
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Elliptic Interface Problem Solved Using The

Mixed Finite Element Method

A Dissertation Presented

by

Shuqiang Wang

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

August 2007



Stony Brook University

The Graduate School

Shuqiang Wang

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

James Glimm - Dissertation Advisor
Professor

Department of Applied Mathematics and Statistics

Xiaolin Li - Chairperson of Defence
Professor

Department of Applied Mathematics and Statistics

Yan Yu - Member
Doctor

Department of Applied Mathematics and Statistics

Roman Samulyak - Outside Member
Scientist

Brookhaven National Laboratory
Computational Center

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Elliptic Interface Problem Solved Using The
Mixed Finite Element Method

by

Shuqiang Wang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2007

The elliptic boundary value/interface problem is very important in many

applications, for example, in incompressible flow and MHD. Many methods are

used to solve these problems in a complex domain, including the finite volume

method, the finite element method and the boundary element method.

For a complex computational domain, the better choice of the partition

of the computational domain is to use an unstructured grid. However, it is

not a straight forward task to implement a mesh generation program. Such

a program requires extra computing time and resources (such as computer

memory). Thus people like to use a structured mesh if possible, especially a

cartesian mesh.

iii



Popular methods using structured cartesian grids for the elliptic bound-

ary value/interface problem include the immersed boundary method, the im-

mersed interface method, the ghost fluid method, and the embedded boundary

method.

This thesis solves the elliptic problem using several versions of the mixed

finite element method on an unstructured mesh. The results are compared for

speed and accuracy to the embedded boundary method.

A ghost fluid method for elliptic boundary value/interface problems is

also investigated.

Finally, a simple test of the 2D Rayleigh-Taylor instability is performed

using the FronTier-Lite package.

Key Words: Elliptic Boundary Value, Interface, Mesh Generation, Quadtree,

Octree, Front Tracking.

iv



To parents and my wife



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Mesh Generation Method . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Quadtree Based Mesh Generation Method in 2D . . . . 9

2.2.2 Octree Based Mesh Generation Method in 3D . . . . . 32

2.2.3 Point Location . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Mixed Finite Element Method . . . . . . . . . . . . . . . . . . 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Our Implementation of the Mixed Hybrid Finite Element Method 53

3.2.1 Mixed FEM for elliptic boundary value/interface problem 54

vi



3.2.2 RT0 basis . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.3 BDM1 basis . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.4 RT1 basis . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 BDM2 basis . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.6 Reference Element . . . . . . . . . . . . . . . . . . . . 63

3.2.7 Mixed Hybrid Finite Elements for Discontinuous Poten-

tial/Flux Problems . . . . . . . . . . . . . . . . . . . . 64

3.2.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 A Comparison Study . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 A Comparison Study . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 A Ghost Fluid Method . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 1D ghost fluid method . . . . . . . . . . . . . . . . . . 87

5.1.2 2D ghost fluid method . . . . . . . . . . . . . . . . . . 93

5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Incompressible Flow . . . . . . . . . . . . . . . . . . . . . . . . 98

A Coding Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1 Virtual Function, Template and Standard Template Library . 104

A.1.1 Virtual Function . . . . . . . . . . . . . . . . . . . . . 104

vii



A.1.2 Template and Standard Template Library . . . . . . . 106

A.2 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B A Compact Finite Difference Method for Curvature Calcula-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.2 Compact finite difference for surface tension . . . . . . . . . . 110

B.2.1 First algorithm . . . . . . . . . . . . . . . . . . . . . . 111

B.2.2 Second algorithm . . . . . . . . . . . . . . . . . . . . . 112

B.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C Nonreflecting Boundary Conditions for an Elliptic Problem 115

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D Cell Boundary Element Method . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



List of Figures

2.1 a quadtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Marching Cube Cases in 2D. Black and white circle represents

different components. Four different cases in total. All other

cases could be transformed into this four. . . . . . . . . . . . . . 21

2.3 Triangulation templates for the four cases from Marching Cubes

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The full quadrants cases. No interface crosses these quadrants

by assumption. The boxes in the figs represent the quadrants

and the bar outside the edges of the boxes represents that the

quadrant has a neighbor with 1 level higher (or half its size). . . 24

2.5 The first set of templates for the quadrants with different kind

of neighbors. the bar outside the quad represents that it has a

neighbor with 1 level higher. . . . . . . . . . . . . . . . . . . . . 24

2.6 The first set of templates for the quadrants with different kind of

neighbors. the bar outside the quadrands represents that it has

a neighbor with 1 level higher. . . . . . . . . . . . . . . . . . . . 25

2.7 A mesh for a domain separated by a circle . . . . . . . . . . . . 25

2.8 The interface recovered in the mesh of Figure 2.7. . . . . . . . . 26

ix



2.9 The smoothed mesh for the mesh of Figure 2.7. . . . . . . . . . 26

2.10 The two cases for the generalized marching cubes on a triangle

element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 The triangulations of the two cases for the generalized marching

cubes on a triangle element . . . . . . . . . . . . . . . . . . . . 29

2.12 The dual graph of the quadtree in Figure 2.1 . . . . . . . . . . . 30

2.13 The mesh for a circle using the dual marching cubes method . . 30

2.14 The interface for the mesh in Figure 2.13 . . . . . . . . . . . . . 31

2.15 The standard cube with 8 vertex . . . . . . . . . . . . . . . . . 37

2.16 The 6 tetrahedra for the standard cube with 8 vertex . . . . . . 38

2.17 An octant with a smaller neighbor. . . . . . . . . . . . . . . . . 39

2.18 The tetrahedralization of an octant with a smaller neighbor. . . 39

2.19 The possible cases for the cubes with 5, 6, 7 octants: (a), (b),

(c) has 5 octants, (d) has 6 and (e) has 7 octants. Each octant

corresponds to 1 vertex in the dual grid. Thus the 5 octants in

(a), (b), (c) give a 5 vertex polygon, (d) gives a 6 vertex polygon

and (e) gives a 7 vertex polygon. . . . . . . . . . . . . . . . . . 40

2.20 The mesh for a cube containing a sphere using the octree and the

dual marching cube method. . . . . . . . . . . . . . . . . . . . . 41

2.21 The interface for the sphere mesh in Figure 2.20. . . . . . . . . . 42

2.22 The smoothed interface for the sphere mesh in Figure 2.20. . . . 43

2.23 The recovered interface for three spheres. . . . . . . . . . . . . . 44

3.1 triangle element . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



3.3 potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Detail of the unstructured computational mesh for a 128 × 128

mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Boundary for the first test . . . . . . . . . . . . . . . . . . . . . 75

4.3 The boundary for the second test . . . . . . . . . . . . . . . . . 78

4.4 Norm of the gradient error by EBM using the 128× 128 grid . . 78

4.5 Norm of the gradient error by RT0 using the 128× 128 grid . . 80

4.6 Norm of the gradient error by BDM1 using the 128× 128 grid . 80

4.7 Norm of the gradient error by RT1 using the 128× 128 grid . . 81

4.8 Norm of the gradient error by BDM2 using the 128× 128 grid . 81

5.1 1D mesh with two components . . . . . . . . . . . . . . . . . . . 87

5.2 a 2D solution calculated using the 2rd order ghost fluid method 94

5.3 approximate x derivative calculated using the 2rd order ghost

fluid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 The initial interface is chosen as a sine wave . . . . . . . . . . . 101

6.2 The interface is calculated using grid size 50 × 200 around time

0.51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 The interface is calculated using grid size 100× 400 around time

0.51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.1 computational domain, grid and the stencil for the finite difference

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xi



List of Tables

2.1 A simplified quadtree structure . . . . . . . . . . . . . . . . . . 10

2.2 Algorithm for creating a quadtree . . . . . . . . . . . . . . . . . 11

2.3 Algorithm defining criteria whether to subdivide the current quad-

rant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Algorithm for finding north neighbor of the current quadrant . . 13

2.5 Algorithm for quadtree balancing . . . . . . . . . . . . . . . . . 13

2.6 Algorithm for QUADTREE::NeedToBeSplit . . . . . . . . . . . 14

2.7 Algorithm for creating and balancing the new quadtree for a new

interface based on the old quadtree; the returned list Lnew con-

tains the leaves of the quadtree for the new interface which is

defined through the function isToDivide() . . . . . . . . . . . . 15

2.8 A simple btree data structure . . . . . . . . . . . . . . . . . . . 17

2.9 Algorithm for encoding the north boundary into a list of 0 and 1

using depth-first search of the north boundary of the quadtree . 18

2.10 A simplified octree structure . . . . . . . . . . . . . . . . . . . . 33

2.11 Algorithm for creating a octree . . . . . . . . . . . . . . . . . . 34

2.12 Algorithm for octree balancing . . . . . . . . . . . . . . . . . . . 35

2.13 Algorithm for OCTREE::NeedToBeSplit . . . . . . . . . . . . . 36

xii



3.1 The flux errors for an elliptic interface problem with jump in the

flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Convergence and Timing Study for the Boundary in Fig. 4.2 . . 76

4.2 Detailed timing of RT0 (unit: second) . . . . . . . . . . . . . . . 77

4.3 Convergence and Timing Study for the Boundary in Fig. 4.3 . . 79

4.4 Maximum gradient errors on the boundary by different methods 82

5.1 Convergence Study for the Ghost Fluid method . . . . . . . . . 95

5.2 The Second Convergence Study for the Ghost Fluid method . . 96

A.1 The definition of a simplified class SOLVER . . . . . . . . . . . 105

A.2 The definition of a simplified class FEM . . . . . . . . . . . . . 105

B.1 The code for generating the grid points on the circle . . . . . . . 113

B.2 Maximum curvature errors . . . . . . . . . . . . . . . . . . . . . 114

xiii



Acknowledgements

I would like to thank my advisor Professor James Glimm who has pro-

vided so much guidance and support to my research. Whenever I have ques-

tions, he will always be there to answer them.

I would also like to thank Professor Xiaolin Li, Roman Samulyak, W.

Brent Lindquist, Wonho Oh and Fred Furtado. They were all very helpful

when I had questions. Thanks also to Dr. Yan Yu for accepting to be in my

dissertation committee in a rush. She, Xingfeng Liu and Tianshi Lu helped

me to find housing during the beginning of my first semester at Stony Brook.

I would like to thank Yoon-ha Lee for the helpful discussions on the mesh

generation problem. I would also thank Prof Xiaolin Li and Jinjie Liu for

introducing to me the marching cubes method. It is after that discussion that

I made up my mind to use this method to recover the interface for the mesh. I

would also thank Jian Du and Dr. Roman Samulyak for the comparison of the

mixed finite element methods and the embedded boundary method for solving

the elliptic boundary problem. I would also like to thank my other friends for

their helps and friendship.

At last, I would like to thank my wife, my parents, sisters and brother.

With their encouragement and love, life becomes more wonderful.



Chapter 1

Introduction

1



This thesis discusses a method for solving elliptic interface/boundary

value problem. We use an unstructured mesh based on the quadtree/octree ap-

proach to decompose the computational domain into elements and then use the

mixed finite element method for solving the elliptic boundary value/interface

problem.

To main contribution of this thesis is to simplify the quadtree/octree

mesh generation method using the marching cubes method to recover the

interface/boundary. Then we combine the quadtree/octree mesh generation

with a simple implementation of the mixed-hybrid finite element method in

solving the elliptic problem. By combining the two methods, we can eas-

ily treat either the elliptic boundary value or the elliptic interface problem

without much change of the code. By using higher order basis functions,

we can have more than 2nd order accurate method with ease. The original

quadtree/octree mesh generation method by Yerry and Shephard [1, 2] as-

sumes the interface/boundary can cross the quadrant/octant edges a finite

number of times and each of the corners once. Then they use templates to

triangulate/tetrahedralize the full/partial quadrants/octants. Because of their

assumption, they need to generate many templates. We simplify the assump-

tion by using the marching cubes method: there is at most one crossing on

each edge and no crossing at the corners. Thus few templates are needed. Our

whole mesh generation method is very similar to the marching cubes mesh

generation method for imaging data or volumetric data [3–7]. The main dif-

ference is that we have geometric input instead of the imaging/volumetric data

and we can move the crossing points onto the interface/boundary in the post

2



processing step.

The second contribution of this thesis is a timing and convergence com-

parison of the embedded boundary method with our mixed finite element

method for solving the elliptic value problem. The result of our study will

give some guidance to future research directions for the elliptic boundary

value/interface problem.

The third contribution is that we extend the ghost fluids method to

solve the elliptic interface problem using front tracking. Finally, we use the

FronTier-Lite package to carry out a simple Rayleigh-Taylor instability simu-

lation.

The thesis is organized as follows. In Chapter 2, we briefly review the

methods for mesh generation, and then give our method which uses the march-

ing cubes method for recovering the interface/boundary. In Chapter 3, we dis-

cuss our implementation of the mixed finite element method which assembles

the matrix element by element. In Chapter 4, we perform a comparison study,

comparing the foregoing with the embedded boundary method for the elliptic

boundary value problem. In Chapter 5, we extend the ghost fluid method and

investigate its convergence. In Chapter 6, we use the approach by Tryggvason

et al. [8, 9] to carry out a simple Rayleigh-Taylor instability test using the

FronTier-Lite [10] package.

In the appendices, we present several materials which are not closely

related with the main content of the thesis. We show the coding issues for

our computer program in Appendix A. A novel C++ interface is designed

for calling functions in several different algebraic packages, including Petsc

3



[11], Hypre [12] and LAPACK [13]. We give a simple compact finite difference

method for the calculation of the curvature of a 2D curve in Appendix B

and we present a nonreflecting boundary method for an elliptic problem in

Appendix C. Last, we discuss the similarity between the mixed finite element

method and the cell boundary element method in Appendix D.

4



Chapter 2

Mesh Generation Method

5



2.1 Introduction

The first step for a numerical simulation is to construct a mesh for the

computational domain. For simple domains, structured grids are often used,

while for complex domains, unstructured or hybrid grids may be advantageous.

There are mainly three methods for generating unstructured grids, namely, the

Delaunay/Voronoi triangulation [14], the advancing front method [15], and the

quadtree/octree-based method. Thompson [16], Owen [17] could be referenced

for the most recent developments for mesh generation methods.

This thesis discusses a modified approach to the quadtree-based method

discovered by Yerry and Shephard [1, 2] by using the marching cubes method

to recover the interface. Notably, the FronTier code has already used the

marching cubes method for grid based interface reconstruction long time ago

[10].

The original quadtree/octree mesh generation method by Yerry and Shep-

hard [1, 2] consists of the following steps:

1. Partition the computational region into a quadtree with the level

difference between neighbor quadrants being no more than one. Now

all those quadrants are either full quadrants or boundary quadrants.

2. Triangulate the full interior quadrants.

3. Triangulate the partial quadrants to recover the interface.

4. Post processing the mesh and move those interface crossing points onto

the interface in the post processing step.

6



They assumes the interface/boundary can cross the quadrant/octant edges

a finite number of times and the corners. Then they use templates to tri-

angulate/tetrahedralize the full/partial cells. Because of their assumption,

they need to generate many templates. We simplify the assumption using the

marching cubes method: there is at most one crossing on each edge and no

crossing at the corners. Thus few templates are needed. In the end, our whole

mesh generation method is very similar with the method for imaging data or

volumetric data [3–7]. The main difference is that we have geometric input

instead of the imaging/volumetric data and we can move the crossing points

onto the interface/boundary in the post processing step.

Our input, a FronTier interface [18–20], is a boundary-representation of a

boundary curve which consists of vertices and segments, or a boundary surface

which consists of triangles, rectangles. This kind of representation is the most

frequently used model because of the popularity of the B-Rep model in CAD

and its accuracy in representation. A model could alternatively be represented

by a level set of implicit functions whose different values represent different

components. For example, the level set method uses a distance function φ(x)

to represent different materials: φ(x) > 0 represents one material and φ(x) < 0

represents another material. The imaging/volumetric data use the level set ap-

proach. It is worth noting that a B-Rep model could be easily augmented so

that it also provides such a component function. FronTier, a code developed

by Glimm et al. [18], uses the B-Rep model consisting of segments and tri-

angles to represent the boundary. It uses integer values to represent different

components. It has the ability to answer the component query: what is the

7



component at a particular point? Our algorithm for mesh generation will use

such a component function, which is provided by the B-Rep model or the level

set model.

We intend to use our mesh generation method for multiphase flow using

front tracking, where the interface is explicitly represented as curves or surfaces

or an implicit function. When the interface changes, we need to regenerate our

mesh. Thus the mesh generation should be very fast. By using the quadtree

method, we only need to regenerate the mesh for the quadrants near the

interface. Thus the mesh generation method could indeed be very fast.

The quadtree/octree method and the patch based automatic mesh re-

finement (AMR) use a similar idea to partition the computational domain.

The difference is that the AMR patches might consist of an arbitrary number

of quadrants while each parent quadrant in the quadtree (octree) has exactly

4 (8) children. Thus the quadtree/octree construction is more suited to the

efficient representation of complex boundary/interface.

Previous work for generating a unstructured mesh using the frontier inter-

face includes the point shifting grid [21–23] and hybrid mesh generation [24].

The point shifted grid [21–23] has assumption that the interface/boundary

only crosses the grid point of a structured cartesian grid. The hybrid method

generation method [24] uses the quadtree as the underling grid and uses the

Delaunay triangulation method to recover the interface.

In the following, we present the implementation of our mesh genera-

tion algorithms. These algorithms are not new. They appear either in ar-

ticles/textbooks about quadtree/octree generation method or the marching

8



cubes method. We first present our implementation of the quadtree genera-

tion/balance algorithm. Then we show the method for recovering the interface

by using marching cubes method, the generalized marching cubes method and

marching cubes on the dual grid of the quadtree. Then we show the method

for the octree generation/balance/interface recovering algorithm. Finally, we

show the point location algorithms we used and we discuss our conclusions.

2.2 Method

2.2.1 Quadtree Based Mesh Generation Method in 2D

Quadtree Generation

The quadtree is a tree with a spatial data structure. The classic textbook

for computational geometry [25] gives a good introduction to the quadtree

structure. A thorough explanation of many spatial data structures can be

found in [26].

A quadtree is a tree data structure in which each leaf node (called a

quadrant) has exactly 4 children and each node represents a rectangle domain

whose down-left and up-right corners have coordinates m x1[2] and m x2[2].

If a node does not contain children, it is called a leaf. If a node is not a

leaf quadrant, then it is partitioned into exactly four children: the north east

(NE), the north west (NW), the south west (SW) and the south east (SE). Each

quadrant has a level number, m level, to denote its depth in the tree structure.

The level of a child quadrant is 1 larger than the parent quadrant. Figure 2.1

9



Table 2.1: A simplified quadtree structure
class QUADTREE {

static int m min level;
static int m max level;
int m level;
double m x1[2], m x2[2];
QUADTREE *Parent;
QUADTREE *NE; // x > xmid & y > ymid
QUADTREE *NW; // x ≤ xmid & y > ymid
QUADTREE *SW; // x ≤ xmid & y ≤ ymid
QUADTREE *SE; // x > xmid & y ≤ ymid

QUADTREE* NorthNeighbor(void);
QUADTREE* WestNeighbor(void);
QUADTREE* SouthNeighbor(void);
QUADTREE* EastNeighbor(void);

void balance(void);
void create(void);

};

10



gives a simple quadtree as example. The code in Table 2.1 defines a simplified

quadtree class using the C++ language. Table 2.2 shows a recursively defined

algorithm for creating a quadtree using pseudocode.

Table 2.2: Algorithm for creating a quadtree
Algorithm QUADTREE::create:

if(this quadrant needs not to be divided)
return;

divide the current quadrant into four children
and update member variables.
call NE → create();
call NW → create();
call SW → create();
call SE → create();
return;

The criteria for deciding for whether the current quadrant should be sub-

divided must be supplied by the user. For our case, the quadtree is defined

based on a component function which defines the boundary of the computa-

tional domain or interface. For a given point, this function gives the component

number based on the interface. In fact, it is similar to a level set function which

gives a contour value for a given point. If we want the boundary quadrants to

be at a uniform level m max level and the minimum level of the quadtree be

m min level, the checking function could be defined as in Table 2.3.

The quadtree structure could be queried to give its four neighbors. A

neighbor of the quadrant v is a quadrant v′ adjacent to it in the given direction.

Generally a quadrant has four neighbors. In order to make a good graded mesh

from the quadtree structure, it is necessary that the quadtree is balanced so

11



Table 2.3: Algorithm defining criteria whether to subdivide the current quad-
rant

Algorithm QUADTREE::isToDivide:
let m level be the level of this quadrant;
if( m level < m min level)

return true;
if( m level < m max level )

if( the components of the four corners of this quadrant is different )
return true;

return false;

that the level difference of any two neighboring quadrants is at most 1. In this

way, the size difference of two neighboring quadrants would not be too large.

For the neighbor finding and quadtree balancing algorithm in detail, refer to

[25]. For completeness, we give the algorithms for finding a north neighbor in

Table 2.4 and the algorithm for balancing the quadtree in Table 2.5.

Sometimes, it is necessary to update a quadtree with a changing input.

Given a new interface, we could create a new quadtree. However, when the

new interface is similar with the older interface with only small changes (for

example, the new interface is moved for a small distance from the older in-

terface), then the quadtree for the new interface could be created based upon

the older quadtree. This approach has the potential of saving some computing

time, especially when the depth of the quadtree is large. Some computational

tests showed this. Table 2.7 shows the algorithm to create and balance the

new quadtree for a new interface based on the old quadtree.

By using the quadtree, we partition the domain into smaller parts. A

12



Table 2.4: Algorithm for finding north neighbor of the current quadrant
Algorithm QUADTREE::NorthNeighbor:

let this be the current quadrant;
if(Parent==NULL)

return NULL;
if(this==Parent → SW)

return Parent → NW;
if(this==Parent → SE)

return Parent → NE;
µ = Parent → NorthNeighbor();
if(µ==NULL or µ is a leaf)

return µ;
else

if(this==Parent → NW)
return µ → SW;

else
return µ → SE;

Table 2.5: Algorithm for quadtree balancing
Algorithm QUADTREE::balance:

let this quadtree be the root of the quadtree;
insert all leaf quadrant into a list L;
while(L is not empty)

remove an item µ from the list L;
if(µ is a leaf and µ →NeedToBeSplit())

subdivide µ;
insert the four new quadrants into the list L;
check if the four neighbors of µ need to be subdivided;
if so, insert it/them into the list L;

return the list L;

13



Table 2.6: Algorithm for QUADTREE::NeedToBeSplit
Algorithm QUADTREE::NeedToBeSplit:

let µ be the north neighbor of the current quadrant;
if(µ is not NULL and not leaf)

if(µ → SW is not leaf or µ → SE is not leaf)
return true;

let µ be the west neighbor of the current quadrant;
if(µ is not NULL and not leaf)

if(µ → SE is not leaf or µ → NE is not leaf)
return true;

let µ be the south neighbor of the current quadrant;
if(µ is not NULL and not leaf)

if(µ → NW is not leaf or µ → NE is not leaf)
return true;

let µ be the east neighbor of the current quadrant;
if(µ is not NULL and not leaf)

if(µ → NW is not leaf or µ → SW is not leaf)
return true;

14



Table 2.7: Algorithm for creating and balancing the new quadtree for a new
interface based on the old quadtree; the returned list Lnew contains the leaves
of the quadtree for the new interface which is defined through the function
isToDivide()

Algorithm QUADTREE::AMR balance:
let Lold be the old quadtree leaves list for the old interface;
let Lnew be the new quadtree leaves list which is empty at start;
while(L is not empty)

remove an item µ from list Lold;
if(µ is not a leaf)

continue;
else if(µ → Parent is leaf)

delete mu and recover memory;
else if(µ → Parent is not NeedToBeSplit() and not isToDivide())

let µ = µ → Parent;
make µ be a leaf;
insert µ into Lold;

else if(µ is NeedToBeSplit() or isToDivide())
subdivide µ;
insert the four new quadrants into the list Lold;
check if the four neighbors of µ need to be subdivided;
if so, insert it/them into the list Lold;

else
insert the leaf mu into the new list Lnew;

return Lnew;

15



full quadrant is a quadrant that does not intersect the boundary, so that the

four vertices of the quadrant have the same component, while a boundary

quadrant lies on the boundary or equivalently it has different components at

its four vertices.

Figure 2.1: a quadtree

Quadtree Parallelization

The parallelization of the quadtree generation is easy in that the four

boundaries of the quadtree are still trees. The general steps are the following:

16



1. Generate and balance the quadtree on each nodes;

2. Communicate the boundary information between nodes;

3. Balance the quadtree again on each nodes using the neighboring bound-
ary information of the neighbor nodes;

4. Redo the communication step and balance step until convergence;

If we look at one of the four the boundaries of a quadtree, we would

find that it is also a tree structure which is called btree here for binary tree

(Note that there is a popular tree structure called B-tree [27] which means a

balanced tree structure). The btree is a tree data structure with each non-leaf

node having exactly two children. It is not necessarily balanced. Table 2.8

shows a simple btree data structure.

Table 2.8: A simple btree data structure
class BTREE {

int m level; BTREE *Parent;
BTREE *Left;
BTREE *Right;

};

Before the communication of the boundary information of the quadtree

across different nodes, we first encode the four boundaries of the sending

quadtree, for example A, into a string of integers which represents the btree.

And then we pass the string onto the neighbor nodes, for example B. Then in

B, we use the string to setup a btree structure. Then when we do the quadtree

balance on B, the btree will be queried for the information on the neighboring

nodes.

17



It is well known that many tree structures can be encoded into a string

of integers. The algorithm in Table 2.9 first encodes the north boundary into

a list of 0′s and 1′s. To save spaces, the list is then be packed into an integer

array. After transmitting to the neighbor node, the integer array is unpacked

into a list of 0, 1 to be used to create the btree structure. When querying

Table 2.9: Algorithm for encoding the north boundary into a list of 0 and 1
using depth-first search of the north boundary of the quadtree

Algorithm QUADTREE::BoundaryEncoding North:
input: an empty list L;
output: list L consisting of only 0, 1;
if(Parent==NULL)

empty L;
if( this quadrant is a leaf quadrant)

push back 0 into L;
else

push back 1 into L;
call NW→ BoundaryEncoding North(L);
call NE→ BoundaryEncoding North(L);

return L;

for neighbor information beyond the boundary of the quadtree on the current

node, we first go up the quadtree structure to the root, saving the path track

and then use the path track to go down the btree to give the information

needed. Since there are four boundaries in a quadtree, four btree structures

are needed.

18



Quadtree-based mesh generation with the marching cubes method

A quadtree-based mesh generation method is very simple. This method

was first proposed by Yerry and Shephard [1]. It consists of the following steps:

1. Partition the computational region into a quadtree with the level

difference between neighbor quadrants being no more than one. Now

all those quadrants are either full quadrants or boundary quadrants.

2. Triangulate the full interior quadrants.

3. Triangulate the partial quadrants to recover the interface.

4. Post processing the mesh. If we used templates to triangulate the

partial quadrants and recover the interface in step 3), we need to move

those crossing points onto the interface in the post processing step.

The older version of Yerry and Shephard’s quadtree method assumes that

the interface intersects the quadrants with finite number of crossings (namely

at the corner and on the edge of the quadrants). In such a case, simple

templates could be used both for the interior cells and boundary cells (later

they proposed using Delaunay or advancing front method to triangulate those

boundary cells). This thesis assumes that the interface crosses each edge of

the quadrant at most once. Thus our method is a modification of the original

version of Yerry and Shephard’s quadtree method. By assuming that there

is only one crossing on each edge, we exclude a number of problems that our

method can deal with. But it is still robust enough to solve many problems.

The reason that we assume there is only one crossing on each edge is that we

19



in fact are using the marching cubes method [28] to recover the interface. It

should be noted that for a given boundary represented by segments for 2D and

triangles for 3D surfaces, our method will generate a mesh which might not

be a boundary conforming mesh. The interface recovered from our mesh is an

approximation of the boundary interface. But we think this might be enough

to represent the fluid interface. It is well known that the current state-of-art

methods for solving multiphase fluid using interface tracking/capturing are the

volume of fluid (VOF) method, level set method and the front tracking method.

To represent the fluid interface, VOF uses volume fraction, the level set method

uses the level set of an implicit function and the front tracking method uses

segments and triangles. However they all employ some simplification of the

interface.

The original quadtree method uses simple templates to triangulate the

boundary quadrants. They assume that the interface could cross the edge and

also the corner. By assuming that the interface could cross the corner, they

avoid the cases where points lie too near the interface, thus generating triangles

with a bad aspect ratio. But by doing this, they also introduce complications.

They need far more templates than if they assume that the interface only

crosses each edge once. By assuming that there is only one crossing along

each edge, the two corners at the end of the edge have two different materials,

or components. For example, see Figure 2.2.

All other cases could be reduced into these four cases by rotation. Thus if

we need to triangulate the quadrant with different components, we only have

four templates to generate, which are given in Figure 2.3.

20



Figure 2.2: Marching Cube Cases in 2D. Black and white circle represents
different components. Four different cases in total. All other cases could be
transformed into this four.

Figure 2.3: Triangulation templates for the four cases from Marching Cubes
method.

21



It is apparent that the above representation is the same as cases from

the marching cubes method [28] with two components in 2D. The marching

cubes method is very popular in computer graphics and medical imaging. It

is used to reconstruct the interface from volume data or the interface between

two materials. The interface recovering step happens to be the same as the

third step of the quadtree method for mesh generation. Thus we could use the

marching cubes method to recover our interface from those partial boundary

quadrants. There are many papers from this field. They are mostly used to

recover 3D interfaces, or surface for mesh generation. It is indeed helpful if we

could use them for volume mesh generation.

It is worth noting that there are several methods for the solid modelling

which are closely connected with grid generation: the constructive solid geom-

etry (CSG), the boundary representation (B-rep), the volume representation

and the implicit surfaces. The Front tracking method [18] uses the B-rep and

the level set method [29, 30] uses the implicit surfaces method. The marching

cubes method has also been used for the implicit surfaces model.

By using the marching cubes method only, we could recover the interface.

But we could not get a graded mesh where there are more triangles used

in those important places, such as near the complex boundary or where the

important physical quantities have a large gradient. We may combine the

marching cubes with the quadtree construction to generate a graded mesh.

Generally we constrain the maximum level difference between two neighbor

quadrants to be at most 1 so that the size of the quadrants change gradually.

This also facilitates the generation of the templates for the triangulations of

22



the quadrants since there are only a small number of cases for the quadrants

with neighbors of different size.

When we only allow the max level quadrants to be partial quadrants, we

have the cases in Figure 2.4 for those full quadrants. It is easy to generate

the triangulations for those full quadrants using templates. And it should be

noted that the templates for these cases are not unique. For example, Figure

2.5 shows a set of templates for the cases in Figure 2.4. For these templates,

no new vertices are generated inside the quadrant. Another set of templates

in Figure 2.6 generate more triangles for the same cases compared with the

first set of templates. However these templates are easier to extend to 3D

cases. The method for generating the second set of templates is as follows.

If the neighbors of the quadrant are larger, then no new vertex is generated

inside the quadrant. We connect the two opposite corners to generate two

triangles. Otherwise, a new vertex at the center is generated and we connect

the center vertex to the four corners and the centers of those edges with a

smaller neighbor.

Figure 2.7 is an example of a domain separated by a circle and Figure 2.8

is the interface recovered in the mesh by the marching cubes method. Figure

2.9 is the smoothed mesh using the Laplacian smoothing procedure.

Quadtree-based mesh generation with the generalized marching cubes

method

If the partial cells must lie in quadrants with the maximum level, it means

that the interface must be approximated by the smallest size quadrants. If the

23



Figure 2.4: The full quadrants cases. No interface crosses these quadrants by
assumption. The boxes in the figs represent the quadrants and the bar outside
the edges of the boxes represents that the quadrant has a neighbor with 1 level
higher (or half its size).

Figure 2.5: The first set of templates for the quadrants with different kind of
neighbors. the bar outside the quad represents that it has a neighbor with 1
level higher.

24



Figure 2.6: The first set of templates for the quadrants with different kind of
neighbors. the bar outside the quadrands represents that it has a neighbor
with 1 level higher.

Figure 2.7: A mesh for a domain separated by a circle

25



Figure 2.8: The interface recovered in the mesh of Figure 2.7.

Figure 2.9: The smoothed mesh for the mesh of Figure 2.7.

26



interface changes dramatically everywhere, this is satisfactory. However, if the

interface has a large region with small curvature, then by using the highest level

quadrants (or the smallest quadrants) to approximate the interface whenever

they occur would lead to unnecessary computational expenses. Thus it is

preferable that the interface could be approximated automatically by using

small quadrants where the interface has a large curvature and bigger quadrants

where the interface changes slowly. But how do we use the marching cubes

method to recover the interface in this case?

We could avoid the restriction by first triangulating all quadrants into

triangles and then using the marching cube method on those triangles by as-

suming at most one crossing on one edge. This kind of marching cubes method

is called the generalized marching cubes method [31]. In the mesh generation

algorithm using marching cubes method introduced in the last section, we deal

with full interior quadrants and partial quadrants differently. While for the

mesh algorithm using generalized marching cubes method, we triangulate all

quadrants without considering the whereabouts of the interface at first. After

this step we only have triangle elements. Then we use generalized marching

cubes on these triangles to recover the interface. Thus the algorithm is as

follows:

1. Partition the computational region into quadtree with the level difference

between neighbor quadrants at most 1. Now all those quadrants are

either full quadrants or boundary quadrants.

2. Triangulate all quadrants.

27



3. Use generalized marching cubes method on triangle elements to recover

the interface.

4. Post processing the mesh. If we used templates to triangulate the partial

quadrants and recover the interface in step 3, we need to move those

interface points onto the interface in the post processing step.

It is easy to triangulate the quadtree. We could use the templates in

Figure 2.5 or 2.6. The method to generate the second group of templates

could be extended to Octree. Previously we use the marching cubes method

on rectangles. It is much easier to use it on triangles. There are only two

cases to consider as in Figure 2.10. The triangulation templates are shown in

Figure 2.11.

Figure 2.10: The two cases for the generalized marching cubes on a triangle
element

28



Figure 2.11: The triangulations of the two cases for the generalized marching
cubes on a triangle element

Quadtree-based mesh generation with the dual marching cubes method

We could also use the marching cubes method on the dual grid of the

quadtree. By using the dual marching cube method, we show that there is a

great potential in combining the marching cubes method with the quadtree/octree

methods for graded mesh generation. We will also use the dual marching cubes

method for 3D mesh generation.

A dual grid is a grid such that we replace every cell with a vertex and

every vertex with a cell. For example the Delaunay diagram of a point set

is the dual graph of the Voronoi diagram of the set [25]. For the quadtree of

Figure 2.1, the dual graph is given by Figure 2.12. It is apparent that the dual

graph of the quadtree has the following property:

1) The cell is either triangle or rectangle.

2) The cell and its neighbor share the same edge.

29



Figure 2.12: The dual graph of the quadtree in Figure 2.1

Now we may triangulate easily the full cells of the dual grid (without

interface crossing), since they are either triangles which we do not need to tri-

angulate or rectangles which we triangulate by connecting one of the two main

diagonals and thus generate two triangles. For the partial cell (with interface

crossing), we use the templates for rectangle in Figure 2.3 and templates for

triangle in Figure 2.11.

Figure 2.13: The mesh for a circle using the dual marching cubes method

30



Figure 2.14: The interface for the mesh in Figure 2.13

2D Mesh Post Processing

By using all the quadtree nodes, we may generate some triangles with

bad aspect ratio. We can post process the triangles so that the mesh has a

better aspect ratio. We combine two processes:

1. Laplacian smoothing,

2. Edge flipping.

The two methods are the most common methods to post process the mesh. The

Laplacian smoothing method moves the vertex into the center of the polygon

consisting of its neighbor vertices. Edge flipping is used in the Delaunay

triangulation method to make the two triangles sharing a common edge locally

Delaunay [25]. By using Laplacian smoothing and edge swapping together, we

can greatly improve the quality of the final mesh.

Other optimization methods can also be used. For example we could

merge bad triangles together to form larger triangles.

31



2.2.2 Octree Based Mesh Generation Method in 3D

Octree Generation and Parallelization

The octree is used in 3 dimensional space [26]. It is also a tree data

structure for which each leaf node (called octant) has exactly 8 children and

each octant represents a cubic domain whose two extreme corners have the

coordinates m x1[3] and m x2[3]. Each octant has 6 neighbors instead of 4 for

a quadtree. The data structure, generation and parallelization are very similar

to those for quadtree. Table 2.10 gives a simple octree data structure in the

C++ language. Table 2.11 shows how to generate an octree recursively.

The balance step needs special care. For a given octant A, the neighbor

octants include 6 neighbor octants sharing a common face and 12 octants

sharing a common edge with A. We require that the maximum level difference

of A with its 18 neighbor octants is at most 1.

The parallelization of a octree is also similar to that of the quadtree. The

only difference is that that the boundary of an octree is a quadtree while the

boundary of quadtree is a btree. For the algorithms in detail, refer to those

for the quadtree.

Octree-based mesh generation with generalized marching cubes method

Although it is possible to generate templates for the octree with the

marching cubes method as with the quadtree marching cubes method in Sec-

tion 2.2.1, the number of different cases for the octree is very large. Instead,

we use the generalized marching cubes method on tetrahedra as we did for the

32



Table 2.10: A simplified octree structure
class OCTREE {

static int m min level;
static int m max level;
int m level;
double m x1[3], m x2[3];
bool m bToBeSplit;
OCTREE *Parent;
OCTREE *NE; // NE x > xmid & y > ymid & z ≤ zmid
OCTREE *NW; // NW x ≤ xmid & y > ymid & z ≤ zmid
OCTREE *SW; // SW x ≤ xmid & y ≤ ymid & z ≤ zmid
OCTREE *SE; // SE x > xmid & y ≤ ymid & z ≤ zmid
OCTREE *NE2; // NE2 x > xmid & y > ymid & z > zmid
OCTREE *NW2; // NW2 x ≤ xmid & y > ymid & z > zmid
OCTREE *SW2; // SW2 x ≤ xmid & y ≤ ymid & z > zmid
OCTREE *SE2; // SE2 x > xmid & y ≤ ymid & z > zmid

OCTREE* NorthNeighbor(void);
OCTREE* WestNeighbor(void);
OCTREE* SouthNeighbor(void);
OCTREE* EastNeighbor(void);
OCTREE* UpNeighbor(void);
OCTREE* DownNeighbor(void);

void balance(void);
void create(void);

};

33



Table 2.11: Algorithm for creating a octree
Algorithm OCTREE::create:

if(this octant needs not to be divided)
return;

divide the current octant into eight children
and update member variables.
call NE → create();
call NW → create();
call SW → create();
call SE → create();
call NE2 → create();
call NW2 → create();
call SW2 → create();
call SE2 → create();
return;

generalized marching cubes method for the quadtree in Section 2.2.1. We first

tetrahedralize the octree without considering the whereabouts of the interface.

Thus we have only tetrahedra elements after this step. Then we use general-

ized marching cubes method on these tetrahedra to recover the interface. The

complete algorithm is as follows:

1. Partition the computational region using an octree and balance the oc-
tree so that the level difference between any two neighbor octants are no
more than 1. Now all those octants are either full octants or boundary
octants.

2. tetrahedralize all octants.

3. Use generalized marching cubes method on the tetrahedra to recover the
interface.

4. Post processing the mesh. If we used templates to tetrahedralize the
partial quadrants and recover the interface in step 3, we need to move
those interface points onto the original interface in the post processing
step.

34



Table 2.12: Algorithm for octree balancing
Algorithm OCTREE::balance:

let this octant be the root of the octree;
insert all leaf octant into a list L;
while(L is not empty)

remove an item µ from the list L;
if(µ is not a leaf)

continue;
let µnorth, µwest, µsouth, µeast, µup, µdown be the octant µ’s 6

neighbors;
let lvlnorth, lvlwest, lvlsouth, lvleast, lvlup, lvldown be the their

levels;
if(µ → NeedToBeSplit())

subdivide µ;
insert the eight new octants into the list L;
check if the eight neighbors of µ need to be subdivided;
if so, insert it/them into the list L;

if(lvlnorth + 1 < min(lvlwest, lvlup, lvleast, lvldown))
set µnorth → m bToBeSplit = true;

push µnorth into L;
if(lvlwest + 1 < min(lvlnorth, lvldown, lvlsouth, lvlup))

set µwest → m bToBeSplit = true;
push µwest into L;

if(lvlsouth + 1 < min(lvleast, lvlup, lvlwest, lvldown))
set µsouth → m bToBeSplit = true;

push µsouth into L;
if(lvleast + 1 < min(lvlnorth, lvlup, lvlsouth, lvldown))

set µeast → m bToBeSplit = true;
push µeast into L;

if(lvlup + 1 < min(lvleast, lvlnorth, lvlwest, lvlsouth))
set µup → m bToBeSplit = true;

push µup into L;
if(lvldown + 1 < min(lvleast, lvlsouth, lvlwest, lvlnorth))

set µdown → m bToBeSplit = true;
push µdown into L;

return the list L;

35



Table 2.13: Algorithm for OCTREE::NeedToBeSplit
Algorithm OCTREE::NeedToBeSplit:

let µnorth, µwest, µsouth, µeast, µup, µdown be the octant µ’s 6 neigh-
bors;

if(m bToBeSplit==true)
m bToBeSplit = false;
return true; if(µnorth is not NULL and not leaf)
if(one of µnorth’s four children: SW, SE, SW2, SE2 is not

leaf)
return true;

if(µwest is not NULL and not leaf)
if(one of µwest’s four children: SE, NE, SE2, NE2 is not leaf)

return true;
if(µsouth is not NULL and not leaf)

if(one of µsouth’s four children: NW, NE, NW2, NE2 is not
leaf)

return true;
if(µeast is not NULL and not leaf)

if(one of µeast’s four children: NW, SW, NW2, SW2 is not
leaf)

return true;
if(µup is not NULL and not leaf)

if(one of µup’s four children: NE, NW, SW, SE is not leaf)
return true;

if(µdown is not NULL and not leaf)
if(one of µdown’s four children: NE2, NW2, SW2, SE2 is not

leaf)
return true;

36



X

Y

Z

1 2

34

5 6

78

Figure 2.15: The standard cube with 8 vertex

If we have an uniform octree, all octants have the same size. We could

tetrahedralize all octants in a consistent way so that we only need to tetra-

hedralize cube by cube with out considering how the neighbors are meshed.

For example, for the cube in Figure 2.15, we connect the following diagonals:

(4,5), (3,6), (1,6), (4,7), (1,3), (5,7) and (4,6) where (a, b) means the edge con-

necting vertex a with b. Thus we have six tetrahedra in this cube as in Figure

2.16: (1,2,3,6), (1,3,4,6), (3,7,4,6), (1,6,4,5), (6,7,4,5) and (4,7,8,5). Note that

for any two parallel faces, we always connect the diagonals in the same di-

rection. For example, for the two faces perpendicular with the X-coordinate,

we connect the two parallel diagonals: (4,5) and (3,6). Since diagonals on the

opposite faces of the cube are always in the same direction, we could copy

the same approach for the neighbor cubes. Thus we tetrahedralize all cubes

consistently octant by octant.

If the octree is not uniform, it is more complicated to generate the tetra-

hedra. However we could generate the tetra octant by octant following the

37



X

Y

Z

1 2

34

5 6

78

Figure 2.16: The 6 tetrahedra for the standard cube with 8 vertex

approach for the quadtree in Section 2.2.1. For a given face, we always draw

the diagonal in the same direction if possible. If there exists a smaller octant

neighbor, we insert a new vertex at the center of the octant, and always connect

the diagonals of the opposite faces in the same direction. And then use the new

vertex and the diagonals to generate the tetrahedra. As an example, we show

how to generate the tetrahedra in Figure 2.18 when the octant has only one

smaller neighbor as in Figure 2.17. The generated tetrahedra are (1,10,9,14),

(9,10,13,14), (9,13,5,14), (5,13,12,14), (10,4,13,14), (4,11,13,14), (13,11,12,14),

(12,11,8,14), (1,5,6,14), (1,6,2,14), (2,6,3,14), (3,6,7,14), (3,7,4,14), (4,7,8,14),

(1,2,3,14), (1,3,4,14), (5,8,7,14) and (5,7,6,14). Similarly, we generate the tem-

plates for other cases. Note that we always draw the diagonals of the opposite

faces in the same direction, so that we can tetrahedralize the whole octree

consistently octant by octant.

After we generate the tetrahedra, we use the marching cubes method on

the tetrahedra as on the triangles in Section 2.2.1. For more detail, refer to

38



X

Y

Z

1 2

34

5 6

78

Figure 2.17: An octant with a smaller neighbor.

X

Y

Z

1 2

34

5 6

78

9

10

11

12

13

Figure 2.18: The tetrahedralization of an octant with a smaller neighbor.

39



(b)(a) (c)

(e)(d)

Figure 2.19: The possible cases for the cubes with 5, 6, 7 octants: (a), (b),
(c) has 5 octants, (d) has 6 and (e) has 7 octants. Each octant corresponds to
1 vertex in the dual grid. Thus the 5 octants in (a), (b), (c) give a 5 vertex
polygon, (d) gives a 6 vertex polygon and (e) gives a 7 vertex polygon.

[3].

Octree-based mesh generation with dual generalized marching cubes

method

We could also use the dual grid of the octree similarly with the dual of the

quadtree. The cells of of the dual of the quadtree have 3 or 4 vertices (triangle

or rectangle), while the cells of the dual of the octree consists of polyhedral

with 5, 6, 7, 8 vertices. We could regard the polyhedra with 5,6,7 vertices as

degenerate cells with 8 vertices.

Thus we only need to generate the templates for the cubes. For such

kind of meshing for cubes with 8 vertices, we refer the reader to Wei Guo’s

40



thesis [23]. The meshing templates of cubes with 5,6,7 vertices could also be

generated similarly. Or they could be generated using the templates for the 8

vertices cells through merging the corresponding vertices.

After we have meshed all cells into tetrahedral, we use the generalized

marching cubes method on those tetrahedral as before. Figure 2.20 is an

example for 3D mesh using the above approach and Figure 2.21 is the interface

recovered from the mesh using marching cube method.

Figure 2.20: The mesh for a cube containing a sphere using the octree and the
dual marching cube method.

Figure 2.23 is the interface of three spheres recovered using the octree

and the marching cube method.

41



Figure 2.21: The interface for the sphere mesh in Figure 2.20.

42



Figure 2.22: The smoothed interface for the sphere mesh in Figure 2.20.

43



Figure 2.23: The recovered interface for three spheres.

44



3D Mesh Post Processing

Most two dimensional mesh optimization algorithms have 3D versions.

However, they are more complicated. The most used algorithms includes:

1. Laplacian smoothing;

2. Delaunay triangulation;

3. Merge and divide.

2.2.3 Point Location

After the mesh is given, we use the finite element method to set up

the matrix and solve for the unknowns. Sometimes we need to obtain the

solutions for arbitrary points inside the mesh, which is called a point location

problem: find the triangle/tetrahedron which contains the given point. The

point location problem and the closely related range search problem are famous

problems in computational geometry. See [25] and references cited therein.

If only one point is queried, we only need to loop through every trian-

gle/tetrahedron of our mesh and test whether the triangle/tetra contains the

given point. The time complexity is clearly O(N) where N is the number of

triangles/tetrahedra inside the mesh. If m such points are to be queried, such

an approach would not be applicable when m is large such as m = O(N).

We would be in such a situation if we solve an elliptic interface problem using

mixed finite elements on an unstructured grid and then interpolate the flux

back to an cartesian grid.

To speed up the point location problem, we preprocess the mesh and set

up some special data structures. For example, Edelsbrunner [32] uses a layered

45



directed acyclic graph (dag) structure which could be built in O(N) time, uses

O(N) storage and achieves the point location in O(log(N)) time. Most mesh

generation methods also use some data structures for point location during

their generation processes, for example the incremental Delaunay triangula-

tion [25] and the advancing front method. Although the quadtree/octree does

not do point location during the mesh generation process, the quadtree/octree

are natural data structures for point location since they are in fact tree struc-

tures. Our point location is a bucketing method and uses the quadtree/octree

structure.

Our algorithm is as follows: given a point p, the quadtree/cctree and the

mesh,

1. first use the quadtree/octree structure to find a leaf quadrant/octant;

2. second use the leaf quadrant/octant to find an triangle/tetrahedron

which would be used as an starting point to find the target

triangle/tetrahedron;

3. walk through the mesh to the given point p.

Now, we will explain our algorithm in detail. Since there is no difference

in principle between the 2D and 3D algorithms for point location, we shall

explain the algorithm in 2D only. When the mesh contains multiple component

triangles/tetrahedra, special care will be taken to make sure that the final

triangles has the same component as the component of the given point P.

For the first step of our algorithm, we use the root of the quadtree,

q, to find its child quadrant q which contains the given point p. Then set

46



q = q and find its child q which contains p. We loop until we reach the

leaf quadrant which contains the given point. The time complexity for the

quadtree traversing is O(log(h)) where h is the highest level of the quadtree.

For the second step, we use the leaf quadrant to find a starting triangle

T. Since the leaf quadrant is a rectangle, it must contain four vertices: the

north-east corner (NE), north-west corner (NW), south-west corner (SW) and

south-east (SE) corner. According to our meshing method, the leaf quadrant

is either a full quadrant or a partial quadrant. The four corner points of the

quadrant will become vertices of the interior mesh and they can not be vertices

of the interface which separates two components. Thus the corners have the

same component as those triangles incident to those corners vertices. Thus in

order to find a starting triangle with the same component as the given point,

we only need to find one of the four corners with the same component and use

any one of the triangles incident to the corner vertices as our starting triangle.

This step takes only O(1) time.

For the last step, we walk through the mesh from the starting triangle

T to the given point p. Since one vertex of T and p are both contained in

the leaf quadrant, they are not far from each other. In fact they should be

separated by no larger than a constant number of triangles. The reason is that

the triangulation of the leaf quadrant uses templates and there are finite such

cases. Thus the walking algorithm only takes O(1) time. There are mainly

two ways of walking [33, 34].

One method is the straight walk. This method needs an initialization

step. In this method, one starts with a vertex q and circles around itself to

47



find a triangle T with which the ray qp crosses. After this, the walk really

begins. Suppose that the ray qp goes out of the triangle T through the edge

e. If T does not contain p, we need to go through T to find its neighbor T’

and find the edge e’ through which qp goes out of T’. And then go on until

we find the final triangle T which contains p. However, during the walking,

reinitialization is needed if the ray qp goes out of T through a vertex. We

could say that this method walks by edges.

The other method is the visibility walk, which walks by triangles. Given

a vertex q, we first find a starting triangle T (any incident triangle to q is

fine). Then we get a new T’ by testing which side of the triangle T’s edges p

lies on. Then we loop until we find the target triangle containing the point p.

This method does not need to reinitialize and is much simpler. However, it is

possible that the walking will fall into a cycle and do not terminate. A remedy

is to walk with memory by keeping the triangles already walked through. We

use the second method since it is simpler to implement.

From the above, we can easily see that the point location algorithm takes

O(log(h)) time where h is the highest level of the quadtree. When the quadtree

is balanced or almost balanced (the difference of the maximum level and min-

imum is a constant), the query time takes O(log(N)) time where N is the

number of the triangles.

2.3 Conclusion

This chapter revisited the quadtree/octree method to generate the mesh

by using the marching cubes method to recover the interface. By using the

48



marching cubes method to represent the interface, we greatly simplify the cases

for generating the triangles for each quadrant in 2D and tetrahedral for octant

in 3D. And therefore, this method greatly simplifies the quadtree/octree mesh

generation method [1] and makes it much easier to program.

It is also worth noting that the quadtree/marching cubes method has two

distinct steps:

1. use quadtree/octree to generate the underling graded grid;

2. recover the boundary using the marching cubes method.

By using marching cubes method, we create a new boundary which is an

approximation to the input boundary. If the input uses B-rep and the new

recovered boundary is required to be an conforming boundary of the original

one, we could use the methods, for example in [15], to recover first the vertices,

and then edges in 2D, and last the faces for 3D problems as the second step

for recovering the boundary.

49



Chapter 3

Mixed Finite Element Method

50



3.1 Introduction

An elliptic boundary value problem seeks the solution of an elliptic dif-

ferential equation with given boundary data. An elliptic interface problem is

a special elliptic boundary value problem with an interior boundary; the solu-

tion has a specified jump across the interior boundary. The interior boundary

is also called an interface. Many problems require the solution of an elliptic

boundary value/interface problem. For example, the fractional-step projection

method for the incompressible flow solves an elliptic boundary value problem

[35–37]. When two phase incompressible flows are simulated using the projec-

tion method, the elliptic step solves the elliptic interface problem instead of

the elliptic boundary value problem. The interior interface separates the two

different materials.

When solving elliptic problems, the first step is to generate the mesh

for the computational domain. An ideal mesh would require that the bound-

ary/interfaces do not cross the cells of the mesh and lie only on the edges/faces

of the cells in the mesh. Such a mesh is called a boundary conforming mesh.

When such a mesh is given, no great difficulty exists in solving the bound-

ary value/interface problem. For example, we could use finite volume/finite

element method/mixed finite element method. However, to generate a bound-

ary/interface conforming mesh is not easy; especially when the domain is com-

plex, an unstructured mesh is needed.

Other approaches using structured nonconforming cartesian meshes have

been developed to solve the elliptic boundary value/interface problem. Since

cartesian meshes require little time to be generated, they are very popular.

51



The boundary/interface does not necessarily lie on the edges of the cartesian

cells. Several methods using nonconforming cartesian mesh exist for the elliptic

boundary value/interface problem. One popular method is Peskin’s immersed

boundary method [38]; LeVeque and Li’s immersed interface face [39] is an-

other. Peskin’s method solves the problem by smoothing the discontinuous

coefficient around the interface. LeVeque and Li’s method uses a Taylor ex-

pansion to incorporate the influence of the discontinuous coefficient into the

finite difference scheme. The embedded boundary method by Johansen and

Colella [40] is also used on a cartesian grid for solving the elliptic boundary

value problem.

We use the mixed-hybrid finite element to solve the elliptic interface/boundary

value problem. A triangular mesh could be generated, for example, by the

quadtree/octree method developed in Chapter 2. The mixed finite element

method is well developed and applied using function bases from RT0 (Raviart-

Thomas space of degree zero) [41–46]. However RT0 only gives first order

accuracy in the flux. A few papers have used higher order schemes, such as

the BDM1 basis (Brezzi-Douglas-Marini space of degree one) and the RT1

(Raviart-Thomas space of degree one) which both give a 2nd order accurate

flux approximation. The reasons for preferring RT0 are that most of the prac-

tical problems have solutions with low regularity and RT0 is much easier to

code. However, for the elliptic interface problems, if we use unstructured grids

to make the interface lie on the edges of the triangle, the solution has sufficient

regularity to benefit from higher order treatment. We will also show that the

higher order mixed finite element methods are not too difficult to implement.

52



In this chapter, we extend the implementation by Chavent and Roberts

[44] for RT0 to higher basis functions and discuss how to treat the jump

condition for the elliptic interface problems. We show step by step how to

setup the matrix for the elliptic problem. Our matrix setup method is a little

different from the standard approach [42, 43]. It is much easier to implement.

3.2 Our Implementation of the Mixed Hybrid Finite

Element Method

For the theoretical results regarding mixed finite element method for the

elliptic boundary value/interface problem, see [42, 43] for more details. For

implementation, see [43, 47].

In this section, we will show in detail our implementation of the mixed-

hybrid finite element method for the elliptic boundary value/interface problem.

In Section 3.2.1, we show the general frame work of implementation for

mixed hybrid finite elements. In Section 3.2.2, we state the implementation

using the flux basis in RT0, which was also shown in detail on structured

rectangle elements by Chavent and Roberts [44]. In Sections 3.2.3, 3.2.4, 3.2.5,

we extend the formulation to use flux bases in BDM1, RT1, BDM2 respectively.

In Section 3.2.6, we show how to use the master element. In Section 3.2.7, we

show that the mixed hybrid finite element method could be easily extended

to solve those problem where the potential or flux is discontinuous across the

element boundary. In Section 3.2.8, we show some examples.

53



3.2.1 Mixed FEM for elliptic boundary value/interface

problem

In this section, we show how to implement the mixed hybrid finite ele-

ment method for the elliptic boundary value/interface problem. The standard

elliptic interface problem is the following:

−∇ · a∇P = f, (3.1)

where P is the potential function and a is a piecewise continuous function. The

difficulty of such an problem is that the coefficient function a is not continuous

and sometimes we need the flux ~q = −a∇P instead of P . In order to solve the

elliptic interface problem, we first partition the domain Ω into a triangulation

Th. For simplicity, all elements are assumed to be triangles as in Figure 3.1.

0

1

2

Figure 3.1: triangle element

54



Instead of 3.1, we use the following two first order equations:

~q = −a∇P, (3.2)

∇ · ~q = f. (3.3)

Let us denote the approximation space of (~q, P ) by (Vh,Wh), where Vh is

a space for vector functions and Wh is a space for scalar functions. Let ~s ∈ Vh

be a test function. Multiply both side of 3.2 by ~s, integrate over K ∈ Th and

use Green’s formula. Then we have:

∫

K

~q

a
· ~s =

∫

K

P∇ · ~s−
∫

∂K

TP~s · ~n, (3.4)

where TP is the approximation of P at the boundary of K. Similarly, take

vK ∈ Wh and multiply both side of 3.3 by vK , we have:

∫

K

vK∇ · ~q =

∫

K

vKf. (3.5)

We will need equation (3.4) and (3.5) in our following derivation. For

convenience, we give the basis functions we are going to use. The basis for the

Raviart-Thomas space of degree k are the following:

Vh = {~s ∈ H(∇, Ω) : ~s|K ∈ P k(K)× P k(K) + xP k(K) for all K in Th},

Wh = {v ∈ L2(Ω) : v|K ∈ P k(K) for all K in Th}.

55



The basis from Brezzi-Douglas-Marini space of degree k are:

Vh = {~s ∈ H(∇, Ω) : ~s|K ∈ P k(K)× P k(K) for all K in Th},

Wh = {v ∈ L2(Ω) : v|K ∈ P k(K) for all K in Th}.

3.2.2 RT0 basis

For RT0 (Raviart-Thomas space of degree zero), the basis function is:

~s|K = a




x

y


 +




b

c


 ,

v|K = d,

where a, b, c, d are constants. Thus the flux is approximated by a linear

function and the potential by a constant. The mixed hybrid finite element

also must approximate the potential at the edge, TP . For RT0, TP is also

approximated by a constant. For each triangle element, there is only one basis

function for the potential, which we denote as P . On each edge, there exists

one basis for TP , which is denoted as TP . For each element, there are three

basis functions for the flux. Let us denote them as

~si|K =




aix + bi

aiy + ci


 , i=0,1,2

56



We could fix the coefficient so that ~si|K satisfies the following relation

~si · ni|Ej
= δi,j,

where Ej is the mid point of the jth edge and δi,j is the Kronecker function.

Thus any flux function ~q belonging to Vh could be written as

~q =
i=2∑
i=0

Qi~si.

Now we are ready to get our formulation. First, substituting ~q, P , TP

into (3.4) we have:

∫

K

~q

a
· ~sj =

∫

K

P∇ · ~sj −
∫

∂K

TP~sj · ~n,

or ∫

K

∑i=2
i=0 Qi~si

a
· ~sj =

∫

K

P∇ · ~sj −
i=2∑
i=0

∫

∂Ki

TPi~sj · ~n,

Taking out the coefficients from the integral, we have

i=2∑
i=0

Qi

∫

K

~si

a
· ~sj = P

∫

K

∇ · ~sj −
i=2∑
i=0

TPi

∫

∂Ki

~sj · ~n,

which could be written using matrix notation:

AQ = DP −WTP, (3.6)

57



where

A3×3 = (Ai,j) =

(∫

K

~si · ~sj

a
)

)
,

Q3×1 = (Qi)

D3×1 = (Di) =

(∫

K

∇ · ~si

)
,

W3×3 = (Wi,j) =

(∫

∂Ki

~sj · ni

)
,

TP3×1 = (TPi).

Note that because of the way we fix the freedom of the basis function, the

matrix W is a diagonal matrix and we could easily calculate it as

Wi,i = length (∂Ki) and Wi,j = 0 if i 6= j .

Substituting the basis function into equation (3.5), we have

i=2∑
i=0

∫

K

vK∇ · (Qi~si) =

∫

K

vKf.

Dividing both sides by vK (which is an arbitrary constant) and taking the

coefficients Qi outside the integral, we have

i=2∑
i=0

Qi

∫

K

∇ · (~si) =

∫

K

f,

or using matrix notation

DT Q = F, (3.7)

58



where F =
∫

K
f . By using equation (3.6) and the fact that normal component

of flux along an edge is continuous, we eliminate the Q and P from the final

stiff matrix. Multiplying both side of equation (3.6) we have

Q = A−1DP − A−1WTP. (3.8)

Multiplying the above equation by DT , we get

DT Q = DT A−1DP −DT A−1WTP = F. (3.9)

Let S = DT A−1D. Then

P = S−1DT A−1TP + S−1F, (3.10)

where S is a scalar for RT0. We now substitute P into equation (3.8), to

obtain

Q = A−1D(S−1DT A−1TP + S−1F )− A−1TP. (3.11)

Using the fact that the potential and the flux normal component are continuous

across the element edges, we obtain

TPK,A = TPK′ ,A, (3.12)

and

QK,A + QK
′
,A = 0, (3.13)

where A is the common edge of the two neighboring triangle K and K
′
. Now

59



we can assemble the stiff matrix equation with only TP as unknown variables.

3.2.3 BDM1 basis

For the BDM1 (Brezzi-Douglas-Marini space of degree one), the 6 basis

functions for the flux are:

~s|K =




a1x + a2y + a3

b1x + b2y + b3


 ,

and the basis for the potential is the same as RT0:

v|K = d,

where a1, a2, a3, b1, b2, b3, d are constants. The potential at the edge, TP , is

approximated by a linear function. We use the two Gauss-Legendre points

(a1, a2) on the edge A to fix the two degrees of freedom for TP as

TP |A = TP1w1 + TP2w2,

where wi(aj) = δi,j.

Then the derivation of the method to assemble the stiff matrix element

by element is the same as for the the RT0 bases, except that we now have 6

basis elements for the flux, 6 basis elements for TP and

A6×6 = (Ai,j) =

(∫

K

~si · ~sj

a
)

)
,

60



Q6×1 = (Qi),

D6×1 = (Di) =

(∫

K

∇ · ~si

)
,

W6×6 = (Wi,j) =

(∫

∂Ki

~sj · ni

)
= (length(∂Ki)) ,

TP6×1 = (TPi).

As in RT0, we could easily calculate the matrix W as

W2i,2i = W2i+1,2i+1 = length(∂Ki)
2

and Wi,j = 0 if i 6= j .

3.2.4 RT1 basis

For the RT1 (Raviart-Thomas space of degree one), the 8 basis functions

for the flux are:

~s|K =




a1x + a2y + a3

b1x + b2y + b3

+




x

y


× (c1x + c2y)


 ,

and the potential v|K expanded in linear basis elements gives

v|K = P1p1 + P2p2 + P3p3,

where a1, a2, a3, b1, b2, b3 are constants and p1, p2, p3 are basis functions. pi

satisfies pi(Ej) = δi,j where Ej are the mid points of the edges. The potential

61



at the edge, TP , is approximated by a linear function as BDM1.

Then the derivation is the same as RT0, except that we have 8 bases for

the flux and 6 bases for TP and

A8×8 = (Ai,j) =

(∫

K

~si · ~sj

a
)

)
,

Q8×1 = (Qi),

D8×3 = (Di,j) =

(∫

K

pi∇ · ~si

)
,

W8×6 = (Wi,j) =

(∫

∂Ki

~sj · ni

)
= (length(∂Ki)) ,

TP6×1 = (TPi).

As in RT0 and BDM1, we calculate W as

W2i,2i = W2i+1,2i+1 = length(∂Ki)
2

and Wi,j = 0 if i 6= j .

3.2.5 BDM2 basis

For the BDM2 basis (Brezzi-Douglas-Marini space of degree two), there

are 12 basis functions for the flux and 3 basis functions for the potential in

a triangle element. The basis functions for the Lagrangian multipliers are

quadratical functions on the inter element edges. The matrix setup is similar

to that for the RT1. Refer to [42] for detail.

62



3.2.6 Reference Element

As we have noted, the implementation in the previous sections requires

the computation of the following integration:

A3×3 = (Ai,j) =

(∫

K

~si · ~sj

a
)

)
,

D3×1 = (Di) =

(∫

K

∇ · ~si

)
,

W3×3 = (Wi,j) =

(∫

∂Ki

~sj · ni

)
.

It is possible to evaluate the above numerical integrations using arbitrary

elements. This approach requires that we invert a matrix to solve for the

coefficients of the flux bases for each element. Although the basis functions

from RT0 could be written down explicitly for arbitrary elements, it is not

easy to write down the flux bases for other higher order spaces. Thus we

need to use the conditions that the bases have to satisfy to set up a system of

equations and then invert the matrix. Although these are possible, it is not

encouraged since the inverse of a matrix for every element takes unnecessary

time and also the inverse of the basis coefficient matrix of a distorted element

is less accurate than those taken in a well shaped element.

The general approach for the integration of the basis functions on arbi-

trary elements is to perform integration on a reference element. The use of

reference elements is an important part of the finite element method both for

convergence analysis and the implementation. First the basis function on the

reference element is defined and then the basis functions on arbitrary element

63



are defined by a change of variables like the following:

vh|K = v̂ ◦ F−1.

However, the above transformation would change the value normal com-

ponents of the basis function from zero to non zero. To overcome this difficulty,

the Piola’s transformation was introduced [42]:

~q(x) =
1

J(x̂)
DF (x̂)~̂q(x̂).

3.2.7 Mixed Hybrid Finite Elements for Discontinuous

Potential/Flux Problems

The previous derivations for elliptic problems all assume that the poten-

tial/flux normal component is continuous across the element edges. However,

it is easy to solve those problems with jumps in the potential/flux across edges.

We need only to modify equations ( 3.12) and (3.13) to incorporate such jumps

TPK,A = TPK′ ,A + jumpTP, (3.14)

and

QK,A + QK′ ,A = jumpQ. (3.15)

64



3.2.8 Examples

In this section, we use the mixed hybrid finite element method to solve

a simple elliptic interface problem 3.1 where the interface is a cicle centered

around the origin with radius r0 = 0.5. The computational domain is inside

[−1, 1]× [−1, 1]. The coefficient a is defined as

a =





1, r ≤ 0.5,

10, r > 0.5.

and f = −9r. The exact solution is

P =





r3, r ≤ 0.5,

r3

10
+ (1− 1

10
)0.53, r > 0.5.

In order to show the accuracy of the mixed finite element method, we

generate our triangulation in the following way:

1. generate a uniform grid consisting of rectangles;

2. use marching cubes method to recover the interface.

Then the interface lies on the edges of the triangles. Figure 3.2 gives a

mesh with the uniform grid being 32× 32.

We only give the flux error in L2 norm for BDM1 method in Table 3.1.

From the table, we find that the method gives a 2nd order accurate flux in the

L2 norm. Figure 3.3 shows the graph of the potential with a 32× 32 uniform

grid.

65



X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 3.2: mesh

Table 3.1: The flux errors for an elliptic interface problem with jump in the
flux

Mesh Size flux error in L2 norm
8× 8 0.046384

16× 16 0.011289
32× 32 0.002862
64× 64 0.000725

128× 128 0.000189

66



X

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1

U

0

0.2

Figure 3.3: potential

67



3.3 Conclusion

In this chapter, we have given the implementation of the mixed hybrid

finite element method for elliptic problem by using four different basis func-

tions: RT0, BDM1, RT1 and BDM2. Note that we used the same approach

for the all basis functions to assemble the stiff matrix. The implementations

for higher order basis functions are the same. For elliptic interface problems,

we first triangulate the domain so that the interface lies on the triangle edges

only. If the potential/flux is continuous across the interface, then we use the

mixed hybrid methods directly to solve them.

Note, however, that there are also elliptic interface problems where the

potential/flux have jumps across the interface. After only slight modifica-

tion, the mixed hybrid finite element method can again be used to solve these

problem. Compared with the popular immersed boundary method and the

immersed interface method, the mixed finite element method can give higher

order accurate solutions by using higher order basis functions. For example,

BDM1 and RT1 both give a 2rd order accurate flux in the L2 norm. BDM2

gives a 3rd order accurate flux in the same norm.

68



Chapter 4

A Comparison Study

69



4.1 Introduction

The purpose of this chapter is to present a comparative study of two pop-

ular methods for the solution of elliptic boundary value problem: the embed-

ded boundary method (EBM) and the mixed finite element methods (MFEM).

The methods are quite different in their performance characteristics and the

mixed finite element methods come in several versions, using different basis

functions.

To present our main results in an easily accessible manner, we arrange

the results in a table of solution time for comparable accuracy. We find that

the EBM is better than lower or the same order accurate MFEM, but not as

good as the higher order accurate MFEM we test here.

We observe that no single study of comparison can be definitive, as com-

parison results may be dependent on the problem chosen, the accuracy desired

and comparison method selected. To begin, we distinguish between two not so

different kinds of elliptic problems: the elliptic boundary value problems and

the elliptic interface problem. For the elliptic boundary value problem, the

computational domain exists only on one side of the boundary, for example,

interior/exterior boundary value problem. For the elliptic interface problem,

there is some internal boundary called an interface across which the solutions

on the two sides satisfy some jump conditions.

There are many methods for solving elliptic boundary value/interface

problems. Several popular methods have been developed on cartesian meshes

for the boundary value/interface problems: the immersed boundary method

(IBM) by Peskin [38], the immersed interface method by LeVeque and Li [39],

70



the ghost fluid methods (GFM) by Liu, etc. [48], the embedded boundary

method by Johansen and Colella [40], integral equation method by Mayo [49],

Mckenney, Greengard and Mayo [50]. The advantage of these methods is that

they are defined on a cartesian mesh. Therefore, there is no need to generate a

mesh. For the cells away from the boundary/interface, they use a central finite

difference method which is simple and second order accurate. For the cells near

or crossing the boundary/interface, a special different algorithm treatment is

needed. When a (structured/unstructured) mesh is generated before hand,

we could use a finite element/finite volume method. It is not easy to get

high accuracy by using a finite volume method. The finite element method

could have very high accuracy if high order basis functions are used. For

elliptic boundary/interface problems, we could use Galerkin finite elements,

the discontinuous Galerkin method, and the mixed finite element method.

When the boundary/interface is complex, the apparent choice is to use a finite

element method (FEM) with an unstructured mesh. However, it is not easy to

generate an unstructured mesh especially when the boundary is very complex

and the boundary changes with time. Another disadvantage of using FEM

with an unstructured mesh is that it does not have the super convergence

property which follows when using a uniform structured mesh.

Most of the comparison studies for elliptic boundary value/interface prob-

lems are conducted either through mesh refinement or by comparing methods

using cartesian mesh [39, 40, 48–50]. In this chapter we are to perform a com-

parison study of two methods for solving the elliptic boundary value problem:

the embedded boundary method using a cartesian mesh and the mixed fi-

71



nite element method using an unstructured mesh. The EBM uses ghost cells

along the boundary and the finite volume method to achieve 2nd order accu-

racy in the potential and flux. The MFEM uses an unstructured triangular

mesh. Instead of solving the second order elliptic equation, it solves two first

order equations and gives the potential and flux at the same time. Higher

order basis functions give higher order of accuracy. Refer to [42] for a thor-

ough discussion of mixed and hybrid finite element methods. For a more

implementation oriented view, see [44]. The advantages and disadvantages of

the MFEM are discussed briefly in [46]. For the comparison between FEM

and MFEM, see the references cited in [45]. In this chapter we use the RT0

(Raviart-Thomas space of degree zero), the RT1 (Raviart-Thomas space of

degree one), BDM1 (Brezzi-Douglas-Marini space of degree one) and BDM2

(Brezzi-Douglas-Marini space of degree two) as basis functions of the flux. We

use the mixed-hybrid FEM. The final algebraic equations have only the poten-

tials on the mesh edges as unknowns. To use the MFEM, we need to generate

the mesh for the computational domain. There are mainly three methods for

meshing: the Delaunay triangulation [14], the advancing front method [15] and

the quadtree/octree method [1]. In this chapter we use a method based on the

quadtree/octree method. This method simplified the original construction by

using the marching cubes method to recover the interface.

For the implementation of the embedded boundary method, see [40, 51].

The numerical results by the embedded boundary method is run by Dr. Jian

Du using his code.

72



4.2 A Comparison Study

We are to solve the elliptic problem:





φxx + φyy = f

∂φ
∂n

= g
(4.1)

in a complex domain, where φ(x, y) is called the potential. Since the gradient

of the solution ∇φ is often needed and more difficult to solve for, we will use

the gradient errors as the comparison criterion. The gradients at both the

regular grid centers and the boundary points are calculated and compared.

For our test problem, we use φ = e
x2+y2

2 as the exact solution of the ellip-

tic equation (4.1); f and g are obtained by differentiating φ. We will show two

different test problems using the same equation and analytic solution. The

difference between the two problems lies only in the boundary: the second

boundary is more complex than the first one. The EBM uses a structured

cartesian grid. The mixed finite element methods use an unstructured grid

based on the quadtree/octree construction. The quadtree/octree have mini-

mum and maximum levels. In order to compare the results, we need to have

comparable grids by letting the minimum/maximum level of the quadtree to

be equal. Fig. 4.1 shows the grid used by the mixed finite element methods

when EBM uses the 128 × 128 grid. Thus the mesh is uniform. We compare

73



the results using the L2 norm of the flux ‖∇φ‖2. The norm is defined as:




‖∇φ‖2 =

√∑
face ‖∇φ‖2

2,face

‖∇φ‖2,face = Area(face)×√
φx(x0, y0)2 + φy(x0, y0)2

(4.2)

where (x0, y0) is the center of the rectangle for the cartesian grid used by

the EBM. For the MFEM, we first interpolate the fluxes at the center of the

cartesian grid, and then compute the norm.

X

Y

-0.5 -0.4 -0.3 -0.2

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.1: Detail of the unstructured computational mesh for a 128 × 128
mesh

The matrices for both methods are solved using methods in the PETSc

[11] package. Here we use the BiCGSTAB method with the ILU method

as preconditioner. We have tried different methods (such as LU, Cholesky,

CG, GMRES, BiCGSTAB etc) with different preconditioners in the PETSc

packages and find that the BiCGSTAD method with ILU as preconditioner is

74



the fastest for solving our matrices.

The first problem uses a simple boundary. The computational domain

lies inside a perturbed circle as in Fig. 4.2.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

Figure 4.2: Boundary for the first test

Table 4.1 displays the errors and timing results for different mesh sizes.

The convergence ratios with mesh refinement, the number of unknowns for

the linear system, and the number of iterations for the linear solver are also

listed. The maximum relative tolerance is 1e−9. The errors are measured by

the L2 norm of ∇ϕ defined by (4.2). From the table, we see that RT0 has only

first order accuracy, EBM/BDM1/RT1 have 2nd order accuracy and BDM2

has 3rd order accuracy. The EBM is much faster than the other four methods

when the same mesh size is used. The most apparent reason is that it has fewer

unknowns than the other four methods. As expected, the RT0 is faster than

BDM1/RT1/BDM2 since it has at most one half the number of the unknown

variables. However, RT0 only has 1st order accuracy. Although BDM1/RT1

are both 2nd accurate method with the same number of unknowns, they have

different characteristics in their timing and accuracy. The BDM1 is less accu-

75



Table 4.1: Convergence and Timing Study for the Boundary in Fig. 4.2
Mesh EBM
Size error ratio time(second) iterations unknowns

64× 64 1.593569e-04 N/A 1.697e-02 32 861
128× 128 3.670301e-05 2.118 9.923e-02 60 3338
256× 256 8.686625e-06 2.099 6.992e-01 116 13160
512× 512 2.134996e-06 2.074 6.024e+00 242 52056

Mesh RT0
Size error ratio time(second) iterations unknowns

64× 64 1.011978e-03 N/A 1.934e-01 74 2642
128× 128 5.121661e-04 0.982 8.366e-01 108 10141
256× 256 2.651845e-04 0.950 5.723e+00 219 39751
512× 512 1.353009e-04 0.971 4.234e+01 462 156715

Mesh BDM1
Size error ratio time(second) iterations unknowns

64× 64 1.329723e-04 N/A 4.758e-01 87 5286
128× 128 3.715907e-05 1.839 3.132e+00 171 20284
256× 256 9.794951e-06 1.924 1.928e+01 306 79504
512× 512 2.538575e-06 1.948 1.410e+02 597 313432

Mesh RT1
Size error ratio time(second) iterations unknowns

64× 64 1.701312e-05 N/A 8.074e-01 87 5286
128× 128 4.628462e-06 1.878 4.472e+00 172 20284
256× 256 1.215990e-06 1.928 2.458e+01 305 79504
512× 512 3.125208e-07 1.960 1.638e+02 607 313432

Mesh BDM2
Size error ratio time(second) iterations unknowns

64× 64 4.598191e-07 N/A 1.243e+00 100 7929
128× 128 4.169450e-08 3.463 6.774e+00 191 30426
256× 256 4.824547e-09 3.111 4.000e+01 317 119256
512× 512 2.865473e-09 0.751 3.366e+02 756 470148

76



Table 4.2: Detailed timing of RT0 (unit: second)
Mesh RT0
Size mesh matrix setup/solve interpolation

64× 64 0.083814 1.0178e-01 4.258e-03
128× 128 0.257736 5.4728e-01 1.665e-02
256× 256 0.983702 4.6136e+00 7.303e-02
512× 512 3.849851 3.7933e+01 3.436e-01

rate but faster for given mesh size. BDM2 has the highest order accuracy of

all five methods. For the same order of accuracy, the fastest method is BDM2,

then EBM/RT1/BDM1/RT0.

Table 4.2 gives the timing of the RT0 method for the mesh genera-

tion, the matrix setup/solve and the interpolation of the solution. Note that

RT0/BDM1/RT1/BDM2 use the same mesh. Therefore their mesh generation

time is the same. Their timing differences lie only in the matrix setup/solve

step. Here we find that the time spent on generating the mesh is only a small

part of the total time when the mesh size is large. Most of the time are spent

solving the algebraic equation (timing for the matrix setup is comparable with

that of the interpolation step). It is more apparent when the mesh size is

increased. For example, the ratio of time spent on the matrix setup/solve step

compared to the mesh generation step is about 1.21 when the 64× 64 mesh is

used. The same ratio increases to 9.85 when the 512× 512 mesh is used.

In the following, we use the EBM and MFEM to solve the same problem

but using a more complicated boundary as shown in Fig. 4.3. The errors are

still measured by the L2 norm of ∇ϕ defined by (4.2) and the max tolerance

is 1e−9. The mesh is more refined in order to resolve the boundary. Table 4.3

shows the convergence and timing results of the five methods. The general

77



conclusion is the same as for the first test. The RT0 is 1st order accurate, the

EBM/BDM1/RT1 method are 2nd order and BDM2 is 3rd order accurate in

flux. The EBM method is still the fastest method for the same mesh size. For

the same accuracy, we have BDM2, then EBM/RT1/BDM1/RT0 in decreasing

order of speed.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

Figure 4.3: The boundary for the second test

Figs. 4.4, 4.5, 4.6, 4.7, 4.8 show the errors for |∇φ|2 using a 1282 mesh

for solving the boundary of Fig. 4.3.

X

-1

1

Y

-1

1

gradient
error

0.0E+00

1.0E-04

2.0E-04

3.0E-04

Figure 4.4: Norm of the gradient error by EBM using the 128× 128 grid

78



Table 4.3: Convergence and Timing Study for the Boundary in Fig. 4.3
Mesh EBM
Size error ratio time(second) iterations unknowns

64× 64 2.110753e-04 N/A 2.232e-02 43 1008
128× 128 5.779287e-05 1.869 1.641e-01 91 4008
256× 256 1.472989e-05 1.920 1.439e+00 209 15738
512× 512 3.641386e-06 1.952 1.040e+01 360 61967

Mesh RT0
Size error ratio time(second) iterations unknowns

64× 64 1.806532e-03 N/A 2.833e-01 115 3177
128× 128 1.142133e-03 0.661 1.624e+00 218 12341
256× 256 6.140341e-04 0.895 1.124e+01 415 47870
512× 512 3.166839e-04 0.955 7.936e+01 770 187229

Mesh BDM1
Size error ratio time(second) iterations unknowns

64× 64 1.695040e-04 N/A 8.330e-01 151 6354
128× 128 5.857866e-05 1.533 5.361e+00 278 24682
256× 256 1.641488e-05 1.835 3.363e+01 461 95740
512× 512 4.311759e-06 1.929 3.206e+02 1185 374458

Mesh RT1
Size error ratio time(second) iterations unknowns

64× 64 2.203143e-05 N/A 1.212e+00 151 6354
128× 128 7.323467e-06 1.589 7.185e+00 296 24682
256× 256 2.032626e-06 1.849 4.539e+01 549 95740
512× 512 5.312876e-07 1.936 3.121e+02 1055 374458

Mesh BDM2
Size error ratio time(second) iterations unknowns

64× 64 6.651279e-07 N/A 1.917e+00 176 9531
128× 128 7.259815e-08 3.196 1.219e+01 323 37023
256× 256 9.293894e-09 2.966 9.087e+01 660 143610
512× 512 3.087661e-09 1.590 6.074e+02 1162 561687

79



X

-1

1

Y

-1

1

gradient
error

0.0E+00

2.0E-03

4.0E-03

Figure 4.5: Norm of the gradient error by RT0 using the 128× 128 grid

X

-1

1

Y

-1

1

gradient
error

0.0E+00

1.0E-04

2.0E-04

Figure 4.6: Norm of the gradient error by BDM1 using the 128× 128 grid

80



X

-1

1

Y

-1

1

gradient
error

0.0E+00

1.0E-05

2.0E-05

Figure 4.7: Norm of the gradient error by RT1 using the 128× 128 grid

X

-1

1

Y

-1

1

gradient
error

0.0E+00

5.0E-07

1.0E-06

Figure 4.8: Norm of the gradient error by BDM2 using the 128× 128 grid

81



Table 4.4: Maximum gradient errors on the boundary by different methods
Size EBM RT0 BDM1 RT1 BDM2

64× 64 2.459720e-03 9.367834e-03 7.927028e-04 3.102073e-04 4.988912e-05
128× 128 6.567893e-04 6.797467e-03 1.274594e-04 4.007023e-05 1.038527e-06
256× 256 1.755489e-04 3.626596e-03 2.486447e-05 1.321007e-05 1.033665e-07
512× 512 4.614643e-05 1.754357e-03 6.351849e-06 2.751578e-06 2.310828e-08

In Table 4.4, we show the maximum gradient errors on the boundary by

different methods. From this table, we see that the order of accuracy of the

maximum gradient errors on the boundary for the five methods are comparable

to the L2 norm on the whole domain.

4.3 Conclusion

In this chapter, we have used the embedded boundary method and the

mixed finite element method to solve the elliptic boundary value problem in

2D. We compared convergence and timing results.

Since the embedded boundary method uses a structured cartesian grid, it

is easier to implement. It is much harder to write the mesh generation program.

But after the mesh is given, the discretization is simpler for the mixed finite

element method. And it is easier to use the mixed finite element for the elliptic

interface problem since the interface is in fact an internal boundary. However,

the EBM method must be modified to solve an elliptic interface problem. To

save computational resources when solving large problems, we could use EBM

with automatic mesh refinement, which is one important part of our mesh

generation method.

The EBM has the advantage of fewer unknowns with the same mesh size

82



compared with the MFM. There are two reasons for this. One reason is that

the EBM uses a structured grid and the finite volume/central finite difference

has super convergence in the mesh. The MFM uses an unstructured grid, and

to achieve the same order of accuracy, a higher order basis function space is

needed, which means more unknowns. The other reason is that the unknowns

for EBM are cell centered and those for the MFM are edge centered. Since

the approximate ratio of the vertices to faces to edges is 1:2:3 for a simple

large triangle mesh, we know the ratio of the unknowns for the EBM, RT0,

BDM1, RT1, BDM2 is approximately 1:3:6:6:9. Thus the EBM problem is

smaller, which explains why it is much faster. However, for a given accuracy,

the fastest method is BDM2 which is 3rd order accurate in flux, and then

EBM/RT1/BDM1/RT0.

83



Chapter 5

A Ghost Fluid Method

84



The main idea of the embedded boundary method is to use the standard

central finite difference method inside the computational domain while using

the boundary condition to setup equation for the ghost cells and cells around

the boundary. The interpolation is along the normal direction of the boundary.

Do we have a more simplified approach to do the interpolation? Can

we do the interpolation along the x and y direction instead of the normal

direction?

Yes, we can in some degree by using the ghost fluids method. The ghost

fluids method was first proposed by Glimm, et al. [52]. Liu, et al. [48] used the

ghost fluid method and level set method to solve the elliptic interface problem

through the boundary condition capturing.

In this chapter, we will extend their idea and use the front tracking

method instead of level set method. We investigate the convergence rate

through examples.

We first show the formulation in 1D. Then it is straight forward to ex-

tend it to 2D since all we need to do is to use the formula in each direction

independently.

5.1 Formulation

Using notation in [48], consider the 2D poisson equation 5.1. The inter-

face jump condition can be [u]T = J0(xT ) and [βun]T = J1(xT ).

(βux)x + (βuy)y = f(x, y) (5.1)

85



Let ~n = (n1, n2) be the unit normal and ~t be the tangent. Let ux, uy, un, ut

be the derivatives along the ~x, ~y, ~n,~t. We have the following identity from

calculus [48]

un = uxn
1 + uyn

2, (5.2)

ut = uxn
2 − uyn

1, (5.3)

and solving the above two equations gives

ux = unn1 + utn
2, (5.4)

uy = unn
2 − utn

1. (5.5)

Multiplying the above equations by β and taking the jump across the

interface, we have

[βun] = [βuxn
1] + [βuyn

2],

[βut] = [βuxn
2]− [βuyn

1],

[βux] = [βunn
1] + [βutn

2],

[βuy] = [βunn2]− [βutn
1],

which simply say that the jump along ~n,~t determine the jump along the ~x, ~y.

Equivalently, the jump along ~x, ~y can determine the jump along ~n,~t.

Liu, etc., [48] assumes that the jump along the tangent ~t, [βut]T , is zero

and then extend their ghost fluid method to 2,3 dimension using level set to

86



capture the jump. We will use their approach here. By doing this, the jump

along the normal direction is satisfied while the jump along the tangential

direction is smeared.

5.1.1 1D ghost fluid method

For simplicity, assume that we have a uniform grid. We assume that

coefficient β is constant in each component. The variable u is defined on

the grid point. We use standard 3 points central finite difference method

to discretize equation 5.6 inside the computational domain without interface.

The difficulty lies in how to discretize the equation where there is an interface

crossing between two grid points. Fig. 5.1.1 shows such a case, where there

are three grid points x−1, x0, x1. Point x−1, x0 has the same component which

is different from that at point x1. The interface crosses the segments between

x0 and x1 at T . We assume we know the distance between x0 and T .

0 1-1

T

Figure 5.1: 1D mesh with two components

87



1st order ghost fluid method

For the 1st order ghost fluid method, we only need two point. In Fig.

5.1.1, we need point x0 and x1. Denote the u−1, u0 as the values defined at

point x−1, x0 and U1 as the value at point x1. If the three points x−1, x0, x1

has the same components, the standard central finite difference for 5.6 is

(βux)x = f(x) (5.6)

β u1−u0

dx
− β u0−u−1

dx

dx
= f(x), (5.7)

or

β
u1 − u0

dx2
+ β

u−1 − u0

dx2
= f(x), (5.8)

where we have denoted U1 as u1. Thus we only need to consider the discretiza-

tion of the ”flux” βux at the center of two grid point x−1/2 or x1/2. This greatly

simplify the formulation. Since they are symmetric, we only consider one of

them at x1/2.

If there is a interface between point x0, x1 as in Fig. 5.1.1, we can not

directly use central finite difference because of the jump conditions

[u]T = J0(xT )

and

[βu]T = J1(xT )

88



. We need two ghost fluids, u1 for fluid from the left, and U0 for the fluid from

the right. Now, we can use the four values u0, u1, U0, U1 to setup equations

so that they satisfy the jump conditions to first order. First we use linear

interpolation uT = (1− θ)u0 + θu1 and UT = ((1− θ)U0 + θU1) to approximate

the value at the interface. uT , UT have to satisfy the first jump condition UT −
uT = J0. This is the first equation 5.9. Then we can use uT , u0 to approximate

the left derivative ux|T = β0
uT−u0

θdx
and similarly for the right side derivative

Ux|T = β1
U1−UT

(1−θ)dx
. They have to satisfy the second jump Ux|T − ux|T = J1

which gives the second equation 5.10.

((1− θ)U0 + θU1)− ((1− θ)u0 + θu1) = J0, (5.9)

β1
U1 − ((1− θ)U0 + θU1)

(1− θ)dx
− β0

((1− θ)u0 + θu1)− u0

θdx
= J1, (5.10)

where θdx is the distance between x0 and T . Solving the two equations for

the ghost fluids u1, U0, we have

u1 = c0u0 + c1U1 + rhs,

where

c0 =
(−1 + θ)(β0 − β1)

(−1 + θ)β0 − θβ1

u0,

c1 =
−β1

(−1 + θ)β0 − θβ1

,

rhs =
(dx− dxθ)J1 + J0β1

(−1 + θ)β0 − θβ1

.

Note that the ghost fluids are a linear combination of the values u0, U1

89



and the jump J0, J1.

The above formulation is first order because linear interpolation are used.

Although the formulas seem to be complex, it is very easy to derive them using

some symbolic software, such as Mathematica.

2rd order ghost fluid method

We can also use quadratic interpolation to approximate values uT , UT

at the interface. Now we need four points instead of 2 points, x−1, x0, x1, x2.

Thus we have four values u−1, u0, U1, U2 and two ghost fluids u1, U0. Since the

formula derivation can be automated by using Mathematica, we only give the

Mathematica code in the following.

First, we find the quadratic function using u−1, u0, u1.

T [x ] := ax2 + bx + c;

eq0 = T [−∆] == u−1;

eq1 = T [0] == u0;

eq2 = T [∆] == u1;

sol = Solve[eq0, eq1, eq2, a, b, c];

f [x ] = T [x]/.sol[[1]];

df [x ] = D[T [x], x]/.sol[[1]];

90



Next, we find the quadratic function using U0, U1, U2.

S[x ] := ax2 + bx + c;

eq0 = S[0] == U0;

eq1 = S[∆] == U1;

eq2 = S[2∆] == U2;

sol = Solve[eq0, eq1, eq2, a, b, c];

F [x ] = S[x]/.sol[[1]];

dF [x ] = D[S[x], x]/.sol[[1]];

Finally, we can set up the two equations for the jump conditions.

eq0 = F [θ∆]− f [θ∆] == J0;

eq1 = dF [θ∆]− df [θ∆] == J1;

sol = Solve[eq0, eq1, u1, U0];

We have the following relation for the ghost fluid u1 as the linear combi-

nation of u−1, u0, U1, U2.

u−1 = c−1u−1 + c0u0 + c1U1 + c2U2 + rhs,

91



where

c−1 = −(−1 + θ)((2− 5θ + 2θ2)β0 + (3− 2θ)θβ1)

(2 + θ − 5θ2 + 2θ3)β0 + θ(3 + θ − 2θ2)β1

,

c0 =
2(−1 + θ)(2(−2 + θ)θβ0 + (3 + θ − 2θ2)β1)

(2 + θ − 5θ2 + 2θ3)β0 + θ(3 + θ − 2θ2)β1

,

c1 =
2(−2 + θ)2β1

(2 + θ − 5θ2 + 2θ3)β0 + θ(3 + θ − 2θ2)β1

,

c2 =
2(−1 + θ)2β1

(2 + θ − 5θ2 + 2θ3)β0 + θ(3 + θ − 2θ2)β1

,

rhs =
−2∆(2− 3θ + θ2)J1 + 2(−3 + 2θ)J0β1

(2 + θ − 5θ2 + 2θ3)β0 + θ(3 + θ − 2θ2)β1

.

The Discretization

After we have the formula for the ghost fluids, we can easily discretize the

elliptic equation. If we want to use the 1st order method to discretize equation

(5.8) at point x0, we have the ghost fluid u1 = c0u0 + c1U1 + rhs. Therefore,

the flux at point x1/2 is

β0
u1 − u0

dx2
= β0

(c0 − 1)u0 + c1U1 + rhs

dx2
(5.11)

The flux at point x−1/2 doesn’t need to change.

If we need to discretize at point x1, we have the ghost fluid formula

U0 = C0u0 + C1U1 + Rhs and

β1
U0 − U1

dx2
= β1

C0u0 + (C1 − 1)U1 + Rhs

dx2
, (5.12)

where the coefficients C0, C1, Rhs are calculated from the 1st order ghost fluid

92



formula considering point x1, x0 here as point x0, x1.

We can also use the 2rd order ghost fluid formula in the similar way.

However, it must be noted that in order to use the 2rd order ghost fluid

formula, the components for x−1, x0 must be the same and components for

x1, x2 must also be the same. Otherwise, we need to switch back to the 1st

order ghost fluid formula which does not have such restriction.

It is important to be careful how to choose the coefficient β in the dis-

cretization. If the discretization position is x0, we must use β0 from the the

same component. If the position is x1, we need to use β1 instead.

5.1.2 2D ghost fluid method

The best part of the ghost fluid method is that we can extend the 1D

formula straight forwardly to 2D (or 3D). In 2D, if the interface has derivative

a jump in the normal (and tangential) directions, we can calculate the jump

in ~x, ~y direction. Then we discretize the derivative for x, y separately. Thus

2D (or 3D) problem is reduced to 1D problem.

5.2 Example

Now we show a 2D example. The computational domain is [−1, 1] ×
[−1, 1]. There is a circle with radius 0.3 and center (0,0). Inside the circle,

β = 1, and outside the circle, β = 0.2. Let the analytical solution be u(x, y) =

e
x2+y2

2 inside the circle and u(x, y) = sin(x2+y2) outside the circle. Substitute

the solution into the equation to get the right hand function f(x, y). The jump

93



conditions J0, J1 at the interface is calculated using the exact solution. The

boundary condition is also calculated using the exact solution. Fig. 5.2 shows

the approximate solution using the 2nd order accurate ghost fluid method.

From the figure, it is clear that the solution has very accurate jump profile.

X

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1
P

_
ap

p
ro

x

0.5

1

Figure 5.2: a 2D solution calculated using the 2rd order ghost fluid method

Fig.5.2 shows the approximate x derivative. We also have a very accurate

gradient profile.

It should be noted that in order to calculate the approximate derivatives,

we use central finite difference and the ghost fluid formula if needed. If the 2rd

order ghost fluid formula is used to discretize the PDE, we also need to use

the 2rd order ghost fluid formula when calculating the approximate derivatives

after solving the equations.

In Table 5.2, we show the convergence rate of the two ghost fluid method.

We use the max norm for the potential u and L2 norm for the gradient as in

previous chapter.

However, it seems that the ghost fluid method does not always give good

94



X

-1

-0.5

0

0.5

1

Y

-1

-0.5

0

0.5

1

P
x_

ap
p r

o
x

-1

0

1

Figure 5.3: approximate x derivative calculated using the 2rd order ghost fluid
method

Table 5.1: Convergence Study for the Ghost Fluid method
Mesh 1st Ghost Fluid Method
Size potential error ratio gradient error ratio

10× 10 7.834047e-02 N/A 7.804623e-02 N/A
20× 20 3.288107e-02 1.25 8.119717e-02 -0.06
40× 40 6.322738e-03 2.38 1.100779e-02 2.88
80× 80 3.933982e-03 0.69 6.429411e-03 0.78

160× 160 1.442078e-03 1.45 2.636914e-03 1.29
320× 320 4.253379e-04 1.76 8.321577e-04 1.66
640× 640 1.254099e-04 1.76 3.055100e-04 1.45

Mesh 2rd Ghost Fluid Method
Size potential error ratio gradient error ratio

10× 10 3.406400e-02 N/A 7.158676e-02 N/A
20× 20 7.255979e-03 2.23 1.921226e-02 1.90
40× 40 1.815689e-03 2.00 4.702095e-03 2.03
80× 80 4.427846e-04 2.04 1.182949e-03 1.99

160× 160 1.091516e-04 2.02 2.968873e-04 1.99
320× 320 2.744184e-05 1.99 7.450425e-05 1.99
640× 640 6.682062e-06 2.04 1.867109e-05 2.00

95



Table 5.2: The Second Convergence Study for the Ghost Fluid method
Mesh 1st Ghost Fluid Method
Size potential error ratio gradient error ratio

10× 10 1.422432e-01 N/A 2.567303e-01 N/A
20× 20 5.787385e-02 1.30 2.092508e-01 0.30
40× 40 1.505660e-02 1.94 1.231668e-01 0.77
80× 80 9.784978e-03 0.62 8.861856e-02 0.48

160× 160 3.700755e-03 1.40 6.228199e-02 0.51
320× 320 2.252100e-03 0.72 4.295575e-02 0.54

Mesh 2rd Ghost Fluid Method
Size potential error ratio gradient error ratio

10× 10 6.255407e-02 N/A 2.510799e-01 N/A
20× 20 2.485743e-02 1.33 7.830582e-01 -1.64
40× 40 1.026261e-02 1.28 1.279421e-01 2.61
80× 80 7.590548e-03 0.44 1.062941e-01 0.27

160× 160 7.330523e-03 0.05 8.587813e-02 0.31
320× 320 7.305210e-03 0.05 5.668032e-02 0.60

results. The previous example has a solution which is symmetric around

the (0,0). In the following test, we still use the same domain and inter-

face. The only difference is that we change the analytical solution to be

u(x, y) = e
(x−1)2+y2

2 inside the circle and u(x, y) = sin(x2 + (y − 1)2) out-

side the circle. The convergence rates are shown in Table 5.2. We can see that

the methods have difficulty in converging.

Considering that it is very simple to implement the ghost fluid method,

we conclude that the ghost fluid method is much better than the standard

central finite difference method which might not even converge.

It should be noted that, our ghost fluid method is closely connected with

the Matched Interface and Boundary method (MIB) by Zhou, et al. [53]. Our

ghost fluid method captures only the gradient jump in the normal direction.

The MIB method transforms the normal and tangential jump into jumps in

96



the x and y coordinates. Then it use interpolation and jump conditions to

setup equation for the ghost fluids. While our ghost fluid method uses the

gradient jump either in the x or y direction only.

Although the MIB method can be very high order accuracy, the disad-

vantage of the MIB method is that in order to obtain high order accuracy,

a large stencil is required. This means that it is very hard to solve complex

interface problem without mesh refinement.

97



Chapter 6

Incompressible Flow

98



In this section, we do a simple 2D Rayleigh-Taylor instability test using

the FronTier-Lite package [10]. The Frontier-Lite package is extracted from the

FronTier code. As a geometry package for interface tracking, it can provide the

component and the shortest interface point of a given non interface point, the

interface normal at the crossing between two points with different components.

It can also change the interface dynamically using given velocity field.

We use the projection method for the incompressible flow [35–37]. We

use the approach by Tryggvason, et al . [8, 9] and Kang [54] to smooth the dis-

continuous coefficient using the Heaviside function. Namely, for discontinuous

coefficient, for example, the density, we smooth them by using [48]

ρ(r) = r− + (r+ − r−)H(r)

where

H(r) =





0, r < −ε

1
2

+ r
2ε

+ 1
2π

sin(πr
ε
), −ε ≤ r ≤ ε

1, ε < r

(6.1)

ε is a given constant in the order of the grid spacing.

For simplicity, we assume constant density in each component. The

Navier-Stokes equation has the following form

∇ · u = 0

ut + (~V · ∇)u +
px

ρ
=

(2µux)x + (µ(uy + vx))y

ρ

99



vt + (~V · ∇)v +
py

ρ
=

(µ(uy + vx))x + (2µ(vy))y

ρ
+ g

The algorithm we used is the following.

Step 1. Advance the interface using the old velocity, return the time step

dt used. This step is needed in the first place because it often happens that

the interface has to reduce the given time step to advance properly.

Step 2. Set up the components and smooth the density and viscosity

using the Heaviside function.

Step 3. Solve the advection equation. We simply used the central finite

difference method for the advection equation. See also [9].

Step 4. Solve the diffusion equation using the Crank-Nicolson method.

This method can obtain stable solution with bigger time step. Although the

Adams-Bashford integration scheme is preferred by many authors [9], we do

not use it here. The reason is that we can not guarantee that the interface can

be advanced using a given time step, especially when the interface is complex.

Step 5. Compute the Projection by solving the pressure equation. Proper

boundary condition for the pressure should be used. Here we simply used

∂p

∂n
= 0

Step 6. Update the New velocity using the pressure gradient.

Now we give the results for a 2D Rayleigh-Taylor instability test. Our

computational domain is [0, 1] × [0, 4]. A sine wave interface is used as the

initial interface as fig. 6. For simplicity, we have used µ = π/50 for both fluids.

100



The density is 1 for the upper fluid and 0.1 for the other fluid. The force is set

as g = −100 to speed up the simulation. Fig. 6 shows the interface around

time 0.51 using a grid size 50 × 200. Fig. 6 shows the interface calculated

using a grid size 100× 400.

X

Y

0 0.5 1
0

1

2

3

4

Figure 6.1: The initial interface is chosen as a sine wave

From the two figs, we have similar interface profile under mesh refinement

for the RT instability using the FronTier-Lite packages and the projection

method.

101



X

Y

0 0.5 1
0

1

2

3

4

Figure 6.2: The interface is calculated using grid size 50 × 200 around time
0.51

X

Y

0 0.5 1
0

1

2

3

4

Figure 6.3: The interface is calculated using grid size 100 × 400 around time
0.51

102



Appendix A

Coding Issues

103



In this section, we briefly show our coding method. We write the program

in C++ and used several techniques which are not available in the C language:

virtual functions, templates and the Standard Template Library. After that,

we discuss the structure of the code for mesh generation and the finite element

discretization.

A.1 Virtual Function, Template and Standard Template

Library

We write our program in C++. Although C++ might be slower than

Fortran or C, it is an object oriented programming (OOP) language and code

written in C++ is much easier to be read and reused. With new C++ com-

pilers and careful implementation, codes written in C++ are not much slower

than those written in Fortran/C.

We use mainly two C++ techniques which are not available in C: the

virtual function and template.

A.1.1 Virtual Function

A C++ virtual function is a special member function of a base class. It

could be over-ridden in its derived classes. We will show its benefit through

the following example. The FronTier code uses function pointers instead of

virtual functions.

In our code, we frequently need to solve algebraic equations. There are

a lot of packages which are publicly available. We might even have our own

104



code. More often than not, they have different invoking interface. It is often

the case that in the begin, we are not sure which package to use. Thus we

write a base class called SOLVER. A simplified version of the class SOLVER

is shown in Table A.1.

Table A.1: The definition of a simplified class SOLVER
class SOLVER{
public:

SOLVER();
virtual Create(int ilower, int iuppter, int d nz, int o nz);
virtual void Set A(int i, int j, double val); // A[i][j] = val;
virtual void Set b(int i, double val); // b[i] = val;
virtual void Get x(double *x); // x=inv(A)b

virtual void Solve(void);
}

Then we derive classes from SOLVER for a Gaussian elimination method,

PETSc [11], Hypre [12], and LAPACK [13]. Then when defining class for the

finite element (FEM) discretization, we define the class FEM as in Table A.2.

Table A.2: The definition of a simplified class FEM
class FEM{
SOLVER *m solver;
......
}

The member functions in the FEM function properly without knowing

which package it is calling. Thus when we want to use a different package

to solve the algebraic equations, we only need to implement a derived class

105



from SOLVER and then pass the pointer to FEM without any modification in

the finite element code. In this way, the independent parts of a big code are

interconnected in the minimal way.

A.1.2 Template and Standard Template Library

A template is like a mold for new code. After a template code for an

abstract object is written, similar code for other objects could be generated

automatically. We used several structures in the Standard Template Library of

the C++ language: vector, link, priority queue, map and the sort algorithm.

It is true that we could write our own generic code for these standard structures

and algorithm without using templates. But we need the same structure for

different objects. Without a template, we have to write different codes for

different objects. It is just a waste time and when the code for one object is

modified, codes for other objects have to modified also. It would not be easy

to maintain the code.

A.2 Code Structure

For our mesh generation and finite element code, we have written sev-

eral classes: FRONTIER2D/FRONTIER3D giving the data for the bound-

ary of the computational domain, QUADTREE/OCTREE for generating the

QUADTREE/OCTREE structure, MESH2D/MESH3D for the housekeeping

of the mesh data structures and FEM2D/FEM3D for the finite element meth-

ods, SOLVER for solving algebraic equations. FRONTIER2D/FRONTIER3D,

106



QUADTREE/OCTREE, FEM2D/FEM3D and SOLVER all have derived classes

giving different implementation. For example, the mixed finite elements using

RT0, RT1, BDM1, BDM2 are implemented as derived classes from FEM2D.

Hypre, Hypre GMRES, PETSc, GAUSSIAN are derived classed from SOLVER

for different packages or methods for solving matrix.

Their relation are the following (for 2D code, 3D code is similar).

FRONTIER2D ← QUADTREE ⇔ MESH2D ← FEM2D → SOLV ER

where A ← B means that class B has a pointer pointing to class A. QUADTREE

uses information from FRONTIER2D to generate the quadtree and then gen-

erate the mesh to store inside MESH2D. QUADTREE helps MESH2D to start

point location. FEM2D needs the mesh from MESH2D and uses SOLVER to

solve the algebraic equation.

107



Appendix B

A Compact Finite Difference Method for

Curvature Calculation

108



B.1 Introduction

The compact difference method [55] is a high order finite difference method.

We first need a grid to use the finite difference. For the interval [0,1], define

xi = i× h, i = 0, 1, ..., N , where h = 1/(N − 1) is the grid length and N is the

number of grid points. Then for a function f(x), its second order of derivative

with x can be computed by the following equation:

f
′′
i =

a1fi−1 + a2fi + a3fi+1

h2
, (B.1)

where a1, a2 and a3 are undetermined parameters and fi = f(xi) and f
′′

= fxx.

Using Taylor expansion of f(x) at the point xi, the highest order of accuracy

(B.1) could have is second order by the central difference method:

fi =
fi−1 − 2fi + fi+1

h2
+ O(h2). (B.2)

The compact finite difference [55] for the second order of derivative with

x using only three point stencil could be written as:

c1f
′′
i−1 + f

′′
i + c2f

′′
i+1 =

a1fi−1 + a2fi + a3fi+1

h2
, (B.3)

where c1, c2 and a1, a2, a3 are undetermined parameters. Using Taylor expan-

sion, the highest order of accuracy B.3 could have is given by the following

4th order scheme:

1

10
f
′′
i−1 + f

′′
i +

1

10
f
′′
i+1 =

6
5
fi−1 − 12

5
fi + 6

5
fi+1

h2
+ O(h4). (B.4)

109



It is worth noting that the function constructed by the cubic spline also

satisfies a similar relation. The compact finite difference for the first order of

derivative with x can also be derived in the same ways [55].

B.2 Compact finite difference for surface tension

Now we use the compact finite difference method to approximate the

curvature of a curve defined by a finite number of connected points. Our

method is similar to the method by Fyfe, etc [56] who used a cubic spline

function to approximate the curvature. We assume that the curve is closed

and planar. The extension to 3D curve is straight forward. One of the reasons

that we are interested in the approximation of the curvature is that the surface

tension of an interface between two fluid phases could be written as

γ = σκ, (B.5)

where σ is a known coefficient and κ is the curvature. Thus the approximation

of the surface tension becomes the approximation of curvature.

From differential geometry, we know that

~r(s)ss = κ~β, (B.6)

where s is arclength, ~r(s) is a position vector for the curve, κ is the curvature

and ~β is the unit normal vector perpendicular to the tangent of the curve.

We only need to approximate ~r(s)ss, from which we obtain the curvature

110



κ = ‖~r(s)ss‖ and the normal ~β = ~r(s)ss

κ
. Since ~r(s) is a vector function, let us

denote it as ~r(s) = (r1(s), r2(s)). Thus, in order to approximate ~r(s)ss, we need

to approximate the second derivative with respect to s of two scalar functions

r1(s) and r2(s). Considering that the grid length is often non-uniform, we can

not use equation (B.4) directly. Instead we use the following compact scheme

on a non-uniform grid:

c1f
′′
(xi − h) + f

′′
(xi) + c2f

′′
(i + αh) =

a1f(xi − h) + a2f(xi) + a3f(xi + αh)

h2
,

(B.7)

By using Taylor expansion, we get a 3rd order accurate scheme for f
′′

with

c1 = − −α− α2 + α3

(1 + α)(1 + 3α + α2)
,

c2 = − 1− α− α2

(1 + α)(1 + 3α + α2)
,

a1 =
12α

1 + 4α + 4α2 + α3
,

a2 = − 12

1 + 3α + α2
,

a3 =
12

1 + 4α + 4α2 + α3
.

B.2.1 First algorithm

Our first algorithm is the following. Approximating the arc length by

the length of the segments connecting two consecutive points and using the

formula (B.7), we set up two systems of equations for the unknowns: r
′′
1 (si)

111



and r
′′
2 (si). The two matrices for the two systems of equations are the same

and only the right hand sides are different.

B.2.2 Second algorithm

The above approach gives the curvature with 2nd order accuracy since

the arc length is approximated by a linear function. We will also show this

by an example in the next section. If 2nd order accuracy is not sufficient, we

improve the approximation of the arc length and then use the more accurate

arc length in equation (B.7). The new arc length Si from the ith point to the

(i+1)th point on the curve can be approximated by a cubic polynomial curve

(f(t), g(t)), where f(t) is determined by the following four equations:

f(0) = r1(si),

f(si) = r1(si+1),

f
′′
(0) = r

′′
1 (si),

f
′′
(si) = r

′′
1 (si+1),

and g(t) is determined similarly. Also f
′
(t) is given by:

f
′
(t) = −(6f(0)− 6f(si) + 2s2

i f
′′
(0)− 6sitf

′′
(0) + s2

i f
′′
(si) + 3t2(f

′′
(0)− f

′′
(si)))

6si

.

(B.8)

Now the new arc length can be integrated numerically using the expres-

112



sion

s =

∫ si

0

√
f ′(t)2 + g′(t)2dt. (B.9)

If needed, the above process can be iterated to obtain a more accurate approx-

imation for the arc length as in [56].

B.3 Example

Now we use our scheme on a simple test problem. Our test problem is

a circle with radius 1 and its center at (0,0). The grid points on the circle

are generated by random perturbation of an uniform grid. The sample code

is given in Table B.1.

Table B.1: The code for generating the grid points on the circle
// the following is written in C language
// npoints is the number of points on the circle
dtheta = 2*PI/(npoints);
for(i=0; i¡npoints; i++)
{
/* random number from [0,1]*/
tmp = ((double)rand())/RAND MAX;
/* the ith points lies on */
/* the circle between angle [(i-0.25)*dtheta, (i+0.25)*dtheta]*/
alpha = i*dtheta + (tmp-0.5)*dtheta*1.0/2;

P[i][0] = 0 + r*cos(alpha);
P[i][1] = 0 + r*sin(alpha);
}

The Table B.2 gives curvature errors with different number of grid points

for a particular computation. Since the grid points are generated randomly,

113



each computation with a fixed number of points gives different results.

Table B.2: Maximum curvature errors
maximum curvature errors

number of points max err using 1st method max err using 2nd method
4 2.375e-01 1.025e-1
8 6.350e-02 1.030e-2
16 1.873e-02 8.118e-4
32 5.355e-03 7.387e-5
64 1.540e-03 3.876e-6
128 3.635e-04 2.810e-7
256 1.005e-04 1.968e-8
512 2.333e-05 1.676e-9
1024 6.219e-06 2.114e-10

From the Table B.2 we can see that the curvature approximation for the

first method is about 2nd order accurate as having been predicted. The second

method is at least 3rd order accurate.

The compact finite difference method is very simple to use. However,

it can not be easily extended to 2D functions as is needed to define surface

curvature. Instead we are considering using the Bezier triangles (Bezier splines

on triangles) to approximate the curvature of triangulated surfaces.

114



Appendix C

Nonreflecting Boundary Conditions for an

Elliptic Problem

115



C.1 Introduction

In this section, we present an algorithm for solving an elliptic problem

on a rectangle domain without given boundary condition. Our problem is the

following equation for gravitational potential:

∆V (x) = 4πGρ(x), x ∈ Ω, (C.1)

where ∆ is the Laplacian operator, V (x) is the gravitational potential, G is

a gravitational constant, and ρ(x) is the mass density. The computational

domain Ω is a finite domain. Thus it is assumed that there are mass only

inside Ω. The specialty of this problem is that no boundary condition is given.

If the right hand side of equation (C.1) is zero, V (x) is radially symmetric

and the general solution ([50]) is

V (x) =





c1 + c2 log(r), 2D,

c1 + c2
1
r
, 3D.

(C.2)

It is well known (for example, see [57]) that by using a fundamental

solution K(x) which satisfies:

∆K(x) = δ(x), (C.3)

V (x), the solution to (C.1), could be written as:

V (x) =

∫

Ω

K(x− ξ)∆V (ξ)dξ = 4πG

∫

Ω

K(ξ)ρ(ξ)dξ. (C.4)

116



Noting the equation (C.3) is radially symmetric, it is easy to find the funda-

mental solution (see [50]):

K(x) =





1
2π

log(r), 2D,

1
4πr

, 3D.
(C.5)

There are several ways for solving (C.1). The first method is to use a very

large domain Φ to cover Ω, for example a rectangle in 2D or a box in 3D. Since

generally V (r) = O(1
r
) (r is the distance of x to the center of Ω), we know

that if the boundary of Φ is large enough, V (r) is approximately zero. Thus

we could approximate the value of V (x) at the boundary of Φ by 0. Then we

solve a finite difference approximation to the Laplace operator with these zero

boundary conditions on the domain Φ. The advantage of such an approach is

that it is easy to program. The disadvantage is that since V (x) goes to zero

slowly in the order of 1
r
, a large domain is needed if high accuracy is needed,

leading to many unknown variables.

The second method is to solve (C.1) using directly the formula (C.4).

Thus for any point x ∈ Ω, we obtain the solution V (x) by quadrature. How-

ever, since the integral is a volume integration, if there are N grid points

inside the computational domain Ω where we need to evaluate V (x), we need

approximately O(N2) computation. Thus the brute force approach is not ap-

plicable, especially when the problem size is large. The fast multipole method

[50] could be used to reduce the computation to O(N). However, the corre-

sponding constant is very large.

The third method is to use a nonreflecting boundary condition on the

117



boundary of Ω [58, 59], where generally the boundary condition consists of a

local or non-local operator.

Our method combines the second and third approach. The idea is simple.

We first use the formula (C.4) to compute the value of V (x, y) on the boundary

(which could be regarded as a nonreflecting boundary condition) and then use

a finite difference method with this boundary condition.

In the following, we first give our method and then give the discussion.

C.2 Method

In this section, we would explain our method using a 3D cylindrical sym-

metric solution as example. In a cylindrical coordinate system, with (r, φ, z)

as coordinates, the Laplacian operator is written as:

∆ =
1

r

∂

∂r
(r

∂

∂r
) +

1

r2

∂2

∂φ2
+

∂2

∂z
. (C.6)

When the solution is cylindrical symmetric, the equation (C.1) becomes

1

r

∂

∂r
(r

∂V (r, z)

∂r
) +

∂2V (r, z)

∂z
= 4πGρ(r, z). (C.7)

For simplicity, we assume the computation domain is a rectangle for (r, z),

[0, 1]× [0, 1]. We partition the domain into a uniform grid as shown in Figure

C.1. Let δr and δz be the width of the grid. Denote ri = i × δr, zi = i × δz

and fi,j the value of f(ri, zj).

Our method consists of the following three steps:

118



r

z

(0,0) 1

1

(i,j) (i+1,j)(i-1,j)

(i,j+1)

(i,j-1)

Figure C.1: computational domain, grid and the stencil for the finite difference
method

1. compute the artificial boundary condition by using formula (C.4);

2. discretize the equation (C.7) using a central finite difference method (or

any other appropriate method, for example, finite elements);

3. solve the matrix and get the solution V (x) inside Ω; if the gradient of

V (x) is needed, we simply differentiate V (x) to obtain it.

When using the finite difference methods (FD), the variables are either

cell-centered or vertex-centered. The main difference between these methods

lies near the boundary. When cell-centered FD is used, the discretization of

the boundary conditions (both Dirichlet and Neumann boundary conditions)

require ghost cells outside the computational domain. When vertex-centered

FD is used, Dirichlet boundary condition needs no special treatment. However

the Neumann boundary condition needs a one sided three point stencil finite

difference which is 2nd order accurate so that when combined with the central

119



FD inside the domain, the whole scheme is 2nd order accurate. When the

artificial boundary condition (the value of V (x) on the boundary) is given,

the above treatment of the boundary is standard, and we do not show the

discretization of the boundary here.

To compute the artificial boundary condition using equation (C.4), we

need to evaluate the integration numerically. For the cylindrical symmetric

Laplacian, (C.4) becomes

V (x) = 4πG

∫

Ω

K(ξ)ρ(ξ)dξ = 4πG

∫ 1

z=0

∫ 1

r=0

∫ 2π

φ=0

1

4πr
ρ(t, φ, z)dφdrdz. (C.8)

Quadrature rules can be used to solve the this integration. For example, the

simplest midpoint rule gives:

V (x) = 4πG
∑
i,j

ρ(ri, zj)δrδz,

where

ρ(ri, zj) =
∑

k

ρ(ri, zj, φk)δφ.

The discretization of equation (C.7) inside the domain is simply the cen-

tral finite difference method:

1

r

ri+ 1
2

Vi+1,j−Vi,j

δr
− ri− 1

2

Vi,j−Vi−1,j

δr

δr
+

Vi,j+1 − 2Vi,j + Vi,j−1

δz2
= 4πGρ(ri, zi). (C.9)

A similar method is to first take the derivative with respect to r in (C.7) and

then use finite differences.

120



How fast is our algorithm? If Ω is a rectangle in 2D or cube in 3D and the

grid is uniform, then there are approximately O(
√

N) points on the boundary

in 2D and O(N2/3) in 3D. Since computing V (x) at each boundary point

requires O(N) computational work, the time complexity of this algorithm

is O(N3/2) in 2D and O(N5/3) in 3D. The time complexity for solving the

matrix derived using the finite difference is generally O(Nlog(N)) which is

much smaller than O(N3/2) or O(N5/3). Thus, the most time consuming part

of our algorithm is the first step to compute the boundary condition using the

fundamental solution. To reduce the time of computation, we can use the fast

multipole method [50]. However, we need only use it to compute the solution

on the boundary. We estimate that the time complexity would be reduced to

at most O(Nlog(N)) for this method.

121



Appendix D

Cell Boundary Element Method

In this section, we compare the cell boundary element method [60–63]

with the mixed-hybrid finite element method. We will find that the cell bound-

ary element method has a similar formulation with the mixed finite element

method in that the fluxes on the edges of a element are a linear combination

of the potential defined on the edges of the same element.

The cell boundary element method (CBEM) is a special boundary ele-

ment method applied upon each element of the domain. The boundary ele-

ment methods [64–66] are elements methods where the boundary, instead of

the domain, is partitioned into elements and the unknowns are defined on the

boundary and values inside the domain is computed by a boundary integra-

tion. The cell boundary element method is a combination of FEM and BEM.

The computational domain is partitioned into finite elements as in FEM. Then

the matrix is set up using integration along the boundary of each element just

like the mixed FEM. In the following, we will show how to use the CBEM.

First, we need to show some basics from BEM. For more detail, refer

122



to [64–66]. As in [64], we develop the boundary element formulation for the

Laplace’s equation:

u,ii = 0 in Ω.

By using Gauss’s theorem and integration by parts, we get the Green’s second

identity: ∫

Ω

u,iiwdΩ−
∫

Ω

uw,iidΩ =

∫

Γ

(u,iw − uw,i)nidΓ. (D.1)

Now let u be the solution of the Laplace’s equation and w be the fundamental

solution. Substitute u,w into equation (D.1) and taking special care when

evaluating the integral of the Dirac distribution on the boundary, we have

c(ξ)u(ξ) +

∮

Γ

q∗(x, ξ)u(x)dΓ =

∮

Γ

u∗(x, ξ)q(x)dΓ, (D.2)

where u∗(x, ξ) is the fundamental solution, qi = u,i, q∗i = u∗,i and

c(ξ) =





1− α
2π

for ξ ∈ Γ,

1 for ξ ∈ Ω,

0 others.

where α is the angle of the boundary. The boundary element method use equa-

tion (D.2) to set up the matrix. Using some basis functions on the boundary,

we could get a system of equation of the following

HU + B = GQ,

where U,Q are the unknowns and H, G are some matrix. Multiply both side

123



by G−1, we have

Q = G−1HU + G−1B.

Notice the similarity of the above system of equations and those of equation

(3.11). They all say that the flux on the boundary are linear combination of

the potential. The cell boundary element method just uses the above equation

and using the flux continuity condition (3.13) to set up the matrix like the

mixed-hybrid finite element method.

124



Bibliography

[1] Mark A.Yerry and Mark S.Shephard. A modified quadtree approach to
finite element generation. IEEE Comput. Graph. Appl., 3(1):39–46, 1983.

[2] Mark A. Yerry and Mark S. Shephard. Automatic three-dimensional mesh
generation by the modified-octree technique. International Journal for
Numerical Methods in Engineering, 20:1965–1990, 1984.

[3] G. M. Nielson and J. Sung. Interval volume tetrahedrization. In IEEE
Visualization, pages 221–228, 1997.

[4] Yongjie Zhang. Boundary/Finite Element Meshing from Volumetric Data
with Applications. PhD thesis, The University of Texas at Austin, August
2005.

[5] Yongjie Zhang, Chandrajit Bajaj, and Bong-Soo Sohn. 3d finite element
meshing from imaging data. Communications in Numerical Methods in
Engineering, 194(48-49):5083–5106, 2006.

[6] R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhill. Octree-based decima-
tion of marching cubes surfaces. In IEEE Visualization, pages 163–169,
1996.

[7] S. Schaefer and J.D. Warren. Dual marching cubes: Primal contouring
of dual grids. In Pacific Conference on Computer Graphics and Applica-
tions, pages 70–76, 2004.

[8] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous,
incompressible, multifluid flows. J. Comput. Phys., 100(1):25–37, 1992.

[9] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi,
W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front-tracking method
for the computations of multiphase flow. J. Comput. Phys., 169:708–759,
2001.

125



[10] Jian Du, Brian Fix, James Glimm, and et al. A simple package for front
tracking. J. Comput. Phys., 213(2):613–628, 2006.

[11] Satish Balay, William D. Gropp, Lois C. McInnes, and Barry F. Smith.
Petsc home page. http://www.mcs.anl.gov/petsc, 2001.

[12] R. Falgout and et al. Hypre home page.
http://www.llnl.gov/CASC/hypre/software.html, 2007.

[13] Lapack home page. http://www.netlib.org/lapack/index.html, 2007.

[14] Jonathan Richard Shewchuk. Delaunay Refinement Mesh Generation.
PhD thesis, Computer Science Department, Carnegie Mellon University,
May 1997.

[15] D. L. Marcum. Efficient generation of high-quality unstructured surface
and volume grids. Engineering with Computers, 17(3):211–233, 2001.

[16] J.F. Thompson, B.K. Soni, and N.P. Weatherill. Handbook of grid gener-
ation. CRC Press, 1999.

[17] S. Owen. A survey of unstructured mesh generation technology. In 7th
International Meshing Roundtable, page 1998, 1997.

[18] J. Glimm and O. McBryan. A computational model for interfaces. Adv.
Appl. Math., 6:422–435, 1985.

[19] James Glimm, John W. Grove, Xiao Lin Li, Keh ming Shyue, Yanni Zeng,
and Qiang Zhang. Three-dimensional front tracking. SIAM Journal on
Scientific Computing, 19(3):703–727, 1998.

[20] I.-L. Chern, J. Glimm, O. McBryan, B. Plohr, and S. Yaniv. Front track-
ing for gas dynamics. J. Comput. Phys., 62(1):83–110, 1986.

[21] O. McBryan. Elliptic and hyperbolic interface refinement in two phase
flow. In J. Miller, editor, Boundary and Interior Layers - Computational
and Asymptotic Methods, Dublin, 1980. Boole Press.

[22] J. Glimm, B. Lindquist, O. McBryan, and L. Padmanabhan. A front
tracking reservoir simulator, five-spot validation studies and the water
coning problem. In R. E. Ewing, editor, Mathematics of Reservoir Sim-
ulation, Philadelphia, 1983. SIAM.

126



[23] Wei Guo. A Parallelized Point-Shifted Tetrahedral Grid for the Finite
Element Method. PhD thesis, SUNY at Stony Brook, May 2002.

[24] Yoon-Ha Lee. Stochastic Error Analysis of Multiscale Flow Simulations:
The Two-phase Oil Reservoir Problem. PhD thesis, SUNY at Stony
Brook, August 2005.

[25] M.D. Berg, M.V. Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, second
edition edition, 1998.

[26] Hanan Samet. The design and analysis of spatial data structures.
Addison-Wesley Series In Computer Science, 1990.

[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To
Algorithm. MIT Press, second edition edition, 2001.

[28] W.E. Lorensen and H.E. Cline. Marching cubes: a high resolution 3d
surface construction algorithm. Computer Graphics, 21(4):163–169, 1987.

[29] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolv-
ing Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science. Cambridge University Press, 1999.

[30] Stanley J. Osher and Ronald P. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer, 2002.

[31] Jules Bloomenthal (Editor). Introduction to Implicit Surfaces (The Mor-
gan Kaufmann Series in Computer Graphics). Morgan Kaufmann, 1997.

[32] HERBERT EDELSBRUNNER, LEONIDAS J. GUIBAS, and JORGE
STOLFI. Optimal point location in a monotone subdivision. SIAM J.
Comput., 15(2):317–340, May 1986.

[33] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a tri-
angulations. Int. J. Foundations of Computer Science, 13(2):181–199,
2002.

[34] Max Langbein, Gerik Scheuermann, and Xavier Tricoche. An efficient
point location method for visualization in large unstructured grids. In
T. Ertl, B. Girod, G. Greiner, H. Niemann, Hans-Peter Seidel, E. Stein-
bach, and R. Westermann, editors, Proc. 8th Int. Worksh. Vision, Mod-
eling, and Visualization. IOS Press, 2003.

127



[35] Alexandre J. Chorin. Numerical solution of the navier-stokes equations.
Math. Comput., 22:745–762, 1968.

[36] J. B. Bell, P. Colella, and H. M. Glaz. A second order projection method
for the incompressible naviercstokes equations. J. Comput. Phys., 85:257,
1989.

[37] David L. Brown, Ricardo Cortez, and Michael L. Minion. Accurate pro-
jection methods for the incompressible naviercstokes equations. J. Com-
put. Phys., 168:464–499, 2001.

[38] Charles S. Perskin. The immersed boundary method. Acta Numerica,
11:479–517, 2002.

[39] R.J. LeVeque and Z.L. Li. The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources. SIAM J.
Numer. Anal., 31:1019C1044, 1994.

[40] H. Johansen and P. Colella. A cartesian grid embedding boundary method
for poisson’s equation on irregular domains. J. Comput. Phys., 147:60C85,
1998.

[41] P.-A. Raviart and J.-M. Thomas. a mixed finite element method for
second order elliptic problems. In I. Galligani and E. Magenes, edi-
tors, Mathematical Aspects of Finite Element Methods, pages 292–315.
Springer-Verlag, 1977.

[42] Franco Brezzi and Michel Fortin. Mixed and Hybrid Finite Element Meth-
ods. Springer Series In Computational Mathematics 15, 1991.

[43] Alfio Quarteroni and Alberto Valli. Numerical Approximation of Partial
Differential Equations. Springer Series in Computational Mathematics
23, 1997.

[44] G. Chavent and J.E. Roberts. A unified physical presentation of mixed,
mixed-hybrid finite elements and standard finite difference approxima-
tions for the determination of velocities in waterflow problems. Adv. Wa-
ter Resources, 14(6):329–348, 1991.

[45] A. Younes, R. Mose, P. Ackerer, and G. Chavent. A new formulation
of the mixed finite element method for solving elliptic and parabolic pde
with triangular elements. J. Comput. Phys., 149(1):148–167, 1999.

128



[46] Douglas N. Arnold. Mixed finite element methods for elliptic problems.
Comput. Methods Appl. Mech. Engrg., 82:281–300, 1990.

[47] Catherine E. Powell. Optimal Preconditioning for Mixed Finite Element
Formulation of Second-Order Elliptic Problems. PhD thesis, The Univer-
sity of Manchester, December 2003.

[48] X.-D. Liu, R. Fedkiw, and M. Kang. A boundary condition capturing
method for poisson’s equation on irregular domains. J. Comput. Phys.,
160:151–178, 2000.

[49] A. Mayo. The fast solution of poisson’s and the biharmonic equations on
irregular regions. SIAM J. Numer. Anal., 21:285C299, 1984.

[50] A. Mckenney, L. Greengard, and A. Mayo. A fast poisson solver for
complex geometries. J. Comput. Phys., 118:348C355, 1995.

[51] Roman Samulyak, Jian Du, James Glimm, and Zhiliang Xu. A numerical
algorithm for mhd of free surface flows at low magnetic reynolds numbers.
J. Comput. Phys., 2007.

[52] J. Glimm, D. Marchesin, and O. McBryan. J. Comput. Phys., 39:179,200,
1981.

[53] Y.C. Zhou, S. Zhao, M. Feig, and G.W. Wei. High order matched interface
and boundary method for elliptic equations with discontinuous coefficients
and singular sources. J. Comput. Phys., 213:1–30, 2006.

[54] M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing
method for multiphase incompressible flow. J. Sci. Comput., 15(3):323–
360, 2000.

[55] LeLe. Compact finite-difference schemes with spectral-like resolution. J.
Comput. Phys., 103(1):16–42, 1992.

[56] D.E. Fyfe, E.S. Oran, and M.J. Fritts. Surface tension and viscosity
with lagrangian hydrodynamics on a triangular mesh. J. Comput. Phys.,
76:349–384, 1988.

[57] Robert C. McOwen. Partial Differential Equations: Methods and Appli-
cations. Prentice-Hall, 1991.

[58] Dan Givoli. High-order nonreflecting boundary conditions without high-
order derivatives. J. Comput. Phys., 170:849–870, 2001.

129



[59] Dan Givoli. High-order local non-reflecting boundary conditions: a re-
view. Wave Motion, 39:319–326, 2004.

[60] Y. Jeon and D. Sheen. Analysis of a cell boundary element method. Adv.
Comput. Math., 22:201–222, 2005.

[61] Y. Jeon, E.-J. Park, and D. Sheen. A cell boundary element method for
elliptic problems. Numerical Methods for Partial Differential Equations,
21:496–511, 2005.

[62] M. Tan, T. Farrant, and W.G. Price. A cell boundary-element method for
viscous laminar flow solutions. Proc. R. Soc. Lond. A, page 4277C4304,
1999.

[63] T. Farrant, M. Tan, and W. G. Price. A cell boundary element method
applied to laminar vortex-shedding from arrays of cylinders in various
arrangements. Journal of Fluids and Structures, 20:375–402, 2000.

[64] L. Gaul, M. Kögl, and M. Wagner. Boundary Element Methods for En-
gineers and Scientists: An Introductory Course with Advanced Topics.
Springer-Verlag, 2003.

[65] C.A. Brebbia and J. Dominguez. Boundary Elements: An Introductory
Course. McGraw-Hill Inc, 1989.

[66] J. Raamachandran. Boundary And Finite ELements. Narosa Publishing
House, 2000.

130




