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Abstract of the Dissertation

Theoretical Analysis of Prospective
Nanoelectronic Devices

by

Thomas John Walls

Doctor of Philosophy

in

Physics

Stony Brook University

2008

The goal of this work is theoretical analyses of two prospective na-
noelectronic devices. The first of them, the metal-oxide-semiconductor
field-effect transistor (MOSFET) is the cornerstone of present day
integrated circuit technology. We explore the ultimate size scaling
limits of MOSFETs as their critical feature dimensions are scaled
down below 10 nm. At that size, the physics of electron trans-
port in these devices radically changes from quasi-equilibrium drift-
diffusion to ballistic propagation. A proper description of such a
regime requires a quantitative account of two-dimensional electro-
statics and quantum mechanical effects such as direct source-to-
drain tunneling. We have carried out extensive numerical simula-
tions of nanoscale transistors, including these effects, using a self-
consistent solution of the Poisson and Schrödinger equations. The
results show that advanced silicon transistors can provide voltage
gain at gate lengths as small as 4 nm. However, the device sensitiv-
ity to unavoidable variations of the dimensions during fabrication,
and power consumption grow exponentially in this regime.
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The second device under study, the superconductor balanced com-
parator, is based on the quantum mechanical quantization of flux
through superconducting loops. This device is a key component
of Rapid Single-Flux-Quantum (RSFQ) circuits which can be used
for digital signal processing at sub-THz frequencies, with extremely
small power consumption, albeit at deep refrigeration. Alterna-
tively, the comparator may be used for measurement of current
(or magnetic flux) with sub-picosecond time resolution. We show
that the signal detection sensitivity of the balanced comparator,
with realistic parameters, may be limited only by the fundamental
quantum fluctuations.

iv



Contents

List of Figures viii

List of Tables xi

Nomenclature xii

1 Introduction 1

I Ballistic Thin-Channel MOSFETs 4

2 Theory of Ballistic NanoFETs 5
2.1 Ballistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Main Analytical Relations . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Fermi Energy . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Bulk Electrode Density . . . . . . . . . . . . . . . . . . 16
2.2.3 Doped Extension Density . . . . . . . . . . . . . . . . 17
2.2.4 Charge Density . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Device Current . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Landauer Conductance . . . . . . . . . . . . . . . . . . 20
2.2.7 Aperture Limit . . . . . . . . . . . . . . . . . . . . . . 20
2.2.8 Capacitance Model . . . . . . . . . . . . . . . . . . . . 21
2.2.9 Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.10 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Numeric Methods . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Poisson Solver . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Mixing Methods . . . . . . . . . . . . . . . . . . . . . . 43

3 Transistors with Thin Extensions 49
3.1 1-D Schrödinger Approximation . . . . . . . . . . . . . . . . . 51

3.1.1 Channel Density . . . . . . . . . . . . . . . . . . . . . 53

v



3.1.2 Current Density . . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Evaluation of the Wavefunction . . . . . . . . . . . . . 56

3.2 Double-Gate Transistor . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 I − Vd Families . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Subthreshold Current . . . . . . . . . . . . . . . . . . . 64
3.2.4 Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.5 Threshold Voltage Rolloff . . . . . . . . . . . . . . . . 68
3.2.6 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Single-Gate Transistor . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Device Potential . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Double-Gate Device with Bulk Electrodes 76
4.1 2-D Schrödinger Solution . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Channel Electron Density . . . . . . . . . . . . . . . . 83
4.1.2 Current Density . . . . . . . . . . . . . . . . . . . . . . 86
4.1.3 Evaluation of the Wavefunction . . . . . . . . . . . . . 87
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Chapter 1

Introduction

The technological capacity for processing, storage and communication of in-
formation has progressed at an astonishing, exponential rate for the past half-
century. The electronic integrated circuit (IC) has been the workhorse for
information processing which has certainly seen a golden age over the past
fifty years. The performance improvements of processing ability have come
largely from the continued shrinking of circuit components allowing for lower
capacitive recharging time (i. e. faster clocking frequency) and greater com-
ponent packing density per chip.

The key point of the era was the introduction of complementary metal-
oxide-semiconductor (CMOS) technology. CMOS builds logic circuits from
metal-oxide-semiconductor field-effect transistors (MOSFETs) which have iden-
tical, symmetric current characteristics as a function of applied gate and drain
bias. The MOSFET is essentially two semiconductor electrodes doped with
atoms which donate either electrons to the conduction band (n doping) or
holes to the valence band (p doping). The electrodes are connected through a
semiconductor of the opposite doping. The channel is covered by a gate elec-
trode whose field penetrates the middle region. A n-type MOSFET consists
of n-doped electrodes and the basic principle of operation is that a voltage
applied to the gate depletes the hole concentration in the p-doped region cre-
ating a conduction channel for the flow of electrons. A reverse bias increases
the hole concentration further restricting the electron flow, so the device acts
as a three terminal switch. The compliment to the n-type transistor is a p-n-p
device; a positive gate bias turns on a n-type MOSFET while shutting off a
p-type MOSFET.

As an example, Fig. 1.1 shows a basic building block of integrated circuitry,
the CMOS inverter. Two oppositely doped MOSFETs are tied together at
their gates with input voltage Vin, the source node of the n-FET is connected
the source line (taken here as ground) and the source node of p-FET is con-
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V DD

V SS=0

V in V out

p−MOS

n−MOS

Figure 1.1: CMOS inverter circuit.

nected to circuit drive voltage VDD. The transistors are connected at their
drain nodes as output voltage Vout. An input voltage Vin = VDD turns off the
p-FET while turning on the n-FET. This allows the flow of current (shown
by the red line) through the n-FET bringing the Vout to the source line level
Vout = 0. On the other hand, zero voltage turns off the n-FET and opens the
p-FET allowing current shown by the green line and brings the output voltage
Vout = VDD.

CMOS technology has two large advantages of over other kinds of electronic
circuits. First, the complementary nature of the transistors mean that noise
components tend to cancel leaving CMOS highly immune to noise fluctuations.
Second, the inverter example demonstrates that current only flows through the
device during the transient of switching from the on/off states. Hence, CMOS
circuits have a very low static power consumption.

Since its inception, the number of transistors in CMOS circuits has dou-
bled roughly every 24 months, an observation first made famous by G. Moore
[1] (his original assessment was doubling every year [2]). The “International
Technology Roadmap for Semiconductors” (ITRS), a consortium of industry
microchip manufacturers, projects this scaling will continue for at least another
decade [3]. The increase in transistor count comes in large part from shrink-
ing the device dimensions, and while impressive, this fantastic trend cannot
continue indefinitely as sizes reach near atomic scales. The days of exponen-
tially increasing processing power from technology generation to generation by
traditional device scaling techniques are drawing to a close.

New and novel architectures will be required to continue to push our capac-
ity for processing, transmitting and storing information much beyond present
day limits. One such idea is the use of quantum entanglement for massively
parallel computation in an ever increasing number of physical systems [4]. The
range of problems where such an architecture will be advantageous is still lim-
ited however, and a feasible implementation of such a system still seems a long
way off. Another proposed technique is the use of quantized magnetic flux in
superconducting circuitry. Termed “rapid single-flux quantum” (RSFQ) logic
[5, 6], quantized flux units may be manipulated orders of magnitude faster
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than today’s electronics with extremely low power requirements. Unfortu-
nately, the deep refrigeration required for the superconducting circuitry makes
this architecture impractical for wide spread adoption. There are numerous
other proposed solutions for next generation computation (e. g. single-electron
transistor, single-atom transistor, hybrid CMOL technology, etc). All have ev-
ident advantages and drawbacks and all are being actively pursued as unique
paradigms.

In fact, even pushing traditional silicon structures to their ultimate size
limits will require a fundamental shift in their operational physics. In present
day devices, current carrying electrons can be accurately described by a par-
ticle theory. As the devices are pushed to their nanoscale limits, the quantum
mechanical wave properties of the current carrying particles will have an in-
creasing impact on an accurate description of the device properties.

This dissertation is divided in to two main parts. Part I develops theory
and numerical algorithms to analyze the performance characteristics, and find
optimal operating conditions of traditional silicon devices when scaled down to
their ultimate nanoscale limits. Part II is aimed to develop an understanding
of the noise characteristics of an analog (superconducting) signal sampling
circuit used in existing RSFQ electronic devices and its potential application
for future quantum computing implementations.
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Part I

Ballistic Thin-Channel
MOSFETs

Introduce knowledge gradually, avoiding bloodshed if possible.
M. E. Saltykov-Shchedrin, taken from “Dynamics of Josephson

Junctions and Circuits” by K. Likharev.
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Chapter 2

Theory of Ballistic NanoFETs

Figure 2.1: Projections of transistor critical length scaling [7].

The metal-oxide-semiconductor field-effect-transistor (MOSFET) is the cor-
ner stone of integrated circuit technology used for the vast majority of present
day information processing. The continued shrinking of the MOSFET com-
ponents increases the overall speed at which information may be processed in
two primary ways. First, increased circuit packing density allows more transis-
tors; providing more computing power in a single chip. Second, lower device
and circuit capacitance allows the system to be clocked at a higher speed,
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and smaller device dimensions reduce the power consumed per clocking cycle.
Figure 2.1 shows the historical trend and projections of scaling down the phys-
ical device lengths and device half-pitch (the length between wires in adjacent
components) for present day MOSFETs. Namely, the projections show that
the physical length of the transistor gate will fall below 10 nm by 2015.

A model of the traditional n-type “bulk” channel MOSFET is shown in
Fig. 2.2. It consists of two n-doped (phosphorus) silicon source / drain regions
separated by a p-doped (boron) channel region. The channel is covered by a
gate electrode insulated from the channel traditionally by silicon dioxide due to
its ease of fabrication and perfect match with the silicon lattice. The transistor
acts as a three terminal switch and a voltage amplifier, controlling very large
current with relatively small signals. The gate electrode was historically a
metallic conductor, most commonly aluminum. Modern implementations use
highly doped polysilicon electrodes which have better fabrication properties
and ease tuning of the gate workfunction which affects the device threshold
voltage.

Formally, we should analyze both n-type and p-type MOSFETs used in
CMOS logic, as the different hole mass slightly changes the behavior of the
p-type device. However, much modern circuitry uses so-called dynamic logic
which requires a factor of 2 fewer transistors over static implementations. Fig-
ure 2.3 shows a typical precharge-evaluate two footed NAND gate [8]. Ini-
tially, the clock pulse is low, and the p-FET (shown in red) is precharged so
Vout = VDD. When the clocking pulse goes high, the evaluation n-FET (shown
in green) is turned on, a discharge path to ground is created and Vout may
be pulled to ground depending on input nodes A1, A2. In a typical case, the
p-FET may shut before the evaluation pulse. The voltage VDD remains stored
for a short time in the line capacitance near Vout. The speed of the gate is then
entirely defined by the switching dynamics of the n-FETs. Hence, most of the
work in this field and all the work in this dissertation is focused on evaluation
of the n-type device.

n+n+ p+

Vg

Vd

Gate

Insulator

Source Drain

Figure 2.2: Single gate transistor.
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V out

V SS=0

V DD

A 1

A 2

V clock

Figure 2.3: Two terminal Dynamic Logic NAND gate.

A full discussion of the physics of this device is out of the scope of this work,
for an in-depth treatment see the monograph by Sze [9]. The important point
to note is that as the length of the gate is reduced, electrostatic control of the
channel region may be degraded, hindering device performance. Additionally,
the field produced by the drain electrode may begin to affect the electrostatics
inside the depletion region. To mitigate these so-called “short channel” effects,
all device lengths and the supply voltage should be scaled down similarly,
maintaining a constant electric field in the device [10]. To reduce the channel
thickness, the doping density of the electrodes is also increased by the same
proportion, reducing the effective depletion width at a given voltage.

As the physical gate length of the transistor approaches 10 nm however,
increasing the channel doping by the proper scaling ratio may not produce
a depletion width scaled by the same factor. 2-D electrostatic effects, such
as “drain-induced barrier lowering” (DIBL) may begin to affect the channel
potential.

At such small gate lengths, constant field scaling rules dictate extremely
thin channels. The channel thickness reaches a level where quantum electron
states becomes strongly confined in the z-direction. The confined nature of the
electric field across the depletion region requires an exponential dependence
in the transport direction. To first order the potential in the center of the
channel is proportional to ∝ exp(−πLc/2Λ), where Lc is the device channel
length, and Λ the characteristic scaling length. Using standard separation of
variables [11] and matching approximate boundary conditions, Frank et al.
[12] showed that length Λ must satisfy the following estimate:

εsi tan(πtox/Λ) + εox tan(πtc/Λ) = 0, (2.1)
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where εsi, εox are the dielectric constants of the channel and insulator oxide,
tox is the oxide thickness and tc is the channel thickness or depletion width.
Short-channel and DIBL effects will begin to onset when Lc/Λ < 2, or for
practical devices when the gate length Lg reaches approximately 10 ∼ 20 nm
[13]. Additionally, for sub-20 nm devices, the drift-diffusion model, which
has had so much success describing device physics, may begin to fail due to
the limited number of particle interactions through the transport channel.
Coupled with the lowered particle mobility from such high doping levels, a
completely new model of transistor dynamics needs to be explored to push
device scaling beyond 10 nm gate lengths.

The goal of this work is to characterize and optimize MOSFET structures
beyond the 10 nm frontier. We explore the performance of these nanome-
ter scale devices and examine the ultimate scaling limits of silicon transistors
including consideration for fabrication tolerances and power consumption lim-
itations. We have developed a novel and flexible device simulator as a self-
consistent solution of the Poisson and Schrödinger equations which calculates
dynamics for a vast range of device parameters and material properties. The
simulator is capable of calculating several treatments of channel electrons in
increasing levels of complexity including classical [14], WKB approximation
[15], 1-D [16], and a full 2-D quantum solution. In addition it is written to run
on either a single processor machine or distributed parallel architecture (see
appendix B.2), and will configure itself for either architecture with a simple
compile time flag. The simulator was written (and re-written multiple times)
entirely within our group, using standard algorithms where appropriate.

2.1 Ballistic Model

Proper scaling techniques will control unwanted short channel effects up to
a point. Ultimately however, more advanced device structures will likely be
required to reach sub-10 nm device lengths. In particular, dual gate (DG)
structures have become an attractive option for reaching ultimate size scal-
ing limits because the electrostatic potential closely follows that of the gate,
minimizing the short-channel effects over the single gate counterparts. A com-
parison of the properties of single and double gate transistors is discussed in
chapter 3. Specifically, DG structures have twice better control of the chan-
nel electrostatics over their single gate counterparts while lowering the device
power consumption almost an order of magnitude.

Fabrication of double-gate structures however, requires a move to more
complex silicon-on-insulator (SOI) technology where layered silicon-insulator
structures are employed. Because the silicon channel is surrounded on both
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Figure 2.4: Model of ballistic MOSFET structures for device with (a) thin, doped
channel extensions, (b) single-gate, grounded back-plane, and (c) bulk electrodes.
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sides by an insulator, the particles are confined by the abrupt Si-SiO2 inter-
face at the channel edges. The silicon layer creating the channel may be made
nearly arbitrarily thin with the electrons perfectly confined. Advanced fab-
rication processes are being actively being explored. Popular options are the
self-aligned planar structures, shown in Figs. 2.4(a), 2.4(c), so-called “finFET”
structures, shown in Fig. 2.5 [17], nearly identical “vertical”-fin structures, and
gate-all-around structures [18]. While the gate electrode capping the silicon
channel makes the finFET device slightly different than the planar structures,
the fringing fields near these corners are not too important. The key point
is that in all these structures, the gate has optimal control over the channel
electrostatics and they will all scale similarly. The planar DG MOSFET may
be seen as a close approximation to the “ultimate” MOSFET.

Figure 2.4 shows the three model FET structures under consideration. One
with thin doped channel extension regions (panel (a)) and the other with the
conducting channel connecting two wide bulk electrodes (panel (c)). Panel (b)
shows the single gate transistor similar to the model with doped extensions
with a long, grounded back-plane.

The electrodes are connected to a silicon channel separated from two sim-
ilarly biased doped silicon gate electrodes by a silicon-dioxide insulator. In
these systems, the particles are confined by the discontinuity at the Si-SiO2

interface, so the channel doping becomes unnecessary. In fact, any doping of
the channel produces randomly located single scatters degrading the electron
mobility and causes unpredictability in device fabrication. So doping of the
channel becomes completely undesirable and we consider an intrinsic channel
without any fixed scatters.

The inelastic, electron-phonon scattering time in silicon, at room temper-
ature, is about 10 fs [19], which yields an energy relaxation time for high
energy carriers near τ ≈ 200 fs [20, 21]. The kinetic energy of electrons
in the channel is near their thermal injection energy with average velocity

Figure 2.5: Schematic of a double-gate finFET [17].
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〈v〉 =
√

2T/mx ≈ 2× 107 cm/s, with the effective electron mass in the trans-
port direction mx = 0.19m0, T the system temperature (in energy units), and
room temperature thermal value T = 26 meV. This gives a mean free path
for inelastic scattering l = τ〈v〉 ≈ 40 nm, i. e. much larger than any device
dimensions under consideration. Hence, we are left with only elastic surface
roughness scattering.

The best experimental results [22–25], and models [26], indicate that the
electron mobility may be quite high indeed, at least as high as µ = eτ/mx ≈
250 cm2/Vs for a channel thickness of 2.5 nm. This leads to an elastic scat-
tering time τ = µmx/e ≈ 27 fs with a elastic mean free path l ≈ 5.5 nm.
While this may still be shorter than the total channel length, the transport is
effectively regulated in a fairly narrow section of the channel near the top of
the potential barrier. In this case, the electrons may be modeled as travers-
ing the channel without encountering any scattering events and the transport
considered ballistic. These are the best mobilities for now, future investigation
may further reduce the surface roughness, increasing l even higher. But even
at present mobilities, the ballistic assumption may be quite accurate. In any
case, ballistic transport represents the limit of an ideal device when scaled
down to ultimate lengths.

Ballistic transport implies that the particle wavefunctions will be coherent
along the entire length of the channel and a full quantum treatment to account
for their wave nature is required. In this respect, ballistic devices may seen as
one implementation of so-called “electron optics” systems [27, 28].

For the electrodes, analysis of dopant fluctuations yields the opposite con-
clusion regarding doping levels. Any number of dopants ND will have nat-
ural fluctuations with standard deviation σND

= 〈(∆ND)2〉 = N
1/2
D . In or-

der to maintain device reproducibility above 90%, the doping should be high
enough to keep ND/N

1/2
D < 10%. Since the volume of the electrode regions

is on the order 100 nm3, the electrode doping should be at least as high
as 0.1 nm−3, well past the degeneracy threshold for silicon, but still below
the solid solubility limit. In most of this work we accept a doping density
nD = 3× 1020 cm−3 = 0.3 nm−3, and all donors are assumed activated. Devi-
ations from this doping value will be clearly noted.

Due to its close approximation to the “ultimate” MOSFET, it is not sur-
prising that these devices have been aggressively studied in recent years. The
first analytical description a ballistic MOSFET was given by K. Natori [29],
based on the 1-D capacitive response of the channel electrons to the gate po-
tential (also see the pioneering work of Frank et al [30]). A similar approach
was taken by Lundstrom [31] to describe ballistic FETs in terms of a somewhat
phenomenological back-scattering probability. The pioneering results of Natori
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are outlined in section 2.2, but his 1-D theory is inadequate to describe the two
dimensional electrostatic effects. These effects were subject of an early analyt-
ical study [32] based on a parabolic approximation for the channel potential
[33, 34]. Unfortunately, the field confinement in thin channel devices gives an
exponential behavior of the potential [12] making the parabolic approximation
only asymptotically valid for long channels. This exponential model of Frank
has been used to develop a compact model of the threshold voltage for a sur-
rounding gate configuration [35] and to derive closed-form expressions for the
current density [36–39] in long channel devices.

While none of the analytic theories above can fully account for all the ef-
fects contributing to performance degradation as the transistor is scaled down,
the reduced system size makes it an attractive option for numeric simulation.
Other groups have developed models of transport which are capable of includ-
ing scattering in the channel region [40]. In particular, an approach based on
calculation of non-equilibrium (Keldysh) Green’s functions [41, 42] has received
a lot of attention. The “non-equilibrium Green’s function” (NEGF) method
has been used in its one dimensional form to analyze the back-scattering coeffi-
cient proposed by Lundstrom [43] and to analyze the effect of source-to-drain
tunneling through the potential barrier [44, 45]. This model was later ex-
panded to a two dimensional solution of the Green’s function in both real [46]
and k-space [47]. Most recently a full three dimensional model was proposed
[48]. Despite being more general, inclusion of scattering effects is extremely
cumbersome so most results presented in these works neglect all scattering in
the undoped part of the channel as well. In this case the NEGF method es-
sentially reduces to the direct solution of the Schrödinger equation developed
in this dissertation. For example, Fig. 2.6 shows the calculated source-drain
current in the NEGF formalism and the results of our work for two different
devices [44, 49]. The simple, rapid solution of the Schrödinger equation indeed
reproduces the results of the more complex NEGF method.

Another group has developed a self-consistent numeric solution of the
Schrödinger-Poisson equations based on the quantum-transmitting boundary
method (QTBM) [50, 51]. However, the main analyses of these works was
for the so-called done-bone structure and the results presented not extensive
enough for a clear picture of ultimate scaling to emerge.

The simulator developed within our own group to analyze ultra-small MOS-
FET devices originally began as a solution of the Schrödinger equation in the
WKB approximation [14, 15] and was later expanded with the results pre-
sented in this dissertation [16, 49, 52, 53].

In all cases, the solution of the Schrödinger equation is based on the Hartree
approximation, ignoring the exchange interaction term resulting for the overlap
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Figure 2.6: Comparison of numerical results calculated with the NEGF to the direct
solution of the Schrödinger equation.

of electron wavefunctions. In the bulk electrode regions, this effect amounts to
a universal shift in the level of the conduction band. It is accounted for in the
bulk regions phenomenologically by taking the bottom of the conduction band
as zero as using experimentally obtained values for the band gap. In addition,
the Fermi energy is calculated as integral over momentum states, independent
of the exchange-correlation terms, so these effects are encompassed through the
use of experimental values for the effective masses in each conduction valley. In
the channel region, there is no positive charge background, so the net Coulomb
effect is not screened by a background charge. As a result, the net Coulomb
potential felt by an electron in the channel far eclipses the exchange term and
the exchange correlation effect may be ignored here to a good approximation.
As a crude model we may write the Coulomb potential between two particles
a distance L apart (assuming a cylindrical shape in the device width) as

Uc ≈ e2nDtcL ln

(
L

tc

)
. (2.2)

The exchange correlation term

Uxc = −e
2

2

∫
ψ∗i (r)ψj(r)ψ∗j (r

′)ψi(r′)

|r − r′| dτdτ ′, (2.3)

has integrand proportional to inverse radial distance 1/r, hence the exchange
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potential is roughly proportional to the cube root of the charge density [54]

Uxc ∝ e2

2
n

1/3
D . (2.4)

This yields ratio

Uc/Uxc ∝ 2n
2/3
D tcL ln

(
L

tc

)
& 10, (2.5)

for practical cases. In the absence of the positive background, the exchange
correlation effect is largely overshadowed by the Coulomb potential.

Several experimental devices approaching the nanoscale limits have also
been realized [55–60] including finFET structures [61–63], which have scaled
the physical gate length to the 10 nm threshold. Some of the results have
been quite dramatic, with evidence that the devices were sufficiently short to
demonstrate evidence for the observation of direct source-to-drain tunneling
of the electrons. For reviews see [64–67].

2.2 Main Analytical Relations

The dominant feature of the DG devices shown in Fig. 2.4 is the ultra-thin
body of the channel. For devices of practical interest, the channel thickness
tc < 3 nm. In this case the particle wavefunction is strongly confined in the
z-direction with energy spectrum

Ez,n =
~2n2π2

2mzt2c
, (2.6)

with Plank’s constant ~ = 1.054×10−34 Js, effective mass mz perpendicular to
the channel. For tc = 2 nm and free electron mass mz ≈ m0, the confinement
energy of the lowest state is Ez,1 ≈ 100 meV.

The constant energy surface [9] for the band structure of silicon is shown in
Fig. 2.7. Each doubly degenerate valley is composed of a light electron effective
mass (ml = 0.19m0) and one heavy effective mass (mh = 0.98m0). The
confinement energy for valleys with the heavy mass oriented in x̂, ŷ is roughly
5 times larger than the ẑ valleys and may be ignored as a first approximation.

The large confinement energy creates effective sub-bands for transport in
the channel with only the lowest level or levels contributing. Considering only
the lowest sub-band, and a sufficiently wide device, the electron wavefunction
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Figure 2.7: Constant energy surfaces for Si [100]. The red ellipses indicated electron
heavy mass oriented in ẑ.

may be partitioned

Ψ(x, y, z) =
2

tc
cos2

(
πz

tc

)
ψ(x)eikyy, (2.7)

and the electron “sees” effective potential energy in the transport direction

U(x) = Φ̄(x) + Ez,1, (2.8)

with average potential (see section 3.1)

Φ̄(x) =
2

tc

tc/2∫

−tc/2

Φ(x, z) cos2

(
πz

tc

)
dz. (2.9)

The total effective potential energy is simply increased by confinement energy
Ez,1. Note that this also increases the particle band-gap by Ez,1 + Eh

z,1 with
hole confinement energy Eh

z,1. All devices considered will assume the silicon
channel is oriented in the [001] direction.

2.2.1 Fermi Energy

Deep inside the doped electrodes, all electric fields are screened and the po-
tential becomes constant. We define the Fermi level for the electrode in this
region relative to the bottom of the conduction band. An ellipsoid with prin-
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cipal axis lengths a,b,c occupies a volume V = (4π/3)abc. Hence the volume
of phase space with energy E < EF is

Vp =
4π

3
(2mxEF)1/2(2myEF)1/2(2mzEF)1/2, (2.10)

with total number of occupied states

N = gsgv
V (2EF)3/2

6π2~3

√
mxmymz, (2.11)

accounting for spin and valley degeneracies gs, gv. For a given density nD of
activated donors, the Fermi energy for the electrode is then found as

EF =
~2

2m̄

(
π2nD

2

)2/3

, (2.12)

where we have used gs = 2, gv = 6, and

m̄ ≡ (mxmymz)
1/3 =

(
m2
lmh

)1/3
. (2.13)

2.2.2 Bulk Electrode Density

The density of electrons with energy

E =
~2

2

(
k2
x

mx

+
k2
y

my

+
k2
z

mz

)
, (2.14)

in the bulk electrodes may be found by integration

n3D =
gsgv
(2π)3

∫∫∫
f(E) dkx dky dkz, (2.15)

where f(E) is the Fermi distribution function

f(E) ≡ {1 + exp [(E − EF) /T ]}−1 , (2.16)

and µF the electrode chemical potential.
Replacement of the terms ki, i ∈ {x, y, z} in ellipsoid Eq. (2.14) with

ki =
√

2mik
′
i, (2.17)
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yields constant energy surface r2/~2 = k′x + k′y + k′z = [E − Φ(x, z)]/~2 with
differential volume element for incident angles θ, φ,

dkx dky dkz =
(2m̄)3/2

~3
r2 sin(θ) dr dθ dφ, (2.18)

and m̄ defined by Eq. (2.13). In the two dimensional case, the constant energy
surface gives differential area element

dkx dky =

√
mxmy

~2
dE dθ. (2.19)

Again using gs = 2, gv = 6, Eq. (2.15) may be rewritten

n3D(x, z) =
3(2m̄T )3/2

π2~3
F1/2 {[µF − Φ(x, z)] /T} . (2.20)

The Fermi-Dirac integral used in Eq. (2.20) of general order j is defined as

Fj(x) ≡
∞∫

0

yn

1 + exp(y − x)
dy. (2.21)

Note that this definition lacks a more standard normalization by gamma func-
tion 1/Γ(n+1) [68]. The chemical potential µF for each electrode is found nu-
merically at the beginning of program execution by enforcing electro-neutrality
between the background dopant charge and the free particle charge

3(2m̄T )3/2

π2~3
F1/2 {µF/T} = nD. (2.22)

2.2.3 Doped Extension Density

For devices with doping in the ultra thin body region, wavefunction partition
(2.7) implies that the full free electron density in the thin doped region may
be written as

next
3D =

2

tc
cos2

(
πz

tc

)
next

2D(x), (2.23)
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for two dimensional sheet density next
2D(x). The sheet density may again be

found from Fermi distribution (2.16)

next
2D(x) =

gsgv

(2π)2

∫∫
f(E)kx ky,

=
gsgv

√
mxmy

(2π~)2

∞∫

0

2π∫

0

f(E) dE dθ,
(2.24)

where we have used area element (2.19). This integral is evaluated as

next
2D(x) =

√
mxmy T

π~2
ln

[
1 + exp

(
(µF − Φ̄(x))/T

)]
. (2.25)

As a side note, this result can also be derived from the 2-D density of
states. The number of points in k-space area A = πk2 is given by

N = gsgvUA, (2.26)

with unit cell area

U =

(
L

2π

)2

. (2.27)

The density of states is given by

G2(E) =
dN

dk

dk

dE
, (2.28)

with density per unit area

g2(E) = gsgv

√
mxmy

2π~2
. (2.29)

The total particle density is then

n2D =

∫
g2(E)f(E) dE, (2.30)

which reproduces Eq. (2.25).
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2.2.4 Charge Density

Given the donor density nD and electrostatic potential Φ(x, z), the total charge
density in the electrode regions is then calculated by Eqs. (2.20), (2.23) as

ρ = −e×





(
nD − 3 (2m̄T )3/2

π2~3
F1/2 [(µF − Φ(x, z))/T ]

)
,

2 cos2

(
πz

tc

)(
nD −

2
√
mxmy T

π~2tc
ln

[
1 + exp(µF − Φ̄(x))/T

])
,

(2.31)
in the bulk and doped extension regions respectively.

A detailed description of the calculation of the electron density in the chan-
nel will be deferred to later chapters. Chapter 3 discusses the 1-D Schrödinger
approximation relevant for device with thin electrode extensions and chapter
4 discusses the full 2-D solution required for devices with bulk electrodes.

2.2.5 Device Current

Once a self-consistent solution for the device potential is known, we may cal-
culate the one-direction current density as a summation over incident states.
The current of a single quantum (plane wave) state in the bath is

I1 = e i~
2mx

(Ψ∂xΨ
∗ −Ψ∗∂xΨ) ,

= e
~kx
mx

|Ψ|2 ,

= e
~kx
mxLB

,

(2.32)

for a particle with wavevector kx =
√

2mxE/~ and wavefunction Ψ normalized
to length LB. The current of the single state moving one direction through
the device channel (i. e. left to right) is

Ik = e
gsgv~kx
mxLB

D(k)f(E), (2.33)

where D(k) is the probability that a particle in state k transmits through the
channel. The total one direction device current may then calculated by the
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usual summation over states

I =
∑

k

Ik = e
gsgv~
mxLB

∑

k

kxD (k) f(E). (2.34)

2.2.6 Landauer Conductance

For a 2-D system, and assuming a large number of incident modes, Eq. (2.34)
may be written

I = e
gsgv~tB
mx(2π)2

∫

kx>0

kxD(k)f(E) d2k, (2.35)

for bulk electrode thickness tB. Introducing “incident angle” θ such that
kx = |k| cos(θ) and using ellipsoidal differential area (2.19) the current may be
expressed as

I = e
gsgv
2π~

∞∫

0

dE f(E)


tB

√
2mzE

π~

1∫

0

d(sin(θ))D(E, θ)


 . (2.36)

The term in square brackets is nothing more that the total transmission prob-
ability D(E) (see section 4.1.2) and the total current is found from the balance
of left and right moving states

I = e
gsgv
2π~

∞∫

0

dED(E) [f(E)− f(E − eVd)] . (2.37)

For small applied drain voltage, in the limit T → 0, f(E)− f(E − eVd) ≈
eVd, and assuming perfect transmission through the channel D(E) → 1. Equa-
tion (2.37) reduces to the Landauer formula for conductance through a single
mode quantum point contact

I = GVd = e2
gsgv
2π~

. (2.38)

This is the natural result of a transmission probability based formalism [69].

2.2.7 Aperture Limit

In the limit that the channel length Lc → 0, the channel represents a small
opening in a thin insulating diaphragm between the conducting electrodes.
The conductance of this aperture may be found from the extension of Sharvin’s
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conductance to the diffusive limit [70]. The device conductance, per unit width
is found to be

G/W = GS

(
1 +

3π

8

tc
l

)
, (2.39)

which is Sharvin’s conductance [71]

GS/W =
2e2

h

k2
F tc
4π

, (2.40)

corrected for the diffusive environment with mean free path l.

2.2.8 Capacitance Model

When the channel length is much larger than the both the channel and oxide
thicknesses Lc À tc, tox, the potential along the center of the channel develops
a long, constant in x̂, plateau region. In this case the potential only depends
on variation in the z-direction and the device may be modeled simply as two
capacitors connected in series along ẑ [65]

C−1
eff = C−1

g + C−1
q . (2.41)

The first term represents the regular geometric capacitance [65]

C−1
g =

tox
2εox

+

(
1

12
+

5

8π2

)
tc
εsi
, (2.42)

where the numerical factors are modified from the single gate result [29]

C−1
g =

tox
εox

+

(
1

3
+

5

8π2

)
tc
εsi
, (2.43)

to account for the double gate structure. The second term in Eq. (2.41) is the
“quantum” capacitance whose equilibrium value is simply proportional to the
two dimensional density of states [72]

Cq = e2
2
√
mxmy

π~2
, (2.44)

with electron charge e. For most cases of practical interest Cq À Cg, so

Ceff ≈ tox
2εox

, (2.45)
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and the charge in the channel may be written

Qchan = Ceff(Vg − Vt), (2.46)

with gate voltage Vg and threshold voltage shift Vt. This shift may seen as
simply the difference between confinement energy Ez,1 and the Fermi energy in
the gate electrode [65]. Note that the charge in the channel, and thus the chan-
nel potential depend upon the gate bias and threshold voltage, which changes
proportional to the Fermi energy in the gate electrode, but is independent of
the source and drain voltages. Thus, shifting the threshold voltage may be
achieved through engineering of the gate workfunction.

The capacitive model leads to a simple, yet somewhat bulky expression for
the current density [29]

J ≡ I/W, (2.47)

J = e
4
√

2myT
3/2

π2~2

[F1/2(u)−F1/2(u− νd)
]
, (2.48)

and in terms of normalized drain voltage νd = eVd/T ,

u = ln
[√

(1 + eνd)2 + 4eνd(eρ − 1)− (1 + eνd)
]
− ln(2),

ρ =
π~2Ceff(Vg − Vt)

2eTmy

.

(2.49)

Equation (2.48) may be reduced to more useful expressions in the most
interesting cases of subthreshold current Vg < Vt, eVd À T [65]

JT = e

(
2
√
myT

3/2

π3/2~2

)
exp [e(Vg − Vt)/T ] , (2.50)

and saturation current F1/2(u) ≈ (2/3)u3/2 [29, 65],

JS =
4
√

2~
3
√
eπmy

[Ceff(Vg − Vt)]
3/2 . (2.51)

While this model misses important factors required to analyze the device
scaling to short channel lengths, they provide intuitive insight into the dynam-
ics of ballistic devices. Namely, Eqs. (2.50), (2.51) show that a long channel
ballistic transistor would have ideal, subthreshold slope ∝ 1/T and perfect cur-
rent saturation. These are the most important transistor characteristics: the
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subthreshold slope determines how much current leaks through the transistor
in the off-state and the saturation current specifies how well the transistor may
be engineered into an integrated circuit. The mechanism of current saturation
for the ballistic transistor is different than a traditional MOSFET device. It is
clear from Eq. (2.48) that the net device current can be viewed as a balance
between left and right flowing current states. For small applied drain voltage
eVd < T , the difference between the Fermi-Dirac integrals is approximately lin-
ear and the device expresses a clear linear transport region. When eVd À T ,
the second term in square brackets in Eq. (2.48) becomes negligible and cur-
rent saturation is the result of exhaustion of available electrons between the
potential plateau and the source Fermi level.

While the above results indicate that the ballistic transistor may be a
viable option for ultimately scaled silicon devices, they cannot describe the
2-D electrostatic effects important for short channel devices or direct source-
to-drain tunneling of electrons through the potential barrier. Additionally,
even in the limit Lc → ∞, the device current may not be regulated by the
long plateau region, but rather accumulated electrons near the source electrode
(see section 4.2.1). For an accurate account of these effects and hence proper
description of scaling dynamics we implement a numeric solution of the two
dimensional Poisson equation and Schrödinger equation for a description of
channel electrons.

In contrast with long devices, the channel potential for short channel de-
vices in the off-state is roughly quadratic (e. g. see section 4.2.4). The trans-
mission probability through a quadratic barrier, which determines the tran-
sistor current (see below) is exactly solvable in the WKB approximation by
the well-known Kemble formula (Ch. 50 of Ref. [73]). The transmission
probability is given by

D(Ex) = (1 + exp [2π (Φ0 − Ex) /~ω])−1 , (2.52)

with inverted oscillator frequency

ω2 =
8Φ0

mxL2
c

, (2.53)

and potential maximum

Φ0 = Φmax(x) + Ez,1. (2.54)

By coincidence, Eq. (2.52) takes the exact same form as the Fermi distribu-
tion and the tunneling current may be evaluated in terms of an “inversion
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temperature” [65]
Tinv ≡ ~ω/2π. (2.55)

Direct comparison the Tinv with the lattice temperature implies that tunneling
will begin to dominate when Lc < LQ, where

LQ =
2~
πT

(
Φ0

mx

)1/2

. (2.56)

For barrier height Φ0 = 0.2 eV and T = 26 meV, the tunnel length LQ ≈ 7 nm,
in good general agreement with the results of chapter 4.

2.2.9 Voltage Gain

For an ultimate analysis of device performance we are looking to find accept-
able trades-offs between the device size and the quality of control over the
current including saturation properties and sub-threshold characteristics. All
of these properties may be encapsulated by a single figure-of-merit at fixed
current density (per unit device width), the voltage gain. Defined as

Gv ≡ ∂Vd
∂Vg

∣∣∣∣
J=const

, (2.57)

the voltage gain may also be seen as the ratio of the device transconductance
(∂J/∂Vg) to the differential resistance (∂J/∂Vd). In the subthreshold domain
it is a measure of inverse DIBL effects and in the on-state, a measure of
the quality of the saturation. The voltage gain is not necessarily a popular
engineering figure since for an ideal device in saturation Gv →∞. However, it
is a powerful way to visualize the response of the effective channel potential to
applied gate bias and is useful for placing a lower bound on device performance
requirements. Fundamentally, integrated circuits require Gv > 1, but a more
practical measure may be Gv > 2 to consider the device a useful candidate.

We may find an analytic result for the voltage gain in the subthreshold
regime where all electrons have been effectively expelled from the channel. We
assume a simple three point finite-difference representation for the channel
potential, which essentially represents a quadratic solution between the node
points. The node points considered are shown in Fig. 2.8, and the electron
density taken to be strictly zero everywhere. We consider the finite difference
solution for points φc, φox in the middle of the channel and oxide and connect
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Figure 2.8: Quadratic model for the channel potential.

the solutions at the channel-oxide interface point φi. This yields relations

Vd − 2φox
L2
c

+
Vg + φi − 2φox

t2ox
= 0,

Vd − 2φc
L2
c

+
2φi − 2φc

t2c
= 0,

φi − φox
tox

= α
φc − φi
tc

,

(2.58)

where α ≡ εsi/εox is the ratio of the dielectric constants in the channel and
oxide. Solution of these equations yields the potential in the center of the
channel

φc =
2L4

cVg + (2αt3oxtc + 2t2oxt
2
c + 2αL2

ctoxtc + L2
ct

2
c + 2L2

ct
2
ox)Vd

2 (2t2oxL
2
c + L4

c + 2αt3oxtc + 2t2oxt
2
c + 2αL2

ctoxtc + L2
ct

2
c)

. (2.59)

The result is not terribly intuitive in this form, but for subthreshold current

JT ∝ exp (−eφc/T ) , (2.60)

the voltage gain may be calculated

Gv =
2r2

c

1 + 2αβox (1 + r−2
ox ) + 2r−2

ox + 2β2
ox

, (2.61)

in term of length ratios
rc ≡ Lc/tc,
rox ≡ Lc/tox,
βox ≡ tox/tc.

(2.62)

A comparison of this model to the full numeric simulations are shown in section
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4.2.5.

2.2.10 Power

A major problem encountered by circuit designers is chip power consump-
tion. Circuit power consumption is already taxing today’s VLSI designs, a
problem which may only become worse as components begin to operate in
the ballistic regime [74]. The total IC power requirements depend a lot on
circuit architecture and design. However, we may gain insight into the issue
with a crude model which captures the two most important aspects of circuit
power, dynamic power used during the switching transients and static power
leaked in the off-state. As a first approximation, the total circuit power may
be represented as a sum [75, 76]

P = Pstat + Pdyn (2.63)

of static,
Pstat = IOFFVDD, (2.64)

and dynamic,

Pdyn =
∑
i

αiCiV
2
DDf, (2.65)

contributions with drive voltage VDD. Here Ci is the total capacitance of
circuit block i, f the clocking frequency and αi the circuit “activity factor” of
the ith circuit block. For a given circuit block with capacitive recharging time

τi =
CiVDD
ION,i

, (2.66)

no more than fraction
p = fτ, (2.67)

of the clock frequency should be taken for capacitive recharging. In general,
p ¿ 1 and for a constant circuit speed requirement, assuming constant on-
state current density in each circuit block, equation (2.63) may be conveniently
rewritten in terms of the power density

P/W = (λJON + JOFF)VDD, (2.68)

in terms of on and off state current densities

JOFF ≡ IOFF/W,
JON ≡ ION/W.

(2.69)
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The “effective activity factor” is given by

λ ≡ p
∑
i

αiWi/W, (2.70)

where Wi is the width of the ith circuit block, and W the total circuit width.
The strength of Eq. (2.68) is its simplicity. It clearly shows the trade-

off between static and dynamic power requirements and a minimum power
operating point may be found in terms of just two parameters λ, JON. The
static and dynamic components may be calculated readily from the transistor
characteristics J(Vd, Vg). For a fixed VDD and JON, the gate voltage is found
such that

JON − J(VDD, VON) = 0. (2.71)

The off-state current is then calculated

JOFF = J(VDD, VON − VDD). (2.72)

The first step may be interpreted as optimization of the gate workfunction for
the transistor to provide some specified operating current for the circuit JON .
The second step is then a measure of how well the circuit drive voltage VDD
shuts the current in the transistor off-state.

A typical plot of total power density P/W versus drive voltage VDD is
shown in Fig. 2.9 for decreasing gate lengths. The dashed line shows the
linearly increasing contribution of dynamic consumption to the total power.
The colored dotted lines show the fall-off of static leakage for a given gate
length. The trade-off between static and dynamic components is clear; for
small VDD, the transistor is not well shut, while the total power at high VDD
is dominated by large switching transient currents. For each device, a clear
minimum total power develops, which may be accurately found numerically
with Brent’s method [77].

2.3 Numeric Methods

The numerical Poisson equation solver is designed specifically for the problem
of different semiconducting materials with abrupt interfaces. It is intended to
be as general as possible and the properties of each material may be tuned
independently for a general calculation scheme. It accounts for the field discon-
tinuities at the material interfaces and fully describes the relevant two dimen-
sional electrostatic effects. It also automatically accounts for band-bending
near the electrode interfaces and field penetration in the electrodes.
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Figure 2.9: Total device power versus supply voltage VDD for decreasing gate
lengths. Dashed and dotted lines represent that dynamic and static components
respectively.

2.3.1 Poisson Solver

We begin with Maxwell’s equations for the electric field in a medium [11],

∇×E = 0, (2.73)

∇ ·D = 4πρ(x), (2.74)

where ρ(x) is the electron charge and the displacement vector D is related to
the electric field E through the permittivity tensor ε̄

D = ε̄ ·E. (2.75)

In the usual way, Eq. (2.73) is automatically satisfied by the introduction of
the scalar potential

−∇Φ(x) = E. (2.76)

Plugging the relation (2.75) into Eq. (2.74) we find the standard result

∇ · [ε̄(x) ·∇Φ(x)] = −4πρ(x). (2.77)

For all devices considered, we will assume an isotropic medium, so equation
(2.77) reduces to Poisson’s equation

∇2Φ(x) = −4π

ε
ρ(x). (2.78)

There are a variety of methods available to numerically approximate a
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solution to Eqs. (2.77), (2.78). Popular methods include finite-elements [78]
and the so-called “method of lines” [79, 80]. Since the potential does not
vary wildly in our domain of interest, we choose to solve equation (2.78) using
a finite difference equation (FDE) scheme for its computational simplicity
and speed. We map the potential on a rectilinear grid with node spacings
∆x and ∆z respectively. While the basic expressions for the five-point finite
difference scheme are widely available [81, 82], it is nevertheless instructive
to look at their derivation as special care should be taken at the interface
between different materials. The derivation of the basic FDE equations will
also illuminate higher order nine-point approximations.

2.3.1.1 1-D Finite Differences

We begin by deriving the fundamental finite difference relations. The goal of a
general finite difference relation is to approximate some continuous derivative
of a function Φ(x) at point x∗ using discrete points of known values

∂nΦ(x)

∂xn

∣∣∣∣
x∗

≈
∑
j

γjΦj, (2.79)

where Φj ≡ Φ(xj) is the function value at fixed (arbitrarily spaced) points
xj and γj are undetermined weighting values. Evaluation point x∗ does not
necessarily coincide with a grid point xj. To calculate the weighting factors γj
we write the function at each xj as a Taylor expansion around x∗,

Φj ≈ Φ(x∗) + ∆j∂xΦ(x∗) +
∆2
j

2
∂2
xΦ(x∗) + . . .+

∆k
j

k!
∂kxΦ(x∗), (2.80)

where ∆j ≡ (xj − x∗). Thus if we have q node points

q∑
j=1

γjΦj =
∑

k=0

Bk(γ1 + · · ·+ γq)∂
k
xΦ(x∗), (2.81)

where

B0 = γ1 + · · ·+ γq,

B1 = ∆1γ1 + · · ·+ ∆qγq,
...

Bn =
∆n

1

n!
γ1 + · · ·+ ∆n

q

n!
γq.
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In order for Eq. (2.79) to remain a consistent approximation of the true
derivative we must require [81]

Bk = 0, k = 0, . . . , 6= n,
Bn = 1.

(2.82)

The general solution for the weighting factors γi is then given by system of
equations 



1 1 · · · 1
∆1 ∆2 · · · ∆q
...

∆n
1 ∆n

2 · · · ∆n
q

∆n+1
1 ∆n+1

2 · · · ∆n+1
q

...







γ1

γ2
...
γq


 =




0
0
...
n!
0
...



. (2.83)

This implies that in general, we need at least q = n + 1 node points to ap-
proximate a derivative of order n. If q > n + 1, there will be q − n − 1 free
parameters which in general should be solved with constraints (2.82) [81].

For the special case of ∂2
xΦ(xj), using node points γj−1,γj,γj+1 with fixed

node spacing ∆x, this yields system of equations




1 1 1
−∆x 0 ∆x

∆2
x 0 ∆2

x






γj−1

γj
γj+1


 =




0
0
2


 , (2.84)

and solving for each γj,

∂2
xΦ(xj) ≈ (Φi+j + Φi−j − 2Φj) ∆−2

x +O(∆2
x). (2.85)

It should be noted that the approximation to the derivative is O(∆2
x) only

when x∗ = xj. If x∗ 6= xj, this approximation is O(∆x). In general, the error
associated with a one dimensional finite difference approximation isO(∆q−n−1

x )
[81]. Plugging into the one dimensional form of the Poisson equation (2.78)
we find the standard finite difference relation

Φj+1 + Φj−1 − 2Φj = −4π∆2
xρj/εj. (2.86)

This expression may also be derived by defining the centered difference oper-
ator

δ̄cΦj ≡ Φj+1/2 − Φj−1/2,
δ̄cxj ≡ xj+1/2 − xj−1/2 = ∆x.

(2.87)

The continuous derivative can them be approximated ∂2
xΦ(xj) ≈ δ̄2

cΦ(xj)/δ̄
2
cxj.
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At the interface between different device regions, the finite difference re-
lations require a slightly special treatment. Because of the discontinuity of
the dielectric constant, the Taylor expansion at points across the interface is
not strictly valid. Furthermore, if the node point falls exactly on the interface,
there is an ambiguity in the value of ε in Eq. (2.77). In our model, all interface
fall in FDE node points. To derive the expression for node points that fall on
the interface, we examine the Poisson equation at (non-node) points a small
distance δ to the left and right of the interface (see Fig. 2.10), and writing the
Taylor expansions as

Φ(x−∆x − δ) ≈ Φ−
∗ −∆x∂xΦ

−
∗ +

∆2
x

2
∂2
xΦ

−
∗ + · · · ,

Φ(x+ ∆x + δ) ≈ Φ+
∗ + ∆x∂xΦ

+
∗ +

∆2
x

2
∂2
xΦ

+
∗ + · · · ,

Across the boundary, the displacement vector D must obey (Ch. 4, Ref. [11]),
D− −D+ = σ, where σ is the free charge on the surface, in our case σ = 0.
Since the surface charge is zero, by Eq. (2.78) we have in the limit that δ → 0,
ε1∂

2
xΦ

−
∗ = 0 = ε2∂

2
xΦ

+
∗ , or we can write

lim
δ→0

∂2
xΦ

−
∗ = lim

δ→0
∂2
xΦ

+
∗ = 0. (2.88)

The potential across the boundary is continuous so we also have condition

lim
δ→0

Φ−
∗ = lim

δ→0
Φ+
∗ = Φj. (2.89)

ε1 ε2
x i

x −∆−δ )(Φ *
−Φ *

+Φ (x +∆+δ )Φ

x i −1 x i +1 x
δ

Figure 2.10: Interface between difference transistor materials.
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Plugging these conditions into the Taylor expansions we see

∑
j

γjΦj =

(γj+1 + γj + γj−1) Φj + (−ε2
ε1
γj−1 + γj+1)∆x∂xΦj + (γj+1 + γj−1)

∆2
x

2
∂2
xΦj.

(2.90)

Consistency of the summation over node points as a valid approximation to
the continuous derivative (2.79) requires the system of equations




1 1 1

−ε2
ε1

∆x 0 ∆x

∆2
x 0 ∆2

x






γj−1

γj
γj+1


 =




0
0
2


 . (2.91)

Solution of this system yields approximation for the second derivative on the
boundary

∂2
xΦ(xj) ≈ [ε2Φj+1 + ε1Φj−1 − (ε1 + ε2)Φj] ∆

−2
x = 0, (2.92)

or
ε2Φj+1 + ε1Φj−1 − (ε1 + ε2)Φj = 0. (2.93)

Comparing Eqs. (2.86), (2.93), the term multiplying Φj can be seen as the
average value of the dielectric between the two regions. Note that in the limit
ε1 → ε2, the two results are identical. Equation (2.93) is the same that one
would get by simply writing Eq. (2.93) as the backward and forward differences
at the boundary ε1(Φj − Φj−1)/∆x = ε2(Φj+1 − Φj)/∆x.

Once the electron density is calculated everywhere in the device (through
Eqs. 2.31, and the channel density calculated below), the result is used as
the right-hand part of the finite difference representation of the Poisson equa-
tion. The simulator is written to allow for use of either a standard five-point
finite difference scheme or a slightly more accurate nine-point finite difference
scheme.

Given N mesh points, system of equations (2.86) can be written as a N×N
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tri-diagonal matrix equation




b1 c1 0 · · ·
a2 b2 c2 · · ·

...
· · · aN−1 bN−1 cN−1

· · · 0 aN bN



·




Φ1

Φ2
...

ΦN−1

ΦN




=




ρ1 − a1

ρ2
...

ρN−1

ρN − cN



,

(2.94)
where we have assumed Dirichlet (fixed) boundary conditions at mesh points
a1 and cN . The tri-diagonal matrix equation can be solved in O(N) operations
using back-substitution [77]. The back-substitution method is actually more
general and may be used to solve an arbitrary ordinary differential equation

∂2
xq(x) + ∂xp(x) + r(x) = 0, (2.95)

given Dirichlet boundary conditions [83].

2.3.1.2 2-D Finite Differences

In the same manner as section 2.3.1.1, we want to approximate a general
derivative of function Φ(z∗, x∗) using a rectilinear grid of known values Φi,j ≡
Φ(zi, xj),

∂nΦ(z, x)

∂mx ∂
n−m
z

∣∣∣∣
z∗,x∗

≈
∑
i,j

γi,jΦi,j. (2.96)

This notation for i,j and Φ(z, x) is adopted because of the programming con-
vention implemented. The x̂ direction is defined parallel to the device channel
and positive in the source-to-drain direction. ẑ is defined as perpendicular to
the channel and positive in the gate-to-channel direction.

2.3.1.3 5-point FDE

For node points which do not fall on the interface between device regions, we
are looking for an approximation to the derivative

(∂2
x+∂2

z )Φzi,xj
≈ γi−1,jΦi−1,j +γi+1,jΦi+1,j +γi,j−1Φi,j−1 +γi,j+1Φi,j+1 +γi,jΦi,j.

(2.97)
To determine the weighting factors γi,j, we expand the potential at each Φi,j

around the central point Φi0,j0 ,

Φi,j ≈ Φi0,j0 + ∆x∂xΦi0,j0 + ∆z∂zΦi0,j0+
1
2!

[∆2
x∂

2
xΦi0,j0 + 2∆x∆z∂x∂zΦi0,j0 + ∆2

z∂
2
zΦi0,j0 ] + · · · . (2.98)
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Collecting terms by derivative order, we find

∑
i,j

γi,jΦi,j = B0,0Φi0,j0 +B1,0∂zΦi0,j0 +B0,1∂xΦi0,j0 +B2,0∂
2
zΦi0,j0 +B0,2∂

2
xΦi0,j0 ,

where each Bm,n(γi,j) is a function of the weighting factors of the derivative
of order ∂iz∂

j
x in the expansion. Again, consistency arguments (see section

2.3.1.1) require B2,0 = B0,2 = 1, else Bi,j = 0. In the 5-point case, this gives
system of equations




1 1 1 1 1
∆z −∆z 0 0 0
0 0 ∆x −∆x 0
∆2

z

2
∆2

z

2
0 0 0

0 0 ∆2
x

2
∆2

x

2
0







γi+1,j

γi−1,j

γi,j+1

γi,j−1

γi,j




=




0
0
0
1
1



. (2.99)

The solution of this system is unique and gives γi+1,j = γi−1,j = ∆−2
z , γi,j+1 =

γi,j−1 = ∆−2
x , γi,j−2 (∆−2

z + ∆−2
x ), which gives approximation for the operator

(∂2
z + ∂2

x) Φi,j ≈ ∆−2
z (Φi+1,j + Φi−1,j) + ∆−2

x (Φi,j+1 + Φi,j−1)
−2 (∆−2

x + ∆−2
z ) Φi,j +O(∆2

z,∆
2
x).

(2.100)

Plugging into the Poisson equation (2.78) yields the standard 5-point finite
difference equation

∆−2
z (Φi+1,j + Φi−1,j) + ∆−2

x (Φi,j+1 + Φi,j−1)− 2
(
∆−2
x + ∆−2

z

)
Φi,j =

−4πρi,j/εi,j,
(2.101)

which has an associated error termO(∆2
z,∆

2
x). It is also easily derived by direct

application of the centered difference operator (2.87) (∂2
x + ∂2

z ) ≈ (δ̄2
c,x/∆

2
x +

δ̄2
c,z/∆

2
z).

Node points which lay on the interface between device regions again require
careful attention. Figure 2.11 shows a surface interface between 2 transistor
materials with different dielectric constants ε1, ε2 respectively. Again the di-
electric is assumed to jump instantaneously at the interface. At the boundary,
the solution must obey boundary conditions (Ch. 4, Ref. [11])

(
D− −D+

) · x̂ = σ = 0, (2.102)(
E− −E+

) · ẑ = 0. (2.103)

As in section 2.3.1.1 we again only write the Taylor series for points in the
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ε1 ε2

Φ*
− Φ

*
+

(x −∆−δ, z )Φ (x +∆+δ , z )Φ

Φi,j

(x −δ, z −∆ )Φ

(x −δ, z +∆ )Φ (x +δ, z +∆ )Φ

(x +δ, z −∆ )Φ

x
+δ−δ

z
Figure 2.11: Plane interface between difference transistor materials. Open circles
represent FDE points and closed circles effective evaluation points.

same device region.

Φ(z, x+ ∆x + δ) ≈ Φ+
∗ + ∆x∂xΦ

+
∗ + ∆2

x

2
∂2
xΦ

+
∗ + · · · ,

Φ(z, x−∆x − δ) ≈ Φ−
∗ −∆x∂xΦ

−
∗ + ∆2

x

2
∂2
xΦ

−
∗ + · · · ,

Φ(z + ∆z, x+ δ) ≈ Φ+
∗ + ∆z∂zΦ

+
∗ + ∆2

z

2
∂2
zΦ

+
∗ + · · · ,

Φ(z −∆z, x+ δ) ≈ Φ+
∗ −∆z∂zΦ

+
∗ + ∆2

z

2
∂2
zΦ

+
∗ + · · · ,

Φ(z + ∆z, x− δ) ≈ Φ−
∗ + ∆z∂zΦ

−
∗ + ∆2

z

2
∂2
zΦ

−
∗ + · · · ,

Φ(z −∆z, x− δ) ≈ Φ−
∗ −∆z∂zΦ

−
∗ + ∆2

z

2
∂2
zΦ

−
∗ + · · · .

(2.104)

The continuity of Φ(x, z) requires lim δ → 0 : Φ−
∗ = Φ+

∗ . Using boundary
conditions (2.102), (2.103), and zero surface charge we have relations

lim
δ→0





ε1∂xΦ
−
∗ = ε2∂xΦ

+
∗ ,

∂zΦ
−
∗ = ∂zΦ

+
∗ ,

Φ−
∗ = Φ+

∗ = Φi,j,
∂2
xΦ

−
∗ = ∂2

xΦ
+
∗ (= 0),

∂2
zΦ

−
∗ = ∂2

zΦ
+
∗ (= 0),

where we have multiplied ∂x terms by their respective dielectric constants.
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These boundary conditions exactly cancel all the first order terms in the sum
over (2.104) and we find

∂2
zΦi,j = ∆−2

z [Φi+1,j + Φi−1,j − 2Φi,j] ,

∂2
xΦi,j = 2∆−2

x

[
ε1

ε1 + ε2
Φi,j−1 +

ε2
ε1 + ε2

Φi,j+1 − Φi,j

]
.

(2.105)

Thus we have approximation for the differential operator

(∂2
z + ∂2

x)Φzi,xj
≈ 2

∆2
x(ε1 + ε2)

(ε1Φi,j−1 + ε2Φi,j+1) + ∆−2
z (Φi+1,j + Φi−1,j)

−2(∆−2
x + ∆−2

z )Φi,j.

The finite difference expression for points on a surface interface is then∇2Φ(x, z) =
(∂2
x + ∂2

z )Φ(x, z) = 0 written as

2∆−2
x (ε2Φi,j+1 + ε1Φi,j−1) + (ε1 + ε2)∆

−2
z (Φi+1,j + Φi−1,j)

−2 (ε1 + ε2)
(
∆−2
x + ∆−2

z

)
Φi,j = 0.

(2.106)

Equation (2.106) reduces to the Laplace form of Eq. (2.101) in the limit that
ε1 → ε2.

At the device corners, the finite difference equations are derived the same
way as above (Fig. 2.12). Writing the Taylor expansion for points only in the
same quadrant, we find

Φ(z + ∆z + δ, x+ δ) ≈ Φ++
∗ + ∆z∂zΦ

++
∗ + ∆2

z

2
∂2
zΦ

++
∗ +O(∆2

z),

Φ(z + ∆z + δ, x− δ) ≈ Φ+−
∗ + ∆z∂zΦ

+−
∗ + ∆2

z

2
∂2
zΦ

+−
∗ +O(∆2

z),

Φ(z −∆z + δ, x+ δ) ≈ Φ−+
∗ −∆z∂zΦ

−+
∗ + ∆2

z

2
∂2
zΦ

−+
∗ +O(∆2

z),

Φ(z −∆z + δ, x− δ) ≈ Φ−−
∗ −∆z∂zΦ

−−
∗ + ∆2

z

2
∂2
zΦ

−−
∗ +O(∆2

z),

Φ(z + δ, x+ ∆x + δ) ≈ Φ++
∗ + ∆x∂xΦ

++
∗ + ∆2

x

2
∂2
xΦ

++
∗ +O(∆2

x),

Φ(z − δ, x+ ∆x + δ) ≈ Φ−+
∗ + ∆x∂xΦ

−+
∗ + ∆2

x

2
∂2
xΦ

−+
∗ +O(∆2

x),

Φ(z + δ, x−∆x − δ) ≈ Φ+−
∗ −∆x∂xΦ

+−
∗ + ∆2

x

2
∂2
xΦ

+−
∗ +O(∆2

x),

Φ(z − δ, x−∆x − δ) ≈ Φ−−
∗ −∆x∂xΦ

−−
∗ + ∆2

x

2
∂2
xΦ

−−
∗ +O(∆2

x).

(2.107)

Again we multiply each expansion by its respective εi and using boundary con-
ditions (2.102),(2.103) the first order terms cancel. Since Φ(z, x) is continuous
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Figure 2.12: Corner interface between difference transistor materials. Open circles
indicate FDE node points. Closed circles indicate effective evaluation points.

we find approximations for the operators

∂2
zΦi,j ≈ 2

∆2
z(Σiεi)

[(ε3 + ε4)Φi+1,j + (ε1 + ε2)Φi−1,j]− 2∆−2
z Φi,j,

∂2
xΦi,j ≈ 2

∆2
x(Σiεi)

[(ε2 + ε4)Φi,j+1 + (ε1 + ε3)Φi,j−1]− 2∆−2
x Φi,j.

(2.108)

Plugging into ∇2Φ(z, x) = 0 we find the finite difference expression at corner
to be

∆−2
z [(ε3 + ε4)Φi+1,j + (ε1 + ε2)Φi−1,j] + ∆−2

x [(ε2 + ε4)Φi,j+1 + (ε1 + ε3)Φi,j−1]

−(ε1 + ε2 + ε3 + ε4)
(
∆−2
x + ∆−2

z

)
Φi,j = 0.

(2.109)

Equation (2.109) reduces to the expression at a surface (2.106) in the appropri-
ate limit and may be used to describe an arbitrary device corner. For example,
at the bottom left corner of the gate ε1 = ε3 = ε4 = εox, ε2 = εsi. These results
are also in agreement with early authors [84, 85].

We are now left with the boundary conditions at the device edges. The left
and right domain boundaries have fixed values given by the specified electrode
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potentials Vs = 0, Vd. For the top boundary, we solve the 1-D Poisson equation
via the tri-diagonal system of equations 2.94 and fix the value of the potential
along the top border.

For a symmetric dual gate device, we only need to solve the Poisson equa-
tion in the top half of the device as the potential will be symmetric in ẑ. Thus,
the middle of the channel will be the bottom boundary of the domain and the
boundary condition is a von Neumann type, where the normal derivative of
the potential is zero ∂Φ(x, z)/∂z = 0. Hence

ΦM+1,j − ΦM−1,j

2∆z

= 0,

or ΦM−1,j = ΦM+1,j, giving discrete finite difference equation

2∆−2
z Φi−1,j+∆−2

x (Φi,j+1+Φi,j−1)−2
(
∆−2
x + ∆−2

z

)
Φi,j = −4πρi,j/εi,j. (2.110)

Equations (2.101), (2.106), (2.109), and (2.110) constitute the complete set
of 5-point finite difference equations. Given N mesh points in x̂ and M mesh
points in ẑ, equation (2.101) can be written as an MN ×MN block diagonal
matrix equation of the form




T̄1 D̄d
1 0 0 0

D̄u
2 T̄2 D̄d

2 0 0
. . . . . . . . . . . . . . .
0 0 D̄u

M−1 T̄M−1 D̄d
M−1

0 0 0 T̄ uM D̄M



·




Φ̄i=1

Φ̄i=2

· · ·
Φ̄i=M−1

Φ̄i=M




=




ρ̄i=1

ρ̄i=2

· · ·
ρ̄i=M−1

ρ̄i=M



, (2.111)

where T̄i is a N ×N tri-diagonal matrix with non-zero elements corresponding
to the weights of terms Φi,j−1, Φi,j, and Φi,j+1. D̄

u,d
i is N ×N diagonal matrix

with diagonal elements corresponding to the weights of term Φi−1,j and Φi+1,j.
Φ̄i and ρ̄i are N element arrays with values ρi,j corresponding to the electron
density at mesh point (i, j). It would be grossly inefficient to try to store
the entire MN ×MN array, so we use the sparse matrix storage format and
solve the matrix equation using the Linear Bi-congruential Gradient Method
algorithm [77].

2.3.1.4 9-point FDE

For the 9-point finite difference scheme, the derivation proceeds in the same
way as section 2.3.1.3. We want to approximate the continuous operator ∇2 =
∂2
x + ∂2

z ≈
∑

i,j γi,jΦi,j as a sum over discrete known points Φi,j and γi,j are
yet unknown weighting coefficients. Now however, we add points Φi+1,j+1,

38



Φi+1,j−1, Φi−1,j+1, Φi−1,j−1. As before we write the Taylor expansions (to third
order this time) for each point Φi,j around Φi0,j0 , plug into

∑
i,j γi,jΦi,j and

collect terms of similar derivative order to find

∑
i,j

γi,jΦi,j =

3,3∑
m=0,n=0

Bm,n(γi,j)∂
m
z ∂

n
xΦi0,j0 .

Again, consistency arguments require (see section 2.3.1.1) B2,0 = B0,2 = 1,
else Bm,n = 0 which gives system of equations




1 1 1 1 1 1 1 1 1
∆z −∆z 0 0 ∆z ∆z −∆z −∆z 0
0 0 ∆x −∆x ∆x −∆x ∆x −∆x 0
0 0 0 0 ∆z∆x −∆z∆x −∆z∆x ∆z∆x 0
∆2

z

2
∆2

z

2
0 0 ∆2

z

2
∆2

z

2
∆2

z

2
∆2

z

2
0

0 0 ∆2
x

2
∆2

x

2
∆2

x

2
∆2

x

2
∆2

x

2
∆2

x

2
0

0 0 0 0 ∆2
z∆x

2
−∆2

z∆x

2
∆2

z∆x

2
−∆2

z∆x

2
0

0 0 0 0 ∆z∆2
x

2
∆z∆2

x

2
−∆z∆2

x

2
−∆z∆2

x

2
0

∆3
z

6
−∆3

z

6
0 0 ∆3

z

6
∆3

z

6
−∆3

z

6
−∆3

z

6
0

0 0 ∆3
x

6
−∆3

x

6
∆3

x

6
−∆3

x

6
∆3

x

6
−∆3

x

6
0




×




γi+1,j

γi−1,j

γi,j+1

γi,j−1

γi+1,j+1

γi+1,j−1

γi−1,j+1

γi−1,j−1

γi,j




=




0
0
0
0
1
1
0
0
0
0




.

(2.112)
Because not all of the equations are linearly independent, the solution has one
free parameter which, without loss of generality, we choose to be γi+1,j+1. The
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solution of equation (2.112) is then written

γi+1,j = γi−1,j =
1− 2∆2

zγi+1,j+1

∆2
z

,

γi,j+1 = γi,j−1 =
1− 2∆2

xγi+1,j+1

∆2
x

,

γi+1,j−1 = γi−1,j+1 = γi−1,j−1 = γi+1,j+1,

γi,j = −2 (∆2
z + ∆2

x − 2∆2
z∆

2
xγi+1,j+1)

∆2
z∆

2
x

.

(2.113)

The choice γi+1,j+1 = 0 returns us the 5-point equation of section 2.3.1.3. The
choice γi+1,j+1 = 1/6∆z∆x corresponds to the appropriate weight in the 4th
order expansion of the difference operator (2.87)

∇2 ≈ δ̄2
z

∆2
z

+
δ̄2
x

∆2
x

+

(
1

6∆z∆x

)
δ̄2
z δ̄

2
x, (2.114)

which has associated error term O(∆4
z,∆

4
x). The operator ∇2 may then be

then expressed as

(∂2
x + ∂2

z )Φi,j ≈∆−2
z ∆−2

x

{(
∆2
x −

∆x∆z

3

)
(Φi+1,j + Φi−1,j)

+

(
∆2
z −

∆x∆z

3

)
(Φi,j+1 + Φi,j−1)

+
∆z∆x

6
(Φi+1,j+1 + Φi+1,j−1 + Φi−1,j+1 + Φi−1,j−1)

− 2

(
∆2
x + ∆2

z −
∆x∆z

3

)
Φi,j

}
.

(2.115)

Plugging into equation (2.78) we find the general 9-point finite difference ex-
pression

(∂2
x + ∂2

z )Φi,j ≈
(

∆2
x −

∆x∆z

3

)
(Φi+1,j + Φi−1,j) +

(
∆2
z −

∆x∆z

3

)
(Φi,j+1 + Φi,j−1)

+
∆z∆x

6
(Φi+1,j+1 + Φi+1,j−1 + Φi−1,j+1 + Φi−1,j−1)

−2

(
∆2
x + ∆2

z −
∆x∆z

3

)
Φi,j = −4π∆2

z∆
2
xρi,j/εi,j.

(2.116)
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An alternative (but equivalent) solution may be found by direct summation of
the Taylor expansion terms for each node point

Φ(z ±∆z, x) ≈Φi,j ±∆z∂zΦi,j +
∆z

2
∂2
zΦi,j ± ∆3

z

6
∂3
zΦi,j,

Φ(z, x±∆x) ≈Φi,j ±∆x∂xΦi,j +
∆x

2
∂2
xΦi,j ± ∆3

x

6
∂3
xΦi,j,

Φ(z ±∆z, x+ ∆x) ≈Φi,j ±∆z∂zΦi,j + ∆x∂xΦi,j +
∆2
z

2
∂2
zΦi,j +

∆2
x

2
∂2
xΦi,j

±∆z∆x∂z∂xΦi,j ± ∆3
z

6
∂3
z + ∆2

z∆x∂
2
z∂x ±∆z∆

2
x∂z∂

2
x

+
∆3
x

6
∂3
xΦi,j,

Φ(z ±∆z, x−∆x) ≈Φi,j ±∆z∂zΦi,j −∆x∂xΦi,j +
∆2
z

2
∂2
zΦi,j +

∆2
x

2
∂2
xΦi,j

∓∆z∆x∂z∂xΦi,j ± ∆3
z

6
∂3
z + ∆2

z∆x∂
2
z∂x ±∆z∆

2
x∂z∂

2
x

− ∆3
x

6
∂3
xΦi,j.

(2.117)

The sum of the first two expansions (the node points in line with Φi,j) gives
the same result as section 2.3.1.3

(∂2
x + ∂2

z )Φi,j ≈ ∆−2
z (Φi+1,Φi,j) + ∆−2

x (Φi,j+1 + Φi,j−1)− 2
(
∆−2
z + ∆−2

x

)
Φi,j.

Hence, the sum of the remaining points must contribute nothing on the right-
hand side. It is easily seen that

∆−2
z ∆−2

x β

[
Φi+1,j+1 + Φi+1,j−1Φi−1,j+1 + Φi−1,j−1

− 2(Φi+1,j + Φi−1,jΦi,j+1 + Φi,j−1) + 4Φi,j

]
= 0,

(2.118)

where we have multiplied by free parameter β. The choice β = ∆z∆x/6
corresponds the fourth order centered difference approximation ∇2 ≈ δ̄2

z +
δ̄2
x+(1/6∆z∆x)δ̄

2
z δ̄

2
x. When the off-line node points are added, we again arrive

at Eq. (2.116).
At device interfaces, we write the expansions only for node points in the
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same device region (Fig. 2.11)

Φ(z ±∆z, x± δ) ≈ Φ±
∗ ±∆z∂zΦ

±
∗ +

∆2
z

2
∂2
zΦ

±
∗ ±

∆3
z

6
∂3
zΦ

−
∗ ,

Φ(z, x±∆x ± δ) ≈ Φ±
∗ ±∆x∂xΦ

±
∗ +

∆2
x

2
∂2
xΦ

±
∗ ±

∆3
x

6
∂3
xΦ

±
∗ ,

Φ(z ±∆z, x+ ∆x + δ) ≈ Φ+
∗ ±∆z∂zΦ

+
∗ + ∆x∂xΦ

+
∗ ±∆z∆x∂z∂xΦ

+
∗

+
∆2
z

2
∂2
zΦ

+
∗ +

∆2
x

2
∂2
xΦ

+
∗ +

∆2
z∆x

3
∂2
z∂xΦ

+
∗

±∆z∆
2
x

3
∂z∂

2
xΦ

+
∗ ±

∆3
z

6
∂2
zΦ

+
∗ +

∆3
x

6
∂3
xΦ

+
∗ ,

Φ(z ±∆z, x−∆x − δ) ≈ Φ−
∗ ±∆z∂zΦ

−
∗ −∆x∂xΦ

−
∗ ∓∆z∆x∂z∂xΦ

−
∗
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∂z∂
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(2.119)
The cancellation of the first order derivatives is again done through bound-
ary conditions (2.102),(2.103) and the continuity condition lim δ → : 0Φ+

∗ =
lim δ → 0Φ−

∗ . As above, the differential operator may be expressed entirely in
terms of the node points in-line with Φi,j,

(∂2
z + ∂2

x)Φi,j ≈ ∆−2
z (Φi+1,j + Φi−1,j) + ∆−2

x

(
2ε2

ε1 + ε2
Φi,j+1 +

2ε1
ε1 + ε2

Φi,j−1

)

−2(∆−2
z + ∆−2

x )Φi,j.

(2.120)
So inclusion of any additional node points must sum to zero over their expan-
sions. The sum of the diagonal node points is

∆−2
x ∆−2

z

[
ε2

ε1 + ε2
(Φi+1,j+1 + Φi−1,j+1) +

ε1
ε1 + ε2

(Φi+1,j−1 + Φi−1,j−1)

]
=

2∆−2
x ∆−2

z Φi,j + (∆−2
x ∂2

z + ∆−2
z ∂2

x)Φi,j,

(2.121)
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or

2β∆−2
x ∆−2

z

[
ε2

ε1 + ε2
(Φi+1,j+1 + Φi−1,j+1 +

ε1
ε1 + ε2

(Φi+1,j−1 + Φi−1,j−1)

−Φi+1,j − Φi−1,j − 2ε2
ε1 + ε2

Φi,j+1 − 2ε1
ε1 + ε2

Φi,j−1 + 2Φi,j

]
= 0,

(2.122)

where we have multiplied by free weighting term 2β. Adding these terms to
the previous expression, we find the somewhat unwieldy

(∂2
z + ∂2

x)Φi,j ≈ ∆−2
z ∆−2

x {(∆2
x − 2β)(Φi+1,j + Φi−1,j)

+(ε1 + ε2)
−1 [2ε2(∆

2
z − 2β)Φi,j+1 + 2ε1(∆

2
z − 2β)Φi,j−1

+ 2β (ε2(Φi+1,j+1 + Φi−1,j+1) + ε1(Φi+1,j−1 + Φi−1,j−1))]
−2(∆2

x + ∆2
z + 2β)Φi,j} ,

(2.123)
where β = ∆z∆x/6 is again the appropriate weighting factor.

At a device corner (see figure 2.12), we proceed in exactly the same manner,
with β = ∆z∆x/6,

(∂2
z + ∂2

x)Φi,j ≈ ∆−2
z ∆−2

z ×{
(

4∑
i=1

εi)
−1 [(∆2

x − 4β) [(ε3 + ε4)Φi+1,j + (ε1 + ε2)Φi−1,j]

+(∆2
z − 4β) [(ε2 + ε4)Φi,j+1 + (ε1 + ε3)Φi,j−1]

+4β(ε4Φi+1,j+1 + ε3Φi+1,j−1 + ε2Φi−1,j+1 + ε1Φi−1,j−1)]

−(∆2
z + ∆2

x − 4β)Φi,j} .
(2.124)

2.3.2 Mixing Methods

For a given electron density p(x, z), the electrostatic potential Φ(x, z),is solved.
This potential yields a new electron density and the process continues itera-
tively until a full self-consistent solution is found. The simplest approach of
iteration, using the calculated electron density for a given potential directly as
input to the next iteration step has notoriously poor convergence properties.
In fact, even for relatively simple systems, this procedure can easily iterate
forever or even diverge. More advanced iterative procedures are required to
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make the solution of the self-consistent potential numerically feasible.
The problem can be seen conceptually as minimization over a large dimen-

sional vector space. Hence we may use the progress made in multidimensional
minimization algorithms to advance our solution. We have implemented three
such procedures. One based on a modified secant approach which aims to
minimize a general residual vector, and two based on Johnson’s formulation
[86, 87] of Broyden’s method [77, 88], which is a quasi-Newton-Raphson ap-
proach. Intuitively one might expect Broyden’s update, which incorporates
knowledge of the function derivatives, should be vastly superior to the secant
method. In these systems however, we do not have knowledge of the full Jaco-
bian and an approximation of this matrix is required. This estimation reduces
Broyden’s method to be numerically identical to the secant approach [87].

All three implementations may be used in the simulator and are left as
configuration options. While one group [51] noted modest improvement in
convergence time using a further modified version of the Broyden’s update,
and even more advanced schemes have been proposed (see e. g. [89, 90]) all the
results in this thesis have used the secant method (also known as Anderson’s
method). Anderson’s method is described in the next section, and is preferred
due to its conceptual simplicity, ease of parameter adjustment, and low storage
requirements as compared to more complex methods [87].

2.3.2.1 Anderson’s Method

A generalized secant method for multivariate minimization was first proposed
by Wolfe [91] and later greatly improved by Anderson [87, 92]. We write the
electron density at the node points defined by the Poisson finite difference
mesh as a vector |n〉. Given input vector |nin〉 we want to find the potential
which tends difference vector

|F 〉 ≡ |nout〉 − |nin〉, (2.125)

to zero for resulting output density |nout〉. To accelerate the convergence pro-
cess, we may use the information obtained in the previous M iterations to
minimize this difference. We define a general input vector as a linear combi-
nation of the subspace spanned by the previous M vectors at iteration step i
as

|ui〉 = |niin〉+
M∑
j=1

Θi
j

(|ni−jin 〉 − |niin〉
)
, (2.126)

44



and general residual vector

|Ri〉 = |F i〉+
M∑
j=1

Θi
j

(|F i−j〉 − |F i〉) . (2.127)

Coefficients Θi
j are yet undetermined and are selected to minimize the norm

of the residual vector 〈Ri|Ri〉. This leads to a numeric solution of the system
of equations

M∑
j=1

〈F i − F i−m|F i − F i−j〉Θi
j = 〈F i − F i−m|F i〉, ∀k=1...M . (2.128)

Once the optimal coefficients Θi
j are found, we define the input density for the

next iteration step
|ni+1
in 〉 = |ui〉+ β|Ri〉, (2.129)

where parameter β represents the strength of which the optimal residual vec-
tor is mixed in to the new iteration. While increasing this parameter β → 1
increases the rate of convergence, it also becomes unstable for some systems
because linear dependencies develop in system of equations (2.128) near con-
vergence [92]. Empirically we find that β = 0.4 produces a universally stable
algorithm while maintaining an acceptable rate of convergence.

When M → 0, we recover the simple mixing algorithm

|ni+1
in 〉 = niin〉+ β|F i〉. (2.130)

As noted by the original author, the performance gains induced by increasing
M larger than inclusion of more than a few previous iterations is reduced be-
cause we mix in information from the poor guesses of early iterations. For most
simulation results, we have accepted a value M = 5. In contrast to results
demonstrated previously [86], Anderson’s method for density in ballistic MOS-
FETs is quite stable for the majority of systems and produces dramatically
increased performance over the simple mixing algorithm.

2.3.2.2 Broyden’s Update

Broyden’s second method [88] may be derived by expanding difference vector
(2.125) to first order

|F 〉 ≈ |F i〉+ J i
(|nin〉 − |niin〉

)
, (2.131)
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where matrix J i is some approximation to the actual Jacobian

J ilm ≡
∂|F 〉l
∂|n〉m . (2.132)

The requirement that |F 〉 vanish yields update formula for the input vector

|ni+1
in 〉 = |niin〉 −

[J i
]−1 |F i〉, (2.133)

and minimization of ∣∣J i+1 − J i
∣∣2 , (2.134)

subject to the constraint

|F i+1〉 − |F i〉 − J i+1
(|ni+1

in 〉 − |niin〉
)

= 0, (2.135)

yields update formula for the approximate Jacobian [93]

J i+1 = J i +
[|∆F i〉 − J i|∆niin〉] 〈∆niin|

〈∆niin|∆niin〉
. (2.136)

Here the normalized difference vectors are given by

|∆F i〉 = (|F i+1〉 − |F i〉) / |〈F i+1 − F i|F i+1 − F i〉| ,
|∆niin〉 =

(|ni+1
in 〉 − |niin〉

)
/ |〈F i+1 − F i|F i+1 − F i〉| . (2.137)

This scheme has been implemented directly for some physical systems [94],
however it requires storage and inversion of the full N × N Jacobian matrix
which is infeasible for even the smallest FET systems.

Srivastava derived a rank-1 update scheme [93] for the inverse Jacobian
directly which requires storage of difference vectors of size N for each previous
i− 1 iterations. The initial approximation of the Jacobian is written in terms
of the identity matrix Î (J 1

)−1
= −βÎ. (2.138)

The update formulas may be written

|ni+1
in 〉 = |niin〉 −

(J i
)−1 |F i〉, (2.139)

for in input density, and in terms of the difference vectors (2.137) as

(J i+1
)−1

=
(J i

)−1 −
[
|∆niin〉 −

(J i
)−1 |∆F i〉

]
〈∆F i|. (2.140)
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For the Jacobian which again minimizes
∣∣∣(J i+1)

−1 − (J i)
−1

∣∣∣ subject to the

constraint [86]

|∆niin〉 −
(J i

)−1 |∆F i〉 = 0. (2.141)

This formulation of Broyden’s second method eliminates the requirement of
numerically inverting the Jacobian matrix and requires only storage i vectors.
However, only information from the previous iteration is included in the update
formula. Based on the work of Vanderbilt and Louie [95], Johnson derived an
update formula using the information obtained in all previous i− 1 iterations

[86]. In this scheme, difference
∣∣∣(J i+1)

−1 − (J 1)
−1

∣∣∣ is minimized and the

update formula may be written

|ni+1
in 〉 = |niin〉+ β|F i〉 −

i−1∑
j=1

ωjγij
[
β|∆F i〉+ |∆niin〉

]
, (2.142)

where

γij =
i−1∑

l=1

ωl〈∆F l|F i〉
[
Â−1

]
lj
. (2.143)

Matrix Â is given by
Âlj = ωlωj〈∆F l|∆F j〉, (2.144)

and following the recommendation by Johnson, the weighting coefficients are
selected

ωi = min

{
1,
〈F i|F i〉−1/2.

(2.145)

A comparison of the methods is shown in Fig. 2.13 for a typical system
Lg = 10 nm, Vd = Vg = 0 V and classical channel electrons (see appendix A.3).
The black line shows Anderson’s method, preferred in this work and the red
line is Johnson’s formulation of Broyden’s update. In both cases, the mixing
strength β = 0.4. The green line shows the results of simple mixing with
mixing strength β = 0.05. While this comparison may seem a little unfair,
raising the strength for simple mixing much higher than this value causes the
scheme to diverge.
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Figure 2.13: RMS error term 〈F i|F i〉1/2 versus iteration number for simple mixing
method, Anderson’s method and Johnson’s formulation of Broyden’s method.
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Chapter 3

Transistors with Thin
Extensions
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Figure 3.1: Model ballistic FET with thin electrode extensions for (a) double gate
and (b) single gate structures. Red lines indicate cutoff where the transistor dy-
namics become independent of the model.

The double and single gate models of the ballistic FET structure with thin
electrode extensions are shown in Fig. 3.1. Due to their closer relation to
current fabrication techniques, these models are widely discussed in the lit-
erature (see e. g. [64] and references therein). The thin extension device has
advantages and drawbacks over its bulk counterpart (Fig. 2.4(b)). The thin
channel extensions increase the overall “bulk-to-bulk” device length reducing
the maximum packing density. Additionally, the thin electrodes are less able to
dissipate the energy of impinging ballistic electrons, so these devices may have
unacceptable heating and higher thermal scaling limits [96]. This has moti-
vated discussion of so-called “flared” or “dog-bone” structures in the literature
[18]. Additionally, the shorter channel length increases direct source-to-drain
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tunneling current. On the other hand, since the gate completely encompasses
the channel region, the thin extensions provide better electrostatic control over
the entire channel.

When a channel electron propagates into the doped extension region, elastic
scattering with the background dopants creates a non-zero probability that
the particle will be back-scattered into the channel region. In the solution to
the Schrödinger equation derived below a “completely absorbing” boundary
condition for the wavefunction is assumed so this model does not account for
back-scattered electrons. The reflection probability for high doping levels was
studied numerically in both a Monte Carlo model and through solution of the
Boltzmann equation [97]. The results indicate the reflection probability for
high energy electrons takes a analytical form [97],

Rf =
1

1 +

[
2

π

(
Lext

l
+ β

)
sin(θ)

]−1 , (3.1)

for mean free path l, doped extension length Lext and incident phase space
angle θ = cos−1(Φ0/E)1/2. Here β is a small correction term caused by the
non-uniform distribution of “hot” carriers in the [px, py] phase plane. When
the length of the doped extension is on the order of, or larger than the mean
free path, Lext/l À β, so we may re-write Eq. (3.1) in terms of transmission
probability D as [

2

π

Lext

l
sin(θ)

]
=

1−D
D . (3.2)

The sin(θ) term may be interpreted as the fraction of channel transverse modes
used for transport, so Eq. (3.1) represents nothing more than the ballistic
Landauer resistance G−1

L = h/2e2 connected in series with the normal Ohmic
resistance of the thin extension

G−1 = G−1
L +G−1

O . (3.3)

Hence, the effect of back-scattering from the doped extension region can mod-
eled by addition of the potential drop across the two doped extensions with
resistance (per unit width) R = 2σ−1Lext/tc while maintaining the assump-
tion of the completely absorbing boundary conditions. For our standard dop-
ing, nD = 0.3 nm−3 we may use the bulk resistivity (see p. 31 of Ref. [9])
σ−1 = 40 Ωcm.
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3.1 1-D Schrödinger Approximation

We begin with the time independent Schrödinger equation

HΨ(x, y, z) = EΨ(x, y, z), (3.4)

= −~
2

2

(
1

mx

∂2
x +

1

my

∂2
y +

1

mz

∂2
z

)
+ Φ(x, z). (3.5)

Assuming that the device is sufficiently wide, wavefunction Ψ(x, y, z) may be
partitioned

Ψ(x, y, z) = Ψ(x, z)eikyy, (3.6)

and through standard separation of variables, Eq. (3.5) may be written

1

Ψ(x, z)

(
1

mx

∂2
x +

1

mz

∂2
z

)
Ψ(x, z) +

1

ψ(y)
∂2
zψ(y)− 2

~2
(Φ(x, z)− E) = 0.

Noting that only the third term contains any y dependence, 1
ψ(y)

∂2
yψ(y) yields

a constant −(2my/~2)Ey and the result is re-written

1

Ψ(x, z)

(
1

mx

∂2
x +

1

mz

∂2
z

)
Ψ(x, z) +

2

~2
(E − Ey − Φ(x, z)) = 0. (3.7)

We look for a series solution to equation (3.7)

Ψ(x, z) =
∑
n

ϕn(z)ψn(x), (3.8)

and choose ϕn(z) to be the solution to the equation

− ~2

2mz

∂2

∂z2
ϕn(z) = Ez,nϕn(z), (3.9)

These infinite well basis states closely approximate the full solution and we
have made no constraints on function ψn(x). Plugging into equation (3.7)
yields

∑

n′

[(
− ~2

2mx

∂2

∂x2
ψn′(x)− (E − Ez,n′ − Ey)ψn′(x)

)
ϕn′(z)

+Φ(x, z)ψn′(x)ϕn′(z)] = 0.

(3.10)
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Because ϕn(z) is orthonormal, multiplying both sides by ϕ∗n(z) and integrating
over the channel thickness we find

− ~2

2mx

∂2

∂x2
− (E − Ez,n − Ey) +

∑

n′




tc/2∫

−tc/2

ϕn′(z)Φ(x, z)ϕ∗n(z)dz





ψn(x) = 0.

(3.11)
The Φ(x, z) term in parenthesis can be seen as the matrix element of the
electrostatic potential

Φ̄n(x) =
∑

n′

tc/2∫

−tc/2

ϕn′(z)Φ(x, z)ϕ∗n(z)dz, (3.12)

and equation (3.11) reduces to the effective one dimensional form

[
∂2

∂x2
+

2mx

~2

(
E − Ez,n − Ey − Φ̄n(x)

)]
ψn(x) = 0, (3.13)

where

Ez,n =
~2n2π2

2mzt2c
. (3.14)

Rapid evaluation of Φ̄n(x) for arbitrary node nmay be done by recognition that
the sum over n′ is a Fourier transform of Φ(x, z) (see appendix A.2). Equation
(3.13) may further be simplified by the observation that for electrons injected
from thin source / drain electrodes, they already have confinement energy
Ez,n. Hence this term falls out altogether and the effective 1-D Schrödinger
equation becomes

[
∂2

∂x2
+

2mx

~2

(
E − Ey − Φ̄n(x)

)]
ψn(x) = 0. (3.15)

Equations (3.13), (3.15) are the effective 1-D Schrödinger equation for par-
ticles in channel sub-band n. When the channel thickness tc is small, only the
lowest sub-band contributes significantly and the average potential is reduced
to

Φ̄(x) =
2

tc

tc/2∫

−tc/2

Φ(x, z) cos2

(
πz

tc

)
dz. (3.16)

52



3.1.1 Channel Density

The number of electrons in the channel is given by the summation over states

N(x, y, z) = gsgv
∑

k

|Ψ(x, y, z)|2 f(E). (3.17)

Using wavefunction partition (3.6) and assuming only contributions from low-
est sub-band, the electron density in the channel may be calculated as

n3D(x, z) =

(
2

tc

)
cos2

(
πz

tc

)
n2D(x). (3.18)

The channel sheet density is found from the single state wavefunctions

n2D(x) =
gsgv
4π2

∞∫

−∞

dky

∞∫

0

|ψ(x)|2 f(Ex + Ey), (3.19)

where ψ(x) is the solution to (3.15) at energy Ex inside the channel region.
Using the dispersion relation k =

√
2mE/~, the sheet density may be expressed

n2D(x) =
gsgv

√
mxmy

4π2

∞∫

0

dExE
−1/2
x |ψ(x)|2

∞∫

0

dEy E
−1/2
y f(Ex + Ey). (3.20)

Converting to dimensionless energy variables ε ≡ E/T, εF ≡ µF/T ,

n2D(x) =
gsgv

√
mxmyT

4π2~2

∞∫

0

dεx√
εx
|ψ(x)|2

∞∫

0

dεy√
εy

1

1 + exp(εx + εy − µF)
, (3.21)

and using degeneracy values gs = 2, gv = 2, the sheet density is expressed

n2D(x) =

√
mxmyT

π2~2

∞∫

0

|ψ(x)|2F−1/2(εF − εx)ε
−1/2
x dεx, (3.22)

in terms of the Fermi-Dirac integral, Eq. (2.21). This sheet density should be
calculated twice. Once each for electrons injected from the source and drain
electrodes. For a discussion of the numeric solution of this integral, see B.1.
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3.1.1.1 Quantum Limit

In the limit that temperature T → 0, we replace the Fermi distribution with
Heaviside step function f(Ex + Ey) = Θ(EF − Ex − Ey), in equation (3.20).
Evaluating

∞∫

0

Θ(EF − Ex − Ey)E
−1/2
y dEy = 2 (EF − Ex)

1/2 , (3.23)

the sheet density is written

n2D(x) =
gsgv

√
mxmy

2π2~2

EF∫

0

dExE
−1/2
x (EF − Ex)

1/2 |ψ(x)|2 . (3.24)

3.1.2 Current Density

The assumption of single sub-band transport also allows simplification of the
expression for the device current. Since the particles are injected from a thin
region matching the transport channel, they already have energy Ez,1 required
to overcome the confinement potential. The summation (2.34) then becomes
two dimensional integral

∑

k

→ WLB
(2π)2

∫
d2k, (3.25)

and the current density is expressed

J = I/W = e
gsgv~

mx(2π)2

∫
d2kkxD(Ex)f(Ex + Ey). (3.26)

The transmission probability is only a function of the particles wavevector in
the x̂ direction. Using relations

kxdkx =
mx

~2
dEx,

dky =

√
2my

2~
E−1/2
y dEy,
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the current density is written for one direction (i. e. left to right) as

J = e
gsgv

√
2my

(2π)2~2

∞∫

0

dExD(Ex)

∞∫

0

dEy E
−1/2
y f(Ex + Ey). (3.27)

Or again in terms of the Fermi-Dirac integral, the total current density is

J =
J0

π

∞∫

0

dεxD(εxT )
[F−1/2(εF − εx)−F−1/2(εF − νD − εx)

]
, (3.28)

where νd ≡ eVd/T and

J0 ≡ e

√
2myT

3/2

π~2
. (3.29)

3.1.2.1 ”Simple Transistor” Limit

In the simple transistor limit, all electrons with energies below the potential
maximum in the channel are reflected and all the electrons above are trans-
mitted as T → 0. The transmission coefficient is then

D(Ex) = Θ(Ex − Φ0), (3.30)

where Φ0 is the maximum of the potential in the channel

Φ0 = Φmax(x), (3.31)

and using gs = 2 and gv = 2, the current density reduces to

J = e
2(2my)

1/2

π2~2

EF∫

Φ0

dExΘ(Ex − Φ0)(EF − Ex)
1/2. (3.32)

Evaluating the integral,

J = e
2(2my)

1/2

π2~2

[
−2

3
(EF − Ex)

3/2

]EF

Ez,1+Φ0

, (3.33)

or

J = e
4(2my)

1/2

3π2~2
(EF − Φ0)

3/2. (3.34)
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3.1.3 Evaluation of the Wavefunction

To evaluate the wavefunction in the channel, we divide the device into three
regions: source, drain and channel (Fig. 3.2). Using plane wave solutions for
the wavefunctions in the electrode regions, the solutions to Eq. (3.15) may be
written

ψs(x) = eikwx +Be−ikwx,

ψ(x) = Cf(x) +Dg(x),

ψd(x) = Feikν(x−Lc).

(3.35)

The two terms for ψs(x) represent the incident and reflected states and the
undetermined constants B, C, D, and F are assumed normalized to the am-
plitude of the incident wave.

The functions f(x) and g(x) are linearly independent functions to be found
numerically. The appropriate selection of the boundary conditions for the
numeric solutions to f(x), g(x) is key to the rapid solution of (3.15). The
speed of this solution underlies the speed of overall execution time because
the integration of the wavefunctions over energy (3.22) at each channel mesh
point becomes the limiting factor for execution time. We choose the boundary
conditions to satisfy

f(0) = 1 g(0) = 0,
f(Lc) = 0 g(Lc) = 1.

(3.36)

For numerical calculations, such presentation has a distinct advantage over the
usual Cauchy approach, in frequent cases when the ψ(Lc)/ψ(0) ratio is very
small, for example as a result of the exponential tunneling of ψ(x) through the
potential barrier formed in the channel by negative gate voltage. In this case,
the smallness may be expressed by a small D/C ratio and does not require a
very precise calculation of functions f(x) and g(x).

ψ
I

ψ
II III

ψ

x=0

Lcx=

Vd

Figure 3.2: Arbitrary 1-D potential profile.
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We may easily express equation (3.15) as finite difference equation

ψi+1 + ψi−1 +

[
2mx∆

2
s

~2

(
E − Ey − Φ̄(xi)

)− 2

]
ψi = 0, (3.37)

with mesh spacing ∆s. With the choice of boundary conditions (3.36), this
FDE is simply a tri-diagonal system of equations which may be rapidly solved
in O(N) time (see section 2.3.1.1).

Because of the rapid oscillation of higher energy wavefunctions, the mesh
spacing used for the Poisson solver is far too crude. In order to maintain
overlap between the wavefunction mesh and the Poisson mesh (and hence
points where knowledge of the electron density is desired) we divide the Poisson
spacing by a factor 2Mm to solve the wavefunction FDE.Mm = 8 by default as a
starting value but may be increased dynamically in cases where higher accuracy
is required. We then calculate integral (3.22) at node points corresponding to
the FDE for the Poisson equation.

We require at the interface between device regions

ψs(0) = ψ(0) ∂xψs(0) = ∂xψ(0),

ψ(Lc) = ψd(Lc) ∂xψ(Lc) = ∂xψd(Lc).
(3.38)

Enforcement of boundary conditions (3.38) yields expressions for the unknown
constants

B =
ikw

(
ikν − g′Lc

)− f ′0
(
ikν − g′Lc

)− g′0f
′
Lc

(ikw + f ′0)
(
ikν − g′Lc

)
+ g′0f

′
Lc

,

C =
2ikw

(
ikν − g′Lc

)

(ikw + f ′0)
(
ikν − g′Lc

)
+ g′0f

′
Lc

,

D =
2ikwf

′
Lc

(ikw + f ′0)
(
ikν − g′Lc

)
+ g′0f

′
Lc

,

F =
2ikwf

′
Lc

(ikw + f ′0)
(
ikν − g′Lc

)
+ g′0f

′
Lc

,

(3.39)

where f ′0 ≡ ∂xf(0), f ′Lc
≡ ∂xf(Lc), g

′
0 ≡ ∂xg(0), g′Lc

≡ ∂xg(Lc), are the
derivatives of the numeric solutions at the boundaries.

With constants determined in terms of the numerical solutions, the trans-
mission probability D(E) = (kν/kw)|F |2 is readily found to be

D(E) =
4kνkwf

′2
Lc(

g′0f
′
Lc
− g′Lc

f ′0 − kνkw
)2

+
(
kνf ′0 − kwg′Lc

)2 . (3.40)
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We also need to calculate the square modulus of the wavefunction in the
channel, but for completeness show the results for all three device regions. We
consider two cases independently.

1. kν real:

In this case, the particle’s energy is greater than the constant potential in
region III, and is relevant for all electrons originating in the source and
for drain electrons with E > eVd. For the wavefunction in the source,
we can take advantage of the unit boundary conditions, recognize that
B = C − 1 and immediately write

ψs(x) = 2i

[
sin(kwx) +

kw(ikν − g′Lc
)

(ikw + f ′0)(ikν − g′Lc
) + g′0f

′
Lc

e−ikwx

]
. (3.41)

The wavefunction modulus in the three regions is easily calculated as

|ψs(x)|2 =

4

[
sin2(kwx) +

k2
w(k2

ν + g′
2

Lc
)(

g′0f
′
Lc
− g′Lc

f ′0 − kνkw
)2

+
(
kνf ′0 − kwg′Lc

)2

+2 sin(kwx)kw<
(

ikν − g′Lc

(ikw + f ′0)(ikν − g′Lc
) + g′0f

′
Lc

e−ikwx

)]
,

(3.42)

|ψ(x)|2 =
4k2

w

[
k2
νf

2(x) +
(
g′Lc

f(x)− f ′Lc
g(x)

)2
]

(
g′0f

′
Lc
− g′Lc

f ′0 − kνkw
)2

+
(
kνf ′0 − kwg′Lc

)2 , (3.43)

|ψd(x)|2 =
4k2

wf
′2
Lc(

g′0f
′
Lc
− g′Lc

f ′0 − kνkw
)2

+
(
kνf ′0 − kwg′Lc

)2 . (3.44)

2. kν imaginary: We will also need to consider the contribution of electrons
originating in the drain regions with E < eVd. In this case, kν in the
source electrode becomes imaginary. Again using the relation B = C−1,
we may write

ψs(x) = 2i

[
sin(kwx) +

kw(|kν |+ g′Lc
)

(ikw + f ′0)(|kν |+ g′Lc
)− g′0f

′
Lc

e−ikwx

]
. (3.45)
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The wavefunction modulus in the three regions is then found

|ψs(x)|2 =

4

[
sin2(kwx) +

k2
w(|kν |+ g′Lc

)2

k2
w

(|kν |+ g′Lc

)2
+

(
f ′0(|kν |+ g′Lc

)− g′0f
′
Lc

)2

+2 sin(kwx)kw(|kν |+ g′Lc
)<

(
e−ikwx

(ikw + f ′0)(|kν |+ g′Lc
)− g′0f

′
Lc

)]
,

(3.46)

|ψ(x)|2 =
4k2

w

[(|kν |+ g′Lc

)
f(x)− f ′Lc

g(x)
]2

k2
w

(|kν |+ g′Lc

)2
+

(
f ′0(|kν |+ g′Lc

)− g′0f
′
Lc

)2 , (3.47)

|ψd(x)|2 =
4k2

wf
′2
Lc
e−2|kν |(x−Lc)

k2
w

(|kν |+ g′Lc

)2
+

(
f ′0(|kν |+ g′Lc

)− g′0f
′
Lc

)2 . (3.48)

3.1.3.1 Linear Potential

Many practical potential profiles may be well approximated by a linear po-
tential drop between the source and drain electrodes. While this is only an
approximation to an actual device profile, convenient expressions may be found
which enable rapid estimation of device dynamics.

The effective potential

U(x) = V0 + Vd

(
1− x

Lc

)
, (3.49)

shown in Fig. 3.3, with arbitrary shift V0, has general solution in the channel

x=0

IΨ IIΨ IIIΨ

1E

Lcx=

Vd

Figure 3.3: Linear 1-D potential profile.
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region
ψ(x) = CAi (α(x)) +DBi (α(x)) , (3.50)

where

α(x) ≡
(

2mL2
c

~2V 2
d

)1/3

(V0 − E − Vd
x

Lc
), (3.51)

d

dx
α = −

(
2mVd
~2Lc

)1/3

. (3.52)

For most linear problems, the raw use of Eq. (3.50) becomes numerically
unstable. A better solution is to use the unit boundary conditions (3.36). This
yields expressions

f(x) =
Bi(α(Lc))Ai(α(x))− Ai(α(Lc))Bi(α(x))

Ai(α(0))Bi(α(Lc))− Bi(α(0))Ai(α(Lc))
,

g(x) =
Ai(α(0))Bi(α(x))− Bi(α(0))Ai(α(x))

Ai(α(0))Bi(α(Lc))− Bi(α(0))Ai(α(Lc))
.

(3.53)

When α(x) À 1, calculation of the individual Airy functions is numerically
unfeasible; to first order, the Airy functions are approximated by [98]

Ai(x→∞) ≈ e−γ

2
√
πx1/4

,

Ai′(x→∞) ≈ −x
1/4e−γ

2
√
π

,

Bi(x→∞) ≈ eγ√
πx1/4

,

Bi′(x→∞) ≈ x1/4eγ√
π
,

Ai(x→ −∞) ≈ cos(γ − π/4)√
πx1/4

,

Ai′(x→ −∞) ≈ −4 cos(γ + π/4)x3/2 − sin(γ + π/4)

4
√
πx5/4

,

Bi(x→ −∞) ≈ −sin(γ − π/4)√
πx1/4

,

Bi′(x→∞) ≈ 4 sin(γ + π/4)x3/2 + cos(γ + π/4)

4
√
πx5/4

.

(3.54)

where

γ ≡ 2

3
x3/2.
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With these approximations functions f(x), g(x) are approximated

f(x) ≈ α1/4(0)
(
exp

[
2/3(α3/2(Lc)− α3/2(x))

]− exp
[−2/3(α3/2(Lc)− α3/2(x))

])

α1/4(x) (exp [2/3(α3/2(Lc)− α3/2(0))]− exp [−2/3(α3/2(Lc)− α3/2(0))])
,

g(x) ≈ α1/4(0)
(
exp

[
2/3(α3/2(x)− α3/2(0))

]− exp
[−2/3(α3/2(x)− α3/2(0))

])

α1/4(x) (exp [2/3(α3/2(Lc)− α3/2(0))]− exp [−2/3(α3/2(Lc)− α3/2(0))])
,

(3.55)
with derivatives

f ′(x) =

(
dα

dx

)
(Bi(α(Lc))Ai′(α)− Ai(α(Lc))Bi′(α))

Ai(α(0))Bi(α(Lc))− Bi(α(0))Ai(α(Lc))
,

g′(x) =

(
dα

dx

)
Ai(α(0))Bi′(α)− Bi(α(0))Ai′(α)

Ai(α(0))Bi(α(Lc))− Bi(α(0))Ai(α(Lc))
.

(3.56)

The derivative (dα/dx) is calculated as

dα

dx
= −

(
2mxVd
~2Lc

)1/3

, (3.57)

yielding approximations

f ′(x) ≈
(

2mxVd
~2Lc

)1/3
(α(0)α(x))1/4(exp[2/3(α3/2(Lc)−α3/2(x))]+exp[−2/3(α3/2(Lc)−α3/2(x))])

(exp[2/3(α3/2(Lc)−α3/2(0))]−exp[−2/3(α3/2(Lc)−α3/2(0))])
,

g′(x) ≈ −
(

2mxVd
~2Lc

)1/3
(α(0)α(x))1/4(exp[2/3(α3/2(x)−α3/2(0))]+exp[−2/3(α3/2(x)−α3/2(0))])

(exp[2/3(α3/2(Lc)−α3/2(0))]−exp[−2/3(α3/2(Lc)−α3/2(0))])
.

(3.58)
At the boundaries, these approximations reduce to

f ′(0) ≈
(

2mxVd
~2Lc

)1/3
(α(0))1/2

tanh (2/3(α3/2(Lc)− α3/2(0)))
,

f ′(Lc) ≈
(

2mxVd
~2Lc

)1/3
(α(0)α(Lc))

1/4

sinh (2/3(α3/2(Lc)− α3/2(0)))
,

g′(0) ≈ −
(

2mxVd
~2Lc

)1/3
(α(0))1/2

sinh (2/3(α3/2(Lc)− α3/2(0)))
,

g′(Lc) ≈ −
(

2mxVd
~2Lc

)1/3
(α(0)α(Lc))

1/4

tanh (2/3(α3/2(Lc)− α3/2(0)))
.

(3.59)
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Figure 3.4: Sample 2D potential profiles for device with thin extensions with (a)
Lg = 20 nm and (b) Lg = 10 nm. For each plot Vg = 0.1 V and Vd = 0.2 V.

3.2 Double-Gate Transistor

3.2.1 Potential

Typical results for the potential distribution are shown in Fig. 3.4 for two
long channel devices. Only the upper half of the transistor is shown due to
device symmetry. In both cases we use parameters tc = 2 nm, tox = 1.5 nm,
Lext = 10 nm. Panel (a) shows the results for a 20 nm gate length device.
While assuming wavefunction coherence over this length may be optimistic for
present devices see section 2.1, the only impedance to the ballistic assumption
is the surface roughness. If the surfaces can made clean enough, ballistic
transport may be assumed over any device length [99]. Panel (b) shows the
potential distribution for a more realistic 10 nm gate length device. All devices
are calculated at room temperature using a standard doping density nD =
0.3 nm−3.

The transistor dynamics are dominated by the potential in the middle of
the channel, shown in Fig. 3.5 for same parameters and three different gate
lengths. The dotted lines mark the division between the bulk, thin extension
and channel regions. For the longest gate device, the plateau region assumed in
the analytical models of section 2.2.8 is clearly visible and the field produced
by the drain bias is effectively shielded by the gate electrode. As the gate
length is reduced to 10 nm, the onset of DIBL effects can clearly be seen. As
the length of the gate is further reduced to 5 nm, the drain field not only
reduces the barrier, but a significant reduction in the barrier thickness can
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Figure 3.5: Potential through the middle of the channel for device with thin exten-
sions for Vg = 0.1 V in Vd steps of 100 mV. The gate length for each panel is (a)
Lg = 20 nm, (b) Lg = 10 nm and (c) Lg = 5 nm.
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also be noted. This reduction of the barrier width may be sufficiently reduced
that the onset of direct source-to-drain tunneling current begins.

3.2.2 I − Vd Families

Figure 3.6 shows I−Vd families in gate voltage steps of 50 meV for decreasing
gate length from 10 nm to 2.5 nm. The solid lines are the current assuming
no voltage drop across the thin electrodes (Fig. 3.5). The dashed lines are the
current results scaled to account for voltage dropped in the doped extensions
using resistivity ρ = 3× 10−4 Ωcm. All the devices demonstrate high current
densities for modest values of the gate voltage. In fact, this device may be
seen as a “normally on” transistor (Jsat(Vg = 0) ≈ 7 A/cm for Lg = 10 nm).
While not ideal, the J(Vg = 0) current may be a lowered by a shifted threshold
voltage through gate work-function engineering (see section 2.2.8). The long
channel device shows excellent current saturation, but noticeable degradation
may be seen for the 5 nm gate length. The shortest channel considered demon-
strates DIBL has completely ruined the saturation characteristics. Admittedly
however, this configuration is a bit pathological as the conducting channel is
nearly as thick as it is long.

3.2.3 Subthreshold Current

The subthreshold properties for the same set of devices is shown in Fig. 3.7.
This oxide thickness has been increased to tox = 2.5 nm to minimize the
gate leakage current. The near vertical dotted line shows the ideal thermal
subthreshold slope

∆Vg = ln(10)T = 60 mV/dec. (3.60)

The near horizontal line is an estimation of the gate leakage current, based on
a WKB solution of tunneling through a trapezoidal barrier assuming a gate
overlap of 2 nm [14]. For further discussion of the gate leakage estimation, see
appendix A.1. The long channel transistor shows near perfect subthreshold
slope and very little DIBL. As the gate length is scaled to 5 nm, the drain
effects are clearly seen and the slope is severely degraded. DIBL effects also
begin to affect the device, expressed as the spread of the slopes for different
Vd. The onset of direct tunneling may also be seen by the (very slight) upward
curvature near the bottom of the subthreshold region. However, the 5 nm
device still shows nearly 6 orders of magnitude difference between on the and
off states, which is close to what one would require for use in a memory ap-
plication. As the gate is further scaled to the impracticable 2.5 nm, the gate
clearly loses all control over channel electrostatics, and the device impractical
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Figure 3.6: Source-Drain I − Vd curves for DG MOSFET with thin extensions for
(a) Lg = 10 nm, (b) Lg = 5 nm, (c) Lg = 2.5 nm. Solid lines show results for total
voltage drop across the intrinsic channel. The dashed lines are the current scaled to
account for the voltage spread over the entire thin region.
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Figure 3.7: Subthreshold curves for the same gate lengths as Fig. 3.6. The oxide
thickness has been increased tox = 2.5 nm to minimize gate-oxide leakage. Nearly
vertical dotted lines represent ideal slope. Dashed lines are an estimate of gate-oxide
leakage current.
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for integrated circuits.

3.2.4 Voltage Gain

Numerically, calculation ofGv (2.57) may be considered a root finding problem.
For given device voltages Vd, Vg, the current density is calculated. The gate
voltage is then shifted twice by fixed, small amounts ∆vg/2 and a Vd is found
such that J − J(Vd, Vg ± ∆vg/2) = 0. This condition is rapidly found using
Brent’s method [77]. Using three different values for ∆vg we may establish
average and standard deviation values for Gv.

Figure 3.8 shows Gv for the range of gate voltage from subthreshold to
saturation. The results indicate that a relatively long device with Lg = 7.5 nm
will have sufficient signal gain over the entire range of operating voltages to
be a functional transistor. However, Gv falls off rapidly with decreasing gate
length, and can be seen in a simple view as the fractional response of the
maximum of the potential barrier in the channel to the gate voltage Gv ∝ αΦ0.
However, these results indicate that even for an ultra-short total transport
length Lc = Lg = 5 nm the ballistic FET may still be an acceptable candidate,
and the fundamental limit on scaling from a performance perspective may end
for the thin extension device near Lg ≈ 5 nm.
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Figure 3.8: Figure-of-merit voltage gain at Vd = 0.5 V versus gate voltage for de-
creasing gate lengths.
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3.2.5 Threshold Voltage Rolloff

While the results above are very encouraging from a pure performance per-
spective, they do not account for more practical circuit design considerations.
Minute fluctuations in the fabrication process may lead to unacceptably large
deviations in transistor properties within the same circuit. We define the
“rolloff” in the transistor as the deviation of the threshold voltage at gate
length Lg from an equivalent device at Lg → ∞. Here we define the thresh-
old voltage as the required gate voltage such that J [Vd, Vt(Lg)] = Jthresh ≡
1 × 10−4 A/cm. For the device with thin extensions and infinite gate length,
we may assume only classically transmitted electrons with potential barrier
height Φ0 = Vg + Ez,1. The threshold voltage is then found numerically

Jcl(Vd, Vg)− Jthresh = 0, (3.61)

using Brent’s method for finding roots [77]. Jcl is given as

Jcl =
J0

π
[J (νg − εF )− J (νg − εF − νd)] , (3.62)

where J0 is given by Eq. (3.29), νd,g = Vd,g/T , εF = µF/T , and

J (η) ≡
∞∫

0

ε−1/2
y ln [1 + exp (−η − εy)] dεy, (3.63)

(see appendix A.3).
The rolloff in the threshold voltage is shown in Fig. 3.9 for the standard

doping nD = 0.3 nm−3 for decreasing gate length Lg over a range of chan-
nel and oxide thicknesses. In all cases, for sub-10 nm devices, the change in
threshold from the ideal value begins to grow exponentially. This exponential
growth is a reflection of the loss of electrostatic control of the gate over the
channel potential. In the subthreshold region JT ∝ exp(Gv). As Gv is reduced
the device must supply exponentially more voltage to shut the current.

Moreover, ultra-tight fabrication control cannot be achieved at the expense
of the other device critical dimensions. The change in the threshold voltage
from the “standard” device versus channel thickness and oxide thickness is
shown in Fig. 3.10. For ultra-short gate length devices, the swing in the
threshold voltage may be even more sensitive to variations in the channel in
oxide thicknesses. All of the results may be seen intuitively from the electro-
static picture. In this picture, the devices with the thickest channels and oxide
layers (shown by the green lines in both panels) allow the weakest field penetra-
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Figure 3.9: “Rolloff” of the threshold voltage of the device with thin extensions for
two different channel thickness tc and three values of the oxide thickness tox.

tion into the channel, and thus require the higher applied bias to compensate
for the change in device dimension.

The exponentially growing sensitivity of Vt to natural geometrical devia-
tions may lead an unacceptably high cost of fabrication. Unless radically new
methods for large scale creation of very-large-scale-integrated (VLSI) circuits
are developed, economic limitations may end device scaling long before the
physical limits are reached.

3.2.6 Power

In addition to concerns over fabrication tolerances, the circuit power consump-
tion is already a major problem for today’s VLSI circuitry. The minimum
power operating point (2.68) is plotted in Fig. 3.11 versus the device gate
length for two different values of effective activity “switching parameter” λ.
In stark contrast with the expectations of scaling for traditional devices, the
transistor operating power increases with shrinking gate lengths. The power
minimum not only increases, but grows exponentially in all devices consid-
ered. This is a direct result of transition from diffusion physics, where current
saturation is provided by channel scattering, to the ballistic regime where cur-
rent saturation is the result of exhaustion of supply electrons [15]. As Lg is
decreased in the ballistic regime device performance degrades, either through
loss of electrostatic gate control or tunneling current, and larger VDD is re-
quired to shunt the leakage current. The larger VDD in turn requires larger
overall minimum power characteristics.
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Figure 3.10: Change in the threshold voltage Vt versus (a) channel thickness and
(b) oxide thickness for a range of gate lengths.

3.3 Single-Gate Transistor

The primary difference between the single gate structure (Fig. 3.1(b)) and
the double-gate configuration is that the back gate is no longer biased at
Vg, but maintained at the source level (ground) [100]. To model the ground
plane below the buried-oxide (BOX) layer in typical single-gate SOI devices we
have extended the back gate to encompass (nearly) the entire doped extension
region. We restrict ourselves here to the case of very long extension regions.
In this case, the device dynamics are independent of the length of the doped
extensions as the density of injected particles is determined by the equilibrium
plateau that develops inside the doped thin region (see e. g. 3.5). Hence, the
device properties are independent of everything to the left of the middle of the
source extension and to the right of the drain extension, shown by the red lines
in Fig. 3.1(b). This model is an accurate representation of typical single-gate
SOI MOSFET structures.

The main effect of the ground plane is that the effective channel capacitance
(2.41) is cut roughly in half as the gate field now drops over the channel
region. All other aspects of the calculation proceed in the same manner as
described above. Namely, we calculate the charge density in the doped regions
via equilibrium Eqs. 2.31 and the channel electron density and current density
with the one dimensional approximation to the Schrödinger equation.

The device is no longer symmetric along the center of the channel however.
To simulate this device we remove the Cauchy boundary condition in the center
of the channel and solve the Poisson equation over the entire region with fixed
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Figure 3.11: Minimum power (solid lines) and minimum drive voltage VDD (dashed
lines) versus gate length for two values of effective activity factor: (a) λ = 0.01,) (b)
λ = 0.03.

boundary conditions at the domain edges.

3.3.1 Device Potential

Typical mid-channel potential profiles are shown in the left column of Fig.
3.12 compared with the profiles of the double gate structure (Fig. 3.1) which
provides the same source-drain current J . Panels (a), (b) show constant gate
voltage Vg and panels (c), (d) show constant source-drain voltage Vd. In all
cases the potential profiles for the single and double gate structures are nearly
identical except that the sensitivity of the potential maximum to the gate
bias is twice stronger for the DG structure. This result is intuitively expected
for long channel devices in the subthreshold region. In this case, the two di-
mensional field effects may be ignored. The channel potential for the double
gate structure remains fixed at Vg while in the single gate structure it drops
linearly across the channel with mid-channel value Vg/2. It is somewhat sur-
prising however that this relation still holds at higher current densities where
channel electrons may screen the gate field.

3.3.2 Performance

The families of I − Vd and subthreshold curves for the single and double gate
devices are shown in Fig. 3.13. In the saturation region (3.13(a), 3.13(b))
the current density of the single gate is nearly half that of its double gate
counterpart at high gate voltages Vg. This factor of two comes from the fact
that it takes nearly double the applied gate bias for the single gate device to
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Figure 3.12: Effective potential for single-gate (panels (a),(c)) and double-gate (pan-
els (b),(d)) MOSFETs with Lg = 7.5 nm and identical source-drain currents J .
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Figure 3.13: Source-drain I−Vd curves of single-gate and double-gate (panels(a), (b)
respectively) MOSFETs with channel length Lg = 10 nm. Panels (c), (d) show the
subthreshold curves for the same devices. The dashed line shows the ideal thermal
subthreshold slope.
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suppress the potential barrier in the channel. Examination of the subthreshold
slope (3.13(c), 3.13(d)) shows that even for a relatively long device, the slope
is roughly half the ideal thermal slope of 60 mV/dec.

These results are again encapsulated in the voltage gain Gv. For a fair
comparison of the two devices, Fig. 3.14(a) shows the voltage gain for the
single and double gate devices at equivalent source-drain current J . The factor
of two relationship holds over the entire range of currents. So the double gate
transistor may scaled down approximately twice further than the single gate
configuration. For example, enforcing Gv > 1 shows that the single gate
transistor crosses this threshold at Lg = 5 nm while, as shown in Fig. 3.8, the
double gate device may still provide gain down to Lg ≈ 2.5 nm. Equivalently,
the double gate device will have twice better performance at fixed gate length.

The minimum power operating point versus (top) gate length Lg is shown
in Fig. 3.14(a) for both the single and double gate devices. At long gate
lengths we again see the power requirements for the double gate structure are
twice less than that for the single gate. As the gate length is reduced, the drive
voltage VDD required to reach the minimum power point for the single gate
device pulls the potential sufficiently high that the hole concentration in the
channel from Zener tunneling becomes quite substantial (see section 4.2.4).
The net effect of the holes would be a positive background charge decreasing
the potential maximum forcing an even higher VDD to close the transistor.

The effect is not included numerically in our calculations but we simulate
it by placing a bound at VDD = 1.4 V, roughly the point where the band
edges begin to cross. The minimum power is evidently at higher VDD than
this limit (see e. g. Fig. 2.9) and the result is to increase the effective power
of the device. This calculation is given by the solid lines in Fig. 3.14 while
the dashed lines are the result without consideration for Zener tunneling. The
double gate structure does not reach this limit, but the effect on the single gate
device is substantial for Lg ≤ 6 nm. As the gate length approaches Lg = 3 nm,
the double gate device has nearly an order of magnitude lower operating power
and twice the voltage gain over the single gate, providing evidence that the
more complex double gate structure (or something similar such as surrounding
gates) will be required to reach these ultra-short gate lengths.
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Chapter 4

Double-Gate Device with Bulk
Electrodes
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Figure 4.1: Model ballistic FET with bulk electrodes.

The results of chapter 3 show that the DG FET structure is a promising
candidate for reaching nanometer scale lengths. The structure may be im-
proved from a circuitry standpoint by removal of the thin extension regions
and connecting the channel directly to the bulk regions (Fig. 4.1). Removal
of the doped extensions allows for lower overall “bulk-to-bulk” device length
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and better thermal scaling. As a simple example, the thin extensions are able
to dissipate power

P/W = ∆T
tc
Lext

κsi, (4.1)

where κsi = 1.5 W/cmoC is the thermal conductivity of silicon. For a 50 A/cm
current density at Vd = 0.5 V, this leads to a rise in system temperature

∆T ≈ Lext

tc

JONVd
κsi

≈ 356 K. (4.2)

The bulk configuration is much less susceptible to these thermal problems.
In the bulk-electrode model, the channel is longer than the gate electrode

Lc = Lg + 2tox. As a result, the gate is not absolutely effective in screening
charge near the electrode regions, and charge accumulation can occur. While
not ideal, this accumulation does not hinder the performance characteristics
and the longer channel delays the onset of direct tunneling allowing for a
smaller gate electrode for an equivalent channel length as compared to the
devices with extensions.

As a first approach, we may assume that the sharp transition could be
approximated by a smooth transition and thus the particle enter the channel
adiabatically [101]. In the adiabatic limit, the electron obtains the confinement
energy Ez,1 without scattering and we may use the results of sections 3.1.1 and
3.1.2 within the raised channel potential

Φ̄(x) → Φ̄(x) + Ez,1. (4.3)

Many results were obtained with this model [16, 49, 53], but the 1-D Schrödinger
equation is not strictly valid for this device. The phase-space mismatch be-
tween the channel and drain make back-scattering from this interface negligible
[97], but back-scattering at the source interface may be substantial, an effect
ignored by the adiabatic assumption. Additionally, near the electrode inter-
faces, the higher order wave function modes will have their greatest impact,
exactly where the charge accumulation which dominates transport develops.
So an accurate description of the device requires a full 2-D solution of the
Schrödinger equation in the channel. Additionally, to enable discussion of
wider channel devices, we include the effect of all valley contributions (see
Fig. 2.7) to the electron and current densities.
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4.1 2-D Schrödinger Solution

While a numerical solution of the Schrödinger equation (with the appropri-
ate “open” boundary conditions deep inside the electrodes, and the first-type
conditions at the channel/oxide interface) on a 2D direct-space grid is concep-
tually the easiest approach, it requires the inversion of a sparse matrix of the
size Ntot = Nx×Nz, where Nx, Nz are the grid sizes in the x̂ and ẑ directions
(Fig. 4.1), respectively. Such a solution requires as many as roughly O(N2

tot)
operations [77]. The necessity of wavefunction integration over energies of all
incident electron waves, within a substantial energy interval, to obtain the
full current and charge density distribution further exasperates the necessary
computing resources. On the other hand, the full Fourier transform to the 2D
momentum space would be highly unnatural, due to the hump-like nature of
the effective potential profile in the x̂ direction.

This is why, inspired by the renowned analysis of the transversal quantiza-
tion effects on transport, carried out by Szafer and Stone [102], we have opted
for a mixed approach in which the electron wavefunctions in the channel are
Fourier-expanded in the ẑ direction, while the coefficients of this expansion are
computed as explicit functions of x. This approach results in a tri-diagonal
matrix which can be solved with O(Ntot) operations, for practicable accu-
racy giving a factor of 100 or so advantage in computation resources over a
2D real-space method. In fact, a direct comparison of two slightly different
methods based on the real and mode space solutions of the “Non-equilibrium
Green’s function” (NEGF) equations for a DG-FET with thin doped exten-
sions and a channel body thickness of 1.5 nm [47] demonstrated the a mode
space approach within the NEGF was over 135 times faster than the compa-
rable real-space implementation at a single bias point. However, the NEGF
mode space approach did not include the coupling between channel sub-bands
modes and thus was only an approximate solution to the full wavefunction.
This decoupling of the modes is equivalent to the δ-Ā approximation discussed
in appendix A.4.2.

We derive here a full 2-D mixed mode-space solution, including sub-band
coupling,to describe coherent transport through the narrow ballistic FET chan-
nel.

To solve the full two dimensional Schrodinger equation,

[
− ~2

2mx

∂

∂x
− ~2

2mz

∂

∂z
+ Φ(x, z)

]
Ψ(x, z) = (E − Ey)Ψ(x, z), (4.4)

we make the usual assumption that the electrons scattered from the transistor
back into bulk electrodes dephase and thermalize before their possible return
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to the channel. This assumption is fully justified if the mean free path of
electrons in the electrodes l is much longer than the channel thickness tc,
while the electron-phonon scattering length lph is not too much longer than

l. For the electrons making the largest contribution into the net current, and
the parameters used in our work, l ≈ 10 nm, and lph ≈ 50 nm [97, 103], so

that these conditions are relatively well satisfied. Due to this fact, the net
current and electric charge densities may be calculated as sums of incoherent
contributions by wavefunctions corresponding to plane waves incident on the
channel, at various angles, from the drain and source.

In the same manner as Eq. (3.6) we may factor out the y component of
the wavefunction in the (uniform) device width. The solution to Eq. (4.4)
for the energy eigenfunction in the source, drain and channel regions may be
presented as

Ψ(x, y, z) = eikyy ×




Ψs(x, z), x ≤ 0,
Ψ(x, z), 0 ≤ x ≤ Lc,
Ψd(x, z), x ≥ Lc.

(4.5)

Again, ky is conserved throughout the device due to uniformity and assuming
a quadratic dispersion relation related to the energy in that direction by

Ey =
~2k2

y

2my

. (4.6)

Following the mixed-momentum space approach of Szafer and Stone [102],
the solution for the energy eigenfunctions in the electrodes may be presented
as a series of plane-wave solutions

Ψs(x, z) = χw(z)eikwx +
∑
w′
rww′χw′(z)e

−ikw′x,

Ψd(x, z) =
∑
ν

Fνwe
ikν(x−Lc)χν(z),

(4.7)

where

χw(z) =

(
2

tB

)1/2

×
{

cos (qwz) , w = 1, 3, 5, . . . ,
sin (qwz) , w = 2, 4, 6, . . . ,

(4.8)

are the standing wave eigenfunctions in the z direction with wavevector

qw ≡ wπ

tB
. (4.9)

The scattering amplitudes rw,w′ and Fwν describe the plane wave compo-
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nents, respectively, reflected from the channel back to the source and trans-
mitted though the channel into the drain, normalized to the amplitude of
the incident wave. For a region with a constant potential, such a plane-wave
expansion is the exact general solution to the Schrödinger equation, and is
thus more exact than the 1D approximation (which essentially corresponds
to taking into account just one reflected and one transferred wave). In our
case this is still a certain approximation, because of some penetration of the
electric field into source and drain - see Fig. 4.3 below. However, as these
figures show, due to high electrode doping the field is screened very fast in the
electrodes, so that the maximal electrostatic potential of the penetrated field
is just a few percent of the voltages applied to the device. We believe that the
effect of this approximation on the final results are virtually negligible.

Within the quadratic dispersion law approximation, and with the electric
potential of the source taken for the reference, the total energy of eigenfunction
(4.7) is

E =
~2k2

w

2mx

+ Ey +
~2q2

w

2mz

. (4.10)

For the waves incident from the drain (which may give a substantial contribu-
tion to the net current and charge, especially at low source-drain voltages Vd),
we use the expression similar to Eq. (4.7), with the characteristic equation

E =
~2k2

ν

2mx

+ Ey +
~2q2

ν

2mz

− eVd. (4.11)

The eigenfunctions in the channel may be also expressed through series
expansions

Ψ(x, z) =
∑
n

ψn(x)ϕn(z), for 0 ≤ x ≤ Lc, (4.12)

where eigenfunctions ϕn(z) are defined similarly to Eq. (4.8),

ϕn(z) =

(
2

tc

)1/2

×
{

cos (nπz/tc) , n = 1, 3, 5, . . . ,
sin (nπz/tc) , n = 2, 4, 6, . . . ,

(4.13)

but with the replacement of the electrode thickness tB for the much smaller
thickness of the channel tc ¿ tB. Plugging (4.5), (4.12) into the 3D Schröinger
equation, and using the orthonormality of functions ϕn(z), we readily arrive
at an effective 1D Schrödinger equation for electrons in the n-th subband:

[
− ~2

2mx

d2

dx2
− Ex − eΦ̄n(x)

]
ψn(x) = 0. (4.14)
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Here the effective 1D potential

Φ̄n(x) ≡
∑

n′

∫
ϕn(z)Φ(x, z)ϕn′ dz, (4.15)

while the effective 1D energy Ex is related to the total energy E as

E = Ex + Ey + Ez,n, (4.16)

where the last term presents the lateral quantum confinement,

Ez,n =
~2π2n2

2mzt2c
. (4.17)

For numerical solution, it is convenient to present the general solution of
Eq. (4.14) in the following form:

ψn(x) = Cnfn(x) +Dngn(x), (4.18)

where Cn, Dn are undetermined weights, while fn(x), gn(x) are the linearly in-
dependent, particular solutions of the same equation. At the source-to-channel
interface (x = 0), we enforce the continuity of the wavefunction. According to
the first of Eqs. (4.7) and Eq. (4.12), the condition has the form

χw(z) +
∑

w′
rww′χw′(z) =

∑
n

(Cnfn(0) +Dngn(0))ϕn(z). (4.19)

Multiplying both sides of that equation by χw′′(z) and integrating the result
over the channel thickness, we get a set of linear equations

rw,w′ =
∑
n

[Cnfn(0) +Dngn(0)] anw′ − δw,w′ , (4.20)

where coefficients

anw ≡
tc/2∫

−tc/2

χw(z)ϕn(z) dz, (4.21)

represent the strength of the overlap of transverse wavefunctions in the channel
and electrode. Using the confined state wavefunctions (4.8) and (4.13), the
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integral is calculated explicitly as

anw =





(−1)n/2
4nt

3/2
B t

1/2
c

π(w2t2c − n2t2B)
sin

(
wπtc
2tB

)
w, n even,

(−1)(n+1)/2 4nt
3/2
B t

1/2
c

π(w2t2c − n2t2B)
cos

(
wπtc
2tB

)
w, n odd,

√
tc
tB

w2t2c = n2t2B,

(w mod 2) = (n mod 2),

0 else.

(4.22)
When n, w are odd, a2

nw has the following limiting expressions

a2
nw ≈





16

(nπ)2

(
tc
tB

)
: w tc

tB
¿ 1,

16n2
(
tc
tB

)

π2(w2(tc/tB)2 − n2)2
: w tc

tB
À 1,

(4.23)

and when n, w are even,

a2
nw ≈





4w2

n2

(
tc
tB

)
: w tc

tB
¿ 1,

16

(nπ)2

(
tc
tB

)
: w tc

tB
≈ π/2,

16n2
(
tc
tB

)

π2(w2(tc/tB)2 − n2)2
: w tc

tB
À 1.

(4.24)

From the continuity of the wavefunction derivative we get another relation:

ikwχw(z)− i
∑

w′
kw′rww′χw′(z) =

∑
n

∂

∂x
ψn(0)ϕn(z). (4.25)

Multiplying by ϕn′(z) and integrating the result, and combining it with Eq.
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(4.20), we get

2ikwanw − i
∑
m

Āwnm [Cmfm(0) +Dmgm(0)] = Cnf
′
n(0) +Dng

′
n(0), (4.26)

where the prime represents differentiation over x, and kernel elements

Āwnm ≡
∞∑
w=1

anwkwamw, (4.27)

characterize the coupling between sub-band modes.
Absolutely similar calculations at the channel-drain interface yield condi-

tions

Fνw =
∑
m

[Cmfm(Lc) +Dmgm(Lc)] amν , (4.28)

Cnf
′
n(Lc) +Dng

′
n(Lc) = i

∑
m

Āνnm [Cmfm(Lc) +Dmgm(Lc)] . (4.29)

Here, coefficients Āν are defined similarly to Eq. (4.27), with the replacement
of the electron wavevector kw in the source by kν in the drain, and the sum
taken over the drain modes numbered with index ν.

Relations (4.20), (4.26), (4.28), (4.29) form a full set of linear relations
for the Fourier expansion amplitudes, which completely determine coefficients
rww′ , Fνw, Cn, and Dn, and, together with functions fn(x), gn(x), determine
all eigenfunctions Ψ(x, z).

4.1.1 Channel Electron Density

The total number of electrons in the channel, arriving from the source, may
be found by the summation over all incident waves:

N(x, y, z) = gsgv
∑

k

|Ψ(x, z)|2 f(E), (4.30)

where Ψ(x, z) is assumed normalized to the amplitude of the incident state
wavefunction. For a large number of incident states, the summation becomes
integral

N(x, y, z) =
gsgvLBtBW

(2π)3

∫

kx>0

d3k f(E) |Ψ(x, z)|2 . (4.31)
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The three dimensional electron density is given by

n3D(x, y, z) =
gsgvtB
(2π)3

∫

kx>0

d3k f(E) |Ψ(x, z)|2 . (4.32)

Using relation

dky =
1

2~

(
2my

Ey

)1/2

dEy, (4.33)

and Fermi-Dirac integral (2.21), the integral becomes

n3D(x, y, z) =
gsgvtB

√
2my

(2π)3~

∫

kx>0

d2k |Ψ(x, z)|2F−1/2 ((µF − Ex,z)/T ) , (4.34)

where
Ex,z ≡ Ex + Ez,n. (4.35)

When the bulk electrode thickness tB is large we can introduce angle θ
such that

kw =
(√

2mxEx,z/~
)

cos θ,

qw =
(√

2mzEx,z/~
)

sin θ.

For arbitrary effective masses mx, my, the differential area is given by (c. f.
2.19)

d2k =

√
mxmz

~2
dEx,z dθ, (4.36)

and using dimensionless energy variables ε ≡ E/T , the expression for the three
dimensional electron density is written

n3D(x, y, z) =
gsgv(2mxmymz)

1/2T 3/2

(2π~)3

∞∫

0

dεx,zF−1/2(εF − εx,z)

×
π/2∫

−π/2

dθ |Ψ(x, z)|2 .
(4.37)

In our case, however, it is more convenient to express the integral over θ as
a direct summation over modes w. Such a summation is convenient because
it allows the charge and current densities to be expressed explicitly in terms
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of coupling strength Ā, which only needs to be calculated once, before any
self-consistent iteration begins. To calculate the integration over the incident
angle of the wavefunction, we use the relations

π/2∫

−π/2

dθ = 2

π/2∫

0

d [sin(θ)] [cos(θ)]−1, (4.38)

and

sin(θ) =
~π

tB
√

2mzEx,z
w,

cos(θ) =
~
kw

√
2mxEx,z,

d (sin(θ)) =
π~

tB
√

2mzEx,z
dw,

(4.39)

the integral over θ of the wavefunction may be expressed as a summation over
incident states

π/2∫

−π/2

|Ψ(x, z)|2 dθ =
2π

tB

√
mx

mz

∑
w

k−1
w |Ψ(x, z)|2 . (4.40)

Plugging this relation into (4.37), we arrive at the expression for the electron
density

n3D(x, y, z) =
(2m2

xmy)
1/2
T 3/2

π2~3

∞∫

0

dεx,zF−1/2(εF − εx,z)

[ ∞∑
w=1

k−1
w |Ψ(x, z)|2

]
,

(4.41)
where we have used degeneracies gs = 2, gv = 2.

The total electron density in the channel is then calculated as a sum of Eq.
(4.41) and a similar expression for electrons incident from the drain with the
shift energy of reference by eVd.
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4.1.2 Current Density

Taking into account the full two dimensional solution for the wavefunction,
the summation for the device current (2.34) may be written

I =
∑

k

Ik =
WtBLB

(2π)3

∫
d3kIk. (4.42)

Noting that the transmission coefficient is independent of the wavevector com-
ponent ky, and evaluating the current density we write

J = I/W = e
gsgv~tB
mx(2π)3

∫

kx>0

d2kkxD(kx,z)

∞∫

−∞

dkyf(E). (4.43)

Converting dky to energy units yields

J = e
gsgvtB(2my)

1/2

mx(2π)3

∫

kx>0

d2kkxD(kx,z)

∞∫

0

dEyE
−1/2
y f(E). (4.44)

Again using the differential area (2.19), the current density may be written

J = e
gsgv(2my)

1/2

4π2~2

∞∫

0

dEx,zF−1/2 [(µF − Ex,z)/T ]

×

tB

√
2mzEx,z

π~

1∫

0

d(sin θ)D(Ex,z, θ)


 .

(4.45)

Again, it will be more convenient to represent the integration in square
brackets as a sum over incident modes. The transmission probability for inci-
dent mode w is the sum over all possible transmitted modes ν,

Dw(Ex,z) =
∑
ν

∣∣∣∣
kν
kw

∣∣∣∣ |Fw,ν |2 , (4.46)

and using relation (4.39) the total probability of transmission for a particle of
energy Ex,z is found to be

∑
w

Dw(Ex,z) =
tB
√

2mzE

π~

1∫

0

d(sin θ)D(Ex,z). (4.47)
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Hence, the term in square brackets of Eq. (4.45) is simply the total trans-
mission coefficient (4.47) and the total current density may be written

J =
J0

π

∞∫

0

dεx,zD(εx,zT )
[F−1/2(εF − εx,z)−F−1/2(εF − νd − εx,z)

]
, (4.48)

where νd ≡ eVd/T , we have used degeneracy values gs = 2, gv = 2 and

J0 ≡ e

√
2myT

3/2

π~2
. (4.49)

The first term in the square brackets represents the total left-to-right moving
current for particles incident from the source. The net source-to-drain cur-
rent is balanced by the motion of particles moving right-to-left from drain,
represented by the second term.

4.1.3 Evaluation of the Wavefunction

As in section 3.1, fn(x) and gn(x) are any two linearly independent solutions
of (4.14). For notational simplicity we will use the conventions

fm(0) = fm0 fm(Lc) = fmL,
f ′m(0) = f ′m0 f ′m(Lc) = f ′mL,
gm(0) = gm0 gm(Lc) = gmL
g′m(0) = g′m0 g′m(Lc) = g′mL,

(4.50)

It is most convenient to present the solution of linear system (4.20), (4.26),
(4.28), (4.29) in matrix notation. Defining

M̄1 ≡ iĀwnmgm0 + δnmg
′
m0,

M̄2 ≡ iĀwnmfm0 + δnmf
′
m0,

(4.51)

the solution to Eqs. (4.20), (4.26) may be rewritten compactly as

|a〉 = M̄2 |C 〉+ M̄1 |D 〉 , (4.52)

where |C 〉 and |D 〉 are vectors over unknown channel weights Cn, Dn at fixed
w, and |a〉 is a vector over the same n states with elements

|a〉n ≡ 2ikwanw. (4.53)
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The solution of equations (4.28), (4.29) yield relations

M̄3 |C 〉 = M̄4 |D 〉 , (4.54)

where we have defined matrices

M̄nm
3 ≡ iĀνnmfmL − δnmf

′
mL,

M̄nm
4 ≡ −iĀνnmgmL + δnmg

′
mL.

(4.55)

Results (4.52) and (4.54) solved together yield expressions for wavefunction
coefficient vectors |C 〉, |D 〉

|C 〉 =
[
M̄2 + M̄1M̄

−1
4 M̄3

]−1 · |a〉 ,
|D 〉 = M̄−1

4 M̄3

[
M̄2 + M̄1M̄

−1
4 M̄3

]−1 · |a〉 . (4.56)

Because matrix M̄3 has diagonal elements shifted by f ′mL ¿ 1, the calculation
becomes numerically unstable for the alternate solution using M̄−1

3 M̄4. For
computational convenience we define coefficient matrices

M̄C ≡ [
M̄2 + M̄1M̄

−1
4 M̄3

]−1
,

M̄D ≡ M̄−1
4 M̄3M̄C ,

(4.57)

then the weights |C 〉 and |D 〉 may be expressed as simply

|C 〉 = M̄C |a〉 ,
|D 〉 = M̄D |a〉 . (4.58)

Notice that M̄C and M̄D are functions in terms of tc, tB, E, Lc, and applied
potential Vd but not the specific incoming or outgoing states w, ν. Using
result (4.58) and relation (4.28), we find the transmitted amplitude to be

Fνw =

[
〈af | M̄C + 〈ag| M̄D

]
· |a〉 , (4.59)

where 〈af | , 〈ag| are row vectors over m with elements definition

|af 〉m ≡ amνfmL,
|ag 〉m ≡ amνgmL.

(4.60)
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4.1.3.1 Unit Boundary Conditions

As discussed in section 3.1.3, the most appropriate choice of boundary condi-
tions for the numerical solution of fn(x), gn(x) is

fn(0) = 1 fn(Lc) = 0,
gn(0) = 0 gn(Lc) = 1.

(4.61)

The matrix expressions (4.51), (4.55) are then simplified

M̄1 = δnmg
′
m0,

M̄2 = iĀwnm + δnmf
′
m0,

M̄3 = −δnmf ′mL,
M̄4 = −iĀνnm + δnmg

′
mL.

(4.62)

Since M̄1 and M̄3 are now diagonal matrices, the amount of matrix manipula-
tion we have to do in the numerical calculation can be reduced. The expres-
sions for coefficient vectors |C 〉, |D 〉 remains unchanged, but it becomes most
convenient to work with matrix M̄43 ≡ M̄−1

4 M̄3 whose elements are given by

[
M̄43

]
nm

= − [
M̄−1

4

]
nm
f ′mL, (4.63)

and matrix M̄143 ≡ M̄1M̄
−1
4 M̄3 whose elements are given by

[
M̄143

]
nm

= − [
M̄−1

4

]
nm
g′n0f

′
mL. (4.64)

Hence, we may write the coefficient matrices as

M̄C =
[
M̄2 + M̄143

]−1
,

M̄D = M̄43M̄C .
(4.65)

with vector solutions (4.58).
As mentioned previously, a major benefit of this method is that both the

square modulus of the eigenfunction Ψ(x, z) and transmission probability may
be written explicitly in terms of Ā, which only needs to be tabulated once.
Since fmL = 0 by definition, the expression for the transmitted amplitude
reduces to

Fνw = 2ikw
∑
nm

[
M̄D

]
nm
anνamw, (4.66)

and the total transmission co-efficient, Eq. (4.47), becomes

D(Ex,z) = 4
∑

n,m,n′,m′
K̄ν
nn′K̄w

mm′
[
M̄D

]
nm

[
M̄∗

D

]
n′m′ , (4.67)
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where K̄nm ≡ <(Ānm) is the average incident wavevector over modes w which
couples to states n,m [102].

The wavefunction inside the channel is written as

Ψ(x, z) =
∑
n

(
|C 〉n fn(x) + |D 〉n gn(x)

)
ϕn(z), (4.68)

with square modulus

|Ψ(x, z)|2 =
∑
nm

[
|C 〉n |C 〉∗m fn(x)fm(x) + |D 〉n |D 〉∗m gn(x)gm(x)+

|C 〉n |D 〉∗m fn(x)gm(x) + |D 〉n |C 〉∗m gn(x)fm(x)

]
ϕn(z)ϕm(z),

(4.69)

and the star represents conjugation of the complex variable. For the channel
electron density, the relevant summation is the square modulus of the wave-
function normalized to the incident wavevector

∑
w k

−1
w |Ψ(x, z)|2. Since fn(x),

gn(x), and ϕn(z) are independent of w, we can calculate the sum apriori. The
summation over states may then be expressed as

∑
w

k−1
w |Ψ(x, z)|2 =

∑
nm

[
P (Cn, Cm)fn(x)fm(x) + P (Dn, Dm)gn(x)gm(x)+

P (Dn, Cm)fm(x)gn(x) + P (Cn, Dm)fn(x)gm(x)

]
ϕn(z)ϕm(z),

(4.70)

where Cn(Dn) is the nth element of the |C 〉 ( |D 〉) vector. The useful term
P (Vn, Vm)represents the general summed product of the n-th and (conjugated)
m-th elements of vectors |C 〉, |D 〉,

P (Vn, Vm) ≡
∑
w

k−1
w VnV

∗
m. (4.71)

For arbitrary elements Vn, Vm, this result may be simplified by writing |C 〉 and
|D 〉 in terms of their respective matrices (4.65)

Vn = 2ikw
∑
m

[
M̄V

]
nm
amw. (4.72)
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Thus,

VnV
∗
m = 4k2

w

∑

ll′

[
M̄V

]
nl

[
M̄∗

V

]
ml′ alwal′w, (4.73)

or explicitly in terms of Ā,

P (Vn, Vm) = 4
∑

ll′

[
M̄V

]
nl

[
M̄∗

V

]
ml′ K̄w

ll′ . (4.74)

The reflection term for the incident wavefunction is then found to be

rww′ = 2ikw
∑
nm

M̄Canw′amw − δww′ , (4.75)

and the wavefunctions in the bulk regions are given as

Ψs(x, z) = 2i

[
χw(z) sin(kwx) + kw

∑
n,m

M̄CamwΛ̄w
n

]
, (4.76)

Ψd(x, z) = 2ikw
∑
nm

M̄DamwΛ̄ν
n, (4.77)

where
Λ̄w
n ≡ ∑

w′
χw′(z)e

(−ikw′x)anw′ ,

Λ̄ν
n ≡ ∑

ν

χν(z)e
[ikν(x−Lc)]anν .

(4.78)

The normalized sums of the bulk electrode wavefunctions is found to be

∑
w

k−1
w |Ψs(x, z)|2 =

4

{∑
w

[
k−1
w χ2

w(z) sin2(kwx) + 2χw(z) sin(kwx)
∑
nm

< ([
M̄C

]
nm
amwΛ̄w

n

)
]

+
∑

n,m,n′,m′

[
M̄C

]
nm

[
M̄∗

C

]
n′m′ K̄w

mm′Λ̄
w
n Λ̄∗,wn′

}
, (4.79)

∑
w

k−1
w |Ψd(x, z)|2 = 4

∑

n,m,n′,m′

[
M̄D

]
nm

[
M̄∗

D

]
n′m′ K̄w

m,m′Λ̄
ν
nΛ̄

∗,ν
n′ . (4.80)

The matrix Ā only depends on physical parameters tc, tB, which can not
change through the self-consistent iteration, and electron energy E. Hence,
we may tabulate the matrix values over E before the calculation begins and
the full two dimensional wavefunction solution can be calculated very rapidly.
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Unfortunately, direct calculation of (4.27) converges very slowly at high w.
However, the wavevector may be expanded exactly in this region to provide a
rapidly converging expression.

4.1.4 Numerical Evaluation of Ā

Because summation (4.27) tends to converge very slowly at high w terms, we
need a more efficient method to evaluate it. This first step is to recognize that
since anw = 0 if (n mod 2) 6= (w mod 2), then

Ānm = 0 if (n mod 2) 6= (m mod 2). (4.81)

Hence, plugging in the explicit expression for anw we find in terms of ratio
r ≡ tB/tc,

Ānm =





0 (n mod 2) 6= (m mod 2),

sgn(n)sgn(m)
∑

w=1,3...

kwcw cos2
(wπ

2r

)
(n,m) = odd,

sgn(n)sgn(m)
∑

w=2,4...

kwcw sin2
(wπ

2r

)
(n,m) = even,

(4.82)
where

sgn(n) =

{
(−1)n/2 n = even,

(−1)(n+1)/2 n = odd,
(4.83)

and

cw =





1/r w = nr and w = mr,

4mr

π(w2 −m2r2)
w = nr,

4nr

π(w2 − n2r2)
w = mr,

16nmr3

π2(w2 −m2r2)(w2 − n2r2)
else.

(4.84)

The wavevector kw can be expressed as

kw =
√
ζ − ζw, (4.85)

where ζ = 2mxE/~2 and ζw = w2π2mx/mzt
2
B. When ζw > ζ then the wavevec-
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tor can be expressed
kw = iζ1/2

w

√
1− βw, (4.86)

with terms

βw ≡ αEw−2,

α ≡ 2mzt
2
B

π2~2
.

(4.87)

When ζw À ζ, the wavevector can be expanded in the Taylor series

kw = iζ1/2
w

∑
j

cjα
jEjw−2j, (4.88)

where

cj ≡
(

1
2
− j − 1

)
!

j!
. (4.89)

Then the high w terms of the summation can be expressed

∞∑

w=high cutoff

anwkwamw = i
∑
j

cjα
jEj

∑

w=high cutoff

ζ1/2
w anwamww

−2j.

(4.90)
The utility of this expression is that it converges relatively rapidly in j terms
and the second part is completely independent of E. Hence, this part only
needs to be tabulated once and plugged into the summation over j at a given
energy E. Other useful approximations for kernel Ā including those of the
original authors, are provided in appendix A.4.

4.2 Device Characteristics

4.2.1 Potential

Two typical potential distributions for the bulk electrode device are shown
in Fig. 4.2 for two values of the applied gate voltage Vg. In the on-state
(Vg = 0.1 V), the potential “hump” near the source electrode, a defining char-
acteristic for this device, is clearly visible. This hump is the result of screening
of the gate field by the source and drain electrodes allowing for the accumula-
tion of uncompensated charge.

The potential along the middle of the device is shown by the black lines
in Fig. 4.3 for a long gate, Lg = 10 nm (panel (a)) and short gate, Lg =
2.5 nm (panel (b)) device. The solid lines are the results calculated with the
full 2-D solution and the dashed lines are the result calculated with the 1-D
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Figure 4.2: Sample 2D potential profiles for Lg = 10 nm, tox = 1.5 nm, tc = 2 nm,
Vd = 0.2 V device with (a) Vg = 0.1 V, (b) Vg = −0.1 V.
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Figure 4.3: Mid-channel potential (black lines) and electron density (red lines) for
(a) the same device as in Fig. 4.2 a (b) device with Lg = 2.5 nm. Dashed lines are
the results in the 1-D approximation.
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solution of the Schrödinger equation presented in section 3.1. Because the 1-D
approximation neglects the back-scattering of the wavefunction at the channel
entrance (i. e. source electrode for left-to-right moving electrons and drain
electrode for right-to-left), it overestimates the wavefunction penetration into
the channel. The red lines show the electron density through the middle of the
device. The results show that the adiabatic (1D) approximation overestimates
the electron density especially near the electrodes where the tunneling states
with energy E < Ez,1 contribute. It is exactly this region where the potential
hump develops hence the 1-D approximation tends to exaggerate its size. The
hump near the source is the bottleneck which effectively regulates transport
through the device, so small deviations in this region can lead to yield large
deviations in the calculation of the current density.

4.2.1.1 Valley Contributions

Figure 4.4 shows the contribution of each doubly degenerate valley for the sil-
icon band structure. The dashed line shows the calculated potential through
the middle of the device channel. The X, Y , and Z curves are the contribu-
tions when the electron heavy mass is oriented in the x̂, ŷ, and ẑ directions
respectively (see Fig. 2.7). For the thin channel, tc = 2 nm, the one valley
assumption taken for the 1-D Schrödinger calculations is validated. For thicker
channels however, all transport valleys need to be considered for accurate de-
vice evaluation. As an interesting side note, the curvature of the potential near
the drain tends to create a confinement well, producing the small oscillations
of the density near the drain. Close examination of these oscillations reveals
the difference between the de-Broglie wavelengths for each effective mass.

4.2.2 Potential Pockets

When the applied gate voltage is positive and very high, the bottom of the
potential profile may fall below the level of the conduction band in the drain
region. Panel (a) of Fig. 4.5 shows one such case calculated in the 1-D approx-
imation. The red line with the dashed section shows the calculated electron
density including only electrons from the source and drain electrodes with en-
ergies E > 0, with zero defined from the bottom of their respective conduction
bands.

In equilibrium, the potential “pocket” that forms below the drain level
would be filled with electrodes through inelastic relaxation processes (see Fig.
4.6). The electron-phonon interaction time is on the order of 100 fs (see section
2.1), so the pocket will be filled with electrons in the on-state (when the
channel density is high) on the order of nanoseconds so this pocket is somewhat
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Figure 4.4: Contribution of each silicon valley to the total channel electron density
for tc = 2 nm and tc = 4 nm. The dashed line represent the mid-channel potential
profile.
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Figure 4.5: Example potential profiles (black lines) converged (a) without and (b)
with inclusion of sub-Vd energy electrons. The dashed red line indicates the calcu-
lated electron density without the pocket electrons.

unrealistic in a steady-state device. This effect has not been accounted for in
the results of chapter 3. To account for the sub-Vd electrons, we add to the
electron density a term proportional to the two dimensional density of states

npocket(x, z) = e
2

tc
cos2

(
πz

tc

)
4mx

π~2
(Φ(x)− Vd) , (4.91)

where we have included a factor 2 for the spin degeneracy and 2 for the val-
ley degeneracy. The continuous red line in panel (a) shows what the total
electron density would be added at this iteration step. Panel (b) shows the
self-consistent solution same device including the sub-Vd equilibrium electrons,
where again the dashed red-line is the density considering only the source /
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drain electrons. The net effect of the inclusion of the sub-Vd electrons is to
push the bottom of the conduction band in the channel to not exceed the drain
level.
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Figure 4.6: Schematic of electron (black circle) and phonon (red circle) relaxation.

4.2.3 I − Vd Families

The I − Vd families for thin, tc = 2 nm, and thick tc = 4 nm channel devices
are shown in Fig. 4.7 for gate voltage steps of 100 meV. The dashed lines
are the results calculated in the 1-D approximation. For small applied gate
bias, Vg < 0.3 V, the overestimation of the potential bottleneck yields an
underestimation of the current density. For larger applied bias, the opposite
effect occurs. The potential hump is eliminated and the potential becomes
pinned at the source level. The overestimate of the channel transparency then
produces a severely higher calculation of the current density.

The overall performance for the thin channel device are encouraging. The
device demonstrates excellent current saturation and very high current den-
sities for gate lengths as small as Lg = 5 nm and may even show suitable
saturation properties down to Lg = 2.5, although a direct comparison of
the these results with 3.2.2 is somewhat unfair because of the longer chan-
nel Lc = 5.5 nm which reduces the impact of direct source-to-drain tunneling.
For thicker channel devices, the results are less impressive. Even at the longest
gate length Lg = 10 nm, DIBL effects severely degrade the current saturation.
The prospect of scaling devices with wide channels below 10 nm will be limited.
Also, the present day rule of thumb tc ≈ Lg/2 [13] for present day MOSFETs
will clearly need to be more aggressive for ballistic devices.

The I−Vd families for devices with ultra-thin tc = 1 nm channels are shown
in Fig. 4.8. While electron mobilities acceptable for the ballistic assumption
have not yet been demonstrated at this ultra thin level, we study the device
here as an ideal case device to reach the ultimate scaling limits. For our stan-
dard doping level nD = 0.3 nm−3, shown in panel (a), the device again shows
near perfect current saturation. The current density is however, unacceptably
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Figure 4.7: Source-Drain I − Vd curves for DG MOSFET with bulk electrodes for
Lg = 10 nm, Lg = 5 nm, Lg = 2.5 nm ((a)-(c) and (d)-(f)). The left column shows
the tc = 2 nm device and tc = 4 nm in the right column. Dashed lines represent
show the results calculated in the 1-D approximation.

98



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Drain-source voltage V

d
 (V)

0

0.5

1

1.5

2
D

ra
in

 c
ur

re
nt

 J
 (

A
/c

m
)

L
g
 = 10 nm

t
c
 = 1 nm

t
ox

 = 1.5 nm
n

D
 = 0.3 nm

-3

T = 300 K

V
g
 = 0.5 V

0.4

0.3
0.2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Drain-source voltage V

d
 (V)

0

5

10

15

20

25

30

D
ra

in
 c

ur
re

nt
 J

 (
A

/c
m

)

L
g
 = 10 nm

t
c
 = 1 nm

t
ox

 = 1.5 nm
n

D
 = 0.9 nm

-3

T = 300 K

V
g
 = 0.5 V

0.4

0.3
0.2
0.1

(b)

Figure 4.8: Source-Drain I − Vd curves for ultra thin channel tc = 1 nm for (a)
standard doping density nD = 0.3 nm−3 and (b) high doping nD = 0.9 nm−3.

low to be considered for future circuit applications [3]. To overcome this diffi-
culty, panel (b) shows the results with the doping density increased to near the
solid-solubility limit for silicon nD = 0.9 nm−3. The achieved current densities
are more acceptable and the utlra-thin channel MOSFET may be considered
the “ideal” candidate for ultimate scaling.

4.2.4 Subthreshold Current

The subthreshold characteristics for the same set of devices as figure 4.7 are
shown in figure 4.9, where again the oxide thickness has been increased tox =
2.5 nm to minimize the gate leakage current. The gate leakage is represented
by the near horizontal dashed lines and is a numerical calculation of the leakage
current using the actual potential profile (see appendix A.1). The dotted lines
represent the approximate point at which the peak of the valence band reaches
the minimum in the conduction band and inter-band tunneling will begin to
cross. At this point, inter-band Zener tunneling from the channel to the drain
may begin. The tunneling of electrons from the channel valence band to the
drain conduction band will result of an accumulation of holes at the point
of the potential maximum. This loss of electrons may be compensated by
electron-hole recombination, but estimates show that this process will likely
be insufficient to counterbalance the effect. The holes produce positive charge
exactly at the point of potential maximum, which lowers the potential and
reduces the transistors ability to close the current. This effect is not accounted
for in our simulation so results below this point may be somewhat approximate.
The results of the 1-D calculation are shown as the colored dashed lines and
are nearly identical to the 2-D simulation. The high potential barrier means
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Figure 4.9: Subthreshold curves for the same gate lengths as Fig. 4.7 with increased
oxide tox = 2.5 nm. Colored dashed lines represent 1-D calculation. Dotted lines
represent the onset of inter-band tunneling.
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that the current is dominated by very high energy electrons which are less
susceptible to back-scattering at the source interface which makes the two
simulations more compatible.

The results again show that for the standard thickness tc = 2 nm (left
column of Fig. 4.9), the device demonstrates near perfect, thermal subthresh-
old slope for the longest gate length Lg = 10 nm. In contrast to the device
with thin extensions, as the gate length is scaled to Lg = 5 nm, the slope is
still very acceptable due to the longer channel length. In the 5 nm case, the
onset on tunneling current is more clear as the bending of the curves near the
bottom of the curves below Vg = 0.1 V. Even with the gate length scaled to
Lg = 2.5 nm, the device still demonstrates around seven orders of magnitude
between the on-state and off-state which approaches what is fundamentally
required for application in memory circuits.

The thick channel, tc = 4 nm are shown in the right column of Fig. 4.9.
Again, even at the longest gate length, the subthreshold slope is severely de-
graded due to the poor electrostatic control of the gate over the potential
inside the channel.

The subthreshold curves for the ultra-thin channel device are shown in Fig.
4.10. Panel (a) shows the full subthreshold profile. As hinted at in section
4.2.3, the device can be essentially seen as a “tunnel transistor”, very similar
to those with Schottky-barrier junctions (see. e. g., Ref. [104] and references
therein), because the confinement energy for the thin channel surpasses the
Fermi energy Ez,1 À EF. The crossing point of the confinement energy and
the Fermi energy occurs at doping level

nDtc = 2π

(√
mxmy

mz

)
. (4.92)

In order to provide acceptable current densities, the doping should be as close
to (or high than) this threshold as possible. For a 1 nm channel thickness, this
corresponds to doping density nD ≈ 1.2 nm−3, slightly higher than the doping
value accepted in Fig. 4.8.

The subthreshold plot also demonstrates an exponential slope different
than the thermal slope in the region 0.1 < Vg < 0.7. Two sample potential
profiles in the region are shown in panel (b). The dashed lines show the
potential plus the confinement energy Ez,1. This different exponential slope
can be seen as Fowler-Nordheim tunneling as the channel potential becomes
pinned at the source level. Further increase of the gate bias then has the effect
of shrinking the barrier width. The line with circles in panel (a) shows the
current density calculated in the limit of transmission through a trapezoidal
barrier where the length is scaled proportionally with the applied gate voltage.
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Figure 4.10: Subthreshold curves for ultra thin channel tc = 1 nm for (panel (a)).
Panel (b) shows the potential profiles (and potential including confinement as dashed
lines) for the Fowler-Nordheim tunneling region, demonstrated as the line with cir-
cles in panel a. Panel (c) shows the onset of tunneling current. The dotted red line
shows the current density calculated in an exactly solvable WKB model.
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Panel (c) shows the current density at the onset of tunneling. While this
result is much lower than the inter-band tunneling point, it is illustrative of
tunneling effects in all devices considered. For high negative gate voltage, the
potential barrier is well approximated as quadratic (see panel b of Fig. 4.2),
and the solution may be found analytically in the WKB approximation (2.52).
The tunneling current, when calculated in the quadratic limit is found to be

JQ = e

√
my

2π3~1/2
ω3/2e(2π/~ω)(EF−Φ0), (4.93)

with oscillator frequency 2.53. The dotted red line shows the current density
(4.93) and comparison of the inversion potential with thermal subthreshold
current shows that the onset of tunneling current occurs at

Vg ≈ 1.4 eV, (4.94)

in excellent agreement with the full 2-D simulation.

4.2.5 Device Performance

The voltage gain Gv for the standard device thickness tc = 2 nm versus applied
gate voltage from off-state to on-state is shown in Fig. 4.11 for three different
values of the doping density nD. While it was previously expected that doping
densities greater than nD = 0.3 nm−3 would produce uncontrollable currents,
these results show that the overall device performance is insensitive to the
electrode doping density. The dashed lines in panel (a) show the voltage gain
calculated in the 1-D approximation. Because Gv is effectively a measure of
electrostatic response to changes in the gate voltage, it is not surprising that
the two simulations give very similar results. The results hint that even gate
lengths scaled to Lg = 2.5 nm may demonstrate fundamental performance
characteristics sufficient for engineering into some integrated circuits.

For devices with very long channels, the quadratic model is not valid as
the potential takes exponential form

Φ(x, z) ≈ φ(z) sinh(x/Λ), (4.95)

where characteristic length Λ may be found as a solution to equation [12]

α tan

(
tc
2Λ

)
tan

(
tox
Λ

)
= 1. (4.96)

The voltage gain calculated in the exponential model, appropriate for very
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Figure 4.11: Voltage gain Gv for decreasing gate length at three different doping
levels: (a) nD = 0.1 nm−3, b) nD = 0.3 nm−3, c) nD = 0.9 nm−3. Dashed lines in
panel (b) shows the Gv calculated in the 1-D approximation.
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Figure 4.12: Voltage gain Gv for bulk model versus Lg. The red and blue lines show
the results of the quadratic and exponential models respectively.
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long devices is shown as the blue line in Fig. 4.12. The red line shows the
result of the quadratic model (2.61). The difference between the results of
the quadratic model and the numerical results for very short gates lengths is
caused by quantum tunneling current, an effect which cannot be described by
a simple electrostatics model. According to the full numerical simulations, the
scaling requirement Gv ∼> 2 means that the gate length for bulk devices may
safely be scaled to Lg ≈ 4 nm, and scaling to Lg = 3 nm may still be possible
depending on engineering requirements.

In order to reach ultimately small gate lengths, the restrictions on the pos-
sible width of the channel become quite severe. The device voltage gain versus
channel thickness is shown in Fig. 4.13 for decreasing gate length. For exam-
ple, in order to maintain viability in a Lg = 5 nm device the channel thickness
should be constrained to no larger than 3 nm, more ideally approaching the
2 nm value assumed in this work.

The dashed line in Fig. 4.13 is again the result of model (2.61). It is clear
that the channel thickness requirements for even the longest gate devices are
the direct consequence of simple electrostatic limitations.

4.2.5.1 Gate Capacitance

The total gate charge and large signal capacitance are shown in Fig. 4.14.
These results are generally on scale with the ITRS 2007 projections [3] for
DG structures with 10 nm physical gate lengths predicted for 2015, Cg,ideal =
3.68 × 10−12 F/cm. However, the ITRS results are based on the assumption
of higher drive supply voltage Vdd,ITRS = 0.8 V and lower saturation current
Jsat,ITRS = 7.02 A/cm than the ballistic transistor shown here. The DG-FET
demonstrates near linear capacitance scaling down to even the smallest gate
lengths. The gate thickness has been taken to be tg = 4 nm. While this choice
is a bit arbitrary, the capacitance also scales linearly with the choice of this
parameter.

The gate capacitance remains the limiting parameter for circuit clocking
in the absence of circuit power and thermal requirements. For example, Fig.
4.14(b) shows that our standard tc = 2 nm, nD = 0.3 nm−3 device with a
gate length Lg = 5 nm has a total gate capacitance (per unit width) around
5×10−12 F/cm. Fig. 4.7(b) shows an on-state current density JON = 27 A/cm
at drive voltage VDD = 0.5 V. This yeilds a capactive recharging time τ =
CgVDD/JON ≈ 93 ps. Assuming fraction of clock pulse used for recharging p =
1/16 this leads to an absolute ceiling for the clocking frequency f ≈ 11 GHz.
Of course, even in present day circuits, the clock frequency is limited by the
thermal dissipation of chip and not the gate capacitance.

Using the velocity estimate from section 2.1, 〈v〉 ≈ 2×107 cm/s the device
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Figure 4.13: Voltage gain Gv for bulk model versus tc for decreasing gate length.
The dashed black line is the result of the quadratic model.
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Figure 4.14: Total electron charge (panel (a)) and capacitance (panel (b)) for devices
with decreasing gate lengths.
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has an intrinsic time delay ti ≈ Lc/〈v〉 ≈ 40 ps, over a twice as small as the
capacitive recharging time. The estimate for the intrinsic delay is actually un
upper limit as the particle dynamics are essential determined in a small region
around the potential maximum, near the source electrode in the on-state.

4.2.5.2 Advanced Materials

High-k dielectric materials are actively being sought as a replacement for the
standard silicon dioxide. Hafnium oxide, with ε ≈ 30ε0 has seen spectacular
recent success due to it’s close compatibility with the silicon lattice and thermal
stability. So much so that it has even been incorporated into some of the most
recent production devices [105]. The primary benefit of these HfO2 materials
is the reduction of gate leakage currents [57] due to their higher band-gap
energy (Egap = 5.65 eV) [106] and the ability to use a thicker dielectric for the
same silicon “equivalent oxide thickness”

tEOT = tphys
εSiO2

εox
. (4.97)

However, the question of how these advanced materials will impact the ulti-
mate scaling limits has not been fully addressed.

The device voltage gain at constant physical oxide thickness tox versus
the oxide dielectric constant, calculated within our model, is shown in panel
(a) of Fig. 4.15. The dashed line shows the result of the simple quadratic
model (2.61). The results indicate that the performance benefits from even
the very highest permittivity oxides will be limited. As the permittivity of
the insulator is raised much higher than that for SiO2, εox ≈ 3.9ε0, the device
voltage becomes flat. Although the gate field may have increased penetration
into the channel, the response of the potential barrier saturates.

A similar result is obtained for low-k channel materials (i. e. graphene),
shown in panel (b). This second result is more artificial however because the
calculation assumes a silicon band structure not relevant for graphene channels.
The limited impact of scaling the dielectric constant may seen intuitively from
electrostatic arguments. For all practical device rox À 1, so the two dominant
terms in the quadratic model (2.61) for the reduction of Gv are 2αβox, and
2β2

ox. The second term in the denominator may be presented as

2αβox = 2
tEOT
tECT

, (4.98)

where tECT is the “effective channel thickness” defined similarly to Eq. (4.97).
Even in the case when either dielectric is scaled to the ideal limit tEOT/tECT →
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Figure 4.15: Voltage gain Gv versus dielectric constant in (a) oxide and (b) channel
for decreasing gate lengths. The dashed line in both figures is the result of the
simple quadratic model.

0, the electrostatic response is still hindered by a term proportional to the
physical oxide and channel thicknesses. For our standard configuration, tox =
1.5 nm, tc = 2 nm, this yields 2β2

ox = 1.125.
In the limit that α¿ 1, and tox ¿ tc, Lc the device will demonstrate near

perfect electrostatic response and the subthreshold voltage gain reduces

Gv → 2

(
Lc
tc

)2

. (4.99)

Hence, the device performance in the ideal limit is determined simply by the
ratio of channel dimensions where the factor of two represents the doubled gate
capacitance. This may also been seen in terms of the present rule of thumb
for scaling, the device lengths should be scaled proportionally to maintain
constant field inside the channel to scale down the device while maintaining
constant performance. The requirement to maintain device voltage gain above
Gv ≈ 2 leads to ultimate scaling limit

Llim
c = tc. (4.100)

Fundamentally, the channel length may be scaled to near the channel thickness
if the physical oxide thickness may be made much smaller than the channel
while allowing acceptably low leakage currents and maintaining reproducibil-
ity. A heavy requirement to say the least. Slightly more realistically, for
ultimately scaled devices tox ≈ tc and extremely high oxide permittivity

Llim
c =

√
3 tc, (4.101)
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or slightly better than the present day rule of thumb for scaling.

4.2.6 Threshold Voltage Rolloff

Similar to the device with thin doped channel extensions, the performance
characteristics of the device connected to bulk electrodes are very promis-
ing to maintain scaling to ultra small gate lengths. The natural question is
whether the scaling of this device is more sensitive to deviations in the fabri-
cation parameters. The development of the potential “hump” near the source
electrode means that the 1-D theory used in section 3.2.5 is not necessarily
valid for the bulk device. For this configuration, the threshold voltage for the
infinite length device is calculated at Lg = 30 nm.

The rolloff in the threshold voltage is shown in Fig. 4.16 for bulk electrodes
with standard doping nD = 0.3 nm−3 (panel (a)), high doping nD = 0.9 nm−3

(panel (b)) for a range of channel and oxide thicknesses. We find that sensi-
tivity to fluctuations in the fabrication scale similarly to the results presented
in section 3.2.5, i. e. the sensitivity to changes in the gate length grows expo-
nentially as the device is scaled down.

The bulk devices demonstrate a crossover point at around Lg ≈ 4 nm where
the dependence of ∆Vt on the oxide thickness changes sign. This crossover is
stable over a surprisingly large range of channel thicknesses. For large gate
devices, the main impact of changing the oxide thickness is a change in device
electrostatics, and the resulting change in channel length Lc = Lg + 2tox is
relatively unimportant. For short gate devices however, direct source-to-drain
tunneling begins to dominate device characteristics and the resulting change
in the width of the tunnel barrier becomes the dominant effect. Smaller oxides
have better electrostatic properties, but also smaller Lc tunnel barriers and
hence larger ∆Vt beyond Lg ≈ 4. Note that this result is obtained assuming
the oxide scaled similarly in all device directions. This is mainly the product
of conceptual convenience. The crossover would disappear for a configuration
with a thin oxide layer between the gate and channel and a constant thick
layer between the gate and source / drain electrodes.

In practical integrated circuits, fluctuations in the threshold voltage should
be held to be much smaller than the circuit supply voltage VDD. For example,
panel (a) shows that in order to control threshold voltage swing to within
50 meV in a standard bulk electrode device(a) with gate length Lg = 5 nm,
the gate dimension of each circuit element should not vary more than 0.2 nm.
In other words, the fabrication process should be held within 4% at the 3σ
level, i. e. much tighter than the 12% projected in the latest ITRS [3]. The
situation becomes twice worse as the gate length is thinned to 1 nm as the
fabrication process should be controlled to within 2% deviation of the critical
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Figure 4.16: “Rolloff” of the threshold voltage Vt for bulk device in (a) standard
and (b) ultra-high doped bulk device for three channel thickness.

dimension.
Again, close attention must be paid to fabrication control over all the

device dimensions. The change in the threshold voltage from the “standard”
device versus channel thickness and oxide thickness is shown in Fig. 4.17 for
the standard doping level. For ultra-short gate length devices, the swing in
the threshold voltage may be even more sensitive to variations in the channel
in oxide thicknesses. The crossover in the relation between tunneling and
electrostatics is also expressed in Fig. 4.17. For example, the sensitivity to a
change in channel thickness shown in panel 4.17a is higher for the ultra-thin
tc = 1 nm device as the gate length reaches Lg = 2.5 nm.

4.2.7 Power

The minimum power operating point is plotted in Fig. 4.18 versus the device
gate length for our standard device (tc = 2 nm, nD = 0.3 nm−3, panels (a),
(c)) and an “ideal” device (tc = 1 nm, nD = 0.9 nm−3, panels (b), (d)) for two
different values of λ. The exponential growth of the power minimum operating
point is evident in all devices considered, even for “ideal” devices where the
minimum power is lower, but only slightly from the “standard” device config-
uration. This is the expected result as the mechanism for saturation of the
current is the same in both devices, i. e. exhaustion of the supply of source
electrons (see section 3.2.6).

To illustrate this point, the projected physical gate will reach Lg = 13 nm
by year 2013 [3], similar to our bulk device with Lg = 10 nm, Lc = 13 nm. The
maximum acceptable chip power for performance computing logic applications
is stated to be 198 W with a chip size of 140 mm2 and 0.62 × 109 transistors
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Figure 4.17: Change in the threshold voltage Vt versus (a) channel thickness and
(b) oxide thickness for a range of gate lengths.
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Figure 4.18: Minimum power (solid lines) and minimum drive voltage VDD (dashed
lines) versus gate length for standard device tc = 2 nm,nD = 0.3 nm−3 (panels
(a),(c)) and “ideal” device tc = 1 nm,nD = 0.9 nm−3 (panels (b),(d)).
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per square centimeter (see tables 6a and 1i of [7]). Assuming standard ratio
W/Lg = 10, this leads to maximum power per device width for Lg = 10 nm

Pmax/W = 0.0225 W/cm. (4.102)

These values correspond to a switching activity α = 0.15 at VDD = 0.3 mV and
JON = 6 A/cm, very near today’s value [65]. As the transistor gate length is
scaled down, the activity factor λ will also need to scale to keep the total power
below the required limit. Hence, only a small fraction of transistors will be
available at any one time. Radically new device architectures may be required
for low power requirements to accommodate these ultra small transistors.

For the same parameters as Fig. 4.18, the same consequence of power
scaling is shown in Fig. 4.19 as leakage current versus specified on-state current
against ITRS stated requirements from the 2003 and 2007 editions. Table 4.1
shows these values explicitly from Tab. 47 of Ref. [107] and Tab. PIDS2 of
Ref. [3].

Clearly, the analytical and numeric scientific results had an impact on the
engineering predictions as the ITRS requirements were significantly loosened
between 2003 and 2007. However, even the latest projections seem overly
optimistic for even the longest gate devices. The projected on-state current
densities also seem overly aggressive as reaching current densities higher than
around JON ≈ 22 A/cm requires a drive voltage VDD > 1.2 V. Reaching
the projected level of leakage current may be possible, but it would require
operating the device away from the minimum power point further increasing
overall circuit power consumption.
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Figure 4.19: Off-state current versus specified on-state current JON calculated in
the point of power minimum. Panels (a), (c) show the standard device parameters
and panels (b), (d) show the “ideal” device. The dashed and solid line represent the
ITRS requirements as stated in 2003 and 2007.
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Year Phys. gate len. (nm) VDD (V) Jsat (A/cm) Jleak 10−3(A/cm)
ITRS 2003

2003 45 1.2 9.80 0.3
2006 28 1.1 11.7 0.5
2007 25 1.1 15.1 0.7
2010 18 1.0 19.0 1.0
2013 13 0.9 20.5 3.0
2016 9 0.8 24.0 5

ITRS 2007
2011 16 1.0 19.17 2.0
2012 14 0.9 19.43 3.4
2013 13 0.9 22.04 3.7
2014 11 0.9 23.65 3.8
2015 10 0.8 22.95 3.8
2021 5 0.65 27.99 6.2

Table 4.1: ITRS predicted values for saturation and maximum drain-source sub-
threshold leakage current densities [107], [3]
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4.3 Comparison of Thin-extension and Bulk-

electrode Devices

Figure 4.20 shows the source-drain I −Vd families of section 4.2.3 and chapter
3 side by side for similar gate lengths. Figure 4.21 shows this same compari-
son for the subthreshold slopes. When the gate length Lg is equal in the two
models, the bulk device displays better saturation and subthreshold perfor-
mance over its thin-extension counterpart due to the longer channel length Lc
which lower electron tunneling through the potential barrier. On the other
hand when the channel lengths are the same, the thin extension model per-
forms better because the gate has electrostatic control over the entire channel
region. The trade off between these two effects means that the bulk electrode
and thin-extensions transistors will scale similarly when the thin extension
gate length is between Lg and Lg + 2tox for the bulk model.

All transistor properties only get worse in both models as the gate is scaled
to the sub-10 nm regime. Hence, a primary benefit of continued scaling is the
increased chip packing density and the relevant length scale is not Lg, but the
total “bulk-to-bulk” length LBB = Lg + 2Lext.

The minimum power results for both models is shown in Fig. 4.22 versus
the total “bulk-to-bulk” length LBB. Lines of similar color represent fixed Lext

and dashed lines fixed Lg. In the limit LBB → ∞, all the numerical results
approach the value found from the 1-D theory 2.2.

The same results as 4.22 for the voltage gain Gv are shown in 4.23. Both in
terms of minimum power and voltage gain, the bulk electrode device outper-
forms the model with thin extensions at equivalent LBB. From a performance
point of view, the bulk device is the preferable candidate for ultimate scaling.
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Figure 4.20: Source-Drain I − Vd curves for DG MOSFET for Lg = 10 nm, Lg = 5
nm, Lg = 2.5 nm ((a)-(c) and (d)-(f)). The bulk electrode and thin-extension
devices are shown in the left and right columns respectively.
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Figure 4.21: Source-Drain I − Vd curves for DG MOSFET for Lg = 10 nm, Lg = 5
nm, Lg = 2.5 nm ((a)-(c) and (d)-(f)). The bulk electrode and thin-extension
devices are shown in the left and right columns respectively.
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Figure 4.22: Minimum power supply voltage versus total “bulk-to-bulk” length LBB
for two specified on-state currents (panel (a) JON = 6 A/cm, (b) JON = 12 A/cm).
The colored lines show a DG MOSFET for increasing electrode extension lengths.
Dashed lines represent equivalent gate lengths and the horizontal line the result of
1-D theory of Sec. 2.2.8
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Figure 4.23: Same plot as Fig. 4.22 but for the voltage gain calculated in the point
of power minimum.
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4.4 Conclusions

We have developed theoretical and numerical models for MOSFET character-
ization in the ultra-small gate length ballistic limit. The simulator is capable
of many approximations for channel electrons ranging from a purely classical
description to a full solution of the two dimensional Schrödinger equation. Ex-
tensive device simulation shows that the double gate FET structure is an ideal
candidate to reach the ultimate scaling limits. Fundamentally, Moore’s expo-
nential law may continue into the ballistic regime and gate lengths may shrink
to at least 5 nm for devices connected directly to bulk electrodes. Beyond this
point, direct source-to-drain tunneling of electrons begins to seriously impact
device characteristics even in ideal cases. Sub-5 nm may still be useful for
integrated circuits however the engineering requirements to compensate for
the degraded performance would be large.Unfortunately, the results are not
as positive when the economics of fabrication cost and power consumption
are considered. Without major advances in lithographic techniques and chip
cooling, which is the limiting factor for circuit power limits, Moore’s law may
come to end far before the physical limits have been reached. There are other
proposals to continue the trend for circuit density, such as three dimensional
transistor stacking techniques. But it is clear that device scaling, which has
driven the exponential growth to this point, is fast coming to an end.

Ultimately, if the challenges facing fabrication are overcome, there will
likely not be one answer to the minimum MOSFET size. Devices may be
engineered for specific chip requirements as such high performance circuits for
computing and low power circuits for mobile devices. The trade-offs of feature
size versus performance may be tailored to meet the needs of each designer.
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Part II

Josephson Junction Comparator
as a Quantum Limited Detector

I am a strange loop.
D. R. Hofstadter.
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Chapter 5

Comparator for
High-Impedance Signal Readout

Traditional electronics are just now beginning to reach the quantum mechan-
ical threshold. On the other hand, the application of coherent wavefunction
manipulation for digital logic has existed for over three decades in supercon-
ducting circuits [5]. Superconducting digital logic is a very attractive replace-
ment for present day electronics because the limiting frequencies of operation
can approach 1 THz with nearly negligible power cost for gate operations.
Specifically, devices based on the quantization of magnetic flux have found a
wide range of applications from a recent dramatic demonstration of quantum
mechanical coherence effects (avoided crossing) at a macroscopic level [108],
to defining the international standard volt unit [109], to commercially viable,
highly accurate magnetic field sensors and analog-to-digital (A/D) converters
[110]. However, the ultimate sensitivity limits of the later set of devices is still
not well understood. In this chapter, we will develop a model based on the
Caldeira-Leggett formalism [111] for the signal resolution of direct measure-
ment of current from a high impedance source for one important component of
superconducting circuits, the balanced Josephson junction comparator. Chap-
ter 6 is dedicated to development of a less cumbersome Heisenberg-Langevin-
Lax model [112] and the possible application for rapid single-shot measure-
ments via inductive coupling.

5.1 Single Josephson Junction

In the simplest view of superconductivity, lattice phonons may screen the
electrostatic repulsion between electrons near the Fermi surface creating a net
attractive force between two particles. This net attraction allows conduction
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band electrons of opposite spins and wavevectors to bind together into singlet
state pairs, known as Cooper pairs [113], which resemble bosons with an effec-
tive wavefunction that describes the center of mass of the bound “particle”.
At negligible temperatures, all of the conduction band electrons are collected
into pairs and collapse into a single quantum state

Ψ = Ψ0e
iθ, (5.1)

with constant magnitude Ψ0 and phase θ. This theory is applicable in cases
where the spatial variation of the potential is slow compared with the ground
state wavevector.

The spatially invariant density of Cooper pairs is then

nS = |Ψ0|2 , (5.2)

whose phase can vary as θ = p ·r/~+ωt with the ground state energy E = ~ω.
If we consider a loop of superconducting material, continuity of the wave-

function (5.1) requires that the phase must change by exactly 2πn, where n
is an integer, for one complete path around the loop. Magnetic fields cannot
penetrate the superconducting material itself [113], and the requirement that
the phase changes by integer values (modulo 2π) leads to the conclusion that
any magnetic flux Φ enclosed by the loop must also be quantized

|Φ| = nΦ0, (5.3)

in integer values of flux quantum

Φ0 ≡ h/2e = 2.067× 10−15 Wb. (5.4)

Any voltage applied to a broken superconducting loop (Fig. 5.1) will
change the ground state energy ∆E = 2eV , rotating the phase with angular
frequency ω = 2eV/~. Application of a voltage pulse such that

∫
V (t) dt = Φ0,

V

Figure 5.1: Schematic broken superconducting loop with applied voltage V .
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causes phase change

∆θ =

∫
2eV (t)/~ dt = 2π, (5.5)

and is equivalent to insertion of one flux quantum Φ0 into the loop. This
is the so-called Single-Flux-Quantum (SFQ) pulse and is the basis for Rapid
Single-Flux-Quantum (RSFQ) digital circuitry [6, 110].

We consider the case of two identical superconducting slabs of area A
separated by an insulating material of thickness d, weak enough to allow over-
lap of the superconducting wavefunctions but strong enough for the ground-
state wavefunctions in each material to maintain independent phases, shown
schematically in Fig. 5.2. We may write the wavefunction in the insulator
material as a superposition Ψ = Ψ1 + Ψ2 of wavefunctions

Ψ1 = Ψ0 exp[−α(x+ d/2)] exp(iθ1),
Ψ2 = Ψ0 exp[−α(d/2− x)] exp(iθ2),

(5.6)

with decay constant α determined by the insulator material. The probability
current through the insulator is then calculated as

Is = e
iA~
m

(Ψ∇Ψ∗ −Ψ∗∇Ψ) ,

= Ic sinϕ,

(5.7)

with junction critical current

Ic = e
2A~α|Ψ0|2

m
e−αd, (5.8)

and phase difference
ϕ ≡ θ1 − θ2. (5.9)

Named the Josephson effect [114], Eq. (5.7) shows that a supercurrent flows
through the insulating junction even in the absence of an applied voltage.
Supplying a voltage to the superconducting slabs creates a split in the ground
state energies ∆E = E1−E2 = 2eV . The supercurrent then oscillates in time

Is = Ic sin (ωJt) , (5.10)

at angular Josephson frequency

ωJ =
dϕ

dt
=

2π

Φ0

V. (5.11)
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Figure 5.2: Model SIS junction. The wavefunction overlap is schematically shown by
the red lines with the dash lines representing the superconductor-insulator interface.

The Josephson effect is a direct consequence of the overlap of the decaying
ground state wavefunctions in the region between the superconductors, and
independent of the material providing the separation. The effect may also
be observed by replacing the insulating material with a non-superconducting
metal or even a simple thin constriction between the slabs.

As a device, a single junction may be seen as a non-linear inductor with
inductance

LJ =
L0

cos(ϕ)
, (5.12)

with inductive amplitude

L0 =
Φ0

2πIc
=

~
2eIc

. (5.13)

The potential energy stored in the junction is given by

U(ϕ) =

∫
IsV dt = EJ [1− cos(ϕ)] , (5.14)

with characteristic Josephson energy

EJ =
~Ic
2e

=
Φ0Ic
2π

. (5.15)

At non-zero voltages, we can write the current through the junction as a
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sum of current components

It = Is(ϕ) + In(V ), (5.16)

where In is a component of the current in addition to the supercurrent carried
by non-bound electrons (“quasiparticles”) created by thermal excitation of the
Cooper pairs. Because it is carried by quasiparticles, In(V ) is referred to as
the “normal” current and the junction acts as a nearly ideal Ohmic resistor
for this current channel given by

In = GnV, (5.17)

with conductance Gn = 1/Rn the inverse of the junction resistance. The nor-
mal current also becomes the dominant current component for applied voltages
larger than the superconducting energy gap eV > ∆(T ), independent of the
system temperature. Combing the normal resistance and the natural current
scale for the junction, we find the characteristic voltage scale

Vc = IcRn. (5.18)

This voltage scale specifies a maximum rate of phase change through relation
(5.11), or a characteristic frequency

ωc =
2π

Φ0

IcRn, (5.19)

above which the junction’s response begins to degrade. The resistance may be
seen as a damping parameter, and the characteristic frequency

ωcL0 = Rn, (5.20)

may be viewed as just the inverse relaxation time. In the work below, we will
consider Josephson junctions which are coupled in parallel with a shunting
resistor R such that

Rn À R, (5.21)

so the characteristic frequency is written only in terms of the junction resis-
tance as

ωc =
2π

Φ0

IcR. (5.22)

The device also has a dynamic capacitance C, adding “displacement” cur-
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rent component

Id = C
dV

dt
, (5.23)

for total junction current

It = Is(ϕ) + In(V ) + Id(V̇ ). (5.24)

The classical energy of the electric field adds kinetic energy component of the
Josephson charging energy

Ec =
(2e)2

2C
, (5.25)

K =
C

2
V 2 =

Q2

2C
, (5.26)

with total charge

Q =

∫
It dt = CV =

2πC

Φ0

ϕ̇. (5.27)

The device capacitance contributes kinetic term

K =
1

2
EJω

−2
p ϕ̇2 (5.28)

with the device plasma frequency

ω−2
p = L0C =

Φ0C

2πIc
. (5.29)

So the total energy E = K + U(ϕ) of a single Josephson junction, in terms of
the phase as the sole principle variable, including damping is given

E = EJ

[
1

2
ω−2
p ϕ̇2 + ω−1

c ϕ̇+ 1− cos(ϕ)

]
. (5.30)

5.1.1 Mechanical Analogs

The dynamics of the shunted Josephson junction are easily conceptualized in
terms of two simple mechanical analogs. The torque on a simple pendulum of
mass m and length l (Fig. 5.3), in a uniform gravitational field is

Q = µ
d2ϕ

dt2
= mgl sin(ϕ)− η

dϕ

dt
. (5.31)
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φsin(   )T = mgl

φ
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l

Figure 5.3: Pendulum Mechanical analog of a single Josephson junction.

This is exactly the same as Eq. (5.30) where the displacement from vertical
corresponds to the phase difference, the angular velocity takes the place of the
voltage and pendulum frequency

ω0 =

√
g

l
(5.32)

corresponds to the plasma frequency.
A second, perhaps more convenient, analogy is that of a classical particle

with effective mass
M0 = EJω

−2
p , (5.33)

moving in “washboard” potential

U(x) = M0(1− cos(ϕ)). (5.34)

φe/2
−

+

φe/2
−

+
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Figure 5.4: Balanced comparator circuit setup to measure high impedance current
source.
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(a)

(b)

Figure 5.5: Experimental balanced Josephson junction comparator [115]. (a) STM
image of the device and (b) its circuit schematic.

5.2 Comparator Circuit

A “balanced comparator” is composed of two identical shunted Josephson
junctions biased in series by an external driver providing a source of phase
difference ϕe(t) (shown in Fig. 5.4). The junctions are connected through low
inductance lines, and biased in parallel by the current Ix whose sign is to be
measured. An experimental implementation and circuit schematic are shown
in Fig. 5.5.

The device (essentially a dc SQUID [65]) has total potential energy

U(ϕ) = −2EJ cos

[
ϕe(t)

2

]
− ~

2e
Ixϕ. (5.35)

The net effect of the signal current Ix is to tilt the equivalent washboard
potential, shown for a small value of Ix in Fig. 5.6. We assume the system has
sufficient time to settle into an equilibrium state ϕ = ϕi. In the ideal case,
nether Ix nor ϕe depend on the state of the comparator and the external driver
then injects a single flux quantum (∆ϕe = 2π) into the superconducting loop
created by the comparator and the driver’s output stage. This pulse inverts
the potential (5.35) creating a local instability for the phase. The phase must
then settle into one of two adjacent states ϕf = ϕi ± π. Because the loop
is non-quantizing, this transient process creates a discrete SFQ (5.5) pulse at
one of the junctions depending on the sign of Ix. This pulse is relatively easily
detected [110], so the accuracy of the measurement is entirely determined by
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the evolution of the comparator. The dynamics of the phase may be seen the
motion of a particle with effective mass

MJ = 2EJω
−2
p , (5.36)

moving in the tilted washboard board potential (5.35). In the absence of any
fluctuations within the comparator, the particle will move either left or right
depending entirely upon the sign of Ix. Fluctuations in the particles motion
however create a non-zero probability that the particle will shift to the opposite
minimum.

Let P2 be the probability that the SFQ pulse is detected at junction J2

(i. e. ϕf = ϕi − π). In the idealized case, the probability of switching would
be given by the Heaviside step function

P2 = Θ(−Ix), (5.37)

shown by the red line in Fig. 5.7. Fluctuations in the particle motion create
a so called “gray zone”, typically defined as

∆Ix ≡
∣∣∣∣
dP2

dIx

∣∣∣∣
Ix=0

, (5.38)

which quantifies the accuracy of the measurement. The width of this gray
zone was characterized in experimental devices for single shot measurements
[115], and later expanded for repeated measurements [116]. More recently the
comparator gray zone was measured for devices with additional cooling of the
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Figure 5.7: Switching probability P2 versus current Ix. Red lined indicates perfect
sign measurement.

shunt resistors [117]. A theoretical model [118, 119] was developed for an
analytical form of the driver pulse ϕe(t) ∝ exp(κt) which is not quite relevant
for practical devices.

In the thermal and quantum limits, the fluctuations of the current may
characterized on the natural scales [118, 119]

IQ ≡ (2π/Φ0)~ωp/2 = (2e/~)~ωp/2 = eωp,
IT ≡ (2π/Φ0)T = (2e/~)T, (5.39)

with transition temperature [119]

Ttrans = ~ωp/2. (5.40)

We consider the case when these natural scales are small

γQ ≡ IQ/Ic = ~ωp/2EJ ¿ 1,
γT ≡ IT/Ic = T/EJ ¿ 1,

(5.41)

and the potential inversion is faster than the scale of system dynamics, which
can readily be done with RSFQ circuitry [110]. Then the choice of the final
state may be well described by the dynamics of the potential near ϕ = ϕi and
we may expand the potential in a Taylor series, keeping only the two leading
terms

U(ϕ) = EJ
(
µ(t)ϕ2 − ixϕ+ const

)
, (5.42)

130



where

µ(t) ≡ cos

[
ϕe(t)

2

]
, (5.43)

ix ≡ Ix/2Ic. (5.44)

This expansion is shown by the green line in Fig. 5.6. The system may then be
interpreted as motion of a damped time-dependent harmonic oscillator with
frequency

ω2(t) = ω2
pµ(t), (5.45)

where µ(t) is switched rapidly from initial state µi ≈ 1 to inverted final state
−µf = µi.

5.3 System Propagator

The probability of switching to state ϕf = ϕi − π, may be found as

P2 = lim
t→∞

ϕmax(t)∫

−∞

ρ(ϕ, ϕ, t) dϕ, (5.46)

where ρ(ϕ, ϕ, t) are the diagonal elements of the system’s density matrix [120]
ρ(ϕ, ϕ′, t), and ϕmax(t) is the coordinate of the potential maximum (5.42) after
inversion. The density matrix at arbitrary time t may be expressed in terms
of centralized coordinates

η ≡ ϕ+ ϕ′,
ξ ≡ ϕ− ϕ′,

(5.47)

ρ(ϕ, ϕ, t) = (1/2)ρ(η, 0, t) from the initial matrix at time t = 0, traced over
degrees of freedom of the environment, via the system propagator

ρ(η, 0, t) =

∞∫∫

−∞

J(η, 0, t|ηi, ξi, 0)ρ(ηi, ξi, 0) dηi dξi. (5.48)

To find the system propagator, we use the approach of Caldeira and Leggett
[121, 122] where the phase is coupled to an environment of linearly distributed
oscillators. This theory, which provides a correct description for systems with
externally shunted junctions yields expression for the propagator (see Eqs.
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6.1-6.4 of [121]):

J(ϕ, ϕ′, t) =

∮ ∮
exp

{
1

~
[iS(ϕ, ϕ′)−ΘT (ϕ, ϕ′)]

}
DϕDϕ′, (5.49)

with action

S(ϕ, ϕ′) =

t∫

0

Ldτ −
t∫

0

MJγϕϕ̇dτ +

t∫

0

MJγϕ
′ϕ̇′dτ (5.50)

expressed in terms of equivalent mass 5.36, damping parameter

γ =
ω2
p

2ωc
, (5.51)

and thermal contribution given by

ΘT (ϕ, ϕ′) =
2MJγ

π

Ω∫

0

ν coth

(
~ν
2T

)

×
t∫

0

τ∫

0

(ϕ(τ)− ϕ′(τ)) cos(ν(τ − s))(ϕ(s)− ϕ′(s)) dsdτdν. (5.52)

Here Ω À ωp is the maximum frequency of the bath oscillators and the dot
represent differentiation over τ . The system Lagrangian may be written as a
function of phase

L =
MJ

2

[
ω−2
p (ϕ̇2 − ϕ̇′

2
)− 2ω−1

c (ϕϕ̇′ − ϕ̇ϕ′)− µ(τ)(ϕ2 − ϕ′2) + 2ix(ϕ− ϕ′)
]
.

(5.53)
Finding the paths which minimize the action

δxS =
d

dt

∂L
∂ẋ

− ∂L
∂x

= 0, (5.54)
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with terms

∂L
∂ϕ̇

= MJ

(
ω−2
p ϕ̇+ ω−1

c ϕ′
) ∂L

∂ϕ
= −MJ (µ(τ)ϕ+ ω−1

c ϕ̇′ − ix)

∂L
∂ϕ̇′

= −MJ

(
ω−2
p ϕ̇′ + ω−1

c ϕ
) ∂L

∂ϕ′
= MJ (µ(τ)ϕ′ + ω−1

c ϕ̇) ,

(5.55)
yields equations of motion

ω−2
p ϕ̈+ ω−1

c ϕ̇+ µ(τ)ϕ = 2ix,
ω−2
p ϕ̈′ + ω−1

c ϕ̇+ µ(τ)ϕ = 0.
(5.56)

Changing to centralized coordinates (5.47), we find fundamental equations of
motion

ω−2
p η̈ + ω−1

c η̇ + µ(τ)η = 2ix, (5.57)

ω−2
p ξ̈ − ω−1

c ξ̇ + µ(τ)ξ = 0. (5.58)

Noting that

ϕϕ̇ =
∂

∂τ

1

2
ϕ2, (5.59)

we may readily re-write the Lagrangian and action in terms of the centralized
coordinates, damping (5.51) and frequency (5.45) as

L(η, ξ) =
MJ

2

(
η̇ξ̇ − γ(η̇ξ − ηξ̇)− ω(τ)ηξ + 2ixξ

)
,

S(η, ξ) =
t∫

0

L(η, ξ)dτ − MJγ

2
ηξ

∣∣∣∣
t

0

.
(5.60)

To analyze the effect of fluctuations, we represent coordinates η, ξ as a
sum of classical trajectories which satisfy equations of motion (5.57, 5.58) and
small deviations η̃, ξ̃

η = η(τ) + η̃(τ),

ξ = ξ(τ) + ξ̃(τ),
(5.61)

where

η̃(0) = η̃(t) = 0,

ξ̃(0) = ξ̃(t) = 0.
(5.62)

Expanding the action in terms (5.61), we see it may represented as a sum of
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the classical action and variations

S = Scl(η, ξ) + S̃(η̃, ξ̃)− 2ixt
(
ξ̃f − ξ̃i

)
, (5.63)

where

Scl(η, ξ) =

t∫

0

L(η, ξ)dτ − MJγ

2
(ηfξf − ηiξi) (5.64)

S̃(η̃, ξ̃) =
MJ

2

t∫

0

[
˙̃η ˙̃ξ − γ

(
ξ̃ ˙̃η − η̃ ˙̃ξ

)
− ω2(τ)η̃ξ̃

]
dτ, (5.65)

where ηi, ξi, ηf , ξf are the initial and final points of the classical trajectory.
Expanding the thermal contribution Eq. (5.52) in terms of the classical

path and variation,

ΘT (η, ξ) =
2MJγ

π

Ω∫

0

ν coth

(
~ν
2T

) t∫

0

τ∫

0

(
ξτ + ξ̃τ

) (
ξs + ξ̃s

)

× cos (ν(τ − s)) dsdτdν. (5.66)

Writing only terms involving classical trajectories we may write the thermal
contribution as sum ΘT (η, ξ) = Θ(η, ξ) + ΘF (η̃, ξ̃, η, ξ), where

Θ(η, ξ) =
2MJγ

π

Ω∫

0

ν coth

(
~ν
2T

) t∫

0

τ∫

0

ξ(τ)ξ(s) cos (ν(τ − s)) dsdτdν. (5.67)

To evaluate the path integral, we write the differential paths as

DϕDϕ′ = Dϕ ∧Dϕ′,
= 1

4
[(Dη +Dξ) ∧ (Dη −Dξ)] ,

(5.68)

where we have written the paths in the Grassmann algebra as the wedge
product (∧) of differential 1-forms.

Expanding over the classical path and variation, and using

Dη̃ ∧Dη̃ = 0,

Dξ̃ ∧ −Dξ̃ = 0,
(5.69)

134



the differential path may be written

DϕDϕ′ = 1
4

[
(Dη̃ ∧ −Dξ̃) + (Dξ̃ ∧Dη̃)

]
,

= 1
4

[
(Dξ̃ ∧Dη̃) + (Dξ̃ +Dη̃)

]
,

(5.70)

or

DϕDϕ′ =
1

2
Dη̃Dξ̃. (5.71)

Collecting terms (5.63), (5.67), (5.49), the system propagator may be writ-
ten

J(η, ξ) = F 2(t) exp

[
i

~
Scl(η, ξ)− 1

~
Θ(η, ξ)

]
, (5.72)

where

F 2(t) =
1

2

∮ ∮
Dη̃Dξ̃ exp

[
i

~
S̃(η̃, ξ̃)− 1

~
ΘF (η̃, ξ̃, η, ξ)

]
(5.73)

is simply a normalization factor to the final density matrix.
To evaluate the action, we solve equations of motion (5.57, 5.58). By co-

incidence, the same numerical conditions as section 3.1.3 apply here. Namely,
we represent the solution as a Dirichlet boundary value problem with solutions

η(τ, t) = ηia1(τ, t) + ηfa2(τ, t) + 2ixa(τ, t),
ξ(τ, t) = ξib1(τ, t) + ξfb2(τ, t),

(5.74)

where functions a1,2, b1,2 are solutions of the homogeneous equations with
boundary conditions

a1(0) = b1(0) = 1 a2(0) = b2(0) = 0,
a1(0) = b1(0) = 0 a2(0) = b2(0) = 1,

(5.75)

and function a(τ, t) is the solution to Eq. (5.57) with unit right-hand side and
boundary conditions a(0, t) = a(t, t) = 0.

Plugging solutions (5.74) into Lagrangian (5.53), and evaluating the action
(5.64) we find

Scl = K1ηiξi +K2ηfξf − Lηiξf −Nηfξi + 2ix (Q1ξi +Q2ξf ) , (5.76)
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where

(
K1

K2

)
=

EJ
ω2
p~

t∫

0

dτ

{(
ȧ1ḃ1
ȧ2ḃ2

)
− ω2(τ)

(
a1b1
a2b2

)
+ γ

(
a1ḃ1 − ȧ1b1 + 1

a2ḃ2 − ȧ2b2 − 1

)}
,

(5.77)
(
N
L

)
= − EJ

ω2
p~

t∫

0

dτ

{(
ȧ2ḃ1
ȧ1ḃ2

)
− ω2(τ)

(
a2b1
a1b2

)
+ γ

(
a2ḃ1 − ȧ2b1
a1ḃ2 − ȧ1b2

)}
,

(5.78)
(
Q1

Q2

)
=

EJ
ω2
p~

t∫

0

dτ

{(
ȧḃ1
ȧḃ2

)
− ω2(τ)

(
ab1
ab2

)
+ γ

(
aḃ1 − ȧb1
aḃ2 − ȧb2

)
+

(
b1
b2

)}
.

(5.79)
Using solutions (5.74),the term representing thermal contributions to the

fluctuations (5.67), may be expressed as

Θ(η, ξ) = Cξ2
i +Bξiξf + Aξ2

f , (5.80)

where




A
B
C


 =

2EJγ

πω2
p~

Ω∫

0

dνν coth

(
~ν
2T

) t∫

0

τ∫

0

dτds cos [ν (τ − s)]

×



b2(τ, t)b2(s, t)
b1(s, t)b2(τ, t) + b1(τ, t)b2(s, t)

b1(τ, t)b1(s, t)


 . (5.81)

Collecting all terms (5.77), (5.78), (5.79), (5.81), the system propagator is
expressed as

J(ηf , ξf , t|ηi, ξi, 0) = F 2(t)×

exp

{
i
[
K1ηiξi+K2ηfξf−Lηiξf−Nηfξi+ix (Q1ξi +Q2ξf )

]−[
Aξ2

f+Bξfξi+Cξ
2
i

]}
.

(5.82)

Equation (5.82), represents the generalization of the harmonic oscillator
propagator (see, Eq. 6.26 of Ref. [121]) to the case of arbitrary time depen-
dence of the potential curvature µ(t). It shows that since the initial density
matrix is Gaussian, with average phase 〈ϕi〉 and variance 〈ϕ̃2

i 〉, the final den-
sity matrix will remain Gaussian. In the centralized coordinate representation
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ξf = 0, so the final density matrix for the system is entirely determined in
terms of K1, N , Q1 and C. The other terms may affect the intermediate
phase velocity, which is unimportant for determination of the final state gray
zone width.

5.3.1 Numerical Evaluation of Parameters

For practical devices, the inversion function may be calculated numerically
from circuit schematics using the Personal Superconducting Circuit Analyzer
(PSCAN) package [123]. PSCAN is a CAD tool, developed at Stony Brook
for the numeric simulation and analysis of superconducting circuits, focusing
on RSFQ logic.

Functions a1,2(τ, t), b1,2(τ, t) and a(τ, t) are found using the same method
as section 3.1.3, namely, the differential equation is solved numerically with a
tri-diagonal system of equations. The integrals for parameters K1, N , Q1 are
then calculated using standard Romberg’s extension to trapezoidal quadrature
[77]. To evaluate parameter C, we first notice that the limits of integration
of the inside integral [0, t], [0, τ ] are just integration over half space [0, t] and
changing variables ε = ν/ωp

C =
2EJγ

π~

Ω/ωp∫

0

ε coth

(
~ωp
2T

ε

) t∫

0

t∫

0

b1(s, t)b1(τ, t) cos [εωp(τ − s)] dsdτdε.

(5.83)
An integration by parts helps numerically with the discontinuity near ν → 0,
and using boundary values b1(0) = 1, b1(t) = 0 we find

C =
EJγ

π~

Ω/ωp∫

0

dε coth

(
~ωp
2T

ε

) 



t∫

0

b1(τ, t) sin(ντ) dτ

+

t∫

0

t∫

0

b1(τ)ḃ1(s) sin [ωpε(τ − s)] dsdτ



 . (5.84)

The 2-D and 3-D integrals of Eq. (5.84) are evaluated using Monte Carlo
integration techniques. The shape of functions b1,2 allows importance sampling
algorithms to improve convergence times, so a variant of the VEGAS algorithm
[77] is used. To insure high quality random sampling of the integral space, we
use a multi-stream linear congruential (Lehmer) random number generator
[124].

137



0 10 20 30 40 50
-1

-0.5

0

0.5

1

µ(
t)

0 10 20 30 40 50

ω
p
t

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

|K
1|, 

  |
Q

1|, 
  C

µ(t)
C

|Q
1
|

|K
1
|

t
inv

Figure 5.8: Calculated function µ(t) and numeric factors to the propagator and
damping parameter βc = ω2

c/ω2
p = 1. The temperature for parameter C is taken

2T/~ωp = 0.01. Dashed lines represent the moment of inversion tinv.

It is more conventional to quote damping in terms of Stewart-McCumber
[125, 126] damping parameter

βc ≡
(
ωc
ωp

)2

=
ωp
2
γ−1, (5.85)

which is proportional to the shunting resistance R2. For devices with small
capacitance (ωp À ωc, high damping devices) βc À 1. The calculated pa-
rameters K1, Q1, C for critical damping βc = 1 are shown in Fig. 5.8 for
numerically calculated switching µ(t). Before inversion time tinv, the param-
eters represent the integrated effect of free oscillations in the non-inverted
potential well. The peaks correspond to times of evaluation t when the phase
has reached the potential minimum. Thermal term C and the term represent-
ing the inhomogeneous solution of the tilted potential Q1 acquire exponential
amplitude through their respective interactions. The system dynamics are
resolved quickly on the time scale of ωp, for times after potential inversion
t − tinv > 0. After inversion and this short transient the final phase state is
effectively decided and the parameters become independent of the evaluation
time.
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5.3.2 Quantum and Thermal Limits

In the quantum and thermal limits, parameter C takes on much simpler ex-
pressions. When T À ~ωp, we may write

coth

(
~ν
2T

)
→ 2T

~ν
, (5.86)

and Eq. (5.81) becomes

C =
4EJγT

πω2
p~2

t∫

0

τ∫

0

b1(s)b1(τ)

Ω∫

0

cos [ν(τ − s)] dsdτdν. (5.87)

Using the relation (see appendix A.5)

lim
Ω→∞

Ω∫

0

cos [ν(τ − s)] dν = πδ(τ − s), (5.88)

and writing in terms of natural scale of quantum fluctuations 2EJγ/ω
2
p~ =

1/(2γQ
√
βc), integral (5.87) is evaluated as

lim
TÀ~ωp

C =
T

~γQβ1/2
c

∞∫

0

b21(τ, t) dτ. (5.89)

In the opposite limit, as T → 0

coth

(
~ν
2T

)
→ 1, (5.90)

and the integration over ν in Eq. (5.81) readily yields

C =
2EJγ

πω2
p~

t∫

0

τ∫

0

b1(s)b1(τ)

[
cos[Ω(τ − s)]− 1

(τ − s)2
+ Ω

sin[Ω(τ − s)]

(τ − s)

]
dsdτ.

(5.91)
Integrating the ds integral by parts and again using b1(0) = 1, Eq. (5.91) is
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evaluated

lim
T→0

C =
1

2πγQβ
1/2
c





t∫

0

b1(τ) [cos(Ωτ)− 1]

τ

+

t∫

0

τ∫

0

b1(τ)ḃ1(s) (cos[Ω(τ − s)]− 1)

τ − s
dsdτ



 . (5.92)

5.4 Grey Zone Width

The initial density matrix may be found from Wigner’s transformation of the
classical Gibbs distribution for a system in thermal equilibrium [118, 119],

ρ(ηi, ξi, 0) =
1√

4π〈ϕi〉2
exp

[
−(ηi − 2ix/µi)

2

16〈ϕi〉2 − βcγ
−2
Q 〈ϕ̇2

i 〉ξ2
i

]
, (5.93)

where we have used quantum fluctuation scale (5.41), and initial distributions

〈ϕ̃2
i 〉 =

γQ

2πβ
1/2
c

Ω/ωp∫

0

coth

(
~ωp
2T

x

)
x

(µi − x2)2 + β−1
c x2

dx,

〈ϕ̇i〉 =
γQ

2πβ
3/2
c

Ω/ωp∫

0

coth

(
~ωp
2T

x

)
x3

(µi − x2)2 + β−1
c x2

dx,

(5.94)

found from the frequency response of a driven harmonic oscillator

α′′(ν) ∝ ν

(µ1 − ν)2 + β−1
c ν2

, (5.95)

within the fluctuation-dissipation theorem (FDT) [127].
Using expressions (5.93), (5.82) and carrying out Gaussian integral (5.48),

the density may be expressed in terms of coordinate phase ϕ as

ρ(ϕ, ϕ, t) =
F 2(t)

(4π〈ϕ̃2〉)1/2
exp

{
−(ϕ− 〈ϕ〉)2

4〈ϕ̃2〉
}
, (5.96)
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with average phase and variance

〈ϕ〉 =
K1µ

−1
i +Q1

2N
ix,

〈ϕ̃2〉 =
C + 4K2

1〈ϕ̃2
i 〉+ βc~2γ−2

Q 〈ϕ̇2
i 〉

4N2
,

(5.97)

where we have used the relations ηf = 2ϕ, ηi = 0, and µiϕi = 2ix.
The probability of switching may then be calculated

P2 = π−1/2

−〈ϕ〉/2〈ϕ̃2〉∫

−∞

e−y
2

dy, (5.98)

with expression for the width of smearing

∆Ix = lim
t→∞

(2π〈ϕ̃2〉)1/2

∣∣∣ d
dIx
〈ϕ〉

∣∣∣
, (5.99)

which gives final expression

∆Ix = 2π1/2Ic

[
C + 4K2

1〈ϕ̃2
i 〉+ βc~2γ−2

Q 〈ϕ̇2
i 〉

]1/2

∣∣K1µ
−1
i +Q1

∣∣ . (5.100)

In the limit of low damping (βc À 1) and the potential is inverted instanta-
neously, the solutions to equations of motion (5.57, 5.58) are trivial and Eq.
(5.100) is readily reduced to the following limiting expressions [119]

∆Ix = (πγT )1/2

(
µiµf
µi + µf

)1/2

, T À ~ωp, (5.101)

∆Ix = (πγQ)1/2

(
µiµf
µi + µf

)1/2

, T → 0. (5.102)

The temperature dependence of the gray zone is shown in Fig. 5.9(a) for
several damping parameters βc. The dotted line shows the limit of βc →∞, for
instantaneous switching of the potential. At high temperatures ∆Ix ∝ T 1/2,
shown by the dashed lines, Eq. (5.89) due to thermal fluctuations. In the
opposite limit, quantum fluctuations of the phase saturate the gray zone width
as T → 0. This effect may be made more clear by interpretation of the terms of
the Gaussian propagator which contribute to the smearing width (5.100). K1
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Figure 5.9: Dependence of ∆Ix on temperature (a) for µ(t) shown in Fig. 5.8 for
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represents the impact of the initial state of the system, Q1 the evolution of the
average phase in the tilted potential and C fluctuations from environmental
coupling. When the point of potential inversion tinv and the measurement time
t− tinv are much longer than the oscillator’s reciprocal bandwidth

∆ω−1 = max
[
ω−1
c , γ−1

]
, (5.103)

then C, |Q1|2 À K2
1 and the final switching probability is independent of the

initial state of the system and the gray zone may be expressed very simply as

∆Ix = 2Icπ
1/2C

1/2

|Q1| . (5.104)

The quantum and thermal limits also display different behaviors with
damping parameter βc. Panel (b) of Fig. 5.9 shows this dependence explicitly
for the quantum and thermal limits, Eqs. (5.92, 5.89). In the limit of high
damping case (βc → 0), thermal fluctuations saturate with parameter βc while

quantum fluctuations tend to grow as β
1/4
c , shown by the dashed line while

in the opposite limit of low dissipation (βc → ∞), both temperature limits
saturate with the damping parameter. These effects may be summarized in
the following simple model: Eq. (5.99) suggests that sufficiently far from the
inversion time tinv, the average phase equals the root-mean square of the ther-
mal equilibrium phase noise, which roughly estimates gray zone width ∆Ix.
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The phase noise may be estimated as an equivalent current noise source (e. g.,
see Eq. (1.59) of Ref. [6]) with equilibrium spectral density calculated from
the fluctuation-dissipation theorem [127]

SI(ν) =
4

πR

~ν
2

coth

(
~ν
2T

)
, (5.105)

which acts on a time-independent oscillator within available bandwidth (5.103).
In the thermal (coth() → 2T/~ν) and quantum (coth() → 1) limits this
yields the Johnson-Nyquist [6] SI(ν) = 4T/πR = const and quantum SI(ν) =
2~ν/πR spectral densities, respectively. In the latter case this yields in the
high damping limit

∆Ix ∝
[

1

ωc

∫ ωc

0

νdν

]1/2

∝ β1/4
c . (5.106)

5.4.1 Comparison with Experiment

To compare these results with experimental data, we need to account for the
practical dependence of Ic(T ) on the system temperature. We scale the junc-
tion critical current according to the Ambegaokar-Baratoff theory [128]

Ic(T ) =
π∆(T )

2eR
tanh

(
∆(T )

2T

)
. (5.107)

The calculated smearing width, scaled by Eq. (5.107) is shown by the dashed
lines in Fig. 5.10 compared with two sets of experimental devices. Both experi-
mental devices are critically damped (βc = 1) niobium-trilayer (Nb/AlOx/Nb)
Josephson junctions with critical current Ic|T=4.2K = 145µA. The triangles
represent junctions with critical current density jc = 1 kA/cm2 and plasma
frequency ω−1

p ≈ 1.01 ps [115]. The squares represent devices with higher crit-
ical current density jc = 5.5 kA/cm2 (ω−1

p ≈ 0.47 ps) [116]. Contributions
from external noise sources was ruled out by separate comparator circuits
on the same chip driven with softer driver pulses. The deviation of the two
points circled in red are likely caused by local self-heating of the sample chip.
Hence, without the benefit of a single fitting parameter, the calculated gray
zone width, Eq. (5.100) agrees nearly perfectly with the experimental data.
While the system temperatures for the data shown were not taken low enough
to truly saturate in the quantum limit, we believe this is strong evidence to
indicate that signal resolution of the comparator circuit, when operated in the
sub-1 Kelvin regime is limited only by the natural quantum mechanical fluctu-
ations within this device. In fact, recent experiments [129] have demonstrated
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Figure 5.10: Temperature dependence of ∆Ix. Points show experimental data [115,
116] and dashed lines show numeric results including temperature dependence of Ic.
Solid line represents the limit of instantaneous change from µi = 1 to −µf = −1.
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the quantum saturation limit predicted by this theory.
Furthermore, the resolution may be increased by driving the device with

softer pulses. The solid black line indicates the results calculated in the limit
of instantaneous inversion of the potential. This result is natural because
the fluctuations are essentially determined by their equilibrium initial values,
frozen at the moment of inversion. For softer pulses, the phase is allowed more
time to evolve within the slope defined by signal Ix. In fact, it may be shown
that in the limit µf → 0, the width of the gray zone is reduced ∆Ix → 0 [119].
This limit is a bit artificial however because the inflation stage required for
the creation of the output SFQ is destroyed and no output signal could be
measured.
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Chapter 6

Comparator for Flux Qubit
Readout

The results of chapter 5 give a quantitatively correct description of the dynam-
ics within the comparator circuit. Unfortunately, calculation of the parameters
K1, Q1 and especially C are a bit bulky. These results do not extend read-
ily for a description of the comparator system when the measurement may
impact the signal source. For example, when the comparator may be used
for measurement while inductively coupled to a magnetic flux qubit, shown
schematically in Fig. 6.1(a).

In it’s most basic configuration, a flux qubit is a superconducting loop
interrupted by a single junction. Including an externally applied bias flux Φb,
the qubit potential is written [130]

Uq = −EJ cos

(
2π

Φ0

Φ

)
+

(Φ− Φb)
2

2Lq
, (6.1)

with the self-inductance of the loop Lq. When the loop inductance is large
Lq À EJ/(Φ0/2π)2 and the applied bias Φb ≈ Φ0/2, then this potential forms
a double well potential near Φ ≈ Φ0/2. In the quantum limit, only the lowest
level of each well is occupied and the system reduces to a two level system
with tunable interaction strength between the states.

Comparator fluctuations are represented as a contribution from equilibrium
noise sources If1(t), If2(t). Such solid state qubit implementations are being
actively pursued experimentally [108, 131] where a common device acts as a
superposition of distinct flux states [132]. These individual elements will likely
be inductively coupled [133], possibly in a controllable way [134, 135], to po-
tentially build a quantum information processor [4]. Readout of the quantum
states of each qubit will also likely be done through inductive coupling and the
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Figure 6.1: Equivalent circuit of a comparator-qubit system

potential quantum limited sensitivity of the balanced comparator makes it an
attractive option for high accuracy, rapid, single-shot measurement [112].

To derive the Hamiltonian for the coupled system, we consider the sim-
plified circuit 6.1(b). The total Hamiltonian may be represented as a sum of
components

H = Hc +Hq +Hint, (6.2)

where Hc describes the comparator and Hq + Hint the qubit and interaction
terms. The energy components of the mutual interaction may be presented in
the standard way as

Hcoupled = EJ(Φq) +
LI2

x

2
+
LqI

2
q

2
+MIxIq. (6.3)

The flux in the comparator and qubit parts is then

Φc = LIx +MIq,
Φq = LqIq +MI,

(6.4)

which can be presented as linear system

(
L M
M Lq

)(
Ix
Iq

)
=

(
Φc

Φq

)
, (6.5)
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whose solution yields device currents

Ix =
1

LLq(1− k2)
(ΦcLq −MΦq) ,

Iq =
1

LLq(1− k2)
(ΦqL−MΦc) .

(6.6)

Here,
k2 ≡M2/LLq, (6.7)

is the comparator-qubit mutual coupling parameter. Plugging these solutions
into Eq. (6.3) we find

Hcoupled = EJ(Φq) +
Φ2
q

2Lq(1− k2)︸ ︷︷ ︸
∗

− M

LLq(1− k2)
ΦcΦq

︸ ︷︷ ︸
∗∗

+
Φ2
c

2L(1− k2)︸ ︷︷ ︸
∗∗∗

. (6.8)

The last term (***) may be seen as simply an addition term in the comparator’s
part of the total Hamiltonian and the first two terms (*), (**) are the sum of
the qubit and interaction energies which may be written as [132]

Hq +Hint = εσz + ∆σx − κσzΦqϕ, (6.9)

where σi are the Pauli matrices, ∆ is the tunnel coupling between the two qubit
states and ε is their energy bias. The qubit flux amplitude Φx = σzΦq < Φ0/2
and κ is the coupling coefficient

κ =

(
Φ0

2π

)
M

LLq
. (6.10)

We have restricted ourselves to the case of low coupling (k ¿ 1), so that the
renormalization of the terms due to the mutual interaction may be ignored.
For a symmetric qubit ε→ 0 and since the natural frequency scale of the qubit
evolution

~ωq = ε2 + ∆2, (6.11)

is much lower than that of the comparator, we may take ∆ = 0. Thus, the
Heisenberg equation of motion, for generic operator A

Ȧ =
1

i~
[A,H] , (6.12)
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which for the qubit gives

i~σ̇z = [σz,H] ,
= [σz,Hint] ,
= [σz, κσzΦqϕ] ,
= 0.

(6.13)

Independent of the measurement, the qubit remains in a definite flux state
〈σz〉 = ±1 and the qubit signal κσzΦq ∝ ±Φx is fixed. These assumptions do
not prevent of the comparator from affecting the qubit through the measure-
ment back-action. The comparator may still alter the σx and σy components
of the qubit energy. Defining

σ± ≡ σx ± iσy, (6.14)

we find equations of motion for the off-diagonal terms

i~σ̇± = [σ±,H] ,
= κΦqϕ, ([σx, σy]± i [σy, σz]) ,
= ∓2κΦqϕσ±,

(6.15)

or time evolution

σ±(t) = σ±(0) exp



±i

2κΦq

~

t∫

0

ϕ(t′) dt′



 . (6.16)

6.1 Langevin-Heisenberg-Lax Model

The kinetic energy of the comparator is K = Q2/4C, half of Eq. (5.26) due to
the two Josephson junctions. The equation of motion of the comparator flux
Φ̇ = ∂Hc/∂Q yields relations

Φ̇ =
Q

2C
,

Q2

4C
= C

(
Φ0

2π

)2

ϕ̇2,

Q2

4C
= ω−2

p EJ ϕ̇
2.

(6.17)
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The Hamiltonian of the comparator may be written as

Hc = ω−2
p EJ ϕ̇

2 + U(ϕ, t) +

(
Φ0

2π

)
ϕIR(q) +Hd(q), (6.18)

where IR(q) is the total dissipative current that couples to the environment
Hd(q) of q degrees of freedom. The potential energy may be written

U(ϕ, t) = −2EJ cos(ϕ) cos

(
ϕe(t)

2

)
+ EJ

(
Φ0

2π

)2
ϕ2

2L
. (6.19)

Defining inductive parameter for the comparator

λ ≡ EJ

(
Φ0

2π

)2

L, (6.20)

we see that if λ > 1/2, the SFQ pulse (∆ϕe = 2π) injected from the driver
circuit again inverts the potential near the initial phase equilibrium point
ϕ = ϕi, and the transient process which creates the SFQ pulse at the output
stage J1,2 is determined by the sign of signal current Ix = σzΦxM/LLq.

In the same manner as section 5.2, we assume the driver circuit providing
the pulse for inversion of the potential is sufficiently fast so that near the
initial phase equilibrium point the potential is approximately quadratic, and
the potential energy written

U(ϕ, t) = EJϕ
2µ(t). (6.21)

The comparator inductance may then be seen as nothing more than a re-
normalization of the time dependent driver pulse (5.43)

µ(t) ≡ cos

(
ϕe(t)

2

)
+

1

2λ
. (6.22)

In the case of the comparator, the time derivative ϕ̇ ∝ p may be seen
as the equivalent momentum operator, hence the equation of motion for the
phase operator (6.12) is linear and may be found from general commutator
properties

[A,BC] = [A,B] C + B [A, C] . (6.23)

Including the external noise source, the equation of motion for the phase op-
erator may be written as [136, 137]

ϕ̈ + 2γϕ̇ + ω2(t)ϕ = ix + if (t). (6.24)
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Here, the dot represents differentiation over time t, γ ≡ ω2
p/2ωc (5.51), ω2(t) ≡

ω2
pµ(t) (5.45), ix ≡ Ix/2Ic (5.44), and

if (t) ≡ If1(t) + If2(t)

2Ic
. (6.25)

While the ϕ, ix, if (t) are operators in the equation of motion (6.24), the
linearity of the equation allows us to represent the phase as a sum of its
statistical average 〈ϕ〉 and fluctuations ϕ̃, with equations of motion:

〈ϕ̈〉+ 2γ〈ϕ̇〉+ ω2(t)〈ϕ〉 = ix, (6.26)
¨̃ϕ+ 2γ ˙̃ϕ+ ω2(t)ϕ̃ = if (t). (6.27)

The general solution to (6.26) may be presented as

〈ϕ(t)〉 = ixa(t) +

t∫

0

ixK(t, τ), (6.28)

or

〈ϕ(t)〉 = 〈ϕi〉

a(t) + µi

t∫

0

K(t, τ)dτ


 , (6.29)

for constant initial phase 〈ϕi〉 = 〈ϕ(0)〉,

〈ϕi〉 = ix/µi. (6.30)

Function a(t) is the solution to the homogeneous form of (6.26) which obeys
boundary conditions

a(0) = 1,
ȧ(0) = 0,

(6.31)

and kernel K(t, τ) is obtained from integration of the equation with right-hand
part ω2

pδ(t− τ), and may be seen as the solution to the homogeneous equation
with zero phase for time t < τ and unit derivative at time t = τ ,

K(t ≤ τ, τ) = 0,

K̇(τ, τ) = ω2
p,

(6.32)

shown schematically in Fig. 6.2. In the same manner we may write the solution
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Figure 6.2: Kernel function K(t, τ) shown schematically.

for the fluctuations

ϕ̃(t) = ϕ̃ia(t) + ˙̃ϕib(t) +

t∫

0

K(t, τ)if (τ)dτ, (6.33)

for the same functions a(t), K(t, τ) and solution of the homogeneous equation
b(t) with boundary conditions

b(0) = 0,

ḃ(0) = 1.
(6.34)

Since ϕ̃i and ˙̃ϕi are uncorrelated, the variance of the phase fluctuation term is
then calculated

〈ϕ̃2(t)〉 = 〈ϕ̃2
i 〉a2(t) + 〈 ˙̃ϕ2

i 〉b2(t) +

t∫∫

0

K(t, τ)K(t, s)〈if (τ)if (s)〉 dτds. (6.35)

The term 〈if (τ)if (s)〉 is interpreted to mean

〈if (τ)if (s)〉 =
1

2
〈if (τ)if (s) + if (s)if (τ)〉. (6.36)

For the case of a linear distribution of environment oscillators (Ohmic dissi-
pation), the statistical equilibrium of the fluctuation current may be obtained
from the FDT [137, 138]

1

2
〈if (τ)if (s) + if (s)if (τ)〉 =

1

2πI2
cR

∞∫

−∞

~ν
2

coth

(
~ν
2T

)
cos [ν(τ − s)] dν.

(6.37)
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The pre-factor term may be written

~
4πI2

cR
=

(
~ωi

4EJµi

)
µ

1/2
i

ω2
pπβ

1/2
c

, (6.38)

and the average fluctuation may be written

t∫∫

0

K(t, τ)K(t, s)〈if (τ)if (s)〉 dτds =

(
~ωi

4EJµi

)
Ξ2, (6.39)

where

Ξ2 ≡ Ξ0

t∫∫

0

dsdτ

∞∫

0

dνν coth

(
~ν
2T

)
K(t, τ)K(t, s) cos [ν(τ − s)] , (6.40)

and

Ξ0 ≡ 2µ
1/2
i

ω2
pπβ

1/2
c

. (6.41)

The amplitude of the equilibrium initial fluctuations may also be found
from the fluctuation-dissipation theorem [139]

〈E〉 = Θ(ωi, T ) =
~ωi
2

coth

(
~ωi
2T

)
, (6.42)

where we use the notation
ω2
i ≡ ω2

pµi,
ω2
f ≡ ω2

pµf .
(6.43)

Using the potential and kinetic energy terms 〈U〉 = 2EJµi〈ϕ̃2
i 〉/2, 〈K〉 =

2EJω
−2
p 〈 ˙̃ϕ2

i 〉/2, and in equilibrium 〈E〉 = 2〈U〉 = 2〈K〉, we find

〈ϕ̃2
i 〉 =

~ωi
4µiEJ

coth

(
~ωi
2T

)
,

〈 ˙̃ϕ2
i 〉 = ω2

p

~ωi
4EJ

coth

(
~ωi
2T

)
,

= ω2
i 〈ϕ̃2

i 〉.

(6.44)

Collecting terms (6.35), (6.39), and (6.44) the variance of the phase fluc-
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tuations at arbitrary time t may be written

〈ϕ̃2〉 =

(
~ωi

4EJµi

){
coth

(
~ωi
2T

) [
a2(t) + ω2

i b
2(t)

]
+ Ξ2

}
, (6.45)

and in the limit of low damping βc →∞,

〈ϕ̃2〉 =

(
~ωi

4EJµi

)
coth

(
~ωi
2T

) [
a2(t) + ω2

i b
2(t)

]
. (6.46)

6.1.0.1 Evaluation of Ξ2

Formally, evaluation of Ξ2 (6.40) is very similar to the evaluation of the thermal
parameter C (5.84) contributing to the density matrix. In the development
of the Heisenberg-Langevin-Lax theory above, we also developed a method of
evaluation of Ξ2 that is vastly superior to the Monte Carlo techniques pre-
viously employed. By expanding the cos() term, we may write the integral
as

Ξ2 = Ξ0

∞∫

0

ν coth

(
~ν
2T

) 





t∫

0

cos(ντ)K(t, τ)dτ




2

+




t∫

0

sin(ντ)K(t, τ)dτ




2
 dν.

(6.47)
Defining functions

Kc(t, ν) ≡
t∫

0

cos(ντ)K(t, τ)dτ,

Ks(t, ν) ≡
t∫

0

sin(ντ)K(t, τ)dτ,

(6.48)

Ξ2 may be written compactly as a one dimensional integral

Ξ2 = Ξ0

∞∫

0

ν coth

(
~ν
2T

) [
K2
c (t, ν) +K2

s (t, ν)
]
dν. (6.49)

Using
∫∞

0
cos[ν(τ − s)] dν = πδ(τ − s), function Ξ2 has thermal and quantum

limits

Ξtherm = 2T
t∫

0

K2(τ)dτ,

Ξquan = 2

[∞∫
0

νK2
s (t, ν) dν +

∞∫
0

νK2
c (t, ν) dν

]
.

(6.50)
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The key is to notice that internal integrals (6.48) may be calculated rapidly to
high accuracy using Filon quadrature [98, 140, 141]. The thermal contribution
(6.49) may then be evaluated rapidly using standard trapezoidal numerical
integration without the problems normally associated with multidimensional
numeric quadrature and without the need for time consuming Monte Carlo
methods.

This technique should also be useful for evaluation of Eq. (5.84) even
though functions K(t, τ), and b1(τ, t) differ slightly. However, the utility of
the Lax model has made calculation of the density matrix in the Caldeira-
Leggett somewhat obsolete for the problem at hand.

6.1.1 Signal Resolution

The sensitivity of the detector to the qubit flux is proportional to the fluctu-
ations of signal current created through the inductive coupling, proportional
to the resolution of the initial comparator phase (φi = ix/µi)

δΦ2
x = k−2LLqδI

2
x = 4I2

c k
−2LLqµ

2
i δφ

2
i . (6.51)

After the moment of potential inversion and a short transient, both the av-
erage phase and the fluctuations begin to grow exponentially 〈ϕ〉2 ∝ 〈ϕ̃2〉 ∝
exp[2ωf (t − tinv)]. It is this exponential growth before the phase settles into
the final equilibrium state which produces the large SFQ pulse at the output
stage (see section 5.2) allowing analysis of the signal resolution to be limited
to within the comparator circuit. Hence, after sufficient time after inversion
(ωf (t − tinv) À 1), the signal resolution may be determined at such a value
that the signal to noise ratio is equal to one,

〈ϕ〉2 = 〈ϕ̃2〉. (6.52)

For average phase 〈ϕ〉 determined from initial position 〈ϕi〉f(t) the signal
resolution may be calculated as

δϕi =
〈ϕ̃2

i 〉
f(t)

. (6.53)

Collecting terms (6.29) and (6.45) we may write the flux resolution of the
comparator as

δΦ2
x = λk−2Lq~ωiµi

coth
(~ωi

2T

)
[a2(t) + ω2

i b
2(t)] + Ξ2

[
a(t) + µi

t∫
0

K(t, τ) dτ

]2 . (6.54)
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We note that in the limit of low damping Ξ2 → 0 and in contrast with the
previous results, the flux sensitivity in the Heisenberg-Langevin-Lax model is
completely determined by the initial thermal equilibrium phase fluctuations.

To estimate the flux resolution for realistic devices, we may calculate δΦx

in the upper limit of instantaneous inversion of the potential and low damping
βc À 1. The solution for the component functions may be expressed analyti-
cally

a(t > tinv) = cosh(ωf∆t)− rω sinh[ωf∆t] sin(ωitinv),

b(t > tinv) = ω−1
f [sinh(ωf∆t) cos(ωitinv) + r−1

ω cosh(ωf∆t) sin(ωitinv)] ,

µi
∞∫
0

K(t > tinv, τ) dτ =

{
rω sinh(ωf∆t) sin(ωitinv)

+ cosh(ωf∆t)
[
1 + r2

ω − cos(ωitinv)
]− r2

ω

}
,

(6.55)
with time after inversion ∆t = t− tinv and ratio of initial and final frequencies

rω ≡ ωi
ωf
. (6.56)

The analytical solutions yield flux resolution

δΦ2
x = λk−2Lq~ωi

µiµf
µi + µf

. (6.57)

Using parameters for realistic devices, for example the typical fabrication tech-
nology for the Stony Brook qubit [108] (Lq ≈ 250 pH, ωp ≈ 3×1010 s−1, EJ ≈
76 K, Ic ≈ 3 µA) and values T ¿ ~ωp, λ = 1, we find quite good measurement
properties δΦx/Φx ≈ 0.1 at a measurement time ∆t ≈ ln(Φ0/δΦx)/ωf ≈ 10 ps.
Experimental results from a different group also confirm that the comparator
is an excellent candidate for inductive measurements of the RF-SQUID qubit
[129].

Perhaps a physically more meaningful measure of the detector resolution
is the energy “output noise” figure-of-merit:

Eout ≡ k2 δΦ2
x

2ωfLq
=
~
2
λµirω

〈ϕ〉2
〈ϕ̃2〉 . (6.58)

This measure is identical to εν used for characterization of SQUIDs used for
continuous measurements with the replacement of the narrow bandwidth ∆f
with ωf the reciprocal time scale of the single-shot measurement. Plugging in
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solutions for the phase and variance this becomes similar to (6.54),

Eout =
~
2
λµirω

coth
(~ωi

2T

)
[a2(t) + ω2

i b
2(t)] + Ξ2

[
a(t) + µi

t∫
0

K(t, τ) dτ

]2 . (6.59)

For instantaneous switching of the potential and the most important case
βc À 1, Eout takes a simple form

Eout =
~
2
λrω coth

(
~ωi
2T

)
µiµf
µi + µf

. (6.60)

In the case of quantum-limited fluctuations and low damping, Eq. (6.60) may
be written explicitly in terms of λ (µi = 1 + 1/2λ, µf = 1− 1/2λ) as

Eout =
~
4
λ

[(
1 +

1

2λ

)3 (
1− 1

2λ

)]1/2

. (6.61)

The results of Eq. (6.60) versus inductive parameter λ ∝ L are shown in
Fig. 6.3(a) for decreasing temperature, while panel (b) shows the quantum
limit of Eq. (6.59) for decreasing damping parameter βc to the critical value.
The results in the quantum limit and low damping are shown in panel (c)
compared to the calculated switching in experimental devices of section 5.3.1
(see Fig. 5.8). As discussed in section 5.4.1, the sensitivity of the device is
increased by driving the comparator with “softer” pulses. In all cases, when
λ is not too close to 1/2, Eout ∝ λ ∝ L and Eout → ∞ as λ → ∞. The
interpretation of the this result is clear, increasing the comparator’s coupling
inductance L decreases the signal current Ix ∝ Φx/L, and for a fixed current
resolution, the sensitivity to the flux is reduced. More interestingly is the
energy resolution in the opposite limit λ → 1/2. Figure 6.3 shows that as
λ → 1/2, Eout tends to zero, a result easily confirmed by inspection of Eq.
(6.61). In fact, Eout may fall below the apparent quantum limit ~/2 for even
modest values of λ. A similar situation occurs with the parameter εν for the
characterization of dc SQUIDS, and is a reflection of the fact that neither εν
nor Eout take into account the back-action fluctuations of the comparator mea-
surement onto the source signal. In the case of SQUIDs, the back-action noise
εi has been analyzed, and when properly accounted for with the correlation
term ενi, the normalized energy sensitivity

ε ≡ (
ενεi − ενi2

)1/2
, (6.62)
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Figure 6.3: “Output noise” resolution Eout of the comparator with instantly inverted
potential versus λ for: (a) decreasing temperatures and low damping, (b) decreasing
damping parameter in the quantum limit, and (c) low-damping, quantum versus
switch with actual RSFQ pulse calculated with PSCAN.
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is indeed limited by the lower bound ε > ~/2 [142]. However, no clear analog
to εi has been found for the comparator-qubit system. The next section of
the text explores the quantum mechanical limits of the measurement with
consideration for the comparator’s back-action effects.

6.2 Information versus Back-action

The goal of the comparator is to distinguish between two distinct quantum
states of the qubit with high probability within a few, ideally one, measure-
ments. Hence, a good measurement of the detector’s fidelity is the ratio of the
rate at which information is acquired to the dephasing of the states caused by
the back-action of the measurement.

To quantify the information obtained in a measurement we note that dis-
tinguishing between qubit states |1〉,|2〉 can be seen as distinguishing between
probability distributions p1,2(n) of possible outcomes n. The fidelity of the
measurement may then be quantified in terms of the overlap between these
two distributions [143]. For quantum information systems, the most appropri-
ate way to characterize this over lap is [4]

∑
n

[p1(n)p2(n)]1/2 , (6.63)

and the information obtained by the measurement (i. e. the ability of the
comparator to discriminate between states |1〉 and |2〉) may be defined as
[144, 145]

I = − ln
∑
n

[p1(n)p2(n)]1/2 . (6.64)

Assuming that the comparator measurement can distinguish between all values
of the phase ϕ at sufficiently long times after potential inversion then the
confidence that the comparator my differentiate between the two qubit states
in a single measurement is then given by

I = ln

∫
dx [p1(x)p2(x)]

1/2 . (6.65)

Any dissipation in the comparator will couple directly to qubit, so we may
restrict ourselves to the dissipation free limit T → 0, βc → ∞. The qubit
flux state will remain fixed through the measurement, see section 6, so the
back-action of the comparator may be characterized as suppression of the off-
diagonal elements of the total density matrix, which is expressed as the product
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of density matrix of the comparator and qubit,

ρtot(t) = ρc(t)× ρq(t). (6.66)

Equation 6.16 shows that the off-diagonal elements of the qubit may be ex-
pressed in terms of the time evolution of the comparator phase ϕ. The de-
phasing may then be expressed as the overlap of comparator wavefunctions
Ψ1,2 corresponding to qubit states |1〉,|2〉:

Γ = − ln [〈Ψ1|Ψ2〉] . (6.67)

The results of chapter 5 show that the comparator wavefunctions are Gaus-
sian throughout the measurement dynamics so Ψ1,2 may be represented by
Gaussian wavefunctions

Ψi = C exp
{−ζϕ2

i /2 + %ϕi
}
, (6.68)

shifted in opposite directions through the coupling to the qubit, shown schemat-
ically in Fig. 6.4. Parameters ζ, % are in general complex numbers so defining

ζ ≡ η + iξ,
% ≡ γ + iδ,

(6.69)

the constant C is found from the normalization requirement |Ψi|2 = 1 through
general Gaussian integral [98]

∫
e−ax

2+bx+c =

√
π

a
e

b2

4a
+c dx (6.70)

|Ψ
1
> |Ψ

2
>

-ϕ
0

ϕ
00

Figure 6.4: Schematic representation comparator wavefunctions in a quadratic po-
tential.
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to be

|C| = e−γ
2/η

(η
π

)1/4

. (6.71)

The off-diagonal matrix elements may then be calculated as

〈Ψ1|Ψ2〉 = C2C
∗
1

∫
dϕ exp {−ζ1ϕ2/2 + %∗ϕ− ζ2ϕ

2/2 + %ϕ} ,

=
(

4η1η2
ζ̄

)1/4

exp
{
−γ2

2η1+γ2
1η2

2η1η2
+ %̄2

2ζ̄

}
,

(6.72)

where we have defined
ζ̄ ≡ ζ∗1 + ζ2,
%̄ ≡ %∗1 + %2.

(6.73)

The parameters γ, η may be related to the average and variance variables of
the comparator dynamics. Calculating the average and variance of the phase
we find the following relations:

〈ϕ〉 = 〈Φ|ϕ|Φ〉,

=
∫
dϕ ϕ |Φ|2 ,

=
γ

η
,

(6.74)

and

〈ϕ̃2〉 = 〈Φ |(ϕ− 〈ϕ〉)2|Φ〉,

=
1

2η
.

(6.75)

To find the equivalent “momentum” variable conjugate to the phase

[q, ϕ] = i~, (6.76)

we begin with kinetic energy term K = Q2/4C. The comparator charge (Q)
and flux (Φ) have commutation relations

[Φ, Q] = i~, (6.77)

which yields relations for the phase (ϕ = (2π/Φ0)Φ)

[ϕ, q] = i~. (6.78)
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Variable q may be seen as a normalized charge variable

q =

(
Φ0

2π

)
Q = 2ω−2

p EJ ϕ̇, (6.79)

where factor 2EJ/ω
2
p may be replaced with the oscillator’s equivalent mass

(5.36), yielding kinetic term K = q2/2MJ . This associated momentum has
average value and fluctuation terms

〈q〉 = ~
i
〈Ψ|(%− ζϕ)|Ψ〉,

= ~
(
δ − ξγ

η

)
,

(6.80)

and
〈q̃2〉 = 〈q2〉 − 〈q〉2,

= ~2

(
η2 + ξ2

2η

)
.

(6.81)

Combining solutions (6.74), (6.75), (6.80), (6.81) we may express the funda-
mental parameters in terms of the average phase, momentum and fluctuations,

η =
1

2〈ϕ̃2〉 ,

γ =
〈ϕ〉

2〈ϕ̃2〉 ,

ξ = −
(

4〈q̃〉〈ϕ̃2〉 − ~2

4~2〈ϕ̃2〉2
)
,

δ =
〈q〉
~
− ξ〈ϕ〉.

(6.82)

Note that the sign of ξ is negative because the initial Gaussian wavefunctions
evolve in an inverted potential and the sign should be chosen to maintain the
proper sign of the momentum [146]. This yields results for the back-action
dephasing

Γ =
γ2

2η1 + γ2
1η2

2η1η2

− %̄2

2ζ̄
− 1

4
ln

(
4η1η2

ζ̄

)
, (6.83)

and the ratio ζ̄/2%̄ may be expanded

ζ̄

2%̄
=

(
〈ϕ1〉〈ϕ̃2

2〉+ 〈ϕ2〉〈ϕ̃2
1〉+

2i

~
〈ϕ̃2

1〉〈ϕ̃2
2〉 [〈q2〉 − 〈q1〉+ ζ2〈ϕ2〉 − ζ1〈ϕ1〉]

)2

4〈ϕ̃2
1〉〈ϕ̃2

2〉 [〈ϕ̃2
1〉+ 〈ϕ̃2

2〉+ 2i〈ϕ̃2
1〉〈ϕ̃2

2〉 (ζ2 − ζ1)]
(6.84)

162



The information measure is calculated from the same comparator wave-
functions

√
p1(x)p2(x) = |C1| |C2| exp

{
−(η1 + η2)

2

2
ϕ2 + (γ1 + γ2)ϕ

}
,

∫
dϕ

√
p1(x)p2(x) =

(
4η1η2

(η1 + η2)2

)1/4

×
exp

{−γ2
1/2η1 − γ2

2/2η2 + (γ1 + γ2)
2/2(η1 + η2)

}
.

(6.85)
or

I =
γ2

2η1 + γ2
1η2

2η1η2

− (γ1 + γ2)
2

2(η1 + η2)
− 1

4
ln

(
4η1η2

(η1 + η2)2

)
. (6.86)

The comparator evolution for the two qubit states is symmetric, ϕ(t) ∝
ϕi ∝ σz ∝ ±1, so phase 〈ϕ1〉, 〈ϕ2〉 and their relative momenta differ only by a
sign

〈ϕ1〉 = −〈ϕ2〉 ≡ 〈ϕ〉,
〈q1〉 = −〈q2〉 ≡ 〈q〉. (6.87)

The fluctuation terms are independent of the initial shift

〈ϕ̃2
1〉 = 〈ϕ̃2

2〉 ≡ 〈ϕ̃2〉,
〈q̃2

1〉 = 〈q̃2
2〉 ≡ 〈q̃2〉, (6.88)

so we find relations for the Gaussian parameters

η1 = η2 ≡ η,
γ1 = −γ2 ≡ γ,
ζ1 = ζ2 ≡ ζ.

(6.89)

The information and dephasing terms then take very simple forms

I =
γ2

η
,

Γ =
γ2

η
− 〈ϕ̃2〉

2

(
2i

~
[〈q〉+ ~ξ〈ϕ〉]

)2

.

(6.90)

This is a key point. The total dephasing may then be seen as the information
acquired in a single shot measurement plus an additional backaction term

Γ = I + Γ̃. (6.91)

If the measurement time is sufficiently far from inversion, when the average
phase and fluctuations have reached the stage of exponential growth then ξ
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takes the simple form

ξ ≈ −1

~

( 〈q̃2〉
〈ϕ̃2〉

)1/2

, (6.92)

and the information and dephasing terms may be expressed in terms of the
comparator’s phase and momentum variables using relations (6.82) as

I =
1

2

〈ϕ〉2
〈ϕ̃2〉 ,

Γ̃ =
2

~2

[〈q〉〈ϕ̃2〉1/2 − 〈ϕ〉〈q̃2〉1/2]2
.

(6.93)

Since Γ̃ is positive semi-definite we can achieve an ideal quantum measurement
when Γ̃ = 0 or

〈q〉2〈ϕ̃2〉 = 〈ϕ〉2〈q̃2〉. (6.94)

6.2.1 Measurement Optimization

The result (6.93) may be analyzed analytically for the case of instantaneous in-
version of the comparator potential from ωi → ωf at time tinv. The Heisenberg
equation of motion for the phase operator with shifted initial values is

ϕ̈ + ω2(t)ϕ +
λσz
MJ

= 0, (6.95)

where for notational convenience we have used equivalent effect mass (5.36).
The solution before inversion may be written

ϕ(t < tinv) = ϕi cos [ωi(t+ tinv)] +
qi
MJ

sin [ωi(t+ tinv)]− 〈ϕi〉, (6.96)

with average initial values

〈ϕi〉 =
λσz
MJω2

i

,

〈qi〉 = 0.
(6.97)

The general solution after switching is

ϕ(t > tinv) = A cosh [ωf (t− tinv)] + B sinh [ωf (t− tinv)] + ϕλ, (6.98)

where

ϕλ ≡ λσz
MJω2

f

= r2
ω〈ϕi〉. (6.99)
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Expressing the operators at the moment of inversion as the average value plus
small fluctuation

ϕ(tinv) = ϕi + ϕ̃i,
q(tinv) = q̃i,

(6.100)

and matching the solutions at tinv we find solutions for the phase and momen-
tum operators

ϕ(t) = (ϕi + ϕ̃i) C + ϕλ (1− C) +
q̃i

MJωf
S,

q(t) = MJωf (ϕi + ϕ̃i − ϕλ)S + q̃iC,
(6.101)

where we have defined

C ≡ cosh [ωf (t− tinv)] ,
S ≡ sinh [ωf (t− tinv)] ,

(6.102)

for notational convenience. The average phase, momentum and variances for
instantaneous inversion of the potential may then be expressed

〈ϕ〉 = 〈ϕi〉 [(1 + r2
ω) C − r2

ω] ,

〈q〉 = MJωf〈ϕi〉 (1 + r2
ω)S,

〈ϕ̃2〉 = 〈ϕ̃2
i 〉 (C2 + r2

ωS2) ,

〈q̃2〉 = M2
Jω

2
f〈ϕ̃2

i 〉 (S2 + r2
ωC2) .

(6.103)

Plugging solutions (6.103), we find that the fidelity of the measurement
becomes constant at large times (ωf (t− tinv) À 1,

I =
1 + r2

ω

2

〈ϕi〉2
〈ϕ̃2

i 〉
, (6.104)

and is determined entirely from the equilibrium initial fluctuations (6.44). On
the other hand, the dephasing grows exponentially

Γ̃ =
1

4

〈ϕi〉2
〈ϕ̃2

i 〉
exp [2ωf (t− tinv)] . (6.105)

This exponential growth continues until the comparator reaches the non-linear
part of the potential and settles into final equilibrium state ϕf = ϕi± π while
the back-action saturates at some value Γ̃ À I.
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This result shows that even though the comparator has very high (po-
tentially quantum limited) flux resolution, it imparts back-action noise much
higher than fundamental quantum mechanical limits. From this stand-point,
the detector is actually rather poor, and would be greatly improved if the ef-
fect of the measurement could be minimized for constant flux resolution. We
propose two ways to achieve this goal.

6.2.1.1 Quenched Coupling

The first option is to note that the comparator may be decoupled from the
qubit at time t0, slightly before the measurement pulse preventing the feedback
between the two components (see Fig. 6.5). The coupling parameter κ may be
made externally controllable through the use of Josephson-junction circuitry
[147]. At the moment that coupling is quenched, the oscillator is free to evolve
in the comparator potential well until the moment of inversion of the potential
(tinv = 0), and the solution to Eq. (6.95) may be written

ϕ(t > 0) = (ϕ(0) + ϕ̃i) C +
q(0) + q̃i
MJωf

S,
q(t > 0) = MJωf (ϕ(0) + ϕ̃i)S + (q(0) + q̃i) C.

(6.106)

Since the state is fixed until the coupling is suppressed (q(t ≤ −t0) = 0) , we
may express the average phase and momentum at the moment of inversion as

ϕ(0) = ϕiC0,
q(0) = −MJωiϕiS0,

(6.107)

ω2

−ω2
f

ωi
2

−t
0

0

κ

t

Figure 6.5: Instantaneous inversion of the comparator potential preceded by rapid
quenching of the coupling coefficient κ.
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where we have defined
C0 ≡ cos(ωit0),
S0 ≡ sin(ωit0).

(6.108)

This gives values for the statistical properties

〈ϕ〉 = ϕi (C0C − rωS0S) ,

〈q〉 = MJωfϕi (C0S − rωS0C) ,

〈ϕ̃2〉 = 〈ϕ̃2
i 〉 (C2 + r2

ωS2) ,

〈q̃2〉 = (MJωf )
2 〈ϕ̃2

i 〉 (S2 + r2
ωC2) .

(6.109)

Plugging these expressions into Eq. (6.93), we again find that the information
measure evolves to a constant

I =
1

1 + r2
ω

〈ϕi〉2
2〈ϕ̃2

i 〉
[C0 − rωS0]

2 , (6.110)

as do the dephasing fluctuations

Γ̃ =
1

1 + r2
ω

〈ϕi〉2
2〈ϕ̃2

i 〉
[rωC0 + S0]

2 . (6.111)

The dependencies of I and Γ̃ are shown in Fig. 6.6 along with the total
dephasing, which is independent of the delay time

Γ =
〈ϕi〉2
2〈ϕ̃2

i 〉
. (6.112)

If the comparator and qubit are decoupled at the moment the comparator
makes the measurement, then the backaction dephasing is greater than the
received information by a factor of 1 + r2

ω. In this case we may have an ideal
quantum measurement only in the impractical limit ωf À ωi. If however the
comparator is allowed to undergo free oscillations, the phase and momentum
will reach values such that amplitude of the comparator wavepacket which
reaches the inversion stage is maximized and we get an optimal measurement.
These periodically repeating optimal delay times are given for an arbitrary
value of rω as

tan(ωit0) = −rω, (6.113)
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and the information is indeed maximized to value

Imax = Γ. (6.114)

At this delay time, the comparator represents an “ideal” quantum detector.
We may calculate the flux resolution in this limit, again from the require-

ment of unitary signal-to-noise ratio (〈ϕ〉2 = 〈ϕ̃2〉) to be

δϕ2
i = 〈ϕ̃2

i 〉
1 + r2

ω

(C0 − rωS0)
2 . (6.115)

The flux resolution is optimized at the same delay time (6.113) and the en-
ergy resolution of the optimal measurement is calculated in terms of inductive
parameter λ

Eout =
~
2
λ

[(
1 +

1

2λ

)3 (
1− 1

2λ

)−1
]1/2

. (6.116)

The output noise resolution for the ideal quantum measurement is shown
Fig. 6.7 along with the previous result for constant coupling (6.61). For
all inductive parameters, the decoupling to achieve the ideal measurement
decreases the flux resolution of the comparator. In fact, as λ → 1/2, the
resolution has the exact inverse behavior Eout →∞ from the constant coupling
case. The ideal measurement reaches a minimum in flux resolution Eout =
3~/4

√
3 at λ = 1.
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qubit coupling.

6.2.1.2 Feedback Circuit

The second way we might compensate for the negative effects of the com-
parator’s backaction noise is to compensate for the coupled signal through an
external circuit. Because the signal 〈ϕ〉(t) exhibits exponential growth, we
may neglect additional noise at this stage of the circuit and simply the ampli-
fied signal, modified by an arbitrary function, as feedback to the comparator.
Taking the measurement time tm to be in the stage of exponential growth, the
feedback pulse applies an additional phase

ϕf (t) = f(t)× ϕ(tm) (6.117)

shown in Fig. 6.8. For all times before the measurement f(t) ≡ 0.We note that
the signal itself comes with exponentially growth noise signal 〈ϕ̃2〉 which will
also be multiplied by the feedback function. In fact, the conjugate momentum

t = 0

t(   )ϕ

mtϕ(     )
t(   )ϕ e mtϕ(     )t(   )f x

clock pulse
generator

feedback
signal

generator

comparator readoutqubit

M

Figure 6.8: Measurement circuit with the comparator’s backaction compensated by
a feedback loop.
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variable is simply qc(t) = EJ ϕ̇c(t) ∝ exp(2ωf t). So if we compensate for the
back-action signal 〈ϕ〉(t) exactly then we automatically compensate for the
momentum part of the signal as well. Hence, 〈ϕ〉(t), 〈q〉(t) may be made
vanishingly small simultaneously for a single, appropriate choice of function
f(t). In this way we may reach the ideal limit Γ = I while maintaining
quantum-limited flux resolution (6.59).

6.3 Conclusions

We have developed two methods to analyze quantum fluctuations for arbitrary
time inversion of a damped harmonic oscillator potential. The first method
calculates the time evolution of the system density matrix coupled to bath of
linear oscillators. The second method calculates the particle motion of the
statistical properties within the Heisenberg-Langevin-Lax equations of mo-
tion. The results show that when the quantum wavepacket is prepared in an
initially Gaussian state, the envelope remains Gaussian throughout its evo-
lution. When applied to the balanced Josephson junction comparator these
results may used for numerical prediction of the gray zone width defining
the accuracy of the detector. The numerical calculations show nearly perfect
agreement with experimental results for typical niobium tri-layer devices and
predict than when the temperature of the system is reduced below ≈ 1 K,
the signal resolution may be limited only by quantum fluctuations within the
device itself.

We have also calculated the flux resolution, energy output noise and back-
action strength of the comparator taking into account the inductive coupling
with a magnetic flux qubit. For a system where the coupling between the two
components remains constant, the flux sensitivity of the comparator may again
be quantum limited and increased by tuning of the inductive parameter λ. In
fact, the resolution of the device may be made nearly arbitrarily high but the
measurement disturbs the qubit state quite significantly. This back-action ef-
fect may be reduced to the quantum mechanical limit of an ideal measurement
by at least two methods. An ideal measurement may be obtained by decou-
pling of the comparator qubit system, although at reduced flux sensitivity.
The back-action noise may also be compensated by an additional optimized
feedback circuit on the exponentially amplified signal while maintaining high
flux resolution.
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6.3.1 Possible future work

An interesting extension to this work remains a subject for interesting future
work. Namely, how does the minimal back-action of the comparator manifest
itself in the qubit after measurement? For example, Eq. (6.16) suggests that
the off-diagonal elements of the qubit two state Hamiltonian will experience
an exponentially strong perturbation during the measurement without com-
pensation, in agreement with Eq. (6.105). Combined with the arbitrarily high
precision of the flux measurement, this state represents a kind of “squeezed”
detector measurement. We have demonstrated that in the sense of informa-
tion and dephasing we may reach a quantum mechanically ideal measurement.
We have not, however, calculated the affect that this measurement has on
the charge variable conjugate to the qubit flux. In fact, a proper definition
of the qubit charge noise remains unclear. Such a definition may be found,
and along with the calculated flux noise compared against the fundamental
quantum limit.

This problem has been solved for continuous measurement of a harmonic os-
cillator via an “ideal” linear amplifier [148]. For that case, there is a minimum
limit such that the signal-to-noise ratio at the output precisely doubles the
input signal-to-noise ratio for a signal with quantum mechanical uncertainty.
The interpretation of this doubling is that the fundamental uncertainty of the
detector multiplies the uncertainty of the input exactly doubling it. Such a
fundamental relation is more elusive for the comparator-qubit system how-
ever because the qubit flux state remains fixed (see Eq. (6.13))throughout the
interaction with the detector.
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Appendix A

Auxiliary Calculations

A.1 Gate Leakage

In the WKB approximation, the tunneling probability is given by

T (Ex) ≈ e−2γ (A.1)

where

γ =
1

~

tox∫

0

|p(x)| dx, (A.2)

an approach used by Simmons to derive the current density for a general poten-
tial barrier for both similar and dissimilar gate and drain electrode materials
[149, 150]. The WKB result shows that to a good approximation, the current
is dominated simply by the average value of the potential in the film. The
current can be expressed for electrodes with identical work functions as

J = J0

[
ϕ̄e−Aϕ̄

1/2 − (ϕ̄+ eV )e−A(ϕ̄+eV )1/2
]

(A.3)

where

J0 ≡ e

4π2~(βtox)2

A ≡ 2βtox
~

(2mx)
1/2 .

Here, β is a higher order correction factor that in most cases β ≈ 1. ϕ̄ is the
average value of the potential in the insulator, where in Simmons derivation
is measured from the Fermi energy of the gate electrode.
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A.1.1 Trapezoidal Barrier

If the exact potential in the insulator is not known, the first approach is to
approximate it as linear with potential

U(x) = Φox − Vg − Vd
x

tox
. (A.4)

A.1.1.1 Simmons’ Equations

For the case of a trapezoidal barrier, the average value of the potential is given
simply in terms of ϕ0, the height of the potential barrier above the Fermi level
of the gate electrode.

ϕ̄ =





ϕ0 V → 0
ϕ0 − Vd/2 V < ϕ0/e
ϕ0/2 V > ϕ0/e

,

where in the last case, the effective barrier width ∆tox = toxϕ0/Vd. Limiting
expressions for equation A.3 are derived as

J =

3(2mxϕ0)1/2

2tox

(
e

2π~
)2
V exp

[
−2tox/~ (2mxϕ0)

1/2
]

V → 0

J0

[
(ϕ0 − Vd/2)e−A(ϕ0−Vd/2)1/2 − (ϕ0 + Vd/2)e−A(ϕ0+Vd/2)1/2

]
V < ϕ0/e(

e3(F/β)2

8π2~ϕ0

) [
e−A1ϕ

3/2
0 −

(
1 + 2Vd

ϕ0

)
e−A1ϕ

3/2
0 (1+Vd/ϕ0)1/2

]
V > ϕ0/e

(A.5)
where F ≡ Vd/tox is the field strength in the insulator and constant

A1 ≡ 2β

~eF
m1/2
x .

Figure A.1 shows the results of Simmons equations for a trapezoidal barrier.

The full WKB solution for a trapezoidal barrier is given by

γ =
2
√

2moxtox
3~Vd

<
{

(Φ0 − Vg − Ex)
3/2 − (Φ0 − Vg − Vd − Ex)

3/2
}

(A.6)

Figure A.2 shows the same thin film considered by Simmons. The red line
is the result of the full WKB calculation with EF = 0.151 eV. The green line is
the full numerical solution of the 1-D transmission problem. The oscillations
in the numerical solution are the result of over barrier reflections which are
not accounted for in the WKB approximation.
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Figure A.1: Resistivity results for transmission through a thin film barrier calculated
using Simmons approximation.
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Figure A.2: Resistivity results for transmission through a thin film barrier calculated
using WKB approximation.

A.1.2 Applications

Many attempts have been made to apply the WKB approximation to gate
leakage current in MOSFET devices [151–153]. Figure A.3 shows the results of
equation A.6 to a generic device with parabolic electron mass and an electrode
doping density nD = 0.3 nm−3 and silicon dioxide band gap Φox = 3.2 eV.
Here we have used an effective electron mass in the range 0.3 − 0.4m0 [154].
A slightly more useful result is obtained by plugging in the effective mass for
Si oriented in the (100) plane,shown in Fig. A.4.
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Figure A.3: The gate-drain current density for a generic device as a function of (a)
Vd and (b) and Vg.
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Figure A.4: The gate-drain current density for Si (100) effective mass.

A.1.3 Full Potential

For full account of the actual MOSFET potential, the current density flowing
from the gate to the drain is given by

J =

gw∫

0

J(x, z)dz (A.7)

where J(x, z) is identical to Eq. 3.28 and the potential between the gate and
drain electrodes is taken from the full self-consistent solution of the Poisson
and Schrodinger equations.
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Figure A.5: The gate-drain current density for bulk electrode FET device.

Figure A.5 shows the results for real nano-FET potential profiles. The
potential is calculated using a 1-D approximation to the Schrodinger equation
for electrons in the channel.

The black lines represent the source-drain current density and the dashed
black line represented the gate leakage based on the WKB approximation. The
gate-drain currents from the full numeric calculation where nearly identical for
all gate lengths and the results are given by the red line. The green lines are the
source-drain current and gate-drain current for an oxide thickness tox = 1.5 nm
and gate length Lg = 5 nm..
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A.2 Average Potential

In this appendix we will derive the result for the average potential summed
over all wavefunction indicies n. We will assume a generic two dimensional
potential U(x, z) that is symmetric in ẑ around U(x, 0). The average potential
defined as

Ūn ≡
∑

n′

tc/2∫

−tc/2

U(x, z)ψn′(z)ψ
∗
n(z)dz (A.8)

where ψ(z) is the infinite square well wavefunction

ψn(z) =

(
2

tc

)1/2





cos
(
nπ
tc
z
)

n = odd

sin
(
nπ
tc
z
)

n = even.
. (A.9)

A.2.1 Example: Quadratic Potential

We begin by looking at a potential of the form

U(z) = U0 + αz2. (A.10)

From equation A.8, the average potential is given by

Ūn =
∑

n′


U0

tc/2∫

−tc/2

ψn′(z)ψ
∗
n(z)dz + α

tc/2∫

−tc/2

z2ψn′(z)ψ
∗
n(z)dz


 . (A.11)

The first integral is clearly δn,n′ so we can write the average potential as

Ūn = U0 + Ū ′n (A.12)

where

Ū ′n =
2α

tc




∑

n′=odd

tc/2∫

−tc/2

z2 cos

(
nπ

tc
z

)
cos

(
n′π
tc
z

)
dz

+
∑

n′=even

tc/2∫

−tc/2

z2 cos

(
nπ

tc
z

)
sin

(
n′π
tc
z

)
dz


 .

(A.13)
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By odd-even functionality, the second summation vanishes and using the so-
lution

2

tc

tc/2∫

−tc/2

z2 cos

(
nπ

tc
z

)
cos

(
n′π
tc
z

)
dz =

{
t2c(n2π2−6)

12n2π2 n = n′

−8(−1)(n+n′)/2t2nn′

π2(n2−n′2)2
n 6= n′

(A.14)

the variation of the average potential becomes

Ū ′n =
αt2c
π2

[
n2π2 − 6

12n2
−

∑

n′=odd,n6=n′

8(−1)(n+n′)/2nn′

(n2 − n′2)2

]
. (A.15)

The restrictions on the summation are a little awkward, so we define

k ≡ n′ − 1

2
(A.16)

and this can be re-written as

Ū ′n =
αtc
π2


n2π2 − 6

12n2
−

(n−3)/2∑

k=0

8(−1)(n+2k+1)/2n(2k + 1)

(n2 − (2k + 1)2)2

−
∞∑

k=(n+1)/2

8(−1)(n+2k+1)/2n(2k + 1)

(n2 − (2k + 1)2)2


 ,

(A.17)

Using ∑
n

(−1)n

(n+ 1)2
=

1

12
π2,

the two summations in equation A.17 reduce to

(n−3)/2∑

k=0

8(−1)(n+2k+1)/2n(2k + 1)

(n2 − (2k + 1)2)2
+

∞∑

k=(n+1)/2

8(−1)(n+2k+1)/2n(2k + 1)

(n2 − (2k + 1)2)2

=
1

12
π2 − 1

2n2

(A.18)

so the final result is
Ū ′n = 0, (A.19)

and
Ūn = U0. (A.20)
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A.2.2 Fourier Series

For fixed x, we can represent the potential as a Fourier series over the channel
thickness tc.

Ux(z)|tc/2−tc/2 =
a0

2
+

∞∑
m=1

[
am cos

(
2mπ

tc
z

)
+ bm sin

(
2mπ

tc
z

)]
(A.21)

where the Fourier coefficients are given by

am = 2
tc

tc/2∫
−tc/2

Ux(z
′) cos

(
2mπ
tc
z′

)
dz′ m = 0, 1, . . .

bm = 2
tc

tc/2∫
−tc/2

Ux(z
′) sin

(
2mπ
tc
z′

)
dz′ m = 1, . . .

. (A.22)

Since Ux(z) is an even function, all bm = 0. Hence, the potential is given by
the Fourier series

Ux(z)|tc/2−tc/2 =
a0

2
+

∞∑
m=1

am cos

(
2mπ

tc
z

)
(A.23)
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Figure A.6: Potential profiles and Fourier approximations for (a) triangle potential
and (b) cos potential. The red line is the Fourier approximation for N = 1 and the
green dots for N = 100.
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A.2.3 Average Potential

A.2.3.1 Case: n = odd

Plugging the Fourier expansion of Ux(z) into equation A.8 we get

Ūn(x) =

∞∑
n′=odd

{
a0

2

(
2
tc

) tc/2∫
−tc/2

cos
(
nπ
tc
z
)

cos
(
n′π
tc
z
)
dz

+
∞∑
m=1

am

(
2
tc

) tc/2∫
−tc/2

cos
(

2mπ
tc
z
)

cos
(
nπ
tc
z
)

cos
(
n′π
tc
z
)
dz

}

+
∞∑

n′=even

{
a0

2

(
2
tc

) tc/2∫
−tc/2

cos
(
nπ
tc
z
)

sin
(
n′π
tc
z
)
dz

+
∞∑
m=1

am

(
2
tc

) tc/2∫
−tc/2

cos
(

2mπ
tc
z
)

cos
(
nπ
tc
z
)

sin
(
n′π
tc
z
)
dz

}

Using basic trig results A.2.4, and collecting the terms

Ūn(x) =
a0

2
+

1

2

∑

n′=odd

(
an+n′

2
+ a |n−n′|

2
,n6=n′

)
. (A.24)

This can be re-written as

Ūn(x) =
1

2

[
a0 + lim

N→∞

(
2

N∑
m=1

am − aN

)]
. (A.25)

Since aN → 0 as N →∞, the average potential is simply

Ūn(x) =
a0

2
+

∞∑
m=1

am (A.26)

or

Ūn(x) =
a0

2
+

∞∑
m=1

am cos

(
2mπ

tc
z

)∣∣∣∣
z=0

. (A.27)

Thus
Ūn(x) = U(x, 0) (A.28)

Figure A.7 shows the results for n = 1. The black line is the value of the
average potential calculate by brute force evaluation of equation A.8. The red
circles are the result of evaluating equation A.24 and the dashed line is the
limiting expression A.28.
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Figure A.7: Average potential for n = 1 for (a) linear potential and (b) cos potential.

A.2.3.2 Case: n = even

Plugging the Fourier expansion of Ux(z) into equation A.8 we get

Ūn(x) =

∞∑
n′=odd

{
a0

2

(
2
tc

) tc/2∫
−tc/2

sin
(
nπ
tc
z
)

cos
(
n′π
tc
z
)
dz

+
∞∑
m=1

am

(
2
tc

) tc/2∫
−tc/2

cos
(

2mπ
tc
z
)

sin
(
nπ
tc
z
)

cos
(
n′π
tc
z
)
dz

}

+
∞∑

n′=even

{
a0

2

(
2
tc

) tc/2∫
−tc/2

sin
(
nπ
tc
z
)

sin
(
n′π
tc
z
)
dz

+
∞∑
m=1

am

(
2
tc

) tc/2∫
−tc/2

cos
(

2mπ
tc
z
)

sin
(
nπ
tc
z
)

sin
(
n′π
tc
z
)
dz

}

Again using A.2.4, and collecting the terms

Ūn(x) =
a0

2
+

1

2

∑

n′=odd

(
a |n−n′|

2
,n6=n′ − an+n′

2

)
. (A.29)

Which can be re-written as

Ūn(x) =
a0

2
+

1

2


2

(n−2)/2∑
m=1

am + an/2


 (A.30)

Figure A.8 shows the results for n = 2. The black line is the value of the
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Figure A.8: Average potential for n = 2 for (a) linear potential and (b) cos potential.

average potential calculate by brute force evaluation of equation A.8. The red
circles are the result of evaluating equation A.29 and the dashed line is the
limiting expression A.30.

A.2.4 Basic Trig Integrals

For reference, we will derive some basic results for trigonometric integrals.
Here, we assume all n,m,l are integers.

A.2.4.1 Two terms

Here we calculate integrals of the form

π∫

−π

sin(nx) sin(mx)dx (A.31)
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A.2.4.2 m 6= n

π∫

−π

sin(nx) sin(mx)dx =
1

2

π∫

−π

[cos((n−m)x)− cos((n+m)x)] dx

=
1

2

[
sin((n−m)x)

n−m
− sin((n+m)x)

n+m

]π

−π

=

[
sin((n−m)π)(n+m)− sin((n+m)π)(n−m)

n2 −m2

]

= 0, (n 6= m)

A.2.4.3 m = n

π∫

−π

sin2(nx)dx =
1

2

π∫

−π

(1− cos(2nx)) dx

=
1

2

[
x− sin(2nx)

2n

]π

−π
= π, (m = n)

A.2.4.4 Three terms
π∫
−π

cos(nx) sin(mx) sin(lx)dx =

= 1
2

π∫
−π

cos(nx) (cos((m− l)x)− cos((m+ l)x)) dx

=

1

4

π∫

−π

[cos((n−m+ l)x) + cos((n+m− l)x)− cos((n−m− l)x)

− cos((n+m+ l)x)] dx

= 1
4

{
sin((n−m+l)x)

n−m+l

∣∣∣
π

−π
+ sin((n+m−l)x)

n+m−l

∣∣∣
π

−π
− sin((n−m−l)x)

n−m−l

∣∣∣
π

−π
− sin((n+m+l)x)

n+m+l

∣∣∣
π

−π

}

.

Expanding we see

π∫

−π

cos(nx) sin(mx) sin(lx) =




−π

2
, n = m+ l

π
2
, n = ±(m− l)

0, else
(A.32)
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π∫
−π

sin(nx) sin(mx) sin(lx)dx =

= 1
2

π∫
−π

sin(nx) (cos((m− l)x)− cos((m+ l)x)) dx

=

1

4

π∫

−π

[sin((n−m+ l)x) + sin((n+m− l)x)− sin((n−m− l)x)

− sin((n+m+ l)x)] dx

= 1
4

{
cos((n−m−l)x)

n−m−l

∣∣∣
π

−π
+ cos((n+m+l)x)

n+m+l

∣∣∣
π

−π
− cos((n−m+l)x)

n−m+l

∣∣∣
π

−π
− cos((n+m−l)x)

n+m−l

∣∣∣
π

−π

}

.

Expanding we see
π∫

−π

sin(nx) sin(mx) sin(lx) = 0 (A.33)

π∫
−π

sin(nx) cos(mx) cos(lx)dx =

= 1
2

π∫
−π

sin(nx) (cos((m− l)x) + cos((m+ l)x)) dx

=

1

4

π∫

−π

[sin((n−m+ l)x) + sin((n+m− l)x) + sin((n−m− l)x)

+ sin((n+m+ l)x)] dx

= 1
4

{
cos((n−m−l)x)

n−m−l

∣∣∣
π

−π
+ cos((n+m+l)x)

n+m+l

∣∣∣
π

−π
+ cos((n−m+l)x)

n−m+l

∣∣∣
π

−π
+ cos((n+m−l)x)

n+m−l

∣∣∣
π

−π

}

.

Expanding we see
π∫

−π

sin(nx) cos(mx) cos(lx) = 0. (A.34)
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π∫
−π

cos(nx) cos(mx) cos(lx)dx =

= 1
2

π∫
−π

cos(nx) (cos((m− l)x) + cos((m+ l)x)) dx

=

1

4

π∫

−π

[cos((n−m+ l)x) + cos((n+m− l)x) + cos((n−m− l)x)

+ cos((n+m+ l)x)] dx

= 1
4

{
sin((n−m−l)x)

n−m−l

∣∣∣
π

−π
+ sin((n+m+l)x)

n+m+l

∣∣∣
π

−π
+ sin((n−m+l)x)

n−m+l

∣∣∣
π

−π
+ sin((n+m−l)x)

n+m−l

∣∣∣
π

−π

}

.

Expanding we see

π∫

−π

cos(nx) cos(mx) cos(lx) =

{
π
2
, n = m+ l, ±(m− l)

0, else.
(A.35)

A.3 Classical Approach

First derived by Pikus and Likharev [32, 65], these compact expressions yield
an analytical expression for channel electrons which was the impetus behind
the numerical approaches explored here.

In the classical approximation, electrons enter the channel with unit prob-
ability for all energies greater than the conduction band minimum. If there is
a potential barrier between the source and drain regions, then the electrons
will be reflected from the barrier adding an additional term to the electron
density.

We begin by considering the case when there is a single potential maximum
φ0 between the source and drain regions at position x0. We can then consider
the channel as two distinct regions. For the case when x < x0, there are
contributions from three different electron sources.

1. Electrons incident from the source. The electrons incident from the
source are calculated as

n
(1)
2D(x) =

gsgv

(2π)2

∫∫

kx>0

d2kf(E), (A.36)

or

n2D(x) =

√
mxmyT

π~2
ln [1 + exp((EF − Φ(x))/T )] . (A.37)
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2. Electrons incident from the drain.
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Figure A.9: Effective classical integration region.

The density of electrons incident from the drain is again given by

n
(2)
2D(x) =

gsgv
√
mxmy

(2π)2

∫
dθ

∫
k′ dk′ f(E + VD). (A.38)

But we now only consider electrons with sufficient energy Ex > Φ0 to
pass the potential barrier. To evaluate the integral, we will assume a
fixed energy in the x̂ direction incident from the drain k′x =

√
Φ0/~. At

position x < x0, the particle’s energy is

k′x0 =

√
Φ0 − Φ(x)

~
, (A.39)

yielding maximum angle

θ0 = arctan

(
k′y
k′x0

)
. (A.40)

The integral over theta is trivial, and we can now integrate only along
the line

k′
2

= k′
2

y + k′
2

x0 (A.41)

k′ dk′ = k′y dk
′
y, (A.42)
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giving expression

n
(2)
2D(x) =

gsgv
√
mxmy

(2π)2

∞∫

−∞

dk′y k
′
yf(Ey + Φ0 + VD). (A.43)

A graphical representation of the integral is shown in Fig. A.9. Ex-
pressing this integral in terms of dimensionless energy variable ε ≡ E/T
yields

n
(2)
2D(x) =

2gsgv
√
mxmyT

(2π~)2

∞∫

0

dεy arctan

(√
εyT

Φ0 − Φ(x)

)
f (εyT + Φ0 + VD)

(A.44)

3. Electrons reflected from the barrier. All electrons incident from
the source for x < x0 and energy Ex < Φ0 are reflected. These electrons
contribute an additional

n
(3)
2D(x) =

gsgv

(2π)2

Ex<=Φ0∫∫

kx>0

d2k f(E).

This integral becomes easier to express if the upper limit Ex → ∞. To
achieve this we add and subtract a term with limits Ex = [Φ0,∞]. Hence,
we have two terms with forms equivalent to equations A.37, A.44, but
adjusted for the drain voltage. This gives

n
(3)
2D(x) =

gsgv
√
mxmyT

4π~2
{ln [1 + exp((EF − Φ(x))/T )]−

2

π

∞∫

0

dεy arctan

(√
εyT

Φ0 − Φ(x)

)
f (εyT + Φ0)





(A.45)

The total electron density is then given by a summation of the three dif-
ferent contributions n2D(x) = n

(1)
2D +n

(2)
2D +n

(3)
2D. It now becomes convenient to
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define function

Z(α; β) ≡ 2

π

∞∫

0

dεy
arctan

(√
εy
β

)

1 + exp (εy + β − α)
(A.46)

Z(α; 0) ≡ ln (1 + eα) (A.47)

Summing all three terms, and using degeneracy factors gs = 2, gv = 2 the
total electron density for particles to the left of the barrier (x < x0) is

n2D(x < x0) =
2
√
mxmyT

π~2

[
Z

(
EF−Φ(x)

T
; 0

)
− 1

2
Z

(
EF−Φ(x)

T
; Φ0−Φ(x)

T

)

+1
2
Z

(
EF−VD−Φ(x)

T
; Φ0−Φ(x)

T

)]
.

(A.48)

For the electrons to the right of the potential maximum (x > x0), the
derivation is exactly the same, with the replacement that source and drain
Fermi levels should be reversed. The expression becomes

n2D(x > x0) =
2
√
mxmyT

π~2

[
Z

(
EF−VD−Φ(x)

T
; 0

)
− 1

2
Z

(
EF−VD−Φ(x)

T
; Φ0−Φ(x)

T

)

+1
2
Z

(
EF−Φ(x)

T
; Φ0−Φ(x)

T

)]
.

(A.49)
To calculate the current density in the classical approach, we note that

transmission probability T (Ex) = 1 if Ex > Φ0 and T (Ex) = 0, if Ex < Φ0.
Thus using relations

kxdkx =
mx

~2
dEx

dky =

√
2my

2~
E−1/2
y dEy

and dimensionless energy variables ε ≡ E/T , summation 2.34 may be written
as

Jcl =

√
2myT

3/2

π2~2

∞∫

0

ε−1/2
y dεy

∞∫

Φ0/T

f(E) dεx. (A.50)

Shift the second integral by potential maximum and evaluating we find the
one direction classical current density

Jcl(Φ0) =
J0

π

∞∫

0

ε−1/2
y ln [1 + exp (−Φ0/T − εy)] (A.51)
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where J0 is defined by Eq. 3.29.

A.4 Ā Approximations

The formalism used in section 4.1.3 for the 2-D solution of the Schrodinger
equation was originally developed by Szafer and Stone to formulate a so-called
“mean-field approximation” (MFA) valid at higher sub-band energies [102]. It
is motivated by the observation that when tB À tc, |anw|2 is strongly peaked
around confined state wavefunctions qw,n = [w, n]π/tB,c such that qw ≈ qn.
Hence, the true coupling strength may approximated as uniform coupling to
all modes w within one step of the confinement energy En.
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Figure A.10: Overlap |anw|2 versus wavenumber for (a) n = 1 and (b) n = 5. Dashed
lines represents the point qw = qn and the red box shows the MFA assumption.

The calculated |anw|2 versus wavenumber are shown in Fig. A.10. The
dashed lines show the point qw = qn. Noting that the coupling between dif-
ferent channel sub-bands may be assumed small at high mode indexes, the
product of two arbitrary overlaps may be written

anwamw ≈ δnm

(
tc
tB

)
[Θ(qw − qn−1)−Θ(qn+1 − qw)] . (A.52)

This approximation is shown as the red boxes in Fig A.10.
Since the value Ānm relies only the product of two anw, the kernel elements

may be written

Ānm ≈ δnm
∑
w

anwamwkw (A.53)

to a good approximation. This limit is valid when tB/tc À 1, and the sum-
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mation can be expressed as the integral

Ānm ≈ δnm
tc
tB

∑
ν

kν → δnm
tc
tB

1

2

∫
kνdν.

The factor of 1/2 comes from the fact that only either even or odd modes
contribute to the summation. The differential dν is evaluated by defining
angle θ such that

qν = |k| cos(θ)

kν = |k| sin(θ),

or
θν ≡ qv

|k| (A.54)

for particle of fixed energy E = ~2|k|2/2m. Thus

qν =
νπ

tB
= |k| cos(θ)

π

tB
dν = −|k| sin(θ)dθ.

Plugging into Ānm we find

Ānm ≈ δnm
tc
2π
|k|2

θn+1∫

θn−1

− sin2(θ)dθ

or

Ānm ≈ δnm
tc
8π
|k|2 [sin(2θ)− 2θ]

θn+1

θn−1
. (A.55)

When the energy of the next confined level En+1 is greater than the particle
energy, Ānn will have an imaginary component. We in general will write
Ānm = Knm + iJnm where

Knm ≡ <(Ānm) (A.56)

Jnm ≡ =(Ānm). (A.57)

Figure A.11 shows the full calculation if Ānm versus index and energy
compared to the MFA approximation.

When the masses in the x̂ and ẑ are not equal, the calculation of Ā needs
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Figure A.11: Coupling strength Ā versus mode index m (panels (a),(b)) and energy
(panels (c),(d)) for two indexes n = 1, n = 5.

a slight adjustment. Using the relation

E =
~
2

(
k2
x

mx

+
k2
z

mz

)
(A.58)

we see the definitions

k′x =

√
2mx

~
kx

k′z =

√
2mz

~
kz

create the uniform density surface E = k′
2

x + k′
2

z and the expression for Ā in
the MFA becomes

Ānm ≈ δnm
tc
4π

√
mxmz

~2 E [sin(2θ)− 2θ]
θn+1

θn−1
. (A.59)
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A.4.1 Transmission at a Step

Applying approximation A.59, to the single mode transmission probability at
a wide narrow junction

t̄nwkn +
∑
m

Ānmt̄mw = 2kwanw, (A.60)

the un-normalized transmission may be written

t̄nw =
2kwanw
kn + Ānn

. (A.61)

and the full transmission from all available modes w into mode n is given by
(with proper normalization tnw =

√
kn/kw t̄nw)

Tn =

(E)∑
w

|tnw|2 =
4knKnn

(kn +Knn)2 + J2
. (A.62)

where the notation (E) signifies that only modes allowed by particle energy
E are summed. Expression A.62 has obvious parallels with the analogous
solution for the 1-D problem of transmission over a step

T1d(E) =
4kwkn

(kw + kn)
2 . (A.63)

A.4.2 δ-Ā Approximation

While the mean field approximation is very handy, another very useful ap-
proximation is obtained by

Ānm ≈ δnmĀnm (A.64)

while maintaining a full calculation of the Ānn terms. Since the full overlap
strength is still being calculated, this approximation is equivalent to simply
turning off the coupling between different channel sub-bands. In both the
MFA and δA approximations, the calculation time is greatly reduced because
Ā is now diagonal. This removes the numerical complexities of the inversion
of matrix M4 (see section 4.1.3) as the inversion may be done analytically
beforehand. These results may be used to obtain a relatively good approxi-
mate 2-D answer while maintaining a computational speed close to the 1-D
approximation.

For the case of unit boundary conditions (4.61), the weighting coefficients
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may be written explicitly as

Cnw =
2ikwanw(iAνn − g′nL)

((iAwn + f ′n0)(iA
ν
n − g′nL) + g′n0f

′
nL)

,

Dnw =
2ikwanwf

′
nL

((iAwn + f ′n0)(iA
ν
n − g′nL) + g′n0f

′
nL)

,

Fνw =
∑
n

2ikwanwanνf
′
nL

((iAwn + f ′n0)(iA
ν
n − g′nL) + g′n0f

′
nL)

,

rww′ =
∑
n

Cnwanw′ − δww′ ,

(A.65)

and compact expressions are possible because the cross terms vanish.
The total transmission coefficient D(E) is found to be

D(E) =
∑
n

4K
(w)
n K

(ν)
n f ′2nL

|((iAwn + f ′n0)(iA
ν
n − g′nL) + g′n0f

′
nL)|2

, (A.66)

and the normalized sum of the wavefunction ψn,II(x) = Cnfn(x) +Dngn(x) is
given by

∑
w

k−1
w |ΨII |2 =

∑
n

4K
(w)
n

∣∣∣(iA(ν)
n − g′nL)f(x) + f ′nLg(x)

∣∣∣
2

|((iAwn + f ′n0)(iA
ν
n − g′nL) + g′n0f

′
nL)|2

ϕ2
n(z). (A.67)

Again the vector Kn = <(Ann) has been used.
Plugging the results into the expression for the wavefunction in the source

bulk yields

ΨI = 2i

[
χw(z) sin(kwx) + kw

∑
n

anw
(
iĀνn − g′nL

)
(
(iĀwn + f ′n0)(iĀ

ν
n − g′nL) + g′n0f

′
nL

)Λ̄w
n

]
.

(A.68)
For the drain region we get wavefunction

ΨIII = 2ikw
∑
n

anwf
′
nL(

(iĀwn + f ′n0)(iĀ
ν
n − g′nL) + g′n0f

′
nL

)Λ̄ν
n. (A.69)
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For brevity of notation we define

Ξwn =
(iAνn − g′nL)(

(iĀwn + f ′n0)(iĀ
ν
n − g′nL) + g′n0f

′
nL

)Λ̄w
n ,

Ξνn =
f ′nL(

(iĀwn + f ′n0)(iĀ
ν
n − g′nL) + g′n0f

′
nL

)Λ̄ν
n,

(A.70)

and the normalized summations are calculated as
∑
w

k−1
w |ΨI |2 =

4

[∑
w

(
k−1
w χ2

w(z) sin2(kwx) + 2χw(z) sin(kwx)
∑
n

anw<(Ξwn )

)
+

∑
n

<(Āwn ) |Ξwn |2
]
,

(A.71)∑
w

k−1
w |ΨIII |2 = 4

∑
n

<(Āwn ) |Ξνn|2 . (A.72)

A.4.3 Comparison of Transmission Probabilities

The transmission probability versus energy is shown in Fig. A.12 for the
classical approximation (dashed line), WKB approximation (red line), 1-D
approximation to the Schrodinger equation (green line), MFA approximation
(blue line), δA (orange line with diamonds), and 2-D solution (black line). The
adiabatic transport assumed by the WKB and 1-D solutions over-estimate the
transmission by neglect of the back-scattering at the source electrode. The
MFA approximation tends to underestimate the transmission by assuming
equal coupling and the δA tends to slightly under-estimate transmission by
neglect of channel sub-band coupling.

A.5 Integral of cos(νx)

The limiting integral of the cosine function may be found rather straightfor-
wardly from the definition of the Dirac delta function [98]

δ(x) ≡ 1

2π

∞∫

−∞

e−iνx dν, (A.73)

and the expansion of cosine in the complex plane

cos(νx) =
1

2

(
eiνx + e−iνx

)
. (A.74)
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Figure A.12: Transmission probability for various wavefunction approximations.

Thus, we may replace each term in the integral
∞∫
0

cos(νx) dν with

∞∫

0

eiνx dν = πδ(x), (A.75)

and we arrive at the fundamental result

∞∫

0

cos(νx) dν = πδ(x). (A.76)
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Appendix B

General Numeric Methods

B.1 Energy Integral

A key component to the speed of the self-consistent algorithm is the rapid
evaluation of the integral over energy states required for calculation of the
electron density. Because this integral must be calculated at each channel
node point, the reduction of redundant calculations of the wavefunction is
essential. The main idea of the algorithm, known as “Richardson’s deferred
approach”, is to calculate successive numeric approximations to the integral in
decreasing step size ∆i, then extrapolate the value to ∆ → 0. For the special
case of trapezoidal quadrature of and spacing steps

∆i =
∆0

2i
(B.1)

this algorithm is known as Romberg integration. This is a special case because
the leading error term in successive calculations cancels and the numeric result
converges as ∆2 [77]. In the usual case, the extrapolation to zero is done using
a fifth order polynomial fitting the last five calculation steps.

We have adopted this algorithm for use in all integrations over energy.
When calculating the channel electron density, the range of integration is ini-
tially divided into 2n parts. The wavefunction at each energy Ei is evaluated
and the array of wavefunction values for each energy is stored for each node
point. Value of the integral at each node point is the calculated for the stored
arrays using the extrapolation to zero and the error of each integral is esti-
mated. If the error term in the result is not within a specified tolerance, the
number of energy points is doubled. This is equivalent to placing a new node
point halfway between Ei and Ei+1. Thus we may reuse previously calculated
wavefunctions only introducing more as greater accuracy is needed. In the
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way we combine the power of Romberg’s integration scheme and eliminate the
waste of redundant wavefunction evaluations.

B.2 Parallelization and Run Times

No.

Yes.

No.

Yes.

lnitialize
density & potential

Solve Poisson
FDE

Fill wavefunctions over 
energy range

Integrate wavefuntions.
Is error below tolerance?

Double number of
wavefunctions.

Mix density with
  previous densities.

n

Calculate current density

Is difference between potential (density)
and previous iteration below tolerance?

Figure B.1: Decision graph of the self-consistent algorithm.

The algorithm for the self-consistent calculation is shown as a decision
graph in Fig. B.1. It is the algorithm used to calculate a single heavy mass
valley for all 1-D results. It may be immediately parallelized in two ways. The
first is at the result level, were all individual data points may be calculated
simultaneously. The second step to parallelize the code may be done during the
integration over energy states required for calculation of the electron density.
The integration calculated as a summation of energy states, may be split into
m parts, and calculated in parallel on slave nodes. This is shown as the red
box in Fig. B.2.

The calculations times of a standard system with Lg = 10 nm, Vd = Vg =
0 V are shown in Table B.1. The calculations include only heavy mass orien-
tation and are performed on a 1.73 GHz i686 laptop processor. The number of
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Approx. # Iters Run-
time:
9-
point
FDE
(s)

Classical 24 23
WKB 36 49
1-D Schrodinger 25 67
2-D MFA 24 269
2-D δA 24 367
2-D Schrodinger 24 783

Table B.1: Calculation times for a benchmark system (Lg = 10 nm, tc = 2 nm,
tox = 1.5 nm, nD = 0.3 nm−3, T = 300 K, Vg = 0 V, Vd = 0 V) and various
quantum mechanical channel wavefunction approximations.

iterations required for the system reach self-consistency is shown in the second
column while the total run time is shown in column three.

The full distributed algorithm is shown in Fig. B.2. The final paralleliza-
tion is performed in the 2-D solution where all three heavy mass orientations
are included. The blue and green parenthesis show the calculation of the
electron density performed for each orientation at the same time.

The total run time on various computing architectures is shown in Table
B.2. The benckmark system was set with Lg = 10 nm and Vd = Vg = 100 meV.
The serial computation was done using only a single electron valley. For the
2-D calculation, parallelization of the energy integral incurs a large commu-
nication cost because the wavefunction arrays for all the node points in the
channel must be passed between nodes. This cost can actually slow down the
overall computation time on machines with faster processors, hence no par-
allelization of the energy was used. The serial task was used only a single
electron valley, so this job has no parallelization at all even on the cluster ma-
chines. The parallel job was calculated using all three heavy mass orientation
so the run utilized 4 processors simultaneously: three for each valley and one
overall master node.
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Machine CPU
Type

Ethernet #
Nodes

#
CPUs

Max
CPUs
per
Job

Serial
Job
Time
(s)

Parallel
Job
Time
(s)

Njal 2.0 GHz
Xeon

100 Mb
Ethernet

14 56 56 1209 1498

Seawulf 3.4 GHz
Xeon

1 Gb Eth-
ernet

235 470 120 1215 1345

Kraken 1.7 GHz
Power4+

4 Gb/sec
switch

368 2994 512 1821 1352

Babbage 1.9 GHz
Power5+

4 Gb/sec
switch

192 3072 512 1634 1169

NY Blue 700
MHz
PPC
440

10 Gb/sec
switch

18432 36864 2048 5783 4435

Laptop 1.73
GHz
i686

N/A N/A 1 1 2236 N/A

Table B.2: Calculation times for a benchmark 2-D system (Lg = 10 nm, tc = 2 nm,
tox = 1.5 nm, nD = 0.3 nm−3, T = 300 K, Vg = 0 V, Vd = 0 V) on serial and
parallel systems.
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into     partsm

Figure B.2: Decision graph of the parallel algorithm. Black boxes indicate work
done by the primary calculation node. Colored boxes are simultaneous work done
by slave nodes.
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