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Abstract of the Dissertation

Modeling Excitable Cells Using Hybrid Automata

by

Pei Ye

Doctor of Philosophy
in

Computer Science
Stony Brook University

2008

Hybrid automata are an increasingly popular modeling formalism for systems

that exhibit both continuous and discrete behavior. Intuitively, a hybrid automaton

is an extended finite-state automaton, the states of which encode the various phases

of continuous dynamics a system may undergo, and the transitions of which are

used to express the switching logic between these dynamics. Excitable cells are a

good example of biologically inspired hybrid systems: trans-membrane ion fluxes

and voltages may vary continuously but the transition from the resting state to the

excited state is generally considered an all-or-nothing discrete response. In this

work, we first show that two existing models of excitable cells fall into the hybrid

automata framework. We then design a specific kind of hybrid automata: Cycle-

Linear Hybrid Automata (CLHA), to model multiple physiological properties of

excitable cells including action potential, restitution and hyper-polarization. Spatial

simulation demonstrates that our model is 8 times faster than the traditional models.

We present how machine learning techniques are applied to automatically learn

the parameters of CLHA from existing data and how reachability analysis is used

to verify critical conditions for the excitement of neurons. A formal analysis of

abnormal excitation (early afterdepolarization) in cardiac tissue is also included. At

last, a rational CLHA with more physiological details is presented.
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Chapter 1

Introduction

1.1 Hybrid Automata

Hybrid automata are an increasingly popular modeling formalism for systems

that exhibit both continuous and discrete behavior. Intuitively, a hybrid automaton is

an extended finite-state automaton, the states of which encode the various phases of

continuous dynamics a system may undergo, and the transitions of which are used

to express the switching logic between these dynamics. Hybrid automata are well

suited as a computational model for continuous-discrete systems as they possess

an intuitive graphical representation, can be used in a natural way to achieve a

piecewise, possibly linear, approximation of any nonlinear systems and facilitate

formal analysis due to their automata-theoretic nature.

Traditionally, HA have been used to model embedded systems, including au-

tomated highway systems, [22, 60], air traffic management, [45, 47], embedded

automotive controllers, [7], robotics, [5] and real-time circuits. [48].

1.1.1 Formal Definition

Intuitively, aHybrid Automaton (HA) is an extended finite-state automaton,

where each state is endowed with a continuous dynamics [35].

Formally, an HAA = (X,G, init, inv,flow, jump,event) over finite setΣ of

eventsis a 7-tuple, whose components are as follows:

1
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[TurnOn

OFF ON[TurnOff

x = 20 ẋ = −0.1x

{x ≥ 18}

ẋ = 5 − 0.1x

{x ≤ 22}

∨x > 21]

∨x < 19]

Figure 1: A thermostat system modeled as an HA.

• A finite setX of real-valuedvariablesx1, . . .,xn; their dotted formẋi∈ Ẋ rep-

resents first derivatives and their primed formx′i∈X′ represents values at the

conclusion of discrete steps (jumps);n is called thedimensionof A .
• A finite control graph G = (V,E), where vertices inV are calledmodesand

edges inE are calledswitches.
• For each modev∈V, vertex-labeling functionsinit, inv andflowwith domain

V and rangeP, whereP is the set of all logical predicates. Initial condition

init(v) and invariantinv(v) are predicates with free variables fromX. Flow

flow(v) is a predicate with free variables fromX∪ Ẋ representing a set of

ordinary (partial) differential (in)equalities.

• A finite setΣ of eventswhich are essentially binary variables controlled from

outside the system, and an edge-labeling functionevent: E → Σ that assigns

to each switch an event.

• Edge-labeling functionsjump:E→ (Guard,Action) whereGuard is the set of

predicate with free variables fromX∪Σ andAction is the set of assignments

that update the variables inX′.
Intuitively, A spends time in its modesv∈V, where it updates its variables

according to the flow predicateflow(v). Jumpsjump(e) on switchese= (v,w) are

in contrast instantaneous, wherev is the beginning mode andw is the end mode

of the switch. A jump one is taken whenever the jump’s guardjump(e).guard is

enabled for the current values of variablesX, or the invariant of the current mode

inv(v) is unsatisfied.

An HA has a natural graphical representation as a state-transition diagram,

with control modes as the states and control switches as the transitions. Flows

and invariants (predicates within curly braces) appear within control modes, while

jump conditions (in square brackets) and actions appear near the control switches.
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We shall use lower-case Roman letters, such asx, y, v, and possiblyvx, vy, etc., to

denote continuous variables.

For example, letA be the HA of Figure 1, which models a simple

thermostat system. A is of dimension 1 withX = {x}, where x represents

the current temperature. Also,G = ({ON,OFF}, {(ON,OFF),(OFF,ON)}),
inv(OFF) = {x ≥ 18}, inv(ON) = {x ≤ 22}, f low(OFF) = {ẋ = −0.1x},
f low(ON) = {ẋ = 5− 0.1x}, jump((OFF,ON)).Guard = {TurnO f f∨ x > 21},
jump((ON,OFF)).Guard = {TurnOn∨ x < 19}, Σ = {TurnOn, TurnO f f},
event((OFF,ON)) = TurnOn,event((ON,OFF)) = TurnO f f. Initially, A is in

modeOFF with x initialized to 20°C. While in this mode, the heater is off and the

temperature drops. It switches to modeONwhen either: (i) the eventTurnOnoccurs,

signifying that the heater has been manually turned on; or (ii) the temperature falls

below 19°C, but not below 18°C(when the system is forced to leave modeOFF). In

modeON, the heater is on and the temperature rises. It switches to modeOFFwhen

eventTurnOff is true or the temperature rises above 21°C, but not above 22°C.

Hybrid automata are in generalnondeterministicin that their mode switch-

ing times are nondeterministic. For example, consider the HA of Figure 1. In

the absence of eventTurnOn, it may switch from modeOFF to ONany time during

the temperature range18≤ x < 19. We found, however, that, for the modeling of

excitable cells, nondeterminism is not required. That is, their behavior can be cap-

tured by HAs whose mode switching times are uniquely determined. We also found

it sufficient to consider HAs whose flows are defined by differential equalities (i.e.

equations), rather than inequalities. Therefore, although nondeterminism and dif-

ferential inequalities in flow definitions are important HA modeling features, we

shall not consider them further in this report.

Linear Hybrid Automata By restricting the form of flow functions in the modes

of HAs (as long as other conditions), we can classify HAs according to their expres-

siveness power. One of them we are particularly interested is called Linear Hybrid

Automata. The definition is given below.

An HA is a linear HA (LHA) if it has the following properties:

• Linear flows. Every f low(v) is a linear time-invariant differential equation

of the formẊ = AX+BU, whereA is a constantn×n matrix,B is a constant
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scalar, andU is an input vector of dimensionn×1 that ranges inside a convex

polyhedron.

• Linear invariants and guards. The variable spaces that makeinv(v) and

jump(e).Guard true also form convex polyhedra.

1.1.2 Reachability Analysis

The appealing point of HA models is that, on one hand, HA can be used to

model complex dynamic behavior which is traditionally modeled in ordinary differ-

ential equation (ODE) or partial differential equation (PDE) systems; on the other

hand, it allows formal analysis carried out. We want to develop HA models to uti-

lize its analytical power to help us have a better understanding of the target system.

The most studied analysis on HA is called reachability analysis.

The reachability problem for HA is stated as follows:Will the system, subject

to certain initial conditions, ever enter an “unsafe” state?The problem is in gen-

eral undecidable; however, under certain restrictions on the HA flows or jumps, it

becomes decidable [6].

Linear HA

General HA

Timed Automata

Rectangular HA

Complexity

dx

dt
= 1

a <
dx

dt
< b

dx

dt
= f (x)

dx

dt
= Ax + UKronos

???

d/dt

HyTech

UPPAAL

Figure 2: The complexity of different subclasses of HA

Figure 2 illustrates the increasing complexity (in terms of the flows) of the reach-

ability problem for different subclasses of HA. Timed Automata (TA) [4] have the

simplest form of flow function: the only continuous variables are clocks whose

derivative is one, and clocks can be reset on transitions. Existing tools for TA
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include UPPAAL [10] and Kronos [64]. Initialized, rectangular hybrid automata

(RA) [36] generalize the class of TA by allowing non-clock state variables whose

flow functions are differential inclusions of the forma≤ dx/dt ≤ b, wherea andb

are integer constants. The prevalent tool for RA is HyTech [34]. O-minimal hybrid

automata (OA) restrict the jumps but allow O-minimal structures for the flows [43].

In particular, HA with linear differential equations (LHA) are in the class OA, and

therefore their reachability problem is decidable [6]. A popular tool for LHA is

d/dt [20].

In this report, we will present a preliminary result of reachability analysis of

the excitation of neuron. The analysis successfully shows the input current serves

as a bifurcation parameter in the system.

1.2 An Introduction to Excitable Cells

1.2.1 Action Potential

Excitable cells include neurons, cardiac cells, skeletal, and smooth muscle

cells. For cardiac cells, on each heart beat, an electrical control signal is generated

by the sinoatrial node, the heart’s internal pacemaking region. Electrical waves

then travel along a prescribed path, exciting cells in the main chambers of the heart

(atria and ventricles) and assuring synchronous contractions. At the cellular level,

the electrical signal is a change in the potential across the cell membrane which is

caused by different ion currents flowing through the cell membrane. This electrical

signal for each excitation event is known as anaction potential (AP). Figure 3

shows the AP waveform for a guinea-pig ventricular cell.

For non-pacemaking excitable cells, APs are externally triggered events: a cell

fires an action potential as an all-or-nothing response to a supra-threshold stimulus,

and each AP follows the same sequence of phases and maintains approximately

the same magnitude regardless of the applied stimulus. After an initial step-like

increase in the membrane potential, an AP lasts for a couple of milliseconds to hun-

dreds of milliseconds in most mammals. During an AP, generally no re-excitation

can occur. The early portion of an AP is known as the “absolute refractory period”

due to its non-responsiveness to further stimulation. The later portion is known as
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the “relative refractory period”, during which an altered secondary excitation event

is possible if the stimulation strength or duration is raised.

1.2.2 Restitution

When an excitable cell is subjected to repeated stimuli, two important time

periods can be identified: theaction potential duration (APD), the time the cell

is in an excited state, and thediastolic interval (DI), the time between the end of

the action potential and the next stimulus. Figure 3 illustrates the two intervals.

The function relating APD to DI with change in stimulation frequency is called

the APDrestitution function . As shown in Figure 4, the relationship is nonlinear

and captures the phenomenon that a longer recovery time is followed by a longer

APD. A physiological explanation of a cell’s restitution is rooted in the ion-channel

kinetics as a limiting factor in the cell’s frequency response. The sum of the APD

and DI is called theBasic Cycle Length(BCL).

The S1S2 protocolis often used to determine the restitution function of an

excitable cell. In this protocol, a cell is driven into a stable mode, in which a

stable APD may be observed, by first subjecting it to a train of so-called S1 stimuli

at a fixed BCL. Immediately thereafter, a single S2 stimulus, having a different

(i.e. shorter) BCL is delivered. As such, one can associate a DI-APD pair with each

running of the protocol, viz. the DI preceding the S2-induced APD. By repeating

this procedure and varying the DIs before S2, one gradually constructs the graph of

the restitution curve.

1.2.3 Hyper-Polarization

In cardiac cells, where repolarization phase is relatively long (lasting for sev-

eral hundreds milliseconds), hyper-polarization is the phenomenon that when the

cell is under negative stimulation (opposite direction to the stimulation for an AP)

during repolarization, the membrane voltage will be first brought down (more neg-

ative), then go back to the original value if the stimulation is small; or return to

resting if the stimulation is large. Fig. 5 shows hyper-polarization of guinea pig

ventricular cells. The figure is generated by superposition of different curves pro-

duced by using different stimulation currents. The stimulation happens at40mslater
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Figure 4: APD dependence on DI in LRd model.

than the beginning of AP and the stimulation currents range from0 to−200µA/cm2

. We can see that when current is small, at the end of stimulation, AP curve jumps
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back the original curve while when current increases, AP is brought back to the

resting phase.
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Figure 5: Hyper-Polarization of cardiac cells.

1.2.4 Action Potential Propagation

The most interesting property of excitable cells is not the single cell behavior,

but the propagation of AP in the excitable cell tissues. The propagation of AP in

neurons causes the passing of information in different components of nerve system

while the propagation of AP in cardiac cells causes the cardiac muscle contraction,

which pumps blood into body. However, the modeling of propagation process is

relatively independent from the modeling of single cells. The single cell model is

usually consisted of a set of ordinary differential equations (ODEs) together with a

Laplace operator which calculates the diffusion factor of the overall currents during

the propagation. The single cell model provides a simple interface (the membrane

voltage and the overall current, for example) to the propagation model and they

have to be coupled to do tissue simulation in 2D or organ simulation in 3D.

In a healthy heart, the propagation of AP will look like a normal wave. Under
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rare situations, the wave change into a spiral shape. If this happen, heart will fail to

contract, causing fatal consequences. The simulation of this spiral wave or reentry

wave is thus becoming an important aspects of cardiac cell research.

In this work, we have not studied the modeling of the propagation process in

HA. Instead, we embed our single cell model into a software tool which implements

a popular propagation model and run the resulting model to simulate the generation

of spiral waves. The result is presented in later chapters.

1.3 Related Work

1.3.1 Traditional Modeling Methods for Excitable Cells

1.3.1.1 ODE and PDE Systems

Modeling of the ionic processes that underlie cell excitation dates back

to 1952, when Hodgkin and Huxley formulated their model of the squid giant

axon [38]. Intuitively, the Hodgkin-Huxley (HH) model is that of a nonlinear

resistor-capacitor (RC) circuit with current sources, defining AP in terms of a stimu-

lation current and three ionic currents: (fast) inward sodium, (slow) outward potas-

sium, and a time-independent linear (leak) current. The ionic currents depend them-

selves on the AP via a gating mechanism (a time-varying conductance). The cor-

responding nonlinear system of equations is given below, where:V, m, n andh

are continuous state variables;V is the AP,m, n andh are the ion-channel gates;

gNa,gK,gL are the constants which represent the maximum channel conductances

for the sodium, potassium and leakage channel, respectively;ENa,EK,EL are the

constants for reversal potentials for these channels;m∞, h∞ and n∞ are the ion-

channel gates’ steady-state values, andτm, τh andτn are their time-constant values;

C is the constant cell capacitance andIst is the stimulation current.

CV̇ =−gNam
3h(V−ENa)−gKn4(V−EK)−gL(V−EL)+ Ist

τm ṁ= m−m∞ τm = 1/(αm+βm) m∞ = αm/(αm+βm)
τh ḣ = h−h∞ τh = 1/(αh +βh) h∞ = αh/(αh +βh)
τn ṅ = n−n∞ τn = 1/(αn +βn) n∞ = αn/(αn +βn)
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αm(V) = 2.5−0.1V
e2.5−0.1V−1

αh(V) = 0.07e−
V
20 αn(V) = 0.1−0.01V

e1−0.1V−1

βm(V) = 4e−
V
18 βh(V) = 1

e3−0.1V+1 βn(V) = 0.125e−
V
80

The HH model with its 3 membrane currents, 4 state variables, and 12 fitted param-

eters laid the foundation for subsequent models of excitable cells of increasing com-

plexity. All of these models use multiple continuous state variables (voltage, ion-

channel gates, ion concentrations) to describe action potential in different cell types.

One of the most popular cardiac-cell models is the dynamic Luo-Rudy model [46].

The LRd model uses 11 different membrane currents, more than 20 state variables

and over 150 fitted parameters to describe the AP. Due to space constraints, the full

structure of the LRd model is not listed here.

The single cell AP is usually modeled in ODE systems. When taking consid-

eration of the diffusion factor in the cell network, a Laplace operator is added when

calculating the overall membrane currents. Thus the tissue or organ simulation is

conducted on a large PDE systems.

1.3.1.2 Cellular Automata

While PDE systems are inefficient to run large-scale simulations and impos-

sible to analyze, people foundCellular Automaton (CA) as an alternative. A CA

is a pure discrete system which is consisted of a cell grid, where a cell can have

several state and all of them must follow the same rules to update according to the

neighboring cell states.

The limitation of CA is due to the fact that though it is efficient, the result is

quite qualitative rather than quantitative. It may lose too much information for a

real world problem, especially in the clinical studies.

1.3.2 Application of hybrid automata to Excitable cells

Recently, hybrid automata have been used to model and analyze biologi-

cal systems, such as cellular cycles and immune response [8], bio-molecular net-

works [2], gene-regulatory networks [21, 44, 56], protein-signaling pathways [29],

and metabolic processes [11]. The hybrid-system metaphor has also been used to
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develop algorithms for large-scale simulation of biological systems [42]. Biologi-

cal systems are intrinsically hybrid in nature: biochemical concentrations may vary

continuously, yet discrete transitions between distinct states are also possible.

Once an HA model has been developed for a biological system, it can be used

to explore the system’s parameter space. Moreover, because of their abstract nature

(relative to nonlinear systems), HA admit the possibility of formal systems analysis.

Of particular interest for dynamical systems arereachabilityandstability analysis.

The former allows one to check whether the transient behavior of an HA contains

undesired modes of operation [3, 29]. The latter allows one to check if the HA,

in steady state, exhibits unstable (or chaotic) behavior [12, 23]. The information

gleaned from these forms of analysis can be exploited tocontrol the system in

question such that it stays within desired limits.

Excitable cells are another good example of such hybrid systems - transmem-

brane ion fluxes and transmembrane voltage may vary continuously but transi-

tion from resting to excited state is generally considered all-or-nothing discrete re-

sponse. Fig. 6 shows this behavior. (The data is from Hodgkin-Huxley model.) As

the increase of stimulation current, the status of the cell changes fromfailed initial-

ization to full AP without intermediate state. This is easily transformed to a hybrid

system with two modes, where the switch from one mode to another depends on

whether the input exceeds the threshold value.

Similar bifurcation behavior can be found in the hyper-polarization phase as

well, as Fig. 5 illustrated.

Explicit Application EC excitation is a less studied area of HA application than

the other applications mentioned above. The major reason is that the dynamics of

AP is highly nonlinear, and model would become meaningless if AP is abstracted

away.

The closest work we are aware of is Dumas and Rondepierre [23]. They started

from Hodgkin-Huxley (HH) model, which is a 4-variable nonlinear system. First

through order-reduction, they eliminated 2 variables and derived a 2-state nonlinear

system; then by studying the phase portraits, they used piecewise linear functions

to approximate the nonlinear functions of each state equation; at last, they studied

bifurcation of the system through phase-space plotting. Though their work provided
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Figure 6: All-Or-Nothing response of action potential of neuron.

a way to analyze the original nonlinear system, it is less extensible than our method

and we will show that the same bifurcation result can be derived through a totally

automatic reachability analysis on the HA constructed for the HH model in a later

chapter.

Implicit Application through the Use of Heaviside Function The similar idea

that using piecewise linear function to approximate the original nonlinear system

has been adopted by many researchers in the cell modeling area when they simplify

the detailed PDE systems. This usually entails substitution of the fast-transitioning

continuous functions with aHeaviside function.

Even though those models constructed using Heaviside functions did not use

word “Hybrid” explicitly, we found it can be rewritten into HA framework equiva-

lently. In Chapter 2, we can see that some popular simplified models which adopted

the above idea are safely transformed into HA framework, showing the generality

of HA models.



Chapter 2

Hybrid Automata as a Unifying

Framework for Modeling Excitable

Cells

During the early stages of the quest for models of excitable cells amenable

to analytical investigation, FitzHugh and Nagumo proposed an approximate model

of excitable cells [26], referred to here as the FHN model. With their model, they

showed that a modified version of the Van der Pol oscillator with two state variables

can mimic the essential features of the Hodgkin-Huxley dynamics.

Subsequently, a piecewise-linear version of the FHN model was proposed by

McKean [49] which used aHeaviside functionto represent switches between linear

regimes or modes. Since then, the Heaviside function has been used in different

simplified renditions of excitable-cell models to achieve piecewise control.

In this chapter, we first show how a dynamic system with Heaviside function

turns into a hybrid automaton, then rewrite two widely accepted models into hybrid

automata framework.

2.1 From Heaviside Control to Hybrid Automata

Discrete transitions in system behavior, such as those captured by Heaviside

functions, are an integral part of the HA formalism. LetS be a dynamic system

13
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Mode 1Mode 0

[x ≤ 0]

v̇ = f(0, y)

[x ≥ 0]

v̇ = f(1, y)

{x ≥ 0}{x ≤ 0}

Figure 7: Heaviside function recast as an HA.

defined using the Heaviside function. We present a systematic way to transform

S into an equivalent HA. The Heaviside functionH(x) is a discontinuous function

defined as follows:

H(x) =

{
0, x < 0;

1, x≥ 0.
(1)

Assuming that the state equation ofShas the structure of Equation (2), where

~v is a vector of state variables and which isx, it is straightforward to show thatS is

equivalent to the HA of Figure 7.

v̇ = f (H(x),y), ~v = (x,~y) (2)

One can generalize the above translation to any dynamic system whose state

equations are defined using Heaviside functions. In the following, we apply this

translation to two recently proposed approximate models for cardiac-tissue ex-

citability: the piecewise-linear model of Biktashev [14] and the nonlinear model

of Fenton and Karma [25].

2.2 Biktashev’s Model

The increasing complexity of excitable-cell models describing AP morphol-

ogy with large sets of state variables and nonlinear differential equations triggered

continuous efforts to obtain simplified descriptions that preserve important proper-

ties.

Biktashev made the observation that the widely used FHN model is not sophis-

ticated enough to capture the propagation failure due to dissipation of the wavefront,
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a phenomenon seen in more realistic models [14]. This was attributed to the more

phenomenological nature of the FHN model, which was not directly derived from

the original HH model, but rather devised to mimic its properties. Instead, a formal

derivation procedure was proposed based on singular perturbation theory developed

by Tikhonov and Pontryagin [54,58]. The procedure reduces the size of the differ-

ential equations by taking advantage of the fast-slow nature of the system; i.e. by

separating the state variables into two groups, fast-slow, and by linking the two

sets of equations via a perturbation parameter. The model thus obtained was able

to overcome the above-mentioned deficiency of the original FHN model. Further-

more, its simplicity allowed analytical treatment [14,15,57].

Consider Biktashev’s simplified model [14] below, whereH is the Heaviside

function,E is the transmembrane voltage,h is the probability density of a sodium-

channel gate being open,D is the (constant) diffusion coefficient, andτ is also

constant.Ė andḣ are the time derivatives of state variablesE andh, and∇(D∇E) is

the second-order directional derivative on the 2-D space, representing the diffusion

factor when modeling the spatial propagation of cell excitations.

Ė = ∇(D∇E)+H(E−1)h (3)

ḣ =
1
τ
(H(−E)−h) (4)

From the prespective of one cell,∇(D∇E) is the (input) stimulation currentIs
produced by neighboring cells. Hence, equation (3) can be rewritten as follows:

Ė = Is+ H(E−1)h. Applying the transformation process for systems employing

Heaviside control (see the previous subsection) yields the 3-mode HA of Figure 8,

with each mode having flows described by linear time-invariant (LTI) differential

equations.

The linearity of the flows is clearly an advantage of this model, as it supports

efficient simulation and detailed analysis. However, the simplicity of Biktashev’s

model comes at a price: the inability to faithfully reproduce AP morphology, as

discussed in [14, 15]. This is probably due to the treatment ofτ as a constant,

when in reality it is a voltage-dependent parameter that can vary over a relatively

wide range. Recently, this piece-wise linear formulation has been augmented with
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Figure 8: Biktashev’s model in the HA framework.

non-Tikhonov asymptotic reduction to obtain a more realistic AP morphology. For

example, Biktashev started with the Courtemanche model of the atrial heart cell [18]

and applied asymptotic embedding, considering fast and slow variables, to obtain a

reduced system [15, 55]. The resultant model captures AP morphology well, but is

non-linear in each of the modes separated by a Heaviside function.

2.3 The Fenton-Karma Model

In [25], Fenton and Karma proposed a three-variable ionic model as a substi-

tute for the full ionic LRd-type models, by grouping the various ion currents into

three generic ones: fast inward currentI f i , slow inward currentIsi, and slow outward

currentIso. The corresponding three-variable model given below (Equations 5-11)

contains dynamic functions for the normalized membrane voltageu, inactivation-

reactivation gatev for I f i , and gatew for Isi:

u̇ = ∇ · (D̃∇u)−Jf i(u;v)−Jso(u)−Jsi(u;w) (5)

v̇ = H(uc−u)(1−v)/τ−v (u)−H(u−uc)v/τ+
v (6)

ẇ = H(uc−u)(1−w)/τ−w−H(u−uc)w/τ+
w (7)

Jf i(u;v) =− v
τd

H(u−uc)(1−u)(u−uc) (8)

Jso(u) =
u
τo

H(uc−u)+
1
τr

H(u−uc) (9)

Jsi(u;w) =− w
2τsi

(1+ tanh[k(u−usi
c ]) (10)
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si

c
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w
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2τsi

(1 + tanh(k(u − u
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c
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c
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Figure 9: HA for the Fenton-Karma 3-variable, 3-ion-current model.

whereJf i(u;v), Jsi(u;w), andJso(u) are the normalized versions ofI f i(u;v), Isi(u;w)
andIso(u), respectively;uc andusi

c are the thresholds for activation ofI f i andIsi; τ+
v ,

τ−w, τ+
w , τd, τo, τr , andτsi are time constants.

τ−v (u) = H(u−uv)τ−v1
+H(uv−u)τ−v2

(11)

τ−v (u) is further defined by the Heaviside function of Equation (11), whereuv is the

threshold potential andτ−v1
, τ−v2

are time constants.

The Fenton-Karma model recast as an HA is shown in Figure 9, where the HA

was derived by taking into account the definition of the Heaviside functions.

The Fenton-Karma model has the flexibility to match AP morphology by cor-

rect selection of the parameters, possibly via an optimization procedure. It also has

been shown to properly model restitution properties of other more complex mod-

els or empirically obtained data. However, similar to Biktashev’s asymptotically

reduced models, the resultant simplified system is still nonlinear and therefore not

particularly well suited to analytic treatment.



Chapter 3

Modeling Excitable Cells Using

Cycle-Linear Hybrid Automata

In the previous chapter, we saw that computational models of excitable cells

employing the Heaviside function for discrete control can be recast as an HA. In

particular, Biktashev’s simplified model [14] corresponds to an LTI-HA: an HA

having linear time-invariant (LTI) flows in each mode. An LTI-HA, such as Bikta-

shev’s, is amenable to efficient numerical (or event-driven [59]) simulation as well

as formal analysis. Biktashev’s simplified model and the corresponding HA are,

however, unable to faithfully capture AP morphology.

Biktashev’s more sophisticated models and the Fenton-Karma model corre-

spond to HA having nonlinear flows in at least one mode, and faithfully capture

AP morphology and restitution properties. Due to the nonlinearity present in these

models, however, HA simulation is less efficient and powerful analysis techniques

developed for linear systems are not directly applicable.

Given this state of affairs, we propose Cycle-Linear Hybrid Automata (CLHA)

as a new HA-based formalism for modeling excitable cells. The CLHA formalism

was designed to be both (i) abstract enough to admit formal analysis and efficient

simulation; and (ii) expressive enough to capture the AP morphology and restitution

properties exhibited by classical, nonlinear excitable-cell models (HH, LRd, and

NNR, in particular).

18
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The basic idea behind the CLHA model is the observation that, during an ac-

tion potential, an excitable cellcyclesthrough four basic modes of operation—

resting, stimulated, upstroke, early repolarization, plateau, final repolarization—

and the dynamics of each mode is essentially linear and time-invariant (LTI). Thus,

on a per-cycle basis, a CLHA can be viewed as an LTI-HA. To capture possibly

nonlinear, frequency-dependent properties such as restitution, the CLHA model is

equipped with a one-cycle memory of the cell’s voltage—in particular, the value

of the cell’s voltage when it was last subjected to an outside stimulus—and the

per-mode parameters of the current cycle’s LTI system of differential equations are

updated according to this voltage. Consequently, the model’s behavior is linear in

any one cycle but appropriately nonlinear overall.

3.1 CLHA Derivation Method

The method we used to derive the CLHA model for excitable cells focuses on

the following three issues:

Topology The topology of a CLHA refers to the design of its control graph; i.e. the

control graph’s modes and switches.

Flows Let A be a CLHA defined over a set (vector) of state variablesX. The

dynamics ofA is determined by the dimension ofX and, for each modeq of

A , the form ofq’s flow (system of ODEs inX).

Adaptability This refers to the mechanism built into the CLHA model that allows

it to exhibit stimulation-frequency adaptability. This feature is essential for

the successful modeling of AP morphology and restitution.

The discussion of our derivation method proceeds as follows. We first consider

topology and flows, and in the process derive an LTI-HA modelA1 that approxi-

mates the AP trajectory of one representative AP cycle of an excitable cell. Since

for one AP cycle we are able to use LTI flows in each mode,A1 is an LTI-HA. We

then turn our attention to adaptability. In the process, we derive our final CLHA

modelA2, which offers an accurate approximation of the (infinite-trajectory) phase
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Figure 10: (a) Major AP phases. (b) Structure of the CLHA model.

space of the original nonlinear system by introducing a memory unit into LTI-HA

A1. Finally, we give the formal definition of the CLHA model.

3.1.1 Topology

The choice of modes for both our LTI-HAA1 and CLHAA2 models is inspired

by the fact that, although the AP for different cell types (neuron, cardiac myocyte,

etc.) or different species (guinea pig, neonatal rat, etc.) exhibit different waveforms,

when observed over time, one can universally identify the following phases within

a cycle:resting, upstroke, early repolarization, plateau or later repolarization,

andfinal repolarization . Figure 10(a) shows a typical AP cycle for a guinea pig

ventricular cell. The voltage thresholdsVT , VO andVR serve to delineate one phase

of the AP cycle from another.

For the purpose of mode identification, we are also interested in the period of

time when an excitable cell is stimulated and can be further subjected to external

stimulation. We shall refer to this mode asstimulated, and allow the CLHA model

to accept input within this mode. This leads us to the following choice of four modes

for our CLHA model in order to cover the complete AP cycle:stimulated (ST),

upstroke (UP), early repolarization and plateau (EP), andfinal repolarization

and resting (FR).

As illustrated in Figure 10(b), where flows are momentarily ignored, the mode

transition relation forA1 andA2 is generally cyclic in nature, although we allow the

cell to return to modeFR from modeST when it is under insufficient stimulus.

Due to its topology,A1 and A2 already possesses two common features of
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excitable cells:absolute refractorinessand graded response to sub-threshold

stimulation. Regarding the former, once a cell is excited, e.g., with a stimulus

current, it enters an absolute refractory period, where the cell is nonresponsive to

further excitation. This is reflected in our models by modesUP andEP, during

which no further input is accepted and the cell cannot return to modeUP. Another

excitation is possible only when the cell is inFR, and is captured with by a begin-

stimulation eventes that moves the model to modeST.

Graded response to sub-threshold stimulation manifests in modeST, where a

cell accumulates its membrane voltage by accepting an input current. As soon as

its voltage exceeds thresholdVT , the cell moves to modeUP. Otherwise, should the

end-stimulation eventes occur whilev < VT , the cell returns to modeFR. The cell

returning to the resting phase is ultimately a consequence of the refractory modes:

if the stimulus occurs at a sufficiently high pace, the second stimulation event may

be missed.

The physiological separation of modes (or phases) of the AP has been our

guiding principle for mode identification in our HA models. Recently, however, we

have investigated the automated splitting of modes based on mathematical proper-

ties of AP waveforms other than their physiological meaning [32]. In the case of

modeST, there are two situations. In the single-cell case, since the outside stimu-

lus can be specified before simulation begins, eventses andes are well-defined. In

spatial simulations, where a cell may also accept stimuli from its neighbors, events

es andes represent respectively the abstraction of the process of the cell sensing its

neighbors’ potential and subsequently deciding to fire. Although the use of these

events in the spatial setting may seem somehow arbitrary, spatial simulations us-

ing the HA models are both efficient and capable of reproducing reentry waves in

cardiac tissues. HA-based spatial simulation is discussed in a separate paper [62].

3.1.2 Flows

The basic idea behind the flows of LTI-HAA1 is to capture the nonlinear

dynamics (morphology) of a single AP in a piecewise-linear fashion. Since the AP

(voltagev) is the only observed variable and we do not have other constraints on

the dynamics of state variables, the flows in each mode can be described in a purely
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linear manner as follows:

Ẋ = AX (12)

Ẋ is the first derivative ofX with respect to time andA is a constant diagonal

matrix. Thus, the only interdependencies among the state variables is through the

observablev. Regarding the system’s dimension, the greater the number of state

variables, the greater its precision, with the complexity of the system description

increased as well. We choose here to use three state variables,vx, vy, vz, as a balance

between precision and system complexity, with the overall membrane voltagev

defined as follows:

v = vx−vy +vz (13)

Let A = diag(αx,αy,αz). The flows in modesUP, EP andFR, where no input

is accepted, are given by:

v̇x = αxvx, v̇y = αyvy, v̇z = αzvz (14)

As discussed in detail in Section 3.3, curve-fitting techniques are used on a

mode-by-mode basis to determine parametersαx, αy, andαz such thatA1’s output,

i.e. the APv, reproduces up to a prescribed error margin the AP of the original

nonlinear system.

By considering a linear dependence on the input in modeST, we still remain

within the LTI-HA framework, but are now able to capture a family of trajectories,

one per input:

v̇x = αxvx +βx Is, v̇y = αyvy +βy Is, v̇z = αzvz+βzIs (15)

As in the other modes,αx,αy,αz andβx,βy,βz are the constants to be fitted.

3.1.3 Adaptability

The shape of the AP generated byA1 is fixed by the constant (matrix and

scalar) parametersα, β, VT , VO andVR. Moreover, the APD depends solely on the
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stimulation frequency, as the timeA1 spends in modesST, UP, andEP (for fixed

amplitude ofIs) is constant.

In contrast, the original nonlinear system has a phase space comprising in-

finitely many trajectories. To obtain an accurate approximation of this space, we

derive CLHA A2 from A1 by generalizingA1’s constant parametersα, β, VO and

VT to cycle-constantfunctionsα(θ), β(θ), VO(θ) andVT(θ), whereθ is a normal-

ized, one-cycle memory of the voltage. The derivation ofA2 from A1 is based on

the following observations:
• APs in different cycles share a similar morphology. It should thus be possible

to to model them using equations possessing the same structure.
• According to the restitution property, AP morphology is principally deter-

mined by the length of the previous DI. This indicates that a control strategy

based on a relatively simple, single-step memory unit will suffice for adapt-

ability purposes.

CLHA memory. The DI in a given AP cycle influences the shape of the AP in

the next cycle, in particular, the APD, stimulation voltageVT , and overshoot voltage

VO. Regarding the APD, the timeA2 spends in modesST andUP is relatively small

compared to the APD. One may therefore ignore the influence of the DI in these

modes. The timeA2 spends in modesFR andEP, however, can be considerable.

For adaptability purposes, it therefore behooves us to makeVT , VO and the time

spent in modesFR andEP a function of the previous AP cycle’s DI.

One can precisely model the DI by introducing a timer (a variable whose

derivative with respect to time is 1) that is reset whenA2 enters modeFR and

measured when the stimulation eventes occurs. To avoid the introduction of a new

state variable into the model, we choose instead to linearly approximate the DI with

the value ofA2’s voltagev upon the occurrence ofes. We remember this value by

introducing a discrete variablevn that is updated on the transition fromFR to ST

by the (assignment) actionv′n = v. (Note thatvn is “discrete” in the sense that its

derivative is zero in all modes. This is in contrast to the term’s traditional meaning:

that of a variable whose range of possible values is discrete.)

Let θ = vn/VR and recall that the invariant of modeFR is v≤VR. We thus have

that0≤ vn≤VR, and therefore0≤ θ≤ 1; i.e.,θ is a normalized version ofvn. To see

why it is a linear approximation of the DI, consider the triangles of Figure 11 having
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Figure 11: DI linearization.

basesDI andDIm. Clearly they are similar triangles and therefore(VR−vn)/VR =
DI/DIm. Sinceθ = vn/VR, we have thatθ = 1−DI/DIm. One may thus conclude

that θ is a (normalized) linear approximation of the DI of the previous AP cycle.

(Technically speaking,θ is anaffineapproximation of the previous cycle’s DI: a

linear approximation followed by a translation.)

To make the parameter matrixα a function ofθ in modesFR andEP of CLHA

A2, we introduce the cycle-constant parameter matrixα such that:

αx(θ) = αx · fx(θ), αy(θ) = αy · fy(θ), αz(θ) = αz · fz(θ), (16)

To refer to anα or f within a specific mode, we decorate them with superscripti,

0≤ i ≤ 3, corresponding to modesFR, ST, UP, EP, respectively. The use of this

convention can be seen, for example, in Table 1, where the definitions of functions

fx, fy and fz for modesFR (i = 0) andEP (i = 3) and different cell types (HH, LRd,

NNR) are given. See also Figure 12, where a graphical depiction ofA2 is given.

To see howθ influences the shape of the AP within modesFR andEP, first

note that the AP is a monotonically decreasing function within these modes. Also

note that fx, fy and fz in these modes are functions of the form1+ cθ, for some

constantc. Then observe that the larger the value ofθ, the larger the value offx(θ)
(similarly for fy and fz), and therefore the larger the value ofαx(θ). Sinceαx(θ)
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Figure 12: CLHA model of excitable cells.

appears as a coefficient of an exponential function in the analytical solution forv, a

largerθ will make for a steeper (faster-decaying) AP in these modes, and therefore

a shorter AP.

Further observe that, althoughθ is a linear approximation of the DI, its effect

on the APD isnonlinear. This is because, in modesFR andEP, αx(θ) appears as

the exponent in one of the terms in the analytical solution forv (similarly for αy(θ)
andαz(θ)).

To model the dependency of the threshold voltageVT and overshoot voltage

VO on the DI, we replace constantsVT andVO with cycle-constant functionsVT(θ)
andVO(θ). Their definitions are also given in Table 1. Putting it all together, we

obtain the CLHAA2 of Figure 12.

3.2 Formal Definition of the CLHA Model

Given an HAA = (X,G, init, inv,flow, jump,event), we say thatA is cycle-

linear if the following conditions hold:
• The set of variablesX is partitioned into a vector~x of continuous variables

and a vector~θ of discrete variables.
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• There exists a simple cycle within the control-flow graphG = (V,E) that

includes all the vertices inV.
• ~θ is updated by alljumpsto the initial mode.
• For a fixedθ and for each modev∈V, flow(v) is an LTI-system of the form

x = α(θ)x+β(θ)u, whereu is the input.
• For each modev∈V, inv(v) is a (linear) predicate of the formx#γ(θ), where

# is one of{≤,≥,<,>} and~γ(θ) is a constant vector.
• For each switche∈E, jump(e).guard is a predicate having the same form as

that of an invariant.

3.3 Fitting the CLHA Model to Excitable-Cell Mod-

els

In this section, we demonstrate the versatility of the CLHA model by fitting its

parameters to successfully capture the AP morphology and restitution of three pop-

ular mathematical models of excitable cells: Hodgkin-Huxley (HH) [38], dynamic

Luo-Rudy (LRd) [46], and neonatal rat (NNR).

Fitting the flow parameters of the CLHA excitable-cell model to a specific

mathematical model involves the following two-step procedure: (1) Using a single

representative AP, withθ set to 0, fit parametersαi
w, βi

w, 0≤ i ≤ 3, w ∈ {x,y,z}.
(2) Apply the well-known S1S2 protocol under varying frequencies to obtain a se-

quence of (DI,APD) pairs, which is then used to fit cycle-constant functionsf (θ)i
w,

0≤ i ≤ 3, w∈ {x,y,z}, VO(θ), andVT(θ). Prior to executing step (2), we “guess”

the form of theseθ-related functions; the guiding principle here is to use elementary

functions that take into account any extreme values these cycle-constant function

may assume.

For example, considerVO(θ) in the LRd model. In this case,VO, the overshoot

voltage, varies significantly from AP to AP, attaining a maximum value of 131.1

when θ = 0, and a minimum value of 50.1 whenθ = 1. ChoosingVO(θ) to be

the function131.1− 80.1
√

(θ) ensures thatVO attains its proper maximum and

minimum values over the range of APs used during the fitting process.

Curve fitting was performed using the unconstrained nonlinear optimization

routines included in the MATLAB Optimization Toolbox [1]. At each time step,
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HH LRd NNR

VT(θ) 26 44.5 39+9.7742θ
VO(θ) 106.5 131.1-80.1

√
θ 106.4-133.57θ2

VR(θ) 30 30 22+10.1091θ
f 0
x (θ) 1 1 1+θ

f 0
y (θ) 1 1 1+θ

f 0
z (θ) 1 1 1+θ

f 3
x (θ) 1 1 1

f 3
y (θ) 1 0.29e62.89θ +0.70e−10.99θ 1+0.5798θ

f 3
z (θ) 1 1 1

Table 1: Function definitions for CLHAA2.

target voltages derived via numerical integration of the HH, LRd, and NNR mod-

els are compared to the output from the CLHA model, also obtained via numerical

integration. A time step of 0.005ms was chosen to ensure convergence of the imple-

mentation of the Euler method underlying the numerical-integration method. The

goal of the optimization routines is to minimize the overall error, which is computed

as the sum of the squares of the difference between the outputs of the CLHA model

and the target voltages.

Although the optimization routines we used for curve fitting are completely

automatic, the results they produce depend on the initial values supplied to them. In

our case, we used a trial-and-error procedure to determine initial values that resulted

in a satisfactory fit. The initial values we ultimately used are available upon request.

The functions and parameters we obtained using our fitting procedure are sum-

marized in Tables 1 and 2.

For a single AP, a comparison of our CLHA model with HH, LRd and NNR

is presented in Fig. 36. In the figure, solid lines represent the values obtained via

numerical integration of the original nonlinear systems, while the dashed lines rep-

resent the values obtained via numerical integration of the corresponding CLHA

automaton. Figure 14 compares the restitution functions of the CLHA and LRd

models, when pacing the cell with different frequencies. It can be seen that we ob-

tain a nonlinear dependence consistent with that observed for the nonlinear models,
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HH LRd NNR HH LRd NNR

α0
x -0.1770 -0.0087 -0.0647 α2

x 2.4323 -0.0069 0.3518
α0

y -10.7737 -0.1909 -0.0610 α2
y 3.4556 0.0759 0.0395

α0
z -2.7502 -0.1904 -0.0118 α2

z 2.8111 6.8265 0.0395

α1
x 0.3399 -0.0236 -0.0473 α3

x -1.4569 -0.0332 -0.0087
α1

y 4.5373 -0.0455 -0.0216 α3
y 0.0339 0.0280 0.0236

α1
z 0.0732 -0.0129 -0.0254 α3

z -0.9904 0.0020 0.0087

βx -3.6051 0.7772 0.7404 βz 4.9217 0.2766 0.0592
βy 0.0284 0.0589 0.0869

Table 2: Parameter values for CLHAA2.

and also with that observed in live cells.
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Figure 14: Restitution comparison with LRd.

3.4 Simulation of AP Propagation in Cardiac Tissues

To simulate cardiac-cell excitation propagation in homogeneous tissues, we

need, in addition to a single-cell model, a diffusion model that describes the rela-

tionship of a cell with its neighbors. Here, we use a classic spatial 2D model as our

diffusion model. The comparison of a single cell’s solitary AP is demonstrated in

Fig. 36(c).

We extended the simulations to model cell arrays as large as400×400cells.

In these spatial simulations, the stimulation conditions (location and timing of

the stimuli) were varied to simulate classical phenomena typical for cardiac tis-

sue [30,31,51]. Running the original NNR model and the derived HA model under

the same stimulation protocols, we observed similar spatiotemporal patterns, in-

cluding spiral waves; see Fig. 15. This suggests that the proposed, reduced hybrid

automaton not only captures the AP morphology for a single cell, but also correctly

models the system in multicellular conditions when cell-to-cell communication in

propagating the AP is critical. Thus, we show for the first time that Hybrid au-

tomata constitute a suitable framework for modeling multicellular excitable tissue.

Additionally, a substantial improvement in computational efficiency was observed
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time=0s time=0.07s time=0.145s time=0.18s
1st stimulus occurs 2nd stimulus occurs

time=0.21s time=0.27s time=0.34s time=0.55s

Figure 15: Snapshots during spatial simulation of excitation propagation in HA model.

with the HA model, as shown in Table 3. The benefit of the computational simplic-

ity and scalability of the developed HA model will become especially valuable for

large-scale 2D and 3D simulations with millions of cells.

cell array size original(sec) hybrid(sec)

2×2 5 3
4×4 9 3
8×8 26 6

16×16 93 14
32×32 365 51
64×64 1460 198

400×400 61833 8018

Table 3: Performance comparison for 2-second simulation.

3.5 Modeling Hyper-Polarization

In this work, hyper-polarization is referred to the behavior of a cardiac cell

reacting to an external negative stimulation duringPlateaumode. In this time pe-

riod, a cell exhibits bifurcation behavior based on the amplitude of the input current
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(Fig. 5). The goal is to catch the dynamics of Luo-Rudy model (LRd) in our CLHA

model under the same input condition.

The previous CLHA model is not sufficient for the task because it abstracts the

system as anabsolute refractory periodright after theUpstroke (UP) mode until

Final Repolarization and Resting (FR)mode, which means the CLHA will not re-

spond to further stimulations whether it is positive or negative. Hyper-polarization

will not be incorporated without changing the CLHA structure and flow functions.

The construction of a new CLHA is consisted of the following two steps:

• Modify the transition graph according to the logic of hyper-polarziation.

• Fit the coefficients of the flow function based on the new data produced on

the LRd model.

Basically, the above procedure is the same with the construction method of

CLHA in Sec. 7.2, which shows that the CLHA model can be constructed accumu-

latively, one feature at a time. This evolution enables extendable design for complex

systems.

3.5.1 CLHA Topology

Incorporation of hyper-polarization in the previous CLHA model assembles

adding a decision branch in the original decision graph. We describe the decision

process before and after the incorporation of hyper-polarization in a high level pro-

gramming language style in Table 4 and Table 5.

Table. 4 shows the decision process of the CLHA derived using the method

described in Sec. 7.2. The input is set to0 in modeEP andFR because we sup-

pose that cell in these two modes will be in the absolute refractory period and not

response to further stimulation. To correctly model the hyper-polarization behav-

ior, the cell have to response to negative input (outward currents) duringEP. To

accomplish this, we modify the code in modeEP in the following two ways:

• Add a statement to detect the existence of a negative input.

• A conditional statement on the strength of the stimulation that shows the two

possibility of system behavior.

This part of codes is illustrated in Table 5. We introduce a new threshold value
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status = FR; // Initially, cell is in resting mode
Vn = 0;
vol = 0;
while (true){

input = checkInput();// check the existence of an input current
update(status,vol,input,Vn); // update voltage according to the flow functions
if (input>0){ // inward current

status = ST; // switch to Stimulated mode
//update membrane potential until the end of stimulation
while(input > 0){

update(status,vol,input,Vn);
input = checkInput();

}
if(vol <= VT) { // Stimulation is not enough

status = FR; //return to Resting mode.
}
else{ // threshold reached, fire an AP

reset(Vn); //reset Vn and thresholds
status = UP; // change status to Upstroke
while(status == UP){

update(status,vol,0,Vn,); // input = 0
if( vol >= VO ){ // switch to Early Repolarization and Plateau

status = EP;
}

}
while(status == EP){

update(status,vol,0,Vn); // input = 0
if( vol <= VR ){ // switch to Final Repolarization and Resting

status = FP;
}

}
}

}
} //while

Table 4: Decision process for a cardiac cell without hyper-polarization.
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VH which is the threshold between cell returning toEP and cell switches toFR at

the end of a negative stimulation. We will show in the next subsection how to derive

the value ofVH in detail.

3.5.2 Determining the Threshold and Flow Functions

The new threshold valueVH is the value determining the cell behavior at the

end of a negative stimulation during Plateau phase. This value is not constant during

the whole plateau phase according the the simulation results. It is monotonically

increasing as the time distance betweenS1 andS2 stimulations, which is illustrated

in Fig. 16. The solid lines show the cases where cell returns to EP and dashed lines

show the cases then cell switches to FR.
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Figure 16: Bifurcation behavior of LRd model.

As there is no global time variable in the CLHA model, in the same spirit of

Sec. 7.2, we use the memory unitvn to “remember” the voltage at whichs2 happens,

and use a function ofvn to defineVH . Actually, we can approximateVH in a linear

functionVH = fVH (vn), as can be seen in Fig. 17.

The cell behavior after a negative input is determined by two factors:when

is the negative input andhow strongis the input. The timing factor is captured

by memory unitvn, and the strength of the current determineshow deep downthe

voltage can reach at the end of the stimulation. As these two factors are orthogonal
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status = FR; // Initially, cell is in resting mode
Vn = 0;
vol = 0;
while (true){

input = checkInput();// check the existence of an input current
update(status,vol,input,Vn); // update voltage according to the flow functions
if (input>0){ // inward current

status = ST; // switch to Stimulated mode
//update membrane potential until the end of stimulation
while(input > 0){

update(status,vol,input,Vn);
input = checkInput();

}
if(vol <= VT) { // Stimulation is not enough

status = FR; //return to Resting mode.
}
else{ // threshold reached, fire an AP

reset(Vn); //reset Vn and thresholds
status = UP; // change status to Upstroke
while(status == UP){

update(status,vol,0,Vn,); // input = 0
if( vol >= VO ){ // switch to Early Repolarization and Plateau

status = EP;
}

}

while(status == EP){
input = checkInput();
if (input == 0){

update(status,vol,0,Vn); // input = 0
if( vol <= VR ){ // switch to Final Repolarization and Resting

status = FR;
}

}
elseif (input < 0){ //negative input currents

update(Vn); // update Vn and VH
while (input < 0){

update(status,vol,input,Vn);
}
update(Ve); //Ve is the voltage at the end of stimulation
if(vol<VH){ // cell switches to Resting mode

status = FR;
}
else{ } //remaining in EP mode

}
}}}}}

Table 5: Decision process for a cardiac cell with hyper-polarization.
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Figure 17: Linear dependence ofVH onvn

to each other, we have to introduce another memory unitve to record the membrane

potential at the end ofs2 stimulation and now the flow function is also a function of

ve.

The result is illustrated in Fig. 18. We put the simulation results from LRd

and the CLHA model side by side for a better comparison. Each row gives the

superposition of multiple simulation runs of each model for a given timing ofS2

and the range of the input currents (Ist), as shown in the title of each sub-figure.
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Figure 18: Comparison of the simulation result from LRd model and CLHA model.



Chapter 4

Learning Cycle-Linear Hybrid

Automata

In previous chapters, we showed that it is possible to construct a conceptually

simpler HA model for ECs that approximates with reasonable accuracy their elec-

trical properties. We called these HACycle-Linear HA(CLHA) to highlight their

cyclic structure and the fact that, while in each cycle they exhibit linear dynamics,

the coefficients of the corresponding linear equations and mode-transition guards

may vary in interesting ways from cycle to cycle.

The manual construction of CLHA, however, proved to be a tedious task, and

the CLHA so derived were tied to a particular type of EC and to a particular species.

Moreover, since recent advances in measuringin vitro the electrical activity of ECs

have resulted in the availability of extensive data sets, it was natural to turn our at-

tention to the following question:Given a training set of electrical measurements of

an EC, is it possible to automatically learn a CLHA that approximates the behavior

of the EC up to a required error margin?

In this chapter we address this question, by presenting a methodology for au-

tomatically learning CLHA models for two types of ECs: the squid giant axon

and the guinea pig ventricular cell. To the best of our knowledge, these are the

most accurate approximation models (with per-AP-cycle linear dynamics), devel-

oped for these ECs to date, both in terms of electrical-signal morphology and typical

excitable-cell characteristics such as refractoriness and restitution.

37
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To simplify the process of obtaining training sets, we usedvirtual measure-

ments obtained by applying the so-calledS1S2-protocol to existing nonlinear mod-

els of these ECs. Extending the method outlined here toin vitro data obtained in

the laboratory of the fourth author is a direction for future work.

The learning technique we have developed for CLHA is also of independent

interest, as we learn all aspects of excitable-cell CLHA models up to a given error

margin, including the number of modes; for each mode, the dimension of the state

space and the coefficients of its linear time-invariant dynamics; and all aspects of

the mode switching logic, including the jump conditions, thresholds and resets.

To do so, we use the modified Prony’s method to obtain an exponential fit for the

continuous per-mode linear dynamics. Moreover, in learning the CLHA, we make

no a priori assumptions about the dimension of the state space of the nonlinear

system we are targeting, nor the degree of its input and output.

We also learn the functions that adjust a CLHA’s mode dynamics and switch-

ing logic on a per-cycle basis. This aspect of our technique is critical in the case

of excitable cells, which exhibit the followingrestitution property: the longer the

recovery time for an EC, the longer in duration its subsequentaction potential.

4.1 Learning Method

Given a training set of APs generated by applying theS1S2-protocol to an

excitable cell of a particular species, our methodology for learning the CLHA that

approximates the cell’s behavior up to a given error margin consists of two phases.

In the first phase, we obtain for each AP a linear Hybrid automaton (LHA) whose

output is within the specified error bound. This involves identifying the segments

of the APs that correspond to the modes of the LHA, deriving the flows for each

mode, and the guards and reset maps for each transition. In each mode, we use the

modified Prony’s method (MPM) [52] to approximate the AP with a (normalized)

linear dynamics, i.e., with a sum of exponentials.

In the second phase, we derive a CLHA that combines the behavior of all the

LHAs and therefore captures all the APs in the training set. We exploit the fact that

the coefficients defining the flows, guards, and reset maps of the CLHA are func-

tions of theepochvariable which is updated during anepoch transition. We choose
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the variable to be a voltage-valued variable calledv0 and epoch transitions to be

those that are brought about by the occurrence of a stimulus. In finding the snap-

shot map which sets the value of the epoch variable in the post-state of epoch tran-

sitions, we once again use MPM. Specifically, we estimate the voltage-dependent

coefficients of the CLHA as an exponential regression of the constant coefficients

in the LHAs obtained in the first phase.

Assumptions. Our goal is to derive a CLHA, the output of which is within±2mv

of the output of the Luo-Rudy model, under the following class of stimuli: each

stimulation is a step of amplitude−80 µA/cm2, duration0.6ms, and BCL between

160 and400ms. The set of25 APs sampled every0.2ms, corresponding to BCL

160to 400ms, in 10msintervals, serves as thetraining setfor deriving the CLHA.

The performance of the learned CLHA is evaluated on thetest setconsisting of APs

with BCL from 165to 405ms, in 10msintervals, sampled at the same frequency.

Figure 19: Null/inflection points in the LRd APs.

Identifying Modes. To discover the points in the APs that correspond to mode

transitions in the target LHAs, we computed the null points (zeros of the first-order

derivative) and the inflection points (zeros of the second-order derivatives) of the

APs. This approach worked very well for the HH model, and the sections of APs

between successive null or inflection points were identified as the modes of the

LHAs.
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When directly applied to the LRd model, this approach yielded far too many

modes. In particular, there exist trains of inflection points in theP andR phases

of the APs (see Figure 19). This was somewhat surprising because the AP of these

phases appears as rather smooth line segments corresponding to “stretched” inflec-

tion points. The higher-order nonlinearity of the LRd model seems to have dealt

with such segments by generating trains of points whose tangent (first-order deriva-

tive) difference was smaller (in absolute value) than10−5. Based on this observa-

tion, we designed our own parameterized filter to eliminate such long sequences

of closely-spaced inflexion points. The filter parameter enable us to increase or

decrease the number of segments and thereby achieve the desired accuracy of the

CLHA.

Using the MPM described below, we were able to approximate each segment

with two exponentials and the entire AP to within the desired accuracy. Since,

however, this approach seemed to split each of theE and F phases in two, we

decided to eliminate one inflection point in each. In doing so, we were not able

to maintain the desired accuracy, unless we moved down the end-point of phase

P and up the starting-point of phaseR. The correctness of both transformations

was confirmed by analyzing higher-resolution APs, where these points were indeed

very close to their inferred position. The final seven points chosen are shown in

Figure 20(a).

Figure 20: (a) Inflection points after filtering. (b) Hybrid-automaton output.

Using Modified Prony’s Method to Obtain LHA. The null/inflection points par-

tition the AP into sections defining six modes of the LHA:S, U, E, P, F andR. We
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denote the set of modes by℘. Since these modes are always visited in order, the

voltages of the six inflection points define the guards (thresholds) for the corre-

sponding transition edges. We denote the transition voltages byVp, wherep∈∓, is

the mode in the post-state of the transition. For example, in the AP of Figure 20(a),

the transition fromU toE occurs atVE = 45.32mv. To completely define the LHA, it

remains to define the flows and the reset maps; for this we use the modified Prony’s

method [52].

The modified Prony’s method is a technique for fitting exponential or sinu-

soidal functions to time-series data. For fixedn, MPM minimizes theL2 distance

between time-series data and any functiony that solves a differential equation with

constant coefficients:
n+1∑

i=1

ci
di−1y
dti

= 0. (17)

Depending on the coefficientsci , the function estimating the solution of Equation 17

may be a complex or a real exponential, damped or undamped sinusoids. Further-

more, the input to the algorithm can be noisy periodic samples from the actual

solution. Because of these attractive features, MPM has found many practical ap-

plications.

Suppose the voltage in modep∈ ∓ of the AP can be approximated as a sum

of exponential functions:

v(t) =
n∑

i=1

aipebipt (18)

Then, we can specify the flows in each mode as :

∀ i ∈ {1, . . . ,n}, ẋi = bipxi andxi(0) = aip (19)

v =
n∑

i=1

xi ,

where thexi ’s are the state variables. The initial condition on the state variables

is set by the reset map of the transition from the previous mode. The accuracy of

the above approximation is a function ofn, that is, the number of state variables

used. Using the MPM withn = 2, we obtained, approximations that were within

the acceptable error bounds for all modes.
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The output of the resulting LHA, the original AP, and the error between the

two, are plotted in Figure 20(b). We apply this procedure to obtain an LHA for

each AP in the training set. The output of these automata, superimposed on the

original APs, are shown in Figure 21(a).

Figure 21: (a) Original APs and superposed LHA outputs for training set. (b) Sums of 2
and 3 exponentials for estimatinga1,a2,b1 andb2 for modeU.

Linear to Cycle-Linear HA. From the first phase, we obtain for each AP in the

training set and for each modep∈ ∓, the transition voltageVp for the guards, and

the coefficientsb1p, b2p, anda1p, a2p corresponding to the the differential equations

and initial values for the state variablesx1 andx2. In other words, we obtain one

linear hybrid automaton approximating each of the APs in the training set.

In the second phase, we combine these LHAs into a single CLHA by using the

transition to modeS (stimulus arrival) as the epoch transition, setting the value of

the epoch variablev0. We call the value ofv0 theepoch voltage. For each mode,

we find a function mappingv0 of each LHA to transition voltages and coefficients;

this function implicitly defines the snapshot map. We once again use sums of two

exponentials for these functions and obtain their coefficients by applying MPM.

These functions are defined below, wherep∈ ∓ andi ∈ [1..2]:

Vp(v0) = ϑp eθpv0 + ϑ′p eθ′pv0

aip(v0) = αip eλipv0 + α′ip eλ′ipv0

bip(v0) = βip eγipv0 + β′ip eγ′ipv0
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Figure 22: Structure of the CLHA.

Thus,aip,bip andVp in the CLHA depend on the AP value stored in variablev0

on the epoch transition between modesR andS. The way MPM approximatesa1U ,

a2U , b1U andb2U with sums of two or three exponentials is shown in Figure 21(b).

The structure of the CLHA thus obtained is given in Figure 22. For simplicity, the

figure does not show the actions on the transitions and the flows within the modes.

While the above equations give the general pattern for the transition voltages

and coefficients, a few observations are in place. First, by construction,VF andVR

are constant in all LHAs and therefore no exponential fitting is necessary for the

CLHA. Secondly, theai andbi coefficients of modesF andR are up to a very small

variation the same in all LHAs. Although we expressed them as functions in the

CLHA, we are confident that using constants instead would have still satisfied the

required accuracy. Thirdly, for the rest of the modes, theai andbi obtained for the

LHAs are complex values. We therefore separately fitted their real and imaginary

parts. The constant coefficientsϑp, ϑ′p, θp, θ′p, αip, α′ip, λip, λ′ip, βip, β′ip, γip and

γ′ip are complex too. Finally, due to space restrictions, we defer including a table

with all voltage and coefficient values to the full version of the paper.
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4.2 Simulation results

We have implemented the above-described learning technique in MATLAB,

and applied it to both the HH and LRd models. The accuracy of the resulting CLHA

was analyzed on both the training and test sets. Due to space constraints, the results

on the simpler HH model are omitted.

The output of the CLHA on the LRd test set is shown superposed on the origi-

nal APs in Figure 43(a). As can be observed, the morphology of the output, as well

as the required accuracy, is maintained on this set.

In Figure 43(b), the restitution curve obtained from the CLHA by running it

on thev0’s specified in the test set is compared to the restitution curve obtained

from the APs in the test set. Although not perfect, the results are very satisfactory.

To our knowledge, these are the best results among the LRd-approximation models

proposed so far.
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Figure 23: (a) Comparison of AP. (b) Comparison of restitution curve.

4.3 Discussion

We have developed a learning/identification technique for cycle-linear hybrid

automata (CLHA), and applied it to a classical, highly nonlinear model of ven-

tricular cardiac myocytes. The technique of hybrid-automaton identification has

been previously used in a number of communication and control applications, in-

cluding interplanetary life-support systems [33], dynamic power management [24],
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autonomous systems and intelligent robots [28, 40], and figure tracking [53]. To

the best of our knowledge, our application of this technique in the area of systems

biology, in general, and excitable cells, in particular, is the first of its kind.

Our approach to hybrid-automaton identification is further distinguished from

prior work in the area by the novelty of the identification technique itself. Specific

contributions in this regard include the following: (1) Our approach is applica-

ble to continuous-time nonlinear systems that exhibit some level of periodicity and

adaptation. Given such a system, the CLHA we learn are also continuous-time,

specifically, linear time-invariant (LTI). In contrast, the techniques of [13,61] target

discrete-time PWARX (piecewise-affine auto-regressive exogenous) models. Fur-

thermore, in contrast to these approaches, when learning the CLHA for a system

S, we make noa priori assumptions about the dimension ofS’s state space nor the

degree of its input and output.

(2) Our technique learns all aspects of a hybrid automaton, including the num-

ber of modes; for each mode, the dimension of the state space and the coefficients

of its LTI dynamics; and all aspects of the mode switching logic, including the jump

conditions, thresholds and resets. To do so, we use a modified Prony method to ob-

tain an exponential fit for the continuous per-mode linear dynamics. Cf. [61], where

polynomial fitting is used for the case of discrete-time PWARX systems.

(3) We also learn the functions that adjust a CLHA’s mode dynamics and

switching logic on a per-cycle basis. This aspect of our technique is critical in

the case of excitable cells because of theirrestitutionalnature (see Section 1.2).

In this case, the coefficients of the mode dynamics and the voltage thresholds are

functions ofV0, the cell’s initial transmembrane voltage for the current cycle.



Chapter 5

Symbolic Analysis of the Neuron

Action Potential

In this chapter, we present a simplified HA model which can be passed to a

reachability analysis tool d/dt to verify formal properties of neurons. The property

we are interested is called the bifurcation behavior of neurons subject to external

stimuli with different strength and duration. The formal analysis is important as

the system dynamics are usually infinite with infinite possible inputs or parameters.

Before the reachability analysis technique, the only method is through simulations,

which is not complete. The goal of this study is that we want to prove that neu-

rons’ behavior for a set of inputs (infinite many) can be determined with a single

run of reachability analysis algorithm, which is attractive and efficient for studying

neuron’s reaction under complex situations.

We first introduce this tool then presents the analysis and result from reacha-

bility study of HA model.

5.1 Introduction to the Reachability Analysis Tool

d/dt

The d/dt tool performs forward reachability analysis on LHA, presenting the

final result in a graphical form. It uses convex polyhedral packages for this purpose,

representing reachable sets of states as unions of convex polyhedra. In order for d/dt

46
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to perform reachable-set computations, one has to provide it with the following

data:

• Dimension: The number of the variables in the input LHA.

• Initloc: The initial mode of the LHA.

• Initset: The initial-range polyhedron of the state variables.

• Badset: The unwanted polyhedron area, in the case of safety analysis.

• Locations: The modes of the LHA.

• Matrix A andscale B: Matrix and scale as in Definition 1.1.1.

• Inputset: A polyhedron bounding the range ofU for each mode.

• Transitions: The guard polyhedron and target mode for each switch.

• Stayset: The invariant polyhedron for each mode.

• Limits: The range polyhedron on which reachability analysis is performed.

Depending on the system to be analyzed, some of the above specifications may be

optional. The users can also provide their own computation parameters (like the

integration step) in a separate file to control the balance of computation time and

precision. If there no such file is provided, default values are used.

5.2 Bifurcation Analysis of the All-Or-Nothing Re-

sponse of Neurons

In the previous chapters, we have developed a series of CLHA for ECs. The

CLHA so derived is able to capture important EC properties—including the AP

morphology up to a prescribed error margin and the nonlinear restitution property—

despite having having only two (or three) continuous state variables.

For the purpose of bifurcation analysis, we will restrict our attention to the

derivation of a simple neuronal LHA. We will then input this LHA to d/dt in order

to symbolically analyze its response to any possible input over an arbitrary time

domain within a given time interval.

Learning the Neuronal LHA. As in [32, 62], the automatic learning method we

use for neuronal LHA proceeds in two stages:
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• Identify the topology of the LHA, i.e. the design of its control graph.

• Identify for each control-graph mode, the dynamics of the LHA model.

The choice of modes is based on the observation that the AP for different cell types

(neuron, cardiac myocyte, etc.) or different species (guinea pig, neonatal rat, etc.)

may exhibit different waveforms, but they all possess the following two phases

within a cycle: aRising phase and aFalling phase; see Figure 24. For the purpose

of mode identification, we also need to identify the time period during which the

cell is subject to external stimulation. We shall refer to this mode asStimulated , and

allow the LHA model to accept input within this mode. This leads to the splitting

of the rising phase into modesStimulated andRising .
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Figure 24: Rising and falling phase of neuron.

In a first version of the automaton, we use a begin-stimulus eventes and an end-

stimulus eventes to effect this separation. When external stimulation begins, i.e.,

upon the occurrence ofes, the LHA switches to modeStimulated , in which the cell

accumulates its membrane voltage by accepting an input current. If upon termina-

tion of the stimulation, i.e., upon the occurrence of the eventes, the magnitude of

the received stimulation is sufficiently strong, the cell fires an AP by switching to
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Falling
RisingStimulated

{v ≤ VO}[v < VT ∧ ēs]

[v ≥ VT ∧ ēs]

[v ≥ VO]

v̇ = a2v
v̇ = a1vv̇ = a0v + bIst

[es]

Figure 25: Graphical representation of neuronal LHA.

modeRising ; otherwise it returns to modeFalling . In the former case, the LHA will

switch from modeRising to Falling when it passes the maximum voltage point.

Since the voltage is the only observable in which we are interested and since

bifurcation, the phenomenon of interest, only occurs at the end of stimulation, we

tolerate a larger error margin within modeFalling . As a consequence, our learning

algorithm is able to derive an acceptable LHA with only one continuous state vari-

able representing the AP. Certainly, this might be not the case for other observables.

The LHA so derived is depicted in Figure 25.

The flow function is of the forṁv = a0v+ bIst for modeStimulated and v̇ =
aiv (i = 1,2) for the other two modes (these modes are therefore called refractory

modes). The threshold valuesVO andVT are constants determined by analyzing

the data produced by the HH model. The coefficientsai for i = 0,1,2, andb are

also automatically learned by analyzing the data produced by the HH model via

numerical integration. Their precise values are given in the Appendix.

Encoding the LHA in d/dt. In order to study the behavior of the neuronal LHA

subject to input stimuli of various shapes, intensities and duration, one has to ma-

nipulate two parameters: the value ofI st and the interval between the begin- and

end-stimulus events. The manipulation of the first parameter can be easily accom-

plished in d/dt by using the polyhedron0≤ I st≤ 11, where 0 is the minimum and 11

is the maximum value forI st.

The manipulation of the second parameter, however, is more involved. For this

purpose, we introduce an explicit clock variablex, whose derivative is allowed to

vary within the polyhedron1≤ dx/dt ≤ 1.4 . The lower bound of 1 is a natural one

for a skew-less clock, while the upper bound of 1.4 encoded the range of stimulus

duration we were interested in investigating. That is, it is easily observed that the
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Figure 26: Graphical representation of LHA input to d/dt.

larger the derivative, the faster clock. As such, for an input stimulus of duration

say0.5 , although in the LHA we comparex to this constant value, the larger the

value of the derivative, the smaller the amount of time that actually passes before

this timer expires.

The flow functions we thus obtain for the LHA we input to d/dt are given in

Equation 20.

[
ẋ

v̇

]
=

[
0 0

0 a0

][
x

v

]
+

[
i1
i2

] [
ẋ

v̇

]
=

[
0 0

0 αi

][
x

v

]
+

[
1

0

]
(20)

The constraints we place on the intensity and duration ofI st are encoded in mode

Stimulated by requiring that1≤ i1≤ 1.4 and 0≤ i2≤ 11, respectively. Also, to en-

sure a baseline timeout period of0.5 for x, the invariantx ≤ 0.5 is added to mode

Stimulated and the guard condition0.5 ≤ x is added to the transitions emanating

from this mode. The resulting automaton is depicted in Figure 26. Its full descrip-

tion in d/dt is given in the Appendix.

It can be seen that the automaton (with explicit time) of Figure 26 is equivalent

to the parallel composition of the automaton (where time is implicit) of Figure 25

with an environment automaton, providing an input stimulus of various form and

duration, delineated by begin- and end-stimulus events, respectively.

Analysis Result Let us henceforth refer to the neuronal LHA of Figure 25 (where

time is implicit) as LHA1, and the neuronal LHA of Figure 26 (the one input to d/dt,

where time is explicit) as LHA2. In this section, we first compare the simulation

results for a single AP, resulting from a rectangular-pulse stimulus, using the LHA1

and HH models. We then present the results of our symbolic reachability analysis
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Ist = 11, duration = 0.5
Ist = 11, duration =0.5/1.4
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Figure 27: (a) AP comparison: LHA1 vs. HH. (b) Bifurcation in LHA1

for LHA2, where all input stimuli (of any form and duration within given intervals)

are automatically (symbolically) taken into account by d/dt. Our results, given in

terms of LHA2’s reachable state sets, clearly demonstrate the bifurcation property

over this infinite input set.

Figure 27(a) compares the simulation of a single AP using the LHA1 and

HH models The initial condition for the voltage was the same in both mod-

els. The parameter values considered for the HH model were as follows:gNa =
120mOhms−1/cm2, gK = 36mOhms−1/cm2, gL = 0.3mOhms−1/cm2, ENa =
55.0mv, EK = −72.0mv, EL = −50.0mv, C = 1. The stimulation current for both

models was a rectangular pulse with an amplitude of50uA/cm2 and a duration of

0.5ms. As can be observed, the AP is better matched during the rising phase than

in the falling phase, as our focus with the neuronal LHA model is on whether or not

an AP will be fired under different input currents. The undershoot during the falling

phase is missed in the LHA1 model, a compromise made in favor of the model’s

simplicity.

The bifurcation seen in Figure 27(b) occurs when the stimulation current in-

creases from10uA/cm2 to 11uA/cm2. When the current reaches11uA/cm2, an

AP is fired, while for a current of10uA/cm2, only a small bump is observed.

We conducted two sets of reachability analysis on the LHA model: one with

the input current ranging within interval[0,10]uA/cm2 and the other with the input

current ranging within interval[0,11]uA/cm2. The output of d/dt’s reachability

algorithm is a rendering of the shape of the reachable set in each mode. For a

two-dimensional system such as LHA2, the reachable set is planar.
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Figure 28: (a) Reachable set forIst ∈ [0,10]. (b) Reachable set forIst ∈ [0,11].

Figure 28(a) shows the reachable set for a stimulus current between0uA/cm2

and10uA/cm2. Only modesFalling andStimulated are reached during the com-

putation. Figure 28(b) shows the reachable set for a stimulation current between

0uA/cm2 and11uA/cm2. In this case, we see that all three modes are reached. In

particular, bifurcation is observed in modeFalling : the reachable set for this mode

is composed of an upper part, reached by switching from modeRising , when an AP

occurs, and a lower part, reached by returning from modeStimulated , when an AP

fails to occur.



Chapter 6

Formal Analysis of Abnormal

Excitation in Cardiac Tissue

We present the Piecewise Linear Approximation Model of Ion Channel con-

tribution (PLAMIC) to cardiac excitation. We use the PLAMIC model to conduct

formal analysis of cardiac arrhythmic events, namely Early Afterdepolarizations

(EADs). The goal is to quantify (for the first time) the contribution of the over-

all sodium (Na+), potassium (K+) and calcium (Ca2+) currents to the occurrence

of EADs during the plateau phase of the cardiac action potential (AP). Our analy-

sis yields exact mathematical criteria for the separation of the parameter space for

normal and EAD-producing APs, which is validated by simulations with classical

AP models based on complex systems of nonlinear differential equations. Our ap-

proach offers a simple formal technique for the prediction of conditions leading to

arrhythmias (EADs) from a limited set of experimental measurements, and can be

invaluable for devising new anti-arrhythmic strategies.

6.1 Introduction

An action potential(AP) is a change in an excitable cell’s membrane potential

caused by the flow of different ions across the cell membrane. The left panel in

Fig. 29 illustrates a normal AP waveform for a guinea-pig heart cell. By convention,

a normal AP follows a well defined cycle of “depolarization” (the rising phase),

53
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Figure 29: EAD in cardiac myocyte.

followed by “repolarization” (the falling phase). Furthermore, in qualitative terms,

the “repolarization” phase can be divided in “early repolarization”, “plateau” and

“final repolarization”.

Under some pathological conditions leading to a prolonged repolarization

phase, the morphology of the AP can be altered by an abnormal secondary depolar-

ization, termedEarly Afterdepolarization (EAD). By clinical definition [19, 27],

EADs occur before the completion of repolarization of an AP (as illustrated in the

right panel of Fig. 29).

Such cellular-level events can give rise to undesired new excitation waves and

can precipitate life-threatening heart activation sequences, e.g. tachyarrhythmias,

especially in patients with Long QT syndrome [37,41]. As critical arrhythmia trig-

gers, EADs have been of interest to cardiac researchers for several decades [65].

Attempts have been made to uncover the ionic mechanisms underlying EADs, so

that their occurrence can be predicted as well as effectively treated. Various studies

have found that the reactivation of calcium (Ca2+) or sodium (Na+) channels or ab-

normally reduced potassium (K+) current can lead to this phenomenon [16,17,39].

Yet, a unified view of EAD mechanisms along with predictive criteria are lacking.

In this paper, we present thePiecewise Linear Approximation Model of the

Ion Channel contribution(PLAMIC) as a basis for understanding and analyzing

the biochemical mechanisms underlying the formation of EADs during the cardiac

action potential. The derivation of the PLAMIC model can be understood as fol-

lows. LetVNa+
, VCa2+

andVK+
denote the integral contributions to the AP due

to the sodium, calcium and potassium channels, respectively; i.e. the voltages the

ionic currents flowing through these channels induce. Further, letVNaK denote the

combined sodium and potassium voltage.
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A key observation is that during normal and abnormal APs, the behavior of

VCa2+
andVNaK corresponds to triangular-like functions of opposite polarity (see

Fig. 31). As such, in the PLAMIC model,VCa2+
andVNaK are approximated in a

piecewise-linear fashion using two very simple triangular functions, each of which

naturally comprises a rising phase and a falling phase. The PLAMIC model also

incorporates an AP-morphology-related (exponential) decay function, which can be

fitted across different cell types.

A main advantage of the PLAMIC model then is its highly constrained pa-

rameter space, essentially limited to the peak voltage values and their occurrence in

time of the two triangular functions. The model is therefore amenable to a closed-

form, voltage-monotonicity analysis on the AP cycle during repolarization. We in

fact show that the absence of a monotonically decreasing APV (dV
dt < 0) during the

plateau phase of repolarization is a necessary and sufficient condition for EAD. We

furthermore provide specific conditions on the parameter space (involving the rel-

ative slopes of the two triangular functions, the relative occurrence of their peaks,

and their relative magnitudes) for EAD occurrence.

We also performed an experimental validation of the conditions derived from

the above-described formal analysis of the PLAMIC parameter space, assembling

a test set of normal and abnormal APs from the widely accepted Luo-Rudy model

ventricular cell model [46]. Our results demonstrate that the results of our formal

analysis can be used as a valid classifier for EAD prediction.

The organization of the rest of the paper is as follows: Section 6.2 provides

a formal definition of the PLAMIC model. Section 6.3 conducts a model-based

analysis of the conditions under which EADs occur. Section 6.4 uses computer

simulations with the Luo-Rudy model to validate our results. Section 6.5 offers our

concluding remarks and directions for future work.

6.2 The PLAMIC Model

Mathematical modeling of excitable cells has a long tradition, starting with the

first empirically-derived ionic model of the action potential in a giant squid axon

proposed by Hodgkin and Huxley in 1952 [38]. Subsequently, more ion channels

and complex biophysical processes have been included in these models, although
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the general mathematical framework for representing the ion-channel contribution

has remained essentially the same.

The model we propose adopts an abstraction based on voltage, i.e., it deals

with the superposition of the voltages generated by the individual ion channels. We

study the occurrence of EADs as a disturbance in the subtle balance between the

underlying ion currents using their voltage surrogates.

The advantage of using superposition of the voltages, as opposed to the ionic

currents directly, is the integral (smoother) nature of the former in the RC-circuit

model that approximates the electrical behavior of the cell membrane. This facili-

tates the curve-fitting process and allows for simpler mathematical expressions to be

employed and further linearized in a piecewise fashion. The result is thePiecewise

Linear Approximation Model of the Ion-Channel contributions(PLAMIC).

We illustrate the idea of the PLAMIC model starting from a modification of

traditional ionic models based on the Hodgkin-Huxley formalism. The main equa-

tion used in these ionic models is presented in Eqn. 21.

CV̇ =−
∑

Ii(t)+ Ist(t) (21)

whereV̇ is the time derivative of the membrane potential V, C is the equivalent

capacitance of the cell membrane,
∑

Ii(t) is the sum of all the ion currents flowing

in or out of the cell membrane, andIst(t) is the stimulation current.∑
Ii(t) may incorporate a number of individual currents for different cell

types. For example, in the Luo-Rudy model [46] (LRd), a widely accepted ven-

tricular cell model, currents can be grouped by ion species as in Eqn. 22.

∑
Ii(t) = INa(t)+ IK(t)+ ICa(t) (22)

whereINa, IK, andICa are the sodium, potassium and calcium overall ion currents,

respectively. The top row of Fig. 30 plots these three components of the LRd model

for a normal AP.

Using for each component current the corresponding voltage, Eqns. 21 and 22

can be equivalently rewritten into the following form (Eqn. 23):
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Figure 30: Individual ionic currents and their corresponding voltages in the LRd model.

CV̇Na =−INa(t),CV̇K =−IK(t)
CV̇Ca =−ICa(t),CV̇st = Ist(t)

V = (VNa(t)+VK(t)+VCa(t))+Vst(t)
(23)

whereVNa, VK, VCa andVst are the voltages obtained via integration fromINa, IK,

ICa andIst, respectively.

The motivation behind Eqn. 23 is to first calculate the voltages from the in-

dividual currents and then obtain the overall membrane potential via superposi-

tion. Note the much smoother appearance of the voltage curves (bottom row) com-

pared to the “spikey” current curves (top row) in Fig. 30. Furthermore, grouping

the sodium and potassium voltages into one combined voltage yields the oppos-

ing triangular-like (and thus inherently linearizable) voltage functions depicted in

Fig. 31.

The essentially triangular-shaped voltage functions suggests the use of two lin-

ear segments (linked together in a triangular form) to approximate the combination

voltage due to the sodium and potassium currents (denoted as theNaK voltage),

and the individual voltage due to the calcium current alone (theCa voltage).
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model.

6.2.1 Definition of the PLAMIC Model

Two linear segments, forming a triangle (also known as a Lagrange hat func-

tion), are used to represent each of theNaK andCa voltages. Two of the triangle

vertices (beginning and end) are fixed on the time-axis and the triangle shape varies

by shift in the free (peak) vertex. The triangular function is shown in Fig. 32 (A).

It is essentially a two-piece linear function starting from point(0,0) and ending at

(TS,0), whereTS is the total simulation time for the generation of an AP.
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(A) The triangular function. (B) The PLAMIC model.

Figure 32:

By fixing the simulation timeTS, each function is determined solely by the
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switching (peak) point(tmax,vmax). The mathematical definition of the triangular

function is given by Eqn. 24, where the superscriptu∈ {Ca,NaK} is used to distin-

guish the voltage functions corresponding to the different current types.

f u(t) =





vu
max

tu
max

t, t ≤ tu
max;

TS−t
TS−tu

max
vu

max, tu
max < t ≤ TS.

(24)

The functions forvCa andvNaK are then defined simply as follows:

vCa(t) = f Ca(t) (25)

vNaK(t) = f NaK(t) (26)

The overall action potentialv is the superposition of the two (Eqn. 27).

v(t) = vCa(t)−vNaK(t)+g(t) (27)

whereg(t) is a decay function related to the AP morphology. It is defined byVmax,

the absolute difference between the resting potential and the maximum voltage dur-

ing upstroke, and byD (D < 0), an action-potential-duration parameter which can

be adjusted across different cell types (Eqn. 28).

g(t) = Vmaxe
Dt (28)

The decay function qualitatively reflects the passive component of the cell-

membrane response: an RC circuit will exhibit exponential decay after the upstroke

due to capacitor discharge. In the PLAMIC model, this passive decay is used in

conjunction with the superposed opposite potentials (NaK andCa).

Based on the relative magnitude oftCa
max andtNaK

max (i.e. which voltage reaches

its peak first), the AP equation forv (Eqn. 27) has two alternative formulations. In

each case,v is represented as a three-segment function, referred to in the following

equations as segments A, B and C, respectively.

First, letac
1 = vCa

max
tCa
max

, ac
2 = −vCa

max
TS−tCa

max
, bc = vCa

max
TS−tCa

max
TS, ak

1 = vNaK
max

tNaK
max

, ak
2 = −vNaK

max
TS−tNaK

max
, and

bk = vNaK
max

TS−tNaK
max

TS.
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Case I: tCa
max < tNaK

max

v(t) =





ac
1t−ak

1t +VmaxeDt, t ≤ tCa
max, segment A;

(ac
2t +bc)−ak

1t +VmaxeDt, tCa
max < t ≤ tNaK

max , segment B;

(ac
2t +bc)− (ak

2t +bk)+VmaxeDt, t ≥ tNaK
max , segment C.

(29)

Case II: tCa
max≥ tNaK

max

v(t) =





ac
1t−ak

1t +VmaxeDt, t ≤ tNaK
max , segment A;

ac
1t− (ak

2t +bk)+VmaxeDt, tNaK
max < t ≤ tCa

max, segment B;

(ac
2t +bc)− (ak

2t +bk)+VmaxeDt, t ≥ tCa
max, segment C.

(30)

In Fig. 32 (B), one of the possible implementations of the PLAMIC model

(case I) is shown. The overall PLAMIC-abstracted AP is given as a solid line, with

its three segments annotated accordingly. We plot−vNaK instead ofvNaK to reveal

the similarity to the LRd AP parameters shown in Fig. 31.

6.3 Formal Analysis of the PLAMIC Model

6.3.1 Monotonicity and EADs

EADs are secondary depolarization phenomena that arise during the repolar-

ization phase; i.e. they disrupt the normal voltage return to rest. Therefore, a mono-

tonicity analysis of the AP is an appropriate test for EADs. For example, it is safe to

claim that a monotonically decreasing APv (dv
dt < 0) is a sufficient condition for the

absence of EADs. The opposite statement does not always hold, i.e. it isnotalways

the case that if APv is not universal decreasing, there is an EAD. For example, a

“notch” in the early repolarization phase is common in many cardiac cells and is not

considered an EAD (Fig. 33 (A)). Furthermore, in some cases, the membrane may

transiently hyperpolarize; i.e. an undershoot may occur, with the potential lower

than the resting potential during final repolarization. This non-monotonic case is

also not an EAD (Figure 33 (B)).

If, however, the monotonicity analysis is restricted to the “plateau” phase of the

repolarization process, any deviation from monotonic decay will effectively be an
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Notch

Undershoot

(A) Notch during early repolarization. (B) Undershoot during final repolarization.

Figure 33: Non-monotonic APs that do not exhibit EADs.

EAD. In order to define the plateau phase in the PLAMIC model, letnotch-delaybe

the cell-type-specific initial time segment of the repolarization phase during which

a notch may occur. The PLAMIC plateau phase is then defined to consist of the

suffix of segment A beginning atnotch-delayfollowed by segment B. For most

physiological choices of(tu
max,v

u
max), u∈ {Ca,NaK}, this definition of the plateau

phase coincides closely with its physiological counterpart.

Based on the above monotonicity discussion, the following definition will

serve as the theoretical basis of our formal analysis of EAD in the PLAMIC model.

Definition 1 The PLAMIC model contains anEAD if v̇ > 0 at some point during

the plateau phase.

In Section 6.3.2, we present a monotonicity analysis of the PLAMIC plateau

phase for both Cases I and II, and derive the exact conditions for EAD occurrence.

Physiological explanations for these conditions are discussed as well.

6.3.2 Monotonicity Analysis of the PLAMIC Model

6.3.2.1 Case I

Case I is the most physiologically feasible scenario in cardiac cells. In sim-

ulation data of normal cardiac APs using the LRd model,tCa
max < tNaK

max holds at all

times. As the PLAMIC-based voltage is a piecewise-linear function, monotonicity

is analyzed on a per-segment basis.
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Table 6: Summary of conditions for the existence of EAD in segment A.
Condition EAD No EAD

ac
1 < ak

1 Fig. 34 (A)
ak

1 < ac
1 < ak

1−VmaxD Fig. 34 (D) Fig. 34 (C)
ak

1−VmaxD < ac
1 Fig. 34 (B)

Segment A The first derivative ofv within this segment is given by the following

equation:

dv
dt

= ac
1−ak

1 +VmaxDeDt (31)

Imposing the conditiondv
dt > 0 yields:

t >
1
D

ln(
ak

1−ac
1

VmaxD
) (32)

Further examination of Eqn. 32 shows that the existence of a positive real solution

for t requires the following conditions to hold:





ac
1 > ak

1 > 0

0 <
ak

1−ac
1

VmaxD
< 1

t < tCa
max

which are summarized in Theorem 2 as the major result for case I.

Theorem 2 (ak
1 < ac

1 < (ak
1−VmaxD))∧ (tCa

max > 1
D ln(ak

1−ac
1

VmaxD
)) is a sufficient condi-

tion for a case-I occurrence of EAD during the suffix of segment A beginning at

notch-delay.

In Fig. 34, we plot the different possibilities of the relative magnitudes ofak
1

andac
1. Table 6 summarizes the relationship between these values and the occur-

rence of EAD.

An intuitive physiological explanation of the above result is that the existence

of EAD is closely related to the relative speeds of the voltage increase due to dif-

ferent ion currents, represented byac
1 andak

1.

At the beginning of the plateau phase, the AP follows a decreasing trend, which

requires the calcium current to have an upper bound (ac
1 < ak

1−VmaxD); otherwise,



63

0 100 200 300 400 500 600
−20

0

20

40

60

80

100

120

140

vo
lta

ge
 (

m
v)

 

 

0 100 200 300 400 500 600
0

200

400

500

time (ms)

vo
lta

ge
 (

m
v)

 

 

v
Ca

+g

v
Nak

AP
g

0

50

100

150

200

250

vo
lta

ge
 (

m
v)

 

 

0 100 200 300 400 500 600
0

200

400

600

time (ms)

vo
lta

ge
 (

m
v)

 

 

AP
g
v

Ca
+g

v
NaK

(A) ac
1 < ak

1, no EAD (B)ak
1−VmaxD < ac

1, EAD

0

50

100

150

vo
lta

ge
 (

m
v)

 

 

0 100 200 300 400 500 600
0  

200

400

500

vo
lta

ge
 (

m
v)

time (ms)

 

 

v
Ca

+g

v
NaK

AP
g

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

vo
lta

ge
 (

m
v)

 

 

0

200

400

time (ms)

vo
lta

ge
 (

m
v)

 

 

v
Ca

+g

v
Nak

AP
g
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1
VmaxD

) tCa
max > 1
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)
No EAD EAD

Figure 34: PLAMIC-based analysis for EAD occurrence in segment A. The AP and decay
functions are plotted as solid lines and use the y-axis on the left;vNaK andvCa+ decay
are plotted in dashed lines and use the y-axis on the right. The same conventions apply to
Figs. 35 and 36.
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the AP curve will be increasing through this segment. Furthermore, for an EAD to

form, the balance has to be in favor of the calcium-current contribution (ak
1 < ac

1).

The last condition ensures that the calcium current has enough time to accumulate

for the formation of an EAD (tCa
max > 1

D ln(ak
1−ac

1
VmaxD

)).

Segment B As in the analysis for segment A, we first determine the expression

for dv
dt :

dv
dt

= ac
2−ak

1 +VmaxDeDt (33)

Sincedv
dt < 0 throughout this segment (ac

2 < 0,−ak
1 < 0 andVmaxDeDt < 0), no

EAD is possible in segment B.

6.3.2.2 Case II

The defining segment-A equation forv is exactly the same as in case I, modulo

the replacement oftCa
max with tNaK

max in the time bound fort. Following the case-

I analysis for segment A, this observation yields the following condition for the

occurrence of EADs:




ac
1 > ak

1 > 0

0 <
ak

1−ac
1

VmaxD
< 1

t < tNaK
max

Similarly, the major result for Case II can be summarized as follows.

Theorem 3 (ak
1 < ac

1 < (ak
1−VmaxD))∧ (tNaK

max > 1
D ln(ak

1−ac
1

VmaxD
)) is a sufficient condi-

tion for a case-II occurrence of EAD during the suffix of segment A beginning at

notch-delay.

For segment B, the first derivative ofv is given by the following equation.

dv
dt

= ac
1−ak

2 +VmaxDeDt (34)

As ac
1 > 0 andak

2 < 0, andac
1−ak

2 +VmaxDeDt > 0 for typical values ofVmax

andC, we observe an increasing AP during this segment. Thus, by Definition 1,
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(A) Segment A has no EAD (B) Segments A and B both have EAD.
and Segment B has EAD.

Figure 35: The existence of Case-II EAD for segment B.

segment B always has case-II EAD. Based on whether or not segment A has EAD,

two cases are possible: EAD commences in (the tail end of) segment A or it com-

mences in segment B; see Fig. 35.

Although this particular EAD morphology was not observed in the computer

simulations we performed with the LRd model, this does not preclude its actual

occurrence. Further examination of experimental data is needed to confirm or deny

the physiological relevance of this case.

6.4 Experimental Validation of the PLAMIC Model

In this section, we consider the experimental validation of the PLAMIC model,

specifically, the validity of Theorem 2 as an EAD predictor (classification rule)

during the plateau phase of the AP cycle. To this end, we applied the protocols

presented in [65] to the LRd cardiac-myocyte model to reproduce a number of AP

curves with EADs. We also obtained the corresponding voltages for the calcium

and the combined sodium and potassium currents using the integration method of

Eqn. 23.

For each AP, in order to obtain the PLAMIC model parameters(tu
max,v

u
max),

u∈ {Ca,NaK}, we took the maximum value ofVNa+VK asvNaK
max, and the time at

which it occurs astNaK
max . Data points(tCa

max,v
Ca
max) were obtained in a similar fashion.

The constant coefficients in our experiments are defined asVmax = 150, offset=127
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(defined below), andD = −0.0052. These values have been chosen to match the

LRd simulation results, but can be varied to fit different AP morphologies and cell

types.

A side-by-side comparison of the AP curves obtained from the LRd and

PLAMIC models for both normal and EAD-producing APs is illustrated in Fig. 36.

The top-left panel shows a normal AP and an EAD-exhibiting AP, triggered by

a calcium-current-enhancing drug, Bay K 8644. The top-right panel shows the

PLAMIC model simulation for the two cases, which uses a piecewise-linear ap-

proximation of the current-inducing voltages obtained from the LRd model. The

bottom row shows similar results for the LRd and PLAMIC models for EADs in-

duced by the administration of cesium, resulting in a substantial prolongation of the

repolarization phase.

The AP curves generated by the PLAMIC model qualitatively match the LRd

curves, with an AP morphology that is more stylized due to the simplicity of the

linear functions on which the PLAMIC model is based. Nevertheless, the EAD

phenomenon and variations of the repolarization phase are well captured by the

much simpler PLAMIC model.

To validate Theorem 2, formulated for the PLAMIC model, we need only

focus on case I since the conditiontCa
max< tNaK

max is always true in the LRd model. We

also need to reformulate (the last condition of) Theorem 2 for the following reason.

In the LRd model,vCa
max, the maximum value ofVca during one AP cycle, serves as

the sole contributor to the positive portion of the voltage. In the PLAMIC model,

however, the positive part is composed of the linear functionvCa(t) and the decay

g(t). Thus, when calculating the slopeac
1 in the LRd model, it is not accurate to

usevCa
max directly. Rather, a “decay” factor given byVmaxeDtCa

max should be subtracted

from vCa
max.

The reformulation of Theorem 2 is given in Eqn. 35, whereãc
1 is the corrected

slope andoffset is a constant used to ensure a non-negative AP value, as in the

PLAMIC model.

tCa
max > 1

D ln(ak
1−ãc

1
VmaxD

)

whereãc
1 = vCa

max+offset−VmaxeDtCa
max

tCa
max

ak
1 = vNaK

max
tNaK
max

(35)
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(A) Normal AP from LRd model. (B) Normal AP from PLAMIC model.
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(C) EAD caused by Bay K 8644. (D) EAD from PLAMIC model.
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Figure 36: Comparison of AP curves from LRd and the PLAMIC model
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Figure 37: Simulation of normal AP and APs including EAD with variable timing and
severity.

In order to test the validity of the derived condition for EAD occurrence given

by Eqn. 35, we have assembled a test suite of LRd simulation data consisting of

one normal AP and seven APs with variable EADs. The simulation results for both

normal AP and abnormal APs are presented in Fig.37. The top panel shows the AP

curves and the bottom panel shows−(VNa+VK) andVCa as defined by Eqn. 23.

Let TCa
max≡ 1

D ln(ak
1−ãc

1
VmaxD

) be thethreshold valuefor the LRd model. That is,

according to Def. 1 and Thm. 2, an LRd AP should be EAD-producing if and only

if tCa
max > TCa

max.
1 Note that sinceC andVmax are fixed for the LRd model,TCa

max is a

function ofac
1− ãk

1, the slope difference.

For each AP, we calculateac
1− ãk

1 using the data points(tu
max,v

u
max), u ∈

{Ca,NaK}, obtained via numerical simulation from the LRd model, and calculate

the threshold timeTCa
max derived from our formal analysis. This allows us to then

compare thetCa
max values with theTCa

max values. The results of these comparisons are

given in Fig. 38, where we plottCa
max andTCa

max as a function of the slope difference

ac
1− ãk

1.

1The other conditions required by Theorem 2 for EAD occurrence,ak
1 < ac

1 < (ak
1−VmaxD), are

needed to ensure the existence of a positive real solution fort and are not considered here.
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Figure 38: Validation of the Theorem 2 classification rule for EADs.

As can be seen in Fig. 38, for all APs with EAD, we have thattCa
max > TCa

max.

Conversely, for all APs without EAD (only one such AP in our data set),tCa
max <

TCa
max. Physiologically, these results suggest that the cells generating EADs spend

an amount of time greater than the threshold in letting calcium accumulate and

thereby dominate the effects of repolarizing potassium in order to produce such

abnormal secondary depolarization. Regardless of the underlying physiology, the

results of Fig. 38 demonstrate that Theorem 2 can be used as a valid classifier for

EAD prediction, as suggested by the formal analysis.

6.5 Conclusions

In this chapter, we presented the PLAMIC model, a new, simplified model of

the action potential in excitable cells. Despite its simplicity and piecewise-linear

nature, the PLAMIC model preserves ties to main ionic species and the time course

of their contributions to the AP. This allowed us to analyze biological phenomena of

clinical importance: early afterdepolarizations (EADs). Unlike the original, highly

nonlinear system of equations typically used to model an AP, the PLAMIC model

proved amenable to formal analysis.
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Specifically, with the PLAMIC model, we were able to explore the parameter

space, without having to rely on exhaustive simulations, and to derive basic rules

for the conditions under which EADs may occur. Overall, such conditions relate

to the subtle balance of different ionic currents during the plateau phase of the re-

polarization process. While this result is somewhat intuitive and not surprising,

to the best of our knowledge, our study is the first to formalize it and to provide

quantitative rules for prediction of normal and EAD-containing APs based on the

abstracted representation of the contributing ionic currents. We successfully vali-

dated the classification rules obtained by formal analysis with the PLAMIC model

by computer simulations with widely accepted, detailed nonlinear AP models.

The utility of the PLAMIC model is rooted in its direct links to experimentally

measurable parameters, and the relatively easy derivation of the EAD classification

rules for a wide range of AP shapes and different cell types and species. Such a

prediction tool can be very useful in designing new anti-arrythmic therapies and in

confirming the safety of any genetic or pharmacological manipulations of excitable

cells that may lead to alterations in the balance of ionic currents.

There are several limitations of the PLAMIC model. First, due to its sim-

plicity, the AP curves are only qualitatively reproduced. Second, as the PLAMIC

model studies theoverall contributionof an ionic current to changes in the AP; de-

tails about the components of a current (steady-state behavior, kinetics parameters),

which may be important, are lacking. For example, calcium handling constitutes an

important aspect of cardiac-cell function, especially with regard to electromechani-

cal coupling. Our model only indirectly reflects the effects of intracellular calcium

on the action potential (AP). In particular, withVCa(t), we have modeled the integral

contribution of calcium fluxes to the AP. In the Luo-Rudy model, for example, this

term would correspond to the sum of the L-typeCa2+ channel (which has aCa2+

sensitive gate), the Na/Ca exchanger and the backgroundCa2+ current. By quali-

tatively capturing the behavior of the Luo-Rudy model, especially with respect to

monotonicity in the post-upstroke AP, we indirectly take into account changes in in-

tracellularCa2+, although the PLAMIC model lacks parameters directly associated

with these changes. While developing the model, our goal was to maintain sim-

plicity so that monotonicity analysis could be performed on its parameter space for

EAD-predictive purposes; as such, the PLAMIC model focuses on transmembrane
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fluxes only.

Future work includes validation of the PLAMIC model using actual experi-

mental data with relevant statistical measures. Furthermore, we will explore the

derivation of a more accurate excitable-cell model for EAD prediction, yet one that

retains the possibility of formal analysis. Our work in using hybrid automata to

model excitable cells [63] is one possible formal framework for this research direc-

tion.



Chapter 7

A Rational CLHA Model

We present the rational cycle-linear hybrid automata model (rCLHA) of ion

currents contribution to excitation of cardiac cells. It is the first model that provides

both accurate reproduction of action potential morphology, APD restitution and the

possibility of formal analysis of abnormal excitation like early afterdepolarization

(EAD).

7.1 Introduction

Designing an efficient and accurate model of excitation of cardiac cells is in-

valuable for studying the excitation phenomena, large-scale simulation and devising

new strategies to prevent arrythmia. Most existing ionic models [9, 46] are highly

nonlinear systems which can reproduce cardiac cell excitation dynamics but lack

the ability to analyze and slow for simulation. Simplified models [14, 25, 50] are

usually faster but still lacks the analytic power, its description of the physiological

details like current changes are indirect and qualitative.

The CLHA model in Chapter 3 captures the action potential (AP) morphology,

APD restitution, and provided faster simulation up to 8 folds speedup. It had 3 state

variables, 4 modes and 1 memory variable which stayed constant in a given cycle.

The CLHA model when associated with techniques as optimization and parallel

computation, would fundamentally improve the simulation efficiency.

The limitation of our CLHA model is that as it lacks the biophysical details
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about ion concentration and ionic currents, it will be unable to provide insights

about the connection between AP morphology and the underlying ionic currents

dynamics. To address this problem, we propose in this paper the rational CLHA

model (rCLHA) which includes the details of ionic currents while keeping the sys-

tem minimal. Further from CLHA model, the rCLHA model can provide a formal

prediction of the existence of early afterpolarization (EAD) (PLAMIC model can

do this analysis but can not reproduce AP morphology and restitution).

In this work, we explain the theory and method to construct the rCLHA model,

then it is compared with previously published Luo-Rudy dynamic model (LRd).

The rCLHA model is not for LRd model only, with proper parameter fitting, it

can match the AP morphology and restitution from other cardiac cell models (or

experiment data).

The organization of this chapter is as follows: Section 7.2 describe the rCLHA

model and the connection between its parameters with the shape of AP. Section 7.3

presents the AP comparison and APD restitution with Luo-Rudy dynamic model.

At last the discussion and future works are presented.

7.2 Methods

7.2.1 State Variables

The goal of rCLHA model is to use minimal number of state variables to cap-

ture as many biophysical details as it can. Traditionally, membrane potential and

gating variables compose the major part of an ionic model. However, as the num-

ber of gating variables grows fast as the complexity of the system increases, it is

impossible to capture all the dynamics of them in a simplified system. Instead, in

the rCLHA model, we use four variables to represent the state of a cell system:

membrane potentialv. This is the fundamental role in an excitable system.

Combined sodium and potassium currentINaK. Sodium and potassium currents

affect the shape of an AP at two distinct time period. It is believed that the

fast upstroke is due to the sodium current and relative long plateau phase

is caused by the activation of potassium current. Combination of these two
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current will reduce the number of the variables while keeping the ability to

discriminate them at different time point.

Calcium current ICa. Calcium current is important for both the physiological and

electromechanical coupling of cardiac cells. It is widely accepted that the

strength of calcium current in the repolarization phase determines the occur-

rence of arrythmia (EADs).

Timing variable w. This variable is going to determine the length of plateau, thus

play an important role in the APD restitution property.

7.2.2 rCLHA Structure

In the previous CLHA model, we have discuss the method used to construct

the modes in the hybrid automata. Especially, the physiologically defined phases

(Upstroke, Early Repolarization, Plateau, Final Repolarization, Resting and

an artificial Stimulated mode which is used to tell the existence of an external

stimulus) are used as a guideline. In the rCLHA model, we define modes based on

the different dynamics of two state variablesINaK andICa. Particularly, we associate

a hybrid automaton model for each of them.

The plotting and modes forINaK is shown in Fig. 39 (Data using LRd model).

As the magnitude changes fast, we plot the smaller current separately. As sodium

and potassium currents affect AP shape at different time period, we assume the

modeUpstroke describes Na current dynamics and the other modes describes K

current dynamics.

ICa is illustrated in Fig. 40. The Ca current plotted is the combination of dif-

ferent types of Ca currents: L-type, exchanger, etc. The abstraction enable us to

study Ca current as one entity and restricts the parameter space to a minimal set.

7.2.3 State Equations

The benefit of a linear model is obvious. It not only reduces the complexity of

the system, but also opens to the possibility of control and analysis. The principle

of the rCLHA model is to use piecewise linear system plus finite control (mode

switches) to simulate the behavior of a nonlinear system. At the same time, the
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physiological and physical laws are observed as well. Especially, the state equations

is in the following form:

−̇→
X = A

−→
X +B (36)

(37)

Where
−→
X = (v, INaK, ICa,w)T is the vector of state variables, A is a4×4 constant

matrix and B is a4×1 constant vector. In most modes, A is in the following form

(exceptions will be explained later):




0 1 1 0

0 a1 0 0

0 0 a2 0

0 0 0 0


 (38)

andB = (0,b1,b2,b3)T , wherea1,a2,b1,b2,b3 are constants.

The ideas behind the above design is explained below.

v̇ = INaK + ICa :

This is consistent with the physical law which defines the change of voltage

of a plane capacitor which is widely used to model excitable cell membrane.

One of the assumptions is that the capacitor is constant 1. To keep the equa-

tion simple, we remove the negative sign in front of the sum of the membrane

currents. Accordingly, the plotting of the currents are reversed with sign as

well.

˙INaK = a1INaK +b1 :

With different choice ofa1 andb1, INaK will take different shape. Noticed

that, it is not necessary that the system stays stable in all modes. Actu-

ally, it is proved that theUpstroke mode, there is a positive feedback loop:

depolarization→ Nachannelactivation→ depolarization, and it is consid-

ered crucial for the excitation of cells. The equation also shows that the cur-

rent will change independently which is an abstraction of the current dynam-

ics where voltagev also influence the shape of current.
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Figure 41: (A)Current as threshold. (B) Voltage as threshold.

˙ICa = a2ICa+b2 :

Similar to the idea above.

ẇ = b3 :

The change of the timing variable is approximated by a ramp function for

simplicity.

7.2.4 Parameter justification and fitting

We then explain how parametersa1,a2,b1,b2,b3 influence the shape of AP

mode by mode.

Upstroke This is the major depolarization phase. In this phase, Na gate opens

fast and the positive feedback between the activation of Na currents and the voltage

depolarization enables both Na current and voltagev reaching threshold immedi-

ately. This fast dynamics is approximated by a positive and large value ofa1 which

results an exponential increase in both NaK current and voltage.

However, small perturbation of parametersa1 will result a large change in the

value of NaK current or voltagev, based on the manner that the hybrid automata

switches the mode.

If mode switch is defined as current reaches threshold, a smallera1 will result

a larger voltagev. If the switch is defined by the time when voltagev reaches the

threshold, a smallera1 will give a smaller NaK current. It is illustrated in Fig. 41.
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NaK current is approximated by a linear function with time. Two linear func-

tions are plotted in solid line and dashed line which represents functions with larger

a1 and a smalla1 respectively. In case (A) where mode switches when current

reaches threhold, the solid line reaches threshold atT1 and the dashed line reaches

threshold at timeT2. The area enclosed by the two functions represents the value of

voltages which are the integration of the currents. It is obvious that a slower current

will result a larger voltage. In case (B), the voltage (area below the line) will be

the same for both fast and slow current functions, the slower function will reach a

lower value at the point where switch happens.

In the current implementation of rCLHA, we adopt the first case where we use

current value to control the switch of modes.

Early repolarization and plateau We use linear time-invariant systems to simu-

late the dynamics of NaK and Ca current dynamics in modeEarly repolarization

andPlateau. The justification is that both of them reach to a stable state at plateau

as shown in Fig. 39 and Fig. 40. From the state equation of NaK and Ca current,

the stable values are

τ1 = −b1/a1 (39)

τ2 = −b2/a2 (40)

whereτ1 is around -5.1 pA/pF for NaK current andτ2 is around 4.5 pA/pF for Ca

current. The absolute value of NaK stable current is greater than that of Ca current

to enforce a repolarization phase reflected in the value of voltagev.

The shape of AP at early repolarization phase is determined by the absolute

value ofa1 anda2 and the time point when switch from Upstroke to Early repo-

larization happens for the hybrid automaton for both NaK and Ca current. For

example, the notch (Fig. 42) which is a usual phenomenon for many cardiac cells.

In the rCLHA simulations, if the automata for NaK and Ca switch from Upstroke

to Early repolarization at the same time, it can be proved that there is no “notch”

happening. If NaK switches to Early repolarization earlier than Ca current, with

certain combination ofa1 anda2, “notch” will occur. (More details later)
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Notch

Figure 42: Notch at the early repolarization phase.

As both NaK and Ca currents approaches to the stable value at the end of

this phase, the system becomes very sensitive to the threshold value if we still use

threshold to control the mode switch. The solution is to use the timing variable

instead of the NaK and Ca current themselves to determine when the switch should

take place.

The timing variablew will follow a linear increase. The speed is determined

by a memory variable which we will explain further in subsection 7.2.5. Intuitively,

the faster it increases, the sooner it reaches the threshold and the shorter the plateau

phase, which will result a short action potential duration (APD).

Final repolarization In this mode, NaK current increases from -5 pA/pF to 2.5

pA/pF and Ca current decreases from 4.7 pA/pF to -2.7 pA/pF , as shown in Fig 39

and Fig. 40. Arrythmia might occur due to the imbalance of NaK and Ca current in

this phase. A detailed analysis for the existence of arrythmia (EADs) based on the

parameter space will be presented in Section 6.3.

Resting This is the last phase of an AP cycle. Both NaK and Ca current follow

a slow exponential decreasing function to 0 in this mode. The AP shape is very

sensitive to the decreasing speed of both current as the value is closed to the resting

potential. Furthermore, as LRd model is known for the long term inaccuracy at the

resting phase, an additional term is added to the dynamic function ofv as follows

to correct the above effects:

v̇ = INaK + ICa−0.1(v+86); (41)
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The last term in Equation 41 adds a strong converging factor to the value ofv

such that the over-sensitivity is reduced and possible oscillation is avoided.

Stimulated This is an artificial mode which represents the existence of an external

stimulus current. The switch to this mode is triggered by an external eventEon

which is an abstraction of the occurrence of stimulation. The equation forv̇ thus

becomes:

v̇ = INaK + ICa+ Ist (42)

The other equations will stay the same with Resting mode. When another ex-

ternal eventEo f f happens, the current value ofv is compared with a preset threshold

T. Whenv > T, mode is switched toUpstroke, else, it switches toResting.

7.2.5 Modeling APD restitution

It is widely believed that the excitable cells exhibit memory mechanism in the

excitation behavior. Especially, when the pacing frequency increases, the cell will

have a shorter APD. Instead of the nonlinear functions in a traditional ionic model to

enforce the memory effect, we use a memory variable in rCLHA model to explicit

“record” how soon a cell gets the second stimulation from the last one.

Especially, we use the value ofICa at the point of second stimulation occurs to

control the value ofa1,a2,b1,b2,b3 at different AP cycles. As shown in the previous

section,ICa is around -2.6 pA/pF at the beginning of Resting mode (Fig. 40). The

closer this value to 0, the more complete the cell has recovered and a longer APD

it will generate for the next excitation. A normalized valueθ (0 < θ≤ 1) is defined

as follows:

θ = (ICa/−2.6) (43)

Now a1,a2,b1,b2,b3 become functions ofθ, which is defined in Table 7.

At the beginning of modeEarly Repolarization and Plateau, timer w is set

to 0. And the time period spent in this mode is defined as

80−70θ2 (44)
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a1 b1 a2 b2 b3

UP 16−8θ 0 0 1.9+0.2θ 0
EP -5 −5(5.1+1.1θ) -0.2 0.2(4.66+θ) 1
FR 0.029 0.029(5.77+1.1θ) 0.045 −0.045(5.0+θ) 0
RT -0.0038 0 -0.004 0 0
ST -0.0038 0 -0.004 0 0

Table 7: Definition of the parameters. (UP: Upstroke; EP: Early repolarization and plateau;
FR: Final repolarization; RT: Resting; ST: Stimulated.)

Thus, by changing the parameters or function in equation 44, we can match resti-

tution curves for cardiac cells of different locations or species.

7.3 Result

The difference between rCLHA model and other ionic model is that it is not

designed to reproduce every ion channel current, but to capture the AP morphol-

ogy and restitution properties by using the sum of sodium, calcium and potassium

currents. It turns out that this structure is sufficient for the task. With proper param-

eter fitting, it can replicate accurately the AP shape and retitution curves from other

ionic models. In this section, we show that the parameter defined in last section can

reproduce the AP and restitution curves from LRd model.

7.3.1 Action Potential Morphology

The AP curve from LRd shown is after pacing to steady state at a cycle length

of 500 ms. The resting potential is -86 mV. The threshold for activation is set to -46

mV. The comparison is shown in Fig. 43.

7.3.2 Restitution Curve Comparison

The restitution is calculated using S1S2 protocol. It is measured by pacing

at a specific cycle length (500 ms) until steady state then introducing second pulse

over a range of intervals. The comparison of the APD (90%) restitution curve is in

Fig. 44.
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7.4 Discussion

In this chapter we introduce the rational CLHA model for the excitation of

cardiac cells. This model is attractive for the following reasons: first, it is a simple

model with only 4 state variables, which makes it is efficient in large scale simula-

tions. Second, it keeps enough structure to study the relationship between the ionic

currents and AP morphology, where most simplified models lack the quantitative

reproduction of dynamics of currents. Third, the simple control of memory vari-

able of rCLHA provides a new method to model restitution curves. Instead of using

complex nonlinear functions, we can use piecewise linear system to reproduce the

nonlinear property of excitation behavior. The last but not least benefit of a linear

model is that it provides the possibility of mathematical analysis of the state space.

Future work includes improving the model to include more features like con-

duction velocity restitution and spatial simulation of propagation waves. From the

analysis part, explore the parameter space for abnormal excitation events like early

afterdepolarization (EADs). Thus rCLHA can be used to design new anti-arrythmia

strategies.
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[22] A. Deshpande, D. Godbole, A. Göllü, and P. Varaiya. Design and evaluation

of tools for automated highway systems. InHybrid Systems III, LNCS 1066,

pages 138–148. Springer-Verlag, 1996.

[23] J. G. Dumas and A. Rondepierre. Modeling the electrical activity of a neu-

ron by a continuous and piecewise affine hybrid system. InHybrid Systems:

Computation and Control, pages 156–171, 2003.

[24] T. Erbes. Stochastic learning feedback hybrid automata for dynamic power

management in embedded systems, 2004.

[25] F. Fenton and A. Karma. Vortex dynamics in 3d continous myocardium with

fiber rotation: Filament instability and fibrillation.CHAOS, 8:20–47, 1998.

[26] R. FitzHugh. Impulses and physiological states in theoretical models of nerve

membrane.Biophys J, 1:445–467, 1961.

[27] H. Fozzard. Afterdepolarizations and triggered activity.Basic Res Cardiol,

87 Suppl 2:105–13, 1992.



87

[28] G.C.Rigatos, I. Vlahavas, and C. Spyropoulos. Fuzzy stochastic automata for

reactive learning and hybrid control. InMethods and Applications of Artificial

Intelligence, pages 366–377. LNCS, Vol. 2308, Springer-Verlag, 2002.

[29] R. Ghosh and C. J. Tomlin. Symbolic reachable set computation of piecewise

affine hybrid automata and its application to biological modeling: Delta-notch

protein signaling.IEE Transactions on Systems Biology, 1(1):170–183, June

2004.

[30] R. A. Gray and J. Jalife. Spiral waves and the heart.Int J Bifurc Chaos,

6:415–435, 1996.

[31] R. A. Gray, A. M. Pertsov, and J. Jalife. Spatial and temporal organization

during cardiac fibrillation.Nature, 392:75–78, 1998.

[32] R. Grosu, S. Mitra, P. Ye, E. Entcheva, I. Ramakrishnan, and S. A. Smolka.

Learning cycle-linear hybrid automata for excitable cells. InHybrid Systems:

Computation and Control, volume 4416 ofLNCS, pages 245–258, Pisa, Italy,

April 2007. Springer.

[33] M. M. Henry. Model-based estimation of probabilistic hybrid automata, 2002.

[34] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for

hybrid systems.Software Tools for Technology Transfer, 1:110–122, 1997.

[35] T. A. Henzinger. The theory of hybrid automata. InProceedings of the 11th

IEEE Symposium on Logic in Computer Science, pages 278–293, 1996.

[36] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata.Journal of Computer and System Sciences, 57:94–124, 1998.

[37] M. Hiraoka, A. Sunami, F. Zheng, and T. Sawanobori. Multiple ionic mech-

anisms of early afterdepolarizations in isolated ventricular myocytes from

guinea-pig hearts.QT Prolongation and Ventricular Arrhythmias., pages 33–

34, 1992.



88

[38] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane

currents and its application to conduction and excitation in nerve.J Physiol,

117:500–544, 1952.

[39] N. Homma, M. Amran, Y. Nagasawa, and K. Hashimoto. Topics on the

Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchange system in cardiac

triggered activity.J. Pharmacol Sci, 102(1):17–21, 2006.

[40] M. Huber and R. Grupen. A hybrid architecture for learning robot control

tasks.Robotics Today, 13(4), 2000.

[41] C. January and A. Moscucci. Cellular mechanism of early afterdepolariza-

tions. QT Prolongation and Ventricular Arrhythmias., pages 23–32, 1992.

[42] K. Joshi, N. Neogi, and W. Sanders. Dynamic partitioning of large discrete

event biological systems for hybrid simulation and analysis. InHybrid Sys-

tems: Computation and Control, HSCC 2004, volume 2993 ofLNCS, 2004.

[43] G. Lafferriere, J. Pappas, and S. Yovine. A new class of decidable hybrid

systems. InHSCC, pages 137–151, 1999.

[44] P. Lincoln and A. Tiwari. Symbolic systems biology: Hybrid modeling and

analysis of biological networks. InHybrid Systems: Computation and Con-

trol, HSCC 2004, volume 2993 ofLNCS, pages 660–672, 2004.

[45] C. Livadas, J. Lygeros, and N. A. Lynch. High-level modelling and analysis

of TCAS. In Proceedings of the IEEE Real-Time Systems Symposium, pages

115–125, 1999.

[46] C. H. Luo and Y. Rudy. A dymanic model of the cardiac ventricular action

potential: I. simulations of ionic currents and concentration changes.Circ

Res, 74:1071–1096, 1994.

[47] J. Lygeros, G. J. Pappas, and S. Sastry. An approach to the verification of the

center-tracon automation system. InHSCC ’98: Proceedings of the First In-

ternational Workshop on Hybrid Systems, pages 289–304, London, UK, 1998.

Springer-Verlag.



89

[48] O. Maler and S. Yovine. Hardware timing verification using KRONOS. In

7th IEEE Israeli Conference on Computer Systems and Software Engineering,

June 12-13. IEEE Computer Society Press, 1996.

[49] H. P. Mckean. Nagumo’s equation.Advances in Mathematics, 4:209–223,

1970.

[50] C. Mitchell and D. Schaeffer. A two-current model for the dynamics of cardiac

membrane.Bulletin of Mathematical Biology, 65:767–793, 2003.

[51] G. Moe, W. Rheinboldt, and J. Abildskov. A computer model of atrial fibril-

lation. Am Heart J, 67:200–220, 1964.

[52] M. Osborne and G. Smyth. A modified Prony algorithm for exponential func-

tion fitting. SIAM J. Sci. Comput., 16(1):119–138, 1995.

[53] V. Pavlovic, J. Rehg, T.-J. Cham, and K. Murphy. A dynamic bayesian net-

work approach to figure tracking using learned dynamic models. InProc. of

7th IEEE Int. Conf. on Computer Vision, 1999.

[54] L. S. Pontryagin. The asymptotic behaviour of systems of differential equa-

tions with a small parameter multiplying the highest derivatives.Izv. Akad.

Nauk SSSR, Ser. Mat., 21(5):107–155, 1957.

[55] R. D. Simitev and V. N. Biktashev. Conditions for propagation and block

of excitation in an asymptotic model of atrial tissue.Biophysical Journal,

90:2258–2269, 2006.

[56] A. Singh and J. Hespanha. Models for generegulatory networks using poly-

nomial stochastic hybrid systems. InCDC05, 2005.

[57] R. Suckley and V. N. Biktashev. Comparison of asymptotics of heart and nerve

excitability. Physical Review E, 68, 2003.

[58] A. N. Tikhonov. Systems of differential equations, containing small parame-

ters at the derivatives.Mat. Sbornik, 31(3):575–586, 1952.



90

[59] M. True, E. Entcheva, S. A. Smolka, P. Ye, and R. Grosu. Efficient event-

driven simulation of excitable hybrid automata. InProceedings of EMBC,

2006.

[60] P. Varaiya. Smart cars on smart roads: problems of control.IEEE Trans.

Automatic Control, 38(2), 1993.

[61] R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to

the identification of a class of linear hybrid systems. InProc. of 42nd IEEE

Conf. on Decision and Control, 2003.

[62] P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka. Efficient modeling of ex-

citable cells using hybrid automata. InComputational Methods in Systems

Biology, 2005.

[63] P. Ye, E. Entcheva, S. Smolka, and R. Grosu. A cycle-linear hybrid-automata

model for excitable cells.IET Systems Biology, 2(1):24–32, Jan 2008.

[64] S. Yovine. Kronos: A verification tool for real-time systems.International

Journal of Software Tools for Technology Transfer, 1:123–133, 1997.

[65] J. Zeng and Y. Rudy. Early afterdepolarizations in cardiac my-

ocytes:mechanism and rate dependence.Biophysical J., 68:949–964, 1995.



91

Appendix
dimension: 2; /* system dimension=2: x[0]=clock, x[1]=voltage

*/

constants: /* constant parameters in the description */

a0 = 0.2, /* a0 */

a1 = 3.0, /* a1 */

a2 = -0.7, /* a2 */

VT = 5.7, /* Threshold VT */

VO = 106, /* Threshold VO */

Ist = 11 /* Stimulus current Ist */;

initloc: 0;/* Initially the system is in mode Stimulated */

initset: type rectangle

0.0 0.0,/* time is 0 */

0.0 0.01; /* voltage is 0 */

/* Mode Stimulated */

location: 0; /* dynamics Ẋ = AX+BU */

matrixA:/* matrix A */

0.0 0.0,

0.0 [a0];

scalB: 1.0; /* B = 1.0 */

inputset: /* the input is a rectangle area */

type rectangle

1.0 1.4, /* rate for clock x is ranging between 1.0 and 1.4 */

0.0 [Ist]; /* the current is ranging from 0 to 11*/

stayset: /* Invariant in mode Stimulated */

type rectangle

0.0 0.501,/* system has to leave this mode after time x > 0.501 */

0.0 100.0; /* no specific requirements for voltage */

transition: /* outgoing transitions */

label go01:/* transition to mode Rising */
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if in guard:

type rectangle

0.5 0.501,/* at the time when stimulation ends */

[VT] [VO];/* voltage is greater than VT */

goto 1;

label go02: /* transition to mode Falling */

if in guard:

type rectangle

0.5 0.501, /* at the time when stimulation ends */

0.0 [VT]; /* voltage is smaller than VT*/

goto 2;

/* Mode Rising */

location: 1;

matrixA:

0.0 0.0,

0.0 [a1];

scalB: 1.0;

inputset: type convex vert

1.0 0.0;

transition:

label go12: /* transition to mode Falling */

if in

guard: type rectangle

0.0 5.0, /* no specific requirements for time */

[VO] 1000;/* voltage is greater than VO */

goto 2;

/* Mode Falling */

location: 2;

matrixA:

0.0 0.0,

0.0 [a2];

scalB: 1.0;
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inputset: type convex vert

1.0 0.0;

transition:

;

limits: /* beyond this area, no analysis will be carried out.*/

x[0] <= 5.0 and

x[0] >= 0.0 and

x[1] <= 120.0 and

x[1] >= -1.0


