

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

MONTE CARLO METHODS FOR SIGNAL
PROCESSING IN WIRELESS SENSOR

NETWORKS

A Dissertation Presented

by

Mahesh Vemula

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

August 2007

Stony Brook University

The Graduate School

Mahesh Vemula

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Petar M. Djurić, Advisor of Dissertation
Professor, Department of Electrical & Computer Engineering

Mónica F. Bugallo, Chairperson of Defence
Assistant Professor, Department of Electrical & Computer Engineering

Sangjin Hong,
Professor, Department of Electrical & Computer Engineering

Samir R. Das,
Professor, Department of Computer Science

This dissertation is accepted by the Graduate School

Lawrence Martin,
Dean of the Graduate School

ii

Abstract of the Dissertation

MONTE CARLO METHODS FOR SIGNAL
PROCESSING IN WIRELESS SENSOR

NETWORKS

by

Mahesh Vemula

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2007

Advances in the manufacture of low power and inexpensive micro-sensors,

coupled with progress in distributed signal processing and networking are enabling

sensor networks to be the computing paradigm of the 21st century. These

networks provide us immense opportunities through monitoring and sensing of

various phenomena. Some recent areas of research in sensor networks from a signal

iii

processing perspective include distributed detection, estimation, localization, target

tracking, sensor selection, sensor data fusion, and sensor network management and

organization. In this dissertation, we address three major problems in sensor networks

• Sensor self localization with beacon position uncertainty

• Target tracking using quantized data

• Fusion of random measures for target tracking.

These problems are addressed from a Bayesian standpoint, where the underlying

principle is that all information about any phenomenon can be obtained through its

posterior distribution. Analytical expressions for these posterior distributions, is in

many scenarios unattainable, and therefore we resort to Monte Carlo methods.

Consider a scenario where sensors are randomly strewn over a surveillance

region. These sensor networks are deployed for the purpose of tracking objects and

people. To extract meaningful information about the location and dynamics of people

and objects from signals received by the sensors precise knowledge of the sensors’

location is essential. We address these tasks of sensor localization and target tracking

independently since the joint problem is very computationally intensive.

(i) Sensor self localization with beacon position uncertainty

Along with these sensors are also beacon nodes which have the capability of

obtaining their positions. In our work, we characterize the uncertainty in the

beacon’s location using probabilistic descriptions. These beacon nodes broadcast

these descriptions so that the sensor nodes with unknown location information can

utilize these descriptions along with the characteristics of the received signals to

iv

obtain estimates of their positions. This process is repeated periodically to ensure

that all the nodes of the network are localized. At each sensor node we employ

Bayesian methods for incorporating this uncertainty and combining data from several

beacons. Due to the non-linearity of the measured data closed form solutions for

obtaining the sensor location cannot be obtained, therefore we utilize Monte Carlo-

based Importance Sampling for obtaining the distribution of the sensor’s location.

(ii) Target tracking using quantized data

An important constraint these networks present are limited communication and

power resources. To address these challenges we propose to track and localize

the objects using the target emitted signal characteristics obtained by the sensor.

Traditionally these characteristics are forwarded by the sensor to a fusion node.

In view of the above constraints, we propose methods which only require minimal

quantized information transmitted by the sensor. To this end, we consider target

tracking only using binary (′1′, and ′0′) levels of data. Clearly this highly quantized

nature of the data presents a high degree of non-linearity in the measurement data

which cannot be handled using classical target tracking methods. We pose the

problem in a Bayesian framework and attempt to obatin recursively the posterior

distribution of the target dynamics This posterior distribution is obtained using a

class of Monte-Carlo algorithms known as Particle Filters which approximate these

evolving target posterior densities in a sequential manner using a random measure

which is a weighted set of samples. Thus, inferences about the targets dynamics can

be made using these random measures.

(iii) Fusion of random measures for target tracking

v

In a distributed architecture for target tracking, sensors form clusters and

transmit their measurements to a specialized node known as a leader node. Upon

obtaining the measurements from the sensors, the leader nodes estimate the posterior

density of the target’s dynamics and collaborate with the neighboring sensor, leader

and fusion nodes. Using Monte Carlo methods, these leader nodes represent this

posterior density as a random measure. The summaries of these random measures are

then transmitted to a fusion node which combines them to obtain a global summary.

vi

To my elder brother Satish Vemula

Contents

List of Figures xiv

List of Tables xviii

Acknowledgments xix

1 Overview of the Dissertation 1

2 Sensor Networks : A Signal Processing Perspective 4

2.1 Introduction . 4

2.2 Sensor Networks: Elements, Challenges and Applications 5

2.2.1 Sensors and Sensor Networks 5

2.2.2 Challenges . 8

2.2.3 Applications . 11

2.3 Signal Processing in Sensor Networks 13

2.3.1 Localization . 14

2.3.2 Collaborative Signal Processing 14

2.3.3 Distributed Signal Estimation, Detection and Classification . . 15

viii

3 Sequential Monte Carlo Methods 17

3.1 Introduction . 18

3.2 Monte Carlo Integration . 20

3.2.1 Importance Sampling . 21

3.3 Dynamic State Space Model . 23

3.4 The Filtering Problem . 24

3.5 Non-Monte Carlo-based filters . 26

3.5.1 Extended Kalman Filter (EKF) 27

3.5.2 Unscented Kalman Filter (UKF) 28

3.6 Sequential Monte Carlo-based Filters 29

3.6.1 Sequential Importance Sampling (SIS) 30

3.6.2 Issues Related to SIS . 30

3.6.3 Standard particle filtering (SPF) 34

3.6.4 Auxiliary Particle Filtering (APF) 38

3.6.5 Gaussian Particle Filtering (GPF) 39

4 Cost-Reference Particle Filtering 42

4.1 Introduction . 43

4.1.1 Problem Statement . 43

4.2 Cost Reference Particle Filtering (CRPF) 44

4.3 New CRPF Methods . 46

4.3.1 New CRPF method Type -I (CRPF-I) 47

4.3.2 New CRPF method Type-II (CRPF-II) 48

4.4 Computer Simulations . 54

4.4.1 The target tracking problem 54

ix

4.4.2 Simulation parameters and algorithms 55

4.4.3 Results . 56

4.4.4 Robustness of the methods . 57

4.5 Summary . 60

5 Sensor Self-Localization with Beacon Position Uncertainty 61

5.1 Introduction and Motivation . 62

5.2 Sensor self-localization: Problem statement and notation 64

5.3 Iterative sensor localization methods 67

5.3.1 Bayesian method with linearization(BS method) 68

5.3.2 Least squares method with linearization (LS method) 69

5.4 Monte Carlo-based methods for Sensor localization 70

5.4.1 Importance sampling-based method (IS method) 71

5.4.2 Cost based Monte Carlo-based sampling method (CS) 75

5.4.3 Construction of the Importance Function for Sensor Location . 79

5.5 Hybrid Cramér-Rao bounds for sensor self-localization 81

5.5.1 Single sensor, multiple beacons 81

5.5.2 Multiple sensors, multiple beacons 82

5.6 Incremental Beacon Selection . 84

5.7 Simulation Results . 86

5.7.1 Motivation . 86

5.7.2 Localization in a large network 88

5.7.3 Beacon Selection . 91

5.8 Summary . 93

x

6 Target tracking by particle filtering in binary sensor networks 95

6.1 Introduction . 96

6.2 A brief literature survey . 97

6.3 Network description and mathematical models 98

6.3.1 Network description . 98

6.3.2 Mathematical models . 99

6.4 Tracking algorithms . 102

6.4.1 APF algorithm . 102

6.4.2 CRPF algorithm . 106

6.5 Extension of the APF when Ψ is unknown 110

6.6 Posterior Cramér-Rao Bounds . 111

6.7 Simulations . 112

6.8 Summary . 119

7 Target tracking by fusion of random measures 120

7.1 Introduction . 121

7.2 Problem statement . 123

7.3 Fusion with and without feedback . 124

7.3.1 Fusion without feedback . 125

7.3.2 Fusion with feedback . 126

7.4 Fusion by using random measures . 127

7.4.1 Fusion of summaries of SPF random measures 128

7.4.2 Fusion of summaries of CRPF random measures 130

7.5 Simulations and results . 132

7.5.1 Bearings only target tracking 132

xi

7.5.2 Target tracking in a hierarchical sensor network 138

7.6 Summary . 141

8 Target Tracking in a Two-Tiered Hierarchical Sensor Network 143

8.1 Introduction . 144

8.2 System Overview . 146

8.2.1 Sensor Model . 146

8.2.2 Cluster Head Model . 147

8.2.3 Fusion Center Model . 147

8.3 SMC Algorithms for Target Tracking 148

8.3.1 CH Particle Filter Implementation in HSN-Type I 149

8.3.2 Fusion Center in HSN-Type I 150

8.3.3 FC Particle Filter Implementation in HSN-Type II 152

8.4 Simulations, Results and Discussion 153

8.5 Summary . 155

9 Target Tracking in an Asynchronous Wireless Sensor Network 158

9.1 Introduction . 159

9.2 Problem statement . 161

9.3 Algorithms . 164

9.3.1 Density Assisted Particle Filtering 165

9.3.2 Liu and West algorithm (LW) 168

9.4 Simulations . 170

9.5 Summary . 173

xii

10 Performance Comparison of Gaussian-based Filters using

Divergence Measures 176

10.1 Introduction . 177

10.2 Divergence metrics . 178

10.2.1 Computation of KL divergence 180

10.2.2 Computation of χ2 divergence 181

10.3 Simulations . 181

10.3.1 Univariate Non-Linear Model 182

10.3.2 Bearings only target tracking 183

10.4 Conclusions . 185

11 Future Work 186

Appendices 190

A Hybrid Cramér-Rao Bounds for Sensor Self-Localization 190

B Posterior Cramer Rao Bounds 192

C Conditions for the validity of the Gaussian approximations 196

Bibliography 199

xiii

List of Figures

2.1 A target tracking scenario in (a) a centralized sensor network and (b)

hierarchical sensor network . 8

3.1 Evolution of the Filtering Density without any resampling. 32

3.2 Evolution of the Filtering Density with resampling. 33

3.3 Evolution of the filtering density without resampling.The dark line is

the true state while the dots represent the filtering density. Note the

presence of a large number of particles whose weights are almost 0. . 36

3.4 Evolution of the filtering density with resampling. The dark line is the

true state. Note the absence of particle with negligible weights. . . . 37

4.1 A new cost reference particle filter: CRPF Type -I 52

4.2 A new cost reference particle filter: CRPF Type -II 53

4.3 MSE of the target dynamics for various CRPF algorithms 56

4.4 MSE of the static parameter Ψ0 for various CRPF algorithms 57

4.5 A run of the target trajectory for the various implementations of CRPF 58

4.6 MSE of the target dynamics for various CRPF and SPF algorithms . 59

4.7 Percentage of missed tracks . 59

xiv

5.1 Sensor Network with beacon and sensor nodes 65

5.2 Sensor Network. 73

5.3 Iterative Stages:Timeslot 1 . 74

5.4 Iterative Stages:Timeslot 2 . 75

5.5 Sensor Network and RMSE using the LS, BS, IS methods with prior

information and LS without prior information 86

5.6 RMSE using the LS,BS, IS method 88

5.7 CDF of RMSEs using the IS,LS,BS and CS methods. 90

5.8 CDF of RMSEs using the IS. 90

5.9 CDF of RMSE using the CS and IS methods. 91

5.10 Beacon Selection . 92

5.11 Selection probability and RMSE . 93

6.1 A binary sensor with a target passing nearby. The signals transmitted

by the sensors are denoted by stk . 99

6.2 A realization of a target trajectory and its estimates by APF and CRPF

for deterministically and randomly deployed sensor networks. 114

6.3 RMSEs of the location estimates of the target in deterministic network

obtained by the APF and CRPF algorithms with complete sensor

measurements (APF-Comp and CRPF-Comp, respectively), and the

APF and CRPF algorithms with binary measurements (APF-Bin and

CRPF-Bin, respectively). 115

6.4 RMSEs of the locations and velocities obtained by APF-Bin and

CRPF-Bin as functions of time obtained in a random network. The

respective PCRBs are also plotted. 115

xv

6.5 RMSEs of Ψ as a function of time. 116

6.6 Performance of the APF-Bin and CRPF-Bin algorithms for various

SNRs measured by the cumulative distribution functions of the RMSEs.117

6.7 PCRBs in determining position for various sensor thresholds. 117

6.8 Cumulative distribution function of the RMSEs of APF-Bin and

CRPF-Bin. 118

7.1 Pictorial representation of the considered sensor network framework. . 121

7.2 The multisensor network and estimates of the target trajectory. . . . 133

7.3 RMSEs (dB) of the target dynamics by the sensors and FC using SPF

without feedback. -o- Sensor 1, -*- Sensor 2, — Sensor 3, – FC SPF-

Dist, -x FC SPF-Cent . 134

7.4 RMSEs of the target dynamics by the sensors and FC using SPF with

feedback. -o- Sensor 1, -*- Sensor 2, — Sensor 3, – FC SPF-Dist, -x

FC SPF-Cent . 134

7.5 (a) Comparison of RMSEs with a single Gaussian approximation and

with a Gaussian mixture approximation. (b) χ2-Divergence for SPF

and EKF based posterior approximations at sensor 1. 135

7.6 Spread of errors in estimating the state at the FC. 136

7.7 Comparison of RMSEs with centralized and proposed SPF and CRPF

methods. 137

7.8 (a) A hierarchical sensor network. (b) RMSEs of the target position

by using SPF and CRPF for various κ 138

7.9 Spread of errors in estimating the state at FC. 139

xvi

8.1 Hierarchical Sensor Network . 145

8.2 RMSE in HSNs-Type I and II with α = 2.5 and spatially distributed α. 155

8.3 RMSE in HSNs-Type I, assumed α = 2.5, 2, 3, 4, when true value is 2.5 156

8.4 Spatial distribution of α. 156

9.1 Timing diagram of the clocks of two sensors and the FC. 162

9.2 Series of operations during each time interval 168

9.3 Trajectory and its estimates using the DAPF algorithm 171

9.4 The RMSE of τ1:3 with the DAPF and LW algorithm 172

9.5 The RMSE of xt with the DAPF and SMC-Knw algorithm. Upper

left: RMSE of x1,k. Upper right: RMSE of x2,k. Lower left: RMSE of

ẋ1,k. Lower right: RMSE of ẋ2,k. 173

9.6 The evolution of the beta distribution for each of the sensor offsets at

time instants t=25,50,75,100s . 174

9.7 An estimate of the sensor offsets. The dashed horizontal lines are the

true sensor offsets . 174

10.1 KLt divergence of the GPF, EKF and UKF filters. 182

10.2 χ2
t divergence of the GPF, EKF and UKF filters. 182

10.3 KLt-Divergence for the GPF, EKF and UKF filters 183

10.4 χ2
t -Divergence for the GPF, EKF and UKF filters 185

xvii

List of Tables

4.1 Parameters of the system and algorithms 55

7.1 Bias(m) . 135

7.2 Standard Deviation(m) . 135

8.1 System Parameters and their values 154

xviii

Acknowledgments

The Japanese equivalent word for a teacher “Sensei”, translates “to one who has

gone before”. Professor Djurić was our Sensei. It is with a deep sense of gratitude

that I thank him for providing me this great opportunity of being his student. Under

him, I have learnt to first walk and then run among the deep and unknown jungles

of research in signal processing. I have no words to express my thanks to him for

making me the researcher I am today.

I take the opportunity to thank my parents who have gone through several

hardships to educate me. I also thank my brothers for those constant support and

encouragement at several stages of my Ph.D. career.

I thank my co-advisor Ms. Mónica F. Bugallo who apart from co-advising me

on my research, has taught me the art of effective writing and presentation. I thank

Prof Sanjin Hong and Prof Samir Das for kindly consenting to be members of my

Ph.D. committee.

Through the seminar courses on sensor networks provided at the Computer

Science Department at Stony Brook, I have been able to pick up some good research

habits. I would like to thank Prof Samir Das and Prof Himanshu Gupta for giving

me the opportunity to let the frog in me see beyond the well. Special thanks to

Constantinos Papadias and Dan Avidor of Bell Labs, Crawford Hill, for instilling in

me the confidence to pursue research.

I also take the opportunity of thanking all my colleagues past and present at

the COSINE lab, Yufei Huang, Tadesse Ghirmai, Miodrag Bolic, Katrien De Cock,

Xueying Zhang, Jae-Chan Lim, Akshay Athelye, Yao Li, Zejie Zhang, Ting Lu, Mingyi

Hong and Vibha Mane, for providing me with a congenial atmosphere. It has been

a really a good learning experience when they would share some of their research

experiences in our regular journal club meetings.

I would like to thank Scott Tierno, Computer Engineer, who would encouraged

me to lookout for the light at the end of the tunnel. I also am very thankful to the

secretaries of our Department, Ms Deborah Kloppenburg, Carolyn Huggins, and Judy

Eimer for their cooperation and support.

My years at Stony Brook have been extremely pleasant. This has largely been

due to my friends Meher Mahesh and Rajesh Elisetty. I thank them both for teaching

me many aspects of life. I also take the opportunity to thank Dr. Manoj Muthukuru

who has been in many ways an inspiration to many of us through his hardwork and

perseverance. I also thank Satprem Reddy and Rohan Kulkarni for their camaraderie.

Chapter 1

Overview of the Dissertation

"As we know, there are known knowns. There are things we know we know. We

also know there are known unknowns. That is to say,we know there are some things

we do not know. But there are also unknown unknowns - the ones we don’t know we

don’t know."

- Donald Rumsfeld

Wireless sensor networks provide us with a plethora of challenges and

opportunities to identify and estimate various physical phenomena such as the

dynamics of a target or a temperature map of a particular region. The inferences

about a phenomenon is made using the sensor observations which are often corrupted

or embedded in noise. Very often the observations are non-linear functions of the

unknown state of the phenomenon. These non-linearities and random environments

often lead to potential inaccuracies with classical estimation methods. While these

networks provide us with many opportunities, they are also constrained in power and

bandwidth resources. To this end, we investigate the usage of Monte Carlo methods

1

under such resource constrained scenarios for estimating unknown static and dynamic

state parameters. Some examples of these unknown parameters are the position and

velocity of an object or the relative location of sensor itself.

In Chapter 2, we provide a brief overview of some of the areas of research

of signal processing in sensor networks. Most signal processing methods can be

classified under two distinct areas detection (or classification) and estimation. The

focus of this dissertation has been towards the estimation of unknown parameters.

We motivate the use of Monte Carlo methods for signal processing in Chapter 3,

and briefly summarize procedures for obtaining Monte Carlo-based representations of

distributions that describe the unknown parameters using the observations.

The numerical procedures discussed in Chapter 3, require knowledge of the

distributions of the uncertainties in the system. In Chapter 4, we consider novel

procedures termed as Cost Reference Particle Filtering for estimating time varying

parameters under unknown probabilistic distributions of the state and measurement

noise processes.

In Chapter 5, we introduce a distributed framework for sensor localization using

reference nodes also termed as beacons. These beacons are sensor nodes which have

some descriptions of their locations. In typical localization frameworks, the true

locations of the beacons is often assumed; here we describe the positions of the beacons

using probabilistic distributions. The location description of the other sensor nodes

is obtained by fusing the signals and locations distributions of the beacons.

As discussed above these networks are constrained in bandwidth and power

resources. Therefore in Chapter 6, we study particle filtering-based methods for

obtaining distribution of the unknown target state when the sensors transmit two

2

level quantized data instead of the entire sampled raw data. We also identify the loss

in accuracy with such quantization.

In Chapter 7, we discuss distributed frameworks for combining non-parametric

distributions of unknown parameters under known and unknown noise probability

distribution scenarios. In that chapter, we investigate the fusion of distributions

for tracking targets where the sensors have relatively large communication and

computation power. Fusion of distributions for target tracking in a resource

constrained framework is analyzed in Chapter 8. Here we look at specific distributed

hierarchical architectures which are amenable to handle the resource constraints.

In Chapter 9, we consider an asynchronous sensor network, in which the local

clocks of the sensors are misaligned and the corresponding offsets are unknown. We

design recursive algorithms for tracking the unknown target dynamics and the sensor

timing offsets.

In Chapter 10, we propose metrics to quantify the performance of a certain class

of these procedures which approximate the above distribution with a Gaussian. The

Gaussian approximated distributions are compared with distribution obtained with

standard Monte Carlo method.

3

Chapter 2

Sensor Networks : A Signal

Processing Perspective

"The senses are the organs by which man places himself in connexion with

exterior objects."

- Jean Anthelme Brillat-Savarin

2.1 Introduction

Networking a large number of varied sensors to monitor, collect, disseminate

and intelligently combine information about a specific task is the emerging paradigm

of this century. The presence of sensors in our day to day lives is not new, and these

processing elements were relatively expensive and in most cases ‘dumb’. However, this

century is witnessing an upsurge in technology towards the manufacture of low cost

microelectromechanical systems which include components like sensors, actuators,

4

transducers and many other such RF components. These devices are not ‘dumb’,

but they have the added capability of collaborating and exchanging information with

its neighbors, and intelligently analyze this data. Being inexpensive these sensors

are deployed in large numbers. For instance, microsensors are densely deployed on a

skyscraper to monitor the vibrations due to seismic waves or wind gusts.

The number of data received from these sensors can be immense and very rich

with information. This huge amount of data can be processed to estimate, detect and

predict various phenomena. One example is the prediction of onset of earthquakes, in

earthquake prone areas thereby providing a great service to mankind. Futuristically

speaking such smart sensors will find their ways in almost all aspects of our lives.

The potential of such sensors is thus undoubtedly huge and may be considered as the

first few examples of ‘ubiquitous computing’. This chapter dwells into some aspects

of these sensor networks with some motivating applications.

In Section 2.2 the basic elements of a sensor network and architectures are

described followed with some real-life applications of smart sensor networks. In

Section 2.3 we provide a brief introduction to some active areas of research of signal

processing in sensor networks.

2.2 Sensor Networks: Elements, Challenges and

Applications

2.2.1 Sensors and Sensor Networks

“A sensor is a transducer that receives an input signal or stimulus and responds

5

with an electrical signal which bears a known relationship with the input” [1].

Alternatively a sensor can be thought of as a device that maps a physical phenomenon

to a qunatitative measurement. Mathematically we have

S(E, t) −→ {V (t), ε(t)} (2.1)

where S(·) maps the environment E at time t to a numerical value V , which is

surrounded with a certain uncertainty ε [2]. Sensors are of two kinds: passive and

active sensors. Passive sensors directly generate an electrical signal in response to

stimulus and do not require any additional power source. Typical examples of passive

sensors include thermocouples, pyroelectric and piezoelectric detectors. Active sensors

require external power for their operation. This external signal is modified by the

sensor to produce the output signal. Examples of active sensors include thermistor

(temperature sensitive sensors), acoustic and seismic sensors. Thermistors comprise of

materials whose resistance varies with temperature which can be detected by passing

an external current across the thermistor, hence an external power is essential. Sensors

are classified depending upon their sensing applications, dynamic ranges of operation,

accuracy, resolution and other characteristics. An exhaustive treatment of sensors is

beyond the scope of this report however a good reference to understand the physics

and the design involved in these sensors is [1].

Modern sensor nodes consist of a sensing unit, a processing unit, a transceiver and

a power unit [3]. The sensing units are composed of sensors and an analog-to-digital

converter (ADC). The processing unit is responsible for the actual processing of the

raw data.The raw data it processes is obtained either from the ADC unit or from the

6

transceiver when it is in a collaborative mode1. The transceiver transmits the data

from the sensor node to other nodes or fusion centers. In a collaborative mode it

also serves to receive data from neighboring sensor nodes. The power unit supports

these units for performing these tasks of sensing, computation and communication.

The power unit consists of batteries or other power replenishing units like solar cells.

Depending upon the context the term ‘sensor’ refers to either the whole node or the

sensing unit.

By integrating these sensors with the technology to communicate and collaborate

we have a Smart Wireless Sensor Network. Sensor networks can be broadly classified

according to their architectures as centralized, distributed and hierarchical.

• Centralized Architectures: In this configuration the sensors communicate only

with a centralized unit known as the root node (RN) or the fusion center(FC)

as shown in 2.1(a). The sensor nodes provide the FC with the data about

the sensed event and the FC processes the data. The FC processes the data,

combines it and provides a meaningful interpretation to the varied and disparate

sensor data. In such architectures the computational load can be shared

between the sensor node and the FC with the FC being a high performance

computing unit. The disadvantages of such network are the requirements of

huge communication bandwidths and robustness of the FC. Such architectures

are also not easily scalable.

• Distributed Architectures: In these architectures the sensors sense a given event

process the data and exchange information locally among its neighbors thereby
1The mode of operation wherein sensors exchange information with its neighbors and collaborate

to obtain useful information about the physical world.

7

requiring no centralized units. Such architectures are more robust, however

these sensors need to be more sophisticated in terms of exchanging information

among it neighbors in an optimal manner.

• Hierarchical Architectures: In these architecture there are several tiers/clusters

of sensor nodes and each of these clusters has a cluster head (CH) or leader

node (LN). The sensors communicate with the CHs and the CHs can forward

data to and from their LNs as shown in 2.1(b). These clustering architectures

are very useful for purposes of fast querying and are easily scalable [4], [5].

Fusion
Center

Target position

Non−detecting sensor

Detecting sensor

(a) Centralized

1

2

Fusion
Center

Fusion
Center

Fusion
Center

Target position

Non−transmitting sensor

Transmitting sensor

Final
Decision

(b) Hierarchical

Figure 2.1: A target tracking scenario in (a) a centralized sensor network and (b)
hierarchical sensor network .

2.2.2 Challenges

Conventional wireless networks are driven with the sole motive of providing

increased data throughputs without any wires. The purpose of a sensor network is

however very different. Sensor networks are deployed in environments for the purpose

8

of providing distributed monitoring and sensing. In many wireless sensing scenarios a

major problem is the lack of a clear line of sight (LOS). By deploying sensors in dense

numbers and spanning over large areas, problems associated with lack of LOS path

and low signal to noise ratios (SNRs) are eliminated. These sensors then transmit

information about the sensed event to its leader node or to a centralized processing

unit. However in wireless environments the signal attenuates with distance as 1
rα

where α is the attenuation constant of the environment. Typical values of α lie

bewteen 2 to 4. Therefore a major amount of power is consumed in communication

between the sensors and FC [6].

In general, sensor networks are composed of hundreds of microsensors which are

deployed for instance along battle lines to track enemy movements. In such situations

these sensor networks consist of a variety of sensors namely acoustic sensors, seismic

sensors, and magnetometers. General characteristics and challenges involved in the

operation of these sensor networks are

• Limited in power, computational and memory resources: Sensors are

unfortunately highly resource constrained. They are limited in power, storage,

communication and computation. Therefore algorithms and protocols are to be

built which take into consideration these factors.

• Of different modalities: These sensors may sense the same phenomenon however

the raw data of these sensors may refer to different aspects of the phenomenon.

As an example, the movement of troops would cause the acoustic sensor to

record changes in the sound patterns due to movement of troops, thermal sensors

would record abrupt changes in temperature patterns due to the presence of

troops and so on with the other kinds of sensors. Some interesting challenges

9

involve the synergistic use of multiple sensors which provide varied information

to achieve maximum performance.

• Prone to failures: Sensor networks are deployed in hostile and noisy

environments. Also these sensors are very prone to failures, hence the networks

should be self-learning and self-healing. Due to the failure of sensors the

topology of the sensor network no longer remains same. So in such situations

the sensors should adapt and reconfigure themselves. As an example, in sensor

networks deployed for monitoring the temperature over a region, if a certain

set of nodes fail then the remaining sensor nodes should offset the information

loss due to the impaired sensors by reconfiguring themselves and providing the

temperature information of those regions previously monitored by the impaired

sensors.

• Dense Deployment: Such dense deployment of sensors not only provides a

wide range of information but also has the usual problems of congestion in

networks. An equally interesting problem in such dense networks is to collect

‘informative data’, which depends on selecting sensors which would provide

maximum information.

• Deployed in Time Varying Environments: The sensor networks are typically

deployed in areas where the environment is rapidly changing. Therefore the

sensors should also adapt to these rapidly varying environments.

Thus wireless sensor networks provide with interesting challenges and

applications.

10

2.2.3 Applications

Some interesting case studies of sensor networks are as follows:

• Habitat Monitoring at Great Duck Island (coast of Maine): The Great Duck

Island off the coast of the island of Maine is a breeding ground for a certain

species of sea birds known as “Leach’s’ Storm Petrels". Seabird researchers have

been interesting in studying how the ecology influences the breeding patterns

of these seabirds. The Intel Research Laboratory at Berkeley in collaboration

with the Universities of California deployed a wireless sensor network on this

island around and in the burrows of these seabirds. Several kinds of sensors

(light, temperature, humidity, and thermopile sensors) are used to allow a non-

disruptive monitoring of the habitat surrounding the burrows. These sensors

then transmit the data to a sensor gateway which has an external antenna (a

Yagi Uda antenna). The gateway provides communication over long distances

from the areas around the burrow to a central units situated far away from the

island. This data is then later transmitted to the respective research labs for

analysis [7, 8].

• Glacier Monitoring: Environmental phenomena like global warming and

climatic changes is studied by monitoring the glacial fluctuations i.e., changes

in the glacier mass, volume, area and length. The sea-level changes, and

these deformation patterns of the glaciers are among the key inputs to such

studies. Traditional methods involve seismic and radar techniques which are low

resolution techniques. To combat some of these drawbacks in these methods,

a team from the University of Southampton U.K. had deployed a network of

11

wireless sensor network inside a Norwegian glacier. These sensors are deployed

in the sedimentary base of the glacier. Recordings of temperature, pressure and

motion parameters of the ice and the sediment is transmitted to a base station

which in turn transmits this information to other central units and labs. [9].

• Oregon Vineyard: The Intel Research Laboratory at Berkeley deployed a

sensor network, in a vineyard, but with a difference. The sensors measure

the temperature, moisture content in soils and other environmental factors.

Typically the data in sensor networks is transmitted to research labs where

scientists and researchers analyze the data. However the end users of the sensor

networks are vineyard owners to whom such raw data is of very little use if any.

Therefore a proactive sensor system based on ethnographic research methods

was implemented where the end output of these systems is the detection of

the presence or absence of parasites, optimal water rationing to plants and

other such useful tasks. Another interesting aspect of these networks is their

reconfigurability. The sensor networks at day times monitor the presence of

birds and in the nights reconfigure to monitor the amount of frost in the

vineyards [10].

• Smart Bridge: The Rion-Antirion Bridge near the Peloponneus region and the

Western part of Greece is equipped with 300 sensors. These sensors include

stress gauges on gussets that monitor the fatigue of the bridge framework,

displacement transducers on stay cables that monitor the motion of the bridge

with wind gusts, and also accelerometers on the roadways to measure impact

of earthquakes. The bridge has four piers and each pier has a data acquisition

12

center to which the sensors transmit their data. These data units then transfer

this information to a central office near the bridge and from the central unit to

the operating offices using the Internet [11].

The list of application of sensor networks in day to day life is endless.

2.3 Signal Processing in Sensor Networks

Following the sensing of the physical phenomenon, one is plainly left with

mere numbers and only an intelligent processing of these numbers would make any

sense about the phenomenon. These numbers are the signal representations of the

parameters of the event and these procedures can be broadly classsifed as signal

processing.

Signal Processing activities in sensor networks fall in the following areas

? Source localization in space and time.

? Collaborative signal processing.

? Distributed signal estimation, detection, and classification.

? Distributed calibration in sensor networks e.g., time synchronization.

? Applications of distributed sensor networks.

? Multisensor data fusion.

13

2.3.1 Localization

Localization is the mechanism by which spatial relations between target and the

sensor nodes is established. Specifically this refers to the estimation of the target’s

location with respect to the sensor nodes by measuring the acoustic, seismic, infrared

or thermal signatures. Popular techniques involve measurement of the time of arrival

(TOA), direction of arrival (DOA) and received signal strength indices (RSSI). Using

standard methods of triangulation, trilateration, and method of least squares one

can easily obtain the location of the target. Of great interest are other issues like

the minimum number of sensors required to attain a certain amount of precision in

the location of the target and the arrangement of sensors (constellation patterns)

to provide adequate coverage of the sensing area. Other important aspects of these

problems involve obtaining the Cramer Rao Lower Bound of these estimators [12],

[13], [14], [15], [16].

2.3.2 Collaborative Signal Processing

To obtain an extensive information of an event in a noisy environment a dense

network is necessary. The challenges in such dense network involve collaborative

sensor activites for efficient utilization of resources. The sensors spatially sample the

phenomena of interest and this raw data are combined, depending upon the sensor

network architecture, at the nodes, leader nodes or at the FC in such a manner that

the maximum benefits are achieved. Another interesting aspect in sensor networks is

to dynamically query sensors and route data, under power and bandwidth constraints

to obtain the maximum information gain. In [17], an information utility measure is

introduced to select sensors for purpose of querying and dynamical routing of data in

14

a sensor network.

2.3.3 Distributed Signal Estimation, Detection and

Classification

Distributed methods have many advantages over centralized algorithms in terms

of reducing the communication bandwidth, reduced computational load and increased

robustness. However, in order for the sensor networks to achieve an optimal

performance, specialized multisensor fusion techniques need to be developed.

Distributed estimation algorithms have been studied in the context of target

tracking. However most of these algorithms restrict to linear systems and Kalman

Filtering. Recent works in distributed estimation are [18] and [19]. In [18], algorithms

for distributed particle filtering are outlined, while in [19] maximum likelihood

estimation based on based on data collected by a sensor network under power and

bandwidth constraints is considered.

Distributed Detection methods have been quite extensively researched [20].

Typically a local decision at each sensor is performed by comparing the signal received

with a threshold and these local decisions are fused based upon the sensor network

topology to obtain a global decision. The problems involved in this area involve

finding the optimal decision-fusion rules in uncertain environments and optimal

sequential and non-sequential decision making methods. The methods employed

involve Bayesian, Neyman-Pearson criterion, Dempster-Shafer theory and other

parametric and nonparametric approaches.

In the light of multiple target tracking, the target is first detected and then

classified based upon the sensor node measurements. If the classification of the

15

target is of the desired kind then tracking of the target is initiated. Thus, it is

evident that distributed methods for detection, estimation, classification are closely

knitted in a multi-sensor networking scenario where a decision rule based on data

from multi-sensor data is made and using this decision a classification is performed.

If the classification is of the desired kind, then estimation in the light of this prior

knowledge will enhance our results [21].

We have seen in this chapter, some of the basic elements of sensor networks.

The challenges of combining data from several scenarios and the constraints of power

and bandwidth pose many interesting problems of signal processing in the context of

sensor networks.

16

Chapter 3

Sequential Monte Carlo Methods

"Anyone using Monte Carlo is in a state of sin."

- John von Neumann

In this chapter we motivate the need for Monte Carlo methods in parameter

estimation. For the case of time-varying parameters classical methods fail to provide

an accurate solution when the state space equations are non-linear and involve non-

Gaussian noise processes. Sequential Monte Carlo (SMC) algorithms are a class of

MonteCarlo algorithms that provide an elegant numerical solution to the filtering

problem.

We motivate the study of SMC methods through an initial understanding of

Importance Sampling, a Monte Carlo-based density estimation method in Section

3.2. In Section 3.3, we introduce the necessary terminology and the dynamic state

space model and in Section 3.4, we define the filtering problem and the various filters.

We also briefly introduce the extended Kalman filter, the Unscented Kalman filter,

the standard particle filter, the auxiliary particle filter, and the gaussian particle filter.

17

3.1 Introduction

In many fields of science and engineering, one is often beset with the problem

of finding or estimating unknown parameters using some measurements. For

this purpose a statistical model is assumed that describes the dependence of the

measurements and the parameters and is justified through rigorous experiments

within reasonable limits of accuracy. This model is typically a function of

the parameter of the system and other random processes which characterize the

uncertainty in the system or the uncertainty in the measurement process itself.

Consider a simple model of the form

y = f(x) + ε

where y = [y1, y2, · · · , yN] represents the data, x represents the state of the system

and ε, the uncertainties in the system. The state parameter x is not directly

observable, but is partially observable through the measurements. The problem then

is the estimation of x using the observed data y. This problem is addressed by

a plethora of methods which depend upon (a) the nature of the function f(x) i.e.,

whether it is linear or non-linear, (b) the knowledge of the probability distributions of

ε, e.g., whether it is Gaussian or non-Gaussian or in general whether its distribution

is known or unknown (c) the arrival of the data y is sequential or batch-wise.

In statistics, this problem is typically addressed under two frameworks namely

Maximum-Likelihood and Bayesian.

Maximum-Likelihood: With this method, one obtains the joint likelihood

18

distribution of the observed data conditioned upon the state x as

p(y |x) = p(y1, y2, · · · , yN |x).

The likelihood function is then maximized to obtain our parameter of interest x. The

maximum likelihood estimator (MLE) has many interesting asymptotic properties of

being unbiased, achieving the Cramer-Rao lower bound (CRLB) 1 and asymptotically

it also possesses a Gaussian probability density function. When analytical expressions

for the MLE are not easily available, the maximization step in the MLE is obtained

by using standard optimization techniques such as Newton-Raphson, and gradient

descent methods. However these numerical methods suffer from typical problems of

being stuck at local maxima and inability to explore the system space efficiently .

Bayesian Methods: In the classical likelihood approach the parameter x is

assumed to be a deterministic or fixed parameter, however in the Bayesian framework

a different philosophy is adopted. Here the parameter of estimation is itself inherently

modeled as a random parameter and also any aprior knowledge of the parameter

is incorporated. By modeling x as a random parameter, the estimate is one

particular realization of the random quantity. Thus, under this setting we define

p(x |y) = p(x | y1, y2, · · · , yN), as the posterior distribution which contains all the

information about x. This distribution can be obtained using Bayes’ theorem as

p(x |y) =
p(y |x)p(x)

p(y)
=

p(y |x)p(x)∫
p(y |x)p(x)dx

.

Simple inference such as Ep[g(x)], where Ep denotes the expectation over the
1The CRLB is the lower bound on the variance of unbiased estimators.

19

random variable x whose distribution is given by p and g(x) is any function depending

upon the parameter x

Ep[g(x)] =

∫

x
g(x)p(x |y)dx =

∫

x
g(x)

p(y |x)p(x)dx∫
p(y |x)p(x)dx

. (3.1)

The computation of the integration is often carried out using numerical quadrature

methods. However, a major drawback associated is efficient spanning of the parameter

space especially in higher dimensions.

Monte Carlo methods are known to alleviate some of the problems associated

with some these numerical methods.

3.2 Monte Carlo Integration

Consider a simple variation of the previous inference problem (3.1), i.e., the

evaluation the integral

Eq[g(x)] =

∫

x
g(x)q(x)dx (3.2)

under the distribution q(x). With a simple Monte-Carlo strategy, a straightforward

procedure is to draw samples {x(1),x(2), · · · , x(n)} from the density q(x) to

numerically evaluate the integral (3.2) as

Eq[g(x)] ≈ ĝn =
1

n

n∑
i=1

g(x(i)). (3.3)

Under the strong law of large numbers ĝn converges almost surely to Eq[g(x)]. The

variance of ĝn is given as 1
n
V arq[g(x)] [22]. As noted earlier, traditional numerical

integration methods have serious drawbacks in situations when x is a high dimensional

20

vector. In such cases, the convergence rate of the methods such as Simpson’s rules is

very poor as the dimension of x increases. Intuitively, numerical methods basically

cover the entire space with a grid and as the number of dimension increases the

grid space also increases exponentially, thus requiring many number of points for

computation. However, Monte Carlo methods do not rely on such deterministic grids.

A drawback of Monte Carlo methods is that the above results are asymptotic, i.e., the

variance of the estimator goes to zero when the number of points approaches infinity.

There exist several Monte Carlo methods which reduce the variance of the estimator,

of which importance sampling is a popular sampling technique.

3.2.1 Importance Sampling

An alternative representation to (3.2) is given as

Eq[g(x)] =

∫

x
g(x)

q(x)

π(x)
π(x)dx (3.4)

By drawing samples x(1),x(2), · · · , x(n) are from a distribution π(x), (3.4) can be

approximated as

Eq[g(x)] ≈ 1

n

n∑
i=1

g(x(i))
q(x(i))

π(xi)

ĝn =
1

n

n∑
i=1

g(x(i))w(i) (3.5)

where π(·) is called the proposal or importance function from which samples are

drawn and w(i) is the associated importance weight. The density function q(·) can be

21

therefore approximated as

q(x) ≈
n∑

i=1

wiδ
(
x− x(i)

)
. (3.6)

Thus in Importance Sampling, any probabilistic distribution is represented with

samples and corresponding weights. This representation can then be used easily

in computation of various estimates. The variance of the estimator ĝn is then given

as

V ar(ĝn) =
1

n

(
Eπ

[
g(x)q(x)

π(x)

]2

− ĝ2
n

)

=
1

n

(
Eπ

[
g2(x)q2(x)

π2(x)

]
− ĝ2

n

)

≥ 1

n

((
Eπ

[|g(x)|q(x)

π(x)

])2

− ĝ2
n

)
{Using Jensen’s Inequality}

=
1

n

((∫

x
|g(x)|q(x)dx

)2

− ĝ2
n

)
(3.7)

which provides a lower bound on the variance of estimator and also suggests possible

choices of the proposal function π. Typically choices of π are distributions which is

nearly proportional to q [22].

In the previous sections we have considered x as a static parameter. In some

scenarios, the parameter of interest is also often a time varying parameter and

observations of this time varying quantity are recorded. In the following sections,

we consider the sequential estimation of the xt using the observations.

22

3.3 Dynamic State Space Model

In scenarios such as target tracking using radar , the dynamics of the target,

i.e., its position, velocity and acceleration are to be obtained using the radar

measurements. In wireless communications, the channel conditions are to be

estimated using the received symbols. Clearly one can see that a common model

exists that explains the evolvement of the states of the system and the acquisition of

observations.

The discrete state space (DSS) model is one such indispensable mathematical

model that describes the evolution and the measurement function of the state [23].

A standard formulation of the model is as follows:

xt = g(xt−1) + ut (3.8)

yt = h(xt) + vt (3.9)

where xt is the unknown state at time t, g(·) is the state transition function, yt are

the measurements, h(·) is the measurement function and ut and vt are observation

and measurement noise processes respectively.

The objective in many scenarios is to estimate and recover xt which varies with

time and is not directly measurable. The measurements yt are functions of the

quantities and are often corrupted by noise. Equations (3.8) and (3.9) are commonly

referred to as the state space equations.

23

3.4 The Filtering Problem

The estimation of xt using the measurements up to time t i.e., {y0,y1, · · · ,yt}
is defined as the filtering problem. In a Bayesian framework, the problem is

broadly defined as the estimation of the distribution of the random variable, xt ,

given the sequence {y0,y1, · · · ,yt} [23]. We will henceforth denote the sequence

{x0, x1, · · · , xt} as x0:t and {y0,y1, · · · ,yt} as y0:t. The conditional density

p(xt |y0:t), is termed as the filtering density.

We can write

p(xt|y0:t) = p(xt|yt,y0:t−1) (3.10)

p(xt|y0:t) =
p(yt|xt, y0:t−1)p(xt|y0:t−1)

p(yt|y0:t−1)
(3.11)

=
p(yt|xt,y0:t−1)p(xt|y0:t−1)∫
p(yt|xt, y0:t−1)p(xt|y0:t−1)dxt

(3.12)

∝ p(yt|xt)p(xt|y0:t−1). (3.13)

Also we have

p(xt|y0:t−1) =

∫
p(xt|xt−1)p(xt−1|y0:t−1)dxt−1 (3.14)

where p(xt|y0:t−1) is termed as the predictive density, p(zt|xt) as the likelihood and

p(xt|xt−1) as the prior density.

Another important distribution is the posterior distribution p(x0:t|y0:t).

24

The posterior distribution can be written as

p(x0:t|y0:t) =
p(yt|x0:t,y0:t−1)p(xt|y0:t−1)

p(yt|y0:t−1)
(3.15)

=
p(yt|x0:t,y0:t−1)p(xt|xt−1, y0:t−1)p(xt−1|y0:t−1)

p(yt|y0:t−1)
(3.16)

∝ p(yt|x0:t)p(xt|xt−1)p(xt−1|y0:t−1). (3.17)

The filtering density is a marginal of the posterior density. It is worth noting the

following points regarding the calculation of the filtering and posterior densities.

• In a Bayesian framework, all information about the states is contained in these

densities and thus obtaining this density is complete solution to the filtering

problem.

• The application of Baye’s rule to (3.10) yields (3.11), and (3.15) yields (3.16).

The combining of the likelihoods and the prior densities leads to calculation of

the posterior densities which is the essence of the Bayesian Methodology.

• These densities can be recursively calculated i.e., the filtering density p(xt|y0:t)

can be obtained when one has complete knowledge of p(xt−1|y0:t−1), the

likelihood p(yt|xt), and the prior distribution p(xt|xt−1). The situation is the

same with the posterior density. Thus, a framework for an online and realtime

processing of these densities is available.

• There are essentially two stages in the computation of these densities, a

predictive and an update stage. In the predictive stage, the density p(xt|y0:t−1)

is obtained from the filtering density at time instant t − 1, i.e., p(xt−1|y0:t−1).

25

Using the latest measurements, these predictive densities are updated to obtain

the filtering densities, p(xt|y0:t) and p(xt|y0:t).

• Estimates of xt, which maximize these densities are known as maximum a

posteriori estimates. If the estimate is given by

x̂t = E[xt|y0:t] =

∫
xtp(xt|y0:t)dxt (3.18)

it is known as minimum mean square error(MMSE).

Thus, one is motivated to obtain these filtering densities sequentially in real-time.

The prior and the likelihood densities can be obtained using equations (3.8) and (3.9).

In situations where {vt} and {ut} are Gaussian processes and the functions f(·) and
g(·) are linear, the Kalman filter presents the optimal solution. However when the

noise processes {vt}, {ut} are non-Gaussian and the functions g(·) and h(·) are non-

linear, analytically tractable results are often hard to obtain. In the remainder of this

chapter and the thesis we will only consider filters which address these later scenarios.

Also we classify the various filters as Monte Carlo-based and non-Monte Carlo-based

filters.

3.5 Non-Monte Carlo-based filters

As stated earlier, most recursive solutions to the filtering problem involve two

key operations at each time instant: (a) propagation of the state estimate from

the previous time instant to the current time instant and (b) updating of the state

estimate using the current measurements. Two popular non-Monte Carlo filters that

26

address the filtering problem when the state space models are non-linear are

• the Extended Kalman filter (EKF) and

• the Unscented Kalman filter (UKF)

We now briefly summarize these filters. They provide approximate solutions to

the filtering problem when the functions in the DSS model are nonlinear. In these

filters the following approximations are made: the predictive density of the state is

approximated by a Gaussian, p(xt |y1:t−1) ≈ N (x̄t|t−1,Pt|t−1), where x̄t|t−1 and Pt|t−1

are the predictive mean and covariance matrix of xt given y1:t−1, and the filtering

density is approximated by another Gaussian, p(xt |y1:t) ≈ N (x̄t|t,Pt|t) where x̄t|t

and Pt|t are the mean and covariance matrix of xt given y1:t .

3.5.1 Extended Kalman Filter (EKF)

In the EKF, the transition and measurement functions of the DSS model are

linearized through a Taylor series expansion, and the DSS equations are transformed

into a model with linear state and measurement functions for which the Kalman filter

presents an optimal solution [23]. Given P0|0 = E(x0x
>
0) and using the Gaussian

approximation of the predictive and filtering distributions at time instant t − 1, the

two steps in the EKF at time instant t are

1. Time update step:

x̄t|t−1 = g(x̄t|t−1)

Pt|t−1 = Cu,t + Gt−1Pt−1|t−1G
>
t−1. (3.19)

27

2. Measurement update:

x̄t|t = x̄t|t−1 + Kt(yt − h(x̄t|t−1))

Pt|t = Pt|t−1 −KtHtPt|t−1 (3.20)

where Kt = Pt|t−1H
>
t S−1

t , St = HtPt|t−1H
>
t + Cv,t, Ht = ∂h(x)

∂x x=x̄t|t−1
, and

Gt = ∂g(x)
∂x x=x̄t|t

.

3.5.2 Unscented Kalman Filter (UKF)

In the UKF, a set of deterministically chosen points known as sigma points

Ωs
t are used in approximating the filtering and predictive distributions by Gaussian

distributions. In this filter, the state of the system xt is represented by concatenating

it with the process and measurement noise states, i.e., by forming xs
t = [x>t ,u>t ,v>t]>.

The main steps in the UKF are

1. Calculation of sigma points: Ωs
t−1 = [xs

t ,x
s
t ±

√
(ns + λ)Ps

t−1)] where ns is the

dimension of xs
t and λ is a scaling parameter, and Ps

t−1 is the covariance matrix

of xs
t−1.

2. Time update step: Using (3.8), the sigma points Ωs
t−1 are propagated to obtain

Ωs
t | t−1 which are then appropriately weighted. Using Ωs

t | t−1 and the weights,

the mean xt|t−1 and covariance matrix Pt|t−1 of the predictive distribution are

easily obtained. The predictive sigma points Ωs
t | t−1 are transformed through

the observation model (3.9) to obtain a new set of measurement points Yt−1

and their predictive measurement mean ȳt|t−1.

28

3. Measurement update step: Using the points computed in the time update step,

the covariance matrix Pytyt
of Yt−1 and the cross covariance matrix PΩtyt

between Ωs
t | t−1 and Yt−1 are computed. The parameters of the filtering density

are obtained as follows:

Kt = PΩtyt
P−1

ytyt

x̄t|t = x̄t|t−1 + Kt(yt − ȳt|t−1)

Pt|t = Pt|t−1 −KtPytyt
K>

t (3.21)

More details about the expressions of the UKF can be found in [24], [25].

3.6 Sequential Monte Carlo-based Filters

In a Monte Carlo framework the posterior density p(xt|y0:t) is represented by

a random measure, Ξt = {x(m)
t , w

(m)
t }, which is a set of samples or support points

{x(m)
t } with weights {w(m)

t } with m = 1, 2, · · ·M and M is the total number of

samples. These support points or sample points are also referred to as particles and

hence the method particle filtering [26], [27].

29

3.6.1 Sequential Importance Sampling (SIS)

These filters exploit the Importance Sampling principle of Monte Carlo methods.

A Monte Carlo approximation of the posterior distribution is

p(x0:t|y0:t) ≈
M∑

m=1

w
(m)
0:t δ

(
x0:t − x

(m)
0:t

)

w
(m)
0:t ∝ p(x

(m)
0:t |y0:t)

π(x
(m)
0:t |y0:t)

(3.22)

where π(x0:t|y0:t) is the proposal density function. When the proposal function has

the following recursive form

π(x0:t|y0:t) ∝ π(xt|xt−1, y0:t)π(x0:t−1|y0:t−1) (3.23)

then

w
(m)
t = w

(m)
t−1

p(yt|x(m)
t)p(x

(m)
t |x(m)

t−1)

π(x
(m)
t |x(m)

t−1,y0:t)
(3.24)

through equations (3.17) and (3.22). Therefore equation (3.24) is also known as the

weight update equation and the filtering density is thereby approximated as

p(xt|y0:t) =
M∑

m=1

w
(m)
t δ

(
xt − x

(m)
t

)
. (3.25)

3.6.2 Issues Related to SIS

• Degeneracy of the algorithm: A commonly observed phenomenon is that the

variance of the weights increases with time, which means that all but a few

particles are left which have significant weights. Thus, we are left with

30

few particles that have important weights. This is commonly known as the

degeneracy phenomenon. A significant amount of computation time is wasted

with these particles whose contribution is almost zero. To avoid these problems

the particles are resampled i.e., the mth particle is copied Nm times where

Nm is distributed according to a multinomial distribution with parameters

{w(1)t, w
(2)
t , · · · , w

(M)
t }. This ensures that particles with low importance weights

are eliminated and particles with sufficient weights are allowed to propagate and

multiply. There are several schemes for resampling of which the popular ones

are the ones introduced in [26] and [28]. The other resampling methods are

systematic resampling, stratified resampling, random resampling and residual

resampling [29].

• Choice of Importance Function The optimal choice of the importance function

is that which minimizes the variance of the weights which is given as

π(xt|xt−1,y0:t) = p(xt|xt−1,yt). (3.26)

However the computation of the optimal importance is analytically possible only

for a class of DSS models. Even if there exists an analytical model, obtaining

samples from this distribution is in general an intensive task. A simple and

elegant choice of importance function is the prior distribution which is readily

available from the state equation (3.8). Some of the advantages in using this

importance function is the ease of drawing samples and the ease in updating

the weights.

Although resampling is an important step in removing the degeneracy

31

phenomenon, repeated stages of resampling reduce the diversity in the particles.

This is termed as sample impoverishment. A major cause of this sample

impoverishment is often observed to be the choice of importance function. When

the importance function (in many cases the predictive or prior distribution)

differs considerably from the target distribution then many of the particles

drawn using this importance function get eliminated under resampling. There

have been schemes to enhance particle diversity [30] which after the resampling

stage introduce a Markov chain move which drifts the particle to a new random

position in the parameter space with the constraint that the transition kernel

preserves stationarity with respect to the target posterior density. Other

schemes which address this problem of sample impoverishment exist which

impose a criterion for resampling at a particular time instant t .

time

k

1k +

{ }() ()
1 1 1,i i N

k k iw+ + =x

{ }() ()
1,i i N

k k iw =x

{ }() ()
2 2 1,i i N

k k iw+ + =x

2k +

time

k

1k +

{ }() ()
1 1 1,i i N

k k iw+ + =x

{ }() ()
1,i i N

k k iw =x{ }() ()
1,i i N

k k iw =x{ }() ()
1,i i N

k k iw =x

{ }() ()
2 2 1,i i N

k k iw+ + =x

2k +

Particles

at time t+1

Propagated

Particles

Particles

at time t+1

Figure 3.1: Evolution of the Filtering Density without any resampling.

32

kk

Particles after resampling
and propagation

Particles after resampling
and propagation
Particles after

Resampling at time

t+1

Propagated

Particles

Particles

at time t+1

Figure 3.2: Evolution of the Filtering Density with resampling.

33

3.6.3 Standard particle filtering (SPF)

SPF, methods are an extension of SIS schemes with a resampling step which

allow for the recursive approximation of the posterior density of the unknown state

by p(x0:t, | y1:t) ≈
M∑

m=1

δ
(
x0:t − x

(m)
0:t

)
w

(m)
t , where δ(·) denotes the Dirac delta

function [30]. At time instant t, the algorithm updates the random measure

bfXit−1 = {x(m)
0:t−1, w

(m)
t−1}M

m=1 to Ξt = {x(m)
0:t , w

(m)
t }M

m=1 by three main steps:

1. Particle generation: New particles are drawn from a proposal distribution

function π(·) i.e., x
(m)
t ∼ π(xt | x(m)

t−1,y1:t).

2. Weight update: Upon reception of the measurement yt, the weights are updated

as

w̃
(m)
t = w

(m)
t−1

p(yt | x(m)
0:t ,y1:t−1)p(x

(m)
t | x(m)

t−1)

π(x
(m)
t | x(m)

t−1,y1:t)

and normalized such that
M∑

m=1

w
(m)
t = 1.

3. Resampling: Drawing of samples from the multinomial distribution with

parameters {w(1)
t , · · · , w

(M)
t }.

Example 1

We now consider the following non-linear time series model [31]:

xt =
1

2
xt−1 + 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt

yt =
x2

t

20
+ wt

34

where x0, ∼ N (0, 5) and vt ∼ N (0, σ2
v) and wt ,∼ N (0, σ2

w) with σ2
v = 10 and

σ2
w = 1. As can be seen, the state space equations are highly non-linear and therefore

the Kalman filter and its variants are not suitable for accurate results. A particle

filtering based solution is as follows:

1. Initialization: The particles x
(m)
0 are initially drawn from an initial distribution

N (0, 5) and the weights of the particles are set to 1
M
.

2. New particle generation:

The new particles are drawn from N (µ
(m)
t , σ2

v) with

x
(m)
t ∼ N (µ

(m)
t , σ2

v)

µ
(m)
t =

1

2
x

(m)
t−1 + 25

x
(m)
t−1

1 + x
(m) 2
t−1

+ 8cos(1.2t).

3. Weight computation: The weight update proceeds according to

w
(m)
t ∝ w

(m)
t−1 p(yt|x(m)

t).

When these weights are normalized, one can use {x(m)
t , w

(m)
t } to compute estimates

of the unknown states. For example, the MMSE estimate is obtained from

x̂t =
M∑

m=1

w
(m)
t x

(m)
t .

Upon completion of the estimation, the particles may be resampled. The

resampling can be performed at every time instant t or according to a predefined

schedule. In Figure 3.3, resampling is not performed while in 3.4, resampling is

35

performed at every step. It can be clearly seen that with resampling the particles

with negligible weights are replaced with particles which has larger weights. The

sample impoverishment phenomenon can also be observed. For sake of clarity in the

figures, the filtering densities are plotted for every 5s only.

−40

−20

0

20

40

0

20

40

60

80

100
0

0.01

0.02

0.03

0.04

0.05

0.06

State xTime

W
ei

gh
ts

Figure 3.3: Evolution of the filtering density without resampling.The dark line is the
true state while the dots represent the filtering density. Note the presence of a large
number of particles whose weights are almost 0.

36

−40

−20

0

20

40

0

20

40

60

80

100
0

0.01

0.02

0.03

0.04

0.05

0.06

State xTime

W
ei

gh
ts

Figure 3.4: Evolution of the filtering density with resampling. The dark line is the
true state. Note the absence of particle with negligible weights.

37

3.6.4 Auxiliary Particle Filtering (APF)

The APF attempts to draw samples from a joint distribution p(xt, i |y0:t) of

the state xt and an index i. These indices known as auxiliary variables aid in the

propagation of particles that have large predictive likelihoods.

To that end, the selection of most promising particles is carried out by sampling

from a multinomial distribution where the number of possible outcomes is M and the

probabilities of the respective outcomes are w̃
(m)
t , m = 1, 2, · · · ,M .

At the beginning, the initial set of particles x
(m)
0 , m = 1, 2, · · · ,M , are drawn

from a prior distribution π(x0), and the weights of the particles are set to 1
M
. At

time instant t− 1, we have the random measure χt−1 = {x(m)
0:t−1, w

(m)
t−1}M

m=1. The steps

of the APF are then implemented as follows:

1. Selection of most promising particle streams: For selection of the most promising

particles, we choose the conditional mean of x
(m)
t given x

(m)
t−1 as a characterizing

parameter of every stream, i.e.,

µ
(m)
t = E

(
xt|x(m)

t−1

)
. (3.27)

The conditional means are computed readily from the state equation (3.8)

µ
(m)
t = g(x

(m)
t−1) (3.28)

and the weights associated with these means are calculated as

w̃
(m)
t ∝ p(yt | µ(m)

t)w
(m)
t−1 . (3.29)

38

A probability mass function (pmf) represented by these normalized weights is

then obtained and a set of indices, the auxiliary variables {im} are drawn from

this pmf.

2. New particle generation: Using the indices and the prior state equation (??),

one method for generating new particles is as

x
(m)
t ∼ p(x

(m)
t |x(im)

t−1).

3. Weight computation:

The newly generated particles are assigned weights according to

w
(m)
t ∝ p(yt | x(m)

t)

p(yt | µ(im)
t)

.

The likelihood terms of the numerator and denominator are calculated using

the likelihood model of the state equation (3.9).

4. State estimation: Once the weights are normalized, one can use χt to compute

estimates of the unknown states. The MMSE estimate is obtained from

x̂t =
M∑

m=1

w
(m)
t x

(m)
t . (3.30)

3.6.5 Gaussian Particle Filtering (GPF)

The GPF is a SMC filtering algorithm that approximates the predictive and

posterior distributions with Gaussian distributions [32]. The main steps of this filter

39

are

1. Generation of particles: Samples x
(m)
t−1 are drawn from N (x̄t−1|t−1,Pt−1|t−1) and

the samples x
(m)
t are drawn from p(xt |x(m)

t−1).

2. Computation of the mean and covariance of the predictive density: Using the

samples of the previous step, the sample mean x̄t|t−1 and covariance matrix

Pt|t−1 are obtained.

x̄t|t−1 =
1

M

M∑
m=1

x
(m)
t (3.31)

Pt|t−1 =
1

M

M∑
m=1

(x
(m)
t − x̄t|t−1)(x

(m)
t − x̄t|t−1)

> (3.32)

3. Computation of the weights: Using the measurement yt, the weights are

calculated by

w̃
(m)
t =

p(yt | x(m)
t)p(x

(m)
t |y1:t−1)

π(x
(m)
t | x(m)

t−1,yt)
=

p(yt | x(m)
t)N (x̄t|t−1,Pt|t−1)

p(x
(m)
t | x(m)

t−1,yt)

where p(xt|y1:t−1) is a Gaussian with a mean x̄t|t−1 and a covariance matrix

Pt|t−1. The weights are subsequently normalized.

4. Computation of the mean and covariance of the filtering density: The sample

mean x̄t|t and covariance Pt|t of the filtering density are obtained using the

40

weighted set of samples.

x̄t|t =
1

M

M∑
m=1

w
(m)
t x

(m)
t (3.33)

Pt|t =
1

M

M∑
m=1

w
(m)
t (x

(m)
t − x̄t|t−1)(x

(m)
t − x̄t|t−1)

> (3.34)

Summary: In this chapter we had reviewed some Sequential Monte Carlo

algorithms and have noted their efficacy in dealing with non-linear filtering problems.

The reference example clearly shows some of the important issues of these algorithms

namely resampling and sample impoverishment. The Gaussian Particle filter, a

variant of these sequential Monte Carlo methods has been introduced. Some

applications of this algorithm will be seen in Chapters 5 and 6.

41

Chapter 4

Cost-Reference Particle Filtering

Standard particle filtering (SPF) schemes rely on the availability of statistics

of the state and observation noises involved in the dynamic state space model. Cost

reference particle filtering (CRPF) techniques have proven to be a viable and robust

alternative in situations when distributions of these noise processes are unknown. In

Section 4.2, we study the orginally proposed CRPF algorithms and in Section 4.3, we

propose two novel CRPF methods which are simpler to use and less computationally

intensive. The proposed algorithms are applied to tracking a single target. Computer

simulations are provided in Section 4.4 which show a good performance of the

proposed algorithms when compared to the original CRPF methods and a more robust

behavior than the SPF algorithms.

42

4.1 Introduction

4.1.1 Problem Statement

Recall that the standard DSS model, defined by equations (3.8) and (3.9), is a

useful tool for describing a wide variety of phenomena ranging from the dynamics of

a moving target to time-varying wireless channels in communications. The objective

is the online estimation of x0:t given the sequence of observations y1:t.

When the distribution of the noise processes are known, the filtering problem

reduces to the estimation of the posterior density, p(xt|y1:t), or statistics of the system

state given the measurements. It is well known that the Kalman filter is optimal

when the noise processes are Gaussian and the functions g(·) and h(·) are linear [23].

When these conditions are not satisfied, the Kalman filter and its extensions are often

suboptimal. During the last decade, SMC methods, have been intensively studied and

have gained wide acceptance in addressing situations where the noise processes are

not strictly Gaussian and the state functions are non-linear [30,33].

The filtering methods, Kalman filter or SMC algorithms, rely on the assumption

that the distributions of the noise processes in the state space model are available.

However, in many situations this may not be the case. When the distributions of the

noise processes are unknown, propagation of the state particles and calculation of the

weights is not straightforward. Recently a new class of particle filters known as CRPF

methods has been proposed to address the filtering problem is such scenarios [34,35].

In [34], the issue of sequential estimation in the context of “blind” particle filtering

was first addressed. The authors introduced notions of costs and risks to determine the

quality of the proposed particles. Using these functions, particles were resampled and

43

propagated in time thereby allowing recursive state estimation without any knowledge

of the noise distributions of the state space models. In [35], connections between

CRPF and SPF were discussed and efficient variants to the original CRPF scheme

were proposed. In this chapter we propose two new CRPF techniques and study their

sensitivity to various proposal functions.

4.2 Cost Reference Particle Filtering (CRPF)

The random measures are constructed by applying user-defined costs. If the

random measure at time instant t− 1 is ζt−1 =
{

x
(m)
0:t−1, c

(m)
t−1

}M

m=1
, where c

(m)
t−1 are the

costs assigned to the particles x
(m)
t−1, then upon the reception of the measurement yt,

ζt−1 is updated to ζt =
{

x
(m)
0:t , c

(m)
t

}M

m=1
following the APF structure and the principle

of survival of the fittest. The main steps of this scheme are:

1. Selection of the most promising paths: This step resembles the resampling

procedure in SPF schemes. The most promising paths are selected using risk

functions defined as r
(m)
t = λc

(m)
t−1 + ∆r(x

(m)
t−1|yt) where

∆r(x
(m)
t−1|yt) =

∣∣∣
∣∣∣yt − h

(
g(x

(m)
t−1)

)∣∣∣
∣∣∣
q

, (4.1)

with λ being a forgetting factor to avoid attributing excessive importance to

the past, q > 0 and || · || denoting norm of a vector. These risk functions

measure the adequacy of the particles at time instant t − 1 given the new

measurement yt [34]. For resampling, a probability mass function (pmf), π̂
(m)
r,t ,

is created to allow for assignment of weights to each particle, π̂
(m)
r,t ∝ µr(r

(m)
t),

44

where µr : R → [0, +∞) is a monotonically decreasing function1. A simple

formulation of this pmf is given by

µr(r
(m)
t) ∝ 1

r
(m)
t

(4.2)

which is modified into a proper pmf through normalization. Following

resampling, a new stream ζ̂t−1 =
{

x̂
(m)
0:t−1, ĉ

(m)
t−1

}M

m=1
is obtained.

2. Particle generation: New particles are proposed using a proposal density,

pt(xt|x̂(m)
t−1). In [34], the authors approximate pt(xt|x̂(m)

t−1) as a Gaussian kernel

with statistics

E(xt) = f(x̂
(m)
t−1), and Cov(xt) = σ

2,(m)
t Id,

where d is the dimension of the state and the variance σ
2,(m)
t is recursively

updated as

t ≤ τ0 σ
2,(m)
t = σ

2,(m)
t−1 ,

t > τ0 σ
2,(m)
t = t−1

t
σ

2,(m)
t−1 +

∥∥∥x(m)
t −f(x̂(m)

t−1)
∥∥∥
2

td
,

with τ0 being the time instant until which the filter obtains adequate

measurements for learning the statistics of the state process.
1High risks indicate poor predictions of the state and lower risks indicate good predictions of the

state.

45

3. Costs update: Costs measure the quality of the estimated state and are

recursively updated as

c
(m)
t = λc

(m)
t−1 +4c(x

(m)
t |yt). (4.3)

A possible choice of the incremental cost function is

4c(xt|yt) = ||yt − h(xt)| |q. (4.4)

Depending upon system requirements such as robustness, other cost functions

such as the Huber loss function or the fair function can be incorporated [36].

4. State estimation: A simple estimation scheme consists of choosing the particle

with the minimum cost as the state estimate. Alternatively, one can construct

another artificial pmf π̃
(m)
c,t ∝ µc(c

(m)
t), m = 1, . . . ,M , and obtain estimates such

as the weighted mean of the particles.

4.3 New CRPF Methods

In this section we outline two new cost reference-based particle filtering schemes.

The main focus of these methods is to obtain good proposal densities and thereby

robust performance by adequately exploring the state space.

46

4.3.1 New CRPF method Type -I (CRPF-I)

As in CRPF schemes, at each time instant t, a new stream of particles and their

associated costs is generated. The main steps of the algorithm are maintained but

the order is changed to allow for construction of a better proposal.

1. Propagation of new particles : Using the particles at time instant t, we

construct a proposal mixture density,

x̂
(m)
t+1 = fx(x

(m)
t),

πt+1(xt+1) =
1

M

M∑
m=1

K(xt+1; x̂
(m)
t+1, h

2Σ̂x,t+1),

where K(·) is a density function centered at x̂t+1, Σ̂x,t+1 is a scale parameter and

h is a smoothing parameter which is chosen as a slowly decreasing function of the

sample size. For Gaussian densities this component is chosen as h = c/M1/(1+4d)

and c = 4/(1 + 2d)1/(1+4d) [37] . Particles, {x(m)
t+1},m = 1 · · ·M , are thus drawn

from this kernel. In our simulations we use a Gaussian kernel and thus the

proposal density is approximated by a mixture Gaussian density with each

density centered at x̂
(m)
t+1.

2. Computation of costs: We use quadratic (q = 2) functions (see equations

(4.3) and (4.4)) to determine the effectiveness and the robustness of the particles

given the current measurements.

3. Updating the proposal density and resampling: As in the original CRPF,

we construct a pmf, π̂
(m)
c,t+1, and assign weights using the current costs of the

particles such that particles with lower costs have larger weights and vice-versa.

47

The covariance matrix, Σ̂x,t+2, is updated as

Σ̂x,t+2 ≈
M∑

m=1

π̂
(m)
c,t+1(x

(m)
t+1 − x̂t+1)(x

(m)
t+1 − x̂t+1)

>, (4.5)

where x̂t+1 =
∑

π
(m)
c,t+1x

(m)
t+1 is the sample mean. We now perform the resampling

step and eliminate particles with poorer weights (i.e., particles with larger costs).

4. State estimation: The state estimation is analogous to the original CRPF

schemes.

The above algorithm does not use any risk functions and that consitutes a major

difference with respect to the original CRPF proposed in [34]. There, the risk function

indicates the effectiveness of the state at time instant t given the new measurement

yt+1 and is computed using the costs at the previous time instant. With this new

method, we argue that a good proposal density accompanied by a resampling scheme

can lead to a similar performance than the original CRPF with risk calculations.

Therefore, the step of risk calculation can be eliminated and the computational

complexity reduced. The proposed methods re pictorially represented in 4.1.

4.3.2 New CRPF method Type-II (CRPF-II)

This method is constructed in a similar way as the CRPF Type-I method.

It primarily differs in the propagation of the particles and the construction of the

proposal density. It is based on a learning process that leads to the acquisition of the

statistics of the noise process in the state equation. Consider a stream of trajectories

at time instant t which includes state particles, noise particles, and incremental

48

and accumulated costs Ξ̃t =
{

x
(m)
0:t , ε

(m)
0:t , C(m)

t , ∆C(m)
t

}M

m=1
. With a slight abuse of

notation, we obtain a set of noise particles and associated incremental costs as Ξ̇t={
(ε

(m)
0 , ∆C(m)

0), (ε
(m)
1 , ∆C(m)

1), · · · (ε(m)
t , ∆C(m)

t)
}
. The weighted sample noise mean of

this trajectory is given by

µε(m)
t

=

∑t
τ=1 α

(m)
τ ε

(m)
τ∑t

τ=1 α
(m)
τ

, (4.6)

and the weighted sample noise covariance matrix is computed by

Σε(m)
t

=

∑t
τ=1 α

(m)
τ ε

(m)
τ ε

(m)>
τ∑t

τ=1 α
(m)
τ

, (4.7)

with α
(m)
t = 1

∆C(m)
t

. Recursive expressions for obtaining these terms are as follows

µε(m)
t+1

=

(
β

(m)
t

β
(m)
t+1

)
µε(m)

t
+

ε
(m)
τ α

(m)
t+1

β
(m)
t+1

,

Σε(m)
t+1

=

(
β

(m)
t

β
(m)
t+1

)
Σε(m)

t
+

α
(m)
t+1ε

(m)
t ε

(m)>
t+1

β
(m)
t+1

, (4.8)

with β
(m)
t =

∑t
τ=1 α

(m)
τ . The filter is displayed in 4.2

The main steps of the algorithm are:

1. Propagation of particles: For each stream of particles we construct an

individual Gaussian proposal density πε(m)
t+1

= N (µε(m)
t

,Σε(m)
t

). Using this

proposal we draw noise samples ε
(m)
t+1 ∼ πε(m)

t+1
and propagate the particles,

x
(m)
t+1 = fx(x

(m)
t) + ε

(m)
t+1.

49

2. Computation of costs: The costs are calculated as in the original CRPF (see

Section 4.2.)

3. Updating the proposal density and resampling: As in the CRPF we

construct a pmf and assign weights using the current costs of the particles.

The statistics of the noise trajectories are updated using (4.8) after which we

perform the resampling step.

4. State estimation: The state estimation is similar to the original CRPF

schemes.

The new algorithms are summarized in the table in the next page.

50

New Cost Reference Particle Filters

• Initialization, at t = 0.
– For m = 1 · · ·M draw samples x

(m)
0 ∼ N (µ0,Σ0).

– For m = 1 · · ·M set C(m)
0 = 0.

For t = 1 · · ·T

• Propagation of Particles

– CRPF Type -I

πt+1(xt+1) = 1
M

∑M
m=1K(xt+1; x̂

(m)
t+1, h

2Σ̂x,t+1)

– CRPF Type -II
πt+1(xt+1) = N (fx(x(m)

t) + µε(m)
t

,Σε(m)
t

).

For m = {1 · · ·M} x
(m)
t+1 ∼ πt+1(xt+1)

• Computation of Costs For m = {1 · · ·M}
C(m)

t+1 = λC(m)
t + ||yt+1 − fy(x

(m)
t+1)||q

• Updating Proposal Density

– CRPF Type -I

Σ̂x,t+1 ≈
∑M

m=1 π(m)(xm
t − x̂t)(xm

t − x̂t)>

– CRPF Type -II

µε(m)
t+1

=
(

β
(m)
t

β
(m)
t+1

)
µε(m)

t
+

ε(m)
τ α

(m)
t+1

β
(m)
t+1

Σε(m)
t+1

=
(

β
(m)
t

β
(m)
t+1

)
Σε(m)

t
+

α
(m)
t+1ε

(m)
t ε(m)>

t+1

β
(m)
t+1

.

• State Estimation
π

(m)
t+1 ∝ µ(C(m)

t+1) and x̂t+1 =
∑

m xm
t+1π

(m)
t+1

• Resampling

51

Particles at time instant t

Particles at time instant t+1

Kernel density function

Figure 4.1: A new cost reference particle filter: CRPF Type -I

52

Particles at time instant 0

Particles at time instant 1

Particles at time instant 2

Particles at time instant t

Figure 4.2: A new cost reference particle filter: CRPF Type -II

53

4.4 Computer Simulations

In this section we present some simulation results to illustrate the performance

of the proposed algorithms for target tracking in a wireless sensor network.

4.4.1 The target tracking problem

Consider a two-dimensional sensing field with one moving target. The target

motion model under constant acceleration is given by

xt = Gxxt−1 + Γuut, (4.9)

where xt = [x1,t, x2,t, ˙x1,t, ˙x2,t]
> ∈ R4 represents the position and velocity of the

target, ut represents a Gaussian noise with covariance matrix Cu that accounts for

acceleration perturbances in the system, and Gx and Γu are known transition matrices

of the form

Gx =




1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1




, Γu =




T 2
s

2
0

0 T 2
s

2

Ts 0

0 Ts




.

The sensors measure the signal emitted by the target every Ts seconds. Following [38]

we model the signal received by the n-th sensor as

yn
t = Ψ0 − 10γ log10

(|lt − sn|
d0

)
+ vn

t (4.10)

54

where Ψ0 is an unknown parameter that represents the signal strength at a known

reference distance d0, sn ∈ R2 is the position of the n-th sensor, lt ∈ R2 denotes

the location of the target at time t, γ is an attenuation parameter due to the

communication channel, and vn
t is observation noise. The problem of estimating

the target trajectory at every time instant is now posed as a filtering problem, i.e.,

estimation of the state x0:t given the measurements y1:t. Note that in this context,

the state of the system includes not only the target dynamic parameters but also the

static parameter Ψ0
2.

4.4.2 Simulation parameters and algorithms

PARAMETER VALUE
Sensing field dimensions 650m× 750m

Number of sensors 4
Reference power Ψ0 -50dB

Attenuation parameter γ 2.5
Number of particles M 2000
Sampling period Ts 1s

Total observation period T 60s
Forgetting factor λ 0.95

Table 4.1: Parameters of the system and algorithms
We considered an experiment with a target moving along the sensor field for one

minute with samples taken every Ts = 1 second. The initial state, x0, was drawn

from N (µ0,Σ0) with µ0 = [0.0 0.0 5.0 5.0]> and Σ0 = diag (50 50 5 5). The state

and observation noises were modeled as ut ∼ N (0,Cu) with Cu = diag(0.1, 0.2) and

vn
t ∼ N (0, 1), respectively.

We placed four static sensors in the sensing field at locations (100, 400),

(300, 300), (200, 0) and (0, 250). The sensors collected the measurements according
2Estimation of the static parameter Ψ0 was addressed in [39].

55

to equation (4.10) and transmitted them to the fusion center, which performed the

tracking according to the previously explained algorithms (labeled in the Figures as

CRPF-I and CRPF-II). For comparision purposes we also considered the original

CRPF algorithm proposed in [34] (labeled CRPF). All the CRPF methods were

initialized by drawing particles from the initial distribution N (µ0,Σ0). Other

parameter’ values of the system and the algorithms are displayed in Table 4.1.

0 20 40 60
5

10

15

20

25

30

Time

M
S

E
 o

f x
1,

t

0 20 40 60
5

10

15

20

25

30

Time

M
S

E
 o

f x
2,

t

0 20 40 60
1

2

3

4

5

6

Time

M
S

E
 o

f x
1,

t

0 20 40 60
1

2

3

4

5

6

Time

M
S

E
 o

f x
2,

t

CRPF−I
CRPF−II
CRPF

..

Figure 4.3: MSE of the target dynamics for various CRPF algorithms

4.4.3 Results

Figures 4.3 and 4.4 show the mean square errors (MSEs) of the targets dynamics

and the unknown static parameter Ψ0.The MSE plots were obtained by averaging

56

over 50 trajectory runs. It can be seen that the performance of the three algorithms

is very similar for the considered scenario. Figure 4.5 depicts one realization of the

target trajectory and the obtained estimates using the original CRPF algorithms and

the CRPF methods Type-I and II.

0 10 20 30 40 50 60
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time

M
S

E
 o

f Ψ
0

CRPF−I
CRPF−II
CRPF

Figure 4.4: MSE of the static parameter Ψ0 for various CRPF algorithms

4.4.4 Robustness of the methods

For the previous experiment we considered the state noise to be Gaussian. In this

second experiment we considered the state noise to be a mixture Gaussian density,

ut ∼ 0.5N (0,Cu,1) + 0.5N (0,Cu,2)

Cu,1 = diag(0.10.2) and Cu,1 = I2. The sensors were placed at locations

(50, 300), (200, 100), (400, 250), and, (300, 400). All the coordinates are expressed in

meters. The remaining parameters used in the simulation were the same as the

57

−50 0 50 100 150 200 250 300 350 400
−100

0

100

200

300

400

500

600

700

X Position

Y
 P

os
iti

on

True Traj
Sensor
CRPF−I
CRPF−II
CRPF

Figure 4.5: A run of the target trajectory for the various implementations of CRPF

ones used in experiment one (see Table 4.1). For comparison purposes we simulated,

besides the CRPF algorithms, a SPF [30] that uses perfect knowledge of the statistics

of the system (labeled SPR-True), and a SPF with incorrect statistics which assumes

the state noise as ut ∼ N (0, C̃u) with C̃u = diag(0.1, 0.1) and the standard deviation

of the measurement noise σv = 3 (labeled SPR-False). Figures 4.6 and 4.7 show the

MSEs and percentage of missed trajectories obtained by the various implementations.

It is clear that the performance of the three CRPFs is very similar and more robust

than the SPF scheme when the assumed noise statistics deviate from the true values.

58

0 20 40 60
0

10

20

30

Time

M
S

E
 o

f x
1,

t

0 20 40 60
0

10

20

30

Time

M
S

E
 o

f x
2,

t

0 20 40 60
0

2

4

6

8

10

12

Time

M
S

E
 o

f x
1,

t

0 20 40 60
0

2

4

6

8

10

12

Time
M

S
E

 o
f x

2,
t

CRPF−I
CRPF−II
CRPF
SPF−True
SPR−False

. .

Figure 4.6: MSE of the target dynamics for various CRPF and SPF algorithms

CRPF−I CRPF−II CRPF SIRPF−True SIRPF−False
0

5

10

15

20

25

30

%
 o

f m
is

se
d

tr
aj

ec
to

rie
s

Figure 4.7: Percentage of missed tracks

59

4.5 Summary

Cost reference particle filtering (CRPF) methods address the problem of filtering

for scenarios where the distribution of state and observation noises are unknown.

We propose two alternative methods within the family of the original CRPF

algorithms, with emphasis on building better proposal functions for a better state

space exploration. The obtained algorithms show a good performance and a

considerable reduction in computational complexity when compared to the original

CRPF methods. We also compared the new algorithms with the standard particle

filtering (SPF) approach that relies on the statistics of the system. The results show

that the new algorithms are more robust than the SPF methods since they do not

rely on any probabilistic assumptions.

60

Chapter 5

Sensor Self-Localization with Beacon

Position Uncertainty

Algorithms for distributed sensor self-localization using beacon nodes are

proposed. These beacon nodes broadcast some information which describes their

positions. The sensor nodes with unknown location information utilize these

descriptions along with the characteristics of received signals to obtain estimates

of their positions. Sensors with resolved positions, in the successive stages of the

algorithm also broadcast their location information to other sensors so that they

can resolve their own positions. Conditional upon the availability of probabilistic

distributions of noise processes, we propose iterative Bayesian and least squares

methods in Section 5.3 and Monte Carlo sampling-based methods in Section 5.4.

We also provide iterative hybrid Cramér-Rao bounds for distributed sensor self-

localization in Section 5.5 and compare them with the proposed algorithms. We

demonstrate the performance of the proposed algorithms through extensive computer

61

simulations in Section 5.7.

5.1 Introduction and Motivation

In many sensor networking applications such as object tracking, sensors measure

signals that are functions of the geometry between the object under surveillance and

the sensor. Therefore to extract meaningful information of the object’s dynamics,

knowledge about the sensors’ location is required. Incorporation of technologies like

Global Positioning System (GPS) into these networks increases the cost and power

requirements of the sensors. Alternatively, a periodic calibration of sensors’ positions

can be accomplished by establishing collaboration among the sensors. This procedure

is known as self-localization.

In centralized sensor networks, the sensor measurements are routed to a central

unit which performs the task of obtaining the sensors’ locations. In [13, 38], the

authors suggest a centralized framework and propose a maximum likelihood (ML)

based solution for obtaining sensors’ locations. Self-localization is also addressed

using beacon nodes, also known as anchor nodes, leader nodes or access points [40,41].

In the remainder of this chapter we use the term beacon nodes when referring to

sensors which have some initial information about their positions. In distributed

sensor localization algorithms, beacons broadcast their location. Sensors estimate

their distances from the beacons and using these distances, a set of equations or

geometric constraints are formed. Triangulation, trilateration, least-squares or other

optimization methods have been used in the literature to obtain the sensor positions

[42], [43]. In these methods, the effects of uncertainty due to the measurement

62

noise and beacon position are not considered. A quantitative comparison of some

of these distributed techniques is provided in [44]. Static and mobile beacon-based

self-localization procedures have also been explored in the literature (see, for example

[41,45,46,47,48]). A more comprehensive survey of localization in sensor networks is

provided in [49,50] and the references therein.

Here, we propose a distributed Bayesian framework for solving the sensor-

localization problem. Bayesian techniques provide with a principled way of dealing

with location uncertainty and multi-sensor fusion [51]. Some related work includes

[52], [53], [54] and [55]. In [52, 53], the authors propose an iterative multilateration

technique for localizing nodes with unknown location. In our work, we consider

similar distributive algorithms but we formulate the sensor location estimation from

a probabilistic point of view and we include beacon position uncertainty. In [54],

the sensor localization problem is addressed from a probabilistic perspective where

sensors with unknown positions receive descriptions of beacon positions which is

used by the sensors to update their positions. However, it is unclear how the

authors compute and store these probability distributions. In [55], the authors

present a probabilistic method termed as non-parametric belief propagation for

self-localization of sensors. In this work, a sensor node computes a sample-based

location description with each neighbor node, and obtains the joint marginal through

resampling. In the sequel we provide a novel approach to sensor self-localization

that uses a probabilistic formulation of the problem and takes into consideration

computational and transmission issues of these probability distributions.

More specifically, we address the problem of distributed self-localization in sensor

networks using iterative and Monte Carlo sampling-based methods. Some of the

63

contributions are :

• Scalable distributed algorithms for sensor self-localization

• A statistical framework for incorporating beacon uncertainty

• A novel cost-based distributed algorithm when probability distributions of

modeling noise processes are unknown

• Iterative hybrid Cramér-Rao Bounds (HCRBs) for sensor self-localization with

beacon position uncertainty.

5.2 Sensor self-localization: Problem statement and

notation

Consider the sensor network shown in Figure 5.1. The shaded nodes represent

beacons, which broadcast their location details using probabilistic or spatial

descriptions. The parameters of these descriptions are transmitted using known

reference or pilot signals. We represent this prior information about their locations,

`b ∈ R2, b = 1, 2 and 3 as p(`b) and the signal received by a sensor as

ys,b = f(`s, `b) + vs,b (5.1)

where ys,b is the received signal characteristic by sensor s from beacon b; `s, `b ∈ R2

are the positions of the nodes s and b in the two dimensional Cartesian coordinate

system (`s = [ls,x, ls,y]
> and `b = [lb,x, lb,y]

>); and vs,b is a Gaussian noise process with

mean zero and variance σ2
s,b. In our simulations we consider the following received

64

Beacon Node

Sensor Node

Beacon 1

Beacon 2

Beacon 3

Sensor 3

Sensor 1

Sensor 2

Prior Location Information

X

Y

(ls,x, ls,y)

(lb,x, lb,y)

d

d

O

Figure 5.1: Sensor Network with beacon and sensor nodes

signal strength (RSS) model [38]

f(`s, `b) = Ψ0 − 10α log10 (|`s − `b|) (5.2)

65

where Ψ0 is the power received at a known reference distance, α is the path-loss

attenuation and | · | denotes norm of a vector.

We ask and answer the following question: when the distribution of the model

noise processes are known, can we obtain the probability distribution of the sensor’s

location by combining the measurements and the beacon location descriptions.

Furthermore, we also attempt to obtain descriptions of sensor locations when the

probability distributions of the noise processes are unknown.

We explain our approach by using Figure 5.1. In each timeslot, the sensors and

beacons broadcast their location descriptions which are utilized by the neighboring

sensor nodes with unknown locations to obtain estimates of their locations. In the first

timeslot, beacons 1, 2 and 3, shown in Figure 5.1, transmit their location descriptions.

Sensor node 1, receives signals from all the beacons and combines the received prior

descriptions and the measurements to obtain an estimate of its location. However,

sensors 2 and 3 which are far away from beacons 1 and 2 respectively, do not receive

any signals from these beacons and therefore cannot resolve the ambiguity in their

positions. At the end of the first timeslot only the beacons 1, 2, 3 and sensor

1 have position information. Sensors which have knowledge about their position

may broadcast their locations which may be used by other sensors to estimate their

positions. Therefore in the next timeslot, sensors 2 and 3 utilize the beacon and sensor

1’s locations to obtain estimates of their respective locations. The algorithm thus

proceeds in successive timeslots with sensors estimating, broadcasting or updating

their location estimates.

Clearly, the two important issues of the proposed distributed self-localization

framework are (a) combination of measurements and beacon descriptions to obtain

66

sensor estimates and (b) representation of estimates of the sensor location estimate for

transmission. In the sequel, we propose methods which address these two problems.

5.3 Iterative sensor localization methods

In this section we propose two iterative methods for sensor localization which

incorporate beacon location uncertainty and are based on linearization of the

measurement function in (5.1). We consider a generic scenario where a sensor s

receives signal measurements from K beacons as well as some information about

their locations. We denote the set of measurements as {ys,1, · · · , ys,K} and describe

the uncertainty in beacon location with standard multivariate Gaussian distributions.

Stacking these set of measurements and writing in vector notation we have

ys = f(`) + vs (5.3)

where ys = [ys,1 · · · ys,K]>, f(`) = [f(`s, `1), · · · , f(`s, `K)]>, and v = [vs,1 · · · vs,K]>

are all vectors of dimension K × 1. Under assumptions of independent zero

mean Gaussian, we denote the distribution of vs as N (0,Σv) where Σv =

diag(σ2
vs,1

, · · · , σ2
vs,K

)1. The prior location description of the beacon nodes, p(`k) =

N (ˆ̀k,Σ`k
) ∀k = 1 · · ·K. Assuming independence among the beacon prior

distributions, we have p(`1:K) = N (µ̂`,P`K
), where µ̂` =

[
ˆ̀>

1 , · · · , ˆ̀
>
K

]>
, and P`K

is a block diagonal matrix, i.e., P` = diag(Σ`1
, · · · ,Σ`K

)2.

1The symbol diag(x) represents a diagonal matrix formed with the vector x as its diagonal.
2The symbol diag(A,B) =

(
A 0
0 B

)
where A,B are diagonal matrices.

67

5.3.1 Bayesian method with linearization(BS method)

A direct approach for solving the sensors’ positions is via the Maximum

Likelihood framework. The optimization criterion can be written as

argmin
`s

[
(ys − f(`))>Σ−1

v (ys − f(`))
]
. (5.4)

The Levenberg-Marquardt method is one popular optimization method for finding

solutions to problems like (5.4) [56]. However in its straightforward application, the

prior information p(`1:K) of the beacons positions uncertainty is not incorporated.

We change the procedure to incorporate this prior knowledge.

We denote the sensor position and the set of beacon locations as ` =
[
`>s , `>1:K

]>,
a 2(K + 1) × 1 vector. Using a Taylor series expansion and neglecting higher order

terms, we linearize (5.3), with respect to ` around `0 as follows:

ys − f(`0) ≈ H× (`− `0) + vslabeleq : lintrf (5.5)

H =




∂f(`s,`1)

∂`s

∂f(`s,`1)

∂`1
· · · ∂f(`s,`1)

∂`K

...
...

...
...

∂f(`s,`K)

∂`s

∂f(`s,`K)

∂`1
· · · ∂f(`s,`K)

∂`K




=




∂f(`s,`1)

∂`s

∂f(`s,`1)

∂`1
· · · 0

...
...

...
...

∂f(`s,`K)

∂`s
0 · · · ∂f(`s,`K)

∂`K




(5.6)

with ∂f(`s,`i)

∂`j
= 0, ∀i 6= j, i, j ∈ 1 · · ·K. Here H is a 2K×2(K +1) matrix and ` and

`0 are vectors of dimension 2(K + 1)× 1. A Bayesian solution to this linear problem

which incorporates the prior information is as follows [57]:

ˆ̀− `0 = (Σ−1
l + H>Σ−1

v H)−1H>Σ−1
v (ys − f(`0)) (5.7)

68

where Σ−1
l = diag(02, P−1

`K
). For the sensor localization problem, we solve for ` by

iteratively computing (5.7) with a suitable stopping criterion. Therefore, at iteration

k we have

ˆ̀k
= ˆ̀(k−1)

+ (Σ−1
l + H(k)>Σ−1

v H(k))−1H(k)>Σ−1
v (ys − f(ˆ̀

(k−1)
)) (5.8)

where H(k) is defined in (5.6) and computed at ˆ̀(k−1)
. The initialization of the beacon

parameters by ˆ̀(0)
is obtained using µ̂` and the sensor location is initialized using

the mean of the beacon positions. The covariance matrix of the estimate of ` is
(
Σ−1

l + H(k)>Σ−1
v H(k)

)
.

5.3.2 Least squares method with linearization (LS method)

A least squares criterion that incorporates the prior knowledge of the beacons

locations can be written as [58]

argmin
`

[
(`− `0)>Σ−1

l (`− `0) + |ys −H× (`− `0)|2]

and its solution is

ˆ̀ = `0 +
(
Σ−1

l + H>H
)−1

H> (
ys − f(`0)

)
.

Similarly we can iteratively solve for `. Thus, at iteration k, we have

ˆ̀(k)
= ˆ̀(k−1)

+ (Σ−1
l + H(k)>H(k))−1H(k)>(ys − f(ˆ̀

(k−1)
)) (5.9)

69

and the corresponding covariance matrix of ˆ̀(k)
is

(
Σ−1

l + H(k)>H(k)
)
.

Clearly, we can see that (5.8) differs from (5.9) in that the least squares solution

does not take into account the distributions of the noise process v. In the above

proposed iterative methods, the iterations are performed in one timeslot and once

a sensor resolves its position, then in the consequent timeslots it, too, broadcasts

its position description. Using the final estimates and the covariance matrix, the

sensor position can be modeled as a Gaussian distribution and these parameters are

transmitted in the subsequent timeslots for both the BS and LS methods.

5.4 Monte Carlo-based methods for Sensor

localization

In this section we propose Monte Carlo-based methods which approximate the

posterior distribution of the sensor location by a set of samples. In these methods

the measurement functions are not linearized but the marginal distributions are

parameterized and approximated. In this section, too, we consider the earlier

scenario where each sensor receives measurements from K beacons and their location

descriptions.

70

5.4.1 Importance sampling-based method (IS method)

In a Bayesian framework, all knowledge about the sensors’ and beacons’ positions

is contained in the posterior distribution p(` |ys). We therefore have

p(` |ys) = p(`s, `1 · · · , `K |ys) ∝ p(`s)
K∏

i=1

p(ys,i | `s, `i)p(`i) (5.10)

which is obtained using Bayes’ theorem and assuming independence among the

prior distributions. Closed form analytical solutions to this posterior density cannot

be obtained when the function f(·) in (5.1) is nonlinear in the state parameters

and the noise process vs,i is non-Gaussian. Therefore we use Monte Carlo (MC)

methods for capturing the posterior distribution or some of its statistics. In most

MC methods these posterior distributions are represented by sample-based discrete

random measures. Importance Sampling (IS) is one such method where one can

obtain a discrete representation of the posterior distribution [59].

Very briefly, with IS, the density p(`) is approximated by a large weighted set of

samples Ξl ≡ {`(m), w(m)}M
m=1 with M being the total number of drawn samples and

m the sample index. This approach is particularly useful when it is infeasible to draw

samples directly from the density p(`) but ti can be evaluated up to a constant. The

samples are obtained from another function known as importance function or proposal

density, π(`). The importance weights are proportional to p(`(m)
)

π(`(m)
)
and measure the

quality of the generated particles. A more rigorous treatment of the subject can be

found in [59].

The posterior density (5.10) is approximated as a weighted set of particles

71

{w(m), `(m)
s , `

(m)
1 , · · · , `

(m)
K },

p(`s, `1, · · · , `K | ys,1, · · · , ys,K) =
M∑

m=1

w(m)δ
(
`s − `(m)

s

)
×

K∏

b=1

δ
(
`b − `

(m)
b

)
(5.11)

where weights, w(m), are obtained according to

w(m) ∝ p(`(m)
s)

π(`(m)
s)

K∏

b=1

p(ys,b | `(m)
s , `

(m)
b)p(`

(m)
b)

π(`
(m)
b)

(5.12)

with samples of the beacon location drawn from their transmitted prior location

distributions, i.e., `
(m)
b ∼ p(`b), and samples representing the sensor location drawn

from an importance distribution function π(`s). In Section 5.4.3, we propose methods

for constructing these importance distributions.

The posterior density is then easily marginalized, i.e.,

p(`s | ys,1, · · · , ys,K) ≈
M∑

m=1

w(m)δ
(
`s − `(m)

s

)
. (5.13)

If the sensor obtains information about its location, it is then described by a

probability distribution which is broadcast in the next timeslot to other sensors so that

they estimate their positions. Transmission of these sample-based distributions would

require large amounts of communication resources, and therefore we approximate

them with standard probability distributions and broadcast their parameters only.

As an example, we approximate the sample-based distribution by a Gaussian

N (µ`s
,Σ`s

) where the mean and covariance matrices µ`s
and Σ`s

are obtained

72

as

µ`s
=

M∑
m=1

w(m)`(m)
s

Σ`s
=

M∑
m=1

w(m)
(
`s

(m) − µ`s

)(
`s

(m) − µ`s

)>
. (5.14)

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

X Position

Y
 P

os
iti

on

S1

S2

S3

S4

S5

S6

S7S8

Figure 5.2: Sensor Network.

As an example, consider Figure 5.2, where beacons S1, S2, S3, S4, S5 are

represented by Gaussian distributions. In the 1st timeslot, sensors S6, S7 estimate

their positions. These estimates are approximated using Gaussian distributions as

shown in Figure 5.3. Similarly in the second timeslot, S8 estimates its position using

the estimates of S6, S7 and approximates its distribution with a Gaussian as shown

in Figure 5.4.

In summary, the main steps of this importance sampling-based procedure are:

73

−20

−10

0

10

20

−20

−10

0

10

20

0

0.2

0.4

X Position
Y Position

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 5.3: Iterative Stages:Timeslot 1

• Generation of beacon and sensor samples {`(m)
s , `

(m)
1 , · · · , `

(m)
K } using the beacon

prior location descriptions and the sensor location importance function.

• Computation of weights using (5.12).

• Estimation of the distribution of the sensor locations through parametric

distributions.

Note that these fusion algorithms for sensor localization are suboptimal. Due

to lack of space, we do not present the optimal fusion algorithm which has

significant communication, topological, and intelligent processing requirements.

These requirements arise because the marginal posterior distributions of the sensors

are no longer independent but entwined with one another.

74

−20

−10

0

10

20

−20

−10

0

10

20

0

0.2

0.4

X Position
Y Position

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 5.4: Iterative Stages:Timeslot 2

5.4.2 Cost based Monte Carlo-based sampling method (CS)

In the above proposed IS method, the computation of the weights in (5.12)

requires the evaluation of the likelihood term for which the probability distribution

of the measurement noise should be completely known. In many scenarios, such

probabilistic information is not available. We propose an alternative sampling method

which does not make probabilistic assumptions of the model noise. In the following

methods we only require that the noise process is zero mean.

As earlier, each beacon represents its location uncertainty using spatial

distributions. Under assumption of zero mean noise, a least squares criterion for

obtaining the sensor location given the measurements ys,1 · · · ys,K can be formulated

as

ˆ̀
s = argmin

`s

{
C(`s) =

K∑

b=1

|ys,b − f(`s, `b)|2
}

. (5.15)

75

Note that in this formulation we have not explicitly included the beacon location

information. However, the optimization is carried out over regions given by the

beacon location descriptions. Using this formulation as a starting point, we propose

a procedure where we draw samples representing the beacon and sensor locations

and associate costs with these samples using the measurements and beacon location

descriptions. The main steps of the algorithm are as follows:

• Generation of beacon and sensor samples: The beacon location samples

{`(m)
1 , · · · , `

(m)
K } are drawn using the beacon location descriptions. The sensor

samples `(m)
s are obtained using an importance function as discussed in Section

5.4.3. These beacon and sensor samples can be considered as representative

solutions of the beacon and sensor locations.

• Obtaining costs: For each of the samples generated in the previous step we

associate a cost that defines their quality under sensor measurements. In general

the cost function depends on the observations and the sampled locations. We

assign the costs according to

C(m) =
K∑

j=1

%(ys,j, `
(m)
s , `

(m)
j) =

K∑
j=1

%(εs,j) (5.16)

where εs,j = ys,j − f(`(m)
s , `

(m)
j) and %(·, ·, ·), a nonnegative function of its

assignment. The cost function is chosen such that samples which are more

representative of the locations have smaller costs and samples which are far away

from the true locations have larger costs. We use the following cost functions

in our simulations:

76

1. L2 cost function: %(ε) = | ε | 2

2. L1 cost function: %(ε) = | ε |

3. Fair function: %(ε) = 2k2
[
| ε |
k

log
(
1 + | ε |

k

)]
with k = 1.3998 [36].

Using these costs we form a pseudo probability measure such that,

π̃(`(m)) ∝ 1

C(m)

such that
∑
m

π̃(`(m)) = 1. (5.17)

• Estimating sensor location regions: We can approximate the sensor location

distribution by using standard probability distributions such as the Gaussian

distribution (as in the previous subsection). These distributions can be obtained

using the sample mean sensor location and the covariance matrix which are

calculated using the pseudo probability measure (5.17). These statistics are

obtained as earlier with

µ̃`s
≈

M∑
m=1

π̃ (`(m))`(m)
s

Σ̃`s
≈

M∑
m=1

π̃(`(m))
(
`(m)

s − µ̃`s

)(
`(m)

s − µ̃`s

)>

=




σ̃`s,xx
σ̃`s,xy

σ̃`s,yx
σ̃`s,yy


 . (5.18)

Another possibility is to use spatial regions such as circles, squares or elliptical

regions.

1. Square region: A square is completely characterized by its center µc and

77

the length of its side ρc. We represent this region as Sq(µc, ρc) with center

µc = µ̃`s
and the length of the side ρc = κ max(

√
2σ̃`s,xx

,
√

2σ̃`s,yy
) where

κ is a scaling factor. We chose κ = 2 in our simulations.

2. Circular region: This region is completely specified by its center µc and

radius ρs. We represent the region as Ci(µc, ρc) with µc = µ̃`s
and

ρc = κ max(
√

2σ̃`s,xx
,
√

2σ̃`s,yy
).

3. Elliptical region: This region is completely specified by its center µc, the

lengths of its major ρa and minor axis ρb and the angle of inclination φ of

the major axis with respect to the horizontal direction. Thus, this region

can be represented as E l(µc, ρa, ρb, θ). These parameters can be obtained

from the covariance matrix by

ρa, ρb = κ




σ̃`s,xx
+ σ̃`s,yy

±
√

(σ̃`s,xx
+ σ̃`s,yy

)2 + 4σ̃2

`s,xy

2




1/2

θ =
1

2
arctan

(
2σ̃`s,xy

σ̃`s,yy
− σ̃`s,xx

)
. (5.19)

Here we have considered an inclined ellipse, whose angle of inclination is

obtained using (5.19). Similarly, we can construct regions for inclined spatial

regions.

78

5.4.3 Construction of the Importance Function for Sensor

Location

Samples representing the beacons’ positions are drawn from their prior or

marginal posterior distributions of their locations. However, in absence of any prior

of the sensor location we construct importance functions for the sensor location.

Intuitively, we would like to draw samples from regions around the sensors true

location density. Some approaches for constructing this density are as follows:

1. Uniform sampling: A naive approach is to draw samples from the entire sensing

field by assuming a uniform importance function with the parameters specified

by the boundaries of the sensor field. This approach is simple but it requires a

large number of samples so that the regions of interest, around the true sensor

location are adequately represented. Clearly with this scheme, there is a huge

waste of samples and computational resources.

2. Beacon-assisted sampling: A sensor receiving signals from beacons, indicates

that the sensor is in the region occupied by the beacon. We can exploit this

aspect and draw samples from the regions occupied by the beacons. Denoting

the region of transmission of beacon b as Ab, samples `(m)
s are drawn from the

region A =
⋃

b Ab. A simple way to achieve this is by assuming that the regions

Ab are rectangular or circular.

3. Trilateration-assisted sampling Scheme-I: More efficient sampling densities are

those from which we can draw particles belonging to the region A =
⋂

b Ab.

This is closely related to solving the sensor localization problem itself. For RSS-

based measurements we obtain initial estimates of the sensor location using fast

79

trilateration methods for constructing the prior density. We first convert the

RSS measurements to distance measurements. Consider the measurement ys,b

received by sensor s from beacon b and define

zs,b =
Ψ0 − ys,b

10α
b = 1, 2, · · ·K

ds,b = 10zs,b ≈
√

(ls,x − l̂b,x)2 + (ls,y − l̂b,y)2 (5.20)

where ds,b represents an initial estimate of the Euclidean distance between the

sensor and the beacon, zs,b is an intermediate variable and [l̂b,y, l̂b,y] are estimates

of the beacon position. When beacons approximate their location information

using Gaussian distributions, this estimate is readily available through the mean

of the distribution. Using (5.20) and a fast trilateration scheme we obtain the

initial estimates µ̃s = [l̃s,x, l̃s,y]
> of the sensor position. Thus, we can construct

a Gaussian importance function, π(`s) = N (µ̃s, Σ̃s) for drawing samples to

compute the weights in (5.12). The choice of the covariance matrix Σ̃s is

arbitrary. In our simulations we have chosen Σ̃s = σ̃2
sI2 with a judicious choice

of σ̃s.

4. Trilateration-assisted sampling Scheme-II: Another approach is to run the

iterative algorithms discussed in Section 5.3 for smaller number of iterations

and use these rough estimates to construct Gaussian distributions as discussed

above.

80

5.5 Hybrid Cramér-Rao bounds for sensor self-

localization

We now derive Cramér-Rao Bounds (CRBs) for sensor self-localization for the two

scenarios (a) a single sensor which receives measurements and location information

from multiple beacons and (b) multiple sensors with multiple beacons which localize

themselves using the proposed distributive framework.

The CRB is the bound on the variance of unbiased estimators for non-random

parameters and the Bayesian or the Van-Trees version of the CRB is the bound of

mean square error estimators of random parameters [57, 60]. We consider here a

hybrid Cramér-Rao bound (HCRB) which is a bound on the mean square estimation

error for random and non-random parameters [61,62].

5.5.1 Single sensor, multiple beacons

Recall that ` = [`s, `1, · · · `K] =
[
`s, ¯̀

]
, is the unknown set of parameters to

be estimated, i.e., the vector containing locations of the sensor `s and the beacons

¯̀ which are modeled as non-random and random parameters, respectively, and

ys = [ys,1 · · · ys,K] is the set of beacon signal measurements made by sensor s. The

HCRB has the following form:

Σ` = E
{

[ˆ̀− `][ˆ̀− `]>
}
≥ J−1 (5.21)

81

where Σ` is the estimation error covariance matrix and J is the hybrid Fisher

information matrix (HFIM) defined as

J = E`,ys

[{
∇` log p(ys, `) ∇>

` log p(ys, `)
}]

J = E`

[
E

ys |`

[{
∇` log p(ys | `) ∇>

` log p(ys | `)
}]]

+ Jb

J = Js + Jb. (5.22)

with

Jb =




0 0

0 E¯`

[{
∇¯` log p(¯̀) ∇>̄

`
log p(¯̀)

}]


 =




0 0

0 Jbb


 .

and ∇` = [∂

∂`s
, ∂

∂`1
· · · ∂

∂`K
]>. We model the beacon prior location distribution as

a Gaussian, therefore we have the matrix Jbb equal to the block diagonal matrix of

inverses of all the covariance matrices of the beacons’ location distributions. Details

of the computation of these CRBs are further elaborated in Appendix ??.

5.5.2 Multiple sensors, multiple beacons

We calculate bounds for the proposed distributed framework where at every

timeslot sensors with known position information broadcast their location information

and sensors with unknown information attempt to localize. Also sensors with known

information utilize measurements from new beacons to update their information.

These aspects are considered in the calculation of the HCRB for the proposed

distributive framework.

82

With a slight change in the notation, we write the received signal at sensor s as

ys = fs (`) + vs (5.23)

with fs (`) = [fs,1(·) · · · fs,N(·)]> and vs = [vs,1 · · · vs,N]. We form a vector ŷ by

stacking all the sensor measurements ŷ = [y1
>, · · · ,yN

>]>. However only sensors

with known location information broadcast their position information. Therefore the

entries in this vector corresponding to sensors which do not broadcast is zero. We

obtain the expression

ŷ = f̂ (`) + v̂. (5.24)

Considering ` as the set of sensor locations with prior information as random

parameters and the set of sensor locations with no prior information as non-random

parameters, the HFIM at timeslot n can be obtained as in (5.22)

J(n) = E`, ŷ1:n

[
−

{
∆`

` log p(ŷ1:n, `)
}]

(5.25)

with expectation performed over sensors with resolved positions and ŷ1:n, the set of

all measurements from timeslot 1 to n. We have that p(ŷ1:n, `) = p(ŷn | `)p(ŷ1:n−1, `)

and therefore we can write (5.25)

J(n) = E`, ŷn

[
−

{
∆`

` log p(ŷn | `)
}]

+ E` ŷ1:n

[
−

{
∆`

` log p(ŷ1:n−1, `)
}]

= E`, ŷn

[
−

{
∆`

` log p(ŷn | `)
}]

+ J(n−1)

= E`

[
E

ŷn |`

[{
∇` log p(ŷn | `) ∇>

` log p(ŷn | `)
}]]

+ J(n−1)

= E`

[{
∇`f̂

>(`) Σ−1
v ∇>

` f̂>(`)
}]

+ J(n−1) (5.26)

83

with J(0) = E`

[{
∇` log p(`) ∇>

` log p(`)
}]

. If the sensor in a particular timeslot is

able to resolve its position then its HCRB is smaller than when it is not able to resolve

its position. Using this criterion we identify sensors which can become beacons in the

next timeslot. The information obtained in timeslot n − 1 is treated as the prior

information in timeslot n. We rearrange the matrix J(n−1) such that the elements

corresponding to sensors with unknown locations are all 0’s and term this new prior

matrix as J̃
(n−1)
b . We write (5.26) as J(n) = J

(n)
s + J̃

(n−1)
b . In the computation of the

J
(n)
s , the averaging is done over sensors with some prior location, i.e, sensors which

are beacons at the end of timeslot n − 1. We assume the prior location distribution

as a Gaussian with mean equal to their true location and covariance matrix as J̃
(n−1)
b .

5.6 Incremental Beacon Selection

In the proposed methods for sensor self-localization, each sensor uses the prior

information from all the beacons in a timeslot to obtain its position information.

If a beacon has faulty or imprecise prior information, clearly incorporation of this

measurements will cause a decrease in the accuracy of the sensor determining its

location. In [63], the criterion for selecting sensors for localization is choosing beacon

nodes which decrease the entropy, while in [64] each sensor’s utility factor is obtained

via a utility function using which sensors are selected. Here, we consider a simple

variation of our methods proposed in earlier sections for incremental beacon selection.

Suppose that in a certain timeslot we have K beacons and in the next timeslot

the sensor receives an additional set of B new beacons broadcasting their positions.

For each new beacon n = 1 · · ·B

84

• Collect measurement and prior information: Stack the old measurement set with

the new beacon measurement and form the measurement vector yn
s . Similarly

incorporate the new prior beacon information as discussed earlier.

• Solve for a small number of iterations to obtain a rough estimate of the sensors’

and beacons location. Denote this new solution of sensor and beacon locations

as ˆ̀n∗
K+1.

• Compute the following metric for ranking the new beacons in terms of their

contribution in improving the accuracy of the sensor location estimates:

ξn
K+1 =

1

K + 1
[(yn

s − f(ˆ̀
n∗
K+1))

>Σ−1,n
v (yn

s − f(ˆ̀
n∗
K+1)) +

(ˆ̀
n∗
K+1 − `0

K+1)
>Σ−1

l (ˆ̀
n∗
K+1 − `0

K+1)] (5.27)

with `0
K+1 being the initial prior mean. The terms in the bracket refer to the

residual error with the measurements and the prior information. The first term 1
K+1

normalizes the total residual error with addition of a new beacon. This ensures that

we can compare this normalized residual error accumulated in this timeslot with the

normalized error at the previous timeslots. We denote the normalized residual error

at the previous timeslot with K beacons as ξmin
K .

Selection Criterion: Choose the beacon with the minimum ξn
K+1 and also if

ξn
K+1 < ξmin

K . Having chosen this beacon, we can now perform a more rigorous search

for the sensor’s position.

85

5.7 Simulation Results

To assess the performance of the proposed algorithms, we performed several

simulation experiments with the purpose of

• motivating the need of prior information as in the LS, BS, and IS methods for

sensor localization.

• studying the performance of these algorithms for a large network, and

• studying the performance of the beacon selection algorithm.

5.7.1 Motivation

−10 −5 0 5 10 15 20 25 30 35
−10

−5

0

5

10

15

20

25

30

35

X Position

Y
 P

os
iti

on

B1

B2 B3

S1

(a) Sensor Network.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

σ
v
2

R
M

S
E

IS
LS−No Prior
BS
HCRB

(b) RMSE

Figure 5.5: Sensor Network and RMSE using the LS, BS, IS methods with prior
information and LS without prior information

We consider the sensor network as shown in Figure 5.5(a). The beacon nodes,

B1, B2, and B3 with some prior information are represented with shaded circles and

the sensor S1 with unknown location is denoted by a diamond mark. The beacons

86

and sensor, B1, B2, B3, S1 are located at (0, 15), (0, 0), (15, 0) and (21.213, 21.213)

respectively. We assumed a Gaussian prior location distributions N (µlb , ρI2) for the

beacons position, where the prior mean is at offset b from its true position, i.e,

µlb = [lb,x + b, lb,y + b]>. For the LS and BS methods, the sensor position was

initialized with the average of the three beacon mean locations. Recall that the LS

and BS methods are iterative procedures. These procedures were run for a fixed

number (G = 50) of iterations. Alternately, a simple stopping procedure for these

methods is to compare the change in the residual error between successive iterations.

For the IS method, in the construction of the sensor proposal distribution we ran the

LS and BS method with fewer iterations Ǵ = 10 and utilized this sensor estimate in

the construction of the prior proposal distribution as outlined in Section 5.4.3 with

σ̃s = 3. The number of location samples drawn for each node was M = 1000.

In Figure 5.5(b), we plotted the root mean square errors (RMSEs) in estimating

the sensors position with varying σ2
v . In our simulations the reference power

Ψ0 = −50dB, the measurement noise variance σ2
v across all sensors was the same,

the beacon offset was set to b = 0 and the variance parameter to ρ = 2. We

also simulated the LS algorithm with Σ−1
l = 0, i.e., we assumed that the mean

location of the beacons was their true positions and did not take into account any

prior information. We termed this method as LS-No Prior. Clearly the LS-No Prior

has the worst performance because the other methods incorporated uncertainty in

beacon position.

In another set of simulations, we studied the effect of the sensor position estimate

by varying the offset of beacon B2. The beacons B1 and B3 had zero offsets. In Figure

5.6(a) we plotted the corresponding RMSEs with varying b2. For this scenario, the

87

−6 −4 −2 0 2 4 6

5

10

15

20

25

30

35

40

45

50

Beacon Offset

R
M

S
E

IS
BS/LS
LS−No Prior

(a) Varying b

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

ρ

R
M

S
E

LS−No Prior
BS
IS
HCRB

(b) Varying ρ

Figure 5.6: RMSE using the LS,BS, IS method

performance of the IS procedure is similar to that of the LS and BS methods when

b2 is positive. Also when the offset is positive, the LS-No Prior method had a large

error in estimating the sensor’s position. This is because with a reasonable positive

offset, the three beacons appear collinear to the LS-No prior method thereby causing

ambiguity for it to determine the sensors positions. When the offset is negative, for

small values of b2, the IS outperforms the LS/BS methods. Thus, within reasonable

limits of beacon position offsets, the IS and LS/BS which take into account the beacon

prior position information produce reliable sensor estimates. Clearly, we can see that

the performance of the LS-No prior method is worse than the other procedures which

incorporate prior information about the beacon’s location.

5.7.2 Localization in a large network

In this experiment, we studied the performance of the importance sampling

and cost-based methods for self-localization in large networks. To this end, we

88

considered a network which consisted of 48 randomly distributed sensors with

unknown locations and 16 beacons with some location information. As earlier,

the prior location distributions of the beacon nodes were modeled using Gaussian

distributions N (µlb
, σ2I) with µlb

= [lb,x + b, lb,y + b]> where b represented the offset

in the beacon location information. Through this network we studied the performance

of the proposed algorithms for which we utilize the cumulative distributive function

(CDF) of the RMSE as our metric.

We considered K = 100 different realizations of the measurements for this

network over which the RMSEs in estimating the sensors positions were calculated.

In the first set of simulations we studied the effect of b in determining the sensors’

locations using the proposed methods. For this set of simulations we assumed ρ = 0.5,

Ψ = −50dB, and α = 2.5. The measurement noise across all the sensors was

formulated as a Gaussian process with µv = 0 and σv = 1. In 5.7(a) and 5.7(b),

we plotted the CDFs of the RMSE for b = 0 and b = 2 obtained with the IS, LS, BS

and CS methods. Further, to rank the performances of our methods we obtained the

value of d0.95 such that P(RMSE < 0.95) = d0.95. From Figure 5.7(a), d0.95,IS = 1.25,

d0.95,BS = 3.25, d0.95,CS = 4.2. Clearly, for these scenarios, the IS procedure had the

best performance. In 5.7(b), it can be seen that with large offsets in beacon position

from the true locations, the tails of the CDFs of the BS and CS algorithms are more

towards the left than for the IS algorithm, suggesting that the best performance of

the IS is lower than the best performance of the other algorithms. However, if one

considers the d0.95 performance metric, the IS procedure produces a better RMSE

characteristic on an average for all the sensors.

In Fig 5.8(a), we show more results of our study of the IS procedure. We ran it

89

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance

C
df

 o
f R

M
S

E

HCRB
IS
BS
LS
Cost

b=0, σ
v
=1,ρ=0.5

(a) b = 0

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance

C
df

 o
f R

M
S

E

IS
BS/LS
CS

(b) b = 2

Figure 5.7: CDF of RMSEs using the IS,LS,BS and CS methods.

for various positive and negative values of b. As can be seen, the method is robust to

the sign of the offsets. In 5.8(b), we varied the standard deviation of the measurement

noise and obtained the corresponding RMSEs. As expected, with increasing noise,

the CDF curve shifts to the right indicating increase in estimation error.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance

C
df

 o
f R

M
S

E

b=0
b=2
b=−2
b=4
b=−4

σ
v
=1, ρ=0.5

(a) RMSE with various b

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance

C
df

 o
f R

M
S

E

σ
v
=0.5

σ
v
=1

σ
v
=2

σ
v
=3

b=0 ρ=0.5

(b) RMSE with various σv

Figure 5.8: CDF of RMSEs using the IS.

We also studied the performance of the CS methods in comparison to the IS

methods. In 5.9(a), we plotted the performance of the IS and CS method with

L2, L1 and Fair cost functions. The performance of the CS method which makes

90

no assumptions of the noise distributions is comparable with the performance of

the IS method. Furthermore, we conducted another set of simulations to study

the robustness of the algorithms when we do not have information about the

distributions. The probabilistic IS algorithm assumed wrong measurement noise

distribution p̂(v) = N (0, 0.12) while the true distribution of the noise was p(v) =

0.8N (0, 1) + 0.2N (3, 0.22). When the IS method made wrong assumptions, it

had a poorer performance than the CS method. Clearly, Figure 5.9(b) shows the

robustness of the CS algorithms and the sensitivity of the probabilistic algorithm on

the knowledge of the distributions of the noises.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance

C
df

 o
f R

M
S

E

L2
L1
Fair
IS

b=2, σ
v
=1,ρ=2

(a) L2, L1 and Fair cost function

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance

C
D

F
 o

f R
M

S
E

IS−False
CS

(b) CS and IS with false assumptions

Figure 5.9: CDF of RMSE using the CS and IS methods.

5.7.3 Beacon Selection

We consider the scenario shown in Figure 5.10, to understand the importance

and the effect of beacon selection. In this network there are 5 nodes. Beacon nodes

B1, B2, B3 and B5 have zero offsets in their position with covariance matrix ρI2,

ρ = 2. The sensor is at the center of circle radius R = 15, beacons B1, B2, B3 are on

91

B1

B2

B3

S

B4,B5

Figure 5.10: Beacon Selection

this circle with φ = π
6
and the beacons B4, B5 which are at the same position, are

at a distance of 2R from the sensor. The variance of the noise σ2
v = 1.0. Initially the

sensor chooses the three beacons which have the maximum signal strength, performs

a localization using the proposed localizations methods. It then selects either beacon

B4 or B5 using the criteria which we have discussed in 5.6. In Figure 5.11(a), we

plot the probability of the number of times, the algorithm selects either of the sensors

with varying beacon offset for beacon node B4. Clearly one can notice that as the

beacon offset for B4 goes beyond 0, the algorithm selects node B5 more often. We

plot the corresponding RMSE in estimating the sensor position vs beacon offset in

Figure 5.11(b) with beacon selection and also when all the beacons are considered

for localization. Here we can notice that at large beacon offsets, the accuracy of the

sensor location decreases when we consider all the sensors for localization. However

by suitably selecting the beacons the sensor location accuracy is maintained. Thus

this process of beacon selection can be easily incorporated to also detect beacon nodes

92

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beacon Offset

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

 B4
 B5

(a) Selection Probability.

−10 −5 0 5 10
2

2.5

3

3.5

4

4.5

5

Beacon Offset

R
M

S
E

 All Sensors
 Sel Sensor

(b) RMSE

Figure 5.11: Selection probability and RMSE

with incorrect position estimates.

5.8 Summary

We proposed distributed algorithms for sensor self-localization with beacon

position uncertainty. Being distributed they scale well for large networks and have

considerable savings in power over centralized methods. The proposed algorithms

can be classified as iterative least squares (LS) and Bayesian methods (BS), Monte

Carlo importance sampling (IS) and cost-based (CS) methods. The iterative LS and

Monte Carlo CS methods do not require knowledge of the model noise distributions

while the iterative BS and Monte Carlo IS do require this knowledge. Through

computer simulations we have observed the performance of the IS method over a

wide range of such scenarios to be reasonable. However when the IS method makes

wrong assumptions about the statistics of the measurement noise, its performance can

be degraded considerably. In such scenarios, the cost-based approach has relatively

good performance.

93

s

94

Chapter 6

Target tracking by particle filtering in

binary sensor networks

Particle filtering algorithms for tracking a single target using data from binary

sensors are proposed. The sensors transmit signals that identify them to a central unit

if the target is in their neighborhood; otherwise they do not transmit anything. The

central unit uses a model for the target movement in the sensor field and estimates

the target’s trajectory, velocity, and power using the received data. In Section

6.3, we describe the binary sensor network and define the addressed problem in a

mathematical form. We propose tracking by employing auxiliary particle filtering

and cost-reference particle filtering in Section 6.4. We also extend the method to

include estimation of constant parameters, and we derive the posterior Cramér-Rao

bounds for the states in Section 6.6. We show the performances of the proposed

methods by extensive computer simulations in Section 6.7 and compare them to the

derived bounds.

95

6.1 Introduction

Recent advances in low-power micro sensors, actuators, embedded sensors, radio,

and in general, digital wireless communication technologies have allowed development

of wireless sensor networks with unparalleled capabilities [65]. Their use may span a

vast range of fields, and their effectiveness is already being felt both in commercial and

military applications as well as in the further development of science and engineering

[66,67,68].

In this chapter we consider wireless sensor networks with two basic components,

sensors and a fusion center (FC). The sensors sense and measure signals that provide

information about an event or events of interest and send binary information to the

FC. The FC combines the received information to obtain estimates about the observed

phenomenon. Here the object of interest is a single target that moves in a field of

sensors that measure signal power, and the objective is the online estimation of its

trajectory, velocity, and power.

Often sensor networks have to operate with sensors that have limited power as

well as limited communication and computational resources. At a strategic assessment

workshop organized by the U.S. Army Research Lab it was concluded that [69]

“it is not practical to rely on sophisticated sensors with large power supply and

communication [demands]. Simple, inexpensive individual devices deployed in large

numbers are likely to be the source of the battlefield awareness in the future.” One

type of networks that fits this description is the class of binary sensor networks, where

the sensors transmit only binary information about sensed events (the event is sensed

or is not sensed). The signals that reach the FC of these networks are therefore highly

compressed and pose challenging problems for recovering the sensed information by

96

the sensors.

The sensed information here is the intensity (signal power) of the transmitted

signals by one or more sources that attenuates as a function of distance from the

sources.1 For the tracking we propose to apply the auxiliary particle filter (APF)

[70] and the cost-reference particle filter (CRPF) [35, 34]. The two methods are

sequential statistical signal processing procedures with distinct features but with

similar algorithmic outline. Convergence properties of the particle filtering methods

can be found in [71] and [72] and of the CRPF in [73] and [34]. The main contribution

is in the application of the APF and CRPF on binary signals and in the presence

of hidden complete measurements by the sensors. We show how the signals from

the binary sensors contribute to producing evolving random grids of the methods,

how the associated metrics of the grid nodes are updated, and how the estimates of

the unknowns are obtained. We also outline the steps for computing the posterior

Cramér-Rao bounds of the state estimates.

6.2 A brief literature survey

Binary sensors have already been addressed in the wide literature. In [74], a

cooperative tracking method based on acoustic binary sensors was described. There,

the tracking is based on a cooperative algorithm where the model of the target path is

a piece-wise linear curve and is different from the one that we use. In [75], a particle

filtering-type algorithm for tracking was introduced. However, the authors focus on

geometric properties of the sensors’ configuration and derive their algorithm based
1We note that binary sensors of other sensing modalities can be used analogously along the lines

presented here.

97

on that geometry. Also, the method is based on sensor data that provide information

about approaching or receding targets with respect to the individual sensors, whereas

in our approach we only use information about the proximity of the target to the

sensor. In [76], a tracking method was proposed that first estimates the positions of a

target in its most recent past and then fits them with a piece-wise trajectory. In [77],

another method for distributed tracking in binary sensor networks was developed. It

is derived by using hidden state estimation and the Viterbi algorithm.

In other recent publications on signal processing for binary sensor networks,

various problems have been addressed. For example, in [78] acoustic binary sensors

were used for maximum likelihood localization (not tracking) of a source, and in [79]

they were applied for system identification. Decentralized detection by binary sensors

was presented in [80] where the sensors use a multiple access channel of limited

capacity. Sufficient conditions were found that allow for minimal probability of error

at the FC.

6.3 Network description and mathematical models

6.3.1 Network description

In a binary sensor network, the deployed sensors measure a signal of interest and

if the level of the measured signal is above a predefined threshold, they report to the

FC with a signal that identifies them; otherwise they are silent. Their function is

best described by a way of example. In Figure 6.1, a binary sensor is represented

by the small circle and its range by the larger circle. When the target is outside the

range of the sensor, the received signal is below the set threshold, and the sensor

98

t6, st6
= 0

t1, st1
= 0

t2, st2
= 0

t3, st3
= 1

t4, st4
= 1

t5, st5
= 1

Figure 6.1: A binary sensor with a target passing nearby. The signals transmitted by
the sensors are denoted by stk .

does not transmit anything (instants t1, t2 and t6). During the time when the target

is inside the range of the sensor, the received signal is above the threshold, and the

sensor transmits a “one” to the FC (instants t3, t4, and t5). When at a given time

the FC does not receive a signal from a particular sensor, this implies that the sensor

transmits a “zero.”

The network consists of N binary sensors that may be deployed randomly,

deterministically, or both. In all cases, we assume that the FC knows the locations

of all the sensors and that the locations remain fixed for all time.

6.3.2 Mathematical models

The model for target movement is standard and is described by [81]

xt = Gxxt−1 + Guut (6.1)

where xt = [x1,t x2,t ẋ1,t ẋ2,t]
> ∈ R4 is a state vector, which indicates the position

and the velocity of the target in a two-dimensional Cartesian coordinate system, Gx

99

and Gu are known matrices given by

Gx =




1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1




and Gu =




T 2
s

2
0

0 T 2
s

2

Ts 0

0 Ts




with Ts being the sampling period and ut, a 2 × 1 zero-mean vector representing

the state noise process and which accounts for the acceleration of the target. The

APF method uses an additional assumption about ut; it is a Gaussian vector with a

covariance matrix Cu = diag(σ2
u1

, σ2
u2

).

The received power can be modeled as in [82] or as in [83]. We adopt the latter

model, that is, the measurement of the n−th sensor is given by

yn,t = gn(xt) + vn,t

(6.2)

=
Ψdα

0

||rn − lt| |α + vn,t, n = 1, 2, · · · , N (6.3)

where gn(·) is a function that models the received signal power by the n−th sensor;

vn,t is a noise process independent from ut; rn ∈ R2 is the position of the n−th
sensor; lt = [x1,t x2,t]

> is the location of the target at time t; ||rn − lt|| denotes
the Euclidean distance between rn and lt; Ψ is the emitted power of the target

measured at a reference distance d0; α is an attenuation parameter that depends

on the transmission medium and is considered to be known and the same for all

sensors. For the application of the APF, we need to know the distribution of vn,t. In

100

our model, we assume that vn,t ∼ N (µv, σ
2
v) where µv = σ2 with σ2 being the known

power of the background measurement noise of one sample and σ2
v = 2σ4/L, with L

being the number of samples used to obtain the measured power. For the CRPF, we

only assume that we know µv.

The n−th sensor (n = 1, . . . , N) measures the received power yn,t, processes it

locally and transmits a single binary digit to the FC according to the following rule:

1. The sensor compares the actual observed power level, yn,t, with a threshold, γ.

If the sensed value is below γ, it does not transmit anything.

2. If the sensed value is greater than γ, the sensor transmits its identification code

to the FC.

Therefore, the sensors in the network send signals to the FC only if the received power

is greater than the sensor thresholds.

The received signal from the n−th sensor at the FC is modeled as

zn,t = βnsn,t + εn,t (6.4)

where

sn,t =





1 if yn,t > γ

0 if yn,t < γ
(6.5)

and where εn,t is the observation noise, and βn is a known attenuation coefficient

associated with the n−th sensor. Again, for the APF method we need the knowledge

of the noise distribution of εn,t, and we let εn,t ∼ N (0, σ2
ε), whereas for the CRPF

method we only assume that the noise is zero mean.

101

In summary, the measurements made by the sensors are complete and are

modeled by (6.3). The sensors, however, always transmit binary signals constructed

according to (6.5), and the FC receives them as quantified by (6.4).

The objective is to track the evolving state x0:t = (x0, x1, · · · ,xt) using the

observations z1:t = (z1,1:t, . . . , zN,1:t), that is, the observations up to time instant t of

the first sensor, z1,1:t, the second sensor, z2,1:t, as well as the remaining N − 2 sensors,

z3,1:t, · · · , zN,1:t. The APF uses probabilistic assumptions about all the noises in the

model and about the prior of the states. The CRPF only needs knowledge of the first

moments of the noises.

6.4 Tracking algorithms

First we present a tracking algorithm based on APF [30, 70] (subsection 6.4.1),

and then we proceed with the presentation of a CRPF algorithm [35,34] (subsection

6.4.2). In this section, the parameter Ψ is assumed known, but subsequently this

assumption will be dropped.

6.4.1 APF algorithm

Recall that according to the theory of particle filtering, we track the a posteriori

distribution of x0:t, p(x0:t | z1:t), by approximating it with a random measure, χt,

composed of particles x
(m)
t and weights w

(m)
t , where m is an index, and which we

denote by χt = {x(m)
0:t , w

(m)
t }M

m=1 with M being the number of particles. At every

time instant t, the particle filter carries out the following operations: (1) Selection of

most promising particle streams, (2) particle propagation, (3) computation of particle

102

weights, and (4) state estimation.

The APF attempts to draw from an importance function which is as close as

possible to the optimal one. To that end, the selection of most promising particles

is carried out by sampling from a multinomial distribution where the number of

possible outcomes is M and the probabilities of the respective outcomes are w̃
(m)
t ,

m = 1, 2, · · · , M , and

w̃
(m)
t ∝ p(zt | µ(m)

t)w
(m)
t−1 (6.6)

where µ
(m)
t is some parameter that characterizes x

(m)
t given x

(m)
t−1.

Since the noise samples εn,t from (6.4) are assumed independent, we have

p(zt | µ(m)
t) =

N∏
n=1

p(zn,t | µ(m)
t). (6.7)

For the factors p(zn,t | µ(m)
t), we can write

p(zn,t | µ(m)
t) = p(zn,t | sn,t = 0, µ

(m)
t)P (sn,t = 0 | µ(m)

t) +

p(zn,t | sn,t = 1,µ
(m)
t)P (sn,t = 1 | µ(m)

t)

= p(zn,t | sn,t = 0)P (sn,t = 0 | µ(m)
t) +

p(zn,t | sn,t = 1)P (sn,t = 1 | µ(m)
t) (6.8)

where

p(zn,t | sn,t) = N (βnsn,t, σ
2
ε) (6.9)

103

and

P
(
sn,t = 1 | µ(m)

t

)
= Q

(
γ − gn(µ

(m)
t)

σv

)
(6.10)

P
(
sn,t = 0 | µ(m)

t

)
= 1−Q

(
γ − gn(µ

(m)
t)

σv

)
(6.11)

where Q(·) denotes the standard normal complementary cumulative distribution

function.

At the beginning, the initial set of particles x
(m)
0 , m = 1, 2, · · · ,M , are drawn

from a prior distribution π(x0), and the weights of the particles are set to 1
M
. Suppose

now that at time instant t−1, we have the random measure χt−1 = {x(m)
0:t−1, w

(m)
t−1}M

m=1.

Then the steps of a particle filter recursion can be implemented as follows:

1. Selection of most promising particle streams:

For selection of the most promising particles, we use the conditional mean of

x
(m)
t given x

(m)
t−1 as a characterizing parameter of every stream, i.e.,

µ
(m)
t = E

(
xt|x(m)

t−1

)
. (6.12)

The conditional means are computed readily from

µ
(m)
t = Gxx

(m)
t−1. (6.13)

This is followed by computation of the weights according to (6.6) and their

normalization. Finally, a set of indices {im} are drawn from the probability mass

function (pmf) represented by the normalized weights.

104

2. New particle generation:

The first two elements of the four-dimensional state xt represent the location of

the target in a two-dimensional space, and the remaining elements are the components

of the velocity in this space. That implies that the generation of x
(m)
t requires

drawing only two-dimensional random variables. The generation can be carried out,

for example, by first, propagating the velocity components one step ahead using the

joint distribution p(ẋ1,t, ẋ2,t | ẋ1,t−1, ẋ2,t−1) or p(ẋ1,t, ẋ2,t | ẋ1,t−1, ẋ2,t−1,zt) and second,

computing the locations according to

x
(m)
1,t = x

(im)
1,t−1 +

Ts

2

(
ẋ

(m)
1,t + ẋ

(im)
1,t−1

)
(6.14)

x
(m)
2,t = x

(im)
2,t−1 +

Ts

2

(
ẋ

(m)
2,t + ẋ

(im)
2,t−1

)
. (6.15)

3. Weight computation:

The newly generated particles are assigned weights according to

w
(m)
t ∝ p(zt | x(m)

t)

p(zt | µ(im)
t)

.

The likelihood terms of the numerator and denominator are calculated as in the APF

using (6.7) – (6.11).

4. State estimation:

Once the weights are normalized, one can use χt to compute estimates of the

unknown states. For example, the minimum mean square error (MMSE) estimate is

105

obtained from

x̂t =
M∑

m=1

w
(m)
t x

(m)
t . (6.16)

6.4.2 CRPF algorithm

The objective of CRPF is to estimate sequentially the evolution of the unknown

state x0:t from z1:t without assumptions about the probability distributions of the

noises in the model. It is similar in structure to that of the APF because CRPF, too,

uses a discrete random measure. This random measure is composed of particles and

costs associated to them, where the costs are user-defined. We denote the random

measure by ζt =
{

x
(m)
0:t , C(m)

t

}M

m=1
, where x

(m)
0:t has the same meaning as before and

C(m)
t are the associated costs to x

(m)
0:t . It is clear that the costs here play the role of

the weights in APF. In fact, with appropriate choices of the costs, one can make the

CRPF equivalent to the APF or the standard particle filter [35].

In general, the costs are updated according to [34]

C(m)
t = C(x

(m)
0:t |z1:t)

(6.17)

= λC(x
(m)
0:t−1|z1:t−1) +4C(x

(m)
t |zt) (6.18)

where λ is a forgetting factor (0 ≤ λ ≤ 1), and 4C(x
(m)
t |zt) is an incremental cost.

Obviously, the value of λ controls how fast the state estimates can adapt to new values

of the states. The incremental cost contributes to the total cost at time instant t and

is a function of the particle value and the observation at that instant. A typical

106

incremental cost has the form

4C(x
(m)
t |zt) = ||zt − ẑ

(m)
t ||q (6.19)

where ẑ
(m)
t is a function of x

(m)
t , and q > 0. So, CRPF proceeds analogously to

the APF; with the vector of observations zt, the discrete random measure at time

instant t− 1, ζt−1 =
{

x
(m)
0:t−1, C(m)

t−1

}M

m=1
, is updated to ζt =

{
x

(m)
0:t , C(m)

t

}M

m=1
to reflect

accurately the possible value of the unknown state at time instant t, xt.

The procedure has four steps: (1) selection of most promising particle streams,

(2) propagation of particles, (3) cost update, and (4) state estimation. The

initialization of the method is carried out by randomly drawing initial particles from

some probability density function (pdf) π(x0) whose support includes the space of

x0. We propose that the method is implemented as follows:

1. Selection of most promising particle streams:

This step is reminiscent of the main idea of the APF, where resampling at time

instant t− 1 takes place by using measurements from time instant t. For CRPF, we

define a risk function, R(x
(m)
t−1|zt), which quantifies the quality of the particle x

(m)
t−1

given the next set of observations, zt. As a risk function, one can use the incremental

cost, that is, in our case

R(x
(m)
t−1|zt) = 4C

(
x̂

(m)
t |zt

)

107

with

ẑ
(m)
t = h(ŷ

(m)
t) (6.20)

ŷ
(m)
t = g(x̂

(m)
t) + µv (6.21)

x̂
(m)
t = Gxx

(m)
t−1 (6.22)

where the elements of g(·) are defined by (6.3) and those of h(·) by (6.4) and (6.5).

Once the risks are computed, they are added to their costs at t− 1 to obtain the

predicted costs, i.e.,

Ĉ(m)
t = λC(x

(m)
0:t−1|z1:t−1) +R(x

(m)
t−1|zt). (6.23)

The particles are then sorted according to their predicted costs Ĉ(m)
t in ascending

order and the first L of the M particles are replicated J = M
L

times (we assume that

J is an integer). In other words, each of the surviving particles will have J children

at time instant t [35]. We note that in previous versions of CRPF implementations

we used functions to generate pmfs, where the latter were subsequently used for

resampling of the particles. With the sorting scheme, we avoid the use of such

functions and classical resampling and instead, we proceed directly with removing

“bad” particles. Many simulation results have shown that with this simpler and faster

scheme we do not sacrifice performance.

2. Particle propagation:

For particle propagation we can use a Gaussian proposal density in a similar way

as is done with APF. Note that the functional form of the Gaussian is not used for

108

computing the costs of the particles. Also, the use of a Gaussian is not required, and

we can use any other density that is centered around the particle and that produces

random variables with appropriate variance, like a uniform, or a Laplace, or a Cauchy

density.

If we use a Gaussian, we draw the velocities of the target with mean ẋ
(im)
t−1 =

[ẋ
(im)
1,t−1 ẋ

(im)
2,t−1]

> and with covariance matrix σ
2,(im)
t−1 I2×2, where the ims denote indexes

of sorted particles, and ẋ
(im)
t−1 ’s are surviving particles from step 1. The variance,

σ
2,(im)
t−1 , is recursively updated by (see [34])

σ
2,(im)
t−1 =

t− 2

t− 1
σ

2,(im)
t−2 +

||ẋ(im)
t−1 − ẋ

(im)
t−2 ||2

2(t− 1)
.

The locations are then obtained by (6.14) and (6.15).

3. Cost update:

The cost update is performed by using (6.18).

4. State estimation:

The state is estimated by using the particles and the associated costs. One way

of carrying out the estimation is by creating a pmf from the costs. To that end, a

monotonically decreasing function η(·) that converts the set of costs into probability

masses π
(m)
ct is defined, that is,

π(m)
ct

∝ η
(
C(m)

t

)
.

109

For example, one function that has worked well for different problems is

η
(
C(m)

t

)
=

1(
C(m)

t −min(Ct) + 1/M
)2 .

Once the π
(m)
ct , m = 1, 2, · · · ,M are computed, the estimation of xt can be carried

out readily.

6.5 Extension of the APF when Ψ is unknown

The particle filters described in the previous section are based on the assumption

that in (6.3) the emitted power, Ψ, of the target measured at a reference distance is

known. When it is unknown and varies with time randomly, the presented particle

filters are modified straightforwardly so that Ψt becomes an element of the state

vector ξt, i.e., ξt = [x1,t x2,t ẋ1,t ẋ2,t Ψt]
>, and the state-space equation (6.1) is

changed to reflect the evolution of Ψt with time.

In our model, Ψ is constant. It is well known that a special care must be

taken for the estimation of constant parameters by particle filtering. Estimation

of static parameters by particle filtering has already been addressed in the literature,

for example, [84], [85], and [86]. The approach that we propose here exploits the

concept behind Gaussian particle filtering [87]. CRPF does not have the problems

of the APF in estimating constant parameters because it is not based on the use of

probability distributions.

Let the parameter Ψ be denoted by Ψt even though it does not change with time.

110

Formally, we have

Ψt = Ψt−1 (6.24)

which implies that the prior proposal distribution of Ψ should be

p(Ψt |Ψ(m)
t−1) = δ(Ψt −Ψ

(m−1)
t−1). (6.25)

The particle filter from the previous section remains the same except for the following

modification: at time t − 1, one approximates the marginal posterior of Ψt−1 with

a Gaussian (or some other) distribution [85]. If it is a Gaussian distribution, we

compute its parameters (the mean and variance of Ψt−1) from Ψ
(m)
t−1 by

µΨt−1 =
M∑

m=1

w
(m)
t−1Ψ

(m)
t−1

σ2
Ψt−1

=
M∑

m=1

w
(m)
t−1

(
Ψ

(m)
t−1 − µΨt−1

)2

. (6.26)

Then we sample from N (
µΨt−1 , σ

2
Ψt−1

)
, i.e., Ψ

(m)
t ∼ N (µΨt−1 , σ

2
Ψt−1

). The drawn

particles Ψ
(m)
t are particles of Ψt since Ψt = Ψt−1, and the remaining elements of

the particle x
(m)
t are generated in the same way as in the previous section.

The CRPF method applies the same method. For finding the parameters of the

Gaussian, it uses the pmf determined in step 4.

6.6 Posterior Cramér-Rao Bounds

The posterior Cramér-Rao bounds (PCRBs) provide in general the lower bound

for mean square errors (MSEs) [60]. In our problem, the PCRBs represent the lower

111

bounds of the MSEs of the estimated unknown position, velocity, and emitted power

of the target. In particular, the covariance matrix of the estimation errors of xt, Ct,

has a lower bound, i.e.,

Ct , E
{

(x̂t − xt) (x̂t − xt)
>
}
≥ J−1

t (6.27)

where Jt is the filtering information matrix, whose inverse is the PCRB of xt.

In the context of sensor networks, the PCRBs provide insights into various issues

including the following:

• the accuracy attainable in estimating the dynamics of the target,

• the effect of the deployment geometry of the sensors on the PCRB, and

• the effect of the sensing properties of the sensor on the achievable accuracy.

When the dynamics of the state evolution of the target are given by (6.1),

the prior distribution p(xt |xt−1) is not defined because this conditional distribution

becomes singular. In [88], a recursive method for determining the PCRBs for such

cases was described, and we followed that approach. We also used the same notation

as in [88] to allow for the more compressed presentation that is given in the Appendix.

The obtained PCRBs do not have analytical expressions in closed form but they can

be computed using Monte Carlo simulation methods.

6.7 Simulations

We present some computer simulations that illustrate the performances of the

proposed algorithms. We considered a scenario where the examined network consisted

112

of N = 264 sensors deployed in a field with dimensions 800×500 m2. The attenuation

parameter was set to α = 2.5 and the reference power parameter to Ψ = 5, 000.

The parameter Ψ was assumed unknown throughout the simulations and was also

estimated. The sensing radius of the sensors, which depends on the threshold γ

and the power parameter Ψ, was 25m. The corresponding threshold was set to 2.

The covariance matrix of the state noise process was Cu = diag{0.05, 0.01}, and the

measurement noise in (6.3) had mean µv = 1 were σ2
v = 0.01, and σ2

ε = 0.01. The

noise variance σ2
ε and the parameters βn, unless otherwise stated, were chosen to yield

signal-to-noise ratio (SNR) of 20dB at the FC. The sampling interval was Ts = 1s.

In the implementation of the APF and CRPF algorithms, we used M = 1000

particles. The prior for the target’s location and velocity was a Gaussian distribution

with mean x̄0 = [0 0 0.01 0.01]> and covariance matrix Ξ = diag{10, 10, 0.1, 0.1}, and
the initial particles of Ψ were drawn from a uniform distribution on [103, 104]. The

cost function of the CRPF was defined by (6.18) and (6.19) with λ = 0 and q = 2.

We experimented with two sensor networks, with deterministically and randomly

deployed sensors. In Figure 6.2, we can see the two networks (the sensors are displayed

with small circles), a realization of a trajectory of one object and the obtained

estimates by APF and CRPF, denoted by APF-bin, and CRPF-Bin, respectively.

It can be seen that the algorithms track the target’s trajectory closely.

In Figure 6.3, we display the root-mean square errors (RMSEs) of the location

estimate of the target obtained by the APF and CRPF algorithms that use complete

sensor measurements (APF-Comp and CRPF-Comp, respectively), and the APF

and CRPF algorithms based on binary measurements (APF-Bin and CRPF-Bin,

respectively) in the deterministic network. The RMSEs in this experiment were

113

−100 −80 −60 −40 −20 0
−120

−100

−80

−60

−40

−20

0

 X Position

 Y
 P

os
iti

on

 True Traj
 Sensor
APF−Bin
CRPF−Bin

−100 −80 −60 −40 −20 0
−120

−100

−80

−60

−40

−20

0

 X Position

 Y
 P

os
iti

on

 True Traj
 Sensor
APF−Bin
CRPF−Bin

Figure 6.2: A realization of a target trajectory and its estimates by APF and CRPF
for deterministically and randomly deployed sensor networks.

obtained by averaging over 100 different realizations. As expected, the performances

of APF-Comp and CRPF-Comp were better than the performances of APF-Bin and

CRPF-Bin (in RMSE by about 4m) at any time instant t. It should be observed, too,

that the CRPF does not have much degraded performance with respect to the APF

even though it does not use probabilistic information.

The RMSEs of the locations and velocities of the target and their PCRBs for the

random sensor network are shown in Figure 6.4. Again, 100 different realizations

were used in the experiment. Similar results were obtained as in the previous

experiment. The RMSEs of the constant parameter Ψ are displayed in Figure 6.5

for the deterministically deployed sensor network.

In the next set of experiments, we studied the performance of proposed methods

with respect to different SNRs at the FC. In Figure 6.6, we see the performances of

these methods expressed by the cumulative distribution functions of the RMSEs of

APF-Bin and CRPF-Bin. For example, Figure 6.6 shows that the probability of the

RMSE being smaller than 6m is practically one for SNRs greater than or equal to

114

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Time

R
M

S
E

 in
 P

os
iti

on

CRPF−Bin
PCRB
APF−Bin
APF−Comp
CRPF−Comp

Figure 6.3: RMSEs of the location estimates of the target in deterministic network
obtained by the APF and CRPF algorithms with complete sensor measurements
(APF-Comp and CRPF-Comp, respectively), and the APF and CRPF algorithms
with binary measurements (APF-Bin and CRPF-Bin, respectively).

0 50 100
0

2

4

6

8

10

Time

R
M

S
E

 o
f x

1,
t

0 50 100
0

2

4

6

8

10

Time

R
M

S
E

 o
f x

2,
t

0 50 100
0.2

0.4

0.6

0.8

1

Time

R
M

S
E

 o
f x

1,
t

0 50 100
0.2

0.4

0.6

0.8

1

Time

R
M

S
E

 o
f x

2,
t

APF−BIn
CRPF−Bin
PCRB

..

Figure 6.4: RMSEs of the locations and velocities obtained by APF-Bin and CRPF-
Bin as functions of time obtained in a random network. The respective PCRBs are
also plotted.

115

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

R
M

S
E

 o
f Ψ

t

APF−Bin
CRPF−Bin
PCRB−Bin

Figure 6.5: RMSEs of Ψ as a function of time.

10dB. At SNR = 5dB, the probability is almost one if the RMSE is less than or equal

to 9m. From the graphs, we see that the performance of the CRPF-Bin degrades

more rapidly than that of the APF-Bin when the SNR decreases.

We further studied the impact of the threshold in detecting the presence of the

target through the PCRBs for the deterministic network in the examples. The results

shown in Figure 6.7 imply that the choice of threshold can be very important for the

accuracy of the applied methods.

We have also performed simulations when the APF-Bin uses inaccurate

distributions of the noise processes in the model. We generated the noise process

in the state equations with a mixture ut ∼ 0.6N (0,Cu,1) + 0.4N (0,Cu,2) with

Cu,1 = diag{0.05, 0.02} and Cu,2 = diag{0.5, 0.2}. Instead of the accurate pdf, the

APF assumed a Gaussian pdf ut ∼ N (0, C̃u) where C̃u = diag{0.01, 0.02} . The

transmission measurement noise was simulated using a Gaussian mixture as follows

εn,t ∼ 0.5N (µε, σ
2
ε) + 0.5N (−µε, σ

2
ε)

116

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE in position

C
D

F
 o

f R
M

S
E

 in
 p

os
iti

on

SNR=0dB
SNR=5dB
SNR=10dB
SNR=15dB
SNR=20dB

(a) APF.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE in position

C
D

F
 o

f R
M

S
E

 in
 p

os
iti

on

SNR=0dB
SNR=5dB
SNR=10dB
SNR=15dB
SNR=20dB

(b) CRPF.

Figure 6.6: Performance of the APF-Bin and CRPF-Bin algorithms for various SNRs
measured by the cumulative distribution functions of the RMSEs.

0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

20

Time

R
M

S
E

 in
 P

os
iti

on

λ=0.5
λ=1
λ=1.5
λ=2
λ=2.5

Figure 6.7: PCRBs in determining position for various sensor thresholds.

117

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE in Position

C
D

F
 o

f R
M

S
E

 in
 P

os
iti

on

CRPF−Bin
APF−Bin

Figure 6.8: Cumulative distribution function of the RMSEs of APF-Bin and CRPF-
Bin.

and the APF assumed the measurement noise to be zero mean and with a variance of

σ̃2
ε = µ2

ε + σ2
ε . This ensures that the first two moments of the true and assumed

measurement noise statistics are the same. The simulated values of σ̃2
ε and σ2

ε

were 0.0081 and 0.001, respectively. The RMSEs of 100 different trajectories were

computed and summed over the entire time period. In Figure 6.8, we plot the

cumulative distribution functions of the RMSE of APF-Bin and CRPF-Bin. For

example, the graph shows that 95% of the times, the RMSE accumulated by the

CRPF-Bin is below 12m while the RMSE accumulated with the APF-Bin is less

than 20m. Clearly CRPF-Bin outperforms the APF-Bin considerably and this is

an important result. In practical applications, frequently the assumed distributions

and their parameters may be inaccurate, which may cause the degradation of the

APF-Bin. As expected in such scenarios CRPF-Bin performs much more robustly.

118

6.8 Summary

We focused on the use of binary wireless sensor networks for tracking a single

target. This is a rather challenging problem because complete measurements are

compressed to binary decisions of weather a target is or is not detected by a sensor.

We applied two particle filtering algorithms for processing of the binary data, auxiliary

particle filtering and cost-reference particle filtering. The adopted model of sensor

measurements was the signal strength, although any other type of measurement model

would be equally applicable. We also derived posterior Cramér-Rao bounds of the

estimated unknowns. We conducted several sets of experiments, and the simulation

results show that the proposed methods track with good accuracy.

119

Chapter 7

Target tracking by fusion of random

measures

We propose fusion methods for tracking a single target in a sensor network.

The sensors use sequential Monte Carlo (SMC) techniques to process the received

measurements and obtain random measures of the unknown states. We apply

standard particle filtering (SPF) and cost-reference particle filtering (CRPF)

methods. Summaries of the random measures of these filters are sent to the fusion

center which combines them into a global summary. Similarly, the fusion center may

send a global summary to the individual sensors that use it for improved tracking. In

Section 7.3 and 7.4 we provide the theory for fusion of measures. Through extensive

simulations and comparisons with other methods, we study the performance of the

proposed algorithms and show the validity of our approach in Section 7.5. We

consider two examples: tracking using bearings only measurements and tracking in a

hierarchical sensor network.

120

Fusion Center

Sensor 1 Sensor 2 Sensor N

dataN

feedback

datai

feedback

Measurement/ state estimates/ summaries/ of Sensor i

Feedback from fusion center to Sensor i

feedback

feedback

data2data1

Figure 7.1: Pictorial representation of the considered sensor network framework.

7.1 Introduction

Multisensor data fusion refers to the processing and synergistic combination of

data from different sensors to provide improved accuracy and reduced uncertainty

about events of interest [89, 90]. Fusion of data from multiple sensors improves the

robustness and reliability of the system and has a wide range of application including

military, geosciences, robotics, statistical sciences, manufacturing and medicine [90].

Here, we study the problem of target tracking by fusion of information in a sensor

network framework as shown in Figure 7.1. There each sensor applies a sequential

Monte Carlo (SMC) method to obtain a random measure of the target state. The

obtained information is transmitted to the fusion center (FC), which combines

the received data and provides an estimate of the target state. Clearly, a better

performance could be obtained by transmitting to the FC all the measurements

received by the sensors without any processing and running the SMC method at the

121

FC. However, the transmission of all these measurements is often not practical, and

therefore we consider local processing at the sensors. Moreover, we assume that the

fusion processing occurs periodically or by request of the FC. A challenge associated to

the proposed scheme comes from the fact that the local SMCmethods produce random

measures represented by large sets of samples and weights/costs. The transmission of

the complete measures is therefore prohibitive. We propose solutions that summarize

the random measures and allow for reduced overall communication load.

Fusion of SPF-processed sensor data in the context of target tracking has been

previously addressed, whereas fusion of CRPF-processed data has not. In [16], the

authors propose two methods for the fusion of SPF-processed data. There the fusion

rule for obtaining the joint random measure is obtained as a product of the individual

clique’s random measures which is not an optimal fusion rule. In our work, we

utilize optimal rules for fusion of random measures. In [18], two distributed particle

filters for fusion of random measures are presented. The first one, closer in spirit

to our work, is based on factorization of likelihood terms and relies on assumptions

such as sensor nodes maintaining same particles and random number seeds. We

do not utilize any such assumptions in our methods. A decentralized sensor fusion

framework with an information theoretic approach for sensors to collect measurements

is adopted in [91]. The sensors’ belief measure is approximated by a small subset of

randomly chosen particles for transmission to neighboring nodes. Also, the formulated

fusion expressions require the transmission of “belief" particles of past states. These

requirements can be quite prohibitive even when the chosen subset of particles is

small. In contrast, our methods have lower communication and power requirements.

Finally, compression of the random measures using support vector machine methods

122

is proposed and studied in [92].

The main contributions here are:

1. Distributed algorithms with low communication and power requirements for

fusion of SPF and CRPF-processed data are proposed. These methods are

generic and can be easily adapted to various sensor network architectures.

Previously proposed fusion methods either have large communication

requirements or are applied to specific architectures.

2. We show the feasibility of our methods for target tracking with and without

feedback from the FC. To the best of our knowledge previously proposed

methods for fusion of random measures do not consider any feedback.

3. We provide simulation studies of target tracking in flat and hierarchical sensor

networks with fusion of random measures.

7.2 Problem statement

The target state is obtained using a standard model of constant velocity [93]

according to

xt = Fxxt−1 + Γuut (7.1)

where xt = [x1,t, x2,t, ẋ1,t, ẋ2,t]
> ∈ R4 comprises the target position and velocity in

the two-dimensional space, and ut is the random noise vector. Denoting by I2 and

123

02 the 2× 2 identity and zero matrices, the transition matrices are given by

Fx =




I2 TsI2

02 I2


 and Γu =




T 2
s

2
I2

TsI2




with Ts being the sampling period. The sensor measurement signals yn
t are typically

non-linear functions of the target dynamics. We denote by x0:t the target dynamics

from time instant 0 to time instant t, and by yn
1:t the data observed by the nth sensor

up to time instant t.

Recall that, when the distribution of the noise processes are known, each

sensor using a SPF method approximates p(x0:t | yn
1:t) by a random measure

χn
t = {x(m),n

0:t , w
(m),n
t }M

m=1, where x
(m),n
0:t are particles of the random measure, w

(m),n
t

are the weights associated to the particles, and M denotes the number of particles.

When the distribution of the noise processes are unknown, each sensor using CRPF

methods obtains a random measure of the state x0:t, which is represented by

ζn
t = {x(m),n

0:t , c
(m),n
t }M

m=1, where c
(m),n
t denotes the costs assigned to the particles.

The objective of the proposed fusion methods is to obtain the joint random measures

χt or ζt from the individual sensor random measures χn
t or ζn

t , n = 1, · · · , N , and

from them obtain estimates of the unknown state xt.

7.3 Fusion with and without feedback

In this section we describe the theoretical expressions for fusion of probability

distributions in two scenarios.1 In the first, the global probability distribution (GPD)
1Note that this is a theoretical study. It is not possible in practice for the sensors to transmit

to the FC the required information. The theory explained in this Section will be applied to obtain

124

obtained by fusion of the individual probability distributions (IPDs) from the sensors

is not reported back to the sensors, and in the second, the FC broadcasts the GPD

back to the sensors, which is then used for improved tracking. These scenarios are

depicted in Figure 7.1. The strategy with feedback is particularly advantageous in

situations when some of the filters start diverging.

7.3.1 Fusion without feedback

For the sake of simplicity let us consider fusion of densities from two sensors.

The obtained result can readily be generalized to an arbitrary number of sensors.

The GPD, p(x0:t|y1
1:t, y

2
1:t), can be written as

p(x0:t|y1
1:t, y

2
1:t) = p(x0:t|y1

t ,y
2
t ,y

1
1:t−1,y

2
1:t−1)

∝ p(y1
t , y

2
t |xt,x0:t−1, y

1
1:t−1,y

2
1:t−1)p(xt|x0:t−1,y

1
1:t−1, y

2
1:t−1)

× p(x0:t−1|y1
1:t−1,y

2
1:t−1). (7.2)

Assuming independence among the sensor measurements {y1
t ,y

2
t} conditioned on xt,

we have

p(y1
t ,y

2
t |xt,x0:t−1,y

1
1:t−1, y

2
1:t−1) = p(y1

t |xt,x0:t−1,y
1
1:t−1)p(y2

t |xt,x0:t−1,y
2
1:t−1).

We know that

p(xt|yn
1:t) = g−1(yt)p(xt|yn

1:t−1)p(yn
t |xt,x0:t−1,y

n
1:t−1)

practical methods later.

125

where g(yt) represents the normalization terms not involving xt. Therefore

p(yn
t |xt,x0:t−1,y

n
1:t−1) = g(yt)

p(xt|yn
1:t)

p(xt|yn
1:t−1)

. (7.3)

From (7.2) and (7.3) we get

p(x0:t|y1
1:t, y

2
1:t) ∝ p(xt|y1

1:t)

p(xt|y1
1:t−1)

p(xt|y2
1:t)

p(xt|y2
1:t−1)

p(xt|xt−1)

× p(x0:t−1|y1
1:t−1,y

2
1:t−1). (7.4)

Note that the distributions p(xt|xt−1) and p(x0:t−1|y1
1:t−1, y

2
1:t−1) are known to the

FC. The former is obtained from the state equation and the latter is the GPD at

time instant t− 1. The two sensors transmit to the FC information about p(xt|y1
1:t)

and p(xt|y2
1:t), whereas p(xt|yn

1:t−1), n = 1, 2, can in principle be obtained from

p(xt−1|yn
1:t−1) and p(xt|xt−1), which are known at the FC.

Generalizing equation (7.4) for N sensors, we have

p(x0:t | y1:N
1:t) ∝ p(x0:t−1 | y1:N

1:t−1) p(xt | xt−1)
N∏

n=1

p(xt | yn
1:t)

p(xt | yn
1:t−1)

(7.5)

which is the optimal recursive fusion equation.

7.3.2 Fusion with feedback

As before, we first consider fusion of posterior distributions from two sensors but

with combined posterior feedback from the FC. At time instant t, the FC feeds back

to the sensors the GPD p(x0:t−1|y1
1:t−1,y

2
1:t−1). Then the posterior of the first sensor

126

is formed according to

p(x0:t|y1
1:t, y

2
1:t−1) ∝ p(y1

t |xt)p(xt|xt−1)p(x0:t−1|y1
1:t−1,y

2
1:t−1). (7.6)

The posterior of the second sensor is obtained analogously.

The FC receives the posteriors p(x0:t|y1
1:t, y

2
1:t−1) and p(x0:t|y1

1:t−1,y
2
1:t) and fuses

them by

p(x0:t|y1
1:t,y

2
1:t) ∝ p(xt|y1

1:t,y
2
1:t−1)

p(xt|y1
1:t−1,y

2
1:t−1)

p(xt|y1
1:t−1,y

2
1:t)

p(xt|y1
1:t−1,y

2
1:t−1)

p(xt|xt−1)

× p(x0:t−1|y1
1:t−1, y

2
1:t−1). (7.7)

This expression was derived along the same lines of reasoning as (7.4).

When we generalize (7.7) for N sensors, the fusion rule becomes

p(x0:t|y1:N
1:t) ∝ p(x0:t−1|y1:N

1:t−1)p(xt|xt−1)
N∏

n=1

p(xt|y1
1:t−1, · · ·yn

1:t · · ·yN
1:t−1)

p(xt|y1
1:t−1, · · ·yn

1:t−1 · · ·yN
1:t−1)

.

(7.8)

7.4 Fusion by using random measures

The derived fusion rules from the previous section are of little practical value. In

our case where we use random measures to represent our knowledge about the evolving

state, the situation is even worse. The transmission of the random measures would

require sending a large number of particle values and weights/costs. This altogether

would be much more demanding in communication resources than the transmission of

the actual measurements to the FC and would beat the whole purpose of using SMC

127

at the sensors. We propose schemes that alleviate the sending of complete measures

and by sending summaries of the random measures. First we describe strategies for

summarizing the random measures constructed by SPF and then for those of CRPF.

7.4.1 Fusion of summaries of SPF random measures

In the SPF framework the random measures approximate distributions. If these

distributions are unimodal, we propose that their random measures are summarized

by Gaussians.2 This type of approximation has already been used in the framework

of Gaussian particle filtering [32]. There the individual posterior and predictive

distributions are approximated by Gaussian distributions, i.e.,

p(xt | yn
1:t−1) ' N (µ̃n

t , Σ̃
n

t)

p(xt | yn
1:t) ' N (µ̂n

t , Σ̂
n

t)

p(xt | y1:N
1:t) ' N (µt,Σt). (7.9)

With these approximations and from (7.5) we have

p(xt | y1:N
1:t) ∝

N∏
n=1

N (µ̂n
t , Σ̂

n

t)

N (µ̃n
t , Σ̃

n

t)
p(xt | xt−1) p(x0:t−1 | y1:N

1:t−1)

∝ N (µ̂t, Σ̂t)

N (µ̃t, Σ̃t)
p(xt | xt−1) p(x0:t−1 | y1:N

1:t−1)

2In Appendix A, we provide conditions for the validity of the Gaussian assumptions.

128

where

Σ̂
−1

t = Σ̂
1−1

t + Σ̂
2−1

t + · · ·+ Σ̂
N−1

t

µ̂t = Σ̂t

(
Σ̂

1−1

t µ̂1
t + Σ̂

2−1

t µ̂2
t + · · ·+ Σ̂

N−1

t µ̂N
t

)

Σ̃
−1

t = Σ̃
1−1

t + Σ̃
2−1

t + · · ·+ Σ̃
N−1

t

µ̃t = Σ̃t

(
Σ̃

1−1

t µ̃1
t + Σ̃

2−1

t µ̃2
t + · · ·+ Σ̃

N−1

t µ̃N
t

)
. (7.10)

The parameters of the Gaussians can readily be computed from the SPF random

measure. For example, if the approximation of p(xt | yn
1:t) is given by

M∑
m=1

w
(m),n
t δ(xt−

x
(m),n
t) ≈ N (µn

t ,Σn
t), then

µn
t =

M∑
m=1

w
(m),n
t x

(m),n
t

Σn
t =

M∑
m=1

w
(m),n
t (x

(m),n
t − µn

t)(x
(m),n
t − µn

t)>. (7.11)

We define transmission length (TL), as the number of real numbers transmitted to

the FC by each sensor. Therefore with this fusion scheme we have TL = d(d+3)
2

where

d is the dimension of the state.

When the posterior densities have more than one mode, their representation by

a single Gaussian density can be inaccurate. In such situations, one possibility is to

summarize the random measure by mixture-Gaussians, i.e.,

p(xt | yn
1:t−1) '

L∑

l=1

π̃t,lN (µ̃n
t,l, Σ̃

n

t,l)

p(xt | yn
1:t) '

L∑

l=1

π̂t,lN (µ̂n
t,l, Σ̂

n

t,l), (7.12)

129

where L is the number of mixands.

From (7.5) and (7.12) we have

p(xt | y1:N
1:t) ∝

N∏
n=1

L∑
l=1

π̃t,lN (µ̃n
t,l, Σ̃

n

t,l)

L∑
l=1

π̂t,lN (µ̂n
t,l, Σ̂

n

t,l)

p(xt | xt−1) p(x0:t−1 | y1:N
1:t−1). (7.13)

Thus the FC obtains the GPD through (7.13). The parameters of the mixture

Gaussians can be obtained by the expectation-maximization (EM) algorithm which is

an iterative two-step method [94]. Here, the posterior distribution is approximated by

a Gaussian mixture, therefore as above, the transmission length, TL = Ld(d+3)
2

+L−1.

7.4.2 Fusion of summaries of CRPF random measures

Recall that in the CRPF framework, each sensor maintains a random measure

with costs associated to the particles. We propose that the random measure of the

nth sensor, ζn
t , is summarized by one of the following approaches:

1. CRPF-Pdf: summary-based on a probability distribution

2. CRPF-Par: summary-based on the best particle.

CRPF-Pdf: Summary based on a probability distribution function

In this method, the sensors convert the costs of the particles into probability

masses. Once the conversion is accomplished, the summarization is carried out in the

same way as described in the previous section. For e.g., one way of converting the

130

costs is to use

π
(m),n
c,t ∝ 1

(c
(m),n
t −min(c

(m),n
t) + 1

M
)2

. (7.14)

When there is a feedback, the FC sends back to the sensors the Gaussian constructed

from the individual Gaussians. The sensors use the received Gaussian to generate

particles and assign to each of them zero costs. At each sensor, the CRPF is then

implemented in the usual way until the sensors receive the next feedback from the

FC. Here, too, as in the SPF method when the posterior is approximated by a single

Gaussian, we have TL = d(d+3)
2

.

CRPF-Par: Summary based on the best particle

This method is the simplest of all. Here each sensor transmits to the FC the

particle that has the minimal cost and the FC computes the mean of all these

samples. If the sensors also transmit their minimum costs, the corresponding “best”

estimate can be a weighted estimate. When the sensors have good estimates and the

regions of uncertainty are small, these methods of fusing single sensor estimates are

efficient. However when the sensors have large regions of uncertainty, the resulting

fused estimate may not be accurate. With this method, we have a transmission length

of TL = d + 1.

Another possibility of using the best particles and their costs is to convert the

costs to a pmf and from it construct a Gaussian that can be sent back to the sensors

as a feedback.

131

7.5 Simulations and results

7.5.1 Bearings only target tracking

In many radar and sonar applications, target tracking is performed using only

bearing measurements. Here the sensors operate in a passive mode and measure

the direction of arrival of the signal emitted by the target. We consider the sensor

network shown in Figure 7.2 where the three sensors are denoted by small circles and

are placed at positions (−50,−10), (75, 10) and (80,−50). The bearing measurements

of the target relative to the nth sensor location are mathematically modeled as

yn
t = arctan

(
x2,t − lny
x1,t − lnx

)
+ vn

t (7.15)

where {lnx , lny} are the coordinates of the sensor [26], and vn
t is zero mean white

Gaussian noise with variance σ2
v .

The initial state x0 of the target was drawn from N (µ0,Σ0) with µ0 =

[0, 0, 0.1, 0.0]> and Σ0 = diag (10, 10, 0.1, 0.1).3 The target’s dynamics were

modeled using (7.1) with the covariance matrix of the zero mean Gaussian state

process noise Cu = diag(0.05, 0.02). The target’s trajectory was simulated for

Nt = 100 time instants with a sampling period Ts = 1 s. The standard deviation of

the measurement noise σv was set to 0.05. In computing the RMSEs of the unknowns,

we used 100 trajectory runs.

In Figure 7.2(a) we show a target trajectory and its estimates using the

proposed SPF method (labeled as SPF-Dist, meaning distributed). For comparison

purposes we also included the performance of the system where the sensors sent
3The symbol diag(x) represents a diagonal matrix formed with vector x as its diagonal elements.

132

−60 −40 −20 0 20 40 60 80 100
−140

−120

−100

−80

−60

−40

−20

0

20

40

X Position

Y
 P

os
iti

on

Sensor
Trajectory
SPF−Dist
SPF−Cent

(a) SPF

−60 −40 −20 0 20 40 60 80 100
−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

X Position

Y
 P

os
iti

on

Sensor
Trajectory
CRPF−Pdf
CRPF−Cent

(b) CRPF

Figure 7.2: The multisensor network and estimates of the target trajectory.

their measurements to the FC. The FC used the measurements to run a SPF-based

algorithm (labeled as SPF-Cent, meaning centralized). In Figure 7.2(b), we show

analogous results for the CRPF-Pdf and the centralized CRPF (labeled as CRPF-

Cent) methods operating on the full measurements. We chose the risk and cost

functions outlined in equations (4.1) and (4.4) with q = 2. This method is thus

analogous to a least squares fitting approach where decision on the particles is made

using the residuals.

In Figs. 7.3 and 7.4, we plot the RMSEŠs obtained by the sensors and the FC

using SPF methods with and without feedback. Each of the sensors maintained a

random measure with M = 1000 samples. The SPF methods utilized the prior for

propagation of the particles. In both scenarios, the sensors transmitted to the FC the

summaries of their random measures at every time instant. In the feedback scenario,

the FC also transmitted to the sensors the global summary which was used to re-

initialize their filters. It can be observed that with feedback, the RMSEs of each of

the individual sensors is smaller than in situations without any feedback. The overall

133

0 50 100
0

1

2

3

4

Time

RM
SE

 x 1,t
 (d

B)

0 50 100
0

1

2

3

4

RM
SE

 x 2,t
 (d

B)

0 50 100
−0.8

−0.2

0.4

RM
SE

 x 1,t
 (d

B)

0 50 100
−0.8

−0.2

0.4

RM
SE

 x 2,t
 (d

B)

..

Figure 7.3: RMSEs (dB) of the target dynamics by the sensors and FC using SPF
without feedback. -o- Sensor 1, -*- Sensor 2, — Sensor 3, – FC SPF-Dist, -x FC
SPF-Cent

0 50 100
0

0.2

0.4

0.6

0.8

1

Time

RM
SE

 x 1,t
 (d

B)

0 50 100
0

0.2

0.4

0.6

0.8

1

Time

RM
SE

 x 2,t
 (d

B)

0 50 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time

RM
SE

 x 1,t
 (d

B)

0 50 100
−0.6

−0.4

−0.2

0

Time

RM
SE

 x 2,t
 (d

B)

. .

Figure 7.4: RMSEs of the target dynamics by the sensors and FC using SPF with
feedback. -o- Sensor 1, -*- Sensor 2, — Sensor 3, – FC SPF-Dist, -x FC SPF-Cent

improvement in the RMSEs of the FC estimates, however, is small.

In Figure 7.5(a), we plot the RMSEs of the position when the SPF algorithms

approximated the random measure with a single Gaussian density (GM-1) and with

134

0 20 40 60 80 100
2

3

4

5

6

7

8

9

Time

R
M

S
E

 in
 p

os
iti

on

GM−2
GM−1

(a) GM-GMM

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Time

χ2

SPF
EKF

Sensor 1

(b) χ2 Measure

Figure 7.5: (a) Comparison of RMSEs with a single Gaussian approximation and
with a Gaussian mixture approximation. (b) χ2-Divergence for SPF and EKF based
posterior approximations at sensor 1.

a Gaussian mixture with two mixands (GM-2). We use the χ2 divergence4 measure

to compare the approximation of the posterior by a Gaussian distribution using

SMC and EKF methods. In Figure 7.5(b), we plot the χ2 divergence measure due

to approximation of the sampled density with a Gaussian distribution at sensor 1.

Clearly the performance of the SPF-based approximation is better than the Gaussian

approximation with the EKF by an order of magnitude. The plots are similar for

the approximations made at other sensors. In Figure 7.6, we plot the mean error

Table 7.1: Bias(m)
Time(s) Sen 1 Sen 2 Sen 3 FC
20 -2.83 -0.46 -0.23 0.19
40 -0.77 -2.18 -2.92 -0.47
60 1.61 -5.63 -5.04 -0.49
80 2.70 -8.23 -4.22 -0.07
100 5.94 -7.16 -0.12 0.81

Table 7.2: Standard Deviation(m)
Time(s) Sen 1 Sen 2 Sen 3 FC
20 10.96 11.40 10.61 3.62
40 19.83 24.17 22.53 2.68
60 32.76 31.03 30.99 2.60
80 40.82 43.12 35.80 2.99
100 50.86 50.61 43.28 7.03

Bias and standard deviation of location estimates of the targets at different times.

4The definition and computation of this measure are described in Appendix B.

135

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

M
ea

n
E

rr
or

 a
nd

 3
 σ

 c
on

fid
en

ce
 in

te
rv

al
s

Time

Bias SPF−Dist
Bias EKF−Dist
Bias SPF−Cent
3σ SPF−Dist
3σ EKF−Dist
3σ SPF−Cent

3 σ EKF

3 σ SPF− Dist

3 σ SPF− Cent

Biases

(a) x1,t

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

M
ea

n
E

rr
or

 a
nd

 3
 σ

 c
on

fid
en

ce
 in

te
rv

al
s

Bias SPF−Dist
Bias EKF−Dist
Bias SPF−Cent
3σ SPF−Dist
3σ EKF−Dist
3σ SPF−Cent

3 σ EKF

3 σ SPF− Dist

Biases

(b) x2,t

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4

6

8

10

Time

M
ea

n
E

rr
or

 a
nd

 3
 σ

 c
on

fid
en

ce
 in

te
rv

al
s

Bias SPF−Dist
Bias EKF−Dist
Bias SPF−Cent
3σ SPF−Dist
3σ EKF−Dist
3σ SPF−Cent

3 σ EKF

3 σ SPF− Dist

3 σ SPF− Cent

Biases

(c) x3,t

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4

6

8

10

Time

M
ea

n
E

rr
or

 a
nd

 3
 σ

 c
on

fid
en

ce
 in

te
rv

al
s

Bias SPF−Dist
Bias EKF−Dist
Bias SPF−Cent
3σ SPF−Dist
3σ EKF−Dist
3σ SPF−Cent

3 σ EKF

3 σ SPF− Dist

3 σ SPF− Cent

Biases

(d) x4,t

Figure 7.6: Spread of errors in estimating the state at the FC.

136

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE in position

C
D

F
 o

f R
M

S
E

SPF− Cent
SPF−Dist
SPF−Feed

(a) SPF

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMSE in position

C
D

F
 o

f R
M

S
E

SPF− Dist
CRPF−Pdf
CRPF−Cent
SPF−False

(b) CRPF

Figure 7.7: Comparison of RMSEs with centralized and proposed SPF and CRPF
methods.

and the 3σ confidence interval depicting the spread in error in estimating the target

dynamics at the FC. We summarize the results in Tables 7.1 and 7.2. Clearly we

can see through these plots that the spreads in errors are similar for the SPF-based

summary approach and the SPF method with complete measurements. However the

EKF exhibits divergence as can be seen from the high spread of errors. The results in

the table show that the errors increase with time, which is due to the target leaving

the sensor field. We also use the cumulative distribution function (cdf) of the total

RMSE accumulated over time as our metric for analyzing the performance of the

proposed and the centralized algorithms. It can be seen from Figure 7.7(a) that there

is a small loss of performance with the proposed method over the centralized methods.

We also plot in Figure 7.7(b) the cdf of the RMSEs obtained using the CRPF

methods. The performance of the CRPF-Pdf method is comparable with that of

the SPF-Dist method which makes full assumptions of the noise processes. Moreover,

the performance of the proposed CRPF-Dist method is very similar to the CRPF-

Cent. We also simulated the case when the SPF methods make wrong assumptions

137

about the noise process. In Figure 7.7(b), the filter associated with the SPF-False

method assumed Cu = diag(0.005, 0.002) and σv = 0.01. With a single Gaussian

approximation we have, the probability P that the RMSE in position is less than or

equal to 10m, i.e., P (RMSEpos ≤ 10m) = 0.96 while with a Gaussian mixture (L = 2),

P (RMSEpos ≤ 10m)) ≈ 1.0; and with CRPF-Pdf, P (RMSEpos ≤ 10m) = 0.86.

However when the probability distributions of the noise processes are unknown, for

the SPF with incorrect noise statistics, P (RMSEpos ≤ 10m) = 0.57. Clearly the

performance of the SPF method under wrong noise assumptions is poor, motivating

the use of other methods which make less assumptions of the noise processes when

their distributions are unknown.

7.5.2 Target tracking in a hierarchical sensor network

20 40 60 80 100 120 140 160 180
−20

0

20

40

60

80

100

120

140

160

 X−position

 Y
−

po
si

tio
n

Target Trajectory
Sensor

Cluster 1

Cluster 2

(a)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time

R
M

S
E

 in
 p

os
iti

on

SPF κ=1
SPF κ=5
SPF κ=10
CRPF κ=1
SPF−Comp

CRPF

SPF

(b)

Figure 7.8: (a) A hierarchical sensor network. (b) RMSEs of the target position by
using SPF and CRPF for various κ

An important application of data fusion is target tracking in hierarchical sensor

networks (HSN), where sensors form clusters and transmit their measurements to

a specialized node known as a leader node (LN). This LN is a specialized node

138

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time

B
ia

s
an

d
3σ

 e
rr

or
 o

f x
1,

t

3σ Cluster 1 3σ Cluster 2

3σ FC

Biases

(a) Bias and 3σ of x1,t

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

25

Time
B

ia
s

an
d

3σ
 e

rr
or

 o
f x

2,
t

3σ Cluster 1 3σ Cluster 2

3σ FC

Biases

(b) Bias and 3σ of x2,t

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

6

8

Time

B
ia

s
an

d
3σ

 e
rr

or
 o

f x
1,

t

3σ Cluster 1
3σ Cluster 2

3σ FC
.

Biases

(c) Bias and 3σ of ẋ1,t

s
0 5 10 15 20 25 30

−6

−4

−2

0

2

4

6

8

Time

B
ia

s
an

d
3σ

 e
rr

or
 o

f x
2,

t

3σ Cluster 1 3σ Cluster 2

3σ FC

.

Biases

(d) Bias and 3σ of ẋ2,t

Figure 7.9: Spread of errors in estimating the state at FC.

139

which has greater computational and communication capabilities than the sensors.

Upon obtaining the measurements from the sensors, the LNs estimate the posterior

density of the target’s dynamics. The summaries of the random measures are then

transmitted to the FC which combines them to obtain a joint summary. In this

experiment, we implemented our proposed ideas for target tracking in the HSN

shown in Figure 7.8(a). There are six sensors placed at (26, 45), (45, 90), (65, 30),

(95, 150), (100, 20), (150, 50) which form two clusters. The sensors collected three

different measurements, the bearing, the power of the signal emitted by the target

and the relative velocity of the target [81]. These three signal modalities can be

mathematically written as

yn
1,t = arctan

(
x2,t − lny
x1,t − lnx

)
+ vn

1,t (7.16)

yn
2,t = Ψ− 5 log10

(
(x1,t − lnx)2 + (x2,t − lny)2

)
+ vn

2,t (7.17)

yn
3,t = νn

r,t + vn
3,t (7.18)

where Ψ = −50dB is the signal strength within a known reference distance, νn
r,t

is relative velocity of the target relative to the nth sensor, and vn
1,t ∼ N(µv1 , σ

2
v1

),

vn
2,t ∼ N(µv2 , σ

2
v2

), vn
3,t ∼ N(µv3 , σ

2
v3

), are zero mean Gaussian measurement noise

processes. We assumed the variance of the noise to be the same across all the

sensors. In our simulations we used σv1 = 0.01, σv2 = 1, and σv3 = 1. The

initial target dynamics were drawn from N (µ0,Σ0) with µ0 = [0, 0, 5, 5]> and

Σ0 = diag (10, 10, 0.01, 0.01) . The target trajectories were obtained as earlier,

with the noise covariance matrix and Cu = diag(0.1, 0.2). The sampling period

was Ts = 0.1 s and the length of each trajectory was Nt = 300, i.e., the target was

140

observed for 30s.

Here we also study the scenarios when the LNs transmit the summaries of their

random measures to the FC for every κ = 1, 5, and 10 time instants. The RMSEs

were computed over 50 different trajectory runs. In Figure 7.8(b), the RMSEs of

the proposed SPF method at the FC are shown. Here, the LNs’ approximate their

random measure using single Gaussians. There is a very small loss in performance

with the LNs transmitting the summaries to the FC every κ = 10 time instants, thus

considerably saving power and communication resources. In Figure 7.9, we display

the bias and the spread of the errors with the CRPF-par method. Clearly, it can be

seen that the estimate by the FC is for most of the time better than the estimates of

the LNs.

7.6 Summary

SPF and CRPF fusion algorithms for target tracking have been presented

for various scenarios, including those of known and unknown noise probability

distributions. The sensors implement these SMC methods and periodically transmit

summaries of their results instead of the complete random measures. Therefore, low

communication and power requirements are needed. In SPF methods, the summaries

are represented by mean and covariance matrices. When the posterior distribution

is unimodal, these random measures are adequately approximated with a single

Gaussian which has lower transmission requirements. With CRPF methods, the

summaries are represented either with a parametric distribution or by using the best

particles of the random measure.

141

We have demonstrated the performance of the proposed algorithms through two

target tracking examples in a flat and hierarchical sensor network. Comparisons of

the proposed methods with the standard centralized approach is performed and their

good performance is illustrated by way of simulations. Approximations of random

measures with a single Gaussian have slightly larger RMSE than approximations with

Gaussian mixtures. The CRPF-based summaries have moderate error statistics but

outperform the SPF with incorrect noise statistics. We have also investigated the

effect of feedback from the FC and observed that feedback from the FC improves the

individual sensor tracking performance.

142

Chapter 8

Target Tracking in a Two-Tiered

Hierarchical Sensor Network

To deal with sensor nodes with limited energy supply and communication

bandwidth we consider energy-efficient hierarchical architectures for solving the target

tracking problem. In these networks, sensors form clusters and transmit minimal

quantized information about a sensed event to a specialized node, known as a

cluster head. Cluster heads are equipped with capability of communicating over

large distances with a fusion center or a base station. In Section 8.2, the main

components we define in greater detail the mathematical models associated with

the sensor, cluster head and fusion center. We consider two different hierarchical

architectures (a) the target dynamics are probabilistically estimated at the cluster

heads and their statistics combined at the fusion center, and (b) the cluster heads

perform simple compression rules on the quantized sensor data and the fusion center

estimates the target dynamics using these severely compressed data. Sequential

143

Monte Carlo algorithms for estimation of the target dynamics are developed in Section

8.3. Through computer simulations the performances of these two architectures are

studied in Section 8.4.

8.1 Introduction

A typical sensor network comprises of a large number of sensors, which perform

tasks of sensing, local data processing and transmission of data to a central unit,

known as a base station (BS) or a fusion center (FC). In flat network architectures,

where all the sensors transmit the data to the FC either directly or route the data to

the FC through intermediary sensor nodes, a considerable amount of sensor energy is

dissipated in communication. In view of these drawbacks, hierarchical sensor network

(HSN) architectures have been proposed [95,96]. At the lowest level (tier 0), sensors

form a cluster and a selected node receives the sensed data transmitted from the

sensors in the cluster. The selected node is known as leader node (LN) or cluster

head (CH). The CHs may form a second level (tier 1) of hierarchy. In a two-tiered

hierarchical architecture, communication proceeds among (a) sensor nodes and CHs

and (b) CHs and FC, thereby adverting the need for direct communication between

sensors and FC. As a result, with CHs relatively closer to the sensors than the FC,

the energy consumption by each sensor for data transmission is considerably reduced.

While sensors may have multiple CHs, here we consider the situation where a sensor

has only one CH.

Here, we address target tracking in two-tiered hierarchical sensor networks. The

CHs are assumed capable of communicating directly with the FC [97]. The sensors use

144

Sensor

Cluster Head

Fusion Center

Target

Trajectory

C1

C2

C3
C4

C5

C6
C7

t1

t2

S1

S2

Target

s1,1,t1

s2,1,t2

s1,5,t2 S1

Figure 8.1: Hierarchical Sensor Network

a simple quantization scheme that results in transmission of a ‘1’ when the target is in

their vicinity and a ‘0’ otherwise. We consider the following two HSN architectures.

• When CHs have medium to high computational resources, target tracking is

performed at the CH using the quantized data. We term this architecture as

HSN-Type I.

• When CHs have low computational resources, the CHs employ simple

compression rules and transmit this compressed data to the FC. We term

this architecture as HSN-Type II. Here, the compression rule accounts for the

transmission of a single number that represents the number of sensors reporting

145

the event of interest in their neighborhood.

Figure 8.1 shows an example of a HSN. We consider a cluster as active, when any

of its sensors report events of activity in their neighborhood. Clusters are inactive if

there are no sensors that sense any activity in their neighborhood. In the example,

at time instant t1 C1 is an active cluster while CHs C2 and C4 are inactive. At time

instant t1, when the target is within the vicinity of sensor S1, the sensor transmits a 1

to the CH C1, which processes the data and transmits them to the FC. At time instant

t2, sensors S2 and S1 of CHs C1 and C5 respectively, report the presence of the target.

In a HSN-Type I, the CH C1 and C5 independently estimate the target dynamics

and the FC combines these estimates, while in HSN-Type II, the CHs transmit the

number of 1 ’s, that each of them received from its sensors. We propose sequential

Monte Carlo (SMC) algorithms for target tracking and data fusion in HSNs-Type I

and Type II.

8.2 System Overview

8.2.1 Sensor Model

Following the work in [98], we model the strength of the signal emitted by target

and received at the sensor as

yn,c,t = min

(
Ψ0,

Ψ0d
α
0

|rn,c − dt|α
)

+ vn,c,t (8.1)

where Ψ0 is the signal strength within a known reference distance d0, rn,c ∈ R2 is the

position of the n-th sensor in the c-th cluster, dt ∈ R2 denotes the location of the

146

target at time t, | · | denotes norm (length) of a vector, α is the attenuation parameter

and vn,c,t ∼ N(µv, σ
2
v) is a noise process with Gaussian probability density function

whose statistics are assumed known. In equation (8.1), the unknown quantities are Ψ0

and dt. If the observed energy level yn,c,t, exceeds a threshold γ, the sensor transmits

a binary 0, otherwise it transmits a 1 [85]. Mathematically this processing is modeled

as

sn,c,t =





1 ⇐ yn,c,t ≥ γ

0 ⇐ yn,c,t < γ.
(8.2)

8.2.2 Cluster Head Model

In a HSN-Type I, the active CHs using the binary data, sn,c,t ∈ {1, 0}, from the

sensors, estimate the target dynamics and transmit these statistics to the FC. In a

HSN-Type II, the CH transmits the number of active sensors in its cluster to the FC.

The transmitted signal to the FC is modeled as

zc,t =
Nc∑

n=1

sn,c,t (8.3)

where Nc is the number of sensors in the c-th cluster. The total number of clusters

in the proposed networks is C.

8.2.3 Fusion Center Model

Reiterating, the role of the FC in HSNs-Type I, is to combine the estimates of

the CHs when multiple clusters are active and to provide the initialization parameters

of the SMC filter implemented on the active clusters. In these networks the FC does

not require any location information of the sensors. In HSNs-Type II, the FC collects

147

the severely quantized sensor data from the CHs and estimates the target statistics.

In this type of network the FC needs to know the location of the sensors and the

indices of the CHs to which they belong.

8.3 SMC Algorithms for Target Tracking

Denoting, as earlier xt = [ẋ1,t, ẋ2,t, x1,t, x1,t, Ψt]
>, and defining lt =

[x1,t, x2,t, Ψt]
> as the vector containing the position of the target and the reference

signal strength and υt = [ẋ1,t, ẋ2,t]
> as the velocity vector, we model the state

transition equations as

υt = υt−1 + Ft−1ut

lt = G1
t−1υt−1 + G2

t−1lt−1 + G3
t−1υt (8.4)

where

Ft =




Ts 0

0 Ts


 , G1

t−1 =




Ts
2

0

0 Ts
2

0 0




,G2
t−1 =




1 0 0

0 1 0

0 0 1




,G3
t−1 =




Ts
2

0

0 Ts
2

0 0




and ut is a Gaussian noise process with zero mean and covariance matrix Cu. The

observation equation (8.1), can be rewritten as

yn,c,t = h(x1:2,t, rn,c) + vc
n,t (8.5)

148

where h(x1:2,t, rn,c) = min
(
Ψ0,

Ψ0dα
0

|rn,c−dt|α
)
. Within this framework, the objectives are

• Estimation of the posterior density p(xt|s1,c,1:t, · · · , sNc,c,1:t) by active CH c and

fusion of the statistics of these densities of multiple CHs by the FC in a HSN-

Type I.

• Estimation of the posterior density p(xt|z1,1:t, · · · , zC,1:t) by the FC in a HSN-

Type II.

8.3.1 CH Particle Filter Implementation in HSN-Type I

The following are the steps of the implementation of a particle filter at a CH in

HSN-Type I networks.

1. Initialization: x
(m)
t′ ∼ N (µt′ ,Ξt′) where {µt′ ,Ξt′} are provided by the FC

and m ∈ {1 · · ·M} denotes the particle index with M as the total number

of particles.

2. Particle generation : The particles of the new state x
(m)
t are generated as

ẋ
(m)
(1,2),c,t ∼ N (ẋ

(m)
(1,2),c,t−1, T

2
s σ2

(1,2),u)

x
(m)
(1,2),c,t = x

(m)
(1,2),c,t−1 +

Ts

2

(
ẋ

(m)
(1,2),c,t + ẋ

(m)
(1,2),c,t−1

)

Ψ
(m)
c,t ∼ N (µΨc,t−1 , σ

2
Ψc,t−1

). (8.6)

149

3. Weight update and normalization:

w̃
(m)
c,t ∝ w

(m)
c,t−1

Nc∏
n=1

p(sn,c,t|x(m)
0:t) (8.7)

w
(m)
c,t =

w̃
(m)
c,t∑
w̃

(m)
c,t

4. Estimation of transmitted kernel parameters:

µ̂c,t =
M∑

m=1

w
(m)
c,t x

(m)
c,t

Σ̂c,t =
M∑

m=1

w
(m)
t (x

(m)
c,t − µ̂c,t)(x

(m)
c,t − µ̂c,t)

>.

The likelihood in (8.8) is evaluated using the following expressions:

p(sn,c,t = 1|x(m)
0:t) = 1− p(sn,c,t = 0|x(m)

0:t)

=

∫ ∞

γ

p(yn,c,t|x(m)
0:t)dyn,c,t = Q

(
γ − h(x1:2,t, rn,c)− µv

σv

)
. (8.8)

The FC collects the transmitted kernel parameters from the CHs and utilizes

them in fusion of the posterior densities of multiple active CHs as described in the

next subsection.

8.3.2 Fusion Center in HSN-Type I

We denote lc,t = {s1,c,t, · · · , sNc,c,t} as the set of sensor measurements in cluster c

at time instant t, lc,1:t = {s1,c,1:t, · · · , sNc,c,1:t} as the set of sensor measurements from

time instant 1 to t and

150

l1:Ca,t = {l1,1:t, · · · , lCa,1:t} as the set of all sensor measurements in Ca clusters from

time instant 1 to t. Let us consider measurements evolving from sensors of two

different clusters (Ca = 2). The joint posterior density of the target dynamics can

then be derived as

p(x0:t|l1:2,1:t) = p(x0:t|l1:2,t, l1:2,1:t−1)

∝ p(l1,t, l2,t|xt, x0:t−1, l1:2,1:t−1)p(xt|x0:t−1, l1:2,1:t−1)

×p(x0:t−1|l1:2,1:t−1)

∝ p(xt|l2,1:t)

p(xt|l1,1:t−1)

p(xt|l2,1:t)

p(xt|l2,1:t−1)
p(xt|xt−1)p(x0:t−1|l1:2,1:t−1). (8.9)

assuming independence among the sensor measurements {l1,t, l2,t} conditioned on

xt [99]. Generalizing equation (8.9) for Ca number of active clusters, we have

p(x0:t | l1:Ca,1:t) ∝
Ca∏
c=1

p(xt | lc,1:t)

p(xt | lc,1:t−1)
× p(xt | xt−1)p(x0:t−1 | l1:Ca,1:t−1) (8.10)

which is the optimal recursive fusion equation. The CHs approximate the sampled

based representations of the distributions p(xt | lc,1:t−1) and p(xt | lc,1:t) as Gaussians,

i.e., p(xt | lc,1:t−1) ' N (µ̃c,t, Σ̃c,t) and p(xt | lc,1:t) ' N (µ̂c,t, Σ̂c,t). Therefore, from

(8.10) we have

p(xt | l1:Ca,1:t) ∝
Ca∏
c=1

N (µ̂c,t, Σ̂c,t)

N (µ̃c,t, Σ̃c,t)
× p(xt | xt−1) p(x0:t−1 | l1:C,1:t−1)

∝ N (µ̂t, Σ̂t)

N (µ̃t, Σ̃t)
p(xt | xt−1) p(x0:t−1|l1:Ca,1:t−1)

151

where

Σ̂
−1

t = Σ̂
−1

1,t + Σ̂
−1

2,t + · · ·+ Σ̂
−1

Ca,t

µ̂t = Σ̂t

(
Σ̂
−1

1,t µ̂1,t + Σ̂
−1

2,t µ̂2,t + · · ·+ Σ̂
−1

Ca,tµ̂Ca,t

)

Σ̃
−1

t = Σ̃
−1

1,t + Σ̃
−1

2,t + · · ·+ Σ̃
−1

Ca,t

µ̃t = Σ̃t

(
Σ̃
−1

1,t µ̃1,t + Σ̃
−1

2,t µ̃2,t + · · ·+ Σ̃
−1

Ca,tµ̃Ca,t

)
. (8.11)

A particle filter based implementation of the fusion equation (8.10), is similar to

the CH particle filter implementation outlined in subsection 8.3.1 except for the

weight calculation, which is performed as w̃
(m)
t ∝ N (µ̂t,

ˆΣt)

N (µ̃t,
˜Σt)

. The posterior density

is then approximated by a Gaussian distribution whose statistical terms are utilized

in initializing the particle filter on the CHs that may be active in the next or future

time instants.

8.3.3 FC Particle Filter Implementation in HSN-Type II

In a generic SMC algorithm, when the parameters of the state transition equation

are known, the particles are easily generated and hence the main task lies in the

calculation of the likelihood for updating the weights. The situation in HSN-Type II

is also very similar. The initialization and particle generation proceeds as described

in subsection 8.3.1. The expression for calculating the likelihood is given by

p(zt|xt) =
C∏

c=1

p(zc,t|xt) =
C∏

c=1

p

(
Nc∑

n=1

sn,c,t|xt

)
.

152

The probability mass functions p(zc,t|xt) can be obtained by summing over all possible

combinations of sensor transmitted data such that zc,t =
∑Nc

n=1 sn,c,t. However the

number of such combinations is relatively large for even small Nc and zc,t. To reduce

the computational complexity of the problem, we propose to estimate sc,n,t given

{zc,t,x
(m)
t }. The task of assigning sc,n,t = {1, 0} is performed as follows:

• Draw the samples of the state vector x
(m)
t and sensor measurements y

(m)
n,c,t using

(8.4) and (8.1), respectively.

• ∀n ∈ {1 · · ·Nc} and c ∈ {1 · · ·C} , obtain

wn,c,t = 1
M

∑
m I(y

(m)
n,c,t ≥ γ) where I(·) is the Bernoulli indicator function.

• ∀c ∈ {1 · · ·C} sort the elements of the set {w1,c,t, · · ·wNc,c,t} in decreasing order

and obtain the indices of the first zc,t sensors . Set the value of sc,n,t for the

sensors with these indices to 1 and the remaining to 0.

The likelihood is then approximated as

p(zt|xt) ≈
C∏

c=1

Nc∏
n=1

p (sn,c,t|xt) (8.12)

and p (sc,n,t|xt) is obtained using (8.8).

8.4 Simulations, Results and Discussion

In our computer simulations we have considered a sensing field of dimensions

650m × 750m with 50 CHs and 480 sensors in the sensing field deployed randomly

(using stratified sampling methods). Sensors were clustered using standard

153

System Parameters Value

Sensing Field Dimensions 650m× 750m

No of Cluster Units 50

No of Sensors 480

Sensor Threshold γ 56.70

Reference Power Ψ0 5000

No of particles 2000

Sampling Period 1s

Total Observation Period 60s

Mean of Sensor Noise µv 1

Variance of Sensor Noise µv 0.01

Observation noise parameter σ2
1,u 0.1

Observation noise parameter σ2
2,u 0.2

Table 8.1: System Parameters and their values

hierarchical clustering algorithms. Table 8.1 lists the values of the parameters used

in simulating the target trajectory and sensor network. In the simulation of the

SMC methods, particles were initially drawn from a Gaussian distribution with a

known µ0 = [0, 0, 5, 5]> and a covariance matrix Ξ=diag(30, 30, 5, 5). One hundred

target trajectories were generated for which the root mean squared error (RMSE) in

estimating the target dynamics was computed.

In Fig 8.2, we plotted the RMSEs of the two networks for α = 2.5 and

spatially distributed known and unknown α. We modeled α as a spatially correlated

truncated normal random variable ∼ NT (µα,Ξα, a, b), with covariance matrix Ξα,i,j =

cov(αi, αj) = e−0.3dij where dij represents the Euclidean distance between points i and

j. The spatial distribution is pictorially shown in 8.4The results show that the error in

estimating the position of the target in the 2-D Cartesian coordinate system is around

154

10m and the errors in estimating the velocities are less than 1.6 m/s. Sensitivity on

the knowledge of the attenuation parameter α in the proposed algorithms was more

carefully studied. In another experiment, the attenuation parameter α was unknown,

but constant for all the sensors. Figure 8.3 shows the RMSE errors when α was

assumed to be 2, 3, and 4 when its true value was 2.5. All these results suggest

that when there are large errors in the assumed values of α, the RMSEs may be

unacceptably large.

0 20 40 60
0

5

10

15

Time

R
M

S
E

 o
f x

1,
t

0 20 40 60
0

5

10

15

Time

R
M

S
E

 o
f x

2,
t

0 20 40 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

R
M

S
E

 o
f x

1,
t

0 20 40 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

R
M

S
E

 o
f x

2,
t

HSN− Type I

HSN− Type II

α known

α unknown

. .

Figure 8.2: RMSE in HSNs-Type I and II with α = 2.5 and spatially distributed α.

8.5 Summary

We have presented SMC algorithms for target tracking and data fusion in

two-tiered HSNs with compressed sensor data. The proposed algorithms show

155

0 20 40 60
0

5

10

15

20

Time
R

M
S

E
 o

f x
1,

t
0 20 40 60

0

5

10

15

20

Time

R
M

S
E

 o
f x

2,
t

0 20 40 60

0.5

1

1.5

2

2.5

3

Time

R
M

S
E

 o
f x

1,
t

0 20 40 60

0.5

1

1.5

2

2.5

3

Time

R
M

S
E

 o
f x

2,
t

α=2.5
α=2.0
α=3.0
α=4.0

. .

Figure 8.3: RMSE in HSNs-Type I, assumed α = 2.5, 2, 3, 4, when true value is 2.5

0 100 200 300 400 500 600

−100

0

100

200

300

400

500

600

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Figure 8.4: Spatial distribution of α.

156

good performance in estimating the dynamics of the target trajectory. We have

also presented some simulation results that outline the sensitivity of the proposed

algorithms when certain system parameters like the attenuation parameter of the

sensor model are unknown.

157

Chapter 9

Target Tracking in an Asynchronous

Wireless Sensor Network

Wireless sensor networks typically consist of a collection of sensor nodes, which

acquire physical data related to the target dynamics, and a fusion center where the

available data are processed together to sequentially estimate the target state (its

instantaneous location and velocity). Very often, tracking algorithms are designed

under the assumption that the network is synchronous, i.e., that the local clocks of

the sensor nodes and the FC are perfectly aligned or, at least, that their offsets are

known. In this chapter, we consider an asynchronous WSN, in which the local clocks

of the sensors are misaligned and the corresponding offsets are unknown, and aim

at designing recursive algorithms for optimal (Bayesian) tracking. In Section 9.2,

we present the signal model and describe the estimation problem that we tackle. In

particular, we propose sequential Monte Carlo (SMC) in Section 9.3 techniques that

enable the approximation of the joint posterior probability distribution of the target

158

state and the set of local clock offsets by means of a discrete probability measure

with a random support. From this approximation, estimates of the target position

and velocity, as well as of the clock offsets, can be readily derived. We illustrate

the validity of the proposed approach and assess the performance of the resulting

algorithms by means of computer simulations in Section 9.4.

9.1 Introduction

Wireless micro-sensors are transducers which “measure” a physical phenomenon

and convert it into an information-bearing electrical signal through sampling, filtering

and calibration. The latter, as well as other important steps of signal processing,

depend on the internal clocks of the sensors. In the application of WSNs for target

tracking, it is often assumed that the clocks of the sensors and the fusion center (FC)

are synchronous, i.e., that all sensors sample the phenomenon of interest at the same

instants or, alternatively, that the sampling times are possibly different but perfectly

known at the FC. However, a misalignment in the clocks of the sensors and the FC due

to the inherent drift in the clock frequencies occurs in practice [100]. Estimating and

compensating the timing offsets at the sensors using time synchronization protocols

results in a significant increase of the communication overhead in the WSN and, as a

consequence, in an undesired reduction of the life of all battery-supported nodes [101].

Here, we tackle the problem of tracking a target when the sensors are asynchronous

and their offsets are unknown.

The issue of handling the asynchronous activity of sensors has been addressed

in [102], in the context of a multisensor-multitarget bias estimation problem, but

159

assuming that all timing offsets are known. Similarly, in [103] sensor registration is

performed using Kalman filtering for asynchronous sensors, but the misalignments of

the sensor clocks are assumed known, too. In [104], the authors consider a localization

system with asynchronous sensors and an object that periodically transmits a known

signal. The inter-arrival time between the received signals is approximated and

modeled as being statistically independent of the clock offsets, in order to enable

localization using standard maximum-likelihood estimation (MLE) techniques.

In this chapter, we propose to use the sequential Monte Carlo (SMC)

methodology [30] to jointly estimate the sensor offsets and the target trajectory and

velocity. The problem is formally modeled as the joint Bayesian estimation of a set of

static parameters and the time-varying state of a discrete-time random dynamical

system. The SMC approach consists in approximating the posterior probability

distribution of the random signals of interest using a discrete probability measure with

random support, which enables the straightforward computation of estimates. This is

not a simple task for our problem, though, since it is hard to guarantee convergence (to

optimal solutions) of conventional SMC algorithms when static and dynamic random

magnitudes must be handled together. The joint (static) parameter and (dynamic)

state estimation problem has been previously addressed in [31], [59], [86], [105], [85].

In [31], an artificial evolution of the static parameters is proposed. In [59], the

evolution of the parameters using kernel methods is described. A sampling scheme

for fixed parameters that imposes restrictive assumptions on the probabilistic model

is proposed in [86], while in [105] point-optimization methods are proposed. Finally,

in [85], “density assisted” methods, which approximate the posterior distribution of

static parameters using a model probability density function (pdf), are discussed. In

160

this chapter, we propose two novel techniques, based on the general methodologies

of [85] and [59].

9.2 Problem statement

We aim at recursively estimating the time-varying position and velocity of a

target tracking that moves along a 2-dimensional region. The state of the target at

continuous time t is x(t) = [x1(t), x2(t), ẋ1(t), ẋ2(t)]
> ∈ R4, where [x1(t), x2(t)]

> ∈ R2

denotes the target location, ẋi(t) is the time derivative of xi(t) and, therefore,

[ẋ1(t), ẋ2(t)]
> ∈ R2 is the target velocity vector at time t.

If the system is converted into discrete-time by sampling every T seconds (s), we

obtain the dynamic state space (DSS) model,

xk = AT xk−1 + uk, k ∈ N, (9.1)

where AT is a 4× 4 transition matrix,

xk = [x1,k, ẋ1,k, x2,k, ẋ2,k]
> = x(kT)

is the target state at time kT (i.e., [x1,k, x2,k] = [x1(kT), x2(kT)]> is the sampled

position and [ẋ1,k, ẋ2,k] = [ẋ1(kT), ẋ2(kT)] is the sampled velocity, both at time kT)

and ut ∼ N (0,CT) is zero-mean Gaussian noise with covariance matrix CT . Both

the transition matrix, AT , and the noise covariance matrix, CT , are parameterized

161

S1

S2

FC �� ��
Target Trajectory

Figure 9.1: Timing diagram of the clocks of two sensors and the FC.

by T , specifically

AT =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




, CT = σ2
u




T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T




.

Figure 9.1 depicts the timing diagram for the observations collected by two

sensors, whose clocks are misaligned with the FC. Specifically, the knots in the line

labeled “FC” denote the time instants at which the FC collects the data, while the

knots in the lines labeled “S1” and “S2” indicate the sampling instants for sensors

1 and 2, respectively. We observe that the sensors have fixed, but random and

unknown, offsets τ1, τ2 > 0, τ1 6= τ2, hence they do not sample the function of the

target trajectory in the same points.

162

In most target tracking applications, perfect timing is assumed (i.e., τ1 = τ2 = 0),

which is hard to achieve in a practical situation. We study the effect of such offsets

on the tracking problem. Let us denote time intervals as tk = [(k − 1)T, kT), k ∈ N.
The set of observations that the FC receives from the n-th sensor during interval tk

is yn,tk = [yn,a,tk , yn,d,tk , yn,v,tk]
>, where

yn,a,tk = tan−1

(
x1,tk+τn − sn,1

x3,tk+τn − sn,2

)
+ vn,a,tk (9.2a)

yn,d,tk =
√

(x1,tk+τn − sn,1)2 + (x3,tk+τn − sn,2)2

+vn,d,tk (9.2b)

yn,v,tk =
√

(x2,tk+τn)2 + (x4,tk+τn)2 + vn,d,tk . (9.2c)

The angle, distance and velocity observations given by (9.2a) (9.2b) and (9.2c) ,

respectively, depend on the sensor offset, τn, the target state at time (k − 1)T + τn,

denoted as

xtk+τn = Aτnxk−1 + utk+τn ,

where utk+τn ∼ N(0,Cτn), and the sensor positions, {sn,1, sn,2}. The measurement

noise processes at the n-th sensor are denoted as vn,a,tk , vn,d,tk and vn,v,tk for angle,

distance and velocity, respectively, and their pdf’s are known. The complete set

of observations during tk is ytk = {y1,tk , . . . ,yNs,tk}, where Ns is the number of

sensors in the WSN. Our objective is to estimate the sequence of target states

x0:k = {x0, . . . , xk} and clock offsets τ1:Ns = {τ1, . . . , τNs} using the measurements

yt1:tk = {yt1 , . . . ,ytk}.

163

9.3 Algorithms

All the statistical information needed to optimally solve the proposed estimation

problem is contained in the a posteriori pdf p(x0:k, τ1:Ns|yt1:tk
). Since the observations

(9.2a) and (9.2b) are nonlinear, there is no feasible (optimal) analytical solution, and

we propose to resort to SMC methodology [30]. SMC methods approximate the a

posteriori pdf by means of a discrete random measure. The approximation with M

particles takes the form

pM(x0:k, τ1:Ns|yt1:tk) =
M∑

m=1

w
(m)
k δ(x0:k − x

(m)
0:k)×

×δ(τ1:Ns − τ
(m)
1:Ns

), (9.3)

where w
(m)
k is the importance weight associated to the sample (x

(m)
0:k , τ

(m)
1:Ns

) and δ(·)
denotes the Dirac delta function. A SMC method recursively updates the random

measure approximation (9.3) when a new set of observations, ytk+1
, is received. It

is difficult, in general, to guarantee the convergence of conventional SMC methods

when there exist random (unknown) fixed parameters, because the dynamic system

becomes non-ergodic [?]. In the sequel, we propose two algorithms that specifically

take into account the fixed offsets, τ1:Ns , based on the density-assisted particle filtering

(DAPF) methodology [47] and the sequential kernel approximation proposed by Liu

and West [59].

164

9.3.1 Density Assisted Particle Filtering

The proposed SMC algorithm for the joint estimation of the target state and

the sensor timing offsets is based upon the parametric approximation of the marginal

posterior pdf of the n-th offset at time k by means of a beta pdf with properly chosen

parameters1, i.e., p(τn|yt1:tk) ≈ B(τn; πn,k, φn,k), which is updated, together with the

importance weights, as new observations are collected. The steps of the algorithm

are outlined below.

(i) Intialization (k = 0): Target-state samples are drawn from the a priori pdf

p(x0). Offset samples are drawn from the single beta pdf B(τn, 1, 1), i.e., we

assume that, a priori, p(τn) = B(τn, 1, 1) for all n.

At time k, and given {x(m)
0:k−1, w

(m)
k−1}M

m=1, the following recursive steps are taken.

(ii) Particle propagation: For each n = {1, 2, · · ·Ns}, timing offset samples are

drawn from the beta-approximation of their marginal posterior pdf’s at time

k − 1,

τ (m)
n ∼ B(τn; πn,k−1, φn,k−1).

For each sample m ∈ {1, 2, · · ·M}, the offsets τ
(m)
1:Ns

are sorted in the ascending

order, i.e., we find a sequence i1, . . . , iNs of distinct indices such that ik ∈
{1, . . . , Ns} for all k and τ

(m)
i1

< τ
(m)
i2

< . . . < τ
(m)
iNs

. State samples

x
(m)

tk+τ
(m)
i1

, . . . , x
(m)

tk+τ
(m)
iNs

1B(τ ; π, φ) = (τ−a)π−1(b−τ)φ−1

β(π,φ)(b−a)π+φ−1 where β(π, φ) =
∫ 1

0
sπ−1(1 − s)φ−1ds is the beta function, and a

and b are the lower and upper bounds of τ .

165

are drawn using the (adequately parameterized) Markov state equation (9.1),

and we denote the resulting set of particles as χ
(m)
tk

= {x(m)

tk+τ
(m)
1:Ns

, τ
(m)
1:Ns

}. As an

example, assume Ns = 2 and the offset samples τ
(m)
1 < τ

(m)
2 . We draw the state

samples at the time instants (k − 1)T + τ
(m)
1 and (k − 1)T + τ

(m)
2 as follows

x
(m)

tk+τ
(m)
1

= A
τ
(m)
1

x
(m)
k−1 + u

(m)
tk,1

x
(m)

tk+τ
(m)
2

= A
τ
(m)
2 −τ

(m)
1

x
(m)

tk+τ
(m)
1

+ u
(m)
tk,2

where u
(m)
tk,1 ∼ N (0,C

τ
(m)
1

) and u
(m)
tk,2 ∼ N (0,C

τ
(m)
2 −τ

(m)
1

).

(iii) Weight update: Since the noise pdf’s in (9.1), (9.2a), (9.2b) and (9.2c) are

assumed known, the likelihood function, p(ytk |χ(m)
tk

), can be easily evaluated

and the importance weights are recursively updated as

w̃
(m)
k = wk−1p(ytk |χ(m)

tk
), (9.4)

with

p(ytk |χ(m)
tk

) =
Ns∏
n=1

p(yn,a,tk |χ(m)
tk

)p(yn,s,tk |χ(m)
tk

)

×p(yn,v,tk |χ(m)
tk

).

The weights in (9.4) need to be normalized, w
(m)
k = w̃

(m)
k /

∑M
i=1 w̃

(i)
k .

(iv) Update of the posterior pdf’s of the sensor offsets: Using the set of weighted

sensor offset samples,
{

w
(m)
k , τ

(m)
n

}M

m=1
, the sample mean and variance of τn are

166

obtained,

µn,k =
∑
m

w
(m)
k τ (m)

n

σ2
n,k =

∑
m

w
(m)
k (τ (m)

n − µn,k)
2.

Then, the parameters of the beta-approximation to the posterior pdf of τn,

πn,k, φn,k, can be calculated as

πn,k = µn,k

{
µn,k(1− µn,k)

σ2
n,k

− 1

}

φn,k = (1− µn,k)
πn,k

µn,k

. (9.5)

(v) Estimation of parameter and states : It is straightforward to approximate any

moment of the posterior distribution of xtk+τ1:Ns
and τ1:Ns using the discrete

probability measure given by the weighted set of particles {χ(m)
tk

, w
(m)
k }. In

particular, the target position and velocity at time (k−1)T +τn can be estimated

as

x̂tk+τn =
M∑

m=1

w
(m)
k x

(m)
tk+τn

,

which is an approximation of the minimum mean square error (MMSE) estimate

of xtk+τn given yt1:tk . Similarly, µn,k is the (approximate) MMSE estimate of

the sensor offset τn.

(vi) Resample and Move: Occasional resampling steps are needed in order to avoid

the well-known phenomenon of weight degeneracy [30]. In our simulations, we

perform a multinomial resampling step for every k. Following resampling of the

167

XkT
(m) XkT+��(m) XkT+�� (m) XkT+1

(m)�� �� �
Propagation of Samples

Resample and Move

Figure 9.2: Series of operations during each time interval

sample {χ(m)
tk
}M

m=1, we obtain a new stream of particles {χ̃(m)
tk
}M

m=1. For each

of this stream of particles, we first find the state particle corresponding to the

maximum timing offset and then propagate the particle to time kT , i.e.,

x
(m)
k = A

kT−τ
(m)
iNs

x
tk+τ

(m)
iNs

+ u
(m)
k ,

where u
(m)
k is drawn from N (0,C

kT−τ
(m)
iNs

).

Figure 9.2 is a graphical representation of the recursive steps of the proposed

DAPF algorithm, where each cloud represents the state and sensor offset samples.

9.3.2 Liu and West algorithm (LW)

In the joint static-parameter and dynamic-state algorithm proposed in [59], a

Gaussian mixture density is used for an artificial evolution of the fixed parameters.

Clearly we cannot use a Gaussian mixture density for an artificial evolution of the

sensor offset parameter τn because it is bounded, i.e., 0 ≤ τn ≤ T . Therefore, we

168

propose the following truncated Gaussian mixture density for the evolution of τn,

p(τn,k+1 |yt1:tk)) =
∑

k

w
(m)
k TN (0,T)(τn,k+1; τ̂

(m)
n,k , h2σ2

n,k) (9.6)

where TN (0,T)(·) is the normal distribution truncated outside of the interval (0, T),

with mean τ̂
(m)
n,k and variance h2σ2

n,k, the k subscript in τ
(m)
n,k is due to the artificial

time evolution (not to the model dynamics) and µn,k and σ2
n,k are the sample mean

and variance of τn at time k. The choices τ̂
(m)
n,k = aτ

(m)
n,k + (1− a)µn,k and h2 = 1− a2

ensure that the mixture density preserves the original sample mean and variance (this

technique is termed “shrinkage” in [59]).

We now summarize the main steps of the algorithm. At time k, we have available

{x(m)
0:k−1, τ

(m)
1:Ns

, w
(m)
k−1}M

m=1 and receive the new observation ytk .

(i) Estimation of prior estimates: For each n = 1 · · ·Ns compute x̂
tk+τ

(m)
n

as

x̂
(m)

tk+τ
(m)
n

= A
τ
(m)
n

x
(m)
k−1

(ii) Sampling of sensor offset parameters: Consider a discrete random variable V

which takes values on the set {1, . . . , M} with probabilities proportional to

p(ytk |x̂tk+τ
(m)
1:Ns

, τ
(m)
1:Ns

). Draw M times from V and denote this set of samples as

{V (1), . . . , V (M)}. Corresponding to each of these elements, draw τ
(j)
n from the

V (j)-th kernel of the truncated gaussian mixture in (9.6).

(iii) Sampling target state parameters: For each m = 1, . . . , M and each n =

1, . . . , Ns, compute a state particle using the Markov prior (9.1), as described

in step (ii) of the DAPF algorithm, i.e., compute the aggregated particles χ
(m)
tk

,

169

m = 1, . . . , M .

(iv) Evaluation of the weights:

w
(m)
k ∝

p(ytk |x(m)

tk+τ
(m)
1:Ns

)

p(ytk |x̂(V (m))

tk+τ
(V (m))
1:Ns

)
(9.7)

The likelihood factors are calculated as described in step (iii) of the DAPF

algorithm. The estimation, resampling and move steps are also performed in

the same way as for the latter algorithm.

9.4 Simulations

Consider a network with Ns = 3 sensors and observation period T = 1 s. The

initial pdf of the target state is p(x0) = N (µ0,K0), with µ0 = [0; 0.5; 0.0; 0.05]> and

K0 = diag{1, 1, 0.01, 0.01}. The measurement noise processes are Gaussian,

with zero-mean and standard deviations σva = 0.01, σvd
= 0.5 and σvv = 0.1 for angle,

distance and velocity, respectively. We have set the number of particles to M = 3000

for all SMC algorithms.

We study the proposed methods for the scenario when the three sensors have

different offsets, τ1 = 0.2T, τ2 = 0.5T, and τ3 = 0.8T . The nth sensor timing offset

particles are all initially drawn from β(τn, 1, 1).

As an illustrative example, Fig 9.3 shows the estimation of a complete target

trajectory for a single simulation run, using DAPF and LW algorithms. For

comparison, we also depict the trajectory estimate obtained with a standard SMC

170

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

X Position

Y
 P

os
iti

on

True Trajectory
Est Trajectory DAPF
Est Trajectory LW
Est Trajectory SPF−Knw

Figure 9.3: Trajectory and its estimates using the DAPF algorithm

algorithm with perfect knowledge of the timing offsets (labeled “SPF-Knw”). It can be

seen that all three algorithms can track the target along a highly nonlinear trajectory.

From this single trial, the LW algorithm seems to be the weakest technique.

In order to statistically asses the performance of the algorithms, we have

considered the root mean square error (RMSE) as a figure of merit. In particular, for

L = 100 independent simulation runs we have evaluated

RMSEτn,k
=

1

L

L∑

l=1

(τ̂n,k,l − τn,l)
2

RMSExi,k
=

1

L

L∑

l=1

(x̂i,k,l − xi,k,l)
2

RMSEẋi,k
=

1

L

L∑

l=1

(̂̇xi,k,l − ẋk,l)
2,

where τn,l, xi,k,l and ẋi,k,l are the nth offset, the ith state dynamic variable (i ∈ {1, 2})
at time kT and its derivative, respectively, all of them for the lth simulation run. Their

171

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

R
M

S
E

 o
f τ

Sensor 1
Sensor 2
Sensor 3

(a) DAPF

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Time

R
M

S
E

 o
f τ

(b) LW

Figure 9.4: The RMSE of τ1:3 with the DAPF and LW algorithm

corresponding estimates are denoted as τ̂n,k,l (at time kT), x̂i,k,l andˆ̇xi,k,l, respectively.

Figure 9.4(a) shows the RMSEs obtained for the estimation of the three offsets,

τ1, τ2, and τ3, using the DAPF algorithm. The corresponding RMSEs resulting

from the application of the LW technique are shown in Figure 9.4(b). The RMSEs

obtained with the DAPF algorithm are similar for the three sensors, and clearly

smaller than the RMSEs obtained with the LW method. This is a consequence of the

misconvergence of the LW algorithm for some scenarios.

Figure 9.5 plots the RMSEs obtained for the estimation of the targets dynamics

for the DAPF and SMC-Knw algorithms. We have found that the DAPF technique

is consistently better than the conventional SMC-Knw algorithm, with known offsets,

for this particular scenario. We conjecture that this is due to the smoothing effect

of using a set of different offsets for each particle, which means that we assess the

quality of the particle (through the computation of the corresponding likelihoods and

weights) using a longer segment of the target state realization.

Finally, we show an example of how the estimation of the offsets with the DAPF

172

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Time

R
M

S
E

 o
f x

1,
t

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Time

R
M

S
E

 o
f x

2,
t

0 100 200 300
0.08

0.1

0.12

0.14

0.16

0.18

Time

R
M

S
E

 o
f x

1,
t

0 100 200 300
0.05

0.1

0.15

0.2

0.25

Time

R
M

S
E

 o
f x

2,
t

DAPF
SMC−Knw

Figure 9.5: The RMSE of xt with the DAPF and SMC-Knw algorithm. Upper left:
RMSE of x1,k. Upper right: RMSE of x2,k. Lower left: RMSE of ẋ1,k. Lower right:
RMSE of ẋ2,k.

algorithm evolves with time in a single simulation trial. In particular, Figure 9.6 shows

the marginal posteriors of the sensor offsets, approximated by beta distributions, at

time instants t = 25, 50, 75 and 100 s. It can be seen how the modes of the beta density

get closer to the true offset values and then become narrower with time. Alternatively,

Figure 9.7 plots the time evolution of the offset estimators (τ̂n, n = 1, 2, 3). We can

see how the three estimators get close to the true values.

9.5 Summary

In this chapter we have addressed the problem of target tracking in an

asynchronous sensor network. We have proposed sequential Monte Carlo algorithms

for the joint estimation of the sensor offsets and target state dynamics. In the DAPF

algorithm, the marginal distributions of the sensors offsets are approximated by a

173

0 0.5 1
0

5

10

15

τ
0 0.5 1

0

2

4

6

8

10

τ

0 0.5 1
0

2

4

6

8

10

τ
0 0.5 1

0

5

10

15

τ

Sensor 1
Sensor 2
Sensor 3

t=25s

t=50s

t=75s t=100s

Figure 9.6: The evolution of the beta distribution for each of the sensor offsets at
time instants t=25,50,75,100s

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
st

im
at

io
n

of
 τ

Figure 9.7: An estimate of the sensor offsets. The dashed horizontal lines are the true
sensor offsets

174

generalized beta distribution. Using these distributions, offset samples are generated

at each time interval, which are, in turn, used to propagate the target state samples. In

the LW algorithm , the marginal distributions of the sensors offsets are approximated

by a mixture of truncated Gaussian kernels. Through computer simulations we have

compared these two methods and observed that the DAPF algorithm has a clearly

better performance than the LW algorithm for the joint tracking of sensor offsets and

target dynamics.

Some potential limitations of these techniques should also be remarked, though.

It has been observed that, in a few cases, due to the apparent non-linearity of the offset

parameters through the covariance matrix of the process noise in the DSS model, the

marginal posterior of the sensor offsets is multimodal and the DAPF method can

get stuck at local maxima. Good initialization or informative prior knowledge of the

sensor offsets may be helpful. Also when very few offset samples have non-negligible

weights and are concentrated in a particular region, approximation of the posterior

using parametric densities does not seem to contribute much to sample diversity. This

may be particularly harmful in scenarios where the filter gets stuck at a local maxima.

A potential problem with the LW algorithm is that when the sensor offset estimates

or target dynamic estimates are poor, the denominator in (9.7) may get close to zero

and cause the particle filter to diverge.

175

Chapter 10

Performance Comparison of

Gaussian-based Filters using

Divergence Measures

In many situations solutions to non-linear discrete-time filtering problems are

available through approximations. Many solutions are based on approximating the

posterior distributions of the states with Gaussian distributions. We compare the

performance of Gaussian-based filters including the extended Kalman filter, the

unscented Kalman filter and the Gaussian particle filter. To that end, we measure the

distance between the posteriors obtained by these filters and the one estimated by a

sequential Monte Carlo (particle filtering) method. In Section 10.1, we formulate the

problem, and in Section 10.2, we provide as a metric, the Kullback-Leibler and χ2

distance measures. Through computer simulations we rank the performance of the

three filters in Section 10.3

176

10.1 Introduction

The estimation of the filtering or posterior distribution p(xt |y1:t) or their

statistics is a standard filtering problem. Closed form analytical and optimal solutions

to this filtering problem exist in a small number of cases, for example, when the

functions g(·) and h(·) of the DSS model are linear, and the noise vectors ut and vt are

zero-mean Gaussian with covariance matrices Cu,t and Cv,t, respectively. However,

in many real world scenarios, closed form solutions cannot be obtained [31].

Some approximate parametric solutions to these problems are obtained via the

extended Kalman filter (EKF) and the unscented Kalman filter (UKF) [23], [24]. With

the advent of more computing power, the last decade has seen a surge in Monte Carlo

methods where the posterior distributions are approximated by a large weighted set

of samples. These sequential Monte-Carlo (SMC) methods, also known as particle

filters (PFs), have been proposed in the last decade as more robust and close to

optimal solutions in determining posterior distributions and their statistics [30]. The

Gaussian particle filter (GPF) is a SMC method which approximates the posterior

distributions with Gaussian distributions [32]. In this chapter, we refer to the EKF,

UKF, and GPF as Gaussian-based filters.

We reiterate that the common thread of these methods is that they approximate

the sought posterior by a Gaussian. However, the process by which this approximation

is obtained is different and therefore the resulting distributions are also different. The

EKF achieves the Gaussian approximation through a linearization of the DSS model,

the UKF obtains it by means of an unscented transformation while the GPF obtains

the parameters of the approximations using SMC steps.

Popular metrics for assessing the performance of these approximations are

177

through root mean square errors (RMSEs) of the point estimates of the states. An

alternative is to estimate biases and variances of the estimates, thereby capturing

only a limited picture of the filter’s performance. Here, we provide a more complete

performance comparison among the methods by measuring how close their posterior

distributions are from the posterior distribution obtained by particle filtering. This

has been suggested recently in [106]. The reason for choosing the posterior obtained by

particle filtering is that the true posterior is not known and that particle filtering has

the most ambitious aim while estimating unknown states by attempting to track the

evolution of their posterior distributions. For measuring distance, we use divergence

measures, more specifically the Kullback-Leibler (KL) and χ2 divergence metrics.

We develop and discuss the computation of these metrics in the context of the

performance comparison of the filters.

10.2 Divergence metrics

Most recursive solutions to the filtering problem involve two key operations at

each time instant: (a) propagation of the state estimate from the previous time

instant to the current time instant and (b) updating of the state estimate using the

current measurements. In the Gaussian-based filters the following approximations are

made: the predictive density of the state is approximated by a Gaussian, p(xt |y1:t−1)

≈ N (x̄t|t−1,Pt|t−1), where x̄t|t−1 and Pt|t−1 are the predictive mean and covariance

matrix of xt given y1:t−1, and the filtering density is approximated by another

Gaussian, p(xt |y1:t) ≈ N (x̄t|t,Pt|t) where x̄t|t and Pt|t are the mean and covariance

matrix of xt given y1:t .

178

For measuring the distance between the Gaussian posteriors produced by the

Gaussian-based filters and the posterior obtained by the SPF,we use the KL and χ2

divergence metrics [107]. However, the proposed approach for measuring performance

is general and can be applied to a broad class of divergence measures.

With a slight abuse of notation, the KL and the χ2 divergences are defined as

follows:

• KL Divergence:

KL(p, q) =

∫
p(x) log

(
p(x)

q(x)

)
dx

• χ2 Divergence:

χ2(p, q) =

∫
(p(x)− q(x))2

q(x)
dx =

∫
p2(x)

q(x)
dx− 1.

In our problem, p(x) is the posterior obtained by the SPF and q(x) is the posterior

estimated by a Gaussian-based filter. A straightforward computation of these

measures is not feasible because the random measures obtained by the SPF are

discrete while the Gaussian posterior approximation is continuous. We avoid this

by computing

p(xt | y1:t) ∝ p(yt | xt,y1,t−1)p(xt | y1:t−1)

∝ p(yt | xt)

∫
p(xt | xt−1)× p(xt−1 | y1:t−1)dxt. (10.1)

179

In the integral in (10.1), we express the posterior p(xt−1 | y1:t−1) as

p(xt−1 | y1:t−1) =
M∑

m=1

w
(m)
t−1δ(xt−1 − x

(m)
t−1) (10.2)

and for the posterior p(xt | y1:t) we obtain

p(xt | y1:t) ∝ p(yt | xt)
M∑

m=1

w
(m)
t−1p(xt | x(m)

t−1). (10.3)

We will write p(xt | y1:t) = cp̃(xt | y1:t) where

p̃(xt | y1:t) = p(yt | xt)
M∑

m=1

w
(m)
t−1p(xt | x(m)

t−1). (10.4)

10.2.1 Computation of KL divergence

With a slight abuse in notation, the KL distance at time instant t is expressed

as

KLt =

∫
p log

(
p

q

)
dxt =

∫
p

q
log

(
p

q

)
qdxt. (10.5)

The integral in (10.5) can by computed by Monte Carlo integration by drawing

samples from q(xt). It is easy to show that

KLt ' 1

N

N∑
n=1

ρ
(n)
t log ρ

(n)
t (10.6)

180

where N is the number of drawn samples from q(xt) and

ρ
(n)
t =

ρ̃
(n)
t∑N

k=1 ρ̃
(k)
t

(10.7)

and ρ̃
(n)
t =

p̃(x(n)
t |y1:t)

q(x(n)
t)

.

10.2.2 Computation of χ2 divergence

The χ2 at time instant t is given by

χ2
t =

∫
p2

q
dxt − 1

=

∫
p2

q2
q dxt − 1. (10.8)

A Monte Carlo estimate of χ2
t is obtained in a similar way, and it is given by

χ2
t ' 1

N

N∑
n=1

(
ρ

(n)
t

)2

− 1 (10.9)

where the symbols have the same meaning as in (10.6).

10.3 Simulations

We provide two examples where we compare the performance of the EKF, UKF,

and GPF.

181

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

Time
KL

 D
ive

rg
en

ce

GPF
EKF
UKF

Figure 10.1: KLt divergence of the GPF, EKF and UKF filters.

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

Time

χ2 d
iv

er
ge

nc
e

GPF
EKF
UKF

Figure 10.2: χ2
t divergence of the GPF, EKF and UKF filters.

10.3.1 Univariate Non-Linear Model

Consider the following one dimensional non-linear time series

xt = 0.5xt−1 + 25
xt−1

1 + x2
t−1

+ 8 cos(1.2(t− 1)) + ut

yt =
x2

t

20
+ vt. (10.10)

Here, ut and vt are both zero mean Gaussian noise processes with unit variance.

The initial distribution p(x0) ∼ N (0, 1) [32]. In the simulation of the Monte Carlo

182

0 10 20 30 40 50 60

10
0.1

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

Time

K
L

D
iv

er
ge

nc
e

GPF
EKF
UKF

Figure 10.3: KLt-Divergence for the GPF, EKF and UKF filters

filters, M = 1000 particles were used. The number of samples N that were generated

for computing the divergence measures was also 1000. For obtaining the weights

associated with each sigma point of the UKF, the parameters α, β, and κ were set

to α = 1, β = 0, κ = 2 (as defined in [24]). We measured the performance of the

algorithms by computing the divergence metrics using K = 100 different trajectories.

In Figs. 10.1 and 10.2, the averaged KLt and χ2
t divergences are shown. From the

plots, it can be seen that the Gaussian approximation to the posterior distribution

with GPF is considerably better than that of the EKF and the UKF.

10.3.2 Bearings only target tracking

We considered a target tracking using angle measurements, which is a four-

dimensional DSS model, with partially observed states

xt = Fxt−1 + ut, t ∈ N, (10.11)

183

where x(t) = [x1(t), x2(t), ẋ1(t), ẋ2(t)]
> are the target’s position and velocity in a

two-dimensional plane, F is a 4×4 transition matrix, and ut is a 4×1 Gaussian noise

vector. The transition matrix F and the covariance matrix of the noise process are

given by

F =




1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1




, Cu,t = σ2
u




T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T




where T is the sampling interval.

The measurement equation is given by

yt = arctan

(
x2(t)

x1(t)

)
+ vt (10.12)

where vt is a measurement noise considered zero mean and Gaussian.

The initial distribution of p(x0) is modeled as a Gaussian distribution

N (µ0,P0) where µ0 = [−10.0, −0.5, −10.0, 0.5]> and P0 is given as

diag1([0.25, 0.25, 0.25, 0.25]). The values of the other parameters were σu = 0.1

and σv = 0.001. In the Monte Carlo SPF and GPF, we used M = 3000 particles.

The initial particles were all drawn from p(x0). Similarly, when implementing the

EKF and UKF, the initial mean and covariance matrix of the state vector were those

used in p(x0). As in the earlier simulation, here too we computed the divergences

by averaging them over K = 100 different trajectories. In Figs. 10.3 and 10.4, we

present the obtained results. Again, the performance of the GPF is better than the
1The diag(x) operation refers to the formation of the diagonal matrix with vector x along the

main diagonal.

184

0 10 20 30 40 50 60
10

1

10
2

10
3

10
4

Time

χ2 d
iv

er
ge

nc
e

GPF
EKF
UKF

Figure 10.4: χ2
t -Divergence for the GPF, EKF and UKF filters

other two filters.

10.4 Conclusions

We have provided a novel method for computing the divergences which measure

the distance between the posterior distributions obtained with the SPF and the

Gaussian-based filters EKF, UKF and the GPF. Through simulation studies, we note

that the GPF provides a better approximation to the posterior distribution than the

EKF and the UKF.

185

Chapter 11

Future Work

In this dissertation, we have addressed using Monte Carlo methods, problems

related to target tracking and sensor localization. All these problems are addressed

under known and unknown probability distributions of the the noise processes. We

now highlight some of the possible avenues the work presented here can be extended

• Design of risk and cost functions in CRPFs: In Chapter 4, we propose two novel

CRPF schemes which differ primarily in the design of proposal distributions for

propagation of particles. Another important aspect of CRPFs is the choice

of risk and cost functions. We consider simple cost function which are ∝ 1
|ε|κ

where ε is the residual and κ is the exponent factor. Typical choices of κ are

1 or 2. With κ = 2, the quality of the particles (through the risk functions)

is magnified than when κ = 1. Clearly, this may lead to particle degeneracy

with multinomial resampling which is partly resolved by the use of proportional

resampling. On the other hand when we are estimating the state, the cost

functions which are used also have similar structure. There with κ = 2, more

186

weight is given to particles with are of high quality. Thus clearly different κ

may seem optimal for purposes of estimation. An important step ahead in the

study of cost reference particle filtering is the usage of design of optimal risk

and cost functions.

• Sensor self-localization: In Chapter 5, we proposes iterative least squares (LS)

and Bayesian methods (BS), Monte Carlo importance sampling (IS) and cost-

based (CS) methods for sensor self-localization and we have observed that by a

judicious combination of these methods one can obtain improved performance.

Another important problem that was partly addressed was procedures for

beacon selection. A more rigorous algorithm for combining the beacon selection

procedure should be incorporated in the sensor self-localization algorithm.

Also ways of reducing computation by reducing the number of particles to be

drawn should be constructed. As in the above problem, when distributions of

noise processes are unknown selection of cost functions should be incorporated.

Also the proposed algorithms should be extended to scenarios when the noise

processes are not zero mean but have an unknown and non-zero bias.

• Multiple Target Tracking using binary sensors: In this dissertation, we had

considered single target tracking using binary sensors. The open road ahead

is multiple target tracking. The problem is quite extensively researched but

there are several important issues that have not been completely addressed such

as multiple target tracking under unknown number of targets or time varying

number of targets. We are currently working on these issues too.

187

• Tertiary sensors: We have discussed sequential monte carlo algorithms for

binary wireless sensor networks for tracking a single target 6. Another important

class of sensors that is the tertiary sensor network. In a model similar to [75],

this problem has been partly studied elsewhere where it was observed that

due to the implicit memory based measurement scheme the solution was not

straightforward. Following approximation it was also noted that some gains

can be obtained in estimating the targets position over networks which employ

binary sensors. A more rigorous study of tertiary networks on the lines

conducted here should be performed.

• Fusion of random measures:

In chapter 7, we presented SPF and CRPF fusion algorithms for target tracking.

When the posterior distribution is unimodal, these random measures are

adequately approximated with a single Gaussian which has lower transmission

requirements. It was also observed that approximations of random measures

with a single Gaussian have slightly larger RMSE than approximations with

Gaussian mixtures but at the expense of greater transmission requirements.

Some of the open issues not addressed here, on this topic are determining the

number of components required for an adequate representation of the sample-

based distribution. Clearly, this becomes a model order selection problem with

simultaneous estimation of model order and the parameters of the model.

• Asynchronous Sensor Networks In the proposed framework in 9, the target

trajectory is propagated within a time interval as many instants as there are

number of sensors and then the overall likelihood of each path is obtained.

188

This process is computational intensive particularly when there are a large no.

of sensors. Methods in which this process of sampling several times could be

circumvented but yet accounting for the sensor time offsets will considerably

reduce the computation of the algorithm. Also the algorithm requires a good

initialization or informative prior knowledge of the sensor offsets. Since the

proposed methodology here is similar to that of density assisted particles it

suffers from the disadvantages as the latter does such as when the filter gets

stuck at local stationary points when simultaneously estimating the dynamic

and static parameters. More efficient methods to allow for the samples to

perturb from their stationary points should be designed.

189

Appendix A

Hybrid Cramér-Rao Bounds for

Sensor Self-Localization

Sensor s obtains measurements according to (8.1), These set of measurements

can be expressed in vector notation as

ys = f (`) + vs (A.1)

with f (`) = [f 1(·) · · · fNb(·)]> and vs = [vs,1 · · · vs,Nb
]. When vs is a Gaussian random

vector and the prior density is also Gaussian with covariance matrix Σ`, the HFIM

can be written as [60]

J = E`

[{
∇`h

>(`) Σ−1
v ∇>

`h>(`)
}]

+ Jbb. (A.2)

190

For the RSS model, the elements of ∇`h
>(`) are calculated as

∂hb(`)

∂ls,x
= − 10α

log 10

[
(ls,x − lb,x)

(ls,x − lb,x)2 + (ls,y − lb,y)2

]

∂hb(`)

∂ls,y
= − 10α

log 10

[
(ls,y − lb,y)

(ls,x − lb,x)2 + (ls,y − lb,y)2

]

∂hb(`)

∂lb,x
= −∂hb(`)

∂ls,x

∂hb(`)

∂lb,y
= −∂hb(`)

∂ls,y

∂hb(`)

∂lj,x
=

∂hb(`)

∂lj,y
= 0 (∀b 6= j) (A.3)

191

Appendix B

Posterior Cramer Rao Bounds

Here we present the derivation of the PCRBs of tracking a single target.

Recall that the dynamics of the state evolution are given by (6.1), where the prior

distribution p(xt|xt−1) is singular. Let ξt = [υt l̃t]
>, where l̃t = [x1,t x2,t Ψt]

> and

υt = [ẋ1,t ẋ2,t]
>. In [88], a recursive method for determining the PCRBs for such

cases is presented, and here we follow that approach. The state evolution as given by

(6.1) and (6.24) can also be expressed in block vector notation as

υt = υt−1 + Fut

l̃t = l̃t−1 + G (υt + υt−1) (B.1)

where

F =




Ts 0

0 Ts


 , G =




Ts

2
0

0 Ts

2

0 0




.

192

Let the information submatrix of xt be denoted by Jt (which in our case is of size

5× 5). The recursive computation of the PCRBs can then be written as follows [88]:

Jt =



J11

t J12
t

J21
t J22

t




=



S22

t S23
t

S32
t S33

t


−



S21

t

S31
t




[
S11

t

]−1 [
S12

t S13
t

]
(B.2)

where the block matrices have sizes 2× 2 (J11
t , S11

t , S13
t , S31

t , and S33
t), 2× 3 (J12

t , S12
t

and S32
t), 3 × 2 (J21

t , S21
t and S23

t), and 3 × 3 (J22
t and S22

t), and the block matrices

Sij
t are computed according to

St =




S11
t S12

t S13
t

S21
t S22

t S23
t

S31
t S32

t S33
t




= M−>




J11
t−1 + H11

t−1 J12
t−1 + H12

t−1 H13
t−1

(J12
t−1 + H12

t−1)
> J22

t−1 + H22
t−1 H23

t−1

(H13
t−1)

> (H23
t−1)

> H33
t−1




M−1.

The 7× 7 matrix M, and the matrices Hij
t are defined by

M =




I2×2 02×3 02×2

02×2 02×3 I2×2

G I3×3 G




193

and

H11
t = E

[−∆υt
υt

log p̄t

]
, H12

t = E
[−∆lt

υt
log p̄t

]

H13
t = E

[
−∆

υt+1

υt
log p̄t

]
, H22

t = E
[−∆lt

lt
log p̄t

]

H23
t = E

[
−∆

υt+1

lt
log p̄t

]
, H33

t = E
[
−∆

υt+1

υt+1
log p̄t

]

with

p̄t = p (υt+1 |υt) p (zt+1 | ξt,υt+1) (B.3)

and ∆ being the Laplacian operator.

The computation of the Hij
t , i, j = 1, 2, 3 proceeds as follows:

1. H11
t : We use the following identities:

H11
t = E

[−∆υt
υt

log p̄t

]
= H11

t,a + H11
t,b

H11
t,a = E

[−∆υt
υt

log p (υt+1 |υt)
]

H11
t,b = E

[−∆υt
υt

log p (zt+1 |υt, lt,υt+1)
]

where the expectation is over {υt, lt,υt+1, zt+1}.

2. H12
t : For computing H12

t , we need the following expressions:

H12
t = E

[−∆lt
υt

log p̄t

]
= H12

t,a + H12
t,b

H12
t,a = E

[−∆lt
υt

log p (υt+1 |υt)
]

= 0

H12
t,b = E

[−∆lt
υt

log p (zt+1 |υt, lt,υt+1)
]

194

3. H13
t : We can show that

H13
t = E

[
−∆

υt+1

υt
log p̄t

]
(B.4)

= E
[
−∆

υt+1

υt
log p (υt+1 |υt)

]
+ E

[
−∆

υt+1

υt
log p (zt+1 |υt, lt,υt+1)

]
.

4. H22
t : For computing H22

t , we use

H22
t = E

[−∆lt
lt

log p̄t

]

= E
[−∆lt

lt
log p (zt+1 |υt, lt, υt+1)

]
.

5. H23
t : The process is similar as before. We have

H23
t = E

[
−∆

υt+1

lt
log p̄t

]

= E
[
−∆

υt+1

lt
log p (zt+1 |υt, lt,υt+1)

]
.

6. H33
t : We use the identities

H33
t = E

[
−∆

υt+1

υt+1
log p̄t

]

= E
[
−∆

υt+1

υt+1
log p (υt+1 |υt)

]
+ E

[
−∆

υt+1

υt+1
log p (zt+1 |υt, lt,υt+1)

]
.

195

Appendix C

Conditions for the validity of the

Gaussian approximations

Let p(θ) be a smooth density with θ ∈ Rn. Expanding the logarithm of the

density around its mean θ̂ using Taylors series and neglecting the higher order

derivative terms (> 2) we have

ln(p(θ)) = −1

2
(θ − θ̃)>Σ−1(θ − θ̃) + g(θ̂)

>
(θ̂) + g(θ̂)

>
Σg(θ̂) + ln(p(θ̂) + ε(θ)

where we express, θ̃ = θ̂ +Σg(θ̂), g(θ̂) = ∂ln(p(θ))

∂θ
|
θ=θ̂

and Σ−1 = −∂2ln(pt(θ))

∂θ∂θ>
|
θ=θ̂

.

Thus we have

p(θ) ∝ exp

[
−1

2
(θ − θ̃)>Σ−1(θ − θ̃)

]
∝ N (θ̃,Σ). (C.1)

196

Similarly we have for a product of N densities

pN(θ) =
∏
n

pn(θ) ∝
∏
n

Nn(θ, θ̃n,Σn) ∝ N (θ, θ̃f ,Σf) (C.2)

Σ−1
f = Σ−1

1 + Σ−1
2 · · ·Σ−1

N

θ̃f = Σf (Σ
−1
1 θ̃1 + · · ·Σ−1

N θ̃N)

θ̃f = Σ(Σ−1
1 θ̂1 + · · ·Σ−1

N θ̂N) + Σ(g(θ̂1) + g(θ̂2) + · · ·g(θ̂N))

Σ−1θ̃f = Σ−1θ̂f + (g(θ̂1) + g(θ̂2) + · · ·g(θ̂N)) = Σ−1θ̂f + ∆g(θ̂). (C.3)

A ratio of two distributions can be expressed as

p1(θ)

p2(θ)
∝ N1(θ, θ̃s,Σs) (C.4)

where Σ−1
s = Σ−1

1 −Σ−1
2 and Σ−1

s θ̃s = Σ−1
1 θ̃1 −Σ−1

2 θ̃2. Thus we have the following

form for a ratio of a product of densities using equations (C.2) and (C.4)

∏
k pa,k(θ)∏
k pb,k(θ)

∝ N (θ, θ̃a,Σa)

N (θ, θ̃b,Σb)
∝ N (θ, θ̃ab,Σab) (C.5)

Σ−1
ab = Σ−1

a −Σ−1
b

Σ−1
ab θ̃ab = Σ−1

a θ̃a −Σ−1
b θ̃b = Σ−1

a θ̂a −Σ−1
b θ̂b + ∆g(θ̂a)−∆g(θ̂b)

= Σ−1
ab θ̂ab + ∆g(θ̂ab)

When these distributions are approximated by a Gaussian distribution around the

197

true mean θ̂ of the distribution, instead of θ̃ it can be shown that the ratio of these

products is offset by an exponential product of exp[−2∆g(θ̂ab)
>
θ].

198

Bibliography

[1] J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications,

AIP Press, 2nd edition, 1997.

[2] R. R. Brooks and S. S. Iyengar, Multi-sensor fusion: Fundamentals and

applications with software, Prentice Hall, 1998.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey,” Computer Networks (Amsterdam, Netherlands: 1999),

vol. 38, no. 4, pp. 393–422, Mar. 2002.

[4] M. Tubaishat and S. Madria, “Sensor networks : An overview,” IEEE Potentials,

pp. 20–23, April/May 2003.

[5] P. Rentala, R. Musunuri, S. Gandham, and U. Saxena, “Survey of sensor

networks,” Utdcs-10-03., University of Texas at Dallas„ 2003.

[6] G. J. Pottie and W. J. Kaiser, “Embedding the Internet: Wireless integrated

network sensors,” Communications of the ACM, vol. 43, no. 5, pp. 551–558,

May 2000.

[7] “Habitat monitoring on great duck island,” http://www.greatduckisland.net.

199

[8] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,

“Wireless sensor networks for habitat monitoring,” in Proceedings of the First

ACM International Workshop on Wireless Sensor Networks and Applications

(WSNA-02), New York, Sept. 28 2002, pp. 88–97, ACM Press.

[9] “Sensor web for the study of glaciers,” http://envisense.org/glacsweb.htm.

[10] J. Burrell, T. Brooke, and R. Beck, “Vineyard computing: Sensor networks in

agricultural production,” IEEE Pervasive Computing, vol. 3, no. 1, pp. 38–45,

January-March 2004.

[11] “Smart bridge,” IEEE Spectrum, July 2004.

[12] D. Li and Yu-Hen Hu, “Energy-based collaborative source localization using

acoustic microsensor array,” EURASIP Journal on Applied Signal Processing,

Special Issue on Sensor Networks, vol. 2003, no. 4, pp. 321–337, March 2003.

[13] R. Moses, D. Krishnamurthy, and R. Patterson, “A self-localization method

for wireless sensor networks,” EURASIP Journal on Applied Signal Processing,

Special Issue on Sensor Networks, vol. 2003, no. 4, pp. 348–358, March 2003.

[14] Nirupama Bulusu, Self-Configuring Localization Systems, Ph.D. thesis,

University of California at Los Angeles„ October 2002.

[15] X. Sheng and Yu-Hen Hu, “Sequential acoustic energy based source localization

using particle filter in a distributed sensor network,” IEEE International

Conference on Speech, Acoustics, and Signal Processing, May 17-21 2004, pp.

972–975.

200

[16] X. Sheng, Collaborative Energy Based Source Localization and Tracking in

Wireless Sensor Network System, Preliminary report, University of Wisconsin-

Madison, College of Engineering, 2003.

[17] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor

collaboration,” Signal Processing Magazine, IEEE, vol. 19, no. 2, pp. 61–72,

March 2002.

[18] M. Coates, “Distributed particle filters for sensor networks,” in Proceedings of

the third international symposium on Information processing in sensor networks

(IPSN-04), New York, Apr. 26–27 2004, pp. 99–107, ACM Press.

[19] D. Blatt and A. O. Hero, “Distributed maximum likelihood estimation for

sensor networks,” in ICASSP, IEEE International Conference on Acoustics,

Speech and Signal Processing, 2004.

[20] P. K. Varshney, Distributed Detection and Data Fusion, Springer-Verlag, 1997.

[21] D. Li, K.D. Wong, Yu-Hen Hu, and A. M.Sayeed, “Detection, classification,

and tracking of targets,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp.

17–29, March 2002.

[22] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New

York, 1999.

[23] D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Inc.,

Englewood Cliffs N. J., 1979.

201

[24] S. J. Julier and J. K. Uhlmann., “A new extension of the Kalman filter to

nonlinear systems,” in In Proceedings of AeroSense: The 11th International

Symposium on Aerospace and Defence Sensing, Simulation and Controls, 1997.

[25] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear

estimation,” in Adaptive Systems for Signal Processing, Communications, and

Control Symposium 2000. AS-SPCC., 1-4 Oct. 2000, pp. 153–158.

[26] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings-F, vol.

140, no. 2, pp. 107–113, Apr. 1993.

[27] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE

Trans. Signal Processing, vol. 50, no. 2, pp. 174–188, Feb 2002.

[28] J. Carpenter, P. Clifford, and P. Fernhead, “An improved particle filter for

non-linear problems,” IEEE Proceedings on radar and sonar navigation, vol.

146, no. 1, pp. 2–7, 1999.

[29] R. Douc and O. Cappe, “Comparision of resampling schemes for particle

filtering,” in 4th International Symposium on Image and Signal Processing and

Analysis (ISPA), 2005.

[30] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in

Practice, Springer-Verlag, 2001.

[31] Genshiro Kitagawa, “A self-organizing state space model,” Journal of the

American Statistical Association, vol. 93, no. 443, pp. 1203–1215, Sept. 1998.

202

[32] J. Kotecha and P. M. Djurić, “Gaussian particle filtering,” IEEE Transactions

on Signal Processing, vol. 51, no. 10, pp. 2592–2601, October 2003.

[33] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling

methods for Bayesian filtering,” Statistics and Computing, pp. 197–208, 2000.

[34] J. Míguez, M. F. Bugallo, and P. M. Djurić, “A new class of particle filters for

random dynamical systems with unknown statistics,” EURASIP Journal on

Applied Signal Processing, vol. 15, pp. 2278–2294, 2004.

[35] Mónica F. Bugallo, Joaquín Míguez, and P M Djurić, “Positioning by cost

reference particle filters: Study of various implementations,” in The Proceedings

of the International Conference on Computer as a tool (EUROCON), Belgrade

(Serbia), 2005, EUROCON.

[36] W. J. J. Rey, Introduction to Robust and Quasi–Robust Statistical Methods,

Springer–Verlag, 1983.

[37] M. West, “Approximating posterior distributions by mixtures,” Journal of the

Royal Statistical Society (Ser. B), vol. 55, no. 2, pp. 409–422, 1993.

[38] N. Patwari, A. O. Hero-III, M. Perkins, N. S. Correal, and R. J. O’Dea, “Relative

location estimation in wireless sensor networks,” IEEE Transactions on Signal

Processing, Special Issue on Signal Processing in Networks, vol. 51, no. 8, pp.

2137–2148, Nov 2003.

[39] P. M. Djurić, M. Vemula, and M. F. Bugallo, “Signal processing by particle

filtering for binary sensor networks,” in IEEE Digital Signal Processing

Workshop, 2004.

203

[40] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor

localization for very small devices,” IEEE Personal Communications Magazine,

vol. 7, no. 5, pp. 28–34, October 2000.

[41] B. M. Sadler, R. J. Kozick, and L. Tong, “Multimodal sensor localization using

a mobile access point,” in IEEE International Conference on Acoustics Speech

and Signal Processing (ICASSP-05), Philadelphia, Mar. 18–23 2005, pp. 753–

756.

[42] D. Niculescu and B. Nath, “Ad hoc positioning system (aps),” Proceedings of

GLOBECOM San Antonio, 2001.

[43] A. Savvides, H. Park, and M. B. Srivastava, “The bits and flops of the n-

hop multilateration primitive for node localization problems,” in Proceedings

of the First ACM International Workshop on Wireless Sensor Networks and

Applications (WSNA-02), New York, Sept. 28 2002, pp. 112–121, ACM Press.

[44] K. Langendoen and N. Reijers, “Distributed localization in wireless sensor

networks: a quantitative comparison,” Computer Networks, vol. 43, no. 4, pp.

499–518, 2003.

[45] M. L. Sichitiu and V. Ramadurai, “Localization of wireless sensor networks

with a mobile beacon,” in Proceedings of the First IEEE Conference on Mobile

Ad-hoc and Sensor Systems (MASS 2004), (Fort Lauderdale, FL), Oct. 2004.

[46] A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem, “Distributed online

localization in sensor networks using a moving target,” in Proceedings of the

204

Third International Symposium on Information Processing in Sensor Networks

(IPSN-04), New York, Apr. 26–27 2004, pp. 61–70, ACM Press.

[47] P. M. Djurić, M. Vemula, M. F. Bugallo, and J. Miguez, “Non-cooperative

localization of binary sensors,” in IEEE Workshop on Statistical Signal

Processing (SSP-05), Jul 17-20 2005.

[48] Pubudu N. Pathirana, Nirupama Bulusu, Andrey V. Savkin, and Sanjay K.

Jha, “Node localization using mobile robots in delay-tolerant sensor networks,”

IEEE Trans. Mob. Comput, vol. 4, no. 3, pp. 285–296, 2005.

[49] N. Patwari, J. N. Ash, S. Kyperountas, Alfred O. Hero III, Randolph L. Moses,

and Neiyer S. Correal, “Locating the nodes: cooperative localization in wireless

sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54–69,

July 2005.

[50] Andreas Savvides, L. Girod, Mani B. Srivastava, and Deborah Estrin,

Localization in Sensor Networks, Wireless Sensor Networks. Kluwer, Norwell

MA, 2004.

[51] D. Fox, J. Hightower, H. Kauz, L. Liao, and D. Patterson, “Bayesian techniques

for location estimation,” in In Proc. Workshop on Location-aware Computing,

UBICOMP Conf., Seattle, WA, October 2003., 2003.

[52] W.H. Foy, “Position-location solutions by Taylor-series estimation,” Aerospace

and Electronic Systems, IEEE Transactions on, vol. AES-12, no. 2, pp. 187–194,

March 1976.

205

[53] Andreas Savvides, Chih-Chieh Han, and Mani B. Srivastava, “Dynamic fine-

grained localization in ad-hoc networks of sensors,” in MOBICOM, 2001, pp.

166–179.

[54] V. Ramadurai and M.l L. Sichitiu, “Localization in wireless sensor networks:

A probabilistic approach.,” in International Conference on Wireless Networks,

2003, pp. 275–281.

[55] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric belief

propagation for self-localization of sensor networks,” IEEE Journal on Selected

Areas in Communications, vol. 23, no. 4, pp. 809–819, 2005.

[56] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, NY,

1999.

[57] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory,

Prentice Hall PTR, Upper Sadle River, NJ 07458, 1993.

[58] A. H. Sayed and T. Kailath, “A state-space approach to adaptive RLS filtering,”

Signal Processing Magazine, IEEE, vol. 11, no. 3, pp. 18–60, July 1994.

[59] J. Liu and M. West, “Combined parameter and state estimation in simulation-

based filtering,” in Sequential Monte Carlo Methods in Practice. New York,

J. F. G. De Freitas A. Doucet and N. J. Gordon, Eds. 2000, Springer-Verlag,

New York.

[60] H. L. Van Trees, Detection, Estimation, and Modulation Theory, John Wiley

& Sons, 1968.

206

[61] Y. Rockah and P. Schultheiss, “Array shape calibration using sources in

unknown locations–part i: Far-field sources,” IEEE Transactions on Acoustics,

Speech, and Signal Processing ,, vol. 35, no. 3, pp. 286–299, Mar 1987.

[62] H. Messer, “The hybrid Cramer-Rao Lower Bound - From practice to theory,”

in Sensor Array and Multichannel Processing, July 12-14, 2006, pp. 304–307.

[63] H. Wang, K. Yao, G. Pottie, and D. Estrin, “Entropy-based sensor selection

heuristic for target localization,” in Proceedings of the third international

symposium on Information processing in sensor networks (IPSN-04), New York,

Apr. 2004, pp. 36–45, ACM Press.

[64] L. M. Kaplan, “Local node selection for localization in a distributed sensor

network,” IEEE Transactions on Aerospace and Electronic Systems,, vol. 42,

no. 1, pp. 136–146, Jan. 2006.

[65] B. Chen, W. B. Heinzelman, M. Liu, and A. T. Campbell, “Editorial of

Special issue on wireless sensor networks,” EURASIP Journal on Wireless

Communications and Networking, vol. 2005, no. 4, pp. 459–461, 2005.

[66] C.-Y. Chong and S. P. Kumar, “Sensor networks: Evolution opportunities and

challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256, 2003.

[67] S. Kumar, F. Zhao, and D. Shepherd, “Collaborative signal and information

processing in microsensor networks,” IEEE Signal Processing Magazine, pp.

13–14, March 2002.

[68] F. Zhao and L. Guibas, Wireless Sensor Networks, New York: Morgan Kaufman

Publishers, 2004.

207

[69] A. Arora and et al, “A line in the sand: A wireless sensor network for target

detection, classification, and tracking,” Computer Networks, pp. 605–634, 2004.

[70] M. Pitt and N. Shepard, “Filtering via simulation: Auxiliary particle filters,”

Journal of the American Statistical Association, vol. 94, no. 446, pp. 590–599,

June 1999.

[71] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering,”

IEEE Transactions Signal Processing, vol. 50, no. 3, pp. 736–746, March 2002.

[72] P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle

Systems with Applications, Springer-Verlag New York Inc., 2004.

[73] J. Míguez, M. F. Bugallo, and P. M. Djurić, “Erratum on ‘a new class of particle

filters for random dynamical systems with unknown statistics,” EURASIP

Journal on Applied Signal Processing, 2006, Article ID 78708.

[74] K. Mechitov, S. Sundresh, Y. Kwon, and G. Agha, “Cooperative tracking with

binary-detection sensor networks,” in 1st ACM International Conference on

Embedded Networked Sensor Systems, 2003, pp. 332–333.

[75] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,

“Tracking a moving object with a binary sensor network,” in the Proceeings

of the First International Conference on Embedded Networked Sensor Systems,

Los Angeles, CA, 2003, pp. 150–161.

[76] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking with binary

proximity sensors,” in The Proceedings of the Fourth International Symposium

on Information Processing in Sensor Networks, (IPSN), 2005, pp. 301–308.

208

[77] S. Oh and S. Sastry, “Tracking on a graph,” in the Proceedings of the

Fourth International Symposium on Information Processing in Sensor Networks

(IPSN), Los Angeles, CA, 2005, pp. 195–202.

[78] R. Niu and P. Varshney, “Target location estimation in wireless sensor networks

using binary data,” in 38th Annual Conference on Information Sciences and

Systems, Princeton, NJ, 2004.

[79] L. Y. Wang, J.-F. Zhang, and G. G. Yin, “System identification using binary

sensors,” IEEE Transactions on Automatic Control, vol. 48, pp. 1892–1907,

2003.

[80] J.-F. Chamberland and V. V. Veeravali, “Decentralized detection in sensor

networks,” IEEE Transactions on Signal Processing, pp. 407–416, 2003.

[81] F. Gustaffson, F. Gunnarsson, N. Bergman, U. Forssel, J. Jansson, R. Karlsson,

and P.-J. Nordlund, “Particle filtering for positioning, navigation, and tracking,”

IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 425–437, 2002.

[82] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J. O’Dea, “Relative

location estimation in wireless sensor networks,” IEEE Transactions on Signal

Processing, vol. 51, no. 5, pp. 2137–2148, 2003.

[83] X. Sheng and Y-H. Hu, “Maximum likelihood multiple-source localization

using acoustic energy measurements with wireless sensor networks,” IEEE

Transactions on Signal Processing, vol. 53, pp. 44–53, 2005.

[84] N. Chopin, “A sequential particle filter for static models,” Biometrika, vol. 89,

no. 3, pp. 539–552, 2002.

209

[85] P.M.Djurić, M.F.Bugallo, and J. Míguez, “Density assisted particle filters for

state and parameter estimation,” Proceedings of the IEEE 29th International

Conference on Acoustics, Speech and Signal Processing, May 2004.

[86] G. Storvik, “Particle filters for state-space models with the presence of unknown

static parameters,” IEEE Transactions Signal Processing, vol. 50, no. 2, pp.

281–289, February 2002.

[87] J. Kotecha and P. M. Djurić, “Gaussian particle filtering,” IEEE Transactions

on Signal Processing, vol. 51, no. 10, pp. 2592–2601, 2003.

[88] P. Tichavský, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-Rao bounds

for discrete-time nonlinear filtering,” IEEE Transactions on Signal Processing,

vol. 46, pp. 1386–1396, 1998.

[89] P K Varshney, “Multisensor data fusion,” Electronics and Communication

Engineering Journal, vol. 9, no. 6, pp. 245–253, Dec. 1997.

[90] R. C. Luo, C. C. Yih, and K. L. Su, “Multisensor fusion integration: Approaches

applications, and future research direction,” IEEE Sensors Journal, vol. 2, no.

2, pp. 107–119, 2002.

[91] M. Rosencrantz, G. J. Gordon, and S. Thrun, “Decentralized sensor fusion with

distributed particle filters,” in UAI ’03, Proceedings of the 19th Conference

in Uncertainty in Artificial Intelligence, August 7-10 2003, Acapulco, Mexico,

2003, pp. 493–500.

210

[92] S. Challa, M. Palaniswami, and A. Shilton, “Distributed data fusion using

support vector machines,” in Proceedings of the Fifth International Conference

on Information FUSION 2002, 2002, vol. 2, pp. 881– 885.

[93] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association, Academic

Press, New York, 1988.

[94] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, John

Wiley and Sons, 1997.

[95] M. Yarvis and Wei Ye, “Tiered architectures in sensor networks,” in Handbook

of Sensor Networks: Compact Wireless and Wired Sensing Systems, M. Ilyas

and I. Mahgoub, Eds., chapter 13. CRC Press LLC., 2004.

[96] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-

efficient communication protocol for wireless microsensor networks,” in Hawaii

International Conference on System Sciences, 2000.

[97] W. Chen, J. C. Hou, and L. Sha, “Dynamic clustering for acoustic target

tracking in wireless sensor networks,” in International Conference on Network

Protocols, 2003, pp. 284–294.

[98] X. Sheng and Y. H. Hu, “Energy based acoustic source localization,” in

Information Processing in Sensor Networks, 2003, pp. 285–300.

[99] M. Vemula and P. M. Djurić, “Multisensor fusion for target tracking using

sequential Monte Carlo methods,” in IEEE Workshop on Statistical Signal

Processing, 2005.

211

[100] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks,” IEEE

Network, vol. 18, no. 4, pp. 45– 50, 2004.

[101] L. Doherty, B. A. Warneke, B. Boser, and K. S. J. Pister, “Energy and

performance considerations for smart dust,” in International Journal of Parallel

and Distributed Sensor Networks, Dec 2001.

[102] X. Lin, Y. Bar-Shalom, and T. Kirubarajan, “Multisensor-multitarget bias

estimation for general asynchronous sensors,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 41, no. 3, pp. 899– 921, 2005.

[103] Yifeng Zhou, “A kalman filter based registration approach for asynchronous

sensors in multiple sensor fusion applications,” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2004. Proceedings.

(ICASSP ’04), may 2004, vol. 2, pp. 293–6.

[104] T. Li, A. Ekpenyong, and Y.F. Huang, “A location system using asynchronous

distributed sensors,” in INFOCOM, 2004.

[105] A. Doucet and V. B. Tadic, “Parameter estimation in general state-space models

using particle methods,” Annals of the Institute of Statistical Mathematics, vol.

55, no. 2, pp. 409–422, June 2003.

[106] G. Hendeby and R. Karlsson, “Target tracking performance evaluation — A

general software environment for filtering,” in IEEE Aerospace Conference, Big

Sky, MT, USA, Proceedings, 2007.

212

[107] G. L. Gilardoni, “Accuracy of posterior approximations via χ2 and harmonic

divergences,” Journal of Statistical Planning and Inference, vol. 128, no. 1, pp.

475–487, 2005.

213

	List of Figures
	List of Tables
	Acknowledgments
	Overview of the Dissertation
	Sensor Networks : A Signal Processing Perspective
	Introduction
	Sensor Networks: Elements, Challenges and Applications
	Sensors and Sensor Networks
	Challenges
	Applications

	Signal Processing in Sensor Networks
	Localization
	Collaborative Signal Processing
	Distributed Signal Estimation, Detection and Classification

	Sequential Monte Carlo Methods
	Introduction
	Monte Carlo Integration
	Importance Sampling

	Dynamic State Space Model
	The Filtering Problem
	Non-Monte Carlo-based filters
	Extended Kalman Filter (EKF)
	Unscented Kalman Filter (UKF)

	Sequential Monte Carlo-based Filters
	Sequential Importance Sampling (SIS)
	Issues Related to SIS
	Standard particle filtering (SPF)
	Auxiliary Particle Filtering (APF)
	Gaussian Particle Filtering (GPF)

	Cost-Reference Particle Filtering
	Introduction
	Problem Statement

	Cost Reference Particle Filtering (CRPF)
	New CRPF Methods
	New CRPF method Type -I (CRPF-I)
	New CRPF method Type-II (CRPF-II)

	Computer Simulations
	The target tracking problem
	Simulation parameters and algorithms
	Results
	Robustness of the methods

	Summary

	Sensor Self-Localization with Beacon Position Uncertainty
	Introduction and Motivation
	Sensor self-localization: Problem statement and notation
	Iterative sensor localization methods
	Bayesian method with linearization(BS method)
	Least squares method with linearization (LS method)

	Monte Carlo-based methods for Sensor localization
	Importance sampling-based method (IS method)
	Cost based Monte Carlo-based sampling method (CS)
	Construction of the Importance Function for Sensor Location

	Hybrid Cramér-Rao bounds for sensor self-localization
	Single sensor, multiple beacons
	Multiple sensors, multiple beacons

	Incremental Beacon Selection
	Simulation Results
	Motivation
	Localization in a large network
	Beacon Selection

	Summary

	Target tracking by particle filtering in binary sensor networks
	Introduction
	A brief literature survey
	Network description and mathematical models
	Network description
	Mathematical models

	Tracking algorithms
	APF algorithm
	CRPF algorithm

	Extension of the APF when is unknown
	Posterior Cramér-Rao Bounds
	Simulations
	Summary

	Target tracking by fusion of random measures
	Introduction
	Problem statement
	Fusion with and without feedback
	Fusion without feedback
	Fusion with feedback

	Fusion by using random measures
	Fusion of summaries of SPF random measures
	Fusion of summaries of CRPF random measures

	Simulations and results
	Bearings only target tracking
	Target tracking in a hierarchical sensor network

	Summary

	Target Tracking in a Two-Tiered Hierarchical Sensor Network
	Introduction
	System Overview
	Sensor Model
	Cluster Head Model
	Fusion Center Model

	SMC Algorithms for Target Tracking
	 CH Particle Filter Implementation in HSN-Type I
	Fusion Center in HSN-Type I
	 FC Particle Filter Implementation in HSN-Type II

	Simulations, Results and Discussion
	Summary

	Target Tracking in an Asynchronous Wireless Sensor Network
	Introduction
	Problem statement
	Algorithms
	Density Assisted Particle Filtering
	Liu and West algorithm (LW)

	Simulations
	Summary

	 Performance Comparison of Gaussian-based Filters using Divergence Measures
	Introduction
	Divergence metrics
	Computation of KL divergence
	Computation of 2 divergence

	Simulations
	Univariate Non-Linear Model
	Bearings only target tracking

	Conclusions

	Future Work
	Appendices
	Hybrid Cramér-Rao Bounds for Sensor Self-Localization
	Posterior Cramer Rao Bounds
	Conditions for the validity of the Gaussian approximations
	Bibliography

