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Abstract of the Dissertation 

 
Path Analysis of Multivariate Time Series fMRI Data with Subject-level Covariates 

 

By 

Yue Zhang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2007 

        The ultimate goal of brain functional connectivity studies is to propose, test, modify, 

and compare certain directional brain pathways. Functional magnetic resonance imaging 

(fMRI) studies are routinely conducted with a group of subjects to generate relevant data 

for brain functional pathway analysis. Path analysis, also called structural equation 

modeling (SEM), is commonly regarded as the ideal statistical method for the analysis of 

brain functional pathways.  

       Three approaches are conceivable for the path analysis of multi-subject, multivariate 

time series data from fMRI experiments. They are: (A) summarize (e.g. average the time 

series data across the subjects) and then analyze, (B) analyze and then summarize, and (C) 

simultaneous analysis.  Previously, we have developed the SEM methodology for 

approach (B) (Kim et al. 2006). In this thesis, we propose a path analysis framework for 

approach (C), the simultaneous analysis of multi-subject, multivariate time series data 

with subject-level covariates.  Comparisons are made between the three approaches and 
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guidelines are provided. We also develop a two-level SEM-bootstrap method for the 

simultaneous resampling of the subjects and/or the individual or group average time 

series data. This approach would enable us to incorporate subject-level covariates into 

SEM analysis when other approach is not tenable. 
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Chapter 1 

 

Introduction 
 
 
 
 
 
            
The ultimate goal for brain functional connectivity study is to propose, test, modify 

and compare certain directional brain pathways. During a typical functional MRI (fMRI) 

experiment, each subject’s functional activities of multiple brain regions of interest 

(ROIs) in the brain are measured longitudinally over the course of several minutes. 

Therefore, the multivariate time series data from the fMRI experiment is obtained for 

each subject. Meanwhile, usually a group of subjects participate in the same experiment 

in order to obtain statistical estimations for the population of interest. Thus, fMRI studies 

usually contain multi-subject, multivariate time series data. Furthermore, subject-level 

covariates such as gender, age, education, and verbal IQ (VIQ) are involved into the 

fMRI study. It is of interest to incorporate these covariates into the analysis to examine 

the relationships between functional brain pathways and subject-level covariates. 

Path analysis, a special case of Structural Equation Modeling (SEM), which was 

designed for directional connectivity modeling, testing, and comparisons, is an ideal 

statistical method for studying brain pathways. Path analysis is interesting to many 

neuroscientists because it can quantify functional relationships between multiple brain 

regions in terms of unidirectional connections. In the early 1990s McIntosh introduced 
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SEM to neuroimaging (McIntosh and Gonzales-Lima, 1991; McIntosh et al., 1994) for 

modeling, testing and comparison of directional effective connectivity of the brain. SEM 

has quickly become popular in this field (Büchel and Friston, 1997, 1999; Honey et al., 

2002).  

 

1.1 Structural Equation Modeling (SEM) 
 
 
 
 

       Structural equation modeling represents the hybrid of two separate statistical 

traditions. The first tradition is confirmatory analysis developed in the disciplines of 

psychology and psychometrics. The second tradition is simultaneous equation modeling 

developed mainly in econometrics, but having an early history in the field of genetics. 

The combination of these two methodologies into a coherent analytic framework of SEM 

was based on the work of Jöreskog (1973), Keesling (1972), and Wiley (1973). SEM 

imposes a structure on the covariance/correlation matrix of the multivariate normal 

random variables, and sometimes on its mean vector as well. The general structural 

equation model as outlined by Jöreskog (1973) consists of two parts: the first is a latent 

variable model that is similar to the simultaneous equation model of econometrics except 

that all variables are latent ones, and the second part is the measurement model linking 

indicators to latent variables as in factor analyses. The procedure was implemented in 

Jöreskog and Sörbom’s LISREL program. Bentler and Weeks (1980), McArdle and 

McDonald (1984), and others have proposed alternative representations of general 

structural equations. Most analysts now agree that both the new and old representations 

2



are capable of treating the range of linear models that typically occur in practice. The 

“LISREL notation”, which is the most widely accepted representation, will be used in 

this work. 

Structural equation modeling is a more powerful method whose framework includes 

many common statistical procedures, such as multiple regression, confirmatory factor 

analysis, canonical correlations, and ANOVA. That is, these statistical techniques are 

special cases of SEM. In fact, structural equation modeling is an extension of the general 

linear model (GLM) of which multiple regression is a part. When there are no latent 

variables in the model, modeling system of structural relationships among a set of 

observed variables is often referred to as path analysis  

With respect to using structural modeling in brain imaging, the emphasis so far has 

been on general SEM approaches, primarily with path analysis. It was McIntosh who 

introduced SEM to neuro-imaging field in a series of papers, and the methodology 

quickly became popular in this field (McIntosh, 1998). The first application of structural 

equation modeling to neuroscience was carried out by McIntosh and Gonzalez-Lima 

(1991), and they demonstrated how structural modeling can be used to determine the 

functional interrelationships between brain structures that form the auditory system. The 

models were discussed in the context of previous findings to demonstrate how structural 

modeling can not only complement, but also extract more information from auditory 

system 2-DG uptake mapping experiments. Büchel and Friston (1997) developed a SEM 

model for the interrelations among dorsal visual pathway areas under visual motion 

conditions while varying the attentional component of the task. Their model showed a 
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significant modulatory effect of prefrontal regions on a motion-selective cortical area V5 

and the posterior parietal cortex. Fletcher et al. (1999) used SEM to explore time-

dependent changes in inter-regional connectivity as a function of item and grammar rule 

learning in an experiment. They found that although there were no significant effects of 

item learning on the measured path strengths, rule learning was associated with a 

decrease in right fronto-parietal connectivity and an increase in connectivity between left 

and right prefrontal cortex. This previous work clearly demonstrates that path analysis 

has a great potential to make new progresses and developments in the field of brain 

imaging and brain mapping. 

 

1.2 Current Approaches and Limitations 
 
 
 
 
Although SEM is a powerful tool for the analysis of brain connectivity, the potential 

of structural equation modeling in this field has been explicitly recognized only recently. 

A milestone event was the paper by Büchel, Coull, and Friston (1999), published in 

Science, which demonstrated the general scientific acceptance of the methodology to 

neuroscience field. As described at the beginning of this chapter, we have a set of multi-

subject multivariate time series of observations from an fMRI study. The simplest 

method would be to analyze the time series for each subject separately, as was done in 

Büchel and Friston (1997). However, they assumed that the observations are independent, 

which is not true for time series data since the observations are autocorrelated. In fact, no 

existing SEM software has the right procedure for the analysis of fMRI data because 
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conventional SEM assumes that the observations are independent (Bentler and Wu, 

2002). An alternative method is to extract the first eigenvector of each relevant ROI, 

which is representative of the entire population, by employing Principal Components 

Analysis (PCA) (Bullmore et al., 2000). And the number of independent observations, ν, 

is estimated, which is smaller than the number of time series observations, n, due to 

temporal autocorrelation in fMRI time series data. In this way, the autocorrelated time 

series from all subjects are reduced to a single sequence of observations for each ROI, 

and the ensuing path analysis can be carried out using any existing general purpose SEM 

software when assume ν independent observations. This approach was also adopted by 

Honey et al. (2002) for the working memory study. However, by reducing the group data 

to merely the first eigenvector, one would lose a substantial amount of information and 

could mistakenly make a significant pathway insignificant. When we perform PCA, we 

assume the observations of each ROI are independent, which is not true for fMRI data. 

And there is as yet no general agreement about the best method for estimating ν in a 

given time series, nor about the best procedure to follow if ν differs markedly between 

regional time series. Therefore this approach is far from ideal. To follow a hierarchical 

data structure of fMRI data, Friston et al. (1999, 2005) employed the hierarchical linear 

model to analyze random effects of multi-subject fMRI studies, however, it was a 

univariate methodology. Mechelli et al. (2002) illustrated how differences in connectivity 

among subjects can be addressed explicitly using structural equation modeling by 

constructing a multi-subject network that comprises k regions of interest for each of the m 

subjects studied, resulting in a total of k*m nodes. Although their model allows one to 
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test directly for differences among subjects by comparing models that do and do not 

allow a particular connectivity parameter to vary over subjects, it requires a large number 

of observations for each subject and the model can be fairly tested only when there are 

few subjects, as well as few paths in the model. Kim et al. (2006) proposed a new SEM 

method, called unified SEM, which incorporated longitudinal as well as 

contemporaneous path connections into the conventional SEM, making the observations 

nearly independent and thus appropriate for the analysis using the existing SEM software. 

They analyzed fMRI data at two stages. At Stage 1, unified SEM was fitted to each 

subject individually, and at Stage 2, for each path, the mean of estimated path 

connections of all subjects (“summary statistics”) was simply tested by a one-sample t-

test to determine whether this path was significant. However, the two-stage unified SEM 

method analyzed each subject separately, and failed to consider the hierarchical structure 

of fMRI data. 

 

1.3 Overview 
 
 
 
 
In this work, we will present three possible approaches of analyzing multi-subject 

multivariate time-series fMRI data. They are: (1) summarize (e.g. average the time series 

data across the subjects) and then analyze, (2) analyze and then summarize (Kim et al., 

2006), and (3) simultaneous analysis. The application of these three approaches will be 

illustrated by an analysis of the visual attention network (Driver and Mattingley, 1998; 

Kanwisher and Wojciulik, 2000). The study data came from an fMRI three ball-tracking 
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experiment with 28 normal subjects (14 females and 14 males). The appropriateness of 

these three methods will be demonstrated and comparisons between these three 

approaches will be outlined. 

The path analysis is performed by the most widely used SEM software LISREL 

(Jöreskog and Sörbom, 1996) and RPOC CALIS in SAS.  

The main goal of this work is to test and compare the path models for all subjects or 

different groups from the three approaches. 
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Chapter 2 

   

Structural Equation Modeling (SEM) and Path 

Analysis 
 
 
 
 
 
 
Structural equation modeling (SEM) is a very powerful multivariate statistical 

technique for building and testing statistical models. Structual equation modeling 

represents the hybrid of two separate statistical methods. The first one is confirmatory 

factor analysis developed in psychology and psychometrics, and the second one is 

simultaneous equation modeling developed in econometrics. The basic idea of SEM 

differs from the usual statistical approach of modeling individual observations.  

In multiple regression or ANOVA (analysis of variance) the regression coefficients 

or parameters of the model are derived from the minimization of the sum of squared 

differences between the predicted and observed dependent variables for each case (Bollen 

1989). 

Structural equation modeling (SEM) grows out of and serves purposes similar to 

multiple regression, but SEM takes into account the modeling of interactions, correlated 

independent variables, measurement error, correlated disturbance terms, and multiple 

latent variables measured by multiple indicators. 
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The procedures of structural equation modeling emphasize covariances rather than 

cases, approaching the data from a different perspective. Instead of minimizing the 

differences between observed and predicted values of each variable, structural equation 

modeling estimates the parameters by minimizing the difference between the observed 

sample covariances and the predicted covariances by a structural or path model.  

The fundamental hypothesis for structural equation modeling is that the covariance 

matrix of the observed variables is a function of a set of parameters. If the model is 

correct and if we know the values of the set of parameters, the population covariance 

matrix can be reproduced. The equation of the fundamental hypothesis is 

                                               ( ),θΣ = Σ                                                                 (2.1) 

where Σ  is the population covariance matrix of the observed variables, θ  is a vector of 

free model parameters, and ( )θΣ  is the covariance matrix written as a function of the 

model parameters in θ . Equation (2.1) implies that each element of the covariance matrix 

is a function of one or more model parameters. The relation of Σ  and ( )θΣ  is basic to an 

understanding of identification, estimation, and assessments of model fit (Bollen. 1989).  

The parameters to be estimated in structural equation modeling are connection 

strengths (or path coefficients), the variances and covariances of exogenous variables, 

and the variances and covraiances of disturbance terms. The path coefficients are the 

standardized partial regression coefficients, which representing the response of the 

endogenous variables to a standard unit change in an exogenous variable, while the other 

variables in the model are held constant.  

The elements of the structural model are mathematically defined in terms of a set of 
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simultaneous regression equations. Maximum likelihood estimation (MLE) is by far the 

most common method for estimation, which can generate log-likelihood and 2χ  values 

for each model. We will explain the estimation procedures in details in section 2.2. 

The path coefficients can be estimated by LISREL (Jöreskog and Sörbom, 1996), 

SAS CALIS procedure, AMOS, and other SEM software. 

Structural equation modeling is a more powerful alternative to multiple regression, 

confirmatory factor analysis, canonical correlations, ANOVA, and analysis of covariance. 

That is, these statistical techniques are special cases of SEM. In fact, structural equation 

modeling is an extension of the general linear model (GLM) of which multiple regression 

is a part. When there are no latent variables in the model, modeling system of structural 

relationships among a set of observed variables is often referred to as path analysis. 

Hence, path analysis is a special case of SEM, too.  

Since all variables in our experiment were observed, we focus on path analysis, a 

type of structural equation modeling with observed variables. In this model, there are no 

latent variables, only directly observed or measured variables. 

 

2.1 Structural Equation Models with Observed Variables and 

Implied Covariance Matrix 
 
 
 
 
In the structural equation models with observed variables, we assume that all the 

endogenous and exogenous variables are directly observed with no measurement error.  
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If we assume there are p endogenous (dependent) variables and q exogenous 

(independent) variables, then the general representation of the structural equations with 

observed variables is 

  y By x ζ= + Γ + ，                                                        (2.2) 

where  is a 1 2( , ,....., ) 'py y y y= 1p× vector of endogenous variables, '1 2( , ,......, )qx x x x=  

is a  vector of exogenous variables. 1×q

B  is a  matrix of coefficients of the y variables in the structural relationship, 

is a m  matrix of coefficients of the x variables in the structural relationship, and 

'

mm×

......., )p

Γ n×

2,1,(ζ ζ ζ ζ=  is a 1p×  vector of errors in the equations. 

The assumptions of this model are  

 1. ( )I B−  is nonsingular, the expectation of ζ  is zero, and ζ is uncorrelated with x.  

 2. The free parameter matrices to be estimated are B, , Γ cov( )xΦ = , and 

cov( )ζΨ = .  

Equation (2.2) can be written in the reduced form as  

 ( )y A x ζ= Γ + ，                                                        (2.3) 

where . 1( )A I B −= −

If we assume { }iθ θ=  is the set of free parameters to be estimated in ,,B Γ Φ , and 

, the fundamental hypothesis of the general structural equation model is Equation (2.1). 

 is the population covariance matrix of the observed variables y and x, and 

Ψ

Σ ( )θΣ  is the 

covariance matrix written as a function of the free model parameters in θ . 

( )θΣ  is assembled in three pieces: (1) the covariance matrix of y, (2) the covariance 
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matrix of x with y, and (3) the covariance matrix of x: 

( ) ( )
( ) cov

( ) ( )
yy yx

xy xx

y
x

θ θ
θ

θ θ
Σ Σ  

Σ = =   Σ Σ   
 .                                         (2.4) 

We first consider ( )yy θΣ , the implied covariance structure of y: 

       

1 1

1 1

1 1

1 1

( ) ( ')

[( ) ( )(( ) ( )) ']

[( ) ( )( ' ' ')( ) ]

( ) ( ( ' ') ( ') ( ' ') ( '))( )

( ) ( ' )( ) ,

yy E yy

E I B x I B x

E I B x x I B

I B E xx E x E x E I B

I B I B

θ

ζ ζ

ζ ζ

ζ ζ ζζ

− −

− −

− −

− −

Σ =

= − Γ + − Γ +

′= − Γ + Γ + −

′= − Γ Γ + Γ + Γ + −

′= − ΓΦΓ +Ψ −

               (2.5) 

where Φ  is the covariance matrix of x, and Ψ  is the covariance matrix of ζ . 

The implied covariance matrix of y with x is 

1

1

( ) ( ' )

[(( ) ( )) ' ]
( ) .

yx E y x

E I B x x
I B

θ

ζ−

−

Σ =

= − Γ +

= − ΓΦ

                                                      (2.6) 

The implied covariance matrix of x, cov(x) is equal to Φ , or  

( ) ( ')
.

xx E xxθΣ =

= Φ
                                                                           (2.7) 

After assembling Equations (2.5), (2.6) and (2.7), the implied covariance matrix of y 

and x is  

1 1

1

( ) ( ' )( ) ( )
( )

'( )

I B I B I B

I B
θ

− −

−

 ′− ΓΦΓ +Ψ − − ΓΦ
 Σ =
 ′ΦΓ − Φ 

1−

.                               (2.8) 

Let us illustrate (2.8) with a hypothetical example that is the following structural 

model: 
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Substituting (2.10) into (2.8) a
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1
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 
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   2ζ  

                                                                  (2.9) 

2 )  are zero. 

d for this model are 

 , and 11

22

0
0
ψ

ψ
 

=  
 

( 11 )φΦ = .               (2.10) 

) leads to 

11 11
2 2 2
11 11 11 21 11 11 11 22

11 11 21 11 11 11

) ( )
φ ψ
φ ψ β γ φ ψ ψ
γ φ β γ φ φ

+
+ + + 


.    

(2.11) 

lation covariance matrix of , 

 variance and covariance in terms of the 

tions are derived from the relation of the 

 to the structural parameters (Bollen 1989).  

121 ,, xandyy

eters 
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The unknown parameters of the model are (a) the variances and covariances of 

exogenous variables contained in Φ , (b) the variances and covariances of disturbance 

terms contained in Ψ , and (c) the path coefficients contained in B and Γ . The unknown 

parameters are estimated so that the implied covariance matrix, Σ̂ , is close to the sample 

covariance matrix S. In order to know when the estimates are as ‘close’ as possible, we 

must define ‘close’. That is, we should find a discrepancy function that is to be 

minimized. Many different fitting functions for the task are possible.  

The fitting functions defined by F S( , ( ))θΣ  are based on S, the sample covariance 

matrix, and ( )θΣ , the implied covariance matrix of structural parameters. If estimates of 

θ  are substituted in ( )θΣ , this leads to the implied covariance matrix, Σ . The value of 

the fitting function for 

ˆ

θ̂  is ˆ( ,F S )Σ . The fitting function F S  is a scalar that 

measures the discrepancy between the sample covariance matrix S and the implied 

covariance matrix  and can be characterized by the following properties 

ˆ( , )Σ

Σ̂

 (i) ( , ( ))F S θΣ 0≥ , 

 (ii) ( , ( ))F S θΣ =0, if and only if ( )θΣ =S, 

 (iii) ( , ( ))F S θΣ  is a continuous function in S and ( )θΣ . 

According to Browne (1984), minimizing fitting functions that satisfy these 

conditions leads to consistent estimators of θ . Three fitting functions are widely used, 

which are maximum likelihood (ML), unweighted least squares (ULS), and generalized 

least squares (GLS) functions.  
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The most widely used fitting function for general structural equation models is the 

maximum likelihood (ML) function. 

The derivation of the likelihood function is illustrated as follows. 

In deriving F , the set of N independent observations are of the multinormal 

random variables y and x. Consider the (

ML

) 1p q+ ×  vector of observed variables, Z, 

containing both y and x. Then Z follows the multivariate normal distribution with zero 

mean and covariance matrix Σ , i.e. (0, )NZ M Σ∼ , then its probability density function is 

           
( ) 1

12 2
1( | ) (2 ) exp '
2

p q

f Z Zπ
+

− − − Z  Σ = Σ − Σ    
.                         (2.12) 

For a random sample of N independent observations of Z, the joint probability 

density function is  

                     1 2 1 2( , , , | ) ( | ) ( | ) ( | )N Nf Z Z Z f Z f Z f ZΣ = Σ Σ" Σ" .                    (2.13) 

Once we observe a given sample, the likelihood function is 

 

( ) 1
12 2

1

( )
12 2

1

1( ) (2 ) exp '
2

1(2 ) ( ) exp ' ( ) .
2

p qN

i

N p q NN

i i
i

L Z Z

Z Z

θ π

π θ θ

+
− − −

=

+
− − −

=

   = Π Σ − Σ      
  = Σ − Σ    

∑
                   (2.14) 

Σ  was substituted by ( )θΣ  based on the covariance structure hypothesis that 

( )θΣ = Σ . 

The log of the likelihood function is 

  1

1

( ) 1log ( ) log(2 ) log | ( ) | ' ( ) .
2 2 2

N

i
i

N p q NL Zθ π θ −

=

+    = − − Σ − Σ   
   

∑ iZθ            (2.15) 

We can rewrite the last term of (2.15) as 
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1 1

1 1

1 1

1

* 1

1 1' ( ) ' ( )
2 2

' ( )
2

( ) .
2

N N

i i i i
i i

N

i i
i

Z Z tr Z Z

N tr N Z Z

N tr S

θ θ

θ

θ

− −

= =

− −

=

−

 − Σ = − Σ 

 = − Σ 

 = − Σ 

∑ ∑

∑                                    (2.16) 

where * 1NS
N
−

= S , and S is the sample covariance matrix of y and x.  

The Equation (2.14) can be rewritten as 

{ }

* 1

* 1

log ( ) constant log | ( ) | ( )
2 2

constant log | ( ) | ( ) .
2

N NL t

N tr S

r Sθ θ θ

θ θ

−

−

   = − Σ − Σ    
   = − Σ + Σ    

                        (2.17) 

The next step is to maximize Equation (2.17) with respect to the parameters of the 

model. To maximize the log likelihood in Equation (2.17), we need to obtain the 

derivatives with respect to the parameters of the model, set the derivatives equal to zero 

and solve.  

Since the constant term in (2.17) does not contain model parameters, this term will 

have no consequences when obtaining the derivatives and can be ignored. Second, the 

difference between  and the usual unbiased sample covariance matrix S is negligible in 

large samples, since 

*S

* [( 1) ]S N N= − S . Therefore, we can rewrite Equation (2.17) as 

                 { 1g ( ) log | ( ) | ( )
2
NL t }r Slo θ θ −  θ = − Σ + Σ    

.                                    (2.18) 

A problem with Equation (2.18) is that it does not possess the properties of a 

discrepancy function as described earlier. For example, if ( )θΣ =S then the second term 
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on the right side of Equation (2.18) will be an identity matrix and the trace will be p+q. 

However, the difference between the first term and the second term will not be zero as 

required for a discrepancy function. To create a proper discrepancy function based on 

Equation (2.18), we need to add terms that do not depend on model parameters and can 

make the discrepancy function equal zero when ( )θΣ =S. First we remove the term –

(N/2), in which case we will minimize the function instead of maximizing it. Then, we 

add terms that do not depend on model parameters. This gives, 

                      1log ( ) [ ( ) ] log ( )MLF tr S Sθ θ −= Σ + Σ − − +p q .                            (2.19) 

If the model fits perfectly, that is, ( )θΣ =S, the first and third terms sum to zero and 

the second and fourth terms sum to zero and therefore Equation (2.19) in a proper fitting 

function as required. 

If we denote ( )MLF F θ= , a necessary condition for minimizing of ( )F θ is to choose 

the estimates îθ s in that the partial derivatives of F ( )θ  with respect to each of îθ  are 

zero. That is, 

( ) 0
i

F θ
θ

∂
=

∂
,    i=1,2, ……,t.                                               (2.20) 

In the general structural Equation model where ( )F θ  is the MLF ,  or  fitting 

functions, (2.20) results in t equations which are typically nonlinear in the parameters, 

and therefore explicit solutions for the parameters are not always found. In these cases 

minimization with numerical methods such as iterative numerical procedure are 

necessary to find the free or equality constrained unknown parameters in 

GLSF ULSF

,B Γ ,  and Φ Ψ . 

The goal is to develop a sequence of values for θ  such that the last vector in the sequence 
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minimizes MLF . The three key issues in the iterative solution procedure are (1) the 

selection of initial or starting values , (2) the rules for moving from one step in the 

sequence to the next (from  to ), and, (3) when to stop the iteration. A numerical 

method for these procedures is described in Bollen, 1989. LISREL implements this 

method. 

)1(θ

)1+)(iθ (iθ

MLF

(N −

c Nθ = −

ML

 

2.3 Statistical Inference 
 
 
 
 
By using maximum likelihood estimation of the path model, one can explicitly test 

the hypothesis that the model fits the data. Statistical inference in the structural equation 

modeling is the goodness of the overall fit of the model. In other word, how significantly 

different are the implied and observed covariance structures, i.e. H0 : ( )θΣ = Σ . Under 

some conditions, ( 1)N −  provides chi-square estimators to test H . The following 

shows the justification for using 

0

1) MLF  as chi-square estimators based on the 

likelihood ratio test. 

Anderson (1958) has shown that if y and x have a multivariate normal distribution, 

then the unbiased sample covariance matrix S has a Wishart Distribution. Bollen (1989) 

showed that the log of Wishart likelihood function could be written as 

{ }11log ( ) onstant log | ( ) | [ ( ) ]
2

L tθ −−
Σ + Σ .                    (2.21) r S θ

Comparing (2.21) to F  (2.19), we see that the value of estimated parameters θ̂  
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that maximizes log ( )L θ  will minimize MLF . 

g log |

)

log log |

log |

L S

0

a

L
L

 
− = 

 

|

| (

).

aL L

N t

N t

+

+

Σ

And we notice that under ,  (2.21) can be written as 0H

                           { 1
0

1 ˆ ˆ| ( )
2

NL − }tr Slo −
= − Σ + Σ ,                                        (2.22)  

where ˆˆ (θΣ = .   Σ

It is the log likelihood under the null hypothesis that the specified model holds in 

the population. The corresponding alternative hypothesis is that Σ  is any positive definite 

matrix. Under the alternative hypothesis, if S, the sample covariance matrix, is the 

estimator of Σ , the log likelihood function l  attains its maximum value. Therefore, 

the log likelihood under the alternative hypothesis, l , can be written as 

og aL

og aL

                           
{ }

{ }

11 | ( )
2

1 | ,
2

a
N tr

N S k

−−
= − +

−
= − +

                                         (2.23) 
SS

where k=p+q. 

The natural logarithm of the likelihood ratio, when multiplied by –2 is distributed as 

chi-square variate when  is true and (N-1) is large. In this case, 0H

      

( )

0

1

1

2 log 2log 2log

ˆ ˆ( 1) log | ( ) ( 1)(log | |

ˆ ˆ( 1) log | ) log | |

ˆ( 1) ( ,ML

r S N

r S S k

N F S

−

−

− +

 = − Σ Σ − − + 

= − Σ Σ − −

= −

                    (2.24) )S k

The large sample distribution of logarithm of the likelihood ratio, when multiplied 

by –2 is chi-square with degrees of freedom given by the difference in the number of 
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nonredundant elements in Σ  and the number of free parameters in the model. That is, 

2( 1) MLN F dfχ− ∼  with its degrees of freedom 1 ( 1)
2

k k tdf = + − , where the first term is 

the number of non redundant elements in S given k observed variables, and t is the 

number of free parameters in θ . The likelihood ratio chi-square test is used to test the 

null hypothesis that the population covariance matrix possesses that structure implied by 

the model against the alternative hypothesis that Σ  is an arbitrary symmetric positive 

definite matrix. 

The logic of significance testing here is different than that usual in testing, say, the 

statistical significance of the explained variance in a regression equation. In regression, 

the null hypothesis is set such that it runs counter to the theoretical hypothesis, and our 

hope is to reject the null hypothesis. In contrast, for the chi-square test of structural 

equation modeling the null hypothesis is that the constraints on Σ  implied by the model 

are valid, i.e. ( )θΣ = . The standard of comparison is the perfect fit of Σ  equal to S. The 

probability level of the calculated chi-square is the probability of obtaining a chi-square 

value larger than the value obtained if H  is correct (Bollen 1989). The higher the 

probability of the chi-square, the closer is the fit of  to the perfect fit. Therefore, it is a 

type of goodness of fit, and a good fit is indicated when we cannot reject H  at a 

significant level 

Σ ˆ

0

0H

0

α .  

Structural equation models which provide a good account of the observed data will 

be associated with small 2χ -values with correspondingly large probabilities (P >0.1), low 

value of root mean square residual (RMR), low values for the root mean square error of 
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approximation (RMSEA), and high goodness of fit index (GFI) and adjusted goodness of 

fit index (AGFI) (GFI, AGFI > 0.95) under the null hypothesis.  

On the other hand, in the context of stacked models, the 2χ statistic difference test 

can be used to compare two models (e.g. data from different groups or different 

conditions) in the context of structural equation modeling (Grafton et al., 1994). A so-

called ‘null model’ is constructed where the estimates of some parameters (i.e. path 

coefficients) are constrained to be zero or equal under two conditions. The alternative 

model allows these parameters to differ between two conditions, and therefore they are 

free to be estimated. The difference in the 2χ  goodness of fit indicator for the null model 

and the alternative model is calculated. This 2χ  statistic has n degrees of freedom, where 

n is the difference in the degrees of freedom between the null model and the alternative 

model. For example, if the null model constrains one parameter to be equal between 

groups or conditions, the resulting degrees of freedom for the 2χ  statistic would be one. 

If 2χ  statistic is not significant, we conclude that the constrained-equal model is the 

same as the unconstrained alternative model, leading to the conclusion that the model 

does apply across different conditions. 
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Chapter 3 

 

Visual Attention fMRI Data and Unified Structural 

Equation Modeling 
 

3.1 Subjects  
 
 
 
 
 
Twenty-eight volunteers (14 females and 14 males) who had no psychiatric or 

neurological history participated in our study. A visual attention experiment with a 

“three-ball tracking” task (Figure 3.1) （Lange 1999） was conducted on a 4 T Varian 

MR System at the Brookhaven National Laboratory (BNL) for each subject. This study 

was approved by the Medical Research Center at BNL and all subjects provided verbal 

and written consent. 

 

3.2 Experimental Design 
 
 
 
 
A series of visual attention paradigms with variable attentional load was 

programmed in Matlab (Mathworks Inc., Natick, MA) and presented through MRI-

compatible goggles that were mounted on the head coil. A cross hair was displayed 
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initially for 10 sec to focus the attention before the actual task was presented.  

At the beginning of each trial, subjects first saw a message for 1.25 sec indicating 

whether their task would be active tracking (“TRACK”) or passive viewing (“DO NOT 

TRACK”). Next, 10 copper-colored balls appeared at random positions on the screen, 

along with a central fixation cross. Subjects were asked to fixate throughout the entire 

trial. At the beginning of each active tracking trial, orange squares appeared for 1.5 sec 

around three balls that the subject was asked to track. On passive-viewing trials, the balls 

simply remained motionless for this 1.5 sec period. After this cue period, the balls moved 

in random directions. When a ball approached another ball or the edge of the screen, it 

changed direction to avoid collision or overlap. After 7.75 sec, the balls stopped moving 

and three balls, which were chosen at random with equal probability to have been a target 

or non-target, were highlighted for 1 sec. Subjects were asked to touch a button with their 

dominant hand (thumb) only if the balls were identical to those that they were tracking; 

their responses therefore provided an objective measure of tracking performance, with 

50% being chance. The active tracking trial continued after a delay of 0.5 sec, when the 

balls were highlighted again for 1 sec for the next tracking session. The sequence of 

events was identical in the non-tracking trials, however, no balls were highlighted, and 

the subjects were instructed not to track the balls, but to view them passively.  

Each active trial lasted for 60 sec, consisting of a total of five different active 

tracking modules within this period. Each passive tracking trial also lasted for 60 sec. The 

three-ball tracking tasks consisted of three blocks of active tracking alternated with 

passive tracking.  
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(a)

(b)

cue task

cue task cue target balls

static balls

attentive tracking response show target balls

passive viewing static balls

5 times

1.25 s 1.5 s 7.75 s 1 s 1 s0.5 s

5 times

Figure 3.1: A schematic diagram of the visual stimulus used in (a) active tracking and (b) 
passive viewing trials. Each trial began with a text cue indicating the type of trial. This 
was followed by a period of static balls (1.5 s), in which the target balls were highlighted 
with orange squares on active trials. These highlights then disappeared and the balls 
moved in random directions on the screen without overlapping. After 7.75 s, the balls 
stopped moving and were highlighted for 1s only on active tracking trials, and subjects 
indicated (using a response button) whether the highlighted balls were among the balls 
that they had been tracking. Following this response, and after a delay of 0.5 s, the correct 
balls were re-highlighted for 1 s to provide feedback to the subjects on the correctness of 
their response. 

 

3.3 Data Processing 
  
 
 
 
Preprocessing of fMRI time series were performed in SPM99 (Statistical Parametric 

Mapping software, http://www.fil.ion.ucl.ac.uk/spm) and involved motion correction, 

spatial normalization to the Talairach frame, and spatial smoothing. (Kim et al., 2006)  
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The following six regions were identified, based on the consideration of the prior 

literature and the fact that they had strong activation during the ball-tracking task: 

cerebellum (CEREB), posterior parietal cortex (PPC, BA 40), anterior parietal cortex 

(APC, BA 7), thalamus (THAL), supplementary motor area (SMA, BA 8), and lateral 

prefrontal cortex (LPFC BA 6, 9, 46) (Büchel and Friston, 1997; Friston and Büchel, 

2000; Chang et al., 2004). Functional MRI time series were extracted from each 

individual data set at coordinates corresponding to all generically activated voxels in each 

of these six regions as the text format.  

The segments of each regional time series corresponding to presentation of the 

activation conditions were then extracted (Honey et al, 2002). To do this, we allowed a 

mean hemodynamic delay of 6 sec, i.e., two TR periods, at the beginning of each onset 

condition. Therefore, the segments of signal corresponding to the presentation of each of 

the three activation conditions without the first two time points (6 sec.) which were 

truncated by correction for hemodynamic delay were concatenated, resulting in T=54 

time points for each subject in each region. 

 

3.4 Unified Structural Equation Modeling  
 
 
 
 
We analyze the fMRI multivariate time series data via the unified SEM approach 

presented by Kim et al. (Kim et al., 2006). This approach includes longitudinal as well as 

contemporaneous relations. Longitudinal temporal relations reflect relationships between 

brain regions involving different time points, and are represented in the form of a 
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multivariate autoregressive model (MAR). In contrast, contemporaneous relations are 

those relationships between brain regions at the same time points, and involve 

conventional SEMs. 

Let  be the  variable measured at time t, j=1,2,…,m. The m-dimensional 

multivariate autoregressive process of order p (MAR(p)) with contemporaneous relations 

is written as: 

( )jy t thj

                 

1

( ) ( ) (1) ( 1) ( ) ( ) ( )

( ) ( ) ( ) ( ),
p

i

y t y t y t p y t p t

y t i y t i t

ε

ε
=

= Β +Γ − + +Γ − +

= Β + Γ − +∑

i i " i

i i
                        (3.1) 

where 1 2( ) [ ( ) ( ) ( )]my t y t y t y t ′= "  is an 1m×  vector of observed variables at time t, 

1 2[ ( ) ( ) ( )]mt t t t( )ε ε ε ε ′"=  is an 1m×  vector of white noise with zero mean and 

covariance εΨ , B is the parameter matrix of the contemporaneous relations, and ( )iΓ , 

i=1,…,p, is a series of m  parameter matrices representing the longitudinal relations. 

The diagonal elements of Γ  represent the coefficients of the autoregressive process for 

each variable, while the off-diagonal elements represent the coefficients of the lagged 

relations between different variables. The parameters contained in matrices B and 

can be free, constrained or fixed. These parameters are set by the initial path model 

with predefined path according to prior study. 

m×

( )i

( )iΓ

Let [ (1) (2) ( )]pΓ = Γ Γ Γ"  be a ( )m m p× ×  matrix and 

[ ( 1) ( 2) ( )]x y t y t y t p ′= − − −"  be a ( )m p×  vector. If we denote θ  as the set of free 

parameters contained in , , ,B andεΓ Ψ Φ , the variance-covariance structure of x, the 

implied covariance matrix of y(t) and x can be written as: 
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1 1

1

( ) ( ' )( ) ( )
( )

'( )

I B I B I B

I B
εθ

− −

−

 ′− ΓΦΓ +Ψ − − ΓΦ
 
 ′ΦΓ − Φ 

                              (3.2) 
1−

Σ =

Therefore, the parameters of MAR-SEM can be estimated through conventional 

structural equation modeling procedures. 

The initial path model is defined with six ROIs and seven anatomically possible 

directional paths for the left brain hemisphere. The posterior parietal cortex (PPC) serves 

as the starting region of visual attention processing in the path model, and information 

flows via the anterior parietal cortex (APC) to the lateral prefrontal cortex (LPFC). An 

attentional feedback loop starts at the supplementary motor area (SMA), with input from 

the LPFC, and extends through the thalamus (THAL), back to the PPC. The THAL acts a 

subcortical relay station, and receives additional input from the cerebellum (CEREB) 

(See Figure 3.2). Our model is restricted to the left hemisphere to simplify the brain 

network. The path model of our study incorporates the conventional contemporaneous 

relations as well as the longitudinal relations. According to the previous research of Kim 

et al. (2006), the longitudinal relations were depicted by the first-order multivariate 

autoregressive process (MAR(1)). Although the order of MAR for each ROI obtained 

from the partial autocorrelation function (PACF) analysis was not always 1, due to 

estimability constrains (Honey et al., 2002), the MAR of order 1 for all ROIs was chosen, 

which produced thirteen possible longitudinal directional paths for the left brain 

hemisphere. The path diagram of the unified longitudinal and contemporaneous path 

model is described in Figure 3.3. And Equation 3.3 is the matrix form of the unified SEM 

with its contemporaneous and longitudinal components. 
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Figure 3.2: Path diagram of the theoretical contemporaneous path model with six ROIs: 
cerebellum (CEREB), posterior parietal cortex (PPC), anterior parietal cortex (APC), 
thalamus (THAL), supplementary motor area (SMA), and lateral prefrontal cortex 
(LPFC), and seven possible directional paths in the left hemisphere. 

 

                  
Figure 3.3: Path diagram of unified contemporaneous and longitudinal path model with 
six brain ROIs, seven possible directional paths (solid lines), and thirteen possible 
longitudinal paths (dashed lines) in the left hemisphere. The longitudinal paths are from 
one region at the previous time (t-1) to other regions as well as itself at the current time 
(t).  
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                               ( ) ( ) (1) ( 1) ( )y t B y t y t ε= + Γ − +i i                                           (3.4) 

In Equation 3.4,  is a vector of the observed fMRI data of six ROIs at time t, B 

and  are contemporaneous and longitudinal parameter matrices, and 

( )y t

) (t

(1)Γ

1[ (t t 2 3 4 5 6( ) ) ( ) ( ) ( ) ( )]t t t tε ε ε ε ε εε ′=  is a vector of errors. 

Equation 3.3 or 3.4 indicates that the value of one brain region at time t is 

influenced by the values of other regions at the same time and the values of the previous 

time t-1 of itself and of other regions. 
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Chapter 4 

 

Subject-Average Unified Structural Equation Modeling 

Approach and Two-Stage Multi-Subject Unified 

Structural Equation Modeling Approach 
 
 
 
 
    
The typical fMRI data involves a number of subjects and each subject’s functional 

activities of multiple brain regions of interest (ROIs) in the brain are measured 

longitudinally over the course of several minutes. Thus, fMRI studies usually contain 

multi-subject, multivariate time series data. Furthermore, it is of interest to incorporate 

the subject-level covariates into the analysis to examine the relationships between 

functional brain pathways and subject-level covariates. For example, twenty-eight 

subjects (14 females and 14 males) participated in our visual attention fMRI study. And 

the corresponding fMRI data has 54 time points for each subject in each of six regions. 

The subject-level covariates include age, gender, verbal IQ (VIQ), and education.  

Three approaches are conceivable for the path analysis of multi-subject, multivariate 

time series data from fMRI experiments. They are: (1) summarize (e.g. average the time 

series data across the subjects) and then analyze, (2) analyze and then summarize, and (3) 

simultaneous analysis. In this chapter we present the first two approaches, which are 

integrated with the unified SEM method described in Chapter 3, to analyze the  
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multi-subject, multivariate time series fMRI data. And we show the application of the 

two approaches to our visual attention fMRI data. The appropriateness of these two 

approaches and comparisons between the two approaches are stated in Chapter 6. In the 

framework of unified SEM, the two approaches are: 

(1) Approach 1: summarize (e.g. average the time series data across the subjects) 

and then analyze, which is the subject-average unified structural equation modeling 

approach, and 

(2) Approach 2: analyze and then summarize, which is the two-stage multi-subject 

unified structural equation modeling approach. 

          

4.1 Subject-Average Unified Structural Equation Modeling 

Approach 
     

4.1.1 Method and Application  
    
 
 
 
Kim (2004) proposed to take the subject-average of time-series fMRI data, 

producing a single sequence of observations for each ROI (which was also adopted by 

Hoge, 1998), and then analyze the subject-average fMRI data via SEM model. However, 

since the reduced average observations are time-series data, they are not independent. In 

order to analyze the dependent fMRI data via conventional SEM software, the unified 

SEM described in Chapter 3 is used to analyze subject-average multivariate fMRI data, 

and therefore this approach is called subject-average unified structural equation modeling 
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approach.  

In the subject-average unified SEM approach, we take the average time series data 

across all the subjects (summarize first), and analyze the subject-average fMRI data with 

the unified structural equation modeling. The unified SEM model with its 

contemporaneous SEM components, its MAR(p) longitudinal components and error 

variances, is fitted for the subject-average fMRI data. 

In our visual attention fMRI data, the unified longitudinal and contemporaneous 

path model (See Section 3.4) to be tested is: 
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          (4.1) 

We take the average time series data across all the twenty-eight subjects, and 

analyze the subject-average visual attention fMRI data with the unified structural 

equation modeling. The unified SEM model in Equation (4.1) with its seven 

contemporaneous paths, its thirteen MAR(1) longitudinal paths and error variances, is 

fitted for the subject-average fMRI data using the SAS PROC CALIS. 

The estimated longitudinal and contemporaneous path parameters with their 
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standard errors, t test statistics, and corresponding p values are tabulated in Table 4.1. 

The bold characters indicate the significant paths at the significance level of 0.05. The 

path model with the significant paths is displayed in Figure 4.1. The significant 

longitudinal path connections contain (1) paths connecting THAL to PPC, and PPC to 

APC, and (2) the longitudinal paths connecting each region to itself. Two 

contemporaneous paths, which are from THAL to PPC and from LPFC to SMA, are 

significant. The goodness-of-fit statistics of the model is 2χ =86.134 (d.f.=31, p 

value<0.01) indicating a poor model fit. The same analysis was repeated using LISREL, 

with identical results as those from SAS. 
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Figure 4.1 Significant path connections from the subject-average unified SEM approach. 
This path network contains eight significant longitudinal path connections (dashed lines) and two 
significant contemporaneous paths (solid lines) in the left hemisphere. 
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Table 4.1 Estimated longitudinal and contemporaneous path parameters from the subject-average 
unified SEM approach with their standard errors, t test statistics, and corresponding p values 
(two-sided). 

 
Longitudinal path parameters Contemporaneous path parameters 

Path 

parameters 
Est. (S.E.) T-value (p-value) 

Path 

parameters 
Est. (S.E.) T-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

0.780 (.091) 

-0.317 (.274) 

0.538 (.111) 

-0.024 (.221) 

0.023 (.198) 

0.237 (.061) 

0.386 (.105) 

0.246 (.110) 

0.566 (.111) 

-0.284 (.178) 

0.582 (.113) 

-0.282 (.160) 

0.590 (.107) 

 

8.593 (.000) 

-1.158 (.247) 

4.842 (.000) 

-0.110 (.912) 

0.116 (.901) 

3.908 (.000) 

3.696 (.000) 

2.233 (.026) 

5.116 (.000) 

-1.600 (.110) 

5.164 (.000) 

-1.757 (.079) 

5.518 (.000) 

 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

-0.058 (.250) 

0.394 (.217) 

0.270 (.182) 

-0.258 (.057) 

-0.141 (.126) 

0.172 (.179) 

0.377 (.156) 

-0.232 (.816) 

1.815 (.070) 

1.482 (.138) 

-4.509 (.000) 

-1.122 (.262) 

0.959 (.338) 

2.422 (.015) 

Bold characters indicate the significant path parameters at the significance level of 0.05. 

 

 
 

4.1.2 Gender Effect and Two-level Nonparametric Bootstrap 
    
 
 
 
Because in our visual attention fMRI data, we have two gender groups, females and 

males, we can test the gender effect on each path coefficient, i.e., to test if the paths are 

significantly different between the two groups. For the subject-average unified structural 
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equation modeling approach, we need to take the subject average of fMRI data across all 

subjects in each gender group, and therefore we obtain two unified SEM models, one for 

females and one for males. By fitting the unified SEM model for the two groups, we have 

two separate estimations for each path i: one is from the subject-average unified SEM 

across female subjects, denoted as ( )i
femalepath

i

, and one is from subject-average unified 

SEM across male subjects, denoted as ( )
malepath . The estimation of difference between 

females and males for each path could be computed as 

                       ( ) ( ) ( )i i i
female maleDifference of path path path= − .                                  (4.2) 

The standard two-sample t-test or nonparametric test is not appropriate for this data, 

since we only have one subject-average observation for females and males. In order to 

obtain the standard error of the estimated difference between two gender groups and 

perform hypothesis test, we propose to use a two-level nonparametric bootstrap method. 

Meijer et al. (1995) has illustrated implementing the two-level bootstrap for multilevel 

models. In this work, we implement the two-level bootstrap for SEM model with subject-

level covariate, which is a new development. And we illustrate the bootstrap procedures 

through our visual attention fMRI data. 

In the structure of fMRI data, we have two-level samples; level-one samples are the 

fMRI time points within a subject, and level-two samples are independent subjects. 

Therefore, in order to retain the fMRI data structure, we do two-level rasampling to 

obtain bootstrap samples. 

We use the nonparametric bootstrap, whose bootstrap samples can be drawn by 

resampling complete cases. The bootstrap samples can be drawn in the following way. 
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We assume there are  and  subjects in the female group and male group, 

respectively. First, a sample of size  is drawn with replacement from the female group 

and a sample of size  is drawn with replacement from the male group. This gives a 

sample 

fN

mN

mN

fN

*
fkj  of female subjects and a sample  of male subjects, where *

mkj 1,... ffk N= , 

. Then for each fk or mk, a nonparametric bootstrap sample of complete cases 

(including longitudinal and contemporaneous components) from the original subject 

1, mmk =

*

...N

fkj j=  or  is drawn. We call this the complete cases bootstrap for both levels. *
mkj j=

The estimator of gender group difference for each path ˆ female malepath pathµ = −  is 

computed from the original sample. For each bootstrap sample b=1,…,B (obtained in the 

way described above), a bootstrap estimator *( )bµ  is obtained in the same way the 

estimator µ̂  was obtained from the original sample, i.e., *( ) *( ) *( )b b
f m

bpath path= −µ , where 

*( )b
fpath  is the bootstrap path estimator from subject-average unified SEM approach for 

female group and *( )b
mpath  is the bootstrap path estimator from subject-average unified 

SEM approach for male group. The variance of *( )b
fpath  and *( )b

mpath * are fV  and V , 

respectively. Therefore, the standard error of 

*
m

*( )bµ  is * *
f mVV +  (Efron and Tibshirani, 

1993). 

We have 14 females and 14 males in our visual attention fMRI data, and we perform 

the two-level bootstrap with B=1000 replicates to calculate the standard errors. The 

results are summarized in Table 4.2. 

Three paths are significantly different between females and males from Approach 1, 
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which are the longitudinal and contemporaneous paths from LPFC to SMA, and the 

longitudinal path connecting LPFC and THAL. 

 

Table 4.2 Gender comparisons of the estimated longitudinal and contemporaneous path 
parameters between two gender groups from the subject-average unified SEM approach with their 
bootstrap standard errors, z values, and corresponding p values (two-sided). 

Longitudinal path parameters Contemporaneous path parameters 

Path 

parameters 
Est. (S.E.) Z-value (p-value) 

Path 

parameters 
Est. (S.E.) Z-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

0.163 (.169) 

-0.039 (.374) 

0.029 (.168) 

-0.879 (.336) 

-0.115 (.341) 

-0.033 (.138) 

-0.275 (.170) 

0.097 (.173) 

-0.042 (.166) 

-0.112 (.329) 

0.126 (.169) 

-0.572 (.222) 

0.149 (.173) 

 

0.965 (.334) 

-0.104 (.917) 

0.173 (.863) 

-2.620 (.009) 

-0.338 (.736) 

-0.240 (.810) 

-1.617 (.106) 

0.562 (.574) 

-0.251 (.802) 

-0.340 (.734) 

0.743 (.457) 

-2.573 (.010) 

0.864 (.387) 

 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

0.088 (.367) 

0.108 (.338) 

-0.056 (.354) 

-0.092 (.136) 

-0.277 (.193) 

-0.102 (.330) 

0.440 (.210) 

0.241 (.809) 

0.319 (.749) 

-0.159 (.874) 

-0.678 (.497) 

-1.432 (.152) 

-0.310 (.756) 

2.096 (.036) 

Bold characters indicate the path parameters significantly different between two gender 
groups at the significance level of 0.05. 

 
 

4.2 Two-Stage Multi-Subject Unified Structural Equation 

Modeling Approach (Kim et al. 2006) 
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4.2.1 Methods and Application 
  
 
 
 
Kim et al. (2006) developed a two-stage multi-subject unified structural equation 

modeling approach to analyze multi-subject, multivariate time series fMRI data with 

subject-level covariates. We adopt their method in this work. 

In stead of taking the average of time series data across all the subject, in this 

approach, the unified SEM model with its contemporaneous SEM components, its 

MAR(p) longitudinal components and error variances, is fitted for each of the 28 subject 

time courses individually at the first stage. And we take the average of the estimated path 

parameters across all the 28 subjects for each possible path to test if the mean of the 

parameters for each path is significantly different from zero using one-sample t-test (two-

sided) at the second stage. So it is called the two-stage multi-subject unified SEM 

approach. 

For our visual attention fMRI data, the unified SEM model presented in Equation 

(4.1) with its contemporaneous SEM components of six ROIs and seven paths, its 

MAR(1) longitudinal components and thirteen paths, and error variances, is fitted for 

each of the 28 subject time course individually using the SAS PROC CALIS. Table 4.3 

presents the mean values of the estimated path coefficients with their standard errors 

across all 28 subjects. The t-test statistics and the corresponding p values provide the 

significant longitudinal and contemporaneous paths at the significance level of 0.05. The 

path model with the significant paths is displayed in Figure 4.2. The goodness-of-fit 
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statistics 2χ  is large (small p value) for fitted SEM model of each subject, indicating a 

poor model fit. 

The significant longitudinal path connections contain (1) paths connecting APC to 

LPFC, and LPFC to SMA, and (2) the longitudinal paths connecting each region to itself. 

The only significant contemporaneous path is from LPFC to SMA. The same analysis 

was repeated using LISREL, with identical results as those from SAS. 
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Figure 4.2 Significant path connections from the two-stage multi-subject unified SEM 
approach. This path network contains eight significant longitudinal path connections (dashed 
lines) and one significant contemporaneous path (solid line) in the left hemisphere.  
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Table 4.3 Mean values of the estimated longitudinal and contemporaneous path parameters 
across 28 subjects from the two-stage multi-subject unified SEM approach with their standard 
errors, t test statistics, and corresponding p values (two-sided). 

 
Longitudinal path parameters Contemporaneous path parameters 

Path parameters Mean (S.E.)           T-value (p-value) Path parameters Mean (S.E.) T-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

0.612 (.019) 

0.005 (.070) 

0.591 (.020) 

-0.120 (.070) 

0.028 (.082) 

0.035 (.029) 

0.595 (.021) 

0.031 (.036) 

0.593 (.016) 

-0.124 (.046) 

0.615 (.019) 

-0.166 (.047) 

0.578 (.018) 

 

31.462 (.000) 

0.074 (.942) 

29.391 (.000) 

-1.718 (.097) 

0.339 (.737) 

1.182 (.248) 

28.821 (.000) 

0.872 (.391) 

36.001 (.000) 

-2.683 (.012) 

31.685 (.000) 

-3.517 (.002) 

31.140 (.000) 

 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

0.047 (.076) 

0.101 (.071) 

0.030 (.087) 

-0.034 (.026) 

-0.005 (.036) 

0.091 (.066) 

0.229 (.054) 

0.622 (.539) 

1.424 (.166) 

0.340 (.736) 

-1.311 (.201) 

-0.126 (.901) 

1.384 (.178) 

4.208 (.000) 

Bold characters indicate the significant path parameters at the significance level of 0.05. 

 

4.2.2 Gender Effect and Two-level Nonparametric Bootstrap  
    
 
 
 
By using the two-stage multi-subject unified structural equation modeling approach, 

we can test if the paths are significantly different between two gender groups simply by 

two-sample t-test. In stage 2 the subject-level path coefficients obtained form the unified 

SEM analysis of stage 1 are merged with the subject-level covariate, gender, to examine 
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the impact of the gender on the brain pathways via a statistical t-test. Here we illustrate 

the stage 2 analysis using the fMRI visual attention data. 

Two-sample t-test is performed for each path connection individually if we assume 

the path connections are normally distributed in each gender group. The corresponding 

analysis results (two-sample t-test and their p-values) are tabulated in Table 4.4. At the 

significance level 0.05, three out of 13 longitudinal and 7 contemporaneous paths in the 

model are significantly influenced by gender. The comparisons of Approach 1 and 

Approach 2 of detecting gender effects are shown in Chapter 6. 

Table 4.4 Gender comparisons of the estimated longitudinal and contemporaneous path 
parameters between two gender groups from the two-stage multi-subject unified SEM approach 
with their standard errors, t test statistics, and corresponding p values (two-sided). 

Longitudinal path parameters Contemporaneous path parameters 

Path 

parameters 
Est. (S.E.) T-value (p-value) 

Path 

parameters 
Est. (S.E.) T-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

0.004 (.040) 

0.079 (.141) 

0.082 (.038) 

-0.083 (.142) 

-0.099 (.165) 

-0.022 (.060) 

-0.085 (.039) 

0.063 (.071) 

0.060 (.031) 

-0.172 (.088) 

-0.064 (.037) 

-0.158 (.091) 

-0.011 (.038) 

0.096 (.925) 

0.561 (.580) 

2.185 (.038) 

-0.587 (.562) 

-0.599 (.554) 

-0.375 (.711) 

-2.210 (.036) 

0.882 (.386) 

1.909 (.067) 

-1.943 (.063) 

-1.722 (.097) 

-1.727 (.096) 

-0.296 (.770) 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

-0.029 (.154) 

0.044 (.144) 

0.022 (.177) 

-0.018 (.052) 

-0.120 (.071) 

0.102 (.132) 

0.304 (.093) 

-0.191 (.850) 

0.306 (.762) 

0.124 (.903) 

-0.346 (.732) 

-1.697 (.102) 

0.771 (.448) 

3.255 (.003) 

Bold characters indicate the path parameters significantly different between two gender 
groups at the significance level of 0.05. 
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It is worth noting that the two-sample t-test is based on the assumption that the path 

coefficients are normally distributed in each gender group. However, in real life, this 

assumption could be violated, especially when the sample size of subjects in each gender 

group is small. The nonparametric bootstrap method described in Section 4.1.2 could be 

used to estimate the standard error of the estimated difference between two gender groups 

for each path connection individually. We illustrate the bootstrap procedures through our 

visual attention fMRI data. 

We use the nonparametric bootstrap, whose bootstrap samples can be drawn by 

resampling complete cases. The bootstrap samples can be drawn in the following way. 

We assume there are  and  subjects in the female group and male group, 

respectively. First, a sample of size  is drawn with replacement from the female group 

and a sample of size  is drawn with replacement from the male group. This gives a 

samples 

fN

mN

mN

fN

*
fkj  of female subjects and a sample  of male subjects, where *

mkj 1,... ffk N= , 

. Then for each fk or mk, a nonparametric bootstrap sample of complete cases 

(including longitudinal and contemporaneous components) from the original subject 

1,mk =

*

... mN

fkj j=  or  is drawn. We call this the complete cases bootstrap for both levels. *
mkj j=

The estimator of gender group difference for each path ˆ ˆ ˆf mµ µ µ= −  is computed 

from the original sample. For each bootstrap sample b=1,…,B (obtained in the way 

described above), a bootstrap estimator *( )bµ  is obtained in the same way the estimator µ̂  

was obtained from the original sample, i.e., *( ) *( ) *(b b
f

)b
mµ µ= − µ *(, where )b

fµ  is the 
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bootstrap estimator of mean for female group and *( )b
mµ  is the bootstrap estimator of mean 

for male group. The variance of *( )b
fµ  and *( )b

mµ  are *
fV  and V , respectively. Therefore, 

for the independent two-sample test, the standard error of 

*
m

*( )bµ  is * *
f mV V+  (Efron and 

Tibshirani, 1993). 

 
Table 4.5 Gender comparisons of the estimated longitudinal and contemporaneous path 
parameters between two gender groups with bootstrap standard errors. 

Longitudinal path parameters Contemporaneous path parameters 

Path 

parameters 
Est. (S.E.) Z-value (p-value) 

Path 

parameters 
Est. (S.E.) Z-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ   

 

0.004 (.058) 

0.079 (.184) 

0.082 (.059) 

-0.083 (.171) 

-0.099 (.190) 

-0.022 (.066) 

-0.085 (.057) 

0.063 (.087) 

0.060 (.056) 

-0.172 (.128) 

-0.064 (.056) 

-0.158 (.106) 

-0.011 (.059) 

 

0.066 (.948) 

0.430 (.667) 

1.384 (.166) 

-0.489 (.635) 

-0.521 (.602) 

-0.338 (.735) 

-1.492 (.136) 

0.726 (.468) 

1.081 (.280) 

-1.338 (.181) 

-1.143 (.253) 

-1.485 (.138) 

-0.189 (.850) 

 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

 

-0.029 (.190) 

0.044 (.170) 

0.022 (.200) 

-0.018 (.062) 

-0.120 (.088) 

0.102 (.157) 

0.304 (.110) 

-0.155 (.877) 

0.259 (.796) 

0.109 (.913) 

-0.294 (.769) 

-1.357 (.175) 

0.649 (.516) 

2.759 (.006) 

Bold characters indicate the path parameters that are significantly different between two 
gender groups at the significance level of 0.05. 
 

 
We have 14 females and 14 males with our visual attention fMRI data, and 
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coefficient estimation from two-stage unified SEM model of each path within the same 

gender group barely follows the normal distribution, except for path 43γ . Hence, the t-test 

is appropriate for the visual attention fMRI data. However, in order to illustrate the 

application of two-level nonparametric bootstrap method, we perform the bootstrap with 

B=1000 replicates to our data and the results are listed in Table 4.5. Only the 

contemporaneous path from LPFC to SMA is significantly different between females and 

males. The nonparametric bootstrap method gives conservative conclusions due to larger 

standard errors. 

 

4.2.3 Generalized Linear Model of Other Covariates 
 
 
 
 
Similar to the analysis in Section 4.2.2, in Stage 2 of the two-stage multi-subject 

unified structural equation modeling approach, the subject-level path coefficients 

obtained form the unified SEM analysis of stage 1 could be merged with other subject-

level covariates to examine the impact of these covariates on the brain pathways via a 

GLM. Here we illustrate the stage 2 analysis using the fMRI visual attention data. 

We examine the impact of three other covariates---age, verbal IQ (VIQ), and 

education on the visual attention pathway. Three covariates of 28 subjects are fitted on a 

GLM for each path connection individually. The analysis results (F-statistics and 

corresponding p values) are tabulated in Table 4.6. Two out of 13 longitudinal and 7 

contemporaneous paths are significantly influenced by age, and one path is influenced by 
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VIQ. No connectivity in this visual attention network, however, is significantly correlated 

with education.  

 
Table 4.6. F-test statistics and the corresponding p-values of three subject-level 
covariates from the general linear model (GLM) analysis. Bold characters indicate the 
paths significantly influenced by the corresponding covariates at the significance level of 
0.05.     

 Paths Age VIQ Education 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ   

 

0.078 (.782) 

0.069 (.795) 

3.184 (.086) 

2.419 (.132) 

0.056 (.815) 

6.306 (.019) 

0.006 (.938) 

0.921 (.346) 

1.135 (.297) 

4.233 (.050) 

0.234 (.633) 

0.469 (.499) 

0.039 (.845) 

0.142 (.709) 

0.395 (.535) 

0.258 (.616) 

1.285 (.267) 

0.189 (.667) 

2.024(.167) 

0.016 (.900) 

1.846 (.186) 

1.394 (.248) 

1.844 (.186) 

1.566 (.222) 

0.447 (.510) 

2.739 (.135) 

1.119 (.300) 

0.001(.978) 

0.731 (.400) 

0.012 (.913) 

17.335 (.000) 

0.366 (.551) 

0.003 (.968) 

1.136 (.296) 

0.689 (.414) 

2.122 (.157) 

1.572 (.221) 

0.174 (.680) 

0.623 (.437) 

0.170 (.683) 

0.623 (.437) 

0.005(.947) 

0.539 (.470) 

0.000 (.988) 

1.509 (.230) 

1.754 (.197) 

0.202 (.657) 

0.015 (.904) 

0.508 (.483) 

0.702 (.410) 

3.684 (.066) 

0.661 (.424) 

0.157 (.695) 

0.030 (.863) 

0.000 (.992) 

1.901 (.180) 

0.972 (.333) 

0.156 (.696) 

0.005 (.945) 

0.609 (.442) 
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Combining the results of Section 4.2.2 and Section 4.3 from two-stage multi-subject 

unified structural equation modeling approach, the paths, which are significantly 

influenced by all the covariates---gender, age, and VIQ, are shown in Figure 4.3. 
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Figure 4.3 Path connections, which are significantly influenced by subject-level 
covariates from the two-stage multi-subject unified SEM approach. Three covariates (G, gender; 
A, age; and V, verbal IQ) are denoted along with the path connections. Dashed lines represent 
longitudinal path connections and solid lines represent contemporaneous path.  
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Chapter 5 

 

Hierarchical Multi-Subject Unified Structural Equation 

Modeling Approaches (Simultaneous Analysis) 
 
 
 
 
 
The two approaches described in Chapter 4 are “summarize and then analyze”, and 

“analyze and summarize”. However, we can analyze fMRI in a third way, which is 

“analyze and summarize simultaneously”. In this chapter we present three different 

approaches to analyze multi-subject, multivariate time series fMRI data simultaneously. 

We illustrate the application of the three approaches by our visual attention fMRI data. 

The comparisons among the approaches of simultaneous analysis and the two approaches 

in Chapter 4 are shown in Chapter 6 in detail. 

 

5.1 Single-Level Multi-Subject Unified SEM Approach 
 
 
 
 
Consider the typical fMRI data, which involves a number of subjects and have 

multiple time points for each subject in each brain region. Instead analyzing the fMRI 

data by the two approaches described in Chapter 4, we can analyze all the subjects 

simultaneously by a single-level model. That is, we analyze a concatenated fMRI data, 
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which contain the time courses (observations) of all the subjects, instead of analyzing 

each subject individually or analyzing the average time courses across all subjects. This is 

a common practice in neuroscience (Penny and Holmes, 2004; Mechelli et al., 2002). 

However, since the concatenated fMRI data are time series data, the observations are not 

independent. In this work, we apply the unified SEM method to analyze the concatenated 

fMRI data, which is called the single-level unified SEM approach. The single-level multi-

subject unified SEM approach assumes that after introducing MAR(p) longitudinal 

components into the fMRI data, all the fMRI observations across all the subjects were 

sampled independently from each other and then can be analyzed via conventional SEM 

model.  

Our visual attention fMRI data have 54 time points (observations) for each subject 

and each ROI, and we have 28 subjects in this study. Therefore, the concatenated fMRI 

data should contain 1512 (54*28) observations of six ROIs. To apply the unified SEM 

approach, as a result of introducing MAR(1) longitudinal components, the multi-subject 

fMRI data contain 1484 (53*28) observations. The unified SEM model in Equation (4.1) 

with its contemporaneous SEM component of six ROIs and seven paths, its MAR(1) 

longitudinal components and thirteen paths and error variances, is fitted for the 

concatenated multi-subject fMRI data using the SAS PROC CALIS. 

Table 5.1 presents the estimated longitudinal and contemporaneous path parameters 

with their standard errors, t test statistics, and corresponding p values. The bold 

characters indicate the significant paths at the significance level of 0.05. The path model 

with the significant paths is displayed in Figure 5.1. The significant longitudinal path 
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connections contain (1) paths connecting APC to LPFC, and LPFC to THAL and SMA, 

(2) the longitudinal paths connecting each region to itself. Five contemporaneous paths 

are significant, four of which form a single loop starting at THAL and connecting PPC, 

APC, and LPFC, and one of which is from LPFC to SMA. The goodness-of-fit statistics 

of the model is 2χ =122.125 (d.f.=31, p value<0.01) indicating a poor model fit. The 

same analysis was repeated using LISREL, with identical results as those from SAS. 

 
Table 5.1 Estimated longitudinal and contemporaneous path parameters of the 
concatenating multi-subject fMRI data using the single-level unified SEM model with 
their standard errors, t test statistics, and corresponding p values (two-sided). 

Longitudinal path parameters Contemporaneous path parameters 

Path parameters Est. (S.E.) T-value (p-value) Path parameters Est. (S.E.) T-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

0.609 (.020) 

-0.040 (.041) 

0.630 (.020) 

-0.074 (.038) 

-0.027 (.039) 

0.024 (.016) 

0.618 (.020) 

0.006 (.020) 

0.613 (.021) 

-0.133 (.039) 

0.643 (.020) 

-0.180 (.025) 

0.580 (.021) 

 

29.985 (.000) 

-0.992 (.321) 

31.287 (.000) 

-1.976 (.048) 

-0.689 (.491) 

1.574 (.116) 

30.371 (.000) 

0.303 (.762) 

29.661 (.000) 

-3.448 (.000) 

32.394 (.000) 

-7.247 (.000) 

27.354 (.000) 

 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

0.073 (.041) 

0.086 (.038) 

0.050 (.039) 

-0.040 (.016) 

0.040 (.020) 

0.112 (.039) 

0.209 (.025) 

1.781 (.075) 

2.287 (.022) 

1.293 (.196) 

-2.528 (.012) 

1.979 (.048) 

2.882 (.004) 

8.486 (.000) 

Bold characters indicate the significant path parameters at the significance level of 0.05. 
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Figure 5.1 Significant path connections of the concatenating multi-subject fMRI data 
using the single-level unified SEM model. This path network contains nine significant 
longitudinal path connections (dashed lines) and five significant contemporaneous paths 
(solid lines) in the left hemisphere. 

 

 

5.2 Hierarchical Multi-Subject Unified SEM Approach --- 

Multilevel Covariance Structural Analysis with Unified SEM 
    
 
 
 
The single-level multi-subject unified SEM approach described in Section 5.1, 

which analyzes fMRI data of all the subjects simultaneously by a single-level unified 

SEM model, assumes that all the observations (e.g. 1484 observations in visual attention 

fMRI data) were sampled independently from each other. However, the typical fMRI data 
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have a complex hierarchical data structure, that is, the time point observations are nested 

within subjects. Both fMRI observations and subjects are units in the analysis and 

variables are measured at both levels (we have fMRI measurements for each ROI, and we 

have subject-level covariates, e.g., gender and age.). The sampling design of fMRI data is 

two-stage sampling: the population of interest consists of subpopulations, and selection 

takes place through the subpopulations. The time point observations are nested in 

subjects, so the population of time point fMRI observations consists of subpopulations of 

subjects that produce time point fMRI observations. In such a random two-stage sample, 

a random sample of the subjects is taken in the first stage, and then the secondary units 

(time point fMRI observations) are sampled from the selected subjects in the second 

stage. Therefore, the time point fMRI observations might be dependent from each other: 

having selected a subject increases the chances of selection of the secondary units (time 

point fMRI observations) from that subject. The patterns of fMRI observations from the 

same subject are more similar than fMRI observations from different subjects. The fMRI 

observations from different subjects can be independent, but fMRI observations from the 

same subject share common characteristics or perceptions. In other words, the two-stage 

sampling design could lead to dependent observations. Hence, the independent 

observation assumption of the approach described in Section 5.1 could be violated, and 

the use of single-level unified SEM model might not be valid. 

In this section and the next section, we will present a hierarchical (multilevel) multi-

subject unified SEM approach, which takes the hierarchical structure of fMRI data into 

account. It is a simultaneous analysis of fMRI data by considering both levels (subject 
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level and single fMRI scan level) simultaneously in the analysis. In this work, the word 

“hierarchical” and the word “multilevel” are exchangeable. We will show the application 

of this approach to our visual attention fMRI data in Section 5.4. 

    

5.2.1. Introduction 
    
 
 
 
Attempts to integrate multilevel modeling with structural equation modeling so as to 

provide a general methodology that can account for issues of measurement error and 

simultaneity as well as multistage sampling can be traced back to the late 1960s. One of 

the earliest attempts was by Schmidt (1969) who derived a maximum likelihood 

estimator for a general multilevel covariance structure model but did not attempt to 

introduce group level variables into the model. More recently, Longford and Muthén 

(1992) provided computational results for multilevel factor analysis models. Muthén and 

Satorra (1989) were the first to show the variety of possible special cases of multilevel 

covariance structure modeling. Muthén and Muthén (1998-2006) developed Mplus, a 

powerful software, for multilevel covariance structural analysis. 

Muthén (1991, 1994) showed the decomposition of hierarchical educational data 

into two separate models for the within- and between-groups structures through 

multilevel covariance structural analysis. Multilevel covariance structural analysis 

assumes that only the intercepts (not path coefficients) in the structural equation 

modeling are varying randomly over groups. This method can be applied to general 

hierarchical data. However, to our knowledge no works have been done to introduce this 
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method into analysis of fMRI data. Since fMRI data have the similar hierarchical 

structure to education data where multilevel covariance structural analysis arose from, we 

propose to use the multilevel covariance structural analysis to analyze fMRI data. Since 

fMRI data are temporally correlated, in this approach, we first transform the fMRI data 

under the unified SEM framework to introduce longitudinal components, and then we 

apply multilevel covariance structural analysis to the transformed fMRI data that have 

both contemporaneous and longitudinal components. Following Muthén’s work, if we 

assume that there is one population of fMRI observations that are clustered in subjects, 

the fMRI data are decomposed into two separate models for the within- and between-

subjects structures.  

The goal of multilevel covariance structure analysis is to decompose the variation in 

the variables (both contemporaneous and longitudinal ROIs) into variance and covariance 

components associated with the two levels of the hierarchical fMRI data structure and 

explain the variation present at each level simultaneously. For each fMRI measurement, 

the total score is decomposed into an individual fMRI component (i.e., the individual 

fMRI measurement deviation from the subject mean) and a subject component (i.e., the 

disaggregated subject mean). The decomposition is used to compute separate within- and 

between- subjects covariance matrices. 

 

5.2.2. Intraclass Correlation 
     
 
 
 
The degree of resemblance between fMRI observations belonging to the same 
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subject under the assumptions that the intercepts in the structural equation modeling are 

varying randomly over subjects can be expressed by the intraclass correlation coefficient. 

The term class is conventionally used and refers to the level-two units (subjects in fMRI 

data) in the classification system under consideration. Therefore, the intraclass correlation 

describes the degree of correspondence within subjects. It can be expressed as 

                                             2 2 2/( )B B Wρ σ σ σ= + ,                                                   (5.1) 

where 2
Bσ  is the variability between subjects and 2

Wσ  is the within-subject variability for 

each variable (ROIs). 

Therefore, ρ  indicates the proportion of the total variability that can be attributed to 

variability between the subjects. Since intraclass correlation is calculated on the 

assumption that only the intercepts in the structural equation modeling are varying 

randomly over subjects, the intraclass correlation could be zero under two circumstances: 

(1) the data are independent, or (2) the assumptions are not valid, i.e., not only intercepts 

but also path coefficients are random. The magnitude of intraclass correlation depends on 

characteristics of the variable (ROIs) and the attributes of the subjects. The larger the 

intraclass correlation, the larger the distortion in parameter estimation that results from 

ignoring the similarities due to clustering from the multilevel fMRI data structure is. In 

the absence of between-subject variability (i.e., where the intraclass correlation is less 

than 0.05), however, there is little need to perform a multilevel covariance structural 

analysis. In such cases, a single-level analysis would provide similar parameter 

estimations as what multilevel covariance structural analysis would produce. 
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5.2.3. Multilevel Covariance Structure 

     

If we write the fMRI data is format giY  (subscript i for individual fMRI observations, 

i=1…N; subscript g for subjects, g=1…G), giY  is a vector containing all variables 

(contemporaneous and longitudinal ROIs) for all individual fMRI observations in the 

subject. There are gN  individual fMRI observations in subject g, and gN =∑N  is the 

total sample size. Unlike conventional analysis, independence of observations is not 

assumed over all N observations but only over the G subjects.  

Following the idea of Cronbach and Webb (1975), we can decompose the individual 

hierarchical fMRI data into a between subjects component B YgY = , and a within subjects 

component W gi Y= −

T =

g

gi

W

Y Y . In other words, for each fMRI observation we replace the 

observed total score Y  by its components: the subject component  (the 

disaggregated subject mean) and the individual fMRI observation Y  (the individual 

fMRI observation deviation from the subject mean). These two components have the 

attractive property that they are orthogonal and additive (Searle, Casella & McCulloch, 

1992): 

Y BY

W

                                          Y YT B Y= + .                                                                (5.2) 

This decomposition can be used to compute a between subjects covariance matrix 

 (the population covariance matrix of the disaggregated subject means Y ) and a 

within subjects covariance matrix 

BΣ B

WΣ  (the population covariance matrix of the individual 
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fMRI observation deviations from the subject means Y ). These covariance matrices are 

also orthogonal and additive:  

W

W

( )g

                                         T B WΣ = Σ +Σ .                                                               (5.3) 

Following the same logic, we can also decompose the sample data. Suppose we 

have data from N fMRI individual observations, divided into G groups (subjects). If we 

decompose the sample data, we have for the sample covariance matrices: 

                                        T BS S SW= + .                                                                 (5.4) 

Hierarchical (multilevel) structural equation modeling assumes that the population 

covariance matrices  and BΣ WΣ  can be described by separate models for the between 

subjects and within subjects structure. To estimate the model parameters, we need 

maximum likelihood estimates of the population between subjects covariance matrix BΣ  

and the population within subjects covariance matrix Σ . 

We define two sample covariance matrices: the pooled within covariance matrix 

PWS  and the scaled between covariance matrix . BS

Based on Muthén’s work (Muthén 1989) we know that an unbiased estimate of the 

population within subjects covariance matrix WΣ  is given by the pooled within subjects 

covariance matrix PWS , calculated in the sample by: 

                                1 1
( )

.

gNG

gi g gi
g i

PW

Y Y Y Y
S

N G
= =

− −
=

−

∑∑
                                           (5.5) 

'

Equation (5.5) corresponds to the conventional equation for the covariance matrix of the 

individual deviation scores, with N-G in the denominator instead of the usual N-1. 
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Since the pooled within subjects covariance matrix PWS  is an unbiased estimated of 

the population within subjects covariance matrix WΣ , we can estimate the population 

within subject structure directly by constructing and testing a model for PWS . 

The scaled between subjects covariance matrix for the disaggregated subject means 

 can be calculated in the sample by: BS

                                   1
( )( )

.
1

G

g g g
g

B

N Y Y Y Y
S

G
=

− −
=

−

∑ '
                                             (5.6) 

However, unlike PWS ,  is not an unbiased estimate of BS BΣ .  

Muthén (1989, 1990) shows that in a hierarchical model, PWS  is the maximum 

likelihood estimator of , with sample size N-G, and  is the maximum likelihood 

estimator of the composite  with sample size G: 

WΣ BS

W cΣ + ΣB

                                        ( )PWE S W= Σ ,                                                                (5.7) 

and 

                                        ( )B WE S c B= Σ + Σ .                                                         (5.8) 

For balanced fMRI data (all subjects have the same number of individual fMRI 

observations), c equal to the common subject size n. For unbalanced data, c reflects the 

subject size and we have: 

                                   c N 2 2

1
[ ][ (

G

g
g

N N G 11)] .−

=

= − −∑                                              (5.9) 

Equation (5.8) shows that the population counterpart of  is a function of both BS BΣ  and 
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WΣ . The ML estimate of  is WΣ PWS , while the ML estimate of BΣ  is (Muthén 1990) 

1−

1
W

tr

Σ(+Σ

{ }
ln

]

B

−

W

N G

Σ

+ −

giε

                                            c S                                                           (5.10) ( B PWS− ).

Under the assumption of multivariate normality, the maximum-likelihood (ML) estimator 

(Muthén 1989) minimizes the function 

                   (5.11) 
* 1 1

1

log ) log [ ) ]

( ) [ ].
W B W B B

W PW

F G n N G G tr n S

N G S

− − −

−

= Σ + − Σ + +Σ

+ − Σ

Here n is the balanced subject fMRI observation size. 

For unbalanced data, Muthén (1994) derived a quasi-likelihood estimator as 

                     
{ }1

1

ln [( ) ]

( ) ln [ ] ln[ ,

muml B W B B

W W PW PW

F G c trace c S S

trace S S t

−

−

= + Σ + Σ + Σ − −

Σ + Σ −
                 (5.12) 

t

where t is the total number of variables. 

Since in our fMRI data, there are only observed variables, we consider multilevel 

path analysis (Kaplan, 2000) instead of multilevel factor analysis. Following Muthén 

(1994) consider the within groups model written as 

                                       ,gi g Y gi gY iY Bα ε= + +                                                     (5.13) 

where gα  is a vector of intercepts which are assumed to vary over subjects, YB  is a 

matrix of path coefficients relating the within subject variables (ROIs) to each other, and 

 is a disturbance term. 

The specification of the model in Equation (5.13) may appear unusual, as there is no 

vector of x of exogenous variables. In fact, Equation (5.13) is referred to as an “all-y” 

model (Jöreskog and Sörbom, 1993). In the “all-y” specification, all variables are treated 
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as “endogenous” variables. Thus giY  is a p+q-dimentional vector of variables, where the 

first p variables are endogenous variables, while the last q variables are exogenous 

variables. And the first p elements of gα  intercepts for endogenous variables, while the 

last q elements of gα  are the means of the exogenous variables. The model as expressed 

in Equation (5.13) was referred to as the structural form of the “within subject” part of 

the model, representing the hypothesized relationships among the within-subject 

variables (ROIs) as they are implied by the generic unified SEM model. It is important to 

note that the model specified in Equation (5.13) allows one to capture variation in the 

intercepts and exogenous variable means, but does not allow one to capture variation in 

the structural relationships contained in YB . Indeed, it is presently not possible to model 

slope variation in the context of multilevel structural equation modeling. (Kaplan 2000; 

Bauer et al., 2006) 

If we assume that the inverse of ( )YI B−  exists, Equation (5.13) can be reexpressed 

as 

                               1( ) ( ) 1
gi Y g YB I B giY I α ε−= − + − − .                                         (5.14) 

We assume that the levels of subject level variables (contained in gα ) vary across the g 

subjects and that this variation can be explained by subject level variables. Thus, we can 

write a “between subject” model for intercepts and means as 

                                         g gB zα gα α δ= + + ,                                                    (5.15) 

where assuming gz  is centered around the grand mean, α  is the grand mean vector  
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across the g subjects, gz  are subject level variables, Bα  is a matrix of path coefficients 

relating gz  to gα , and gδ  is a vector of disturbances. Furthermore, the between subject 

variables gz  are allowed to follow a separate between subject simultaneous equation that 

can be written as 

                                         g z g gz B z uτ= + + .                                                      (5.16) 

If we assume that ( )zI B−  is nonsingular, Equation (5.16) can be rewritten in 

reduced form as 

                           1( ) ( ) 1
g z zz I B I B uτ−= − + − g

− ,                                                 (5.17) 

where τ is a vector of intercepts and means for the subject level equations, zB  is a matrix 

of coefficients relating subject level variables to each other, and gu  is a vector of 

disturbances for the subject level equation. 

After a series of substitutions of Equations (5.17), (5.16) and (5.15) into Equation 

(5.14), taking into account the structural relationships within as well as between subjects, 

we have the final model which can be written as 

                 1 1( ) ( ) ( ) 1
gi Y g Y g YB u I B I B giY I α τ δ− −= − +Π +Π + − + − ε−

)

B

,              (5.18) 

where Π = . 1 1( ) (Y zI B B I Bα
− −− −

We can decompose the covariance components of the model in Equation (5.18) as  

                      
1 1

1 1

var( ) ' ( ) ( )

( ) ( ) ,
gi u Y Y

Y Y

Y I B I

I B I B
δ

ε

− −

− −

′= ΠΨ Π + − Ψ −

′+ − Ψ −
                                  (5.19) 

where , var( )u guΨ = var( )gδ δΨ = , and var( )giε εΨ = . From here, the between subjects 
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and within subjects covariance matrix can be written, respectively, as 

                             1( ) ( )B u Y YI B I Bδ
1− −′ ′ΠΨ Π + − Ψ −Σ =                                   (5.20) 

and 

                                      1( ) ( )W Y YI B I Bε
1.− −′Σ =                                         (5.21) − Ψ −

    

5.2.4. Multilevel Covariance Structural Analysis Steps 
 
 
 
    
Following the suggestions of Muthén (1994), the hierarchical multi-subject unified 

SEM analysis of fMRI data can be preceded by four steps: single-level unified SEM 

analysis of , estimations of between variation, estimation of within structure, and 

estimation of between structure. 

TS

Step 1: Single-level unified SEM analysis of . We have described this analysis in 

Section 5.1. The analysis is incorrect when the fMRI data is multilevel due to the 

correlated fMRI observations. The model test of fit is usually inflated, particularly for 

data with large intraclass correlations, large class sizes, and highly correlated variables 

(ROIs). However, the test of fit might still be of practical use by giving a rough sense of 

fit. 

TS

Step 2: Estimation of between variations. It is wise to first check if a multilevel 

analysis is appropriate by testing 0BΣ = . A simpler way, to get a rough indication of the 

amount of between variation is to compute the estimated intraclass correlations for each 

variable by Equation (5.1). In line with (5.10), 2
Wσ  is estimated as 2

PWs  and 2
Bσ  is 
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estimated as 

                                          c s                                                               (5.22) 1 2 2( B PWs− − )

These estimates may be obtained by random effects ANOVA (Viner, Brown, and 

Michels 1991). If all intraclass correlations are close to zero, it might not be worthwhile 

to go further. If all intraclass correlations are close to zero, we know that (1) the data are 

independent, and therefore single-level unified SEM is sufficient for path estimations, or 

(2) the assumptions that only the intercepts are random is not valid. 

Step 3: Estimation of within structure. We fit the WΣ  structure to the pooled within 

matrix PWS  by unified SEM model. For the balanced case, this gives the same ML 

estimates as a multilevel structural model with BΣ  unrestricted. This analysis estimates 

ROI level (first-level) parameters only (it can not estimate subject-level parameters if 

any). The unified SEM model in this step would use a sample size N-G. Since the PWS  

analysis is not distorted by the between covariation, it is expected to give a better model 

fit than the  analysis (Muthén 1989) and it is the preferred way to explore the first-

level variation. 

TS

Step 4: Estimation of between structure. The covariance structure of  does not 

concern the customary first-level data but instead across-subject covariation. In the 

between subjects model, we can incorporate a set of subject vairables (covariates) that 

may impact some individual ROI (contemporaneous ROIs) scores. Additionally, 

variables (contemporaneous and longitudinal ROIs) in the within subjects model can also 

be included in the between subjects model. By minimizing the fitting function (for the 

BΣ
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special case of balanced fMRI data, the fitting function is given by Equation (5.11)), we 

can obtain the maximum likelihood estimations of path parameters. Maximum likelihood 

estimation of such models is implemented in Mplus (Muthén and Muthén, 2004). 

 

5.2.5. Assumptions and Limitations 

     

The approach to multilevel SEM models only one single within subjects covariance 

matrix. We have assumed that the within subjects covariances are homogeneous, i.e., that 

all subjects have the same within subjects covariance matrix. This is not necessarily the 

case. The effect of violating this assumption in general hierarchical models is currently 

unknown (Hox, 2002). Simulation studies on the assumption of homogeneous covariance 

matrices of general hierarchical models show that when larger variability exists in the 

smaller group sizes, the between group variation is overestimated; when larger variability 

exists in the larger group sizes, the between group variation is underestimated.  

In fMRI data, if we assume that the covariance matrices differ in different subjects, 

one possible solution is to divide the subjects in two or more subsets, with each subset 

having its own within subjects model. For example, we may assume that within subject 

covariances differ for male and female participants. Then we model a different within 

subjects model for each subsets, and a common between subjects models. 

It should be noted that the multilevel SEM model described in Section 5.2.3. differs 

from the multilevel regression model, because it does not have random regression slopes 

while the latter one has. The variation and covariation on the subject level is intercept 
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variation. There are no cross-level and interaction effects. The interpretation of subject 

level path coefficients is in terms of contextual effects (Hox, 2002), which are added to 

the first-level (individual fMRI observations) effects. The principal difficulty is that the 

typical maximum likelihood estimators for multilevel SEMs allow for random intercepts 

but not random slopes (Bauer et al. 2006).  

 

5.3 Hierarchical Multi-Subject Unified SEM Approach --- 

Random-Effects Models 

 
 
 
     
As explained in the last section, the multilevel SEM model described in Section 5.2. 

differs from multilevel regression model, because it does not have random regression 

slopes while the latter one has. Friston et al. (2005) has introduced the univariate random-

effects regression model into fMRI studies. In this work, we study the random-effects 

model under the unified SEM framework by introducing longitudinal components into 

fMRI data. In this section, we will start with univariate random-effects model and then 

move to multivariate random-effects models of fMRI data. 

     

5.3.1 Univariate Hierarchical Model with Random-Effects  
      
 
 
 
In this section, we consider a very general form of the multilevel regression model 

referred to as the intercepts- and slopes-as-outcomes model or random-effects model. A 
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number of special cases of this model can be derived (Bryk and Raudenbush, 1992). To 

begin, consider a simple two-level form of the model where, for example, we are 

interested in modeling the fMRI score of ROI THAL by ROI CEREB for the ith 

individual time point observation of the gth subject. Such a model can be specified as 

follows. Following Bryk and Raudenbush (1992) let 

                                    0 1 ,ig g g ig igy x rβ β= + +                                                      (5.23) 

where  is the ith time point fMRI score on THAL of the gth subject,  igy igx  is ith time 

point fMRI score on CEREB of the gth subject. Assuming that igx  is centered around the 

subject mean, the intercepts, 0gβ  can be interpreted as the unadjusted mean for subject g 

and 1gβ  is the CEREB slope for subject g. r  is the residual term and we assume ig

2,ig ~ (0 )r N σ . 

Note that the subscript g on the intercept 0gβ  and slope 1gβ  in Equation (5.23) 

implies that the g subjects vary both in their levels of THAL and the relationship of 

CEREB to THAL. It comes from the possibility the coefficient 0gβ  and 1gβ  may depend 

on g, in other words, the effect of CEREB on THAL might be stronger for some subjects 

than for others and the average value of the dependent variable THAL could differ across 

subjects. In the hierarchical linear model, it is modeled by random intercepts and random 

slopes. Thus, there may be subject level variables that explain variation in the intercepts 

and slopes. These variables might include subject characteristics such as gender, verbal 

IQ, education and age. For simplicity, let 1gW  represent the gender of subject g and 2gW  

65



be the age of subject g. Under the assumption that random parameters 0gβ and 1gβ  are 

1g

normally distributed, the g intercepts and slopes in Equation (5.23) can be modeled as 

                             0 00 01 1 02 2 0g g gW W guβ γ γ γ= + + +                                              (5.24) 

and 

                              1 10 11 1 12 2 1 ,g g gW W u gβ γ γ γ= + + +                                             (5.25) 

where 

(i) 00γ  is the mean THAL score for female (when subjects are females, W  is zero) 

subjects with mean age of all subjects (when 2gW  is centered around its means), 

(ii) 01γ  is the relationship between THAL mean scores and the gender of subject 

holding age constant, 

(iii) 02γ  is the relationship between THAL mean scores and the age of subject 

holding gender constant, 

(iv) 10γ  is the average CEREB-THAL relationship for female (when subjects are 

female, 1gW  is zero) subjects with mean age of all subjects (when 2gW  is centered around 

its means), 

(v) 11γ  is the effect of gender on the CEREB-THAL relationship, holding age 

constant, and 

(vi) 12γ  is the effect of age on the CEREB-THAL relationship, holding gender 

constant. 

And we assume residual terms 0 0(0, )gu N 0τ∼  and 1 1(0, )gu N 1τ∼ . 
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In Equation (5.23), intercept 0gβ  and  slope 1gβ  are random parameters instead of 

fixed parameters in conventional regression models. 

Substituting Equation (5.24) and (5.25) into Equation (5.23), yielding the full model 

       00 01 1 02 2 0 10 11 1 12 2 1

00 01 1 02 2 10 11 1 12 2 0 1

( ) ( )

,
ig g g g g g g ig ig

g g ig g ig g ig g g ig ig

y W W u W W u x r

W W x W x W x u u x r

γ γ γ γ γ γ

γ γ γ γ γ γ

= + + + + + + + +

= + + + + + + + +
        (5.26) 

The last expression was rearranged so that first comes the fixed part and then the 

random part. The first part of (5.26), 00 01 1 02 2 10 11 1 12 2g g ig g ig gW W x W x W igxγ γ γ γ γ γ+ + + + +

0 1

, 

is called the fixed part of the model. The second part, g g ig igx ru u+ + , is called the 

random part. 

The term 1g igu x  can be regarded as a random interaction between subject and 

CEREB. Model (5.26) implied that the subjects are characterized by two random effects: 

their intercept and their slope. We say that X has a random slope, or a random effect, or a 

random coefficient. These two subject effects will usually not be independent, but 

correlated. It is assumed that, for different subjects, the pairs of random effects 0 1( , )g gu u  

are independent and identically distributed, and they are independent of the level-one 

residuals . All r  are independent and identically distributed. The variance of the 

level-one residuals  is denoted 

igr ig

igr 2σ ; the variances and covariance of the level-two 

(subject level) residuals ( ,0 1 )g gu u  are denoted as follows: 

                                     

2
0 00

2
1 11 1

0 1 01

var( ) ;

var( ) ;

cov( , ) .

g

g

g g

u

u

u u

0τ τ

τ τ

τ

= =

= =

=

                                                         (5.27) 
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In Equation (5.26) we see that explaining the intercept 0gβ  by subject level 

variables 1gW  (gender) and 2gW  (age) leads to two main effects of 1gW  and 2gW . 

However, explaining the coefficient 1gβ  of x (CEREB) by the subject level variables 1gW  

(gender) and 2gW  (age) leads to two product interaction effects of x with 1gW , and x with 

2gW . Such interactions between a level-one variable and a level-two (subject level) 

variable are called a cross-level interaction. 

The preceding models can be extended by including more variables (ROIs) that 

have random effects, and more variables explaining these random effects. Suppose that 

there are Q level-one explanatory variables 1 2, , , QX X X…  (ROIs) and some set of level-

two (subject level) W-variables (covariates). Consider the model where all X-variables 

have varying slopes, and where the random intercept as well as all these slopes are 

explained by all W-variables. As the within subject level, the model then is regression 

model with Q variables, 

                    
0 1 1 2 2

0
1

,

ig g g ig g ig Qg Qig ig

Q

g qg qig ig
q

y x x x

x r

rβ β β β

β β
=

= + + + + +

= + +∑

…
                                 (5.28) 

where 2~ (0,igr N )σ . Equation (5.28) has Q+1 coefficients, any one of which could be 

viewed as fixed, nonrandomly varying, or random. When they are random, in the subject 

level model, each coefficient qjβ  can be modeled as 

                                                    (5.29) 
0 1 1 2 2

0
1̀

,

q

q

qg q q g q g qS S g qg

S

q qs sg qg
s

W W W

W u

β γ γ γ γ

γ γ
=

= + + + + +

= + +∑

… u
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for some set a subject level variables Wsg, 1, , qs S= … . 

The subjects are now characterized by Q+1 random coefficients 0gu  to u . These 

random coefficients are independent between subjects, but may be correlated within 

subjects. It is assumed that the vector ( ,

Qg

0 , )g QgU U…

2

 is independent of the level-one 

residuals  and that all residuals have population means 0, given the values of all 

explanatory variables. It is also assumed that the level-one residual  has a normal 

distribution with constant variance 

igr

igr

σ  and that ( ,0 , )g QgU U…  has a multivariate normal 

distribution with a constant covariance matrix. Analogous to (5.27), the variance and 

covariances of the subject level random effects are denoted 

                                                                      (5.30) 
2

' '

var( ) ( 1, );

cov( , ) ( , ' 1, ).
qg qq q

qg q g qq

u q

u u q q Q

τ τ

τ

= = =

= =

…
…

Q

),σ

If we rewrite Equation (5.28) in matrix notation, we have 

                           Y X                                               (5.31) 2, ~ (0,g g g g gr r N Iβ= +

where gY  is an gn  by 1 vector of observed values of dependent variables (each subject 

has gn  individual time point observations), gX  is an gn  by (Q+1) matrix of independent 

variables, gβ  is a (Q+1) by 1 vector of unknown parameters, I is an gn  by gn  identity 

matrix, and gr  is an gn  by 1 vector of random errors assumed normally distributed with a 

mean vector of 0 and a variance-covariance matrix in which all diagonal elements are 

equal to 2σ  and all off-diagonal elements are 0. 

At subject level, the general model for gβ  in matrix notation is 
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                                   , ~ (0, ),g g g gW u u N Tβ γ= +                                           (5.32) 

where gW  is a (Q+1) by S matrix of subject level predictors, γ  is an S by 1 vector of 

fixed effects, gu  is a (Q+1) by 1 vector of subject level errors or random effects, and T is 

a (Q+1) variance-covariance matrix. T is the residual variance-covariance matrix, 

indicating the dispersion of gβ  about the expected value gW γ .  

Next we show the point estimations of parameters in random-effects model. 

Assuming gX  to be of full column rank Q+1, the OLS estimator of gβ  from Equation 

(5.31) is 

                                          1ˆ ( )T T
g g g g gX X X Yβ −= .                                                (5.33) 

The generalized least squares (GLS) estimator of γ is 

                                    1 1 1 ˆˆ ( )T T
g g g g g gW W Wγ β− − −= ∆ ∆∑ ∑ ,                                    (5.34) 

when g∆  is known and 2 ( T
g g gT V T X Xσ 1)g

−∆ = . Given the normality assumptions 

of Equation (5.31) and (5.32), Equation (5.34) is also the maximum likelihood estimator 

for γ. 

+ = +

The optimal estimator of gβ  is given by 

                                        * ˆ ˆ( )g g g g gI Wβ β= Λ + −Λ γ

)g

,                                          (5.35) 

where 

                                              1(g T T V −Λ = + ,                                                   (5.36) 

and ˆ
gβ  and γ̂  are given by Equation (5.33) and (5.34). *

gβ  is an empirical Bayes or 

shrinkage estimator.  
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So far we have assumed that the variance and covariance components are known. 

Although this assumption clarifies understanding of estimation of the fixed and random 

effects, the variances and covariances must nearly always be estimated in practice. Next 

we show the methods to estimate variances and covariances. 

Substituting Equation (5.32) into Equation (5.31), we have 

                                       .g g g g g gW X u rY X γ= + +                                               (5.37) 

We can rewrite the model of (5.37) in a way that allows some level-one variables to have 

fixed effects but not random effect: 

                                            .g g g g g gW Z u rY X γ= + +                                           (5.38) 

In Equation (5.38), gZ  is typically a subset of gX .  

Bryk and Raudenbush (1992) show that the point estimations of the unknown 

parameters, variances, and covariances are as follows.  

We place the random errors of level-one and level-two into two vectors, 

                  u u    and     1 2( , ,..., ) 'Gu u= 1 2( ', ',..., ') 'Gr r r r= .                                  (5.39) 

And we have, 

                              and      Var
0
0

u
E

r
   

=   
   

0
,

0
u T
r R
   

=   
   

                                  (5.40) 

where Cov . 2( ) Nr R Iσ= =

Similarly, we can place the level-one vector in Equation (5.38) of all subjects into 

one vector, such as, 
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                              ,     and      

1

2

G

Y
Y

y

Y

 
 
=

 
 

#



1

2

G

Z
Z

Z

Z

 
 
=

 
 

#



.                                             (5.41) 

We define 

                                              V Z 'TZ R= + .                                                        (5.42) 

Estimation is more difficult in the random effect model than in the general linear model. 

Not only do we have γ  as in the general model, but also we have unknown parameters in 

T and R as well.  

In many situations, the best approach is to use likelihood based methods, exploiting 

the assumption that u and r are normally distributed (Hartley and Rao 1967; Patterson 

and Thompson 1971; Harville 1977; Laird and Ware 1982; Jennrich and Schluchter 

1986). A fitting function associated with maximum likelihood is constructed, and it is 

maximized over all unknown parameters. The corresponding log-likelihood function is as 

follows:         

                            11 1 1( , ) log ' log(2 )
2 2 2

R V s V sl T π−= − − − .                             (5.43)  

where s is a vector containing ˆg g g gs Y X W γ= − , and p is the rank of X. The most 

multilevel softwares minimize -2 times the above functions using an Expectation-

Maximum (EM) algorithm.  

We can perform the hypothesis test for fixed effects. The typical null hypothesis is 

                                          0 : qsH 0γ = ,                                                               (5.44) 

which implies that the effect of a level-2 (subject level) predictor, sgW , on a particular 
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parameter, qgβ , is null. The tests for such hypotheses have the form 

Var=

qqg

1( )g gX −′

                                            ,                                                       (5.45)  1/ 2
ˆ

ˆˆ /( )
qsqsz Vγγ=

where ˆqsγ  is the maximum likelihood estimate of qsγ  and  is the estimated 

sampling variance of 

1/ 2
ˆ

ˆ( )
qs

Vγ

ˆqsγ . Formally the z statistic is asymptotically normal. It will often 

be the case, however, that a t statistic with degrees of freedom equal to  will 

provide a more accurate reference distribution for testing effects of level-2 predictors. 

(Bryk and Raudenbush, 1992)  

1qG S− −

To test whether random variation exists, we may test a null hypothesis 

                                                0 : qqH 0τ = ,                                                         (5.46) 

where ( )qq qgτ β . If this hypothesis is rejected, the investigator may conclude that 

there is random variation in qgβ . 

Let V  represent the qth diagonal element of V X . Then, under the 

model 

ˆ 2ˆ ˆ ( T
g g Xσ −= 1)g

) /

                                                                                           (5.47) 0
1̀

,
qS

qg q qs sg
s

Wβ γ γ
=

= +∑

the statistic 

                                      ∑ ∑                                     (5.48) 2
0

1

ˆ ˆˆ ˆ(
qS

qg q qs sg qqg
g s

W Vβ γ γ
=

− −

will be distributed approximately 2χ  with G S 1q− −  degrees of freedom, where 

ˆ
g gX X Yβ = ′ . (Bryk and Raudenbush, 1992) 
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A second test of the hypothesis 0 : qqH 0τ =  is based on the estimated standard error 

of ˆqqτ  computed from the inverse of the second derivative matrix of the likelihood with 

respect to each of the variance parameters. The ratio 

                                                                                             (5.49) 1/ 2ˆ ˆ/[ ( )]qq qqz Varτ τ=

is approximately normally distributed under the large sample theory of maximum 

likelihood estimates. However, in many cases, especially when qqτ  is close to zero, the 

normality approximation is poor. A test based on a symmetric confidence interval for qqτ  

may be highly misleading (Bryk and Raudenbush, 1992). Hence the Chi-square test is 

recommended for the hypothesis test of random variation. 

 

5.3.2 Multivariate Hierarchical Random-Effects Model 
 
 
 
 
Typical fMRI data are multivariate multilevel data, however, the random-effects 

model described in Section 5.3.1 is a univariate multilevel model. To analyze the 

multivariate fMRI data appropriately, in this work we adopt the multivariate hierarchical 

random-effect model developed by Bauer et al. (2006) which was applied by the authors 

in psychology field study, and we incorporate longitudinal components into the model to 

make it more suitable for fMRI data study. 

Due to the principal difficulty that the typical maximum likelihood estimators for 

multilevel SEMs allow for random intercepts but not random slopes (Bauer et al. 2006), 

Bauer et al. (2006) proposed to use a modified univariate hierarchical random-effects 

74



model to analyze multivariate hierarchical data. We illustrate this approach as follows 

and the application of this approach to our visual attention data is shown in Section 5.4. 

Suppose we have three variables, X, Y, and M (ROIs). The path diagram is shown in 

Figure 5.2. 

 
b 

c

a

Y

M

X

 

 

 

Figure 5.2 Path diagram of the example in Section 5.3.2. to illustrate Bauer’s 
multivariate random-effects approach. 

    

The two level-one equations following the notation in Section 5.3.1. are 

                                      ig Mg g ig MigM d a X e= + +  

                                    Y dig Yg g ig g ig Yigb M c X e= + + + .                                        (5.50) 

The terms Mige  and  are level-one residuals for M and Y, respectively. The other five 

terms are random intercepts and slopes. 

Yige

In order to analyze multivariate hierarchical data simultaneously, we can formulate 

the model with a single level-one equation through the use of indicator variables. The 

basic idea is to form a new outcome variable, for instance, Z, by stacking Y and M for 

each unit i within g. This single outcome variable allows us to fit a “multivariate” model 

using univariate multilevel modeling software. To distinguish the two variables stacked 

in Z, we created two indicator variables, for instance, MS  and . The variable YS MS  is set  
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equal to 1 when Z refers to M and is 0 otherwise. Similarly, the variable  is set equal to 

1 when Z refers to Y and is 0 otherwise. We retain the variables X and M in the new data 

set. The purpose of rearranging the data is that we can now specify the level-one model 

with a single equation: 

YS

                  ( ) ( )ig Mig Mg g ig Yig Yg g ig g ig ZigZ S d a X S d b M c X e= + + + + + .                 (5.51) 

Rewrite Equation (5.51) as 

         ( ) ( ) ( )ig Mg Mig g Mig ig Yg Yig g Yig ig g Yig ig ZigZ d S a S X d S b S M c S X e= + + + + + .     (5.52) 

Equation (5.52) shows that we could specify a model for Z with no intercept but with 

random effects for MS  and  (YS Mgd

M

 and , respectively) and with random effects for 

the product variables , , and  (

Ygd

YS XMS X YS ,g ga b , and gc , respectively). In addition, 

we must use some method to allow the residual variance ( )ZigeVar  to differ depending on 

MS  (or, equivalently, ). This represents a form of heteroscedasticity because the 

residual variance for Z is then conditional on 

YS

MS . Fortunately, most multilevel modeling 

software programs offer options for modeling heteroscedasticity.  

 

5.4 Application of Hierarchical Multi-Subject Unified SEM 

Approach to Visual Attention fMRI Data 

 

5.4.1 Multilevel Covariance Structural Analysis with Unified SEM 
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Table 5.2 shows the intraclass correlation of contemporaneous and longitudinal 

variables of visual attention fMRI data. And the estimated within subject covariance 

matrix and the estimated between subject covariance matrix are listed in Table 5.3 and 

5.4, respectively. Since the calculated intraclass correlations are all small, we know that 

we would not go further to perform multilevel covariance structural analysis with unified 

SEM, because there are two possibilities: (1) the data are independent and the single-level 

multi-subject unified SEM approach gives appropriate path estimation, or (2) the 

assumptions of random intercepts but non-random path coefficients are not valid.   

Nevertheless, for the purpose of this example we will continue to fit the visual 

attention fMRI data by within-subject unified SEM model. Table 5.5 presents the 

estimated longitudinal and contemporaneous path parameters with their standard errors, t 

test statistics, and corresponding p values. The bold characters indicate the significant 

paths at the significance level of 0.05. The path model with the significant paths is 

displayed in Figure 5.3. Without surprise, the significant longitudinal path connections 

are identical to those in Section 5.1, containing (1) paths connecting APC to LPFC, and 

LPFC to THAL and SMA, (2) the longitudinal paths connecting each region to itself. 

Five contemporaneous paths are significant, four of which form a single loop starting at 

THAL and connecting PPC, APC, LPFC, and one of which is from LPFC to SMA. The 

goodness-of-fit statistics of the model is 2χ =122.331 (d.f.=31, p value<0.01) indicating a 

poor model fit.  The same analysis was repeated using LISREL, with identical results as 

those from SAS. 
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Table 5.2 Intraclass correlations of longitudinal and contemporaneous components of the 
multi-subject fMRI data. 

 CEREB THAL PPC APC LPFC SMA 
Intraclass 
correlation 0.0132 0.0068 0.0108 0.0136 0.0122 0.0131 

 CEREBt THALt PPCt APCt LPFCt SMAt 
Intraclass 
correlation 0.0118 0.0062 0.011 0.0131 0.0116 0.0118 

 
 
 

Table 5.3 Estimated within subject covariance matrix of the multi-subject fMRI data 
with longitudinal and contemporaneous components. 

 

 
 
Table 5.4 Estimated between subject covariance matrix of the multi-subject fMRI data 
with longitudinal and contemporaneous components. 
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Table 5.5 Estimated longitudinal and contemporaneous path parameters of the multi-
subject fMRI data using the multilevel within-subject unified SEM model with their 
standard errors, t test statistics, and corresponding p values (two-sided). 

Longitudinal path parameters Contemporaneous path parameters 

Path 

parameters 

Est. (S.E.) T-value (p-value) Path 

parameters 

Est. (S.E.) T-value  (p-value) 

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

      
66γ   

 

0.607 (.020) 

-0.040 (.041) 

0.629 (.020) 

-0.075 (.038) 

-0.027 (.039) 

0.024 (.016) 

0.615 (.020) 

0.006 (.021) 

0.612 (.021) 

-0.133 (.039) 

0.641 (.020) 

-0.180 (.025) 

0.578 (.021) 

 

29.778 (.000) 

-0.965 (.334) 

31.128 (.000) 

-1.976 (.048) 

-0.691 (.490) 

1.564  (.118) 

30.106 (.000) 

0.279 (.780) 

29.506 (.000) 

-3.423 (.001) 

32.154 (.000) 

-7.266 (.000) 

27.179 (.000) 

 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

0.073 (.041) 

0.086 (.038) 

0.050 (.039) 

-0.039 (.016) 

0.040 (.020) 

0.111 (.039) 

0.208 (.025) 

1.769 (.077) 

2.296 (.022) 

1.297 (.195) 

2.504 (.012) 

1.961 (.050) 

2.872 (.004) 

8.439 (.000) 

Bold characters indicate the significant path parameters at the significance level of 0.05. 
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Figure 5.3 Significant path connections of the multi-subject fMRI data using the 
multilevel within-subject unified SEM model. This path network contains nine significant 
longitudinal path connections (dashed lines) and five significant contemporaneous paths 
(solid lines) in the left hemisphere. 

 

5.4.2. Random-Effects Model 
 
 
 
 
We test the 14 significant path found from Section 5.4.1 by random-effect model to 

see if the paths are random varying at the subject level. Under the framework of random-

effects model, we have 14 paths and 5 intercepts to test for random effects, but we only 

have 28 samples at subject level. We cannot test all of them simultaneously. To 

implement Bauer’s multivariate methods, we can break all the paths/intercepts into small 

systems. For instance, in Figure 5.4, we have two contemporaneous components (  tSMA
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 and ) and two longitudinal components (tLPFC 1tSMA −  and ), and one 

contemporaneous path (

1tLPFC −

65β ) and three longitudinal paths 55 65,γ γ , and 66γ ). 

     

 

LPFC

t-1 

t t-1

t 

 SMA 
 

 

Figure 5.4 Illustration of the application of Bauer’s approach to fMRI data. 
 
 

By using the approach described in Section 5.3.2., we have a univariate random-

effects model 

( ) (ig LPFCig LPFCg g ig SMAig SMAg g ig g ig g ig Zig) ,Z S d a LPFCt S d b LPFC c LPFCt f SMAt e= + + + + + +
                                                                                                                                      (5.53) 

which has six random effects to be tested. 

The multilevel random-effects model is fitted using the software HLM (Hierarchical 

Linear Model), and the corresponding analysis results are summarized in Table 5.6. First 

we test if each path is a random effect and if the estimated mean of each possible random 

path is significant (p value <0.05). The small p values (<0.05) of Chi-square test in Table 

5.6 indicate random paths. If a path is random, we continue to test if the variation could 

be explained by subject-level covariates. The small p-value of t-tests of the fixed effect at 

the second level indicates the significant impact of subject covariates on each random 
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path. Five contemporaneous paths and two longitudinal paths are indeed random, and one  

contemporaneous path and eight longitudinal paths are significantly different from zero. 

However, only one random contemporaneous path and one random longitudinal path are 

significantly different from zero. Both of the random contemporaneous and random 

longitudinal paths connect LPFC to SMA. The fixed subject-effect of gender could 

explain the variations of these two random paths. The path model with significant paths is 

displayed in Figure 5.5. 

Since there are significant random paths in the model, we now know that the 

assumptions of random intercepts only are not appropriate for our visual attention fMRI 

data, and therefore the multilevel covariance structural analysis described in Section 5.2 

will not provide a correct model for our data. 
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Figure 5.5 Nine significant path connections from the multilevel random-effects unified 
approach. Two paths are random which are significantly correlated with subject-level 
covariate gender. G (gender) is denoted along with the two random path connections. 
Dashed lines represent longitudinal path connections and solid lines represent 
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contemporaneous path. 

 
 
Table 5.6 Longitudinal and contemporaneous paths of the multi-subject fMRI data using a 
multilevel random-effects unified model with their estimated means, standard errors, t-
test statistics, corresponding p values, variance component, chi-square statistics, and 
corresponding p values. Significant and random paths with the t test statistics, and 
corresponding p values (two-sided) for second level fixed effects. 

 Test for Random Effects Second Level Predictor (Fixed 
Effects) for Random Effects 

 Est. (S.E.) t value 
(p value) Var. Chi-square 

(p value) Covariate Intercept 
(p value) Slope 

25β  0.097 
(0.063) 

1.545 
(0.134) 0.072 71.440 

(0.000)    

32β  -0.037 
(0.023) 

-1.602 
(0.124) 0.084 52.632 

(0.003)    

43β  0.002 
(0.038) 

0.047 
(.963) 0.025 83.545 

(0.000)    

54β  0.107 
(0.065) 

1.642 
(0.113) 0.068 64.738 

(0.000)    

65β  0.210 
(0.049) 

4.252 
(0.000) 0.048 107.175 

(0.000) Gender 0.347 
(0.000) 

-0.273 
(0.003) 

11γ  0.607 
(0.027) 

22.293 
(0.000) 0.007 39.375 

(0.060)    

22γ  0.629 
(0.022) 

28.383 
(0.000) 0.003 28.320 

(0.398)    

25γ  -0.089 
(0.072) 

-1.242 
(0.225) 0.104 93.397 

(0.000)    

33γ  0.6126 
(0.022) 

27.947 
(0.000) 0.0005 21.058 

(>0.5)    

44γ  0.606 
(0.022) 

27.602 
(0.000) 0.0002 13.852 

(>0.5)    

54γ  -0.134 
(0.048) 

-2.766 
(0.010) 0.022 33.335 

(0.186)    

55γ  0.628 
(0.023) 

27.929 
(0.000) 0.002 20.102 

(>0.5)    

65γ  -0.175 
(0.048) 

-3.638 
(0.001) 0.044 92.503 

(0.000) Gender -0.261 
(0.002) 

0.179 
(0.050) 

66γ  0.585 
(0.022) 

26.783 
(0.000) 0.0002 17.495 

(>0.5)    

Bold characters indicate the significant random paths, and significant fixed effects at the 
significance level of 0.05. 
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Chapter 6 

 

Comparisons of Three Approaches 
    
 
 
 
 
 
In Chapter 4 and Chapter 5, we discussed three main approaches to analyze multi-

subject multivariate time series fMRI data, which are: 

(1) Approach 1--- summarize (e.g. average the time series data across the subjects) 

and then analyze, which is the subject-average unified structural equation modeling 

approach,  

(2) Approach 2---analyze and then summarize, which is the two-stage multi-subject 

unified structural equation modeling approach, and 

(3) Approach 3---analyze simultaneously, which is the hierarchical multi-subject 

unified structural equation modeling approach. 

In this chapter, we will compare these three main approaches. 

     

6.1 Comparison between Approach 1 and Approach 2 
 
 
 
 
Table 6.1 presents the significant longitudinal and contemporaneous path 

parameters with their estimations, standard errors, t test statistics, and corresponding p 
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values for Approach 1 and Approach 2. The bold characters indicate the significant paths 

at the significance level of 0.05. The path models with the significant paths from the two 

approaches are displayed in Figure 6.1. The t test statistics and the corresponding p 

values are calculated in the unified SEM model in Approach 1. In contrast, the t test 

statistics and the corresponding p values are calculated from one sample t test in 

Approach 2 (See Chapter 4 for details). 
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Figure 6.1 Significant path connections from the Approach 1 (left picture) and Approach 2 
(right picture). Dashed lines represent longitudinal path connections solid lines represent 
contemporaneous path. 
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Table 6.1 Comparisons of longitudinal and contemporaneous path parameters from Approach 1 
and Approach 2 with their estimations, standard errors, t test statistics, and corresponding p 
values (two-sided). 

Approach 1 Approach 2 Path 

parameters Est.  (S.E.) T-value (p-value) Mean  (S.E.) T-value  (p-value) 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

-0.058 (.250) 

0.394 (.217) 

0.270 (.182) 

-0.258 (.057) 

-0.141 (.126) 

0.172 (.179) 

0.377 (.156) 

0.780 (.091) 

-0.317 (.274) 

0.538 (.111) 

-0.024 (.221) 

0.023 (.198) 

0.237 (.061) 

0.386 (.105) 

0.246 (.110) 

0.566 (.111) 

-0.284 (.178) 

0.582 (.113) 

-0.282 (.160) 

0.590 (.107) 

 

-0.232 (.816) 

1.815 (.070) 

1.482 (.138) 

-4.509 (.000) 

-1.122 (.262) 

0.959 (.338) 

2.422 (.015) 

8.593 (.000) 

-1.158 (.247) 

4.842 (.000) 

-0.110 (.912) 

0.116 (.901) 

3.908 (.000) 

3.696 (.000) 

2.233 (.026) 

5.116 (.000) 

-1.600 (.110) 

5.164 (.000) 

-1.757 (.079) 

5.518 (.000) 

 

0.047 (.076) 

0.101 (.071) 

0.030 (.087) 

-0.034 (.026) 

-0.005 (.036) 

0.091 (.066) 

0.229 (.054) 

0.612 (.019) 

0.005 (.070) 

0.591 (.020) 

-0.120 (.070) 

0.028 (.082) 

0.035 (.029) 

0.595 (.021) 

0.031 (.036) 

0.593 (.016) 

-0.124 (.046) 

0.615 (.019) 

-0.166 (.047) 

0.578 (.018) 

0.622 (.539) 

1.424 (.166) 

0.340 (.736) 

-1.311 (.201) 

-0.126 (.901) 

1.384 (.178) 

4.208 (.000) 

31.462 (.000) 

0.074 (.942) 

29.391 (.000) 

-1.718 (.097) 

0.339 (.737) 

1.182 (.248) 

28.821 (.000) 

0.872 (.391) 

36.001 (.000) 

-2.683 (.012) 

31.685 (.000) 

-3.517 (.002) 

31.140 (.000) 

 

Bold characters indicate the significant path parameters at the significance level of 0.05. 

 

From Table 6.1 and Figure 6.1, we know that all of the six longitudinal paths 

connecting each region to itself are significant in both of the two approaches. The 
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contemporaneous path connecting LPFC and SMA is significant in both of approaches 

too. However, two longitudinal paths connecting THAL to PPC, and PPC to APC, are 

significant in Approach 1 but not significant in Approach 2; and two longitudinal paths, 

which are from APC to LPFC and from LPFC to SMA, are significant in Approach 2 but 

not in Approach 1. And there is one contemporaneous path, connecting THAL to PPC, is 

significant in Approach 1 but not in Approach 2. 

Even though the two longitudinal paths, connecting APC to LPFC, and LPFC to 

SMA, are significant in Approach 2 but not in Approach 1 at significance level 0.05, the 

path from LPFC to SMA would be significant at level 0.1 (p value=0.079), and the path 

from APC to LPFC would be nearly significant at level 0.1 (p value=0.110). Therefore, 

only three path connections are different between Approach 1 and Approach 2, which are 

two longitudinal paths connecting THAL to PPC, and PPC to APC, and one 

contemporaneous path, connecting THAL to PPC.  

Next we illustrate the reason why these two approaches could reach to different 

conclusions about the significance of some paths. 

We assume we have two variables (ROIs) of fMRI data, x and y. We have m 

subjects and for each subject, we have N observations for each variable. To make 

computation simple, without losing generality, we assume the mean value of each 

variable for each subject is zero. Since SEM is based on covariance or correlation, and 

the bigger the correlation coefficient the more chance the corresponding path connection 

is significant, we next examine the correlation of x and y for each approach. The 

correlation coefficient is calculated by 
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2 2

cov( , ) ( )( , )
var( ) var( ) ( ) ( )

x y E xyx y
x y E x E y

= =corr .                                   (6.1) 

For approach 1, we calculate the average of each variable across all the subjects for 

each fMRI time point observation. We denote the value of x for the kth fMRI time point 

observation of the ith subject as ( )i
kx , and the average of ( )i

kx  across all subjects as ave
kx . 

Similarly, we have  representing the value of y for the kth fMRI time point 

observation of the ith subject and  representing the average of  across all subjects.  
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By applying Equation (6.1), 
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Substituting Equation (6.2) into Equation (6.6), we have       
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Next, we examine the correlation of x and y under Approach 2. For Approach 2, we 

first obtain estimated path connections through the unified SEM method for each subject 

individually, and then we compute the mean value of each path coefficient across all 

subjects (See Chapter 4 for details). For subject i, define '( ) ( ) ( )
1( ,..., )i i i

Nx x x= , and  

. The correlation coefficient is  ( ) ( ) ( )
1( ,..., ) 'i i i

Ny y y=
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Since for SEM the bigger the correlation coefficient the more chance to be 

significant the corresponding path connection, we examine the average value of 

correlation coefficients of ( )ix  and  for all subjects in order to obtain a rough idea of 

the significance of correlation across all subjects. The average of correlation coefficients 

of all subjects is given by 

( )iy
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Comparing Equation (6.7), which is the correlation from Approach 1, and Equation 

(6.9), which is from Approach 2, the two equations are not equivalent to each other. We 

now illustrate it by a simple example. 

Let , , , 

and . The average of 

(1) (1,1,1,1,1,1,1,1) 'x =

(1,1,1,1,1,1,1,1) '=

(1) (1, 2, 3, 4, 5, 6, 7, 8) 'y =

(1)

(2) (1, 2, 3, 4, 5, 6, 7, 8) 'x =

(2)y x  and (2)x  is 

'  and the average of  and  is 

' . In this example, 

(1,=

(1,=

1.5, 2, 2.5, 3, 3.5, 4, 4.5)

1.5, 2, 2.5, 3, 3.5, 4, 4.5)

avex

avey

(1)y

(1)

(2)y

x  and  are not correlated, (1)y (2)x  

and  are not correlated either. However, the subject averages, (2)y avex  and , are 

perfectly correlated. Although it is a hypothetical example, it shows that the correlation 

of subject average could be far from the pattern of individual subject correlation. The 

correlation of subject average could be weaker or stronger than the pattern of individual 

subject correlation. 

avey

Back to our fMRI data, we now examine the contemporaneous path connecting 

THAL to PPC, which is significant from Approach 1 but not significant from Approach 2. 

The correlation coefficient of the subject-average THAL and PPC from Approach 1 is –

0.4309. The correlation coefficient of THAL and PPC, however, varies over subjects. For 

instance, the correlation of THAL and PPC is -0.0175 for subject 5, 0.0014 for subject 11, 

-0.1280 for subject 15, and 0.1344 for subject 23. However, the correlation coefficient of 

the subject-average THAL and PPC averaging subject 5 and subject 11 is 0.2766, which 

is far bigger than the individual correlation coefficient alone; the correlation coefficient 

of the subject-average THAL and PPC averaging subject 5 and subject 15 is –0.2732, 

which is stronger than the individual correlations, and the correlation coefficient of the 
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subject-average THAL and PPC averaging subject 5 and subject 23 is 0.0179, which is 

weaker than the correlation for subject 23. Therefore, by taking subject average for 

THAL and PPC, the correlation as well as covariance pattern could be distorted. 

Meanwhile, we found that this path, THAL to PPC, is significant for only 5 subjects 

(three females and two males) out of 28 subjects. And without surprise, this path is not 

significant by Approach 2. We also found that the gender effects on path connections by 

using Approach 1 (from Table 4.2) are different from those (from Table 4.4) obtained by 

Approach 2. Only one path is in common for both approaches. This could also be 

explained by the fact that taking subject average would distort the true correlation 

structures and hence produce unreliable path estimations. 

By investigating the correlation of subject average from Approach 1, and the 

correlation of each individual subject from Approach 2, we believe that the conclusion 

obtained by Approach 1 could be misleading. When a particular path connection is 

significant (or equivalently, nonsignificant) across most of the subjects, such as the 

longitudinal paths connecting each region to itself, which are significant for every subject, 

Approach 1 and Approach 2 would reach to the same conclusion. However, when the 

path connection is significant only for some subjects, such as the contemporaneous path 

connecting THAL to PPC as we described above, the correlation of subject average for 

this path could be far different from the true pattern, and therefore Approach 1 could lead 

to wrong conclusions. 

Although Approach 1 is conceivable, simple to implement, and some people do use 

this approach in their research, we proved that it is not appropriate under some 
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circumstances, and hence, not recommended for fMRI data analysis.  

      

6.2 Comparison between Approach 2 and Approach 3 
 
 
 
 
In Chapter 5 we present three approaches under the framework of Approach 3, 

which are: 

(i) Approach 3-1: Single-level multi-subject unified SEM approach, 

(ii) Approach 3-2: Multilevel covariance structural analysis with unified SEM, and 

(iii) Approach 3-3: Multilevel random-effects approach. 

As we discussed in Chapter 5, Approach 3-2 is superior to Approach 3-1, since 

Approach 3-1 is a special case of Approach 3-2 when all the observations are 

independent. Therefore, we only consider the comparisons among Approach 2, Approach 

3-2 and Approach 3-3. First we compare the results from Approach 2 with those from 

Approach 3-2 of our visual attention study. 

Table 6.2 lists the significance of longitudinal and contemporaneous path 

parameters with their estimations, standard errors, t test statistics, and corresponding p 

values for Approach 2 and Approach 3-2. The bold characters indicate the significant 

paths at the significance level of 0.05. The path models with the significant paths from 

the two approaches are displayed in Figure 6.2. The t test statistics and the corresponding 

p values are calculated in the unified SEM model for Approach 3-2. In contrast, the t test 

statistics and the corresponding p values are calculated from one sample t test for 

Approach 2 (See Chapter 4 and Chapter 5 for details). 
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From Table 6.2 and Figure 6.2, we know that all the significant paths from 

Approach 2 are significant in Approach 3-2. The paths include the six longitudinal paths 

connecting each region to itself, the contemporaneous path connecting LPFC and SMA, 

and two longitudinal paths connecting APC to LPFC, and LPFC to SMA. Four 

contemporaneous paths are significant only in Approach 3-2, which form a single loop 

starting at THAL and connecting PPC, APC, and LPFC. One longitudinal path from 

LPFC to THAL is significant in Approach 3-2 only.  
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Figure 6.2 Significant path connections from Approach 2 (left picture) and Approach 3-2 
(right picture). Dashed lines represent longitudinal path connections solid lines represent 
contemporaneous path. 
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Table 6.2 Comparisons of longitudinal and contemporaneous path parameters from Approach 2 
and Approach 3-2 with their estimations, standard errors, t test statistics, and corresponding p 
values (two-sided). 

Approach 2 Approach 3-2 Path 

parameters Mean (S.E.) T-value (p-value) Est. (S.E.) T-value  (p-value) 

21β  

25β  

26β  

32β  

43β  

54β  

65β  

11γ  

21γ  

22γ  

25γ  

26γ  

32γ  

33γ  

43γ  

44γ  

54γ  

55γ  

65γ  

66γ  

0.047 (.076) 

0.101 (.071) 

0.030 (.087) 

-0.034 (.026) 

-0.005 (.036) 

0.091 (.066) 

0.229 (.054) 

0.612 (.019) 

0.005 (.070) 

0.591 (.020) 

-0.120 (.070) 

0.028 (.082) 

0.035 (.029) 

0.595 (.021) 

0.031 (.036) 

0.593 (.016) 

-0.124 (.046) 

0.615 (.019) 

-0.166 (.047) 

0.578 (.018) 

0.622 (.539) 

1.424 (.166) 

0.340 (.736) 

-1.311 (.201) 

-0.126 (.901) 

1.384 (.178) 

4.208 (.000) 

31.462 (.000) 

0.074 (.942) 

29.391 (.000) 

-1.718 (.097) 

0.339 (.737) 

1.182 (.248) 

28.821 (.000) 

0.872 (.391) 

36.001 (.000) 

-2.683 (.012) 

31.685 (.000) 

-3.517 (.002) 

31.140 (.000) 

 

0.073 (.041) 

0.086 (.038) 

0.050 (.039) 

-0.040 (.016) 

0.040 (.020) 

0.112 (.039) 

0.209 (.025) 

0.609 (.020) 

-0.040 (.041) 

0.630 (.020) 

-0.074 (.038) 

-0.027 (.039) 

0.024 (.016) 

0.618 (.020) 

0.006 (.020) 

0.613 (.021) 

-0.133 (.039) 

0.643 (.020) 

-0.180 (.025) 

0.580 (.021) 

 

1.781 (.075) 

2.287 (.022) 

1.293 (.196) 

-2.528 (.012) 

1.979 (.048) 

2.882 (.004) 

8.486 (.000) 

29.985 (.000) 

-0.992 (.321) 

31.287 (.000) 

-1.976 (.048) 

-0.689 (.491) 

1.574 (.116) 

30.371 (.000) 

0.303 (.762) 

29.661 (.000) 

-3.448 (.000) 

32.394 (.000) 

-7.247 (.000) 

27.354 (.000) 

 

Bold characters indicate the significant path parameters at the significance level of 0.05. 

 

Since Approach 3-2 incorporates all the subjects simultaneously (See Chapter 5 for 

details), it has much larger sample size and hence smaller standard error for each 
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estimated path coefficient, leading to more significant path connections. Therefore, some 

paths are not significant in Approach 2 but significant in Approach 3-2; and those paths 

that are significant in Approach 2 are still significant in Approach 3-2.  

Approach 3-2 is built on the assumption that only intercept of SEM model is 

random over subjects, however, from the results of Chapter 5 we know this assumption is 

not appropriate in our visual attention data. Therefore, the significant path connections 

found by Approach 3-2 may not be truly significant. 

Next we compare Approach 2 with Approach 3-3 based on the results of our visual 

attention study. 

Due to the lack of sufficient sample size of subjects, to apply Approach 3-3, we only 

test the significant paths detected via Approach 3-2. Table 6.3 lists the significance of 

longitudinal and contemporaneous path parameters with their estimations, standard errors, 

t test statistics, and corresponding p values for Approach 2 and Approach 3-3. The bold 

characters indicate the significant paths at the significance level of 0.05. The significant 

paths from Approach 3-3 and the significant paths from Approach 2 are displayed in 

Figure 6.3. These two approaches give identical conclusions. 

For Approach 2, the path estimations for each subject are obtained at Stage 1, and 

the subject mean of path estimations for each path is tested by one sample t-test to see 

whether it is significantly different from zero at Stage 2. Meanwhile, the path estimations 

are merged with subject-level covariates to examine the impact of subject-level 

covariates on the pathways via a GLM. In contrast, the paths tested by Approach 3-3 are  
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Table 6.3 Comparisons of longitudinal and contemporaneous path parameters from Approach 2 
and Approach 3-3 with their estimations, standard errors, t test statistics, and corresponding p 
values (two-sided). 

Approach 2 Approach 3-3 

path Mean (S.E.) t-value 
(p-value) Est. (S.E.) t-value 

(p-value) 

25β  

     
32β  

43β  

54β  

  
65β  

11γ  

22γ  

25γ  

33γ  

44γ  

54γ  

55γ  

65γ  

      
66γ  

0.101 (.071) 

-0.034 (.026) 

-0.005 (.036) 

0.091 (.066) 

0.229 (.054) 

0.612 (.019) 

0.591 (.020) 

-0.120 (.070) 

0.595 (.021) 

0.593 (.016) 

-0.124 (.046) 

0.615 (.019) 

-0.166 (.047) 

0.578 (.018) 

1.424 (.166) 

-1.311 (.201) 

-0.126 (.901) 

1.384 (.178) 

4.208 (.000) 

31.462 (.000) 

29.391 (.000) 

-1.718 (.097) 

28.821 (.000) 

36.001 (.000) 

-2.683 (.012) 

31.685 (.000) 

-3.517 (.002) 

31.140 (.000) 

0.097 (0.063) 

-0.037 (0.023) 

0.002 (0.038) 

0.107 (0.065) 

0.210 (0.049) 

0.607 (0.027) 

0.629 (0.022) 

-0.089 (0.072) 

0.6126 (0.022) 

0.606 (0.022) 

-0.134 (0.048) 

0.628 (0.023) 

-0.175 (0.048) 

0.585 (0.022) 

 

1.545 (0.134) 

-1.602 (0.124) 

0.047 (.963) 

1.642 (0.113) 

4.252 (0.000) 

22.293 (0.000) 

28.383 (0.000) 

-1.242 (0.225) 

27.947 (0.000) 

27.602 (0.000) 

-2.766 (0.010) 

27.929 (0.000) 

-3.638 (0.001) 

26.783 (0.000) 

 

 

random effects, which are assumed to vary across subjects. Two significant paths, which 

are longitudinal and contemporaneous paths from LPFC to SMA are random paths 

detected by Approach 3-3, and their variations could be explained by a subject-level 

covariate, gender. The contemporaneous path from LPFC to SMA is also significantly 

correlated with gender from Approach 2.  
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Figure 6.3 Significant path connections from Approach 2 (left picture) and Approach 3-3 

ight picture). Dashed lines repre udinal path connections solid lines represent 

  

all the univariate two-level random-effects model of Equation (5.31) and 

Equa

),σ                                         (6.10) 
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Rec

tion (5.32) presented in Chapter 5: 

                                    g g g gY X rβ= + 2, ~ (0,gr N I

                                                                          (6.11)  , ~ (0, ).g g g gW u u N Tβ γ= +  

The generalized least squares (GLS) estimator of γ is 

                                    1 1ˆ ( )T T
g g g gW W Wγ − −= ∆∑ ∑ 1 ˆ

g gβ
−∆

 ∆  is known and  

,                                    (6.12) 

when g

                              ∆ 2 1ˆvar( ) ( )T
g g g gT V T X Xβ σ g

−= = + = + .                            (6.13) 
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The optimal estimator of gβ  is given by 

                                        * ˆ
g g gβ β= Λ ˆ( )g gI W+ −Λ

e 

γ ,                                          (6.14) 

wher

                                            1( )g gT T V −Λ = +   ,                                                  (6.15) 

and  

                                           1ˆ ( )T T
g g g g gX X X Yβ −=                                                 (6.16) 

is the OLS estimator of gβ  from Equation (6.10). 

ˆ
gβ  is also the estim or of at gβ  at Stage 1 of Approach 2 for univariate case 

(mul  have 

e 

tiple regression). When the d a are perfectly balanced such that each subject

the same number of observations, the same values of the predictor matrix X, and the sam

set of subject-level predictors for each component of 

at

gβ , ( )g g gV X Xσ=  would be the 

same for each subject, and each ˆ

2 1T −

gβ  would have the sa e d his case, the 

unique, minimum-variance, unbiased estimator of γ would be the OLS regression 

estimator of Equation (6.11) given ˆ

m ispersion ∆ . In t

gβ  (Bryk and Raudenbush 1992). Therefore, 

                                                 ˆˆg gγ β= ,                                                        W    (6.17) 

and  

                      ˆ ˆ* ˆ ˆˆ( ) ( )g g g g g g g g g gI W Iβ β γ β β= Λ + −Λ = Λ + −Λ =

estimator of gβ  

β .                  (6.18) 

Thus for the univariate model, we establish the equivalence of *
gβ

obtained by Approach 3-3, and ˆ
gβ , the estimator of gβ  by Approach 2 under 

, the 
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assumptions of perfectly balanced data. However, the assumption that each sub

the same values of the predictor matrix X is too strict, which is not realistic for fMRI data

ject have  

. 

 in 

his chapter, we summarize the advantages and disadvantages of 

Appr

ws 

 each subject individually, obtaining subject specific 

unifi

ine the impact of subject-level covariates for any path via a GLM, 

and 

(4) Although it is not a complete random-effects SEM model, its robustness has 

been

of Approach 2 are: 

t completely random over subjects, and 

ue 

to the

 are: 

g the hierarchical data structure into account, 

Interestingly, even though the assumptions of perfectly balanced data are not satisfied in 

our visual attention data, we still reach to the same conclusion by Approach 2 and 

Approach 3-3. Frison et al. (2005) also demonstrated the robustness of Approach 2

univariate models. 

At the end of t

oach 2,Approach 3-2, and Approach 3-3. 

The advantages of Approach 2 are as follo

(1) It is easy to implement, 

(2) It can be used to analyze

ed SEM model,  

(3) We can exam

 shown by studies. 

The disadvantages 

(1) The paths of the SEM model are no

(2) When the observations are independent, it will give fewer significant paths d

 smaller sample size at Stage 1. 

The advantages of Approach 3-2

(1) It is a multilevel SEM model takin
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(2) Both the within-subjects SEM model and the between-subjects SEM model can 

be fit

 be used for latent variables. 

e: 

roach, it assumes homogeneous within 

subje

een-subjects covariance matrix is required to be positive definite for 

comp

 structure and it takes the proper error 

varia

 variables, varying across subjects, and it 

can d

ovariates effect for random paths. It cannot 

detec

aximum likelihood estimations of 

multi

pproach 3-2 take the hierarchical structure of 

ted, and 

(3) It can

The disadvantages of Approach 3-2 ar

(1) Although Approach 3-2 is a SEM app

ct covariance structures for all subjects and it cannot analyze random path 

connections, and 

(2) The betw

utation of likelihood function by software, however, the estimator of between-

subjects covariance is frequently not positive definite (Muthén 1994). 

The advantages of Approach 3-3 are: 

(1) It incorporates the hierarchical data

nce structures into consideration, and 

(2) It assumes that the paths are random

etect the subject covariates that explain the variations of random paths. 

The disadvantages of Approach 3-3 are: 

(1) Approach 3-3 can only examine the c

t the covariate impact for non-random paths, and 

(2) Due to the difficulties of developing typical m

level structural equation modeling with random intercepts and random slopes, 

Approach 3-3 is not a SEM approach. 

In summary, Approach 3-3 and A
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fMR ile 

 

ion 

I data into consideration. Approach 3-3 can be used to analyze random paths wh

Approach 3-2 cannot. However, Approach 3-2 and Approach 2 are SEM models, while 

Approach 3-3 is not. Approach 3-3 can detect effects of subject-level covariates on brain

pathways only when the corresponding paths are random effects. In contrast, Approach 2 

can test any path with subject covariates via a GLM. Even though Approach 2 is not a 

completely random-effects model, it is robust for analysis of hierarchical fMRI data. 

When the main purpose it to test the subject covariates, Approach 2 is better than 

Approach 3-3. Approach 2 is a good alternative against Approach 3, and a simulat

study is suggested to further investigate the robustness of Approach 2. We believe, by 

combining the results of Approach 2 and Approach 3 we would have a better 

understanding of fMRI data.  
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Chapter 7 

 

Conclusion and Discussion 

e have presented three conceivable methodological approaches for the analysis of 

multi

e, 

, structural equation modeling assumes the interactions are 

insta

e 

EM approach, by averaging time series 

fMR

bject 

 

 
 
 
 
 
 
W

-subject multivariate time series fMRI data. They are: (1) summarize (e.g. average 

the time series data across the subjects) and then analyze, (2) analyze and then summariz

and (3) simultaneous analysis. 

As described in Chapter 1

ntaneous in the sense that structural equation models are not time-series models. 

This is in contradistinction to analyze the human brain connectivity network from 

neurophysiological times series such as fMRI data. We adopt the unified SEM method, 

which introduces longitudinal MAR(p) components into SEM model, and we incorporat

this method into the three main approaches.  

Approach 1 is subject-average unified S

I data across subjects and analyzing the reduced average data via unified SEM. 

Approach 2 is two-stage multi-subject unified SEM approach, which analyze each su

individually via unified SEM in Stage 1 and analyze the mean of path connections across 

subjects in Stage 2. We have demonstrated the difference between Approach 1 and 

Approach 2, pointing out that the correlation or covariance structure of original data
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could be possibly changed by Approach 1. Therefore, under some circumstances, 

Approach 1 can provide misleading results.  

For Approach 1 and Approach 2, we developed a two-level bootstrap method to 

exam  

, which are (1) 

Appr

f Approach 3-2 when all the observations are 

indep

. Both 

t a SEM method 

in na

n 

e applications of those approaches to test and 

comp d 

ine the influence of subject-level covariates on the brain pathways by resampling

the subjects and within subject fMRI observations simultaneously.  

There are three approaches under the framework of Approach 3

oach 3-1: single-level multi-subject unified SEM approach, (2) Approach 3-2: 

multilevel covariance structural analysis with unified SEM, and (3) Approach 3-3: 

multilevel random-effects approach. 

Approach 3-1 is a special case o

endent. Approach 3-2 arises from multilevel SEM method, which takes the 

hierarchical data structure into account. It assumes homogeneous within subject 

covariance structures for all subjects and it can analyze random intercepts in SEM

within-subjects and between-subjects SEM models are fitted simultaneously. However, 

when there exists random paths, Approach 3-2 gives unreliable results.  

Approach 3-3 is a complete random-effects model, however, it is no

ture. Meanwhile, Approach 2 and Approach 3-2 are SEM methods, but they are not 

complete random-effects models. Fortunately, Approach 2 may be a robust alternative 

method to random-effects model even though it is equivalent to Approach 3-3 only whe

some strict assumptions are satisfied.  

In this work, we have presented th

are path models from visual attention fMRI study. We used the initially suggeste
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path model for visual attention network with six ROIs in the left-brain hemisphere which

were identified by previous literatures and experts in fMRI field. Since the goodness-of-

fit of each SEM model is poor for the visual attention fMRI data, other related ROIs may

exist and are not considered in the study. The overall model fit would be improved when 

a better-designed fMRI experiment is conducted. The sample size is small for each 

individual SEM model. We expect the model fit will be improved by taking more fM

time points for each subject. 

The three approaches ar

 

 

RI 

e compared based on the results of their applications to this 

visua

ta analysis, many 

prob

dly 

 

 

l attention fMRI study. And the general outlines are provided. 

Although numerous methods have been developed for fMRI da

lems are still not solved. We suggest a simulation study to further investigate the 

robustness of Approach 2, a good alternative against Approach 3-3. And a maximum 

likelihood estimator of multilevel SEM with random intercepts and random paths is ba

in need of being developed. When this difficulty is conquered, we can analyze multi-

subject multivariate time series fMRI data more adequately. 
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