

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Design and Development of a NURBS and Dual
Quaternion based extensible Motion Design Library

and Software

A Thesis Presented
by

Prasad Dixit

to

The Graduate School
in partial fulfillment of the

Requirements
for the degree of

Master of Science
in

Mechanical Engineering

Stony Brook University
May 2009

Stony Brook University
The Graduate School

Prasad Dixit
We, the thesis committee for the above candidate for the

Master of Science degree,
hereby recommend acceptance of this thesis.

Dr. Anurag Purwar, Advisor,
Research Assistant Professor, Mechanical Engineering Department

Dr. Q. Jeffrey Ge,Co-Advisor
Professor, Mechanical Engineering Department

Dr. Yu Zhou, Chairman of Thesis Committee,
Assistant Professor, Mechanical Engineering Department

This thesis is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Thesis
Design and Development of a NURBS and Dual

Quaternion based extensible Motion Design Library
and Software

by
Prasad Dixit

Master of Science
in

Mechanical Engineering
Stony Brook University

2009

Motion design via approximation and interpolation is of crucial importance

in robotics, CNC tool path planning, computer graphics, computer aided geo-

metric design, as well as in task specification in mechanism synthesis. Rational

Motions, which produce rational as opposed to the transcendental trajectories

are an attractive proposition since they integrate well with the existing NURBS

based industry standard and are readily amenable to the applications of exist-

ing CAGD algorithms. By combining kinematics of rigid body motions with

Non-Uniform Rational B-Spline (NURBS) geometry of curves and surfaces,

methods are developed for computer aided design of rational motions.

This thesis deals with the development of an extensible object oriented

software library and an application with a user friendly Graphical User Inter-

face (GUI) for Non-Uniform Rational B-Splines (NURBS) and dual quaternion

based computer aided design of rational motions. The motivation behind de-

iii

veloping motion design library (abbreviated as MDL) is to provide a common

platform with a comprehensive set of tools for implementing myriads of motion

design algorithms to researchers, students, professors and other professionals

working in the related areas. Such a platform would allow them to focus on the

implementation of their own algorithms without worrying and spending time

on developing display, printing, and visualization routines. A comprehensive

set of functions which are dedicated to carry out various operations on dual

quaternions, simple quaternions, dual numbers, homogeneous and regular ma-

trices are developed which will assist developers to focus more on their own

motion design algorithms, rather than on development of such routines.

An application called MoDes is also developed based on this library that

can be used to plot motion, navigate in 3D space to examine the plotted mo-

tion, interactively modify and fine tune the motion by setting various param-

eters, and to generate good quality images of plotted motion for publication

into research articles and reports.

There are few free and commercial softwares available which deal with

motion design and mechanism synthesis problems in general. This work hopes

to compliment the existing software systems by providing a library and and an

application for design, manipulation and visualization of rigid body motions.

iv

Table of Contents

List of Figures vii

List of Tables xi

Acknowledgements xii

1 Introduction 1

2 Geometric and Kinematic Fundamentals 11
2.1 Representation of Spatial Displacements 11

2.1.1 Unit Quaternions as Rotation and Scalers as Weights . 13
2.1.2 Dual Quaternion representation of Spatial Displacements

and Dual Numbers as Dual Weights. 15
2.1.3 Kinematic mapping . 18
2.1.4 Point trajectory and affine control structure of a one

parameter rational Bézier motion 19

3 Implemented Motion Design Algorithms 22
3.1 Discussion on implemented algorithms 23

3.1.1 Basic Motion Types 23
3.1.1.1 Rational Screw Motion 23
3.1.1.2 Rational Bézier Motion 27
3.1.1.3 Rational B-Spline Motion 35

3.1.2 Motion Fitting . 38
3.1.2.1 Global Motion Interpolation to Position Data 40
3.1.2.2 Least Square Approximation 44

3.1.3 Subdivision Motion . 46
3.1.3.1 B-Spline Tweak 46
3.1.3.2 4-Point Tweak 48
3.1.3.3 Jarek’s Tweak 49

v

4 Using MoDes Software 52
4.1 Getting started with MoDes 52
4.2 Understanding the functions of mouse buttons 54
4.3 Toolbars . 57

4.3.1 Control Positions Toolbar 57
4.3.2 View Toolbar . 66
4.3.3 Settings Toolbar . 68
4.3.4 File Toolbar . 77

4.4 Plotting Motion . 78

5 Extending Motion Design Library 80
5.1 Adding new Motion Design Algorithms independent of GUI de-

veloped using Qt . 81
5.2 Adding new Motion Design Algorithms with support of GUI

developed using Qt . 93

6 Conclusion and Future Work 103

Bibliography 107

Appendix A Installing and Compiling Motion Design Library 117
A.1 System Requirements . 117
A.2 Installing Motion Design Library as a stand-alone application 118
A.3 Compiling Motion Design Library as a VC++ project 119

Appendix B Downloading MDL and Documentation 125

vi

List of Figures

1.1 A screenshot of the MoDes application. 2

2.1 Spatial displacement of an object in three space E3. 12

3.1 Piece-wise rational screw motion interpolating through five con-

trol positions Ci, (i = 0, ..., 4). All dual weights are set to unity.

The dotted straight lines connects the successive control positions. 24

3.2 (a)Screw motion between two control positions with real weights

set to unity ŵi = 1 + ε0; i = 0, 1. (b) Screw motion between

same control positions but with with non-unit real weights ŵ0 =
1 + ε0, ŵ1 = 3 + ε0. 25

3.3 (a) Screw motion between two control positions with dual weights

set to unity ŵi = 1+ε0; i = 0, 1. (b) Screw motion between same

control positions but with with non-zero dual part of weights
ŵ0 = 1 + ε0, ŵ1 = 1 + ε3. 26

3.4 Rational Bézier motion of degree 6 corresponding to a given set

of four control positions Ci, (i = 0, ..., 3). All dual weights are
set to unity. 28

3.5 Rational Bézier motion corresponding to a given set of five

control positions (Ci; i = 0...4 with its affine control structure

([Hi]; i = 0...8. 28

3.6 (a) A rational Bézier motion of degree six with unit real weights,

ŵi = 1 + ε0; i = 0, ..., 3. (b) A rational Bézier motion with non

unit real weights ŵi = 1 + ε0; i = 0, 3 and ŵi = 3 + ε0; i = 1, 2. 32

3.7 (a) A rational Bézier motion of degree six with weights, ŵi =

1+ε1; i = 0, ..., 3. (b) A reparameterized rational Bézier motion

with weights ŵi = λi + ελi; λ = 2 and i = 0, ..., 3. 33

vii

3.8 (a) A rational Bézier motion of degree six with weights, ŵi =

1 + ε0; i = 0, ..., 3. (b) Effect of dual weights: A rational Bézier

motion with weights ŵi = 1 + ε0; i = 0, 3 and ŵi = 1 + ε4; i = 1, 2 36
3.9 Rational B-spline motion corresponding to a given set of five

control positions marked as Ci, (i = 0, ..., 5). 37

3.10 (a) Rational B-spline motion corresponding to a given set of

five control positions of degree 4, ŵi = 1 + ε0; i = 0, ..., 3. (b)

Effect of weights: A rational B-spline motion with weights ŵi =
1 + ε0; i = 0, 1, 4 and ŵ2 = 1 + ε5, ŵ3 = 1 + ε5. 39

3.11 Global motion interpolation interpolating through given set of

five input positionsCi, (i = 0, ..., 4). The degree of the motion is

4. The computed control positions are marked as Pi, (i = 0, ..., 4). 43

3.12 Motion approximating a set of five input positions Ci, (i =

0, ..., 4) based on least square motion approximation. The de-

gree of the motion is 4. The computed control positions are

marked as Pi, (i = 0, ..., 4). 45

3.13 The closed loop control structure with control positions Ci,

i = 0, ..., 3 is subdivided in two steps. First (b), the split step

inserts new control positions Dj, j = 0, ..., 3. Then (c), the B-

spline tweak step adjusts the original vertices Ci by positioning
them half way, towards the average of their new neighbors. The

adjusted vertices are labeled C ′
i. 47

3.14 The closed loop control structure with control positions Ci, i =

0, ..., 3 is subdivided in two steps. First (b), the split step inserts

new control positions Dj, j = 0, ..., 3. Then (c), the 4-point

tweak step adjusts the new positions Dj by positioning them

by one quarter away from the average of their second degree

neighbors. The adjusted vertices are labeled D′
j. 49

3.15 The closed loop control structure with control positions Ci, i =

0, ..., 3 is subdivided in two steps. First (b), the split step inserts

new control positions Dj, j = 0, ..., 3. Then (c), the Jarek’s

tweak step adjusts the old positions Ci by half the displacement
suggested by the B-spline tweak and the new positions Dj by

half the displacement suggested by the 4-point tweak. 50
3.16 Final subdivision motions after 3 iterations for a L-shaped con-

trol structure. 51

viii

4.1 The screen that appears after launching MoDes. 53
4.2 Different sections of Modes screen. 54
4.3 Functions of Mouse Buttons 55
4.4 Configuring orientation of a Control Position in 3D Space: Picked

rotation handle turns green. Pressing and holding ALT key and
left mouse button after clicking the desired rotation handle will
rotate the object about specific axes. In this case Control Posi-
tion will rotate about Z-Axis. 56

4.5 Control Positions Toolbar. 57
4.6 Snapshot of a file containing Control Positions in format MF1 59
4.7 Snapshot of a file containing Control Positions in format MF2 60
4.8 Snapshot of a file containing Control Positions in format MF3 61

4.9 Add/Modify Control Position Dialogue 62

4.10 Figure showing selected control position which is highlighted by
a green bounding box . 64

4.11 Delete Picked Control Position dialogue. 64
4.12 Modify Weight dialogue. 66
4.13 View Toolbar. 66
4.14 Display modes . 67
4.15 Setting Toolbar. 68
4.16 Select Color Dialogue. 68
4.17 Set Object for Plotting Motion Dialogue. 69
4.18 Set Object Scale Dialogue. 70
4.19 Different objects available for plotting motion 71

4.20 World Coordinate System (WCS) 72

4.21 Scene Dialogue . 73
4.22 Rational B-Spline Motion with display of Scene toggled on with

wooden Texture. 74
4.23 Different textures available for plotting Scene 75
4.24 Toggling display of Text in Graphics Panel 76
4.25 File Toolbar. 77
4.26 Plot Motion Dialogue . 78
4.27 Dialogue box for setting parameters of Rational B-Spline Motion 79

5.1 Adding proper filters while creating a new VC++ project to
extend MDL can help in managing project effectively 83

5.2 Defining a new class in motion.h. 84
5.3 Adding NEW MOTION flag to MMotion class definition 86
5.4 Defining member functions of new class in motion.cpp. 87

ix

5.5 MJaerksTweak class definition in motion.h. 88
5.6 MJaerksTweak class’s member function definitions in motion.cpp(Part

1). 89

5.7 MJaerksTweak class’s member function definitions in motion.cpp(part

2). 90

5.8 Procedure for plotting motion without using existing GUI de-
veloped using Qt . 92

5.9 Adding new dialogues corresponding to new motion being added 94
5.10 New Motion added to Plot Motion group box 95
5.11 Modifications made to inputpanel.h to add user interface for

plotting new motion . 96
5.12 Modifications made to inputpanel.cpp to add user interface

for plotting new motion . 97
5.13 Modifications made to mainwindow.h to add user interface for

plotting new motion . 98
5.14 Modifications made to mainwindow.h to add user interface for

plotting new motion . 98
5.15 Definition of jareksTweakSlot 99
5.16 Code snippet dealing with Jarek’s Tweak Motion with in setMotionToPlot

function . 101
5.17 Code snippet showing code that needs to be added in paintGL

function for plotting newly added algorithm 102

A.1 Adding Qt’s executable files to Visual Studio’s Environment. . 120
A.2 Adding Qt’s header files to Visual Studio’s Environment. . . . 121
A.3 Adding Qt’s library files to Visual Studio’s Environment. . . . 122
A.4 Setting project properties. 124

x

List of Tables

3.1 Dual quaternion representation of given set of control positions
for rational screw motion depicted in Fig. 3.2. 25

3.2 Dual quaternion representation of given set of control positions
for rational screw motion depicted in Fig. 3.4. 29

3.3 Dual quaternion representation of a given set of control posi-
tions for rational B-Spline motion of degree 8 depicted in Fig.
3.9. 37

3.4 Dual quaternion representation of given set of input positions
for global motion interpolation of degree 8 depicted in Fig. 3.11. 43

3.5 Dual quaternion representation of given set of input positions
for least square motion approximation of degree 4 depicted in
Fig. 3.12. 45

3.6 Dual quaternion representation of given set of four input posi-
tions for various Subdivision motions 47

3.7 Dual quaternion representation of L-shaped polygon used for
plotting various Subdivision motions 51

xi

ACKNOWLEDGEMENTS

I would like to express my sincere respect and gratitude to my research

advisor, Professor Anurag Purwar, for his guidance and support through out

my academic study and research. During the research work for this thesis ,

Dr. Purwar shared his knowledge in many areas, provided inspiration and was

ready to help whenever I needed his advice. I am fortunate to have such a kind,

knowledgeable and passionate advisor in my academic life. This thesis would

have never reached fruition had it not been for the excellent ideas, intuition,

and the thoughts that Professor Anurag Purwar shared with me during the

course of this research. I am much grateful to him for this.

I would like to thank Prof. Yu Zhou for agreeing to chair my thesis com-

mittee, and Prof. Jeff Ge for helping me as my co-advisor and for being on

my committee despite their busy schedule. I also appreciate the valuable com-

ments of my committee members during the completion of this thesis. In

general, I am thankful to all of my teachers from Mechanical Engineering, and

Computer Science department at Stony Brook university.

I am very thankful Maryann, our ex-graduate program secretary and Diane,

the graduate program secretary, who made sure that I was getting paid on

time and always welcomed my visits to her office with a smile. Thanks are

also due to Melissa, the Asst. to Chair, Augusta, the department secretary,

and Erin Keffeler, the adviser to international faculty and scholars who took

care of administrative hurdles that I faced during my instructional days and

was always willing to help me.

I would also like to thank my parents and my brother for always having

faith in me and supporting me when I need it. I must also say that the

company of my close friends I got during my stay at Stony Brook University

made it all worth.

Overall, if my life as a graduate student in the last two and half years has

been educating, inspiring, and pleasant, then it is thanks to Anurag Purwar,

my advisor and mentor.

Chapter 1

Introduction

In recent years, there have been considerable efforts in bringing together kine-

matics and Computer Aided Geometric Design (CAGD) to develop methods

for motion design in CAD environment. This thesis deals with the develop-

ment of an extensible object oriented software library and an application with

a user friendly Graphical User Interface (GUI) for Non-Uniform Rational B-

Splines (NURBS) and dual quaternion based computer aided design of rational

motions. In this introductory chapter, motivation behind developing motion

design library is presented followed by a discussion on main contributions of

this thesis and background material. Implemented motion design algorithms,

object oriented framework adopted for this library, and existing softwares in

the area of motion design and mechanism synthesis are also discussed in brief.

The motivation behind developing Motion Design Library (abbreviated as

MDL) is to provide a common platform with a comprehensive set of tools for

implementing myriads of motion design algorithms to researchers, students,

professors and other professionals working in the related areas. Such a plat-

1

Figure 1.1: A screenshot of the MoDes application.

form would allow them to focus on the implementation of their own algorithms

without worrying and spending time on developing display, printing, and visu-

alization routines. The developer just needs to explore this neatly documented

library and choose the appropriate functions to carry out desired operation.

An application called MoDes is also developed based on this library that can

be used to plot motion, navigate in 3D space to examine the plotted motion,

interactively modify and fine tune the motion by setting various parameters,

and to generate good quality images of plotted motion for publication into

research articles and reports. Figure 1.1 shows a screenshot of the MoDes.

Kinematics (Reuleaux [1], Bottema and Roth [2], McCarthy [3], Hunt [4],

2

Angeles [5]) deals with the theory of movement of rigid bodies irrespective

of the cause of the motion, while the field of Computer Aided Geometric

Design (CAGD) (Farin [6, 7], Farin et al. [8], Hoschek and Lasser [9], Piegl

and Tiller [10], Gallier [11]) concerns itself with the geometry of curves and

surfaces for CAD. The NURBS (Non-Uniform Rational B-Spline) geometry

of curves and surfaces in CAGD has emerged as the de facto industry stan-

dard because it can handle both standard analytical shapes (conics, quadrics,

surfaces of revolution, etc.), and free-form shapes and offers computationally

fast and stable algorithms for shape design and modification (see Farin [12],

Piegl [13, 14, 15, 16, 17, 18, 19, 20, 21], Piegl and Tiller [22, 23], Tiller [24],

Böhm [25], Boehm [26]). Lately, researchers have sought to combine kine-

matics of rigid body motions with Non-Uniform Rational B-Spline (NURBS)

geometry of curves and surfaces to develop methods for computer aided design

of motions. These CAD methods for motion design find applications in ani-

mation in computer graphics (key frame interpolation), trajectory planning in

robotics (taught-position interpolation), spatial navigation in virtual reality,

computer aided geometric design of motion via interactive interpolation, CNC

tool path planning, and task specification in mechanism synthesis.

The influential work of Shoemake [27], introduced quaternions to computer

graphics and showed how quaternions can be combined with the De Casteljau

algorithm for animating rotations. Since then, there have been considerable

efforts to combine motion representation theory with curve design techniques

in Computer Aided Geometric Design (CAGD) for Cartesian motion synthe-

3

sis. On the motion representation side, a common approach is to decompose a

spatial displacement into a translation of a point O and a rotation about O. In

this way, rotation and translation components can be interpolated separately.

Since the interpolation of translations is straightforward, the focus has been

on the interpolation of rotations for which many quaternion-based schemes

have been developed (Shoemake [27], Pletinckx [28], Kim and Nam [29]). An-

other approach is to consider a spatial displacement as one complete entity

and as equivalent to a screw displacement. This has led to the development of

dual-quaternion as well as Lie-group based methods for constructing spatial

motions (see Ge and Ravani [30, 31, 32], Park and Ravani [33], Zefran and

Kumar [34]). This approach results in spatial motions that are invariant with

respect to change of fixed and moving reference frames. For adapting curve

design techniques in CAGD for motion synthesis, two fundamentally different

approaches have emerged. The first approach, originated by Shoemake [27]

and followed by Pletinckx [28], Barr et al. [35], Wang and Joe [36], Nielson

and Heiland [37], Kim and Nam [29], considers a unit quaternion as defin-

ing a unit hypersphere and studies the problem of rotation interpolation as a

curve design problem on the surface of the hypersphere. This hyperspherical

approach has been extended by Ge and Ravani ([38], [30]) as well as Ge and

Kang [39] for complete motion generation (including both rotations and trans-

lations) by synthesizing curves on a unit dual hypersphere. Dual projective

three space is termed as the Image Space of spatial kinematics by Ravani and

Roth [40]. In the second approach, a spatial displacement is represented by an

4

image point in image space; a one-parameter motion is represented by an one-

parameter curve (image curve) in image space. If the image curve is defined by

a global or a piecewise polynomial designed using Bézier or B-spline interpo-

lating functions, the corresponding motion in three-space is a rational Bézier

or B-spline motion. This is the approach pioneered by Ge and Ravani [30] and

then followed by Jüttler [41, 42], Jüttler and Wagner [43], and Wagner [44, 45],

Purwar and Ge [46]. The rational motions generated using this approach by

applying standard CAGD techniques are easy to compute and efficient, pos-

sess a control structure similar to the control polygons of Bézier or B-spline

curves or surfaces, have subdivision property, and are coordinate frame invari-

ant. Moreover, the approach followed by Ge and Ravani [30] and Purwar and

Ge [46] gives an intrinsic control structure that allows for interactive motion

design (Jüttler and Wagner [47]).

This work has focussed on developing a framework for an extensible soft-

ware library as well as an application which can serve as a common platform for

various NURBS and dual quaternion based motion design algorithms. How-

ever, the library is not strictly restricted to NURBS class of motion and other

types of motion such as those based on simple subdivision principle are also

integrated into the library.

In my work, I have implemented eight motion design algorithms, under var-

ious classes of motions. Rational Screw Motion, Bézier motion, B-spline mo-

tion come under the fundamental motions. My implementation of above men-

tioned algorithms also explored the effects of dual weights and reparametriza-

5

tion for path invariance. Motion fitting is a critical problem in the field of

motion design. Designers often seek a motion interpolating through given key

frames or approximating the given set control positions. Global Interpola-

tion to Position Data and Least Square Motion Approximation are the two

algorithms which touches the problem of motion fitting. With a view that

this library can be used as educational tool by the professors and researchers

working in the field of CAGD, I thought it will be good to add few motion

design schemes which are simple to implement and understand. The motive

behind this was to generate interest amongst the students about this subject

in general. So with that point in mind, three simple subdivision based motion

design schemes namely, B-spline tweak, 4-point tweak and Jarek’s Tweak from

a paper by Rossignac (Rossignac [48]) are added.

In development of this library, object oriented methodology has been adopted.

The object oriented programming , often referred to as OOP helps to formulate

the problem in a better way giving high reliability, adaptability and extensibil-

ity to the applications. A major advantage of OOP is code reusability. OOP

provides a clear modular structure for programs which makes it good for defin-

ing abstract data-types where implementation details are hidden and the unit

has a clearly defined interface. It makes it easy to maintain and modify exist-

ing code as new objects can be created with small differences to existing ones.

It also provides a good framework for code libraries where supplied software

components can be easily adapted and modified by the programmer. In an

effort to develop this library, I have written an object oriented program which

6

extends more than 12,000 lines. The library is developed using following tools:

1. Microsoft Visual C++ : A comprehensive Integrated Development Envi-

ronment (IDE) for development, debugging and deployment of software

applications

2. Qt from Trolltech: A framework for developing applications and user

interfaces (UI).

3. OpenGL: A premier environment for developing portable, interactive

2D and 3D graphics applications. OpenGL is the most widely used and

supported 2D and 3D graphics application programming interface (API).

4. GLUT : An OpenGL Utility Toolkit, a window system independent

toolkit for writing OpenGL programs.

This library can be broadly divided into three parts. QLib which stands for

quaternion library, MLib which stands for motion library and GUI which is

abbreviation for Graphical User Interface. QLib and MLib are strongly inter-

connected with each other. However, lot of efforts has been put to keep GUI

separate from QLib and MLib. The reason behind such step was to give the

developer freedom to develop a graphical user interface from free and common

GUI toolkits such as GLUI, GLUT, FLTK etc., instead of Qt, if necessary.

There already exists a few free and commercial softwares which deal with

motion design and mechanism synthesis problems in general. Computer-aided

linkage design software computes the form of a device from a function spec-

ified by the designer. Function-to form linkage design tools have recently

7

been commercialized by SyMech Inc., (SyMech [49]) and Heron Technologies,

(WATT [50]). These systems compute the dimensions for several planar link-

age topologies, which are combinations of 4R closed chains and 2R open chains,

given functional specifications provided by the user. The first of this type of

software system was KynSyn (Kaufman [51]) which focussed solely on the 4R

planar topology which was dimensioned to guide a body through a specified

set of positions R denotes a revolute or hinged joint. RECSYN (Waldron and

Song [52]) and LINCAGES (Erdman and Gustafson [53]) added features that

simplified the design process but again focussed on planar 4R and later planar

6R linkages. The linkage design software Sphinx (Larocelle et al. [54]) and

later SphinxPC (Ruth and McCarthy [55]), extended Kaufmans strategy to

4R linkages that move on a sphere providing the first design tool for the design

of linkages for spherical movement. Furlong et al. [56] used virtual reality to

assist the designer’s specification of desired function of a spherical 4R linkage

as well as to evaluate the resulting computed device. The first design software

for a true spatial linkage was Larochelle’s SPADES software (SPADES [57])

which computed a spatial 4C closed chain to guide a body through four spatial

positions-C denotes a cylindric joint which allows rotation about and sliding

along a given axis. Synthetica (Synthetica [58])is a Java-based software devel-

oped by Prof. McCarthy’s group at University of California, Irvine. It is used

for the synthesis, visualization, analysis and simulation of spatial linkages.

This work hopes to compliment the existing software systems by providing

a motion design library and and an application for design, manipulation and

8

visualization of rigid body motions.A comprehensive set of functions which are

dedicated to carry out various operations on dual quaternions, simple quater-

nions, dual numbers, homogeneous and regular matrices are developed which

will assist developers to focus more on their own motion design algorithms,

rather than on development of such routines.

The rest of the thesis is organized as follows. Chapter 2 deals with geomet-

ric and kinematic fundamentals that are necessary for the development of this

thesis. It also reviews and studies representations of spatial displacements in

three dimensional space with an emphasis on dual quaternion representation.

Chapter 3 discusses the motion design schemes implemented so far in this mo-

tion design library, MDL. In this chapter, basically algorithms for three major

categories of motion design problems are discussed. First, the fundamental mo-

tion types which includes rational screw motion, rational Bézier motion, and

rational B-spline motion are discussed. Second, motion fitting, under which

global interpolation to position data and least square motion approximation

are elaborated. Lastly, a subdivision based motion design scheme, which in-

cludes B-spline tweak, 4-point tweak and Jarek’s tweak based on a paper by

Rossignac [48] is discussed. Chapter 4 is a guide to using MoDes. It describes

the set of convenient tools available specific to interactively designing, manip-

ulating, and plotting motion. Chapter 5 serves as guideline to developers who

wish to extend the motion design library. The final chapter summarizes the

work of this research and makes a few salient points regarding the future de-

velopment of this work. The appendix contains notes on installing MDL and

9

setting up Visual Studio’s environment for compiling this library. A detailed

documentation of all the classes, functions and variables in this library can

also be located in appendix of this thesis.

10

Chapter 2

Geometric and Kinematic
Fundamentals

This chapter deals with geometric and kinematic fundamentals that are nec-

essary for the development of this thesis. Several representations of spatial

displacements are discussed with emphasis on dual quaternion based repre-

sentation. The reason behind emphasis on dual quaternion is that algorithms

implemented in this library are based on dual quaternion representation of spa-

tial displacements. Kinematic mapping of NURBS curve in dual quaternion

space to NURBS motion in three-space is explained followed by elaboration of

point trajectory and affine control structure of a one parameter rational Bézier

motion.

2.1 Representation of Spatial Displacements

In studying spatial displacements of an object in Euclidean three-space (E3),

it is convenient to attach a Cartesian coordinate system (or frame) M to the

moving object and another Cartesian coordinate frame F to the fixed space

11

Figure 2.1: Spatial displacement of an object in three space E3.

E3 and study the position and orientation of the frame M with respect to F .

The position of M with respect to F is given by the vector d = (d1, d2, d3)

from the origin of F to the origin of M . The orientation of M relative to F is

given by a 3× 3 rotation matrix [R].

A spatial displacement is most commonly represented as a rigid transfor-

mation from M to F in terms of point coordinates:

[
X
1

]
=

[
[R] d

0 0 0 1

] [
x
1

]
(2.1)

12

where X(X1, X2, X3) and x(x1, x2, x3) are vectors whose scalar components

are the Cartesian coordinates of the point as measured in F and M , respec-

tively (Refer Fig. 2.1). The use of such matrix representation, however is not

convenient when dealing with the problem of synthesizing a rational motion

that interpolates or approximates a set of displacements. One of the main

obstacles is to the issue of preserving the orthogonality of the rotation ma-

trix in the interpolation/approximation process (Fillmore [59], Röschel [60]).

It has been recognized that an effective way of dealing with the problem

is to use quaternions (Shoemake [27]) and dual quaternions (Ge and Ra-

vani [31]). Quaternion (Hamilton [61, 62], Bottema and Roth [2], Waerden [63],

Arunachalam [64], Cheng and Gupta [65], Pervin and Webb [66]) representa-

tion of rotation as a quadruple of Euler parameters 1 is compact (requires only

four numbers), computationally and storage-wise most efficient (Eberly [67]),

unique up to a scale factor, and coordinate frame independent. It also car-

ries a clear geometric meaning, produces singularity free transformations, and

concatenates and interpolates nicely (Dam et al. [68], Vicci [69]).

In the following sections, we will review the concepts of quaternions and

dual quaternions in so far necessary for development of the thesis.

2.1.1 Unit Quaternions as Rotation and Scalers as Weights

A unit quaternion is an elegant tool to represent a rotation. Any rotation [R]

in E3 has a fixed axis as well as an angle of rotation. Let s = (s1, s2, s3) denote

1Euler parameters are not to be confused with the Euler angles described earlier.

13

the unit vector along the axis of rotation and θ be the angle of rotation. They

can be used to define the so-called Euler-Rodrigues parameters of a rotation,

q = (q1, q2, q3, q4) where:

q1 = s1 sin
θ

2
, q2 = s2 sin

θ

2
, q3 = s3 sin

θ

2
, q4 = cos

θ

2
(2.2)

The four Euler parameters satisfy the relation

q2
1 + q2

2 + q2
3 + q2

4 = 1

Therefore, q can be thought of as a point lying on unit 3-sphere (S3) embeded

in a four dimensional place.

The rotation matrix [R] can be recovered from Euler parameters using

(Bottema and Roth [2]):

[R] =
1

S2



q2
4+q2

1−q2
2−q2

3 2(q1q2−q4q3) 2(q1q3+q4q2)
2(q2q1+q4q3) q2

4−q2
1+q2

2−q2
3 2(q2q3−q4q1)

2(q3q1−q4q2) 2(q3q2+q4q1) q2
4−q2

1−q2
2+q2

3


 (2.3)

where S2 = q2
1 + q2

2 + q2
3 + q2

4.

From the above, it is clear that the rotation matrix [R] remains the same

after multiplying each of the Euler-Rodrigues parameters by a scaler w(w 6= 0).

This means that q can be treated as homogeneous coordinates of rotation. In

this thesis, we denote non-unit quaternion of homogeneous coordinates by

Q = wq. It is clear that the homogeneous quaternion Q represents one and

the same rotation irrespective of the choice of non zero weight w.

14

2.1.2 Dual Quaternion representation of Spatial Dis-
placements and Dual Numbers as Dual Weights.

On similar lines to the homogeneous quaternion Q, the translation vector d

can also be homogenized and written in a quaternion form to obtain (D =

(w0d, w0)). Jüttler [41], Jüttler and Wagner [43] used this set of eight ho-

mogeneous parameters (Q,D) for computer aided design of rational motions.

While this formulation allows direct application of existing CAGD techniques

to motion design, the resulting motions are not completely reference-frame in-

variant and depend on the choice of the origins of the reference frames. In this

thesis we follow McCarthy [3] and Ge and Revani [31] and use, a slightly mod-

ified version of Study’s Soma parameters (Bottema and Roth [2], Study [70])

to represent the spatial displacement. Study’s parametersare given by another

set of eight homogeneous parameters (Q,Q0), where Q = (Q1, Q2, Q3, Q4)

represents the quaternion of homogeneous Euler parameters of rotation and

Q0 = (Q0
1, Q

0
2, Q

0
3, Q

0
4) is another quaternion whose components are given by




Q0
1

Q0
2

Q0
3

Q0
4


 =

1

2




0 −d3 d2 d1

d3 0 −d1 d2

−d2 d1 0 d3

−d1 −d2 −d3 0







Q1

Q2

Q3

Q4


 (2.4)

The translation vector d = (d1, d2, d3) can be recovered from (2.4) in terms of

(Q,Q0) by using the following

d =
2

S2




Q0
4Q1 −Q0

1Q4 + Q0
2Q3 −Q0

3Q2

Q0
4Q2 −Q0

2Q4 + Q0
3Q1 −Q0

1Q3

Q0
4Q3 −Q0

3Q4 + Q0
1Q2 −Q0

2Q1


 , (2.5)

where S2 = Q2
1 + Q2

2 + Q2
3 + Q2

4.

15

It is instructive to note that (Q,Q0) serve as homogeneous coordinates of

spatial displacements since multiplying them by a non zero scaler yields the

same rotation matrix and translation vector d.

Study parameters can also be written in dual vector form as (Q̂ = Q +

εQ0), where ε denotes the dual unit (see Bottema and Roth [2] for details on

dual number). In quaternion form, Eqs. (2.4) and (2.5) can be written more

concisely as follows, respectively:

Q =
1

2
dQ. (2.6)

d =
(Q0)Q∗ −Q(Q0)∗

QQ∗ . (2.7)

where d is a vector quaternion, which has no scaler part, and Q∗ = (−Q0
1,−Q0

2,−Q0
3, Q

0
4))

is the conjugate of Q such that (QQ∗ = Q2
1 + Q2

2 + Q2
3 + Q2

4). Note that Eq.

(2.5) or Eq. (2.7) can be used to recover d from Q and (Q0) even when they

do not satisfy the well known Plücker condition:

Q1Q
0
1 + Q2Q

0
2 + Q3Q

0
3 + Q4Q

0
4 = 0. (2.8)

However, when the dual components satisfy the above Plücker condition, Eq.

(2.7) reduces to following well known equation

d =
2(Q0)Q∗

QQ∗ . (2.9)

which follows directly from Eq. (2.6).

An alternative way of defining a dual quaternion is based on the concept of

screw displacements. In this case, a dual vector is used to define the screw axis

16

and a dual angle defines the angle of rotation about the axis and a dual angle

defines the angle of rotation about the axis and the distance of translation

along the axis. Let the screw axis be represented by a unit dual vector ŝ =

(ŝ1, ŝ2, ŝ3), and the dual angle be denoted by θ̂ = θ + εh. Then the four

dual components of a dual quaternion can be given by so-called dual Euler

parameters (Bottema and Roth [2], McCarthy [3]):

q̂1 = ŝ1 sin
θ̂

2
, q̂2 = ŝ2 sin

θ̂

2
, q̂3 = ŝ3 sin

θ̂

2
, q̂4 = cos

θ̂

2
. (2.10)

The four dual Euler parameters satisfy the relation

q̂2
1 + q̂2

2 + q̂2
3 + q̂2

4 = 1. (2.11)

The resulting dual quaternion q̂ = (q̂1, q̂2, q̂3, q̂4), is therefore a unit dual

quaternion. Ravani and Roth [40] showed that an important advantage of dual

quaternion formulation of spatial movements is that it is invariant with resect

to change of both the moving and the fixed reference frames.

The dual orthogonal matrix [R̂] (McCarthy [3])can be parameterized with

dual Euler parameters by

[R̂] =
1

Ŝ2



q̂2
4+q̂2

1−q̂2
2−q̂2

3 2(q̂1q̂2−q̂4q̂3) 2(q̂1q̂3+q̂4q̂2)
2(q̂2q̂1+q̂4q̂3) q̂2

4−q̂2
1+q̂2

2−q̂2
3 2(q̂2q̂3−q̂4q̂1)

2(q̂3q̂1−q̂4q̂2) 2(q̂3q̂2+q̂4q̂1) q̂2
4−q̂2

1−q̂2
2+q̂2

3


 , (2.12)

where Ŝ2 = q̂2
1 + q̂2

2 + q̂2
3 + q̂2

4.

The unit dual 3-sphere is the spherical model of the projective dual 3-

space. Let Q̂ = (Q̂1, Q̂2, Q̂3, Q̂4) denote a general dual quaternion. Let q̂ =

(q̂1, q̂2, q̂3, q̂4) denote a unit dual quaternion and let ŵ = w + εw0 be the non

17

pure dual number. Then we have Q̂ = ŵq̂. In view of (2.12), it is clear

that two dual quaternions Q̂ and q̂ represent one and the same orthogonal

matrix and therefore, they represent same spatial displacement. Ravani and

Roth [40] considered Q̂ = (Q̂1, Q̂2, Q̂3, Q̂4) as a set of four homogeneous dual

coordinates that define a point in a projective dual 3-space P̂ 3, called the image

space of spatial displacements. Thus, we may refer to Q̂ as a homogeneous

dual quaternion.

2.1.3 Kinematic mapping

This thesis uses dual quaternion representation for spatial displacements. In

geometry, “complex objects” such as spherical or spatial displacements in

three-dimensional Euclidean space or lines in three-dimensional projective

spaces are treated as points of a higher dimensional space via a special map-

ping(Klein and Blaschke [71], Stachel [72], Rath [73, 74]). Using this interpre-

tation, lines in a real projective three-space map as elements of unit hyper-

sphere or real projective three space, and following dual quaternion represen-

tation, spatial displacements map as elements of dual projective three space

or unit dual hypersphere. Dual projective three space is termed as the Image

Space of spatial kinematics by Ravani and Roth [40]. In this way, a spatial

displacement is represented by an image point in image space; a one-parameter

motion is represented by an one-parameter curve (image curve) in image space.

If the image curve is defined by a global or a piecewise polynomial designed

using Bézier or B-spline interpolating functions, the corresponding motion in

18

three-space is a rational Bézier or B-spline motion. This is the approach pio-

neered by Ge and Ravani [30] and then followed by Jüttler [41, 42], Jüttler and

Wagner [43], and Wagner [44, 45], Purwar and Ge [46]. The rational motions

generated using this approach by applying standard CAGD techniques are easy

to compute and efficient, possess a control structure similar to the control poly-

gons of Bézier or B-spline curves or surfaces, have subdivision property, and

are coordinate frame invariant. Moreover, the approach followed by Ge and

Ravani [30] and Purwar and Ge [46] gives an intrinsic control structure that

allows for interactive motion design (Jüttler and Wagner [47]).

2.1.4 Point trajectory and affine control structure of a
one parameter rational Bézier motion

Rational Bézier motion is one of the most fundamental type of motion. Here

we discuss the trajectory of a point undergoing rational Bézier motion and

affine control structure of motion. In dual quaternion representation , rigid

transformation of a point is given by the following equation which is obtained

by recasting Eq.(2.3) in terms of dual quaternions and the homogeneous co-

ordinates of a point P : (P1, P2, p3, P4) of the object. Refer to Purwar and

Ge [46] and Ge and Sirchia [75] for more details.

P̃ = QPQ∗ + P4[(Q
0)Q∗ −Q(Q0)

∗
] (2.13)

where, Q∗ and (Q0)∗ are conjugates of Q and Q0, respectively, and P̃ denotes

homogeneous coordinates of the point after displacement.

In the space of dual quaternions, for a given set of dual quaternions Q̂i,

19

the following rational Bézier representation

Q̂(t) =
n∑

i=0

Bn
i (t)Q̂i (2.14)

defines a Bézier curve in the space of dual quaternions. where, Q̂ is a

homogeneous dual quaternion and Bn
i (t) are the Bernstein polynomials.The

Bézier dual quaternion curve corresponds to a rational Bézier motion whose

point trajectories are rational Bézier curves.

A representation for rational Bézier motion in the cartesian space can be

obtained by substituting Eq. (2.14) in Eq. (2.13). The trajectory of a point

undergoing rational Bézier motion obtained by above substitution is given by

P̃2n(t) = [H2n(t)]P (2.15)

[H2n(t)] =
2n∑

k=0

B2n
k (t)[Hk] (2.16)

where [H2n(t)] is the matrix representation of the rational Bézier motion

of degree 2n in cartesian space. The following matrices [Hk], referred as Bézier

control matrices define the affine control structure of motion. Refer Jütler and

Wagner [43].

[Hk] =
1

C2n
k

∑

i+j=k

Cn
i Cn

j wiwj[H
∗
ij] (2.17)

where,

[H∗
ij] = [H+

i][H−
j] + [H−

j][H0+
i]− [H+

i][H0−
j] + (αi − αj)[H

−
j][Q+

i] (2.18)

20

In the above equations, Cn
i and Cn

j are binomial coefficients and αi =

w0
i /wi, αi = w0

j/wj are the weight ratios and

[H−
j] =




qj,4 −qj,3 qj,2 −qj,1

qj,3 qj,4 −qj,1 −qj,2

−qj,2 qj,1 qj,4 −qj,3

qj,1 qj,2 qj,3 qj,4


 (2.19)

[Q+
i] =




0 0 0 qi,1

0 0 0 qi,2

0 0 0 qi,3

0 0 0 qi,4


 (2.20)

[H0+
i] =




0 0 0 q0
i,1

0 0 0 q1
i,2

0 0 0 q2
i,3

0 0 0 q3
i,4


 (2.21)

[H0−
j] =




0 0 0 −q0
j,1

0 0 0 −q1
j,2

0 0 0 −q2
j,3

0 0 0 −q3
j,4


 (2.22)

[H+
i] =




qi,4 −qi,3 qi,2 qi,1

qi,3 qi,4 −qi,1 qi,2

−qi,2 qi,1 qi,4 qi,3

−qi,1 −qi,2 −qi,3 qi,4


 (2.23)

In the above matrices, (qi,1, qi,2, qi,3, qi,4) are the four components of the real

part of (qi) and (q0
i,1, q

0
i,2, q

0
i,3, q

0
i,4) are the four components of the dual part of

(q0
i) of the unit dual quaternion (q̂i).

21

Chapter 3

Implemented Motion Design
Algorithms

This chapter discusses the motion design schemes implemented so far in this

motion design library (abbreviated as MDL). In this chapter basically algo-

rithms for three major categories of motion design problems are discussed.

First, the implementation of fundamental motion types which includes ra-

tional screw motion, rational Bézier motion,and rational B-spline motion is

explained. Second, motion fitting algorithms, under which global interpola-

tion to position data and least square motion approximation are elaborated.

Lastly, a subdivision based motion design schemes which includes B-spline

tweak, 4-point tweak and Jarek’s tweak based on paper on Education driven

CAD by Rossignac (See [48]) is discussed.

22

3.1 Discussion on implemented algorithms

3.1.1 Basic Motion Types

This section discusses the implementation of basic motion types such as ratio-

nal screw motion, rational Bézier motion and rational B-spline motion. Effect

of dual weights on this motion types is also discussed.

3.1.1.1 Rational Screw Motion

A screw motion can be considered as a simplest motion. It is a special combi-

nation of rotation and translation performed along the same axis, called screw

axis. It can be used to represent displacement of an object from one posi-

tion to another in 3-dimensional space which involves both translation and

rotation. It is basically a linear interpolation in dual quaternion space, which

corresponds to a rational screw motion in Euclidean three-space (E3). It is

given by

Q̂(t) = (1− t)ŵ0q̂0 + tŵ1q̂1 (3.1)

It has been shown by Ge and Ravani [30] that the above equation represents

a quadratic rational motion with fixed screw axis and varying angular speed

and pitch. Figure 3.1 shows a piece wise rational screw motion interpolating

through five succesive control positions.

Effect of dual weights on rational motions is studied by Purwar and Ge [46].

The study shows that change of real part of dual weights leaves the trajectory

of the screw motion invariant. However, it affects the parametrization of the

motion. Figure 3.2(a) shows a screw motion with unit real weights and Fig-

23

Figure 3.1: Piece-wise rational screw motion interpolating through five control
positions Ci, (i = 0, ..., 4). All dual weights are set to unity. The dotted
straight lines connects the successive control positions.

24

(a) (b)

Figure 3.2: (a)Screw motion between two control positions with real weights
set to unity ŵi = 1 + ε0; i = 0, 1. (b) Screw motion between same control
positions but with with non-unit real weights ŵ0 = 1 + ε0, ŵ1 = 3 + ε0.

ure 3.2(b) shows screw motion with same control position but with a different

set of real weights. It is evident that the two screw motions have same path

but different speed (or parametrization). Higher value of real weight for sec-

ond control position results in slowing down of the object as it approaches the

second position. Control positions are marked as Ci, (i = 0, ..., n). The coordi-

nates of the given set of control positions using dual quaternion representation

are listed in Table 3.1

Ci q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 0.6827 0.3413 0.4096 0.4996 -0.2649 1.0526 -1.1435 0.5803
C1 0.0000 -0.3442 0.0000 0.9396 0.8758 0.7047 0.2132 0.2561

Table 3.1: Dual quaternion representation of given set of control positions for
rational screw motion depicted in Fig. 3.2.

Now let us consider the effect of dual part of weight on rational screw

motion. It has been shown by Purwar and Ge [46] that change in dual part of

weight results in different translation at a particular value of t, while rotation

components are same. It should be noted that even with non unit dual part

of weight, motion still passes through end positions. It can be explained as

25

",0
...

••• n'O", • ..
c ..

•
• 'O­.. . , .

Figure 3.3: (a) Screw motion between two control positions with dual weights
set to unity ŵi = 1 + ε0; i = 0, 1. (b) Screw motion between same control
positions but with with non-zero dual part of weights ŵ0 = 1+ ε0, ŵ1 = 1+ ε3.

follows. Let ŵ0 = 1 + ε0; ŵ1 = 1 + ε3. Then we have

Q̂(t) = (1− t)q̂0 + t(1 + ε3)q̂1 (3.2)

or,

Q̂(t) = (1− t)q̂0 + tq̂1 + ε3tq̂1 (3.3)

It can be easily seen that at t = 0, Q̂(t) = q̂0, and at t = 1, Q̂(t) = (1 +

ε3)q̂1, which represents same spatial displacement as q̂1, which is a unit dual

quaternion. ‘

From Figure 3.3, we can see that, since real part of the weights does not

change, the orientation of objects at same instant (for same value of t) does

26

•

I ,W· - .,~,

not change. In terms of matrix representation of the trajectory of motion, it

can be shown that the dual part of the weight translates the middle control

matrix from [H1] to [H ′
1] and thus changes the path of screw motion.

3.1.1.2 Rational Bézier Motion

The implementation to plot a rational Bézier motion is largely based on paper

by Purwar and Ge [46] which discuss the effect of dual weights on rational mo-

tions. In the space of dual quaternions, for a given set of unit dual quaternions

and dual weights q̂i, ŵi; (i = 0, ..., n) respectively, a rational Bézier motion is

given by

Q̂(t) =
n∑

i=0

Bn
i (t)Q̂i =

n∑
i=0

Bn
i (t)ŵiq̂i (3.4)

where, Q̂ is a homogeneous dual quaternion given by Q̂ = Q + εQ0, where

Q = wq, Q0 = wq0 +w0q. This is obtained by expanding Q̂ = ŵq̂ using dual

number algebra. Here q̂ = q + εq0 represents a unit dual quaternion. Bn
i (t)

are the Bernstein polynomials. The Bézier dual quaternion curve given by Eq.

(3.4) defines a rational Bézier motion of degree 2n. Figure 3.4 shows a rational

Bézier motion corresponding to a given set four control positions. Weights for

all four control positions is set to unity. The coordinates of the given set of

control positions using dual quaternion representation are listed in Table 3.2

Figure 3.5 shows a rational Bézier motion corresponding to a given set five

control positions with its affine control structure.

The following part discusses the effect of weights and reparameterization

of rational Bézier motion. First we will consider the effect of real part of dual

27

Figure 3.4: Rational Bézier motion of degree 6 corresponding to a given set of
four control positions Ci, (i = 0, ..., 3). All dual weights are set to unity.

Figure 3.5: Rational Bézier motion corresponding to a given set of five control
positions (Ci; i = 0...4 with its affine control structure ([Hi]; i = 0...8.

28

Ci q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 0.6827 0.3413 0.4096 0.4996 -0.2649 1.0526 -1.1435 0.5803
C1 -0.01478 0.0887 -0.2956 0.9393 -0.6693 0.1642 0.7269 0.1079
C2 0.0000 -0.3442 0.0000 0.9396 0.8758 0.7047 0.2132 0.2561
C3 -0.5109 -0.2554 -0.5109 0.6425 -0.4759 1.7301 0.0928 0.3831

Table 3.2: Dual quaternion representation of given set of control positions for
rational screw motion depicted in Fig. 3.4.

weight. It has been shown by Purwar and Ge [46] changing real weights

change the parametrization (speed) as well as path of the motion. However,

there exists a reparameterization of rational Bézier motion that makes path

of Bézier motion invariant. In CAGD, such a reparameterization corresponds

to a rational linear parameter transformations (See Farin [6]; Chapter 13) of

the following type:

t =
t
′

ρ(1− t′) + t′
(3.5)

Patterson [43] has shown that such a projective transformation leaves the

shape of rational curve invariant if each weight wi is replaced by ρn−iwi, where

ρ is a non zero real number. Thus, if the real weights of a dual quaternion

curve are transformed in a similar fashion, then shape of dual quaternion curve

remains invariant. Consider the following weight transformations: ν̂i = λn−iŵi,

where, λ is any non zero real scaler and ν̂i can be either real or dual weights.

On expanding we get,

νi = λn−iwi (3.6)

29

ν0
i = λn−iw0

i (3.7)

where, νi and ν0
i are real and dual part os the new weight ν̂i.

On substituting Eq. (3.6) and Eq. (3.7) in Eq. (3.9), we get control matrix

[H˜
k]

[H˜
k] =

∑

i+j=k

nCn
i Cj

2nCk

λ2n−(i+j)wiwj[H
∗
ij] = λ2n−k[Hk] (3.8)

The trajectory of a point is given by

[P̃2n(t)] =
2n∑

k=0

B2n
k (t)λ2n−k[Hk]P (3.9)

The above equation shows that transforming the weights via Eq. (3.6) and

Eq. (3.7) is equivalent to multiplying the Bézier control positions ([Hk]) of the

motion by a scaler λ2n−k. This means that the path of the trajectory of any

point P under the transformed motion is invariant. It follows that the weight

change as defined by Eq. (3.6) and Eq. (3.7) does not change the path of the

motion. However, the speed of the resulting motion is in general different from

the original motion.

As an example, consider a rational Bézier motion of degree 6 as defined by

a cubic dual quaternion Bézier curve:

Q̃(t) =
3∑

i=0

B3
i (t)ŵiq̂i (3.10)

Figure 3.6(a) shows this motion for a given set of four control positions

marked by Ci. Each control position has unit real weight associated with

30

them. Figure 3.6(a) also shows affine control structure in grey color indicated

by [Hi]. Figure 3.6(b) shows degree six rational Bézier motion for the same

set of control position but with different real weights associated with them. It

is evident that changes in real weights of control positions results in a changed

affine control structure as defined by control matrices [Hi], and hence results

in a change in path of the resulting motion.

Figure 3.7(a) and Figure 3.7 illustrate a rational Bézier motion of degree

six prior to reparameterization and after applying reparameterization respec-

tively as explained before. It demonstrates that when weights are scaled as

per Eq. (3.6) and Eq. (3.7), the path of the motion does not change, although

the parameterization (or speed) along the path does change.

In the next part we will see the effect of dual part of weight on the rational

Bézier motion. In general, an nth degree Bézier curve in the space of dual

quaternion is given by

Q̃(t) =
n∑

i=0

Bn
i (t)ŵiq̂i (3.11)

Let, for a particular k, ŵk = wk + εw0
k, where we impose the condition that

w0
k 6= 0, i.e., we assume that there is only one dual weight ŵk that has a non

zero dual part. The intent is to separate the effect of in just the dual part

and the effect is achieved by restricting ourselves to just one weight. Hence,

w0
i = 0 for all i 6= k .Then we get,

Q̃(t) =
n∑

i=0

B0
i (t)wiq̂i + εBn

k (t)w0
kqk (3.12)

31

(a)

(b)

Figure 3.6: (a) A rational Bézier motion of degree six with unit real weights,
ŵi = 1 + ε0; i = 0, ..., 3. (b) A rational Bézier motion with non unit real
weights ŵi = 1 + ε0; i = 0, 3 and ŵi = 3 + ε0; i = 1, 2.

32

« .". ,. .
•

(a)

(b)

Figure 3.7: (a) A rational Bézier motion of degree six with weights, ŵi =
1 + ε1; i = 0, ..., 3. (b) A reparameterized rational Bézier motion with weights
ŵi = λi + ελi; λ = 2 and i = 0, ..., 3.

33

-,-J

•

" ~ '

.,;,-
• . ~ - (".'>1

Based on above equation, a new translation vector d´ can be found from

Eq. (2.7)as

d´(t) =
(Q0)Q∗ −Q(Q0)∗

QQ∗ + ∆d(t) (3.13)

where,

∆d(t) =
w0

kB
n
k (t)(qkQ

∗ −Qq∗k)
QQ∗ (3.14)

and,

Q(t) =
n∑

i=0

Bn
i (t)wiqi (3.15)

Q0(t) =
n∑

i=0

Bn
i (t)wiq

0
i (3.16)

Eq. (3.13) implies that the introduction of the non zero part of the dual

weight (w0
k) adds a translation component ∆d to the rational Bézier motion,

while the rotation component remains unaltered.

In general, if there are more than one weight, which have non zero dual

parts, ∆d(t) in Eq. (3.14) changes accordingly to:

∆d(t) =

∑m(m≤n)
i=k(k≥0) w0

i B
n
i (t)(qiQ

∗ −Qq∗k)

QQ∗ ; w0
i = 0 if i ∈ [k,m] (3.17)

where, (m-k)+1 are the number of consecutive weights with a non zero

dual part. In particular, since at t = 0, we have Bn
i (t) for i 6= 0, it follows that

∆d(t) =
w0

0[q0(w0q)∗ − (w0q0)q
∗
0]

w0w0q0q0
∗ = 0 (3.18)

The same result hold true at t = 1. This indicates that even though intro-

ducing dual weights gives rise to an extra translation component, it does not

34

violate the end point interpolation property, as commonly and desirably found

in Bézier curves. Since this extra translation component (∆d) is time depen-

dent, its effect is to change the motion via translation that varies in direction

and magnitude along the path of the motion. It is exemplified in Figure 3.8,

where it can be seen that due to non zero dual part of weight the trajectories

of the motion differ but for the same instant (at the same value of t) the orien-

tation of each teapot matches with its counterpart with modified dual weight.

Notice the poring mouth and handle of teapots at t=0.05 and at t=0.95. The

control positions are labeled as Ci.

3.1.1.3 Rational B-Spline Motion

A rational B-Spline curve in dual quaternion space, which represents a NURBS

motion of degree 2p, is given by,

Q̂(t) =
n∑

i=0

Ni,p(t)Q̂i =
n∑

i=0

Ni,p(t)ŵiq̂i (3.19)

where, Ni,p are the pth degree B-spline basis functions.

Fig. 3.9 shows a rational B-Spline for a given set of five control positions.

The coordinates of the given set of control positions using dual quaternion

representation along with the associated dual weights are listed in Table 3.3

35

(a)

(b)

Figure 3.8: (a) A rational Bézier motion of degree six with weights, ŵi =
1 + ε0; i = 0, ..., 3. (b) Effect of dual weights: A rational Bézier motion with
weights ŵi = 1 + ε0; i = 0, 3 and ŵi = 1 + ε4; i = 1, 2

36

t .. ",,"

c &

•• " .

• < •

C
0

C
1

C
2

C
4

C
5

Figure 3.9: Rational B-spline motion corresponding to a given set of five con-
trol positions marked as Ci, (i = 0, ..., 5).

Ci ŵi q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 1 + ε0 0.3314 0.1913 -0.4619 0.8001 0.1691 0.6310 -0.2614 -0.0700
C1 1 + ε0 0.0000 0.3827 0.0000 0.9239 1.4022 1.3858 -0.7721 -0.5740
C2 1 + ε0 -2.4999 -0.0669 0.2499 0.9330 2.6998 1.9865 1.7283 0.3885
C3 1 + ε0 0.1913 0.3314 -0.4619 0.8001 3.1116 0.0704 2.0253 -1.9426
C4 1 + ε0 0.4619 0.4619 -0.1913 0.8446 1.7172 0.0116 1.3462 -1.2505

Table 3.3: Dual quaternion representation of a given set of control positions
for rational B-Spline motion of degree 8 depicted in Fig. 3.9.

Rational B-spline motion has a piecewise rational Bézier form, hence the

effects weights on a rational B-spline motion is similar to that of rational Bézier

motion. Fig 3.10(a) shows five control positions (labeled as Ci) and the trajec-

tory followed by the object undergoing a rational B-spline motion of degree 4.

37

It should be noted that it corresponds to a dual quaternion curve of degree 2.

Fig. 3.10(b) shows the rational B-spline motion for same control positions for

a different choice of weights. Observe the change in parametrization (speed)

near C2 The control positions (Ci) are same as listed in Table 3.3.

3.1.2 Motion Fitting

In motion fitting the focus is on designing of NURBS motion which fit a rather

arbitrary set of geometric data such as control position and derivative vectors.

We can divide motion fitting problem into two basic categories namely, mo-

tion fitting and motion approximation. In motion interpolation we design a

motion which passes through given data precisely, for example the motion

passing through given control positions and assumes that derivatives at the

prescribed control positions. In motion approximation, as the name suggests

we construct motion which do not necessarily satisfy the given data precisely,

but only approximately. In motion approximation problem it is often desir-

able to specify a maximum bound on the derivation of the motion from the

given data, and to specify certain constraints, i.e, data which is to be satisfied

precisely.

For a typical motion fitting problem, input is generally geometric data such

as control positions and derivatives. Output is NURBS motion. Furthermore,

either the degree p must be input to the algorithm or algorithm must select

an appropriate degree. If Cr continuity is desired for a dual quaternion curve,

38

(a)

(b)

Figure 3.10: (a) Rational B-spline motion corresponding to a given set of
five control positions of degree 4, ŵi = 1 + ε0; i = 0, ..., 3. (b) Effect of
weights: A rational B-spline motion with weights ŵi = 1 + ε0; i = 0, 1, 4 and
ŵ2 = 1 + ε5, ŵ3 = 1 + ε5.

39

-c:
c,

then the chosen degree p must satisfy

p ≥ r + 1 (3.20)

(assuming no interior knots of multiplicity > 1). Assuming no other require-

ments, choosing p = r + 1 is usually adequate for interpolation. For approxi-

mation, choosing p > r + 1 may produce better results. See Piegel and Tiller

[10]

There are thousands of NURBS curves which can interpolate or approx-

imate a given data set. However, in this thesis, I have restricted myself to

two motion fitting algorithms namely, Global motion interpolation to position

data and Least square motion approximation. As the name suggests, the first

one falls under the category of motion interpolation, and the second one falls

under the category of motion approximation. They are discussed in detail in

following sections.

3.1.2.1 Global Motion Interpolation to Position Data

Implementation of this algorithm is extension of Global Curve Interpolation

to Point Data algorithm described in Piegl and Tiller [10] to dual quaternion

space. The curve designed in dual quaternion space is then projected back to

E3 to give a global motion interpolation which interpolates through a given set

of input positions. Suppose we are given a set of positions Ck, k = 0, ..., n. We

want to interpolate this motion with a pth degree nonrational B-spline dual

quaternion curve. If we assign a parameter value ūk to each Ck, and select an

appropriate knot vector U = u0, ..., um, we can set up the (n + 1) ∗ (n + 1)

40

system of linear equations

Ck =
n∑

i=0

Ni,p(ūk)Pi (3.21)

The control positions, Pi, are the n+1 unknowns. Let r be the number of coor-

dinates in Ck. In dual quaternion representation r is 8 i.e., (q1, q2, q3, q4, q
0
1q

0
1q

0
2q

0
3q

0
4).

It should be noted that this method is independent of r. Eq. (3.21) has one

coefficient matrix, with r right hand sides and, correspondingly, r solution sets

for the r coordinates of the Pi.

The problem choosing the parameter ūk and knot vector U remains and

their choice affects the design and parametrization of motion. It has been as-

sumed that the parameter ūk lies in the range u ∈ [0, 1]. Three common meth-

ods of choosing uk are equally spaced, chord length and centripetal method.

Knots can be equally spaced or can be defined by using method of aver-

aging. This methods are described in Piegl and Tiller [10]. In the current

implementation parameter uk as well as knot vector is equally spaced. How-

ever, this can produce erratic shapes when data is unevenly spaced. Parameter

uk is computed as per following equation:

ū0 = 0 ; ūn = 1

ūk = k
n

, k = 1, ..., n− 1
(3.22)

The equally spaced knot vector is computed as follows

u0 = ... = up = 0 ; um−p = ... = um = 1

ūj+p = j
n−p+1

, j = 1, ..., n− p
(3.23)

41

Once the parameter uk and the knots are computed, the (n+1) ∗ (n+1) coef-

ficient matrix of the system (Eq. (3.21)) is set up by evaluating the non-zero

basis functions at each uk, k = 0, .., n. The control positions that we get by

solving Eq. (3.21) is then used as input to to B-spline motion design algorithm

to plot Global motion interpolation. Fig. 3.11 shows a global motion interpo-

lation for a given set of five positions. The key frames shown in green color

are the computed control positions(Pi). The coordinates of the given set of

input positions (Ci)(shown in red color) using dual quaternion representation

are listed in Table 3.4.

42

C
0

C
1

C
2

C
3

C
4

P
0

P
1

P
2

P
3 P

4

Figure 3.11: Global motion interpolation interpolating through given set of five
input positionsCi, (i = 0, ..., 4). The degree of the motion is 4. The computed
control positions are marked as Pi, (i = 0, ..., 4).

The control positions (Ci) are listed in Table 3.4.

Ci q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 0.3827 0.0000 0.0000 0.9239 0.4619 0.4619 0.1913 -0.1913
C1 0.0000 0.2588 0.0000 0.9659 1.8672 3.3808 0.7591 -0.9059
C2 0.0000 0.0000 0.3827 0.9239 4.3024 2.5475 -0.2309 0.0957
C3 0.0000 0.0000 0.0000 1.0000 4.5000 2.5000 0.0000 0.0000
C4 -0.3827 0.0000 0.0000 0.9238 6.4672 0.46194 0.1913 2.6788

Table 3.4: Dual quaternion representation of given set of input positions for
global motion interpolation of degree 8 depicted in Fig. 3.11.

43

3.1.2.2 Least Square Approximation

Least square motion approximation is based on extension of least square curve

approximation described in Piegl and Tiller [10] to dual quaternion space. The

curve designed in dual quaternion space is then projected back to E3 to give

a least square motion approximation which approximates through a given set

of input positions. Let us assume that degree p > 1, n ≥ p and input positions

C0, ...,Cm, (m > n) are given. The parameters ūk can be evaluated in a similar

fashion as mentioned in description global motion interpolation to position

data. In the current implementation of least square motion approximation

Eq. (3.22) is used to compute ūk. The equally spaced Knot Vector is computed

using Eq. (3.23). We then set up and solve the (unique) linear least square

problem for unknown control positions Pi. We seek a degree p non rational

curve

C(u) =
n∑

i=0

Ni,p(u)Pi ; u ∈ [0, 1] (3.24)

satisfying that

C0 = C(0) and Cm = C(1)
The remaining Ck are computed in the least square sense, i.e.,∑m−1

k=1 |Ck −C(ūk)|2
(3.25)

is minimum with respect to n+1 variables, Pi. the resulting motion generally

does not precisely pass through Ck, and C(ūk) is not the closest position on

Ck on C(u).

Fig. 3.12 shows a least square motion approximation for a given set of

five positions. The key frames shown in green color are the computed control

44

positions(Pi). The coordinates of the given set of input positions (Ck)(shown

in red color) using dual quaternion representation are listed in Table 3.5

Figure 3.12: Motion approximating a set of five input positions Ci, (i = 0, ..., 4)
based on least square motion approximation. The degree of the motion is 4.
The computed control positions are marked as Pi, (i = 0, ..., 4).

The control positions (Ck) are as listed in Table 3.5.

Ci q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 0.3827 0.0000 0.0000 0.9239 0.4619 0.4619 0.1913 -0.1913
C1 0.0000 0.2588 0.0000 0.9659 1.8672 3.3808 0.7591 -0.9059
C2 0.0000 0.0000 0.3827 0.9239 4.6850 3.4714 -0.2309 0.0957
C3 0.0000 0.0000 0.0000 1.0000 4.5000 2.5000 0.0000 0.0000
C4 -0.3827 0.0000 0.0000 0.9238 6.4672 0.46194 01913 2.6788

Table 3.5: Dual quaternion representation of given set of input positions for
least square motion approximation of degree 4 depicted in Fig. 3.12.

45

3.1.3 Subdivision Motion

Subdivision motion implementations discussed in this thesis are based on pa-

per on Education-Drive Research in CAD by Jarek Rossignac [48]. I have ex-

tended the simple subdivision processes that generate uniform cubic B-splines

and 4-point subdivision curves to dual quaternion space to generate uniform

cubic B-splines and 4-point subdivision dual quaternion curve. Initially we

consider a closed loop control structure in E3. Then this control structure

is refined using split and tweak process. In this process, first, each edge of

control structure in dual quaternion space (which corresponds to a rational

screw motion in E3). Then tweak either the new vertices, or the old ones, or

both. Repeat this process as desired. After each split and tweak refinement,

the number of positions in the control structure has doubled. A good tweak

rule will increase the smoothness of the control structure with each refinement.

Three different types of subdivision motions namely B-spline Tweak, 4-point

tweak and Jarek’s Tweak are elaborated in the following sections.

3.1.3.1 B-Spline Tweak

In B-spline tweak scheme for motion design, old positions are moved half way

towards the average of their new neighbors. New neighbors (Dj) are generated

by splitting each edge of closed control structure in dual quaternion space into

half. They basically corresponds to a position at t = 0.5 of rational screw

motion between successive control positions of control structure in E3 i.e. D0

corresponds to a position at t = 0.5 of rational screw motion between C0

46

C
0

C
1

C
2

C
3

Trajectory of screw motion.

(a) Control Structure

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

(b) Split

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

C’
0

C’
1

C’
2

C’
3

(c) Tweak

Figure 3.13: The closed loop control structure with control positions Ci, i =
0, ..., 3 is subdivided in two steps. First (b), the split step inserts new control
positions Dj, j = 0, ..., 3. Then (c), the B-spline tweak step adjusts the original
vertices Ci by positioning them half way, towards the average of their new
neighbors. The adjusted vertices are labeled C ′

i.

amd C1 and so on. Then the original control positions Ci are tweaked to

new positions labeled as C ′
i such that they are positioned half way towards

the average of their new neighbors, for example C ′
1 = mid(C1,mid(D0, D1)),

where function mid(x, y) gives the position on a screw motion corresponding

to t = 0.5 between positions x and y. Fig.3.13 shows this steps pictorially.

The control positions (Ci) are as listed in Table 3.6.

Ci q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 0.0000 0.0000 0.3827 0.9238 0.6533 0.2706 0.9238 0.3827
C1 0.0000 0.3827 0.0000 0.9239 0.3034 0.6955 2.039 -1.5307
C2 0.3079 0.3236 0.4267 0.8428 3.2645 3.0150 2.2678 -3.4981
C4 0.5319 0.3919 0.2006 0.8223 3.1289 0.3259 0.7067 -2.3518

Table 3.6: Dual quaternion representation of given set of four input positions
for various Subdivision motions

47

...
.. ~

Repeated refinements that use a B-spline tweak procedure produces a mo-

tion that converges to a uniform cubic B-spline curve in quaternion space,

which has apiece-wise polynomial formulation.

3.1.3.2 4-Point Tweak

In 4-point tweak scheme for motion design, new positions are moved by one

quarter away from the average of their second degree neighbors. New positions

(Dj) are generated by splitting each edge of closed control structure in dual

quaternion space into half. They basically corresponds to a position at t =

0.5 of rational screw motion between successive control positions of control

structure in E3 i.e. D0 corresponds to a position at t = 0.5 of rational screw

motion between C0 and C1 and so on. Then these newly generated positions

Di are tweaked to new positions labeled as D′
i such that they are moved one

quarter away from the average of their second degree neighbors. For example

D′
1 = (D1 −mid(D0, D2))/4, where function mid(x, y) gives the position on a

screw motion corresponding to t = 0.5 between positions x and y. The resulting

motion interpolates the initial positions and bulges out Fig.3.14 shows this

steps pictorially.

48

C
0

C
1

C
2

C
3

Trajectory of screw motion.

(a) Control Structure

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

(b) Split

C
0

C
1

C
2

C
3

D’
0

D’
1

D’
2

D’
3

(c) Tweak

Figure 3.14: The closed loop control structure with control positions Ci, i =
0, ..., 3 is subdivided in two steps. First (b), the split step inserts new control
positions Dj, j = 0, ..., 3. Then (c), the 4-point tweak step adjusts the new
positions Dj by positioning them by one quarter away from the average of
their second degree neighbors. The adjusted vertices are labeled D′

j.

The control positions (Ci) are as listed in Table 3.6.

3.1.3.3 Jarek’s Tweak

Jarek’s tweak scheme of motion design generates a motion which lies in-

between the B-spline and the 4-point tweak motions and is a closer approxima-

tion to the original control structure than either of these two. In this scheme

old positions are moved by half of the B-spline tweak and the new positions by

half of the 4-point tweak displacements. Fig.3.15 shows this steps pictorially.

49

C
0

C
1

C
2

C
3

Trajectory of screw motion.

(a) Control Structure

C
0

C
1

C
2

C
3

D
0

D
1

D
2

D
3

(b) Split

C
0

C
1

C
2

C
3

D’
0

D’
1

D’
2

D’
3

C’
0

C’
1

C’
2

C’
3

(c) Tweak

Figure 3.15: The closed loop control structure with control positions Ci, i =
0, ..., 3 is subdivided in two steps. First (b), the split step inserts new control
positions Dj, j = 0, ..., 3. Then (c), the Jarek’s tweak step adjusts the old
positions Ci by half the displacement suggested by the B-spline tweak and the
new positions Dj by half the displacement suggested by the 4-point tweak.

The control positions (Ci) are as listed in Table 3.6.

All three subdivision based motion design schemes are plotted simultane-

ously in Fig. 3.16. B-spline Tweak is shown in red, 4-point tweak is shown

in green and Jarek’s tweak is shown in blue. The common control structure

for all three motions is shown in black. The control positions of the L-shaped

polygon are as listed in Table 3.7.

50

.. ~

,,..~ .. ., ..- ,
~

,

'I
~

."
., , ,

, . -"" ' ---r'" , -""
~

,

C =C
0 6

C
1

C
2

C
3

C
4

C
5

B-Spline Tweak

4-Point Tweak

Jarek’s Tweak

Figure 3.16: Final subdivision motions after 3 iterations for a L-shaped control
structure.

Ci q1 q2 q3 q4 q0
1 q0

2 q0
3 q0

4

C0 0.0000 0.0000 0.3827 0.9238 0.6533 0.2706 0.9238 0.3827
C1 0.0000 0.3827 0.0000 0.9239 0.3034 0.6955 2.039 -1.5307
C2 0.2101 0.2536 -0.5190 0.9432 1.8614 4.5593 2.7499 -1.4891
C3 0.1199 0.1293 0.3707 0.9188 2.2391 0.9653 1.9859 -1.3599
C4 0.1504 0.0868 0.4924 0.8528 5.1623 -0.6059 0.9862 -1.4179
C5 0.09414 0.09414 0.0789 0.9892 4.9859 0.1001 0.4233 -0.5173

Table 3.7: Dual quaternion representation of L-shaped polygon used for plot-
ting various Subdivision motions

51

Chapter 4

Using MoDes Software

4.1 Getting started with MoDes

Install MDL package on your system and start it by double-clicking on the

shortcut icon of MoDes on the desktop of your computer. The MDL package

can be downloaded from the URL provided in Appendix B. You can also choose

Start à All Programs à MDL à MoDes from the taskbar menu. Once

you launch the application, you will see the screen as shown in Fig. 4.1.

52

Figure 4.1: The screen that appears after launching MoDes.

It is important for the user to get acquainted with different sections of the

MoDes Screen. The self explanatory Fig. 4.2 shows different sections with

their locations.

53

Figure 4.2: Different sections of Modes screen.

4.2 Understanding the functions of mouse but-

tons

As with any 3D CAD tool, it is necessary to understand the functions of mouse

buttons. The efficient use of three mouse buttons, along with the CTRL and

ALT key on the keyboard can can reduce the time required to complete the

desired task.(see Fig. 4.3)

54

Figure 4.3: Functions of Mouse Buttons

• Press and hold CTRL key and then press the left mouse button in Graph-

ics Panel to invoke the Rotate tool. Next drag the mouse to dynamically

rotate the view.

• Press and hold CTRL key and then press the middle mouse button in

Graphics Panel to invoke the Zoom tool. Next drag the mouse to dy-

namically zoom in or zoom out the view in the Graphics Panel.

• Press and hold CTRL key and then press the right mouse button in

Graphics Panel to invoke the Pan tool. Next drag the mouse to dynam-

ically pan the view in the Graphics Panel.

While adding Control Position’s manually through user interface, combi-

nation three mouse buttons and ALT key on the keyboard can be used to set

the orientation and position of the control position in 3D Space.

• Press and hold ALT key and then click and hold left mouse button to

pick one of the three rotation handles on the local coordinate system

55

attached with the control position whose orientation and position in 3D

space needs to be set. Now the drag mouse to change the orientation

angle of the control position based the picked rotation handle. Depending

upon on which rotation handle is selected, Control Position’s angle about

X, Y and Z axes of World Coordinate System can be set.(see Fig. 4.4)

• Press and hold ALT key and then press the middle mouse button. Next,

drag the mouse in Graphics Panel to set the Z-Coordinate of the Control

Position which is being added to the model.

• Press and hold ALT key and then press the right mouse button. Next,

drag the mouse in Graphics Panel to set X and Y coordinates of the

Control Position which is being added to the model.

Figure 4.4: Configuring orientation of a Control Position in 3D Space: Picked
rotation handle turns green. Pressing and holding ALT key and left mouse
button after clicking the desired rotation handle will rotate the object about
specific axes. In this case Control Position will rotate about Z-Axis.

56

4.3 Toolbars

MoDes offers a user friendly design environment by providing user friendly

toolbars. Therefore, it is important to get acquainted with various toolbars

and buttons that appear in the environment of MoDes. These toolbars are

discussed next.

4.3.1 Control Positions Toolbar

This toolbar is used to carry out various operations on control positions.

Fig. 4.4 shows Control Positions Toolbar.

Figure 4.5: Control Positions Toolbar.

It has six different tools which are described below:

1. Read CP from file Tool: This tool is used to read Control Positions

from file. Files from which Control positions are read should have .*.data

extension. It reads the control positions from a file and and stores them

in the form of dual quaternions. It can read control positions from file in

three different formats MF1, MF2 and MF3. With format MF1, control

positions are defined using Euler angles representing their orientation

and cartesian coordinates defining the location of the origin of the moving

57

frame attached to the object with respect to the origin of fixed frame or

world coordinate system(WCS).

Note: The file which contains control positions specified as per format

MF1 must follow conventions as mentioned below:

(a) First line of the file should be MCP to indicate that file contains

control positions.

(b) Second line of the file should be MF1 to indicate that the format

MF1 is used.

(c) Next line should contain number of control positions to be read.

(d) From next line onwards Euler angles representing rotations about

positive x, y and z axis measured in anticlockwise sense should be

specified, seperated by space. Suppose 5 control positions needs

to be read then next 5 lines should contain Euler angles for each

control position, one set of Euler angles on each line.

(e) After that cartesian coordinates x, and z defining location of all the

control positions with respect to origin should be specified, one set

of cartesian coordinates on each line.

Here is a snapshot of a file which contains two control positions defined

by format MF1.

58

Figure 4.6: Snapshot of a file containing Control Positions in format MF1

With format MF2, control positions are defined using simple quaternion

representing their orientation and cartesian coordinates defining their

location with respect to origin.

Note: The file which contains control positions specified as per format

MF2 must follow conventions as mentioned below:

(a) First line of the file should be MCP to indicate that file contains

control positions.

(b) Second line of the file should be MF2 to indicate that the format

MF2 is used.

(c) Next line should contain number of control positions to be read.

(d) From next line onwards simple quaternions Q represented by four

real numbers (Q0, Q1, Q2, Q3) representing orientation of control po-

sitions should be specified. Suppose 5 control positions needs to be

read then next 5 lines should contain (Q0, Q1, Q2, Q3) separated by

a blank space for each control position, one set on each line.

59

(e) After that cartesian coordinates x, and z defining location of all the

control positions with respect to origin should be specified, one set

of cartesian coordinates on each line.

Here is a snapshot of a file which contains control positions defined by

format MF2

Figure 4.7: Snapshot of a file containing Control Positions in format MF2

With format MF3, control positions are defined using dual quaternions.

Note: The file which contains control positions specified as per format

MF32 must follow conventions as mentioned below:

(a) First line of the file should be MCP to indicate that file contains

control positions.

(b) Second line of the file should be MF2 to indicate that the format

MF2 is used.

(c) Next line should contain number of control positions to be read.

60

(d) From next line onwards simple quaternions Q represented by four

real numbers (Q0, Q1, Q2, Q3) representing orientation of control po-

sitions should be specified. Suppose 5 control positions needs to be

read then next 5 lines should contain (Q0, Q1, Q2, Q3) separated by

a blank space for each control position, one set on each line.

(e) After that dual part of dual quaternions (Q̂ represented by four real

numbers (Q̂0, Q̂1, Q̂2, Q̂3) should be specified, one set on each line.

Here is a snapshot of a file which contains control positions defined

by format MF3.

Figure 4.8: Snapshot of a file containing Control Positions in format MF3

2. Add CP Tool: Invoke this tool to add Control Position to the Model

manually. Once this tool is invoked a Control Position can be spotted

at origin. Simultaneously a Add/Modify Control Position Dialogue

can be seen at the bottom of Input Panel.

61

Figure 4.9: Add/Modify Control Position Dialogue

There are two ways in which position and orientation of Control Position

which is being added can be defined. One, by specifying the parameters

in the Add/Modify Control Position Dialogue. Second, interactively

by using mouse buttons and hot keys. To define position and orientation

of Control position in 3D space interactively use following key combina-

tions:

• Press and hold ALT key and then click and hold left mouse but-

ton to pick one of the three rotation handles on the local coordinate

system attached with the control position whose orientation and po-

sition in 3D space needs to be set. Now the drag mouse to change

the orientation angle of the control position based the picked rota-

tion handle. Depending upon on which rotation handle is selected,

Control Position’s angle about X, Y and Z axes of World Coordinate

System can be set.

62

• Press and hold ALT key and then press the middle mouse button.

Next, drag the mouse in Graphics Panel to set the Z-Coordinate of

the Control Position which is being added to the model.

• Press and hold ALT key and then press the right mouse button.

Next, drag the mouse in Graphics Panel to set X and Y coordinates

of the Control Position which is being added to the model.

While adding the Control Position interactively, as position and orien-

tation is changed respective fields in Add/Modify Control Position

Dialogue are updated accordingly.

3. Delete CP Tool:Invoke this tool to delete Control Position. Click on

the Control Position you intend to delete. The selected Control Position

will be highlighted by a green bounding box as shown in Fig. 4.10

63

Figure 4.10: Figure showing selected control position which is highlighted by
a green bounding box

Confirm Delete CP operation by clicking on Ok button of the Delete

Picked Control Position dialogue. The dialogue appears at the bot-

tom of Input Panel. Click on Cancel to discard the operation.

Figure 4.11: Delete Picked Control Position dialogue.

4. Modify CP Tool: this tool is used to modify the position as well as

orientation of Control Positions. Invoke this tool and then Click on the

64

-

" "

Control Position you intend to modify. The selected Control Position

will be highlighted by a green bounding box as shown in Fig. 4.10. Once

a Control Position is picked, Add/Modify Control Position dialogue

will be displayed at the bottom of Input Panel with its fields defining

current position and orientation. Modify field values to define the new

position and orientation. Click on Ok button to apply the changes. Click

on Cancel button to discard the operation.

5. Modify Weight Tool: This tool is used to modify dual weights asso-

ciated with the Control Positions. It is important to note that when

Control positions are read from file or when added manually their dual

weights are initialized to unity i.e; real part = 1.0 and dual part = 0.0.

By using this tool real and dual part of weights can be set to differ-

ent values. Invoke this tool and and then Click on the Control Position

whose weight you intend to modify. The selected Control Position will

be highlighted by a green bounding box as shown in Fig. 4.10. Once a

Control Position is picked, Modify Weight dialogue will be displayed

at the bottom of Input Panel with its fields defining current real and

dual values of weight associated with it. Modify field values to define

the new dual weight of the picked Control Position. Click on Ok button

to apply the changes. Click on Cancel button to discard the operation.

65

Figure 4.12: Modify Weight dialogue.

6. Clear All Tool: This tools clears all the Control Positions from the

model.

4.3.2 View Toolbar

Figure 4.13: View Toolbar.

1. Wireframe Tool: This tool turns on wireframe display. If the model

contains large number of control positions and intermediate positions in

a given motion, then while carrying out viewing transformations such as

Pan/Zoom/Rotate can cause heavy computational load because of more

number of calculations involved in Shaded mode. So using this tool can

help in smooth viewing transformation operations.See Fig. 4.14.

2. Shaded Tool: This tool turns on shaded display. Turning this option

might result in a jerky viewing transformations if there are large number

66

(a) Wireframe Display (b) Shaded Display

Figure 4.14: Display modes

of Control Positions and intermediate positions in a given motion. In

such case it is recommended that object with lesser number of vertices

such as Cube should be used. Toggling to wireframe mode can also

improve performance. See Fig. 4.14.

3. Front Tool: Sets eye position so as to view front side.

4. Back Tool: Sets eye position so as to view back side.

5. Top Tool: Sets eye position so as to view top side.

6. Bottom Tool: Sets eye position so as to view bottom side.

7. Right Tool: Sets eye position so as to view right side.

8. Left Tool: Sets eye position so as to view left side.

9. Isometric Tool: Sets eye position so as to get isometric view.

67

4.3.3 Settings Toolbar

Figure 4.15: Setting Toolbar.

1. Background Col Tool: this tool is used to set the background color of

the Graphics Panel. It invokes the Select Color Dialogue, which can

be used to pick the desired color. See Fig. 4.16.

Figure 4.16: Select Color Dialogue.

2. Set Object Tool: This tool invokes Set object for Plotting Motion

dialogue, which can be used to pick from one of the eleven different types

of objects for plotting motion. See Fig. 4.17. Robotic End effector

is the default object. User can also pick famous data set in Computer

68

Graphics community, Stanford Bunny for plotting motion. However,

because of large number of vertices (about 60,000) in this model, ren-

dering and viewing transformations can be slow.

Figure 4.17: Set Object for Plotting Motion Dialogue.

User can set size of the objects by using Set Object Scale dialogue

available on Input Panel. See Fig. 4.18.

69

Figure 4.18: Set Object Scale Dialogue.

Fig. 4.19 shows different types of objects that user can pick for plotting

motion. In future this list can be extended if required.

3. CP Col Tool: This tool is used to set the color of the Control Positions.

It invokes the Select Color Dialogue, which can be used to pick the

desired color. See Fig. 4.16.

4. Text Col Tool: This tool is used to set the text color. It invokes the

Select Color Dialogue, which can be used to pick the desired color. See

Fig. 4.16.

5. Display WCS Tool: This tool toggles on and off display of WCS i.e;

World Coordinate System. See Fig. 4.20.

70

(a) Robotic End Effec-
tor

(b) Cube (c) Dodecahedron

(d) Icosahedron (e) Octahedron (f) Sphere

(g) Teapot (h) Tetrahedron (i) Torus

(j) Cylinder (k) Stanford Bunny

Figure 4.19: Different objects available for plotting motion

71

Figure 4.20: World Coordinate System (WCS)

6. Set Scene Tool: This tool invokes Scene Dialogue. See Fig. 4.21.Using

this tool user can set the dimensions as well as center of the Scene so

as to house all Control Positions and Motion. User can also selectively

toggle display of Front Wall, Back Wall, Left Wall, Right Wall, Ceiling

and Floor, for getting desired effect.

72

Figure 4.21: Scene Dialogue

There are seven different texture available at the moment for plotting

a scene. In future, developers can add more textures with better res-

olutions if required. Fig. 4.22 shows a rational B-Spline Motion with

Display of Scene toggled on with wooden texture.

73

,..,..

, --,
0 ,
o C"'Il

o HOI'll: 'Noll

~

I:..
120
!z.t

!~
:z
'0.0 ,

: ~
8 "-".j

8 f1cor

8 ",:1<

II

-
,-

Figure 4.22: Rational B-Spline Motion with display of Scene toggled on with
wooden Texture.

See Fig. 4.23 for view of available textures for plotting a Scene.

7. Display Scene Tool: This tool toggles on and off display of Scene.

8. Display CP Order Tool: This tool toggles on and off display of text

showing order of Control Positions in Graphics Panel. See Fig. 4.24.

9. Display CP Weights Tool:This tool toggles on and off display of text

showing weights of Control Positions in Graphics Panel. See Fig. 4.24.

10. Display CP Coords Tool: This tool toggles on and off display of

text showing coordinates of Control Positions in Graphics Panel. See

Fig. 4.24.

74

(a) Checker Board (b) Tile (c) Brick

(d) Wood (e) Nature (f) Metal

(g) Water

Figure 4.23: Different textures available for plotting Scene

75

•

(a) Display of all text is turned on.

(b) Display of text showing CP Weights and CP Coords is turned off.

Figure 4.24: Toggling display of Text in Graphics Panel

76

11. Restore Defaults Tool: This tool is used to restore the default settings

of the program.It resets the Graphics Panel’s background Color, Text

Color, Control Position Color to program default. It also resets the

Object type to Robotic End Effector, turns on the display of text

showing CP Order, CP Weights and CP Coordinates. It also turns off

the display of Scene, if it was enabled.

4.3.4 File Toolbar

Figure 4.25: File Toolbar.

1. EPS Tool: This tool generates a eps file of the current view in Graphics

Panel. This tool is aimed at generating high quality graphics, especially

for publication purpose.

2. JPEG Tool: This tool generates an jpeg file of the current view in

Graphics Panel. Files saved in JPEG format can be very handy for

generating reports and presentation using popular tools such as Microsoft

Word and Powerpoint. However, eps file format is recommended for

generating high quality images.

3. Exit Tool: As name suggests, it terminates the program.

77

4.4 Plotting Motion

To plot a motion first read the control positions from file or add them inter-

actively. Then check the motion which you want plot from the Plot Motion

dialogue on the Input Panel. See Fig. 4.26.

Figure 4.26: Plot Motion Dialogue

Multiple motions can be plotted simultaneously by checking multiple mo-

tions.

To set the various motion parameters click on the settings button next

to the name of the motion in the Plot Motion dialogue. A dialogue box

with allows access to various motion parameters and settings will pop up.

78

Fig. 4.27 shows one such dialogue box for rational B-spline motion. Modify the

parameters as required. Press Ok to plot the motion with modified parameters.

Press Cancel to discard the operation.

Figure 4.27: Dialogue box for setting parameters of Rational B-Spline Motion

79

Chapter 5

Extending Motion Design
Library

One of the prime motive behind developing Motion Design Library was to

release it as open source code, so that researchers, students and other pro-

fessionals from CAD,Mechanical Design and Software Development Industry

can add new motion design algorithms to the existing library and make it

a comprehensive library which can be used in solving various motion design

problems.

Following sections explain how Motion Design Library can be extended by

adding new algorithms to it. There are basically two ways in which Motion

Design Library can be extended.

1. By adding new algorithms independent of GUI developed using Qt.

2. By adding new algorithms with support of GUI developed in Qt.

Both approaches have their own advantages and disadvantages. One ad-

vantage of adding new motion design algorithms without using support of

80

GUI developed in Qt is that its relatively less complex process. However,

programmer is responsible for developing his own GUI by using tool of his

choice for getting user input, adding/modifying control positions interactively,

panning/zooming and rotating views etc. It can prove to be a very big over

head and will certainly offset the advantage of ease in adding new algorithms

without using support of GUI developed in Qt. In-fact more than 8000 lines

of codes in Motion Design Library has been dedicated towards developing a

sophisticated and user friendly GUI.

Adding new Motion Design algorithms with Qt’s support can appear to be

a complex process initially. But once programmer gets used to it, the results

will be rewarding.

The reason behind making a distinction between Motion Design Library

independent of Qt and Motion Design Library with support of Qt is to give

the developer freedom to develop a graphical user interface from other GUI

toolkits like GLUI, GLUT, FLTK etc., instead of Qt if necessary.

5.1 Adding new Motion Design Algorithms in-

dependent of GUI developed using Qt

Follow this steps to add a new motion design algorithm independent of GUI

developed using Qt.

Step 1: Creating a new VC++ project: Create a new VC++ project and

name it as MDLv1 for instance. Add all the header files and source files

found in Mlib and QLib directories which stands for Motion Library and

81

Quaternion Library respectively. Adding filters as like QLib and MLib

helps in managing files better and speeds up development process. See

Fig. 5.1. In addition add a file called main which contains the function

main. Various functions to set up OpenGL environment like reshape,

initGL, draw etc. should be added to this file. To make the compilation

process easier, make sure that you include all the header files from QLib

and MLib.

82

Figure 5.1: Adding proper filters while creating a new VC++ project to extend
MDL can help in managing project effectively

Step 2: Declaring the class defining new motion: First Step in adding

a new algorithm to Motion Design Library is to create a new class, say

MNewMotion which inherits directly or indirectly from abstract base class

MMotion. For adding new class you will need to modify motion.h and

motion.cpp files found in MLib directory found in the installation di-

rectory of Motion Design Library. It is important that the programmer

carefully select the class from which new class of Motion inherits. Care-

83

ful selection of parent class will facilitate the software reusability, which

is a good software engineering practice. For example, if user wants to

add a new motion design algorithm which is based principal subdivision,

then it is recommended that developer inherit from MSubDivision class

instead of abstract base class MMotion. By doing this developer will have

access to special functions and data members specific to motions based

on subdivision principal such as splitFunc which is used to divide the

distance between two successive Control Positions in a specific ratio. De-

veloper can also take advantage of setIterations and getIterations

functions which are common to all motion design algorithms based on

Subdivision principle. Following code snippet shows a pseudo code of a

new class MNewMotion to motion.h file. See Fig. 5.2.

Figure 5.2: Defining a new class in motion.h.

In addition, add a flag of type static bool corresponding to this motion

to MMotion class definition. Lets call it NEW_MOTION. It will be later used

to decide whether a specific motion will be plotted or not.Make sure

84

you initialize NEW_MOTION to false in the beginning of motion.cpp file

to false, as we don’t want to plot any motion initially when we launch

the application. Following code snippet will give you a better idea about

things discussed above.

85

Figure 5.3: Adding NEW MOTION flag to MMotion class definition

Step 3: The next step is to define the functions declared in the new class, say

MNewMotion in motion.cpp file, which can be located in MLib directory

found in the installation directory of Motion Design Library. The main

purpose behind declaring the class in motion.h and defining its member

86

cIallll ftftotio n
{

public :

ftftot i onO :
~ ftftotion() ;

v oid lI~tC tr IPoll(v~c to r< ftDuaIQuat» ;

v~ctor< ftDua IQuat> ~~ tCtr IPol!V~c () ;

v Oid l!~tC tr IPO llVtV~c (v~ctor< ftDua INum> w~ iqhtl!) ;

v Oid l! ~ t V tl!ToUnity() ;

v ect or<ftDuaINum> ~~ tC t rIPOllVtVec() ;

int ~etNoO!Ctr IPoll() ;

vo i d plotCt rlPoll() ;

v irtual v oid p l otfto tion() - 0 ;
doub l e bi nomia l (int n, int i, doub l e t) ;

doub l e bi nomia l (int n, int i) ;

llmotion

lItat i c bool RSCR[V;

lItat i c bool RB[ZlE R;

lItat i c bool RBSPLIN[;

lItat i c bool GLBL I NTERPOLATI ON ; -
lItat i c bool LEAST SQ APPROX;

lItat i c bool BSPLINE TW EAK; -
lItat i c bool f" OURPNT TW EAK;

lItat i c bool JAR!:KS TW EAK; -
lItat i c bool N!: W ftOTlOO ;

functions in motion.cpp is to separate interface from implementation.

Following code snippet shows a pseudo code for MNewMotion class.See

Fig. 5.4.

Figure 5.4: Defining member functions of new class in motion.cpp.

Following is a real example. MJareksTweak is a class which inherits

from MSubDivision class and it is used for designing motion based on

Jarek’s Tweak subdivision algorithm. See Fig. 5.5 for class definition of

87

MJaerksTweak in motion.h file

Figure 5.5: MJaerksTweak class definition in motion.h.

Fig. 5.6 and Fig. 5.7 shows code that defines member functions of MJareksTweak

class. Notice how different types of classes from Motion Design Library

are used to implement the algorithm.

88

clM~ IIJ ar ~ k~ T ... a k: public IISubd ivi~ion

public :

IIJ ar ~ k~ T .. ~ak II;

~IIJ ar ~ k~ T ... a k II;
IIl1ot i onProp prop;

v~ctor<IIDualOuat> j ar<k~T .. ~ak _ Ue/or i thm Iv~ ctor<IIDua lO·-,at> I ;
v irtu al vo id plotllot i onll;

privat ~ :

"

Figure 5.6: MJaerksTweak class’s member function definitions in
motion.cpp(Part 1).

89

Figure 5.7: MJaerksTweak class’s member function definitions in
motion.cpp(part 2).

Step 4: Once the class is declared and defined, next step is to create an in-

stance of the class and plot the motion using function which is used

drawing object in OpenGL. Let us name the function as draw and let

90

the name of function which performs initialization operation for OpenGL

be init. Programmer can use init function to read the control posi-

tions from file. Programmer can also ask user to input Control Positions

through Console Window. Its up to the programmer to decide how he

wants to get Control Positions from the user. All the Control Positions

needs to be saved using an instance of MCtrlPos class or a pointer to

the MCtrlPos class. In this case a pointer to the MCtrlPos, ctrlPosPtr

is used. Next, in the draw function dynamically allocate memory to a

pointer newMotion which points to MNewMotion class. Use setCtrlPos

function to assign read/entered Control Positions to newMotion. Use

setCtrlPosWtVec function to set weights of Control Positions. please

note that, all weights are initialized to unity unless modified. Now call

the plotmotion function to plot the Motion. Finally free the memory

allocated dynamically to the pointer newMotion. Failure to do so may re-

sult in large amount of memory leak as draw function is called repeatedly

in OpenGL implementation. See Fig. 5.8

91

Figure 5.8: Procedure for plotting motion without using existing GUI devel-
oped using Qt

92

hr_cL''''' " ootr '
h>cch± ,',C! q _'>t .h>

hr_ch"" ,",oct oe'

;!iLC i A-"o ·OJL " u h u, i c iu ~ , t,··
hr_ch"" ·m';o~. r"

.'/C'on3l ,,,i t i ai i,ation funct,on.

"70id init :"70id l

.h.11no ··~q·· (1 ;

~iCl<arCOlorl.[, .J, _,J, ,01;

qi Sbc.d d xCc _(Ol "ATI,
G I T,,",~ • IC-T. ' ,-",,- _ , .. -.-,r~1 ;

qEocJo _c (CL "". SOCO-XI;

GI1Ht,,'''' ""'<I " Tn " ' "

c,-lfu,'cc - ,." ~:"_ ' J~;

cte H o ,'tr_>e udCor lP o . (" t • • t . data" l, .'!t • • o.Qata i. 0 "" ' i 1 • • Coi ch

,'!cuH~~i~, iL""~ CUH~'L1 'JeiCiJL'

.'1 Thi, i o tr_e f =_ction tht nco,,", to h chc.nq e d f oe QrQ~ir_q ,

Tno orn,'

~Lloae I'"" __ u"'-' '',_~ Uj')''~_'ll'1

qll.cadI±ntit" I,

1IN= . ~u~iLn ·,."nuciu~ - ne. me."" l_ " '"
n. "~ot ior __ > .. tCte lpo . (otr _'''''tr_>". t':tr _'000 (I :

n •• ~onor.- ;-)lnCoo n o, II ;
delete ncndotio~;

5.2 Adding new Motion Design Algorithms

with support of GUI developed using Qt

Step 1: This step is same as that for Adding new Motion Design Algo-

rithms to the Library independent of Qt.

Step 2: This step is same as that for Adding new Motion Design Algo-

rithms to the Library independent of Qt.

Step 3: Once the class for plotting a new motion is defined, program-

mer gets a better idea about expected input from the user. So

programmer is in better position to design the user interface for

getting input from user. To create a dialogue box for getting user

input for various parameters necessary for plotting motion create

two new files say newmotionDLG.h and newMotion.cpp and add

them under MDL à GUI à Header Files and MDL à GUI

à Header Files à Source Files respectively. Refer Fig. 5.9

While designing dialogue box, define the proper Signals and Slots to

define actions to be taken when certain buttons are pressed. Fig. 5.9

shows dialogue box for setting various parameters of Rational B-

Spline Motion.

Step 4: Next step is to add the newly added motion to Input Panel

so that user can selectively decide to plot a specific motion. User

should also be provided with tool so that he can invoke dialogue

to set various parameters for the motion. This can be done by

93

(a) Adding files which are used for
designing Dialogues Boxes to MDL
project

(b) Rational B-Spline Motion Dia-
logue

Figure 5.9: Adding new dialogues corresponding to new motion being added

94

',........' ... aWl~,~
~(;.,

o;<",w........".h

quponoI.h

"'~ , ~,

]

E ... ·· ' .. '
"' ... ,,,,, •• ~u,

E "'·" N,'

:, ',,' [,"""' -- >

" " " ,~

" I(~.

adding checkbox and a settings button to Plot Motion group box

on input panel. Fig. 5.10 shows how a checkbox for plotting a New

Motion an adjacent button providing access to settings for plotting

New Motion can be added to Plot Motion group box on Input

Panel.

Figure 5.10: New Motion added to Plot Motion group box

To add the above mentioned check box and settings button pro-

grammer should modify inputpanel.h and inputpanel.cpp files

found under GUI filter of VC++ project MDL.Open file inputpanel.h

and add a pointer to QCheckBox and QPushButton in the public

variable declaration of InputPanel class. In this case they are

called newMotionCB and newMotionBTN respectively. See Fig. 5.11

95

Figure 5.11: Modifications made to inputpanel.h to add user interface for
plotting new motion

Now modify the constructor ofInputPanel class which can be lo-

cated in inputpanel.cpp. Here we create a QCheckBox named

newMotionCB and QPushButton named newMotionBTN and set its

properties and finally add it to Plot Motion group box. See

Fig. 5.12

96

Figure 5.12: Modifications made to inputpanel.cpp to add user interface for
plotting new motion

Step 5: Next Step is to create an instance of NewMotionDLG class cre-

ated previously, in mainwindow.h file which can be located in MDL

à GUI à Header Files filter of MDL project. In this file create

a pointer newMotionDLG to MNewMotionDLG class and add a declare

slot named newMotionSlot. This slot is used to decide what course

of action should be taken when settings button next to None Motion

check box is clicked. See Fig. 5.13

97

Figure 5.13: Modifications made to mainwindow.h to add user interface for
plotting new motion

Open file mainwindow.cpp. Include the file newMotinDLG.h. Next,

initialize newMotionDLG declared as pointer to MNewMotionDLG class

to NULL pointer or zero as shown in Fig. 5.14

Figure 5.14: Modifications made to mainwindow.h to add user interface for
plotting new motion

Once this is done define newMotionSlot on the lines similar that

98

in shown in Fig 5.15.

Figure 5.15: Definition of jareksTweakSlot

Next, locate the createConnections function in mainwindow.cpp

file and make connections between clicked signal emitted when

newMotionCB is clicked with the setMotionToPlotSlot of GraphicsPanel

class which defines which motion will be plotted. Also connect

clicked signal associated with newMotionBTN to newMotion slot

so that newMotionDLG is pooped up, when user clicks on the set-

tings button nect to New Motion check box in the Plot Motion

group box.

Step 6: Last stet and most critical step to modify graphicspanel.h

and graphicspanel.cpp so as to view the resulting New Motion in

Graphics Panel. open file graphicspanel.h which can be located

in MDL à GUI à Header Files filter of MDL project. First do

99

;t I ; o <c koT'OCQk) L'1 ,

: .. <b~.ekIoLG->o< t ~, ""l ' T-><I' " Ith< '''~. , ,,,", f i~i,L, int< .. co ",~
//.; ,), u~ ";""J , '"
//0100 0 1t " . =o ro h o oa,_
//=== 0'_"1 othc= " ,Ae. i n tC'>C o"licotion

",", ,-,"_"' ,,0._'_,), "I:,
: a<o~.~, ... "'l." __ "'" ,c;a, o H M o . ,I "

the forward declaration of class MNewMotion in the beginning of the

file. In the declaration of the GraphicsPanel class add a pointer

newMotion to the MNewMotion class, such that it is declared public.

Now open graphicspanel.cpp file which can be located under

MDL à GUI à Source Files filter of MDL project. Now in

the constructor of GraphicsPanel class initialize newMotion to a

NULL pointer. Now locate the setMotionToPlot function and add

code on similar lines to that shown in Fig. 5.16. It shows the code

for deciding whether to plot Jareks Tweak Motion and also avoids

unnecessary memory leak.

100

Figure 5.16: Code snippet dealing with Jarek’s Tweak Motion with in
setMotionToPlot function

Last step is to modify the paintGL function found in GraphicsPanel

class. Locate the function and add following code to plot the newly

added motion. Fig. 5.17.

101

Figure 5.17: Code snippet showing code that needs to be added in paintGL

function for plotting newly added algorithm

102

i~ (~~oo i o~, ,JJ.m]{S TIIU]{ -- true I

j ar<k~ Tv~ ak-' ~~tCtr lP c ~ (ctr 1P o ~P tr-><;/"Cor Po~V~ c: II ;

j "cebTo~~'--c ~~ cC C, lP L~" l V~C (c" lPu~ p" -;>~~ ~C" lPu~ '" V~ L (I I ;

i ar<k~Tv~ ak-' p 10tllot i cn (I ;

n~ .. ~ot ion- > ~.tCtr lP o ~ (ctdP o~ P tr- ><;/~ t:tr l P o ,V~ c (I I ;

n . d otion_,. .. tCtr lP o . n v oc (ctr lP o . P tr_,. " o tCor lP o . ntVoc (II

n~ .. ~ot ion- >p _o Uot i on II ;

<;/H 1 u~ h(1

<;/lP oplla or i :< (I

Chapter 6

Conclusion and Future Work

This work has focussed on developing an object oriented framework for an

extensible software library as well as an application which can serve as a com-

mon platform for various NURBS and dual quaternion based motion design

algorithms. However, this library is not strictly restricted to NURBS class of

motion and other types of motion such as those based on simple subdivision

principle are also integrated into the library. This library can be broadly di-

vided into three parts. QLib which stands for quaternion library, MLib which

stands for motion library and GUI which is abbreviation for Graphical User

Interface. QLib and MLib are strongly interconnected with each other. How-

ever, lot of efforts has been put to keep GUI separate from QLib and MLib.

The reason behind such step was to give the developer freedom to develop a

graphical user interface from free and common GUI toolkits such as GLUI,

GLUT, FLTK etc., instead of Qt, if necessary.

Dual quaternion representation of spatial displacement in three dimen-

sional space is at the heart of all the implementations of motion design schemes

103

in this library. Hence, a comprehensive set of functions which are dedicated

to carry out various operations on dual quaternions, simple quaternions, dual

numbers, homogeneous and regular matrices are developed under QLib. MLib,

which stands for motion library hosts the numerous motion design algorithms.

A separate class in MLib, is dedicated towards handling control positions,

such a reading control position from file in three convenient formats, modi-

fying dual weights, modifying positions interactively etc. Though developers

have freedom of choosing GUI toolkit of their own choice, it is strongly in-

sisted that developers should use and extend the current GUI developed using

Qt for future developments, since a rich set of tools specific for motion design

problems such as placing a control position in three dimensional space inter-

actively, modifying weights and control positions, choosing various parameters

for designing and tuning motion and many more are already carefully devel-

oped.

In my work, I have implemented eight motion design algorithms, under var-

ious classes of motions. Rational Screw Motion, Bézier motion, B-spline mo-

tion come under the fundamental motions. My implementation of above men-

tioned algorithms also explored the effects of dual weights and reparametriza-

tion for path invariance. Motion fitting is a critical problem in the field of

motion design. Designers often seek a motion interpolating through given key

frames or approximating the given set control positions. Global Interpola-

tion to Position Data and Least Square Motion Approximation are the two

algorithms which touches the problem of motion fitting. With a view that

104

this library can be used as educational tool by the professors and researchers

working in the field of CAGD, I thought it will be good to add few motion

design schemes which are simple to implement and understand. The motive

behind this was to generate interest amongst the students about this subject

in general. So with that point in mind, three simple subdivision based motion

design schemes namely, B-spline tweak, 4-point tweak and Jarek’s Tweak from

a paper on Education Driven CAD by Rossignac [48] are added.

A separate chapter has been dedicated to describe how a developer can

take advantage of this library to implement and test his own motion design

algorithms and extend this work. In an effort to develop this library, I have

written an object oriented program using VC++, Qt and OpenGL which ex-

tends more than 12,000 lines. It is a well known saying in the realm of software

engineering that If work is not documented, it does not exists. No matter how

wonderful your library is and how intelligent its design, if you’re the only one

who understands it, it doesn’t do any good. Understanding that, a detailed

documentation explaining all the classes, functions and variables extending to

more than 60 pages is done. The documentation can be found in the Appendix

of this thesis. Despite of all this efforts, I see my work an attempt to lay a

foundation for Motion Design Library. There is a lot of scope for expansion of

this library with myriads of new motion design and mechanism synthesis algo-

rithms and fine tuning of the existing ones. A constant effort is also needed to

fine polish the user interface and to add new tools which makes the designers

task easier. I hope it aids researchers, students, professors as well as other

105

professionals working in CAGD, Computational Kinematics, Motion Design,

and other related field. I also expect frequent contribution from them, small

or big, so that a more comprehensive and efficient Motion Design Library can

be build up on this foundation.

106

Bibliography

[1] Reuleaux, F., 1875. Theoretical Kinematics: Outline of a Theory of Ma-

chines.

[2] Bottema, O., and Roth, B., 1979. Theoretical Kinematics. North Holland,

Amsterdam.

[3] McCarthy, J. M., 1990. Introduction to Theoretical Kinematics. MIT.

[4] Hunt, K., 1978. Kinematic Geometry of Mechanisms. Oxford University

Press.

[5] Angeles, J., 1988. Rational Kinematics. Springer-Verlag.

[6] Farin, G., 1996. Curves And Surfaces for Computer-Aided Geometric

Design: A Practical Guide, 4th ed. Academic Press, New York.

[7] Farin, G., 1999. NURBS: From Projective Geometry to Practical Use. A.

K. Peters, Ltd, Natick, MA, USA.

[8] Farin, G., Hoschek, J., and Kim, M.-S., eds., 2002. Handbook of Computer

Aided Geometric Design. Elsevier Science, North Holland.

107

[9] Hoschek, J., and Lasser, D., 1993. Fundamentals of Computer Aided

Geometric Design. A K Peters.

[10] Piegl, L., and Tiller, W., 1995. The NURBS Book. Springer, Berlin.

[11] Gallier, J., 2000. Curves and surfaces in geometric modeling: theory and

algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[12] Farin, G., 1992. “From Conics to NURBS - a Tutorial and Survey”. IEEE

Computer Graphics and Applications, 12(5), pp. 78–86.

[13] Piegl, L., 1986. “A geometric investigation of the rational Bezier scheme

of computer-aided-design”. Computers in Industry, 7(5), pp. 401–410.

[14] Piegl, L., 1986. “The sphere as a rational Bezier surface”. Computer

Aided Geometric Design, 3, pp. 45–52.

[15] Piegl, L., 1985. “Representation of quadric primitives by rational poly-

nomials”. Computer Aided Geometric Design, 2, pp. 151–155.

[16] Piegl, L., 1987. “On the use of infinite control points in CAGD”. Com-

puter Aided Geometric Design, 4, pp. 155–166.

[17] Piegl, L., 1987. “Infinite control points - a method for representing sur-

faces of revolution using boundary data”. IEEE Computer Graphics &

Applications, 7(3), pp. 45–55.

[18] Piegl, L., 1989. “Key developments in computer-aided geometric design”.

Computer-Aided Design, 21(5), pp. 262–274.

108

[19] Piegl, L., 1989. “Modifying the shape of rational B-splines .1. curves”.

Computer-Aided Design, 21(8), pp. 509–518.

[20] Piegl, L., 1989. “Modifying the shape of rational B-splines .2. surfaces”.

Computer-Aided Design, 21(9), pp. 538–546.

[21] Piegl, L., 1991. “On NURBS - a survey”. IEEE Computer Graphics and

Applications, 11(1), pp. 55–71.

[22] Piegl, L., and Tiller, W., 1987. “Curve and surface constructions using

rational B-splines”. Computer-Aided Design, 19(9), pp. 485–498.

[23] Piegl, L., and Tiller, W., 1989. “A menagerie of rational B-spline circles”.

IEEE Computer Graphics & Applications, 9(5), pp. 48–56.

[24] Tiller, W., 1983. “Rational B-splines for curve and surface representa-

tion”. IEEE Computer Graphics & Application, 3(6), pp. 61–69.

[25] Böhm, W., Farin, G., and Kahmann, J., 1984. “A survey of curve and

surface methods in CAGD”. Computer Aided Geometric Design, 1(1),

pp. 1–60.

[26] Boehm, W., 1987. “Rational geometric splines”. Computer Aided Geo-

metric Design, 4(1-2), pp. 67–77.

[27] Shoemake, K., 1985. “Animating rotation with quaternion curves”. In

Proceedings of the 12th annual conference on Computer graphics and

interactive techniques, ACM Press, pp. 245–254.

109

[28] Pletinckx, D., 1989. “Quaternion calculus as a basic tool in computer

graphics”. The Visual Computer, 5, pp. 2–13.

[29] Kim, M. S., and Nam, K. W., 1995. “Interpolating solid orientations with

circular blending quaternion curves”. Computer-Aided Design, 27(5),

pp. 385–398.

[30] Ge, Q. J., and Ravani, B., 1994. “Computer-aided geometric design of mo-

tion interpolants”. ASME Journal of Mechanical Design, 116(3), pp. 756–

762.

[31] Ge, Q. J., and Ravani, B., 1993. “Computational geometry and motion

approximation”. In Computational Kinematics, J. Angeles, ed. KAP,

Netherlands., pp. 229–238.

[32] Ge, Q. J., and Ravani, B., 1994. “Geometric construction of Bezier mo-

tions”. ASME Journal of Mechanical Design, 116(3), pp. 749–755.

[33] Park, F. C., and Ravani, B., 1995. “Bezier curves on Riemannian-

manifolds and lie-groups with kinematics applications”. ASME Journal

of Mechanical Design, 117(1), pp. 36–40.

[34] Zefran, M., Kumar, V., and Croke, C. B., 1998. “On the generation of

smooth three-dimensional rigid body motions”. IEEE Transactions on

Robotics and Automation, 14(4), pp. 576–589.

110

[35] Barr, A. H., Currin, B., Gabriel, S., and Hughes, J. F., 1992. “Smooth in-

terpolation of orientations with angular velocity constraints using quater-

nions”. Computer Graphics, 26(2), pp. 313–320.

[36] Wang, W., and Joe, B., 1993. “Orientation Interpolation in Quaternion

Space Using Spherical Biarcs”. In Graphics Interface ’93, Canadian In-

formation Processing Society, pp. 24–32.

[37] Nielson, G. M., and Heiland, R. W., 1992. “Animated rotations using

quaternion and splines on a 4D sphere”. Programming Comput. Software,

18, pp. 145–154.

[38] Ge, Q. J., and Ravani, B., 1993. “Motion interpolation and mechanism

synthesis”. In Proceedings of 1993 ASME Design Automation Conference,

ASME.

[39] Ge, Q. J., and Kang, D., 1995. “Geometric design of smooth composite

ruled surface strips using dual spherical geometry”. In 1995 ASME Design

Automation Conference ASME DE-Vol. 82:659-664.

[40] Ravani, B., and Roth, B., 1984. “Mappings of spatial kinematics”. Journal

of Mechanisms Transmissions and Automation in Design-Transactions of

the ASME, 106(3), pp. 341–347.

[41] Juttler, B., 1994. “Visualization of moving-objects using dual quaternion

curves”. Computers & Graphics, 18(3), pp. 315–326.

111

[42] Jüttler, B., 1995. “Spatial rational motions and their application in Com-

puter Aided Geometric Design”. In Mathematical Methods for Curves

and Surfaces, M. Dhlen, T. Lyche, and L. L. Schumaker, eds. Vanderbilt

University Press, Nashville, pp. 271–280.

[43] Juttler, B., and Wagner, M. G., 1996. “Computer-aided design with

spatial rational B-spline motions”. ASME Journal of Mechanical Design,

118(2), pp. 193–201.

[44] Wagner, M. G., 1994. “A Geometric Approach to Motion Design”. Ph.d.

dissertation, Technische Universitt Wien.

[45] Wagner, M. G., 1995. “Planar rational B-spline motions”. Computer-

Aided Design, 27(2), pp. 129–137.

[46] Purwar, A., and Ge, Q. J., 2005. “On the effect of dual weights in com-

puter aided design of rational motions”. ASME Journal of Mechanical

Design, 127(5), pp. 967–972.

[47] Juttler, B., and Wagner, M., 2002. “Kinematics and Animation”. In

Handbook of Computer Aided Geometric Design, G. Farin, J. Hoschek,

and M. Kim, eds. Elsevier, New York, pp. 723–748.

[48] Rossignac, J. “Education-Driven Research in CAD”. Computer Aided

Design, 36, pp. 1461–1469.

[49] “SyMech”. http://www.symech.com/, Software.

112

[50] “WATT”. http://www.heron-technologies.com, Software.

[51] Kaufman, R., 1978. “Mechanism Design by Computer”. Machine Design,

October, pp. 94–100.

[52] Waldron, K. J., and Song, S. M., 1981. “Theoretical and Numerical Im-

provements to an Interactive Linkage Design Program, RECSYN”. Proc.

of the Seventh Applied Mechanisms Conference, Kansas City, MO, Dec:

8.18.8.

[53] Erdman, A., and Gustafson, J., 1977. “LINCAGES: Linkage INter-

active Computer Analysis and Graphically Enhanced Synthesis Pack-

ages”. American Society of Mechanical Engineers. See also: http://

www.me.umn.edu/divisions/design/lincages/.

[54] Larochelle P., Dooley J., M. A., and J.M., M., 1993. “SPHINX: Software

for Synthesizing Spherical 4R Mechanisms”. Proceedings of the 1993 NSF

Design and Manufacturing Systems Conference, University of North Car-

olina at Charlotte, Jan., pp. 607–611.

[55] Ruth, D. A., and McCarthy, J. M., 1997. “SphinxPC: An Implementa-

tion of Four Position Synthesis for Planar and Spherical 4R Linkages”.

CD-ROM Proc. of the ASME DETC97, paper no. DETC97/DAC-3860,

Sept., pp. 14–17.

113

[56] Furlong T. J., V. J. M., and M., L. P., 1998. “Spherical Mechanism

Synthesis in Virtual Reality”. CD-ROM Proc. of the ASME DETC98,

Paper No. DETC98/DAC-5584, Atlanta, GA, Sept., pp. 13–16.

[57] Furlong T. J., V. J. M., and M., L. P., 1998. “Spades: Software for Syn-

thesizing Spatial 4C Linkages”. CD-ROM Proc. of the ASME DETC98,

Paper No. DETC98/Mech- 588w9, Atlanta, GA, Sept., pp. 13–16.

[58] Alba Perez, Hai-Jun Su, J. M. M., 2004. “Synthetica 2.0: Software for

the synthesis of constrained serial chains”. Proceedings of DETC04 2004

ASME Design Engineering Technical Conferences , Salt Lake City, Utah,

USA, Sept.

[59] Fillmore, J. P., 1984. “A note on rotation matrices”. IEEE Computer

Graphics & Application, 4(2), pp. 30–33.

[60] Röschel, O., 1998. “Rational motion design - a survey”. Computer-Aided

Design, 30(3), pp. 169–178.

[61] Hamilton, W. R., 1899. Elements of Quaternions, Vol. 1 -2. Longmans,

Green & Co.

[62] Hamilton, W. R., 1853. Lectures on Quaternions. Hodges Smith & Co.,

Dublin.

[63] Waerden, B. L. v. d., 1976. “Hamilton’s discovery of quaternions”. Math-

ematics Magazine, 49(5), pp. 227–234.

114

[64] Arunachalam, P. V., 1990. “W R Hamilton and his quaternions”. Math.

Ed., 6(4), pp. 261–266.

[65] Cheng, H., and Gupta, K. C., 1989. “An historical note on finite rota-

tions”. ASME Journal of Applied Mechanics, 56, pp. 139–145.

[66] Pervin, E., and Webb, J. A., 1983. “Quaternions for computer vision and

robotics”. In International Conference on Computer Vision and Pattern

Recognition, pp. 382–383.

[67] Eberly, D., 2002. Rotation representations and performance issue. Tech-

nical report, Magic Software, Inc.

[68] Dam, E. B., Koch, M., and Lillholm, M., 1998. Quaternions, interpo-

lation and animation. Technical Report DIKU-TR-98/5, University of

Copenhagen.

[69] Leandra, V., 2001. Quaternions and rotations in 3-space: the algebra and

its geometric interpretation. Technical Report TR01-014, UNC Chapel

Hill, North Carolina.

[70] Study, E., 1903. Die Geometrie der Dynamen. Verlag Teubner, Leipzig.

[71] Klein, F., and Blaschke, W., 1926. Vorlesungen ber hhere Geometrie,

3rd ed. Springer, Berlin.

[72] Stachel, H., 1997. “Coordinates - A survey on higher geometry”. Com-

puter Networks and ISDN Systems, 29(14), pp. 1645–1654.

115

[73] Rath, W., 1993. “Matrix groups and kinematics in projective spaces”.

Abh. Math. Sem. Univ. Hamburg, 63, p. 177196.

[74] Rath, W., 1996. “A kinematic mapping for projective and affine mo-

tions and some applications”. In Geometry and Topology of Submanifolds,

F. D. e. al., ed., Vol. 8. World Scientific, p. 292391.

[75] Ge, Q. J., and Sirchia, M., 1999. “Computer aided geometric design of

two-parameter freeform motions”. ASME Journal of Mechanical Design,

121(4), pp. 502–506.

116

Appendix A

Installing and Compiling
Motion Design Library

There are two ways in which Motion Design Library can be used. One as a

stand-alone application, named as MoDes where researches, students and other

professionals working in this field can generate different types of motion using

various motion design algorithms already implemented in the library. The

stand-alone application, MoDes can be used to view results for different sets

of control positions with flexibility to set various related parameters for motion

design. It can also be used to generate JPEG and EPS files of the generated

motion which can be used for creating reports. Second, it can be build as a

VC++ project, which can be used to add new motion design algorithms to

the existing code by using the instructions provided in previous chapters.

A.1 System Requirements

The following are the system requirements to ensure the smooth running of

Motion Design Library on your system

117

• System Unit: An Intel Pentium III or Pentium IV based system running

Microsoft XP or Microsoft Vista.

• Memory: 256 MB of RAM is minimum recommended. 1 GB of RAM is

recommended in general.

• Software: Microsoft Visual Studio, preferably 2005 or 2008 and Qt (Ver-

sion 4.3.1 is recommended) is required for modifying and compiling the

Motion Design Library. They are not required for running Motion Design

Library as a stand-alone application.

• Graphics card: A graphics card with a 3D OpenGL accelerator is re-

quired, preferably with a resolution greater than 1024x768 pixels.

A.2 Installing Motion Design Library as a stand-

alone application

Unzip the MDL.rar file to desired location. It can be found at the URL specified

in the Appendix B. Double click on MDL.exe in the directory where MDL.rar

is unzipped. Follow the instructions to install the Motion Design Library as

a stand-alone application. After installation a shortcut will be generated on

Desktop and in the Program’s Menu.

118

A.3 Compiling Motion Design Library as a

VC++ project

Motion Design Library is developed and tested using Microsoft Visual Studio

2005 and Trolltech’s Qt (Version 4.3.1). Below are the step by step instructions

for compiling the VC++ project MDL. The guidelines to build the project

are given for Windows XP operating system with assumption that Microsoft

Visual Studio 2005 and Qt is already installed on the user’s system. Equivalent

steps can be used with other operating systems such as Windows Vista and

other versions of Visual Studio and Qt. However it is not yet tested on other

platforms. Here are the guidelines to compile the Motion Design Library.

Step 1: Unzip the MDL.rar file to desired location. It can be found at the

URL specified in the Appendix B. Open the VC++ project MDL in the

directory where MDL.rar is unzipped.

Step 2: Before we compile the project, it is necessary that Visual Studio is

integrated properly with Qt. Launch Visual Studio 2005. Go to Tools

à Options à Projects and Solutions à VC++ Directories.

1. Add path of bin directory of Qt’s installation under Executable Files

section. It can be some thing like this C:\Qt\4.3.1\bin.(see Fig. A.1)

119

Figure A.1: Adding Qt’s executable files to Visual Studio’s Environment.

2. Set path of essential directories where Qt’s header files are installed

under Include Files section. Path of following three directories

should be added (see Fig. A.2)

(a) (Qt’s Installation Directory)\include.

(b) (Qt’s Installation Directory)\include\QtGui.

(c) (Qt’s Installation Directory)\include\QtOpenGL.

120

Op"on, ? X

'" '0''''''''''",
I;i "',;xt> ,,' ;do.j"",

Cooo<"

• .. r,""c,o<
iii o.",b",lool>
iii O,""c
iii o.""r_
I!' "'''-''_
I!' ~,
Ii 'A'In"' .. , "n"~',,,,,

.. ..,-'~"h .. """""" ...

""" .. ",O<~, ' OK
1 : ',o<_~fiIo'

"
.... ~---->j

roo" to">c ""'" " "''''''' , ,, "cc" , tk fiIo, '*'Ie tel;"', 'I':, ,
"".'" ,- "",."., ' , ~,,' , ,- , .,." ~ ,,-"

c. I [,:ra,o

Figure A.2: Adding Qt’s header files to Visual Studio’s Environment.

3. Add path of lib directory of Qt’s installation under Library Files

section. It can be some thing like this C:\Qt\4.3.1\lib.(see Fig. A.3)

121

Op"on, ? X

• '0''''''''''", , "'OPot, ,,' ;do,j"",
Cooo<"

• .. r,""c' o<
iii o.",b",loob
iii O,=c
iii o.""r_
I!' "'''-''_
I!' ~,
Ii 'A'In"' .. , 'n"~',,,,,

~"'om ' """ .. ",O<~, ' OK
IYI,"" • IIh,.Jdl<,

" ,

.... O,d. '''"<In'' ••
roo" to">c ""'" " "''''''' , ,, ",lAo fib.J-io ", \oC, , , 'o'oct,
,-, "., . .. 1"" ~m "_, .~o- I ~ u ,' .,·

C. I [,:ra,o

· 1

Figure A.3: Adding Qt’s library files to Visual Studio’s Environment.

Step 3: It is also important that the project is configured properly. To ensure

that the project is configured properly, open VC++ project MDL. Then

go to Project à Properties à Linker à Input. In Visual Studio

projects can be build in two modes namely Debug and Release. If you

want to compile the project in Debug mode for testing purpose you

will need to add Debug version of dependencies. In the Additional

Dependencies field check if following library files are added. If not,

add them.

• opengl32.lib

• glu32.lib

• gdi32.lib

• user32.lib

122

Op"on, ? X

• '0',"'"",,,,", , ""Pot, ,,' ;do,j"",
(000<"

• .. r,""c' o<
iii o.",b",loob
iii O,""c
iii o.""r_
I!' "'''-''_
I!' ~,
Ii 'A'In"' .. , 'n"~',,,,,

~"'om ' ""'" .. ",O<~, ,,,
IYI,"" • 1 : L.t.~~f'"

, ... "" "",.,-""
roo" to">c ""'" " "''''''' f" b ,', fb '*'Ie oUI;", ,":' "",;Cot,
,-, "", ••• 1",, ~'" " _ , .~o- I ~ 'T~

·1

• qtmaind.lib

• QtOpenGLd4.lib

• QtGuid4.lib

• QtCored4.lib

• gl2ps.lib

• mkOpenGLJPEGImage.lib

However if you want to build the project in Release mode you will need

to add Release version of dependencies. In that case Additional De-

pendencies field check if following library files are added. If not, add

them.

• opengl32.lib

• glu32.lib

• gdi32.lib

• user32.lib

• qtmain.lib

• QtOpenGL4.lib

• QtGui4.lib

• QtCore4.lib

• gl2ps.lib

• mkOpenGLJPEGImage.lib

For both modes make sure that under Ignore Specific Library field

LIBCMTD.lib is added. (see Fig. A.4)

123

Figure A.4: Setting project properties.

That’s it. Motion Design Library is now ready to be build with Visual Studio.

Go to Build à Build Solution. If every thing is configured properly the

project should compile without any errors. If it does not compile, please

recheck your settings.

124

•

Appendix B

Downloading MDL and
Documentation

The Motion Design Library (MDL), MoDes, and Documentation can be down-

loaded from following URL:

macmotion.eng.sunysb.edu/MDL

125

