

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Automatic Incrementalization of Queries
in Object-Oriented Programs

A Dissertation Presented

by

Thomas Michael Rothamel

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2008

Stony Brook University

The Graduate School

Thomas Michael Rothamel

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy

hereby recommend the acceptance of this dissertation

Himanshu Gupta — Chairperson of Defense
Professor, Computer Science, Stony Brook University

Yanhong A. Liu — Dissertation Advisor
Professor, Computer Science, Stony Brook University

Michael Kifer — Committee Member
Professor, Computer Science, Stony Brook University

Scott D. Stoller — Committee Member
Professor, Computer Science, Stony Brook University

Jacob T. Schwartz — External Comittee Member
Professor, Computer Science and Mathematics

New York University

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Automatic Incrementalization of Queries
in Object-Oriented Programs

by

Thomas Michael Rothamel

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

High-level query constructs help greatly improve the clarity of programs
and the productivity of programmers, and are being introduced to increasingly
more languages. However, the use of high-level queries can come at a cost to
program efficiency, because these queries are expensive to compute and may
be computed repeatedly on slightly changed inputs. For efficient computation
in practical applications, an automatic method is needed to incrementally
maintain query results with respect to updates that may change those results.

This dissertation describes a general and powerful method for automati-
cally generating incremental implementations of high-level queries in object-
oriented programs. These queries may be over objects, sets, tuples, and maps;
and may contain aggregation and grouping constructs. The method generates
coordinated maintenance code and invocation mechanisms for all updates that
may affect the query results, ensuring that the results are computed correctly
and efficiently even though object references may be aliased arbitrarily. We
present implementations and experimental results showing the effectiveness of
our method when applied to a variety of problem domains.

iii

For my parents,
who supported me throughout.

Contents

1 Introduction 1

2 Language 5
2.1 Queries and Changes . 5
2.2 Language for Generated Code 7

3 Tuple Pattern Based Retrieval 10
3.1 Language Construct . 10

3.1.1 Example . 10
3.1.2 Syntax . 12
3.1.3 Semantics . 13

3.2 Efficient Implementation . 15
3.2.1 Local Implementation 15
3.2.2 Bound-Unbound Maps 16
3.2.3 Incremental Update . 19
3.2.4 Associating Maps with Sets 21

3.3 Discussion . 23
3.4 Implementations . 25

3.4.1 High-Level Language 25
3.4.2 Python Preprocessor 27

3.5 Experiments and Applications 28
3.5.1 Topological Sort . 28
3.5.2 Reachability . 30
3.5.3 RBAC — Role-Based Access Control 31
3.5.4 Other Applications . 33

v

4 Object-Set Queries 35
4.1 Overview of the Method . 35
4.2 Generating Code for Computing the Differential Assignment Set 37

4.2.1 Translating to the Pair Domain 38
4.2.2 Generating Code for All Possible Changes 39
4.2.3 Translating Back to the Object Domain 42

4.3 Generating Code for Maintaining the Result Map 45
4.4 Organizing Maintenance Code 46
4.5 Generating Code for Executing the Query 48
4.6 Discussion . 49
4.7 Extensions . 53

4.7.1 Multiple Field Retrieval 53
4.7.2 Tuples . 57
4.7.3 Maps . 59
4.7.4 Aggregation . 64
4.7.5 Grouping . 68
4.7.6 Set Union . 70
4.7.7 Redundant Variable Elimination 71

4.8 Implementation and Experiments 73
4.8.1 Running Example . 74
4.8.2 Django Authentication Query 75
4.8.3 Electronic Health Record Policy 77
4.8.4 Student Information Management System 78

5 Static Approaches 82
5.1 Program Transformation System 83
5.2 Generating Static Incrementalization Rules 86

5.2.1 Commonalities . 87
5.2.2 Internal Approach . 91
5.2.3 External Approach . 95

5.3 Static Optimizations . 97
5.3.1 Inverse Map Elimination 97
5.3.2 Obligation Check Elimination 98
5.3.3 Known Parameters Optimization 99

5.4 Experiments . 101

vi

6 Related Work and Conclusion 106
6.1 Tuple Pattern Based Retrieval 106
6.2 Object-Set Queries . 108
6.3 Conclusion . 112

Bibliography 113

vii

Acknowledgments

First, I’d like to thank my advisor, Annie Liu. Without her years of support
and guidance I probably wouldn’t even have become a grad student, let alone
a doctor of philosophy.

I’d further like to thank Himanshu Gupta, Michael Kifer, Scott D. Stoller,
and Jacob T. Schwartz for serving on my committee and showing interest in
my work. This dissertation owes much to the way their presence and feedback
inspired me to do my best.

Some of the members of my group were there the day this dissertation
was born as scribbles on a chalkboard. Others came later, and all helped me
to give the ideas a final form. Michael Gorbovitski, Katia Hristova, Tuncay
Tekle, and Yury Puzis—thanks for everything.

I’d also like to thank all the professors and staff of the Stony Brook Univer-
sity Computer Science department, who over the course of eight years of grad-
uate and undergraduate education turned this programmer into something of
a scientist. And everyone at Saint Philip’s, Saint Anthony’s and Farmingdale
who helped me get that far.

I’d like to thank everyone at NRL Code 5546, especially Constance Heit-
meyer and Elizabeth Leonard, for giving me the opportunity to work with and
learn from them for several summers.

I’d like to thank the Office of Naval Research, the National Science Foun-
dation, and Stony Brook University for their support throughout my research
career.

I’d like to thank Chris, for his fifteen years of friendship, the months of
time I’ve spent on the phone with him, and for the opportunity to give the
best—and shortest—speech of my life. I’d like to thank Tony, Pete, and Lori
for the decade they’ve spent trying to get me out of my shell. It seems to have
worked. And I’d like to thank Scott and the members of the forum he runs.
Without them, my graduate career would have been a bit shorter, but a lot
less fun.

Finally, I’d like to thank my family, and especially thank my parents for
all the support and love they’ve given me over the past thirty years.

Chapter 1

Introduction

An ongoing and welcome trend in the evolution of programming languages
is the addition of high-level query constructs to languages. These query con-
structs, such as SETL set formers [47], Python and Boo generator expres-
sions [41, 9], JQL for Java [53], and LINQ for C# [30], allow high-level data
structures like sets, tuples, maps, and objects to be queried in a concise and
abstract manner. This allows the programmer to focus on what is computed,
rather than how a result can be efficiently computed.

However, the use of high-level queries can come at a cost to program effi-
ciency, because they are expensive to compute and may be computed repeat-
edly on slightly changed inputs. Straightforward implementations of high-level
query constructs always incur this penalty, limiting their acceptance. To im-
prove efficiency, the results of queries need to be stored and incrementally
maintained when values the queries depend on are updated. This can lead to
a drastic, often asymptotic, improvement in program running time, especially
in programs where queries occur more often than changes.

Currently, this incremental maintenance is mostly performed by hand.
Rather than writing a clear high-level query, a programmer is forced to write
code that maintains the result of a query in response to updates to values the
query result depends on. This code can be complex and error-prone. Even
worse, because the updates may be spread throughout a program, the code
that incrementally maintains the query result may also be scattered all over
the program, making the program difficult to understand and maintain. If

1

an update occurs without the corresponding incremental maintenance, the
correctness of the query is compromised.

This leads to a conflict between clear high-level queries and efficient incre-
mental maintenance. Programmers are forced to choose between clear yet slow
and efficient yet complex implementations of the same queries. This typically
results in performance critical code being hard to maintain, and less impor-
tant code being slower than would be possible. Automatic incrementalization
helps resolve this conflict, by transforming high-level queries into efficient im-
plementations, allowing the programmer to express queries in a clear manner.

While much previous work has been done on automatic incrementalization
of programs, little has been done for object oriented programs, as opposed to
databases. The difference is in the flexibility one has in representing objects.
In object-oriented databases, one has a large amount of flexibility in changing
the representation of objects in order to be able to efficiently answer queries.
In programming languages, the representation of objects is often governed by
a platform-specific ABI. Even when it is not, efficiency and modularity con-
siderations dictate specific representations, which systems that automatically
incrementalize programs are forced to respect.

What work has been done has focused on applying hand-written incre-
mentalization rules that match queries and updates. This is only a partial
solution to the problem, as it requires writing one incrementalization rule for
each kind of query to be incrementalized. While this method allows the in-
crementalization to be separated from the rest of the program, it still requires
the programmer to undertake the tedious and error-prone task of writing in-
crementalization rules.

This thesis describes a general and powerful method for automatically gen-
erating incremental implementations of high-level queries over objects and sets,
where a query may contain arbitrary set enumerators, field selectors, and ad-
ditional conditions. Once we give the core method, we extend it to handle
tuples, maps, aggregation, grouping. Along with a query we give that com-
putes set union, this allows us to cover all of OQL. The method can handle
any update to object fields and addition and removal of set elements, and
generate coordinated maintenance code and invocation mechanisms to ensure
that query results are computed correctly and efficiently. We also describe a
prototype implementation of the method and experimental results that con-

2

firm the effectiveness of the method in supporting clear queries with efficient
implementations.

Our method can be applied in dynamic and static manners. A dynamic
application changes objects at runtime, allowing the method to only be applied
to objects that change at runtime, and to code that is only loaded at runtime.
A static application transforms the source code of the program. It requires
that all program source code be present, and that the transformation be run
in advance. Depending on the program, a static application can remove some
of the overhead inherent in a dynamic one.

There are several reasons why our method is effective in practice. First, it
processes one query at a time and handles any update to the values that the
query depends on, using only local analysis, without requiring whole-program
analysis. Whole program analysis is problematic because of libraries and plug-
ins, which may not be present until the program is run, or even until sometime
after the program is run. Treating queries individually allows the programmer
to select which queries are processed, and also allows our method to scale to
arbitrarily sized programs.

A second reason is that an object-set query implemented using our method
only incurs overhead on objects that query depends on. We add maintenance
code to objects directly, rather than to classes. This is important, as there
may be classes, such as the set class, in which instances participate in many
different queries, but each individual object participates in only a few queries.
Similarly, we only incrementally update the results of queries that have been
performed, rather than speculatively computing the results of queries that
have yet to happen.

Finally, our method is fully automatic, allowing it to be applied with-
out user interaction. We only require that the programmer write object-set
queries, and to indicate which queries he wants incrementalized. Our method
then takes these queries and generates code that maintains the result when
data used by the query is updated. This automatic and repeatable process al-
lows our method to be incorporated into a development workflow, and applied
automatically when the program has changed.

Our method takes high-level object-set queries, and automatically gener-
ates efficient, incremental implementations from them. This empowers the
programmer by allowing him to write programs in a convenient, concise, and

3

correct manner, without being forced to sacrifice efficiency in the name of
clarity.

This dissertation is structured as follows: Chapter 2 introduces the lan-
guage we will use to present our work. Chapter 3 describes tuple pattern
based retrieval, a new language construct that we use as part of the incremen-
talization process. Chapter 4 describes our method for the automatic incre-
mentalization of object-set queries, including the various extensions described
above. Chapter 5 shows how the method can be applied statically. Each of
these chapters includes descriptions of relevant related work, and experiments
showing the effectiveness of the method described.

4

Chapter 2

Language

Our method can be applied to many object oriented languages. In this
chapter, we present the syntax and semantics of the queries we add to these
languages, and the types of changes that can affect the result of those queries.
We will then discuss the intermediate language we generate the incremental
update code in, a language that should easily map onto may of today’s object-
oriented languages. This language includes a special for-loop that performs
tuple pattern based retrieval. These special for-loops can be translated into
standard for-loops.

2.1 Queries and Changes

We consider queries of the following form, called object-set comprehensions,
or comprehensions for short.

comprehension ::= parameter+->

{ result exp : enumerator+ condition∗}
enumerator ::= enumeration var in selector

selector ::= variable | selector.field
parameter ::= variable

enumeration var ::= variable
result exp ::= expression
condition ::= expression

5

Intuitively, given values of parameters, a comprehension returns the set of
values of the result expression for all values of the variables that satisfy the
enumerator and condition clauses. We can see that a comprehension may
contain arbitrary object field selections and set element enumerations. We
require that every variable in a comprehension appear as either a parameter
or an enumeration variable. We also require that the result expression and
conditions be functions of the values of the variables in the comprehension,
i.e., they can be any expressions whose values depend only on the values of
the variables in the comprehension and that have no side-effect.

Precisely, the result of evaluating a query can be given in terms of the set
of all possible variable assignments, called the assignment set, of the query. A
variable assignment maps each variable in the query to a value. A variable
assignment is in the assignment set of the query if and only if:

1. each parameter of the query is assigned the given value of that parameter.

2. each enumerator and condition clause in the query is satisfied when eval-
uated under the variable assignment.

The result set of the query is the set formed by evaluating the result ex-
pression under each variable assignment in the assignment set.

A variable may appear as both a parameter and an enumeration variable.
We use unconstrained parameters to refer to parameters that are not enumer-
ation variables, constrained parameters to refer to parameters that are also
enumeration variables, and local variables to refer to enumeration variables
that are not parameters. An enumerator whose enumeration variable is also a
parameter is equivalent to a set membership test; we do not treat such tests
as conditions, because we can handle them uniformly together with other enu-
merators for more efficient incremental computation.

Changes. We incrementally maintain the query result under all changes of
these three kinds:

• adding an element to a set.

• removing an element from a set.

• assigning a value to a field of an object.

6

Example. We use the following query as an example of an object-set query:

1 wifi ->
2 { ap.ssid : ap in wifi.scan, ap.strength > wifi.threshold }

This query is performed on a wifi object, referenced by the variable wifi. The
object has two fields: a signal strength threshold (threshold) and a set of ac-
cess point objects (scan). Each access point object has two fields: a station
id (ssid) and a signal strength (strength). The query has one parameter,
wifi, the result expression, ap.ssid, an enumerator, ap in wifi.scan, and a
condition clause, ap.strength > wifi.threshold. The result set of this query
contains the ssid field of all aps in wifi.scan such that ap.strength is greater
than wifi.threshold.

The result of this query can be affected by many kinds of changes: adding
to or removing from the set referenced by wifi.scan, and assigning to ap.ssid,
ap.strength, wifi.threshold, and wifi.scan. These changes occur to three
kinds of objects: wifi objects, access point objects, and sets. Furthermore,
these changes can be spread anywhere in many components of the program.

2.2 Language for Generated Code

We write incremental maintenance code in an object-oriented language
that supports operations on sets, maps, and tuples and where all values are
considered to be objects. This language can be easily mapped onto many
popular object-oriented languages, either directly or through the use of objects
to box primitive types.

Figure 2.1 describes the operations we use on sets, maps, and tuples. All
these operations take constant time, assuming that hashing and object equality
comparison take constant time, and hashing is used in the implementation of
sets and maps. The maps we use allow a single key to be mapped to multiple
values. The set of values a single key maps to is called its image set. Maps
support an operation that returns the image set corresponding to a key. When
the map is updated, image sets so returned are also updated. Sets and maps
are empty when first created. We only create tuples of a constant length.

We use x == y to denote object identity comparison. It returns true if and
only if two values refer to the same object. It is a constant-time operation.

7

s.empty() set s to the empty set
s.add(x) add element x to s
s.remove(x) remove element x from s
s.any() return any element of non-empty set s
x in s true iff x is an element of s
x not in s true iff x is not an element of s
m.add(x,y) add mapping from x to y to map m
m.remove(x,y) remove mapping from x to y from m
m.get(x) return any member of the image set of x.
m.img(x) return image set of key x under m
(x1,...,xk) create a tuple with elements x1,...,xk

Figure 2.1: Operations on sets, maps, and tuples.

We use standard statements for assignment (v = e), sequencing (stmt1
stmt2), branching (if c: stmt), and looping (for v in s: stmt). During
the process of generating incremental code, we also use special for loops, as
described below. We use indentation to indicate scoping.

Special For Loops. During the process of generating incremental code, we
use special for loops of the form:

1 for (x 1,...,x k) in S:
2 ...

where s is a set of tuples of length k, and each xi may, or may not, already
be bound to some value before the loop. Such a loop iterates over the ele-
ments of s that match the pattern (x1,...,xk)—elements where each component
corresponding to a bound component of the pattern equals the value of the
corresponding variable in the pattern.

This can be done in time proportional to the number of matched elements,
using tuple pattern based retrieval, as described in the next chapter. It should
be noted that, unlike regular for-loops, the cost of a special for loop may
change depending on which variables are bound in the surrounding scope.
Our incrementalization method takes advantage of this to decrease the cost of
incrementally maintenance.

8

These special for-loops are only used during the incrementalization pro-
cesss. Before code is generated, they are turned into other statements: assign-
ments, if statements, and traditional for loops.

9

Chapter 3

Tuple Pattern Based Retrieval

3.1 Language Construct

This chapter describes tuple pattern based retrieval, which is used to im-
plement variants of the while, if, and for statements that retrieve tuples
matching a pattern from a set of tuples. A powerful language construct in its
own right, tuple pattern retrieval inspired our method for incrementalizing ob-
ject set queries. We use it, combined with a method for dealing with objects,
during the process of incrementalizing object-set queries. In this chapter, we
present our full method for implementing tuple pattern based retrieval.

3.1.1 Example

An example of the use of tuple pattern based retrieval is given in Fig-
ure 3.1, which presents a program that topologically sorts the vertices of a
graph. Apart from for, while, and if statements that use tuple patterns, the
language contains statements that add and remove tuples to and from sets,
as well as statements to read from input and print output. It also includes
a function that constructs a new empty set. We represent tuples by comma-
separated list of components enclosed in parentheses. To easily distinguish
expressions from unbound variables in tuple patterns, we have underlined all
expressions used in tuple patterns.

This example contains four statements involving tuple pattern based re-

10

1 read V ERTICES, EDGES
2 INDEGREES = set()
3

4 for v1 in V ERTICES:
5 indegree = 0
6 for (v2, v1) in EDGES:
7 indegree += 1
8

9 INDEGREES.add((v1, indegree))
10

11 while (v1, 0) in INDEGREES:
12 for (v1, v2) in EDGES:
13 if (v2, indegree) in INDEGREES:
14 INDEGREES.remove((v2, indegree))
15 INDEGREES.add((v2, indegree - 1))
16

17 INDEGREES.remove((v1, 0))
18 print v1

Figure 3.1: Topological sort, written using tuple pattern based retrieval.

trieval. There are two for statements, on lines 6 and 12, one while statement
on line 11, and one if statement on line 13. Since the block starting at line 11
is the part of the program that actually computes the topological order (the
rest of the program being initialization), we discuss the first three statements
in that block in detail.

INDEGREES is a set of pairs, each of which consists of a vertex that
has not been printed yet, and the number of edges into that vertex from other
vertices that are the first component of a pair in INDEGREES. Throughout
execution, we maintain the invariant that each vertex is the first component of
at most one pair in INDEGREES. The while loop on line 11 continues as
long as there is at least one pair in INDEGREES whose second component
is zero. The first component of the pair is then assigned to the variable v1.
In our example, this means v1 is given a vertex with an in-degree of zero, a

11

vertex that can be next in the topological order.
The purpose of the for statement on line 12 is to iterate through all of the

edges leaving v1. It iterates through tuples in EDGES with a first component
equal to v1, and assigns their second components to the unbound variable v2.
Each execution of the for statement iterates through each matching element
at most once, which ensures that each edge will be considered at most once.

Finally, the if statement on line 13 finds in INDEGREES a pair whose
first component is equal to v2, and assigns its second component to indegree.
The true block of the if statement executes only if such a pair is found, which
is always the case in this example if the input is correct. In this case, the real
purpose of the if statement is to find the tuple matching the pattern.

One important thing to note about this example is that we match against
the second component of the tuples in INDEGREES on line 11, and against
the first component on line 13. This means that while this algorithm could be
implemented using maps, there would have to be two maps corresponding to
INDEGREES. Another two maps would need to correspond to EDGES.
Using tuple pattern based retrieval, we halve the number of data structures and
reduce the amount of update code that needs to be written by the programmer.

retr statement ::= (while | if | for) retr clause :

retr clause ::= tuple pattern in set expression

tuple pattern ::= (component (, component)∗)

component ::= expression | pattern variable

Figure 3.2: A grammar for tuple pattern based retrieval statements in our
pseudocode language.

3.1.2 Syntax

The syntax we use for tuple pattern based retrieval is given in Figure 3.2.
It consists of a retrieval clause, used as part of a while, if, or for statement.

12

Each retrieval clause consists of a tuple pattern, an in keyword, and an ex-
pression that evaluates to a set. During an execution of tuple pattern based
retrieval, this set is known as the accessed set.

A tuple pattern consists of one or more comma-separated components.
Each component is either an expression that has all variables bound before
the retrieval, or a fresh variable that is not bound to anything before the
retrieval, called a pattern variable. Pattern variables may not be used in ex-
pressions that are part of the same tuple pattern. Although our method as
presented here does not allow nested tuple patterns, in Section 4 we discuss
what would be involved in adding them.

Retrieval clauses can be used as part of while, if, and for statements.
A retrieval clause replaces the entire condition of a while or if statement,
or the iteration clause of a for loop. When used as the iteration clause in a
for loop, tuple pattern based retrieval guarantees that each matching tuple is
retrieved exactly once.

3.1.3 Semantics

The operational semantics of tuple pattern based retrieval can be given in
terms of binding sets. We describe what these binding sets are, and how they
can be computed for a given pattern and set. We then show how they can
be used to execute a retrieval as part of the while, if, and for statements.
Before we can do these, however, we must first define what it means for a
pattern to match a tuple, a concept that we have used informally up until this
point.

A tuple matches a tuple pattern if the tuple and pattern consist of the
same number of components, and if, at the time of the matching, the value
of each expression in the pattern is equal to the corresponding component of
the tuple. For our purposes, equality here refers to structural equality or user-
defined equality, not equality of object identity. If there are no expressions in
the tuple pattern, that pattern trivially matches all tuples of the same length.
Since the value of the expression in the pattern may change over the course of
program execution as the variables that are used change, a matching is only
valid at a particular point in program execution.

Using this definition, we can define binding sets. A binding set is a set

13

containing, for each tuple in the set matching a tuple pattern, a map from
the pattern variables to the corresponding components in the tuple. Such a
set could be computed by iterating over the accessed set and performing the
matching operation, if we were to ever actually compute it. As a binding set
involves matching, its value corresponds to a particular execution of a retrieval.

When a binding set is computed, and how it is used, are determined by the
statements in which a retrieval occurs. In a while or if statement, a binding
set is computed each time the condition is evaluated. If this binding set is
empty, then the condition is false, and no variables are bound. This will cause
the a while loop to terminate, or an if statement’s else clause to execute,
when present. If the binding set is non-empty, an arbitrarily selected map is
taken from it, and the variables in it are bound to their associated values. Such
bindings are in effect until the end of the body of the if or while statement,
at which point they become unbound.

In a while statement, the fact that the binding set would be recomputed
each time the condition is evaluated means that the loop continues as long
as a matching element exists in the accessed set. This property makes such a
while loop useful for accessing a workset. As the while loop would recompute
the binding set each time through the set, while loops are suitable for use with
sets that can be changed in the body of the loop.

A for statement has slightly different semantics. If implemented using
binding sets, each execution of a for statement would cause a binding set to
be computed once, before the first iteration. The iteration then occurs over
the maps in the binding set, with the variables in each map being assigned
their associated values while executing the body of the iteration.

We impose on for statements the restriction that neither the contents of
the accessed set nor the values of the expressions in the tuple pattern change
over the course of the iteration. These restrictions are not overly burdensome,
as they are similar to the prohibition in languages such as Java and Python
against changing collections while iterating over them. They also allow us to
perform important optimizations, such as those given below. This restriction
may be enforced by the language using some combination of program analysis
and runtime checks, or it may be left as the programmer’s responsibility.

14

3.2 Efficient Implementation

As mentioned above, binding sets only exist as a way to give an operational
semantics of tuple pattern based retrieval. For tuple pattern based retrieval
to become a useful language feature, we must find an efficient and practical
implementation.

3.2.1 Local Implementation

Perhaps the most direct implementation of a for loop involving tuple pat-
tern based retrieval is one that intermixes the computation of the elements of
the binding set with the use of those elements. Lacking a better name, we
call this a local implementation. A local implementation consists of iterating
through each of the elements of the associated set. For each element that is
a tuple matching the tuple pattern, the pattern variables are bound to their
corresponding elements in the tuple. The body of the iteration is then exe-
cuted with such bindings. This continues until all elements of the accessed set
have been exhausted.

while and if statements, are implemented similarly. For these statements,
however, the iteration is performed once for each time the condition is eval-
uated, and the iteration terminates once a matching tuple is found. If the
iteration proceeds to completion without a matching tuple being found, then
the tuple pattern based retrieval has failed. In this case, no variables are bound
as a result of the retrieval, and the condition is false.

An example of a local implementation is given in Figure 3.3, showing the
code that implements the initialization part (lines 4 through 9) of the example
topological sort program in Figure 3.1.

The advantage of a local implementation is its simplicity. If one was asked
to implement tuple pattern based retrieval, by hand and without regard to
efficiency, something similar to a local implementation is what would likely
arise. This method requires only a constant amount of memory, and requires
us to only modify the statement containing the retrieval, without touching the
rest of the program. Its main problem is inefficiency. The cost of a single
tuple pattern based retrieval implemented using the local method is propor-
tional to the size of the accessed set, rather than the number of elements in

15

1 for v1 in V ERTICES:
2 indegree = 0
3 for (v2, tmp0) in EDGES:
4 if tmp0 != v1:
5 continue

6

7 indegree += 1
8

9 INDEGREES.add((v1, indegree))

Figure 3.3: Local implementation of initialization.

the set that match the tuple pattern. This can lead to asymptotic slowdowns
in common algorithms. These slowdowns, while clearly undesirable, are oc-
casionally accepted by programmers when rewriting for performance would
unduly complicate the code.

3.2.2 Bound-Unbound Maps

The inefficiency of a local implementation stems from having to iterate over
the entire accessed set on each tuple pattern based retrieval. To avoid this, we
must develop a data structure that allows us to quickly iterate over only the
tuples in a set that match a given pattern.

A data structure that allows this is a bound-unbound map. A bound-
unbound map is a multimap (explained below) in which the keys are groups
of values corresponding to the expressions in a pattern, while the values asso-
ciated with a key are groups containing the values corresponding to pattern
variables, taken from tuples matching the key. (We expect that groups will
be implemented as tuples. Here, we refer to them as groups to avoid confu-
sion with tuples taken from the accessed set.) A bound-unbound map can be
created from a given tuple pattern and set, and can exist for the life of that
set.

A multimap is a map where a single key may be associated with a number
of values. When accessed with a key, a multimap returns a set containing all

16

values associated with the key. If no values are associated with the key, then
an empty set is returned. An obvious implementation of a multimap is as a
map from keys to sets of values. Care must be taken with this implementation
to ensure that keys are garbage collected when their associated sets are empty.

The bound-unbound map for a given tuple pattern and set can be con-
structed in time proportional to the size of the set. This is done by iterating
through all elements of the set. Each element of the same length as the pattern
has its components divided into two groups, those corresponding to expres-
sions and those corresponding to pattern variables. These groups become the
key and value, respectively, of an association that is added to the map. This
construction method results in at most one entry being added to the map for
each element of the set, ensuring that the size of the bound-unbound map is
proportional to the size of the set.

The use of a bound-unbound map allows us to break the evaluation of tuple
pattern based retrieval into three steps. The first step is the construction of the
bound-unbound map, given above. The second step evaluates the expressions
in the pattern, and uses their values as a key to access the bound-unbound
map. Such a lookup can be easily implemented using hashing as an expected
constant-time operation (with hashing amortized over the cost of creating the
tuple), and returns a (possibly empty) set giving the values of the unbound
variables in matching tuples. The third step is to use the contents of this set
in a manner appropriate to the construct being executed. When executing a
for-statement, this entails iterating over the contents of the set, an operation
that takes time proportional to the size of the set. while- and if-statements
cause the set to be checked for emptiness and, if it is not empty, an arbitrary
element is taken from it. Both operations are constant time, as is assigning
the values from such an element to the pattern variables. In all three steps,
the only operation that takes time proportional to the size of the accessed set
is the construction of the bound-unbound map.

If we recompute the bound-unbound map each time a retrieval is executed,
then the asymptotic running time of such an implementation is no better than
that of a local implementation. However, an important difference is that a local
implementation requires matching to be performed, while computing a bound-
unbound map requires only knowledge of the contents of the set. Information
about the actual values of the expressions in the pattern is not needed to

17

1 EDGES ub = map()
2 for (a, b) in EDGES:
3 EDGES ub.add(b, a)
4

5 for v1 in V ERTICES:
6 indegree = 0
7 for v2 in EDGES ub.img(v1):
8 indegree += 1
9

10 INDEGREES.add((v1, v2))

Figure 3.4: Bound-unbound map implementation of initialization.

compute the bound-unbound map. Because significantly less information is
used, it is more likely that the computation of a bound-unbound map will be
inside an enclosing loop in which the value of the accessed set, and therefore
the bound-unbound map, does not change. In this case, we can move the
computation of the bound-unbound set to the outside of the enclosing loop.
We can move the computation of the bound-unbound map outside of any loop
in which the accessed set does not change, potentially reducing the asymptotic
running time of the program.

Figure 3.4 shows the initialization phase of Figure 3.1 when implemented
using a bound-unbound map. The bound-unbound map is kept in the variable
EDGES ub, so named because the first component of the pattern is a pat-
tern variable (and therefore unbound), while the second is an expression (and
hence bound). To realize this example, we have added multimaps to our lan-
guage, with methods to add and remove associations, and get the set of values
associated with a key. Sets have a method “any”, that returns an arbitrary
element. The implementation given in Figure 3.3 takes time proportional to
the number of vertices times the number of edges in the graph, while this
implementation takes only time proportional to the number of edges. This
asymptotic improvement is possible because we can move the computation
of EDGES ub outside of the iteration over V ERTICES, as the contents of
EDGES do not change during the iteration.

18

3.2.3 Incremental Update

While previously we have recomputed the contents of the bound-unbound
map each time its associated accessed set has changed, this is neither necessary
nor desirable. It is possible to incrementally update the contents of a bound-
unbound map when changes to its accessed set occur. Doing so allows us
to further move the computation of the bound-unbound map to the outside
of loops where all updates to the accessed set have been incrementalized. If
all updates to a set can be incrementalized, then the only times at which a
from-scratch computation of the bound-unbound map is necessary is when it
is initially constructed. If the accessed set starts off empty, then we can exploit
the fact that an empty accessed set produces an empty bound-unbound map
(regardless of the pattern) to eliminate such recomputation entirely.

We update the bound-unbound map by exploiting the property that each
entry in the map corresponds to an entry in the accessed set, and each ele-
ment in the set produces at most one entry in the bound-unbound map. This
means that it is simple to create incrementalization rules for the two set up-
date operations, add and remove. When a tuple corresponding to the pattern
is added to or removed from the set, the entry in the bound-unbound map
representing that tuple is computed in the same manner as is done when the
map is computed from scratch. This entry is then added to or removed from
the bound-unbound map, as appropriate. Updating a bound-unbound map
takes constant time per update, allowing the asymptotic running time of the
add and remove operations to remain constant.

If incrementalization is complete, and all recomputation eliminated, then
the only operation that takes non-constant time is iteration over the retrieved
result, which takes time proportional to the number of matched elements in
the accessed set, the minimum time that operation can take. All other op-
erations (incremental addition, incremental removal, lookup in the bound-
unbound map, and retrieving a single element) take expected constant time.
As a result, the incrementalized implementation of tuple pattern based re-
trieval is asymptotically optimal for a given input program.

19

1 read V ERTICES, EDGES
2

3 INDEGREES bu = map()
4 INDEGREES ub = map()
5

6 EDGES bu = map()
7 EDGES ub = map()
8

9 for (a, b) in EDGES:
10 EDGES bu.add(a, b)
11 EDGES ub.add(b, a)
12

13 for v1 in V ERTICES:
14 indegree = 0
15 for v2 in EDGES ub.get(v1):
16 indegree += 1
17

18 INDEGREES bu.add(v1, indegree)
19 INDEGREES ub.add(indegree, v1)
20

21 while true:
22 tmp0 = INDEGREES ub.get(0)
23 if not tmp0:
24 break

25

26 v1 = tmp0.any()
27

28 for v2 in EDGES bu.get(v1):
29 tmp1 = INDEGREES bu.get(v2)
30

31 if tmp1:
32 indegree = tmp1.any()
33

34 INDEGREES bu.remove(v2, indegree)
35 INDEGREES ub.remove(indegree, v2)
36 INDEGREES bu.add(v2, indegree - 1)
37 INDEGREES ub.add(indegree - 1, v2)
38

39 INDEGREES bu.remove(v1, 0)
40 INDEGREES ub.remove(0, v1)
41 print v1

Figure 3.5: Topological sort, implemented using static association of bound-
unbound maps.

20

3.2.4 Associating Maps with Sets

One thing we have neglected up until this point is the precise way in which
tuple patterns and accessed sets are associated with bound-unbound maps. In
this section, we first describe the conditions under which it is possible that
a single bound-unbound map can be associated with multiple tuple patterns.
We then discuss static and dynamic approaches for associating bound-unbound
maps with tuple patterns.

Above, we detailed how a bound-unbound map is constructed from a tuple
pattern and an associated set. The only information used in this process is
information that can be determined from the tuple pattern statically, specifi-
cally the length of the pattern and which components of the pattern are bound
expressions. We can call this information the bound-unbound pattern, which
for each component of the tuple pattern, contains information about whether
that component is an expression or a pattern variable. It is possible that a
program contains more than one tuple pattern based retrieval from a given
set, such that both retrievals have the same bound-unbound pattern. In these
cases, all retrievals can use the same bound-unbound map, thus saving space
and time by reducing the number of bound-unbound maps that need to be
maintained.

Static Approach. Even with a reduced number of bound-unbound maps,
however, there is still the question of how these maps are associated with
accessed sets. If we have a finite number of sets, and the sets are always
accessed by a single name, then it’s easy to do this statically. We simply create
bound-unbound maps corresponding to each of the bound-unbound patterns
that are used in retrievals from a set, and insert the code to update these maps
whenever the set is updated. While this is a simplistic approach, it works well
in practice, especially when dealing with modules of programs that do not pass
sets to other modules.

Figure 3.5 gives an example of the static approach in action, showing how
the topological sort example given in Figure 3.1 can be translated into work-
ing code, with bound-unbound maps statically associated with sets. Since
INDEGREES is initialized to an empty set, the two bound-unbound maps
corresponding to it must also be empty, and so there is no need to produce code
to compute their initial value. In addition, as all access to INDEGREES is

21

done through INDEGREES bu and INDEGREES ub, we were able to
eliminate INDEGREES itself in favor of maintaining only the bound-unbound
maps.

Dynamic Approach. For more complex programs, a dynamic approach is
called for. In this approach, we associate with each set object certain bound-
unbound maps. Instead of attempting to statically determine which maps
need to be constructed for which sets, we only associate a map with a set once
that map has been used for a tuple pattern based retrieval. While this means
that we always need to compute the contents of a bound-unbound map on its
first use, this does not harm the asymptotic performance, as the amount of
work to do this once is asymptotically less than the amount of work done to
add elements to the set in the first place, and we only need to compute the
bound-unbound map once. After its initial computation, a bound-unbound
map is incrementally updated by hooks that are called by the add and remove
operations on the set.

This dynamic method has the advantage of not requiring much in the
way of static analysis, since all updates are performed by hooks, at runtime.
This means that it works well in the presence of library code that cannot be
changed, and with dynamic languages where static analysis is difficult, or even
impossible in the face of code that can change at runtime.

Memory Usage. Our method requires that each set maintain a bound-
unbound map for each of the bound-unbound patterns that is used to access
that set. We do not maintain bound-unbound maps for patterns that are not
used in the program, or for patterns that will never be used to access a set.
As any program will have a constant number of bound-unbound patterns, the
memory overhead will be a constant factor. In the case where a small number
of patterns are used to access each set (as was the case in our examples), the
memory overhead will be a small constant factor.

22

3.3 Discussion

Maps and Multimaps. It is often the case that we have a set and a pattern
such that any tuple pattern based retrieval can match at most one tuple. Such
a property is the equivalent of a key constraint on a database table, and is
exhibited in the INDEGREES table of our running example, which has one
indegree for each vertex. The bound-unbound map for a pattern in which
the vertex is bound will contain at most one entry per vertex. In this case,
implementing the bound-unbound map as a multimap can be wasteful, as each
of the sets in the multimap will contain at most one element, an unnecessary
overhead. In this case, implementing the bound-unbound map as a simple
map suffices.

One solution to this problem is to have the programmer declare key con-
straints on sets of tuples, and to use this information to select the appropriate
implementation of a bound-unbound map. While this method is effective in
practice, it does add to the burden of the programmer, and can lead to faulty
programs if a set ever violates a declared constraint.

Another answer is to implement bound-unbound maps as data structures
that can change their representation. Such a data structure would be imple-
mented as a map as long as the key-constraint holds, but would automatically
convert its representation to a multimap if the key constraint is ever violated.
As the conversion automatically occurs when elements are added to the set,
such a data structure is efficient when the key constraint holds, and robust to
cases where it doesn’t.

Eliminating Updates. One property of bound-unbound maps is that, for
a given length of tuple, every tuple in the set has a corresponding entry in
the bound-unbound map. It is therefore unnecessary to store the tuple in
the set itself, as it can always be reconstructed when the set is accessed. By
updating only the bound-unbound maps, and not the set itself, when elements
are added to or removed from the set, we can reduce the cost of add and
remove operations.

Nested Tuple Patterns. While the description of our method only deals
with single-level tuples, our method can also be used to implement tuple pat-

23

tern based retrievals involving nested tuple patterns. This is done by flatten-
ing nested tuple patterns before finding the components that correspond to
expressions and pattern variables, and similarly flattening nested tuples when
building or updating the bound-unbound map.

Extension to Lists. While we have been discussing the retrieval of tuples
from sets, our method is not limited to sets. We have also developed a data
structure that allows one to efficiently perform tuple pattern based retrieval
from lists, subject to limitations on the update operations that are performed
on the accessed list. The limitation we impose is that addition to and removal
from the accessed list must occur at the head or tail of the list, and not at
arbitrary points in the middle of the list.

The data structure we use to implement this is an ordered bound-unbound
map. This is an ordered multimap where entries can be added to the start
or the end of the map, and are returned as a list in the order in which they
appear in the multimap.

An ordered multimap can be implemented as a map from keys to lists, in
the same way that a normal multimap can be implemented as a map from
keys to sets. The limitation imposed above makes it possible to determine if
the addition or removal of an entry in the bound-unbound map should occur
at the start or the end of a list. If we allowed addition of an element to occur
at an arbitrary point in an accessed list, it would be impossible to determine,
in constant time, where in the associated list in the bound-unbound map to
add the new entry. When subject to this limitation, however, addition and
removal can be done incrementally in constant time, making tuple pattern
based retrieval that accesses a list as efficient as that which accesses a set.

Alternative Syntax. The syntax proposed in this paper is by no means the
only syntax that is possible for tuple pattern based retrieval. There are alter-
native syntaxes that are potentially more appropriate for specific languages.

When used with a dynamic language, it may make sense to add a keyword
or other syntax element that indicates which components of a tuple pattern
are bound expressions. This can reduce confusion in languages where variable
bindings can leave a block. It may be necessary in languages (such as Python)
where our proposed syntax is already legal, but has a different meaning.

24

Alternatively, one may indicate which components are pattern variables.
This may be desirable in languages that require type annotations, as the type
annotation can serve both to indicate that a variable is unbound, and to declare
its type when it becomes bound.

3.4 Implementations

To gain experience with tuple pattern based retrieval, we have developed
two systems that allow programs to be written using it. Our first system takes
programs written in a high-level language and transforms them into efficient
C++ code. This system has been successfully used in the implementation of
a number of algorithms. At the same time, it suffers from a number of limi-
tations. Instead of extending this language to address these, we have chosen
to develop a second tool that adds tuple pattern based retrieval to an existing
programming language. Our second tool takes as input a program written in
Python extended with the three tuple pattern based retrieval statements, and
outputs efficient standard Python code. In this section, we discuss the history
of these systems, the differences in the generated implementations, and the
advantages and disadvantages of each.

3.4.1 High-Level Language

Our high-level language, named patton, was originally written to assist
in the implementation of parametric regular path queries, as described in [31]
and the experiments section below. The inspiration for tuple pattern based re-
trieval originally came from the pseudocode found in that paper. This system
was developed with two goals in mind: to allow us to efficiently try variants
of the algorithms by translating the high-level language to C++, and to al-
low us to compare implementations of bound-unbound maps. Specifically, we
compared based representations (using records and linked lists, as given in
[48, 45, 46, 21] and [11]) with hash-table representations. While we originally
added tuple pattern based retrieval to minimize the differences between an al-
gorithm’s implementation and its pseudocode, we quickly began to appreciate
it as a language construct in its own right.

25

The high-level language is a simple one, but one that allows a number of
algorithms to be easily expressed. Along with all three tuple pattern based
retrieval statements, it includes statements for reading input and writing out-
put, and for adding elements to and removing elements from sets. As data it
supports sets, tuples, strings, and integers. The support for the latter two is
limited to the equality comparisons needed for tuple pattern based retrieval.
This is because the construction of new values through mathematical or string
operations can interfere with based representations. The high-level language
supports two kinds of variables: normal variables that can refer to strings,
integers or tuples of such values, and set variables that can only refer to sets.
Each set variable refers to a single set, and there is no way to create sets be-
sides declaring set variables. As a result, programs written in this language
support only a finite number of sets, all known statically. This, in conjunction
with add and remove statements, makes it easy to insert code to maintain
the bound-unbound maps, without needing complicated static analysis. An
additional statement in the language allows specification of key constraints,
which are used to select between map and multimap implementations of the
bound-unbound maps.

Our high-level language proved to be a success, both on its own and when
used as a target to simplify code generation. As we will discuss in the exper-
iments section, we were able to use it to implement parametric regular path
queries and Datalog rules. Although not discussed in this paper, we also used
it to implement relational calculus queries. In all three cases, tuple pattern
based retrieval reduced significantly the amount of effort needed to produce
efficient code.

As we moved into the area of security policies, however, some issues with
our language became apparent. A lack of support for function or procedure
calls makes it impossible to implement security policy frameworks, such as
role-based access control. While it would be possible to extend this language
to include these features, we felt that it would be more useful to add tuple
pattern based retrieval to a popular language. This decision led to the creation
of our second system.

26

3.4.2 Python Preprocessor

We then implemented tuple pattern based retrieval as a preprocessor that
takes as input Python programs augmented with the three tuple pattern based
retrieval statements, and outputs efficient standard Python code. Python was
chosen as a source and target language because of its built-in support for
tuple construction and set iteration, both of which are syntactically similar to
what is used in our tuple pattern constructs. Indeed, this similarity is to such
an extent that we chose to give the added tuple pattern constructs different
keywords, to prevent code that uses our extensions from being run by Python
itself.

Our preprocessor generates code that uses callbacks to update the bound-
unbound maps, with the maps themselves being stored, when present, in fields
on the set objects themselves. This allows modifications to the underlying code
to be minimized. The Set class is modified to automatically invoke callbacks
when elements are added to or removed from it, a modification that only needs
to be done once, regardless of the number of tuple pattern based retrieval state-
ments and the number of add and remove call sites in the program. All of the
other modifications to the program are confined to the immediate vicinity of
the tuple pattern based retrieval statements. We do not need to find or modify
statements that add and remove elements of the set, as such operations are
detected using callbacks. This means that the preprocessor does not require a
global static analysis, making it suitable for programs that may use arbitrary
library code, and for programs that modify themselves (by constructing and
evaluating code) at runtime. The code generated by our preprocessor repre-
sents all bound-unbound maps with a data structure that changes from a map
to a multimap when necessary.

In the experiments section, we present the results of applying the prepro-
cessor to the running example of topological sort, to graph reachability, and
to role-based access control. The experiments revealed a number of optimiza-
tions that can be added, such as eliminating the construction of 1-component
tuples, and keeping references directly to the bound-unbound maps. At the
same time, the experiments show that the preprocessor is able to generate
asymptotically efficient implementations of Python programs written using
tuple pattern based retrieval.

27

Running time for number of edges
implementation size 1,000 2,000 3,000 4,000 5,000

local 30 678 (19.9) 3,012 (43.0) 7,190 (66.6) 13,580 (97.0) 23,750 (132.7)
dynamic b-u map 63 56 (1.65) 116 (1.66) 176 (1.63) 234 (1.67) 296 (1.65)

optimized dynamic b-u map 63 34 (1.00) 74 (1.06) 110 (1.02) 150 (1.07) 185 (1.03)
static b-u map 29 34 (1.00) 70 (1.00) 108 (1.00) 140 (1.00) 179 (1.00)

Table 3.1: Program size in lines and running times in milliseconds for imple-
mentations of topological sort. The numbers in parenthesis are running times
relative to the static implementation.

3.5 Experiments and Applications

In this section, we present the results of a number of experiments we con-
ducted on programs written using tuple pattern based retrieval. These exper-
iments were conducted over a variety of problem domains: graph algorithms
and queries, program analysis, and security policy frameworks. We conducted
these experiments to evaluate the advantages of having tuple pattern based
retrieval as a language construct, and to confirm that the predicted efficiency
of bound-unbound maps can be actually achieved. This section includes ex-
periments done using both of our tools, with a mix of experiments that were
performed as part of research into other areas, and experiments that are origi-
nal to this paper. The latter allows us to demonstrate on well-known examples
the effectiveness of tuple pattern based retrieval, while the former shows its
applicability to a range of problems.

In this section, when lines of code are given, the value provided is the num-
ber of lines of code that solve the problem, excluding comments and blank lines.
This does not include the size of the library code included by an implementa-
tion, nor does it include the size of the test harnesses used to collect statistics.
Unless otherwise noted, performance measurements were collected on an AMD
Sempron 3100+, running at 1.8 GHz. When preprocessor-generated Python
programs were run, Python 2.3.5 was used. The measurements are the average
of five runs on the same input data set.

3.5.1 Topological Sort

The first experiment we perform is on the running example of topological
sort. We created four Python implementations of the topological sort algo-

28

Running time for number of edges
implementation size 50,000 100,000 150,000 200,000
dynamic b-u map 24 790 ms (0.98) 1,604 ms (1.00) 2,396 ms (0.99) 3,218 ms (0.99)

static b-u map 16 803 ms (1.00) 1,607 ms (1.00) 2,414 ms (1.00) 3,240 ms (1.00)

Table 3.2: Program size in lines and running times in milliseconds for imple-
mentations of graph reachability.

rithm given in Figure 3.1. Two of these implementations are the local and
bound-unbound map implementations automatically created by the current
version of the preprocessor. A third implementation consists of the bound-
unbound map implementation, hand optimized to eliminate unnecessary tuple
construction and store bound-unbound maps in local variables to prevent re-
peated field lookups. This version represents optimizations that are planned
for a future version of the preprocessor, but are not yet implemented. The fi-
nal implementation was a hand implementation of the version of the program
given in Figure 3.5, similar to what would be generated from our pseudocode
language, except in Python rather than C++. This was implemented by hand
so we could compare a static implementation with the dynamic implementa-
tion generated by the preprocessor, under similar conditions.

Table 1 shows the results of these experiments. The first thing to note
is the expansion of the program sizes. The topological sort algorithm, writ-
ten in Python with tuple pattern based retrieval statements, is 13 lines long.
The implementations varied in length from 29 to 63 lines long, so using tuple
pattern based retrieval leads to a program that is less than half the size.

To evaluate the performance of the generated code, we ran the implementa-
tions on topological sort problems of varying size. In all cases, the input data
consisted of a linear chain of vertices, such that there is one unique topological
sort.

The first thing to note is that the local implementation of the program
is asymptotically slower than the other three versions, as predicted. The un-
optimized dynamic version, while still linear, is much slower than the other
two versions, while the static version is slightly faster than the optimized dy-
namic one. We attribute this difference to the increased indirection required in
the dynamic version, and while we are working on decreasing this indirection
penalty, we recommend using a static implementation when possible.

29

1 read start, EDGES
2

3 WORKSET = set()
4 RESULT = set()
5

6 WORKSET.add(start)
7 RESULT .add(start)
8

9 while v1 in WORKSET:
10 for (v1, v2) in EDGES:
11 if v2 not in RESULT:
12 WORKSET.add(v2)
13 RESULT .add(v2)
14

15 WORKSET.remove(v1)
16

17 print RESULT

Figure 3.6: Graph reachability, written using tuple pattern based retrieval.

3.5.2 Reachability

To attempt to determine the cause of the difference in the running times
of the static and dynamic versions of the program, we used the preprocessor
to generate implementations of the graph reachability algorithm given in Fig-
ure 3.6. This algorithm contains two tuple pattern based retrievals, one from
WORKSET and one from EDGES. The retrieval from WORKSET does
not require a bound-unbound map, as no bound expressions are used in it.
The only bound-unbound map is the one used for retrievals from EDGES.
As EDGES is not updated in the loop, this bound-unbound map is not
changed from when it is created, allowing us to consider the performance of
the queries themselves without needing to also consider the cost of updating
bound-unbound maps.

We implemented two versions of graph reachability. The first version was a
dynamic bound-unbound map implementation automatically generated from

30

a Python translation of the code given in Figure 3.6. We did not create a
hand-optimization of this version, as the optimizations only pertain to bound-
unbound map update. For comparison purposes, we also created by hand
a static version of the graph reachability, again similar to what would be
generated from our pseudocode language, except in Python instead of C++.

The results are given in Table 2. The first thing to note is that the dy-
namic implementation doubles the size of the initial 12-line program, while
the static implementation adds a mere four lines. This is because the dynamic
implementation still has to include the update code, even if it is never called,
while the static version can eliminate it entirely. This has no effect on the
running time, as the dynamic implementation is marginally faster than the
static one. Achieving similar results on a program that does not contain any
updates suggests that it is the update functions that differ in performance
between the static and dynamic versions of the program.

3.5.3 RBAC — Role-Based Access Control

An example of a realistic system that benefits from tuple pattern based
retrieval is role-based access control. RBAC controls access by assigning per-
missions to perform operations on objects to roles, and then assigning users
to those roles. When a user activates a role in a session, that session has all
the permissions of the role. This simplifies the management of permissions in
systems with many users, objects, and operations.

In the ANSI standard for RBAC [17, 6], RBAC is specified using eight sets
and four maps from values to sets. Five of the sets are uninteresting from
our perspective, containing only values of a given type, and not tuples. The
remaining three are sets of pairs: PRMS contains all possible permissions in
the system as object-operation pairs, PA relates roles with the permissions
the role has, and UA assigns users to roles. Of the maps used in the core
RBAC specification, only user sessions and session roles are fundamental,
mapping a user to his sessions and a session to its roles, respectively. The
other two, assigned permissions and assigned users, duplicate information
contained in PA and UA, respectively.

To help evaluate tuple pattern based retrieval, we translated the admin-
istrative and system functions of core RBAC from the variant of Z used in

31

[17] to the dialect of Python that our preprocessor can process. As part of
the conversion, we eliminated the two redundant maps, and turned the other
two maps into sets of pairs. We were able to eliminate 10 of the 30 map and
set updates from the 13 functions we translated. The resulting translation
consists of 85 lines of python, comprised of 36 assertions, 19 set updates, 13
function definitions, 8 tuple pattern based retrievals, 3 function calls, 2 set
membership tests, 2 set iterations, and 2 returns.

When translated by our preprocessor into a dynamic bound-unbound map
implementation, the size of the program swelled to 211 lines. Inspection of
the generated code showed that the preprocesor correctly generated bound-
unbound maps corresponding to assigned permissions and assigned users.
By using a tuple pattern based retrieval, we were able to eliminate two maps
and a third of the update operations from the specification of RBAC.

Figure 3.7: Running time of 100000 RBAC check access operations.

Figure 3.7 demonstrates how an efficient implementation of tuple pattern
based retrieval improves asymptotically the running time of our program. It
shows the time it takes to perform 100000 check access operations while vary-

32

ing the size of session roles, the set that maps a session to the roles used by
that session. In this graph, the number of roles per session is fixed at 10, while
the number of sessions increases. The local implementation takes running time
proportional to the total number of session-role pairs in the system, while the
dynamic bound-unbound map implementation remains constant, scaling only
with the number of roles per session. This beats the asymptotic performance
of a straightforward implementation of the Z specification, which takes time
proportional to the number of roles in the system, of which the roles per ses-
sion is a subset. This demonstrates that tuple pattern based retrieval not
only simplifies the implementation of RBAC, it also allows us to generate an
implementation that is an asymptotic improvement.

3.5.4 Other Applications

In addition to the experiments performed above, tuple pattern based re-
trieval has been successfully applied to a range of problems, each complex
enough to have merited its own paper. Here, we discuss how tuple pattern
based retrieval was used in the experiments in those papers. In contrast with
the experiments given above, our focus here is on describing how tuple pattern
based retrieval simplified the creation of those implementations, rather than
on performance measurements.

Parametric Regular Path Queries. Parametric Regular Path Queries [31]
match a regular-expression-like pattern containing variables against paths in a
graph containing labels. An existential regular path query returns the set of all
vertex-substitution pairs such that there exists a path from the start vertex to
the returned vertex where the labels on that path match the pattern, after the
substitution has been applied to the pattern. This has a number of applications
to program analysis, as simple queries can find uses of uninitialized variables,
violations of locking disciplines, and other properties of the program.

Tuple pattern based retrieval was used in the implementation of multiple
algorithms that perform parametric regular path queries. Indeed, it was the
need to efficiently generate implementations of the algorithms in [31] that lead
to the creation of our high-level language, and the pseudocode found in that
paper that inspired the design of that language. By automatically generating

33

extremely efficient C++ code that uses based[45, 11] representations of the
bound-unbound maps, we significantly reduced the effort required to imple-
ment variants of the parametric regular path query algorithms. This allowed
us to give experimental performance results for a number of variants, enabling
us to give guidance as to when each variant should be used.

When written using tuple pattern based retrieval, various algorithms for
performing parametric regular queries range from 19 to 34 lines of code,
counted as described in this section, including 3 tuple pattern based retrievals.
When our pseudocode language is translated into C++, the code size expands
substantially. The 19 line example was translated into 696 lines of C++, the
34 line variant to 833 lines. The generated code is fast, processing over 400,000
worklist entries per second. The running time of the implementations scales
only with worklist size, further showing how bound-unbound maps can be
used to implement tuple pattern based retrieval in an asymptotically optimal
manner.

Datalog Rules. Tuple pattern based retrieval also shows promise as a con-
struct in intermediate languages that tools can target. A method [32] is de-
scribed that transforms a set of Datalog rules into efficient low-level implemen-
tations with guaranteed time and space complexities, avoiding dependency on
a potentially large interpreter. One implementation of this method uses our
high-level language, patton, as an intermediate language, to simplify the
code generation process. It first generates code in patton, and then that
code is translated to C++. Another implementation that generates C directly
consists of 327 lines of Python, and uses a library of 2,000 lines of C code.
The generator that targets our high-level language was written in two days,
and consists of only 114 lines of Python code, and does not require a custom
library.

To show the effectiveness of this approach, we give two examples. A tran-
sitive closure algorithm consisting of two Datalog rules was translated into 27
lines of high-level code, which in turn became 595 lines of efficient C++. A
pointer analysis algorithm was translated into 93 lines of high-level code, and
1,944 lines of C++.

34

Chapter 4

Object-Set Queries

4.1 Overview of the Method

With tuple pattern based retrieval behind us, we are ready to give our
method for the automatic incrementalization of object-set queries. Our method
processes one query at a time, and incrementally maintains the result over ev-
ery change that affect the result of the query.

To compute the result of a query efficiently in the presence of all possible
changes to the parameters of the query, we maintain the result incrementally
with respect to the changes. To do this, we first note that the result of a
query can be computed from scratch straightforwardly in two steps. Step 1
computes the assignment set: it creates all possible variable assignments al-
lowed by the enumerators and puts each such variable assignment that also
satisfies the conditions in the assignment set. Step 2 computes the result set:
it iterates through the assignment set and puts the result of evaluating the
result expression under each variable assignment into the result set.

There are five main ideas for efficient incremental computation. (1) We
can compute the precise change to the assignment set after any change to the
query parameters, called differential assignment set, denoted D. (2) We can
maintain a query result efficiently using D by keeping a reference count with
each element in a result set. (3) We can return query results efficiently for
possibly arbitrary parameter values by maintaining a map from combinations
of parameter values to query results. (4) To avoid maintaining query results for

35

all possible values of unconstrained parameters, which would be impractical,
we keep combinations of values of unconstrained parameters that have been
queried on. (5) To efficiently retrieve objects from field values, and sets from
members, as needed for efficient incremental computation, we can maintain
inverse maps.

The differential assignment set, D. The differential assignment set, D,
is a set of variable assignments that would be added to or removed from the
assignment set by an update. Generating code to compute it efficiently under
all possible changes is at the core of our method. We use D in maintaining
the result set efficiently, avoiding maintaining the entire assignment set. Note
that, in general, we can not compute the change to the result set efficiently
without computing D, because multiple variable assignments may lead to the
same value in the result set.

Reference counts for elements in a result set. Exactly because multiple
variable assignments may lead to the same value in the result set, to determine
whether a value should be in the result set when the assignment set is updated,
we must keep a count of the number of variable assignments that produce
that value. Addition and removal operations to a result set maintain the
reference counts, and do the actual addition and removal of an element only
if its reference count changes from 0 to 1 and 1 to 0, respectively. This is
important for us to update a result set correctly and efficiently.

Result map, R. Instead of creating a new result set for each query instance,
i.e., a query with a combination of parameter values, we maintain a map,
R, called the result map, that maps combinations of parameter values to the
result sets of the query. We can retrieve the result set of a query from R, based
the parameter values, using a constant-time access operation. This yields a
result set that changes as the result map does, which we call a live result
set. In many cases, this is acceptable, as the set is used transiently and then
discarded. Where necessary, we make a copy of the result set, at cost linear in
the size of the result, and return that. Techniques exist for determining where
copying is necessary [21].

Values of Unconstrained Parameters, U. We can not maintain query

36

results for all possible values of unconstrained parameters, because we do not
know what the values might be. So we keep combinations of values of uncon-
strained parameters that have been queried on, as a set of tuples, denoted U,
and only maintain query results for these values of the unconstrained param-
eters. Note that for each tuple in U, we maintain query result for all possible
values of constrained parameters, because they are determined by values of
unconstrained parameters. So we look up the query result in constant time if
the values of unconstrained parameters are found in U.

Inverse maps, invm and invf ’s. We also maintain the following inverse
maps. The map invm, where m stands for member, maps an object to the
sets that contain it; it is the inverse of the usual mapping from a set to its
members. The maps invf , one for each field f , maps an object to the objects
referring to it through field f ; it is the inverse of field selection.

These sets and maps are manipulated by the generated code. D, R, U,
and the inverse maps are all stored in variables that are unique to a compre-
hension; these variables are bound to a single object in all the maintenance
code generated for a comprehension, but are bound to different objects in code
generated from other comprehensions.

4.2 Generating Code for Computing the Dif-

ferential Assignment Set

We need to generate code to compute the differential assignment set, D, for
each possible change to the data used by the query. With the current repre-
sentation of queries, called the object-domain representation, changes include
assigning new objects to all chains of selected fields, and adding and removing
elements of all sets, in the query. To make it much easier to enumerate all
possible changes and generate code, we translate the query into a pair-domain
representation, enumerate changes and generate code in the pair domain, and
then translate the code back to the object domain.

37

4.2.1 Translating to the Pair Domain

The pair domain uses sets of pairs to represent the field-value relations
and the set-membership relation, though these sets do not exist in the final
generated code. This allows us to consider only the addition and removal of
pairs as changes. The translation also replaces each field selection with a fresh
variable, so every object that the query depends on is referred to by a pair-
domain variable. This makes it easy to enumerate all possible changes that
can affect the result of a query.

Precisely, we use the following sets in the pair domain:

• For each field f , a set, fieldf , is used to relate any object with the value
of the field f of the object:

(o, v) ∈ fieldf ⇐⇒ v == o.f.

• A single set, member, is used to relate any set with any member of the
set:

(s, o) ∈ member ⇐⇒ o ∈ s.

Note that fieldf is used for same-named fields of different objects in the pair
domain, just like .f i is used to access same named fields of different objects
in the original object domain.

We translate a comprehension into the pair domain by applying the fol-
lowing two rules repeatedly until they do not apply:

• For each variable o and field f , replace all occurrences of the field selec-
tion o.f with a fresh variable, say v, and add a new enumerator (o,v) in
fieldf .

• Replace each enumerator v in s, where v and s are variables, with a new
enumerator (s,v) in member.

This eliminates all fields and sets in the object domain.
For the wifi query, this yields:

38

1 wifi ->
2 { ap ssid : (ap, ap ssid) in fieldssid,
3 (wifi, wifi scan) in fieldscan,
4 (wifi scan, ap) in member,
5 (ap, ap strength) in fieldstrength,
6 (wifi, wifi threshold) in fieldthreshold,
7 ap strength > wifi threshold }

This replaces all 4 fields and 1 set in the object domain with 5 sets in the pair
domain and increases the number of variables used from 2 to 6.

4.2.2 Generating Code for All Possible Changes

Recall we need to generate code to compute D for each possible change to
the data used by the query. Now we do this in the pair-domain.

First, we explain that each change we must handle corresponds to an el-
ement addition and/or removal based on an enumerator in the pair-domain
comprehension. It is obvious, from the translation, that each occurrence of a
field selector, and each retrieval of a set element, corresponds to an enumera-
tor. So, each assignment to a field of an object and each element addition or
removal that can affect the query result corresponds to an enumerator—each
is indeed changing the object referred to by the left variable in the enumerator.
In particular, we have the following:

• An enumerator of the form (o,v) in fieldf means that if the field f of
an object, say o0, that o refers to is assigned a value v2, where the value
of field before the change is v1, then the corresponding changes we must
handle are removing the pair (o0,v1) from fieldf followed by adding the
pair (o0,v2) to fieldf .

• An enumerator of the form (s,o) in member means that if an element,
say o0, is added to a set, say s0, that s refers to, then the corresponding
change we must handle is adding (s0,o0) to member, symmetrically for
removing an element.

Next, for each enumerator, we generate a block of code for computing
D for either adding an element or removing an element from the set being

39

enumerated. The same block of code is used for both element addition and
removal because, for each enumerator, the variable assignments added to the
assignment set when an object is added to the set being enumerated are the
same as the variable assignments removed from the assignment set when the
object is removed from the set.

Note that the generated code refers to the element added or removed.
Thus, for removal, the generated code must be run before the removal, and
for addition, the generated code must be run after the addition.

Generating code here has two steps. Step 1 creates the clauses that com-
pute the assignment set; this is independent of the enumerator considered.
Step 2 determines a nesting order of these clauses that minimizes the cost of
executing all clauses, based on enumerator considered.

Generating clauses. We generate one clause for each enumerator and each
condition in the pair-domain comprehension. For each enumerator (x,y) in s,
a for-clause of the following form is generated:

1 for (x,y) in s:

For each condition c, an if-clause is generated:

1 if c:

We also generate a single for-clause that ensures the values of the uncon-
strained parameters are in U:

1 for unc params in U:

where unc params is a tuple of the unconstrained parameters of the compre-
hension.

For the wifi query, consider the change that adds ap to wifi scan. The
following clauses are created:

40

1 for (ap, ap ssid) in fieldssid:

2 for (wifi, wifi scan) in fieldscan:

3 for (wifi scan, ap) in member:
4 for (ap, ap strength) in fieldstrength:

5 for (wifi, wifi threshold) in fieldthreshold:

6 if ap strength > wifi threshold:
7 for (wifi) in U:

Nesting clauses. The basic idea of choosing a nesting order is to use the
bound values of the variables in the given change to maximize the number of
constant-time map lookups and field dereferences, which take constant time,
and to minimize the number of interations, which take linear time. The high-
level effect is to minimize the amount of work in incremental computation
caused by a change. Doing this exploits the fact that bound variables in a
special for-statement use lookups to reduce the amount of iteration needed.

To always ensure an optimial ordering would require knowing precise set
sizes for the enumerators and costs for the conditions. Even using a join-order
optimization algorithm [14] would require knowing the selectivity of each join.
Both would require additional annotations added to the program, which we
attempt to avoid. Instead, we find that a simple greedy algorithm works well
in practice.

The greedy strategy picks a clause that has the minimum asymptotic run-
ning time to execute next, given the set of variables bound so far. The set
of bound variables initially contains the variables that appear in the change.
This set is used to analyze each clause, using the rules below, to determine
if a clause is runnable, and if so, what the asymptotic running time is. A
runnable clause with the lowest asymptotic running time is chosen, and added
to the nesting order. The variables bound by that clause are added to the set
of bound variables, and the process is repeated until all clauses are added to
the order. Rules for analyzing the clauses are as follows:

• A special for-loop that iterates over a fieldf set is runnable if at least one
variable in the pattern is bound; this avoids iterating over every object
in the program. This for-loop takes constant time if the first variable in
the pattern is bound, because it is a field selection, and linear time in

41

all other cases.

• A special for-loop that iterates over the member set is runnable if at least
one variable in the pattern is bound; this avoids iterating over every set
in the program. This for-loop takes constant time if both variables in
the pattern are bound, because it is a set membership test, and linear
time otherwise.

• The special for-loop that iterates over U is always runnable. It takes
constant time if all variables in the pattern, i.e., all unconstrained pa-
rameters of the query, are bound, and linear-time otherwise.

• A if-clause is runnable if all of the variables in it are bound. All if-
clauses are considered to take constant time by default.

A nesting order will always be computed, ensured by the clause that it-
erates through U. This is because the definition of object-set comprehensions
ensures that every variable is reachable, through a path containing selection
and enumeration, from at least one unconstrained parameter. As each selec-
tion and enumeration corresponds to a pair-domain clause, there is a path of
pair-domain clauses from the unconstrained parameter to the variable. When
the unconstrained parameters become bound by the statement iterating over
U, all for-loops will become runnable, allowing all variables to be bound. This
then ensures that every if-statement is runnable, allowing every statement to
be placed in the nesting order.

Once all variables are bound to some values, these variables and values are
used to create a variable assignment, which is then added to D. Let var asgn()
be a function that creates a variable assignment for these variables using their
bound values. Figure 4.1 shows the generated code in the pair domain for
computing D under one update that affects the result of the wifi query.

4.2.3 Translating Back to the Object Domain

This translation eliminates field and member sets in the pair domain, and
replaces special for-loops with standard statements. The translation uses the
rules in Table 4.1. It gives code for special for-loops over fieldf sets and over
the member set, and for all three possible combinations of boundness of the
two variables in the pattern—recall that we do not have the case when both
variables are unbound.

42

after adding ap to a set that wifi scan refers to:

1 for (ap, ap ssid) in fieldssid:

2 for (ap, ap strength) in fieldstrength:

3 for (wifi scan, ap) in member:
4 for (wifi, wifi scan) in fieldscan:

5 for (wifi, wifi threshold) in fieldthreshold:

6 if ap strength > wifi threshold:
7 for (wifi) in U:

8 D.add(var asgn())

Figure 4.1: Generated pair-domain code for computing D for the running
example.

• When both variables are bound, loops over fieldf sets are field-value
tests, and loops over the member set are membership tests.

• When the first argument is bound but the second is not, loops over
fieldf sets are field selections, and loops over the member set are element
retrievals.

• When the second variable is bound but the first is not, inverse maps are
used for reverse retrievals for both field selections and element retrievals.

In the third case, we also generate code for incrementally maintaining the
inverse maps, as given in Table 4.2; it is easy to see that these maps takes
constant time to maintain and has a constant-factor space overhead.

Note that computing D for a change uses these inverse maps. Thus, for
element addition, inverse maps must be updated before computing D, and for
element removal, the inverse maps must be updated after computing D.

The special for-loop over U is implemented similarly. If some variables in
the pattern are not bound, we maintain a map from values of bound variables
to values of unbound variables. These maps are incrementally updated when
U changes. This allows each matched element to be retrieved in constant time,
and the entire for-loop to take linear time in the number of matched elements.

For the wifi query and the update we considered, the code in Figure 4.2 is
generated.

43

pair-domain
construct

for (x,y) in fieldf:

block
for (x,y) in member:

block

x bound
y bound

if y == x.f:
block

if y in x:
block

x bound
y unbound

y = x.f
block

for y in x:
block

x unbound
y bound

for x in invf .img(y):
block

for x in invm.img(y):
block

Table 4.1: Rules for translating back to the object domain.

for (x,y) in fieldf:

block
for (x,y) in member:

block

when an object is first
referred to by x:

invf .add(x.f , x)

before assignments to x.f
invf .remove(x.f , x)

after assignments to x.f
invf .add(x.f , x)

when an object is first
referred to by x:

for y in x:
invm.add(y, x)

before x.remove(y):
invm.remove(y, x)

after x.add(y):
invm.add(y, x)

Table 4.2: Rules for generating code for maintaining inverse maps.

44

after adding ap to a set that wifi scan refers to:

1 ap ssid = ap.ssid
2 ap strength = ap.strength
3 if ap in wifi scan:
4 for wifi in invscan.img(wifi scan):
5 wifi threshold = wifi.threshold
6 if ap strength > wifi threshold:
7 if (wifi) in U:

8 D.add(var asgn())

Figure 4.2: Generated object-domain code for computing D for the running
example.

4.3 Generating Code for Maintaining the Re-

sult Map

Once D is computed, it is used to update the result map R. For each block
of code that computes D, we generate another block of code that updates R.

For maintenance after assigning a value to a field or adding an object to a
set, we generate the code below, where params(a) takes a variable assignment
a and returns a tuple containing the values of the parameters of the query, and
eval(e,a) evaluates expression e under the variable assignment a. D is reset to
empty after it is used for updating R, thus is empty and takes no space when
we are not executing maintenance code.

1 for a in D:

2 R.add(params(a), eval(result exp, a))
3 D.empty()

For maintenance before assigning a value to a field or removing an object from
a set, the generated code is the same except with add replaced with remove.

The result map maintenance code must be run after all code for computing
D for a given change has been run. Aliasing could cause problems otherwise.
For example, in the query below, suppose p.S and p.R are aliased to the same

45

set, say called SR. When an object, say o, is added to set SR, two updates
occur: one adds an object to a set that p.S refers to, and the other adds an
object to a set that p.R refers to. The D for both updates will contain the
variable assignment {x 7→ o, y 7→ o}.

1 p -> {x : x in p.S, y in p.R, x == y }

By running the result map maintenance code after all code for computing D,
we ensure that each variable assignment causes a result mapping to be added
to the result map once, and only once. This maintains the invariant that the
reference count of a mapping in the result map equals the number of variable
assignments in the assignment set projecting onto that mapping.

4.4 Organizing Maintenance Code

Three kinds of maintenance code have been generated: (1) code that main-
tains inverse maps, (2) code that computes D, and (3) code that maintains R.
They must be run in response to updates to objects, including set objects.

We organize maintenance code based on the pair-domain variables. This
is for two reasons, from Section 4.2: (1) each object that the query result
depends on is referred to by a pair-domain variable, and (2) each block of
maintenance code generated is for an update to an object that a pair-domain
variable refers to, or when the object is first referred to by the variable. We
put together, conceptually, all maintenance code that handles updates to the
object referred to by a pair-domain variable v, and we call it an obligation any
object referred to by v must fulfill; we use v as the id of the obligation. Note
that an object may have multiple obligations, because it may be referred to
by more than one pair-domain variable, a.k.a. aliasing.

Recall that, among the three kinds of maintenance, R must be maintained
after D is computed, and for addition, inverse maps must be maintained before
D is computed and R is maintained, and all three must be done after the addi-
tion, while for removal, inverse maps must be maintained after D is computed
and R is maintained, and all three must be done before the removal. When
an object has multiple obligations, we run the maintenance code of the same
kind from all obligations, before running maintenance code of another kind,

46

for the same reasons as before. Note that R is only updated once, by the first
block of maintenance code for R, because D is reset to empty at the end of it,
and later blocks of code have no effect.

Obligations are assigned to objects using the function assign obligation.
It takes an object o and an obligation ’v’ as arguments. It does nothing if
o is already assigned obligation ’v’. Otherwise, it (1) runs any maintenance
that needs to be run when o is first referred to by variable v, and (2) reg-
isters the maintenance code corresponding to v, separately for addition and
removal of course, with o, so that it is called when addition and/or removal
occurs. Maintenance code for (1) includes code for updating inverse maps, as
in Section 4.2.3, and assigning obligations to other object, as described below.
Implementation for (2) depends on the host language, which we will describe
for Python, in Section 4.8; similar ideas apply to other languages.

Two mechanisms are used to assign obligations to objects. Obligations are
assigned to unconstrained parameters by the query execution code discussed
in the next section. Obligations are assigned to enumeration variables, i.e.,
constrained parameters and local variables, by maintenance code associated
with other obligations.

Assigning obligations to enumeration variables. The code that assigns
obligations to enumeration variables is generated following a reachability-based
approach. We start by initializing a set, called the set of supported variables,
to the unconstrained parameters of the comprehension. We then search for a
pair-domain enumeration of the form:

1 (x,y) in s

where x is in the set of supported variables, and y is not. This clause is then
used to create obligation assignment code, as given below, and y is added
to the set of supported variables. This process repeats until all variables are
added to the set of supported variables. This process will always complete
because all variables are reachable from the unconstrained parameters.

The obligation assignment code generated depends on the set s in the
enumeration. If s is a fieldf set, we generate the following code:

47

when obligation ’x’ is assigned to an object referred to by x
1 assign obligation(x.f , ’y’)

when an object with obligation ’x’ has field f assigned
1 assign obligation(x.f , ’y’)

If it is the set member, we generate:

when obligation ’x’ is assigned to an object referred to by x
1 for i in x:
2 assign obligation(i, ’y’)

when an object with obligation ’x’ has element i added
1 assign obligation(i, ’y’)

Note that obligation assignment code is classified as maintenance code of kind
(1), because it is done when an object is first referenced by a variable, which
also causes inverse maps to be updated.

The method above ensures that if an object is ever referred to by a variable
v, the object is assigned obligation v. An obligation assigned to an object is
never removed from the object. So, the cost of assigning obligations is con-
stant amortized over object creation, element addition, and field assignment.
However, the maintenance code may be run even after an object can no longer
affect the result of a query, until it is garbage collected.

4.5 Generating Code for Executing the Query

Finally, we generate code for query executing. Recall that we keep combi-
nations of values of unconstrained parameters that have been queried on. Each
query, for a combination of values of unconstrained parameters, is computed
once from scratch—the first time it is encountered; after that, the query result
is incrementally maintained.

The query execution code first determines if the query is being incremen-
tally maintained, i.e., if a tuple consisting of the values of the unconstrained
parameters is in the set U. If it is, then the incrementally maintained result is
returned. If not, the query execution code computes the result from scratch,

48

and begins incremental maintenance; this has four steps:

1. Call assign obligation to assign obligationp to the object referred to by
each unconstrained parameter p. This will then ensure that obligations
are assigned to every object the query depends on.

2. Add a tuple of the values of the unconstrained parameters to the set U.

3. Compute D for the addition to U in Step 2, using the method in Sec-
tion 4.2.

4. Maintain the result map, using the method in Section 4.3.

At the end, the values of the unconstrained parameters are used to retrieve a
live result set from the result map. This set is the result of the query.

For our running example, the generated query execution code is given in
Figure 4.3.

4.6 Discussion

Correctness. The correctness of our method is guaranteed by the invariants
maintained by the generated code for each kind of code generated. The cost of
our method is linear in the size of the given program, because all analyses are
local, and all transformations are 1-1 correspondence. The costs of individual
operations in the generated code are described with the method; we summarize
below the overall performance of the generated code.

Our method allows many extensions and additional optimizations, such
as handling tuples in queries (by translating them into objects and back),
supporting aggregate operations (such as count and sum), and simplifying the
generated code (by eliminating pair-domain variables that only do copying).
We describe below an interesting join optimization.

Aliasing. Our method uses the D set to ensure that the reference count
is maintained correctly in the face of aliasing between objects. For example,
consider the query:

49

1 if (wifi) not in U:

2 assign obligation(wifi, obligationwifi)
3 U.add((wifi))

4 wifi scan = wifi.scan
5 wifi threshold = wifi.threshold
6 for ap in wifi scan:
7 ap ssid = ap.ssid
8 ap strength = ap.strength:
9 if ap strength > wifi threshold:

10 if (wifi) in U:

11 D.add(var asgn())

12 for a in D:

13 R.add((wifi), eval(ap ssid, a))
14 D.empty()

15 return R.img((wifi))

Figure 4.3: Generated code for executing the query for the running example.

50

1 p -> x : x in p.S, y in p.T , x == y

When p.S and p.T are aliased to the same set, say called ST . When an object,
say o, is added to set ST , maintenance code for additions to both p.T and p.S
must be run. The set D will have the variable assignment {x 7→ o, y 7→ o}
added to it twice, while the result x will only be added to R once. This is
important if p.S is changed to point to a set other than ST . In that case, the
assignment will be only added to D once, and so x will be removed from R
once. If R was updated directly instead of using D, the reference count of R
would be incorrect.

If it is proved that no aliasing can occur between the pair-domain variables
used by the query, then it’s possible to have the maintenance code update R
directly. This eliminates the time required to iterate over and clear D, as well
as the memory used by that set.

Memory usage. As incrementalization improves program performance by
storing and updating the results of comprehensions, it will increase memory
usage. R takes the space required to store the result of each query for which we
maintain results; we maintain results if the unconstrained parameters are in U.
The invm and invf maps require space proportional to the size of the objects
assigned obligations; this adds constant overhead. While inside maintenance
code D uses space equal to the number of assignments generated, it is empty
when the program executes outside of maintenance code.

Weak references can be used to eliminate query results for objects that are
no longer alive, preventing memory leaks through the results sets. Further
memory reduction is possible by reaping the least-recently used queries, as
described in [54]. We expect programmers using this method to understand its
memory use, and only request incrementalization when the memory overhead
is acceptable.

Performance. To allow the second and later executions of a query to oc-
cur in constant time, our method requires that updates to data maintain the
result map. The cost of this maintenance depends on the structure of the
comprehension and the update.

For example, for the wifi query, assuming that each ap is in the scan field
of exactly one wifi object, the maintenance corresponding to the following

51

changes will be performed in constant time: (1) assigning to ap.strength,
(2) assigning to ap.ssid, and (3) adding an ap to or removing an ap from set
wifi.scan. Other updates require linear time to maintain the result: assigning
to wifi.threshold, and assigning to wifi.scan, i.e. assigning a new set to the
wifi.scan field, not updating the content of the set. The linear time for this
maintenance is because a single value for ap cannot be determined from the
update, so iteration over the wifi.scan set is needed.

Our maintenance code is asymptotically faster than recomputation code
when the values of the variables bound at an update allow some iterations
to be eliminated, and thus, our method will always produce an asymptotic
speedup as long as the frequency of updates is not asymptotically higher than
that of queries. In no case does our method produce incremental update code
that is asymptotically slower than code that executes the query from scratch,
because the worst-case maintenance code is identical to recomputation code;
therefore, when the frequency of queries is asymptotically the same as that of
updates, our method will never produce an asymptotically slower program.

When the frequency of queries is asymptotically less than that of updates,
our method may produce slower programs, depending on the running times of
maintenance code. Currently, we rely on the programmer to not choose incre-
mentalization in these circumstances. As our method analyzes the asymptotic
running times of maintenance code when deciding the nesting of clauses dur-
ing code generation, it can be easily extended to report these times statically.
We can extend our method to use these times to help decide what queries to
incrementalize.

Optimizing joins. Equality joins on object identity asserts that two fields
must refer to the same object. They are expressed in object-set comprehen-
sions as conditions of the following form—recall that a selector is a variable
optionally followed by one or more field selections:

1 selector == selector

Our method already handles joins as conditions, but we can optimize them
and further decrease the asymptotic running time.

We optimize joins by modifying the pair-domain representation of the
query. After translating the query into the pair domain, we search for con-

52

ditions of the form v1 == v2. Because selectors are always translated to
pair-domain variables, all joins will be of this form. When a join is found, it is
eliminated from the pair-domain comprehension. In the remaining conditions,
enumerations, and the result expression, v1 and v2 are replaced with the new
variable v1 v2. We repeat this process until no joins remain.

This optimization reduces the number of variables in the comprehension. It
usually increases the number of generated clauses containing bound variables,
and thus can decrease the asymptotic running time of the code for computing
D.

4.7 Extensions

4.7.1 Multiple Field Retrieval

While we believe our pair-domain method for performing object-set queries
to be adequate for most purposes, there are some classes of queries for which
it performs suboptimally. One such class of queries is those for which it is
beneficial to retrieve objects using more than one field. In this chapter, we
will extend our method to deal with these queries.

An example of such a query is as follows:

1 S, R -> { (a, b) : a in S; b in R;
2 a.first == b.first; a.last == b.last }

This query finds objects in S and R that have matching first and last fields,
at might be useful when normalizing two data sets. Our pair-domain method
may take a suboptimal amount of time to maintain this query. For example,
when an object is added to set S, the corresponding objects in set R are looked
up. When the pair-domain method is used, the objects in set R are accessed by
their first or last field, but not both simultaneously. When many objects in set
R share the same first or last field, this can lead to an asymptotic slowdown.
These conditions are the case with people’s names, where there are common
first names (Tom, Michael), and last names (Liu, Smith), but very few people
share both names.

Our method needs some changes in order to support retrieving objects
using multiple fields. The largest change is that the pair domain needs to be

53

extended to support dealing with multiple fields of an object at once. We call
this extended pair domain the tuple domain, with the changed method being
called the tuple-domain method. We also need to extend the definition of the
inverse maps so that they can be used to support our tuple-domain method.

As the extension of the inverse maps is fairly straightforward, we will ad-
dress that first. In the pair-domain method, an inverse map of the form invf

maps an object to the set of object having that object as the value of field
f . The tuple-domain reverse map extends inverse maps to support multiple
fields. We name these inverse maps invf,g. These multiple-field inverse maps
map tuples to objects. A tuple is mapped to an object if the value of the first
field on an object is equal to the value of the first component of the tuple, the
value of the second field on a object is equal to the second value of the tuple,
and so on. We ensure that the field names always appear in some total order,
as this minimizes the number of inverse maps we need to maintain.

Note that these extended inverse maps are similar to the bound-unbound
maps we maintain when optimizing tuple pattern based retrieval. Both maps
use known values of a data structure to retrieve the remaining values of the
data structure, although they differ in the data structure they maintain this
information about.

The remaining changes introduced by our tuple-domain method are to the
way we generate the code that computes the differential binding set. There
are four changes we must address. First, we define the tuple domain, and how
it differs from the pair domain. We then show how to translate a pair-domain
comprehension into a tuple-domain comprehension. After this, we generate
and order the tuple-domain statements used to compute the differential bind-
ing set. Finally, we translate these tuple-domain statements back into the pair
domain, using the extended inverse maps if necessary.

The tuple domain.. The tuple domain differs from the pair domain in
the definition of the field set. The new field set is a set of that satisfies the
following condition:

(o, v1, v2, ..., vn) in fieldf1,f2,...,fn ⇐⇒ ∀i <= 0 <= n, o.fi == vi

This definition of the tuple domain allows us to deal with one or more fields
being accessed on an object, which is the complete set of interesting cases. The

54

tuple-domain definition of field is a superset of the pair-domain definition. In
the pair-domain, n could only be 1.

Translating to the tuple domain.. We must now show how to trans-
late a comprehension from the pair domain to the tuple domain. This is a
straightforward process. We find each group of pair-domain enumerations of
the form:

1 (o, v 1) in fieldf 1

2 (o, v 2) in fieldf 2

3 ...
4 (o, v n) in fieldf n

Because of the way we translate comprehensions into the pair domain, there
are no duplicate fields. We translate each group of pair-domain enumerations
into a single tuple-domain enumeration:

1 (o, v 1, v 2, ... v n) in fieldf 1,f 2,...,f n

We do this for each group of pair-domain enumerations we can find. Condi-
tions and enumerations over the member set are the same in the tuple and
pair domains, and so do not need to be translated.

Generating and nesting clauses.. The next step in our method is to use
generate clauses from the tuple-domain enumerations and conditions, and to
nest these clauses in a way that minimizes the cost of executing them. Clause
generation for conditions and enumerations over the member set is the same
as for the pair-domain method. Enumeration over the field sets requires us to
take into account multiple fields. When encountering the enumeration clause:

1 (o, v 1, v 2, ... v n) in fieldf 1,f 2,...,f n

we generate the special for-loop:

1 for (o, v 1, v 2, ... v n) in fieldf 1,f 2,...,f n:

The semantics of these special for-loops are those of a tuple pattern based re-
trieval for-loop.

We then need to alter our heuristics for nesting the clauses to take into
account the more complex for-loops. In the tuple-domain method, as with

55

the pair-domain, we treat a for-loop over a field set as runnable if at least
one variable is bound. If the variable comprising the first component of the
tuple pattern is bound, then we treat the enumeration as taking constant time,
otherwise, it takes linear time.

Since these for loops allow for there to be runnable for-loops with more
than one free variable, it is no longer appropriate to treat all linear-time for-
loops as equal. Instead, we choose a runnable for-loop with the least number
of free variables. This increases the likelyhood that we have bound a field or
set of fields that form a key. If all variables comprising a key are bound, then
the for-loop will run in constant time.

As with the pair-domain, tuple-domain for-loops benefit from more precise
cost models. Knowing which fields of objects form a key with respect to a
given set is one type of information that can help with choosing a nesting
order.

Translating back to the object domain.
Finally, we need to translate back to the object domain. This is done by

applying the technique for tuple pattern based retrieval to the special for loop,
and then creating the obligations needed to maintain the inverse maps, should
one be needed.

We translate the for-loop:

1 for (o, v 1, v 2, ..., v n) in fieldf 1,f 2,...,f n

in the following way. First of all, we reorder the variables and fields such that
the bound variables come before the unbound variables. Reordering the vari-
ables and fields in the same way preserves the semantics of the special for-loop.
With this reordering, we can assume that variables v1, v2, ..., vm are bound, and
variables vm+1, vm+2, ..., vn are unbound.

If o is not bound, our first step is to retrieve it. We generate the code:

1 for o in inv f 1,f 2,...,f m.get((v 1, v 2, ..., v m)):
2 ...

We also need to generate obligations that maintain invf1,f2,...,fn . These obliga-
tions are of the form:

56

when object o is assigned obligation o

1 inv f 1,f 2,...,f m.add(((o.f 1, o.f 2, ..., o.f m), o))

when object o is about to be garbage collected

1 inv f 1,f 2,...,f m.remove(((o.f 1, o.f 2, ..., o,f m), o))

when a field o.f i is assigned to...

...before the assignment

1 inv f 1,f 2,...,f m.remove(((o.f 1, o.f 2, ..., o.f m), o))
2

...after the assignment

1 inv f 1,f 2,...,f m.add(((o.f 1, o.f 2, .., o.f m), o))

When o is bound, we need to check to see that the values of the bound
variables correspond to the values of the field on object o. For 1 ¡= i ¡= m, we
generate the code:

1 if o.f 1 == v 1 and o.f 2 == v 2 and ... and o.f m == v m:

2 ...

Either way, once the value of o is known, we must assign values to the unbound
variables. This is done by generating the code:

1 v k = o.f k
2 ...

where m < k <= n.

4.7.2 Tuples

While we use tuples throughout our method, until now our query language
did not support them. They can be added by mapping tuples to objects,

57

performing the multiple retrieval method described above, and then mapping
the field accesses back to tuple components. As tuples are immutable, there
are several simplifications we can make when generating obligation code.

Syntax and Semantics. The first step in incrementalizing object set queries
involving tuples is to change the syntax of comprehensions. We alter the
definition of an enumerator to allow for enumeration over a set of tuples. The
revised comprehension syntax is given below:

comprehension ::= parameter+->

{ result exp : enumerator+ condition∗}
enumerator ::= enumeration var in selector
enumerator ::= (enumeration var, +) in selector

selector ::= variable | selector.field
parameter ::= variable

enumeration var ::= variable
result exp ::= expression
condition ::= expression

This new rule allows one to define a tuple enumerator, which matches a tuple
pattern against a set. The tuple pattern consists of one or more enumeration
variables. A tuple enumerator is satisfied by variable assignments that cause
the tuple pattern to construct a tuple that is present in the set.

Changes to the generation of differential binding set computation
code.. The first step in our method is applied when transforming tuple
enumerators into the pair domain. This is done by adding a transformation
rule that turns the tuple pattern:

1 (v 1, v 2, ..., v n)

into the new variable vtuple, while at the same time, adding the enumerations:

1 (v tuple, v 1) in fieldcomponent1

2 (v tuple, v 2) in fieldcomponent2

3 ...
4 (v tuple, v n) in fieldcomponentn

Where component1, component2, ..., componentn are unused field names that

58

represent the various components of the tuples. These will then be merged
into the single enumeration:

1 (v tuple, v 1, v 2, ..., v n) in fieldcomponent1,component2,...,componentn

These transformed obligations will then be used to generate maintenance code.
The maintenance code will access fields of the form v tuple.componentk. As
these fields do not exist in the original program, they need to be transformed
into component accesses of the form v tuple[k]. After this transformation,
the code is compatible with the original program, and maintenance can be
performed.

Impact on obligations. We must also take into account tuples when gen-
erating obligation code. Unlike other objects, tuples are immutable, which
means that fields corresponding to components cannot be modified. This
means that it’s unnecessary to generate obligation code corresponding to mod-
ifications of these fields. Omitting such code can reduce the number of inverse
maps that we need to maintain.

4.7.3 Maps

Adding maps to the class of queries our method supports poses many of
the same issues as sets. We solve them in a similar way, by considering map-
pings as objects, generating the maintenance code, and then transforming the
generated code so that it uses the original maps whenever possible.

Maps present several unique issues we must address, however. The most
important is that unlike tuples, mappings are not objects with unique ids in
the system. The second is that map objects support fast associative access,
and so it does not make sense to include additional maps just to give us that
property.

Syntax. The first thing we do is to alter the definition of a selector to include
access to maps. This entails adding the grammar rule:

selector ::= selector.get(selector)

to our query language.

59

Changes to the generation of maintenance code. For the purpose of
generating maintenance code, we treat each mapping (as well as each map)
as an object. A mapping has three fields: map, key, and value. Map is the
map the mapping is part of, while key and value are self-explanatory. It’s
important to note that these mapping objects are only used for the purpose
of code generation. They do not exist in the generated code.

We transform the comprehension by replacing the code:

1 v map.get(v key)

with vvalue, and adding the following three enumerations:

1 (v mapping, v map) in fieldmap

2 (v mapping, v key) in fieldkey

3 (v mapping, v value) in fieldvalue

where vmappping and vvalue are new variables. Note that as no variable or ex-
pression corresponds to vmapping, it will not be used outside these three enu-
merations.

Code generation then proceeds as described in this section. Note that this
will create the larger enumeration:

1 (v mapping, v map, v key, v value) in fieldmap,key,value

This, in turn, will become the special for-loop:

1 for (v mapping, v map, v key, v value) in fieldmap,key,value

In such a special for-loop, vmapping will always be unbound, and at least one
of the other three variables will be bound. This means that there are five
possible combinations for which variables are bound. We use different code to
transform back to the object domain for each possible combination of bound
variables.

1. When vmap, vkey, and vvalue are bound, the special for-loop becomes
equivalent to a map lookup. The code generated is:

1 if v value in v map.get(v key):
2 ...

60

2. When vmap and vkey are bound while vvalue is unbound, the special-for
loop is equivalent to iteration over the contents of the map:

1 for v value in v map.get(v key):
2 ...

3. When vmap and vvalue are bound while vkey is unbound, we need to main-
tain a map back from the map and value to the key. We call this map
invmap,value. We replace the special-for loop with the following code:

1 for v value in inv map,value.get((v map, v value)]:
2 ...

We also generate the following obligations for vmap:

when the obligation is first assigned to map m

1 for k, v in m.items():
2 inv map,value.get((m, v)).add(k)

when the mapping k -¿ v is added to map m

1 inv map,value.get((m, v)).add(k)

when the mapping k -¿ v is removed from map m

1 inv map,value.get((m, v)).remove(k)

61

4. When only vmap is bound, with vkey and vvalue unbound, the special
for-loop becomes equivalent to iteration over the items in the map:

1 for (v key, v value) in v map.items():
2 ...

5. When vkey and vvalue are bound and vmap is unbound, it becomes neces-
sary to use the invkey,value map to map a key-value combination to the
maps containing it:

1 for v map in inv key,value.get((v key, v value)):
2 ...

We also generate the following obligations for vmap:

when the obligation is first assigned to map m

1 for k, v in m.items():
2 inv key,value.get((k, v)).add(m)

when the mapping k -¿ v is added to map m

1 inv key,value.get((k, v)).add(m)

when the mapping k -¿ v is removed from map m

1 inv key,value.get((k, v)).remove(m)

62

6. When only vkey is bound, with vvalue and vmap unbound, it becomes
necessary to look up the value in invkey, a mapping from the key to the
maps that contain it, and the values it undertakes in those maps.

1 for (v map, v value) in inv key:
2 ...

We also generate the following obligations for vmap:

when the obligation is first assigned to map m

1 for k, v in m.items():
2 inv key.get(k).add((m, v))

when the mapping k -¿ v is added to map m

1 inv key.get(k).add((m, v))

when the mapping k -¿ v is removed from map m

1 inv key.get(k).remove((m, v))

63

7. When only vvalue is bound, with vmap and vkey unbound, we look it up
in invvalue, which maps the value to the maps and keys that correspond
to it.

1 for (v map, v key) in inv value:
2 ...

We also generate the following obligations for vmap:

when the obligation is first assigned to map m

1 for k, v in m.items():
2 inv value.get(v).add((m, k))

when the mapping k -¿ v is added to map m

1 inv value.get(v).add((m, k))

when the mapping k -¿ v is removed from map m

1 inv value.get(v).remove((m, k))

Note that vmapping does not appear in any of the generated code. This is
because it is redundant to the combination of vmap, vkey, and vvalue, and hence
we can remove it entirely from the program.

4.7.4 Aggregation

Throughout this dissertation, the results of queries have been sets of ob-
jects. While queries producing sets are useful, they are by no means the only
useful type of query. Here, we will see how we can use the bindings we produce
with other forms of aggregation.

The first thing we do is to extend the syntax of our queries to support ag-
gregation. This is accomplished by adding aggregation operators to our query
language, as well as a way to indicate that a query is performing aggregation
rather than the usual form of set construction.

64

An aggregation expression is an expression containing aggregation oper-
ators. These aggregation operators look like functions that are optionally
applied to result expressions over the variables defined in the query. These
result expressions may not contain aggregation operators directly, although
nested queries should be okay.

We also change the syntax of queries to indicate that aggregation is being
used. Specifically, we replace the ’:’ with a ’—’ when aggregation is in effect.
The query:

1 wifi ->
2 { ap.ssid : ap in wifi.scan, ap.strength > wifi.threshold }

is equivalent to the following query, which uses an aggregation expression:

1 wifi ->
2 { set(ap.ssid) | ap in wifi.scan, ap.strength > wifi.threshold }

This assumes that the ’set’ aggregation operator has been defined to create a
set containing the objects given to it by the result expression. That’s what
the reference-counted sets we use do.

Of course, there are many other operators that are interesting to us. For
example, we can use a ’sum’ aggregation operator to sum up numeric values,
while a ’count’ operator counts the number of operations produced. (Similar
operator names are used in SQL.) This could be used to produce a query that
incrementally maintains, for example, the average salary of professors at a
college.

1 professors ->

2 { sum(p.salary) / count() | p in professors }

There are a large number of aggregations that are interesting. It’s important
to realize that it would be impossible for us to enumerate every one. Instead,
we must provide a framework that allows programmers to define their own
aggregations, so that programmers don’t have to choose to not use incremen-
talization at all. At the same time, we should provide a library that contains
the most commonly used aggregations, so that they don’t constantly need to
be reinvented from scratch.

Aggregation operators must be registered with the incrementalization sys-

65

tem before they can be used. An aggregation operator is a name that’s bound
to an object constructor, that’s used to make aggregation objects. Aggregation
objects are objects with the following three methods.

• add - used to indicate that an object should be added to the aggregate.

• remove - used to indicate that an object is being used for an aggregate.

• value - used to return a usable value from the aggregate.

The value method bears some explaining. It’s used to return a value from
the comprehension that differs from the object created by the aggregation
operator. For example, an aggregation operator that computes the sum of the
aggregated values will want to return an integer, even if an object is used to
manage the aggregation.

Altering the incrementalization method.. Extending our incremental-
ization method to support aggregation involves two fairly minor changes.

The first is that we change R to be a map from parameters to aggregation
objects, rather than always being a map from aggregation objects to reference-
counted sets. This means that the map must construct new aggregation objects
as it gains new keys.

The other change is to make the query code call the value method of the
aggregation object when it is retrieved. This allows aggregation objects to
chose the value that is returned to the user, rather than always returning the
aggregation object itself.

With these two changes, the method supports arbitrary aggregation oper-
ators. However, there are several aggregation operators that we will discuss in
greater detail, as we have used them in experiments.

Set. The first aggregation operator is ’set’. This is the reference-counted
set that we use when performing object-set queries that do not support ag-
gregation. The constructor creates a new reference-counted set, while the add
and remove operators add and remove elements from the set, respecting the
reference counts of the elements. Finally, the value method simply returns the
set itself.

66

Sum. Another aggregation operator is ’sum’. This sums up the result of a
query. Note that nothing forms a set before aggregation, so this will sum up
the value of the result expressions as applied to all bindings that match the
clauses in the query.

The implementation of the sum aggregation operator is straightforward.
The constructor creates a new object with a total field set to 0. The add
method adds the value of the result expression to the total, while the remove
method subtracts it from the total. The value method returns the total as the
result of the aggregation.

Note that the version of sum described works best in dynamic languages
which support automatic promotion of numeric types. In more static lan-
guages, it may become necessary to have multiple versions of the sum opera-
tion, each supporting a different type.

The sum operation can also be used to implement counting, by applying
it to a result expression consisting of the number 1. This means that queries
that compute averages can be expressed entirely with sum. For example, the
query to compute the average salary of professors can be written as:

1 professors ->

2 { sum(p.salary) / sum(1) | p in professors }

Count. Since many query languages support a count operation that counts

the things, we suggest that the count aggregation operation be the equivalent
of sum(1).

Minimum. The last interesting aggregation operator we present is ’min’,
which maintains the minimum value of a selected object. Min can be imple-
mented by maintaining a tree of values. The add and remove operations add
and remove values from the tree, while the value operation gets the minimum
value in the tree. This allows the minimum value to be incrementally main-
tained. (Maximum can be implemented similarly, as can the median value.)

Unlike the other aggregation operations, incrementally maintaining the
minimum requires O(lg n) time for each element of the differential binding set
(D) produced during an update. Retrieving the result can still be done in O(1)
time. While the other aggregation operators take O(1) time, we do not believe
that allowing the running time to differ based on the aggregation operator is

67

a problem. Rather, it is something the programmer must be aware of, much
as he must be aware of it when writing incremental code himself. Allowing
aggregation operators with differing costs in time and space is necessary for
allowing the automatic incrementalization of a wide range of problems.

User-defined aggregation operations. Our system allows us to automat-
ically incrementalize any form of aggregation for which it’s possible to write
an aggregation operator— that is, where it’s possible to independently give
what happens when elements are added and removed. We believe that writing
the small amount of incremental code required for each type of aggregation
is much easier than incrementalizing queries themselves, making our system
suitable even for cases where appropriate aggregation operators have yet to be
defined. What’s more, aggregation operators, being mere object constructors,
lend themselves to inclusion in a library, making it easy for systems imple-
menting our method to grow.

4.7.5 Grouping

Another operation that is important in queries is grouping, also known as
nesting. In our query language, this operation produces a map from the value
of a grouping expression, to an aggregation produced from the bindings with
that value for the grouping expression.

We extend our syntax for aggregation by adding ”@” as the group operator.
This operator separates the aggregation expression from a group expression.
We allow multiple grouping expressions to be specified, in which case they are
processed from left to right, with the leftmost expression corresponding to the
outermost nested map. For example, the following query

1 professors ->

2 { sum(p.salary) / sum(1) @ p.department @ p.rank
3 | p in professors }

first groups professors by department, then by rank. The average salary is
computed for the professor in each group.

68

This query allows the average salary of full computer science professors to
be retrieved using an expression like:

1 averagesalary.get(’CS’).get(’full’)

where averagesalary is the name of the variable containing the result of the
query.

Incremental maintenance. Incrementally maintaining the result of queries
using grouping requires a small extension to our method. Instead of adding or
removing result expressions to aggregation objects directly, we first evaluate
the grouping expressions, and use them to look up the appropriate aggregation
objects, creating the aggregation objects if necessary. Once the aggregation
objects are known, we add or remove the values of their result expressions, as
appropriate.

For our grouped professor salary query, the code to maintain the result
map, run in response to an add of an element to the professors set, is as
follows:

1 for professors, p, p department, p rank, p salary in D:

2 map 1 = R.get(professors)
3 map 2 = map 1.get(p department)
4 agg 1, agg 2 = map 2.get(p rank)
5 agg 1.add(p salary)
6 agg 2.add(1)

This assumes that when a missing key is retrieved from R or map1, a new map
is created and associated with that key. When a missing key is retrieved from
map2, a tuple containing two sum new objects (corresponding to the two ag-
gregation operators from the) is created and associated with that key.

When values are retrieved from these maps by user code, the value methods
must be called on the aggregation objects, and then the aggregation expression
evaluated with these values. For our example, this means that we would want
the user-level expression:

1 result.get(department).get(role) to

69

execute the code:

1 (r.get(department).get(role][0].value() /
2 r.get(department).get(role)[1].value())

where result is the object returned from evaluating the query, and r is the
value of R[professors] at query evaluation time. This can be accomplished
by making result a wrapper object, or alternatively by making r and result
the same object, but using a different set of methods to access the aggregation
objects directly from inside maintenance code.

Grouping versus Constrained Parameters. Finally, it’s important to
note that some of the effects of grouping can be accomplished through the
use of constrained parameters. For example, to get the average salary for full
professors in a given department using grouping as given above, we would need
to write:

1 salary = { professors ->

2 (sum(p.salary) / sum(1) @ p.department @ p.rank
3 | p in professors)
4 }.get(department).get(’full’)

using unconstrained parameters, one could instead write:

1 salary = { professors, department ->
2 (sum(p.salary) / sum(1)
3 | p in professors, p.department == department,
4 p.rank == ’full’)
5 }

Neither version of the query has an advantage in running time, as making
department a constrained variable ensures that the query is maintained for all
possible values of department, and that results can be retrieved in constant
time.

4.7.6 Set Union

The final extension to our method is a technique for incrementalizing set
union, the last remaining piece of the OQL algebra. We perform set union by

70

noting that the set union operation:

1 S union T

is equivalent to the object-set query

1 ST -> a : a in b; b in ST

where

1 ST = S, T

To allow reuse of this query, it’s necessary that this transformation always re-
turn the same set ST for a given pair of sets S and T . This can be done by
looking the sets up, by object identity, in a map.

While it’s not strictly necessary to generate code for changes to ST , such
code does not hurt anything, since no maps are required to handle these up-
dates.

4.7.7 Redundant Variable Elimination

An optimization to our method is the elimination of redundant variables
in maintenance and query optimization code. We define a variable to be re-
dundant if its value can be determined from that of a non-redundant variables
using a constant time optimization. For object-set queries, this is only the case
with field accesses. More specifically, if we have the following pair-domain enu-
merator:

1 (a, b) in fieldf

and a is not redundant, then b is redundant. b can be determined from a by
evaluating the expression a.f . For each redundant variable, there is an expres-
sion that can compute its value from a non-redundant variable using only a
series of field accesses.

71

For our running example, the reundant variables and the expressions that
compute their values are:

variable expression
wifi signals wifi.signals
wifi threshold wifi.threshold
ap ssid ap.ssid
ap strength ap.strength

The remaining non-redundant variables are wifi and ap.
We can improve program performance by only including non-redundant

variables into the differential assignment set. When the result is computed
using these non-redundant values, uses of redundant variables can be replaced
with expressions that compute their values.

The following block of query update code represents assignments as tuples
containing the values of the non-redundant variables.

after adding ap to a set that wifi scan refers to

1 ap ssid = ap.ssid
2 ap strength = ap.strength
3 if ap in wifi scan:
4 for wifi in invscan.img(wifi scan):
5 wifi threshold = wifi.threshold
6 if ap strength > wifi threshold:
7 if (wifi) in U:

8 D.add((wifi, ap))

The corresponding result set update code retrieves the values of the non-
redundant variables from the differential assignment set, and uses them to
compute entries that are added to the result map.

1 for (wifi, ap) in D:

2 R.add((wifi), ap.ssid)
3 D.clear()

Redundant variable elimination reduces the space needed by the differential as-
signment set, as smaller tuples can be placed into that set. In non-pathological

72

cases, it should also reduce the running time of the program, as hashing the
smaller tuples takes less time, and this should make up for the time required
to evaluate expressions corresponding to redundant variables.

4.8 Implementation and Experiments

To evaluate our method, we developed an implementation in Python. Our
implementation consists of a single Python module, named incr.py. It con-
sists of 617 lines of Python, and requires only the Python standard library to
run. It provides as a public interface a single function, run_query, which takes
as arguments a comprehension with values for its parameters, and returns the
result of the query. This function first checks to see if it has encountered the
query before. If not, it generates obligation and query execution code corre-
sponding to the query, passes the parameters to the query execution code, and
returns the result.

We implement obligations by creating classes. Each object in the system
starts with an initial class, the class it was initially created with. For each
combination of initial class and set of obligations, we create a new class that
inherits from the initial class and runs the maintenance code in the obligations.
When an obligation is assigned to an object, we find the class corresponding to
the object’s initial class and the set of obligations. We assign this new class to
the object, an operation Python allows. We then run any initial code required
by the obligation being assigned to the object.

Our experiments were run on a computer with an Intel Core 2 Duo pro-
cessor running at 2.13GHZ. The machine has 2GB of RAM, although memory
usage was not a concern in our experiments. Our experimental code is written
in Python, using Python 2.4.4, running under Ubuntu Linux. All times re-
ported are CPU usage. They do not include the time used for code generation,
which was about 0.2 seconds for the running example.

All of the programs that our method has been applied to were written by
us. Some may object to this, preferring that our method be applied to open
source programs written by others. However, open-source programs were gen-
erally written with efficiency in mind, and the programmers generally incre-
mentalized the repeated expensive computations by hand. Our method would

73

Figure 4.4: Time taken to perform a varying number of updates and queries,
using our running example.

not improve the performance of such programs. Instead, our method would
allow programmers to write simpler, more readable, and more maintainable
programs, and perform incrementalization automatically.

4.8.1 Running Example

Our experiment consisted of creating a single wifi object, and looping n
times, where n varied between 250 and 2500 at intervals of 250. In each iter-
ation loop, we create an ap object and add it to wifi.scan, and then perform
the wifi query. All ap objects were created with ap.signal > wifi.threshold,
so the number of objects returned from this query equals to the number of
iterations through the loop. For a given n, each experiment was repeated 20
times, with the reported times being the average of 20 runs.

74

Figure 4.5: Time taken to perform a varying number of updates and queries,
using our running example.

Figure 4.4 shows the results of this experiment. The incrementalized im-
plementation is linear in the number of queries and updates performed. This
is consistent with our prediction that the incrementalized code can perform
the query and the update in constant time. The running time of the non-
incrementalized incrementalization is quadratic, reflecting the increase in time
it takes to perform a query as sets get larger.

4.8.2 Django Authentication Query

We then took the following query from the Django web framework. The
result set of this query contains the names of all permissions of all groups of
all given users whose user id is the given uid and that the groups are active.

75

1 users, uid ->

2 p.name : u in users, g in u.groups, p in g.perms,
3 u.id == uid, g.active

In this query users is expected to be a set of User objects. Each User object
must have at least two fields: id containing the user id and groups giving the
set of Group objects the user is in. Group objects also have two fields: active,
a flag that is true if the group is active, and perms giving the set of permis-
sions the group has. Permissions are represented by Permission objects, each
of which must have a name field giving the name of that permission.

Our method predicts that running this query from scratch takes run-
ning time O(users ∗ groupsuser ∗ permsgroup), where groupsuser means the
number of groups each user has. When the user is known, such as when
adding or removing a user or updating u.uid or u.groups, the running time is
O(groupsuser ∗ permsgroup). When the group is known, such as when added
to or removed from a set or updating g.active or g.perms, the running time is
O(usersgroup∗permsgroup). Finally, when a permission is known, via an update
to a permissions set or p.name, the running time is O(groupsperm∗usersgroup).

The experiment we performed using the Django authentication query con-
sists of creating a number of users sharing a single group, then adding a varying
number of permissions to that group, performing a query to find the permis-
sions granted to one of the users. This experiment was performed using both
non-incremental and incremental implementations of the code. As the perfor-
mance of the incrementalized implementation depends on the number of users,
we varied the number of users between 100 and 300, fixing the number of users
at 100 for the naive version. The number of permissions was varied between
50 and 500. For a given number of permissions the experiment was repeated
50 times, with the reported times being the average of 50 runs.

Figure 4.5 shows the running time for the naive non-incremental version is
quadratic in the number of permissions created, while the running time of the
incremental version is linear in both the number of permissions and the number
of users. This is what is expected from our method for this experiment. We
also note that the incremental implementation moves most of the running time
from queries to updates, so in systems with many more queries than updates
(such as the authentication system this query is based on), our method is much

76

Figure 4.6: Time taken to perform 10,000 queries, for a varying number of
electronic patient records.

faster than naive code.
We also ran the experiment against a Postgres database, which was far

slower than our in-memory query code. For a query with 500 permissions
and 100 users, the database query took 2570 milliseconds, versus 8 for the
incrementalized code.

4.8.3 Electronic Health Record Policy

We have also written an object-oriented version of the United Kingdom’s
Electronic Health Record (EHR) service policy, based on the specification by
Becker [7], and applied our automatic incrementalization method to it. The
following query corresponds to a rule that determines if a clinician is authorized

77

to view a patient’s electronic patient record into an object-set query:

1 org, cli ->
2 record: tm in org.team memberships,
3 tm.cli == cli,
4 tm.spcty == cli.spcty,
5 record in org.records,
6 record.group == tm.team

It finds the set of records a clinician is authorized to view, based on his team
memberships and specialty.

To demonstrate how our method improves the query performance, we pop-
ulated the database with a single clinician, team, and team membership, and
with a varying number of records, all of which are accessible to members of the
team. We then measured the time to perform 10,000 queries that determined
the records accessible to the clinician.

As shown in Figure 4.6, the results of this experiment are similar to the
results of the RBAC experiment. While both queries take linear time, the
very low slope of the incrementalized version makes it look constant. In both
EHR and RBAC, our method is able to replace expensive duplicate queries
with constant-time retrievals, significantly improving program performance.

4.8.4 Student Information Management System

Finally, we have applied our method to a set of queries developed to manage
the records of graduate students in our department. This system is highly
object-oriented because of the temporal nature of much of the data. For
example, each Student object has a programs set, which is a set of Program
objects. Each Program object stores the program that the student is in (one
of ’ms’ or ’phd’), as well as start and end dates for the program. In this way,
the history of a student can be maintained as the student proceeds through
our graduate program.

This system is developed to extend an existing system, and as part of
this effort, we have written a total of 54 comprehensions, most of which are
queries in the original system, and the rest are queries for data conversion.
We wrote each comprehension in as straightforward a manner as we could,

78

Codegen Lines AST
Query time (s) Updates of Code Nodes

Current Students 0.43 11 526 3976
New Students 0.42 11 524 3853
Old Students 0.42 11 524 3870

Fresh Students 0.06 4 85 486
Fellowship Students 0.24 9 345 2298
TAs and Instructors 0.51 16 689 4657

TAs 0.03 3 45 237
Old TAs 0.09 5 126 813
New TAs 0.09 5 126 813

New TA Emails 0.26 11 412 2478
TA Waitlist 0.36 12 528 3423
Good TAs 0.18 8 267 1726

Qual Exam Results 0.46 13 614 4723
Advisors by Student 0.43 12 558 4236

Students w/o Advisor 0.32 10 452 3038
Advisor Overdue 0.41 11 522 3764

Prelim Exam Overdue 0.24 9 340 2274

Table 4.3: Code generation statistics for student management system.

without considering our method or any efficiency issues.
Our system is able to incrementalize 52 of the 54 queries. The two queries

our method did not incrementalize involve aggregation of results, which we
are yet to implement. This shows our method can handle many interesting
queries.

Of the 52 queries our method can incrementalize, we identified 17 frequently
used queries. Table 4.8.3 shows the statistics we collected when incrementaliz-
ing these 17 queries. For each query, we report the code generation time, the
number of kinds of updates that can affect that query, and the lines of code
and AST nodes generated. The number of updates approximates the number
of methods that would need to be modified to run the maintenance code. It’s
a good approximation of the number of places in the program that need to

79

Figure 4.7: Time required for 100 student queries, for a varying number of
students.

be changed to incrementalize it. All told, in less than 10 seconds we are able
to generate the thousands of lines of code required to incrementalized these
queries.

An example query from this system is the New Students query, which finds
all students who either joined the department in a given semester or have
changed program that semester. This query reads:

1 students, sem ->

2 s : s in students,
3 p in s.programs
4 if s.joined == sem or
5 p.start != null and p.start == sem

We store information about a student’s program in a set of Program objects.

80

When a student changes program, those Program objects store the start and
end dates of the old program and the start date of the new program. We use
this query to experiment with changing fields. In this experiment, we created
a varying number of Student objects. For each of 100 iterations, we choose a
student from the set, choose one of its Program objects, and alter the starting
semester. We then perform the query. Figure 4.7 shows that, as expected,
the non-incremental version of the program takes linear time to run. The in-
cremental version also takes linear time, but with a much lower slope. The
bulk of the time is taken up in the initial computation of the incrementally
maintained result, as the running time is constant when run a second time on
the same data.

81

Chapter 5

Static Approaches

As currently proposed, our method is completely dynamic, requiring that
obligations be inserted into objects at runtime. This is suitable for dynamic
languages such as Python, but may be more difficult to accomplish in less-
dynamic language such as C++, Java, and C#. For such languages, a dy-
namic approach would require language support for intercepting field accesses
and method calls, something that can greatly slow down program execution.
Generally, support for such interception is present in dynamic languages, and
so a dynamic approach adds less overhead.

Statically generating incrementalization rules provides the following advan-
tages:

1. It gives the programmer insight into the incrementalization process. Un-
like the dynamic incrementalization process, the programmer can inspect
the incrementalization rule, and the generated code after the incremen-
talization has been applied. This can give confidence in the correctness
of the incrementalization, and also understanding of the performance of
the generated code.

2. It can reduce the overhead of the incrementalization process. Unlike
the dynamic method, there is no overhead for inserting code into the
program. (But see below.)

3. Unlike the dynamic method, the static method can take advantage of

82

information known about the program. This will let us optimize the
generate maintenance code in ways not possible with only dynamic code.

4. A static approach to generating incrementalization rules allows our method
to be applied to languages which do not support the interception of
method calls and field updates.

However, a static approach to incrementalization is not without downsides,
however. Some potential downsides to the static method are:

1. The number of cases in which the incrementalization process can be
applied is limited. Specifically, we must ensure that we can statically
find all updates that can affect the incrementally maintained result. This
limits the approach we can use in programs in which objects results
depend on are updated by unanalyzable libraries and plug ins.

2. As there are many updates that may- but not must-alias objects that the
query depends on, we may run at least some maintenance code for up-
dates to objects that are not reachable from the query parameters. Com-
pare this to the dynamic approach, where objects that are not reachable
from query results incur no performance penalty.

In this chapter, we will discuss how to automatically generate static in-
crementalization rules for object-set queries. We will first describe what is
required in a program transformation system that is capable of applying the
rules we generate. This will be followed by two approaches for generating
static rules, and a discussion of possible optimization opportunities presented
by static incrementalization. Finally, we will give an experimental evaluation
of the effectiveness of static and dynamic incrementalization techniques.

5.1 Program Transformation System

Rather than attempting to apply our program transformations to the pro-
gram directly, we generate rules to be applied by a program transformation

83

system. This approach has two benefits: the rules become readable and un-
derstandable by users of the system, and much of the complexity of rule appli-
cation can moved into the transformation system, rather than the incremen-
talization code proper. The latter is only an advantage if a system exists that
can apply the generated rules. InvTS is one such system. [].

The rules our method generates are comprised of several types of clauses:

• An inv clause introduces the rule, giving a query to match and an ex-
pression that is used to replace that query. There can be only one inv
clause per rule.

• A de clause allows code to be inserted into a scope, either in a class,
written using de in class :, or in a specific module, written using plain
de global module:.

• The at method causes code to be inserted before or after updates, into
method definitions, and into property functions. Property functions are
functions that are called before and after field updates. The syntax of
the at function determines which form is used:

– at update inserts code before or after an update.

– at method class.method(args) inserts code at the start or end of a
method.

– at property class.field inserts code at the start or end of a property
function that is called when a field is set. It’s assumed that this
property function always sets the field to the supplied value.

• The if expression clause may be a sub-clause of the at clause. Code is
only inserted if the expression is true. The expressions is evaluated at
the meta-level, using the meta-expression syntax defined below.

• The do before and do after clauses may be sub-clauses of inv and at
clauses. The do before/do after clause inserts code before/after queries
and updates, and at the start/end of methods or property functions.

84

• The order number clause can be a sub-clause of at clauses, and controls
the order in which code is inserted. For a given rule, all code with a
given order number is inserted at a given program point before any code
with a higher order number is inserted at that point.

The inv and at clauses may introduce meta-variables which match expres-
sions and types in the original program. Meta-variables introduced in an inv
clause are scoped to the entire rule, while those introduced in an at clause are
local to that at clause and its sub-clauses. Meta-variables may be used in do
clauses, where they are expanded to their original values.

Meta-variables may also be used in meta-expressions as part of the if state-
ments. Meta-expressions refer to three kinds of values: sets of objects, sets of
types, and booleans. Meta-expressions consist of:

• $v - The set of objects that can be referred to by the expression matched
by the given meta-variable.

• e.f - The set of objects that can be referred to by the f field of objects
contained in the set of objects e.

• e.member - The set of objects that can be elements of objects in the set
of objects e.

• amay−aliasb - True if there exists an object in the set of objects a that
may alias an object in the set of objects b.

• amust − aliasb - True if every object in the set of objects a must alias
every object in the set of objects b.

• type(e) - The set of types of objects in the set of objects e.

• a == b - True if the set of types a has a non-empty intersection with the
set of types b.

• The and and or meta-operators have there conventional meaning, as
does parenthesizing expressions.

85

Finally, if more than one do clause would cause code that is textually
equivalent after meta-variable expansion to be inserted more than once at a
single point in the program, we only insert that code a single time. This
ensures that redundant code is not introduced into the program, and allows
us to easily ensure that certain types of code are run only once.

5.2 Generating Static Incrementalization Rules

In order to statically incrementalize a program, we must follow a four step
process. We first scan the program to find all queries that the programmer
has selected for incrementalization. Next, we generate the obligation and
query execution code for each query, using the technique described in the prior
sections. We then transform this code into static static incrementalization
rules corresponding to those queries, noting that queries with a similar enough
form can be incrementalized using the same incrementalization rules. Finally,
we use a program transformation system to apply the incrementalization rules
to the program, yielding an incrementalized result program.

As incrementalizable queries are syntactically different from surrounding
code, it’s easy to scan through the source code of the program to find ap-
propriate queries. This is made easier by the fact that the only penalty for
misidentifying queries is that we will generate an incrementalization rule that
cannot be applied to the program. Similarly, as we rely on an existing program
transformation system, applying the rules involves invoking that system with
the appropriate rule files.

The remaining operation is the generation of the static incrementalization
rules. We do this by taking our technique for dynamic incrementalization,
and using it to generate rules that can be applied statically. There are two
approaches we can take for this generation process, distinguished by where we
place the maintenance code. The internal approach places the maintenance
code inside the classes of objects being updated, while the external approach
places maintenance code at the location of the updates. Both have advantages
and disadvantages, which will be discussed below. Much of the method is
common between the internal and external approaches.

86

5.2.1 Commonalities

Comprehension-Local Variables. The first thing the two approaches to
static incrementalization have in common is the need to be able to statically
refer to the comprehension local variables: R, D, U , and the inv maps. De-
pending on the language, we either place these variables in a module dedicated
for the purpose, or we place them as static fields of a class dedicated to this
purpose. The module or class chosen should be unique to the query being
incrementalized, as this ensures that the comprehension-local variables will be
unique.

Knowing this, we can begin incrementalizing the running example query:

1 wifi ->
2 ap.ssid : ap in wifi.signals, ap.strength > wifi.threshold

We will be placing the comprehension global variables in the global module
q, but note that this is an arbitirary choice, and should be different for other
queries we incrementalize in the same program.

We can begin creating the query by introducing an inv clause, one that
takes each parameter as a meta-variable, and replaces the query with an ex-
pression that retrieves the result from R. For the running example, we would
introduce the clause:

1 inv q.R[$wifi] =
2 $wifi -> ap.ssid : ap in $wifi.signals,
3 ap.strength > $wifi.threshold

We then introduce de clause, one that defines the comprehension-local vari-
ables used in this comprehension in the module q. The names of all of the
comprehension-local variables can be determined from the generated obligation
and query assignment code. For our running example, the comprehension-local
variables are R, D, U , invscan, and invmembers. So we generate the following
de clause.

87

1 de global q:
2 R = rc multimap()
3 D = set()
4 U = set()
5 invscan = multimap()
6 invmembers = multimap()

If bound-unbound maps are needed for partially bound retrieval from U, those
maps are also stored in the q module.

Obligation Meta-Expressions. Our next step is to determine, for each
obligation, a meta-expression that computes the set of objects that can have
this obligation. We use these meta-expressions to determine which classes and
updates require the insertion of maintenance code. As obligations correspond
to pair-domain variables, the set of objects that can have a given obligation is
equivalent to the domain of that pair-domain variable.

The meta-expressions are computed in a manner similar to the set of sup-
ported variables. We start by declaring that the meta-expression for each
parameter p is $p. Next we find two variables, a and b, such that the meta-
expression for a is known to be expr and the meta-expression for b is unknown.

If a and b appear in the pair-domain selection:

1 (a, b) in fieldf

then the meta-expression for b is expr.f . If they appear in the pair-domain
selection:

1 (a, b) in members

the meta-expression should be expr.member. If they are not related in this
way, we must pick another pair of variables. This process continues untill each
pair-doman vairable, and hence obligation, is assigned a meta-expression. This
process will always complete because we require that each pair-domain variable
must be dependent on at least one unconstrained parameter.

In our running example, the meta-expressions corresponding to obligations
are:

• wifi - $wifi

88

• wifi scan - $wifi.scan

• ap - $wifi.scan.member

There is no need to compute meta-expressions for wifi threshold, ap strength,
or ap ssid, as there are no obligations added to objects that can be the values
of these variables.

Obligation Assignment. The next thing we must do is to implement obliga-
tion tracking and assignment code. We track obligations using booleans added
to the classes that contain the obligations. The boolean variables are named
with the query’s unique identifier, followed by the name of the obligation. For
each obligation, we generate a de clause that adds the boolean to classes of
objects in the domain of the corresponding variable.

The de clauses that add the booleans used by static versions of our running
variables are:

1 de in type($wifi):
2 q wifi = False

3 de in type($wifi.scan):
4 q wifi scan = False

5 de in type($wifi.scan.member):
6 q ap = False

In module q, we define an obligation assignment function for each obligation.
These assignment functions first check to see if an object already has an obli-
gation. If it does, they simply return. If not, the obligation assignment code
is executed. Calls to assign obligation are rewritten to call the appropriate
assignment function in q.

For our running example, the code to assign obligations is:

89

1 de global q:

2 def assign wifi(wifi):
3 if wifi.q wifi:
4 return

5 wifi.q wifi = True

6 assign wifi scan(wifi.scan)
7 q.invwifi scan.add(wifi.scan, wifi)

8 def assign wifi scan(wifi scan):
9 if wifi scan.q wifi scan:

10 return

11 wifi scan.q wifi scan = True

12 for ap in wifi scan:
13 q.assign ap(ap)
14 q.invmembers.add(ap, wifi scan)

15 def assign ap(ap):
16 if ap.q ap:
17 return

18 ap.q ap = True

Query Execution Code. The final type of code that is the same in both
approaches to static incrementalization is the query execution code. This code
must be run before the query occurs, using a do before clause. The only
modifications needed are those required to access the variables and obligation
assignment functions that are found in the comprehension specific module and
class.

90

1 do before:

2 if ($wifi) not in q.U:

3 q.assign wifi($wifi)
4 q.U.add(($wifi))

5 wifi scan = wifi.scan
6 wifi threshold = wifi.threshold
7 for ap in wifi scan:
8 ap ssid = ap.ssid
9 ap strength = ap.strength:

10 if ap strength > wifi threshold:
11 if ($wifi) in q.U:

12 q.D.add(var asgn())

13 for a in q.D:

14 q.R.add((wifi), eval(ap ssid, a))
15 q.D.empty()

Placing this code in a do before clause ensures that the result of the query
appears in q.R when it is retrieved as part of the in clause.

5.2.2 Internal Approach

The internal approach is one of two approaches to the placement of main-
tenance code. In the internal approach, maintenance code is placed inside the
classes of objects that are being updated, and run when methods or proper-
ties on those objects are called. This has the advantage of minimizing code
duplication. It is also somewhat robust in the presence of libraries and plug-
ins, since as long as the objects are updated using the supplied methods and
properties, incremental maintenance can be performed correctly. The internal
approach can determine where to insert the code using only type information.

The internal approach has some downsides, however. A small amount of
inserted code runs whenever the appropriate update is performed by an ob-
ject of the give class, even if there is no chance that object may be given the

91

corresponding obligation. For classes with objects that participate in multiple
queries, such as the set class, this overhead may prove substantial. A second
problem is that this approach demands that fields used in queries be repre-
sented as properties, which may not be supported in some languages, and may
be an incompatible API change in others.

The first thing we must do to support the internal approach is to modify
the add and remove methods of the set object so that our methods are only
called when an object is actually being added or removed from the set. This
code needs to be run before the set is actuall modified, which means that it
is the highest-priority code the approach introduces. In the add and remove
methods of the set class, we introduced the prefixed variable q changed, which
stores the fact that the set has been changed. A simple optimization would
be to share a single changed variable for all static incrementalization. The
clauses we introduce are:

1 at method set.add($s, $v):
2 order 1

3 do before:

4 q changed = $v not in $s

5 at method set.remove($s, $v):
6 order 1

7 do before:

8 q changed = $v in $s

With the q changed variable present, we are able to generate an at clause for
each block of code present in the obligations generated from a query. For each
at clause, we also generate subordinate if, order, and do clauses. This gen-
eration can be done mechanically, as for each combination of update and code
type, there’s a single combination of clauses to be generated.

The at and if and do clauses are generated from the kind of update,
according to the following rules. Note that in this table, a and b are the
variables used in the obligations, f is a field, $a and $b are the corresponding
meta-variables, and expr a is the meta-expression determined for a. The meta-
variables should not be the same as meta-variables used for parameters.

92

update at clause if clause do clause
a add b at method set.add($a, $b) if True do after
a remove b at method set.remove($a, $b) if True do before
a.f assign at property $a.f if $a = type(expra) do after
a.f deassign at property $a.f if $a = type(expra) do before

The order clause is determined by a combination of the kind of update and
the purpose of the code. The order numbers have been chosen so that code
of a given kind executes in the same order it would in our dynamic method.
This ensures that the differential assignment set is always computed before the
result map is ever updated, and that the inverse maps are maintained before
an addition/assignment but after a remove/deassignment.

purpose add/assign remove/deassign
inverse map maintenance 2 4
D computation 3 2
R update 4 3

When multiple at clauses insert code at the same point in the program,
we expect that all code with a given order number will be inserted before any
code with a higher order number.

Finally, we must give the code contained within the do clause. This code
begins with a conditional that checks to see if the object being updated has
been assigned the appropriate obligation. In the case of an add or remove
update, the conditional also check to see if the set is being changed. As an
example, we assume that the code has been inserted into object $a, which may
have obligation a, and that the unique identifier is q. For the add and remove
updates, we generate the code:

1 if q changed and $a.q a:
2 ...

As the deassign and assign updates always occur, even if they do not change
program state, it is only necessary to check the obligation:

1 if $a.q a:
2 ...

The block of code is then inserted under this clause, substituting meta-variables

93

$a and $b for variables a and b, and replacing the comprehension-local variables
with their equivalents in the q namespace.

As an example of this, take the differential assignment set computation
code that runs when ap is added to a set that wifi scan refers to:

1 ap ssid = ap.ssid
2 ap strength = ap.strength
3 if ap in wifi scan:
4 for wifi in invscan.get(wifi scan):
5 wifi threshold = wifi.threshold
6 if ap strength > wifi threshold:
7 if (wifi) in U:

8 D.add(var asgn())

From the fact that this corresponds to an add update, we can determine the
at and if clauses, and the fact that we need to have a do after clause. Know-
ing that it’s a differential assignment computation code belonging to an add
operation, we can determine that the order number is 3. So the final code is:

1 at method set.add($wifi scan, $ap)
2 if True

3 order 3

4 do after:

5 ap ssid = $ap.ssid
6 ap strength = $ap.strength
7 if $ap in $wifi scan:
8 for wifi in invscan.img($wifi scan):
9 wifi threshold = wifi.threshold

10 if ap strength > wifi threshold:
11 if (wifi) in U:

12 D.add(var asgn())

Repeating this for every block of code in every obligation yields the complete
internal static transformation rule.

94

5.2.3 External Approach

A second approach to the placement of maintenance code is the external
approach, which places the maintenance code at the site the updates them-
sevels, rather than inside the classes of objects or sets that are being updated.
The advantages and disadvantages of this approach mirror those of the in-
ternal approach. The primary advantage is that the internal approach uses
may-alias information to only insert code at updates that potentially affect
queries. While not as accurate as the dynamic method, using the external
approach in conjunction with accurate must-alias information can reduce the
cost of updating objects of classes that are shared between multiple queries.

A second benefit of the external approach is that it does not change the
classes in incompatible ways, as the internal approach does. However, the
external approach has the downside that it requires that code be inserted
at any point in the program where a relevant update occurs, which in turns
means that libraries and plug-ins must be analyzed and modified if they update
objects involved in the query. This limits the usefulness of not modifying the
API of the class itself.

The external approach requires that a conservative may-alias analysis be
performed on the program. The conservativeness needs to be in the direction
of over-estimating the may-alias relation. If a and b are expressions, then a
must-alias b must be true if at least one object can be in the domain of both a
and b. Overestimation will reduce performance as obligaitons will need to be
checked unnecessarily, but underestimation will cause the application of the
rule to be incorrect.

As with the internal approach, the first step we have is that we need to
make available information about if a change actually occured to the set or
map. We store this information in the q changed variable, as we do in the
internal approach. For every obligation a such that code for the update a add
b exists, we generate the rule:

1 at method $s.add($v)
2 if $s may-alias expr a
3 order 1

4 do before:

5 q changed = $v not in $s

95

where expra is the meta-expression corresponding to a. If the update a remove
b exists, we generate the code:

1 at method $s.remove($v)
2 if $s may-alias expr a
3 order 1

4 do before:

5 q changed = $v in $s

Note that a single update may match under multiple obligations. The same
code is generated for each match, so the program transformation system will
only insert this check once.

The external approach mechanically generates at, if, order, and do clauses
for each block of code found in the obligation, similar to the way the internal
approach does it. We change the at and if clauses to match the updates,
rather than the methods implementing updates. The new clauses are:

update at clause if clause do clause
a add b at $a.add($b’) if $amay − aliasexpra do after
a remove b at $a.remove($b) if $amay − aliasexpra do before
a.f assign at $a.f = $ignored if $amay − aliasexpra do after
a.f deassign at $a.f = $ignored if $a′may − aliasexpra do before

Note that $a, $b, and $ignored should all be fresh meta-variables that are
not query parameters, this ensures that the at clause and the inv clause share
no variable, save those used in expra.

The rest of the process is the same as with the internal approach. The order
number is the same, the code generated is enclosed in the same conditional,
and meta-variables are substituted for variables in the same way. The external
static version of our sample block of code is:

96

1 at $wifi scan.add($ap)
2 if $wifi scan may-alias $ap.wifi scan
3 order 3

4 do after:

5 ap ssid = $ap.ssid
6 ap strength = $ap.strength
7 if $ap in $wifi scan:
8 for wifi in invscan.img($wifi scan):
9 wifi threshold = wifi.threshold

10 if ap strength > wifi threshold:
11 if (wifi) in U:

12 D.add(var asgn())

5.3 Static Optimizations

There are several optimizations we can perform that improve the perfor-
mance of the external approach to the static method. In this section, we
present three such optimizations.

5.3.1 Inverse Map Elimination

Our methods, both static and dynamic, generate maintenance code for
all possible programs that contain the query. However, the static method
eventually applies rules to a single program.

It’s possible to analyze the result of a rule application to see which inverse
maps are actually added to the program. If an inverse map is never actually
used by the transformed program, there’s no need to maintain that inverse
map. This lets us safely remove all code that maintains that map from the
transformation rule.

For this purpose, we consider a map to be used if and only if at least one
lookup occurs. We do not consider the addition or removal of mappings when
determining if a map is used, as these additions and removals serve no purpose
if the map is not later accessed. This can be considered to be a form of dead-

97

code elimination that takes into account the nature of the high-level map data
type.

This optimization can reduce the running time of the program by a con-
stant amount of time per update, as that’s the cost of maintaining the unnec-
essary map. Our methods impose a constant amount of space overhead on the
program, applying this optimization reduces that constant factor.

5.3.2 Obligation Check Elimination

A second optimization we propose the use of must-alias information to
eliminate the overhead involved with checking that obligations are assigned to
objects. We can perform obligation check elimination on obligations for which
the following condition is true:

• When $a is the object being updated, and expr is the meta-expression
that corresponds to the obligation, we require that at all updates which
run mainteance code, if $amay − aliasexpr, then $amust− aliasexpr.

Note that this condition is trivially satisfied in the case where there are no
updates that cause the maintenance code associated with a given obligation
to be run.

When this conditions is the case, we can eliminate the need to perform
obligation assignment. This is because we know that all objects that can have
the obligation must have the obligation, eliminating the need to check, and
the need to maintain the information required to check.

This is done in three steps:

• Eliminate the the definition of the q a field in classes that are being
updated.

• Eliminate the code that sets q a to true in the assign a method.

• Eliminate the check of a.q a before each block of code generated from
obligation a.

When no code exists in an obligation assignment method assign a, that
method can be eliminated. To do so, remove the definition of the method,

98

and all code that calls it. When removing a method call removes the last
remaining code in another obligation assignment method, that method should
be removed as well.

This optimization simplifies the generated code and reduces the running
time by a constant amount of time per update.

5.3.3 Known Parameters Optimization

Our next optimization applies to queries for which, at any given point in
time, there are a limited number of combinations of unconstrained parameters
for which we are maintaining the query. When the number of combinations
of unconstrained parameters is small enough that it can be considered con-
stant, we can take advantage of this to reduce query cost, and eliminate the
maintenance of many inverse maps. In the case of our running example, this
optimization can eliminate all use of inverse maps.

The known parameters optimization assumes that U is kept up to date, and
that it contains only the combinations of the values of unconstrained parame-
ters for which we are interested in maintaining queries. When we are no longer
interested in incrementally maintaining query results for a given combination
of query parameters, we remove that combination for U. We furthermore re-
move from R results corresponding to all combinations of parameters which
we are no longer incrementally maintaining results.

Being able to treat U as a set with constant size means that we are able to
place for-loops over it much earlier in the nesting order. Instead of being one
of the last for-loops to be iterated over, the accesses to U will be one of the
first. For two of the updates affecting our example, we generate the following
pair-domain differential binding set computation code.

99

1 static wifi signals add ap:

2 for wifi in U:

3 for wifi, wifi signals in fieldsignals

4 for wifi, wifi threshold in fieldthreshold

5 for ap, ap ssid in fieldssid

6 for ap, ap strength in fieldstrength

7 if ap strength > wifi threshold
8 D.add(assignment())

9 static ap.strength assign:

10 for wifi in U:

11 for wifi, wifi signals in fieldsignals

12 for wifi, wifi threshold in fieldthreshold

13 for ap, ap ssid in fieldssid

14 for ap, wifi signals in members,
15 if ap strength > wifi threshold:
16 D.add(assignment())

The advantages of the new nesting we’ve chosen appears when we translate
back to the object domain. The object-domain differential binding set com-
putation code is:

100

1 static wifi signals add ap:

2 for wifi in U:

3 wifi signals = wifi.signals
4 wifi threshold = wifi.threshold
5 ap ssid = ap.ssid
6 ap strength = ap.strength
7 if ap strength > wifi threshold:
8 D.add(assignment())

9 static ap.strength assign:

10 for wifi in U:

11 wifi signals = wifi.signals
12 wifi threshold = wifi.threshold
13 ap ssid = ap.ssid
14 ap strength = ap.strength
15 if ap in wifi signals:
16 if ap strength > wifi threshold:
17 D.add(assignment())

This code has several advantages over incrementalization that does not con-
sider known parameters. First, note that when the size of U is small enough
to be considered constant, which is the premise for this optimization, these
blocks of maintenance code run in constant time. Furthermore, these blocks
of code do not use any of the inverse maps. When the known parameters
optimization is applied to the running example query, we do not generate any
blocks of code that use inverse maps. This means that we no longer need to
maintain any inverse maps, allowing us to reduce the running time and shrink
the space usage of incrementalized programs.

5.4 Experiments

To compare the overhead of static and dynamic incrementalization, we
used both methods to incrementalize one of the queries found in the ANSI

101

Figure 5.1: Time taken to perform 100 RBAC UserOperationsOnObject
queries, for a varying number of permissions.

Role-Based Access Control standard. By comparing the time required for
queries and updates under each variant of incrementalization, we are able to
give guidance as to when to use each approach.

Role-Based Access Control (RBAC) [17, 6] is an ANSI standard for control-
ling access to operations on objects. Core RBAC controls access by assigning
permissions to perform operations on objects to roles, and then assigning users
to those roles. To demonstrate how our method can be used to simplify an
implementation of Core RBAC, we created an object-oriented variation, OO-
RBAC. In OO-RBAC, users, roles, sessions, operations, objects, and permis-
sions are all implemented as objects. The role to permission and user to role
assignment multimaps are implemented as fields on the user and role objects,
respectively.

Our method was used to automatically create incremental implementa-
tions of the Core RBAC review functions. One such function is UserOpera-
tionsOnObject: given a user and an object, it returns the operations the user
can perform on that object:

102

1 rbac, user, object ->
2 perm.operation : user in rbac.users,
3 role in user.roles,
4 perm in role.perms,
5 perm.object == object

The rbac parameter and the first clause make user and object constrained pa-
rameters, rather than unconstrained parameters. This allows us to perform
repeated queries involving the same rbac in constant time.

There are 11 possible updates that can affect the result of this compre-
hension: assigning to 5 fields, adding to 3 sets, and removing from 3 sets.
Of these, OO-RBAC only uses the 6 set update operations. As each of these
set updates corresponds to an administrative function, compared to a hand-
incrementalized approach the use of our method lets us remove code from these
6 functions and centralize it in a single query.

To show how incrementalization improves this query performance, we pop-
ulated the RBAC database with 1 user, 1 role (assigned to the user), and a
varying number of permissions (all assigned to the role), with each permission
allowing a different operation on the object. We then timed how long it took to
perform 100 queries. Since all of the incremental versions use identical query
evaluation code, we only present a single incremental case.

Figure 5.1 shows the results of this experiment. The non-incrementalized
implementation obviously takes linear time, as each query needs to access
every permission. Our incrementalized implementation also takes a constant
amount of time to perform these queries. This gives substantial time savings
when number of objects is large. For the largest case considered (100,000
operations), each query takes only 10 microseconds, versus 100 milliseconds
for the non-incremental approach.

This decrease in query time is paid for by an increased cost of updates. For
this query, adding a new permission to a role takes time proportional to the
number of users assigned that role. This is exactly the size of the change to
the result set. The precise overhead depends on the approach used to invoke
the maintence code when the update occurs.

Figure 5.2 shows the time taken to insert a varying number of permissions
into a role involved with a query. Since we’re plotting the total time required to

103

Figure 5.2: Time taken to add n permissions to a role that is involved with a
query.

add a varying number of permissions to a role, all variants take a linear amount
of time to complete. Each insertion takes a constant amount of time (assuming
the number of users involved is fixed), with the constant revealed by the slope
of that method’s line. The non-incremental implemention is fastest, as it
executes no additional code for an update. The two static approaches are faster
than the dynamic approach, with the external static approach performing
slightly but consistently better than the internal static approach. Even the
dynamic approach takes less than 2.5 seconds to perform all 100,000 additions,
which means that an incremental program will win out provided there is at
least 1 query for every 4,000 updates.

The amount of overhead incurred by an incrementalization approach can
vary depending on which queries actually occur during program execution. To
evaluate this, we experimented with programs in which the query may, but
not must, occur. (For example, whether the query occurs can be controlled
by a command line argument.) Figure 5.3 shows the result of this experiment.
The two static approaches incur overhead even when the query does not occur,
as they require inserting code at places in the program that can (during any
possible execution) affect a query result, even if that update cannot affect a

104

Figure 5.3: Time taken to add n permissions to a role that is involved with a
query, when no queries occur.

result during a particular execution. The dynamic approach, while still some-
what of an over-approximation, is much more precise than dynamic methods,
and so the time taken for insertions when no query occurs is identical to the
non-incrementalized case.

Each approach has its own benefits and drawbacks. A static external ap-
proach requires all libraries and plug-ins that can change the query result be
present at code-generation time, but yields the fastest code when every ob-
ject can affect a query result. The static internal approach has the advantage
of only modifying the classes of objects involved in the query, while leaving
code that merely updates those classes unchanged. Both static approaches are
suited to languages like C++, Java, and C# where changing classes is difficult
or impossible. Finally, the dynamic approach requires no modification to the
code, allows for runtime code-generation, and adds no overhead to objects that
are not reachable from queries. The dynamic approach is therefore suitable for
use in dynamic languages such as Python, Perl, PHP, and Ruby, when only a
fraction of updates can affect query results.

105

Chapter 6

Related Work and Conclusion

6.1 Tuple Pattern Based Retrieval

Tuple pattern based retrieval is related to work in a number of fields of
computer science. Since it involves querying data, it is related to databases.
As a programming language construct, it is related to programming languages.
It is also related to the tuple spaces used in distributed programming, and to
indexing in Prolog. Lastly, our work can be considered to be in the area of
data structure selection.

When working with sets of tuples, an obvious comparison is with relational
databases. Tuple pattern based retrieval can be considered a restricted form
of the select operation found in relational algebra. By focusing on only one
operation, we gain a number of advantages over relational databases, which
support more complicated queries. One advantage is that our query syntax
is much more succinct than that of embedded SQL, and fits more naturally
into programming languages. A second advantage is that we do not require
a RDBMS, with the expense (in code size, running time, and occasionally
currency) that implies. Finally, because of the low overhead of performing
tuple patten based retrieval, it can be used in places where a database query
would not be, such as the inner loop of the graph reachability example.

That said, there is much to be learned from relational databases. This
paper leaves the query optimization possible with relational algebra up to
the user. It is possible to automate such optimizations, even without the

106

information about set size that is known to a database query optimizer. In
[40], it is shown how some relational queries can be translated into efficient code
using tuple pattern based retrieval. A second issue is that we maintain bound-
unbound maps, which are in many ways equivalent to indices in databases,
for every tuple pattern based retrieval in the program. An area of research
in databases is automatically determining which indices most benefit query
performance [15, 20]. We may use similar methods to determine which bound-
unbound maps most improve program performance. On a memory-limited
system, when trading speed for memory we want to ensure that we make the
best trade possible.

Moving on to programming languages, we should note that quite a few
languages have support for tuple patterns. These include the ML family of
languages, where there has been some work done on optimizing pattern match-
ing [18], and dynamic languages such as Python and Perl. In these languages,
pattern matching is against a single value, rather then a set of values. This
disallows the asymptotic improvements we achieve by only retrieving matching
values from a set.

The languages that we have found that contain the closest analog to tuple
pattern based retrieval are Linda [12] and its successors, such as TSpaces [56].
They provide a simple model for distributed computing by providing shared
tuple spaces, which are sets of tuples that can be distributed among multiple
computers. Tuples in a space can be matched by providing the values of
some of the fields, as in our tuple patterns. There is a difference in focus
between Linda systems, which support distributed retrieval from a relatively
small number of tuple spaces, and tuple pattern based retrieval, which provides
fast centralized retrieval from a potentially large number of sets. Descriptions
of Linda-like systems (such as those in [55]) focus primarily on retrieving a
tuple from an appropriate distributed node, and do not address the problem
of efficiently finding a tuple once that node has been found. In this way, we
complement the work they have done.

One strategy that Prolog implementations use is to index facts to eliminate
impossible unifications. By replacing sets of tuples with facts, and replacing
matching with unification, our bound-unbound maps can be seen to accom-
plish a similar purpose as these Prolog indexes. More specifically, by indexing
on all expressions, our method is similar to multiple argument indexing (also

107

called multiple position indexing), as found in [51, 10, 16]. Many Prolog sys-
tems do not support multiple argument indexing, instead indexing on only a
single argument per fact. Systems that support multiple argument indexing
either require the user to declare indices explicitly, or only generate indices in
conjunction with other optimizations. Our method determines indices auto-
matically from user-supplied code, even without analyzing the entire program.

Our work can be considered a case of data structure selection, and as such
owes much to the pioneering data structure selection work performed with the
SETL programming language [48, 45, 46, 21, 11]. Our work extends theirs by
providing support for sets of arbitrary-length tuples, instead of sets of pairs,
and by providing a syntax that allows us to use expressions to match any
component of a tuple, rather than just the first component of a pair.

Finally, our method for incrementally maintaining bound-unbound maps
is inspired by previous work in the area of incrementalization [39, 50], also
known as finite differencing.

6.2 Object-Set Queries

Incrementalization of programs has been a subject of much research, and
automatic incrementalization techniques has been developed for queries in
many areas. Our method improves over previous methods in three main re-
spects, putting aside many finer distinctions.

• Our method handles a query as a whole, rather then decomposing it
into smaller queries that need to be maintained independently, which
has additional cost in time and memory.

• Our method incrementalizes object-oriented programs, while previous
work focused either on only sets and tuples, forced the user to decompose
queries into recursive functions.

• Our method is compatible with the representations of objects in tra-
ditional (Java, C#, C++) and dynamic (Python, Perl, Ruby, PHP)
object-oriented programming languages.

108

As our incrementalization method is focused on queries in object-oriented
programs, this discussion of related work will be confined to systems that allow
one to perform queries involving a comprehension over some combination of
objects, sets, maps, and tuples. There are many techniques that incrementalize
queries over other domains, such as functional programs [57, 35, 2, 1], logic
programs [44, 33], and XML transformations [38]. There are also many cases
where incrementalization was used to make programs more efficent without
involving a general technique. We have not attempted to catalog all such
cases, as the author encounters them all the time.

Early work with programming languages. Early work in this area was in-
tended to provide a way of performing strength reduction on sets and maps [27,
19], ultimately yielding Paige and Sharir’s finite differencing method [39, 50].
This work, while automatic, only considered sets and pairs, and decomposed
queries to incrementalize them. Finite differencing also requires finite differ-
encing rules to be given manually, while for a large class of queries our method
derives those rules automatically.

Work involving databases. In the database area, finite differencing was
applied to the problems of integrity constraints [28, 43] and incremental view
maintenance [42, 24] in databases containing sets of tuples. It has also been
extended to support views with duplicates [23], also known as bags. Again, this
work assumes a relational model, where all sets are known in advance. Finite
differencing also requires queries to be decomposed before incrementalizing
them, which may require the storage of unnecessary intermediate results.

The basis of Ceri and Windom’s technique for incremental view mainte-
nance [13] is computing the updates to a materialized view by performing a
query over the set with the parameters to the update bound. This is the
method we use to compute the differential binding set, in the pair domain.
They rely on the underlying database engine to compute the results of this
query, whereas we generate code that directly computes the differential bind-
ing set, D. Due the fundamental assumptions of the relational model, Ceri
and Windom’s work assumes an environment in which all the sets are known.
This makes aliasing impossible, and prevents one from having to deal with
nested sets. By contrast, our method deals with arbitrarily nested sets.

109

The Gupta-Mumick-Subrahmanian method [26] (elaborated on in [25]) re-
quires that queries be expressed as datalog rules. For each fact in each rule,
they compute the changes to the stored reference-counted result, and use this
to update the result. While it seems that it would be possible to build an
object-oriented incrementalization technique around this method, it would re-
quire developing techniques for transforming object-oriented queries into dat-
alog rules, and then transforming the resulting rules back into object-oriented
code. For rules involving arbitrarily nested sets, we would also need to de-
velop a technique for representing sets sets that doesn’t encode a set as a
datalog predicate. We believe that developing a technique similar to Ceri and
Windom’s was the simpler approach.

Several techniques have been proposed for incremental view maintenance
in object-oriented databases.

Alhajj[4, 3] gives a technique that can only use objects from a single class in
a query. This prevents their technique from being used to incrementalize more
complicated queries, the queries that can most benefit from incrementalization.

Zhou et al. [58], Gluche et al. [22], Kuno et al. [29] and Ali et al. [5]
decompose OQL queries into execution plans, and incrementalize at the plan
level. At each level, they make query execution incremental. Many of their
incrementalization rules require materializing parts of the query other than
the final result. In our method, outside of maintenance code the only query
results we store are either proportional to the size of the stored results (R,
and U in pathological cases), or proportional to the size of program data (the
various inverse maps). By contrast, these methods may all maintain large
intermediate results for long periods of time.

Nakamura’s work [37] requires that objects be transformed into a novel
representation that allows finite differencing techniques that work on sets and
tuples to be used. This representation is not suitable for the efficient execution
of object-oriented programs.

Finally, we’ll note that any technique requiring interaction with a database
brings with it some drawbacks. While incremental view maintenance is a part
of large database mangement systems such as Oracle and DB2 [8, 52], it is
missing from popular open-source databases such as PostgrSQL and MySQL.
Requring this feature to be present in the database limits the databases a
program can run with. Using an external database requires that queries be

110

serialized and results unserialized, often with context switches and network
latencies adding additional delay. Even if embedded databases supporting this
technique, there would be some overhead as objects are converted between
database and program representations. Allowing for incrementalization at
the programming language level gives the programmer a choice as to how he
incrementalizes his specific application.

Recent work with object-oriented programs. There has been some
very recent work on incrementalizing object-oriented programs. The ditto
system [49] incrementalizes queries that consist of recursive java methods,
using a method similar to that used by Acar to incrementalize functional
programs [2, 1]. This method works by memoizing the results of methods,
and updating the stored result when a field accessed by the method changes,
or the result of a method called by that method changes. Recomputation is
done by re-running the method, hence ditto has a method-level granularity
for incrementalization. Where our method uses a high-level query construct
for querying, ditto requires the programmer to write recursive method calls.
Ditto also restricts the result of queries to primitive types, while our method
allows the result of queries to be method calls.

The research most similar to ours is the incrementalization for the JQL
system [53, 54]. The incremental update code for JQL works by creating tu-
ples of objects based on changes to sets. This works for JQL as all objects
used by an incrementally maintained query must be contained in a set given
as a query parameter. The class of queries our method supports is larger than
that of JQL, as we support sets and objects that refer to sets, and incremental
maintenance involving updates to fields of objects that are referred to by fields
of other objects. Finally, the lack of result expressions in their language pre-
vents aliasing from occurring, but may supply the programmer with the same
object more than once. Our method includes result expressions, and handles
aliasing correctly.

Our previous work with incrementalizing object-oriented programs [34, 36]
requires incrementalization rules to be manually written. The work presented
in this dissertation, on the other hand, automatically generates incremental-
ization rules for a large class of queries.

111

6.3 Conclusion

This dissertation presents a method for the automatic incrementalization
of high-level queries in object-oriented programs. Derived from work on tuple
pattern based retrieval, this method is able to incrementalize a broad class of
queries involving object, sets, maps, and tuples. It is able to automatically
incrementalize every query in this class, generating incremental maintenance
code for every possible update that can affect the results of the query. This
code remains correct even in the face of arbitrary aliasing between objects
in the query. We have presented several ways of invoking maintenance code,
allowing performance to be traded for flexibility. We have performed experi-
ments showing that our method is useful in a variety of applications.

It is our hope that the techniques presented in this dissertation will allow
automatic incrementalization of high-level queries to become yet another tool
in the programmer’s arsenal, replacing complicated manual incrementaliation
with a clean automatic approach.

112

Bibliography

[1] U. A. Acar, G. E. Blelloch, M. Blume, and K. Tangwongsan. An experi-
mental analysis of self-adjusting computation. In PLDI ’06: Proceedings
of the 2006 ACM SIGPLAN conference on Programming Language De-
sign and Implementation, pages 96–107, New York, NY, USA, 2006. ACM
Press.

[2] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional program-
ming. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 247–259, New
York, NY, USA, 2002. ACM Press.

[3] R. Alhajj and A. Elnagar. Incremental materialization of object-oriented
views. Data Knowl. Eng., 29(2):121–145, 1999.

[4] R. Alhajj and F. Polat. Incremental view maintenance in object-oriented
databases. SIGMIS Database, 29(3):52–64, 1998.

[5] M. A. Ali, A. A. A. Fernandes, and N. W. Paton. Movie: an incremental
maintenance system for materialized object views. Data Knowl. Eng.,
47(2):131–166, 2003.

[6] American National Standards Institute, Inc. Role-based access control.
ANSI INCITS 395-2004.

[7] M. Y. Becker. A formal security policy for an nhs electronic health record
service. Technical Report UCAM-CL-TR-628, University of Cambridge,
March 2005.

113

[8] R. G. Bello, K. Dias, A. Downing, J. Feenan, J. Finnerty, W. D. Norcott,
H. Sun, A. Witkowski, and M. Ziauddin. Materialized views in oracle.
In Proceedings of the 1998 International Conference on Very Large Data
Bases, pages 659–664, 1998.

[9] The boo programming language. PDF, 2005. http://boo.codehaus.

org/BooManifesto.pdf.

[10] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and
G. Puebla. The Ciao Prolog system. Reference Manual. The Ciao System
Documentation Series. TR CLIP3/97.1.10. School of Computer Science,
Technical University of Madrid (UPM), August 2004.

[11] J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type analysis
and data structure selection. In Constructing Programs From Specifica-
tions, pages 126–164. North-Holland, 1991.

[12] N. Carriero and D. Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, 1989.

[13] S. Ceri and J. Widom. Deriving production rules for incremental view
maintenance. In VLDB ’91: Proceedings of the 17th International Con-
ference on Very Large Data Bases, pages 577–589, San Francisco, CA,
USA, 1991. Morgan Kaufmann Publishers Inc.

[14] S. Chaudhuri. An overview of query optimization in relational systems.
In PODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 34–43, New
York, NY, USA, 1998. ACM.

[15] S. Choenni, H. M. Blanken, and T. Chang. On the selection of sec-
ondary indices in relational databases. Data and Knowledge Engineering,
11(3):207–, 1993.

[16] S. Dawson, C. R. Ramakrishnan, S. Skiena, and T. Swift. Principles
and practice of unification factoring. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(5):528–563, 1996.

114

[17] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control. ACM Trans. Inf.
Syst. Secur., 4(3):224–274, 2001.

[18] F. L. Fessant and L. Maranget. Optimizing pattern matching. In ICFP
’01: Proceedings of the 6th ACM SIGPLAN International Conference on
Functional Programming, pages 26–37, New York, NY, USA, 2001. ACM
Press.

[19] A. C. Fong and J. D. Ullman. Induction variables in very high level lan-
guages. In POPL ’76: Proceedings of the 3rd ACM SIGACT-SIGPLAN
symposium on Principles on programming languages, pages 104–112, New
York, NY, USA, 1976. ACM Press.

[20] M. R. Frank, E. Omiecinski, and S. B. Navathe. Adaptive and automated
index selection in RDBMS. In Extending Database Technology, pages
277–292, 1992.

[21] S. M. Freudenberger, J. T. Schwartz, and M. Sharir. Experience with
the SETL optimizer. ACM Transactions on Programming Languages and
Systems, 5(1):26–45, 1983.

[22] D. Gluche, T. Grust, C. Mainberger, and M. H. Scholl. Incremental
updates for materialized OQL views. In Deductive and Object-Oriented
Databases, pages 52–66, 1997.

[23] T. Griffin and L. Libkin. Incremental maintenance of views with dupli-
cates. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD inter-
national conference on Management of Data, pages 328–339, New York,
NY, USA, 1995. ACM Press.

[24] T. Griffin, L. Libkin, and H. Trickey. An improved algorithm for the incre-
mental recomputation of active relational expressions. IEEE Transactions
on Knowledge and Data Engineering, 9(3):508–511, 1997.

[25] A. Gupta and I. S. Mumick. Maintenance of materialized views: Prob-
lems, techniques, and applications. Bulletin of the Technical Commitee
on Data Engineering, 18(2):3–18, June 1995.

115

[26] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, pages 157–166, New
York, NY, USA, 1993. ACM Press.

[27] J. Earley. High Level Iterators and a Method for Automatically De-
signing Data Structure Representation. Journal of Computer Languages,
1(4):321–342, 1976.

[28] S. Koenig and R. Paige. A transformational framework for the automatic
control of derived data. In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France, Proceedings, pages
306–318. IEEE Computer Society, 1981.

[29] H. A. Kuno and E. A. Rundensteiner. Incremental maintenance of ma-
terialized object-oriented views in multiview: Strategies and performance
evaluation. IEEE Transactions on Knowledge and Data Engineering,
10(5):768–792, 1998.

[30] The LINQ project. web page, March 2006. http://msdn.microsoft.

com/netframework/future/linq/.

[31] Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu. Parametric
regular path queries. In PLDI ’04: Proceedings of the ACM SIGPLAN
2004 conference on Programming Language Design and Implementation,
pages 219–230, New York, NY, USA, 2004. ACM Press.

[32] Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs
with time and space guarantees. In PPDP ’03: Proceedings of the 5th
ACM SIGPLAN international conference on Principles and Practice of
Declarative Programming, pages 172–183, New York, NY, USA, 2003.
ACM Press.

[33] Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs
with time and space guarantees. In PPDP ’03: Proceedings of the 5th
ACM SIGPLAN international conference on Principles and practice of
declaritive programming, pages 172–183, New York, NY, USA, 2003. ACM
Press.

116

[34] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, and Y. E. Liu. In-
crementalization across object abstraction. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pages 473–486, New York,
NY, USA, 2005. ACM Press.

[35] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental
computation. ACM Trans. Prog. Lang. Syst., 20(3):546–585, May 1998.

[36] Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao,
and J. Zhang. Core role-based access control: efficient implementations by
transformations. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipu-
lation, pages 112–120, New York, NY, USA, 2006. ACM Press.

[37] H. Nakamura. Incremental computation of complex object queries. In
OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on
Object oriented programming, systems, languages, and applications, pages
156–165, New York, NY, USA, 2001. ACM Press.

[38] M. Onizuka, F. Y. Chan, R. Michigami, and T. Honishi. Incremental
maintenance for materialized xpath/xslt views. In WWW ’05: Proceed-
ings of the 14th international conference on World Wide Web, pages 671–
681, New York, NY, USA, 2005. ACM Press.

[39] R. Paige and S. Koenig. Finite differencing of computable expressions.
ACM Trans. Program. Lang. Syst., 4(3):402–454, 1982.

[40] G. Priyalakshmi. Generating efficient programs for solving relational
database queries. Master’s thesis, Stony Brook University, August 2004.

[41] Python 2.4.2 documentation. web page, September 2005. http://www.

python.org/doc/2.4.2/.

[42] X. Qian and G. Wiederhold. Incremental recomputation of active rela-
tional expressions. Knowledge and Data Engineering, 3(3):337–341, 1991.

117

[43] Robert Paige. Applications of finite differencing to database integrity con-
trol and query/transaction optimization. In H. Gallaire, J. Minker, and
J.-M. Nicolas, editors, Advances in Database Theory, volume 2. Plenum
Press, New York.

[44] D. Saha and C. R. Ramakrishnan. A local algorithm for incremental
evaluation of tabled logic programs. In S. Etalle and M. Truszczynski,
editors, ICLP, volume 4079 of Lecture Notes in Computer Science, pages
56–71. Springer, 2006.

[45] E. Schonberg, J. T. Schwartz, and M. Sharir. Automatic data structure
selection in SETL. In POPL ’79: Proceedings of the 6th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages
197–210. ACM Press, 1979.

[46] E. Schonberg, J. T. Schwartz, and M. Sharir. An automatic technique for
selection of data representations in SETL programs. ACM Transactions
on Programming Languages and Systems (TOPLAS), 3(2):126–143, 1981.

[47] J. Schwartz. Programming in SETL. web page. (draft in progress) http:
//www.settheory.com.

[48] J. T. Schwartz. Automatic data structure choice in a language of very high
level. In POPL ’75: Proceedings of the 2nd ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 36–40. ACM
Press, 1975.

[49] A. Shankar and R. Bodik. Ditto: automatic incrementalization of data
structure invariant checks (in java). SIGPLAN Notices, 42(6):310–319,
June 2007.

[50] M. Sharir. Some observations concerning formal differentiation of set
theoretic expressions. ACM Trans. Program. Lang. Syst., 4(2):196–225,
1982.

[51] T. L. Swift. Evaluation of Normal Logic Programs. PhD thesis, Stony
Brook University, December 1994.

118

[52] B. Vialpando and V. Khatri. Comparing db2 materialized
query tables and oracle materialized views. Web page, Au-
gust 2007. http://www.ibm.com/developerworks/db2/library/

techarticle/dm-0708khatri/index.html.

[53] D. Willis, D. J. Pearce, and J. Noble. Efficient object querying for java. In
D. Thomas, editor, ECOOP, volume 4067 of Lecture Notes in Computer
Science, pages 28–49. Springer, 2006.

[54] D. Willis, D. J. Pearce, and J. Noble. Caching and incrementalisation in
the java query language. In OOPSLA ’08: Proceedings of the 23rd ACM
SIGPLAN conference on Object oriented programming systems languages
and applications, pages 1–18, New York, NY, USA, 2008. ACM.

[55] G. Wilson. Linda-like systems and their implementation. Technical Re-
port 91-13, Edinburgh Parallel Computing Centre, June 1991.

[56] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T Spaces.
IBM Systems Journal, 37(3):454–474, 1998.

[57] D. M. Yellin and R. E. Strom. INC: a language for incremental compu-
tations. ACM Trans. Program. Lang. Syst., 13(2):211–236, 1991.

[58] G. Zhou, R. Hull, and R. King. Generating data integration media-
tors that use materialization. Journal of Intelligent Information Systems,
6(2/3):199–221, 1996.

119

