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Abstract of the Dissertation

Structure of N=4 SYM

by

Yu-tin Huang

Doctor of Philosophy

in

Physics

Stony Brook University

2009

In the first part of this thesis I present my research into the issue of

on-shell structures of N=4 SYM amplitudes at both tree and loop

level. In both cases the presence of supersymmetry is incorporated

through on-shell superspace. At tree level the recent perturbative

expansion inspired from twistor string theory will be given a field

theory explanation: it corresponds to a perturbation expansion

around the self-dual sector of the action, which is free classically.

At loop level, in the absence of off-shell superspace, one can only

anticipate a superspace representation for the kinematic invariants

in front of the loop integrals. I will present such a description

for the non-trivial 6-point one loop NMHV amplitude. Since a

large part of this research utilizes spinor helicity formalism, I’ll

summarize some useful result in the appendix.

In the second part, I will discuss an approach for off-shell super-

space such that one can compute amplitudes either using first or

second quantization methods. Since first quantization may present
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a closer relation with the string formulation of this theory, I will

first introduce first quantization approach for ordinary YM theory

as a toy model. This entails the construction of constraints, BRST

charge and vertex operators. A useful new result from this study

is a recipe to define Green function on spaces that are not a simple

line or circle, thus paving the way for multi-loop calculations. Fi-

nally a superspace in which such a approach can be used for N=4

SYM will be introduced, it is based on a coset of super-anti de

Sitter space, the free constraints will be given along with the ghost

structure for BRST quantization. In the end I will give a brief

discussion of the second quantized theory.
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Chapter 1

Introduction: N=4 SYM

N=4 super Yang-Mills theory is a quantum gauge theory in 4-dimensions with

16 supersymmetries. The on-shell field content consists of a vector gauge

field Aµ, 4 complex Weyl spinors λAα and 6 real scalars φAB all in the adjoint

representation of the gauge group.

The action for N=4 SYM theory was first written down more than three

decades ago[1], yet new structures and symmetries are still being discovered

for this theory thirty years later (The latest along this line would be the

dual superconformal symmetry proposed in the summer of 2008.) Much of

these new information does not manifest itself in the action, instead they were

discovered, in a sense, through reformulation of the theory.

There are two major reformulations, both in terms of string theory. First

is the AdS/CFT [2]correspondence which relates the large Nc(planar) limit of

this theory at strong coupling to a string theory in AdS5×S5 background at

weak coupling. This duality led to a wide range of discoveries for properties of

N=4 SYM; from its integrability in the planar limit and using it to determine

the spectrum of scaling dimensions[3], to the dual superconformal invariance [4]

of the scattering amplitudes which is related to the T-duality transformations

of the string sigma-model in the AdS5×S5 background[5].

The second is the Wittens twistor [6] topological B model in twistor space

background(CP3|4). This is a weak weak duality, namely perturbative ampli-

tude in the string theory correspond to perturbative amplitude in the field

theory. Since the string theory construction was topological, this led to new

“topological” expansion in field theory such as the expansion in chiral ampli-
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tudes (CSW approach) or a recursive relationship between higher and lower

point amplitudes (BCFW relation).

The supersymmetric action is uniquely determined by requirement of in-

variance under global super Poincare group, the principle of local gauge sym-

metry and locality. In terms of these properties N=4 SYM is special only in

the sense that it has the largest possible supersymmetry for a quantum field

theory in 4 dimensions (quantum gravity not included). However, from the

traditional field theory point of view, this large number of supersymmetries is

actually a headache in the form of complicated helicity states for the S matrix

elements and the lack of an off-shell formulation.

On the other hand, in suitable on-shell variables the amplitudes for this

theory are extremely simple. For example the Maximal Helicity Violating

(MHV) (precise definition given in the next chapter) amplitude is given as [7]1

A(MHV)tree =
δ8(
∑n

i=1 λiθ
A
i )

Πn
i=1 < ii+ 1 >

(1.1)

This form for the amplitude cannot be derived from first principle using the

action and Feynman rules (This amplitude is verified by expanding in compo-

nents and compared with the field theory computation.) Instead this ampli-

tude was only “derived” as the expression for specific amplitudes in Witten’s

twistor string. Another example would be the recent investigation of tree level

amplitude in ambi-twistor space [8]2 The four point amplitude is simply a

product of 4 sign functions:

M4 = sgn(W1 · Z2)sgn(Z2 ·W3)sgn(W3 · Z4)sgn(Z4 ·W1) (1.2)

the subscripts label the external lines, Zs and W s are conjugate ambi-twistor

variables. This does not even look like an amplitude derived from any first or

second quantized action.

Since most of these results are not based on an action, this would imply

1A similar example is the Parke-Taylor form for MHV amplitudes [9]. Its simplicity per-
haps can also be credited to N=4 SYM since both give the same tree level gluon amplitude.

2In ambi-twistor space one enlarges the original twistor space construction by keeping
all the twistor coordinate and their conjugate momenta, while the original twistor approach
keeps only half of them. For detail see (A). In a sense the usual twistor approach is based
on holomorphicity (chiral basis).
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BCFW recursion

KLT relation

N=8 Sugra
Field theory N=4 SYM
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Tree
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Generalized unitarity

Generalized unitarity

Dual        superconformal

Figure 1.1: Interplay of field theory and string theory at the level of scattering
amplitudes.

a deeper reason for this structure other then supersymmetry, locality and

gauge symmetry. A similar situation occurs for N=8 super gravity theory

(Sugra), which exhibits finiteness beyond that predicted from supersymmetry.

In fact the situation for N=4 SYM and N=8 Sugra are closely related. The

modern approach to N=8 computations is to use generalized unitarity methods

(multi-particle cuts) to relate loop level amplitudes to tree level amplitudes.

Since tree-level gravity amplitudes can be rewritten in terms of gauge-theory

amplitudes, a fact first uncovered from string theory by Kawai, Lewellen and

Tye (KLT)[10], the finiteness of N=8 Sugra is then tied to simple properties

of tree level amplitudes of N=4 SYM. These on-shell relations are displayed

schematically as:

The issue of off-shell supersymmetry is an even more glaring mystery. By

the field content of the theory and its global symmetry properties, it is well

known that this theory possesses even at the quantum level a large space time

symmetry: the super conformal symmetry. However, there is no known for-

mulation, even for its amplitudes, such that this symmetry is manifest. In

comparison, ordinary(N=0) YM theory has Lorentz symmetry and its ampli-

tude can be written in terms of Lorentz invariants.

All these mysteries seem to imply that there is a deeper principle at work

here, that is beyond the structure of standard field theory which is based on

3



action principle determined by global(and local)symmetries, renormalizability

and locality. Uncovering this principle should shed light on other 4-dimensional

theories that encounter difficulties when constructed as a field theory, such as

quantum gravity.

We first introduce the action for N=4 SYM.

1.1 N=4 SYM from dimension reduction

We derive D=4 N=4 SYM from D=10 N=1 SYM. This was originally derived

in [1], here we follow [11]. The d=10 theory is written as

L =
1

g2
10

tr(
1

2
F a
MNF

aMN + ψ̄ΓMDMψ) M,N = 0, 1, · · 9 (1.3)

The spinors ψ satisfy Majorana-Weyl condition, that is ψ̄ = ψTC10 and Γ10ψ =

ψ, where C10 and Γ10 are the 10 dimensional charge conjugation and chirality

matrices respectively. This gives the correct on-shell counting since there are

8 bosonic degrees of freedom in AM and 32
2×2

= 8 degrees of freedom for ψ. It

is invariant under the susy transformation

δAM = ε̄ΓMψ ; δψ = −1

2
FMNΓMNε (1.4)

where ΓMN = 1
2
Γ[MΓN ]. Since ψ is a Majorana-Weyl spinor, so is ε. To see

that it is invariant under this transformation, note that the variation for the F 2

term gives −2ε̄ΓNψDMF
MN while varying ψ gives −ψ̄ΓMΓPQεDMFPQ. Using

ΓMΓPQ = ΓMPQ + 2ηM [PΓQ] and ψ̄ΓMε = −ε̄ΓMψ, since both spinors are

Majorana, these two terms cancel after using the Bianchi identity D[MFPQ].

Then one is left with a term coming from varying the gauge field in the Dirac

Lagrangian, (ψ̄aΓMψb)(ε̄ΓMψ
c)facb where facb is the structure constant for the

gauge group. To see that it vanishes one uses Feirz recoupling

(λ̄Mξ)(ψ̄Nη) = − 1

32
ΣI(ψ̄NOIMξ)(λ̄OIη) (1.5)

where one OI is a complete set of matrices in the spinor space, and can

be taken to be OI = {I,ΓM , iΓMN ,ΓMNP ..., iΓΓP ,Γ} with the normalization

4



tr(OIOJ) = 32δIJ . One can now rewrite

(ψ̄aΓMψb)(ε̄ΓMψ
c)facb = − 1

32
ΣI(ε̄ΓMOIΓ

Mψb)(ψ̄aOIψ
c)facb (1.6)

For (ψ̄aOIψ
c) to be non-vanishing it must be antisymmetric in ac, and since

ψ satisfies Weyl condition, OI must have odd number of gamma matrices.

These two requirement leads to two possibilities, OI = ΓM ,ΓMNPQR. 3 Using

ΓMΓNΓM = −8ΓN and ΓMΓPNΓM = 0, we see that (ψ̄aΓMψb)(ε̄ΓMψ
c)facb =

0, the action is indeed invariant under these transformations.

To reduce to four dimensions we choose a specific representation for the

gamma matrices.

ΓM = {γµ ⊗ I8, γ(4) ⊗ γ̃I} ;µ = 1, 2 · ·4, I = 1, 2 · ·6 (1.7)

This breaks the 10 d representation into a product of SO(3,1) and SO(6)

representations, γ(4) is the chirality matrice in 4-d, and γ̃I is defined as

γ̃I =

(
0 (ΣI)µν

(Σ̄I)µν 0

)
;

(ΣI)µν = (ηiµν , iη̄2iµν)

(Σ̄I)µν = (−ηiµν , iη̄iµν)
i = 1, 2, 3

ηijk = εijk, ηiµ4 = ηi4µ = δiµ

η̄ijk = εijk, η̄iµ4 = η̄iµ4 = −δiµ

ηiµν and η̄iµν are ’t Hooft symbols[12]4. In this basis the chirality and the charge

conjugation matrix can also be written into a product of 4 and 6 dimension5.

Now we arrive at the 4-d theory by separating the gauge field into a four

3Using ΓT = Γ and Γψ = ψ one can show that for Weyl spinors, (ψ̄ΓM1M2...Mkψc) =
(−1)k+1(ψ̄ΓM1M2...Mkψc). Thus for it to not vanish k = odd. Taking the trans-
pose of (ψ̄ΓM1M2...Mkψc) and using CT = −C in d=10, one has (ψ̄ΓM1M2...Mkψc) =
(ψ̄ΓM1M2...Mkψc)T = (−1)

k(k+1)
2 (ψ̄ΓM1M2...Mkψc). Thus one is left with k = 1, 5, since

for k = 9 it is equivalent to ΓMΓ which is equivalent to ΓM on Weyl spinors.
4They form a basis for 4×4 anti-symetric tensors. They satisfy (anti)self-dual relation-

ship, ηaµν = 1
2ε
µνρσηaρσ and η̄aµν = − 1

2ε
µνρσ η̄aρσ.

5As discussed in the appendix, for 10-d and 4-d CT = −C, while CT = C for d=6.

Specifically C10 = C6 × C4 =
(

0 δAB
δAB 0

)
⊗
(
εαβ 0
0 εα̇β̇

)

5



dimension vector and six scalars, while the spinor splits into 4 Weyl spinors

AM = {Aµ, P i, Si} i = 1, 2, 3

ψ =

(
δAB

0

)
⊗

(
λα

0

)
+

(
0

δAB

)
⊗

(
0

λ̄α̇

)
A = 1, 2, 3, 4

(1.8)

Note that the way ψ is written satisfies the Majorana-Weyl condition for 10-

d for our specific representation of gamma matrix chosen. Since they are

complex, they transform as the 4 and 4̄ of SU(4), the covering group for SO(6).

Due to the gamma matrices in the Dirac action, when separated into 4-d the

6 scalars couple to the spinors in the form of

fabcλ̄
a
α̇A(ΣiABP b

i + Σ2i ABSb2i)λ̄
cα̇
B − fabcλaαA(Σ̄i

ABP
b
i + Σ̄2i

ABS
b
2i)λ

cB
α (1.9)

One can then simplify things by the following redefinition of the scalars

φaAB =
1√
2

ΣI ABAaI =
1√
2

(P aiηiAB + iSaiη̄iAB)

φ̄aAB =
−1√

2
Σ̄I
ABA

a
I =
−1√

2
(P aiηiAB − iSaiη̄iAB) (1.10)

Due to the self-duality relation for the ’t Hooft symbols, we have −Σ̄a
AB =

1
2
εABCDΣaCD and hence the scalars satisfy the following self-dual relationship6.

φ̄AB =
1

2
εABCDφ

CD (1.11)

Finally we have the following 4-d action for N=4 SYM

S =
1

g2

∫
d4xtr{1

2
FµνF

µν − iλ̄α̇A 6Dα̇βλ
βA − iλAα 6Dαβ̇λ̄Aβ̇ +

1

2
(Dµφ̄AB)(DµφAB)

−
√

2φ̄AB{λαA, λBα } −
√

2φAB{λ̄α̇A, λ̄α̇B}+
1

8
[φAB, φCD][φ̄AB, φ̄CD]}

(1.12)

6In superspace approach, this self-duality relationship is a result from modified Bianchi
identity as we will discuss later
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1.2 Light-cone superspace

The above susy transformations in d=10 close up to field equations. This can

be seen by two susy transformation on the spinor

(δε2δε1 − δε2δε1)ψ = −1

2
(2ε̄2ΓNDMψ)ΓMNε1 − (1↔ 2)

= − 1

32
ΣIΓ

MNOIΓNDMψ(ε̄2OIε1)− (1↔ 2)

= − 1

32
ΓMNΓPΓNDMψ(ε̄2ΓP ε1)− (1↔ 2)

= (ε̄2ΓP ε1)DPψ −
1

2
(ε̄2ΓP ε1)ΓP 6Dψ (1.13)

This it closes up to the field equation 6Dψ = 0. For off-shell susy, one needs

auxiliary fields which we post-pone to later chapter. At this point one can still

manifest half of the susy on-shell. In a frame where only p+ is nonvanishing,

the Dirac equation is solved if Γ−p−ψ = Γ−p+ψ = 0 where Γ± = 1√
2
(Γ0 ± Γ1).

This means that if one splits the spinor ψ into

ψ = −1

2
(Γ+Γ− + Γ−Γ+)ψ ≡ ψ+ + ψ− (1.14)

an on-shell spinor means that one has only ψ−, or Γ+ψ the “+” projected

spinor. Looking back at (1.13) indeed the susy algebra with ε+ closes on ψ−.

From the transformation of AM one sees that only the transverse direction

transforms under this reduced susy 7. This is the basis for light-cone superfield

formalism [13], where half of the susy is manifest with the on-shell degrees of

freedom, A⊥ and ψ−. The susy algebra one is left with is

{Qα+, Q̄
β
+} = (γ+)α

βp+ (1.15)

Preserving half of the susy means that only the SO(8) subgroup of the original

Lorentz group is manifest. Dimensionally reducing to four dimensions breaks

the SO(8) into SO(6)×SO(2)∼SU(4)× U(1). The four dimensional algebra is

then

{qm, q̄n} = −
√

2δmn p
+ (1.16)

7δA± = (ε̄+Γ±ψ−) = 0 since Γ−ψ− = Γ+ε+ = 0.
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where m,n are SU(4) indices, there are 4 complex supercharges. One can then

define covariant derivatives with anti-commuting grassman variables, θm such

that the susy generators and covariant derivatives are given by

qm = − ∂

∂θ̄m
+

i√
2
θ
∂

∂x−
; dm = − ∂

∂θ̄m
− i√

2
θ
∂

∂x−

q̄n =
∂

∂θn
− i√

2
θ̄
∂

∂x−
; d̄n =

∂

∂θn
+

i√
2
θ̄
∂

∂x−

The four dimensional physical fields {A, λm, φmn, λ̄n, Ā} transform as the {1, 4, 6, 4̄, 1}
of SU(4). It is then natural to incorporate them in a scalar superfield, a chiral

superfield

d̄mΦ = 0 (1.17)

For N=4 SYM its multiplet is TCP self-conjugate, therefore there is a further

constraint on the chiral fields.

Φ̄ =
1

(∂+)2
εmnpqdmdndpdqΦ (1.18)

which reflects the self-duality relationship of the scalar fields. Expanding in

components

Φ(x, θ) =
1

∂+
A(y) +

i

∂+
θmΛ(y) + i

1

2
θmθnC̄mn(y) (1.19)

+
1

3!
θmθnθpεmnpqΛ̄

q(y) +
1

4!
θmθnθpθqεmnpq∂

+Ā(y)

where y = (x+, x− + 1
2
iθmθ̄m, x, x̄) and p+ appears such that each term is

dimensionless. The 4 d action can then be written as

S = tr

∫
d4xd4θd4θ̄{Φ̄∂

+∂− − ∂̄∂̃
2∂+2

Φ− 2

3
gfabc[

1

∂+
Φ̄aΦb∂̄Φc + complex conjugate]

−g2fabcfade[
1

∂+
(Φb∂+Φc)

1

∂+
(Φ̄d∂+Φ̄e) +

1

2
ΦbΦ̄cΦdΦ̄e]}

(1.20)
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Chapter 2

On-shell amplitudes (tree)

2.1 Introduction

In recent years the attention has turned to on-shell methods for the S-matrix

of the theory, see [14, 15] for review. These methods were built upon either

Cachazo, Svrcek and Witten’s (CSW)[16]’s MHV vertex expansion or Britto,

Cachazo, Feng, and Witten’s [17, 18] recursion relations (sometimes its a com-

bination of the two). Though these two methods was preliminarily developed

for N=0 YM theory, extension to N=4 has been straight forward [19]. The

power of these methods is that higher point amplitudes which are complicated

in traditional Feynman rules can now be constructed from simpler amplitudes

which are in compact form. The utility of these approach has been demon-

strated in the computation of previous inaccessible N=8 Supergravity loop

amplitudes as mentioned in the general introduction.

Various efforts has been made on providing a proof for the CSW program.

Risager [20] showed that the CSW program is just a result of certain recur-

sion relationship similar to that developed by BCFW, which uses the fact

that one can use unitarity to relate one loop amplitudes to tree amplitudes,

while infrared consistency conditions relate different tree amplitudes to satisfy

a recursion relationship. However, in the proof for the BCFW recursion rela-

tionship [18] one actually uses the CSW program to prove the behavior of tree

amplitudes in certain limits.1 In the following we give a brief description of the

1Recently, one has been able to prove that BCFW eventually leads to the CSW expansion
[21].
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Figure 2.1: The BCFW recursion relation.

BCFW and CSW approach, the main point will be to prove that CSW has its

origin hidden in the Lagrangian of the theory: it corresponds to a perturbative

expansion around the self-dual part of the action.

2.1.1 BCFW recursion relations

The BCFW recursion relation is an algebraic relation between higher point

amplitudes and lower point amplitudes. An n-point on-shell tree amplitude

can be expressed in terms of two lower point on-shell amplitudes with n− l+1

and l + 1 external legs:

An =
∑
{ij}

Ân−l+1,(i··j)
1

P 2
ij

Âl+1,(j+1··i−1) (2.1)

where the sum is over different sets of external momenta that sits on one side

of the propagator. I used hat for the lower point amplitude Â, indicating that

the two of the external lines (reference lines) are slightly modified. This will

become clear shortly. This relationship can be expressed pictorially as: where

l and k label the reference lines which we now discuss. Consider a general tree

amplitude with n external lines, choose two external lines (the reference lines)

and shift them by a null momentum q,

pl → pl + zq , pk → pk − zq (2.2)

This shift preserves momentum conservation and q is chosen such that q · pl =

q · pk = 0. One can choose q = λlλ̃k, then the above shift corresponds to the

following shift for the spinors of the reference lines

λ̃l → λ̃l + zλ̃k ; λk → λk − zλl (2.3)

10



Note that this shift violates the relationship λ̃ = ±λ̄ required for Minkowski

signature, therefore we are really looking at amplitudes in split signature

(+,+,−,−) which does not make a difference for tree amplitudes. After the

shift the only singularity in z for an arbitrary tree graph comes from propa-

gators: the shifted amplitude An(z) is then a rational function in z and has

simple poles in the propagators that have the two reference lines on opposite

sides2

1

(Pij)2
→ 1

(Pij)2 − 2z〈λl|Pij|λ̃k]
(2.4)

This is true for general amplitudes. The crucial point is that if the amplitudes

vanish for z taken to infinity, then the function A(z) is uniquely determined

by the residues of the simple poles. That is, A(z) has a unique expansion as

A(z) =
∑
{i,j}

ci,j
z − zi,j

= −
∑
{i,j}

AL
1

2(〈λl|Pij|λ̃k])(z −
P 2
i,j

2〈λl|Pij |λ̃k]
)
AR (2.5)

again the sum runs over all sets of external line configuration i, j in the fig-

ure such that the reference lines sit on opposite side of the propagator, and

zi,j =
P 2
i,j

2〈λl|Pij |λ̃k]
. At this point AL(AR) are just functions depending on the

polarization and momentum of the external lines on the left(right) of the prop-

agators, they are not amplitudes yet.

Whether or not the tree amplitudes vanish for large z is discussed in [22].

We will use the fact that indeed they do for N=4 SYM.

The real amplitude corresponds to the (2.5) evaluated at z = 0: A(0) =

−
∑
{i,j}

ci,j
zi,j

. The residues ci,j take the form

ci,j = −ÂL × ÂR
1

2〈λl|Pij|λ̃k]

∣∣∣∣∣z= P2
i,j

2〈λl|Pij |λ̃k]

(2.6)

where ÂL and ÂR contains the shifted reference momentum (2.2,2.3) with z =
P 2
i,j

2〈λl|Pij |λ̃k]
. Now the line in ÂR and ÂL that was connected to the propagator has

momenta ±(Pij−zi,jq), which is now massless (Pij−zi,jq)2 = P 2
ij−2zi,jq ·Pij =

0. Thus all lines for ÂR and ÂL are now on-shell: these are just lower point

tree amplitudes with the reference spinors redefined as 2.3. Thus we’ve finally

2Note that it has only simple poles due to q2 = 0. Since q is constructed from the
momenta of the external lines, it’ll will be difficult to construct an off-shell version of BCFW.
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arrived at the BCFW recursion relation:

An =
∑
{ij}

Ân−m+1,(i··j),l
1

P 2
ij

Âm+1,(j+1··i−1),k (2.7)

In this final form we’ve labelled the reference lines l, k.

2.1.2 CSW from Twistor string

The origin of CSW expansion is quite different from BCFW (except the au-

thors). BCFW relations were originally realized from analysing loop ampli-

tudes of N=4 SYM which are UV finite but have infrared singularity. Using

unitarity based methods, the computation of these amplitudes reduces to eval-

uating coefficients in front of a set of scalar box integrals (discussed in next

chapter). These coefficients can be expressed in terms of tree amplitudes across

the cuts, thus these tree amplitudes must combine in a way such that the in-

frared singularities coming from the scalar box combine nicely into known

results. This gives a recursive relationship for the tree amplitudes.

CSW expansion came from Witten’s twistor string formulation of tree

level N=4 SYM amplitudes[6]. Perturbative expansion of amplitudes corre-

spond to perturbation in instanton number (target space D-instantons for

Witten’s topological string, world sheet instantons for Berkovits and Siegels

construction[23, 24]). An instanton number 1 amplitude is the MHV amplitude

while instanton number k amplitude gives Nk−1MHV amplitude. For k > 1

it is not clear whether one should consider only a k instanton or multiples of

lower instanton number. So far there is evidence for both case. If completely

disconnected instantons can give the correct field theory amplitude, then this

implies that there must be a perturbative formulation in field theory which

uses MHV amplitudes as vertices, this is the CSW approach[16].

The definition of MHV is as follows. For the usual Yang-Mills theory,

amplitudes are labelled by their external momenta and helicity(±). Am-

plitudes with all plus(minus) or just one plus(minus) helicity vanish. Thus

the first non-vanishing amplitude that has mostly plus(minus) helicity must

have at least two minus(plus) helicities, these are the Maximal Helicity Vi-

olating (MHV)amplitudes. For example 5 point amplitude takes the form

(−,−,+,+,+), (−,−,−,+,+) · ·e.t.c. while (−,−,−,−,+) = 0. In N=4

12
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Figure 2.2: A 5-pt MHV amplitude constructed in CSW method.

SYM this assignment is extended to fermions and scalars. Thus (anti)chiral

fermions has helicity (−1
2
)+1

2
while the scalars has helicity 0. Then MHV am-

plitudes can be defined as those that have total helicity −4 with respect to an

all plus helicity amplitude. For example for 4 point we have (−1,−1,+1,+1),

(0, 0, 0, 0) or (−1
2
,−1

2
, 0,+1).

In the CSW approach one constructs an arbitrary tree amplitude by using

MHV vertices as its only building block. For example a 5 point (+ +−−−)

amplitude can be written as four different combinations of a 3 point and a 4

point MHV amplitude.

Each MHV vertex takes an on-shell form while the leg that connects the

propagator is continued off shell by the following prescription

λP = Pαα̇η̃
α̇ (2.8)

where η corresponds to an arbitrary null vector. Note that only the holomor-

phic spinor is redefined, this is because the MHV amplitude only depends on

the holomorphic spinor. This is why the CSW expansion is in a sense expand-

ing on a chiral basis. In practice one usually picks an arbitrary external line

for this null vector, then one anticipates that the final amplitude does not de-

pend on the choice of reference spinor. In the next section we begin to derive

a field theory explanation [25] for such a perturbation base on the light-cone

superspace action, then the reference spinor is identified as the frame that de-

fines the light-cone gauge. Hence reference spinor independence is equivalent

to gauge choice independence.
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2.2 MHV Lagraingian

Even though the relation between various on-shell methods has become clear,

one would still like to see its relationship to the action approach of QFT, since

originally the theory was defined by its Lagrangian. Making the connection

may well shed light on what properties of the Lagrangian lead to such simple

structures for its scatering amplitudes. Effort along this line of thought began

by Gorsky and Rosly [26] where they proposed a non-local field redefinition

to transform the self-dual part of the YM action into a free action, while the

remaining vertices would transform into an infinite series of MHV vertices.

In this sense the MHV lagrangian can be viewed as a perturbation around

the self-dual sector of ordinary Yang-Mills. This seems natural since self-dual

Yang-Mills is essentially a free theory classically. Yang-Mills lagrangian in

light-cone (or space-cone[27]) gauge is a natural framework for such a field re-

definition since the positive and negative helicity component of the gauge field

are connected by a scalar propagator. Work on the light-cone action began by

Mansfield[28] emphasizing the canonical nature of the field redefinition. The

formulation was also extended to massless fermions. The explicit redefinition

for Yang-Mills was worked out by Ettle and Morris [29]. The canonical condi-

tion in [28][29] ensures that using the field redefinition, complications will not

arise when taking into account currents in computing scattering amplitude.

This will not be true for more general field redefinitions as we show in this

letter.

The progress above was mostly done in the framework of ordinary Yang-

Mills. However, the CSW program has also achieved various successes in

N=4 SYM as priorly mentioned. It is also interesting in [29] the redefinition

for positive and negative helicity have very similar form which begs for a

formulation putting them on equal footing. This formulation is present in

N=4 light-cone superspace [13] where both the positive and negative helicity

gauge field sit on opposite end of the multiplet contained in a single chiral

superfield. Thus a field redefinition for one superfield contains the redefinition

for the entire multiplet, which would be very difficult if one tried the CSW

program for the component fields separately. Moreover, N=4 Self-dual YM is

free at quantum level, implying the CSW program should work better at loop

level for SYM compared to YM.
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In this section we formulate such a field redefinition using the N=4 SYM

light-cone Lagrangian. We proceed in two ways, first we try to formulate a gen-

eral redefinition by simply requiring the self-dual part of the SYM lagrangian

becomes free in the new Lagrangian. Subtleties arise when using it to compute

scattering amplitudes that require one to take into account the contribution of

currents under field redefinition. Latter, we will impose the redefinition to be

canonical. In both cases only the redefinition of the chiral field is needed, thus

giving the transformations for components in a compact manner. However,

it is the second redefinition that corresponds to CSW program, and we will

see that once stripped away of the superpartners, it gives the result for YM

derived in [29]. We calculate the on-shell amplitude in the new lagrangian for

4-pt MHV amplitude and show that it matches the simple form derived in [7].

In the end we briefly discuss the relation between the off-shell MHV vertices

here and the on-shell form, with off-shell continuation for propagators, used

in CSW.

2.2.1 The Field Redefinition

Transforming (1.20) to the chiral basis using (1.18), one arrives at a quadratic

term, a 3-pt vertex with 4 covariant derivatives, a three pt and 4-pt vertex with

8 covariant derivatives. As shown by Chalmers and Siegel [30], the quadratic

term and the three point vertex which contains only 4 covariant derivatives

describes self-dual SYM. Since self-dual SYM is free classically, at tree level

one should be able to consider the self-dual sector to be simply a free action

in the full SYM, i.e. one considers the full SYM as a perturbative expansion

around the self-dual sector. Therefore the aim is to redefine the chiral field so

that the self-dual sector transforms into a free action: one then tries to find

Φ(χ) such that

SSD = tr

∫
d4xd4θ {Φ∂+∂−Φ− Φ∂∂̄Φ +

2

3
∂+Φ[Φ, ∂̄Φ]} (2.9)

= tr

∫
d4xd4θ {χ∂+∂−χ− χ∂∂̄χ}

Note that if the field redefinition does not contain covariant derivatives, the

remaining interaction terms will becomes MHV vertices, the infinite series
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generated by the field redefinition from the remaining 3 and 4-pt vertex will

all have 8 covariant derivatives. This result is implied by the known MHV

amplitude [7]

A(...j−.....i−...)tree =
δ8(
∑n

i=1 λiθ
A
i )

Πn
i=1 < i i+ 1 >

(2.10)

where

δ8(
n∑
i=1

λiθ
A
i ) =

1

2

4∏
A=1

(
n∑
i=1

λαi θ
A
i )(

n∑
i=1

λiαθ
A
i ) (2.11)

The amplitude contains various combination of 8 θ’s and thus imply 8 covariant

derivatives to extract the amplitude.

In the Yang-Mills MHV lagrangian [28][29], the positive helicity gauge field

A transforms into a function of only the new positive helicity field B, while the

negative helicity Ā transforms linearly with respect to B̄, Ā(B̄, B). One can

see this result by noting that in order to preserve the equal time commutation

relationship,

[∂+Ā, A] = [∂+B̄, B] (2.12)

that is, the field redefinition is canonical. This implies ∂+Ā = ∂+B̄ δB
δA

, there-

fore Ā transform into one B̄ and multiple B fields. This result for the gauge

fields becomes natural in the N=4 framework since now the chiral field Φ is

redefined in terms of series of new chiral field χ. The positive helicity gauge

field A which can be defined in the superfield as 1
∂+A = Φ|θ=0 = Φ(χ|θ=0)

resulting in a function that depends only on B. For the negative helicity

∂+Ā = D4Φ|θ=0 = .....χ(D4χ)χ|θ=0..., dropping contributions from the super

partners we see that Ā(B̄, B) depends on B̄ linearly.

Another advantage of working with superfields is that as long as the field

redefinition does not contain covariant derivatives, the super determinant aris-

ing from the field redefinition will always be unity due to cancellation between

bosonic and fermionic contributions. Therefore there will be no jacobian factor

arising.

The requirement that the field redefinition must be canonical is necessary

for the equivalence between MHV lagrangian and the original lagrangian in the

framework of the LSZ reduction formula for scattering amplitudes. Indeed we

will illustrate this fact by solving the field redefinition for (2.10) disregarding

the canonical constraint. We will show that this gives a solution that by
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itself does not give the correct form of MHV amplitude on-shell, one needs to

incorporate the change induced on the external currents. After imposing the

canonical constraint we derive the correct on-shell result.

Field redefinition I Φ(χ)

We proceed by expanding Φ in terms of χ. Since the light-cone action in the

component language corresponds to choosing a light-cone gauge, the redefini-

tion should be performed on the equal light-cone time surface to preserve the

gauge condition. We thus Fourier transform the remaining three coordinates

into momentum space, leaving the time direction alone, understanding that

all fields are defined on the same time surface.

Φ(~p1) = χ(1) +
∞∑
n=2

∫
~p2~p3..~pn+1

C(~p2, ~p3 · · · ~pn+1)χ(2)χ(3)..χ(n+ 1)δ(~p1 +
n+1∑
i=2

~pi)

(2.13)

Here we follow the simplified notation in [29], the light-cone momenta are

labeled p = {p−, p+, p, p̄}, the later spatial momenta are collected as a three

vector ~p, and introduce abbreviation for the momentum carried by the fields,

χ(i) = χ(−~pi). Plugging into (2.10), the coefficient in front of the first term

is determined by equating terms quadratic in χ on the left hand side with the

right. Similarly for cubic terms we have :

δ(~p1 + ~p2 + ~p3)tr

∫
d4θ

∫
~p2~p3~p1

[−2C(~p2, ~p3)P 2
2,3

+
2

3
(p+

3 p̄2 − p+
2 p̄3)]χ(1)χ(2)χ(3) = 0

(2.14)

Thus we have

C(~p2, ~p3) = −1{23}
3P 2

2,3

(2.15)

where P 2
i..j = (pi+....pj)

2, {i, j} = p+
i p̄j−p+

j p̄i, and for later (i, j) = p+
i pj−p+

j pi.
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For four field terms :

δ(Σ5
i=2~pi)tr

∫
d4θ

∫
~p2··~p5

[−C(~p2, ~p3)C(~p4, ~p5)P 2
2,3 − 2C(~p2, ~p3, ~p4)P 2

2,3,4

−2

3
C(~p2, ~p3){4, 5} − 2

3
C(~p3, ~p4){(3, 4), 5}

−2

3
C(~p4, ~p5){3, (4, 5)}]χ(2)χ(3)χ(4)χ(5) = 0

(2.16)

Using our solution for C(~p2, ~p3) from (2.15), cyclic identity within trace and

relabeling the momenta for the last three terms we have:

C(~p2, ~p3, ~p4) =
5

18

{2, 3}{4, 5}
P 2

2,3,4P
2
2,3

(2.17)

One can again use this result to obtain higher terms iteratively. The field redef-

inition does not contain covariant derivatives, thus guarantees the remaining

vertex after field redefinition will be only of MHV vertex. However if we di-

rectly use the new vertices to calculate on-shell amplitude we find that it will

differ from the original amplitude computed using the old action. In the next

subsection we use YM to illustrate the discrepancy and its remedy.

Field redefinition I for YM

One can easily follow the above procedure to solve YM field redefinition3.

Again we have :

tr

∫
d4x Ā∂+∂−A− Ā∂̄∂A− ∂̄

∂+
A[A, ∂+Ā] (2.18)

= tr

∫
d4x B̄∂+∂−B − B̄∂̄∂B

We can choose to leave Ā alone, Ā = B̄. Following steps similar to the above,

for the next to linear term one have:

A(1) = B(1) +

∫
~p2~p3

C(~p2, ~p3)B(2)B(3)δ(~p1 + ~p2 + ~p3)..... (2.19)

3This redefinition was also investigated in [31].

18



with

C(~p2, ~p3) =
ip+

1 {2, 3}
p+

2 p
+
3 P

2
2,3

(2.20)

One can then use this result to compute a four point MHV amplitude. With

the momentum being on shell now one has

C(~p2, ~p3) =
ip+

1

(2, 3)
(2.21)

To see that this does not give the correct result, note that (2.21) is exactly

the required redefinition, Υ(123), for A field derived [29]. However, in [29]

there is also a field redefinition for Ā while in our approach we left it alone,

thus it is obvious that our redefinition will not give the correct on-shell MHV

amplitude. The difference between our approach and [29] is the lacking of

canonical constraint of the field redefinition. One might guess the discrepancy

comes from the jacobian factor in the measure generated by our redefinition

(which will be present for YM). However these only contribute at loop level.

It is peculiar that field redefinition in the lagrangian formalism should be

submitted to constraints in the canonical formalism. From direct comparison

for the four pt MHV (- -++) we see that we reproduce the last two terms in

eq.(3.13) [29] while the first two terms are missing, the two terms coming from

the result of redefining the the Ā field.

The resolution to the missing terms comes from new contribution arising

from the currents. In a beautiful discussion of field redefinitions in lagrangian

formalism [32], it was pointed out that since scattering amplitudes are really

computed in the lagrangian formalism with currents, one should also take into

account the effect of the field redefinition for the currents. In the LSZ reduc-

tion formula for amplitude, one connects the source to the Feynman diagrams

being computed through propagators and then amputate the propagator by

multiplying p2 and taking it on-shell. For YM the currents are JĀ and J̄A

where J carries the A external field and J̄ carries the Ā field, as can be seen

by connecting them to 〈AĀ〉 propagator. When performing a field redefinition

the coupling of the current with the new fields now takes a very different form

J̄A(B)→ J̄B + C2J̄BB + ·· (2.22)
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1

2 3

4

Figure 2.3: In this figure we show how the field redefinition may contribute to
tree graphs from the modification of coupling to the source current. The solid
circle indicate the (−−+) vertex while the empty circle indicates contraction
with the currents. Due to new terms in coupling, the CJ̄3BB term, one can
actually construct contribution to the (−−++) amplitude by using this term,
denoted by the larger empty circle, as a vertex.

Due to these higher order terms, the currents themselves behave as interaction

terms. In [29] these higher order contributions vanish after multiplying p2 and

taking them on-shell in the LSZ procedure. In our approach these higher terms

will not vanish because of the 1
p2

always sitting in front of each field redefinition

coefficient as in (2.15)(2.17). Remember the scattering amplitudes are always

computed by taking δ
δJ

(or δ
δJ̄

)of the path integral and multiplying each J (or

J̄) by p2 and external wave function, taking everything on-shell in the end.

The non-vanishing of the additional terms means we have new contributions

to the amplitude.

Adding the contribution of these terms we shall see that one gets the correct

amplitude. Consider the 4pt MHV(- -++) or (J̄ J̄JJ) amplitude. Now there

are four new terms present, two for two different ways of connecting the J̄BB

term to the original three pt.vertex, and there are two three point vertices

available. A typical graph would be that shown in fig.2.3,

Consider the 3-pt vertex −ip2
p+2

p+
1 B̄(k)B̄(2)B(1) in the original lagrangian.

The B̄(k) leg is now connected to the J̄BB vertex, thus contributing a 1
P 2

1,2
.

From the LSZ procedure there are p2’s multiplying each current. These cancel

the remaining propagators except the J̄ for the empty circle, the p2 of that

current cancels the 1
p2

in front of the field redefinition in (2.20). Putting

everything together we have.

− p2

p+
2

p+
1 δ(~pk + ~p2 + ~p1)× 1

P 2
1,2

× p+
3 {−k, 4}
−p+

k p
+
4

δ(~p3 + ~p4 − ~pk) (2.23)
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Using the delta function and putting all external momenta on-shell we arrive

at

− p2p
+
1 p

+2
3

p+
2 (p+

3 + p+
4 )(3, 4)

(2.24)

One can proceed the same way to generate other terms by connecting the B̄(2)

leg to the J̄BB vertex, and also doing the same thing to the other MHV 3-pt

vertex −ipkp
+
2

p+k
B̄(k)B(2)B̄(3). Collecting everything we reproduce the missing

terms. Thus our field redefinition does provide the same on-shell amplitude if

we take into account contributions coming from the currents.

Field redefinition II (canonical redefinition)

Due to the extra terms coming from the currents, the field redefinition from the

previous sections does not relate to the CSW program, since for CSW the only

ingredients are the MHV vertices while above one needs current contribution.

In order to avoid complication arising from the currents we impose canonical

constraint as in [29]. This implies the following relationship

tr

∫
d4xd4θ Φ(χ)∂+∂−Φ(χ) = tr

∫
d4xd4θ χ∂+∂−χ (2.25)

This is true because the canonical constraint (2.12) implies that the new field

depends on the time coordinate through the old field, there cannot be inverse

derivative of time in the coefficients that define the redefinition. Thus our field

redefinition should satisfy (2.25) and

tr

∫
d4xd4θ − Φ∂∂̄Φ +

2

3
∂+Φ[Φ, ∂̄Φ] = tr

∫
d4xd4θ − χ∂∂̄χ (2.26)

separately. To find a solution to both (2.25) and (2.26) one notes that the

component fields are defined in the same way for both chiral superfields, we

see that the A field under redefinition will not mix with other super partners

in the supersymmetric theory. Thus we can basically read off the redefinition

coefficient from the A field redefinition derived in [29].

A(1) = B(1) +
∞∑
n=2

−(i)n−1

∫
~p2··~pn+1

p+
1 p

+
3 ..p

+
n

(23)(34).(n, n+ 1)
B(2)...B(n+ 1)δ(

n∑
i=1

~pi)

(2.27)
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The A field redefinition coming from the superfield redefinition in (2.13) would

read

A(1)

ip+
1

=
B(1)

ip+
1

+
∞∑
n=2

∫
~p2··~pn+1

C(2, ..n+ 1)(i)n
B(2)...B(n+ 1)

p+
2 ..p

+
n+1

δ(
n∑
i=1

~pi) (2.28)

Comparing (2.27) and (2.28) implies the field redefinitions for the superfields

are

Φ(1) = χ(1) +
∞∑
n=2

∫
~p2··~pn+1

p+
2 p

+2
3 ..p+2

n p+
n+1

(2, 3)(3, 4)..(n, n+ 1)
χ(2)χ(3)..χ(n+ 1)δ(

n∑
i=1

~pi)

(2.29)

One can check this straight forwardly by computing the redefinition for the Ā.

Stripping away the superpartner contributions gives

Ā(1) = B̄(1) +
∞∑
n=2

∫
~p2··~pn+1

n∑
s=2

(i)n+1p+2
s p+

3 p
+
4 ..p

+
n

p+
1 (2, 3)..(n, n+ 1)

B(2)..B̄(s)..B(n+ 1)δ(
n∑
i=1

~pi)

(2.30)

This agrees with the result in [29]. It remains to see that the solution in (2.29)

satisfy the constraint (2.25) and eq.(2.26). However the fact that the pure YM

sector resulting from the super field redefinition satisfies the constraint implies

that this is indeed the correct answer. In the appendix we use this solution

to prove (2.25) and eq.(2.26) is satisfied. In the next section we use our new

field redefinition to reproduce supersymmetric MHV amplitude Λ̄ĀΛA.

Explicit Calculation for MHV amplitude Λ̄ĀΛA

Here we calculate the MHV amplitude in our new lagrangian and compare to

known results. For the amplitude Λ̄(1)Ā(2)Λ(3)A(4) we know that the result

is
〈12〉2

〈34〉〈41〉
(2.31)

To transform this into momentum space we follow [29] conventions (we’ll dis-

cuss more in the next section). For a massless on-shell momentum we write
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the spinor variables to be :

λα =

 −p̃√
p+√
p+

 λ̄α̇ =

 −p̄√
p+√
p+

 (2.32)

Then we have

〈12〉 =
(1, 2)√
p+

1 p
+
2

[12] =
{1, 2}√
p+

1 p
+
2

(2.33)

Thus (2.31) becomes

(1, 2)2p+
4

√
p+

1 p
+
3

(3, 4)(4, 1)p+
1 p

+
2

(2.34)

To compute this amplitude from our MHV Lagrangian, we use the relevant

field redefinition in components, and then substitute them in the following

three and four point vertex of the original Lagrangain.

− i∂Ā

∂+
ΛΛ̄ + iĀΛ

∂Λ̄

∂+
− iΛ̄(ĀΛ)

∂+
A (2.35)

From our field redefinition we can extract the relevant redefinition for ΛΛ̄

Λ(1)→
∫
~p2~p3

i
(p+

2 + p+
3 )

(2, 3)
Λ′(2)A′(3)δ(~p1 + ~p2 + ~p3) (2.36)

Λ̄(1)→
∫
p2p3

−i p+
3

(2, 3)
A′(2)Λ̄′(3)δ(~p1 + ~p2 + ~p3)

Plugging into (2.35) we have five terms. Cyclically rotating the fields to the

desired order and relabeling the momenta we arrive at

− 1

p+
2 + p+

3

− p2(p+
4 + p+

3 )

p+
2 (3, 4)

+
p1(p+

4 + p+
3 )

p+
1 (3, 4)

− p+
1 p2

(4, 1)p+
2

+
p+

1 (p2 + p3)

(4, 1)(p+
2 + p+

3 )

= − (1, 2)

(4, 1)p+
2

− (1, 2)(p+
4 + p+

3 )

(3, 4)p+
1 p

+
2

=
(1, 2)2p+

4

(3, 4)(4, 1)p+
1 p

+
2

(2.37)

Using that the on shell external line factor in light cone for the gauge fields is

1 and for the fermion pair is
√
p+

1 p
+
3 , one reproduces the MHV amplitude in

(2.31).
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2.2.2 CSW-off-shell continuation

An on-shell four momentum can be written in the bispinor form

pαα̇ =

(
pp̄/p+ −p
−p̄ p+

)
= λαλ̄α̇ ; λα =

 −p√
p+√
p+

 , λ̄α̇ =

 −p̄√
p+√
p+

 (2.38)

For an off-shell momentum the relationship is modified

pαα̇ = λαλ̄α̇ + zηαη̄α̇ ; z = p− − pp̄

p+
, ηα = η̄α̇ =

(
1

0

)
(2.39)

imposing p2 = 0 we see that z = 0 and we are back at (2.38). The spinors

λα and λ̄α̇ are written in terms of p+, p, p̄, so that it can be directly related

to amplitudes computed by the light-cone action which only contains these

momenta in the interaction vertices. One can then use these spinors for the

off-shell lines by keeping in mind that they relate to the momentum through

(2.39). To see this one can compute the three point MHV amplitude by looking

directly at the 3 point − − + vertex from the light-cone action (even though

these vanish by kinematic constraint, but it is sufficient to demonstrate the

equivalence since the three point MHV vertex is part of the ingredient of CSW).

The 3pt vertex for light-cone YM reads i[Ā, p+A] p
p+
Ā, then the amplitude is

(1−2−3+) = i(
p1

p+
1

p+
3 − p+

3

p2

p+
2

) = −i p+
3

p+
2 p

+
1

(1, 2) = −i p+
3

p+
2 p

+
1

(1, 2)3

(2, 3)(3, 1)
(2.40)

where in the last equivalence we used ~p1 + ~p2 + ~p3 = 0. In our definition for

the spinors, we have the identity 〈1, 2〉 = (1,2)√
p+1 p

+
2

. We see that

− i p+
3

p+
2 p

+
1

(1, 2)3

(2, 3)(3, 1)
= −i 〈12〉3

〈23〉〈31〉
(2.41)

Thus using this relation between the spinors and the momenta, one can re-

late the “on-shell” form (in terms of 〈ij〉) to its off-shell value (in terms of

momentum).

Now in the CSW approach the spinor for an off-shell momentum is written

as λα = pαα̇X̄
α̇, where X̄ α̇ is the complex conjugate spinor from an arbitrary
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null external line. Since in the previous analysis, one should take the iden-

tification in (2.38) to make the connection between the MHV on-shell form

and its off-shell value, for this to work the CSW offshell continuation must be

equivalent to our map, that is(
p− −p
−p̄ p+

)(
X̄1

X̄2

)
= λα =

 −p√
p+√
p+

 (2.42)

this leads to the requirement that X̄ α̇ = 1√
p+

(
0

1

)
. For an arbitrary null

momentum one can always find a frame such that kαα̇ = k+

(
0 0

0 1

)
, this

leads to X̄ α̇ =
√
k+

(
0

1

)
, which differs with the desired result by an overall

factor 1√
k+p+

. This overall factor cancels in the CSW calculation since the

propagator always connect two MHV graphs with one side + helicity and the

other − helicity, the + helicity side has a factor (
√
k+p+)2 while the negative

helicity side (
√
k+p+)−2.

To see that one of the vertices generated by the redefinition can be written

in terms of the holomorphic off-shell spinors (2.38), one needs to prove that

these vertices will not depend on p̄. This was shown in [28] to be true.

Therefore in the MHV lagrangian, all vertices are MHV vertices and this

indicates that one should be able to do perturbative calculation simply by com-

puting Feynman graphs with only MHV vertices. Defining the map between

momentum and spinor according to (2.38), one can compute arbitrary off-shell

amplitude in light-cone gauge in terms of momentum, and then map to their

spinor form. Their spinor form will then take the well known holomorphic

form via Nair. The difference between off-shell and on-shell is then encoded in

how these spinors relate to their momentum. In a suitable basis, we see that

the CSW definition for the spinor is equivalent to our on-shell off-shell map

up to an overall factor that cancels in the calcualtion.
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2.2.3 Equivalence Theorem at one-loop

Again for this to be a proof of the CSW approach, one needs to show that

the field redefinition does not introduce new terms that will survive the LSZ

procedure and contribute to amplitude calculations. As discussed previously,

at tree level all terms generated from the field redefinition of the coupling to

source current will cancel through the LSZ procedure except the linear term.

The only other possibility will be the self-energy diagram where multiplying

by p2 cancels the propagator that connects this diagram to other parts of the

amplitude, and thus survives. The argument that it vanishes follows closely

along the line of [29], one should be able to prove with the requirement of

Lorentz invariance that all the loop integrals will be dependent only on the

external momentum p2 which we take to zero in the LSZ procedure. This

implies that the self-energy diagrams are scaleless integrals and thus vanish.4

We would like to compute the self-energy diagram in light-cone superspace.

The Feynman rules for light-cone superspace are defined for the chiral super-

field Φ, thus one uses (1.18) to convert all the Φ̄ into Φ. The rules have been

derived in [35], and here we simply use the result. 5

1 2 ∼ d̄4
1(k)

k2
δ8(θ1 − θ2)

1

2 3 ∼
∫
d4θd4θ̄

d4(p1)

p+2
1

[
1

p+
2

p3d
4(p3)

p+2
3

− p2d
4(p2)

p+2
2

1

p+
3

]

(2.43)

Here d(k) = ∂
∂θA
− k+
√

2
θ̄A. The relevant graphs is now shown in fig.2.2.3.

4There is of course the question of whether dimensional regularization is the correct
scheme for this approach. However since in [33] dimensional regularization was used to give
the correct one loop amplitudes from Yang-Mills MHV Lagrangian, the analysis here should
hold. However, in [34] a different scheme was used, and it would be interesting to see if
there will be any equivalence theorem violation within this scheme.

5Note that the propagators given here have already included the factor of d̄4 from the
functional derivative δΦ(x1,θ1,θ̄1)

δΦ(x2,θ2,θ̄2)
= d̄41

(4!)2 δ
4(x1 − x2)δ4(θ1 − θ2)δ4(θ̄1 − θ̄2).
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Figure 2.4: These are the two relevant contributions to the one-loop self-
energy diagram. For simplicity we only denote the positions of d4 and d̄4 to
indicate which legs of the vertex were used for the loop contraction.

Note that other graphs can be manipulated into the same form by partially

integrating the fermionic derivatives. Using (2.29) with n = 2, the two terms

give ∫
d4θd4θ̄J [

k+2(k + p)

(k, p)k2(k + p)2(k+ + p+)
− k+k

(k, p)k2(p+ k)2
]Φ

=

∫
d4θd4θ̄J [

k+

k2(k + p)2(k+ + p+)
]Φ (2.44)

Writing in Lorentz invariant fashion we introduce a light-like reference vector

µ in the + direction. The result is rewritten as∫
d4θd4θ̄J [

(k · µ)

k2(k + p)2(k + p) · µ
]Φ (2.45)

Again following [29], since by rescaling µ → rµ the factor cancels, thus the

resulting integral can only depend on p2. Since we take p2 → 0 in LSZ reduc-

tion this means that the integral becomes a scaleless integral, and vanishes in

dimensional regularization.

2.3 Conclusion

We’ve shown that by redefining the chiral superfield such that the self-dual

part of N=4 SYM becomes free, one generates a new lagrangian with infinite

interaction terms which are all MHV vertex. When restricting to equal time

field redefinitions the solution gives the suitable off-shell lagrangian that cor-

responds to the CSW off-shell continuation. The redefinition is preformed by

requiring the self-dual part of the action becomes free since the self-dual sector
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is essentially free classically. It does not, however, give a derivation of Nair’s

holomorphic form of n-point super MHV amplitude. For this purpose it is

more useful to start from an action that was directly written in twistor space.

Indeed such an action has been constructed in[36] and its relation to CSW has

been discussed. The extremely non-local form of the redefined action makes

understanding CSW in terms of field theory very difficult. This non-locality

can be again traced back to the on-shell light-cone action that we began with.

Presumably an off-shell formalism well aid this discussion inmensely.
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Chapter 3

On-shell amplitudes (loop)

3.1 Introduction

In the study of N=4 SuperYang-Mills one loop amplitudes in component fields

[37][38], it has been show that they have the special property of being cut

constructible, that is they are uniquely determined by their unitary cuts. It

was shown in [37] that N = 4 SYM one loop amplitudes can be decomposed

on the basis of scalar box integrals with rational coefficients:

A =
∑

(c4mI4m + c3mI3m + c2mhI2mh + c2meI2me + c1mI1m) (3.1)

Each integral is defined as

I(K1, K2, K3, K4) = −i4(π)2−ε
∫

d4−2εl

(2π)4−2ε

1

l2(l +K1)2(l +K1 +K2)2(l −K4)2

The external lines are organized into four corners of the box graph, with Ki

representing the sum of their momenta. Depending on how the external lines

are organized they are separated into the above five different scalar integrals.

Four-mass integrals I4m have all four momentum sums massive: K2
i 6= 0.

Three-mass integrals I3m have one massless K2
i = 0, while for two-mass inte-

grals depending on whether the massless K’s are adjacent or not we have I2mh

for K2
i = K2

i+1 = 0 and I2me for K2
i = K2

i+2 = 0. We illustrate these integrals

in the following fig.??.

Therefore the calculation of one loop amplitude is reduced to determining
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I4m I3m

I2mhI2me

I1m

Figure 3.1: The scalar box integrals.

the coefficients in front of these box integrals. These coefficients are rational

functions and therefore they are not affected by branch cut singularities. Thus

in principle one can extract the coefficients by cutting two Feynman propaga-

tors in a given channel on the right hand side of (3.1), and the same for the

scalar box integrals on the left. Then (3.1) yields (for a given channel)∫
dµAtree(l1, i · · · j, l2)Atree(−l2, j + 1 · · · i− 1,−l1)

=
∑

(∆c4mI4m + ∆c3mI3m + ∆c2mhI2mh + ∆c2meI2me + ∆c1mI1m)

(3.2)

with ∆ denoting the discontinuity across the branch cut of the box integrals,

and µ the Lorentz invariant measure

dµ = δ+(l21)δ+(l22)δ(4)(l1 + l2 − Pij) (3.3)

Unfortunately complication arises from the fact that some of the cuts are

shared by more than one box integral. Therefore their coefficients come in

this equation at the same time. This problem was solved in [39] by using

generalized unitarity (quadruple) cuts [40] to analyze the leading singularities

which turn out to be unique in the box integrals. The construction is to

cut four propagators on both sides of (3.1), therefore analysing the leading
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singularity of the box integrals∫
d4lδ+(l2)δ+((l +K1)2)δ+((l +K1 +K2)2)δ+((l −K4)2)

Atree1 Atree2 Atree3 Atree4 =
∑

(∆LSc4mI4m)

(3.4)

where the tree amplitudes correspond to amplitudes with the corresponding

external lines Ki. Note that for other box integrals, one of the tree amplitudes

on the left hand side of (3.4) will be a three point amplitude which is zero for

Minkowski signature. This issue is resolved by going to split signature with

the corresponding modification for the cut measure [39].

At this point it is natural to ask if one may reconstruct the above re-

sults in a superspace language. The most natural approach would then be the

CSW construction discussed in the previous chapter, which uses MHV vertices,

which is already in superspace form, as the basic building block of the scatter-

ing amplitudes. At loop level the valediction of CSW approach was proven to

give the same result as that in field theory in [41] for MHV loop amplitudes,

and [42] reproduces the relationship between the color leading amplitudes and

sub-leading amplitudes.

To compute NMHV one loop amplitude using CSW construction would

require three MHV vertices connected by three propagators. At this point it

is not clear how the correct scalar box functions should arise in this formalism.

One of the complications is for more than two fermionic delta functions (there

is one for each MHV vertex), after the expansion in superspace there will be

multiple spinor products that contain the off shell continuation spinor of the

propagator, η. Since the external line factor for different species is different,

the integration over these spinor products requires separation: The integrand

for the gluonic amplitudes will be dramatically different from the ones with

gluinos, implying one can only derive the box functions from the superspace

expansion one term at a time and not in the original superspace full form.

This is not surprising since one would anticipate the scalar box decom-

position to naturally arise only for an off-shell superspace formalism. At the

current stage one can at most anticipate a superspace representation for the

coefficients in front of these scalar box integrals, since in principle they are
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products of on-shell tree amplitudes. The aim of this section is to formulate

such results using different techniques. Here we take the NMHV 6 point one

loop amplitude as an example. NMHV tree and loop amplitudes with gluinos

or scalars were previously [43] derived from their pure gluonic partners by

solving the supersymmetric Ward identities (SWI)[44]. Since the the Ward

identities act linearly on the amplitudes, one would anticipate the simple su-

perspace representation of this amplitude.

In [43] the SWI were not used directly upon the coefficients in front of

the box integrals for the gluonic amplitude, but rather the coefficients in front

of a particular combination of box integrals, which originated from the three

different two particle cuts [38]. Here we show one can construct the super-

space amplitude by noting that for the six point one loop amplitude, the tree

graphs on either side of the cuts always come in MHV and MHV pair. Since

MHV and MHV trees can be written straight forwardly in superspace form,

one naturally derives the six point one loop NMHV amplitude for all helicity

configurations and external species as one superspace amplitude by fusing the

two tree amplitudes. Note that there is already progress for deriving the coef-

ficients in (3.1) directly in superspace[45], though at least for six point NMHV

it is not simpler then our result [46].

In the following we present the amplitude in its full superspace form and

confirm our result by explicitly expanding out the terms that give the correct

amplitudes with two gluinos obtained in [43]. We will also give a brief demon-

stration of how one could obtain the field theory result for the loop amplitude

from the MHV vertex approach (CSW).

3.2 The Construction

The n point MHV and MHV tree level amplitudes have a remarkably simple

form. For MHV tree [7]:

A(...j−.....i−...)tree =
δ8(
∑n

i=1 λiη
A
i )

Πn
i=1 < ii+ 1 >

(3.5)

where

δ8(
n∑
i=1

λiη
A
i ) =

1

2

4∏
A=1

(
n∑
i=1

λαi η
A
i )(

n∑
i=1

λiαη
A
i ) (3.6)
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as for MHV tree:

A(...j+.....i+...) =
δ8(
∑n

i=1 λ̃iη̃
A
i )

Π6
i=1[ii+ 1]

(3.7)

Here we’ve omitted the energy momentum conserving delta function and the

group theory factor. After expansion in the fermionic parameters ηAi , one can

obtain MHV amplitudes with different helicity ordering (+ +−−−,+−+−
−...etc) and different particle content.

We proceed to construct the full N=4 SYM NMHV 1-loop six point am-

plitudes by following the original gluonic calculation [38], where the ampli-

tude was computed from the cuts of the three channels t123 t234 t345 (tijk =

(ki + kj + kl)
2), except now the tree amplitudes across the cuts are written in

supersymmetric form. We find that the propagator momentum integrals from

which the various scalar box functions arise are the same for different external

particles. Thus with the gluon amplitude already computed all we need to do

is extract away the part of the gluon coefficient that came from the expansion

of the two fermionic delta function, the remaining pre-factor will be universal

and has its origin from the denominator of eq.(1) and (3). The N=4 SYM 6

point NMHV loop amplitude for the gluonic case was given [38] as

A(...j−.....i−...)loop = cΓ[B1W
(1)
6 +B2W

(2)
6 +B3W

(3)
6 ] (3.8)

where W
(i)
6 contains particular combination of the two-mass-hard and one-

mass box functions [37]. The full 6 point NMHV loop amplitude for any given

set of external particle and helicity ordering are then given with the following

coefficients :

B1 =
δ8(
∑3

i=1 λ̃iη̃i − l̃1η̃1 + l̃2η̃2)δ8(
∑6

i=4 λiηi − l2η2 + l1η1)

t123

B0 (3.9)

+
δ8(
∑3

i=1 λiηi − l1η1 + l2η2)δ8(
∑6

i=4 λ̃iη̃i − l̃2η̃2 + l̃1η̃1)

t123

B†0
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B2 =
δ8(
∑4

i=2 λ̃iη̃i − l̃1η̃1 + l̃2η̃2)δ8(
∑1

i=5 λiηi − l2η2 + l1η1)

t234

B+ (3.10)

+
δ8(
∑4

i=2 λiηi − l1η1 + l2η2)δ8(
∑1

i=5 λ̃iη̃i − l̃2η̃2 + l̃1η̃1)

t234

B†+

B3 =
δ8(
∑5

i=3 λ̃iη̃i − l̃1η̃1 + l̃2η̃2)δ8(
∑2

i=6 λiηi − l2η2 + l1η1)

t345

B− (3.11)

+
δ8(
∑5

i=3 λiηi − l1η1 + l2η2)δ8(
∑2

i=6 λ̃iη̃i − l̃2η̃2 + l̃1η̃1)

t345

B†−

where we define :

B0 = i
1

[12][23] < 45 >< 56 >< 1|K123|4 >< 3|K123|6 >
(3.12)

and

B+ = B0|j→j+1 B− = B0|j→j−1 (3.13)

with < A|Kijk|B >= [Ai]〈iB〉 + [Aj]〈jB〉 + [Ak]〈kB〉. Each coefficient is

expressed in two terms, this corresponds to the assignment of helicity for the

propagators l1 and l2 which for specific assignments will reverse the MHV and

MHV nature of the two tree amplitude across the cut fig3.2. The presence

of the loop momenta seems perplexing at this point since all loop momenta

should have been integrated out to give the box functions. As we will see

on a case by case basis this comes as a blessing. The actual expansion for

a particular set of helicity ordering and external particles contains multiple

terms. The presence of loop momentum forces one to regroup the terms such

that the loop momentum forms kinematic invariants. It is after this regrouping

that one obtains previous known results.

The amplitudes for different external particles are computed as an expan-

sion in the SU(4)R anti-commuting fermionic variables η. Choosing particular

combinations following [19]

g−i = η1
i η

2
i η

3
i η

4
i , φ

AB
i = ηAi η

B
i , Λ1−

i = −η2
i η

3
i η

4
i , Λ2−

i = −η1
i η

3
i η

4
i (3.14)

Λ3−
i = −η1

i η
2
i η

4
i , Λ4−

i = −η1
i η

2
i η

3
i , ΛA+

i = ηAi , g+
i = 1

The superscript represents which flavor the particle carries, in the N=4 multi-

34



Figure 3.2: Here we show for a particular case of the gluonic NMHV loop
amplitude, different assignment of helicity for the propagators will change the
MHV or MHV nature of each vertex which is the reason we have two terms
in eq.(5)-(7).

plet there are four gluinos and six scalars. Corresponding combination in the

η̃ follows:

g+
i = η̃1

i η̃
2
i η̃

3
i η̃

4
i , φ

AB
i = η̃Ci η̃

C
i , Λ1+

i = −η̃2
i η̃

3
i η̃

4
i , Λ2+

i = −η̃1
i η̃

3
i η̃

4
i (3.15)

Λ3+
i = −η̃1

i η̃
2
i η̃

4
i , Λ4+

i = −η̃1
i η̃

2
i η̃

3
i , ΛA−

i = η̃Ai , g−i = 1

Thus a particular term in the expansion corresponds to a particular assignment

of the fermionic variables to the external particle and results in an amplitude

with a particular set of external particle species and helicity ordering. In the

next two sections we show by expanding eq.(5),(6),(7) and following the above

dictionary one can recover the amplitudes containing two same color gluinos

with different helicity ordering computed in [43].

3.2.1 B1 Coefficient ⇒ t123 cut

First we look at the t123 cut which corresponds to the B1 coefficient. For the

purely gluonic amplitude A(g−1 g
−
2 g
−
3 |g+

4 g
+
5 g

+
6 ) (we use a bar to indicate the

cut), we have only one particle assignment for the loop propagators:

l1 = g+ , l2 = g+ (3.16)
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Here the assignment of helicity is labeled with respect to the MHV vertex.

Therefore we get only contribution from the first term in eq.(5), the expansion

from the delta function gives 〈l1l2〉4[l1l2]4 = (l1 − l2)8 = t4123 and therefore

B1 = t3123B0 which matches eq.(5.4) in [43].

For the two gluino amplitudes first we look at A(Λ−1 g
−
2 g
−
3 |Λ+

4 g
+
5 g

+
6 ) from

the delta function expansion we have helicity assignments :

l1 = Λ+ l2 = g+ , +( exchage between l1 and l2 ) (3.17)

Again only the first term in eq.(5) gives contribution :

〈l1l2〉3[l1l2]3([1l1]〈l14〉 − [1l2]〈l24〉) = t3123〈1|K123|4〉 (3.18)

Note that only when the external gluino carry the same flavor will this term

contribute. Since in [43] the two gluino amplitude was derived using N=1

SWI, the two gluinos carry the same flavor. Thus we have

B1(Λ−1 g
−
2 g
−
3 |Λ+

4 g
+
5 g

+
6 ) = i

t2123〈1|K123|4〉
[12][23] < 45 >< 56 >< 1|K123|4 >< 3|K123|6 >

(3.19)

This is exactly the result of [43]. Other non-cyclic permutations of two gluino

amplitude calculated in [43] at this cut do not change the assignment of the

propagators, thus the amplitude remains the same form apart from the la-

belling of the position of the two gluinos.

3.2.2 B2 Coefficient ⇒t234 cut

For this cut with different helicity assignment of the propagators, contribution

can arise from both terms. Propagators with the same helicities (here we mean

they are both plus or minus regardless of the species) get their contribution

from one term while the rest from the other, this is why B2 was split in two

terms in the original computation of the gluon amplitude [38]. We deal with

the same helicity first since there is only one way of assigning propagators.

B2(Λ−1 |g−2 g−3 Λ+
4 |g+

5 g
+
6 )same helicity = 0 since there is no way of assigning same

helicity particles to the propagators.
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For B2(g−1 |Λ−2 g−3 Λ+
4 |g+

5 g
+
6 )same helicity we have

l1 = g− l2 = g− (3.20)

This receives contribution from the second term in eq.(3.10) which is 〈23〉3〈43〉[56]4,

thus giving

B2(g−1 |Λ−2 g−3 Λ+
4 |g+

5 g
+
6 )samehelicity = (

〈23〉3〈43〉[56]4

t234

)B†+ (3.21)

For B2(g−1 |Λ−2 g−3 g+
4 |Λ+

5 g
+
6 )same helicity we have

l1 = g− l2 = Λ− ,+ (exchange between l1, l2) (3.22)

This gives contribution 〈23〉3[56]3(〈3l1〉[l16]− 〈3l2〉[l26]) = 〈23〉3[56]3〈3|K234|6〉
giving

B2(g−1 |Λ−2 g−3 g+
4 |Λ+

5 g
+
6 )same helicity = (

〈23〉3[56]3〈3|K234|6〉
t234

)B†+ (3.23)

Now we move to configurations with different helicity. For

B2(Λ−1 |g−2 g−3 Λ+
4 |g+

5 g
+
6 )Diff helicity

we have :

l1 = Λ+ l2 = g− , l1 = Λ− l2 = φ ,+ (exchange between l1, l2) (3.24)

For fixed external states Λ+
4 and Λ−1 we have to sum up all possible flavors for

the internal gluino. This gives a contribution of

[1l1]3[l1l2]〈4l2〉3〈l1l2〉 − 3[l1l2][l24][l14]2〈l1l2〉〈l21〉〈l11〉2 (3.25)

+3[l1l2][l14][l24]2〈l1l2〉〈l11〉〈l21〉2

−[1l2]3[l1l2]〈4l2〉3〈l1l2〉 = t123(〈1|l1 − l2|4〉)3 = t123〈1|K123|4〉3

Therefore

B2(Λ−1 |g−2 g−3 Λ+
4 |g+

5 g
+
6 )Diff Helicity =

〈1|K123|4〉3

t3123

B+ (3.26)
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For B2(g−1 |Λ−2 g−3 Λ+
4 |g+

5 g
+
6 )Diff Helicity we have:

l1 = g− l2 = g+ , l1 = Λ+ l2 = Λ− , l1 = φ l2 = φ , + (exchange between l1, l2)

(3.27)

Here whether or not Λ+
4 and Λ−1 carry the same flavor will effect the number

of ways one can assign flavor to the internal gluino and scalar. For the same

flavor we have

− ([4l1]〈l11〉 − [4l2]〈l21〉)3([2l1]〈l11〉 − [2l2]〈l21〉) = −(〈4|K234|1〉)3(〈2|K234|1〉)
(3.28)

Thus

B2(g−1 |Λ−2 g−3 Λ+
4 |g+

5 g
+
6 )Diff Helicity = (

−(〈4|K234|1〉)3(〈2|K234|1〉)
t234

)B+ (3.29)

For B2(g−1 |Λ−2 g−3 g+
4 |Λ+

4 g
+
6 )Diff helicity we have :

l1 = g− l2 = Λ+ , l1 = Λ− l2 = φ , + (exchange between l1, l2) (3.30)

This gives contribution :

− 〈1l1〉3〈15〉[l14]3[42] + 3〈1l1〉2[l14]2〈1l2〉[l24][42]〈15〉 (3.31)

−3〈1l2〉2[l24]2〈1l1〉[l14][42]〈15〉+ 〈1l1〉3〈15〉[l14]3[42]

= −(〈4|K234|1〉)3[42]〈15〉

Thus

B2(g−1 |Λ−2 g−3 g+
4 |Λ+

4 g
+
6 )Diffhelicity =

−(〈4|K234|1〉)3[42]〈15〉
t234

B+ (3.32)

Adding eq.(17),(19),(22),(25) and (28) together gives the B2 coefficient of the

gluino anti-gluino pair amplitudes computed in [43]. Coefficients for the next

cut can be calculated in similar way, we’ve checked it gives the same result as

that derived in [43].

It is straight forward to compute amplitudes that involve more than one

38



pair of gluino or scalars. The new amplitudes are :

A(g−g+Λ+Λ−Λ−Λ+) , A(g−g+φφφφ) , A(φφφφφφ) A(Λ−Λ−Λ−Λ+Λ+Λ+) ,(3.33)

A(Λ−Λ+φφφφ) , A(Λ−Λ−Λ+Λ+φφ) , A(Λ−Λ+φg−g+g+)

Complication arises for these amplitudes because non-gluon particles carry less

superspace variables and increase the amount of spinor combination. Luckily

with the specification of the flavor for the external particles, the propagators

are restricted to take certain species. This is discussed in detail in the next

section where we calculate the all gluino and all scalar amplitude.

3.3 Amplitudes with all gluinos and all scalars

Here we present N=4 SYM NMHV loop amplitudes with all gluino and all

scalars. These amplitudes were derived from explicit expansion of eq.(5)-(7).

Since scalars and gluinos carry less fermionic parameters as seen in eq.(10)(11),

the spinor product that arises from the fermionic delta function becomes com-

plicated. The final coefficient should not contain the off shell propagator

spinor, thus one can use this as a guideline to group the spinor products

to form kinematic invariant terms. With specific flavors this also restricts the

possible species for propagators.

3.3.1 A(Λ1+
1 Λ2+

2 Λ3+
3 Λ1−

4 Λ2−
5 Λ3−

6 )

For the six gluino amplitude we look at amplitudes with all three positive

helicity gluinos carrying different flavor. The negative helicities also carry

different flavor and is the same set as the positive. For t123 the flavors of the

internal particles are uniquely determined.

l1 = Λ− l2 = g+ , l1 = Λ+ l2 = φ , +exchange (3.34)

This gives

B1(Λ1+
1 Λ2+

2 Λ3+
3 |Λ1−

4 Λ2−
5 Λ3−

6 ) = (〈1|K123|5〉〈2|K123|6〉〈3|K123|4〉 (3.35)

+〈1|K123|4〉〈2|K123|5〉〈3|K123|6〉+ 〈1|K123|6〉〈2|K123|4〉〈3|K123|5〉)B†0
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Next we look at t345 cut. The propagator assignment with same helicity (the

definition of same or different helicity again follows that of the previous para-

graph) would be :

l1 = g− l2 = Λ− , +exchange propagator (3.36)

this gives

B3(Λ1+
1 Λ2+

2 |Λ3+
3 Λ1−

4 Λ2−
5 |Λ3−

6 )Same helicity = 〈45〉2[12]2{〈34〉[61]〈5|K345|2〉(3.37)

+〈34〉[62]〈5|K345|1〉+ 〈35〉[61]〈4|K345|2〉+ 〈35〉[62]〈4|K345|1〉}B†−

There are two ways of assigning different helicity propagators

l1 = g− l2 = Λ+ , or l1 = Λ− l2 = φ , + exchange (3.38)

Note however for the present set of flavors, there is no consistent way of as-

signing flavors when the propagators are a gluon and a gluino. Thus we are

left with the gluino scalar possibility with its flavor uniquely determined.

B3(Λ1+
1 Λ2+

2 |Λ3+
3 Λ1−

4 Λ2−
5 |Λ3−

6 )Diff helicity = 〈16〉〈62〉[43][35]〈6|K345|3〉t345B−

(3.39)

Luckily there is no need to compute B2 coefficients since it is related to B3

by symmetry.

3.3.2 A(φ1φ2φ3φ4φ5φ6)

The power of deriving amplitudes from a superspace expansion is that one can

rule out certain amplitudes just by inspection. Amplitudes with more than

two scalars carrying the same color vanish since there is no way of assigning the

correct fermionic variables. Here we look at six-scalar amplitude all carrying

different flavor. This should be the simplest amplitude since the flavor carried

by the internal particle is uniquely determined. We give the result for cut t123
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while the other cuts are related by symmetry.

B1(φ1 · · · φ6) = {(〈12〉[56]〈3|K123|4〉+ 〈12〉[64]〈3|K123|5〉+ 〈12〉[45]〈3|K123|6〉

+〈31〉[56]〈2|K123|4〉+ 〈31〉[64]〈2|K123|5〉+ 〈31〉[45]〈2|K123|6〉

+〈23〉[56]〈1|K123|4〉+ 〈23〉[64]〈1|K123|5〉+ 〈23〉[45]〈1|K123|6〉)2}B0

+complex conjugate

(3.40)

3.4 A brief discussion on the MHV vertex ap-

proach

As discussed in the introduction, the straight forward way to compute ampli-

tudes in superspace is the generalization of the MHV vertex approach. It is

also of conceptual interest to see if this approach actually works for the NMHV

loop amplitude. Here we give a brief discussion of the extension.

The MHV vertex approach was shown to be successful [41] in constructing

the n point MHV loop amplitude. This is partly due to the similarity between

the cut diagrams [37] originally used to compute the amplitude and the MHV

vertex diagram, so that one can use a dispersion type integral to reconstruct

the box functions from its discontinuity across the branch cut. For the NMHV

loop amplitude, one requires three propagator for the three MHV vertex one-

particle-irreducible(1PI) diagram and two propagators for the one-particle-

reducible(1PR) diagram (fig-2)[42]. We would then encounter the following

41



Figure 3.3: MHV diagrams for NMHV loop amplitude, includes the one-
particle-irreducible and one-particle-reducible graph.

integration:

1∏n
i=1〈ii+ 1〉

∫
d4L1

L2
1

d4L2

L2
2

d4L3

L2
3

δ(Pα + L2 − L3)δ(Pβ + L3 − L1)

δ(Pγ + L1 − L2)

∫
d8ηl1d

8ηl2d
8ηl3

δ8(Θ1)δ8(Θ2)δ8(Θ3)〈m2m2 + 1〉〈m1m1 + 1〉〈m3m3 + 1〉
〈l2l1〉〈l3l2〉〈l1l3〉〈l1m2 + 1〉〈m2l1〉〈l2m3 + 1〉〈m3l2〉〈l3m1 + 1〉〈m1l3〉

+
δ(L1 − Pγ)∏n
i=1〈ii+ 1〉

∫
d4L2

L2
2

d4L3

L2
3

δ(Pα + L3 − L2)δ(Pβ + L2 + L1 − L3)

∫
d8ηl1d

8ηl2d
8ηl3

× δ8(Θ1)δ8(Θ2)δ8(Θ3)〈m2m2 + 1〉〈m1m1 + 1〉〈m3m3 + 1〉〈m4m4 + 1〉
L2

1〈l3l2〉2〈m1l2〉〈l2m1+1〉〈l3m2 + 1〉〈m2l3〉〈l1m3 + 1〉〈m3l1〉〈l1m4 + 1〉〈m4l1〉
(3.41)

where for the first term

Θ1 =
∑
i=α

ηiλi + l2ηl2 − l3ηl3 (3.42)

Θ2 =
∑
i=β

ηiλi + l3ηl3 − l1ηl1

Θ3 =
∑
i=γ

ηiλi + l1ηl1 − l2ηl2
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for the second term

Θ1 =
∑
i=α

ηiλi − l2ηl2 + l3ηl3 (3.43)

Θ2 =
∑
i=β

ηiλi + l1ηl1 + l2ηl2 − l3ηl3

Θ3 =
∑
i=γ

ηiλi − l1ηl1

αβγ labels the external momenta assigned to the three MHV vertex and the

lis are the off shell continuation spinor following the CSW prescription. We

can reorganize the delta functions to reproduce the overall momentum conser-

vation. For the first term in eq.(37) we have

δ(Pα+β+γ)δ(Pβ+γ + L3 − L2)δ(Pγ + L1 − L2) (3.44)

For the second term

δ(Pα+β+γ)δ(Pα + L2 − L3)

If we integrate the last delta function away in the first term and combine

with the 1PR graphs, it is equivalent to using two MHV vertices to construct

NMHV tree amplitude on one side of the two remaining propagators, namely

this combines vertex γ and β through propagator L1. To see this note that

the momentum conserving delta function forces L1 propagator to carry the

correct momentum as it would for the CSW method and the 1
P 2
L1

is present

in the integral measure in the first place. This would obviously affect the off

shell spinor in the following way.

l1 = L1η̃ → (L2 − Pγ)η̃ (3.45)

This simply fixes the off shell spinor to be computed from the correct momen-

tum as the CSW method. Thus we have come to a two propagator integral

with two tree level amplitudes on both side constructed from the CSW method.

This is exactly the picture one would have if one applied the standard cut, ex-

cept the propagators are off shell instead of on shell. For higher number of

MHV vertices this can be applied straight forwardly, by integrating the mo-

mentum conserving propagators one at a time one can reduce the number of
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propagators until one arrives at the standard cut picture. As shown in [41] one

can then proceed to recast the two propagator integral into a dispersion inte-

gral which computes the discontinuity across the cut of the integrand, by using

the cut constructibility of N=4 SYM loop amplitudes, one can reconstruct the

box function and it’s coefficient. However there is one subtlety. In the origi-

nal standard cut one has to analyze every cut channel, and then disentangle

the information since more than one box integral shares the same cuts. If we

follow the CSW prescription we can always reduce the loop diagrams down to

two propagator one loop diagrams with an MHV vertex on one side of the two

propagators. Thus this implies if the CSW approach is valid at one loop, then

the full loop amplitude should be able to be reconstructed from the cuts of a

subgroup of two propagator diagrams which always have an MHV vertex on

one side of the cut.

This construction makes the connection between MHV vertex and MHV

loop amplitude more transparent. MHV loop are just the parity transforma-

tion of the MHV loop, where one simply takes the complex conjugate of the

MHV loop:

A(MHV )loop = A(MHV )tree

n∑
i=1

[n/2]−1∑
r=1

(1− 1

2
δn

2
, r)F 2me

n:r;i (3.46)

It’s derivation from MHV vertex is as follows. In [47] it was shown that using

MHV vertices one can reconstruct the MHV tree amplitude in its complex

conjugate spinor form. Since by integrating out one loop propagator corre-

sponds to using MHV vertex to construct NMHV tree amplitude, one can

proceed in a specific manner to reduce the number of loop propagators down

to two with two MHV trees on both side. Since from [47] the two MHV tree

amplitudes on both side are expressed in complex conjugate form, following

exactly the same lines in [41] one can reproduce eq.(43).

3.5 Conclusion

In this chapter we constructed the 6 point NMHV loop amplitude for N=4

SuperYang-Mills in a compact form using its cut constructible nature. The

expansion with respect to the fermionic parameter gives amplitudes with dif-
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ferent particle content and helicity ordering. To extend further to higher point

NMHV loops one may have to resolve to the MHV vertex approach since the

tree level amplitudes on both side of the cut in general will not be in simple

MHV and MHV combination. We also give a general discussion on how to

proceed with the MHV vertex construction for higher than MHV loop(more

than two negative helicities). The fact that it reproduces the two propagator

picture for any one loop diagram combined with earlier results that have re-

produced the MHV loop[41] and the relationship between the leading order

and sub leading order amplitudes[42], gives a strong support for the CSW

approach beyond tree level.
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Chapter 4

First quantized Yang-Mills

4.1 Introduction

Here we discuss first quantization for ordinary YM which is based on quan-

tizing the N=2 spinning particle(worldline supersymmetry). This is a simpler

model then superparticles(spacetime supersymmetry) since the constraints are

easier (the situation is similar to the quantization of the spinning string in-

stead of the Green-Schwarz string), however we will be able to introduce how

one construct a BRST charge and by extending it to background fields, gener-

ate vertex operators for the external states which are the standard procedure

for any first quantized model and thus relevant for the discussion in the next

section.

First-quantization has provided an efficient way of calculating Yang-Mills

amplitudes. A set of rules for writing down 1-loop Yang-Mills amplitudes was

first derived by Bern and Kosower from evaluating heterotic string amplitudes

in the infinite string tension limit [48]. Later an alternative derivation of the

same rules (but only for the 1-loop effective action) from first-quantization

of particles was given by Strassler [49]. However, the generalization of these

first-quantized rules to multi-loop amplitudes has not been clear. In fact, such

rules have not yet been given even for Yang-Mills tree amplitudes. This is

partially because the vacuum, ghost measure and Green function needed for

the calculation of trees and multi-loops have not been clarified. Although there

are already many ways to compute Yang-Mills tree amplitudes, it is important

to clarify how first-quantization works at tree level first for the purpose of
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generalizing this method to multi-loop level. This is the main purpose of this

paper.

To derive the first-quantized rules for trees, we start from theories of free

relativistic spinning particles, which were first developed by Brink et al. [50]

and many others [51]. In these theories the spin degree of freedom is encoded

in the worldline supersymmetry. More precisely, the BRST quantization of

the particle action with N -extended worldline supersymmetry shows that the

cohomology is of a spin-N
2

particle.

In this chapter we study the N = 2 theory, which describes a spin-1 par-

ticle. We derive the vertex operator for background gauge field via the usual

BRST quantization method, thus ensuring background gauge invariance. (The

coupling of background vector fields to spin 1/2 was formulated in [50]. It was

used to calculate effective actions in [52].) We proceed to show how the correct

amplitudes can be derived. In the usual worldline approach, all interactions are

derived by coupling external fields to the 1-dimensional worldline or loop. This

is insufficient for n ≥ 6-point tree and multi-loop amplitudes because there is

no consistent way to draw a line through these graphs such that all lines at-

tached are background fields. Here we propose an alternative (“worldgraph”)

approach that includes spaces that are not strictly 1D manifolds: They are not

always locally R1, but only fail to be so at a finite number of points. Taking

these spaces into account we derive a set of rules for computing amplitudes

that can be extended to all possible graphs[56].

We organize this chapter as follows: First we give a brief review of a general

formalism to describe free spinning particles with arbitrary spin. We then

focus on the spin-1 particle: introducing background Yang-Mills interaction

to the theory and deriving the vertex operator for the external Yang-Mills

fields. Then we define the vacuum, ghost measure and Green functions for

Yang-Mills tree amplitudes. For examples we present the calculation of 3 and

4-point trees, and one-loop amplitudes, using the worldline approach, since it

is sufficient for these amplitudes. Finally we discuss the worldgraph approach

that follows string calculations more closely, and show how it can reproduce

the tree results derived from the worldline approach.
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4.2 Free spinning particles

We begin with the free BRST charge for arbitrary spin. A useful method for

deriving gauge invariant actions is the OSp(1,1|2) formalism [53], where one

starts with the light-cone SO(D−2) linearly realized by the physical states, and

adds two bosonic coordinates to restore Lorentz covariance and two fermionic

coordinates to cancel the additional degrees of freedom. Thus the SO(D− 2)

representation is extended to OSp(D − 1, 1|2), and the non-linearly realized

SO(D−1, 1) of the physical states is extended to OSp(D, 2|2). The action then

uses only the subgroup SO(D− 1, 1)⊗OSp(1, 1|2), where the OSp(1, 1|2) is a

symmetry of the unphysical (orthogonal) directions under which the physical

states should be singlets (in the cohomology). We use (A,B...) for OSp(D, 2|2)

indices, (a, b...) for the SO(D−1, 1) part and (+,−), (⊕,	) for the bosonic and

fermionic indices of OSp(1, 1|2) respectively. The easiest way is then to begin

with linear generators JAB of OSp(D, 2|2), use the gauge symmetry to gauge

away the + direction of OSp(1, 1|2) and use equations of motion to fix the −
direction. Then the kinetic operator of the action is simply the delta function

of the OSp(1, 1|2) generators (now non-trivial due to solving the equation of

motion).

One can further simplify things by utilizing only a subset of the generators

of OSp(1, 1|2). (This is analogous to the method of finding SU(2) singlets by

looking at states annihilated by J3 and J−.) In the end one is left with the

group IGL(1) with generators J⊕	 and J⊕−. Relabeling c = x⊕ and b = ∂⊕,

J = iJ⊕	 + 1 = cb+ iS⊕	, Q = J⊕− = 1
2
c∂2 + S⊕a∂a + S⊕⊕b (4.1)

J will be the ghost number and Q the BRST charge. One is then left with the

task of finding different representation for SAB satisfying the algebra

[
SAB, S

CD
}

= −δ[C
[ASB}

C}

There may be more than one representation corresponding to the same spin.

It is easy to build massless spin-1
2

representations using gamma matrices

spin−1

2
: SAB = −1

2
[γA.γB}, {γA, γB] = −ηAB (4.2)
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and spin-1 using ket-bra

spin−1 : SAB = |[A〉〈B}|, 〈A|B〉 = ηAB

All higher spins can be built out of these two. For a review of the OSp(1, 1|2)

formalism see [54].

For our purpose we use first-quantized fields (i.e. fields on a worldline) to

form representations. It is known that the free relativistic spin-N
2

particle can

be described by a first-quantized action with N -extended worldline supersym-

metry [50]. For example, for spin 1
2

we use N = 1 worldline fields ψA where ψa

are fermionic fields and ψ⊕ = iγ, ψ	 = iβ are the bosonic ghosts for SUSY.

We summarize this representation as follows

Sab = 1
2

[
ψa, ψb

]
= ψaψb (4.3)

S⊕a = i
2
{γ, ψa} = iγψa

S⊕⊕ = 1
2
{γ, γ} = γ2

and
{ψa, ψb} = ηab

[γ, ψa] = 0

[γ, γ] = 0

(4.4)

In this letter we focus on the N = 2 spinning particle representation for

massless vector states. Now, due to N = 2 there are a pair of worldline

spinors
(
ψa, ψ̄b

)
and similarly bosonic ghosts

(
γ, γ̄, β, β̄

)
. The spin operators

are then:

Sab = ψ̄aψb − ψ̄bψa (4.5)

S⊕a = iγψ̄a + iγ̄ψa

S⊕⊕ = 2γγ̄

with the following (anti-)commutation relations for the fields:

{ψ̄a, ψb} = ηab (4.6)

{ψ̄a, ψ̄b} = {ψa, ψb} = [γ, β] = [γ̄, β̄] = 0 (4.7)

49



[γ, β̄] = [γ̄, β] = {b, c} = 1 (4.8)

4.3 Interacting spinning particles

Interaction with external fields is introduced by covariantizing all the deriva-

tives in the free BRST charge and adding a term proportional to iFabS
ab,

which is the only term allowed by dimension analysis and Lorentz symmetry.

The relative coefficient can be fixed by requiring the new interacting BRST

charge QI to be nilpotent. In general the result is:

QI = 1
2
c
(
∇2 + iFabS

ab
)

+ S⊕a∇a + S⊕⊕b (4.9)

where we use the following convention for the covariant derivative and the field

strength:

∇a ≡ ∂a + iAa (4.10)

iFab ≡ [∇a,∇b] (4.11)

The nilpotency of QI can be used to derive vertex operators that are Q

closed. If we define the vertex operator as

V = QI −Q (4.12)

Then

Q2
I = 0⇒ {Q, V }+ V 2 = 0 (4.13)

In the linearized limit, which is relevant for asymptotic states, we take only

the part of V that is linear in background fields (denoted by V0). Then one

has

{Q, V0} = 0 (4.14)

There will be an additional U(1) symmetry in the N = 2 model. The

vector states should be U(1) singlets and can be picked out by multiplying the

original QI in eq. (4.9) with an additional δ function (a U(1) projector).

Q′I = δ
(
JU(1)

)
QI (4.15)
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JU(1) is the U(1) current:

JU(1) = 1
2

(
ψ · ψ̄ − ψ̄ · ψ

)
− γβ̄ + γ̄β = −ψ̄ · ψ + D

2
− γβ̄ + γ̄β (4.16)

where D is the spacetime dimension and ψ̄a, γ̄, β̄ have U(1) charge −1, and

their complex conjugates have +1. This U(1) constraint is important in that

it ensures that QI for the N = 2 model is indeed nilpotent. We will show this

is the case.

Before choosing any specific representation, we have

Q′2I = δ
(
JU(1)

)
Q2

I = δ
(
JU(1)

)
1
2
{QI, QI}

= δ
(
JU(1)

)
1
2

{
−icS⊕a[∇b, Fab]− icS⊕cSab [∇c, Fab]

+iS⊕⊕SabFab + iS⊕aS⊕bFab
}

(4.17)

To understand how the projector works for the N = 2 model, consider

normal ordering with respect to the following scalar vacuum:

(γ, β, ψ, b) |0〉 = 0 (4.18)

This vacuum has U(1) charge +1 . A general normal-ordered operator with

≥ 2 barred fields on the left (unbarred fields are on the right), acting on any

state built from the above vacuum, will either vanish or have negative U(1)

charge. Therefore normal-ordered operators with ≥ 2 barred fields will be

projected out by δ(JU(1)). Actually this property can be made true for any

vacuum: One just needs to shift the current by a constant in the projection

operator.

With this in mind we have the following:

δ
(
JU(1)

)
S⊕aS⊕b = δ

(
JU(1)

) (
iγψ̄a + iγ̄ψa

) (
iγψ̄b + iγ̄ψb

)
= −δ

(
JU(1)

)
γ̄γηab = −δ

(
JU(1)

) 1

2
S⊕⊕ηab

δ
(
JU(1)

)
S⊕⊕Sab = δ

(
JU(1)

)
2γγ̄

(
ψ̄aψb − ψ̄bψa

)
= 0

δ
(
JU(1)

)
S⊕cSab = δ

(
JU(1)

) (
iγψ̄c + iγ̄ψc

) (
ψ̄aψb − ψ̄bψa

)
= δ

(
JU(1)

) (
iγ̄ψbηac − iγ̄ψaηbc

)
(4.19)
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Note that one could arrive at the same algebra for the spin operators if one were

to use the spin-1 ket-bra representation introduced in the previous section; thus

one again sees that the U(1) projector acts as projecting out vector states. In

fact the nilpotency of the BRST charge can be checked more easily using the

ket-bra representation; however, for completeness we plug the above result

into our previous calculation for Q2′
I . We have

δ
(
JU(1)

)
Q2

I = cδ
(
JU(1)

) (
ψ̄aγ − γ̄ψa

) [
∇b, Fab

]
(4.20)

which is proportional to the equation of motion satisfied by the asymptotic

states. So we have proved that δ
(
JU(1)

)
Q2

I = 0.

The vertex operator is then easily obtained by considering QI as an expan-

sion of Q,

V0 = [QI −Q]linearinA (4.21)

≡ cWI +WII

= 1
2
c
[
2iA · ∂ + i (∂aAb − ∂bAa)Sab

]
+ iAaS

⊕a

= −εa
[
c
(
iẊa + ψ̄bψakb − ψ̄aψbkb

)
+
(
γψ̄a + γ̄ψa

)]
exp [ik ·X (τ)]

This vertex operator satisfies

{Q, V0} = 0 (4.22)

The integrated vertex can be derived by noting:

[Q,WI] = ∂V0 →
[
Q,

∫
WI

]
= 0 (4.23)

More complicated vertex operators are needed for the usual worldline for-

malism. We will discuss in detail how these operators arise in section V. In

the world graph formalism linearized vertex operators derived above will be

sufficient.
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4.4 Vacuum, Ghost measure and Green Func-

tions

When calculating amplitudes, the vacuum with which one chooses to work

dictates the form of vertex operator and insertions one needs. In string theory,

different choices of vacuum are called different pictures. The scalar vacuum

discussed above is defined by the expectation value

〈0|c|0〉 ∼ 1 (4.24)

The conformal vacuum of string theory

〈0|ccc|0〉 ∼ 1 (4.25)

does not exist in particle theory since there aren’t that many zero modes to

saturate at tree level. On the other hand one could also treat the worldline

SUSY ghosts’ zero modes, which would require additional insertions. These

are defined by the vacuum

(β̄, β, ψ, b)
∣∣0̂〉 = 0⇒

〈
0̂|cδ(γ)δ(γ̄)|0̂

〉
∼ 1 (4.26)

which has U(1) charge 2 and is thus not a physical vacuum.

To use the vertex operator we found above, we need to find a U(1) neutral

vacuum
∣∣0̃〉 that is in the cohomology of the free BRST charge Q. It is related

to the previous vacuum through the following relation:

∣∣0̃〉 = β̄ |0〉 = δ

(
1

2
γ2

) ∣∣0̂〉 , (4.27)

which leads to 〈
0̃
∣∣ γcγ̄ ∣∣0̃〉 ∼ 1 (4.28)

This vacuum can be understood as the Yang-Mills ghost. It has ghost number

−1 and lies in the cohomology only at zero momentum, indicating a constant

field. Therefore it corresponds to the global part of the gauge symmetry:

Gauge parameters satisfying QΛ = 0 have no effect on the gauge transforma-

tions in the free theory, δφ = QΛ. In principal one could proceed to compute
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amplitudes in the available vacua mentioned above; however, due to its U(1)

neutral property, the Yang-Mills ghost vacuum should be the easiest to extend

to higher loops, since it would be easier to enforce U(1) neutrality.

With the above definition of the vacuum and the ghost measure, we can

easily obtain the tree-level Green function. For the worldline formalism the

Green function for the X fields at tree level is as usual,

ηabGB (τ, τ ′) ≡
〈
Xa (τ)Xb (τ ′)

〉
= −1

2
ηab |τ − τ ′| (4.29)

For the fermions:

ηabGF (τ, τ ′) ≡
〈
ψa (τ) ψ̄b (τ ′)

〉
= ηabΘ (τ − τ ′) (4.30)

where Θ is a step function which is zero if the argument is negative. Note

that the fermionic Green function does not have the naive relation with the

bosonic Green function

GF 6= −ĠB =
1

2
sign(τ − τ ′) (4.31)

It differs by a constant 1
2
. This is due to different boundary conditions: The

vacuum we choose, which is at t = −∞, is defined to be annihilated by ψa;

therefore on a time ordered line the expectation can be non-vanishing only if

ψ is at later time then ψ̄.

4.5 Scattering Amplitudes (worldline approach)

In the worldline approach, one starts by choosing a specific worldline, and then

inserts relevant vertex operators for external states. For YM theory, where the

worldline state is the same as external states, namely a vector, the choice for

worldline is less obvious. Previous work on the worldline formalism was geared

toward the calculation of one-loop amplitudes, where the loop itself provides a

natural candidate for the worldline. This advantage is not present for tree or

higher-loop amplitudes. Furthermore, for higher-point tree graphs, calculating

the amplitude from the worldline requires sewing lower-point tree amplitudes

to the worldline. This is unsatisfactory from the viewpoint of first-quantized
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Figure 4.1: Three diagrams to be calculated if one chooses to connect lines 1
and 4 as the worldline. The second diagram needs a pinch operator, and the
third diagram needs a vertex operator representing the tree attached to the
worldline.

perturbation theory.

In general, to calculate an n-point tree-level partial amplitude in the world-

line approach:

1. Choose a specific color ordering (e.g., 12...n). Label external lines

counter-clockwise.

2. Draw a worldline between any two of the external lines (e.g., line 1 and

line n) and connect all other external lines to this worldline in the following

three ways: (a) Use the linearized vertex operator V0 defined in section III. (b)

Use a vertex operator that is quadratic in background fields (“pinching”). This

quadratic vertex operator (“pinch operator”) can be derived from eq.(4.21) by

extending the field strength to contain the non-abelian terms and takes the

form

v(ij) = εiaεjbc
(
ψ̄bψa − ψ̄aψb

)
ei(ki+kj)·X (4.32)

(c) Have the external lines first form a lower-point tree graph and then con-

nect to the worldline through either of the two vertex operators mentioned

previously. This corresponds to replacing Aa = εaeik·X with the non-linear

part of the solution to the field equations that the background field satisfies.

For example, for a four-point tree amplitude there are the three graphs shown

in fig. (4.1), representing the three different ways external fields can attach to

the worldline.

For lower-point graphs it is possible to choose the worldline in such a way

that only linear vertex operators are required. We will show this in our actual

computation for the four-point amplitude.

3. For each of the diagrams from above, insert three fixed vertex operators

(respectively fixed at τ = ∞, 0,−∞). Two of them represent the initial and
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final external states that were connected to form the worldline, while the

remaining one can be any of the operators described above. For example, one

has:

V (n)(∞)V (2)(0)V (1)(−∞) or V (n)(∞)v(32)(0)V (1)(−∞) (4.33)

where the superscript (i) represents the momentum and polarization vector of

the external line i.

4. Insert the remaining vertex operators as the integrated ones, e.g.,∫
W

(i)
I or

∫
v(ij) (4.34)

with the integration regions so chosen that the diagram is kept planar.

5. Evaluate the expectation value with respect to the Yang-Mills ghost

vacuum.

The fact that one needs to calculate lower-point tree graphs for a gen-

eral tree graph is unsatisfactory, since one should be able to calculate an

arbitrary-point amplitude without the knowledge of its lower-point counter-

parts. This was less a problem in the previous one-loop calculations, since

one can claim that the method was really for one-particle-irreducible (1PI)

graphs, and therefore sewing is necessary to calculate graphs that are not 1PI.

It is more desirable to be able to calculate any amplitude with the knowledge

of just the vertex operators and Green functions. This will be the aim of

the “worldgraph” approach, which we leave to section VI. We first proceed to

show how to calculate 3- and 4-point trees, and one-loop amplitudes, by the

worldline approach.

4.5.1 3-Point Tree

In the 3-point case, we connect line 1 and line 3 as the worldline. The three

vertex operators are respectively fixed at τC → ∞, τB = 0 and τA → −∞.

Note that we need one c ghost to saturate the zero-mode and give a non-

56



vanishing expectation value:

A3 =
〈
V (3) (τC)V (2) (τB)V (1) (τA)

〉
(4.35)

=
〈[
cW

(3)
I (τC)

] [
W

(2)
II (τB)

] [
W

(1)
II (τA)

]〉
+

〈[
W

(3)
II (τC)

] [
cW

(2)
I (τB)

] [
W

(1)
II (τA)

]〉
+

〈[
W

(3)
II (τC)

] [
W

(2)
II (τB)

] [
cW

(1)
I (τA)

]〉
The first term and the third term vanish due to ε · Ẋ in WI contracting with

the eik·X in the other two WII’s, which are proportional to ε3 · k3 and ε1 · k1

respectively, and vanish in the Lorenz gauge. The remaining term becomes

A3 =
〈[
W

(3)
II (τC)

] [
cW

(2)
I (τB)

] [
W

(1)
II (τA)

]〉
(4.36)

= −ε3aε2cε1d
〈[(

γψ̄a + γ̄ψa
)
eik3·X

]
τC
c
[(
kc1 + (ψ̄bψc − ψ̄cψb)k2b

)
eik2·X

]
τB[(

γψ̄d + γ̄ψd
)
eik1·X

]
τA

〉
= − [(ε3 · ε1)(ε2 · k3) + (ε1 · ε2)(ε3 · k1) + (ε2 · ε3)(ε1 · k2)]

As usual (see, e.g., [61]), the contractions among the exponentials give an over-

all factor of e−
P
A≤i<j≤C ki·kjGB(τi−τj) in the final result, but this factor equals 1

if we go on-shell.

4.5.2 4-Point Tree

For the 4-point amplitude (with color-ordering 1234), one can calculate the

three diagrams in fig. (4.1), but as we have mentioned, one can simplify the

calculation by choosing a worldline between line 1 and line 3. In this case,

there is only one diagram to be calculated (fig. (4.2)), and there is only one

integrated vertex operator — line 4. We fix the other three as τD →∞, τC = 0

and τA → −∞, and the integrated vertex has integration region τD ≥ τB ≥ τA.

We then have:
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Figure 4.2: If one chooses to connect line 1 and line 3 as the worldline,
there is only one diagram to be calculated. There is no need for pinch or
more complicated operators. Note that line 4 is the integrated vertex and the
integration region can be from −∞ to +∞, still keeping the graph planar.

A4 =

〈[
V (3) (τD)

] [
V (4) (τC)

] [∫ τD

τA

W
(2)
I (τB) dτB

] [
V (1) (τA)

]〉
=

〈[
cW

(3)
I (τD)

] [
W

(4)
II (τC)

] [∫ τD

τA

W
(2)
I (τB) dτB

] [
W

(1)
II (τA)

]〉
+

〈[
W

(3)
II (τD)

] [
cW

(4)
I (τC)

] [∫ τD

τA

W
(2)
I (τB) dτB

] [
W

(1)
II (τA)

]〉
+

〈[
W

(3)
II (τD)

] [
W

(4)
II (τC)

] [∫ τD

τA

W
(2)
I (τB) dτB

] [
cW

(1)
I (τA)

]〉
(4.37)

The first and third term again vanish, for the same reason as in the three-

point case. The remaining term can be written in two parts by separating the

integration region:

A4 = A4s + A4t

=

〈[
W

(3)
II (τD)

] [
cW

(4)
I (τC)

] [∫ τC

τA

W
(2)
I (τB) dτB

] [
W

(1)
II (τA)

]〉
+

〈[
W

(3)
II (τD)

] [∫ τD

τC

W
(2)
I (τB) dτB

] [
cW

(4)
I (τC)

] [
W

(1)
II (τA)

]〉
(4.38)

Actually one can see these two terms as representing the s-channel and t-

channel graphs from the second-quantized approach (see fig. (4.3)). The τ ’s
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Figure 4.3: Two integration regions. The integrated vertex sits at 2.

are time ordered according to the order they appear on the worldline. The

results are:

A4s = −2

s


− s

4
(ε1 · ε3) (ε2 · ε4)− u

2
(ε1 · ε2) (ε4 · ε3)

+ (ε2 · k1) (ε4 · k3) (ε1 · ε3) + (ε1 · k2) (ε3 · k4) (ε2 · ε4)

+ (ε1 · k3) (ε2 · k4) (ε3 · ε4) + (ε4 · k2) (ε3 · k1) (ε1 · ε2)

− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε3 · k4) (ε2 · k1) (ε1 · ε4)

− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)

 (4.39)

A4t = −2

t


− t

4
(ε1 · ε3) (ε2 · ε4)− u

2
(ε1 · ε4) (ε2 · ε3)

+ (ε1 · k4) (ε3 · k2) (ε2 · ε4) + (ε2 · k3) (ε4 · k1) (ε1 · ε3)

+ (ε1 · k3) (ε4 · k2) (ε2 · ε3) + (ε2 · k4) (ε3 · k1) (ε1 · ε4)

− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε2 · k1) (ε3 · k4) (ε1 · ε4)

− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)

 (4.40)

The sum of the above two parts is exactly the 4-point Yang-Mills tree ampli-

tude. Note that we don’t need the pinch operator in this calculation. This is

because there cannot be a pinch operator representing line 2 and line 4, since

they are not adjacent in the color ordering.

4.5.3 One-Loop Amplitude

It is straightforward to generalize this method to the calculation of 1-loop 1PI

diagrams. The new feature in this case is that one must ensure U(1) neutrality

inside the loop. One can think of the diagram as connecting both ends of a

tree diagram, and only sum over U(1) neutral states. The U(1) neutral states
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are written as:

|A, p〉 =


|a, p〉 = γψ̄a

∣∣0̃〉⊗ |p〉
|ghost, p〉 =

∣∣0̃〉⊗ |p〉
|antighost, p〉 = γγ̄

∣∣0̃〉⊗ |p〉 (4.41)

where p is the momentum of the state, and the last two states are the Faddeev-

Popov ghosts for background gauge fixing. The general expression for the

amplitude of n-point 1-loop 1PI diagrams is then

A1−loop
n =

∑
A,p

∫ ∞
0

dT 〈A, p|V (n) (τn)
n−1∏
i=1

∫
τi−1≤τi≤τi+1

dτiW
(i)
I (τi) |A, p〉

+ diagrams with pinch operators

(4.42)

where we define τ0 = 0 and fix τn = T . Note that at one-loop we don’t have

the freedom to choose worldline (it should always be the loop), so one cannot

avoid using the pinch operators.

Another approach is to insert a U(1) projector in the loop to pick out all

the U(1) neutral states. That is, one inserts:

δ
[
JU(1)

]
=

1

2π

∫ 2π

0

dθ exp

[
i
θ

T

∫ T

0

dτJU(1)

]
=

1

2π

∫ 2π

0

dθ exp

[
i
θ

T

∫ T

0

dτ(−ψ̄ · ψ + D
2
− γβ̄ + γ̄β)

]
(4.43)

Similar approaches have been taken in [49] and [55]. In [49], iθ is interpreted as

a mass to be taken to infinity at the end, and together with GSO-like projection

kills all U(1) non-neutral states. For us the U(1) projector naturally gets rid

of all unwanted states. Furthermore the worldline ghosts were not taken into

account in [49]; therefore they need to include the effect of Faddeev-Popov

ghosts by adding covariant scalars to the action. This is sufficient for one

loop, since they couple in the same way, yet will no longer be true for higher

loops. Here we’ve (and also [55]) included all the worldline ghosts; thus the

Faddeev-Popov ghosts are naturally included. In [55] gauge fixing the U(1)

gauge field on a loop leads to a modulus, which is equivalent to θ in our U(1)
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projector insertion. The two views are analogous.

The inclusion of a U(1) projector amounts to additional quadratic terms in

the action which will modify the Green function and introduce an additional

θ-dependent term to the measure. Here we give a brief discussion of its effect.

The kinetic operator for the SUSY partners and SUSY ghosts is now:

∂τ + i
θ

T
(4.44)

The θ term can be absorbed by redefining the U(1) charged fields,

Ψ′ = eiθτ/TΨ Ψ̄′ = e−iθτ/T Ψ̄ (4.45)

where Ψ = (ψa, γ, β). Then the integration over θ is really integrating over all

possible boundary conditions since:

Ψ′(T ) = eiθΨ′(0) (4.46)

Without loss of generality, we choose the periodic boundary condition for the

original fields Ψ.

The 1-loop vacuum bubble is then computed through mode expansion on

a circle with periodic boundary condition:

Det

(
∂τ + i

θ

T

)D−2

=
[
2i sin

(
θ
2

)]D−2
(4.47)

where D comes from the ψψ̄ integration and −2 comes from SUSY ghosts.

The fermionic Green function will be modified to

GF (τ, τ ′) =
e−

iθ(τ−τ ′)
T

2i sin θ
2

[
ei
θ
2 Θ (τ − τ ′) + e−i

θ
2 Θ (τ ′ − τ)

]
(4.48)

which satisfies the periodic boundary condition and differential equation(
∂τ + i

θ

T

)
GF (τ, τ ′) = δ (τ − τ ′) (4.49)

Also, at one loop there are two zero-modes, one modulus (the circumference
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of the loop) and one Killing vector. The proper insertions for the vacuum are:

〈
0̃|bc|0̃

〉
∼ 1 (4.50)

In general, the n-point 1-loop 1PI amplitude can thus be written as

A1−loop
n = gn

∫ ∞
0

dT

TD/2

〈
δ
[
JU(1)

]
bV (n) (τn)

n−1∏
i=1

∫
τi−1≤τi≤τi+1

dτiW
(i)
I (τi)

〉
+ diagrams with pinch operators

=
gn

2π

∫ ∞
0

dT

TD/2

∫ 2π

0

dθ
[
2i sin

(
θ
2

)]D−2

〈
W

(n)
I

n−1∏
i=1

∫
dτiW

(i)
I

〉
+ diagrams with pinch operators

(4.51)

We’ve added the coupling constant g, but omitted group theory factors, such as

a trace and a factor Nc of the number of colors for the planar contribution. The

XX contraction should be calculated by the 1-loop bosonic Green function:

〈
Xa (τ)Xb (τ ′)

〉
= ηabGB (τ − τ ′) = ηab

[
−1

2
|τ − τ ′|+ (τ − τ ′)2

2T

]
(4.52)

For example, the two-point contribution to the effective action is (including

the usual − sign for the action, 1
2

for permutations, and group theory factor
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for this case)

Γ1−loop
2 =

−g2Nc

4π

∫ ∞
0

dT

TD/2

∫ 2π

0

dθ
[
2i sin

(
θ
2

)]D−2

×
∫ T

0

dτ
〈
W

(2)
I (T )W

(1)
I (τ)

〉

= −g2Nc

∫ ∞
0

dT

TD/2

∫ T

0

dτ


(
δ (T − τ)− 1

T

)
(ε1 · ε2)

+
(

1
2
− τ

T

)2
(ε2 · k1) (ε1 · k2)

− (ε2 · k1) (ε1 · k2) + (k1 · k2) (ε1 · ε2)


×e

1
2
k1·k2

 
T−τ−

(T−τ)2

T

!

= g2Nc

(
k2

1

2

)−ε(
−1 +

1

12

)
Γ (ε) [(ε1 · ε2)(k1 · k2)− (ε1 · k2)(ε2 · k1)]

= −11

24
tr

{
F ab

1

[
1

ε
− log

(
1

2
k2

1

)]
F2ab

}
(4.53)

In the final line we have used dimensional regularization D = 4 − 2ε, and

dropped the term with the δ function, which gives the tadpole contribution.

Modified minimal subtraction was used, with the conventions of ref.[57]. Note

that the − 1
12

piece comes from the scalar graph while the 1 comes from terms

with the fermion Green function. The diagram with pinch operator does not

contribute in this case.

4.6 Worldgraph Approach

As mentioned previously, it is desirable even for tree graphs to develop a for-

malism that does not require an identification of a worldline to which external

states are attached. Intuitively such a formalism would require one to simply

identify 1D topological spaces that connect the external lines. This idea is

very similar to string theory calculations and goes back as far as 1974 [58].

The main challenge for this “worldgraph approach” (following [59]) is the def-

inition of Green functions on these non-differentiable topological spaces (non-

differentiable because at interacting points it is not locally R1). Previously,

for multi-loops such Green functions have been derived by a combination of

one-loop Green functions and insertions: See [60] for review. Recently in [61] a

63



Figure 4.4: The topological space for a three-point interaction

more straightforward way to derive multi-loop Green functions was developed

for scalar particles using the electric circuit analog. (A similar approach was

used in [59].) Since fermion Green functions are related to bosons through

a derivative (up to additional terms due to choice of vacuum or boundary

conditions), what remains is to consistently define derivatives on these 1D

topological spaces. We will use tree graphs as our testing ground.

Consider the three-point amplitude: One has only one graph, fig. (4.4).

The arrows indicate the direction in which each τi is increasing. For scalar

fields it was shown [61] that the appropriate Green function is proportional to

the distance between two insertions; for the 3-point graph this is taken to be

−1
2
(τi + τj).

To define derivatives, one notes that they are worldline vectors and there-

fore must be conserved at each interaction point. This leads to the conclusion

that if we denote the worldgraph derivative on each line as D(τi), for the

three-point graph they must satisfy:

Dτ1 +Dτ2 +Dτ3 = 0 (4.54)

This can be solved by defining the worldgraph derivatives as follows:

Dτ1 = ∂τ2 − ∂τ3 (4.55)

Dτ2 = ∂τ3 − ∂τ1
Dτ3 = ∂τ1 − ∂τ2
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There is another solution which corresponds to (counter-)clockwise orienta-

tion. The choice of orientation can be fixed by matching it with the color

ordering. Since the derivative is a local operator, its definition will not be

altered if the three-point graph is connected to other pieces to form larger

graphs. The fermionic Green function then follows from the bosonic by taking

ψ as a worldline scalar and ψ̄ as a worldline vector:

GF (τi, τj) ≡ 〈ψ̄(τi)ψ(τj)〉 = 2〈DτiX(τi)X(τj)〉 (4.56)

Armed with these two Green functions we can show how the three-point am-

plitude works.

3-Point Tree

For the three-point tree graph fig. (4.4) we start with:

A3 =
〈
V (3) (τ3)V (2) (τ2)V (1) (τ1)

〉
(4.57)

=
〈[
cW

(3)
I (τ3)

] [
W

(2)
II (τ2)

] [
W

(1)
II (τ1)

]〉
+
〈[
W

(3)
II (τ3)

] [
cW

(2)
I (τ2)

] [
W

(1)
II (τ1)

]〉
+
〈[
W

(3)
II (τ3)

] [
W

(2)
II (τ2)

] [
cW

(1)
I (τ1)

]〉
Now the worldline derivatives in WI are replaced by worldgraph derivatives

defined in eq. (4.55) and they give:〈
iε1 ·Dτ1X(τ1)ei[

P3
i=1 ki·X(τi)]

〉
= −(ε1 · k3) (4.58)

〈
iε2 ·Dτ2X(τ2)ei[

P3
i=1 ki·X(τi)]

〉
= −(ε2 · k1) (4.59)〈

iε3 ·Dτ3X(τ3)ei[
P3
i=1 ki·X(τi)]

〉
= −(ε3 · k2) (4.60)

The fermionic Green functions are (with Fij ≡ 〈ψ̄(τi)ψ(τj)〉):

F12 = −1, F23 = −1, F31 = −1

F21 = +1, F32 = +1, F13 = +1
(4.61)
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Using the above one can compute eq. (4.57). The first term becomes:

A3−1 = 〈[cWI (τ3)] [WII (τ2)] [WII (τ1)]〉 (4.62)

= −ε3aε2cε1d〈c[iDXa + (ψ̄bψa − ψ̄aψb)k3b]τ3 [γψ̄
c + γ̄ψc]τ2

×[γψ̄d + γ̄ψd]τ1e
ik1·Xτ1eik2·Xτ2eik3·Xτ3 〉

= −ε2cε1d〈[−(ε3 · k2) + (ψ̄bψa − ψ̄aψb)ε3ak3b]τ3

×[ψ̄c(τ2)ψd(τ1) + ψc(τ2)ψ̄d(τ1)]〉

= 2(ε3 · k2)(ε2 · ε1) + 2(ε2 · k1)(ε3 · ε1) + 2(ε1 · k3)(ε2 · ε3)

A similar derivation gives the second and third terms:

A3−2 = 〈[WII (τ3)] [cWI (τ2)] [WII (τ1)]〉 (4.63)

= 2(ε3 · k2)(ε2 · ε1) + 2(ε2 · k1)(ε3 · ε1) + 2(ε1 · k3)(ε2 · ε3)

A3−3 = 〈[WII (τ3)] [WII (τ2)] [cWI (τ1)]〉

= 2(ε3 · k2)(ε2 · ε1) + 2(ε2 · k1)(ε3 · ε1) + 2(ε1 · k3)(ε2 · ε3)

Note that the three terms are the same, which respects the symmetry of the

graph.

4.6.1 4-point Tree

For the 4-point amplitude we have two graphs (s channel and t channel, see fig.

(4.5)) constructed by connecting two three-point worldgraphs on a worldline.

The worldline in the middle is actually a modulus of the theory, and one must

insert a b ghost. We focus on the s-channel graph; the t-channel graph can

later be derived by exchanging the external momenta and polarizations in the
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Figure 4.5: The two graphs for the four-point interaction

s-channel amplitude. We wish to derive

A4s =

∫ ∞
0

dT
〈
V (4)(τ4)V (3)(τ3)b(T )V (2)(τ2)V (1)(τ1)

〉
(4.64)

=

∫ ∞
0

dT



〈
W

(4)
II (τ4)cW

(3)
I (τ3)b(T )cW

(2)
I (τ2)W

(1)
II (τ1)

〉
+
〈
cW

(4)
I (τ4)cW

(3)
I (τ3)b(T )W

(2)
II (τ2)W

(1)
II (τ1)

〉
+
〈
cW

(4)
I (τ4)W

(3)
II (τ3)b(T )cW

(2)
I (τ2)W

(1)
II (τ1)

〉
+
〈
cW

(4)
I (τ4)W

(3)
II (τ3)b(T )W

(2)
II (τ2)cW

(1)
I (τ1)

〉
+
〈
W

(4)
II (τ4)cW

(3)
I (τ3)b(T )W

(2)
II (τ2)cW

(1)
I (τ1)

〉
+
〈
W

(4)
II (τ4)W

(3)
II (τ3)b(T )cW

(2)
I (τ2)cW

(1)
I (τ1)

〉


First we address the Green functions. As in [61] the bosonic Green function

is still −1
2
L, where L is the length between two fields. Thus it is the same as

in the three-point case, except that when the two fields sit on opposite ends of

the modulus, one needs to add the value of the modulus T . The worldgraph

derivatives still act the same way, since the definition is local, irrespective of

other parts of the graph. This gives the following result for the s-channel

graph: 〈
iε1 ·Dτ1X(τ1)ei[

P4
i=1 ki·X(τi)]

〉
= −(ε1 · k2) (4.65)〈

iε2 ·Dτ2X(τ2)ei[
P4
i=1 ki·X(τi)]

〉
= +(ε2 · k1) (4.66)〈

iε3 ·Dτ3X(τ3)ei[
P4
i=1 ki·X(τi)]

〉
= −(ε3 · k4) (4.67)〈

iε4 ·Dτ4X(τ4)ei[
P4
i=1 ki·X(τi)]

〉
= +(ε4 · k3) (4.68)
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The fermionic Green functions are again more subtle. There are two types,

that for bc ghosts and that for the ψ̄ψ. First one notes that on the modulus,

which is a worldline, both Green functions should be a step function, as ex-

plained in section IV. This is sufficient for the b, c ghosts. For ψ̄ψ, since they

can contract with each other on the same three-point graph or contract across

the modulus, one must take the combined result: For contractions on the same

three-point graph the rules are just as eq. (4.61), while for contraction across

the modulus one multiplies the two Green functions on the two vertices with

one from the modulus. For example, in the s-channel graph fig. (4.5):

〈
ψ̄(τ1)ψ(τ3)

〉
=
〈
ψ̄(τ1)ψ(τT )

〉 〈
ψ̄(τT )ψ(τ3)

〉
Θ(T ) = −1 (4.69)

As one can see, the contraction across the modulus is broken down as if there

were a pair ψ̄ψ on each end of the modulus, contracting with the vertices

separately, and a final step function due to the fact that the modulus is a

worldline. (We choose the left time to be earlier.) We now list all the relevant

Green functions for the s-channel graph. The Green functions for the bc ghosts

are

〈c(τ1)b(T )〉 = 1, 〈c(τ2)b(T )〉 = 1, 〈c(τ3)b(T )〉 = 0, 〈c(τ4)b(T )〉 = 0

(4.70)

and the Green functions for the ψ̄ψ are (recall that we have defined Fij ≡
〈ψ̄(τi)ψ(τj)〉)

F12 = +1, F21 = −1, F34 = +1, F43 = −1

F23 = +1, F32 = 0, F14 = +1, F41 = −1

F13 = −1, F31 = 0, F24 = −1, F42 = 0

(4.71)

Equipped with the Green functions one can compute eq. (4.64). We do the

bc contractions first. Each term has two such contractions; using the above

68



Green functions we see that the second and last terms cancel. We then have:

A4s =

∫ ∞
0

dT



〈
cW

(4)
II (τ4)W

(3)
I (τ3)W

(2)
I (τ2)W

(1)
II (τ1)

〉
−
〈
cW

(4)
I (τ4)W

(3)
II (τ3)W

(2)
I (τ2)W

(1)
II (τ1)

〉
+
〈
cW

(4)
I (τ4)W

(3)
II (τ3)W

(2)
II (τ2)W

(1)
I (τ1)

〉
−
〈
cW

(4)
II (τ4)W

(3)
I (τ3)W

(2)
II (τ2)W

(1)
I (τ1)

〉

 (4.72)

Expanding out all possible contractions and implementing the Green functions

and noting that

〈DX(τ1)DX(τ3)〉 = −2δ(T ), 〈DX(τ2)DX(τ4)〉 = −2δ(T )

〈DX(τ1)DX(τ4)〉 = +2δ(T ), 〈DX(τ2)DX(τ3)〉 = +2δ(T )
(4.73)

With these Green functions in hand we arrive at the following s-channel am-

plitude:

A4s =
8

s


+ s

4
(ε1 · ε4) (ε2 · ε3)− s

4
(ε2 · ε4) (ε1 · ε3)− ( s

4
+ u

2
) (ε1 · ε2) (ε4 · ε3)

+ (ε2 · k1) (ε4 · k3) (ε1 · ε3) + (ε1 · k2) (ε3 · k4) (ε2 · ε4)

+ (ε1 · k3) (ε2 · k4) (ε3 · ε4) + (ε4 · k2) (ε3 · k1) (ε1 · ε2)

− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε3 · k4) (ε2 · k1) (ε1 · ε4)

− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)


(4.74)

A similar calculation can be done for the t-channel graph, and the result is

simply changing the labeling of all momenta and polarizations in the s-channel

result according to:

s → t

1 → 4

2 → 1

3 → 2

4 → 3

(4.75)
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We arrive at:

A4t =
8

t


+ t

4
(ε4 · ε3) (ε2 · ε1)− t

4
(ε2 · ε4) (ε1 · ε3)− ( t

4
+ u

2
) (ε1 · ε4) (ε2 · ε3)

+ (ε1 · k4) (ε3 · k2) (ε2 · ε4) + (ε2 · k3) (ε4 · k1) (ε1 · ε3)

+ (ε1 · k3) (ε4 · k2) (ε2 · ε3) + (ε2 · k4) (ε3 · k1) (ε1 · ε4)

− (ε1 · k2) (ε4 · k3) (ε2 · ε3)− (ε2 · k1) (ε3 · k4) (ε1 · ε4)

− (ε1 · k4) (ε2 · k3) (ε3 · ε4)− (ε3 · k2) (ε4 · k1) (ε1 · ε2)


(4.76)

Adding the two channels again gives the complete 4-point amplitude.
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Chapter 5

Off-shell superspace

5.1 Introduction

N=4 super Yang-Mills is the simplest four-dimensional quantum field theory in

terms of properties relating to symmetry, finiteness, vanishing of amplitudes,

resummation, etc. However, there is still no tractable formalism for calculating

its amplitudes that directly incorporates these features.

Up to now we have explored the structure of N=4 SYM on-shell amplitudes.

In order to efficiently explore the quantum properties of this theory, it is

desirable to have an off-shell formulation. From the light-cone superspace

formulation studied in previous chapters, one sees that the physical degree of

freedom only requires a quater of the spinor variables of the full superspace(one

only needs the chiral superfield to contain all the on-shell degrees of freedom).

This is done non-covariantly in light-cone superspace by going to the light-

cone gauge. Thus the crux of obtaining an off-shell formulation is to find a

covariant way of truncating the full superspace to a subset in which it contains

only half of the fermionic coordinates.

Approaches (for maximal supersymmetry) that incorporate the full off-shell

supersymmetry manifestly prefer the ten-dimensional theory (the d=10 N=1

introduced earlier), showing no advantages unique to four dimensions: (1)

Pure spinors [62] have complicated loop insertions (related to picture chang-

ing) that resemble BRST operators. (There is also the related problem of the

lack of a gauge-invariant classical mechanics action, and thus of the usual b

and c ghosts.) (2) The use of a ghost pyramid of spinor coordinates [63] has
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a BRST operator (following from an infinite set of constraints) that becomes

complicated in the presence of a background (although it can be simply trun-

cated in applications so far), and its viability at higher loops is still being

investigated.

Although a complete formalism exists for describing 4D N=2 renormaliz-

able quantum field theories in N=2 projective superspace [64] (which, however,

could stand some further elucidation), little has been done for the N=4 analog

at the interacting level. (There is an N=3 harmonic formulation [65], but no

amplitudes have been calculated with it. Recently, a modified N=4 harmonic

superspace has been proposed [66]; however, it failed to obtain the correct

propagating degrees of freedom). In the harmonic construction, the harmon-

ics are elements of the coset (G/H) of the R symmetry group SU(N) and are

used to project out a subset of fermionic derivatives (dϑ) that closes

{dϑ, dϑ} ∼ dϑ or 0

such that the prepotential depends on half the superspace dϑV = 0(this is

sometimes called Grassmann analyticity condition). Since the local subgroup

H usually has U(1)s, the measure acquires specific U(1) charge. In the case

for N=4,3, one has so far failed to construct an action with the correct charge

that cancels the measure(either the action has the wrong charge or an action

with the right charge but wrong degrees of freedom).

Here we present the ingredients for a new formulation of this theory based

on N=4 projective superspace [67, 68]. The basic idea is instead of us-

ing harmonics to project out the analytic fermionic derivatives, one takes

fermionic coset. (That is, one includes some of the fermionic generators in

H, as in chiral superspace). The coset is based on super anti-de Sitter coset

OSp(4|4)/OSp(2|2)2. The global group is (anti)symmetrized subgroup of the

original superconformal group SU(4|2,2), thus the superconfomal transforma-

tion is obscured, however it is due to curved nature of the global group the

makes it possible to define this coset in a SYM background.

In this chapter [69] we set up the ingredients for either first or second ap-

proach. We introduce projective superspace based on both the superconformal

and the super anti-de Sitter group. We discuss the construction of constraints

using suitable group generators, and proceed to solve them for the simple
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N=0 case. A simple set of first-class superconformal (super AdS) constraints

for first-quantization of the superparticle (based on an earlier description for

AdS5⊗S5 [70]) will be given and results in a simple BRST operator. There is

a supersymmetric ghost “tower” (but not a “pyramid”) for all the coordinates.

Projective superspace is found as a first-quantized (partial) gauge choice. It is

both a (partial) unitary gauge, in that it eliminates constraints and their corre-

sponding ghosts, and a covariant gauge. The projective superspace formalism

for N=4 Yang-Mills is derived by the corresponding truncation from the full

superspace, which is possible only with projective superspace. We show how

four-point amplitudes are simpler in projective superspace than chiral. Finally

we will discuss the second quantization in this space, by introducing new field

strengths to this theory, one can show that the Bianchi identity no longer puts

the theory on-shell, and one arrives at an action possible for off-shell quanti-

zation. The new fields strengths basically breaks the self-duality relationship

among the original scalar field strengths.

Note that the simplest expression for the 4-point amplitude kinematic fac-

tor (and thus presumably the amplitude to all orders, after including the usual

scalar loop factors) in normal (super) spacetime (or its conjugate momentum

superspace), as opposed to supertwistor space, is in projective superspace [71].

(We will present a new derivation of this result from supertwistor space below.)

This is due to the fact that the projective superfield strength is a scalar, while

the chiral superfield strength, as follows from chiral supertwistor space (which

is geared for MHV amplitudes), is a tensor, whose chirality holds only at the

linearized level. This suggests that a projective formulation, at the (interact-

ing) first- or second-quantized level, would provide the simplest derivation of

this result. Also, being in spacetime as opposed to twistor space, it would

directly allow an off-shell extension.

5.2 Superspace for superconformal symmetry

Assuming one successfully construct a first or second quantized theory that de-

scribes N=4 SYM, the large spacetime symmetry of this theory(superconformal)

implies that one should be able to write the resulting amplitudes in a space

where these symmetries are manifest. Thus one can instead first look for such
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a space and then try to construct a first or second quantized theory in it.

Since the superconformal group in 4 dimensions is (P)SU(2,2|N), one would

anticipate that a suitable superspace would arise as some coset or coset of a

subgroup of this group. We would also like to have a natural truncation of the

fermionic degrees of freedom to half of the full superspace. Combining these

reasons leads us to a “Projective Superspace” [67, 68, 72]. Most of its simpli-

fications follow from the fact that its coordinates are conveniently arranged in

a single matrix.

There are various ways to arrive at this space, here we begin with a half-

coset description in which the coordinates appear in a square matrix and

therefore superconformal transformations are straightforward. Later we will

introduce an alternative derivation, more useful in constructing first class con-

straints for first quantization, which is based on the super anti-de Sitter group.

We start with the group U(2,2|N) which is a square matrix with extra

U(1)’s in comparison with the usual superconformal group. Then one defines

a half-coset of this group by (i) first taking the coset U(2,2|N)
U(1,1|N−n)U(1,1|n)

, thus

the extra U(1)s cancel, (ii) choose a U(1) generator in the isotropy group and

divide the U(2,2|N) generators into those with positive, minus or vanishing

eigenvalue (G+, G−, G0.) (iii) restrict to only the G+ generators. In a sense

we’ve mod out G0 and G−. We label this half-coset by U(2,2|N)
U(1,1|N−n)U(1,1|n)+

. We

write the U(2,2|N) coordinate as follows

ZA
M


M = M, M ′

{
M = µ, m

M ′ = µ̇, m′

A = A, A′

{
A = α, a

A′ = α̇, a′

The global superconformal group acts on M while the isotropy group acts on
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A.1 One can now decompose a general U(2,2|N) element as

ZA
M =

(
ZA

M ZA
M ′

ZA′
M ZA′

M ′

)
=

(
I v

0 I

)(
u 0

0 u′

)(
I 0

w I

)

=

(
u+ vu′w vu′

u′w u′

)

Then the half coset correspond to using G− and G0 to gauge away the v

and u, u′ coordinates respectively. One is then left with the w coordinates

which can be represented by taking a rectangular part of the original matrix

ZA′
M = (ZA′

M , ZA′
M ′) and define it as a fraction of the original coordinates:

wM ′
N = (ZA′

M ′)−1ZA′
N =

(
ym′

m θm′
µ

θ̄µ̇
m xµ̇

µ

)

w is an (n|2) by (N − n|2) matrix for the case of N supersymmetries, where

“n” indicates their “twisting”: n = 0 (or N) describes (anti)chiral superspace.

Since µ, µ̇ = 1, 2, one always result in 2N spinor coordinates corresponding

to half of the fermionic coordinate of the full superspace. Thus one naturally

achieves the goal of truncating the fermionic degrees of freedom in half. The

case n = N/2 describes the preferred superspace, which allows a type of reality

condition because this matrix is then square, satisfying a form of hermiticity.

In this case for N=4 one has m,m′ = 1, 2, then besides the usual 4 space

time coordinate x, there is an equal number of θ, θ̄ and 4 internal coordinates

y. Unfortunately using this type of coset gives second class constraints and

quantization is difficult. This will be remedied by introducing another coset

at the expense of manifest superconformal symmetry, however the resulting

coordinates are the same thus one can still hope for manifest symmetry for

the amplitudes.

Alternatively one can start with elements ZA′
M and ZM

A supplemented

by the constraint ZA′
MZM

A = 0. The general solution can be written as

ZA′
M = u′(w, I), ZM

A =

(
I

−w

)
u (5.1)

1M is also separated into M and M ′ so that one can easily read where the coordinate
sits in the matrix just by reading the indices.
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one arrives at the same result.

Since Z transforms linearly under the (P)SU(2,2|N) superconformal group

gN
M =

(
a c

b d

)
, transformations for w is then represented as a fractional

linear transformations:

w′ = (wc+ d)−1(wa+ b)

or the equivalent

w′ = (ãw + b̃)(c̃w + d̃)−1

in terms of the (P)SU(2,2|N) group element(
a c

b d

)
=

(
d̃ −c̃
−b̃ ã

)−1

or in linearized form as

δw = α + βw + wγ + wεw

Superconformal invariants can then be constructed by taking superdetermi-

nants of w (or multiple supertraces since sdet(eM) = estrM).

Charge conjugation for the w coordinates can be easily defined once it is

defined for the Z coordinates[68]. The goal is to find a conjugation operation

CZ such that the conjugated coordinate transforms the same way as Z under

the superconformal group. Using (pseudo)unitarity of the group element one

has CZ ≡ Z−1†Υ since

Z′ = Zg → (CZ)′ = (Z′)−1†Υ = (Z)−1†g−1†Υ = CZg (5.2)

Where Υ is the (P)SU(2,2|4) metric. Then Cw transforms

(Cw)† ≡

(
−y−1

a
a′ iy−1

a
b′θb′

βCβα

−iC α̇β̇ θ̄β̇
by−1
b

a, C α̇β̇(xβ̇
β − θ̄β̇ by

−1
b

b′θb′
β)Cβα

)

The superconformally invariant (4D extension of the Hilbert space) inner prod-
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uct is then

〈A|B〉 ≡
∫
dw(CA)(w)B(w) = 〈B|A〉∗

for any A and B that transform as half-densities

dw′[A′(w′)]2 = dw[A(w)]2

where CA, which transforms in the same way as A, is defined by the relation

of complex conjugation to charge conjugation in the above inner product,

(CA)(w)[det(y)]−str(I)[A(Cw)]†, str(I) = N − 2

This superspace has various descriptions in terms of cosets [67] or related

projections [68, 72]. A manifestly superconformal description is most natural

in a projective lightcone formalism [68, 72]: In that approach, one would

start with the coset of the superconformal group with respect to a classical

(isotropy) group, and take a contraction of the latter (“projective lightcone

limit”), which makes some of the original coordinates (including one from

spacetime) nondynamical. Unfortunately, the interpretation of the resulting

action remains unclear.

5.3 Super anti-de Sitter

Here we present a new approach: We first formulate the first quantized theory

in the full group space(the isometry group), that is we define the constraints

using covariant derivatives of the full group. As the isometry group we choose

the super-anti de Sitter group (in four dimensions). We then choose first-

quantized gauge conditions, which corresponds to the isotropy group. The

isotropy group is the super-anti de Sitter group in one lower dimension (three),

up to questions of signature. (Some Wick rotation is involved, since we re-

ally want 3D de Sitter symmetry, not 3D anti-de Sitter, to get anti-de Sitter

space SO(3,2)/SO(3,1), but only the anti-de Sitter symmetry can be super-

symmetrized. This Wick rotation leads to modified reality conditions, which

always occur in projective space [64, 68].) Although the manifest symmetry is

only super-anti de Sitter, the superconformal invariance of super Yang-Mills
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in D=4 guarantees the result is directly applicable to flat space. (Pure spinors

have also been used to describe 4D N=4 Yang-Mills in super AdS, but using

the maximal bosonic isotropy group [73])

Thus the “full” superspace of the isometry group is reduced to a projec-

tive coset which is represented by the w coordinates we discussed previously.

This approach has the advantage that before gauge fixing the super Yang-Mills

background can be constructed with covariant derivatives, which require the

full superspace in order to incorporate all the physical field strengths, while

after gauge fixing the theory can be quantized using just projective super-

space, which is all the super Yang-Mills prepotential should require. The fact

that our SYM theory is defined in a space that arises from a partial gauge

fixing of the larger space mirrors the fact that the action for the N=2 vec-

tor multiplet in harmonic superspace is nonlocal in the internal coordinates,

this is analogous to Coulomb-like interactions suggesting such spaces are the

result of partial gauge fixing from larger superspaces with local actions. As

discussed previously, reduction of the number of fermionic coordinates is useful

for quantization because only one quarter of those of the full superspace are

physical; any unphysical coordinates must be canceled by ghosts. However, in

such spaces nonrenormalization theorems are not obvious.

The relevant cosets are then

OSp(N|4)

OSp(n|2)OSp(N− n|2)

which can readily be seen to yield the rectangle of coordinates given above.

(This isotropy group was also found in the projective lightcone approach. The

case n=0 of this coset, namely OSp(N|4)
OSp(N|2)Sp(2)

, was used in [74] to describe self-

dual supergravity).

We can also take a contraction of the isometry, a graded generalization

of the contraction used to obtain the Poincare group from the anti-de Sitter

group: In terms of the algebra

[H,H} = H, [H,G/H} = G/H, [G/H,G/H} = H
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we simply drop the right-hand side of the last equation2. The result is

I[OSp(n|2)OSp(N− n|2)]

OSp(n|2)OSp(N− n|2)

where the “I(nhomogeneous)” part is just translations with respect to the

coordinates of the rectangle described above. The coset is now Abelian, and

consists of the usual “supertranslations” of the projective group: spacetime

translations(pαα̇), half of the supersymmetries(πa′α, π̄aα̇), and part of the R-

symmetry(taa′). However, although the part of the isometry group acting

on Lorentz (spinor) indices is just the Poincare group, the full group is not

the super Poincare group, because the isotropy group is unchanged: The last

consists of the Lorentz group, a subgroup of R-symmetry, and the sum of the

other half of the supersymmetries and the corresponding S-supersymmetries.

So we have the usual flat spacetime, but not the usual flat full superspace.

Since the coset space is our projective superspace on which our superfields

depend, while the isotropy group is the tangent space3, this means in the

contracted case we have a flat (and torsion-free) coordinate space with a curved

tangent space, the opposite of the usual.

We will use both these cosets below (more or less simultaneously, since it’s

easy to see how to contract the former to the latter). Both isometry groups are

subgroups of the superconformal group. Before going to the coset we first show

how constraints can be constructed in the full group space. This is a general

discussion, for readers only interested in the construction for N=4 SYM, one

can skip directly to the next section.

5.4 Groups without cosets

5.4.1 Constraints

All the constraints we consider in the following sections are first-class, thus

the first quantized actions are of the form

S =

∫
dτ L, L = −żapa + λiGi

2This can be done by multiplying G/H by R and taking R to ∞
3For the usual superspace, the isotropy group is the Lorentz group
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for superspace coordinates z and their conjugate momenta p, and constraints

G and their Lagrange multipliers λi, all as functions of the worldline parameter

τ .

For reasons mentioned above, we define our “full” superspace as the entire

supergroup space, rather than just a coset. The free field equations of the

theory are expressed at the first-quantized level as constraints quadratic in the

group generators. (This is “dual” to writing them in the same form in terms of

covariant derivatives.) We begin by reducing the (symmetrized) square of the

generators: The three general (finite-dimensional) cases are for superconformal

in D=3,4,6 (or 1 more dimension for super-AdS),

OSp(N |4) :
S

(P )SU(N |2, 2) :
S

OSp∗(8|2N) :
S

(OSp has a real defining representation, OSp* has pseudoreal; thus the former

has bosonic subgroup SO(N)Sp(4), while the latter has SO*(8)USp(2N).) In

each case we have listed the 4 irreducible representations in the following order:

• (1) nonvanishing on shell, most symmetric in spacetime spinor indices;

• (2) vanishing for superconformal only, most antisymmetric in spacetime

spinor indices, includes flat Klein-Gordon;

• (3) vanishing for both superconformal and AdS, single supertrace, in-

cludes Pauli-Lubanski;

• (4) vanishing for both superconformal and AdS, double supertrace

(Casimir, with a dot for its singlet tableau), AdS Klein-Gordon.

We use graded symmetrization, so “symmetric” in the tableaux means

symmetric in the former label of the group, since in the first and last cases that

has the symmetric metric. For the cases of interest in D=4, this means that
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R-indices are considered as bosonic, and Lorentz spinor indices as fermionic,

for purposes of sign factors from reordering indices. So, e.g., str(MA
B) =

+MA
A. For the unitary case, dots in boxes refer to the complex conjugate

representation; ordering of the dotted block with respect to the undotted block

is arbitrary. In the cases where the ranges of the bosonic and fermionic indices

are the same (N=4), supertracelessness is undefined (str(I) = 0), so the 3rd

constraint implies the 4th, and the 3rd is implied by the 1st (for the latter 2

cases) or the 2nd (for the former 2 cases). By “vanishing”, we mean up to

constants, for the case of vanishing superhelicity. (Nonvanishing superhelicity

can be described by introducing “spin” operators, in addition to these “orbital”

ones defined in terms of just the supergroup coordinates.)

To see that this classification of (quadratic) constraints is consistent with

the usual identification of the superconformal mass shell, we evaluate them in

the supertwistor representation, which exists for D=3,4,6: The generators Ĝ

in terms of the supertwistors ζ are

D = 3 : ĜAB =
1

2
[ζA, ζB

}
,
{
ζA, ζB] = ηAB

D = 4 : ĜA
B =

1

2
[ζA, ζ̄B

}
,
{
ζ̄A, ζB] = δA

B h =
1

2
[ζA, ζ̄A

}
D = 6 : ĜAB =

1

2
[ζa A, ζaB

}
,
{
ζaA, ζbB] = CabηAB, hab =

1

2
[ζa

A, ζbA
}

(5.3)

with indices A,B in the defining representation (and defining SU(2) indices

a, b for D=6), where h is the superhelicity (generating the little group U(1) for

D=4, or SU(2) for chiral D=6), which is set to vanish in our case. (For D=4

we have given the U(N|2,2) generators; in coordinate representations, only

(P)SU(N|2,2) need be defined. Note that twistors are essentially γ-matrices

for OSp, or creation/annihilation operators for U, satisfying graded anticom-

mutation relations; thus the bosonic ones anticommute with the fermionic

ones.)

Substitution of these representations into the corresponding constraints

numbers 2,3,4 above shows they vanish up to constants for vanishing superhe-

licity, and do not vanish for number 1.
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Once the correct constraints have been identified, it’s more convenient (for

purposes of applying isotropy conditions or coupling background fields) to ex-

press the constraints in their dual form in terms of (free) covariant derivatives

(Ĝ→ d).

5.4.2 N=0

For the case N=0, we can examine arbitrary dimensions, with the generators

carrying vector indices; then we have

SO(D, 2) :
S

(The ordering is as above, but the roles of symmetry and traces have changed.)

We now outline the solution of the constraints. In the conformal case, the

constraints are, in terms of SO(D−1,1) indices,

dim

2 P 2

1 Sm
nPn + wPm S[mnPp]

0 Sm
pSpn +K(mPn) − tr wSmn +K[mPn]

0 S2 + (D + 1)w2 + (D − 2)K · P S[mnSpq]
1
2
S2 − w2 − 2K · P

−1 Sm
nKn − wKm S[mnKp]

−2 K2

for momentum P , spin S, scale weight w, and covariant derivative for con-

formal boosts K. The dimension-2 constraint allows us to choose a lightcone

frame to make the analysis simpler. The dimension-1 constraints then imply

S = w = 0 (assuming the momentum is not identically 0). The surviving

dimension-0 constraints then imply K = 0. So we are left with a massless

scalar.
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In the AdS case, in terms of SO(D,1) indices, we have

P 2 − 1
2
S2

S[mnPp]

S[mnPp]

We again find S = 0, describing a scalar.

5.5 AdS4 supergroup space

5.5.1 Constraints

We now examine the constraints in more detail for the cases of interest for D=4:

(P)SU(N|2,2) for superconformal, and OSp(N|4) for super-AdS. Conveniently,

D=4 is the only case for which there are classical supergroups for all N that can

be applied for both superconformal and super-AdS. As a result, a supertwistor

analysis can be applied for super-AdS as well as for superconformal (using the

same supertwistors).

For the superconformal group we find from the analysis of the previous

section, substituting the supertwistor expression,

superconformal : ĜAB
CD ≡ Ĝ(A

(CĜ(B]
D] − 1

2
δA

CδB]
D = 0

The Kronecker δ term can be considered as arising from “normal ordering”.

Note that these constraints, with all indices uncontracted, have large amount of

redundancy and thus implementing quantization leads to complicated ghosts

structure that was the main reason previous attempts of first quantization

failed.

The constraints for the AdS case are a subset of (a linear combination of)

the superconformal ones, because the OSp(N|4) generators themselves can be

derived from (graded) antisymmetrization of the (P)SU(N|2,2) ones:

ĜA
B → GAB ≡ Ĝ[A

CηC|B)
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where η is the graded-symmetric OSp(N|4) metric. Consequently the maximal

subset of the above constraints that can be expressed in terms of OSp(N|4)

generators requires a supertrace on the indices of the above constraints, in

agreement with our previous analysis:

super − AdS : GAB ≡ G(A|
CGC|B) + str(I)ηAB = 0

The superhelicity is again required to vanish. (Note the “anomalous” η term

vanishes for N=4.) Similar constraints were proposed previously for the (10D)

superparticle on AdS 5⊗S5 [71], using the superconformal isometry group.

5.5.2 Lightcone gauge

The constraints are most easily solved in a lightcone-type decomposition.

First, it’s useful to identify how the constraints relate to the more reducible su-

perconformal constraints. It will only be necessary to look at those constraints

that do not include terms with covariant derivatives corresponding to confor-

mal boosts and S-supersymmetry, since those constraints can be applied to

arbitrary massless representations of supersymmetry [75], of which the mini-

mal representation appearing in first-quantization is a special case. (So the rest

are redundant, at least after choosing conformal boosts and S-supersymmetry

as the isotropy group.) Separating out the PSU(N|2,2) indices as A = (a, α, α̇)

(where a = (a, a′)), those constraints are

A ≡ 1
4
Ĝαβ

γ̇δ̇CβαC̄δ̇γ̇ = pαα̇pαα̇

Baα ≡ 1
2
Ĝaα

γ̇δ̇C̄δ̇γ̇ = pα
α̇π̄aα̇

B̄aα̇ ≡ 1
2
Ĝαβ

aα̇Cβα = pαα̇πa α

Cα
α̇ ≡ Ĝα

B
B
α̇ = Sα

βpβ
α̇ − S̄α̇β̇pαβ̇ − πa

απ̄a
α̇

Cbα̇int,aα ≡ Ĝaα
bα̇ = ta

bpαα̇ + πb
απ̄a

α̇

Cχ
ab

αβ ≡ Ĝαβ
ab = πa

απ
b
β

Cχ̄,ab
α̇β̇ ≡ Ĝab

α̇β̇ = π̄a
α̇π̄b

β̇

Dα
α̇ ≡ 1

2
(Ĝαβ

βα̇ + Ĝαβ̇
α̇β̇) = Sα

βpβ
α̇ + S̄α̇β̇pαβ̇ + wpα

α̇

where we have labeled the constraints as in [75]. Note that in D=4 the Pauli-

Lubanski equation C is equivalent to the D constraint in the presence of the
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B constraint and the Klein-Gordon equation A.

We now compare these to the OSp(N|4) constraints: In terms of covariant

derivatives of the isometry group

dAB =

 tab πaβ π̄aβ̇

−πbα Sαβ pαβ̇

−π̄bα̇ pβα S̄α̇β̇


we have

0 = GAB ≡ dACdBDηDC =0B@ tactb c + πaγπb
γ + π̄aγ̇ π̄b

γ̇ tacπβ c − πaγSβ γ − π̄aγ̇pβ γ̇ tacπ̄β̇ c − πaγpβ̇ γ − π̄aγ̇ S̄β̇ γ̇

· · · παcπβ c − SαγSβ γ − pαγ̇pβ γ̇ παcπ̄β̇ c − Sαγpβ̇ γ − pαγ̇ S̄β̇ γ̇
· · · · · · π̄α̇cπ̄β̇ c − pα̇γpβ̇ γ − S̄α̇γ̇ S̄β̇ γ̇

1CA

≈

0B@ ? Bαβ B̄α̇β̇

· · · CαβA Cαβ̇

· · · · · · C̄α̇β̇A

1CA (5.4)

where “· · ·” is proportional to the transposed element, “≈” refers to extra

terms, and we have ignored symmetrization of indices, which produces terms

linear in generators. Note that extra signs from reordering of super-indices are

implicit: For example, in the supertrace of indices in the definition of the OSp

constraints, there is a factor of (−1)BD, which is −1 if both indices are Sp(4)

and +1 otherwise, because supertraced indices belong next to each other. (We

could also just use the graded symmetry of the second d factor, but we want

to use notation that applies to the general case, where d has no symmetry.)

The constraint “?” will be found to be the square of the lightcone part of the

Cint constraint.

To analyze these constraints it’s instructive to look first at the case N=0:

In the superconformal case, we can solve the A constraint as usual. The C

constraint is then the usual Pauli-Lubanski equation for vanishing helicity: We

can thus set the spin operators Sαβ and S̄α̇β̇ to vanish. (The components of

the spin not explicitly set to vanish by this equation do not appear, and so can

be eliminated from the theory by unitary transformation, or equivalently by a

gauge condition for the gauge transformation generated by this equation.) The

D constraint does the same if we set the conformal weight w = 0: It’s the same

as the Pauli-Lubanski equation except for a (Hodge) duality transformation

on the spin (and in general also switching helicity with conformal weight). The
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AdS case is similar except for the extra terms in A; but these drop out after

solving the Pauli-Lubanski equation.

We then choose a lightcone Lorentz frame

pαα̇ =

(
p+ 0

0 p−

)

For general N, the A and B constraints are used to solve for p−−̇, and π−a

and π̄−̇a , as usual. The C constraint then determines Sαβ and S̄α̇β̇. (Again

a D constraint is unnecessary.) Now the ? constraint will perform a similar

function for tab: After plugging in the solution for π−a and π̄−̇a , it becomes

t̃act̃bc = 0, t̃ab = tab − 1

p+
π̄a+̇πb+

We recognize tab as proportional to the superconformal Cab++̇
int . Since the in-

ternal space is compact, the vanishing of the square of this operator implies its

own vanishing. (In particular, we see all the Casimirs of these modified group

generators vanish.) Thus the AdS constraints are equivalent to the larger

superconformal set: They yield the supertwistor representation.

5.5.3 Constructing the BRST Charge

Isotropy constraints (really gauge conditions) are expressed in terms of co-

variant derivatives (since they preserve the global symmetry), so from now on

we also represent the quadratic constraints (field equations) in terms of them,

also. (The supertwistor representation of the previous subsection applies only

to the group generators.) The covariant derivatives are again a subset of those

for the superconformal group. The explicit form of the latter has been given

previously; we won’t need them here (only their algebra).

In matrix notation, these constraints are

dηdT = dTηd = 0

(for graded transpose “T”). The most interesting things about these con-

straints are that: (1) Their index structure is that of a matrix, as for the

covariant derivatives d themselves, except perhaps for the symmetry on their
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two indices: for example, the covariant derivative dab is anti-symmetric in its

two R indices while the constraint tactb c + πaγπb
γ + π̄aγ̇π̄b

γ̇ is symmetric in

the two R indices. (2) These constraints are reducible, the index structure

for their reducibility condition, and the reducibility of the reducibility condi-

tion etc, are also just a matrix. Therefore ghost for the constraints and their

reducibility condition have the same structure.

In the present case d is graded antisymmetric on its 2 indices. We then

have

dT = −d

(dηd)T = +(dηd)

The constraints are written as G1 ≡ dηd = 0. Then the reducibility conditions

are

G2 ≡ dηG1 − G1ηd = +GT2 = 0

G3 ≡ dηG2 + G2ηd = −GT3 = 0

etc., where the sign for the symmetry of Gn alternates as −+ +−−+ +−−...
. Explicitly, with G0 ≡ d,

Gn+1 ≡ dηGn + (−1)nGnηd = (−1)n(n−1)/2GTn+1 = 0

Using this construction for the BRST operator, and including terms for closure

(Q2 = 0) leads to the result that the complete minimal BRST operator can

be written in the simple form (matrix multiplication with metric, and trace,

implied)

Q =
∞∑

m,n=0

cm+n+1bmbn + f...

where the indices label the ghost generation,

b0 = d

while higher generation of b represents the reducible constraint, etc. We have

cn = −(−1)n(n+1)/2cTn
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and similarly for b while “f...” denotes structure-constant terms. (We won’t

need those for the contracted projective case since the group is abelian.)

No nonminimal degrees of freedom are needed; we can choose a “temporal”

gauge for the first-quantized gauge fields, as is standard for D=1 and 2 (because

it doesn’t break worldsheet or spacetime Lorentz invariance). Thus, there is

only a (“1D”) tower of ghosts [72] (for all of x, θ and y), as opposed to the

(“2D”) pyramid of ghosts (for just θ) for the approach of that name.

5.6 N=4 projective superspace

5.6.1 Projective gauge

In the previous section we analyzed the first-quantized theory on shell by

simultaneously solving all the constraints explicitly and choosing a lightcone

gauge for the symmetry generated by the constraints. We can instead solve

a subset of the constraints and choose their corresponding gauges in such a

way as to manifestly preserve Lorentz covariance. This can be achieved in a

way that is equivalent to completely eliminating some of the coordinates (a

subset of those eliminated in the lightcone gauge). Since the algebra of gauge

conditions must close, this is the same as choosing an isotropy subgroup. Then

the isotropy group can be used to reduce the original constraints, eliminating

constraints, or terms in constraints, that vanish off shell as a consequence

of the vanishing of the isotropy covariant derivatives themselves. This leads

to the coset construction discussed in (5.3) which correspond to projective

superspace.

To treat these cosets, we again divide the range of OSp(N|4) indices in half

as

A = (A,A′)

for the two OSp(N
2
|2)’s. In the original matrix (or rectangular) notation the

isotropy coordinates correspond to the us, thus the coset simply means that

we are dropping the u dependence. The constraints resulting from dropping

the isotropy covariant derivatives du, leaving just the projective ones dw, will

have a similar form as before, but the indices will be reduced from OSp(N|4)

to (one of the) OSp(N
2
|2): dw has the index structure dA

A′ and indices are
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then contracted with one of the OSp(N
2
|2) metrics (or its inverse). Thus the

constraints for this coset are

ηAB = (δab, Cαβ), ηA′B′ = (δa′b′ , C̄α̇β̇);

Cαβ = C̄α̇β̇ = −Cαβ = −C̄ α̇β̇ =

(
0 −i
i 0

)
(5.5)

(If we want to keep track of dimensional analysis, we can include a factor

of the anti-de Sitter radius 1/R with the Kronecker δ’s, but being careful to

distinguish the inverse metrics, where R appears instead of 1/R.)

In the explicit form for the BRST operator (which takes the same form as

above, but with different symmetry for the matrices, as discussed below), the

algebra for dw closes only on du, so Q2 = 0 modulo such terms. A separate

term to enforce du = 0 can easily be added, along with the corresponding

terms for closure of the dwdw algebra on du. (Similar remarks apply to adding

a Lagrange multiplier term for du to the Hamiltonian.) Alternatively, we can

work just in the contracted coset space, and du can be ignored altogether. If

we use the contracted coset, the dw are simply partial derivatives with respect

to w (up to factors of isotropy coordinates u, which can be ignored upon

restriction to the coset space). To see that this gives the desired description

for N=4 SYM we solve it in the light-cone gauge.

5.6.2 Lightcone gauge again

First we write out the different Lorentz pieces of the constraints: In terms of

dA
A′ =

(
ta

a′ π̄a
α̇

πα
a′ pα

α̇

)

we have

GAB =

(
G(ab) Gaβ

Gαb G[αβ]

)
=

(
ta

a′tba′ + π̄a
α̇π̄bα̇ ta

a′πβa′ − π̄a α̇pβα̇
· · · πα

a′πβa′ − pα α̇pβα̇

)

(with the usual signs for a fermionic index interrupting the contraction of two

fermionic indices) and similarly for the complex-conjugate constraints ḠA
′B′ .
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In particular we have, from Gαβ, Gaa, and their complex conjugates,

p2 = π2 = π̄2 = −t2

(plus one redundant equation).

From G+a and its complex conjugate we find

π−a
′
=

1

p+
itaa

′
π̄a

+̇

and its complex conjugate. (G−a and its complex conjugate are redundant.)

This tells us

π2 =
1

p+
taa
′
πa

+̇π+
a′

We then have, from the remaining constraint Γab and complex conjugate,

t̂a
a′ t̂ba′ = t̂aa′ t̂ab′ = 0

defining

t̂aa′ ≡ taa′ −
1

p+
π̄a

+̇π+
a′

This expression is the independent piece of the constraint from the bigger

superconformal set,

pαα̇taa′ − π̄aα̇παa′ = 0

Since the vanishing of the square of a Hermitian operator implies the van-

ishing of the operator, we find

t̂aa′ = 0

(This is clear on the original coset, since the internal space is compact, so

there is no ambiguity in normalization of states. However, things might be

more subtle on the contracted coset.) The hermiticity of this operator follows

from the fact that it is a piece of the superconformal field equations, which can

be expressed in terms of group generators (instead of covariant derivatives),

which are by definition Hermitian.

It then follows that

p2 = π2 = π̄2 = −t2 = 0
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(t2 = 0 does not imply taa′ = 0, since t is not Hermitian with respect to the

charge conjugation that defines the inner product.) So x dependence is de-

termined by the Klein-Gordon equation (as usual in the lightcone formalism),

y dependence is completely determined, and θ dependence is determined in

terms of half the original θ’s, i.e., 1/4 of those of the full superspace, as usual.

5.6.3 Counting degrees of freedom

We can count the degrees, subtracting the constraint, adding back due to

reducibility, subtracting reducibility of reducibility · · ·. This is equivalent to

counting ghosts. The results of (5.5.3) for counting ghosts can be applied

directly to the 4D case by using OSp(N|4) indices, dividing their ranges in

half, and dropping irrelevant blocks. The ghosts for odd n both indices are

primed or both unprimed, while for even n we have mixed indices:4{
c2n+1,AB, c2n+1,A′B′ where c2n+1 = (−1)ncT2n+1

c2n,AB′

Thus the symmetry has a cycle of 4, going as asymmetric, (twice) graded

symmetric, asymmetric, (twice) graded antisymmetric.

We can now count the naive effective number of modes for any of x, θ, y .

Infinite sums can be defined, e.g., by regularization:

(1 + z)−1 = 1− z + z2 − ...→ 1− 1 + 1− ... =
1

2

We then have for each variable (remember w carries OSp(N
2
|2) indices)

x (two Weyl indices) : 4− 2 · 1 + 4− 2 · 3 + · · ·

= (1− 1 + 1− ··) · 4 + (1− 1 + 1− ··) · 2

= 3 = D − 1

4For example the zeroeth level are the original constraints which have both primed or
unprimed indices. The first level correspond to the first reducibility condition, which are
dw on constraints, thus have mixed indices.
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θ (one Weyl indices) : 2N − 2N + 2N − 2N + · · ·

= (1− 1 + 1− ··) · 2N

= N → 1

4
of full superspace

y (no Weyl indices) : (
N

2
)2 − 2 ·

N
2

(N
2

+ 1)

2
+ (

N

2
)2 − 2 ·

N
2

(N
2
− 1)

2
· · ·

= (1− 1 + 1− ··) · 1

4
N2 − (1− 1 + 1− ··) · N

2

=
N(N − 2)

8

where for x and y we have separated the sum into averages over symme-

try/antisymmetry plus the deviations due to either. The x’s (and p’s) have just

the “transverse” degrees of freedom D − 1, which in the equivalent ghost-free

lightcone analysis arise from the gauge choice x+ = τ (and p2 = 0 eliminating

p−). This agrees with the usual scalar particle, which has just x and 1 c; but

here there are 2 (identical) constraints for N = 0, resulting in reducibility to

cancel 1. For θ we also find the number of physical degrees, which is just 1/4

that of the full superspace. However, though the y’s have no physical degrees

of freedom, they do not cancel by this counting because they are eliminated

by quadratic constraints, not linear. (But note that net bosons and fermions

cancel for N = 4, as they do at each ghost level. Also, because of the grading

the x counting is just the N = −4 case of the y counting.) Interestingly, for

the case of OSp(n|2)OSp(N−n|2) with n 6= 1
2
N the sum diverges for y, even

with the above regularization, giving an extra term −(n− 1
2
N)2(1 + 1 + ...).

5.7 N=4 super Yang-Mills

5.7.1 Covariant derivatives

We now consider the formulation of N=4 super Yang-Mills in this projective

superspace. We first note that it is difficult to define the projective superspace

in the half-coset approach starting from the SU(4|2,2) group. For a (half)coset

to be consistently defined in a SYM background, it must be consistent to define

the vanishing of the isotropy group once the covariant derivative is extended
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to include SYM connections du → ∇u, that is:

[∇u,∇u} ∼ ∇u or 0

For the half coset approach based on SU(4|2,2), the problem is [∇u,∇u} =

Fuu, [∇u,∇v} = ∇v + Fuv e.t.c. The presence of field strengths in the SYM

background renders the definition of the half-coset inconsistent. We will show

that in the anti de Sitter coset, the coset can be defined in SYM background.

We begin by defining the algebra of the (gauge)covariant derivatives in the

“full” OSp(N|4) space. The algebra is simply the original OSp(N|4) algebra

plus the usual flat SYM field strengths. We need to start with the full super-

space in order to incorporate all the physical field strengths. Then we will see

that when separating out the isotropy sector of the algebra(the two OSp(2|2)s,

the algebra of ∇us ), a redefinition can be performed such that the isotropy

constraint can be defined in the SYM background.

As is well known the usual flat algebra for the covariant derivatives of

SYM implies field equations for the field strength for N=3 and 4. This will

be also true for our case, and we will derive the field equations shortly. In the

first quantization point of view this is not a problem since from our previous

analysis in the YM case 4.1, the nilpotency of the interacting BRST charge,

which is necessary for the construction of vertex operators, implies the field

equation for the background field. In fact in any linearized quantum gauge

theory in a background of the same gauge theory, linearized gauge invariance

of the quantum theory requires the background to be on shell [76], we will here

restrict ourselves to an on-shell background. However, this background is on

shell with respect to the full nonlinear field equations, which is sufficient to

construct the Feynman rules: For example, tree graphs can be derived from

perturbative solutions to the classical equations of motion. Thus, the existence

of this construction, combined with the off-shell formulation of the linearized

theory, should be sufficient to prove the existence of the nonlinear off-shell

theory.

In addition to the usual 4 spacetime and 4N anticommuting coordinates,

this full superspace contains also internal (bosonic) coordinates for not only

the AdS R-symmetry group SO(4) but also the Lorentz group. Of course,

as for (N=0) gravity in curved space, we treat the spacetime derivatives and
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Lorentz (spin) generators as separate, even though the Killing vectors of AdS

that generate SO(3,2) do not distinguish “translations” from “Lorentz trans-

formations”. This is fully consistent with the distinction between symmetry

generators and covariant derivatives, and thus the usual coset construction

for Sp(4)/Sp(2)2 (“left” and “right” action on the group elements). What is

unusual here is that we introduce coordinates for the Lorentz spin, as well as

corresponding components for the Yang-Mills gauge fields. (The Yang-Mills

gauge group is still the same; it is only that it is defined over a bigger manifold.)

This is already done for R-symmetry, in projective and harmonic superspace.

The Yang-Mills field strengths in these directions vanish, and thus gauges can

be chosen where their gauge fields do also. However, in some cases it may

prove convenient to choose gauges where they do not, as in the usual N=2

harmonic construction [77].5 An interesting example is the case of selfdual

Yang-Mills (fαβ = 0), even for N=0, which is known to be analogous to N=2

projective and harmonic superspaces [64, 77]. In the lightcone gauge for this

theory, we separate the + and − components of the undotted spinor index

(but not the dotted one), then one can solve some of the selfduality conditions

as

[∇αα̇,∇ββ̇] = Cαβ f̄α̇β̇

{ [
∇+α̇,∇+β̇

]
= 0→ ∇+α̇ = ∂+α̇, A+α̇ = 0[

∇+[α̇,∇−β̇]

]
= ∂+[α̇A−β̇] = 0→ A−α̇ = ∂+α̇A−−

(5.6)

(where ∇ = d + iA) in terms of some “prepotential” A−−. But the solution

of the second equation automatically follows from the first when we gauge the

Lorentz invariance; the prepotential A−− appears as the connection for the

Lorentz connection ∇−−, then we derive the same result from the algebra

[∇+α̇,∇−−] = ∇−α̇ → A−α̇ = ∂+α̇A−−

Pure spinors are also related to (coset) Lorentz coordinates.

5In N=2 Harmonic superspace [77] the prepotential is the connection introduced for one
of the y coordinates in the coset SU(2)

U(1)
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5.7.2 SYM Background

We first express the covariant derivatives in manifestly SO(N) covariant form;

their algebra is the obvious combination of the OSp(N|4) algebra with that

of the flat-space super Yang-Mills covariant derivatives (and hence their field

strength):

[∇ab,∇cd] = −η[a[c|∇b]|d]

[∇ab,∇cγ] = −η[ac∇b]γ

{∇aα,∇bβ} = −Cαβ(∇ab + φab)− ηab∇αβ

{∇aα̇,∇bβ̇} = −Cα̇β̇(∇ab + φ̄ab)− ηab∇α̇β̇

{∇aα,∇bβ̇} = −ηab∇αβ̇

[∇αβ,∇bγ] = C(αγ∇bβ)

[∇aα,∇γβ̇] = Cαγ(∇aβ̇ +W aβ̇)

[∇aα̇,∇γβ̇] = Cα̇β̇(∇aγ +Waγ)

[∇αβ,∇γδ̇] = C(αγ∇β)δ̇

[∇αβ̇,∇γρ̇] = Cαγ(∇β̇ρ̇ + fβ̇ρ̇) + Cβ̇ρ̇(∇αγ + fαγ)

[∇α̇β̇,∇γδ̇] = C(α̇δ̇∇γβ̇)

Using Bianchi identity on this algebra relates different field strengths

[∇ab, φcd] = −η[a[c|φb]|d]

[∇c
β̇
, φcd] = 3W dβ̇

{∇a
(α,Waβ)} = −8fαβ

(5.7)
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For N=4 they imply self-duality for the scalar field strength as well as field

equations for the other field strength

Self − duality φ̄ab =
1

2
εabcdφcd

[∇αβ̇,W a
β̇]− [φab,W

b
α] = 0

[∇α
β̇, fγ̇β̇] +

1

4
[φab, [∇αγ̇, φ̄

ab]]− {W b
α,W bγ̇} = 0

[∇γβ̇, [∇γβ̇, φab]]− 2{W̄a
β̇, W̄bβ̇} − εabcd{W

cγ,Wγ
d}

−4φab − [φbc, [φad, φ̄
cd]] = 0

(5.8)

where the self-duality relationship is determined only up to a phase. Later

when we discuss second quantization the goal is then to modify this algebra

such that the Bianchi identity no longer implies field equations, therefore it is

instructive to see how self-duality and field equations arise. We give a brief

sketch of the derivation in the Appendix.

5.7.3 Projective gauge

We now separate the OSp(N|4) algebra into the subsets by labelling the covari-

ant derivatives as either ∇u or ∇w. Then the above algebra can be represented

as

[∇u,∇u} = ∇u + fuu, [∇u,∇w} = ∇w + fuw, [∇w,∇w} = ∇u + fww

The field strengths fuu, fuw, fww are denoted by their position in the algebra.

Note that N=4 is the only projective case where the ∇u algebra has field
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strengths, they appear as scalar field strengths φ̌

[∇a′b′ ,∇c′α̇] = ηa′c′∇b′α̇ − ηb′c′∇a′α̇

[∇bc,∇aα] = ηab∇cα − ηac∇bα

{∇aα,∇bβ} = −Cαβ(∇ab + φ̌ab)− ηab∇αβ

{∇a′α̇,∇b′β̇} = −Cα̇β̇(∇a′b′ + φ̌a′b′)− ηa′b′∇α̇β̇

[∇αβ,∇bγ] = −Cγα∇bβ − Cγβ∇bα

[∇α̇β̇,∇b′γ̇] = −Cγ̇α̇∇b′β̇ − Cγ̇β̇∇b′α̇

[∇αβ,∇γδ] = −Cγα∇βδ − Cδβ∇αγ − Cδα∇βγ − Cγβ∇αδ

From the self-duality relation derived previously one has

φ̌ab =
1

2
εabεc′d′φ̌

c′d′ → φ̌ab = Cabϕ, φ̄a′b′ = Ca′b′ϕ

Thus there is only one fuu, furthermore it is projective:

[∇u, ϕ] = 0

∇u = (∇ab,∇a′b′ ,∇aα,∇a′α̇,∇αβ,∇α̇β̇) (5.9)

which just arise from the Bianchi identity. ϕ can then be absorbed by (the

gauge fields of) the SO(2) derivatives :∇′a′b′ = ∇a′b′ + ϕCa′b′ and ∇′ab =

∇ab + ϕCab. (A similar procedure works for the N=2 chiral case, but not

for N=4 chiral.) The new set of isotropy covariant derivatives closes without

field strength due to 5.9, and thus it is now consistent to impose them as a

constraint

∇αβ = ∇α̇β̇ = ∇aα = ∇a′α̇ = ∇′ab = ∇′a′b′ = 0

In particular, we can choose the gauge du = 0 (i.e., the above minus du = 0).

In this gauge, there is a residual gauge invariance with duλ = 0; i.e., the gauge

parameter is projective. At that point we can work exclusively in terms of ∇w.

Some interesting features of this required modification are: (1) It involves

the SO(n)SO(N−n) isotropy derivatives, this is needed to absorb the projective

field strength, and hence requires the super anti-de Sitter construction. (The

analogous derivatives in flat superspace would be central charges, which would

break superconformal invariance. However, we can still use our contracted
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coset, since the isotropy group is unchanged.) (2) The modifications must

involve only a single field strength to avoid generation of field-strength com-

mutator terms (and hence nonclosure) in the algebra of isotropy constraints,

and hence both n and N−n 6 2. This shows that chiral superspace does not

exist for N=4 Yang-Mills.

5.8 Projective amplitude

5.8.1 Duality

The four-point amplitude in this theory has been shown to have a simple

form in projective superspace, where coordinate/momentum duality is almost

manifest [71]. This duality is the one that results from (super) Fourier transfor-

mation, whereupon coordinates (of vertices) are replaced with loop momenta,

after applying momentum conservation. (External line momenta are also ex-

pressed as differences, by interpreting paths connecting adjacent external lines

as “half-loops”, with their own momenta.) Thus graphs are replaced with (ge-

ometrically) dual graphs [78]. In string theory, introducing a (random) lattice

for the worldsheet, this is recognized as T-duality [79]. The AdS5⊗S5 string

has been shown to have invariance under such a T-duality [5], implying that

N=4 super Yang-Mills has another PSU(4|2,2) symmetry that includes the

usual Lorentz and R-symmetry, but also “translation” invariance in the loop

supermomenta (of a projective or chiral superspace), and their completion to

a full dual superconformal group.

A proposal for this dual superconformal invariance of the theory had al-

ready been made directly on the N=4 Yang-Mills amplitudes [4]; however,

it requires the inclusion of twistor coordinates with both the coordinate and

momentum spaces, and is thus not a complete duality. The reason why the

twistors were found necessary is that this formulation is based on chiral su-

perspace, which is simplest for MHV amplitudes. In that space the chiral field

strengths are the selfdual parts of the (superfield which at θ = 0 is the) Yang-

Mills field strength, which carries Lorentz indices. They thus use twistors to

carry these indices. An alternative would be to introduce spin coordinates;

but these do not naturally appear in chiral superspace (at least according to

our projective construction). The scalar factor of the amplitude (the purely
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spacetime-momentum factor) would then acquire additional denominator fac-

tors of momenta to cancel those introduced into the chiral external line factors,

since the Yang-Mills field strength has higher dimension than the scalars. At

least effective actions would be expected to be more complicated in this ap-

proach, since the chirality of this field strength holds only at the linearized

level.

5.8.2 From chiral to projective

Although we do not yet give the Feynman rules, we present an alternate deriva-

tion of this amplitude in projective superspace from chiral supertwistor space,

which could be generalized to known higher-point amplitudes. We do this

not to illustrate the method, which can be complicated in general (especially

if we include the effort required to derive the chiral supertwistor expressions

with which we begin), but to show the simplicity of the projective superspace

result. The method is to transform the chiral supertwistor into projective

supertwistor space by Fourier transforming half the fermionic twistor coordi-

nates; the result can then be put into projective supercoordinate space by the

usual (projective super) Penrose transform. The result can already be guessed

by noting that the four-point amplitude is both MHV and anti-MHV: For the

tree case, the chiral and antichiral supertwistor expressions are

A4χ =
δ4(
∑
pαα̇)δ8(

∑
πaα)

〈12〉〈23〉〈34〉〈41〉
, A4χ̄ =

δ4(
∑
pαα̇)δ8(

∑
π̄a

α̇)

[12][23][34][41]

(The sums are over external lines.) Thus we’ll find that the ubiquitous twistor

denominator of MHV, and its complex conjugate of anti-MHV, are replaced in

projective supertwistor space by their magnitude, which is directly expressible

in terms of momenta (e.g., st for the tree case).

We use the notation ijkl to label the 4 distinct external lines. Then the only

twistor identity we need is the equality of the MHV and anti-MHV expressions

for the pure-gluon amplitude:

〈ij〉4

〈12〉〈23〉〈34〉〈41〉
=

[kl]4

[12][23][34][41]

This allows us to evaluate the fermionic Fourier transform with respect to any
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one of the 4 twistor fermions (with respect to N=4, but all four of the external

lines):

∫
d4ζ̄eiζ̄iζiδ2(

∑
λiζi) =

∑
〈ij〉ζkζl = δ2(

∑
λ̄iζi)

(
〈12〉〈23〉〈34〉〈41〉
[12][23][34][41]

) 1
4

with Einstein summation understood on identical indices. Thus this Fourier

transformation replaces the conservation δ-function for total πα = λαζ̄ with

one for the corresponding π̄α̇ = λ̄α̇ζ, and throws in a phase factor. In addition

to reproducing the correct relation between the above forms of the amplitude

in chiral and antichiral supertwistor space, it gives the intermediate result for

projective supertwistor space:

A4Π =
δ4(
∑
pαα̇)δ4(

∑
πα̇a′)δ

4(
∑
π̄a

α̇)
1
4
st

Note that this amplitude is missing an explicit δ-function for conservation of

taa′ (which would actually be a Kronecker δ, because of the compactness of

the R-space): This conservation is implied by the other δ-functions (in twistor

superspace, or on shell).

In this form, the amplitude is already expressed directly in momentum

superspace; we need only attach external line factors, which are just the (lin-

earized) projective superfield strengths ϕ:

Â4Π =

∫
d16pid

32πid
16tiϕ̃(1)ϕ̃(2)ϕ̃(3)ϕ̃(4)

δ4(
∑
pαα̇)δ4(

∑
πα̇a′)δ

4(
∑
π̄a

α̇)
1
4
st

(The
∫
d16ti should really be a sum. Of course, the ti conjugate to yi should not

be confused with the Mandelstam variable t.) For comparison, in the chiral

case, we need to multiply numerator and denominator by [12][23][34][41] to

put the amplitude into momentum space: The denominator becomes (st)2,

while for the numerator factor, including external line factors, we have

1

〈12〉〈23〉〈34〉〈41〉
=

[12][23][34][41]

(1
4
st)2

→
f̄α̇

β̇ f̄β̇
γ̇ f̄γ̇

δ̇f̄δ̇
α̇

(1
4
st)2

→ A4χ =

∫
d16pid

32πif̄α̇
β̇ f̄β̇

γ̇ f̄γ̇
δ̇f̄δ̇

α̇ δ
4(
∑
pαα̇)δ8(

∑
πaα)

(1
4
st)2
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Note that there is no direct analog for the chiral supertwistor scalar wave

function in momentum (or coordinate) superspace, unlike the projective case:

It is a (super)helicity amplitude, and does not directly covariantize (except by

mutliplying by twistors to get tensors, as above). This is a consequence of the

fact that the only scalar superfield strength is projective, not chiral (even in

the linear approximation).

We can easily Fourier transform the projective amplitude back to coordi-

nate superspace: The x dependence is as usual, the dependence is the local

product, and the y dependence evaluates at y = 0:

Â4Π =

∫
d16xid

8θϕ(x1, θ, 0)ϕ(x2, θ, 0)ϕ(x3, θ, 0)ϕ(x4, θ, 0)
δ4(x1 − x2 + x3 − x4)

x2
12x

2
23

5.8.3 From 6 dimensions to 4 dimensions

Alternatively the same amplitude can be derived from the on-shell N=2 SYM

amplitudes in 6-dimensions since on-shell 6 dimensions is similar to off-shell

in 4 dimensions. The relevant spinor-helicity formalism for six dimensions is

given in the appendix. It is based on representing an on-shell momentum

p2 = 0 in terms of SU(4) twistors

p2 = 0→ pµ = pAB = ZAaZB
a , pAB =

1

2
εABCDp

CD = Z̄A
ȧZ̄Bȧ

where A ∈ SU(4) and a, ȧ ∈ SU(2). One then includes the on-shell N=2

spinor coordinates as q1a and q2ȧ and 1, 2 labels the N=2. One can then map

them to the projective ones as:

q̌A = q̌A1 = ZAaq1a

ˇ̄qA = q̌2A = Z̄A
ȧq2ȧ (5.10)

The 4 point amplitude in terms of these spinor-helicity in six dimension reads[80]

εABCDεEFGHF
E
A(1)F F

B(2)FG
C(3)FH

D(4)

st
δ(
∑

p) (5.11)
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this can be seen as derived from (one term in the expansion)

δ(
∑
p)δ4(

∑
q̌)δ4(

∑
ˇ̄q)

st
φ(1)φ(2)φ(3)φ(4) (5.12)

which is exactly the result we derived previously. One can then look at all

the higher point amplitudes and find their corresponding projective ones. The

higher point amplitude was derived in [80] using BCFW recursion relation [18]

for 6 dimension tree amplitude. For example for 5 point

δ6(p)δ4(q̌)δ4(ˇ̄q)

s12s23s34s45s51

[q̌M ˇ̄qN(p2 · p3 · p4 · p5)M
N + cyclic

+ ((p2 · p3 · p4 · p5)− (p5 · p4 · p3 · p2)) q̌M ˇ̄qM + cyclic] (5.13)

5.9 Second-quantization

Here we give some tentative discussion for possible second quantized construc-

tion. Since the algebra of the covariant derivatives leads to field equations for

the field strength, an off-shell formulation would require a deformed version

of this algebra. Similar situation was discussed for N=3 [65] where one intro-

duces new few strengths for the internal symmetry direction, the action then

simply gives vanishing field strength in these directions which gives back the

on-shell theory.

For the N=3 case, extra field field strengths were introduced to the covari-

ant derivatives of some of the coset coordinates. Using the coset SU(3)/U(1)×
U(1) one introduces nonvanishing field strength

[∇−1,2,∇1,1] = F0,3, [∇2,−1,∇1,1] = F3,0, [∇−1,2,∇2,−1] = F1,1

The subscripts label the charge of the harmonic variables (R coordinates) with

respect to the two U(1)s. The vanishing of these three field strengths then leads

to the original on-shell algebra, thus the field equation can now be translated

to F0,3 = F3,0 = F1,1 = 0. This leads to the following action

S ∼
∫
A−1,2F3,0 + A2,−1F0,3 + A1,1F1,1 + ··
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So the connection now becomes Lagrange multipliers and gives the desired

on-shell degree of freedom.

Note that one should look for deformation which can be removed by setting

the R field strengths(such as the F s above) to zero. This is because the

projective(analytic for harmonic approach) measure has engineering dimension

zero, and thus the action can only be built out of dimensionless field strengths.

Here we try to find the minimum set of new field strengths that puts the

theory off-shell. Since one would still like to be able to consistently impose

analytic condition ∇ϑf = 0,6 we do not introduce field strengths in the ∇u

(isotropy group) algebra. We list the relevant part of the algebra under dis-

cussion.7

1.[∇u, ∇w} = ∇w + Fwu

• [∇ab,∇cd′ ] = −ηac(∇bd′ +Kbd′) + ηbc(∇ad′ +Kad′)

• [∇cβ̇,∇ab] = ηac(∇bβ̇ +Wbβ̇)

• [∇aα,∇cb′ ] = ηac(∇b′α +Mb′α)

• {∇aα,∇bβ̇} = −ηab∇αβ̇

• {∇aα,∇b′β} = −Cαβ(∇ab′ + φab′)

• {∇a′α̇,∇bβ̇} = −Cα̇β̇(∇a′b + φa′b)

• [∇αβ,∇b′γ] = −Cγα∇b′β − Cγβ∇b′α

• [∇aα,∇γβ̇] = Cαγ(∇aβ̇ +W aβ̇)

• [∇a′α̇,∇βγ̇] = Cα̇γ̇(∇a′β +Wa′β)

• [∇αβ,∇γδ̇] = −Cγα∇βδ̇ − Cγβ∇αδ̇

2.[∇w, ∇w} = ∇u + Fww

• [∇ab′ ,∇cd′ ] = −ηac(∇b′d′ − φ̌b′d′)− ηb′d′(∇ac − φ̌ac)

6We label the fermionic derivatives in the isotropy group as ∇ϑ = (∇aα,∇b′β̇).
7This algebra is the shifted one thus there will be no field strength for [∇u,∇u}, the

original projective field strength now appears in other places.
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• [∇aα̇,∇bc′ ] = ηab(∇c′α̇ + Ḡc′α̇)

• {∇γd′ ,∇αc′} = −Cγα(∇d′c′ + ϕd′c′)− ηc′d′∇γα

• {∇aα̇,∇bβ̇} = −Cα̇β̇(∇ab + ϕab)− ηab∇α̇β̇

• [∇cα̇,∇γβ̇] = Cα̇β̇(∇cγ +Wcγ)

• [∇a′α,∇γβ̇] = Cαγ(∇a′β̇ +W a′β̇)

• [∇αβ̇,∇γδ̇] = Cαγ(∇δ̇β̇ + fδ̇β̇) + Cβ̇δ̇(∇αγ + fαγ)

where ϕab is the linear combination φab− φ̌ab. Since the shifted algebra already

contains field strengths in the R direction, the only modify the relationship of

the R field strengths. In the new algebra Kab′ would be identified with φab′ for

the on-shell algebra. This disassociation leads to the additional spinor field

strengths Gaα and Ma′α since the Bianchi identity relates them:

Kab′ − φab′ =
1

2
{∇a

α,Mb′α}

Ga′α̇ = [∇b′
α̇, φ̌b′a′ ]−

1

2
[∇a′

a,Maα̇]

In this language the on-shell equation becomes

Kab′ = φab′

and one can anticipate an action

S ∼
∫
Aab

′
(Kab′ − φab′) + ··

However due to the curved nature of the coset, the projective prepotential can

not be the connections since [∇u,∇w} 6= 0.

5.10 Conclusion

These results can be generalized to other N: For example, the simpler case

of N=2 would be useful to compare with the known harmonic and projective

formalisms. Since in general such first-quantization describes superspin 0, the
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“smallest” supermultiplet (unless additional spin variables are included), N=2

would describe a scalar multiplet, which could also be coupled to external

Yang-Mills. The R-space in that case is SO(2), corresponding to the identi-

fication of the usual projective R-space with the unit circle. Similarly, N=8

would describe (gauged) supergravity. All cases N8 could be coupled to ex-

ternal (gauged) supergravity; the formalism suggests that the tangent space

for this supergravity would be OSp(n|2)OSp(N−n|2), rather than the purely

bosonic (Lorentz and R-symmetry) tangent spaces that have been used so far.

These results can also be generalized to some other dimensions; we have

at least

D = 5 :
(P)SU(N|2, 2)

OSp(N|4)

D = 4 :
OSp(N|4)

OSp(n|2)OSp(N− n|2)

D = 3 :
OSp(1

2
N|2)2

OSp(1
2
N|2)

D = 2 :
OSp(N|2)

U(1
2
N|1)

(5.14)

The method for solving the constraints is similar, and correctly produces (at

least the free) supersymmetric theories in those dimensions.

Another problem is whether superconformal invariance can be made man-

ifest. A better understanding of projective lightcone limits might do that.

This might also shed some light on the relationship between the harmonic and

projective approaches: For example, for the N=2 case, we see the R-symmetry

part of the coset space in D=5 is SU(2)/SO(2), as in the usual N=2 harmonic

superspace, while the coset space in D=4 is just SO(2), so the sphere reduces

to the circle.

In principle, superconformal invariance could be made manifest by using

an action with the full superconformal set of constraints:

d(A
(A′dB]

B′] = 0

However, this set is highly reducible: In particular, it reduces to our anti-de
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Sitter ones

dA
A′dB

B′ηB′A′ , dA
A′dB

B′ηBA

(with or without contraction), and the ghosts are much messier [81]. Alter-

natively, one could consider the flat-space limit (R→∞) of the anti-de Sitter

constraints,

dA
α̇dB

β̇C̄β̇α̇, dα
A′dβ

B′Cβα

but this loses some necessary constraints: taa′ drops out altogether. These

different sets of constraints can be considered as related to partial gauge fixing

of the corresponding Lagrange multipliers.

It may be possible to find at least some of the superconformal invariance

through transformations of the Lagrange multipliers. For example, the usual

action for a scalar particle,
∫
gẋ2, is conformal through transformation of g,

and an (A)dS metric can be obtained by redefining g by the appropriate Weyl

scale factor.

An obvious topic is the gauge-invariant field theory action for N=4 Yang-

Mills, and its second-quantization. It should be noted that the supergraph

rules will not be manifestly superconformal: The second-quantized gauge-

fixing term for Yang-Mills breaks conformal invariance, and first-quantization

requires gauge-fixing the worldline metric, which also breaks conformal invari-

ance. However, it should be possible to preserve some useful affine subalgebra.

Alternatively, by finishing the treatment of first-quantization in an exter-

nal N=4 super Yang-Mills background, it should be possible to define vertex

operators that allow supergraph calculations directly in a first-quantized ap-

proach, in analogy to string theory. It may then be possible to reproduce

many of the results of the gauge/string correspondence without requiring the

full string machinery. For example, properties such as N=4 superconformal

symmetry, or its “dual”, may be sufficient.

Unique to the case N=4, the numbers of commuting and anticommuting

coordinates cancel (at each ghost level). This suggests that potential zero-

mode problems (and their resulting picture-changing or equivalent vacuum

problems) could be directly canceled, after an appropriate (worldline-infrared)

regularization.

Even if these first-quantized methods prove useful for deriving expressions
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for S-matrices, a more important question is whether it can be helpful in cal-

culating anything relevant to confinement. In this regard, a random lattice

approach to the string would suggest that this first-quantized action for the

N=4 superparticle might lead to a first-quantized action for a 4D N=4 super-

string.
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A. Mikovic, M. Roček, W. Siegel, P. van Nieuwenhuizen, J. Yamron and

A.E. van de Ven, “Covariantly quantizable superparticles,” Phys. Lett.

B 235 106 (1990);

K. Lee and W. Siegel, “Conquest of the ghost pyramid of the super-

string,” JHEP 0508 102 (2005) “Simpler superstring scattering,” JHEP

0606 046 (2006)

[64] A. Karlhede, U. Lindstrom and M. Roček, “Selfinteracting Tensor Mul-
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Appendix A

Appendix: Spinor-helicity

formalism

A.1 4-dimensions

In 4-dimensions a four vector can be written in two component spinors as a

2×2 matrix pαβ̇ = pµσαβ̇. Then an on-shell massless momentum

pµpµ = det(pαα̇) = 0→ pαα̇ = λαλ̃α̇

where λ is a bosonic spinor. For SO(3,1) λ̃α̇ = ±λ̄α̇ and for SO(2,2) λα and

λ̃α̇ are real and independent. These bosonic spinors are solutions to the Dirac

equation

pαα̇λ̃
α̇ = λα〈λ̃λ̃〉 = 0

where we’ve used the notation

〈λiλj〉 = λi
αλjα = −〈λjλi〉

[λ̃iλ̃j] = λ̃α̇i λ̃jα̇ = −[λ̃jλ̃i]

pαα̇ = α|p〉[p|α̇

The indices are raised and lowered by SL(2,C) (the covering group of SO(3,1))

metric Cαβ = C̄α̇β̇ = −Cαβ = −C̄ α̇β̇ =

(
0 −i
i 0

)
. The final minus sign for
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both lines comes from when i, j spinors are exchanged1 we need to raise and

lower the SL(2,C) indices so that they are contracted northwest-sountheast

direction.

The polarization vector for a gauge vector can be represented by an arbi-

trary reference null vector vαα̇ = µαµ̃α̇:

εµ = εαα̇ =
λαµ̃α̇

[λ̃µ̃]

ε̄µ = ε̄αα̇ =
µαλ̃α̇
〈µλ〉

(A.1)

These polarization vectors obviously satisfy p·ε = p· ε̄ = ε· ε̄ = 0. Changing the

choice of reference vector corresponds to a gauge transformation: An arbitrary

change of v can be written as 2

µ̃→ µ̃+ αµ̃+ βλ̃

One can see that α corresponds to a rescaling of εµ, while under β

εµ → εµ + β
pαα̇

[λ̃µ̃]

which is just a gauge transformation.

The little group which in 4 dimensions is called the helicity is a U(1) phase

for SO(3,1), while for SO(2,2) it is a rescaling by R. Then (λ̃α̇)λα has helicity

−1
2
(+1

2
). Thus we see that εµ(ε̄µ) has helicity −1(+1). Plugging εµ into Fµν

Fµν = Cαβ f̄α̇β̇ + Cα̇β̇fαβ

{
pmεn − pnεm = Cα̇β̇λαλβ → fαβ

pmε̄n − pnε̄m = Cαβλ̃α̇λ̃β̇ → f̄α̇β̇
(A.2)

Thus fαβ(f̄α̇β̇) corresponds to helicity −1(+1). We summarize the Feynman

rules in spinor helicity

1These are bosonic spinors, so no extra minus signs when one simply exchange them. The
minus sign comes from maintaining the northwest-southeast contraction in the definition of
〈i, j〉 and [i, j].

2The change in v cannot be arbitrary, however since the new v′ still has to satisfy v′2 = 0,
this change can be understood as v′ = µµ̃′ so that v′ remains a null vector. The space of µ̃
is two dimensional, so the new µ̃′ can be written on two bases, µ̃ and λ̃.
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A.1.1 External line factors

In defining the helicities, we consider all partical to be outgoing.

Scalar φ : 1

Spinors ψ+(ψ̄−) : 〈p|α = λα

Spinors ψ−(ψ̄+) : [p|α̇ = λ̃α̇

Vector A+
µ =

µαλ̃α̇
〈µλ〉

Vector A−µ =
λαµ̃α̇

[λ̃µ̃]
(A.3)

A.1.2 Propagators

Scalar φ :
1

p2

Spinors ψ :
6p
p2

=

∑
I |I]〈I|
p2

Vector Aµ :
CαβCα̇β̇
p2

(A.4)

where the sum
∑

I sums over momentum of the external lines on ones side

of the propagator. In general 6V ≡

(
0 Vα

β̇

V β
α̇ 0

)
. One can check easily

{6V, 6W} = −V ·W .

A.2 ambi-twistor

Extending the usual twistor coordinates to include their conjugate gives the

ambi-twistor approach which transforms nicely under conformal group SU(2,2)

[ZA,W
B] = δA

B

with

ZA = (µα, λ̃α̇) , WA = (λα, µ̃α̇)
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Using these variables one can represent the conformal generators as

GA
B = WBZA −

1

4
δBAW

CZC

Extending to N=4 one includes Grassmann variables ηI and η̄I , where I ∈
SU(4)

super : ZA = (µα, λ̃α̇, ηI) , W
A = (λα, µ̃α̇, η̄I)

A.3 6-dimensions

Massless momentum in 6 dimensions can also be written in terms of bosonic

spinors of the covering group of SO(6), namely SU*(4)

p2 = 0→ pµ = pAB = ZAaZB
a , pAB =

1

2
εABCDp

CD = Z̄A
ȧZ̄Bȧ

then p2 =
1

4
εABCDp

ABpCD =
1

4
εABCDZ

AaZB
aZ

CbZD
b = 0 (A.5)

where A ∈SU*(4) and a, ȧ ∈ SU(2) which corresponds to the little group for

6 dimension, SO*(4)=SU(2)⊗SU(2). For polarization vector one again find a

null reference vector ηAB = WAaWB
a

εµaȧ = εABaȧ ≡
ZA

aW
B
c

WCcZ̄C ȧ
(A.6)

Note that εµ aȧεµbḃ = CabCȧḃ.

Fµν = pµεν − pνεµ can now be written in terms of spinors by substituting

ε given above:

Fµν = (FAB,CD)aȧ

∼ (εABCEZ
E
aZ̄Dȧ + εDBCEZ

E
aZ̄Aȧ − εABDEZE

aZ̄Cȧ − εDACEZE
aZ̄Bȧ)

(A.7)

In terms of spinor space the field strength has the following irreducible pieces

FAB
CD = εABMNFMNCD = 0

FM
D = εMABCFABCD = ZM

aZ̄Dȧ (A.8)
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Appendix B

Appendix: Spinors in d

dimensions

Here we discuss spinors for various dimensions by building up the represen-

tation for the Clifford algebra. We follow closely the discussion in Polchinski

[82]. We begin with the Clifford algebra,

{Γµ,Γν} = 2ηµν (B.1)

For our discussion we are interested in Minkowski space, and the Clifford

algebra gives the spinor representation of SO(d − 1, 1). We can build up the

representation by using creation and annihilation operators, consider for even

dimensions1

α0† =
1

2
(Γ0 + Γ1) , α0 =

1

2
(−Γ0 + Γ1) (B.2)

αi† =
1

2
(Γ2i + iΓ2i+1) , αi =

1

2
(Γ2i − iΓ2i+1) i = 1, 2 · ·k

where d = 2k+2. Note that in this construction Γ0 will be anti-hermitian while

all others will be hermitian. One can easily see they satisfy {αI , αK†} = δIK

and {αI , αJ} = {αI†, αJ†} = 0, where J = {0, j}. We can define a spinor such

that ΓIψ = 0. Since Γj2 = 0 the dimension of states is 2d/2. On this spinor,

creation and annihilation operators have simple form and we can use them

1We only consider even dimensions, odd dimensions can be incorporated by simply
identifying Γd−1 = Γ where Γ ≡ (i)

d−3
2 Γ0Γ1 · ·Γd−2, the chirality matrix for the lower even

dimension.
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to construct the gamma matrices. For example for d=2 k=1, we have on the

spinor ψ =

(
0

1

)
we have

α0† =

(
0 1

0 0

)
, α0 =

(
0 0

1 0

)
→ Γ0 =

(
0 1

−1 0

)
, Γ1 =

(
0 1

1 0

)

Iteratively one can construct higher dimension gamma matrices with lower

dimension ones using

Γµ = γµ ⊗

(
1 0

0 −1

)
µ = 0, 1 · · · d− 3 (B.3)

Γd−2 = I ⊗

(
0 1

1 0

)
, Γd−1 = I ⊗

(
0 −i
i 0

)

This is the Dirac representation. Note that in this basis, Γ3, Γ5, Γ2n+1 with n =

1, 2.. are purely imaginary while all other are real.

The chirality matrix is defined as Γ ≡ (i)
d−3
2 Γ0Γ1 · ·Γd−1, and has the

property that {Γ,ΓI} = 0, (Γ)2 = 1 and most importantly

[Γ,Σµν ] = 0 Σµν = −1

4
[Γµ,Γν ] (B.4)

where Σµν is the (Lorentz) generators for SO(D − 1, 1). This implies that in

suitable basis where Γ is diagonalized, the spinors are eigenstates of Γ half of

them with eigenvalue +1 the other half −1, and each sign transform within

itself under Lorentz transformation. Thus the Dirac representation is reducible

with respect to the Lorentz group. To see that the spinors splits exactly in

half with respect to Γ, note that each state built from ψ can be labeled by

whether it is an excited state with respect αI . Consider the operator:

ŝI = αI†αI − 1

2
,

{
|+〉 = αI†ψ , ŝI |+〉 = 1

2
|+〉

|−〉 = ψ , ŝI |−〉 = −1
2
|−〉

(B.5)

one can then label each state by a vector ~S = {s1, s2, · · ·s d2}, where sI are the

eigenvalue of ŝI . The chirality matrix can be written as Γ = 2d/2ŝ0ŝ1ŝ2 · · · ŝ d2 ,

thus one can see half of the states have even number of −1
2

eigenvalue sI are +1
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when acted on by Γ, while the other half are −1. Thus the Dirac representation

can be written as two inequivalent Weyl representation. One can project the

spinor into two independent pieces by the projection operator P± = 1
2
(1±Γ), a

Weyl spinor satisfies λ± = P±λ±, so there are 2d/2−1 complex components for

a Weyl spinor, half of a Dirac spinor. Note that in odd dimensions Γd−1 is the

chirality matrix of the lower even dimension, thus one cannot define chirality

matrix in odd dimensions.

Reality conditions: Another way of reducing the number of components

of a spinor is to impose reality conditions. One has to be careful because

the condition must be imposed in such a way that it is compatible with the

Lorentz transformations. Since the Dirac representation is an irreducible rep-

resentation, the fact that Γµ and Γµ∗ satisfy the same Clifford algebra implies

that they must be related through a similarity transformation. We state that

B1ΓµB−1
1 = (−1)kΓµ∗ B1 = Γ3Γ5 · ·Γ2n+1 n = 1, 2 · ·k (B.6)

This is true since when Γµ 6= Γ2n+1 they are real, Γµ = Γµ∗, and B−1
1 just

passes through Γµ to cancel B1 with a factor of (−1)k. On the other hand

when Γµ = Γ2n+1 it is imaginary, Γµ = −Γµ∗, and B−1
1 just passes through

Γµ to cancel B1 with a factor of (−1)d/2. from B1 one can also construct

B2 = ΓB1, with

B2ΓµB−1
2 = (−1)k+1Γµ∗ (B.7)

Under these similarity transformations BΣµνB−1 = Σµν∗. Since under Lorentz

transformation, a spinor transform as λ′ = Σµνλ, then

(B−1λ∗)′ → B−1Σµν∗λ∗ = ΣµνB−1λ∗ (B.8)

Both λ and B−1λ∗ transform the same way under Lorentz. Thus we can

consistently impose the Majorana condition .

λ∗ = Bλ (B.9)

Note that this implies λ∗ = Bλ = BB∗λ∗ → BB∗ = 1. For B1, each gamma

matrix inside is imaginary, hence B∗1 = (−1)kB1, and B2
1 = (−1)

k(k−1)
2 . This

leads to the requirement for B1B
∗
1 = (−1)

k(k+1)
2 = 1 which is only true when
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k = 0, 3(mod 4). For B2, each gamma matrix inside is real, so B2B
∗
2 =

B2
2 = (−1)

(k+1)(k+2)
2 (−1) (the extra minus sign comes from the Γ0 inside B2

and (Γ0)2 = −1). Thus B2B
∗
2 = (−1)

k(k+3)
2 = 1 which is only true for k =

0, 1(mod 4). this restricts the kind of B one can use for Majorana condition

in various dimensions.

To impose both Majorana and Weyl conditions one must insure that the

helicity for λ∗ is the same as Bλ. Using BΓB−1 = (−1)kΓ∗

ΓB−1λ∗ = B−1BΓB−1λ∗ = (−1)kB−1Γ∗λ∗ (B.10)

one sees that in order for B−1λ∗ to have the same helicity as λ, k must be

even. Thus combined with previous constraint Majorana-Weyl conditions

are only possible when k = 0(mod 4) or d = 2(mod 8).

Charge conjugation: Here we define charge conjugation matrix for arbi-

trary dimensions. The charge conjugation matrix is defined as 2

CΓµC−1 = −ΓµT (B.11)

Note that C is defined up to an overall factor which will not be important.

The reason this is charge conjugation is because for a spinor ψ that satisfies

the positive energy Dirac equation (6p − m)ψ = 0 then C(6p − m)ψ = C(6p −
m)C−1Cψ = (−6pT−m)Cψ = 0. Taking the transpose we have (Cψ)T (−6p−m)

thus ψ̄c = (Cψ)T describes a negative energy solution or an anti-particle. To

obtain C one uses the the fact that in our representation,

Γ0Γµ(Γ0)−1 = −Γµ† (B.12)

This is true since only Γ0 is anti-hermitian while all other gammas are hermi-

tian, and (Γ0)−1 = −Γ0. Then we have

− Γµ† = −(Γµ∗)T = CΓµ∗C−1 =

{
(−1)kCB1ΓµB−1

1 C−1

(−1)k−1CB2ΓµB−1
2 C−1

(B.13)

2Note that we can also define C+ which satisfies C+ΓµC−1
+ = +ΓµT . This is achieved

by C+ = CΓ. Then all properties of C+ can be derived from C. Note that since one needs
to use Γ, it is only possible to have both C and C+ in even dimensions.
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Thus for even k, Γ0 = CB1 → C = Γ0B−1
1 , for odd k, Γ0 = CB2 → C =

Γ0B−1
2 . Then we have

even k CT = B∗1Γ0T = (−1)k+1B1Γ0 = (−1)
k(k−1)

2
+1Γ0B−1

1 = (−1)
k(k−1)

2
+1C

odd k CT = ΓTB−1T
1 Γ0T = (−1)k+1ΓB1Γ0 = Γ0B2 = (−1)

k(k+1)
2 Γ0B−1

2

= (−1)
k(k+1)

2 C

(B.14)

where we’ve used B−1
1 = B†1 = (−1)

k(k−1)
2 B1, B−1

2 = (−1)
k(k+1)

2 B2, and ΓT = Γ.

Thus for d=2,4,10 CT = −C while for d=6 and 8 CT = C.

Equipped with C we can now rewrite the Majorana condition in more

standard form

λ∗ = Bλ→ λ† = λTBT → λ†Γ0 = λTBTΓ0 = λTC (B.15)

This is the usual way of stating the Majorana condition, the Dirac conjugate

(λ†Γ0) is equal to the Majorana conjugate (λTC).
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Appendix C

Appendix: Proof of field

redefinition

Here we will prove that our field redefinition introduced in sec.(2.2.1) satisfies

both (2.25) and (2.26). We first produce the proof at leading order, terms with

three new fields on the LHS of both equations vanish. From this experience we

will then show that the same holds for all higher order terms, namely, written

in terms of new fields, terms that are more than quadratic in χ on LHS of

these equations vanish.

For (2.25) terms with three field comes from the second order term in the

field redefinition, namely φ(1) → C(2, 3)χ(2)χ(3) with C(2, 3) =
p+2 p

+
3

(2,3)
, they

give

tr

∫
~p1~p2~p3

p−[
p+

1 p
+
2 p

+
3

(1, 2)
− p+

1 p
+
2 p

+
3

(2, 3)
]Φ(1)Φ(2)Φ(3)δ(Σi~pi) (C.1)

Using momentum conservation, (1, 2) = −(3, 2) = (2, 3), these two terms

indeed cancel each other. The 3 field term that is generated on the LHS for

(2.26)

tr

∫
~p1~p2~p3

−p
+
2 p

+
3 p1p̄1

(2, 3)
χ(1)χ(2)χ(3) +

(p̄2p
+
3 − p̄3p

+
2 )

3
χ(1)χ(2)χ(3) (C.2)
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Using cyclic identity and relabelling the momentum for the first term we have

tr

∫
~p1~p2~p3

−χ(1)χ(2)χ(3)
1

3
[
p+

2 p
+
3 p̃1p̄1

(2, 3)
+
p+

1 p
+
2 p̃3p̄3

(1, 2)
+
p+

3 p
+
1 p̃2p̄2

(3, 1)
]

= tr

∫
~p1~p2~p3

−χ(1)χ(2)χ(3)[
p+

2 p
+
3 p̃2p̄3 + p+

2 p
+
3 p̃3p̄2 − p+2

2 p̃3p̄3 − p+2
3 p̃2p̄2

3(2, 3)
]

= tr

∫
~p1~p2~p3

χ(1)χ(2)χ(3)
{2, 3}

3
(C.3)

where in the last two lines we used momentum conservation. This gives the

same term as the second term in (C.2) with a minus sign.

To prove that higher field terms also cancel in (2.25) for our field redefini-

tion, note that for n-fields the coefficients combine into

n−1∑
j=3

C(2, ··, j)p+
(j+1,n)C(j + 1, ··, n)

= −
(
∏n

i=2 p
+
i )(
∑n−2

j=3 Sj)

(2, 3)(3, 4) · ·(n, n− 1)
(C.4)

where we’ve used the notation that p+
(1,n) ≡

∑n
i=1 p

+
i and

Sj ≡ p+
n−j · ·p+

4 p
+
3 [p+

n−1 · ·p+
n+3−jp

+
n+2−j(n+1−j, n−j)+cyclic rotations] (C.5)

For example for n = 7

S3 = p+
4 p

+
3 [p+

6 (5, 4) + p+
5 (4, 6) + p+

4 (6, 5)]

S4 = p+
3 [p+

6 p
+
5 (4, 3) + p+

5 p
+
4 (3, 6) + p+

4 p
+
3 (6, 5) + p+

3 p
+
6 (5, 4)]

S5 = [p+
6 p

+
5 p

+
4 (3, 2) + p+

5 p
+
4 p

+
3 (2, 6) + p+

4 p
+
3 p

+
2 (6, 5)

+p+
3 p

+
2 p

+
6 (5, 4) + p+

2 p
+
6 p

+
5 (4, 3)]

(C.6)

The important point is since these Sj are cyclic sums over terms that are

partially anti-symmetric, Sj = 0. Hence we’ve proven that (2.25) is indeed

satisfied.

Moving on to (2.26), we use the fact that since (2.25) is satisfied, this
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implies that1

∂+Φ =
δχ

δΦ
∂+χ. (C.7)

From the discussion above we see that this is indeed true. Plugging back into

2.26 we have
1

∂+
[∂+Φ, ∂̄Φ] = − ∂̄∂̃

∂+
Φ +

δΦ

δχ

∂̄∂̃

∂+
χ (C.8)

Fourier transforming into momentum space and plugging in (2.29) we have

(− p̃1p̄1

p+
1

+
n∑
i=2

p̃ip̄i
p+
i

)C(2, 3, · · ·, n)

=
1

p+
1

n∑
j=2

C(2, · · ·, j)C(j + 1, · · ·, n){p(j+1,n), p(2,j)}

=
1

p+
1

n∑
j=2

C(2, 3, · · ·, n)
(j, j + 1)

p+
j p

+
j+1

{p(j+1,n), p(2,j)}

(C.9)

Again {p(j+1,n), p(2,j)} = p+
(j+1,n)p̄(2,j) − p̄(j+1,n)p

+
(2,j). Since (j,j+1)

p+j p
+
j+1

=
p̃j+1

p+j+1

− p̃j

p+j

the RHS becomes

1

p+
1

n∑
j=2

C(2, 3, · · ·, n)[
p̃j+1

p+
j+1

− p̃j
p+
j

]{p(j+1,n), p(2,j)}

=
1

p+
1

n∑
j=2

C(2, 3, · · ·, n)
p̃j
p+
j

[{p(j,n), p(2,j−1)} − {p(j+1,n), p(2,j)}]

=
1

p+
1

n∑
j=2

C(2, 3, · · ·, n)
p̃j
p+
j

{1, j} (C.10)

Momentum conversation then gives the LHS of (C.9).

1Written in this form we neglect the superspace delta functions and spinor derivatives
that usually arise, since we know that the chiral superfield Φ is now already written in terms
of chiral superfield χ.
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Appendix D

Appendix: Field equations from

Bianchi identity

D.1 Self-duality

The self-duality relations among the scalar field strengths arise from a par-

ticular kind of Bianchi identity[83]. Here we demonstrate on the ones in the

isotropy group, which is simpler:

[φ̌ab, φ̌a′b′ ] = [{∇a
α,∇bα}, {∇a′

β̇,∇b′β̇}]

= {∇a
α, [∇bα, {∇a′

β̇,∇b′β̇}]}+ {∇bα, [∇a
α, {∇a′

β̇,∇b′β̇}]}

= 0 (D.1)

thus one arrives at φ̌ab = 1
2
CabCa′b′φ̌

a′b′ . Similar procedure gives us φab =
1
2
CabCa′b′φ

a′b′ and φab′ = CacCb′d′φ̄
cd′ .

D.2 Field-equations

We start from the field equation for the spinor field strength, others can be

derived from the spinor field strength by acting on it with spinor covariant

derivatives. The relevant results from Bianchi identities that will be useful are
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as follows:

(∇a′α̇,∇b′β,∇c′σ)→ [∇a′α̇, φb′c′ ] = ηa′b′Wc′α̇ − ηa′c′Wb′α̇

(∇γρ̇,∇aα,∇b′β)→ {∇b′γ,Waρ̇} = −{∇aγ,Wb′ρ̇} = [∇γρ̇, φab′ ] (D.2)

We begin with

[{∇aα,∇b′β̇},W b′β̇] = 0

= −[{∇b′β̇,W b′β̇},∇aα]− [{∇aα,W b′β̇},∇
b′β̇] (D.3)

From the first result in (D.2)

{∇c′σ̇
,W c′σ̇} = {∇c′σ̇

, [∇a′

σ̇, φa′c′ ]} (D.4)

= {∇a′

σ̇, [φa′c′ ,∇
c′σ̇

]} − [φa′c′ , {∇
c′σ̇
,∇a′

σ̇}]

→ {∇c′σ̇
,W c′σ̇} = [φa′c′ , φ̌

a′c′ ]

Then the first term in (D.3)

− [{∇b′β̇,W b′β̇},∇aα] = [∇aα, [φa′c′ , φ̌
a′c′ ]] (D.5)

= −[φ̌a
′c′ , [∇aα, φa′c′ ]

Using the fact that (φ̌ab, φa′b′ , φab′) are dual to (φ̌a′b′ , φab, φa′b). More precisely

φa′c′ =
1

2
εa′c′ε

bdφbd

φ̌a
′c′ =

1

2
εa
′c′εbdφ̌

bd

[φ̌a
′c′ , [∇aα, φa′c′ ]] = [φ̌bd, [∇aα, φbd]] (D.6)

= 2[φ̌a
d,Wdα]

Using the second result in (D.2) we find the second term in (D.3) becomes

[∇b′β̇, {∇aα,W b′β̇}] = −[∇b′β̇, [∇αβ̇, φab′ ]] (D.7)

= 2[∇αβ̇,W a
β̇] + 2[φab′ ,W

b′
α]
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Putting everything together we finally arrive at the field equation

[∇αβ̇,W a
β̇] + [φab′ ,W

b′
α] + [φ̌a

d,Wdα] = 0

Note that self-duality of the scalar field strengths is crucial in getting the field

equation. Violating this relationship will then lead to an off-shell construction.
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