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Abstract of the Dissertation

Laughlin Quasiparticle Interferometers in the
Quantum Hall Regime

by

Wei Zhou

Doctor of Philosophy

in

Physics

Stony Brook University

2007

Laughlin quasiparticles are the low-energy elementary excitations
of the fractional quantum Hall condensate. They possess fractional
electric charge and obey fractional statistics. The novel Laugh-
lin quasiparticle interferometer devices studied in this dissertation
consist of a nearly circular electron island lithographically defined
by four etch trenches. The electron island is separated from the
2D electron bulk by two nearly open constrictions. In the quantum
Hall regime, chiral edge channels are formed at the periphery of
the undepleted 2D electron system. The two counter-propagating
chiral edge channels are coupled by tunneling in the constrictions,
thus forming an interference path. Two kinds of interferometer
devices are studied. For the e/3 primary-filling Laughlin quasipar-
ticle interferometer, the constrictions are less depleted, resulting
a regime where the whole sample is on the f = 1/3 plateau. We
obtain the flux period h/e and back-gate charge period e/3 for this
device. For the second kind of interferometer, the constrictions are
more depleted than the first kind device, giving rise to a regime
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in which an f = 2/5 island is surrounded by f = 1/3 fluid. Here
we observe superperiodic oscillations with 5h/e flux and 2e charge
periods, both corresponding to excitation of ten island quasiparti-
cles. These periods can be understood as imposed by the anyonic
braiding statistics of Laughlin quasiparticles.

iv



To Yingying



Contents

List of Figures viii

List of Tables xiii

Acknowledgements xiv

1 Introduction 1

2 Introduction to quantum Hall effect 3
2.1 Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Integer quantum Hall effect . . . . . . . . . . . . . . . . . . . 4
2.3 Fractional quantum Hall effect . . . . . . . . . . . . . . . . . . 8
2.4 Edge states in the quantum Hall effect . . . . . . . . . . . . . 9

3 Samples and measurement techniques 11
3.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 GaAs/AlGaAs heterojunction . . . . . . . . . . . . . . 11
3.1.2 Sample fabrication process . . . . . . . . . . . . . . . . 12

3.2 Measurement techniques . . . . . . . . . . . . . . . . . . . . . 14

4 Integer quantum Hall regime observations 19
4.1 Aharonov-Bohm quantization condition . . . . . . . . . . . . . 19
4.2 Front-gate dependence of the Aharonov-Bohm oscillations . . 23

5 Detection of fractional statistics of Laughlin quasiparticles 27
5.1 Statistics of Laughlin quasiparticles . . . . . . . . . . . . . . . 27
5.2 ν = 1/3 primary-filling Laughlin quasiparticle interferometer . 29
5.3 Aharonov-Bohm superperiod . . . . . . . . . . . . . . . . . . . 37

6 Properties of the Aharonov-Bohm superperiod 46
6.1 Flux-period scaling in the Laughlin quasiparticle interferometer 46
6.2 Temperature dependence of the Aharonov-Bohm superperiod . 56

vi



7 Conclusion 60

Bibliography 62

vii



List of Figures

2.1 A Hall bar sample. The crossed rectangles are Ohmic contacts. 5
2.2 The density of states of a 2DES with disorder. For simplicity,

the electron spin is neglected. Each Landau level is broadened
due to electrons localized by disorder potentials. However, at
the center of each Landau level, there exist extended states. . 6

2.3 Illustration of Laughlin’s gedanken experiment. The 2DES is
confined on the cylindrical surface. Magnetic field B is pointing
from the center out and perpendicular to the surface. A thin
flux tube is placed along the axis of the cylinder. By varying the
flux inside the flux tube adiabatically, charges are transferred
from one end of the cylinder to another. . . . . . . . . . . . . 7

2.4 The energy spectrum for an ideal 2DES of finite size. The
boundaries of the 2DES are at y0 and y1. n labels each Landau
level. At low-temperature, all electron states below the Fermi
energy EF are filled. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 A diagram of structure of wafer M97 with the corresponding
energy profile showing the conduction band energy EC , valence
band energy EV , and Fermi energy EF . Notice the triangular
shape potential where the 2DES resides. Wafer structure data
are from Ref. [26]. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 An illustration of the sample fabrication process. (a) Shaded
area is etched to produce the mesa. (b) Four Ohmic contacts
are prepared at the corners. (c) Front-gate pattern is defined by
electron beam lithography, followed by metal evaporation and
lift-off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



3.3 A sample mounted on a header. The diagram below shows
the names of several parts. Ohmic contacts and front gates are
connected to the header pins through gold wires. The thick wire
at the bottom right corner connects the backgate to the header
pin. Backgate is formed by spreading Indium over a sapphire
substrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 An atomic force micrograph of the interferometer sample. Black
squares represent Ohmic contacts. Chiral edge channels are
coupled in the constrictions by tunneling (shown as dots). . . 20

4.2 Directly measured Aharonov-Bohm oscillation data on the f =
1 QH plateau. Regular oscillations are observed for more than
130 periods. The slowly varying background resistance is due
to conduction through the bulk and impurity effects. . . . . . 22

4.3 Aharonov-Bohm resistance oscillations on the f =1, 2, and 4
QH plateaus. A small front-gate voltage is applied to fine tune
the symmetry of the tunneling amplitudes, in order to enhance
the interference signal. . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Aharonov-Bohm oscillation data. Each trace was taken at a
fixed front-gate voltage, given in mV in the box close to it.
Inset shows a blow-up for the VFG = 255 mV trace to show the
regularity of the oscillations. . . . . . . . . . . . . . . . . . . . 25

4.5 (a) The Aharonov-Bohm Area Sµ as a function of VFG. (b) The
dependence of midpoint field of oscillations BM on VFG. . . . . 26

5.1 The interferometer sample. (a) Atomic force micrograph of the
island region. (b) Scanning electron micrograph of the island
region. Numbered circles represent Ohmic contacts at the four
corners of the sample. Chiral edge channels (blue lines) are cou-
pled in the constrictions by tunneling (shown as dots). (c) Il-
lustration of the electron density profile. Note the saddle points
in the two constrictions. . . . . . . . . . . . . . . . . . . . . . 30

5.2 Directly measured diagonal RXX and Hall RXY resistance with
VFG = 0. Constriction fillings are determined from the values
of the quantized plateaus. The fine structure is due to quantum
interference effects in the residual disorder potential, includ-
ing the interferometric conductance oscillations as a function of
magnetic flux through the island. Inset: the chiral edge channel
electron interferometer concept; dots show tunneling. . . . . . 32

ix



5.3 Representative interference conductance oscillations for elec-
trons, f = 1, and for e/3 quasiparticles, f = 1/3. The magnetic
flux period is ∆Φ = h/e in both regimes. Negative front-gate
voltage, applied to increase the oscillation amplitude, shifts the
oscillations to lower B. . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Matched backgate and magnetic field sweep data giving the
e/3 charge period. (a) The interferometer device is calibrated
using the conductance oscillations for electrons, f = 1. (b)
This calibration gives the charge for the Laughlin quasielectrons
q = 0.33e. The magnetic flux period ∆Φ = h/e, the same
in both regimes, implies anyonic statistics of the fractionally
charged quasiparticles. . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Illustrations of possible fillings for a sample with constrictions.
Numbered squares are Ohmic contacts. (a) Both the bulk and
the constrictions are on the same quantum Hall plateau. (b) A
sample with constriction filling fC < fB results in a quantized
plateau RXX = (h/e2)(1/fC − 1/fB). (c) The island and the
bulk has the same filling fB, while constriction filling fC < fB. 39

5.6 Interference of electrons in the integer QH regime. (a),(b) AB
oscillations in conductance when one (f = 1) or two (f = 2)
Landau levels are filled. The flux period ∆Φ = h/e gives the
outer edge ring radius 685 nm. (c),(d) Positive VBG attracts 2D
electrons one by one to the area within the AB path, modulating
the conductance. This calibrates the increment ∆VBG

needed to
increase the charge by ∆Q = e. Note that ∆VBG

is independent
of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.7 Oscillatory conductance for e/3 quasiparticles circling an island
of f = 2/5 FQH fluid. (a) Flux through the island period
∆Φ = 5h/e corresponds to creation of ten e/5 quasiparticles
in the island [one h/e excites two e/5 quasiparticles from the
2/5 FQH condensate, the total (quasiparticles + condensate)
charge is fixed]. Such superperiod ∆Φ > h/e has never been
reported before. (b) The charge period ∆Q = 2e confirms that
the e/3 quasiparticle consecutive orbits around the 2/5 island
are quantized by a condition requiring increment of ten e/5
quasiparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

x



5.8 (a) Magnetoresistance of the interferometer sample at 10.2 mK.
The horizontal arrow shows approximately the fC = 1/3 plateau.
Note the quantized plateau RXX(B) = h/2e2 at 12.35 T, obtain-
able only with fC = 1/3, fB = 2/5. (b) The oscillation period
ratio for the data of Figures 5.6 and 5.7. ∆B/∆VBG

∝ 1/f , inde-
pendent of the AB path area. The straight line goes through (0,
0) and the f = 1 point. Experimental ∆B/∆VBG

=21.4 mT/V
gives the island filling f = 2/5. The crosses (the nearest FQH
effect f = 3/7 and 1/3) do not fit the data. . . . . . . . . . . . 42

6.1 Scanning electron microscope image of the sample. The nearly
circular island is defined by four front gates, FG1−FG4. Num-
bered circles are Ohmic contacts. (a) In the IQH regime, the
whole sample is on the same QH plateau. Counterpropagating
edge channels (blue lines) are coupled by tunneling (blue dots)
in the constrictions. (b) In the FQH regime, an f = 2/5 island
is enclosed by f = 1/3 QH fluid. . . . . . . . . . . . . . . . . . 48

6.2 (a) A qualitative illustration of the 2D electron density pro-
file. (b) The calculated electron density profile in a circular
island defined by an etched annulus of inner radius R ≈ 1050
nm, nB = 1.2 × 1011 cm−2. The calculation follows the B = 0
model of Ref. [42]. W = 245 nm is the depletion length pa-
rameter. The blue circles give the radius of the outer edge ring
rOut ≈ 685 nm, obtained from the integer Aharonov-Bohm pe-
riod and n(rOut) from the B-field position on the constriction
QH plateaus. The red circles give the inner edge ring radius
rIn ≈ 570 nm, obtained with the fractional NΦ = 5 and the
density ratio n(rIn)/n(rOut) = (2/5)/(1/3) = 1.20. . . . . . . . 49

6.3 Aharonov-Bohm conductance oscillations δG as a function of B
for several values of front gate voltage VFG, given in the labels
next to each trace. All the traces are for f = 1/3 FQH fluid
circling an f = 2/5 island, and have been shifted vertically in
steps of 0.05e2/3h. Each trace contains ∼40 oscillations with a
well defined period ∆B, which depends on VFG. . . . . . . . . 50

6.4 Dependence of the Aharonov-Bohm period ∆B on front-gate
voltage VFG for (a) f = 1 and (b) f = 2/5 embedded in f = 1/3.
The dependence is approximately linear in the range of VFG

studied; the solid lines are least squares fits. The ∆B(VFG = 0)
values give the A-B path areas SOut = h/e∆B = 1.42×10−12 m2

(f = 1) and SIn = 5h/e∆B = 0.966× 10−12 m2 (2/5 embedded
in 1/3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



6.5 (a) Superperiodic oscillations observed when the f = 2/5 island
is embedded in the f = 1/3 QH fluid. (b) Temperature depen-
dence of the superperiodic oscillations. Each trace was taken
at a different temperature from 10.2 mK (bottom trace) to 141
mK (top trace). The successive traces are vertically displaced
by 0.4 kΩ. The data in (a) and (b) were obtained on different
cooldowns of the sample. . . . . . . . . . . . . . . . . . . . . . 57

6.6 Temperature dependence of the normalized conductance oscilla-
tion amplitudes shown on linear and semi-log scale. The spread
of data points illustrates the uncertainty. . . . . . . . . . . . . 59

xii



List of Tables

6.1 Summary of results obtained from the experimental Aharonov-
Bohm period ∆B and its dependence on front-gate voltage VFG.
Sample M61Dd data is from Ref. [42]. . . . . . . . . . . . . . 54

xiii



Acknowledgements

I would like to thank many people for helping me finish this dissertation. The
text of this dissertation in part is a reprint of the materials as it appears in
our previous publications. The co-authors listed in the publications directed
and supervised the research that forms the basis for this dissertation.

First of all, I am very much indebted to my advisor Professor Vladimir
Goldman for his guidance and financial support. It is through his direct guid-
ance and hand by hand demonstrations that I gradually familiarized myself
with the subject we have studied. Beside so much knowledge I learned from
him, I also benefited greatly from his attitude of doing research, that is, be-
ing careful, well prepared and hard working, which has become an invaluable
treasure in my life.

I would like to express my gratitude to Dr. Fernando Camino for many
fruitful discussions and warm-hearted helps. Dr. Camino and I joined Profes-
sor Goldman’s group in the same year. Being an experienced researcher, Dr.
Camino taught me to do many tasks in the lab. I also learned a lot about
sample fabrication from him. His friendship and help are very important to
me.

I would like to thank everybody in the Physics Department for creating
such a nice and friendly study environment.

I would like to thank all my friends here for bringing me so much fun.
The chattings, dinner parties, and sports with them have created many un-
forgettable moments, and I of course learned many things from them, too.
I thank Jingbin Li, Dan Li, Haijiang Gong, Feng Guo, Jun Guo, Xiaojing
Huang, Yaohua Deng, Xin Chen, Haidong Feng, Zhenguo Wang, Xiyue Miao,
and Xiaolong Ma for their friendship and many helps.

Finally, I thank my family for their love and support. I deeply thank my
wife Yingying Na for her love and care of me during these years I’m abroad. I
dedicate this dissertation to her.



Chapter 1

Introduction

Since the discovery of the integer quantum Hall effect (IQHE) in 1980 [1] and
the fractional quantum Hall effect (FQHE) in 1982 [2], the field of quantum
Hall effect has remained one of the most studied and productive branches of
condensed matter physics. The exact quantization of Hall resistance in the
IQHE has been established as the new resistance standard and the electron
fluid state of the FQHE just brought a new form of matter into reality. The
elementary excitations of a fractional quantum Hall (QH) fluid, or Laughlin
quasiparticles, possess a fractional electronic charge [3, 4] and obey fractional
statistics [5, 6]. These exotic particles have previously existed only in theo-
retical works [7]. With many accessible condensate states and their intricate
internal topological structures [8], the quantum Hall effect provides a unique
and excellent test field for such theories and inspires even more. The concept
of fault-tolerant topological quantum computation [9] with Laughlin quasipar-
ticles opens a new frontier in QHE research, and may potentially become very
useful in applications.

The first unambiguous detection of the fractional charge of Laughlin quasi-
particles was done in 1995 [4] in Goldman’s group at Stony Brook University,
of which the author has been a member for the past four years. The fractional
charge of Laughlin quasiparticles is observed in resonant tunneling experiments
with quantum antidot devices. An antidot is a small potential hill created by
etching a hole in a two dimensional electron system (2DES). However, direct
demonstration of fractional statistics of Laughlin quasiparticles has been lack-
ing. The novel Laughlin quasiparticle interferometer samples presented in this
dissertation utilize a inverse geometry to that of a quantum antidot device,
in which an electron island is separated from the 2D bulk by two wide con-
strictions. In the quantum Hall regime, counterpropagating edge channels are
coupled in the constrictions, thus completing a closed electron orbit around the
island. This gives rise to Aharonov-Bohm type interference signals [10] in the
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four-terminal sample resistance as a function of the magnetic flux enclosed by
the island-circulating electron states located at the chemical potential. Specif-
ically, we observe flux ∆Φ = 5h/e and charge ∆Q = 2e periods, in the case a
f = 2/5 island enclosed by the f = 1/3 fluid and flux ∆Φ = h/e and charge
∆Q = e/3 periods in the case the whole sample is on the f = 1/3 QH plateau.
To the best of our knowledge, flux period of more than h/e has never been
reported before in any Aharonov-Bohm type interference experiments. We
attribute the observed Aharonov-Bohm superperiod as a direct demonstration
of the fractional statistics of Laughlin quasiparticles.

The organization of this dissertation is as the following. In chapter 2, a
brief introduction to quantum Hall effect is given. In chapter 3, a detailed de-
scription of the sample material and fabrication process is presented, together
with an overview of our measurement techniques. Chapter 4 covers our key
observations in the integer quantum Hall regime, which provide a solid founda-
tion for the discussions in the following chapters. In chapter 5, we present the
main topic of this dissertation, the detection of fractional statistics of Laughlin
quasiparticles. Experimental results with two kinds of samples are provided.
In chapter 6, properties of the observed Aharonov-Bohm superperiod are inves-
tigated, including the front-gate dependence and temperature effects. Finally,
chapter 7 concludes the dissertation.
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Chapter 2

Introduction to quantum Hall
effect

The Laughlin quasiparticle interferometer samples are measured in the quan-
tum Hall regime. This chapter is intended to provide a brief overview of the
quantum Hall effect. For more detailed discussions about the issues covered
here and beyond, the reader is encouraged to consult books and reviews such
as Refs. [11–13]. In Section 2.1, discussions of Landau levels and the roles they
play in the quantum Hall effect are provided. In Section 2.2 and 2.3, the exper-
imental observations and basic theories of the integer and fractional quantum
Hall effect are covered respectively. Finally, in Section 2.4, the properties of
the edge states and their effects on transport measurements are explained.

2.1 Landau levels

For a 2D electron system (2DES) subjected to a perpendicular magnetic field
B, the electron states are quantized into discrete energy levels, that is, Landau
levels. If we ignore the electron-electron interaction and spin, for a single
electron (charge −e, and e > 0), the Hamiltonian is

H =
1

2m∗ [p + eA(r)]2, (2.1)

where m∗ is electron effective mass, p the canonical momentum operator, and
A(r) the vector potential. The quantized Landau levels have energy spectrum

EN = (N +
1

2
)~ωc, (2.2)
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with the cyclotron frequency ωc = eB/m∗, and N =0, 1, 2, .... The spin of
electron causes each Landau level to be split into two levels, which we should
refer as spin-polarized Landau levels. The separation of the two spin-polarized
Landau levels that belong to the same Landau level is given by the Zeeman
energy µBB, where µB is the Bohr magneton.

The electron state degeneracy for each spin-polarized Landau level is eB/h
per unit area. Defining the magnetic length `0 ≡

√
~/eB, the degeneracy can

also be expressed as 1/2π`2
0. The Landau level filling factor ν is defined as

ν ≡ n

1/2π`2
0

=
nh

eB
, (2.3)

where n is the 2D electron density. The quantization of electron states into
Landau levels is essential for the observation of the integer quantum Hall effect,
as explained in the next section.

2.2 Integer quantum Hall effect

The integer quantum Hall effect is characterized by the observation of quan-
tized Hall plateaus with values given by the Hall resistance RXY = VY /IX =
h/fe2, when the filling factor ν of the 2D electron system is varied. Here f=1,
2, 3, ... is a quantum number, to which we will refer as the exact quantum Hall
filling, in contrast to ν, which can be changed continuously. When the Hall
resistance is quantized, the diagonal resistance RXX = VX/IX will approach
zero: the sample is in a dissipationless state. Figure 2.1 shows a diagram
about how the measurement is done with a Hall bar pattern. Experimentally,
the filling factor can be changed either by changing the 2D electron density
via a global backgate, or by changing the magnetic field.

The existence of a quantized Hall plateau is closely related to the broad-
ening of Landau levels due to impurities. In the presence of impurities, the
density of states of the 2D electron system can be described as in Figure 2.2.
Each Landau level is broadened with tails consisting of localized states. How-
ever, at the center of each Landau level, there exist extended states. When the
Landau levels are fully filled, the Fermi level is located in the gap between the
Landau levels, where there are only localized states. Varying ν only changes
the electron distribution within the localized states, which do not carry the
transporting current. Thus the Hall resistance is kept constant when the Fermi
level resides in the localized states, causing the appearance of the characteristic
plateaus.

It should be noted that the quantization of the Hall resistance to h/fe2
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Figure 2.1: A Hall bar sample. The crossed rectangles are Ohmic contacts.

is independent of the sample geometry, material, and contact details. Thus
its origin must depend on some fundamental properties of the 2D electron
system. Laughlin first provided a general argument based on gauge invariance
to explain the exact quantization of the Hall resistance [14]. In his gedanken
experiment, he considers a 2D electron system on a cylindrical surface, with
magnetic field pointing out from the axis and perpendicular to the surface, see
Figure 2.3. There is a very thin solenoid placed along the axis (the Y axis).
By increasing the flux through the solenoid adiabatically by h/e, the net effect
is transferring f electrons from one edge to the other when there are f fully
filled Landau levels. This is due to the requirement of gauge invariance of the
electron wave function. For the voltage bias VY between the two edges, the
induced current along the circumference of the cylinder from the flux insertion
is IX = ∂E/∂Φ = ∆E/∆Φ = eVY f/(h/e), with E the total energy of the
electron system. Thus the Hall resistance RXY = VY /IX = h/fe2.

For the integer quantum Hall effect, the quantum Hall energy gap is pro-
vided by the energy separation of two successive Landau levels. The relevant
quasiparticles are just electrons and holes. By varying the filling factor, cre-
ation of quasiparticles can be achieved by redistribution of electrons to the
next empty Landau level or by creating holes in the highest filled Landau
level.
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Figure 2.2: The density of states of a 2DES with disorder. For simplicity, the
electron spin is neglected. Each Landau level is broadened due to electrons
localized by disorder potentials. However, at the center of each Landau level,
there exist extended states.
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Figure 2.3: Illustration of Laughlin’s gedanken experiment. The 2DES is
confined on the cylindrical surface. Magnetic field B is pointing from the
center out and perpendicular to the surface. A thin flux tube is placed along
the axis of the cylinder. By varying the flux inside the flux tube adiabatically,
charges are transferred from one end of the cylinder to another.
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2.3 Fractional quantum Hall effect

The experimental observation of the fractional quantum Hall (FQH) effect is
quite similar to that of the integer quantum Hall effect, such as the quantized
Hall plateaus and the concurrent vanishing diagonal resistance. The difference
is that the Hall resistance is given by RXY = h/fe2 with f a fractional number.
For most of the FQH states, f = n/m with both n and m an integer and m
an odd number. However, FQH states with even denominators have also been
observed [15, 16]. We shall not discuss the even denominator states since
they involve more complex theoretical constructions and are not studied in
our experiments.

The existence of quantum Hall effect when only part of the lowest Landau
level is occupied suggests the single-particle view used to explain the IQHE
may not be applicable here, because the energy gap cannot come from the gap
between successive Landau levels. Thus the electron-electron interaction must
play an essential role in the FQHE.

Laughlin first proposed a variational wave function [3] for the primary
filling FQH sequence f = 1/m with m=3, 5, 7, .... In Laughlin’s wave function,
the electron-electron correlation effects are taken into account automatically.
The wave function has the form

Ψm =
∏

j<k

(zj − zk)
m exp

(
− 1

4`2
0

∑

l

|zl|2
)

, (2.4)

where zj is the complex coordinate of the electrons on the 2D plane. Numerical
simulations show very good overlap between Laughlin’s wave function and the
true ground state of a 2DES for a few electrons [3, 17]. Laughlin’s wave
function describes a new form of matter, in which 2D electrons of the partially
filled lowest Landau level condense into an electron fluid.

One direct consequence of Eq. 2.4 is the prediction of fractionally charged
excitations [3], i.e. quasiparticles, from the electron condensate. For the filling
f = 1/m, the quasielectrons and quasiholes have charge q = −e/m and q =
e/m, respectively. When the filling factor is not equal to the exact filling,
ν 6= f , the ground state of the 2DES consists of the exact filling condensate
and the matching density of quasiparticles.

Based on the fundamental work of Laughlin, Haldane [18] and Halperin
[6] proposed a hierarchical construction for the general fillings f = n/m. The
basic idea is that the quasiparticles of one parent condensate condense into
a new fractional quantum Hall state, forming a daughter state. By applying
this process repeatedly, all possible fractions can be obtained. It is also found
that for the general filling f = n/m, the relevant quasiparticles possess charge
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±e/m [18]. In addition to fractional charge, Laughlin quasiparticles obey
fractional statistics, which we will explore in detail in Chapter 5.

2.4 Edge states in the quantum Hall effect

For a 2DES subjected to perpendicular magnetic field B, the electron states
near the edge of the 2DES are particularly important in transport measure-
ments. The confining potential raises the energy of states near the edge and
results in quasi-one-dimensional extended states along the edge, that is, the
edge states [19, 20]. It has also been shown that the edge states can survive
moderate disorder [19]. On a quantized Hall plateau, the current is carried
only by edge states, since in the bulk there are only localized states near the
Fermi level.

In the integer quantum Hall regime, for each filled bulk spin-polarized Lan-
dau level, there are corresponding edge states of that level near the edge, with
energy above the bulk state, see Figure 2.4. All edge states belonging to the
same edge carry current in the same direction, determined by the perpendic-
ular magnetic field B and the confining potential. Edge states belonging to
a given Landau level are also referred as edge channels, and typically repre-
sented as lines with arrows in a diagram. If the chemical potential differs by
∆µ between counterpropagating edge channels of a sample, the net current
carried by them is [19]

IX = fe∆µ/h, (2.5)

with f the number of filled Landau levels. Since ∆µ = eVY , we obtain the
quantized Hall resistance RXY = h/fe2.

In the fractional quantum Hall regime, the description of edge states is
more complicated, due to the importance of electron-electron interaction. The
edge channels are usually modeled as a one dimensional chiral Luttinger liquid
(χLL) [8, 20]. The low-energy charged excitations, or Laughlin quasiparticles,
of such χLL are gapless [8], unlike the case in the bulk condensate, and carry
the transport current in the fractional quantum Hall regime.
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Figure 2.4: The energy spectrum for an ideal 2DES of finite size. The bound-
aries of the 2DES are at y0 and y1. n labels each Landau level. At low-
temperature, all electron states below the Fermi energy EF are filled.
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Chapter 3

Samples and measurement
techniques

The novel Laughlin quasiparticle interferometer devices described here are
based on low disorder, high mobility GaAs/AlGaAs heterojunctions. The
fabrication process includes several steps, such as optical lithography, electron
lithography and metal evaporation. The sample is cooled in a dilution refriger-
ator and four-terminal resistance is measured with a lock-in phase technique.
In Section 3.1, a description of the sample material and fabrication process
is presented. In Section 3.2, the low-temperature equipment and measuring
techniques will be introduced.

3.1 Sample fabrication

3.1.1 GaAs/AlGaAs heterojunction

Our samples are fabricated from high-quality GaAs/AlGaAs heterojunctions
grown by Molecular Beam Epitaxy (MBE) [21]. It is well known that GaAs is
a single-valley, direct gap, isotropic insulator. Substituting a fraction (≤ 40%)
of the Ga atoms by Al, the resulting AlxGa1−xAs still has similar properties as
GaAs, except a larger band gap [22]. MBE allows to grow layers of AlxGa1−xAs
on top of the GaAs substrate with atomically sharp interface. If AlxGa1−xAs
is doped with donors, which typically are Si, electrons from the donors can
be excited thermally or by exposing to light and move across the interface.
The resulting potential at the interface has a triangular shape, see Figure 3.1.
The electron states in the triangular potential are quantized, forming different
subbands [23]. For a typical doping of AlxGa1−xAs with x=0.3 and donor
concentration of order 1011 cm−2, only the lowest subband is occupied at low
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temperature, effectively resulting a 2D electron system. However, it should
be noted that the electron wave function in the lowest subband still has some
extent in the direction perpendicular to the 2D plane, which is about several
magnetic lengths `0 =

√
~/eB, with B the magnetic field.

Several factors account for the high mobility of the 2D electron system
realized in GaAs/AlGaAs heterojunction, which is crucial for experiments of
fractional quantum Hall effects. First, the spatial separation of donors from
the 2D electrons reduces electron scattering from ionized donors. Second, the
atomically sharp interface causes less scattering due to interface roughness.
Third, the similarity of dielectric constants of GaAs and AlGaAs creates less
image potential, which also reduces electron scattering. In addition, the small
effective electron mass m∗ ≈ 0.065me, with me the electron mass, gives rise to
a larger cyclotron frequency ωc = eB/m∗, which results in a larger separation
of Landau levels and facilitates the appearance of quantum Hall effect.

The heterojunction material used to fabricate the interferometer sample is
grown by the Varian Gen II MBE system at Princeton University [24–26]. A
diagram of the heterojunction for wafer M97 is provided in Figure 3.1. Other
heterojunctions used for sample fabrication also have similar structures as
shown here.

3.1.2 Sample fabrication process

Here we present a typical sample fabrication process. Depending on the design,
the parameters used in a real sample may differ from the values here.

The sample is roughly a 4 × 4 mm square cut from the GaAs/AlGaAs
wafer. After 4-cycle cleaning, which is done by rinsing the sample with TCE,
Acetone, Methanol, and de-ionized (DI) water in ultrasonic bath each for 1
min successively, in the specified order. The sample is mounted on a glass
slide, and, subsequently, a thin layer of 1813 photo resist is spinned at 4000
rpm for 30 sec. The sample is baked at 95 ◦C for 30 min. Then it is covered
by an optical mask of the mesa pattern and exposed to ultraviolet light for
30 min. After exposure, the photo resist is developed in 352 developer for 45
sec. The sample is subsequently etched in 1 H2SO4:8 H2O2:100 H2O at 1.5 ◦C
for the desired depth. After etching, the remaining photo resist is removed in
acetone. This completes the mesa definition.

Next, four Ohmic contacts at each corner of the sample are prepared by
alloying with In metal at 410 ◦C in Hydrogen atmosphere for 7 min. Then the
sample is gradually cooled to room temperature.

Then the sample is cleaned by 4-cycle cleaning and glued to a macor holder.
A thin layer photo resist of 4% PMMA is spinned at 5000 rpm for 45 sec and
subsequently baked at 170 ◦C for 30 min. The front gate patterns are defined
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Figure 3.1: A diagram of structure of wafer M97 with the corresponding energy
profile showing the conduction band energy EC , valence band energy EV ,
and Fermi energy EF . Notice the triangular shape potential where the 2DES
resides. Wafer structure data are from Ref. [26].

13



by electron-beam lithography. After exposure to electron beam, the PMMA
is developed in 1 MIBK:3 IPA at 21 ◦C for 55 sec. The developed sample is
baked at 95 ◦C for another 30 min and then etched to the desired depth in 1
H2SO4:8 H2O2:100 H2O at 1.5 ◦C.

The sample, with the remaining photo resist still on top, is brought to the
BOC Edwards Auto 306 metal deposition system. A 5 nm Ti layer followed
by 45 nm Au is deposited on top of the sample. Then the sample is placed
in acetone for lift-off. Only the metal deposited in the etched front gate area
will remain, the rest just comes off with the photo resist. Figure 3.2 shows a
summary of the above processes.

The next step is to prepare a backgate for the sample. First, a chip of
single crystal sapphire is cut with slightly larger size than the sample. Then
the sapphire chip is covered with a thin layer of In metal and placed on top of
a hot plate, in order to keep the Indium molten. The sample is placed on top
of the sapphire chip, with Indium in between. The Indium layer now forms
the global backgate of the sample.

In order to perform transport measurement, the sample must first be
mounted to a header, which is a chip holder with pins that can be plugged
into the sample probe. The Ohmic contacts, the front gates, and the backgate
contacts are all connected to the header pins by gold wires, see Figure 3.3.

3.2 Measurement techniques

We use an Oxford Instrument TLM-400 top-loading-into-mixture 3He-4He di-
lution refrigerator to provide the ultralow temperature. The base temperature
of the system is 10.2 mK. Temperature is measured with a Dale 750 Ω resistor,
which is placed close to the sample and calibrated with 60Co nuclear orientation
absolute thermometry for T≤ 40 mK and against a commercially calibrated
resistor for T≥ 25 mK. The refrigerator has a built-in Nb3Sn superconducting
magnet that produces nearly uniform magnetic field at the position where the
sample is located, where the homogeneity is around 7.7 parts in 104 over a
distance of 10 mm. At liquid He temperature (4.2 K), the magnet can provide
up to 14 T magnetic field. By turning on the λ-plate refrigerator attached to
the magnet, a high-field of 17 T is obtainable. The magnet is powered with an
IPS-120 power supply, which can be operated with ramp current or persistent
current mode, and easily controlled by a computer program. The magnetic
field is calculated from the current through the magnet measured with an HP
3458A multimeter.

A diagram of the measurement setup is shown in Figure 3.4. The header
(with sample mounted) is plugged into the sample probe and inserted into
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Figure 3.2: An illustration of the sample fabrication process. (a) Shaded area
is etched to produce the mesa. (b) Four Ohmic contacts are prepared at
the corners. (c) Front-gate pattern is defined by electron beam lithography,
followed by metal evaporation and lift-off.
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Figure 3.3: A sample mounted on a header. The diagram below shows the
names of several parts. Ohmic contacts and front gates are connected to the
header pins through gold wires. The thick wire at the bottom right corner
connects the backgate to the header pin. Backgate is formed by spreading
Indium over a sapphire substrate.

16



the tail of the mixing chamber, which is located at the center of the magnet.
The excitation current is from the oscillator output of the EG&G model 5302
lock-in amplifier. The resulting signal from the sample is detected by the same
lock-in amplifier. Extensive cold filtering is used to reduce the electromagnetic
noise incident on the sample. The sample temperature is monitored by another
EG&G model 5301 lock-in amplifier that measures the temperature sensor
(Dale 750 Ω resistor) located close to the sample, see Figure 3.4.

The four-terminal sample resistance is measured as a function of the mag-
netic field or the backgate voltage. The four independently contacted front
gates are used primarily to fine-tune the symmetry of constrictions. The back-
gate voltage can be ramped up or down continuously in the range about −10
V to +10 V with good precision by a ramp generator. The front gates are con-
nected to a high precision, high stability voltage source powered by batteries,
whose output voltage is measured with a digital multimeter.
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Figure 3.4: Measurement setup.
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Chapter 4

Integer quantum Hall regime
observations

An interferometer device is shown in Figure 4.1. A nearly circular electron
island is defined by four etch trenches with front-gate metal deposited in.
The island is separated from the 2D electron bulk by two nearly open con-
strictions. In the IQH regime the whole sample may stay on the same QH
plateau. Two counterpropagating edge channels are coupled by tunneling in
the constrictions, thus forming a closed electron interference path. In Section
4.1 we present Aharonov-Bohm oscillation data on several integer quantum
Hall plateaus. The magnetic field periods ∆B agree very well with that given
by the Aharonov-Bohm quantization condition, which requires the quantized
electron orbitals enclosing flux of integer multiple of h/e. In Section 4.2, the
front-gate bias dependence of the Aharonov-Bohm oscillations is discussed. We
find a systematic shift to high-B of the oscillation region and simultaneously
decreasing magnetic field period ∆B as the front-gate voltage is increased.

4.1 Aharonov-Bohm quantization condition1

Quantum interference in the QH regime of 2D electrons around a quantum
antidot, which is a potential hill defined by etching a hole in a 2DES, has been
used experimentally to determine the fractional charge of Laughlin quasiparti-
cles of the surrounding quantum Hall condensate [4, 30]. Our current devices
utilize the inverse geometry. The layout resembles qualitatively a “coulomb
island” [31, 32], but the constrictions are nearly open, so that no Coulomb

1Part of this section published in Wei Zhou, F. E. Camino, and V. J. Goldman, pro-
ceedings of LT24, AIP Conference Proceedings Vol. 850, 1351 (2006), F. E. Camino, W.
Zhou, and V. J. Goldman, Phys. Rev. B 72, 155313 (2005).
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Figure 4.1: An atomic force micrograph of the interferometer sample. Black
squares represent Ohmic contacts. Chiral edge channels are coupled in the
constrictions by tunneling (shown as dots).

blockade or conductance steps are observed.
On a QH plateau, when tunneling between the constriction edge channels

occurs, in the quantum-coherent regime, Aharonov-Bohm oscillations with
period ∆B are expected in the four-terminal resistance RXX = VX/IX as a
function of the magnetic field B. In the quantum limit, each oscillation signals
the alignment of a quantized electron state encircling the 2D electron island
with the chemical potential µ.

In each spin-polarized Landau level, the single-electron states are quantized
by the Aharonov-Bohm condition: The magnetic flux Φ through the area of
an encircling orbital Sm satisfies Φ = BSm = mΦ0, where m is the quantum
number of the orbital and Φ0 = h/e is the fundamental flux quantum [35].
Thus, Sm = mh/eB = 2πm`2

0, where `0 =
√
~/eB is the magnetic length, and

the area for each electron state per spin-polarized Landau level is Sm+1−Sm =
2π`2

0 = h/eB. These quantization conditions apply as well to an interacting
2D electron fluid with microscopically uniform density, so long as no phase
transition to a charge density wave (such as a striped or “bubble”) ground
state occurs.

The interferometer samples were fabricated from a low disorder, high mobil-
ity GaAs/AlGaAs heterojunction material where 2D electrons (285 nm below
the surface) were prepared by exposure to red light at 4.2 K. The electron
island of lithographic radius R ≈1050 nm was defined by four etch trenches
of etch depth 140 nm. Au/Ti metal was deposited into the etch trenches by a
self-aligned lift-off process to form the front gates, see Figure 4.1. For the 2D
bulk density nB = 1.2 × 1011 cm−2, there are ∼2000 electrons in the island.
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Samples were cooled to 10.2 mK in the 3He-4He mixture inside the mixing
chamber of a dilution refrigerator. Four-terminal resistance RXX = VX/IX

was measured by passing a 100 pA, 5.4 Hz ac current through two contacts,
and detecting the voltage between the other two contacts by a lock-in-phase
technique. Extensive cold filtering cuts the integrated electromagnetic “noise”
environment incident on the sample to ∼ 5 × 10−17 W, which allows us to
achieve a low electron temperature of 18 mK in a mesoscopic sample [28].

We observe Aharonov-Bohm type oscillations in the four-terminal resis-
tance RXX on the IQH plateaus. Figure 4.2 presents a typical directly mea-
sured RXX vs. B trace with about 130 well-defined oscillation periods. The
oscillations are clearly periodic with period ∆B. For example, the trace shown
in Figure 4.2 (VFG = 232 mV) has ∆B = 2.62 mT, which yields an interfer-
ence area Sµ = h/e∆B = 1.58 × 10−12 m2 according to the Aharonov-Bohm
quantization condition. Figure 4.3 shows the measured Aharonov-Bohm os-
cillations on the f =1, 2, and 4 plateaus. For clarity, a smooth background
onto which the oscillations are superimposed is subtracted from the directly
measured data. The small differences in the front-gate voltages for different
fillings in Figure 4.3 are for fine-tuning the tunneling amplitude symmetries
in the two constrictions, in order to enhance the oscillation amplitude. For
f = 1, the magnetic field period ∆B=2.81 mT, resulting an Aharonov-Bohm
area Sµ = h/e∆B = 1.47 × 10−12 m2. For f = 2, there are two filled spin-
polarized Landau levels. Thus two oscillations per h/e are expected. In-
deed, we find ∆B = 1.43 mT for f = 2, this gives the Aharonov-Bohm area
Sµ = h/2e∆B = 1.45 × 10−12 m2. Similarly, we obtain Sµ = 1.54 × 10−12

m2 with ∆B = 0.67 mT for f = 4. Within our experimental accuracy, the
Aharonov-Bohm areas are constant for all three fillings, independent of B.

It should also be noted that changing B does not change appreciably the
number of electrons within Sµ. Otherwise, huge Coulomb charging energy
would be incurred. For example, if each of the 100 observed oscillations on the
f = 1 plateau is resulted from transferring of one electron into Sµ, the total
charging of 100e of the island would result in ∼10 eV charging energy, which is
much higher than the experimental energy scale. Instead, changing B changes
the density of states in each Landau level, so that the same number of is-
land electrons occupies the same total number of states, but their distribution
between various Landau levels changes: The Landau level filling ν = nh/eB
changes while density n is fixed. The chemical potential in the island is deter-
mined by the µ in the bulk. The data in Figure 4.3 show that apparently the
radial position of the edge channels circling the island is nearly fixed by the
confining potential, that is, Sµ is nearly constant. The quantum number mµ

of the state Sm corresponding to Sµ regularly changes in steps of one, mµ ∝ B
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Figure 4.2: Directly measured Aharonov-Bohm oscillation data on the f = 1
QH plateau. Regular oscillations are observed for more than 130 periods. The
slowly varying background resistance is due to conduction through the bulk
and impurity effects.

Figure 4.3: Aharonov-Bohm resistance oscillations on the f =1, 2, and 4 QH
plateaus. A small front-gate voltage is applied to fine tune the symmetry of
the tunneling amplitudes, in order to enhance the interference signal.
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since the area per state 2π`2
0 ∝ 1/B. If the occupation of the states in the

electron island were a step-function, 1 for m ≤ mµ and 0 for m > mµ, then
Sµ must change, and the number of electrons within Sµ must change. Instead,
as evidenced by the above data, both Sµ and the number of electrons within
Sµ are nearly constant. What happens is that the electron occupation is not
described by the step-function. Increasing B increases density of states in a
Landau level, thus accommodating the same number of electrons is accompa-
nied by creation of unoccupied states (that is, holes) in the otherwise filled
Landau level. Likewise, decreasing B is accompanied by filling of the states
in the next, otherwise empty Landau level. Such Landau level quasiparticle
or quasihole creation allows to accommodate a fixed number of island elec-
trons (as dictated by the selfconsistent electrostatics of Coulomb-interacting
electrons) in a nearly constant area Sµ.

In summary, we observe Aharonov-Bohm oscillations on the f =1, 2, and
4 QH plateaus. The results show that the interference area is nearly indepen-
dent of B. This is in good agreement with the Aharonov-Bohm quantization
condition, without any significant modification due to the confining potential.

4.2 Front-gate dependence of the Aharonov-

Bohm oscillations2

The main confining potential for the island electrons is produced by the etch
trenches which remove the donors. GaAs is known to have the “surface Fermi
level pinning,” due to a large density of mid-gap surface electron states, which
has been successfully modeled by self-consistent depletion of donors, including
a negative surface charge density [56]. The surface depletion results in the 2D
electron density being less than the donor density (because some donor elec-
trons go to the surface), and, important for the present samples, an additional
etched mesa sidewall depletion due to the free surface of the etch trenches.
The front gates are formed by Au/Ti metal deposited into the etch trenches.
Application of a front-gate voltage VFG produces electric field which affects
the confining potential and thus changes both the electron density distribu-
tion and Sµ, which is the interference path area. The number of electrons in
the island changes because both density and the area Sµ change. An increased
n is accompanied by the shift to a higher B of the QH plateau onto which the
Aharonov-Bohm oscillations are superimposed. An increase of Sµ is observed
as a smaller Aharonov-Bohm period ∆B. Thus the two effects are measured

2Part of this section published in F. E. Camino, W. Zhou, and V. J. Goldman, Phys.
Rev. B 72, 155313 (2005).

23



directly, independent of each other.
The sample M61Dd studied here is based on a high quality GaAs/AlGaAs

heterojunction, which has 2D bulk electron density nB = 9.7× 1010 cm2 after
exposing to red light at 4.2 K. The island of lithographic radius R ≈ 1300
nm was defined by four etch trenches with electron-beam lithography. After
a 82 nm etching, 50 nm thick Au/Ti gate metal was deposited into the etch
trenches. The sample was cooled to 10.2 mK in the dilution refrigerator. Four-
terminal resistance RXX = VX/IX was measured by passing ac current through
the sample and detecting the resulting signal with a lock-in-phase technique.
We typically apply IX = 200 pA rms ac current, although reducing IX = 100
pA reveals moderate electron heating effects.

For this sample we will focus on the f = 1 QH plateau only. We observe the
Aharonov-Bohm oscillations in RXX , superimposed on a smooth background
magnetoresistance. Figure 4.4 presents the oscillatory δRXX as a function
of B for several positive VFG. δRXX is obtained by subtracting the smooth
background from RXX . The period ∆B for each of these traces decreases
with increasing VFG. Thus Sµ increases with increasing VFG. We find an
approximately linear relationship between Sµ and VFG, with slope dSµ/dVFG =
1.44 × 10−12 m2/V, see Figure 4.5(a). It is evident that the magnetic field
intervals where the Aharonov-Bohm oscillations occur shift to higher B as
VFG is increased. To quantify this behavior, we define BM as the midpoint
of the magnetic field range in which the oscillations occur for a specific VFG.
For example, BM ≈ 2.80 T for the VFG = 150 mV trace. Figure 4.5(b)
shows the dependence of thus determined BM on VFG, which is approximately
linear in the range of the voltages studied, with slope dBM/dVFG = 1.77 T/V.
Assuming ν = 1 occurs at BM , this corresponds to the f = 1 edge channel
density n(rµ) = eBM/h to vary with VFG as dn(rµ)/dVFG = 4.3×1014 1/m2V.

In conclusion, on the f = 1 quantum Hall plateau, we observe a systematic
shift to high-B of the oscillation region and the concurrent decrease of magnetic
field period ∆B as the front-gate voltage VFG is increased. We also find an
approximately linear relation of the oscillation midpoint field BM and the
interference area Sµ as a function of VFG. Later in Section 6.1 we will further
discuss the front-gate effects in the fractional quantum Hall regime.
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Figure 4.4: Aharonov-Bohm oscillation data. Each trace was taken at a fixed
front-gate voltage, given in mV in the box close to it. Inset shows a blow-up
for the VFG = 255 mV trace to show the regularity of the oscillations.
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Figure 4.5: (a) The Aharonov-Bohm Area Sµ as a function of VFG. (b) The
dependence of midpoint field of oscillations BM on VFG.
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Chapter 5

Detection of fractional statistics
of Laughlin quasiparticles

The design of the interferometer devices allows us to study the statistical
interactions between the Laughlin quasiparticles (LQPs) in an unambiguous
way. From the measured AB oscillation data as a function of magnetic field and
backgate voltage, the fractional statistics of LQPs can be directly calculated.
In section 5.1 a brief introduction to fractional statistics of LQPs is presented.
In section 5.2 we report experiments on an interferometer device with both the
constrictions and the island on the f = 1/3 quantum Hall plateau. In section
5.3 we study an interferometer device in the regime with an f = 2/5 island
embedded in the f = 1/3 quantum Hall fluid. We observe an Aharonov-Bohm
superperiod of ∆Φ = 5h/e, which has never been reported in any Aharonov-
Bohm type interference experiment before.

5.1 Statistics of Laughlin quasiparticles

In three dimensional space, all fundamental “elementary” particles are either
fermions or bosons. That is, upon exchange of two identical particles, the
two-particle wave function acquires a phase factor of −1 for fermions or +1 for
bosons. The particles are said to have statistics Θ if, upon exchange, the two-
particle wave function acquires a phase factor exp(iπΘ), and, upon a closed
loop, a factor of exp(i2πΘ). An exchange of two particles is equivalent to one
particle executing a half loop around the other, so that a closed loop is equiv-
alent to the exchange squared. The integer values ΘB = 2j and ΘF = 2j + 1
describe the boson and fermion exchange statistics: exp(i2πj) = (−1)2j = +1
and exp[iπ(2j + 1)] = (−1)2j+1 = −1, respectively. Therefore, upon executing
a closed loop, both types of particles produce a phase factor of +1, which
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can be safely neglected in describing an interference experiment, such as the
Aharonov-Bohm effect [10].

However, in two dimensional space, the laws of physics do not prohibit the
existence of fractional statistics particles [5, 7], whose statistics can be any
value between that of boson and fermion. Thus comes the name “anyons.”
This is because in two dimensions a closed loop executed by a particle around
another particle is topologically distinct from a loop which encloses no parti-
cles, unlike the three dimensional case. Specifically, the low energy excitations
of a fractional quantum Hall electron fluid (Laughlin quasiparticles) have a
fractional charge [3, 4] and are expected to obey fractional statistics [6, 36].
Thinking in terms of a few such weakly interacting, fractional effective parti-
cles instead of in terms of very complex collective motions of all the underlying
strongly interacting, integer statistics particles greatly simplifies description of
the relevant physics.

Arovas, Schrieffer, and Wilczek [36] have used the adiabatic theorem to
calculate the Berry phase [37] γ of a charge e/3 Laughlin quasiparticle at
position < encircling a closed path C containing another e/3 quasiparticle at
<′ in the filling f = 1/3 FQH condensate,

γ = i

∮

C

d<
〈

Ψ(<,<′)| ∂

∂<Ψ(<,<′)
〉

, (5.1)

where Ψ is the many-electron Laughlin wave function [3, 13]. They found the
difference

∆γ = 2πΘ1/3 = 4π/3, (5.2)

identified as the statistical contribution, between an “empty” loop and a loop
containing another quasiparticle. It is possible to assign definite fractional
statistics (mod 1) to quasiparticles of certain simple FQH fluids based only
on the knowledge of their charge [38]. For example, for the one-electron layer
FQH fluids corresponding to the main composite fermion sequence [39, 40]
f = p/(2jp + 1), with p and j positive integers, the charge q = e/(2jp + 1)
quasiparticle statistics is expected to be

Θp/(2jp+1) = 2j/(2jp + 1) (mod1). (5.3)
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5.2 ν = 1/3 primary-filling Laughlin quasipar-

ticle interferometer1

The interferometer consists of chiral edge channels coupled by quantum-coherent
tunneling in two constrictions, thus enclosing an Aharonov-Bohm area. The
two wide constrictions are designed not to be too constricted such that the
constriction electron density is still close to the bulk density, allowing us to
study the FQH regime in which the whole sample stays on the f = 1/3
QH plateau. This simpler regime, compared with the f = 2/5 embedded
in f = 1/3 case covered in the next section, should help theoretical considera-
tion of the quasiparticle interferometer physics. The observed flux and charge
periods ∆Φ = h/e and ∆Q = e/3, respectively, correspond to the addition of
one quasiparticle to the area enclosed by the interference path. The results
are consistent with the Berry phase quantization condition that includes both
Aharonov-Bohm and anyonic statistical contributions.

Interferometer devices were fabricated from low disorder AlGaAs/GaAs
heterojunctions. After a shallow 140 nm wet etching, Au/Ti front-gate metal
was deposited in the etch trenches, followed by liftoff, Figure 5.1. Samples
were mounted on sapphire substrates with In metal, which serves as the back
gate, and were cooled in a dilution refrigerator to 10.2 mK bath temperature,
calibrated by nuclear orientation thermometry. Extensive cold filtering cuts
the electromagnetic environment incident on the sample, allowing achievement
of an electron temperature ≤ 15 mK in an interferometer device [44]. Four-
terminal resistance RXX = VX/IX was measured with 50 pA (f = 1/3) or 200
pA (f = 1), 5.4 Hz ac current injected at contacts 1 and 4. The resulting
voltage, including the interference signal, was detected at contacts 2 and 3.

The etch trenches define two 1.23 µm wide constrictions, which separate
an approximately circular electron island from the 2D bulk. The shape of
the electron density profile is largely determined by the etch trench depletion,
illustrated in Figure 5.1(c). Moderate front-gate voltages VFG are used to fine
tune the constrictions for symmetry of the tunnel coupling and to increase the
oscillatory interference signal. For the 2D bulk density nB = 1.25× 1011 cm−2

there are ∼3500 electrons in the island. The depletion potential has saddle
points in the constrictions, and so has the resulting density profile.

In a quantizing field B, counterpropagating edge channels pass near the
saddle points, where tunneling may occur. Thus, in the range of B where
interference oscillations are observed, the filling of the edge channels is de-
termined by the saddle point filling [46]. This allows one to determine the

1Published in F.E. Camino, Wei Zhou, and V.J. Goldman, Phys. Rev. Lett. 98, 076805
(2007).
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Figure 5.1: The interferometer sample. (a) Atomic force micrograph of the is-
land region. (b) Scanning electron micrograph of the island region. Numbered
circles represent Ohmic contacts at the four corners of the sample. Chiral edge
channels (blue lines) are coupled in the constrictions by tunneling (shown as
dots). (c) Illustration of the electron density profile. Note the saddle points
in the two constrictions.
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constriction density from the RXX(B) and RXY (B) magnetotransport, Figure
5.2. The Landau level filling ν = hn/eB is proportional to the electron density
n in a given B. Thus the constriction ν is lower than the bulk νB. The island
center n is estimated to be 3% less than nB at VFG = 0, the constriction-island
center density difference is ∼7%. Thus, the whole island is on the same plateau
for strong quantum Hall states with wide plateaus, such as f = 1 and 1/3.
While ν is a variable, the quantum Hall exact filling f is a quantum number
defined by the quantized Hall resistance as f = h/e2RXY .

In the integer quantum Hall regime, the Aharonov-Bohm ring is formed by
the two counterpropagating chiral edge channels passing through the constric-
tions. Backscattering occurs by quantum tunneling at the saddle points in
the constrictions, Figure 5.1, which complete the interference path. Relevant
particles are electrons of charge −e and Fermi statistics; thus, we can obtain
an absolute calibration of the Aharonov-Bohm path area and the backgate ac-
tion. Figure 5.3 shows conductance oscillations for f = 1, similar oscillations
also occur for f = 2. The oscillatory conductance δG = δRXX/R2

XY is cal-
culated from RXX data after subtracting a smooth background. The smooth
background has two contributions: the bulk conduction at νB outside the bulk
plateau regions, and the nonoscillatory interedge tunneling conductance in the
interferometer. Extrapolated to VFG = 0 [42, 46], the f = 1 magnetic field
oscillation period is ∆B = 1.86 mT. This gives the interferometer path area
S = h/e∆B = 2.22 µm2, the radius r = 840 nm.

In the FQH regime, we observe the interferometric oscillations on the low-
B side of the f = 1/3 plateau, Figure 5.3. This is the first experimental
observation of e/3 quasiparticle interference oscillations when the island filling
is 1/3 throughout. Extrapolated to VFG = 0, the magnetic field oscillation
period is ∆B = 1.93 mT. Assuming the flux period is ∆Φ = h/e, this gives
the interferometer path area S = h/e∆B = 2.14 µm2, the radius r = 825 nm.
The island edge ring area is determined by the condition that edge channels
pass near saddle points in the constrictions. Classically, increasing B by a
factor of ∼3 does not affect the electron density distribution in the island at
all. Quantum corrections are expected to be small for a large island containing
∼3500 electrons. Indeed, the f = 1/3 interferometer path area is within ±3%
of the integer value. Integer regime oscillations have an h/e fundamental
flux period; we conclude that the flux period of 1/3 FQH oscillations is also
∆Φ = h/e.

We use the back-gate technique [4, 29] to directly measure the charge period
in the fractional regime. We calibrate the back-gate action δQ/δVBG, where
Q is the electronic charge within the Aharonov-Bohm path. The calibration
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Figure 5.2: Directly measured diagonal RXX and Hall RXY resistance with
VFG = 0. Constriction fillings are determined from the values of the quan-
tized plateaus. The fine structure is due to quantum interference effects in the
residual disorder potential, including the interferometric conductance oscilla-
tions as a function of magnetic flux through the island. Inset: the chiral edge
channel electron interferometer concept; dots show tunneling.
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Figure 5.3: Representative interference conductance oscillations for electrons,
f = 1, and for e/3 quasiparticles, f = 1/3. The magnetic flux period is
∆Φ = h/e in both regimes. Negative front-gate voltage, applied to increase
the oscillation amplitude, shifts the oscillations to lower B.

33



is done by evaluation of the coefficient α in

∆Q = α(∆VBG
/∆B), (5.4)

using the experimental oscillation periods, setting ∆Q = e in the integer
regime. Equation 5.4 normalizes the backgate voltage periods by the exper-
imental B periods, approximately canceling the variation in device area, for
example, due to a front-gate bias. The coefficient α is known a priori to a good
accuracy in quantum antidots because the antidot is completely surrounded by
quantum Hall fluid [4, 29]. In an interferometer, the island is separated from
the 2D electron plane by front-gate etch trenches, so that its electron density
is not expected to increase by precisely the same amount as nB, requiring the
calibration.

Figure 5.4 shows the conductance oscillations as a function of VBG for
f = 1 and 1/3 and the analogous oscillations as a function of B. At each
filling, the front-gate voltage is the same for the (vs. VBG, vs. B) matched set.
The f = 1 period ∆VBG

corresponds to increment ∆N = 1 in the number of
electrons within the interference path. We obtain ∆VBG

= 315 mV, ∆B = 2.34
mT, and the ratio ∆VBG

/∆B = 134.3 V/T (front-gate VFG = −210 mV for
these data). This period ratio is 0.92 of that obtained in quantum antidots
[29], as expected. For the 1/3 FQH oscillations, we obtain ∆VBG

= 117.3 mV,
∆B = 2.66 mT, and the ratio ∆VBG

/∆B = 44.1 V/T (front-gate VFG = −315
mV for these data). Using the integer calibration in the same device, the e/3
quasiparticle experimental charge period is ∆Q = 0.328e, some 1.7% less than
e/3. To the first order, using the ∆VBG

/∆B ratio technique cancels dependence
of the VBG and B periods on the interferometer area and front-gate bias. The
scatter of the quasiparticle charge values obtained from several matched data
sets is ±3% in this experimental run.

These experimental results can be understood as follows [47–50]: The ex-
perimental periods are the same as in quantum antidots, comprising the ad-
dition of one quasiparticle. When filling ν < 1/3, as in quantum antidots,
the addition of flux h/e to an area occupied by the 1/3 condensate creates a
quantized vortex, an e/3 quasihole. However, interferometric oscillations are
observed to occur at filling ν > 1/3, when quasielectrons are added to the
condensate. This is consistent with the principal difference between the in-
terferometer and the quantum antidots being that in antidots the FQH fluid
surrounds electron vacuum, while the island contains the 1/3 fluid everywhere
within the interference path in the present interferometer. The addition of
flux reduces the number of −e/3 quasielectrons, the electron system is not
the same as prior to flux addition, the added flux cannot be annulled by a
singular gauge transformation [14, 51]. Another subtle difference is that a
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Figure 5.4: Matched backgate and magnetic field sweep data giving the e/3
charge period. (a) The interferometer device is calibrated using the conduc-
tance oscillations for electrons, f = 1. (b) This calibration gives the charge for
the Laughlin quasielectrons q = 0.33e. The magnetic flux period ∆Φ = h/e,
the same in both regimes, implies anyonic statistics of the fractionally charged
quasiparticles.
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single quasihole can always be created in the 1/3 condensate, while the cre-
ation of a single quasielectron is not energetically favorable in a large, weakly
confined, isolated FQH droplet [50, 52, 53]. Periods of ∆Φ = 3h/e and ∆Q = e
have been predicted in certain 1/3 FQH nonequilibrium models [47–49, 54].We
therefore discuss experimental results via quasielectron configurations in the
FQH ground state, as a more restrictive case.

In an unbounded FQH fluid, changing ν away from the exact filling f is
accomplished by the creation of quasiparticles; the ground state consists of
ν = f condensate and the matching density of quasiparticles [11–13]. Starting
at ν = f , changing magnetic field adiabatically maintains the system in ther-
mal equilibrium, exciting quasiholes (ν < f) or quasielectrons (ν > f) out of
the exact filling condensate. The equilibrium electron density, determined by
the positively charged donors, is not affected. Confining potential breaks the
quasiparticle-quasihole symmetry of the 2D system. Thus, in the interfero-
meter, when the current-carrying edge channel has ν = f , the island center
has ν > f because electron density is greater in the same B, consistent with
experimental observation of oscillations on the low-B side of the 1/3 plateau.
Changing B also changes the flux Φ = BS through the area S enclosed by the
interference path. In the experimental ν > 1/3 regime, decreasing Φ by h/e
increases the number of quasielectrons in S by one, ∆N = 1, and decreases
by +e/3 the negative FQH condensate charge within S. The quasielectron is
created out of the 1/3 condensate, the condensate density changes by +e/3S,
the charge within the interference path does not alter and still neutralizes the
positive donor charge.

This process can be described in terms of the Berry phase γ of the encircling
−e/3 quasielectron, which includes the Aharonov-Bohm and the statistical
contributions [36, 50]. When there is only one quasiparticle of charge q = ±e/3
present, its orbitals are quantized by the Aharonov-Bohm condition γm =
(|q|/~)Φm = 2πm to enclose flux Φm = mh/|q| with m = 0, 1, 2, .... These
quantized quasiparticle orbitals enclose −em of the underlying 1/3 condensate
charge. When other quasiparticles are present, the Berry phase quantization
includes a term describing braiding statistics of the quasiparticles, in addition
to the Aharonov-Bohm phase. The total phase is quantized in increments of
2π:

∆γ = (q/~)∆Φ + 2πΘ1/3∆N = 2π, (5.5)

where q = −e/3 is the charge of the interfering quasielectron, and Θ1/3 is the
statistics of the −e/3 quasielectrons. The first term in Eq. 5.5 contributes
(−e/3~)(−h/e) = 2π/3, the second term must contribute 4π/3, giving an
anyonic statistics Θ1/3 = 2/3.

The same Berry phase equation describes the physically different process of
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the island charging by the backgate. Here, in a fixed B, increasing positive VBG

increases the 2D electron density. The period consists of creating one −e/3
quasielectron out of the 1/3 condensate within the interference path, which
causes the path to shrink by the area containing flux h/e. FQH fluid charge
within the interference path does not neutralize the donors by −e/3. This
is possible because the condensate is not isolated from the 2D bulk electron
system, there is no Coulomb blockade, and the condensate charge within the
interference path can increment by +e/3, any fractional charge imbalance
ultimately supplied from the contacts. Thus, an −e/3 quasielectron is excited
out of the condensate, ∆N = 1, the fixed condensate density is restored from
the contacts, the interference path shrinks by area h/eB so that flux ∆Φ =
−h/e in Eq. 5.5.

In conclusion, we realized a novel primary-filling e/3 quasiparticle inter-
ferometer where an e/3 quasiparticle executes a closed path around an island
containing the 1/3 FQH fluid only. The central results obtained, the flux and
charge periods of ∆Φ = h/e and ∆Q = e/3 are robust. Both the Aharonov-
Bohm and the charging periods accurately correspond to the excitation of
one −e/3 quasielectron within the interference path and are consistent with
fractional statistics theories of interacting FQH quasiparticles.

5.3 Aharonov-Bohm superperiod2

The design of the interferometer device studied in this section allows a FQH
regime where edge channels of the 1/3 FQH fluid encircle an island of the
2/5 fluid. We observe an Aharonov-Bohm superperiod of five magnetic flux
quanta (5h/e), which has never been reported before in any system and is
forbidden by the gauge invariance for a true Aharonov-Bohm geometry, where
magnetic flux is added to a region of electron vacuum, as shown by Byers and
Yang [55]. Our results do not violate the gauge invariance argument of the
Byers-Yang theorem because the flux, in addition to affecting the Aharonov-
Bohm phase of the encircling 1/3 quasiparticles, creates the 2/5 quasiparticles
in the island. The AB superperiod is accordingly understood as imposed by
the anyonic statistical interaction of Laughlin quasiparticles.

The samples were fabricated from low disorder AlGaAs/GaAs heterojunc-
tions. After a shallow 140 nm wet etching, Au/Ti gate metal was deposited in
etch trenches, followed by lift-off. Samples, mounted on sapphire substrates
with In metal (serves as the backgate), were cooled to 10.2 mK in a dilution

2Published in F.E. Camino, Wei Zhou, and V.J. Goldman, Phys. Rev. B 72, 075342
(2005), Phys. Rev. Lett. 95, 246802 (2005).
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refrigerator. Four-terminal resistance RXX = VX/IX was measured using a
100 pA, 5.4 Hz ac current.

The etch trench depletion potential defines two wide (1200 nm) constric-
tions, which separate an approximately circular electron island from the 2D
bulk. The front-gate voltages VFG are small, only fine-tuning the constrictions
for symmetry. The electron density profile n(r) in a circular island defined by
etch trenches is evaluated following Refs. [42, 56]. For the 2D bulk density
nB = 1.2 × 1011 cm−2, there are ∼1700 electrons in the island. The deple-
tion potential has a saddle point in the constrictions, and so has the resulting
density profile. In a quantizing magnetic field, tunneling between the coun-
terpropagating edge channels (possible only over a few magnetic lengths `0)
occurs near the saddle points. Thus, when Aharonov-Bohm oscillations are
observed, the island edge channel filling is determined by the saddle point fill-
ing. From the magnetotransport, the saddle point density in the constrictions
nC ≈ 0.75nB.

The local Landau level filling ν ≡ nh/eB is proportional to n; consequently,
the constriction νC is lower than the bulk νB by ∼25% in a given B. While ν
is a variable, the QH exact filling f , defined via the quantized Hall resistance
as f ≡ h/e2RXY , is a quantum number. Thus, there are two regimes possible:
one when the whole sample has the same QH filling f , and another when
there are two QH fillings: fC in the constrictions, and fB in the center of
the island and in the 2D bulk. For example, there is a range of B where
fC = fB = 1, illustrated in Figure 5.5(a). The second regime fC < fB, Figure
5.5(b), results in a quantized value [4, 20, 29, 57] of RXX = (h/e2)(1/fC−1/fB).
A quantized plateau in RXX(B) implies QH plateaus for both the constrictions
and the bulk, overlapping in a range of B and, in practice, provides definite
values for both fC and fB. Such RXX(B) plateau occurs at B ≈ 12.35 T for
fC = 1/3 and fB = 2/5 (nC ≈ 0.8nB). However, fC = 1 and fB = 2, requiring
nC ≈ 0.5nB, is not possible in this sample.

In the integer quantum Hall regime, the relevant particles are electrons
of charge e and integer statistics; thus, we obtain an absolute calibration of
the ring area and the backgate action of the interferometer. Figure 5.6 shows
Aharonov-Bohm oscillations for fC = fB = 1 and 2 respectively. Conductance
oscillations δG = δRXX/R2

XY are calculated from the RXX data after sub-
tracting a smooth background. The Aharonov-Bohm ring is formed here by
the edge channel circling the island, including two quantum tunneling links,
Figure 5.5(c). The f = 1 period ∆B1 ≈ 2.81 mT gives the area of the outer
edge ring SO = h/e∆B1 = 1.47 µm2, the radius rO ≈ 685 nm. The f = 2 pe-
riod is very close: 2∆B2 ≈ 2.85 mT gives the area SO ≈ 1.45 µm2. The f = 2
fundamental period contains two oscillations, 2∆B2SO = h/e, because there
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Figure 5.5: Illustrations of possible fillings for a sample with constrictions.
Numbered squares are Ohmic contacts. (a) Both the bulk and the constrictions
are on the same quantum Hall plateau. (b) A sample with constriction filling
fC < fB results in a quantized plateau RXX = (h/e2)(1/fC − 1/fB). (c) The
island and the bulk has the same filling fB, while constriction filling fC < fB.

are two filled spin-polarized Landau levels. We calibrate the backgate action
δQ/δVBG as described before. Figure 5.6 also shows oscillations as a function
of VBG for fC = fB = 1 and 2, respectively. The period ∆VBG

corresponds to
change ∆N = 1 in the number of electrons within the Aharonov-Bohm path.
Thus ∆VBG

should be the same for all spin-polarized QH states, provided the
radius of the edge ring is constant; indeed, ∆VBG

= 332 mV for f = 1 and 342
mV for f = 2.

In the FQH regime, we focus on the regime when a 1/3 annulus surrounds
an island of the 2/5 FQH fluid, Figure 5.5(c). Here, we observe Aharonov-
Bohm oscillations with period ∆B ≈ 20.1 mT, Figure 5.7. The period gives the
inner edge ring area SI = 5h/e∆B ≈ 1.03 µm2, radius rI ≈ 570 nm. Figure 5.7
also shows the oscillations as a function of VBG, the period ∆VBG

≈ 937 mV.
We are confident that current flows through the fC = 1/3 region separating
two fB = 2/5 regions with Ohmic contacts because RXX(B) exhibits a plateau
at h/2e2, Figure 5.8. The island density is 4% less than nB [42]; thus, island
ν the same as νB occurs at 4% lower B. The ratio of the periods ∆B/∆VBG

∝
NΦ/Ne = 1/f is independent of the Aharonov-Bohm ring area. NΦ and Ne are
the number of flux quanta and electrons within the Aharonov-Bohm path area.
The fact that the ratios fall on a straight line forced through zero confirms the
island filling f = 2/5 at 11.9 T, Figure 5.8.

The striking feature of the oscillations in Figure 5.7 is the Aharonov-Bohm
period of five fundamental flux quanta: ∆Φ = 5h/e. To the best of our
knowledge, such a superperiod of ∆Φ > h/e has never been reported before.
Addition of flux h/e to an area occupied by the 1/3 FQH condensate creates a
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Figure 5.6: Interference of electrons in the integer QH regime. (a),(b) AB
oscillations in conductance when one (f = 1) or two (f = 2) Landau levels
are filled. The flux period ∆Φ = h/e gives the outer edge ring radius 685 nm.
(c),(d) Positive VBG attracts 2D electrons one by one to the area within the
AB path, modulating the conductance. This calibrates the increment ∆VBG

needed to increase the charge by ∆Q = e. Note that ∆VBG
is independent of

f .
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Figure 5.7: Oscillatory conductance for e/3 quasiparticles circling an island
of f = 2/5 FQH fluid. (a) Flux through the island period ∆Φ = 5h/e cor-
responds to creation of ten e/5 quasiparticles in the island [one h/e excites
two e/5 quasiparticles from the 2/5 FQH condensate, the total (quasiparticles
+ condensate) charge is fixed]. Such superperiod ∆Φ > h/e has never been
reported before. (b) The charge period ∆Q = 2e confirms that the e/3 quasi-
particle consecutive orbits around the 2/5 island are quantized by a condition
requiring increment of ten e/5 quasiparticles.
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Figure 5.8: (a) Magnetoresistance of the interferometer sample at 10.2 mK.
The horizontal arrow shows approximately the fC = 1/3 plateau. Note the
quantized plateau RXX(B) = h/2e2 at 12.35 T, obtainable only with fC = 1/3,
fB = 2/5. (b) The oscillation period ratio for the data of Figures 5.6 and 5.7.
∆B/∆VBG

∝ 1/f , independent of the AB path area. The straight line goes
through (0, 0) and the f = 1 point. Experimental ∆B/∆VBG

=21.4 mT/V
gives the island filling f = 2/5. The crosses (the nearest FQH effect f = 3/7
and 1/3) do not fit the data.
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vortex, an e/3 quasihole [3, 13]. Likewise, addition of flux h/e to the 2/5 FQH
fluid creates two vortices, that is, two e/5 quasiholes [18]. These predictions
have been verified at a microscopic level in quantum antidot experiments [4,
29]. Thus, addition of 5h/e to the f = 2/5 island creates ten e/5 LQPs with
total charge ∆Q = 2e, confirmed by the backgate data, Figure 5.7. In contrast,
the periods observed in quantum antidots correspond to addition of one LQP
only, for both the 1/3 and 2/5 cases. The principal difference between the
present interferometer and the antidots is that in quantum antidots the FQH
fluid surrounds electron vacuum, while in the present interferometer the 1/3
fluid surrounds an island of the 2/5 fluid. The gauge invariance argument
[51, 55] requiring h/e for the true AB geometry is not applicable here because
the interior of the AB path contains electrons, and applied flux creates LQPs
in the island. Addition of flux does excite LQPs, the system is not the same as
prior to flux addition; thus, the applied flux cannot be annulled by a singular
gauge transformation. Likewise, Laughlin’s “gedanken experiment” cannot be
applied to the interferometer geometry to assume that any charge is transferred
in or out of the island by the AB flux.

Any viable interpretation must conform to the experimental facts: (i) cur-
rent is transported by e/3 LQPs of the surrounding 1/3 fluid, Figure 5.8(a).
(ii) The oscillations originate in the 2/5 island, Figure 5.8(b). (iii) Both flux
(no systematic net charging of the island) and backgate (systematic charge
transfer into the island) periodic oscillations must be accounted for at least
10 periods away from exact filling, Figure 5.7. (iv) The oscillations are found
to be robust, observed in four distinct cooldowns, persisting to 140 mK and
upon application of a moderate front gate voltage ±300 mV [46]. (v) We have
observed similar integer and fractional AB oscillation data in another sample
with a larger lithographic R ≈ 1300 nm [42]. ∆B2/5

≈ 6.4∆B1 is consistent,
upon the same depletion potential analysis, with the period ∆Φ = 5h/e.

A different rI would yield a different ∆Φ. We restrict analysis to ∆Φ of
simple rational multiples of h/e, consistent with the particle nature of charged
elementary excitations. The observed field period ∆B2/5

≈ 7.15∆B1 , the facts
that current flows in the outer edge channels with fC = 1/3, and that experi-
mental ∆B/∆VBG

gives the filling 2/5, are all consistent with formation of an
f = 2/5 island within the 1/3 outer edge ring, the inner ring radius rI < rO.
This is also expected since the island center density nI ≈ 1.22nC , just above
the assigned fI ≈ 1.20fC . The alternative ∆Φ = 5h/2e, ∆Q = e (still consti-
tuting an AB superperiod) is ruled out as giving too small rI ≈ 400 nm. The
confining potential at rI ≈ 400 nm is simply too weak to support a stable edge
ring; an estimate using models [42, 56] gives an order of magnitude weaker
gradient dn(r)/dr at 400 nm than at 570 nm. The alternative of ∆Φ = h/e,
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∆Q = 2e/5 gives yet smaller rI = 255 nm, where confining potential is nearly
flat and thus cannot define an edge channel. Another consideration is tunnel-
ing through the distance t = rO − rI , between the inner and the outer edge
channels. The LQP tunneling rate is estimated [58] as ∼ exp[−(t/2

√
3π`0)

2],
which gives 10−2 for rI ≈ 570 nm (agreeing with experiment, Figure 5.7) and
10−14 for rI ≈ 400 nm, much too small to observe.

Exchange of charge between the island and the surrounding FQH fluid in
increments of one LQP, ∆Q = e/5 (as in quantum antidots) is clearly not
consistent with the data. A model where no LQPs are created (only exact
filling FQH condensates are considered), but instead the 1/3−2/5 condensate
boundary shifts [59], is not energetically feasible. As is well known, in a
large FQH fluid, changing ν away from the exact filling f is accompanied by
creation of LQPs, so as to maintain average charge neutrality; the ground
state consists of a ν = f condensate and the matching density of LQPs [3, 6,
18, 29]. Forcing exact filling (and no LQPs) at B 6= Bf ≡ hn/ef changes n
away from the equilibrium value determined by the positively charged donors.
In present geometry, this would lead to formation of a charged ν = f =
2/5 disk surrounded by an oppositely charged 1/3 annulus, and thus huge
Coulomb energy. For the tenth oscillation from the exact filling, the net charge
is 20e, the charging energy ∼1000 K, much more than the LQP gap. An
intermediate model where LQPs are allowed, but are envisioned concentrated
near the 1/3−2/5 boundary, besides still present charging energy (additional to
the equilibrium ground state energy), must overcome the difficulty of the local
ν being affected. Concentrating 100 of e/5 LQPs within 5`0 of rI changes local
filling to ν = 0.528 > 1/2, well outside the 2/5 plateau. This would certainly
break the observed AB periodicity.

In the interferometer, if we neglect the symmetry properties of the FQH
fluids, in the absence of a Coulomb blockade, there is no a priori constraint
that the total charge of the 2/5 island be quantized in units of e, much less
in units of 2e. The island fluid could adjust in increments of one LQP, any
fractional charge imbalance supplied from the contacts. Thus the periods
∆Φ = 5h/e, ∆Q = 2e must be imposed by the symmetry properties of the
two FQH fluids. Recently Goldman has proposed a microscopic model [50]
based on the Haldane-Halperin fractional statistics hierarchical construction
[6, 18] of the 2/5 condensate. In the model, the 2/5 QH condensate is viewed
as a “max density droplet” (MDD) condensate of −e/3 quasielectrons on top
of the 1/3 QH condensate, and the Aharonov-Bohm superperiod corresponds
to increment by one of the MDD quasielectron and concurrently excitation
of 10 e/5 quasiholes out of the 2/5 island condensate. Thus the Berry phase
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quantization condition is

∆γ =
q

~
∆Φ + 2π(Θ1/3∆N1/3

+ Θ
−1/3
2/5 ∆N2/5

) = 2π. (5.6)

Substitute q = −e/3, ∆Φ = 5h/e, ∆N1/3
= 1 and ∆N2/5

= 10, we obtain

∆γ

2π
= −5

3
+ Θ1/3 + 10Θ

−1/3
2/5 = 1. (5.7)

The two concurrent physical processes, the increment of one MDD quasielec-
tron and excitation of 10 e/5 quasiholes in the 2/5 island, suggest to interpret

Eq. 5.7 as two separate equations: 1/3 + Θ1/3 = 1 and 10Θ
−1/3
2/5 = 2. These

give Θ1/3 = 2/3 and Θ
−1/3
2/5 = 1/5.

In conclusion, we realized a novel Laughlin quasiparticle interferometer,
where an e/3 LQP executes a closed path around an island of the 2/5 FQH
fluid. The central results obtained, the Aharonov-Bohm superperiods of ∆Φ =
5h/e and ∆Q = 2e are robust. These results do not violate the Byers-Yang
theorem, and are interpreted as due to anyonic braiding statistics of LQPs.
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Chapter 6

Properties of the
Aharonov-Bohm superperiod

The Aharonov-Bohm superperiod of magnetic flux 5h/e observed in the FQH
regime, where quasiparticles of the 1/3 FQH fluid execute a closed path around
an island of the 2/5 fluid, implies anyonic statistics of Laughlin quasiparti-
cles. In this chapter, we study the properties of the superperiodic oscillations
by measuring their dependence on front-gate voltage and temperature. The
results obtained further strengthen our previous conclusions about the su-
perperiods and also shed some light on the proposed fault-tolerant quantum
computation with anyons [9, 60, 61].

6.1 Flux-period scaling in the Laughlin quasi-

particle interferometer1

The front-gates of the Laughlin interferometer device are formed by depositing
Au/Ti metals into etch trenches. The electric potential of the front-gates adds
to that produced by the etch trenches, and affects the island electron density
profile. We find a linear dependence of the Aharonov-Bohm period on front-
gate voltage for electrons (integer filling f = 1) and for Laughlin quasiparticles
(fractional 2/5 embedded in 1/3). Comparing the experimental data for both
regimes and for two samples, we find the magnetic field period and its slope
scale with the radius of the Aharonov-Bohm orbit. Analysis of the directly
measured integer and fractional slope data allows us to determine the inter-
ferometer area in the fractional regime, and thus the Laughlin quasiparticle

1Published in Wei Zhou, F.E. Camino, and V.J. Goldman, Phys. Rev. B 73, 245322
(2006).
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flux period of 5h/e, within the experimental accuracy.
The quantum electron interferometer samples were fabricated from a low

disorder GaAs/AlGaAs heterojunction material where 2D electrons (285 nm
below the surface) are prepared by exposure to red light at 4.2 K. The four
independently contacted front gates were defined by electron beam lithog-
raphy on a pre-etched mesa with Ohmic contacts. After a shallow 140 nm
wet chemical etching, Au/Ti gate metal was deposited into the etch trenches
(lithographic radius R ≈ 1050 nm, Sample M97Bm), followed by lift-off, see
Figure 6.1. Samples were mounted on sapphire substrates with In metal, which
serves as a global backgate. Samples were cooled to 10.2 mK; four-terminal
resistance RXX = VX/IX was measured by passing 50 − 200 pA, 5.4 Hz ac
current through contacts 1 and 4, and detecting the voltage between contacts
2 and 3 by a lock-in-phase technique. The four front gates are deposited into
etch trenches. Even when front gate VFG = 0, the GaAs surface depletion of
the etch trenches creates electron confining potential, defining two wide con-
strictions, which separate an approximately circular 2D electron island from
the 2D “bulk,” Figure 6.1. The electron density profile n(r) in a circular
island resulting from the etch trench depletion can be evaluated using the
model of Ref. [42], based on Ref. [56], see Figure 6.2. For the bulk density
nB = 1.2 × 1011cm−2, there are ∼2000 electrons in the island. Comparison
with a Hartree-Fock profile shows that quantum corrections are significant
only for n < 0.4nB low density tails, outside the AB path area. However, the
overall density profile follows the B = 0 profile in order to minimize the large
Coulomb charging energy arising from deviations from the donor-neutralizing
B = 0 profile. The depletion potential has a saddle point in the constriction
region, and so has the resulting electron density profile. From the magne-
totransport, we estimate the saddle point density to be 0.72 nB. Note that
the island center density is slightly (several percent) lower than the 2D bulk
density.

On the integer (f = 1) and fractional (2/5 embedded in 1/3) quantum Hall
plateaus, we acquire the Aharonov-Bohm oscillation data as reported previ-
ously. By varying the front-gate voltage VFG, we observe the B-field position
of the oscillations shift and their period ∆B change; see Figure 6.3. The effect
of the front-gate bias is two fold. The larger effect is the transistor action af-
fecting the overall 2D electron density in the several µm neighborhood of the
gates, including the entire island. This is so because at every point in the 2D
plane, the electric potential has contributions from the entire (equipotential)
front-gate metal area, including the long gate voltage leads, because of the
poor screening of the gate electric field by 2D electrons. The overall decrease
in the electron density (negative VFG) is evidenced by the systematic shift to
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Figure 6.1: Scanning electron microscope image of the sample. The nearly
circular island is defined by four front gates, FG1−FG4. Numbered circles
are Ohmic contacts. (a) In the IQH regime, the whole sample is on the same
QH plateau. Counterpropagating edge channels (blue lines) are coupled by
tunneling (blue dots) in the constrictions. (b) In the FQH regime, an f = 2/5
island is enclosed by f = 1/3 QH fluid.
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Figure 6.2: (a) A qualitative illustration of the 2D electron density profile. (b)
The calculated electron density profile in a circular island defined by an etched
annulus of inner radius R ≈ 1050 nm, nB = 1.2× 1011 cm−2. The calculation
follows the B = 0 model of Ref. [42]. W = 245 nm is the depletion length
parameter. The blue circles give the radius of the outer edge ring rOut ≈ 685
nm, obtained from the integer Aharonov-Bohm period and n(rOut) from the
B-field position on the constriction QH plateaus. The red circles give the inner
edge ring radius rIn ≈ 570 nm, obtained with the fractional NΦ = 5 and the
density ratio n(rIn)/n(rOut) = (2/5)/(1/3) = 1.20.
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Figure 6.3: Aharonov-Bohm conductance oscillations δG as a function of B
for several values of front gate voltage VFG, given in the labels next to each
trace. All the traces are for f = 1/3 FQH fluid circling an f = 2/5 island, and
have been shifted vertically in steps of 0.05e2/3h. Each trace contains ∼40
oscillations with a well defined period ∆B, which depends on VFG.

a lower B of the constriction QH plateau (with Aharonov-Bohm oscillations
superimposed).

In addition, the front gates modify the island and the constriction electron
density profile by affecting the primary confining potential of the etch trenches.
Since tunneling amplitude is exponentially sensitive to the tunneling distance,
the position of the tunneling links at the saddle points in the constrictions is
nearly fixed. The constrictions’ saddle-point electron density determines the
equipotential contour of the Aharonov-Bohm path in the island. As evidenced
by the systematic increase of the period ∆B (decrease of island area, negative
VFG), the saddle-point electron density decreases proportionately less than the
island density. Accordingly, remaining on the same quantum Hall plateau, the
island edge channels must follow the constant electron density contours with
density equal that in the constrictions and move inward, towards the island
center, and the AB path area shrinks. Thus, the electronic charge within the
AB path area decreases because the overall island density decreases, and also
because the area itself decreases.
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The dependence of the Aharonov-Bohm field period ∆B on the front-gate
voltage VFG for electrons (f = 1) and for Laughlin quasiparticles (2/5 embed-
ded in 1/3) is shown in Figure 6.4. The integer data contains two sets of points
from two distinct cooldowns, with ∼7% different 2D electron density, appro-
priately scaled to produce equal ∆B(VFG = 0). We observe an approximately
linear dependence ∆B = ∆B(0) + (d∆B/dVFG)VFG in the range of moderate
VFG studied; the solid lines are the least squares fits to ∆B = a + bVFG.

The directly measured ∆B and the slope, d∆B/dVFG, and the assumed
Aharonov-Bohm area S can be combined to give VFG(1e), the front-gate volt-
age attracting charge 1e to the area. Capacitance of the island is modeled
as that of a 2D disk with radius r, and defined by C ≡ Q/V = e/VFG(1e).
For a 2D disk of radius r, the classical capacitance is approximately propor-
tional to r, neglecting a slowly varying logarithmic term. For a large (∼2000
electrons) 2D island, the quantum corrections to the classical capacitance are
small, and the product rVFG(1e) should be approximately constant, indepen-
dent of the quantum Hall filling or the area. Therefore, we analyze the data as
follows (the analysis aims to express quantities of interest in terms of directly
measured quantities and fundamental constants only). As is well known, the
Aharonov-Bohm effect is a topological, nonlocal periodic dependence of the
phase of a particle’s wave function on magnetic flux enclosed by the particle’s
closed path. In experiment, the interferometer devices are located in a region
of a uniform magnetic field, thus observation of AB effect implies existence
of a well-defined closed path that determines the enclosed flux. On the same
quantum Hall plateau, the Aharonov-Bohm magnetic flux period is NΦ funda-
mental flux quanta, ∆Φ = NΦh/e (note that the number NΦ is not assumed to
be an integer here). The AB path encloses area S, defining the fundamental
magnetic flux period

∆Φ = ∆BS = NΦh/e, (6.1)

thus S = NΦh/e∆B. Differentiating Eq. 6.1 with respect to front-gate bias,
we obtain

[(d∆B/dVFG)S + (dS/dVFG)∆B]f = 0. (6.2)

The subscript here denotes the same quantum Hall plateau. Substituting
S = NΦh/e∆B into Eq. 6.2 gives

dS/dVFG = −(d∆B/dVFG)(NΦh/e∆2
B). (6.3)

On the other hand, as is well known, an electron occupies the area S1 =
2π`2

0 = h/eB per spin-polarized Landau level. Thus, Landau level density
of electron states is S1 = h/eB1, where B1 is the magnetic field where the
exact filling ν = f = 1 occurs. This expression for S1 can also be obtained by

51



Figure 6.4: Dependence of the Aharonov-Bohm period ∆B on front-gate volt-
age VFG for (a) f = 1 and (b) f = 2/5 embedded in f = 1/3. The de-
pendence is approximately linear in the range of VFG studied; the solid lines
are least squares fits. The ∆B(VFG = 0) values give the A-B path areas
SOut = h/e∆B = 1.42× 10−12 m2 (f = 1) and SIn = 5h/e∆B = 0.966× 10−12

m2 (2/5 embedded in 1/3).
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noticing that physically the one-electron area is the inverse of the electron areal
density: S1 = 1/n. Recalling that Landau level filling factor ν = nh/eB, we
again obtain the one-electron area S1 = h/νeB = h/eB1. We define VFG(1e)
as the front-gate voltage required to attract charge 1e to the AB path area.
Linearizing Eq. 6.3 for VFG(1e), dS/dVFG = S1/VFG(1e), and substituting
S1 = h/eB1, we obtain

VFG(1e) = − ∆2
B

(d∆B/dVFG)NΦB1

. (6.4)

Note that the derivative d∆B/dVFG is negative, and that linearization of Eq.
6.3 is justified by the large size of the electron island, because 1/Ne ≈ 1/2000
is small.

Some discussion on how Eq. 6.4 applies to the present experimental situa-
tion is in order. In the experiment, the sample is located in a uniform magnetic
field B, which is being slowly varied. The observation of an AB oscillatory sig-
nal thus implies existence of a well-defined AB area, since the Aharonov-Bohm
effect is nonlocal and topological in nature and is oscillatory not in B, but in
magnetic flux through a closed path, which defines the enclosed area (Stokes’
theorem). The directly measured period ∆B and slope d∆B/dVFG in Eq. 6.4
refer to the same AB flux period which is being determined here, so that any
visualization of the experimental situation in terms of edge channels is only
illustrative and is presented as a physically viable model. The derivation of
Eqs. 6.1−6.4 does not depend on details of a particular edge channel model
used for physical visualization. Thus, Eq. 6.4 is not sensitive to electron den-
sity distribution inside or outside the AB path, NΦ appears in Eq. 6.4 only
because we express ∆Φ in units of h/e.

In an electron system where density is not constant, relation S1 = 1/n =
h/eB1 is still locally valid on a scale of area containing several electrons, that
is, several `2

0. Density n and the ν = 1 field B1 in Eq. 6.4 refer to the actual
AB path, that is, to the edge channel giving rise to the oscillatory conductance
signal. In the integer f = 1 regime, n and B1 thus refer to the only existing
edge channel; B1 (extrapolated to VFG = 0) is determined as the field at
which ν = 1 occurs for the constriction (not the bulk) QH plateau, on which
the f = 1 AB signal is superimposed. Thus determined B1 is also used in
the fractional (2/5 embedded in 1/3) regime, where it therefore refers to the
f = 1/3 edge channel, which carries the transport current (Hall resistance
plateau is at 3h/e2), and where the fractional AB signal originates. This
is justified because the edge channel giving rise to the AB signal must pass
through the constrictions, and the corresponding density is thus determined
by the saddle point density in the constrictions, as discussed previously. Thus,
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Table 6.1: Summary of results obtained from the experimental Aharonov-
Bohm period ∆B and its dependence on front-gate voltage VFG. Sample
M61Dd data is from Ref. [42].

Sample M97Bm M97Bm M61Dd
(f = 1) (2/5 in 1/3) (f = 1)

∆B(0), mT 2.907 21.40 1.872
d∆B/dVFG, mT/V −1.37 −12.6 −1.22
B1, T 3.92 3.92 2.53
VFG(1e), mV 1.58 1.86 1.14
r, nm 673 555 839
rVFG(1e), V·nm 1.06 1.03 0.956

the physical interpretation of Eq. 6.4 is that it describes effective electrostatic
coupling to the front gates of electrons located at the position of the AB path.

The experimentally determined field periods ∆B(VFG = 0), their slopes
d∆B/dVFG, and B1 for two samples are summarized in Table 6.1. Eq. 6.4 is
used to obtain VFG(1e) and the product rVFG(1e) assuming NΦ = 5 for the
fractional Hall regime. The integer NΦ = 1; the AB path radius r assumes
a circular path, alternatively S can be used instead of r. Note that using
NΦ = 5 for the inner 2/5 in 1/3 island gives roughly equal VFG(1e); the
products rVFG(1e) are equal (within the experimental uncertainty of ±10%),
as expected. Assuming different NΦ gives correspondingly different fractional
VFG(1e) ∝ 1/NΦ and rVFG(1e) ∝ 1/

√
NΦ, inconsistent with the expectation.

For example, using the next physically feasible flux period ∆Φ = 5h/2e (NΦ =
2.5) increases the fractional regime value of VFG(1e) by 2, and the value of
rVFG(1e) by

√
2 , well outside of the experimental uncertainty. Using ∆Φ =

h/2e, corresponding to excitation of one e/5 quasiparticle in the 2/5 island,
yields rVFG(1e) = 3.26 V·nm, implying 3.2 times weaker coupling of the island
electrons to the front gates, whereas an approximately constant coupling is
expected from the gate geometry. We thus conclude that values of NΦ ≤ 2.5
are not consistent with the experimentally observed ∆B and d∆B/dVFG.

Alternatively, without explicitly using NΦ, we can rewrite the Eqs. 6.1−6.4
in terms of the outer ring area SOut = h/e∆B from f = 1 and inner ring area
SIn via the directly measured ∆B and d∆B/dVFG. Requiring exact equality
of the products VFG(1e)

√
SIn and VFG(1e)

√
SOut obtained from the fractional
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and the integer data, respectively, we obtain an equation for SIn,

√
h

e

1

B1

[ √
∆3

B

d∆B/dVFG

]

f=1

=
h

eB1

[
∆B√

SIn(d∆B/dVFG)

]

f=2/5

. (6.5)

This gives

SIn =
h

e

[
d∆B/dVFG√

∆3
B

]2

f=1

×
[

∆B

d∆B/dVFG

]2

f=2/5

, (6.6)

yielding SIn = 0.92 × 10−12 m2 and ∆Φ = ∆BSIn = 2.0 × 10−14 Wb= 4.8h/e
from the data of Figure 6.4, with an experimental uncertainty of ±10%. The
dominant source of experimental error is the uncertainty in the ∆B versus VFG

slopes.
Although we do not use the electron density modeling in the data anal-

ysis presented above, it is interesting to compare the qualitative features of
the front-gate bias dependence of the oscillatory data of the kind presented in
Figure 6.4 to the calculated island electron density profile, Figure 6.2(b). The
open and closed circles show the n(r) positions obtained from the integer and
the fractional Aharonov-Bohm data for VFG = 0 and −300 mV, respectively.
The fractional regime circles give radii using the flux period ∆Φ = 5h/e. Only
one of the four independent points is adjusted to fit the experiment, thus
“calibrating” the depletion length parameter W . Both effects observed exper-
imentally are consistent with the profile of Figure 6.2: the systematic shift
of the same filling factor upon application of VFG, and the systematic change
of the Aharonov-Bohm oscillation period. It is also worth mentioning that
a stable edge ring requires steep enough gradient of the confining potential,
that is, steep −e(∂n/∂r). The experimental fact that the fractional quantum
Hall regime Aharonov-Bohm oscillations persist even upon application of a
moderate VFG = −300 mV rules out inner edge ring radii well inside the is-
land, where the confining potential gradient is very small at VFG = 0, so that
application of a moderate negative VFG would shrink the AB orbit to zero.

In conclusion, we report experiments on electron interferometer devices in
the quantum Hall regime, focusing on determination of the Aharonov-Bohm
magnetic field period ∆B(VFG = 0) and its front-gate voltage slope d∆B/dVFG

for electrons (f = 1) and for Laughlin quasiparticles (2/5 embedded in 1/3).
The Aharonov-Bohm period and its derivative can be combined to give the
increment of the gate voltage attracting charge 1e, that is, the electrostatic
coupling of electrons to the front gates, assuming the area of the AB orbit is
known. This allows us to determine the fractional quantum Hall regime flux
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period ∆Φ directly, without reference either to a calculated electron density
profile, or the tunneling distance consistent with the experimental amplitude
of conductance oscillations. We find the fractional flux period ∆Φ = 5h/e
is consistent, while ∆Φ ≤ 2.5h/e are inconsistent with the front-gate bias
experimental results.

6.2 Temperature dependence of the Aharonov-

Bohm superperiod2

We measure the superperiodic oscillations at various temperatures for the in-
terferometer sample and find the oscillations persist up to 140 mK, which is
only an order of magnitude less than the f = 2/5 QH gap [62] and much
larger than the quasiparticle quantization energy of the island-circling states.
The high temperature dependence of the oscillation amplitude fits well the
quantum-coherent thermal dephasing of an interference signal, with the ac-
tivation energy ∼27 mK. These results are qualitatively different than that
observed in quantum dot [63, 64], quantum antidot [28, 35, 65], and Coulomb
blockade devices [66]. Therefore, the observed temperature data are probably
resulted from the topological protection of the anyonic statistical interactions.

We studied sample M97Bm, with the detailed sample parameters intro-
duced before. The four-terminal magnetoresistance is measured by passing
a IX = 93 pA rms ac current at 5.4 Hz and detecting the resulting voltage
signal at the other two contacts by a lock-in technique. On the f = 1/3 QH
plateau, the Hall voltage is VH = IX(3h/e2) ≈ 7.2 µV. Taking into account the
additional “electromagnetic noise environment” on the sample [28, 65] yields
a total voltage

√
7.22 + 22 = 7.5 µV. The peak tunneling current that heats

the island region is ∼0.8 pA, giving a heating power of ∼ 6 × 10−18 W. The
rest of the excitation and environmental noise is ∼ 7 × 10−18 W, heating the
relatively large Ohmic contacts immersed inside the 3He−4He mixture.

Superperiodic oscillations are observed in the FQH regime when the island
filling is 2/5, embedded inside the 1/3 fluid, as described previously. Traces of
the four-terminal resistance RXX are obtained as a function of B for tempera-
ture range 10.2 mK ≤ T ≤ 141 mK, see Figure 6.5. These oscillating data were
obtained continuously over ∼70 h period following a ∼100 h sample stabiliza-
tion time, demonstrating the stability of the superperiodic oscillations. The ex-
perimental data are analyzed as following. We determine the oscillation ampli-
tudes for several regular oscillations as δRXX(T ) = (RXX,MAX −RXX,MIN)/2

2Published in F.E. Camino, Wei Zhou, and V.J. Goldman, Phys. Rev. B 74, 115301
(2006).
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Figure 6.5: (a) Superperiodic oscillations observed when the f = 2/5 island
is embedded in the f = 1/3 QH fluid. (b) Temperature dependence of the
superperiodic oscillations. Each trace was taken at a different temperature
from 10.2 mK (bottom trace) to 141 mK (top trace). The successive traces
are vertically displaced by 0.4 kΩ. The data in (a) and (b) were obtained on
different cooldowns of the sample.
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for each trace. The oscillatory conductance δG is calculated from δRXX and
the quantized Hall resistance value RXY = 3h/e2 as δG = δRXX/(R2

XY −
RXY δRXX), which holds for δRXX ¿ RXY [28, 57, 65, 67]. Then δG is nor-
malized against the average of the two lowest temperature values (10.2 mK
and 11.9 mK), and the average of six thus determined values for each trace is
used as δG for that specific temperature, in order to reduce the uncertainty.
The normalized conductance amplitude GA(T )/GA(11mK) are shown in Fig-
ure 6.6 in linear and semi-log plots. It can be seen that the temperature varies
by a factor of 14 and the normalized conductance varies by a factor of 31.
From the semi-log plot of Figure 6.6(b), it is clear that the high-T behavior
fits well to exp(−T/T0), the expected dependence for thermal dephasing of a
quantum-coherent interference signal, with T0 ≈ 27 mK.

The data for the interferometer sample are qualitatively different from that
observed in the resonant tunneling experiments in quantum dots [63, 64] and
antidots [28, 35, 65] or Coulomb blockade devices [66]. In resonant tunnel-
ing, a single tunneling peak is described by G(X, T ) = G0/T cosh2(X/T ),
where X is the resonant tuning parameter [28]. The single peak conductance
GP ∝ 1/T [35]. For the Coulomb blockade case, which is not expected for the
current device due to the wide constrictions, a single tunneling peak is given
by G(X,T ) = G0X/T sinh(X/T ). The maximum conductance GMAX(T ) ≈
const because the single charge tunneling can proceed via many levels within
a range ∝ T , canceling the 1/T fermi-liquid prefactor. In the interferometer
device, the activation T0 ≈ 27 mK while the oscillations are observable up
to ∼140 mK. In contrast, for quantum antidot in the FQH regime [28, 65],
the corresponding T0 ≈ 120 mK, and the oscillations are observable up to
∼80 mK. In the quantum dots [63, 64] and antidots [35] in the IQH regime,
oscillations are observable up to ∼ 0.5T0.

Without taking account in the topological order of the two FQH conden-
sates, one would imagine the flux period changes to ∆Φ = h/e at high tem-
peratures. Thus, the observed thermal dephasing behavior and the fact that
the Aharonov-Bohm superperiodic oscillations persist up to 140 mK suggests
topological protection of the anyonic statistical interactions, which also demon-
strates the stability of the superperiodic oscillations.
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Figure 6.6: Temperature dependence of the normalized conductance oscillation
amplitudes shown on linear and semi-log scale. The spread of data points
illustrates the uncertainty.
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Chapter 7

Conclusion

We designed and fabricated two kinds of novel Laughlin quasiparticle interfero-
meter samples and performed measurements on them in the QH regime. The
central interference region of the interferometer consists of an electron island
defined by four etch trenches. The electron island is connected to the 2D bulk
area by two nearly open constrictions. In the QH regime, counterpropagating
edge channels are coupled by coherent tunneling in the constrictions, resulting
a closed interference path around the electron island.

Aharonov-Bohm type conductance oscillations were observed both in the
integer and fractional QH regime. In the IQH regime, the underlying particles
are electrons of charge −e and Fermi statistics. Therefore we calibrated the
interferometer devices using the IQH regime data. For the e/3 primary-filling
interferometer sample, we realized a regime where an island of f = 1/3 is
enclosed by f = 1/3 edge channels. We obtained flux period ∆Φ = h/e and
charge period ∆Q = e/3. From these results, statistics of the e/3 Laughlin
quasiparticles can be directly calculated to be Θ1/3 = 2/3, in agreement with
theory predictions. For another kind of sample, where in the FQH regime an
island of f =2/5 is embedded in the 1/3 fluid, we obtained 5h/e magnetic
flux and 2e charge periods. To the best of our knowledge, flux period more
than h/e has never been reported in an Aharonov-Bohm type interference
experiments. The 5h/e Aharonov-Bohm superperiod directly demonstrates
the anyonic nature of Laughlin quasiparticles.

We also studied the front-gate voltage dependence of the Aharonov-Bohm
oscillations. Analysis of the results obtained from integer and fractional QH
regimes provides an independent way to determine the flux period of the su-
perperiodic oscillations. The flux period of 5h/e fits the data best. We also
measured temperature dependence of the Aharonov-Bohm superperiodic os-
cillations. The oscillations persist to temperature ∼140 mK, which is only an
order of magnitude less than the 2/5 QH gap. These data show the stable-
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ness of the Aharonov-Bohm superperiods against moderate front-gate voltage
changes and temperature variations.

In summary, we realized two kinds of novel Laughlin quasiparticle interfer-
ometers. Both the observed flux and charge periods are robust. These data
clearly demonstrate the fractional statistics of Laughlin quasiparticles.
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