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Abstract of the Thesis
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by
Swaminathan Sundararaman
Master of Science
in
Computer Science
Stony Brook University

2007

Making vital disk data recoverable in the event of malicieystem attacks has been a hard
problem in storage-system design. Today, an attacker wbeaghmed super-user privileges in
a system can easily wipe out or forge all data stored on digke flindamental reason for this
vulnerability is that almost all security mechanisms inagd systems exist at or above the op-
erating system level. To prevent damage to data even in @t @ OS compromise, protection
mechanisms have to be implemented at a layer below the opesistem: the disk.

In this thesis we present Selective Versioning in a Secusk Biystem (SVSDS), that in-
ternally performs selective block-level versioning ofaléty exploiting higher-level data seman-
tics. Because this internal versioning is completely tpament to the operating system and the
higher layers of the system, it cannot be by-passed or diday malicious attackers. SVSDS
leverages the mechanism of Type-Safe Disks to obtain paimigrmation at the disk level, and
versions all meta-data and chosen data items specified byy#tem administrator. Therefore,
our versioning disk system has significantly lower space erdormance overheads compared
to semantic-agnostic block-level versioning systemstetiwe accommodating more versions to
improve recoverability.

SVSDS also provides two basic constraints to protect vaiéd @égainst damage: read-only and
append-only. Important configuration and executable fies are rarely updated can be marked
as read-only at the disk level, and the disk disallows write¢he corresponding blocks. The
append-only constraint can be used to protect system lagtfiegt act as the basis for intrusion
detection.

We have implemented a prototype SVSDS in the Linux kernad, @ evaluation confirms
that it can be built with acceptable space and performaneeheads.
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Chapter 1

Introduction

Data protection is an important problem in systems rese®cfjanizations and institutions spend
millions of dollars in research and procurement to proteeirtdata. Today’s disks do not have
any built-in security mechanisms, so the security of thesst@lata is tied to the operating system.
Operating systems are not completely secure; vulneriasilare constantly exploited by root kit
attacks, buffer overflow attacks, malware and maliciousuilgrs. This makes protecting data
stored on a disk a very hard problem. There are some solU@én29] to protect data in the event
of an operating-system compromise. The problem with thepecaches are that they are either
not flexible or incomplete.

Data protection systems can be broadly classified into ttewsgories according to their fea-
tures: (1) confidentiality, (2) integrity, and (3) recoveitdy. Confidentiality ensures that data
cannot be read by any unauthorized person. Integrity eaghet unauthorized changes to the
data do not go unnoticed and availability ensures that igtfevious versions of the data or copies
of the data in exist in a remote location. Data recoverahilitthe event of system compromise
is a primary requirement in critical systems because damdould lead to serious consequences
in most cases. Existing solutions such as encryption andygeem or disk level versioning are
either ineffective or inefficient. For example, encrypticamnot protect against deletion of data.

In this thesis, we propose a selective versioning secukesgigem (SVSDS) that transparently



versions selected blocks inside the disk. SVSDS versiopsitant (i.e., meta-data) blocks and
user-selected files and directories. SVSDS uses pointemiation that is available inside Type-
Safe Disks (TSD) [26] and leverages it to aid in selectivedysioning data inside the disk. A
TSD is a disk system that infers block relationships thropgimters to enforce invariants on data
access, and to provide better security and other semamticeeaoptimizations inside the disk.

All blocks inside the disk may not have the same level of inguuze. Meta-data blocks are
more important than data blocks because they impact théabdity of other blocks. For exam-
ple, if the inode block of a file is corrupt, its data blocks kkbbecome unreachable. Also, all
files stored on the disk may not be equally important. For eptandiles present in thémp folder
are less important than those in thusr folder. Some files are created and deleted within a short
period of time (e.g., program installation) and versionafignges to these files would unnecessar-
ily occupy additional space. Existing solutions such agt@id5], Trap [34], Peabody [12], and
S4 [29] version all data inside the disk, hence they haveifsignt space overhead, which limit
the depth of the version history available to users. We wealkdabout these system in detail in
Section 6

Apart from versioning blocks at the disk level, SVSDS alsdoeres operation-level con-
straints such as making groups of blocks read-only or appahd This is one of the important
desirable properties of a secure disk system. For exampl@taision detection system has to
protect log files from being overwritten by intruders or mahe applications as the correctness of
post-intrusion analysis depends on these files.

When data protection mechanisms such as selective vargianid operation-level constraints
are combined together, they enable the system to providager data integrity and availability
guarantees. The window of time during which the data can bevexed is much wider than that
provided by existing solutions that are forced to versidrblaicks.

SVSDS protects data stored inside the disk by transparsetiyioning meta-data and user-
selected files and directories at regular intervals. It ailgglements operational-level constraints

inside the disk, that help protect immutable and log filesflmeing modified or deleted.



We evaluated our prototype implementation by using mi@odhmarks and real workloads.
We found that the cost of performing selective versioing afadwhile enforcing operation-level
constraints are quite minimal. For typical user workloa8%¥SDS has an overhead of just 1%
compared to regular disks.

The rest of the thesis is organized as follows. Chapter Zeysrisackground work. Chapter 3
and Chapter 4 explain the design and implementation of atery. In Chapter 5 we discusses the
performance evaluation of our prototype implementatioalaked work is discussed in Chapter 6.

Chapter 7 talks about possible future work. We conclude iap@dr 8.



Chapter 2

Background

SVSDS uses the pointer information available inside TSDBstectively version blocks and user-
selected files and directories inside the disk. In this eactve first describe TSDs, then, we
discuss the advantages and disadvantages of ACCESS (A iltgpabnscious Extended Stor-

age System) whose objective is to protect data confidegtiaien when the operating system is

compromised.

2.1 Type-Safe Disks

Today’s block-based disks cannot differentiate betweenktypes due to the limited expressive-
ness of the block interface. All higher-level operations ianslated into a set of block read and
write requests. Hence, they do not convey any semantic kaumel about the blocks they modify.
This problem is popularly known as the information gap instmrage stack [4, 7], and constrains
disk systems with respect to the range of functionality thay can provide.

Type-Safe Disks (TSD) try to bridge this information gapilgh the use of pointers. Pointers,
though simple, proved effective in bridging the informatigap. Pointers are the smallest unit
through which file systems organize data into semanticalyammgful entities such as files and

directories. Pointers define three things: (1) the sematdgmendency between blocks; (2) the



logical grouping of blocks; and (3) the importance of blacksen though pointers provide vast
amounts of information about relationships among bloakday’s disks are oblivious to pointers.
A TSD is a disk system that is aware of pointer information aad use it to enforce invariants
on data access and also perform various semantic-awaraipgtions which are not possible in
today’s disk systems.

Pointers are the primary mechanisms by which data is orgdniklost importantly, pointers
define reachability of blocks; i.e., a block this is not pethtto by any other block cannot be
reached or accessed. Almost all popular data structuresfasstoring information use pointers.
For example, file systems and database systems make egters&ivof pointers to organize the
data stored in the disk. Storage mechanisms employed bpatssa like indexes, hash, lists, and
b-trees use pointers to convey relationships between dloBlopular file systems like Ext2 and
VFAT have been modified to support TSDs with negligible dffa].

TSDs widen the traditional block-based interface to entii#esoftware layers to communicate
pointer information to the disk. This allows free-space agament to be been moved from the
file system to the disk. File systems can use the disk API ¢ggdyy TSDs to allocate blocks,
create pointers between blocks, delete pointers and gesfrace information from the disk. TSDs
perform automatic garbage collection of deleted blockghsee is no API call for freeing blocks.

The garbage-collection process performed in TSDs is diffefrom the traditional garbage-
collection mechanism employed in most programming langsag TSD garbage collects deleted
blocks in an online fashion as opposed to the traditionaineffnechanism in most programming
languages. TSDs maintain a reference count for each bleckttie number of pointers pointing to
that block). When the reference count of a block decreasesrtyp the block is garbage collected;
the space is reclaimed by the disk and the block is added tiisthaf free blocks. It is important
to note that its the pointer information provided by TSD thlkdw the disk to track the liveness of

blocks, which cannot be done in traditional disks [27].



2.2 ACCESS

Some of the guarantees provided by encryption file systerdsdata-integrity mechanisms do
not hold when the operating system is compromised. In oevercome this limitation, AC-

CESS [26] provides a security perimeter at the disk level.CESS protects blocks or a chain
of blocks through capabilities. Users must provide caji#sl to read from and write to blocks.
With the help of pointer information inside the disk, ACCE&sRs implicit capabilities to access
unprotected blocks. Blocks that are pointed to by protebtedks are implicitly protected by the
capability of the protected block. To access any block a omsest either provide the capability for
that block or provide the capability for the reference bldke&t points to it. A session is created
when a user provides a capability to access a block, and nsnaative until it times out. During

an active session, all data that could be reached by thegtedt®dlocks is vulnerable to attack;
ACCESS in its present form does not handle this situatian, (it does not detect intrusion and

revert back to previously known good state).



Chapter 3

Design

When designing SVSDS, we had the following four goals in mind

e Security We designed our system to ensure data stored inside thesdishtected even in

the event of an operating system compromise.

e Transparent Versioning We designed our system such that a disk can start versioning a
block with little or no user intervention. This is to ensukat disk-level versioning is not
bypassed by applications at higher layers. We wanted mindimao modifications to the
file systems that support TSDs to work with SVSDS. For nornpalrations SVSDS should

be completely transparent.

¢ Flexibility We wanted our disk system to be more flexible to allow user®tsion data at
different block granularities. Users can specify per-fitgper-directory as the granularity
for versions, as users are less concerned with entire filemsysr disks being versioned.

Disks should intelligently version important blocks.

¢ PerformanceWe designed our system such that versioning inside the Hs#tsmall over-

heads as compared to regular operations.

Figure 3 shows the architecture of SVSDS. It is made up of dn@mponents: the pointer

management layer, the storage virtualization layer (SWejsion manager, and operation man-



ager. The pointer management layer helps in tracking ozlatiips between blocks. The SVL
performs transparent versioning of blocks inside the didke version manager efficiently tracks
and manages versions, and the operation manager impleopErion-level constraints as spec-

ified by the user.

File System / Software Layer

Software

READ
WRITE

ALLOC_BLOCK

CREATE_PTR
DELETE_PTR
MOVE_PTR
ALLOC_SUB_BLOCK
FREE_SUB_BLOCK
VERSION_BLOCKS
SET_READ_ONLY
SET_APPEND_ONLY

‘ Cache H Storage Virtualization Layer HVersion Manager‘
Operation Manager

Physical Blocks

Figure 3.1: Design of Sdlective Versioning in a Secure Disk System

The rest of the this chapter is organized as follows. Secidndescribes how the disk is
virtualized. Section 3.2 describes the versioning methlagjoand how the disk selectively and
transparently versions blocks. Section 3.3 describes hewdisk tracks modifications to blocks,
its block allocation policy, and the garbage collection efeded blocks. Section 3.4 describes the
recovery policy for data blocks. Section 3.5 describes hwsvwersioning process is automated
inside the disk. Section 3.6 describes how versions canueeteel back. Section 3.7 describes
how operation-level constraints are enforced inside tkk.di

Section 3.8 discusses the consistency issues, admiivistiaterface and denial of service

attacks. Section 3.9 describes the limitations of our syste



3.1 \Virtualizing the disk

Transparent versioning is an important requirement forsystem. This is because versioning at
the disk level should not by bypassed by applications or fisdesns that use it. Also, blocks that
contain previous versions should not be accessible toegins and file systems. This protects
the versioned data even when the operating system is conggdm To transparently version
blocks at the disk level, SVSDS virtualizes the physicak ditocks and presents a logical view of
these blocks to upper layers. The layer that virtualizeslible is called the Storage Virtualization
Layer (SVL). Its primary function is to export a logical blotayer to the applications and maintain
the mapping between logical and physical blocks internally
Themttable or mapping table is used by SVSDS to store the relationstepsden logical and

physical blocks. During each block request, the m-tablefisrred to by the SVL to translate and
redirect the request. Flags are also associated with edghterdenote the type and status of the

logical block.

3.2 \Versioning methodology

SVSDS provides file system level flexibility in versioningbks inside the disks. It automatically
versions reference blocks and user-selected files andtaliies. To create a new version of a
block, SVSDS allocates a new physical block through the SAfid changes the corresponding
entry in the m-table to point to the newly-allocated physigack. An entry is added for the
old block in thev-table (or version table) with its version number set to the presieersion.
Reverting to previous versions is discussed in Section 3.6.

The rest of the section is organized as follows. Sectiorl3i2scribes why selective version-
ing is required inside the disk. Section 3.2.2 describes BM&DS versions meta-data blocks.
Section 3.2.3 describes how SVSDS versions user-seletgsdafid directories. Section 3.2.4 de-
scribes the additional API calls exported by SVSDS to allppligations to selectively version

files and directories, and to notify the disks about openakéwvel constraints.



3.2.1 Selective block versioning

Versioning all blocks inside the disk would quickly consuaikavailable free space on the disk.
Also, versioning all blocks is not a good idea for the follogitwo reasons: (1) it is not desirable
to version short lived temporary data (e.g., data in the fofger), and (2) even persistent data
blocks do not have the same level of importance. For exampthe Ext2 file system, versioning
super, inode, or indirect blocks is more important thanieeiag data blocks because these blocks

define the reachability of other blocks.

3.2.2 Meta-data

In order to selectively version blocks, SVSDS make use opthieter information available inside
TSDs. SVSDS exploits this information to selectively versimeta-data (or reference) blocks.
When thecreate_ptr call succeeds, SVSDS marks the source block as a refereack inl the

m-table. This information helps the version manager degilieh blocks to version.

3.2.3 User-specified Data

A user may want the disk to automatically version certainsfdad directories. To selectively
version files and directories, SVSDS providesvhesion_blocks API call. SVSDS does a Breadth
First Search (BFS) on the p-table starting from the block ihg@assed to this function. All the
blocks traversed during the search are marked for vergipimithe m-table. Cycles are common
in the p-table (for example, in Ext2TSD [26] there is a pairftem the directory block to the
inode block of the sub directory and vice versa). SVSDS dgtmuad skip blocks that have already
been marked for versioning.

To version blocks that are added to the file or the directamsrdiieversion_blocks call, SVSDS
checks the flags present in the m-table of the source blodkglareate_ptr operation. If the
source block is versioned then the destination block thabints to is also marked to be ver-
sioned. For example, file systems that use SVSDS to versida shibuld pass the block number

containing the inode of the file to this function.

10



3.2.4 Disk API

We have widened the disk interface to provide support fosieging files and directories and for

applications to specify the operation-level constraim$lmcks to the disk.

e VERSION.BLOCKS(Block): Marks all blocks in the sub-tree starting from bloé&dock
to be versioned. The data blocks present in the sub-treebwillersioned along with the

reference blocks.

e MARK_READ_ONLY (Block): Marks all blocks in the sub-tree starting from bloBkock as

read-only.

e MARK_APPEND.ONLY (Block): Marks all blocks in the sub-tree starting from bloBkock
as append-onlyBlock itself will not be append-only as it should be a metadatalglagth

possible non-sequential updates.

3.3 Tracking modifications

This section is organized as follows. Section 3.3.1 dissus®w reads and writes are handled by
SVSDS. Section 3.3.2 discusses how applications gets lioekdfrom the disk and Section 3.3.3

discusses the garbage collection mechanism inside the disk

3.3.1 Reads and writes

SVSDS virtualizes the disk space through the SVL. All read arite requests must be translated
to the new physical location before they are processed. \Whmessing a write request, the disk
checks if the target is a block that has to be versioned. Faiomed blocks, the disk checks if
there exists a mapping for the current version in m-tablge#, it redirects the write to the mapped
block. If the mapped version and the current version do ndtimahe disk requests the SVL to
allocate a new physical block that is close to the existingped physical block. It then stores the

old mapping in the v-table table with the last version numfer, current version number - 1).

11



Finally it changes the m-table entry for the logical blockptmint to the newly allocated physical
block. For data blocks, it gets the mapped physical blockftbe SVL and redirects the request
to the mapped physical block.

3.3.2 Block allocation

The block allocation policy for SVSDS is built on top of thaepent in TSDs. SVL manages both
physical and logical disk space and tracks the relationsbipreen them. Whenever SVSDS gets
a request from the software layer to allocate blocks, it @askis request to the SVL. SVL first
tries to allocate a physical block from the disk. If the adltbon request succeeds it then allocates
a new logical block which is returned back to the caller; anctéates a entry in the m-table for
the logical and the physical block pair. If the SVL is unalidihd a free physical block it tries
to free a block from the deleted block list. If the deleteddhldist is empty it then frees the space

occupied by the oldest version.

3.3.3 Garbage collection

Even though SVSDS selectively versions blocks inside tkbk, di may eventually use up all the
available free space. When all of the disk space is used afteinpts to free up some space as
quickly as possible. It first tries to reclaim deleted datacks from the deleted blocks LRU list.
Once all of the blocks are reclaimed, it them tries to free pgce used by older versions. When
the disk is reverted back to a previous version, the list o€k$ that are in the deleted block list is
reclaimed by the garbage collector. This is because as S\W@BSnot allow users to go forward

in the version history.

3.4 Recoverability of data blocks

When a user reverts back to a previous version, SVSDS caenfarpn a perfect reversion in most

cases. To perfectly reproduce the previous state, the diskdweed to revert all mappings for all

12



blocks, including those that were not versioned. Data ld@ok not versioned by default and they
could be deleted in the current version, making their regpdéficult if not impossible. SVSDS
tries to reuse deleted data blocks as late as possible. Togj&lSDS maintains a separate LRU
list for storing the deleted data blocks. When the systenevented back to a previous version,
the delete pointer operation that caused the deletion afdteeblock is replayed. During this time
SVSDS checks the deleted block list and replays the creatgégpmperation only if the deleted
blocks are still present in the LRU list. This policy of lazargage collection allows users to
recover not only reference blocks but also those deletaallilatks that have not yet been garbage
collected yet. For example, a user may want to revert afashiartently deleting on entire entire
directory. If all data blocks that belong to the directorg awot garbage collected, then the user
can get back the entire directory. If some of the blocks aneadly reclaimed by the disk, the user

would get back the deleted directory with some missing files.

3.5 Automating the process

SVSDS automatically creates versions at regular intenAlsisers or an administrator need not
explicitly version data on the disk. However, administratcan specify the versioning frequency
through the administrative interface of SVSDS. When a nessiwa is to be created, the SVSDS
increments the current version count. It then creates, rg émtthe new version in the v-table to
store the changes to the blocks that are versioned and theepoperations that happened during
the time the new session is active.
SVSDS in its current form has the same versioning intervabkfbblocks. Alternatively, we

could also implement different policies for different bkogroups according to user requirements
and importance of the data stored inside the blocks. Thisldvprovide deeper histories for

selected files.

13



3.6 Reverting back versions

In the event of an intrusion or an operating system compreyras administrator may want to
revert back to a previous safe state of the file system. SVSb®saadministrators to preform
cascading reverts to reach a previous version. Even thdugipossible to see the contents of a
group of blocks for any previous version, it is not possitide $VSDS to jump to any arbitrary
version. This is because TSDs use pointer information tktidock relationships, and to garbage
collect deleted blocks. Suppose we are trying to go fromieers to versiony. Reverting back
v-table entries for versiog alone would not work because blocks that were allocated ot
that were created or deleted between vergi@nd versionz would not be reverted back. These
blocks cannot be reclaimed back and we would be leaking sdacether words, the reference
count for certain blocks could have increased after theimeraas created (e.g., new blocks are
added to increase the size of a file), which would break thbagge collection mechanism in the
TSD. Hence, SVSDS allows users to revert back one versiotiraiea

SVSDS uses the-table to maintain information about previous versions. In orderdvert
back to the previous version, SVSDS stores all of the blodkssg mappings were changed in the
previous version. When the system is reverted back fromaeusto its previous version — 1, it
reverts back all the changes to the m-table stored in versidhile reverting back the mapping
table entries, the current m-table (or the physical blogkshted to by the logical blocks are freed
as they are no longer required.

To revert back pointers, SVSDS tracks pointer operatioas ttlappen during the lifetime of
a version. To reduce the space required to store the poiptatons, SVSDS does not store all
of the pointer operations that happen during a particulssisa. Blocks (or files) that are created
and deleted during a session cannot be reverted back. Fompdxasupposereate_ptr is called
with sourcexr and destinatiory. During that particular session, ifdelete ptr operation is called
with the same source and destinationy, SVSDS removes the entry from the pointer operation
list for that session.

SVSDS replays the reverse of the pointer operation in thersgvorder. The reverse opera-

14



tion for create_ptr operation isdelete_ptr and vice versa. Other operations, ligkoc_block and
alloc_bulk_blocks, are internally translated toreate_ptr operations. Section 3.6.1 describes re-

playing pointer operators in more detalil.

3.6.1 Reverting Pointer Operations

While reverting back to a previous version, the pointer afiens have to be replayed in the
reverse order. If not, TSD’s the garbage collection medrawould not work properly and hence

it would leak space. Figure 3.2 illustrates this problem.

el C c ¢ c ™

a a -b a—~b_ %b< a b< (b)
~d d d

o o ® @ (5) (®)

Figure 3.2: Create pointer operation

It can be seen from Figure 3.2 (1, 2 and 3) that blaikthe reference block for blodk which
in turn is the reference block for blocksandd. If the pointer operations are replayed in the same
order as they occurred during the session, then From fig@ré43 and 6) it can been seen that
blocksb would not be garbage collected. This is because interné@®d do not garbage collect
blocks that have out going pointers, and also do not checiefeesnce count for the source block
to garbage collect if the last outgoing pointer from it isetetl. This situation does not occur when
the pointer operations are replayed in the reverse order.

When thedelete_ptr operations are replayed in the reverse order it does noe likevsystem in
a consistent state. This is because the applications hassu® delete pointer calls in the reverse

order as TSDs check the reference count for that particltexkibefore it is deleted.

C C C
- A— aa-—-ba— /
a b<d a b<d a~-ba a a b\d
W @ ® @ 6 ©®)

Figure 3.3: Delete pointer operation

Figure 3.3 (1, 2 and 3) shows the sequence of pointer deleripns and Figure 3.3 (4, 5

15



and 6) show the sequence of steps performed while reverting the delete pointer operations.

3.7 Operation-level Constraints

In addition to versioning data inside the disk, it is also artpnt to protect certain blocks from
being modified or overwritten. SVSDS allows users to spettify types of operations that can
be performed on a block. This enables users to assign flegiileies for individual files and
directories. Operation-level constraints implemente@MEDS are read-only and append-only.
The sequence of steps taken by SVSDS to mark a file or a diyeagoimmutable or append-
only is similar to marking a file or a directory to be version&tihile marking a group of blocks,
the first block (or the root block) of the breadth first searshréated differently to handle atime
updates. A special bit is set in the flag along with the bit widate that it is a read-only or

append-only block. This bit would be used later to infer thé is an inode block.

3.7.1 Read-only Constraint

The read-only operation-level constraint is implementedchtike block(s) immutable. For exam-
ple, the system administrator could mark binaries or dimées that contain libraries as read-only
so that later on they cannot be modified by a virus, trojandvasany other malware application.
Since atime updates cannot be distinguished from regutakiwrites using pointer information,

SVSDS disallows atime updates, as they does not changetégiin of the file.

3.7.2 Append-only Constraint

Log files serve as an important resource for intrusion amakysd statistics collection (e.g., Web
logs). Operation level constraints implemented by SVSDEShmused to protect important log
files from being overwritten or deleted by intruders. Once #uministrator marks the log files
to be append-only, SVSDS ensures that all operations ork ldelonging to these files are only

appends.
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For append-only blocks, SVSDS checks the difference betlee original contents and the
block being written to verify that data is only being appesdand not overwritten or deleted. In
order to avoid reading the original contents of the blockimlyia write operation for comparison,
SVSDS caches append-only blocks when the blocks are readtfre disk. During the compari-
son, it checks the cache for the block. If it is not presentSB% issues a read request and adds
the block to the cache before processing the write request.

As inode blocks of append-only files have to be updated, SVB&8iits the first block of
append-only files to be overwritten. It also checks if the sagat of bytes is modified every
time. Since SVSDS does not have sufficient semantic infaomatbout the file system, enforcing

append-only constraints on directories does not work pitape

3.8 Issues

This section describes issues we have encountered whikdopinng the SVSDS architecture.
Section 3.8.1 describes consistency issues for file sydtahase SVSDS. Section 3.8.2 describes

the mechanisms for reverting back versions. Section 38s8ribes denial of service attacks.

3.8.1 Consistency

Because SVSDS does not know about file-systems semantrestimg versions might leave the
file system that runs on a SVSDS in an inconsistent state. Ayfeem consistency checker (e.g.,
fsck) needs to be run after the disk is reverted back to a previetsan. Since SVSDS internally
uses pointers to track blocks, the consistency checkeldladgao issue appropriate calls (namely
alloc_block, create_ptr, anddelete_ptr) to SVSDS to ensure that disk-level pointers are consistent

with file system pointers.

17



3.8.2 Administrative Interfaces

To prevent unauthorized users from reverting versiond@sie disk, an SVSDS should have a
special hardware interface (or port) through which an adstrisor can revert back to previous

versions. This port can also be used by the administratagttthe versioning frequency.

3.8.3 DoS Attacks

SVSDS are also vulnerable to denial of service attacks. €laer three issues to be handled: (1)
an intruder could mark arbitrary files for versioning or dut bperation-level constraints on them;
(2) blocks that are marked for versioning could be repegtedtrwritten; and (3) lots of bogus file
could be created to delete old versions. In order to prevenalicious user from adding files for
versioning or setting operation-level constraints, SVSiganits these operations only through
the admin interface. As with most of the denial of servicacks there is no perfect solution
to attack of type 3. To counter attacks of type 2, in our curpototype, SVSDS throttles the
access to the group of file that is versioned. An alternatblat®n to this problem would be to
exponentially increase the versioning interval of the ipatar file / directory (i.e., a groups of

blocks) that is being constantly overwritten.

3.9 Limitations

Since SVSDS operate at the granularity of blocks, it canatgcsively version individual files in

an Ext2TSD file system. This is because in Ext2TSD multiptelés share the same block on a
disk. Hence, other inodes that share the inode block woshillz¢ versioned when one of them is
versioned. Also, in the current implementation of SVSD®ysslo not have access to the previous

versions of files.
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Chapter 4

Implementation

We implemented a prototype SVSDS as a pseudo-device dnvenux kernel 2.6.15 that stacks
on top of an existing disk block driver. Figure 4.1 shows teeyrlo device driver implementation
of SVSDS. SVSDS hag, 487 lines of kernel code out of whicB, 060 were reused from an
existing TSD prototype. The SVSDS layer receives all blaguests, and re-maps and redirects
the common read and write requests to the lower-level dedticer. The additional primitives
required for operations such as block allocation and pointanagement are implemented as
driverioctl  s.

When a program reads or writes to a block, the requests comesggh syscall, and then it
passed through VFS and to the file system (e.g.,ext2tsdjn Eve file system it reaches SVSDS,
which with the help of SVL find the corresponding physicaldis, redirects the request to the

underlying disk through the generic block driver.
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Figure 4.1: Prototype Implementation of SVSDS
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Chapter 5

Evaluation

We evaluated the performance of our prototype SVSDS framewnthe context of Ext2TSD
[26]. We ran general-purpose workloads on our prototypescmmpared them with unmodified
Ext2 file system on a regular disk. This section is organizedodows: In Section 5.1 we talk
about our test platform, configurations, and procedureSelttion 5.2 we analyze the performance
of the SVSDS framework on typical user workloads. In SecBdhwe analyze the performance

on OpenSSH workloads. In Section 5.4 we analyze the perfucenan kernel compile workload.

5.1 Testinfrastructure

We conducted all tests on a 2.8GHz Intel Xeon CPU with 1GB RAM| a 74GB 10Krpm Ultra-
320 SCSI disk. We used Fedora Core 6 running a vanilla Lin6x18.kernel. To ensure a cold
cache, we unmounted all involved file systems between eath Ye ran all tests at least five
times and computed 95% confidence intervals for the measediasystem, user, and wait times
using the Student-distribution. In each case, the half-widths of the intesvakre less than 5%
of the mean. Wait time is the difference between elapsed éanteCPU time, and is affected by
I/0 and process scheduling. We recorded disk statistiaa fppoc/diskstats for our test disk. We

provide the following detailed disk-usage statistics: thenber of read I/0O requests @), number
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of write 1/0 requestswio), number of sectors readsgct), number of sectors writtennsect),
number of read requests mergedérge), number of write requests mergearerge), total time
taken for read requestsuée), and total time taken for write requestsuse).

Unless otherwise mentioned, the system time overheadsoaased by the hash table lookups
required during the&eREATE_.PTRandDELETE_PTR TSD calls. The hash table lookups (on the m-
table) required by SVL during every request to the disk adiaificant overhead to the system
time. This CPU overhead is due to the fact that our prototgpmplemented as a pseudo-device
driver that runs on the same CPU as the file system. In a reaDSV&etting, the hash table
lookups will be performed by the processor embedded in thlealid hence will not influence the
overheads on the host system, but will add to wait time.

We have compared the overheads of SVSDS using Ext2TSD adait’ on a regular disk
and Ext2TSD on a TSD. We denote Ext2TSD on a SVSDS using the lat2Ver. The letters

M and A are used to denote selective versioning of meta-datak data respectively.

5.2 Postmark

Postmark [13] simulates the operation of electronic mad aews servers. It does so by perform-
ing a series of file system operations such as appends, fis,rdamectory lookups, creations, and
deletions. This benchmark uses little CPU but is I/O intemsiVe configured Postmark to create
3,000 files, between 100-200 kilobytes, and perform 300téf¥sactions. The results for the
postmark benchmark is shown in Figure 5.1.

Figure 5.1 and Table 5.1 show the performance of Ex2TSD on[¥/for Postmark with a
versioning interval of 15 seconds. Postmark deletes dillés at the end of the benchmark, so no
space is occupied at the end of the test. SVSDS transparzatyes versions and thus, consumes
storage space which is not visible to the file system.

For Ext2TSD, the elapsed time was observed to be 1.6% légsarystem time 1.14 times, and
wait time 8.12% lesser that of Ext2. The increase in the aysime is because of the hash table

lookups duringCREATE_PTR and DELETE_PTR calls. The decrease in the wait time is because,
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Figure 5.1: Postmark results for SVSDS

unlike Ext2, Ext2TSD does not take into account future glowitfiles while allocating space for
files, this decrease in wait time caused it to perform sligitdy than ext2 file system on a regular
disk, but would have had a more significant impact in a benckmwith files that grow.

For Ext2Ver(M), elapsed time was observed to be 1.17%, disstally indistinguishable
given our confidence interval, system time 4.28 times and tvae -19.91% that of Ext2. The
increase in system time is due to the additional hash tablaujgs to locate entries in the m-table.
The decrease in wait time is due to better spacial localityinoreased number of requests being
merged inside the disk. This is because random writes\iiréing inode block along with writing
the newly allocated block) were converted to sequentialesrilue to versioning.

For Ext2Ver(A), elapsed time was observed to be statif§i¢atlistinguishable, system time

4.29 times and wait time 19.47% less that of Ext2.
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Ext2 | Ext2TSD | Ext2TSD(M) | Ext2TSD(A)
Elapsed 780.5s 768.0s 789.7s 793.1s
System 36.28s 88.58s 191.71s 191.94s
Wait 741.42s| 676.11s 593.80s 597.09s
Space o/h| OMB OMB 443MB 1879MB

Performance Overhead over Ext2
Elapsed - -1.60% 1.17% 1.61%
System - 1.44 % 4.28 x 4.29x
Wait - -8.12% -19.91% -19.47%

Table 5.1: Postmark results.
5.3 OpenSSH Compile

To simulate a relatively heavy user workload, we compilesl @penSSH source code. We used
OpenSSH version 4.5, and analyzed the overheads of Ext2egutar disk, Ext2TSD on a TSD,
and meta-data and data versioning Ext2TSD on SVSDS fauniteer , configure , andmake
stages combined. These operations in combination cotestitsignificant amount of CPU activity
and 1/O operations. The results for the OpenSSH compilarershown in Figure 5.2.

For Ext2TSD, we recorded a insignificant increase in elapiseg, a an insignificant increase
in system time and a 108% increase in the wait time over Ext&:ehe results are statistically
indistinguishable, it is difficult to quantify for the inaese in wait time.

For Ext2Ver(M), we recorded a 7.2% increase in elapsed tand,a 41% increase in system
time over Ext2. Ext2Ver(M) consumed 1.1 MB of additional spdo store the versions. The
increase in system time overhead is due to the additiondl tadde lookups by SVL to remap the
read and write requests. Ext2Ver(M) consumes 496 KB of axdit space to store the versions.

For Ext2Ver(A), we recorded a 7.21% increase in elapsed, timé a 39% increase in system

time over Ext2. Ext2Ver(A) consumes 15MB of additional spéx store the versions.
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Figure 5.2: OpenSSH Compile Results for SVSDS
Ext2 | Ext2TSD | Ext2TSD(M) | Ext2TSD(A)
Elapsed | 60.186s| 60.532s 64.520s 64.546s
System 10.027s 10.231s 14.147s 14.025s
Wait 0.187s 0.390s 0.454s 0.634s
Space o/h\ OMB \ OMB \ 496KB\ 15.14MB
Performance Overhead over Ext2

Elapsed - 0.57% 7.20% 7.21%
System - 2% 41 % 3%
Wait - 108% 142% 238%

Table 5.2: OpenSSH results.
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5.4 Kernel Compile

To simulate a CPU-intensive user workload, we compiled timeix. kernel source code. We used
a vanilla Linux 2.6.15 kernel and analyzed the overheadsxt? ESD on a TSD and Ext2TSD
on SVSDS with versioning of all blocks and selective versignof meta-data blocks against
regular Ext2, for thauntar , make oldconfig , andmake operations combined. The results

are shown in Figure 5.3.

3500

Wait ——1
User o=
3000 | System m—
m 2486.3
é 2500 | 2467.2 2460.8 2470.6
o
[&]
(]
L 2000
()
£
= 1500 t
©
[}
a
© 1000
T}
0
Ext2 Ext2TSD Ext2Ver(M) Ext2Ver(A)

Figure 5.3: Kernel Compile Results

For Ext2TSD, elapsed time was observed to statisticallistimdjuishable, system time over-
head was 3.6% lower and wait time lower by 24% than that of EXtiz decrease in the wait time
is because ext2TSD does not consider future growth of filetevetiocating new blocks. The
decrease in wait time is due to better spatial locality inZ2:8D.

For Ext2Ver(M), elapsed time was observed to be indistisigaible, system time overhead
was 4.6% and wait time lower by 5.6% than that of Ext2. Thedase in wait time in relation to

ext2TSD is due to versioning meta-data blocks which affeetlbcality of the stored files. The
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space overhead of versioning meta-data blocks was 51 MB.

For Ext2Ver(A), elapsed time was observed to be indistisigaible, system time overhead
was 10.1% higher and wait time lower by 0.78% than that of EXtBe increase in wait time
in relation to ext2TSD is due to versioning all blocks whiclrgaens the locality of files. The
increase in system time is due to the additional hash taloleulss for required for storing old

mapping information in the v-table. The space overhead iering all blocks was 181 MB.

Ext2 | Ext2TSD | Ext2TSD(M) | Ext2TSD(A)
Elapsed | 2467s 2461s 2471s 2468s
System 162s 167s 169s 177s
Wait 72.1s 54.7s 68.0s 71.6s
Space o/h| OMB oOMB 51MB 181MB

Performance Overhead over Ext2

Elapsed - -0.26% 0.13% 0.7%%
System - 3.6% 4.7% 10%
Wait - -24% -5.6% -0.8%

Table 5.3: Kernel Compile results.
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Chapter 6

Related Work

Data protection has been a major focus of systems reseatbl jpast decade. Inadvertent user
errors, malicious intruders, and malware applications éxaloit vulnerabilities in operating sys-
tems have exacerbated the need for stronger data proteogohanisms. Various data protection
solutions have been proposed that use techniques such ptemtg versioning, snapshotting,
and data backup to counter this problem and recover fromsaorodisasters.

The rest of the this section is organized as follows. Sedfidndiscusses encryption file
systems. Section 6.2 discusses version control systemetio®&.3 describes versioning file
systems, their advantages and disadvantages. Secticall&4about systems that take snapshots
of the entire file system. Section 6.5 talks about systemisvnaion blocks at the disk level.

Finally Section 6.6 discusses systems that virtualize vhéable storage space.

6.1 Encryption file systems

Encryption file systems [9, 18, 25, 33, 35] are designed twigeodata confidentiality. These file
systems encrypt data using user-provided keys. Since ywedee only known to the users who
created them or have access to the corresponding data,ot poasible for others to decrypt and

read the file contents. Though encryption file systems prakecconfidentiality of user's data,
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they do not protect malicious users from modifying them. fimeo words, these systems do not
protect the integrity of the stored data. Systems such aRSHS] help detect data modifications
by unauthorized users, but not protect against unauttebrizedification or help revert back to the

original data.

6.2 Version control Systems

CVS [1], Subversion [2], and RCS [32] are a few popular agtians that are used for source
code management. They do not transparently version datassamnd have to execute commands to
create and access versions. Rational ClearCase [11] isearmpplication that is used for source
code management. The disadvantage with this system ig tegtires an administrator to manage

it and it is expensive.

6.3 \ersioning File Systems

Several file systems support versioning. VMS [17] allowsvimes versions of the files to be
accessed via a hidden directory which is located in the saraetdry as the file whose version is
being accessed.

The Elephant file system [24] transparently creates newssiaores of the file when the last
file handle that points to it is closed. Elephant also prawidsers with four retention policies:
“keep one” performs no versioning, “keep all” retains eveeysion of a file, “keep safe” keeps
versions for a specific period of time but does not retain tregiterm history of the file, and
“keep landmark” retains only important versions in a fileisthry. A user can mark a version as
a landmark, or the system can use heuristics to mark versiotendmarks. Elephant has its own
low-level disk format and cannot be used with other systelinalso lacks the ability to provide
an extension list to be included or excluded from versioniésdditionally, user-level applications
have to be modified to access old versions of a file.

In the Cedar File System [8], versions are stored on a renesteess Files are copied to the
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local disk for editing, and transferred to the remote setgareate a new immutable version.

VersionFS [19] is a lightweight user-oriented versionirig fiystem that is implemented as a
stackable file system and supports user-specified confignnaplicies. LBFS [20] uses semantic
block boundaries to exploit the similarity between files] &arsions of the same file and coalesce
groups of files to save network bandwidth. The Comprehen&gvsioning File System CVFS [28]
maintains older versions of files to allow for security raltiks in the event of an intrusion.

The main problem with all of these file systems is that thetusigy model is closely tied to
the operating system. Once the operating system is compeainan intruder can bypass security
checks and change the data stored in the disk except for Gettar problems with versioning at
the file-system level are that file systems must be portedfereint operating systems. Versioning

at the block layer rather than the file system level can oveecthis limitation.

6.4 Snapshotting File systems

Snapshotting or check-pointing is an alternative apprdactersioning. Some of the popular file
systems that implement snapshotting are WAFL [10], 3DF$ BdapMirror [22], Ext3cow [23],
and ZFS [30].

WAFL creates read-only snapshots of the entire file systenAFMuses a copy-on-write
mechanism to create snapshots of files. Users can accesvetd®ns of files through a hidden
directory present inside every directory.

In 3DFS, a network file server uses an optical disk jukeboxdmesnapshots of the file system.
A user program locates all recently modified files and senesitto the server. The server writes
these files to an optical disk. 3DFS provides read-only actmethe previous versions of the files.
One noticeable disadvantage of this system is the incressmess time due to switching of disks
inside the jukebox.

SnapMirror was designed to protect data in the event of astisaSnapMirror reduces band-
width utilization by storing batches of writes, and asymriously mirroring them to a remote

server. The disadvantage with this system is that is tieddtwidrk Appliance filers that require
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additional disks to store the snapshot data.

Ext3cow extends the popular Ext3 file system to support enmsg by changing the meta-data
structures of Ext3. Ext3cow extends the inode structurext® o store the inode number of the
previous version. It traverses through the chain to locedeipus versions of the files.

ZFS from Sun Microsystems abstracts the physical disks byipg a storage pool to the file
system. ZFS never overwrites live blocks, and continuotadtgs snapshots of the system using a
copy-on-write mechanism. These are read-only pointaretcopies of a file system. Since ZFS
security is tied to the operating system it is possible farteuder to read and modify snapshots.

Snapshotting file systems have the same problems as vegifild systems, discussed in

Section 6.3.

6.5 Disk Level Versioning

The other alternative to performing versioning at the filsteyn is to version blocks inside the
disk. An advantage of this approach is that it is totally dgded from the operating systems.
Some of these systems do not have portability issues withipfeubperating system. S4 [29],
Clotho [5], TRAP [34] and Peabody [12] implement versionatdghe disk level.

The Self-Securing Storage System (S4) internally auditeqliests that arrive at the disk, and
protects data in compromised systems by combining logstring with journal-based metadata
versioning in order to prevent intruders from tampering ermpanently deleting the data stored
on the disk. The guarantees provided by S4 hold true onlyndutie window of time in which
it versions the data. When the disk runs out of storage sg@&eatops versioning data until the
cleaner thread can free up space for versioning to contil@4eversions all requests that arrive
at the disk, whereas SVSDS versions metadata blocks andelseted file and directory blocks.
Additionally, SVSDS enables operation-level constraithigt help ensure that certain files and
directories marked by an administrator as read-only (bigaries, libraries) can never be modified
or deleted. The append-only operational-level constiait8VSDS protects log files from being

over written.
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Clotho is a storage block abstraction layer that automitivarsions data at the block level.
Clotho also provides a storage virtualization layer thagimsilar to SVSDS to transparently ver-
sion data blocks. SVSDS differs from Clotho in the followingys: (1) SVSDS does selective
replication of important blocks, and most importantly (¢an version data at the granularity of
files and directories.

Timely Recovery to any Point-in-time (TRAP) is a disk arraghitecture that provides data
recovery in different modes. This system has three modesAHR takes snapshots at periodic
time intervals; TRAP-3 provides timely recovery to any fairtime at the block device level (this
mode is popularly known as Continuous Data Protection irage); TRAP-4 is similar to RAID-
5, where a log of the parities is kept for each block write. yhannot provide TRAP-2 (data
protection at the file-level) as their block-based disk asgmantic information about the blocks.
TRAP-1 is similar to our current implementation where an adstrator can choose a particular
interval to version blocks. We have implemented TRAP-2,lefrlével, versioning inside the disk
as SVSDS has semantic information about blocks stored odisiethrough pointers. TRAP-3
is similar to the mode in SVSDS where the time between crgatarsions is set to zero. Since
SVSDS runs on a local disk, it cannot implement the TRAP-£ll®f versioning. One other
difference between TRAP and SVSDS is that SVSDS can alsctsely version blocks at the
disk level, while TRAP versions all blocks.

Peabody virtualizes the disk space to provide the illusicamsingle large disk to the clients. It
maintains a centralized repository of sectors and triesdoce the space utilization by coalescing

blocks across multiple virtual disks that contain the saate.d

6.6 Storage Virtualization

Storage virtualization has helped systems provide a unifiedd of disks and partitions to the
upper layers. Logical Disks [3], RAID systems [21], (LVM){,131], and Petal [15] are some
popular systems that virtualize the available storageespac

The Logical disk is an attempt to separate the file-systentementation from the disk char-
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acteristics by providing a logical view of the block devic&he storage virtualization layer in
SVSDS is analogous to their logical disk layer. The Logic@kidoes not have mechanisms to
roll back or provide recovery inside the disk.

RAID systems hide physical blocks from multiple disks angak a logical block layer to
file systems. RAID systems are designed to provide data dathay and do not store versions of
blocks inside them.

There have been a variety of Logical Volume Management (L\tkplementations. LVMs
also hide the physical blocks by exporting a list logicaldi®which allows improved management
of logical block devices. Some of them provide the abilityake snapshots of a running system
using a copy-on-write mechanism and block replication.

Petal exports a virtual block device interface that usesynsanvers in a distributed fashion.
Petal virtual disks provide an explicit snapshotting calitgbeven when the blocks are being
written. The disadvantage of Petal is that it is implemertedirtual disk service on the Digital

Unix OS, thereby making it specific to a particular operasygtem.
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Chapter 7

Future Work

In the current prototype, SVSDS uses the same versionimgvertfor reference blocks, and se-
lected file and directory blocks. As individual files and diries have varying levels of impor-
tance, users would want to have the option of configuringieensg interval for individual files.
Hence, we plan to explore on the feasibility of implementilexible versioning policy for each
file or directory.

In its present form, an administrator can only revert back farevious version at the granu-
larity of time. To make our system more usable, we plan to igesupport for reverting back
individual files.

SVSDS already has the components to build a storage intraigtection system. It transpar-
ently versions blocks, has inbuilt support through operatevel constraints to protect libraries,
executable files and log files. Hence, the next logical stegddvoe to build an storage IDS on top

of SVSDS.
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Chapter 8

Conclusion

The main contribution of this work are as follows: (1) we haemonstrated that it is practical
to selectively version meta-data blocks inside the diskesys (2) it is possible and useful to
enforce operation-level constraints on block access,dtept immutable and log files from being
deleted and (3) versioning users-selected files and ditestmside the disk is possible in such a
disk. Since versioning in done inside the disk, it is difftdok a intruder to bypass the versioning
mechanism even after compromising the operating systemimp@ced to existing systems, SVSDS
provides deeper histories by selectively versioning ingodr blocks. SVSDS provides all this
functionality with 1.2% overhead for typical user-like viktmads.

SVSDS is vulnerable to denial of service attacks. While wavjgles a partial solution to this
problem, we have shown that stronger data protection systambe implemented with negligible

performance overheads.
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