[
−µN+1 detN+1

(
1

λj − µk

)]
,

where detN+1(ajk) is the determinant of the (N + 1) × (N + 1) matrix with
elements ajk. We will not be using this representation explicitly below.

The time-dependent form factors can be obtained from the timeless form
(5.34) using the following simple relations:

e−iHt|ΨN({µ})〉 = e−it
∑N
j=1(µ2

j−h)|ΨN({µ})〉 ,

and
〈ΨN({λ})|eiHt = eit

∑N+1
j=1 (λ2

j−h)〈ΨN({λ})| .

Combining the exponential factors in these expressions with those in Eq. (5.34),
we arrive at the final result for the time-dependent form factor:

FN+1,N(x, t) = (2i cos(πκ/2))Ne−iht

(
N+1∏
i=1

e(λi|t, x)

)(
N∏
j=1

e∗(µj|t, x)

)

×
(

1 +
∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

, (5.36)

where we have introduced the function

e(λ|t, x) = eitλ
2−ixλ , (5.37)

e∗(λ|t, x) is its complex conjugate, and Mα
jk is defined in (5.33). The form

factor of the annihilation operator Ψ(x, t) is obtained through complex conju-
gation

〈ΨN({µ})|Ψ(x, t)|ΨN+1({λ})〉 = F ∗N+1,N(x, t) . (5.38)
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5.2.2 Summation of the form factors

Using Eqs. (5.36) and (5.38), we write the field correlator (5.24) as a sum over
intermediate momenta {λ}:

〈Ψ(x2, t2)Ψ†(x1, t1)〉N =
∑

all {λ}N+1

(2 cos(πκ/2))2N

L2N+1
eiht21

(
N+1∏
i=1

e∗(λi|t21, x21)

)

×

(
N∏
j=1

e(µj|t21, x21)

) (
1 +

∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

(
1 +

∂

∂β

)
detN

(
Mβ

jk

)∣∣∣∣
β=0

,

(5.39)
with the notations xab = xa−xb, tab = ta−tb, a, b = 1, 2. The matrix Mβ

jk here
is the same as (5.33) with α replaced by β. As was mentioned above, modulo
the [cos(πκ/2)]2N factors and the spectrum of momenta, Eq. (5.39) is identical
with the expression for the bosonic field correlators [54, 55]. This means
that the summation process over {λ} is very similar, and we just sketch the
derivation here. Since we sum over all momenta {λ}, individual momenta λj
are equivalent up to permutation. This means that one of the two permutations
of {λj} involved in the definition of the two determinants in (5.39) produces
coinciding terms, so that under the sum over {λj}, one can replace one of the
determinants, e.g., the second one, with

(N + 1)!
N∏
j=1

1

λj − µj
, (5.40)

obtaining

〈Ψ(x2, t2)Ψ†(x1, t1)〉N

= eiht21

(
N∏
j=1

e(µj|t21, x21)

)
1

L

(
2 cos(πκ/2)

L

)2N

(N + 1)!

×
∑

all {λ}N+1

(
e∗(λN+1|t21, x21) +

∂

∂α

)
detN

(
e∗(λj|t21, x21)

(λj − µk)(λj − µj)

−αe
∗(λj|t21, x21)

(λj − µj)
e∗(λN+1|t21, x21)

(λN+1 − µj)

)∣∣∣∣
α=0

. (5.41)

The summation over the momenta {λj} can be done then independently over
each λj inside the determinant. Also, we transfer the factors e(µj|t21, x21) in
(5.41) into the determinant splitting them between the rows and columns, and
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use the formula

1

(λj − µk)
1

(λj − µj)
=

(
1

λj − µj
− 1

λj − µk

)
1

µj − µk
. (5.42)

This gives the correlator as

〈Ψ(x2, t2)Ψ†(x1, t1)〉N = eiht21
(

1

2π
GL(t12, x12) +

∂

∂α

)
× detN

[
δjkẼL(µk|t12, x12)e(µj|t21, x21) + e(µj|t2, x2)e∗(µk|t1, x1)

× cos2(πκ/2)

(
2(1− δjk)
πL(µj − µk)

(EL(µj|t12, x12)− EL(µk, t12, x12))

− α

Lπ2
EL(µj|t12, x12)EL(µk|t12, x12)

)]∣∣∣
α=0

,(5.43)

where we have defined the functions

1

2π
GL(t, x) =

1

L

∑
λ

e(λ|t, x) , (5.44)

1

2π
EL(µk|t, x) =

1

L

∑
λ

e(λ|t, x)

λ− µk
, (5.45)

ẼL(µk|t, x) =
4 cos(πκ/2)2

L2

∑
λ

e(λ|t, x)

(λ− µk)2
, (5.46)

and λ = 2π
L

(Z + δ′) – see (5.28). Formula (5.43) is the final expression for
the field correlator in the ground state of N anyons on a finite interval with
quasi-periodic boundary conditions.

5.2.3 Thermodynamic limit

In order to obtain the correlator in the thermodynamic limit, we need to
compute the large-L limit of the functions (5.44), (5.45), and (5.46). This is
done in Appendix F with the results

G(t, x) ≡ lim
L→∞

GL(t, x) =

∫ ∞
−∞

e(λ|t, x) dλ , (5.47)

E(µk|t, x) ≡ lim
L→∞

EL(µk|t, x) = P.V.

∫ ∞
−∞

dλ
e(λ|t, x)

λ− µk
+ e(µk|t, x)π tan

(πκ
2

)
,

(5.48)
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Ẽ(µk|t, x) ≡ lim
L→∞

ẼL(µk|t, x) = e(µk|t, x) +
2 cos2(πκ/2)

πL

∂

∂µk
E(µk|t, x) .

(5.49)
In the thermodynamic limit L,N → ∞ with D = N/L constant, the anyon
momenta fill densely the Fermi interval [−q, q], where q =

√
h and D = q/π.

In this case, the determinant in the correlator (5.43) can be understood as
the Fredholm determinant of an integral operator. Indeed, for an arbitrary
integral operator V̂ , whose action on a function f(λ) is defined by

(V̂ f)(λ) =

∫ b

a

V (λ, µ)f(µ) dµ ,

the associated Fredholm determinant is (see, e.g., [75])

det(1 + V̂ ) = lim
n→∞

∣∣∣∣∣∣∣∣∣
1 + ξV (λ1, λ1) ξV (λ1, λ2) · · · ξV (λ1, λn)
ξV (λ2, λ1) 1 + ξV (λ2, λ2) · · · ξV (λ2, λn)

...
...

. . .
...

ξV (λn, λ1) ξV (λn, λ2) · · · 1 + ξV (λn, λn)

∣∣∣∣∣∣∣∣∣ ,
where ξ = (b− a)/n, λp − λp−1 = ξ and λ0 = a, λn = b. One can see directly
that, in the thermodynamic limit, the determinant part of Eq. (5.43) has the
same structure with N momenta µj separated by ξ = 2π/L filling the Fermi
interval [−q, q]. This means that the correlator can be expressed as

〈Ψ(x2, t2)Ψ†(x1, t1)〉 = eiht21
(

1

2π
G(t12, x12) +

∂

∂α

)
det(1 + ˆ̃V0)

∣∣∣∣
α=0

,

where ˆ̃V0 acts on an arbitrary function f(λ) as

( ˆ̃V0f)(λ) =

∫ q

−q
Ṽ0(λ, µ)f(µ) dµ ,

and
Ṽ0(λ, µ) = cos2(πκ/2)e(λ|t2, x2)e∗(µ|t1, x1)

×
[
E(λ|t12, x12)− E(µ|t12, x12)

π2(λ− µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
. (5.50)

Performing the unitary transformation

V0(λ, µ) = exp

{
−i(t1 + t2)

2
(λ2 − µ2) + i

(x1 + x2)

2
(λ− µ)

}
Ṽ0(λ, µ) ,
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with the property

det(1 + ˆ̃V0) = det(1 + V̂0) ,

we transform the kernel Ṽ0(λ, µ) (5.50) into the symmetric form:

V0(λ, µ) = cos2(πκ/2) exp

{
− i

2
t12(λ2 + µ2) +

i

2
x12(λ+ µ)

}

×
[
E(λ|t12, x12)− E(µ|t12, x12)

π2(λ− µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
.

(5.51)
Two observations are in order. First, one can check that the second term in
(5.49) is obtained from the first term in the square bracket of (5.51) in the
limit λ → µ. Second, in the limit κ → 0, Eq. (5.51) reproduces the known
result [54, 55] for impenetrable bosons.

In the static case (t1 = t2), which is discussed in the next Section, the
kernel (5.51) can be simplified further. One needs to distinguish two cases.

• x1 > x2. In this case,

E(λ|0, x12) = −iπe−ix12λ[1 + i tan(πκ/2)] , (5.52)

and the kernel (5.51) becomes

V +
0 (λ, µ) = −(1 + e+iπκ)

π

(
sin(x12(λ− µ)/2)

λ− µ

)
+

α

2π
e+iπκ exp

{
−ix12

2
(λ+ µ)

}
. (5.53)

• x1 < x2. In this case,

E(λ|0, x12) = iπe−ix12λ[1− i tan(πκ/2)] , (5.54)

and

V −0 (λ, µ) =
(1 + e−iπκ)

π

(
sin(x12(λ− µ)/2)

λ− µ

)
+

α

2π
e−iπκ exp

{
−ix12

2
(λ+ µ)

}
. (5.55)

We now extend the discussion to the situation of non-vanishing tempera-
ture T . The temperature-dependent field correlator is defined as

〈Ψ(x2, t2)Ψ†(x1, t2)〉T =
Tr
(
e−H/TΨ(x2, t2)Ψ†(x1, t1)

)
Tr e−H/T

.
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According to the well-known argument developed for the Bose gas [54], this
correlator can be found as the mean value over any one of the “typical” eigen-
functions ΩT of the Hamiltonian which characterizes the given state of thermal
equilibrium:

〈ΩT |Ψ(x2, t2)Ψ†(x1, t2)|ΩT 〉
〈ΩT |ΩT 〉

. (5.56)

This argument depends only on the general saddle-point approximation in the
description of the state of equilibrium, and also holds in the case of anyons.
The further computation of the field correlator based on Eq. (5.56) is similar to
the zero-temperature case, the main difference being the change of the measure
of integration:∫ q

−q
dλ →

∫ ∞
−∞

dλ ϑ(λ, T, h) with ϑ(λ, T, h) =
1

1 + e(λ2−h)/T
.

The final result for the temperature-dependent correlator is then

〈Ψ(x2, t2)Ψ†(x1, t1)〉T = eiht21
(

1

2π
G(t12, x12) +

∂

∂α

)
det(1 + V̂T )

∣∣∣∣
α=0

,

where the kernel of the integral operator V̂T is

VT (λ, µ) =
√
ϑ(λ)V0(λ, µ)

√
ϑ(µ) , (5.57)

= cos2(πκ/2) exp

{
− i

2
t12(λ2 + µ2) +

i

2
x12(λ+ µ)

}√
ϑ(λ)ϑ(µ)[

E(λ|t12, x12)− E(µ|t12, x12)

π2(λ− µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
,

and the operator acts on an arbitrary function f(µ) as

(VTf) (λ) =

∫ ∞
−∞

VT (λ, µ)f(µ) dµ .

5.3 Equivalence with Lenard’s formula

In the previous chapter we obtained the anyonic generalization of the Lenard
formula for the equal-time field correlator or, equivalently, reduced density
matrices of anyons. In the case of the first reduced density matrix, the anyonic
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Lenard formula reads

(x|ρa1|x′)± =
1

π
det

(
1− γθ̂±T

∣∣∣∣ xx′
)∣∣∣∣

γ=(1+e±iπκ)/π

, (5.58)

where the kernel of the integral operators θ̂±T is

θT (ξ − η) =
1

2

∫ ∞
−∞

dλ
ei(ξ−η)λ

1 + e(λ2−h)/T
, (5.59)

and their action on an arbitrary function is defined as

(θ̂±T f)(ξ) =

∫
I±

θT (ξ − η)f(η) dη . (5.60)

In these expressions, the plus sign refers to the situation when x′ > x and
I+ = [x, x′], and the minus sign – to the situation when x′ < x and I− = [x′, x].
The resolvent kernels associated with the kernel θT (x, y) acting on the intervals
I± are denoted by %±T (ξ, η) and satisfy the equations:

%±T (ξ, η)− (1 + e±iπκ)

π

∫
I±

θT (ξ − ξ′)%±T (ξ′, η)dξ′ = θT (ξ − η) .

One can rewrite Eq. (5.58) in terms of the resolvent kernel %T and the field
correlator as

〈Ψ†(x′)Ψ(x)〉T,± =
1

π
%±T (x′, x) det

(
1− γθ̂±T

)∣∣∣
γ=(1+e±iπκ)/π

, (5.61)

where again, the plus sign refers to the case x′ > x and the minus sign – to
x < x′. Next, we show that Eq. (5.61) is reproduced by the results obtained in
the previous section when they are specialized to the equal-time correlators.
We treat the two cases, x′ > x and x′ < x, separately.

5.3.1 The static correlator 〈Ψ(−x)Ψ†(x)〉T
Equations (5.37) and (5.47) show that in the static case

1

2π
G(0, x) = δ(x) .
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Using this relation and Eqs. (5.53) and (5.57), we see that the equal-time field
correlator can be written as

〈Ψ(−x)Ψ†(x)〉T =

(
δ(2x) +

∂

∂α

)
det

(
1− (1 + eiπκ)

π
K̂T + α

eiπκ

2π
Â+
T

)∣∣∣∣
α=0

,

(5.62)
where K̂T and Â+

T are the integral operators acting on the real axis and defined
by kernels

KT (λ, µ) =
√
ϑ(λ)

sinx(λ− µ)

λ− µ
√
ϑ(µ) , (5.63)

and
A+
T (λ, µ) =

√
ϑ(λ)e−ix(λ+µ)

√
ϑ(µ) .

At zero temperature, both operators act on the interval [−q, q] and their kernels
are

K(λ, µ) =
sinx(λ− µ)

λ− µ
, A+(λ, µ) = e−ix(λ+µ) .

The commutation relation (2.2) shows that

〈Ψ(−x)Ψ†(x)〉T = eiπκ〈Ψ†(x)Ψ(−x)〉T + δ(2x) .

This means that in order to prove the equivalence with Lenard formula, we
have to show that

G+(κ, x, T ) ≡ ∂

∂α
det

(
1− (1 + eiπκ)

π
K̂T + α

eiπκ

2π
Â+
T

)∣∣∣∣
α=0

=

= eiπκ〈Ψ†(x)Ψ(−x)〉T ,

where 〈Ψ†(x)Ψ(−x)〉T is given by (5.61). For a general integral operator with
kernel V , one of the useful expressions for the Fredholm determinant is

ln det(1− γV̂ ) = −
∞∑
n=1

γn

n
Tr V n .

Making use of this formula, we obtain

G+(κ, x, T ) =
eiπκ

2π
Tr
[
(1− γK̂T )−1Â+

T

]
det(1− γK̂T )|γ=(1+eiπκ)/π . (5.64)
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Denoting as f+
− (λ) the solution of the integral equation

f+
− (λ)− (1 + eiπκ)

π

∫ ∞
−∞

KT (λ, µ)f+
− (µ) dµ =

√
ϑ(λ)e−ixλ , (5.65)

we can rewrite (5.64) as

G+(κ, x, T ) =
eiπκ

2π

∫ ∞
−∞

e−ixλf+
− (λ)

√
ϑ(λ)dλ det(1− γK̂T )|γ=(1+eiπκ)/π .

We will show now that

det(1− γK̂T ) = det
(

1− γθ̂+
T

)
, (5.66)

where the operator θ̂T is described by Eqs. (5.59) and (5.60), and γ = (1 +
eiπκ)/π. Direct and inverse Fourier transforms of a function g can be defined
to include as integration measure

√
ϑ(λ):

g̃(λ) =
1

2π
√
ϑ(λ)

∫ ∞
−∞

dξ eiλξg(ξ) , g(ξ) =

∫ ∞
−∞

dλ
√
ϑ(λ)e−iλξg̃(λ) .

With this definition, taking the Fourier transform of the integral equation

g(ξ)− γ
∫ x

−x
θT (ξ − ξ′)g(ξ′) dξ′ = G(ξ) ,

we obtain

g̃(λ)− γ
∫ ∞
−∞

KT (λ− µ)g̃(µ) dµ = G̃(λ) .

Coincidence of the two equations implies the equality (5.66) of the determi-
nants.

The final step in proving the equivalence of Eqs. (5.61) and (5.62) is to
show that

%+
T (x,−x) =

1

2

∫ ∞
−∞

e−ixλf+
− (λ)

√
ϑ(λ)dλ . (5.67)

The Fourier transform of the equation defining the resolvent kernel %T

%+
T (ξ,−x)− (1 + eiπκ)

π

∫ x

−x
θT (ξ − ξ′)%+

T (ξ′,−x) dξ′ = θT (ξ + x) ,
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gives

%̃+
T (λ,−x)− (1 + eiπκ)

π

∫ ∞
−∞

KT (λ− µ)%̃+
T (µ,−x) dµ =

1

2
e−ixλ

√
ϑ(λ) .

Comparison of this equation with the definition of f+
− (λ) (5.65) shows that

%̃+
T (λ,−x) =

1

2
f+
− (λ) . (5.68)

Taking the inverse Fourier transform of (5.68) proves (5.67). Thus, we have
shown that for x′ > x, the Lenard formula (5.61) is equivalent with the result
(5.62) for the static field correlator that follows from the direct summation of
the form factors.

5.3.2 The static correlator 〈Ψ(x)Ψ†(−x)〉T
In this case, the proof of the equivalence of the two approaches is very similar
to what was just discussed for x′ > x. Equations (5.55) and (5.57) show that
the static field correlator is

〈Ψ(x)Ψ†(−x)〉T =

(
δ(2x) +

∂

∂α

)
det

(
1− (1 + e−iπκ)

π
K̂T + α

e−iπκ

2π
Â−T

)∣∣∣∣
α=0

,

where K̂T is given by (5.63) and

A−T (λ, µ) =
√
ϑ(λ)eix(λ+µ)

√
ϑ(µ) .

From the commutation relation (2.2) we see that

〈Ψ(x)Ψ†(−x)〉T = e−iπκ〈Ψ†(−x)Ψ(x)〉T + δ(2x) ,

so we have to show that

G−(κ, x, T ) ≡ ∂

∂α
det

(
1− (1 + e−iπκ)

π
K̂T + α

e−iπκ

2π
Â−T

)∣∣∣∣
α=0

=

= e−iπκ〈Ψ†(−x)Ψ(x)〉T .

where 〈Ψ†(−x)Ψ(x)〉T is given by Eq. (5.61). Similarly to the discussion in
the previous section, we can rewrite G− as

G−(κ, x, T ) =
e−iπκ

2π

∫ ∞
−∞

e+ixλf−+ (λ)
√
ϑ(λ)dλ det(1− γK̂T )|γ=(1+e−iπκ)/π ,
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where f−+ (λ) is the solution of the integral equation

f−+ (λ)− (1 + e−iπκ)

π

∫ ∞
−∞

KT (λ, µ)f−+ (µ) dµ =
√
ϑ(λ)e+ixλ .

The equality of the Fredholm determinants of the operators K̂T and θ̂T was
shown in the previous Section, so it remains to prove that

%−T (−x, x) =
1

2

∫ ∞
−∞

e+ixλf−+ (λ)
√
ϑ(λ)dλ . (5.69)

Again, taking the Fourier transform of

%−T (ξ, x)− (1 + e−iπκ)

π

∫ x

−x
θT (ξ − ξ′)%+

T (ξ′, x) dξ′ = θT (ξ − x) ,

we obtain

%̃−T (λ, x)− (1 + e−iπκ)

π

∫ ∞
−∞

KT (λ− µ)%̃−T (µ, x) dµ =
1

2
e+ixλ

√
ϑ(λ) ,

which shows that

%̃−T (λ, x) =
1

2
f−+ (λ) . (5.70)

The inverse Fourier transform of (5.70) gives the correct result (5.69).
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Chapter 6

Differential Equations for the
Field-Field Correlator

In this chapter we are going to obtain an integrable system of nonlinear partial
differential equations and the appropriate boundary conditions, that provides
a complete characterization of the field-field correlation functions at finite tem-
perature. This system is the same as the one obtained by Its, Izergin, Korepin
and Slavnov [49] for impenetrable bosons but with different boundary con-
ditions. At T = 0 the system reduces to the Painlevé V equation obtained
by Jimbo, Miwa, Môri and Sato in their study of the one-particle reduced
density matrix of impenetrable bosons [51], but again with different boundary
conditions.

6.1 Auxiliary potentials

In the previous chapter we have obtained the following expressions for the the
static, i.e. equal-time, correlators at finite temperature:

〈Ψ†(x1)Ψ(x2)〉T =
1

2π
Tr
[
(1− γK̂T )−1Â+

T

]
det(1− γK̂T )|γ=(1+e+iπκ)/π , (6.1)

when x1 > x2, and

〈Ψ†(x1)Ψ(x2)〉T =
1

2π
Tr
[
(1− γK̂T )−1Â−T

]
det(1− γK̂T )|γ=(1+e−iπκ)/π , (6.2)
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when x1 < x2. In (6.1) and (6.2), K̂T and Â±T are integral operators acting on
the entire real axis and have kernels (x12 = (x1 − x2))

KT (λ, µ) =
√
ϑ(λ)

sinx12(λ− µ)

λ− µ
√
ϑ(µ) ,

A±T (λ, µ) =
√
ϑ(λ)e∓ix12(λ+µ)

√
ϑ(µ) ,

where

ϑ(λ) ≡ ϑ(λ, T, h) =
1

1 + e(λ2−h)/T
, (6.3)

is the Fermi distribution function at temperature T and chemical potential h
and Tr [f(x, y)] ≡

∫
f(x, x) dx. At zero temperature (6.1) and (6.2) remain

valid but the integral operators act on the interval [−q, q] with q =
√
h and

have kernels

K(λ, µ) =
sinx12(λ− µ)

λ− µ
, A±(λ, µ) = e∓ix12(λ+µ) .

In the anyonic case the corrrelator 〈Ψ†(x1)Ψ(x2)〉T depends on the sign
of x1 − x2. However, it is easy to see that (6.1) and (6.2) are related via
complex conjugation. This means that we can focus our attention only on
the correlator (6.1). This correlator depends on four variables, the coordinate
difference x1 − x2 > 0, temperature T , chemical potential h and statistics
parameter κ. We will show bellow that by introducing new variables, the
scaled distance x and scaled chemical potential β defined by

x =
1

2
(x1 − x2)

√
T , β =

h

T

and by changing the spectral parameter λ → λ/
√
T the dependence on tem-

perature will become extremely simple. More specifically

〈Ψ†(x1)Ψ(x2)〉T =

√
T

2πγ
g(x, β, γ)|γ=(1+eiπκ)/π , (6.4)

where g(x, β, γ) will be defined below.
The Fredholm integral operator appearing in the expression of the field

correlators belongs to a specific class called “integrable integral operators”
[43, 49, 54]. This means that introducing “plane waves”

e±(λ) =
√
ϑ(λ)e±iλx (6.5)
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then the kernel of K̂T can be written as

KT (λ, µ) =
e+(λ)e−(λ)− e−(λ)e+(µ)

2i(λ− µ)
(6.6)

which is a particular case of the more general case studied in [43, 49] (see also
Chap XIV of [54]). One important feature of this particular class of integrable
operators is the fact that that the resolvent kernel RT (λ, µ) of the resolvent
operator R̂ has a similar form [49, 54]. The resolvent operator is defined by

R̂T = (1− γK̂T )−1K̂T , (1− γK̂T )(1 + γR̂T ) = 1 , (6.7)

and the resolvent kernel solves the integral equation

RT (λ, µ)− γ
∫ +∞

−∞
KT (λ, ν)RT (ν, µ) dν = KT (λ, µ) .

Then introducing functions f±(λ) which are solutions of the integral equations

f±(λ)− γ
∫ +∞

−∞
KT (λ, µ)f±(µ)dµ = e±(λ) , (6.8)

the resolvent kernel can be written as

RT (λ, µ) =
f+(λ)f−(µ)− f−(λ)f+(µ)

2i(λ− µ)
. (6.9)

For a proof of this statement see Chap XIV of [54]. The auxiliary potentials
Blm are defined defined by

Blm(x, β, κ) ≡ γ

∫ +∞

−∞
el(λ)fm(λ) dλ , l = ±, m = ± . (6.10)

where γ = (1 + eiπκ)/π. Compared with the bosonic case (γ = 2/π) the
auxiliary potentials are now complex. However, as in the bosonic case we have
B+−(x, β, κ) = B−+(x, β, κ) and B++(x, β, κ) = B−−(x, β, κ). First we have

B+− ≡ γ

∫ +∞

−∞
e+(λ)f−(λ) dλ

= γ

∫ +∞

−∞
e+(λ)

∫ +∞

−∞
(1− γK̂T )−1(λ, µ)e−(µ) dµ dλ

= γ

∫ +∞

−∞
e−(λ)f+(λ) dλ ≡ B−+ ,
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where in the last line we have used the fact that the kernel is symmetric
KT (λ, µ) = KT (µ, λ). In order to prove the second assertion we start with the
integral equation (6.8) for f+(−λ)

f+(−λ)− γ
∫ +∞

−∞
KT (−λ, µ)f+(µ)dµ =

√
ϑ(λ)e−iλx ,

which can be rewritten as

f+(−λ)− γ
∫ +∞

−∞
KT (−λ,−µ)f+(−µ)dµ =

√
ϑ(λ)e−iλx .

Using KT (−λ,−µ) = KT (λ, µ) we obtain that f+(−λ) = f−(λ). Therefore we
have

B++ ≡ γ

∫ +∞

−∞
e+(λ)f+(λ) dλ = γ

∫ +∞

−∞
e+(−λ)f+(−λ) dλ

= γ

∫ +∞

−∞
e−(λ)f−(λ) dλ ≡ B−− .

Finally it is easy to see that (6.1) can be rewritten as

〈Ψ†(x1)Ψ(x2)〉T =

√
T

2π
det(1− γK̂T )|γ=(1+e+iπκ)/π

∫ +∞

−∞
f−(λ)e−(λ) dλ ,

which shows that the function g(x, β, γ) appearing in (6.4) is given by

g(x, β, γ) = B++(x, β, γ) det(1− γK̂T )|γ=(1+e+iπκ)/π . (6.11)

6.2 Correlators as a completely integrable sys-

tem

In general is very difficult to obtain differential equations for the entire cor-
relator (6.1). In our case first, we will obtain nonlinear partial differential
equations for the potentials B++, B+− and then we will show that σ(x, β, γ) =
ln det(1− γK̂T ) can be expressed in terms of B++ and B−−. The strategy will
be the following. We are looking for two operators L and M depending on B++

and B−− such that we have

∂xF (λ) = L F (λ) ,

(2λ∂β + ∂λ)F (λ) = M F (λ) , (6.12)
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where F (λ) is the two-component vector function

F (λ) =

(
f+(λ)
f−(λ)

)
.

Then from the compatibility condition for (6.12)

(2λ∂β + ∂λ)L− ∂xM + [L,M] = 0 ,

we will obtain a system of partial differential equations in x and β. It should
be mentioned that the Fredholm determinant appearing in (6.1) differs from
the one appearing in the similar representation for impenetrable bosons only
in the value of γ (γ = (1 + eiπκ)/π for anyons and γ = 2/π for bosons). This
means that the computations are similar with the ones performed in the case
of impenetrable bosons [46, 54]. The only difference is given by the fact that
the auxiliary potentials B++, B+− are now complex and not real.

6.2.1 The L operator

We will start from the integral equations for the functions f±(λ)

f±(λ)− γ
∫ +∞

−∞
KT (λ, µ)f±(µ)dµ = e±(λ) , γ = (1 + eiπκ)/π.

Taking the derivative with respect to x we obtain[
(1− γK̂T )∂xf±

]
(λ)− γ

[
∂xK̂Tf±

]
(λ) = ±iλe±(λ) .

Multiplying both sides with (1− γK̂T )−1 we have

∂xf±(λ) = γ
[
(1− γK̂T )−1(∂xK̂T )f±

]
(λ)

± i
∫ +∞

−∞
[δ(λ− µ) + γRT (λ, µ)]µe±(µ) dµ ,

(6.13)
where in the second term on the R.H.S. of (6.13) of the previous equation we
have used (1− γK̂T )−1 = (1 + γR̂T ). The first term is computed easily using[
(1− γK̂T )−1e±

]
(λ) = f±(λ) and ∂xKT (λ, µ) = (e+(λ)e−(µ) + e−(λ)e+(µ))/2

with the result

γ
[
(1− γK̂T )−1(∂xK̂T )f±

]
(λ) =

1

2
f+(λ)B−,± +

1

2
f−(λ)B+,± . (6.14)
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For the second term we have

±i
∫ +∞

−∞
[δ(λ− µ) + γRT (λ, µ)]µe±(µ) dµ

= ±iλf± ∓ i
∫ +∞

−∞
[δ(λ− µ) + γRT (λ, µ)]((λ− µ)e±(µ)) dµ

= ±iλf± ∓
(

1

2
f+(λ)B±,− −

1

2
f−(λ)B±,+

)
, (6.15)

where we have used (6.9). From (6.14) and (6.15) we obtain

∂xf+(λ) = iλf+(λ) +B++f−(λ) ,

∂xf−(λ) = −iλf+(λ) +B−−f−(λ) ,

which implies that our L operator has the form

L = iλσ3 +B++σ1 , (6.16)

where we have used the fact that B++ = B−− and σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

6.2.2 The M operator

The derivation of the M operator is more complicated. In this case we will
rely heavily on the following property of the Fermi distribution function

(2λ∂β + ∂λ)ϑ(λ) = 0 .

This property is essential because in this case we will have terms which contains
the resolvent RT (λ, µ) but for which we cannot apply the trick used in the pre-
vious section when we were able to reduce it to terms of the form (λ−µ)R(λ, µ)
which are “disentangled” (are products of one dimensional projectors). This
is also why the differential operator associated with M is (2λ∂β + ∂λ) and not
∂β as we would expect.

First we will compute the derivative with respect to β. Using

∂βKT (λ, µ) =
∂βϑ(λ)

2ϑ(λ)
KT (λ, µ) +

∂βϑ(µ)

2ϑ(µ)
KT (λ, µ) (6.17)
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then differentiating (6.8) we obtain[
(1− γK̂T )∂βf±

]
(λ) =

[
(1 + γK̂T )

∂βϑ

2ϑ
f±

]
(λ) . (6.18)

Again, multiplying both sides with (1 − γK̂T )−1 and using the relation (1 −
γK̂T )−1K̂T = R̂T we can rewrite the previous equation as

∂βf±(λ) =
∂βϑ(λ)

2ϑ(λ)
f±(λ) + 2γ

∫ +∞

−∞
RT (λ, µ)

∂βϑ(µ)

2ϑ(µ)
f±(µ) dµ .

Furthermore, using (6.9) we can obtain

2λ∂βf±(λ) = 2λ
∂βϑ(λ)

2ϑ(λ)
f±(λ)

+
2γ

i

∫ +∞

−∞
[f+(λ)f−(µ)− f−(λ)f+(µ)]

∂βϑ(µ)

2ϑ(µ)
f±(µ) dµ

+2γ

∫ +∞

−∞
RT (λ, µ)µ

∂βϑ(µ)

ϑ(µ)
f±(µ) dµ . (6.19)

The derivative with respect to λ is more laborious. First we note that

∂λe±(λ) =

(
∂λϑ(λ)

2ϑ(λ)
± ix

)
e±(λ) ,

and

∂λKT (λ, µ) =
∂λϑ(λ)

2ϑ(λ)
K(λ, µ) + ix

e+(λ)e−(µ) + e+(µ)e−(λ)

2i(λ− µ)

− e+(λ)e−(µ)− e+(µ)e−(λ)

2i(λ− µ)2
(6.20)

Differentiating (6.8) and integrating by parts the third term in (6.20) we obtain

∂λf±(λ)− γ
∫ +∞

−∞

[
∂λϑ(λ)

2ϑ(λ)
K(λ, µ) +

∂µϑ(µ)

2ϑ(µ)
K(λ, µ)

]
f±(λ)

+K(λ, µ)∂µf±(µ)dµ =

(
∂λϑ(λ)

2ϑ(λ)
± ix

)
e±(λ)

which can be rewritten as[
(1− γK̂T )∂λf±

]
(λ) =

[
(1 + γK̂T )

∂λϑ

2ϑ
f±

]
(λ)± ixe±(λ) .
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Multiplying both sides with (1−γK̂T )−1 and using the relation (1−γK̂T )−1K̂T =
R̂T produces the final result

∂λf±(λ) = ±ixf±(λ) +
∂λϑ(λ)

2ϑ(λ)
f±(λ) + 2γ

∫ +∞

−∞
RT (λ, µ)

∂µϑ(µ)

2ϑ(µ)
f±(µ)dµ .

(6.21)
Adding the results given by (6.19) and (6.21) we obtain

(2λ∂β + ∂λ)f±(λ) = ±ixf±(λ)− if+U−,± + if−(λ)U+,± ,

where

Ulm ≡ γ

∫ +∞

−∞
fl(µ)fm(µ)

∂βϑ(µ)

ϑ(µ)
dµ , l = ±, m = ± . (6.22)

Now we will prove that
∂βBlm = Ulm . (6.23)

Indeed we have

∂βBlm = γ

∫ +∞

−∞

(
∂βϑ(µ)

2ϑ(µ)
el(µ)fm(µ) + el(µ)∂βfm(µ)

)
dµ ,

= γ

∫ +∞

−∞

∂βϑ(µ)

2ϑ(µ)
el(µ)fm(µ)dµ

+γ

∫ +∞

−∞
[1− γK̂T ](µ, λ)fl(λ)∂βfm(µ) dµdλ ,

= γ

∫ +∞

−∞
[1− γK̂T ](µ, λ)fl(λ)

∂βϑ(µ)

2ϑ(µ)
fm(µ)dλdµ

+γ

∫ +∞

−∞
[1 + γK̂T ](µ, λ)fl(λ)

∂βϑ(µ)

2ϑ(µ)
fm(µ)dλdµ ,

= γ

∫ +∞

−∞
fl(µ)fm(µ)

∂βϑ(µ)

ϑ(µ)
≡ Ulm , (6.24)

where we have used (6.18) in the second line of (6.24). This results in

(2λ∂β + ∂λ)f+(λ) = ixf+(λ)− if+(λ)∂β(B−+) + if−(λ)∂β(B++) ,

(2λ∂β + ∂λ)f−(λ) = −ixf+(λ)− if+(λ)∂β(B−−) + if−(λ)∂β(B+−) ,

therefore the M operator is given by (B−+ = B+−, B++ = B−−)

M = ixσ3 − i(∂βB+−)σ3 − (∂βB++)σ2 . (6.25)
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6.2.3 Differential equations for the potentials

The results obtained in the previous sections allow us to state the following
theorem:

Theorem 2. For all γ = (1+eiπκ)/π with κ ∈ [0, 1), the potentials B++(x, β, γ) ,
B++(x, β, γ) satisfy the following system of partial differential equations

∂βB+− = x+
1

2

∂x∂βB++

B++

, (6.26)

∂xB+− = B2
++ , (6.27)

with the initial conditions (at β fixed)

B++(x, β, γ) = γd(β) + [γd(β)]2x+O(x2) , x→ 0 ,

B+−(x, β, γ) = γd(β) + [γd(β)]2x+O(x2) , x→ 0 , (6.28)

where d(β) =
∫ +∞
−∞ ϑ(λ)dλ and

B++(x, β, γ) = B+−(x, β, γ) = 0 , β → −∞ . (6.29)

The potential B++(x, β, γ) satisfies the nonlinear equation

∂βB
2
++ = 1 +

1

2

∂

∂x

(
∂x∂βB++

B++

)
, (6.30)

with the same initial conditions.

Proof. In the previous sections we have shown that the two-component vector
function F (λ) satisfies the following differential equations

∂xF (λ) = L F (λ) ,

(2λ∂β + ∂λ)F (λ) = M F (λ) .

where L,M are given by (6.16) and (6.25). The compatibility condition for
these equation is given by

[∂x − L, (2λ∂β + ∂λ)−M] = (2λ∂β + ∂λ)L− ∂xM + [L,M] = 0 . (6.31)

Using
[σi, σj] = 2iεijkσk ,

(6.16) and (6.25) we obtain

(2λ∂β + ∂λ)L = 2λ(∂βB++)σ1 + iσ3 ,
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∂xM = iσ3 − i(∂x∂βB+−)σ3 − (∂x∂βB++)σ2 ,

and

[L,M] = −2λ(∂βB++)σ1 + [2xB++ − 2B++(∂βB+−)]σ2 − 2iB++(∂βB++)σ3 .

Plugging these results in (6.31) we obtain a matrix which should vanish with
only two distinct elements

2iB++(∂βB+−)− 2ixB++ + i∂x∂βB++ = 0 ,

and
∂x∂βB+− − ∂βB2

++ = 0 .

The first equation is just (6.26) while the second is equivalent with (6.27)
due to (6.29). The equation (6.30) is obtained by differentiating (6.26) with
respect to x and (6.27) with respect to β and then equating the right sides.
The asymptotic behavior at short distances (6.28) and at low density 6.29,
which give the initial conditions, are obtained in Appendices G and (H).

6.2.4 Differential equations for σ(x, β, κ)

Theorem 3. For any γ = (1 + eiπκ)/π with κ ∈ [0, 1) the partial derivatives
of σ(x, β, γ) with respect to x and β are given by

∂xσ = −B+− , ∂2
xσ = −B2

++ , (6.32)

∂βσ = −x∂βB+− +
1

2
(∂βB+−)2 − 1

2
(∂βB++)2 . (6.33)

Furthermore the function σ(x, β, γ) satisfies for all γ the following nonlinear
partial differential equation

(∂β∂
2
xσ)2 + 4(∂2

xσ)[2x∂β∂xσ + (∂β∂xσ)2 − 2∂βσ] = 0 (6.34)

with initial conditions

σ = −γd(β)x− [γd(β)]2
x2

2
+O(x3) , x→ 0 ; σ = 0 , β → −∞ , (6.35)

where d(β) =
∫ +∞
−∞ ϑ(λ)dλ.

Proof. We will start with the derivative with respect to x which is simpler.
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Using the following representation for the Fredholm determinant of an operator

det(1− γK̂T ) = exp

(
−
∞∑
n=1

γn

n
Tr Kn

T

)
, (6.36)

where Tr KT =
∫
KT (λ, λ), Tr K2

T =
∫
KT (λ, µ)KT (µ, λ) dλdµ and so on we

obtain
∂xσ = −γ Tr

[
(1− γK̂T )−1∂xK̂T

]
.

Using
[
(1− γK̂T )−1e±

]
(λ) = f±(λ) and ∂xKT (λ, µ) = (e+(λ)e−(µ)+e−(λ)e+(µ))/2

we have

−γ Tr
[
(1− γK̂T )−1∂xK̂T

]
= −γ

2

∫ +∞

−∞
f + (λ)e(λ)dλ− γ

2

∫ +∞

−∞
f−(λ)e+(λ)dλ ,

= −1

2
(B−+ +B+−) ,

which due to B−+ = B+− means that

∂xσ = −B+− .

proving the first part of (6.32). The second part is obtained differentiating
once more with respect to x and using (6.27).

The derivative with respect to β is more involved. Starting again with the
representation (6.36) we obtain

∂βσ = −γ Tr
[
(1− γK̂T )−1∂βK̂T

]
.

The trace in the previous formula can be expressed as

∂βσ = −γ
∫ +∞

−∞
RT (λ, λ)

∂βϑ(λ)

ϑ(λ)
dλ ,

where we have used (6.17) for the derivative of the resolvent kernel and (1 −
γK̂T )−1K̂T = R̂T . Using L’Hopital rule in (6.7), RT (λ, λ) = [f−(λ)∂λf+(λ) −
f+(λ)∂λf−(λ)]/2i therefore

∂βσ =
iγ

2

∫ +∞

−∞

∂βϑ(λ)

ϑ(λ)
[f−(λ)∂λf+(λ)− f+(λ)∂λf−(λ)] dλ .
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Employing (6.21) we obtain the cumbersome expression

∂βσ = −γx
∫ +∞

−∞
f+(λ)f−(λ)

∂βϑ(λ)

ϑ(λ)
dλ

+
iγ2

2

∫ +∞

−∞
dλ

∫ +∞

−∞
dµ

(
f−(λ)f+(µ)RT (λ, µ)

∂µϑ(µ)

ϑ(µ)

∂βϑ(λ)

ϑ(λ)

−f+(λ)f−(µ)RT (λ, µ)
∂µϑ(µ)

ϑ(µ)

∂βϑ(λ)

ϑ(λ)

)
.

The first term is just −x∂βB+− (see (6.22) and (6.23)) so making the change
of variables µ → λ in the second term of the double integral and using the
symmetry of the resolvent kernel we have

∂βσ = −x∂βB+− +
iγ2

2

∫ +∞

−∞
dλ

∫ +∞

−∞
dµf−(λ)f+(µ)RT (λ, µ)

×
(
∂µϑ(µ)

ϑ(µ)

∂βϑ(λ)

ϑ(λ)
− ∂λϑ(λ)

ϑ(λ)

∂βϑ(λ)

ϑ(λ)

)
.

Making use of the relation 2λ∂βϑ(λ) = −∂λϑ(λ) we can replace the terms
which do not contain derivatives of the Fermi distribution function with respect
to β arriving at

∂βσ = −x∂βB+−

+iγ2

∫ +∞

−∞
dλ

∫ +∞

−∞
dµf−(λ)f+(µ)RT (λ, µ)(λ− µ)

∂βϑ(µ)

ϑ(µ)

∂βϑ(λ)

ϑ(λ)
.

The (λ − µ) factor in the integral allows us to cancel the denominator of the
resolvent kernel (6.7) obtaining an expression in which the two dimensional
integrals factorizes in products of one dimensional ones

∂βσ = −x∂βB+−

+
γ2

2

∫ +∞

−∞
dλ

∫ +∞

−∞
dµf−(λ)f+(µ)[f+(λ)f−(µ)− f−(λ)f+(µ)]

×∂βϑ(µ)

ϑ(µ)

∂βϑ(λ)

ϑ(λ)
.

Using (6.22) and (6.19) it easy to see now that

∂βσ = −x∂βB+− +
1

2
(∂βB+−)2 − 1

2
(∂βB++)2
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proving (6.33).
The last differential equation (6.34) is obtained by replacing B+− = −∂xσ

and B++ = (−∂2
xσ)1/2 in the R.H.S. of (6.33). It is easy to see that KT (λ, µ)→

0 when x→ 0 or β → −∞ which means that σ = ln det(1− γK̂T ) = 0 in the
same limits. The first part of (6.35) then results from (6.28). This concludes
the proof.

We conclude this section with a simple observation. Integrating ∂xσ =
−B+− and using (6.35) we can obtain an expression for g(x, β, γ) (or equiva-
lently the field correlator) only in terms of the potentials B++, B+−

g(x, β, γ) = B++(x, β, γ)e−
∫ x
0 B+−(y,β,γ)dy . (6.37)

6.2.5 The zero temperature limit

In the zero temperature limit the field-field correlator (6.4) depends only on
three variables, the distance (x1−x2) > 0, the Fermi momentum (or chemical
potential) q =

√
h and the statistics parameter κ. This dependence can be

encoded in the new variable

ξ =
(x1 − x2)

2
q = xβ1/2 ,

where now the rescaled variables are x = (x1− x2)/2 and β = h. The integral
operator K̂ now acts on the interval [−q, q] and has the kernel K(λ, µ) =
sinx(λ− µ)/(λ− µ). The logarithm of the determinant is given by

σ̃0(ξ, γ) = ln det(1− γK̂)|γ=(1+eiπκ)/π ,

The partial differential equation (6.34) characterizing σ(x, β, γ) becomes an
ordinary differential equation in ξ. Introducing the new function

σ0 = ξ(σ̃0)′ (6.38)

where prime denotes the derivative with respect to ξ then (6.34) becomes

(ξσ′′0)2 + 4(ξσ′0 − σ0)[4ξσ0 − 4σ0 + (σ′0)2] = 0 (6.39)

with boundary conditions

σ0 = −2γξ − 4γ2ξ2 +O(ξ3) , γ = (1 + eiπκ)/π . (6.40)
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The ordinary differential equation (6.39) is the same Painlevé V equation ob-
tained by Jimbo, Miwa, Môri and Sato in their celebrated work on the one-
particle reduced density matrix (field-field correlator) of impenetrable bosons
[51]. The only difference is in the initial conditions (6.40) which unlike the
differential equation depend on the statistics parameter. In a certain way
we can say that this was to be expected taking into account the fact that it
was already noted by Jimbo et al., that the same equation, but with different
boundary conditions, characterizes the density matrix of impenetrable bosons
and free fermions. The same situation was noted by Forrester, Frankel, Garoni
and Witte [31] in their study of systems with finite number of particles with
periodic boundary conditions. In this case the reduced density matrix satisfies
a Painlevé VI differential equation. Their work was recently extended in the
case of impenetrable anyons by Santachiara and Calabrese [74]. From (G.5)
the first terms of the short distance expansion of the field-field correlator are

〈Ψ†(x1)Ψ(x2)〉T = D0

(
1− π2

6
D2

0(x1 − x2)2 + γ
π3

18
D3

0(x1 − x2)3

)
+O

(
(x1 − x2)4

)
,

(6.41)
where D0 = q/π is the density at T = 0. This result agrees with the expansion
obtained by Santachiara and Calabrese (see Eq. (47) of [74] and note that their
statistical parameter κ differ in sign from ours).
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Chapter 7

Large Distance Asymptotics for
the Field-Field Correlator

The most difficult part in the analysis of the the field-field correlation func-
tions is obtaining the large distance asymptotics. We have seen in the pre-
vious chapter the correlation function are characterized by a completely in-
tegrable system of nonlinear partial differential equations (see Thm. 2, (6.4)
and (6.37)). A powerful method of investigating these differential equations
is the matrix Riemann-Hilbert problem formalism [28]. The solution of the
associated matrix RHP will allow us to obtain large distance asymptotics for
the potentials B+−, B++ and therefore the large distance asymptotics for the
correlator. This method was first used in [47, 48] by Its, Izergin and Kore-
pin to obtain the asymptotic behavior of correlation functions of impenetrable
bosons.

In order to solve the RHP we are going to make use of the fact that the
matrix RHP can be shown to be equivalent with a system of singular integral
equations. In the large x limit we are going to use contour integration in order
to extract the leading asymptotic terms. It should be mentioned that the same
results can be obtained using the nonlinear steepest descent method of Deift
and Zhou [26]. The constant (amplitude) in front of the leading term was
obtained using a method of Kitanine, Kozlowski, Maillet, Slavnov and Terras
[53] used by them in their investigation of the generalized sine-kernel. The
presentation in this chapter follows [69, 70].
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7.1 The matrix Riemann-Hilbert problem for

the field-field corelator

Let us present the matrix Riemann-Hilbert problem relevant for our problem.
In this chapter κ ∈ (0, 1]. We are looking for a 2 × 2 matrix valued function
χ(λ), nonsingular for all λ ∈ C, analytic in the upper and lower half-plane, it
is equal with the unit matrix at λ =∞

χ(∞) = I ,

and the boundary values on the real axis satisfy the condition

χ−(λ) = χ+(λ)G(λ) , χ±(λ) = lim
ε→0+

χ(λ± iε) λ ∈ R . (7.1)

The matrix G(λ) is called the conjugation matrix associated with the RHP
and is defined only for λ real. In our case it has the form

G(λ) =

(
1 + πγe+(λ)e−(λ) −πγe2

+(λ)
πγe2

−(λ) 1− πγe+(λ)e−(λ)

)
(7.2)

where e±(λ) =
√
ϑ(λ)e±iλx, θ(λ) = (eλ

2−β + 1)−1 is the rescaled Fermi weight
and γ = (1 + eiπκ)/π. G(λ) and χ(λ) depend also on x, β and κ but this
dependence will be suppressed in our notation.

7.1.1 Connection with the auxiliary potentials

In this section we are going to show how we can obtain the auxiliary potentials
from the solution of the RHP (7.1). The normalization condition χ(∞) = I
means that the solution of the RHP has the following expansion

χ(λ) = I +
Ψ1

λ
+O

(
1

λ2

)
, (7.3)

where Ψ1(x, β) is a 2×2 matrix depending only on β and x. Then the following
symmetry of the conjugation matrix

G(λ) = σ1G
−1(−λ)σ1 , (7.4)

determines the structure of Ψ1 which can be written as

Ψ1 =
1

2i

(
B+− −B++

B++ −B+−

)
, (7.5)
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where the constant factor 1/2i was introduced for convenience. At the moment
we do not know that B++ and B+− in (7.5) are the auxiliary potentials (6.10).
In order to prove this assertion we are going to use the singular integral for-
mulation of the RHP. It easy to prove (see Chap. XV of [54]) that the matrix
RHP is equivalent with the following system of singular integral equations

χ+(λ) = I +
1

2πi

∫ +∞

−∞

χ+(µ)[I −G(µ)]

µ− λ− i0
dµ , λ ∈ R . (7.6)

Then, if we define
χ̃(λ) = χ+(λ)E(λ) , (7.7)

where E(λ) is the triangular matrix

E(λ) =

(
1 e+(λ)
0 e−(λ)

)
the system of integral equations (7.6) can be rewritten as

χ̃(λ) = E(λ) +
1

2πi

∫ +∞

−∞

χ̃(µ)G̃(µ, λ)

µ− λ− i0
dµ , λ ∈ R , (7.8)

with

G̃(λ, µ) = E−1(µ)[I −G(µ)]E(λ)

=

(
0 0

−πγe−(µ) πγ(e+(µ)e−(λ)− e+(λ)e−(µ))

)
.

Explicitly, from (7.8) we obtain

χ̃12 = e+(λ) + γ

∫ +∞

−∞
KT (λ, µ)χ̃12(µ)dµ ,

χ̃22 = e−(λ) + γ

∫ +∞

−∞
KT (λ, µ)χ̃22(µ)dµ ,

with the kernel

KT (λ, µ) =
e+(λ)e−(µ)− e−(λ)e+(µ)

2i(λ− µ)
, (7.9)
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and

χ̃11(λ) = 1− γ

2i

∫ +∞

−∞

χ̃12(µ)e−(µ)

µ− λ− i0
dµ ,

χ̃21(λ) = − γ
2i

∫ +∞

−∞

χ̃22(µ)e+(µ)

µ− λ− i0
dµ .

The first two equations are just the integral equations (6.8) defining f±(λ),
therefore we have

χ̃12(λ) = f+(λ) , χ̃22(λ) = f−(λ) , (7.10)

and noting from (7.7) that χ̃11(λ) = χ11,+(λ) and χ̃21(λ) = χ22,+(λ) then we
obtain

χ11(λ) = 1− γ

2i

∫ +∞

−∞

f+(µ)e−(µ)

µ− λ
dµ , =λ > 0 ,

χ21(λ) = − γ
2i

∫ +∞

−∞

f−(µ)e−(µ)

µ− λ
dµ , =λ > 0 . (7.11)

Taking the limit λ→∞ in (7.11) we obtain

χ11(λ) = 1 +
γ

2iλ

∫ +∞

−∞
f+(µ)e−(µ)dµ+O

(
1

λ2

)
,

χ21(λ) =
γ

2iλ

∫ +∞

−∞
f−(µ)e−(µ)dµ+O

(
1

λ2

)
.

which shows that the components of the matrix Ψ1 are given by (6.10). Also
it can be shown using (7.7) and (7.10) that(

f+(λ)
f−(λ)

)
= χ+(λ)

(
e+(λ)
e−(λ)

)
. (7.12)

7.1.2 Lax representation

Before we go any further we should investigate for what values of our param-
eters the RHP (7.1) has a unique solution. In Appendix I it is shown that our
RHP is uniquely solvable except for when x is in a countable set denoted by
X. In the following section we are going to consider that x is not in X which
means that (7.1) has a unique solution. Now we are going to show that the
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function Ψ(λ) defined by

Ψ(λ) = χ(λ)eiλxσ3 , (7.13)

is a matrix solution of the linear system (6.12) which is called the Lax repre-
sentation. Ψ(λ) is the solution of the matrix RHP

Ψ−(λ) = Ψ+(λ)G0(λ) , λ ∈ R ,

Ψ(∞) = eiλxσ3 ,

with the conjugation matrix G0 given by

G0(λ) ≡ e−iλxσ3G(λ)eiλxσ3 =

(
1 + πγϑ(λ) −πγϑ(λ)
πγϑ(λ) 1− πγϑ(λ)

)
.

The main advantage of the matrix G0 is the fact that does not depend on
x and the dependence on β is through the Fermi distribution function ϑ(λ)
which means that

∂xG0(λ) = 0 , (2λ∂β + ∂λ)G0(λ) = 0 .

Consequently, the derivatives of Ψ(λ) will satisfy the same RHP as Ψ(λ)

[∂xΨ(λ)]− = [∂xΨ(λ)]+G0(λ) ,

[(2λ∂β + ∂λ)Ψ(λ)]− = [(2λ∂β + ∂λ)Ψ(λ)]+G0(λ) ,

but with different behavior for large λ, and the logarithmic derivatives are
entire functions of λ

F1(λ) ≡ [∂xΨ(λ)] Ψ−1(λ) ,

F2(λ) ≡ [(2λ∂β + ∂λ)Ψ(λ)] Ψ−1(λ) , (7.14)

denoted by F1(λ) and F2(λ). The leading terms of these functions when λ is
large can be obtain easily from (7.3) and (7.13)

F1(λ) = iλσ3 +O(1) , F2(λ) = O(1) , λ→∞ ,

so from Liouville theorem we conclude that F1 and F2 are polynomials of the
first and zeroth degree respectively

F1(λ) = iλσ3 + U0 , F2(λ) = V0 .
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The matrices U0(x, β, γ) and V0(x, β, γ) can be expressed in terms of Ψ1 if we
use the fact that χ−1(λ) = 1−Ψ1/λ when λ→∞, with the result

U0 = i[Ψ1, σ3] , V0 = iσ3 + 2∂βΨ1 .

Using (7.5) we can obtain explicit expressions of U0 and V0 in terms ofB+−, B++,
and we can rewrite (7.14) as

∂xΨ(λ) = [iλσ3 +B++σ1] Ψ(λ) ,

(2λ∂β + ∂λ)Ψ(λ) = [ixσ3 − i(∂βB+−)σ3 − (∂βB++)σ2] Ψ(λ) . (7.15)

We recognize in the RHS of (7.15) the L and M operators (6.16),(6.25), but
now they act on a 2 × 2 matrix. As an immediate consequence of the Lax
representation (7.15) the potentials B+−, B++ satisfy the differential equations
(6.26),(6.27) and (6.30) (see Thm 2 for a proof).

7.1.3 An useful transformation of the RHP

In the previous section we showed that the potentials B++, B+− that char-
acterize the field-field correlator (see (6.4),(6.11) and (6.37)) can be obtained
from the expansion of the solution of the matrix RHP (7.1). This means that
the large distance asymptotics of the potentials, and hence of the field corrre-
lator, can be obtained from the solution of the RHP. Our analysis will use the
the equivalent formulation of the RHP in terms of the singular integral equa-
tion (7.6) so as a first step we will try to use a matrix RHP whose conjugation
matrix has 1 on the diagonal. In order to achieve this goal we will introduce
a new matrix Φ defined by

Φ(λ) = χ(λ)

(
β−1(λ) 0

0 α−1(λ)

)
,

where the functions α(λ), β(λ) are defined by

α(λ) = exp

{
− 1

2πi

∫ +∞

−∞

dµ

µ− λ
ln

(
eµ

2−β − eiπκ

eµ2−β + 1

)}
, (7.16)

with the branch of the logarithm specified by

ln

(
eµ

2−β − eiπκ

eµ2−β + 1

)
→ 0, µ→∞ ,
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and

β(λ) = exp

{
− 1

2πi

∫ +∞

−∞

dµ

µ− λ
ln

(
eµ

2−β + eiπκ + 2

eµ2−β + 1

)}
,

with the branch of the logarithm specified by

ln

(
eµ

2−β + eiπκ + 2

eµ2−β + 1

)
→ 0, µ→∞ .

The functions α(λ) and β(λ) are analytic in the upper and lower half-plane, re-
member κ ∈ (0, 1], and they are the solutions of the following scalar Riemann-
Hilbert problems (see Appendix J)

α−(λ) = α+(λ)gα(λ) , λ ∈ R ,

α(∞) = 1 ,

gα(λ) =
eµ

2−β − eiπκ

eµ2−β + 1
, (7.17)

and

β−(λ) = β+(λ)gβ(λ) , λ ∈ R ,

β(∞) = 1 ,

gβ(λ) =
eµ

2−β + eiπκ + 2

eµ2−β + 1
, (7.18)

and have the properties

α−1(λ) = α(−λ) , β−1(λ) = β(−λ) .

The matrix Φ satisfies the RHP (see(7.1))

Φ−(λ) = Φ+(λ)GΦ(λ) , λ ∈ R ,

Φ(λ) = 1 , (7.19)

with the conjugation matrix

GΦ(λ) =

(
1 −πγϑ(λ)β+(λ)α−1

− (λ)e2iλx

πγϑ(λ)α+(λ)β−1
− e−2iλx 1

)
. (7.20)
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In terms of the components of the matrix Φ that solves the RHP (7.19) the
potentials B++, B−+ are expressed as

B+− = 2i lim
λ→∞

λ
[
Φ11(λ)− β−1(λ)

]
,

B++ = −2i lim
λ→∞

λΦ12(λ) . (7.21)

The RHP (7.19) and formulae (7.21) will constitute the basis of our analysis
of the large distance asymptotics of the field-field correlator of impenetrable
anyons.

7.2 Large distance asymptotic analysis

In this section we are going to perform the large distance asymptotic anal-
ysis of the RHP (7.1). Using (7.21) we will obtain the auxiliary potentials
B++(x, β, κ), B+−(x, β, κ) from the large λ expansion of Φ11,+(λ),Φ12,+(λ).
Then σ(x, β, κ) can be calculated using the differential equations (6.32), (6.33).

7.2.1 The auxiliary potentials in the large x limit

From the integral equation formulation (7.6) of the RH problem (7.19), and
using the properties of α and β we obtain the following expressions for Φ11,+(λ),
Φ12,+(λ)

Φ11,+(λ) = 1− (1 + eiπκ)

2πi

∫ +∞

−∞

Φ12,+(µ)

(µ− λ− i0)

α−(µ)

β−(µ)

e−2iµx

(eµ2−β − eiπκ)
, =λ = 0 ,

(7.22)
and

Φ12,+(λ) =
(1 + eiπκ)

2πi

∫ +∞

−∞

Φ11,+(µ)

(µ− λ− i0)

β+(µ)

α+(µ)

e2iµx

(eµ2−β − eiπκ)
, =λ = 0 .

(7.23)
Using the analyticity of α and β and Φ11(∞) = α(∞) = β(∞) = 1, we are
trying to obtain an estimate of Φ12,+ by shifting the contour in the upper half-
plane and the replacing the integral by the sum of the residues. Rigorously
speaking this will require an estimate of the type |Φ12(λ, x, β)| ≤ C/λ and
as we will see further |Φ11(λ, β, x) − 1| ≤ D/λ for =λ ≥ 0 , β < β0 , x < x0

where C,D depends on β0, x0 only. In what follows we will assume that these
estimates hold, noting that these assumptions can be justified self-consistently
as in Sect. 4 of [48]. The poles of the integrand in (7.23) are given by λ + i0
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and the zeros of the function

eλ
2−β − eiπκ

situated in the upper half-plane. Explicitly these zeros are given by the for-
mulae

(<λk)2 =
1

2

(
β +

√
β2 + π2[κ+ 2k]2

)
,

(=λk)2 =
1

2

(
−β +

√
β2 + π2[κ+ 2k]2

)
, k = 0,±1,±2, · · · (7.24)

and for us an important role will be played by λ+
0 and λ+

−1 given by

λ+
0 =

(
β +

√
β2 + π2κ2

)1/2

/
√

2 + i
(
−β +

√
β2 + π2κ2

)1/2

/
√

2 , (7.25)

and

λ+
−1 = −

(
β +

√
β2 + π2[κ− 2]2

)1/2

/
√

2+i
(
−β +

√
β2 + π2[κ− 2]2

)1/2

/
√

2 ,

(7.26)
where the superscript + distinguishes the solutions from the upper half-plane.
Closing the contour in the upper half-plane we obtain

Φ12,+(λ) = (1 + eiπκ)Φ11,+(λ)
β+(λ)

α+(λ)

e2iλx

(eλ2−β − eiπκ)
+ S+(λ) , (7.27)

with

S+(λ) =
+∞∑

k=−∞

(1 + eiπκ)

2eiπκ
β(λ+

k )

α(λ+
k )

Φ11(λ+
k )e2iλ+

k x

(λ+
k − λ)λ+

k

.

The series S+(λ) is uniformly convergent for λ ∈ R, x0 ≤ x, β1 ≤ β ≤ β0 and
0 < κ ≤ 1. Plugging (7.27) in (7.22) and using the scalar RH problems (7.17)
and (7.18) we obtain the following representation

Φ11,+(λ) = 1− (1 + eiπκ)2

2πi

∫ +∞

−∞

Φ11,+(µ)

µ− λ− i0
dµ

(eµ2−β − eiπκ)(eµ2−β + eiπκ + 2)

− 1

2πi

∫ +∞

−∞

R+(µ)

µ− λ− i0
dµ , (7.28)

with

R+(µ) = (1 + eiπκ)
α−(µ)

β−(µ)

e−2iµx

(eµ2−β − eiπκ)
S+(µ) .
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The particular form of the integral equation(7.28) (see J.5) indicates that it is
useful to consider the following inhomogeneous scalar RH problem (Appendix
J)

Φ̃−(λ) = Φ̃+(λ)g(λ) +R+(λ) , λ ∈ R ,

Φ̃+(λ) = Φ11,+(λ) , λ ∈ R ,

Φ̃(∞) = 1 , (7.29)

with

1− g(λ) = − (1 + eiπκ)2

(eλ2−β − eiπκ)(eλ2−β + eiπκ + 2)
,

Simple computations corroborated with (7.17) and (7.18) allow us to obtain
the following expression for g

g(λ) =
(eλ

2−β + 1)2

(eλ2−β − eiπκ)(eλ2−β + eiπκ + 2)
=
α−1
− (λ)β−1

− (λ)

α−1
+ (λ)β−1

+ (λ)
.

Using (J.4) the solution of the RH problem (7.29) is given by

Φ̃(λ) = α−1(λ)β−1(λ)− α−1(λ)β−1(λ)

2πi

∫ +∞

−∞

α−(µ)β−(µ)R(µ)

µ− λ
dµ , λ ∈ C/R .

(7.30)
The functions Φ̃(λ) and Φ11(λ) are analytic in the upper half-plane have the
same behavior at infinity Φ̃(∞) = Φ11(∞) = 1 and their boundary values
close to the real axis Φ̃+(λ),Φ11,+(λ) , λ ∈ R are equal which means that
Φ11(λ) = Φ̃(λ) for =λ > 0. Therefore from (7.30) and the explicit expression
for R+(λ) we have

Φ11(λ) = α−1(λ)β−1(λ)− α−1(λ)β−1(λ)

2πi

+∞∑
k=−∞

A(λ+
k , λ)Φ11(λ+

k ) , =λ ≥ 0 ,

where

A(λ+
k , λ) =

(1 + eiπκ)2

2λ+
k e

iπκ

β(λ+
k )

α(λ+
k )
e2iλ+

k x

∫ +∞

−∞

α2
−(µ)e−2iµx

(eµ2−β − eiπκ)(λ+
k − µ)(µ− λ)

dµ .

The integral in the last term can be estimated as C|e−2iλ−0 x|, where λ−0 is the
solution of (7.24) for k = 0 in the lower half-plane, so the leading term of Φ11

when x→∞ is given by

Φ11(λ) = α−1(λ)β−1(λ) +O(e−4=λ+
0 x) , =λ > 0 . (7.31)
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Using (7.23) we obtain the leading term of Φ12 when x is large

Φ12(λ) =
(1 + eiπκ)

2πi

∫ +∞

−∞

α−2
+ (µ)

(µ− λ− i0)

e2iµx

(eµ2−β − eiπκ)
+O(e−4=λ+

0 x) , =λ > 0 .

(7.32)
The large distance asymptotics of the potentials B++, B+− are obtained from
(7.31) and (7.32) using (7.21) with the results

B+− =
1

π

∫ +∞

−∞
ln

(
eµ

2−β + 1

eµ2−β − eiπκ

)
dµ+O(e−4=λ+

0 x) , x→∞ (7.33)

where the branch of the logarithm is fixed as

ln

(
eµ

2−β + 1

eµ2−β − eiπκ

)
→ 0 , µ→∞ , (7.34)

and

B++ =
(1 + eiπκ)

π

∫ +∞

−∞

α−2
+ (µ)e2iµx

(eµ2−β − eiπκ)
+O(e−4=λ+

0 x) , x→∞ .

The expression for B++ can be made more precise if we close the contour in
the upper half-plane obtaining

B++ = i(1 + e−iπκ)
max∑
k=min

α−2(λ+
k )

λ+
k

e2iλ+
k x +O(e−4=λ+

0 x) , x→∞ , (7.35)

where min(β, κ) < 0 and max(β, κ) > 0 are defined by the relations

=λ+
min < 2=λ+

0 , =λ+
min−1 > 2=λ+

0 , (7.36)

and
=λ+

max < 2=λ+
0 , =λ+

max+1 > 2=λ+
0 . (7.37)

7.2.2 Determination of σ(x, β, κ) in the large x limit

Define

ν(λ, β) =
1

2πi
log

(
eλ

2−β + 1

eλ2−β − eiπκ

)
, (7.38)
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where, κ ∈ [0, 1) is the statistics parameter and the branch of the logarithm is
specified by

lim
λ→∞

log

(
eλ

2−β + 1

eλ2−β − eiπκ

)
→ 0 ,

and no branch cut intersects the real axis. The function C(β, κ) and is intro-
duced as

C(β, κ) ≡ 2i

∫ +∞

−∞
ν(λ, β)dλ =

1

π

∫ +∞

−∞
log

(
eλ

2−β + 1

eλ2−β − eiπκ

)
dλ . (7.39)

Then using the the large distance asymptotics for the auxiliary potentials
obtained in the previous section and the differential equations (6.32) and (6.33)
we obtain

σ(x, β, κ) = −xC(β, κ) + c(β, κ) +O(e−4=λ+
0 x) , x→∞ , (7.40)

where c(β, κ) is a constant that that depends on β and κ but not on x and
needs to be determined. In order to obtain this constant which appears in the
expression for σ(x, β, κ) we are going to integrate the relation

∂γσ = −
∫ +∞

−∞
RT (λ, λ) dλ , (7.41)

which can be obtained from the differentiation of (6.36). In the previous
expression RT (λ, λ) is given by

RT (λ, λ) =
1

2i
(∂λf+(λ)f−(λ)− f+(λ)∂λf−(λ)) . (7.42)

The technique used is similar with the one employed in [53]. In the cited paper
the authors considered a generalized sine-kernel at zero temperature and stud-
ied the large distance asymptotic behavior of the Fredholm determinant using
the nonlinear steepest descent method of Deift and Zhou [26]. At zero tem-
perature det(1− γK̂) becomes a particular case of the Fredholm determinant
considered in [53].

The first step will be the computation of f±(λ) using the relation(
f+(λ)
f−(λ)

)
= χ+(λ)

(
e+(λ)
e−(λ)

)
. (7.43)
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Remember that

χ(λ) = Φ(λ)

(
β(λ) 0
0 α(λ)

)
, (7.44)

but and in the previous sections we have obtained only Φ11(λ) and Φ12(λ) in
the large x limit. We have

Φ11(λ) = α−1(λ)β−1(λ) +O(e−4=λ+
0 x) , =λ > 0 , (7.45)

and

Φ12(λ) =
(1 + eiπκ)

2πi

∫ +∞

−∞

α−2
+ (µ)

(µ− λ− i0)

e2iµx

(eµ2−β − eiπκ)
+O(e−4=λ+

0 x) , =λ > 0 .

(7.46)
If in the expression for Φ12 we close the contour in the upper half plane we
obtain

Φ12(λ) = πγ
α−2

+ (λ)

(eλ2−β − eiπκ)
e2iλx +O(e−2=λ+

0 x) . (7.47)

We need to obtain similar relations for Φ21 and Φ22. From the integral formu-
lation of the RHP (7.6) and the properties of α(λ) we have

Φ21,+(λ) = − γ
2i

∫ +∞

−∞

Φ22,+(µ)

µ− λ− i0
α−(µ)

β−(µ)

e−2iµx

(eµ2−β − eiπκ)
dµ , λ ∈ R , (7.48)

and

Φ22,+(λ) = 1 +
γ

2i

∫ +∞

−∞

Φ21,+(µ)

µ− λ− i0
β+(µ)

α+(µ)

e2iµx

(eµ2−β − eiπκ)
dµ , λ ∈ R . (7.49)

In the integral equation (7.48) we can close the contour in the lower half plane
obtaining

Φ21,+(λ) = −πγ
∞∑

k=−∞

Φ22,+(λ−k )

λ−k − λ− i0
α−(λ−k )

β−(λ−k )

e−2|=λ−k |x

2λ−k e
iπκ

,

where λ−k are the zeroes of eµ
2−β − eiπκ in the lower half plane. Plugging this

result in the integral equation for Φ22,+ and closing the contour in the upper
half plane we obtain

Φ22,+(λ) = 1 +O(e−2(|=λ−0 |+=λ
+
0 )x) . (7.50)
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Using (7.50) in (7.48) we have

Φ21,+(λ) = O(e−2|=λ−0 |x) . (7.51)

Now we are able to compute f±(λ) up to exponentially small corrections in x.
Explicitly from (7.44) and (7.43) we have(

f+(λ)
f−(λ)

)
=

(
Φ11,+(λ)β+(λ)e+(λ) + Φ12,+(λ)α+(λ)e−(λ)
Φ21,+(λ)β+(λ)e+(λ) + Φ22,+(λ)α+(λ)e−(λ)

)
,

therefore using (7.45), (7.47), (7.50) and (7.51) we obtain(
f+(λ)
f−(λ)

)
=

(
α−1

+ (λ)e+(λ)e2πiν(λ)

α+(λ)e−(λ)

)
, (7.52)

where ν(λ) (we have suppressed the dependence on β) is defined in (7.38). It
is easy to see that ν(λ) can be written in terms of the rescaled Fermi weight
function θ(λ) = (1 + eλ

2−β)−1 as

ν(λ) = − 1

2πi
log(1− πγθ(λ)) ,

=
1

2πi
log

(
eλ

2−β + 1

eλ2−β − eiπκ

)
.

Also we have

α+(λ) = exp

{
iπν(λ) + P.V.

∫ +∞

−∞

ν(µ)

µ− λ
dµ

}
.

Using (7.52) and (7.42) in (7.41) we obtain

∂γσ = −
∫ +∞

−∞
RT (λ, λ)dλ ,

= −
∫ +∞

−∞

1

2πi

πθ(λ)

(1− πγθ(λ))
(2ix− 2∂λ logα+(λ) + 2iπν(λ)) dλ ,

= −
∫ +∞

−∞
∂γν(λ)(2ix− 2∂λ logα+(λ) + 2iπν(λ)) dλ . (7.53)

Our goal is to write the RHS of (7.53) as a derivative with respect to γ. The
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term depending on x is in this form but not the constant one. We have∫ +∞

−∞
∂γν(λ)(2∂λ logα+(λ)− 2iπν(λ))

=

∫ +∞

−∞
∂γν(λ)∂λ

∫ +∞

−∞

(
ν(µ)

µ− λ− i0
+

ν(µ)

µ− λ+ i0

)
dµdλ ,

=

∫ +∞

−∞
∂γν(λ)

(
ν(µ)

(λ− µ− i0)2
+

ν(µ)

(λ− µ+ i0)2

)
dµdλ .

We will show that this expression is equal with

∂γ

∫ +∞

−∞

∂λν(λ)ν(µ)− ν(λ)∂µ(µ)

2(λ− µ)
dλdµ .

Indeed we have

∂γ

∫ +∞

−∞

∂λν(λ)ν(µ)− ν(λ)∂µ(µ)

2(λ− µ)
dλdµ

=

∫ +∞

−∞

[(∂γ∂λν(λ))ν(µ) + ∂λ(λ)∂γ(µ)]

λ− µ
dλdµ ,

=
1

2

∫ +∞

−∞
[(∂γ∂λν(λ))ν(µ) + ∂λ(λ)∂γ(µ)]

(
1

λ− µ+ i0
+

1

λ− µ− i0

)
dλdµ ,

=
1

2

∫ +∞

−∞
[∂γν(λ)ν(µ) + ν(λ)∂γν(µ)]

(
1

(λ− µ+ i0)2
+

1

(λ− µ− i0)2

)
dλdµ ,

=

∫ +∞

−∞
∂γν(λ)

(
ν(µ)

(λ− µ− i0)2
+

ν(µ)

(λ− µ+ i0)2

)
dµdλ .

Therefore

∂γσ = −2ix∂γ

∫ +∞

−∞
ν(λ)dλ+ ∂γ

∫ +∞

−∞

∂λν(λ)ν(µ)− ν(λ)∂µ(µ)

2(λ− µ)
dλdµ ,

and integrating with respect to γ and taking into account that σ(γ = 0) = 0
we obtain

σ(x, β, κ) = −xC(β, κ) +

∫ +∞

−∞

∂λν(λ)ν(µ)− ν(λ)∂µ(µ)

2(λ− µ)
dλdµ . (7.54)
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Comparison with (7.40) shows that

c(β, κ) =

∫ +∞

−∞

∂λν(λ)ν(µ)− ν(λ)∂µ(µ)

2(λ− µ)
dλdµ . (7.55)

7.2.3 Large distance asymptotic behavior for the field-
field correlator

We remind the reader that the field-field correlation function is given by

〈Ψ†(x1)Ψ(x2)〉T =

√
T

2πγ
B++(x, β, κ)eσ(x,β,κ) , γ = (1 + eiπκ)/π .

Using the results obtained in the previous sections for the potential B++ and
σ, and going back to the original variables x = x12

√
T/2 and β = h/T , the

large distance behavior of the field-field correlator is given by

〈Ψ†(x1)Ψ(x2)〉T = e−x12

√
T
2
C(h/T,κ)ec(h/T,κ)

max∑
k=min

cke
ix12

√
Tλ+

k +O(e−4=λ+
0 x)(7.56)

where

ck = i
eiπκ
√
T

2

α−2(λ+
k )

λ+
k

. (7.57)

and λ+
k are the solutions of (7.24) in the upper half-plane. In (7.56) C(β, κ)

and α(λ) are defined in (7.39) and (7.17)and the summation limits are given
by (7.36) and (7.37). The leading term is k = 0 but as we approach the free
fermionic point, κ→ 1, the k = −1 term also becomes relevant.

7.3 Analysis of the results

We will check the validity of our results in three appropriate limits. When
the statistics parameter κ → 0 we should reproduce the results obtained for
impenetrable bosons in [46, 48, 54] and when κ = 1 we should obtain the
results for free fermions. Even though in the large distance analysis performed
in the previous section we have not made any distinction between the cases of
negative and positive chemical potential (or equivalently β) we will see that
in the bosonic limit the asymptotic behavior of the corrrelation function is
fundamentally different in the two regions as we would have expected from
[46, 48, 54]. In the limit of low temperatures (β → ∞) at positive chemical
potential our system becomes critical and we can verify our result with the

99



predictions of conformal field theory [19, 66].

7.3.1 The bosonic limit

The bosonic limit is defined by κ→ 0. Then from (7.39) in the case of positive
chemical potential we obtain

lim
κ→0

C(β, κ) =
1

π

∫ +∞

−∞
ln

∣∣∣∣∣eλ
2−β + 1

eλ2−β − 1

∣∣∣∣∣ dλ+ 2i
√
β , β > 0 , (7.58)

and in the case of negative chemical potential

lim
κ→0

C(β, κ) =
1

π

∫ +∞

−∞
ln

(
eλ

2−β + 1

eλ2−β − 1

)
dλ , β < 0 . (7.59)

Also from (7.25) we have

λ+
0 =

√
β , β > 0 , κ→ 0 , (7.60)

λ+
0 = i

√
|β| , β < 0 , κ→ 0 . (7.61)

Introducing the function C(β) given by

C(β) ≡ 1

π

∫ +∞

−∞
ln

∣∣∣∣∣eλ
2−β + 1

eλ2−β − 1

∣∣∣∣∣ dλ , β = h/T , (7.62)

using (7.56), (7.59) and (7.61) we obtain the following asymptotic behavior of
the correlation function at negative chemical potential in the original variables
(x = (x1 − x2)

√
T/2, β = h/T )

〈Ψ†(x1)Ψ(x2)〉T ' e
−x12

[√
T
2
C(h/T )+

√
|h|
]
, h < 0 , x12 ≡ (x1 − x2)→∞ .

(7.63)
In the case of positive chemical potential from (7.56), (7.58) and (7.60) we
obtain

〈Ψ†(x1)Ψ(x2)〉T ' e−x12

√
T
2
C(h/T ) , h > 0 , x12 ≡ (x1 − x2)→∞ . (7.64)

Both asymptotics (7.63) and (7.64) agree with the result obtained for impen-
etrable bosons in [47, 48, 54].
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7.3.2 Free fermionic limit

The field-field correlator for free fermions is given by

〈Ψ†F (x1)ΨF (x2)〉 =

√
T

2π

∫ +∞

−∞

eix12

√
Tλ

eλ2−β + 1
dλ . (7.65)

In the large x12 limit we can close the contour in the upper half-plane and take
the contributions of the leading residues which are given by the zeros of the
denominator. We obtain

〈Ψ†F (x1)ΨF (x2)〉 ∼ −i
√
T

2

∑
k=0,−1

eix12

√
Tλ+

k

λ+
k

(7.66)

where λ+
k are given by (7.25) and (7.26) with κ = 1. This is exactly the same

result that we obtain from (7.56) if we notice that C(β, κ = 1) = c(β, κ =
1) = 0 and α(λ, κ = 1) = 1.

7.3.3 The conformal limit

Before we embark on the analysis of our result in the conformal limit it will be
useful to investigate more thoroughly the function C(β, κ) defined by (7.39).
We will start with case of negative β which is simpler. Using the expansions
ln(1 + z) =

∑∞
n=1(−1)n+1zn/n , |z| < 1 and ln(1 + z) = −

∑∞
n=1 z

n/n , |z| < 1
we obtain

C(β, κ) =
1

π

∫ +∞

−∞

∞∑
n=1

(
(−1)n+1e−n(λ2+|β|)

n
+
einπκe−n(λ2+|β|)

n

)
dλ ,

=
1√
π

∞∑
n=1

(
(−1)n+1e−n|β|

n3/2
+
einπκe−n|β|

n3/2

)
.

Therefore, in the large and small |β| limits the leading terms are given by

C(β, κ) =
e−|β|√
π

(1 + cos πκ) + i
e−|β|√
π

sin πκ , (β → −∞) , (7.67)

and

C(β, κ) =
1√
π

∞∑
n=1

(
(−1)n+1 + cosnπκ

n3/2

)
+i

1√
π

∞∑
n=1

sinnπκ

n3/2
, (β → 0, β < 0) .

(7.68)
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Let us now investigate the case of positive β. Using the same expansions
for the logarithms we obtain

C(β, κ) =
2

π

∫ √β
0

[
−iπ(κ− 1) +

∞∑
n=1

en(λ2−β) (−1)n+1 + e−inπκ

n

]
dλ

+
2

π

∫ ∞
√
β

∞∑
n=1

en(λ2−β) (−1)n+1 + e−inπκ

n
dλ .

For β large we can use the formulae

e−βn
∫ √β

0

eλ
2ndλ =

1

2n
√
β

+O

(
1

β3/2

)
, eβn

∫ ∞
√
β

e−λ
2ndλ =

1

2n
√
β

+O

(
1

β3/2

)
,

obtaining

C(β, κ) =
2

π
√
β

∞∑
n=1

(
(−1)n+1

n2
+

cosnπκ

n2

)
− 2i

√
β(κ− 1) +O

(
1

β3/2

)
.

Using the formulae (0.234) and (1.443) of [38] we have
∑∞

k=1(−1)n+1/n2 =
π2/12 and

∑∞
k=1 cosnπκ/n2 = π2B2(κ/2) where B2(x) = x2 − x + 1/6 is the

second Bernoulli polynomial which allow us to rewrite the previous result as

C(β, κ) =
π√
β

(
κ2

2
− κ+

1

2

)
− 2i

√
β(κ− 1) , (β →∞) . (7.69)

For small β from (7.69) we obtain

C(β, κ) =
1√
π

∞∑
n=1

(
(−1)n+1 + cosnπκ

n3/2

)
+i

1√
π

∞∑
n=1

sinnπκ

n3/2
, (β → 0, β > 0) .

(7.70)
In the case of positive chemical potential at low temperatures the system

is conformal. In the limit β →∞ we have

λ+
0 =

[(
β +

√
β2 + π2κ2

)1/2

+ i
(
−β +

√
β2 + π2κ2

)1/2
]
/
√

2

→
√
β + i

πκ

2
√
β
, (7.71)
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λ+
−1 =

[
−
(
β +

√
β2 + π2[κ− 2]2

)1/2

+ i
(
−β +

√
β2 + π2[κ− 2]2

)1/2
]
/
√

2

→ −
√
β + i

π|κ− 2|
2
√
β

. (7.72)

and the behavior of C(β, κ) in the same limit was studied above. In order
to make the connection with the results obtained in [19, 66] we are going to
use the original variables x = (x1 − x2)

√
T/2, β = h/T and the fact that the

Fermi momentum kF =
√
h and the Fermi velocity vF = 2

√
h. Then from

(7.56) (7.71) and (7.72) we obtain the following asymptotics for the field-field
correlator at low temperatures

• For 0 < κ < 2/3

〈Ψ†(x1)Ψ(x2)〉T ' c0e
−x12

πT
vF

(
κ2

2
+ 1

2

)
eix12kF κ , (7.73)

• For 2/3 < κ < 1

〈Ψ†(x1)Ψ(x2)〉T ' c0e
−x12

πT
vF

(
κ2

2
+ 1

2

)
eix12kF κ

+c−1e
−x12

πT
vF

[
2(κ2−1)

2
+ 1

2

]
eix12kF (κ−2) . (7.74)

The presence of the second term in (7.74) is a consequence of (7.36) and (7.37).
The conformal result obtained in ([19, 66]) also presented in Chap. 3 is

〈Ψ†(x1)Ψ(x2)〉T '
∑

Q={N±,d}

B(Q)e
−x12

πT
vF

[
2N++2N−+ 1

2
+2(d+κ

2 )
2
]

×eix12kF (2d+κ) . (7.75)

It is easy to see that the leading terms in the expansion (7.75), which corre-
spond to Q = 0, 0, 0 and Q = 0, 0,−1 , are identical (modulo the constants)
with (7.73) and (7.74). The presence of the second term in (7.74) (and the
term with Q = 0, 0,−1 in the conformal expansion) explains why close to the
fermionic limit the correlation function exhibit beats. This phenomenon was
noticed and explained by Calabrese and Mintchev [19] at T = 0.

103



Chapter 8

Conclusions

In this dissertation we have investigated the properties of the field-field corre-
lation function of impenetrable anyons at finite temperature. The main result
presented is the large distance asymptotic behavior of this correlator. We
have also obtained the determinant representation, the short distance and low
density asymptotics and the system of partial differential equations that char-
acterize the field-field correlator. Even though we do not present the results
here, together with Vladimir Korepin and Dmitri Averin we have obtained the
large time and distance asymptotics of the same correlation function. In this
case it seems that the asymptotic behavior predicted by conformal field theory
is not the same with the one obtained solving the associated Riemann-Hilbert
problem. We will present this computations elsewhere.
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Appendix A: Particle-hole
excitation

In this appendix we find the energy and momentum of particle-hole excitations
of the gas of anyons. As discussed in the main text, for twisted boundary
conditions (β = 1), the ground state of anyons is equivalent to that of the
Bose gas with periodic boundary conditions and coupling constant c′, so the
excitation energy and momentum coincide in this case with those known for the
Bose gas (see Chap. I.4 of [54]). For periodic boundary conditions (β = 0), the
Bethe equations are the same as for the Bose gas with the boundary conditions
twisted by the phase shift 2πδ, where δ = {[−πκ(N − 1)]}. In the case of one
hole with momentum λh and one particle with momentum λp the equations
for the ground state and the excited state are:

Ground State, PBC : λjL+
N∑
k=1

θ(λj − λk) = 2π

(
j − N + 1

2

)
+ 2πδ , j = 1, · · · , N , (A.1)

Excited State, PBC : λ̃jL+
N∑
k=1

θ(λ̃j − λ̃k) + θ(λ̃j − λp)− θ(λ̃j − λh)

= 2π

(
j − N + 1

2

)
+ 2πδ , j = 1, · · · , N . (A.2)

Comparing the equations for a particle-hole excitation in the case of twisted
boundary conditions

Ground State, TBC : λBj L+
N∑
k=1

θ(λBj −λBk ) = 2π

(
j − N + 1

2

)
, j = 1, · · · , N ,
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Excited State, TBC : λ̃Bj L+
N∑
k=1

θ(λ̃Bj − λ̃Bk ) + θ(λ̃Bj − λBp )− θ(λ̃Bj − λBh )

= 2π

(
j − N + 1

2

)
, j = 1, · · · , N ,

with (A.1) and (A.2), we find the following relations

λj = λBj + 2πδ/L, λ̃j = λ̃Bj + 2πδ/L, (j = 1, · · · , N)

λp = λBp + 2πδ/L, λh = λBh + 2πδ/L . (A.3)

The energy and momentum of this excited state with respect to the ground
state is (ε0(λ) = λ2 − h):

∆E(λp, λh) = ε0(λp)− ε0(λh) +
N∑
j=1

(ε0(λ̃j)− ε0(λj))

= ε0(λBp )− ε0(λBh ) +
N∑
j=1

(ε0(λ̃Bj )− ε0(λBj ))

+2
2πδ

L

(
λBp − λBh +

N∑
j=1

(λ̃Bj − λBj )

)

= ∆EB(λBp , λ
B
h ) + 2

2πδ

L
∆P P (λBh , λ

B
p ) , (A.4)

∆P (λp, λh) = ∆PB(λBp , λ
B
h ) , (A.5)

where ∆EB(λBp , λ
B
h ) and ∆PB(λBp , λ

B
h ) are the energy and momentum of a

particle-hole excitation in the Bose gas with periodic boundary conditions,
and λBh and λBp are given by (A.3).

From (A.4) we see that in the case of twisted boundary conditions, the
Fermi velocity vTBCF will be the same as in the Bose gas, whereas for the
periodic boundary conditions the Fermi velocity will be modified as

vPBCF = vTBCF +
4πδ

L
. (A.6)
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Appendix B: Anyonic
correlators

In this Appendix, we prove Eq. (4.9) following the approach used in [5] for
calculation of the anyonic matrix elements. We start with the simple case of
the correlator

〈Ψ2|Ψ†(x′)Ψ(x)|Ψ2〉 , (B.1)

where we have omitted the quantum numbers {λ} unimportant for the present
computation. From (4.4) and (4.5), we have

〈Ψ2|Ψ†(x′)Ψ(x)|Ψ2〉 =
1

2

∫
dz2dy2 χ∗a2 (y1, y2)χa2(z1, z2)

× 〈0|Ψ(y1)Ψ(y2)Ψ†(x′)Ψ(x)Ψ†(z2)Ψ†(z1)|0〉 . (B.2)

Defining for the moment

A = 〈0|Ψ(y1)Ψ(y2)Ψ†(x′)Ψ(x)Ψ†(z2)Ψ†(z1)|0〉 , (B.3)

and using the commutation relation (2.2), Ψ(x)|0〉 = 0, and 〈0|0〉 = 1 we
obtain

A = 〈0|Ψ(y1)Ψ(y2)Ψ†(x′)
[
Ψ†(z2)Ψ(x)e−iπκε(x−z2) + δ(x− z2)

]
Ψ†(z1)|0〉 ,

= 〈0|Ψ(y1)Ψ(y2)Ψ†(x′)Ψ†(z2)Ψ(x)Ψ†(z1)|0〉e−iπκε(x−z2)

+〈0|Ψ(y1)Ψ(y2)Ψ†(x′)Ψ†(z1)|0〉δ(x− z2) ,

= 〈0|Ψ(y1)Ψ(y2)Ψ†(x′)Ψ†(z2)|0〉︸ ︷︷ ︸
(a)

δ(x− z1)e−iπκε(x−z2)

+ 〈0|Ψ(y1)Ψ(y2)Ψ†(x′)Ψ†(z1)|0〉︸ ︷︷ ︸
(b)

δ(x− z2) . (B.4)

112



Performing similar transformations we find that

a = δ(y1 − x′)δ(y2 − z2)e−iπκε(y2−x
′) + δ(y2 − x′)δ(y1 − z2) ,

b = δ(y1 − x′)δ(y2 − z1)e−iπκε(y2−x
′) + δ(y1 − z1)δ(y2 − x′) . (B.5)

Substitution of (B.4) and (B.5) into (B.2) gives

〈Ψ2|Ψ†(x′)Ψ(x)|Ψ2〉 =
1

2

∫
dz1

{
χ∗a2 (x′, z1)χa2(x, z1)e−iπκ[ε(z1−x′)+ε(x−z1)]

+χ∗a2 (z1, x
′)χa2(x, z1)e−iπκε(x−z1) + χ∗a2 (x′, z1)χa2(z1, x)e−iπκε(z1−x

′)

+χ∗a2 (z1, x
′)χa2(z1, x)} . (B.6)

Anyonic property of the wavefunctions (4.6) together with its complex conju-
gate

χ∗aN (z1, · · · , zi, zi+1, · · · , zN) = e−iπκε(zi−zi+1)χ∗aN (z1, · · · , zi+1, zi, · · · , zN) ,
(B.7)

means that (B.6) reduces to a simple form

〈Ψ2|Ψ†(x′)Ψ(x)|Ψ2〉 = 2

∫
dz1 χ

∗a
2 (z1, x

′)χa2(z1, x) . (B.8)

The generalization to the N-particle eigenstate is straightforward and gives

〈ΨN |Ψ†(x′)Ψ(x)|ΨN〉 = N

∫
dzN−1 χ∗aN (z1, · · · , zN−1, x

′)χaN(z1, · · · , zN−1, x) .

(B.9)
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Appendix C: Fredholm
determinants

In this Appendix, we give a brief summary of results of Fredholm theory of
integral equations. For more details, see, e.g., [75]. Consider the Fredholm
equation of the second kind

f(x)− γ
∫ b

a

K(x, y)f(y)dy = g(x) ,

where the kernel K(x, y) is a symmetric, bounded and continuous function.
Defining operations with kernel K(x, y) similarly to the usual matrix op-

erations:

Kn(x, y) =

∫ b

a

K(x, z)Kn−1(z, y) dz , with K1(x, y) = K(x, y) ,

and

TrK =

∫ b

a

K(x, x) dx , TrK2 =

∫ b

a

∫ b

a

K(x, y)K(y, x) dxdy , and so on,

we have the formulae that are useful for calculation of the Fredholm determi-
nant of the integral operator 1− γK̂:

(1− γK̂)−1 = 1 + γK1 + γ2K2 + · · · ,

and

ln det(1− γK̂) = −
∞∑
n=1

γn

n
TrKn . (C.1)
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Indeed, writing (C.1) as

det(1− γK̂) =
∞∏
n=1

exp{−γ
n

n
Tr Kn} , (C.2)

and collecting terms of the same order in γ one can see that the determinant
can be written conveniently as

det
(

1− γK̂
)

=
∞∑
n=0

(−1)n
γn

n!

∫ b

a

dx1 · · ·
∫ b

a

dxnKn

(
x1, · · · , xn
x1, · · · , xn

)
, (C.3)

where

Kn

(
x1, · · · , xn
y1, · · · , yn

)
≡ det

1≤j,k≤n
[K(xj, yk)] . (C.4)

The resolvent kernel R(x, y) associated with the kernel K(x, y) is defined
as R̂ = (1− γK̂)−1K̂, i.e.,

R(x, y)− γ
∫ b

a

K(x, z)R(z, y)dz = K(x, y) .

If one introduces the determinants Rn of kernels R similarly to (C.4), an
important relation can be proven to exist between Rn and the r-th Fredholm
minor defined as a natural generalization of Eq. (C.3):

det

(
1− γK̂

∣∣∣∣ y1, · · · , yr
y′1, · · · , y′r

)
=
∞∑
n=0

(−1)n
γn

n!

∫ b

a

dx1 · · ·
∫ b

a

dxn

×Kn+r

(
y1, · · · , yr, x1, · · · , xn
y′1, · · · , y′r, x1, · · · , xn

)
. (C.5)

The relation is [44]

det

(
1− γK̂

∣∣∣∣ y1, · · · , yr
y′1, · · · , y′r

)
= det

(
1− γK̂

)
Rn

(
y1, · · · , yr
y′1, · · · , y′r

)
. (C.6)
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Appendix D: Reduced density
matrices of free fermions

The reduced density matrices for free 1D fermions were calculated in the orig-
inal paper of Lenard [59]. To make our discussion self-contained, we provide
here a sketch of the proof and the main results in the notations that in general
allow for an external potential U(z) acting on the particles.

We assume that the fermions are confined to the domain V = [−L/2, L/2],
and have a complete set {uλ(z)} of normalized single-particle wavefunctions
with energies ελ in the potential U(z). For instance, for U(z) ≡ 0, and the
”hard wall” boundary conditions at the boundaries of the domain V ,

uλ(z) =


√

2
L

sin(λz), λ = 2π
L
, 4π
L
, · · · ,√

2
L

cos(λz), λ = π
L
, 3π
L
, · · · ,

and, with appropriate conventions, ελ = λ2. The N -body wavefunction of a
stationary state is given by the Slater determinant

χfN(z1, · · · , zN |{λ}) =
1√
N !

∑
π∈SN

(−1)π
N∏
i=1

uλi(zπ(i)) ,

where the set {λ} consists of non-coincident single-particle states λi, and the
energy eigenvalue is E({λ}) =

∑N
i=1 ελi . In the grand canonical ensemble, the

Gibbs measure is

pN{λ} = ehN/T
e−E({λ})/T

Z(h, L, T )
, with Z(h, L, T ) =

∞∑
N=0

∑
{λ}

ehN/T e−E({λ})/T , (D.1)

where h is the chemical potential. Using the fact that, with an extra factor
1/N ! included to compensate for overcounting, summation over {λ} can be
replaced with summation over independent individual λi’s, one obtains the

116



following fundamental formula∑
{λ}

ehN/T e−E({λ})/Tχ∗fN (z1, · · · , zN |{λ})χfN(z′1, · · · , z′N |{λ}) =

1

N !

∑
π∈SN

(−1)π
N∏
i=1

F (zi, z
′
π(i)) =

1

N !
FN

(
z1, · · · , zN
z′1, · · · , z′N

)
. (D.2)

Here we have used (C.4) and

F (x, y) ≡ eh/T
∑
λ

e−ελ/Tu∗λ(x)uλ(y) . (D.3)

Equation (D.2) and proper normalization of the wavefunctions uλ show that
the fermionic statistical sum (D.1) can be expressed as the determinant (C.3)
of the integral operator with kernel (D.3):

Z(h, L, T ) =
∞∑
N=0

1

N !

∫
V

dz1 · · ·
∫
V

dzN FN

(
z1, · · · , zN
z1, · · · , zN

)
= det(1 + F̂ ).

Similarly, using the definition (C.5) of Fredholm minor of the same operator
we see that

∞∑
N=n

ehN/T
∑
{λ}

e−E({λ})/T N !

(N − n)!

∫
V

dz1 · · ·
∫
V

dzN−n

×χ∗fN (z1, · · · , zN−n, x1, · · · , xn|{λ})χfN(z1, · · · , zN−n, x′1, · · · , x′n|{λ})

= det

(
1 + F̂

∣∣∣∣ x1, · · · , xn
x′1, · · · , x′n

)
, (D.4)

so that the reduced density matrix of the fermions can be expressed as:

(x1, · · · , xn|ρfn|x′1, · · · , x′n) = det

(
1 + F̂

∣∣∣∣ x1, · · · , xn
x′1, · · · , x′n

)
/ det(1 + F̂ ).

The relation (C.6) for Fredholm minors means that this result can be expressed
simply in terms of the resolvent kernel θT (x, y)/π associated with kernel F (x, y)
(D.3) (factors of π are chosen so that the notations are the same as in the main
text):

(x1, · · · , xn|ρfn|x′1, · · · , x′n) =
1

πn
θT

(
x1, · · · , xn
x′1, · · · , x′n

)
.
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In the thermodynamic limit with no external potential, U(z) ≡ 0, the resolvent
kernel θT is given by

lim
L→∞

θT (x, y) =
1

2

∫ ∞
−∞

dk
eik(x−y)

1 + e(k2−h)/T
.
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Appendix E: Anyonic form
factors

In this appendix, we prove Eq. (5.26). Consider first the simple example of
the form factor F3,2:

F3,2(x) =
1

2
√

3

∫
d3y d2z χ∗3(y1, y2, y3)χ2(z1, z2)

× 〈0|Ψ(y1)Ψ(y2)Ψ(y3)Ψ†(x)Ψ†(z2)Ψ†(z1)|0〉 .
(E.1)

If one defines

A = 〈0|Ψ(y1)Ψ(y2)Ψ(y3)Ψ†(x)Ψ†(z2)Ψ†(z1)|0〉 ,

then successive applications of the commutation relation (2.2) followed by the
Eq. (5.6) give

A = 〈0|Ψ(y1)Ψ(y2)
[
Ψ†(x)Ψ(y3)e−iπκε(y3−x) + δ(y3 − x)

]
Ψ†(z2)Ψ†(z1)|0〉

= 〈0|Ψ(y1)Ψ(y2)Ψ†(x)
[
Ψ†(z2)Ψ(y3)e−iπκε(y3−z2) + δ(y3 − z2)

]
×Ψ†(z1)|0〉e−iπκε(y3−x) + 〈0|Ψ(y1)Ψ(y2)Ψ†(z2)Ψ†(z1)|0〉δ(y3 − x)

= 〈0|Ψ(y1)Ψ(y2)Ψ†(x)Ψ†(z2)|0〉δ(y3 − z1)e−iπκ[ε(y3−z2)+ε(y3−x)]︸ ︷︷ ︸
(a)

+ 〈0|Ψ(y1)Ψ(y2)Ψ†(x)Ψ†(z1)|0〉δ(y3 − z2)e−iπκε(y3−x)︸ ︷︷ ︸
(b)

+ 〈0|Ψ(y1)Ψ(y2)Ψ†(z2)Ψ†(z1)|0〉δ(y3 − x)︸ ︷︷ ︸
(c)

. (E.2)
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Performing similar transformations, we obtain

a = δ(y1 − x)δ(y2 − z2)δ(y3 − z1)e−iπκ[ε(y2−x)+ε(y3−z2)+ε(y3−x)]

+δ(y1 − z2)δ(y2 − x)δ(y3 − z1)e−iπκ[ε(y3−z2)+ε(y3−x)] ,

b = δ(y1 − x)δ(y2 − z1)δ(y3 − z2)e−iπκ[ε(y2−x)+ε(y3−x)]

+δ(y1 − z1)δ(y2 − x)δ(y3 − z2)e−iπκε(y3−x) ,

c = δ(y1 − z2)δ(y2 − z1)δ(y3 − x)e−iπκε(y2−z2)

+δ(y1 − z1)δ(y2 − z2)δ(y3 − z3) .

Substituting A = a + b + c into (E.1), we have for the form factor

F3,2(x) =
1

2
√

3

∫
d2z

{
χ∗3(x, z2, z1)χ2(z1, z2)e−iπκ[ε(z2−x)+ε(z1−z2)+ε(z1−x)]

+χ∗3(z2, x, z1)χ2(z1, z2)e−iπκ[ε(z1−z2)+ε(z1−x)] + χ∗3(z1, z2, x)χ2(z1, z2)

+χ∗3(z1, x, z2)χ2(z1, z2)e−iπκ(z2−x) + χ∗3(z2, z1, x)χ2(z1, z2)e−iπκε(z1−z2)

+χ∗3(x, z1, z2)χ2(z1, z2)e−iπκ[ε(z1−x)+ε(z2−x)]
}
. (E.3)

Using the anyonic property (5.8) of the wavefunctions, and its complex conju-
gate:

χ∗(· · · , zi, zi+1, · · · ) = e−iπκε(zi−zi+1)χ∗(· · · , zi+1, zi, · · · ) ,

we reduce Eq. E.3 to the final expression for the form factor

F3,2(x) =
√

3

∫
d2z χ∗3(z1, z2, x)χ2(z1, z2) . (E.4)

The calculations leading to Eq. (E.4) can be generalized to arbitrary N :

FN+1,N(x) = 〈ΨN+1|Ψ†(x)|ΨN〉

=
√
N + 1

∫
dNz χ∗N+1(z1, · · · , zN , x)χN(z1, · · · , zN) .(E.5)

This result follows from Eq. (5.25) by noticing that the statistical phase factors
in the commutation relations (2.2)–(2.4) of the field operators are compensated
by the exchange property (5.8) of the wavefunctions. This means that the
pairing of the Ψ†(x) operator with any of the Ψ(yj) operators produces N + 1
identical terms in which the coordinate x is made the last coordinate of the
wavefunction χN+1. After that, the integrals over z’s and remaining y’s can
be limited to the ordered regions z1 > z2 > ... > zN and y1 > y2 > ... > yN
giving directly (E.5).
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Appendix F: Thermodynamic
limit of singular sums

In this appendix, we study the behavior of the functions defined by Eqs. (5.44),
(5.45), and (5.46) in the thermodynamic limit of large length L of normaliza-
tion interval. We start with (5.44). In this case, the function summed over
the momenta λ is sufficiently smooth, so that the anyonic shift 2πδ′/L of the
momenta becomes negligible when L → ∞, and one can pass directly from
the sum to the integral over λ:

G(t, x) ≡ lim
L→∞

GL(t, x) =
2π

L

∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x) =

∫ ∞
−∞

e(λ|t, x) dλ . (F.1)

The regularization t→ t+ i0 for e(λ|t, x) = exp(itλ2− ixλ) is implied in these
expressions.

Next, we turn to Eq. (5.45). In this case, the function under the sum is
no longer smooth in the thermodynamic limit. We transform it by separating
the singular part that can be summed explicitly:

E(µk|t, x) ≡ lim
L→∞

EL(µk|t, x) =
2π

L

∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x)

λj − µk

=
2π

L

∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x)− e(µk|t, x)

λj − µk

+e(µk|t, x)
∞∑

n=−∞

(
n− κ+ 1

2

)−1

.(F.2)

In the last line here we have used Eq. (5.29). The first term in (F.2) is now
a smooth function, so as before, we can directly replace the sum with the
integral, since the anyonic shift of the momenta does not affect the value of
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the integral. The integral can then be transformed as follows:∫ ∞
−∞

dλ
e(λ|t, x)− e(µk|t, x)

λ− µk

= P.V.

∫ ∞
−∞

dλ
e(λ|t, x)

λ− µk
− e(µk|t, x) P.V.

∫ ∞
−∞

dλ

λ− µk

= P.V.

∫ ∞
−∞

dλ
e(λ|t, x)

λ− µk
. (F.3)

Under the natural interpretation of the sum in the second term in (F.2), it can
be simplified using formula 1.421.(3) of [38], π cot(πx) = (1/x)+2x

∑∞
n=1(x2−

n2)−1:
∞∑

n=−∞

(
n− κ+ 1

2

)−1

= π tan
(πκ

2

)
. (F.4)

Collecting the two terms we finally get

E(µk|t, x) = P.V.

∫ ∞
−∞

dλ
e(λ|t, x)

λ− µk
+ e(µk|t, x)π tan

(πκ
2

)
.

The function defined by Eq. (5.46) is more singular than E(µk|t, x). To
transform it, we use the same strategy of separating the most divergent terms
that can be summed explicitly:

Ẽ(µk|t, x) ≡ lim
L→∞

ẼL(µk|t, x) =
4

L2
cos2(πκ/2)

∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x)

(λj − µk)2
,

=
4

L2
cos2(πκ/2)

 ∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x)− e(µk|t, x)

(λj − µk)2

+e(µk|t, x)
L2

4π2

∞∑
n=−∞

1(
n− κ+1

2

)2

)
.(F.5)

Defining

f(µk) =
∑

λj∈ 2π
L

(Z+δ′)

e(λj|t, x)− e(µk|t, x)

λj − µk
,

one has∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x)− e(µk|t, x)

(λj − µk)2
=
∂f(µk)

∂µk
+
∂e(µk|t, x)

∂µk

∑
λj∈ 2π

L
(Z+δ′)

1

λj − µk
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Taking the limit L→∞ and using (F.3) and (F.4) in this equation we obtain

lim
L→∞

L

2π

∑
λj∈ 2π

L
(Z+δ′)

e(λj|t, x)− e(µk|t, x)

(λj − µk)2
=

=
∂

∂µk

(
P.V.

∫ ∞
−∞

dλ
e(λ|t, x)

λ− µk

)
+
∂e(µk|t, x)

∂µk
π tan

(πκ
2

)
.

For the second term in the R.H.S. of (F.5) we use the formula 1.422.(4) of [38]
π2/ sin2(πx) =

∑∞
n=−∞(n− x)−2 to get

∞∑
n=−∞

(
n− κ+ 1

2

)−2

=
π2

cos2(πκ/2)
.

Collecting all the terms we have the final result

Ẽ(µk|t, x) = e(µk|t, x) +
2 cos2(πκ/2)

πL

∂e(µk|t, x)

∂µk
π tan

(πκ
2

)
+

2 cos2(πκ/2)

πL

∂

∂µk

(
P.V.

∫ ∞
−∞

dλ
e(λ|t, x)

λ− µk

)
.
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Appendix G: Short distance
asymptotics

In this appendix we will obtain the short distance asymptotics of the poten-
tials B+− and B++ and as a byproduct we will compute the short distance
asymptotics of the field correlator. First we need to express the potentials
into a form more amenable for short distance computations. We will start
with B+−. Using the integral equations (6.8) it is easy to see that

γf+(λ)
√
ϑ(λ)e−iλx

= γϑ(λ) + γ2
√
ϑ(λ)e−iλx

∫ +∞

−∞

√
ϑ(λ)

sinx(λ− µ)

2i(λ− µ)

√
ϑ(µ)f+(µ) dµ ,

= γϑ(λ) + γϑ(λ)

∫ +∞

−∞

1− e−2i(λ−µ)x

2i(λ− µ)
γf+(µ)ϑ(µ)e−iµxdµ ,

which shows that B+− can be written in the form

B+−(x, β, γ) =

∫ +∞

−∞
s(λ)dλ (G.1)

where s(λ) solves the following integral equation

s(λ)− γϑ(λ)

∫ +∞

−∞

1− e−2i(λ−µ)x

2i(λ− µ)
s(µ)dµ = γϑ(λ) . (G.2)

In a similar fashion we obtain

B++(x, β, γ) =

∫ +∞

−∞
e2iλxs(λ)dλ , (G.3)

where s(λ) is the solution of the same integral equation (G.2).
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For x small the solution of (G.2) can be expanded as

s(λ) ≡ s(λ, β, γ) =
∞∑
k=0

sk(λ, β, γ)xk ,

where sk are defined by the following recursion relations

s0(λ) = γϑ(λ) ,

sk(λ) = s0(γ)
m−1∑
k=0

(2i)m−k−1

(m− k)!

∫ +∞

−∞
(µ− λ)m−k−1sk(µ)dµ . (G.4)

Defining

βl(β, γ) = γ

∫ +∞

−∞
λlϑ(λ)dλ , β2n+1 = 0 ,

and using (G.4) in (G.1) and (G.3) we obtain the short distance asymptotics
for the potentials

B++(x, β, γ) = β0 + β2
0x+

(
β3

0 − 2β2

)
x2 +

(
β4

0 −
4

3
β0β2

)
x3 +O(x4) ,

B+−(x, β, γ) = β0 + β2
0x+ β3

0x
2 +

(
β4

0 −
4

3
β0β2

)
x3 +O(x4) .

Now we can obtain the short distance asymptotics of the field correlator. Using

g(x, β, γ) = B++(x, β, γ)eσ(x,β,γ)|γ=(1+eiπκ)/π ,

σ(x, β, γ) = −
∫ x

0

B+−(y, β, γ)dy ,

we successively obtain

σ(x, β, γ) = −β0x−
1

2
β2

0x
2 − 1

3
β3

0x
3 +O(x4) ,

and

g(x, β, γ) = β0

(
1− 2

β2

β0

x2 +
2

3
β2x

3

)
+O(x4) .

In the original variables x = (x1 − x2)
√
T/2 > 0, β = h/T this result is
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rewritten as (see (6.4))

〈Ψ†(x1)Ψ(x2)〉T = D

(
1− E

2D
(x1 − x2)2 + γ

πE

6
(x1 − x2)3

)
+O

(
(x1 − x2)4

)
,

(G.5)
where

D =
1

2π

∫ +∞

−∞

dλ

1 + e(λ2−h)/T
, E =

1

2π

∫ +∞

−∞

λ2dλ

1 + e(λ2−h)/T
,

are the density and the kinetic energy density.

126



Appendix H: Low density
expansions

The low density limit is obtained when β → −∞. In terms of our rescaled
variables the density of impenetrable anyons is given by

D =

√
T

2π

∫ +∞

−∞

dλ

1 + eλ2−β

so D → 0 when β → −∞. In what will follow it will be useful to use the
variable

ζ = −eβ, ζ → 0 when β → −∞ .

In order to obtain low density expansions for the potentials

B++ =
∞∑
k=1

bk(x)ζk , B+− =
∞∑
k=1

ck(x)ζk ,

we will use again (G.1), (G.3) and the integral equation (G.2). Representing
the Fermi weight as

ϑ(λ) = −
∞∑
k=1

ζke−kλ
2

,

and s(λ) as

s(λ) =
∞∑
k=1

ζksk(λ, x) ,

we obtain the following recursion relations for sk

s1(λ) = −γe−λ2

,

sk(λ, x) = e−λ
2

sk−1(λ, x)− γe−λ2

∫ +∞

−∞

1− e−2i(λ−µ)x

2i(λ− µ)
sk−1(µ, x)dµ , k ≥ 2 .
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Let’s give the first terms of the expansions of the potentials

B+−(x, ζ, κ) = −γ
√
πζ +

(
−γ
√
π

2
+ γ2π

∫ x

0

e−x
2
1dx1

)
ζ2 +O(ζ3) ,

B++(x, ζ, κ) = −γ
√
πe−x

2

ζ +

(
−γ
√
π

2
e−x

2

+γ2πe−x
2

∫ x

0

e−2x2
1+2x1xdx1

)
ζ2 +O(ζ3) .

Using (H.1) we obtain

σ(x, β, γ) = −γ
√
πxeβ +O(e2β) ,

and √
T

2πγ
g(x, β, γ) =

√
T

2π1/2
e−x

2

eβ +O(e2β) .

In the original variables the result for the correlator is rewritten as

〈Ψ†(x1)Ψ(x2)〉T = De−T (x1−x2)2/4 h� −(x1 − x2)2T 2. (H.1)
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Appendix I: Solvability of the
matrix Riemann-Hilbert
problem

We have shown in Section 7.1.1 that the matrix RH problem (7.1) is equivalent
with the system of nonsingular integral equations

f±(λ)− γ
∫ +∞

−∞
KT (λ, µ)f±(µ)dµ = e±(λ) ,

with kernel (7.9). This means that the RH problem will have a unique solution
whenever the system of integral equations of Fredholm type have a unique
solution. Fix β and κ, and let D be an open connected subset of the complex
plane, L(H) the space of operators acting on a separable Hilbert space H and
consider the function

f(x) : D → L(H) ,

which gives for each x in D an integral operator with kernel KT (λ, µ). Then
for each x in the finite strip

0 < a < <x < b , =x < ε .

f(x) is an analytical operator valued function. The kernel KT (λ, µ) also sat-
isfies the estimate ∫ +∞

−∞

∫ +∞

−∞
KT (λ, µ)dλ dµ < Cb2

where C is a constant, which means that f(x) is compact for each x ∈ D (see
Thm. VI. 23 of [71]). Now we can apply the analytic Fredholm theorem.

Theorem 4 (Thm VI. 14 of [71]). Let D be an open connected subset of C.
Let f : D → L(H) be an analytic operator-valued function such that for each
z ∈ D, f(z) is compact. Then, either
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a) (I − f(z))−1 exists for no z ∈ D

or

b) (I − f(z))−1 exists for all z ∈ D\S where S is a discrete subset of D
(i.e. a set which has no limit points in D). In this case (I − f(z))−1 is
meromorphic in D, analytic in D\S, the residues at the poles are finite
rank operators, and if z ∈ S then f(z)ψ = ψ has a nonzero solution in
H.

As a consequence of the theorem we have to prove that for at least one
point in the strip D the integral equations have a unique solution. But this is
definitely true for small x where the Liouville-Neumann series is convergent.
Thus we have shown that the matrix RH problem has a unique solution except
for a countable set of values of xn which we will denote by X = {xn}.
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Appendix J: Scalar
Riemann-Hilbert problem

In the following we will consider the scalar Riemann-Hilbert problem for the
semi-plane which is defined as follows. Consider two functions g(λ) and r(λ)
defined on the real axis which satisfy the Hölder condition (|g(λ1)− g(λ2)| <
C|λ1 − λ2|k, 0 < k ≤ 1 , similarly for r(λ)) and g(λ) does not vanish. We
need to find functions α(λ), α̃(λ) which are analytic in the upper and lower
half-plane with the boundary values on the real axis satisfying the conditions

α−(λ) = α+(λ)g(λ) , λ ∈ R homogeneous problem (J.1)

or

α̃−(λ) = α̃+(λ)g(λ) + r(λ) , λ ∈ R inhomogeneous problem. (J.2)

For our purposes we will also consider the normalization condition α(∞) =
α̃(∞) = 1. The considerations below also hold in the more general case
of a simply-connected closed contour in the complex plane. For a complete
treatment of this problems the interested reader should consult the excellent
textbook [32].

J.0.4 The homogeneous case

We distinguish three cases depending on the index χ(g) = (1/2π)Var[−∞,+∞]arg g(λ)
of the function g(λ). When χ = 0 the RH problem with the normalization
condition is uniquely solvable, if the index χ > 0 the problem has χ+1 linearly
independent solutions and if χ < 0 the problem has no solution. In the χ = 0
case which is the most important for us the solution of the RH problem (J.1)
is given by

α(λ) = exp

{
− 1

2πi

∫ +∞

−∞

ln g(µ)

µ− λ
dµ

}
, λ ∈ C/R . (J.3)
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As in the matrix case it can be shown that the scalar RH problem (J.1) is
equivalent with the singular integral equation

α+(λ) = 1 +
1

2πi

∫ +∞

−∞

α+(µ)(1− g(µ))

µ− λ− i0
dµ , λ ∈ R .

J.0.5 The inhomogeneous case

Again in the most interesting case for us χ = 0 the solution of the RH problem
(J.2) with the normalization condition is unique. The solution can be obtained
from the solution of the homogeneous problem with the same g(λ). If α(λ)
solves (J.1) then (J.2) can be written as

α̃+(λ)

α+(λ)
− α̃−(λ)

α−(λ)
= − r(λ)

α−(λ)
,

where we have used g(λ) = α−(λ)/α+(λ) , λ ∈ R. The functions α̃+(λ)/α+(λ)
and α̃−(λ)/α−(λ) are the boundary values of the function α̃(λ)/α(λ) which is
analytic in the complex plane minus the real axis and is 1 at infinity (because
of the normalization α̃(∞) = α(∞) = 1). Using the properties of the Cauchy
integral we obtain

α̃(λ)

α(λ)
= 1− 1

2πi

∫ +∞

−∞

r(µ)

α−(µ)(λ− µ)
dµ , λ ∈ C/R ,

which shows that the solution of the inhomogeneous scalar RH problem (J.2)
is given by

α̃(λ) = α(λ)

(
1− 1

2πi

∫ +∞

−∞

r(µ)

α−(µ)(µ− λ)
dµ

)
, λ ∈ C/R . (J.4)

where α(λ) is the solution of the homogeneous problem (J.1). The inhomoge-
neous RH problem is equivalent with the singular integral equation

α̃+(λ) = 1 +
1

2πi

∫ +∞

−∞

α̃+(µ)(1− g(µ))

µ− λ− i0
dµ− 1

2πi

∫ +∞

−∞

r(µ)

µ− λ− i0
dµ , λ ∈ R .

(J.5)
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