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Abstract of the Thesis

Selective Versioning in a Secure Disk System

by

Swaminathan Sundararaman

Master of Science

in

Computer Science

Stony Brook University

2007

Making vital disk data recoverable in the event of malicioussystem attacks has been a hard
problem in storage-system design. Today, an attacker who has gained super-user privileges in
a system can easily wipe out or forge all data stored on disk. The fundamental reason for this
vulnerability is that almost all security mechanisms in today’s systems exist at or above the op-
erating system level. To prevent damage to data even in the event of OS compromise, protection
mechanisms have to be implemented at a layer below the operating system: the disk.

In this thesis we present Selective Versioning in a Secure Disk System (SVSDS), that in-
ternally performs selective block-level versioning of data by exploiting higher-level data seman-
tics. Because this internal versioning is completely transparent to the operating system and the
higher layers of the system, it cannot be by-passed or disabled by malicious attackers. SVSDS
leverages the mechanism of Type-Safe Disks to obtain pointer information at the disk level, and
versions all meta-data and chosen data items specified by thesystem administrator. Therefore,
our versioning disk system has significantly lower space andperformance overheads compared
to semantic-agnostic block-level versioning systems, thereby accommodating more versions to
improve recoverability.

SVSDS also provides two basic constraints to protect vital data against damage: read-only and
append-only. Important configuration and executable files that are rarely updated can be marked
as read-only at the disk level, and the disk disallows writesto the corresponding blocks. The
append-only constraint can be used to protect system log files that act as the basis for intrusion
detection.

We have implemented a prototype SVSDS in the Linux kernel, and our evaluation confirms
that it can be built with acceptable space and performance overheads.
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Chapter 1

Introduction

Data protection is an important problem in systems research. Organizations and institutions spend

millions of dollars in research and procurement to protect their data. Today’s disks do not have

any built-in security mechanisms, so the security of the stored data is tied to the operating system.

Operating systems are not completely secure; vulnerabilities are constantly exploited by root kit

attacks, buffer overflow attacks, malware and malicious intruders. This makes protecting data

stored on a disk a very hard problem. There are some solutions[26, 29] to protect data in the event

of an operating-system compromise. The problem with these approaches are that they are either

not flexible or incomplete.

Data protection systems can be broadly classified into threecategories according to their fea-

tures: (1) confidentiality, (2) integrity, and (3) recoverability. Confidentiality ensures that data

cannot be read by any unauthorized person. Integrity ensures that unauthorized changes to the

data do not go unnoticed and availability ensures that either previous versions of the data or copies

of the data in exist in a remote location. Data recoverability in the event of system compromise

is a primary requirement in critical systems because data loss could lead to serious consequences

in most cases. Existing solutions such as encryption and filesystem or disk level versioning are

either ineffective or inefficient. For example, encryptioncannot protect against deletion of data.

In this thesis, we propose a selective versioning secure disk system (SVSDS) that transparently
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versions selected blocks inside the disk. SVSDS versions important (i.e., meta-data) blocks and

user-selected files and directories. SVSDS uses pointer information that is available inside Type-

Safe Disks (TSD) [26] and leverages it to aid in selectively versioning data inside the disk. A

TSD is a disk system that infers block relationships throughpointers to enforce invariants on data

access, and to provide better security and other semantic-aware optimizations inside the disk.

All blocks inside the disk may not have the same level of importance. Meta-data blocks are

more important than data blocks because they impact the reachability of other blocks. For exam-

ple, if the inode block of a file is corrupt, its data blocks could become unreachable. Also, all

files stored on the disk may not be equally important. For example, files present in the/tmp folder

are less important than those in the/usr folder. Some files are created and deleted within a short

period of time (e.g., program installation) and versioningchanges to these files would unnecessar-

ily occupy additional space. Existing solutions such as Clotho [5], Trap [34], Peabody [12], and

S4 [29] version all data inside the disk, hence they have significant space overhead, which limit

the depth of the version history available to users. We wouldtalk about these system in detail in

Section 6

Apart from versioning blocks at the disk level, SVSDS also enforces operation-level con-

straints such as making groups of blocks read-only or append-only. This is one of the important

desirable properties of a secure disk system. For example, an intrusion detection system has to

protect log files from being overwritten by intruders or malware applications as the correctness of

post-intrusion analysis depends on these files.

When data protection mechanisms such as selective versioning and operation-level constraints

are combined together, they enable the system to provide stronger data integrity and availability

guarantees. The window of time during which the data can be recovered is much wider than that

provided by existing solutions that are forced to version all blocks.

SVSDS protects data stored inside the disk by transparentlyversioning meta-data and user-

selected files and directories at regular intervals. It alsoimplements operational-level constraints

inside the disk, that help protect immutable and log files from being modified or deleted.
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We evaluated our prototype implementation by using micro-benchmarks and real workloads.

We found that the cost of performing selective versioing of data while enforcing operation-level

constraints are quite minimal. For typical user workloads,SVSDS has an overhead of just 1%

compared to regular disks.

The rest of the thesis is organized as follows. Chapter 2 surveys background work. Chapter 3

and Chapter 4 explain the design and implementation of our system. In Chapter 5 we discusses the

performance evaluation of our prototype implementation. Related work is discussed in Chapter 6.

Chapter 7 talks about possible future work. We conclude in Chapter 8.
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Chapter 2

Background

SVSDS uses the pointer information available inside TSDs toselectively version blocks and user-

selected files and directories inside the disk. In this section we first describe TSDs, then, we

discuss the advantages and disadvantages of ACCESS (A Capability Conscious Extended Stor-

age System) whose objective is to protect data confidentiality even when the operating system is

compromised.

2.1 Type-Safe Disks

Today’s block-based disks cannot differentiate between block types due to the limited expressive-

ness of the block interface. All higher-level operations are translated into a set of block read and

write requests. Hence, they do not convey any semantic knowledge about the blocks they modify.

This problem is popularly known as the information gap in thestorage stack [4, 7], and constrains

disk systems with respect to the range of functionality thatthey can provide.

Type-Safe Disks (TSD) try to bridge this information gap through the use of pointers. Pointers,

though simple, proved effective in bridging the information gap. Pointers are the smallest unit

through which file systems organize data into semantically meaningful entities such as files and

directories. Pointers define three things: (1) the semanticdependency between blocks; (2) the
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logical grouping of blocks; and (3) the importance of blocks. Even though pointers provide vast

amounts of information about relationships among blocks, today’s disks are oblivious to pointers.

A TSD is a disk system that is aware of pointer information andcan use it to enforce invariants

on data access and also perform various semantic-aware optimizations which are not possible in

today’s disk systems.

Pointers are the primary mechanisms by which data is organized. Most importantly, pointers

define reachability of blocks; i.e., a block this is not pointed to by any other block cannot be

reached or accessed. Almost all popular data structures used for storing information use pointers.

For example, file systems and database systems make extensive use of pointers to organize the

data stored in the disk. Storage mechanisms employed by databases like indexes, hash, lists, and

b-trees use pointers to convey relationships between blocks. Popular file systems like Ext2 and

VFAT have been modified to support TSDs with negligible effort [26].

TSDs widen the traditional block-based interface to enablethe software layers to communicate

pointer information to the disk. This allows free-space management to be been moved from the

file system to the disk. File systems can use the disk API exported by TSDs to allocate blocks,

create pointers between blocks, delete pointers and get free-space information from the disk. TSDs

perform automatic garbage collection of deleted blocks, sothere is no API call for freeing blocks.

The garbage-collection process performed in TSDs is different from the traditional garbage-

collection mechanism employed in most programming languages. A TSD garbage collects deleted

blocks in an online fashion as opposed to the traditional offline mechanism in most programming

languages. TSDs maintain a reference count for each block (i.e., the number of pointers pointing to

that block). When the reference count of a block decreases tozero, the block is garbage collected;

the space is reclaimed by the disk and the block is added to thelist of free blocks. It is important

to note that its the pointer information provided by TSD thatallow the disk to track the liveness of

blocks, which cannot be done in traditional disks [27].
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2.2 ACCESS

Some of the guarantees provided by encryption file systems and data-integrity mechanisms do

not hold when the operating system is compromised. In order to overcome this limitation, AC-

CESS [26] provides a security perimeter at the disk level. ACCESS protects blocks or a chain

of blocks through capabilities. Users must provide capabilities to read from and write to blocks.

With the help of pointer information inside the disk, ACCESSuses implicit capabilities to access

unprotected blocks. Blocks that are pointed to by protectedblocks are implicitly protected by the

capability of the protected block. To access any block a usermust either provide the capability for

that block or provide the capability for the reference blockthat points to it. A session is created

when a user provides a capability to access a block, and remains active until it times out. During

an active session, all data that could be reached by the protected blocks is vulnerable to attack;

ACCESS in its present form does not handle this situation (i.e., it does not detect intrusion and

revert back to previously known good state).
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Chapter 3

Design

When designing SVSDS, we had the following four goals in mind:

• Security We designed our system to ensure data stored inside the disk is protected even in

the event of an operating system compromise.

• Transparent Versioning We designed our system such that a disk can start versioning a

block with little or no user intervention. This is to ensure that disk-level versioning is not

bypassed by applications at higher layers. We wanted minimal or no modifications to the

file systems that support TSDs to work with SVSDS. For normal operations SVSDS should

be completely transparent.

• Flexibility We wanted our disk system to be more flexible to allow users to version data at

different block granularities. Users can specify per-file or per-directory as the granularity

for versions, as users are less concerned with entire file system or disks being versioned.

Disks should intelligently version important blocks.

• PerformanceWe designed our system such that versioning inside the diskshad small over-

heads as compared to regular operations.

Figure 3 shows the architecture of SVSDS. It is made up of 4 major components: the pointer

management layer, the storage virtualization layer (SVL),version manager, and operation man-
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ager. The pointer management layer helps in tracking relationships between blocks. The SVL

performs transparent versioning of blocks inside the disk.The version manager efficiently tracks

and manages versions, and the operation manager implementsoperation-level constraints as spec-

ified by the user.
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Figure 3.1: Design of Selective Versioning in a Secure Disk System

The rest of the this chapter is organized as follows. Section3.1 describes how the disk is

virtualized. Section 3.2 describes the versioning methodology and how the disk selectively and

transparently versions blocks. Section 3.3 describes how the disk tracks modifications to blocks,

its block allocation policy, and the garbage collection of deleted blocks. Section 3.4 describes the

recovery policy for data blocks. Section 3.5 describes how the versioning process is automated

inside the disk. Section 3.6 describes how versions can be reverted back. Section 3.7 describes

how operation-level constraints are enforced inside the disk.

Section 3.8 discusses the consistency issues, administrative interface and denial of service

attacks. Section 3.9 describes the limitations of our system.
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3.1 Virtualizing the disk

Transparent versioning is an important requirement for oursystem. This is because versioning at

the disk level should not by bypassed by applications or file systems that use it. Also, blocks that

contain previous versions should not be accessible to applications and file systems. This protects

the versioned data even when the operating system is compromised. To transparently version

blocks at the disk level, SVSDS virtualizes the physical disk blocks and presents a logical view of

these blocks to upper layers. The layer that virtualizes thedisk is called the Storage Virtualization

Layer (SVL). Its primary function is to export a logical block layer to the applications and maintain

the mapping between logical and physical blocks internally.

Them-table or mapping table is used by SVSDS to store the relationships between logical and

physical blocks. During each block request, the m-table is referred to by the SVL to translate and

redirect the request. Flags are also associated with each entry to denote the type and status of the

logical block.

3.2 Versioning methodology

SVSDS provides file system level flexibility in versioning blocks inside the disks. It automatically

versions reference blocks and user-selected files and directories. To create a new version of a

block, SVSDS allocates a new physical block through the SVL,and changes the corresponding

entry in the m-table to point to the newly-allocated physical block. An entry is added for the

old block in thev-table (or version table) with its version number set to the previous version.

Reverting to previous versions is discussed in Section 3.6.

The rest of the section is organized as follows. Section 3.2.1 describes why selective version-

ing is required inside the disk. Section 3.2.2 describes howSVSDS versions meta-data blocks.

Section 3.2.3 describes how SVSDS versions user-selected files and directories. Section 3.2.4 de-

scribes the additional API calls exported by SVSDS to allow applications to selectively version

files and directories, and to notify the disks about operation-level constraints.
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3.2.1 Selective block versioning

Versioning all blocks inside the disk would quickly consumeall available free space on the disk.

Also, versioning all blocks is not a good idea for the following two reasons: (1) it is not desirable

to version short lived temporary data (e.g., data in the /tmpfolder), and (2) even persistent data

blocks do not have the same level of importance. For example,in the Ext2 file system, versioning

super, inode, or indirect blocks is more important than versioning data blocks because these blocks

define the reachability of other blocks.

3.2.2 Meta-data

In order to selectively version blocks, SVSDS make use of thepointer information available inside

TSDs. SVSDS exploits this information to selectively version meta-data (or reference) blocks.

When thecreate ptr call succeeds, SVSDS marks the source block as a reference block in the

m-table. This information helps the version manager decidewhich blocks to version.

3.2.3 User-specified Data

A user may want the disk to automatically version certain files and directories. To selectively

version files and directories, SVSDS provides theversion blocks API call. SVSDS does a Breadth

First Search (BFS) on the p-table starting from the block that is passed to this function. All the

blocks traversed during the search are marked for versioning in the m-table. Cycles are common

in the p-table (for example, in Ext2TSD [26] there is a pointer from the directory block to the

inode block of the sub directory and vice versa). SVSDS detects and skip blocks that have already

been marked for versioning.

To version blocks that are added to the file or the directory after theversion blocks call, SVSDS

checks the flags present in the m-table of the source block during create ptr operation. If the

source block is versioned then the destination block that itpoints to is also marked to be ver-

sioned. For example, file systems that use SVSDS to version a file should pass the block number

containing the inode of the file to this function.
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3.2.4 Disk API

We have widened the disk interface to provide support for versioning files and directories and for

applications to specify the operation-level constraints on blocks to the disk.

• VERSION BLOCKS(Block): Marks all blocks in the sub-tree starting from blockBlock

to be versioned. The data blocks present in the sub-tree willbe versioned along with the

reference blocks.

• MARK READ ONLY(Block): Marks all blocks in the sub-tree starting from blockBlock as

read-only.

• MARK APPEND ONLY(Block): Marks all blocks in the sub-tree starting from blockBlock

as append-only.Block itself will not be append-only as it should be a metadata block, with

possible non-sequential updates.

3.3 Tracking modifications

This section is organized as follows. Section 3.3.1 discusses how reads and writes are handled by

SVSDS. Section 3.3.2 discusses how applications gets free blocks from the disk and Section 3.3.3

discusses the garbage collection mechanism inside the disk.

3.3.1 Reads and writes

SVSDS virtualizes the disk space through the SVL. All read and write requests must be translated

to the new physical location before they are processed. Whenprocessing a write request, the disk

checks if the target is a block that has to be versioned. For versioned blocks, the disk checks if

there exists a mapping for the current version in m-table. Ifyes, it redirects the write to the mapped

block. If the mapped version and the current version do not match, the disk requests the SVL to

allocate a new physical block that is close to the existing mapped physical block. It then stores the

old mapping in the v-table table with the last version number(i.e., current version number - 1).
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Finally it changes the m-table entry for the logical block topoint to the newly allocated physical

block. For data blocks, it gets the mapped physical block from the SVL and redirects the request

to the mapped physical block.

3.3.2 Block allocation

The block allocation policy for SVSDS is built on top of that present in TSDs. SVL manages both

physical and logical disk space and tracks the relationshipbetween them. Whenever SVSDS gets

a request from the software layer to allocate blocks, it passes this request to the SVL. SVL first

tries to allocate a physical block from the disk. If the allocation request succeeds it then allocates

a new logical block which is returned back to the caller; and it creates a entry in the m-table for

the logical and the physical block pair. If the SVL is unable to find a free physical block it tries

to free a block from the deleted block list. If the deleted block list is empty it then frees the space

occupied by the oldest version.

3.3.3 Garbage collection

Even though SVSDS selectively versions blocks inside the disk, it may eventually use up all the

available free space. When all of the disk space is used up, itattempts to free up some space as

quickly as possible. It first tries to reclaim deleted data blocks from the deleted blocks LRU list.

Once all of the blocks are reclaimed, it them tries to free up space used by older versions. When

the disk is reverted back to a previous version, the list of blocks that are in the deleted block list is

reclaimed by the garbage collector. This is because as SVSDSdoes not allow users to go forward

in the version history.

3.4 Recoverability of data blocks

When a user reverts back to a previous version, SVSDS cannot perform a perfect reversion in most

cases. To perfectly reproduce the previous state, the disk would need to revert all mappings for all
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blocks, including those that were not versioned. Data blocks are not versioned by default and they

could be deleted in the current version, making their recovery difficult if not impossible. SVSDS

tries to reuse deleted data blocks as late as possible. To do this, SVSDS maintains a separate LRU

list for storing the deleted data blocks. When the system is reverted back to a previous version,

the delete pointer operation that caused the deletion of thedata block is replayed. During this time

SVSDS checks the deleted block list and replays the create pointer operation only if the deleted

blocks are still present in the LRU list. This policy of lazy garbage collection allows users to

recover not only reference blocks but also those deleted data blocks that have not yet been garbage

collected yet. For example, a user may want to revert after inadvertently deleting on entire entire

directory. If all data blocks that belong to the directory are not garbage collected, then the user

can get back the entire directory. If some of the blocks are already reclaimed by the disk, the user

would get back the deleted directory with some missing files.

3.5 Automating the process

SVSDS automatically creates versions at regular intervals. A users or an administrator need not

explicitly version data on the disk. However, administrators can specify the versioning frequency

through the administrative interface of SVSDS. When a new version is to be created, the SVSDS

increments the current version count. It then creates, a entry for the new version in the v-table to

store the changes to the blocks that are versioned and the pointer operations that happened during

the time the new session is active.

SVSDS in its current form has the same versioning interval for all blocks. Alternatively, we

could also implement different policies for different block groups according to user requirements

and importance of the data stored inside the blocks. This would provide deeper histories for

selected files.
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3.6 Reverting back versions

In the event of an intrusion or an operating system compromise, an administrator may want to

revert back to a previous safe state of the file system. SVSDS allows administrators to preform

cascading reverts to reach a previous version. Even though it is possible to see the contents of a

group of blocks for any previous version, it is not possible for SVSDS to jump to any arbitrary

version. This is because TSDs use pointer information to track block relationships, and to garbage

collect deleted blocks. Suppose we are trying to go from version x to versiony. Reverting back

v-table entries for versiony alone would not work because blocks that were allocated or pointers

that were created or deleted between versiony and versionx would not be reverted back. These

blocks cannot be reclaimed back and we would be leaking space. In other words, the reference

count for certain blocks could have increased after the version was created (e.g., new blocks are

added to increase the size of a file), which would break the garbage collection mechanism in the

TSD. Hence, SVSDS allows users to revert back one version at atime.

SVSDS uses thev-table to maintain information about previous versions. In order to revert

back to the previous version, SVSDS stores all of the blocks whose mappings were changed in the

previous version. When the system is reverted back from version x to its previous versionx−1, it

reverts back all the changes to the m-table stored in versionx. While reverting back the mapping

table entries, the current m-table (or the physical blocks)pointed to by the logical blocks are freed

as they are no longer required.

To revert back pointers, SVSDS tracks pointer operations that happen during the lifetime of

a version. To reduce the space required to store the pointer operations, SVSDS does not store all

of the pointer operations that happen during a particular session. Blocks (or files) that are created

and deleted during a session cannot be reverted back. For example, supposecreate ptr is called

with sourcex and destinationy. During that particular session, if adelete ptr operation is called

with the same sourcex and destinationy, SVSDS removes the entry from the pointer operation

list for that session.

SVSDS replays the reverse of the pointer operation in the reverse order. The reverse opera-
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tion for create ptr operation isdelete ptr and vice versa. Other operations, likealloc block and

alloc bulk blocks, are internally translated tocreate ptr operations. Section 3.6.1 describes re-

playing pointer operators in more detail.

3.6.1 Reverting Pointer Operations

While reverting back to a previous version, the pointer operations have to be replayed in the

reverse order. If not, TSD’s the garbage collection mechanism would not work properly and hence

it would leak space. Figure 3.2 illustrates this problem.
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Figure 3.2: Create pointer operation

It can be seen from Figure 3.2 (1, 2 and 3) that blocka is the reference block for blockb, which

in turn is the reference block for blocksc andd. If the pointer operations are replayed in the same

order as they occurred during the session, then From figure 3.2 (4,5 and 6) it can been seen that

blocksb would not be garbage collected. This is because internally TSDs do not garbage collect

blocks that have out going pointers, and also do not check thereference count for the source block

to garbage collect if the last outgoing pointer from it is deleted. This situation does not occur when

the pointer operations are replayed in the reverse order.

When thedelete ptr operations are replayed in the reverse order it does not leave the system in

a consistent state. This is because the applications have toissue delete pointer calls in the reverse

order as TSDs check the reference count for that particular block before it is deleted.
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Figure 3.3: Delete pointer operation

Figure 3.3 (1, 2 and 3) shows the sequence of pointer delete operations and Figure 3.3 (4, 5
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and 6) show the sequence of steps performed while reverting back the delete pointer operations.

3.7 Operation-level Constraints

In addition to versioning data inside the disk, it is also important to protect certain blocks from

being modified or overwritten. SVSDS allows users to specifythe types of operations that can

be performed on a block. This enables users to assign flexiblepolicies for individual files and

directories. Operation-level constraints implemented bySVSDS are read-only and append-only.

The sequence of steps taken by SVSDS to mark a file or a directory as immutable or append-

only is similar to marking a file or a directory to be versioned. While marking a group of blocks,

the first block (or the root block) of the breadth first search is treated differently to handle atime

updates. A special bit is set in the flag along with the bit to indicate that it is a read-only or

append-only block. This bit would be used later to infer thatthis is an inode block.

3.7.1 Read-only Constraint

The read-only operation-level constraint is implemented to make block(s) immutable. For exam-

ple, the system administrator could mark binaries or directories that contain libraries as read-only

so that later on they cannot be modified by a virus, trojan horse, or any other malware application.

Since atime updates cannot be distinguished from regular block writes using pointer information,

SVSDS disallows atime updates, as they does not change the integrity of the file.

3.7.2 Append-only Constraint

Log files serve as an important resource for intrusion analysis and statistics collection (e.g., Web

logs). Operation level constraints implemented by SVSDS can be used to protect important log

files from being overwritten or deleted by intruders. Once the administrator marks the log files

to be append-only, SVSDS ensures that all operations on block belonging to these files are only

appends.
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For append-only blocks, SVSDS checks the difference between the original contents and the

block being written to verify that data is only being appended, and not overwritten or deleted. In

order to avoid reading the original contents of the block during a write operation for comparison,

SVSDS caches append-only blocks when the blocks are read from the disk. During the compari-

son, it checks the cache for the block. If it is not present, SVSDS issues a read request and adds

the block to the cache before processing the write request.

As inode blocks of append-only files have to be updated, SVSDSpermits the first block of

append-only files to be overwritten. It also checks if the same set of bytes is modified every

time. Since SVSDS does not have sufficient semantic information about the file system, enforcing

append-only constraints on directories does not work properly.

3.8 Issues

This section describes issues we have encountered while developing the SVSDS architecture.

Section 3.8.1 describes consistency issues for file systemsthat use SVSDS. Section 3.8.2 describes

the mechanisms for reverting back versions. Section 3.8.3 describes denial of service attacks.

3.8.1 Consistency

Because SVSDS does not know about file-systems semantics, reverting versions might leave the

file system that runs on a SVSDS in an inconsistent state. A filesystem consistency checker (e.g.,

fsck) needs to be run after the disk is reverted back to a previous version. Since SVSDS internally

uses pointers to track blocks, the consistency checker should also issue appropriate calls (namely

alloc block, create ptr, anddelete ptr) to SVSDS to ensure that disk-level pointers are consistent

with file system pointers.
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3.8.2 Administrative Interfaces

To prevent unauthorized users from reverting versions inside the disk, an SVSDS should have a

special hardware interface (or port) through which an administrator can revert back to previous

versions. This port can also be used by the administrator to set the versioning frequency.

3.8.3 DoS Attacks

SVSDS are also vulnerable to denial of service attacks. There are three issues to be handled: (1)

an intruder could mark arbitrary files for versioning or set the operation-level constraints on them;

(2) blocks that are marked for versioning could be repeatedly overwritten; and (3) lots of bogus file

could be created to delete old versions. In order to prevent amalicious user from adding files for

versioning or setting operation-level constraints, SVSDSpermits these operations only through

the admin interface. As with most of the denial of service attacks there is no perfect solution

to attack of type 3. To counter attacks of type 2, in our current prototype, SVSDS throttles the

access to the group of file that is versioned. An alternative solution to this problem would be to

exponentially increase the versioning interval of the particular file / directory (i.e., a groups of

blocks) that is being constantly overwritten.

3.9 Limitations

Since SVSDS operate at the granularity of blocks, it cannot selectively version individual files in

an Ext2TSD file system. This is because in Ext2TSD multiple inodes share the same block on a

disk. Hence, other inodes that share the inode block would also be versioned when one of them is

versioned. Also, in the current implementation of SVSDS, users do not have access to the previous

versions of files.
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Chapter 4

Implementation

We implemented a prototype SVSDS as a pseudo-device driver in Linux kernel 2.6.15 that stacks

on top of an existing disk block driver. Figure 4.1 shows the pseudo device driver implementation

of SVSDS. SVSDS has7, 487 lines of kernel code out of which3, 060 were reused from an

existing TSD prototype. The SVSDS layer receives all block requests, and re-maps and redirects

the common read and write requests to the lower-level devicedriver. The additional primitives

required for operations such as block allocation and pointer management are implemented as

driver ioctl s.

When a program reads or writes to a block, the requests comes through syscall, and then it

passed through VFS and to the file system (e.g.,ext2tsd). From the file system it reaches SVSDS,

which with the help of SVL find the corresponding physical blocks, redirects the request to the

underlying disk through the generic block driver.
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Figure 4.1: Prototype Implementation of SVSDS
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Chapter 5

Evaluation

We evaluated the performance of our prototype SVSDS framework in the context of Ext2TSD

[26]. We ran general-purpose workloads on our prototypes and compared them with unmodified

Ext2 file system on a regular disk. This section is organized as follows: In Section 5.1 we talk

about our test platform, configurations, and procedures. InSection 5.2 we analyze the performance

of the SVSDS framework on typical user workloads. In Section5.3 we analyze the performance

on OpenSSH workloads. In Section 5.4 we analyze the performance on kernel compile workload.

5.1 Test infrastructure

We conducted all tests on a 2.8GHz Intel Xeon CPU with 1GB RAM,and a 74GB 10Krpm Ultra-

320 SCSI disk. We used Fedora Core 6 running a vanilla Linux 2.6.15 kernel. To ensure a cold

cache, we unmounted all involved file systems between each test. We ran all tests at least five

times and computed 95% confidence intervals for the mean elapsed, system, user, and wait times

using the Student-t distribution. In each case, the half-widths of the intervals were less than 5%

of the mean. Wait time is the difference between elapsed timeand CPU time, and is affected by

I/O and process scheduling. We recorded disk statistics from /proc/diskstats for our test disk. We

provide the following detailed disk-usage statistics: thenumber of read I/O requests (rio), number
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of write I/O requests (wio), number of sectors read (rsect), number of sectors written (wsect),

number of read requests merged (rmerge), number of write requests merged (wmerge), total time

taken for read requests (ruse), and total time taken for write requests (wuse).

Unless otherwise mentioned, the system time overheads werecaused by the hash table lookups

required during theCREATE PTR andDELETE PTR TSD calls. The hash table lookups (on the m-

table) required by SVL during every request to the disk add a significant overhead to the system

time. This CPU overhead is due to the fact that our prototype is implemented as a pseudo-device

driver that runs on the same CPU as the file system. In a real SVSDS setting, the hash table

lookups will be performed by the processor embedded in the disk and hence will not influence the

overheads on the host system, but will add to wait time.

We have compared the overheads of SVSDS using Ext2TSD against Ext2 on a regular disk

and Ext2TSD on a TSD. We denote Ext2TSD on a SVSDS using the name Ext2Ver. The letters

M and A are used to denote selective versioning of meta-data and all data respectively.

5.2 Postmark

Postmark [13] simulates the operation of electronic mail and news servers. It does so by perform-

ing a series of file system operations such as appends, file reads, directory lookups, creations, and

deletions. This benchmark uses little CPU but is I/O intensive. We configured Postmark to create

3,000 files, between 100–200 kilobytes, and perform 300,000transactions. The results for the

postmark benchmark is shown in Figure 5.1.

Figure 5.1 and Table 5.1 show the performance of Ex2TSD on SVSDS for Postmark with a

versioning interval of 15 seconds. Postmark deletes all itsfiles at the end of the benchmark, so no

space is occupied at the end of the test. SVSDS transparentlycreates versions and thus, consumes

storage space which is not visible to the file system.

For Ext2TSD, the elapsed time was observed to be 1.6% lesser,the system time 1.14 times, and

wait time 8.12% lesser that of Ext2. The increase in the system time is because of the hash table

lookups duringCREATE PTR and DELETE PTR calls. The decrease in the wait time is because,
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Figure 5.1: Postmark results for SVSDS

unlike Ext2, Ext2TSD does not take into account future growth of files while allocating space for

files, this decrease in wait time caused it to perform slight better than ext2 file system on a regular

disk, but would have had a more significant impact in a benchmark with files that grow.

For Ext2Ver(M), elapsed time was observed to be 1.17%, or statistically indistinguishable

given our confidence interval, system time 4.28 times and wait time -19.91% that of Ext2. The

increase in system time is due to the additional hash table lookups to locate entries in the m-table.

The decrease in wait time is due to better spacial locality and increased number of requests being

merged inside the disk. This is because random writes (i.e.,writing inode block along with writing

the newly allocated block) were converted to sequential writes due to versioning.

For Ext2Ver(A), elapsed time was observed to be statistically indistinguishable, system time

4.29 times and wait time 19.47% less that of Ext2.
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Ext2 Ext2TSD Ext2TSD(M) Ext2TSD(A)
Elapsed 780.5s 768.0s 789.7s 793.1s
System 36.28s 88.58s 191.71s 191.94s
Wait 741.42s 676.11s 593.80s 597.09s
Space o/h 0MB 0MB 443MB 1879MB

Performance Overhead over Ext2
Elapsed - -1.60% 1.17% 1.61%
System - 1.44× 4.28× 4.29×
Wait - -8.12% -19.91% -19.47%

Table 5.1: Postmark results.

5.3 OpenSSH Compile

To simulate a relatively heavy user workload, we compiled the OpenSSH source code. We used

OpenSSH version 4.5, and analyzed the overheads of Ext2 on a regular disk, Ext2TSD on a TSD,

and meta-data and data versioning Ext2TSD on SVSDS for theuntar , configure , andmake

stages combined. These operations in combination constitute a significant amount of CPU activity

and I/O operations. The results for the OpenSSH compilationare shown in Figure 5.2.

For Ext2TSD, we recorded a insignificant increase in elapsedtime, a an insignificant increase

in system time and a 108% increase in the wait time over Ext2. Since the results are statistically

indistinguishable, it is difficult to quantify for the increase in wait time.

For Ext2Ver(M), we recorded a 7.2% increase in elapsed time,and a 41% increase in system

time over Ext2. Ext2Ver(M) consumed 1.1 MB of additional space to store the versions. The

increase in system time overhead is due to the additional hash table lookups by SVL to remap the

read and write requests. Ext2Ver(M) consumes 496 KB of additional space to store the versions.

For Ext2Ver(A), we recorded a 7.21% increase in elapsed time, and a 39% increase in system

time over Ext2. Ext2Ver(A) consumes 15MB of additional space to store the versions.
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Figure 5.2: OpenSSH Compile Results for SVSDS

Ext2 Ext2TSD Ext2TSD(M) Ext2TSD(A)
Elapsed 60.186s 60.532s 64.520s 64.546s
System 10.027s 10.231s 14.147s 14.025s
Wait 0.187s 0.390s 0.454s 0.634s

Space o/h 0MB 0MB 496KB 15.14MB
Performance Overhead over Ext2

Elapsed - 0.57% 7.20% 7.21%
System - 2 % 41% 39%
Wait - 108% 142% 238%

Table 5.2: OpenSSH results.
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5.4 Kernel Compile

To simulate a CPU-intensive user workload, we compiled the Linux kernel source code. We used

a vanilla Linux 2.6.15 kernel and analyzed the overheads of Ext2TSD on a TSD and Ext2TSD

on SVSDS with versioning of all blocks and selective versioning of meta-data blocks against

regular Ext2, for theuntar , make oldconfig , andmake operations combined. The results

are shown in Figure 5.3.
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Figure 5.3: Kernel Compile Results

For Ext2TSD, elapsed time was observed to statistically indistinguishable, system time over-

head was 3.6% lower and wait time lower by 24% than that of Ext2. The decrease in the wait time

is because ext2TSD does not consider future growth of files while allocating new blocks. The

decrease in wait time is due to better spatial locality in Ext2TSD.

For Ext2Ver(M), elapsed time was observed to be indistinguishable, system time overhead

was 4.6% and wait time lower by 5.6% than that of Ext2. The increase in wait time in relation to

ext2TSD is due to versioning meta-data blocks which affect the locality of the stored files. The
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space overhead of versioning meta-data blocks was 51 MB.

For Ext2Ver(A), elapsed time was observed to be indistinguishable, system time overhead

was 10.1% higher and wait time lower by 0.78% than that of Ext2. The increase in wait time

in relation to ext2TSD is due to versioning all blocks which worsens the locality of files. The

increase in system time is due to the additional hash table lookups for required for storing old

mapping information in the v-table. The space overhead of versioning all blocks was 181 MB.

Ext2 Ext2TSD Ext2TSD(M) Ext2TSD(A)
Elapsed 2467s 2461s 2471s 2468s
System 162s 167s 169s 177s
Wait 72.1s 54.7s 68.0s 71.6s
Space o/h 0MB 0MB 51MB 181MB

Performance Overhead over Ext2
Elapsed - -0.26% 0.13% 0.77%
System - 3.6% 4.7% 10%
Wait - -24% -5.6% -0.8%

Table 5.3: Kernel Compile results.
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Chapter 6

Related Work

Data protection has been a major focus of systems research inthe past decade. Inadvertent user

errors, malicious intruders, and malware applications that exploit vulnerabilities in operating sys-

tems have exacerbated the need for stronger data protectionmechanisms. Various data protection

solutions have been proposed that use techniques such as encryption, versioning, snapshotting,

and data backup to counter this problem and recover from errors or disasters.

The rest of the this section is organized as follows. Section6.1 discusses encryption file

systems. Section 6.2 discusses version control systems. Section 6.3 describes versioning file

systems, their advantages and disadvantages. Section 6.4 talks about systems that take snapshots

of the entire file system. Section 6.5 talks about systems that version blocks at the disk level.

Finally Section 6.6 discusses systems that virtualize the available storage space.

6.1 Encryption file systems

Encryption file systems [9, 18, 25, 33, 35] are designed to provide data confidentiality. These file

systems encrypt data using user-provided keys. Since the keys are only known to the users who

created them or have access to the corresponding data, it is not possible for others to decrypt and

read the file contents. Though encryption file systems protect the confidentiality of user‘s data,
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they do not protect malicious users from modifying them. In other words, these systems do not

protect the integrity of the stored data. Systems such as SFSRO [6] help detect data modifications

by unauthorized users, but not protect against unauthorized modification or help revert back to the

original data.

6.2 Version control Systems

CVS [1], Subversion [2], and RCS [32] are a few popular applications that are used for source

code management. They do not transparently version data andusers have to execute commands to

create and access versions. Rational ClearCase [11] is another application that is used for source

code management. The disadvantage with this system is that it requires an administrator to manage

it and it is expensive.

6.3 Versioning File Systems

Several file systems support versioning. VMS [17] allows previous versions of the files to be

accessed via a hidden directory which is located in the same directory as the file whose version is

being accessed.

The Elephant file system [24] transparently creates newer versions of the file when the last

file handle that points to it is closed. Elephant also provides users with four retention policies:

“keep one” performs no versioning, “keep all” retains everyversion of a file, “keep safe” keeps

versions for a specific period of time but does not retain the long-term history of the file, and

“keep landmark” retains only important versions in a file’s history. A user can mark a version as

a landmark, or the system can use heuristics to mark versionsas landmarks. Elephant has its own

low-level disk format and cannot be used with other systems.It also lacks the ability to provide

an extension list to be included or excluded from versioning. Additionally, user-level applications

have to be modified to access old versions of a file.

In the Cedar File System [8], versions are stored on a remote server. Files are copied to the
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local disk for editing, and transferred to the remote serverto create a new immutable version.

VersionFS [19] is a lightweight user-oriented versioning file system that is implemented as a

stackable file system and supports user-specified configuration policies. LBFS [20] uses semantic

block boundaries to exploit the similarity between files, and versions of the same file and coalesce

groups of files to save network bandwidth. The ComprehensiveVersioning File System CVFS [28]

maintains older versions of files to allow for security rollbacks in the event of an intrusion.

The main problem with all of these file systems is that their security model is closely tied to

the operating system. Once the operating system is compromised, an intruder can bypass security

checks and change the data stored in the disk except for Cedar. Other problems with versioning at

the file-system level are that file systems must be ported to different operating systems. Versioning

at the block layer rather than the file system level can overcome this limitation.

6.4 Snapshotting File systems

Snapshotting or check-pointing is an alternative approachto versioning. Some of the popular file

systems that implement snapshotting are WAFL [10], 3DFS [14], SnapMirror [22], Ext3cow [23],

and ZFS [30].

WAFL creates read-only snapshots of the entire file system. WAFL uses a copy-on-write

mechanism to create snapshots of files. Users can access older versions of files through a hidden

directory present inside every directory.

In 3DFS, a network file server uses an optical disk jukebox to store snapshots of the file system.

A user program locates all recently modified files and sends them to the server. The server writes

these files to an optical disk. 3DFS provides read-only access to the previous versions of the files.

One noticeable disadvantage of this system is the increasedaccess time due to switching of disks

inside the jukebox.

SnapMirror was designed to protect data in the event of a disaster. SnapMirror reduces band-

width utilization by storing batches of writes, and asynchronously mirroring them to a remote

server. The disadvantage with this system is that is tied to Network Appliance filers that require
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additional disks to store the snapshot data.

Ext3cow extends the popular Ext3 file system to support versioning by changing the meta-data

structures of Ext3. Ext3cow extends the inode structure of Ext3 to store the inode number of the

previous version. It traverses through the chain to locate previous versions of the files.

ZFS from Sun Microsystems abstracts the physical disks by proving a storage pool to the file

system. ZFS never overwrites live blocks, and continuouslytakes snapshots of the system using a

copy-on-write mechanism. These are read-only point-in-time copies of a file system. Since ZFS

security is tied to the operating system it is possible for a intruder to read and modify snapshots.

Snapshotting file systems have the same problems as versioning file systems, discussed in

Section 6.3.

6.5 Disk Level Versioning

The other alternative to performing versioning at the file system is to version blocks inside the

disk. An advantage of this approach is that it is totally decoupled from the operating systems.

Some of these systems do not have portability issues with multiple operating system. S4 [29],

Clotho [5], TRAP [34] and Peabody [12] implement versioningat the disk level.

The Self-Securing Storage System (S4) internally audits all requests that arrive at the disk, and

protects data in compromised systems by combining log-structuring with journal-based metadata

versioning in order to prevent intruders from tampering or permanently deleting the data stored

on the disk. The guarantees provided by S4 hold true only during the window of time in which

it versions the data. When the disk runs out of storage space,S4 stops versioning data until the

cleaner thread can free up space for versioning to continue.S4 versions all requests that arrive

at the disk, whereas SVSDS versions metadata blocks and userselected file and directory blocks.

Additionally, SVSDS enables operation-level constraintsthat help ensure that certain files and

directories marked by an administrator as read-only (e.g.,binaries, libraries) can never be modified

or deleted. The append-only operational-level constraintin SVSDS protects log files from being

over written.
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Clotho is a storage block abstraction layer that automatically versions data at the block level.

Clotho also provides a storage virtualization layer that issimilar to SVSDS to transparently ver-

sion data blocks. SVSDS differs from Clotho in the followingways: (1) SVSDS does selective

replication of important blocks, and most importantly (2) it can version data at the granularity of

files and directories.

Timely Recovery to any Point-in-time (TRAP) is a disk array architecture that provides data

recovery in different modes. This system has three modes: TRAP-1 takes snapshots at periodic

time intervals; TRAP-3 provides timely recovery to any point in time at the block device level (this

mode is popularly known as Continuous Data Protection in storage); TRAP-4 is similar to RAID-

5, where a log of the parities is kept for each block write. They cannot provide TRAP-2 (data

protection at the file-level) as their block-based disk lacks semantic information about the blocks.

TRAP-1 is similar to our current implementation where an administrator can choose a particular

interval to version blocks. We have implemented TRAP-2, or file-level, versioning inside the disk

as SVSDS has semantic information about blocks stored on thedisk through pointers. TRAP-3

is similar to the mode in SVSDS where the time between creating versions is set to zero. Since

SVSDS runs on a local disk, it cannot implement the TRAP-4 level of versioning. One other

difference between TRAP and SVSDS is that SVSDS can also selectively version blocks at the

disk level, while TRAP versions all blocks.

Peabody virtualizes the disk space to provide the illusion of a single large disk to the clients. It

maintains a centralized repository of sectors and tries to reduce the space utilization by coalescing

blocks across multiple virtual disks that contain the same data.

6.6 Storage Virtualization

Storage virtualization has helped systems provide a unifiedview of disks and partitions to the

upper layers. Logical Disks [3], RAID systems [21], (LVM) [16, 31], and Petal [15] are some

popular systems that virtualize the available storage space.

The Logical disk is an attempt to separate the file-system implementation from the disk char-
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acteristics by providing a logical view of the block device.The storage virtualization layer in

SVSDS is analogous to their logical disk layer. The Logical Disk does not have mechanisms to

roll back or provide recovery inside the disk.

RAID systems hide physical blocks from multiple disks and export a logical block layer to

file systems. RAID systems are designed to provide data redundancy and do not store versions of

blocks inside them.

There have been a variety of Logical Volume Management (LVM)implementations. LVMs

also hide the physical blocks by exporting a list logical blocks which allows improved management

of logical block devices. Some of them provide the ability totake snapshots of a running system

using a copy-on-write mechanism and block replication.

Petal exports a virtual block device interface that uses many servers in a distributed fashion.

Petal virtual disks provide an explicit snapshotting capability even when the blocks are being

written. The disadvantage of Petal is that it is implementedas virtual disk service on the Digital

Unix OS, thereby making it specific to a particular operatingsystem.
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Chapter 7

Future Work

In the current prototype, SVSDS uses the same versioning interval for reference blocks, and se-

lected file and directory blocks. As individual files and directories have varying levels of impor-

tance, users would want to have the option of configuring versioning interval for individual files.

Hence, we plan to explore on the feasibility of implementingflexible versioning policy for each

file or directory.

In its present form, an administrator can only revert back toa previous version at the granu-

larity of time. To make our system more usable, we plan to provide support for reverting back

individual files.

SVSDS already has the components to build a storage intrusion detection system. It transpar-

ently versions blocks, has inbuilt support through operation-level constraints to protect libraries,

executable files and log files. Hence, the next logical step would be to build an storage IDS on top

of SVSDS.
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Chapter 8

Conclusion

The main contribution of this work are as follows: (1) we havedemonstrated that it is practical

to selectively version meta-data blocks inside the disk system, (2) it is possible and useful to

enforce operation-level constraints on block access, to protect immutable and log files from being

deleted and (3) versioning users-selected files and directories inside the disk is possible in such a

disk. Since versioning in done inside the disk, it is difficult for a intruder to bypass the versioning

mechanism even after compromising the operating system. Compared to existing systems, SVSDS

provides deeper histories by selectively versioning important blocks. SVSDS provides all this

functionality with 1.2% overhead for typical user-like workloads.

SVSDS is vulnerable to denial of service attacks. While we provides a partial solution to this

problem, we have shown that stronger data protection systems can be implemented with negligible

performance overheads.
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[35] E. Zadok, I. Bădulescu, and A. Shender. Cryptfs: A stackable vnode level encryption file sys-
tem. Technical Report CUCS-021-98, Computer Science Department, Columbia University,
June 1998.www.cs.columbia.edu/ ˜ library .

38


