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Abstract of the Dissertation
Structure of N=4 SYM
by

Yu-tin Huang

Doctor of Philosophy
in
Physics
Stony Brook University
2009

In the first part of this thesis I present my research into the issue of
on-shell structures of N=4 SYM amplitudes at both tree and loop
level. In both cases the presence of supersymmetry is incorporated
through on-shell superspace. At tree level the recent perturbative
expansion inspired from twistor string theory will be given a field
theory explanation: it corresponds to a perturbation expansion
around the self-dual sector of the action, which is free classically.
At loop level, in the absence of off-shell superspace, one can only
anticipate a superspace representation for the kinematic invariants
in front of the loop integrals. I will present such a description
for the non-trivial 6-point one loop NMHV amplitude. Since a
large part of this research utilizes spinor helicity formalism, I'll

summarize some useful result in the appendix.

In the second part, I will discuss an approach for off-shell super-
space such that one can compute amplitudes either using first or

second quantization methods. Since first quantization may present

1l



a closer relation with the string formulation of this theory, I will
first introduce first quantization approach for ordinary YM theory
as a toy model. This entails the construction of constraints, BRST
charge and vertex operators. A useful new result from this study
is a recipe to define Green function on spaces that are not a simple
line or circle, thus paving the way for multi-loop calculations. Fi-
nally a superspace in which such a approach can be used for N=4
SYM will be introduced, it is based on a coset of super-anti de
Sitter space, the free constraints will be given along with the ghost
structure for BRST quantization. In the end I will give a brief

discussion of the second quantized theory.
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Chapter 1

Introduction: N=4 SYM

N=4 super Yang-Mills theory is a quantum gauge theory in 4-dimensions with
16 supersymmetries. The on-shell field content consists of a vector gauge
field A,, 4 complex Weyl spinors M and 6 real scalars ¢“P all in the adjoint
representation of the gauge group.

The action for N=4 SYM theory was first written down more than three
decades ago[l], yet new structures and symmetries are still being discovered
for this theory thirty years later (The latest along this line would be the
dual superconformal symmetry proposed in the summer of 2008.) Much of
these new information does not manifest itself in the action, instead they were
discovered, in a sense, through reformulation of the theory.

There are two major reformulations, both in terms of string theory. First
is the AdS/CFT [2]correspondence which relates the large N.(planar) limit of
this theory at strong coupling to a string theory in AdS;xSs; background at
weak coupling. This duality led to a wide range of discoveries for properties of
N=4 SYM; from its integrability in the planar limit and using it to determine
the spectrum of scaling dimensions[3], to the dual superconformal invariance [4]
of the scattering amplitudes which is related to the T-duality transformations
of the string sigma-model in the AdS;xSs backgrounds].

The second is the Wittens twistor [6] topological B model in twistor space
background(CP3*). This is a weak weak duality, namely perturbative ampli-
tude in the string theory correspond to perturbative amplitude in the field
theory. Since the string theory construction was topological, this led to new

“topological” expansion in field theory such as the expansion in chiral ampli-



tudes (CSW approach) or a recursive relationship between higher and lower
point amplitudes (BCFW relation).

The supersymmetric action is uniquely determined by requirement of in-
variance under global super Poincare group, the principle of local gauge sym-
metry and locality. In terms of these properties N=4 SYM is special only in
the sense that it has the largest possible supersymmetry for a quantum field
theory in 4 dimensions (quantum gravity not included). However, from the
traditional field theory point of view, this large number of supersymmetries is
actually a headache in the form of complicated helicity states for the S matrix
elements and the lack of an off-shell formulation.

On the other hand, in suitable on-shell variables the amplitudes for this
theory are extremely simple. For example the Maximal Helicity Violating

(MHV) (precise definition given in the next chapter) amplitude is given as [7]*

O

AMHYV )gree = H?(i’—;i - )> (1.1)
This form for the amplitude cannot be derived from first principle using the
action and Feynman rules (This amplitude is verified by expanding in compo-
nents and compared with the field theory computation.) Instead this ampli-
tude was only “derived” as the expression for specific amplitudes in Witten’s
twistor string. Another example would be the recent investigation of tree level
amplitude in ambi-twistor space [§]*> The four point amplitude is simply a

product of 4 sign functions:
My = sgn(Wy - Zy)sgn(Zy - W3)sgn(Ws - Zy)sgn(Zy - Wh) (1.2)

the subscripts label the external lines, Zs and W's are conjugate ambi-twistor
variables. This does not even look like an amplitude derived from any first or
second quantized action.

Since most of these results are not based on an action, this would imply

LA similar example is the Parke-Taylor form for MHV amplitudes [9]. Its simplicity per-
haps can also be credited to N=4 SYM since both give the same tree level gluon amplitude.

2In ambi-twistor space one enlarges the original twistor space construction by keeping
all the twistor coordinate and their conjugate momenta, while the original twistor approach
keeps only half of them. For detail see . In a sense the usual twistor approach is based
on holomorphicity (chiral basis).
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Figure 1.1: Interplay of field theory and string theory at the level of scattering
amplitudes.

a deeper reason for this structure other then supersymmetry, locality and
gauge symmetry. A similar situation occurs for N=8 super gravity theory
(Sugra), which exhibits finiteness beyond that predicted from supersymmetry.
In fact the situation for N=4 SYM and N=8 Sugra are closely related. The
modern approach to N=8 computations is to use generalized unitarity methods
(multi-particle cuts) to relate loop level amplitudes to tree level amplitudes.
Since tree-level gravity amplitudes can be rewritten in terms of gauge-theory
amplitudes, a fact first uncovered from string theory by Kawai, Lewellen and
Tye (KLT)[I0], the finiteness of N=8 Sugra is then tied to simple properties
of tree level amplitudes of N=4 SYM. These on-shell relations are displayed
schematically as:

The issue of off-shell supersymmetry is an even more glaring mystery. By
the field content of the theory and its global symmetry properties, it is well
known that this theory possesses even at the quantum level a large space time
symmetry: the super conformal symmetry. However, there is no known for-
mulation, even for its amplitudes, such that this symmetry is manifest. In
comparison, ordinary(N=0) YM theory has Lorentz symmetry and its ampli-
tude can be written in terms of Lorentz invariants.

All these mysteries seem to imply that there is a deeper principle at work

here, that is beyond the structure of standard field theory which is based on



action principle determined by global(and local)symmetries, renormalizability
and locality. Uncovering this principle should shed light on other 4-dimensional
theories that encounter difficulties when constructed as a field theory, such as
quantum gravity.

We first introduce the action for N=4 SYM.

1.1 N=4 SYM from dimension reduction

We derive D=4 N=4 SYM from D=10 N=1 SYM. This was originally derived
in [1], here we follow [I1]. The d=10 theory is written as

1 1 _
L= g_%otr(EFﬁ/[NFaMN +¢1—\MDM¢) M,N=0,1,--9 (1.3)

The spinors 1) satisfy Majorana-Weyl condition, that is ¢ = 7 Cyo and T'1gp =
1, where Cg and I'yy are the 10 dimensional charge conjugation and chirality

matrices respectively. This gives the correct on-shell counting since there are

32
2x2

is invariant under the susy transformation

8 bosonic degrees of freedom in Ay, and = 8 degrees of freedom for . It

Ay =elatp ;3 0 = —%FMNFMNE (1.4)

MN — %F[MFN}. Since v is a Majorana-Weyl spinor, so is €. To see

where
that it is invariant under this transformation, note that the variation for the F2
term gives —2el ytp Dy FMY while varying v gives —yTMTF%eD ) Fpg. Using
[MPPR = PMPQ 4 opMIPPQL and I'Me = —el'Mq), since both spinors are
Majorana, these two terms cancel after using the Bianchi identity Dy Fpg).
Then one is left with a term coming from varying the gauge field in the Dirac
Lagrangian, (1)*TM 1)) (€T 1,0°) faer Where f,q is the structure constant for the

gauge group. To see that it vanishes one uses Feirz recoupling

(AME)(¥Nn) = —3—1221(wN01M5)()\(9177) (1.5)

where one O; is a complete set of matrices in the spinor space, and can
be taken to be Oy = {I,T'M I MN TMNP__STTP T'} with the normalization



tr(0;0,) = 32d;;. One can now rewrite

(P TMYP) (€L ps ) e = —3—1221(€FMOIFM¢b)(@/Jaollbc)facb (1.6)

For (101°) to be non-vanishing it must be antisymmetric in ac, and since
1) satisfies Weyl condition, O; must have odd number of gamma matrices.
These two requirement leads to two possibilities, O; = I'M TMNPQR 3 [ging
IMPNTy, = —8I'Y and TMTPNT), = 0, we see that (T M?) (€0 V) faeh =
0, the action is indeed invariant under these transformations.

To reduce to four dimensions we choose a specific representation for the

gamma matrices.
M ="l @7} sp=1,2-4,1=1,2-6 (1.7)

This breaks the 10 d representation into a product of SO(3,1) and SO(6)

representations, 7y is the chirality matrice in 4-d, and 5’ is defined as

i . DU =123
(E ),LW 0 (Z )HV = (_n,uw,ln,uu)

ijk __ ijk ipud _ tdp St

y ( 0 @fw”) (BT = (i e

Nijk = €ijks Mipa = Mipa = —0;

n* and 7j;,, are 't Hooft symbols[12]*. In this basis the chirality and the charge

conjugation matrix can also be written into a product of 4 and 6 dimension®.

Now we arrive at the 4-d theory by separating the gauge field into a four

3Using I'" = T and Ty = 1) one can show that for Weyl spinors, (TM1M2--Miqype) —
(=1)FF (T MM Migpe) - Thus for it to not vanish k = odd. Taking the trans-
pose of (YIMiMe-Migypc) and using CT = —C in d=10, one has (YT M1Mz--Miyse) —
(T MMz Migpe)T (1) 57 (P MiMa-Miyse)  Thus one is left with k& = 1,5, since
for k = 9 it is equivalent to I'MT which is equivalent to I'™ on Weyl spinors.
4They form a basis for 4x4 anti-symetric tensors. They satisfy (anti)self-dual relation-
1 1

1 apur __ vpo , a 0 V) Z Vpo sa
ship, n®* = SehvP Moo and p** = —gekP Moo

®As discussed in the appendix, for 10-d and 4-d CT = —C, while CT = C for d=6.

o 0
Specifically Cig = Cs x Cy = < 5,93 6183 > ® ( 60[3 a3 >



dimension vector and six scalars, while the spinor splits into 4 Weyl spinors

Ay = {A, P S} i=123

§4B A 0 0
Y = ( 0 )@( 0 )+<5AB)®<%> A=1,2,3,4

(1.8)

Note that the way @ is written satisfies the Majorana-Weyl condition for 10-
d for our specific representation of gamma matrix chosen. Since they are
complex, they transform as the 4 and 4 of SU(4), the covering group for SO(6).
Due to the gamma matrices in the Dirac action, when separated into 4-d the

6 scalars couple to the spinors in the form of
fabc (zzABPb + 221' ABSSZ-)S\? o fabcAaaA(iilBPb 221 ng))\CB (19)

One can then simplify things by the following redefinition of the scalars

1 1 i i - Qai =i
¢aAB — ﬁZIABA? — ﬂ(PaznzAB + iS 7 AB)
1a a —1 ai, & - Qat =1
Php = \/— ABA \/ﬁ(P Nap — 15" Map) (1.10)

Due to the self-duality relation for the 't Hooft symbols, we have —%9, =

%e Acp2“P and hence the scalars satisfy the following self-dual relationship®.
yy 1 cD
Pap = 5€aBcD (1.11)

Finally we have the following 4-d action for N=4 SYM

1 1 ) a 1
S = ?/d4xtr{§FwF” — iAG DapA — AP B)‘Aﬁ +3 ( wdap)(DFoP)

—V2045{ N NBY — V201 BINE Nap) + = [¢AB ¢“Pllpap, pcpl}
(1.12)

In superspace approach, this self-duality relationship is a result from modified Bianchi
identity as we will discuss later



1.2 Light-cone superspace

The above susy transformations in d=10 close up to field equations. This can

be seen by two susy transformation on the spinor

1
((562561 - 562551)’¢ = —5(2€2FNDM’(/))FMN€1 - (1 < 2)

1

= I IMNOTNDyb(E0a) — (1 2)
1

= DT Ty D@l per) = (1 2)

= (@ ) Dpy — 5(&I )T P (1.13)

This it closes up to the field equation Py = 0. For off-shell susy, one needs
auxiliary fields which we post-pone to later chapter. At this point one can still
manifest half of the susy on-shell. In a frame where only p* is nonvanishing,
the Dirac equation is solved if ["p_1 = I'"p*¢) = 0 where I't = \%(FO +T).

This means that if one splits the spinor v into
1
b= —g(TT + T THy =oF + 47 (1.14)

an on-shell spinor means that one has only ¢~, or I'"¢ the “+” projected
spinor. Looking back at indeed the susy algebra with €™ closes on 1~.
From the transformation of A,; one sees that only the transverse direction
transforms under this reduced susy . This is the basis for light-cone superfield
formalism [I3], where half of the susy is manifest with the on-shell degrees of

freedom, A, and ¥~. The susy algebra one is left with is

{Qa+, Q7} = (74)a"p" (1.15)

Preserving half of the susy means that only the SO(8) subgroup of the original
Lorentz group is manifest. Dimensionally reducing to four dimensions breaks
the SO(8) into SO(6)xSO(2)~SU(4)x U(1). The four dimensional algebra is
then

{0, 4} = —V200p" (1.16)

"§A4 = (6,71 ) =0since 179~ =TFet = 0.



where mn are SU(4) indices, there are 4 complex supercharges. One can then
define covariant derivatives with anti-commuting grassman variables, 6,, such

that the susy generators and covariant derivatives are given by

N o i 9 R R
C = w t R T T e, e
T i_igi .J_ 3 Z—a
W= e Aare Tt Al

The four dimensional physical fields { A, \™, ¢™", \,,, A} transform as the {1,4,6,4,1}
of SU(4). Tt is then natural to incorporate them in a scalar superfield, a chiral

superfield
d"® =0 (1.17)

For N=4 SYM its multiplet is TCP self-conjugate, therefore there is a further

constraint on the chiral fields.

- 1
¢ = e"d,,d,d,d,P 1.18
(Che 1)
which reflects the self-duality relationship of the scalar fields. Expanding in
components
m ]' mAn
O(x,0) = 8+A( y) + 8_+9 Ay )+z§9 0" Crn(y) (1.19)

+§9menepemnmfwy) + Zemenepeqemqatfx(y)

where y = (2", 27 + %iemém,x,i') and p' appears such that each term is

dimensionless. The 4 d action can then be written as

oto~ — 88 2
20+2

fabCfade[ ( ba+(1)c>

f“bc[ dad*ID + complex conjugate]

1
7+

S = tr/d4xd49d4§{<f>

1
0T Pe) + 2<I>bq>cq>dc1>€]}
(1.20)



Chapter 2

On-shell amplitudes (tree)

2.1 Introduction

In recent years the attention has turned to on-shell methods for the S-matrix
of the theory, see [14, [15] for review. These methods were built upon either
Cachazo, Svrcek and Witten’s (CSW)[16]’s MHV vertex expansion or Britto,
Cachazo, Feng, and Witten’s [17, [18] recursion relations (sometimes its a com-
bination of the two). Though these two methods was preliminarily developed
for N=0 YM theory, extension to N=4 has been straight forward [19]. The
power of these methods is that higher point amplitudes which are complicated
in traditional Feynman rules can now be constructed from simpler amplitudes
which are in compact form. The utility of these approach has been demon-
strated in the computation of previous inaccessible N=8 Supergravity loop
amplitudes as mentioned in the general introduction.

Various efforts has been made on providing a proof for the CSW program.
Risager [20] showed that the CSW program is just a result of certain recur-
sion relationship similar to that developed by BCFW, which uses the fact
that one can use unitarity to relate one loop amplitudes to tree amplitudes,
while infrared consistency conditions relate different tree amplitudes to satisfy
a recursion relationship. However, in the proof for the BCFW recursion rela-
tionship [I8] one actually uses the CSW program to prove the behavior of tree

amplitudes in certain limits.! In the following we give a brief description of the

'Recently, one has been able to prove that BCFW eventually leads to the CSW expansion
[21].
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Figure 2.1: The BCFW recursion relation.

BCFW and CSW approach, the main point will be to prove that CSW has its
origin hidden in the Lagrangian of the theory: it corresponds to a perturbative

expansion around the self-dual part of the action.

2.1.1 BCFW recursion relations

The BCFW recursion relation is an algebraic relation between higher point
amplitudes and lower point amplitudes. An n-point on-shell tree amplitude
can be expressed in terms of two lower point on-shell amplitudes with n—1+1

and [ + 1 external legs:

1
ZAn 14+1,(3--5) P2 Al+1 (j+1-5—1) (21)
{ij}

where the sum is over different sets of external momenta that sits on one side
of the propagator. I used hat for the lower point amplitude A, indicating that
the two of the external lines (reference lines) are slightly modified. This will
become clear shortly. This relationship can be expressed pictorially as: where
[ and k label the reference lines which we now discuss. Consider a general tree
amplitude with n external lines, choose two external lines (the reference lines)

and shift them by a null momentum g¢,

D — pL+ 29, Px — Pk — 2q (2.2)

This shift preserves momentum conservation and ¢ is chosen such that ¢-p, =
q - pr = 0. One can choose ¢ = )\zj\k, then the above shift corresponds to the

following shift for the spinors of the reference lines
5\1 — 5\[ + Z:\k DA — A — 2N (23)

10



Note that this shift violates the relationship A = £\ required for Minkowski
signature, therefore we are really looking at amplitudes in split signature
(+,+, —, —) which does not make a difference for tree amplitudes. After the
shift the only singularity in z for an arbitrary tree graph comes from propa-
gators: the shifted amplitude A, (z) is then a rational function in z and has
simple poles in the propagators that have the two reference lines on opposite

sides?
1 1

Pyl (Py)? — 2Py 10

(2.4)

This is true for general amplitudes. The crucial point is that if the amplitudes
vanish for z taken to infinity, then the function A(z) is uniquely determined

by the residues of the simple poles. That is, A(z) has a unique expansion as

A =Y T = N4 ! —Ar  (25)

Z = Zig — | ) _ irj
{i.g} 7 gy 20N P (= m)
again the sum runs over all sets of external line configuration ¢, j in the fig-
ure such that the reference lines sit on opposite side of the propagator, and

2

Zij = #‘;lm. At this point Ap(Ag) are just functions depending on the
polarization and momentum of the external lines on the left(right) of the prop-
agators, they are not amplitudes yet.

Whether or not the tree amplitudes vanish for large z is discussed in [22].
We will use the fact that indeed they do for N=4 SYM.

The real amplitude corresponds to the evaluated at z = 0: A(0) =

-3 (i .l The residues ¢; ; take the form

I} 7

1
2(N| Py | A |e= 5t

AP g ]

Cij = _AL X AR (26)

where A;, and Ag contains the shifted reference momentum | ) with z =
P2,
1,7 _
2(N|Pij|Ak]
momenta &(P;; — z; ), which is now massless (P —z; ;q)* = P}, =2z jq- P =

Now the line in Ar and A, that was connected to the propagator has

0. Thus all lines for AR and A; are now on-shell: these are just lower point

tree amplitudes with the reference spinors redefined as[2.3] Thus we’ve finally

2Note that it has only simple poles due to g2 = 0. Since ¢ is constructed from the
momenta of the external lines, it’ll will be difficult to construct an off-shell version of BCFW.
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arrived at the BCFW recursion relation:

A 1 -
An = Z An—m+1,(i~-j),lP_%Am—&—l,(j—l—lui—l),k (27)
{ij} k

In this final form we’ve labelled the reference lines [, k.

2.1.2 CSW from Twistor string

The origin of CSW expansion is quite different from BCFW (except the au-
thors). BCFW relations were originally realized from analysing loop ampli-
tudes of N=4 SYM which are UV finite but have infrared singularity. Using
unitarity based methods, the computation of these amplitudes reduces to eval-
uating coefficients in front of a set of scalar box integrals (discussed in next
chapter). These coefficients can be expressed in terms of tree amplitudes across
the cuts, thus these tree amplitudes must combine in a way such that the in-
frared singularities coming from the scalar box combine nicely into known
results. This gives a recursive relationship for the tree amplitudes.

CSW expansion came from Witten’s twistor string formulation of tree
level N=4 SYM amplitudes[6]. Perturbative expansion of amplitudes corre-
spond to perturbation in instanton number (target space D-instantons for
Witten’s topological string, world sheet instantons for Berkovits and Siegels
construction|23, 24]). An instanton number 1 amplitude is the MHV amplitude
while instanton number k amplitude gives N*"'MHV amplitude. For k& > 1
it is not clear whether one should consider only a k instanton or multiples of
lower instanton number. So far there is evidence for both case. If completely
disconnected instantons can give the correct field theory amplitude, then this
implies that there must be a perturbative formulation in field theory which
uses MHV amplitudes as vertices, this is the CSW approach[16].

The definition of MHV is as follows. For the usual Yang-Mills theory,
amplitudes are labelled by their external momenta and helicity(+). Am-
plitudes with all plus(minus) or just one plus(minus) helicity vanish. Thus
the first non-vanishing amplitude that has mostly plus(minus) helicity must
have at least two minus(plus) helicities, these are the Maximal Helicity Vi-
olating (MHV)amplitudes. For example 5 point amplitude takes the form
(— =+, +,+), (—,—, —, +,+) - -e.t.c. while (—,—,—, — +) = 0. In N=4

12
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Figure 2.2: A 5-pt MHV amplitude constructed in CSW method.
SYM this assignment is extended to fermions and scalars. Thus (anti)chiral
fermions has helicity (—%)+% while the scalars has helicity 0. Then MHV am-
plitudes can be defined as those that have total helicity —4 with respect to an
all plus helicity amplitude. For example for 4 point we have (-1, —1,+1, +1),
(0,0,0,0) or (—3,—1,0,+1).

In the CSW approach one constructs an arbitrary tree amplitude by using
MHYV vertices as its only building block. For example a 5 point (+ + — — —)
amplitude can be written as four different combinations of a 3 point and a 4
point MHV amplitude.

Each MHV vertex takes an on-shell form while the leg that connects the

propagator is continued off shell by the following prescription
Ap = Pogif® (2.8)

where 7 corresponds to an arbitrary null vector. Note that only the holomor-
phic spinor is redefined, this is because the MHV amplitude only depends on
the holomorphic spinor. This is why the CSW expansion is in a sense expand-
ing on a chiral basis. In practice one usually picks an arbitrary external line
for this null vector, then one anticipates that the final amplitude does not de-
pend on the choice of reference spinor. In the next section we begin to derive
a field theory explanation [25] for such a perturbation base on the light-cone
superspace action, then the reference spinor is identified as the frame that de-
fines the light-cone gauge. Hence reference spinor independence is equivalent

to gauge choice independence.



2.2 MHYV Lagraingian

Even though the relation between various on-shell methods has become clear,
one would still like to see its relationship to the action approach of QFT, since
originally the theory was defined by its Lagrangian. Making the connection
may well shed light on what properties of the Lagrangian lead to such simple
structures for its scatering amplitudes. Effort along this line of thought began
by Gorsky and Rosly [26] where they proposed a non-local field redefinition
to transform the self-dual part of the YM action into a free action, while the
remaining vertices would transform into an infinite series of MHV vertices.
In this sense the MHV lagrangian can be viewed as a perturbation around
the self-dual sector of ordinary Yang-Mills. This seems natural since self-dual
Yang-Mills is essentially a free theory classically. Yang-Mills lagrangian in
light-cone (or space-cone[27]) gauge is a natural framework for such a field re-
definition since the positive and negative helicity component of the gauge field
are connected by a scalar propagator. Work on the light-cone action began by
Mansfield[28] emphasizing the canonical nature of the field redefinition. The
formulation was also extended to massless fermions. The explicit redefinition
for Yang-Mills was worked out by Ettle and Morris [29]. The canonical condi-
tion in [28][29] ensures that using the field redefinition, complications will not
arise when taking into account currents in computing scattering amplitude.
This will not be true for more general field redefinitions as we show in this
letter.

The progress above was mostly done in the framework of ordinary Yang-
Mills. However, the CSW program has also achieved various successes in
N=4 SYM as priorly mentioned. It is also interesting in [29] the redefinition
for positive and negative helicity have very similar form which begs for a
formulation putting them on equal footing. This formulation is present in
N=4 light-cone superspace [I3] where both the positive and negative helicity
gauge field sit on opposite end of the multiplet contained in a single chiral
superfield. Thus a field redefinition for one superfield contains the redefinition
for the entire multiplet, which would be very difficult if one tried the CSW
program for the component fields separately. Moreover, N=4 Self-dual YM is
free at quantum level, implying the CSW program should work better at loop
level for SYM compared to YM.
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In this section we formulate such a field redefinition using the N=4 SYM
light-cone Lagrangian. We proceed in two ways, first we try to formulate a gen-
eral redefinition by simply requiring the self-dual part of the SYM lagrangian
becomes free in the new Lagrangian. Subtleties arise when using it to compute
scattering amplitudes that require one to take into account the contribution of
currents under field redefinition. Latter, we will impose the redefinition to be
canonical. In both cases only the redefinition of the chiral field is needed, thus
giving the transformations for components in a compact manner. However,
it is the second redefinition that corresponds to CSW program, and we will
see that once stripped away of the superpartners, it gives the result for YM
derived in [29]. We calculate the on-shell amplitude in the new lagrangian for
4-pt MHV amplitude and show that it matches the simple form derived in [7].
In the end we briefly discuss the relation between the off-shell MHV vertices
here and the on-shell form, with off-shell continuation for propagators, used

in CSW.

2.2.1 The Field Redefinition

Transforming to the chiral basis using , one arrives at a quadratic
term, a 3-pt vertex with 4 covariant derivatives, a three pt and 4-pt vertex with
8 covariant derivatives. As shown by Chalmers and Siegel [30], the quadratic
term and the three point vertex which contains only 4 covariant derivatives
describes self-dual SYM. Since self-dual SYM is free classically, at tree level
one should be able to consider the self-dual sector to be simply a free action
in the full SYM, i.e. one considers the full SYM as a perturbative expansion
around the self-dual sector. Therefore the aim is to redefine the chiral field so

that the self-dual sector transforms into a free action: one then tries to find
®(x) such that

Ssp = tr / d*rd*0 {®0T0 D — PIOD + §a+q>[q>, 00} (2.9)
=tr / d*zd*0 {x0T 0 x — x00x}

Note that if the field redefinition does not contain covariant derivatives, the

remaining interaction terms will becomes MHV vertices, the infinite series
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generated by the field redefinition from the remaining 3 and 4-pt vertex will
all have 8 covariant derivatives. This result is implied by the known MHV

amplitude [7]

S 0% (320, Nib)
A(oj ™o 0 tree = T <iitl> (2.10)

where
4 n

PN = 5 TTS A0 Nt 211)

A=1 i=1
The amplitude contains various combination of 8 #’s and thus imply 8 covariant
derivatives to extract the amplitude.

In the Yang-Mills MHV lagrangian [28][29], the positive helicity gauge field
A transforms into a function of only the new positive helicity field B, while the
negative helicity A transforms linearly with respect to B, A(B, B). One can
see this result by noting that in order to preserve the equal time commutation
relationship,

[0TA, Al = [01 B, B] (2.12)

that is, the field redefinition is canonical. This implies 0t A = 8*32—?, there-
fore A transform into one B and multiple B fields. This result for the gauge
fields becomes natural in the N=4 framework since now the chiral field ® is
redefined in terms of series of new chiral field y. The positive helicity gauge
field A which can be defined in the superfield as 3+ A4 = ®|p—g = P(x]o—0)
resulting in a function that depends only on B. For the negative helicity
OtA = D*®|p—g = .....x(D*X)X|o=0.., dropping contributions from the super
partners we see that A(B, B) depends on B linearly.

Another advantage of working with superfields is that as long as the field
redefinition does not contain covariant derivatives, the super determinant aris-
ing from the field redefinition will always be unity due to cancellation between
bosonic and fermionic contributions. Therefore there will be no jacobian factor
arising.

The requirement that the field redefinition must be canonical is necessary
for the equivalence between MHV lagrangian and the original lagrangian in the
framework of the LSZ reduction formula for scattering amplitudes. Indeed we
will illustrate this fact by solving the field redefinition for disregarding

the canonical constraint. We will show that this gives a solution that by
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itself does not give the correct form of MHV amplitude on-shell, one needs to
incorporate the change induced on the external currents. After imposing the

canonical constraint we derive the correct on-shell result.

Field redefinition I ®(y)

We proceed by expanding ® in terms of x. Since the light-cone action in the
component language corresponds to choosing a light-cone gauge, the redefini-
tion should be performed on the equal light-cone time surface to preserve the
gauge condition. We thus Fourier transform the remaining three coordinates
into momentum space, leaving the time direction alone, understanding that

all fields are defined on the same time surface.

o] n+1
PG =X +Y [ Ol B XG0+ 100G+ S )
e 213)

Here we follow the simplified notation in [29], the light-cone momenta are
labeled p = {p~,p*, p, p}, the later spatial momenta are collected as a three
vector p, and introduce abbreviation for the momentum carried by the fields,
x(i) = x(—p;). Plugging into (2.10), the coefficient in front of the first term
is determined by equating terms quadratic in y on the left hand side with the

right. Similarly for cubic terms we have :

S+t [0 [ (20 P
p2p3p1
9

+§(p3+152 —p3P3)Ix(1)x(2)x(3) =0

(2.14)
Thus we have 1{23}

OB 7)) — — 2.15
(P2, P3) 377, (2.15)

where P?; = (pi+....p;)%, {4, j} = pi b;—p] bi, and for later (i, 7) = p; p;—p; p:.
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For four field terms :
5(2?:2@)tr/d40 Lo [_0(527ﬁ3)c<ﬁ47ﬁ5)P22,3 - 2C(ﬁ27ﬁ37ﬁ4>P22,3,4
Po-Ps

_gc(ﬁg,ﬁg){zl, 5} — §0(53,ﬁ4){(3, 4),5}

—2C, )3, (4,5) BN N() =0
(2.16)

Using our solution for C(ps, p3) from (2.15)), cyclic identity within trace and

relabeling the momenta for the last three terms we have:

C(p2, P3, P1) = %% (2.17)
One can again use this result to obtain higher terms iteratively. The field redef-
inition does not contain covariant derivatives, thus guarantees the remaining
vertex after field redefinition will be only of MHV vertex. However if we di-
rectly use the new vertices to calculate on-shell amplitude we find that it will
differ from the original amplitude computed using the old action. In the next

subsection we use YM to illustrate the discrepancy and its remedy.

Field redefinition I for YM

One can easily follow the above procedure to solve YM field redefinition?.

Again we have :

L _, d _
tr / d'vr A0TO~A — ADOA — a—+A[A,8+A] (2.18)

= tr/d4x BOTO~B — BOOB

We can choose to leave A alone, A = B. Following steps similar to the above,

for the next to linear term one have:

A(l)=B(1)+ [ C(p2,p5)B(2)B(3)0(P1 + P2 + P3)- - (2.19)

P2p3

3This redefinition was also investigated in [31].
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with

4
C(P2; P3) = 1515 (2.20)
P;P;ng

One can then use this result to compute a four point MHV amplitude. With

the momentum being on shell now one has

C(ﬁ% ﬁB) =

2.9) (2.21)
To see that this does not give the correct result, note that is exactly
the required redefinition, Y(123), for A field derived [29]. However, in [29)]
there is also a field redefinition for A while in our approach we left it alone,
thus it is obvious that our redefinition will not give the correct on-shell MHV
amplitude. The difference between our approach and [29] is the lacking of
canonical constraint of the field redefinition. One might guess the discrepancy
comes from the jacobian factor in the measure generated by our redefinition
(which will be present for YM). However these only contribute at loop level.
It is peculiar that field redefinition in the lagrangian formalism should be
submitted to constraints in the canonical formalism. From direct comparison
for the four pt MHV (- -++) we see that we reproduce the last two terms in
eq.(3.13) [29] while the first two terms are missing, the two terms coming from
the result of redefining the the A field.

The resolution to the missing terms comes from new contribution arising
from the currents. In a beautiful discussion of field redefinitions in lagrangian
formalism [32], it was pointed out that since scattering amplitudes are really
computed in the lagrangian formalism with currents, one should also take into
account the effect of the field redefinition for the currents. In the LSZ reduc-
tion formula for amplitude, one connects the source to the Feynman diagrams
being computed through propagators and then amputate the propagator by
multiplying p? and taking it on-shell. For YM the currents are JA and JA
where J carries the A external field and J carries the A field, as can be seen
by connecting them to (AA) propagator. When performing a field redefinition

the coupling of the current with the new fields now takes a very different form

JA(B) — JB + CyJBB + - (2.22)
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Figure 2.3: In this figure we show how the field redefinition may contribute to
tree graphs from the modification of coupling to the source current. The solid
circle indicate the (— — +) vertex while the empty circle indicates contraction
with the currents. Due to new terms in coupling, the C'JsBB term, one can
actually construct contribution to the (— —++) amplitude by using this term,
denoted by the larger empty circle, as a vertex.

Due to these higher order terms, the currents themselves behave as interaction
terms. In [29] these higher order contributions vanish after multiplying p? and
taking them on-shell in the LLSZ procedure. In our approach these higher terms
will not vanish because of the z% always sitting in front of each field redefinition
coefficient as in . Remember the scattering amplitudes are always
computed by taking % (or 5% )of the path integral and multiplying each J (or
J) by p? and external wave function, taking everything on-shell in the end.
The non-vanishing of the additional terms means we have new contributions
to the amplitude.

Adding the contribution of these terms we shall see that one gets the correct
amplitude. Consider the 4pt MHV (- -++) or (JJJJ) amplitude. Now there
are four new terms present, two for two different ways of connecting the JBB
term to the original three pt.vertex, and there are two three point vertices
available. A typical graph would be that shown in fig[2.3

Consider the 3-pt vertex %pfé(k)B(Z)B(l) in the original lagrangian.
The B(k) leg is now connected to the JBB vertex, thus contributing a %%2.
From the LSZ procedure there are p?’s multiplying each current. These cancel
the remaining propagators except the J for the empty circle, the p? of that
current cancels the 1% in front of the field redefinition in . Putting

everything together we have.

1 « p;{_ka 4}(5
P2 Tt
1,2 PPy

p2 — — — — — —
— pré(pk + Py + P1) X (D5 + Ps — Dr) (2.23)
2
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Using the delta function and putting all external momenta on-shell we arrive

at 42
D2p1 P3

s (03, 4)
One can proceed the same way to generate other terms by connecting the B(2)
leg to the JBB vertex, and also doing the same thing to the other MHV 3-pt
vertex —i%B(k)B(Q)B(?)). Collecting everything we reproduce the missing

(2.24)

terms. Thus our field redefinition does provide the same on-shell amplitude if

we take into account contributions coming from the currents.

Field redefinition II (canonical redefinition)

Due to the extra terms coming from the currents, the field redefinition from the
previous sections does not relate to the CSW program, since for CSW the only
ingredients are the MHV vertices while above one needs current contribution.
In order to avoid complication arising from the currents we impose canonical

constraint as in [29]. This implies the following relationship
tr / d'zd*0 ®(x)0TO"d(x) = tr / d'zd*0 x0T0 x (2.25)

This is true because the canonical constraint (2.12)) implies that the new field
depends on the time coordinate through the old field, there cannot be inverse

derivative of time in the coefficients that define the redefinition. Thus our field
redefinition should satisfy (2.25) and

_ 2 _ _
tr / d*rd*0 — 00D + §8+<I>[d>, 0P| =tr / d*zd*0 — x00x (2.26)

separately. To find a solution to both and one notes that the
component fields are defined in the same way for both chiral superfields, we
see that the A field under redefinition will not mix with other super partners
in the supersymmetric theory. Thus we can basically read off the redefinition
coefficient from the A field redefinition derived in [29].

s (23)34).(mn + 1)

2 Pnt1

A1) = B(1)+Z—(i)”‘1/ PiDs Dy B(z)...B(nH)a(Z@)

(2.27)
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The A field redefinition coming from the superfield redefinition in (2.13)) would

read

Ad) _ B{) +§:/ 0@+ )iy BRBOED 555 5 (5 94

- +
Zpl Zpl n=2 ﬁg"ﬁn+1 p2 pn-‘,—l i=1

Comparing (2.27) and ([2.28) implies the field redefinitions for the superfields

are
+2,+
p2 p3 P Pn41
> XNG) )
Z P2 Pnt1 3 4)"(”?” + 1) Z
~(2.29)
One can check this straight forwardly by computing the redefinition for the A.

Stripping away the superpartner contributions gives

— B( +Z/ ”Hps PiPi P B(2)..B(s)..B(n +1)5(>_ 7))

2pn+18 2p1 o n7n+1)

This agrees with the result in [29]. It remains to see that the solution in (2.29))
satisfy the constraint and eq.. However the fact that the pure YM
sector resulting from the super field redefinition satisfies the constraint implies
that this is indeed the correct answer. In the appendix we use this solution

to prove (2.25) and eq.(2.26) is satisfied. In the next section we use our new
field redefinition to reproduce supersymmetric MHV amplitude AAAA.

Explicit Calculation for MHV amplitude AAAA

Here we calculate the MHV amplitude in our new lagrangian and compare to
known results. For the amplitude A(1)A(2)A(3)A(4) we know that the result
is
(12)?
2.31
(34)(41) (2:31)
To transform this into momentum space we follow [29] conventions (we’ll dis-

cuss more in the next section). For a massless on-shell momentum we write
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the spinor variables to be :

W v S v (2.32)
vt vt
Then we have
(12) = (1,2) [12] = {12} (2.33)

Voips

(1,2)%pf /pi P (2.34)
(3,4)(4, D)pip3 '

To compute this amplitude from our MHV Lagrangian, we use the relevant

Thus (2.31) becomes

field redefinition in components, and then substitute them in the following
three and four point vertex of the original Lagrangain.
A OR _(AA)

From our field redefinition we can extract the relevant redefinition for AA

+ o+
M= [ NN @6+ o+ (230

2P3

A= [ i NN @G+

Plugging into (2.35) we have five terms. Cyclically rotating the fields to the

desired order and relabeling the momenta we arrive at

1 pe(pi +p5)  papd +p5) PP pi (p2 + ps)
ps +p3 ps(3,4) Py (3,4) (4. )p3  (4,1)(ps +p3)

_ (1,2) . (172)<p1r+p;) _ (172)2]91 (2.37)

(4,1)py (3,4)pi vy (3,4)(4, 1)pfps

Using that the on shell external line factor in light cone for the gauge fields is
1 and for the fermion pair is \/p; p3, one reproduces the MHV amplitude in
©-31).
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2.2.2 CSW-off-shell continuation

An on-shell four momentum can be written in the bispinor form

— + o B ;p B 715
P (L O VS VRS W (V0 IR Y RV IO
> Vi Vi
For an off-shell momentum the relationship is modified
N, . _ pp (1
Pad = Aada + 20alle ; 2=p - e e == (2.39)

imposing p?> = 0 we see that z = 0 and we are back at . The spinors
Ao and A, are written in terms of p*,p, P, so that it can be directly related
to amplitudes computed by the light-cone action which only contains these
momenta in the interaction vertices. One can then use these spinors for the
off-shell lines by keeping in mind that they relate to the momentum through
. To see this one can compute the three point MHV amplitude by looking
directly at the 3 point — — + vertex from the light-cone action (even though
these vanish by kinematic constraint, but it is sufficient to demonstrate the
equivalence since the three point MHV vertex is part of the ingredient of CSW).
The 3pt vertex for light-cone YM reads i[A, p*A]p%fl, then the amplitude is

+ + 3
Lo o P1 oy + D2 . D3 . P3 (1,2)
(17273") =i(—=ps —pf =) = —i——(1,2) = —i (2.40)

RS p3 oY pipi (2,3)(3,1)

where in the last equivalence we used pj + py + p3 = 0. In our definition for
the spinors, we have the identity (1,2) = 12 We see that

vV pipy

. p{f (1,2)3 _ <12>3
_ zp;pT (2,3)(3,1)  (23)(31) (2.41)

Thus using this relation between the spinors and the momenta, one can re-
late the “on-shell” form (in terms of (ij)) to its off-shell value (in terms of
momentum).

Now in the CSW approach the spinor for an off-shell momentum is written

as g = PaaX®, where X¢ is the complex conjugate spinor from an arbitrary
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null external line. Since in the previous analysis, one should take the iden-
tification in ([2.38]) to make the connection between the MHV on-shell form
and its off-shell value, for this to work the CSW offshell continuation must be

equivalent to our map, that is

(p_ _p><X1>:>\a: v (2.42)
—-p p* Xy NS

i 0
this leads to the requirement that X¢ = —— ( . ) For an arbitrary null

\/F

00
momentum one can always find a frame such that k., = kT ( 0 1 >, this

_ . 0
leads to X¢ = vkt ( ) ) , which differs with the desired result by an overall

1

propagator always connect two MHV graphs with one side + helicity and the
other — helicity, the + helicity side has a factor (v/kTp*)? while the negative
helicity side (v/ETpt)=2

To see that one of the vertices generated by the redefinition can be written
in terms of the holomorphic off-shell spinors , one needs to prove that

these vertices will not depend on p. This was shown in [28] to be true.

factor This overall factor cancels in the CSW calculation since the

Therefore in the MHV lagrangian, all vertices are MHV vertices and this
indicates that one should be able to do perturbative calculation simply by com-
puting Feynman graphs with only MHV vertices. Defining the map between
momentum and spinor according to , one can compute arbitrary off-shell
amplitude in light-cone gauge in terms of momentum, and then map to their
spinor form. Their spinor form will then take the well known holomorphic
form via Nair. The difference between off-shell and on-shell is then encoded in
how these spinors relate to their momentum. In a suitable basis, we see that
the CSW definition for the spinor is equivalent to our on-shell off-shell map

up to an overall factor that cancels in the calcualtion.
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2.2.3 Equivalence Theorem at one-loop

Again for this to be a proof of the CSW approach, one needs to show that
the field redefinition does not introduce new terms that will survive the LSZ
procedure and contribute to amplitude calculations. As discussed previously,
at tree level all terms generated from the field redefinition of the coupling to
source current will cancel through the LSZ procedure except the linear term.
The only other possibility will be the self-energy diagram where multiplying
by p? cancels the propagator that connects this diagram to other parts of the
amplitude, and thus survives. The argument that it vanishes follows closely
along the line of [29], one should be able to prove with the requirement of
Lorentz invariance that all the loop integrals will be dependent only on the
external momentum p? which we take to zero in the LSZ procedure. This
implies that the self-energy diagrams are scaleless integrals and thus vanish.*

We would like to compute the self-energy diagram in light-cone superspace.
The Feynman rules for light-cone superspace are defined for the chiral super-
field ®, thus one uses ((1.18)) to convert all the ® into ®. The rules have been

derived in [35], and here we simply use the result. °

ok 62~ —1152 )58(91 — 0,)
k,
6
k2 kS ~ /d49d40d4(p1) [ip3d4(}73) . p2d4(p2) i]
+2 + +2 +2 +
Py Do Ps D2 D3
(2.43)
Here d(k) = % — %éA_ The relevant graphs is now shown in fig(2.2.3|

4There is of course the question of whether dimensional regularization is the correct
scheme for this approach. However since in [33] dimensional regularization was used to give
the correct one loop amplitudes from Yang-Mills MHV Lagrangian, the analysis here should
hold. However, in [34] a different scheme was used, and it would be interesting to see if
there will be any equivalence theorem violation within this scheme.

5Note that the propagators given here have already included the factor of d* from the

a 74 _ _
% = (31)2 54(561 — $2)54(91 — 02)54(01 — 92)

functional derivative
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Figure 2.4: These are the two relevant contributions to the one-loop self-
energy diagram. For simplicity we only denote the positions of d* and d* to
indicate which legs of the vertex were used for the loop contraction.

Note that other graphs can be manipulated into the same form by partially
integrating the fermionic derivatives. Using (2.29) with n = 2, the two terms

give

ip A7 k*2(k + p) ktk
/ O et T pP (e 797 DR+ R

) Lt
— [ d*0d*0J
/ [k‘2(k +p)?(k* +p*)

I (2.44)

Writing in Lorentz invariant fashion we introduce a light-like reference vector

4 in the + direction. The result is rewritten as

/ 404" [ G +$2'<’]:)+ ot o (2.45)

Again following [29], since by rescaling p — ru the factor cancels, thus the

resulting integral can only depend on p?. Since we take p* — 0 in LSZ reduc-
tion this means that the integral becomes a scaleless integral, and vanishes in

dimensional regularization.

2.3 Conclusion

We’ve shown that by redefining the chiral superfield such that the self-dual
part of N=4 SYM becomes free, one generates a new lagrangian with infinite
interaction terms which are all MHV vertex. When restricting to equal time
field redefinitions the solution gives the suitable off-shell lagrangian that cor-
responds to the CSW off-shell continuation. The redefinition is preformed by

requiring the self-dual part of the action becomes free since the self-dual sector
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is essentially free classically. It does not, however, give a derivation of Nair’s
holomorphic form of n-point super MHV amplitude. For this purpose it is
more useful to start from an action that was directly written in twistor space.
Indeed such an action has been constructed in[36] and its relation to CSW has
been discussed. The extremely non-local form of the redefined action makes
understanding CSW in terms of field theory very difficult. This non-locality
can be again traced back to the on-shell light-cone action that we began with.

Presumably an off-shell formalism well aid this discussion inmensely.
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Chapter 3

On-shell amplitudes (loop)

3.1 Introduction

In the study of N=4 SuperYang-Mills one loop amplitudes in component fields
[37][38], it has been show that they have the special property of being cut
constructible, that is they are uniquely determined by their unitary cuts. It
was shown in [37] that N =4 SYM one loop amplitudes can be decomposed

on the basis of scalar box integrals with rational coefficients:

A= Z(C4m[4m + CBmISm + CthI2mh + CZmBIQme + Clmjlm) (31)

Each integral is defined as

d472el 1
(2m)472¢ 2(1 + K1 )2(1 + Ky + Ko)* (1 — Ky)?

I(K17 K27 K37 K4) = _Z4(7T)26/

The external lines are organized into four corners of the box graph, with K;
representing the sum of their momenta. Depending on how the external lines
are organized they are separated into the above five different scalar integrals.
Four-mass integrals Iy, have all four momentum sums massive: K? # 0.
Three-mass integrals I3,, have one massless K? = 0, while for two-mass inte-
grals depending on whether the massless K'’s are adjacent or not we have I,
for K? = K2, =0 and Iy, for K7 = K?,, = 0. We illustrate these integrals
in the following fig.??.

Therefore the calculation of one loop amplitude is reduced to determining
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Figure 3.1: The scalar box integrals.

the coefficients in front of these box integrals. These coefficients are rational
functions and therefore they are not affected by branch cut singularities. Thus
in principle one can extract the coefficients by cutting two Feynman propaga-
tors in a given channel on the right hand side of (3.1]), and the same for the
scalar box integrals on the left. Then yields (for a given channel)

/dMA”ee(ll,i o Jilo) AT (g, j 1 i = 1, =)

= Z(Ac4m[4m + AC?)m[Sm + ACthIth + AC2meIZme + AClmjlm>
(3.2)

with A denoting the discontinuity across the branch cut of the box integrals,

and p the Lorentz invariant measure
dpt = 5H(B)5H(B)6D (1 + 1y — Py) (3.3)

Unfortunately complication arises from the fact that some of the cuts are
shared by more than one box integral. Therefore their coefficients come in
this equation at the same time. This problem was solved in [39] by using
generalized unitarity (quadruple) cuts [40] to analyze the leading singularities
which turn out to be unique in the box integrals. The construction is to
cut four propagators on both sides of , therefore analysing the leading
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singularity of the box integrals

/d“W(lZW((l + K1)*)0 (L + Ky + Ka)*)at (L= Ky)?)

AireeAéreeAgreeAiree _ Z(ALSC4mI4m)
(3.4)

where the tree amplitudes correspond to amplitudes with the corresponding
external lines K;. Note that for other box integrals, one of the tree amplitudes
on the left hand side of will be a three point amplitude which is zero for
Minkowski signature. This issue is resolved by going to split signature with
the corresponding modification for the cut measure [39)].

At this point it is natural to ask if one may reconstruct the above re-
sults in a superspace language. The most natural approach would then be the
CSW construction discussed in the previous chapter, which uses MHV vertices,
which is already in superspace form, as the basic building block of the scatter-
ing amplitudes. At loop level the valediction of CSW approach was proven to
give the same result as that in field theory in [41] for MHV loop amplitudes,
and [42] reproduces the relationship between the color leading amplitudes and
sub-leading amplitudes.

To compute NMHV one loop amplitude using CSW construction would
require three MHV vertices connected by three propagators. At this point it
is not clear how the correct scalar box functions should arise in this formalism.
One of the complications is for more than two fermionic delta functions (there
is one for each MHV vertex), after the expansion in superspace there will be
multiple spinor products that contain the off shell continuation spinor of the
propagator, 1. Since the external line factor for different species is different,
the integration over these spinor products requires separation: The integrand
for the gluonic amplitudes will be dramatically different from the ones with
gluinos, implying one can only derive the box functions from the superspace
expansion one term at a time and not in the original superspace full form.

This is not surprising since one would anticipate the scalar box decom-
position to naturally arise only for an off-shell superspace formalism. At the
current stage one can at most anticipate a superspace representation for the

coefficients in front of these scalar box integrals, since in principle they are
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products of on-shell tree amplitudes. The aim of this section is to formulate
such results using different techniques. Here we take the NMHYV 6 point one
loop amplitude as an example. NMHV tree and loop amplitudes with gluinos
or scalars were previously [43] derived from their pure gluonic partners by
solving the supersymmetric Ward identities (SWI)[44]. Since the the Ward
identities act linearly on the amplitudes, one would anticipate the simple su-
perspace representation of this amplitude.

In [43] the SWI were not used directly upon the coefficients in front of
the box integrals for the gluonic amplitude, but rather the coefficients in front
of a particular combination of box integrals, which originated from the three
different two particle cuts [38]. Here we show one can construct the super-
space amplitude by noting that for the six point one loop amplitude, the tree
graphs on either side of the cuts always come in MHV and M HV pair. Since
MHV and MHV trees can be written straight forwardly in superspace form,
one naturally derives the six point one loop NMHV amplitude for all helicity
configurations and external species as one superspace amplitude by fusing the
two tree amplitudes. Note that there is already progress for deriving the coef-
ficients in directly in superspace[45], though at least for six point NMHV
it is not simpler then our result [46].

In the following we present the amplitude in its full superspace form and
confirm our result by explicitly expanding out the terms that give the correct
amplitudes with two gluinos obtained in [43]. We will also give a brief demon-
stration of how one could obtain the field theory result for the loop amplitude
from the MHV vertex approach (CSW).

3.2 The Construction

The n point MHV and M HV tree level amplitudes have a remarkably simple
form. For MHV tree [7]:

. . 58(2?:1 Amf‘)
A(j™ i tree = T, <iitl> (3.5)

where
4

P n) = 5 TIOS At A (3.6

A=1 =1
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as for MHV tree:

A(oftoito) = % (37)

Here we’ve omitted the energy momentum conserving delta function and the
group theory factor. After expansion in the fermionic parameters 7;}, one can
obtain MHV amplitudes with different helicity ordering (++ — — —, + — + —
—...etc) and different particle content.

We proceed to construct the full N=4 SYM NMHYV 1-loop six point am-
plitudes by following the original gluonic calculation [38], where the ampli-
tude was computed from the cuts of the three channels t195 togs tass (Lijr =
(ki 4+ kj + k;)?), except now the tree amplitudes across the cuts are written in
supersymmetric form. We find that the propagator momentum integrals from
which the various scalar box functions arise are the same for different external
particles. Thus with the gluon amplitude already computed all we need to do
is extract away the part of the gluon coefficient that came from the expansion
of the two fermionic delta function, the remaining pre-factor will be universal
and has its origin from the denominator of eq.(1) and (3). The N=4 SYM 6
point NMHV loop amplitude for the gluonic case was given [38] as

Alef o™ Dioop = 0 BIWY + By + Bswl?) (3.8)

where Wéi) contains particular combination of the two-mass-hard and one-
mass box functions [37]. The full 6 point NMHYV loop amplitude for any given
set of external particle and helicity ordering are then given with the following

coefficients :

B Nl — L+ Bi) 58 (25, A — Lo + hmn)

B, t By  (3.9)
123
+58(Z?:1 Ay — Ly + Lom) 03 (S0, Ny — los + ll?ﬁ)BT
123 0
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(T Nl — i+ Bp) 0 (g A — loms + L)

B, B,  (3.10)
234
+58(Z?:2 Ainti = lim + L) 8 (30,5 Mifli — bt + ) B
234 *
B. — 83 (300 Nifli — Ly + L) 03 (307 Aimi — Lama + lml)B (3.11)
’ 345 - '
+58(Z?=3 Aimi — Ly + Lamp) 8% (327 Aifli — Lol + 1) Bt
t345 -
where we define :
1
By =1 3.12
0= "T12][23] < 45 >< 56 >< 1|K125|4 >< 3|K125/6 > (3.12)
and
By = Bolj—j+1 B- = Byljj-1 (3.13)

with < A|K;;x|B >= [Ai](iB) + [Aj](jB) + [Ak](kB). Each coefficient is
expressed in two terms, this corresponds to the assignment of helicity for the
propagators [; and [y which for specific assignments will reverse the MHV and
MHYV nature of the two tree amplitude across the cut ﬁ The presence
of the loop momenta seems perplexing at this point since all loop momenta
should have been integrated out to give the box functions. As we will see
on a case by case basis this comes as a blessing. The actual expansion for
a particular set of helicity ordering and external particles contains multiple
terms. The presence of loop momentum forces one to regroup the terms such
that the loop momentum forms kinematic invariants. It is after this regrouping
that one obtains previous known results.

The amplitudes for different external particles are computed as an expan-
sion in the SU(4)g anti-commuting fermionic variables 7. Choosing particular

combinations following [19)

g =niminint, o =ninf, AT = —ninint, A7 = —ninin! (3.14)
N7 = —plndnt, A =—alpind, AN =nl, gi=1

The superscript represents which flavor the particle carries, in the N=4 multi-
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Figure 3.2: Here we show for a particular case of the gluonic NMHV loop
amplitude, different assignment of helicity for the propagators will change the
MHYV or M HV nature of each vertex which is the reason we have two terms

in eq.(5)-(7).

plet there are four gluinos and six scalars. Corresponding combination in the

7 follows:

g = nlninint, 0% = nCnl, A = —nPnPnt, AP = —plyPnt (3.15)

NP = gt A = gl A =nd g =1
Thus a particular term in the expansion corresponds to a particular assignment
of the fermionic variables to the external particle and results in an amplitude
with a particular set of external particle species and helicity ordering. In the
next two sections we show by expanding eq.(5),(6),(7) and following the above
dictionary one can recover the amplitudes containing two same color gluinos

with different helicity ordering computed in [43].

3.2.1 B Coefficient = ¢35 cut

First we look at the t1o3 cut which corresponds to the B; coefficient. For the
purely gluonic amplitude A(g; g5 95 |94 95 g4) (we use a bar to indicate the

cut), we have only one particle assignment for the loop propagators:

,lg = g+ (316)

35



Here the assignment of helicity is labeled with respect to the M HV vertex.
Therefore we get only contribution from the first term in eq.(5), the expansion
from the delta function gives (l1l2)*[l1ls]* = (I; — I3)® = 1,3 and therefore
By = t3,, By which matches eq.(5.4) in [43].

For the two gluino amplitudes first we look at A(A; gy g5 |AS g7 gf) from

the delta function expansion we have helicity assignments :

Iy =AT 1, =g", +( exchage between I, and I, ) (3.17)
Again only the first term in eq.(5) gives contribution :

(L)’ (Ll ([(L0](14) — [L](124)) = ty5(1] Ki2s]4) (3.18)

Note that only when the external gluino carry the same flavor will this term
contribute. Since in [43] the two gluino amplitude was derived using N=1

SWI, the two gluinos carry the same flavor. Thus we have

t193(1| K123|4)

[12][23] < 45 >< 56 >< 1|K123]4 >< 3| K123|6 >
(3.19)

This is exactly the result of [43]. Other non-cyclic permutations of two gluino

Bi(AT 9595 1A g5 9¢) =i

amplitude calculated in [43] at this cut do not change the assignment of the
propagators, thus the amplitude remains the same form apart from the la-

belling of the position of the two gluinos.

3.2.2 B, Coefficient =934 cut

For this cut with different helicity assignment of the propagators, contribution
can arise from both terms. Propagators with the same helicities (here we mean
they are both plus or minus regardless of the species) get their contribution
from one term while the rest from the other, this is why By was split in two
terms in the original computation of the gluon amplitude [38]. We deal with
the same helicity first since there is only one way of assigning propagators.
Ba (AT |95 95 Af 195 96 ) same neticity = 0 since there is no way of assigning same

helicity particles to the propagators.
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For B, <91_|A2_93_Aj1_|g;gg_)same helicity We have
ll = gi l2 = gi (320)

This receives contribution from the second term in eq.(3.10) which is (23)3(43)[56]4,
thus giving

(23)°(43)[56]*

BQ(Q;’AgggAI|g;gﬁ+)samehelicity = ( t234 )Bi (321)
For B2<91_|A2_g?>_gz|A;gg—)same helicity W€ have
li =g~ Iy =A™ |+ (exchange between ly, 1) (3.22)

This gives contribution (23)3[56]3((31;)[116] — (312)[126]) = (23)3[56]3 (3] K234/6)

giving

(23)°[56]* (3] K234/6)

234

Bs(9y 1A3 95 91 1A3 96 ) same heticity = ( )BL (3.23)

Now we move to configurations with different helicity. For
Bo(AT |95 95 AT1975 98 ) pifs heticity
we have :
Lh=A"lb=g ,li=A ly=¢,+ (exchange between Iy, 1) (3.24)

For fixed external states A} and A} we have to sum up all possible flavors for

the internal gluino. This gives a contribution of

[1l1]3[l1lg]<412>3<l112> — 3[l1ls][l24] [l14]2<lll2>(l21><l11>2 (3.25)
+3[l115][114] [l24]2<l1l2>(l11><l21>2
— [ [11lo] (4l2)* (lils) = t1a3((1|ly — 12]4))® = t123(1| K13]4)°

Therefore

(1] K193]4)°

B (3.26)
123

By(A7 195 95 AT 195 98 ) pis s Heticity =
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For B (g1 |A3 95 AL 195 98 ) pifs Heticity we have:

h=g lo=g " li=AN"ly=A l1=¢ly=¢, + (exchange between Iy, 1)

(3.27)
Here whether or not AJ and A carry the same flavor will effect the number
of ways one can assign flavor to the internal gluino and scalar. For the same

flavor we have

— ([4L] (1 1) = [4d5)(121))([20] (1 1) — [205](121)) = —((4] K2s4]1))° ((2] K 234]1))
(3.28)
Thus

— (4| K34]1) ) ((2]| K 234]1))

234

VB, (3.29)

Ba(g1 |A5 95 Ai'l95 98 ) pirs meticity = (
For By (g1 |A5 95 94 1AL 96 ) Dif heticity We have
=g lo=A" I, =A ly=¢, + (exchange between Iy, 1) (3.30)
This gives contribution :

— (L) (15)[14]°[42] + 3(L11)*[124]*(112) [124][42] (15) (3.31)
—3(L2)?[12A)*(111) [ 4] [42](15) + (111)*(15) [114]*[42]
—({4]K234]1))*[42)(15)

Thus

— (4] K52 1))°[42](15)

4 (3.32)
234

B (97 |A3 95 91 |AT 98 ) it pheticity =

Adding eq.(17),(19),(22),(25) and (28) together gives the By coefficient of the
gluino anti-gluino pair amplitudes computed in [43]. Coefficients for the next
cut can be calculated in similar way, we’'ve checked it gives the same result as
that derived in [43].

It is straight forward to compute amplitudes that involve more than one
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pair of gluino or scalars. The new amplitudes are :

Alg=g"ATATAAT) L A(g g dddd) , A(dddddd) AN~ A~ A"ATATAT)(3.33)
A(A" A ppgpd) ,ANATATAT¢¢) , AN A oy gTg™)

Complication arises for these amplitudes because non-gluon particles carry less
superspace variables and increase the amount of spinor combination. Luckily
with the specification of the flavor for the external particles, the propagators
are restricted to take certain species. This is discussed in detail in the next

section where we calculate the all gluino and all scalar amplitude.

3.3 Amplitudes with all gluinos and all scalars

Here we present N=4 SYM NMHYV loop amplitudes with all gluino and all
scalars. These amplitudes were derived from explicit expansion of eq.(5)-(7).
Since scalars and gluinos carry less fermionic parameters as seen in eq.(10)(11),
the spinor product that arises from the fermionic delta function becomes com-
plicated. The final coefficient should not contain the off shell propagator
spinor, thus one can use this as a guideline to group the spinor products
to form kinematic invariant terms. With specific flavors this also restricts the

possible species for propagators.

3.3.1  AAFAZASAIAZAS)

For the six gluino amplitude we look at amplitudes with all three positive
helicity gluinos carrying different flavor. The negative helicities also carry
different flavor and is the same set as the positive. For t155 the flavors of the

internal particles are uniquely determined.
Lh=Alo=g¢", 11 =A"1,=¢, +exchange (3.34)
This gives
By(A{TASTATTIALTAZAGT) = (1 Kias]5) (2] K123[6) (3| K123]4) (3.35)

(1] K123]4) (2| K 125]5) (3| K123|6) + (1] K123|6) (2] K123]4) (3| K 125]5)) BY
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Next we look at t345 cut. The propagator assignment with same helicity (the
definition of same or different helicity again follows that of the previous para-

graph) would be :
Iy =g ly=A", +exchange propagator (3.36)
this gives

Bs(A{TATTASTA LT AZTIAS ) same heticity = (45)°[12]7{(34)[61](5| K345|2)(3.37)
+(34)[62] (5] Ka5|1) + (35)[61] (4| K345]2) + (35)[62](4| K345]1)} BY

There are two ways of assigning different helicity propagators
=g lo=A",orly =A"ly=¢, + exchange (3.38)

Note however for the present set of flavors, there is no consistent way of as-
signing flavors when the propagators are a gluon and a gluino. Thus we are

left with the gluino scalar possibility with its flavor uniquely determined.

Ba(A{T A AT AT ASTIAG ) Digs neticity = (16)(62)[43][35)(6| Kz5|3) 345 B
(3.39)

Luckily there is no need to compute B, coefficients since it is related to Bs

by symmetry.

3.3.2  A(d1¢003040506)

The power of deriving amplitudes from a superspace expansion is that one can
rule out certain amplitudes just by inspection. Amplitudes with more than
two scalars carrying the same color vanish since there is no way of assigning the
correct fermionic variables. Here we look at six-scalar amplitude all carrying
different flavor. This should be the simplest amplitude since the flavor carried

by the internal particle is uniquely determined. We give the result for cut ¢193
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while the other cuts are related by symmetry.

By(¢r -+ - ¢6) = {((12)[56](3[ K123]4) + (12)[64] (3| K125]5) + (12)[45](3[ K125(6)
+(B1)[56] (2| K123[4) + (31)[64] (2] K123]5) + (31)[45] (2| K123(6)
+(23)[56] (1 K125[4) + (23)[64] (1| K123]5) + (23)[45)(1| K123(6))*} Bo
+complex conjugate

(3.40)

3.4 A brief discussion on the MHYV vertex ap-

proach

As discussed in the introduction, the straight forward way to compute ampli-
tudes in superspace is the generalization of the MHV vertex approach. It is
also of conceptual interest to see if this approach actually works for the NMHV
loop amplitude. Here we give a brief discussion of the extension.

The MHV vertex approach was shown to be successful [41] in constructing
the n point MHV loop amplitude. This is partly due to the similarity between
the cut diagrams [37] originally used to compute the amplitude and the MHV
vertex diagram, so that one can use a dispersion type integral to reconstruct
the box functions from its discontinuity across the branch cut. For the NMHV
loop amplitude, one requires three propagator for the three MHV vertex one-
particle-irreducible(1PI) diagram and two propagators for the one-particle-
reducible(1PR) diagram (fig-2)[42]. We would then encounter the following
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m3

m4+1

Figure 3.3: MHV diagrams for NMHV loop amplitude, includes the one-
particle-irreducible and one-particle-reducible graph.

integration:

1 d*Ly d*Ly d*L
/ L 2 B §(Py+ Ly — L3)§(Ps + Ls — Ly)

[, Gi+1) ) L¥ L3 L3
O(Py+ Ly — L) / Py, &P, dmp

58(01)88(02)8%(03) (mamg + 1) (mymy + 1) {(mams + 1)
<12l1)<l3l2>(l1l3>(l1m2 + 1>(m211><l2m3 + 1>(m3l2><l3m1 + 1><m1l3)

5(Li — P,) / ALy d*Ly
MGi-n) 3 12
68(01)0%(04)0%(03) (mamy + 1) (mymy + 1) (mams + 1) (mymy + 1)
L3 (I312)2 (myls) (lamy 1) (Isma + 1) (mols) (lyms + 1) (maly) (Iymy + 1) (myly)
(3.41)

§(Py+ Ly — Ly)d(Ps+ Ly + Ly — L3) / Ay, d®my, dny,

where for the first term

0, = Zni)\i + lam, — l3m, (3.42)
@2 = Z nz>\z + l377l3 - llnll

i=p
O3 = Zm')w + lymy, — lom,

=y
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for the second term

0, = Z niNi — lamy, + l3m, (3.43)

O, = Zﬁi)\i + Ly, + lam, — l3mg
i—p

O3 = Zni)\i - lﬂ?ll
=7

afy labels the external momenta assigned to the three MHV vertex and the
l;s are the off shell continuation spinor following the CSW prescription. We
can reorganize the delta functions to reproduce the overall momentum conser-

vation. For the first term in eq.(37) we have
5<Pa+ﬂ+v)5<Pﬂ+v + L3 — L2)(5(Pv + L — L2) (3'44)

For the second term

0(Pats4)0(Pa + Lz — Ls)

If we integrate the last delta function away in the first term and combine
with the 1PR graphs, it is equivalent to using two MHV vertices to construct
NMHYV tree amplitude on one side of the two remaining propagators, namely
this combines vertex v and 3 through propagator L;. To see this note that

the momentum conserving delta function forces L; propagator to carry the
1

PE,

in the integral measure in the first place. This would obviously affect the off

correct momentum as it would for the CSW method and the is present

shell spinor in the following way.

This simply fixes the off shell spinor to be computed from the correct momen-
tum as the CSW method. Thus we have come to a two propagator integral
with two tree level amplitudes on both side constructed from the CSW method.
This is exactly the picture one would have if one applied the standard cut, ex-
cept the propagators are off shell instead of on shell. For higher number of
MHYV vertices this can be applied straight forwardly, by integrating the mo-

mentum conserving propagators one at a time one can reduce the number of
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propagators until one arrives at the standard cut picture. As shown in [41] one
can then proceed to recast the two propagator integral into a dispersion inte-
gral which computes the discontinuity across the cut of the integrand, by using
the cut constructibility of N=4 SYM loop amplitudes, one can reconstruct the
box function and it’s coefficient. However there is one subtlety. In the origi-
nal standard cut one has to analyze every cut channel, and then disentangle
the information since more than one box integral shares the same cuts. If we
follow the CSW prescription we can always reduce the loop diagrams down to
two propagator one loop diagrams with an MHV vertex on one side of the two
propagators. Thus this implies if the CSW approach is valid at one loop, then
the full loop amplitude should be able to be reconstructed from the cuts of a
subgroup of two propagator diagrams which always have an MHV vertex on
one side of the cut.

This construction makes the connection between MHV vertex and M HV
loop amplitude more transparent. M HV loop are just the parity transforma-
tion of the MHV loop, where one simply takes the complex conjugate of the
MHYV loop:

n n/2] 1

AMHV )igop = AMHV )ypee > > (1- —5n r)F2me (3.46)

norsi
i=1 r=1
It’s derivation from MHV vertex is as follows. In [47] it was shown that using
MHYV vertices one can reconstruct the M HV tree amplitude in its complex
conjugate spinor form. Since by integrating out one loop propagator corre-
sponds to using MHV vertex to construct NMHV tree amplitude, one can
proceed in a specific manner to reduce the number of loop propagators down
to two with two M HYV trees on both side. Since from [47] the two M HV tree
amplitudes on both side are expressed in complex conjugate form, following

exactly the same lines in [41] one can reproduce eq.(43).

3.5 Conclusion

In this chapter we constructed the 6 point NMHV loop amplitude for N=4
SuperYang-Mills in a compact form using its cut constructible nature. The

expansion with respect to the fermionic parameter gives amplitudes with dif-
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ferent particle content and helicity ordering. To extend further to higher point
NMHYV loops one may have to resolve to the MHV vertex approach since the
tree level amplitudes on both side of the cut in general will not be in simple
MHV and M HV combination. We also give a general discussion on how to
proceed with the MHV vertex construction for higher than MHV loop(more
than two negative helicities). The fact that it reproduces the two propagator
picture for any one loop diagram combined with earlier results that have re-
produced the MHV loop[41] and the relationship between the leading order
and sub leading order amplitudes[42], gives a strong support for the CSW

approach beyond tree level.
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Chapter 4

First quantized Yang-Mills

4.1 Introduction

Here we discuss first quantization for ordinary YM which is based on quan-
tizing the N=2 spinning particle(worldline supersymmetry). This is a simpler
model then superparticles(spacetime supersymmetry) since the constraints are
easier (the situation is similar to the quantization of the spinning string in-
stead of the Green-Schwarz string), however we will be able to introduce how
one construct a BRST charge and by extending it to background fields, gener-
ate vertex operators for the external states which are the standard procedure
for any first quantized model and thus relevant for the discussion in the next
section.

First-quantization has provided an efficient way of calculating Yang-Mills
amplitudes. A set of rules for writing down 1-loop Yang-Mills amplitudes was
first derived by Bern and Kosower from evaluating heterotic string amplitudes
in the infinite string tension limit [48]. Later an alternative derivation of the
same rules (but only for the 1-loop effective action) from first-quantization
of particles was given by Strassler [49]. However, the generalization of these
first-quantized rules to multi-loop amplitudes has not been clear. In fact, such
rules have not yet been given even for Yang-Mills tree amplitudes. This is
partially because the vacuum, ghost measure and Green function needed for
the calculation of trees and multi-loops have not been clarified. Although there
are already many ways to compute Yang-Mills tree amplitudes, it is important

to clarify how first-quantization works at tree level first for the purpose of

46



generalizing this method to multi-loop level. This is the main purpose of this
paper.

To derive the first-quantized rules for trees, we start from theories of free
relativistic spinning particles, which were first developed by Brink et al. [50]
and many others [51]. In these theories the spin degree of freedom is encoded
in the worldline supersymmetry. More precisely, the BRST quantization of
the particle action with N-extended worldline supersymmetry shows that the
cohomology is of a spin—% particle.

In this chapter we study the N = 2 theory, which describes a spin-1 par-
ticle. We derive the vertex operator for background gauge field via the usual
BRST quantization method, thus ensuring background gauge invariance. (The
coupling of background vector fields to spin 1/2 was formulated in [50]. It was
used to calculate effective actions in [52].) We proceed to show how the correct
amplitudes can be derived. In the usual worldline approach, all interactions are
derived by coupling external fields to the 1-dimensional worldline or loop. This
is insufficient for n > 6-point tree and multi-loop amplitudes because there is
no consistent way to draw a line through these graphs such that all lines at-
tached are background fields. Here we propose an alternative (“worldgraph”)
approach that includes spaces that are not strictly 1D manifolds: They are not
always locally R', but only fail to be so at a finite number of points. Taking
these spaces into account we derive a set of rules for computing amplitudes
that can be extended to all possible graphs[50].

We organize this chapter as follows: First we give a brief review of a general
formalism to describe free spinning particles with arbitrary spin. We then
focus on the spin-1 particle: introducing background Yang-Mills interaction
to the theory and deriving the vertex operator for the external Yang-Mills
fields. Then we define the vacuum, ghost measure and Green functions for
Yang-Mills tree amplitudes. For examples we present the calculation of 3 and
4-point trees, and one-loop amplitudes, using the worldline approach, since it
is sufficient for these amplitudes. Finally we discuss the worldgraph approach
that follows string calculations more closely, and show how it can reproduce

the tree results derived from the worldline approach.
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4.2 Free spinning particles

We begin with the free BRST charge for arbitrary spin. A useful method for
deriving gauge invariant actions is the OSp(1,1|2) formalism [53], where one
starts with the light-cone SO(D—2) linearly realized by the physical states, and
adds two bosonic coordinates to restore Lorentz covariance and two fermionic
coordinates to cancel the additional degrees of freedom. Thus the SO(D — 2)
representation is extended to OSp(D — 1, 1]2), and the non-linearly realized
SO(D—1,1) of the physical states is extended to OSp(D, 2|2). The action then
uses only the subgroup SO(D — 1,1) ® OSp(1, 1|2), where the OSp(1, 1]2) is a
symmetry of the unphysical (orthogonal) directions under which the physical
states should be singlets (in the cohomology). We use (A, B...) for OSp(D, 2|2)
indices, (a, b...) for the SO(D—1, 1) part and (+, —), (4, ©) for the bosonic and
fermionic indices of OSp(1,1]|2) respectively. The easiest way is then to begin
with linear generators J4Z of OSp(D, 2|2), use the gauge symmetry to gauge
away the + direction of OSp(1,1|2) and use equations of motion to fix the —
direction. Then the kinetic operator of the action is simply the delta function
of the OSp(1,1|2) generators (now non-trivial due to solving the equation of
motion).

One can further simplify things by utilizing only a subset of the generators
of OSp(1,1|2). (This is analogous to the method of finding SU(2) singlets by
looking at states annihilated by J3 and J_.) In the end one is left with the
group IGL(1) with generators J¥© and J®~. Relabeling ¢ = 2% and b = g,

J=iJ% +1=cb+iS%°, Q=J% =310+ 899, + S%b  (4.1)

J will be the ghost number and () the BRST charge. One is then left with the

task of finding different representation for S4? satisfying the algebra
[Sap, S°P} = —5[[353}0}

There may be more than one representation corresponding to the same spin.

It is easy to build massless spin—% representations using gamma matrices

1

1
spm—é : Sap = —5[’YA-’YB}> {va:v8] = —nas (4.2)
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and spin-1 using ket-bra
spin—1:  Sap=|u){ml, (alB) =nas

All higher spins can be built out of these two. For a review of the OSp(1, 1|2)
formalism see [54].

For our purpose we use first-quantized fields (i.e. fields on a worldline) to
form representations. It is known that the free relativistic spin—% particle can
be described by a first-quantized action with N-extended worldline supersym-
metry [50]. For example, for spin % we use N = 1 worldline fields ¢ where 9)®
are fermionic fields and ¥® = ivy, ¥°® = i3 are the bosonic ghosts for SUSY.

We summarize this representation as follows

S = L[yt = v (4.3)
S = F{v Ut =iyy”
s = 3{vr =+
and
{9} ="
[y, 9] =0 (4.4)
[v,7]=0
In this letter we focus on the N = 2 spinning particle representation for

massless vector states. Now, due to N = 2 there are a pair of worldline

spinors (@Da,@@b) and similarly bosonic ghosts (v,ﬁ, 0, B) The spin operators

are then:
Sab — &aqbb_d;bwa (45)
S5 = i+ iy
% = 29y

with the following (anti-)commutation relations for the fields:
{0 4"} =n" (4.6)

{9°,0" = {v" ¢} =, 81 = 7,8 = 0 (4.7)
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v, 8] = 3, 8] = {b,c} =1 (4.8)

4.3 Interacting spinning particles

Interaction with external fields is introduced by covariantizing all the deriva-
tives in the free BRST charge and adding a term proportional to iF,;S?,
which is the only term allowed by dimension analysis and Lorentz symmetry.
The relative coefficient can be fixed by requiring the new interacting BRST

charge Q1 to be nilpotent. In general the result is:
Q1 = 3¢ (V> + iF,8) + 5%V, + 5% (4.9)

where we use the following convention for the covariant derivative and the field
strength:
V=0, +i4, (4.10)

iFyy = [Va, Vi (4.11)

The nilpotency of ()1 can be used to derive vertex operators that are @)

closed. If we define the vertex operator as

V=Qi-Q (4.12)

Then
Qi=0=1{Q,V}+V*=0 (4.13)

In the linearized limit, which is relevant for asymptotic states, we take only
the part of V' that is linear in background fields (denoted by V;). Then one

has

{Q,Vo} =0 (4.14)

There will be an additional U(1) symmetry in the N = 2 model. The
vector states should be U(1) singlets and can be picked out by multiplying the
original Qy in eq. (4.9) with an additional ¢ function (a U(1) projector).

Q1 =6 (Juw)) @ (4.15)
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Juq) is the U(1) current:
Jo =50V —¢-¥) =1B+38= V- Y+ 5 -18+78  (416)

where D is the spacetime dimension and )%, 4, 3 have U(1) charge —1, and
their complex conjugates have +1. This U(1) constraint is important in that
it ensures that @)y for the N = 2 model is indeed nilpotent. We will show this
is the case.

Before choosing any specific representation, we have

7= 6 (Juw) QFf =6 (Jup) ${Qn @1}
= 9 (JU(I)) % {—icS@“[V”, Fab] — iCS@CSab [VC, Fab]
+iSEESP 4+ iSP S, ) (4.17)

To understand how the projector works for the N = 2 model, consider

normal ordering with respect to the following scalar vacuum:

(v, B, ¢, 0)10) =0 (4.18)

This vacuum has U(1) charge +1 . A general normal-ordered operator with
> 2 barred fields on the left (unbarred fields are on the right), acting on any
state built from the above vacuum, will either vanish or have negative U(1)
charge. Therefore normal-ordered operators with > 2 barred fields will be
projected out by §(Jua)). Actually this property can be made true for any
vacuum: One just needs to shift the current by a constant in the projection
operator.

With this in mind we have the following:

5 (Juay) S®S% = 6 (Juw) (v +i39®) (i) + i)
= =0 (Juw) 3™ = = (Juw) %S%n“b
0 (Juw) STEST =6 (Juw) 297 (V0" — ") =0
0 (Juw) S8 =0 (Juw) (ive° +i¢°) (V"0" — ")
8 (Ju) (7" n™ — iy n™) (4.19)
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Note that one could arrive at the same algebra for the spin operators if one were
to use the spin-1 ket-bra representation introduced in the previous section; thus
one again sees that the U(1) projector acts as projecting out vector states. In
fact the nilpotency of the BRST charge can be checked more easily using the
ket-bra representation; however, for completeness we plug the above result

into our previous calculation for Q¥. We have

5 (Jumy) QF = ¢b (Juqy) (0% —39*) [V?, Fu] (4.20)

which is proportional to the equation of motion satisfied by the asymptotic
states. So we have proved that o (JU(1)) Q¥ =0.
The vertex operator is then easily obtained by considering Q1 as an expan-

sion of @),

% = [QI - Q]linearinA (42]‘)
= CWI + WH
= %c [ZiA 20+ (0,4 — OpAL) Sab] +iA,9%

= —a[o (X" + PPk — B0k, ) + (70 4+ 507 | exp [ik - X (7)]
This vertex operator satisfies
{Q.Vo} =0 (4.22)
The integrated vertex can be derived by noting:
Q. W] = vy — {Q, / WI} o (423)

More complicated vertex operators are needed for the usual worldline for-
malism. We will discuss in detail how these operators arise in section V. In
the world graph formalism linearized vertex operators derived above will be

sufficient.
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4.4 Vacuum, Ghost measure and Green Func-

tions

When calculating amplitudes, the vacuum with which one chooses to work
dictates the form of vertex operator and insertions one needs. In string theory,
different choices of vacuum are called different pictures. The scalar vacuum

discussed above is defined by the expectation value
(0]cf0) ~ 1 (4.24)
The conformal vacuum of string theory
(0|ccc|0) ~ 1 (4.25)

does not exist in particle theory since there aren’t that many zero modes to
saturate at tree level. On the other hand one could also treat the worldline
SUSY ghosts’ zero modes, which would require additional insertions. These

are defined by the vacuum

(B, B, ¥, b)[0) = 0 = (0]cd(7)8(7)]0) ~ 1 (4.26)

which has U(1) charge 2 and is thus not a physical vacuum.
To use the vertex operator we found above, we need to find a U(1) neutral
vacuum }6> that is in the cohomology of the free BRST charge Q). It is related

to the previous vacuum through the following relation:
~ — 1 2\ |4
0) =310y =6 57 0), (4.27)

which leads to
<6| Yy ‘(~)> ~1 (4.28)

This vacuum can be understood as the Yang-Mills ghost. It has ghost number
—1 and lies in the cohomology only at zero momentum, indicating a constant
field. Therefore it corresponds to the global part of the gauge symmetry:
Gauge parameters satisfying QA = 0 have no effect on the gauge transforma-

tions in the free theory, ¢ = QA. In principal one could proceed to compute
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amplitudes in the available vacua mentioned above; however, due to its U(1)
neutral property, the Yang-Mills ghost vacuum should be the easiest to extend
to higher loops, since it would be easier to enforce U(1) neutrality.

With the above definition of the vacuum and the ghost measure, we can
easily obtain the tree-level Green function. For the worldline formalism the

Green function for the X fields at tree level is as usual,

NGy (1,7) = <Xa (1) X° (T')> = —%n“b |7 — 7| (4.29)
For the fermions:
WGr(r,7") = (v (1) 8 () = ™ (v — 7) (4.30)

where © is a step function which is zero if the argument is negative. Note
that the fermionic Green function does not have the naive relation with the

bosonic Green function
. 1 )
Grp # —Gp = 5529”(7’ —7') (4.31)

It differs by a constant % This is due to different boundary conditions: The
vacuum we choose, which is at t = —o0, is defined to be annihilated by ¥%;
therefore on a time ordered line the expectation can be non-vanishing only if
1 is at later time then ).

4.5 Scattering Amplitudes (worldline approach)

In the worldline approach, one starts by choosing a specific worldline, and then
inserts relevant vertex operators for external states. For YM theory, where the
worldline state is the same as external states, namely a vector, the choice for
worldline is less obvious. Previous work on the worldline formalism was geared
toward the calculation of one-loop amplitudes, where the loop itself provides a
natural candidate for the worldline. This advantage is not present for tree or
higher-loop amplitudes. Furthermore, for higher-point tree graphs, calculating
the amplitude from the worldline requires sewing lower-point tree amplitudes

to the worldline. This is unsatisfactory from the viewpoint of first-quantized
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4 14 14 1

Figure 4.1: Three diagrams to be calculated if one chooses to connect lines 1
and 4 as the worldline. The second diagram needs a pinch operator, and the
third diagram needs a vertex operator representing the tree attached to the
worldline.

perturbation theory.

In general, to calculate an n-point tree-level partial amplitude in the world-
line approach:

1. Choose a specific color ordering (e.g., 12..n). Label external lines
counter-clockwise.

2. Draw a worldline between any two of the external lines (e.g., line 1 and
line n) and connect all other external lines to this worldline in the following
three ways: (a) Use the linearized vertex operator V; defined in section III. (b)
Use a vertex operator that is quadratic in background fields (“pinching”). This
quadratic vertex operator (“pinch operator”) can be derived from eq. by
extending the field strength to contain the non-abelian terms and takes the

form
o — e (e — Grgt) et X (432

(c) Have the external lines first form a lower-point tree graph and then con-
nect to the worldline through either of the two vertex operators mentioned
previously. This corresponds to replacing A% = €%** with the non-linear
part of the solution to the field equations that the background field satisfies.
For example, for a four-point tree amplitude there are the three graphs shown
in fig. (4.1), representing the three different ways external fields can attach to
the worldline.

For lower-point graphs it is possible to choose the worldline in such a way
that only linear vertex operators are required. We will show this in our actual
computation for the four-point amplitude.

3. For each of the diagrams from above, insert three fixed vertex operators

(respectively fixed at 7 = 00,0, —00). Two of them represent the initial and
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final external states that were connected to form the worldline, while the
remaining one can be any of the operators described above. For example, one
has:

VI (00)VA(0)VV (—00) or V™ (00)v®P (0) VD (—o0) (4.33)

where the superscript (7) represents the momentum and polarization vector of
the external line i.

4. Insert the remaining vertex operators as the integrated ones, e.g.,

/Wl(i) or /v(ij) (4.34)

with the integration regions so chosen that the diagram is kept planar.

5. Evaluate the expectation value with respect to the Yang-Mills ghost
vacuum.

The fact that one needs to calculate lower-point tree graphs for a gen-
eral tree graph is unsatisfactory, since one should be able to calculate an
arbitrary-point amplitude without the knowledge of its lower-point counter-
parts. This was less a problem in the previous one-loop calculations, since
one can claim that the method was really for one-particle-irreducible (1PI)
graphs, and therefore sewing is necessary to calculate graphs that are not 1PI.
It is more desirable to be able to calculate any amplitude with the knowledge
of just the vertex operators and Green functions. This will be the aim of
the “worldgraph” approach, which we leave to section VI. We first proceed to
show how to calculate 3- and 4-point trees, and one-loop amplitudes, by the

worldline approach.

4.5.1 3-Point Tree

In the 3-point case, we connect line 1 and line 3 as the worldline. The three
vertex operators are respectively fixed at 7o — oo, 73 = 0 and 74 — —o0.

Note that we need one ¢ ghost to saturate the zero-mode and give a non-
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vanishing expectation value:

Ay = (VO (7o) VO (15) VW (4)) (4.35)
)] [ ]
| Wi o))

+ < iWI(Ig) (TC)] [WI(I2) (75) [CWI(l) (TA): >

The first term and the third term vanish due to e- X in W; contracting with
the e in the other two Wiy’s, which are proportional to es - ks and € - k;

respectively, and vanish in the Lorenz gauge. The remaining term becomes

Az = < [WI(IB) (TC)} [CWI(Q) (TB)] [WI(Il) (TA)]> (4.36)
= —esenena ([0 +707) N[k + (@000 = 00 n) Y]
(0 + 7y X, )

= —[(ez-e1)(ea-k3) + (€1 €2)(e3 - k1) + (e2 - €3)(en - k)]

As usual (see, e.g., [61]), the contractions among the exponentials give an over-
all factor of e~ Zasi<jzckikiGr(Ti=mi) iy the final result, but this factor equals 1

if we go on-shell.

4.5.2 4-Point Tree

For the 4-point amplitude (with color-ordering 1234), one can calculate the
three diagrams in fig. , but as we have mentioned, one can simplify the
calculation by choosing a worldline between line 1 and line 3. In this case,
there is only one diagram to be calculated (fig. ), and there is only one
integrated vertex operator — line 4. We fix the other three as mp — 0o, 7¢ =0
and 74 — —o0, and the integrated vertex has integration region 7 > 73 > 7a.
We then have:
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Figure 4.2: If one chooses to connect line 1 and line 3 as the worldline,
there is only one diagram to be calculated. There is no need for pinch or
more complicated operators. Note that line 4 is the integrated vertex and the
integration region can be from —oo to 400, still keeping the graph planar.

A= {9 o) VO o] | o) dra] [V )] )
= <[CW1(3) (TD)} [W1(14) (TC)] {/T:D WI(Z) (TB>dTB} |:WI(II) (TA)}>

([ ] [ ] | [ () s [0 0] )
+<[WI‘I3) ()| Wi (7c) { / W TB)dTB] ew TA]>

(4.37)

The first and third term again vanish, for the same reason as in the three-
point case. The remaining term can be written in two parts by separating the
integration region:

Ay = Ayt Ay
_ <[WI(I3) ()] [eW? (70)] { / e (TB)dTB] i (TA)D

TA

([ ] | [ (o [ ] [0 0] )
(4.38)

Actually one can see these two terms as representing the s-channel and t-

channel graphs from the second-quantized approach (see fig. (4.3)). The 7’s
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3 ‘ 1 3 ‘ 1
4 4

Figure 4.3: Two integration regions. The integrated vertex sits at 2.

are time ordered according to the order they appear on the worldline. The

results are:

—i (61 : 63) (62 64) Y (61 : 62) (64 : 63)
5 + (g - k1) (€4 - k3) (€1 - €3) + (€1 - k2) (€3 - ka) (€2 - €4)
Ays = T + (€1 k3) (€2 - ka) (€3 - €1) + (€2~ k2) (€3~ 1) (€1 - €2) (4.39)
- (61 : k2) (64 : k3) (62 : 63) - (63 : k4) (62 : k1) (61 : 64)
| — (€1 ka) (€2 - K3) (€5 - €4) — (€3 ko) (ea - k) (€1 €2) |
[ (e e3) (2 €a) — (€1 €4) (€2 - €3) |
5 + (€1 - kq) (€3 - ko) (€2 €4) + (€2 - k3) (€4 - k1) (€1 - €3)
Ay = i (€1 k3) (€4 ko) (€2 - €3) + (€2 - ky) (€3 - k1) (€1 - €4) (4.40)
- (61 ’ k2) (64 ) ks) (62 ) 63) - (62 ’ kl) (63 ) k4) (61 ) 64)
— (€1 ka) (€2 - k3) (€3 - €4) — (€3 - k2) (€4 - k1) (€1 - €2) |

The sum of the above two parts is exactly the 4-point Yang-Mills tree ampli-
tude. Note that we don’t need the pinch operator in this calculation. This is
because there cannot be a pinch operator representing line 2 and line 4, since

they are not adjacent in the color ordering.

4.5.3 One-Loop Amplitude

It is straightforward to generalize this method to the calculation of 1-loop 1PI
diagrams. The new feature in this case is that one must ensure U(1) neutrality
inside the loop. One can think of the diagram as connecting both ends of a

tree diagram, and only sum over U(1) neutral states. The U(1) neutral states
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are written as:

la,p) = 79 0) @ |p)
|4,p) = { |ghost, p) = |0) ® |p) (4.41)
lantighost, p) = 7 |6> ® |p)

where p is the momentum of the state, and the last two states are the Faddeev-
Popov ghosts for background gauge fixing. The general expression for the

amplitude of n-point 1-loop 1PI diagrams is then

A711—100p — Z/ dT Ap‘ V(n Tn H d7_7, (Tz) ’A>p>

Ti— 1<Tz<7'z+1

+ diagrams with pinch operators

(4.42)

where we define 79 = 0 and fix 7, = T. Note that at one-loop we don’t have
the freedom to choose worldline (it should always be the loop), so one cannot
avoid using the pinch operators.

Another approach is to insert a U(1) projector in the loop to pick out all

the U(1) neutral states. That is, one inserts:

1 27 . 0 T
) [JU(I)] = % . do exXp |:Z?/O dTJU(l):|
1 2w 0 T 3 _
= — df exp [i— / dr(—¢ -+ L2 -8+ 70)| (4.43)
27 Jo T Jo

Similar approaches have been taken in [49] and [55]. In [49], 6 is interpreted as
a mass to be taken to infinity at the end, and together with GSO-like projection
kills all U(1) non-neutral states. For us the U(1) projector naturally gets rid
of all unwanted states. Furthermore the worldline ghosts were not taken into
account in [49]; therefore they need to include the effect of Faddeev-Popov
ghosts by adding covariant scalars to the action. This is sufficient for one
loop, since they couple in the same way, yet will no longer be true for higher
loops. Here we’ve (and also [55]) included all the worldline ghosts; thus the
Faddeev-Popov ghosts are naturally included. In [55] gauge fixing the U(1)

gauge field on a loop leads to a modulus, which is equivalent to 6 in our U(1)
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projector insertion. The two views are analogous.

The inclusion of a U(1) projector amounts to additional quadratic terms in
the action which will modify the Green function and introduce an additional
f-dependent term to the measure. Here we give a brief discussion of its effect.
The kinetic operator for the SUSY partners and SUSY ghosts is now:

0
O + i (4.44)

The 6 term can be absorbed by redefining the U(1) charged fields,
U = ei@T/T\Ij \le — e—iGT/T\I/ (445)

where ¥ = (1,7, #). Then the integration over 6 is really integrating over all

possible boundary conditions since:
U'(T) = 0 (0) (4.46)

Without loss of generality, we choose the periodic boundary condition for the
original fields W.
The 1-loop vacuum bubble is then computed through mode expansion on

a circle with periodic boundary condition:
. 0 b2 .. 9\1D—2
Det | 0, + i = [2isin (§)] (4.47)

where D comes from the vn) integration and —2 comes from SUSY ghosts.

The fermionic Green function will be modified to

i9(7'7‘r/)
——7 [ 8 9
Gp(1,7) = 622‘8% [e’i@ (r—7)+e20(r — 1) (4.48)
2

which satisfies the periodic boundary condition and differential equation

(aT + %) Gp(r,7)=6(r—1) (4.49)

Also, at one loop there are two zero-modes, one modulus (the circumference
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of the loop) and one Killing vector. The proper insertions for the vacuum are:
(0[bc|0) ~ 1 (4.50)

In general, the n-point 1-loop 1PI amplitude can thus be written as

o 4T n—1
Alloor = gn /0 W<5 [Tow] bV (Tn>H/

i=1 Y Ti—1<Ti<Tit1

d’i‘lW (Tl)>

+ diagrams with pinch operators

= 27T i TD/Q/ do 2@s1n 5 < H/dTZ >

+ diagrams with pinch operators

(4.51)

We’ve added the coupling constant g, but omitted group theory factors, such as
a trace and a factor IV, of the number of colors for the planar contribution. The
XX contraction should be calculated by the 1-loop bosonic Green function:

1 (r—1 )2

_ !
T — 7|+ 5T

(X (D)X (7)) =Gy (r = 7) =" | =3 (4.52)

For example, the two-point contribution to the effective action is (including

the usual — sign for the action, % for permutations, and group theory factor
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for this case)

2 00 2T
“loo —g°“N, ar . D2
| ), TD/2/0 df [2isin (%)]

V)

x / "ar (W (mw (T)>

> dT
o 2
S NC/O TD/2/ dr +

T—
Lt (T_T_@>
Xe

= N, (k) (<14 15 POl @) b2) = -k )

2
a1 1
-t o[t

In the final line we have used dimensional regularization D = 4 — 2¢, and

(T —7)— %) (e1- €2)
% - %)2 (62 : lﬁ) (61 : k‘2)
k1) (€1 - ko) + (k1 - k2) (€1 - €2)

(4.53)

dropped the term with the ¢ function, which gives the tadpole contribution.
Modified minimal subtraction was used, with the conventions of ref.[57]. Note
that the —55 piece comes from the scalar graph while the 1 comes from terms
with the fermlon Green function. The diagram with pinch operator does not

contribute in this case.

4.6 Worldgraph Approach

As mentioned previously, it is desirable even for tree graphs to develop a for-
malism that does not require an identification of a worldline to which external
states are attached. Intuitively such a formalism would require one to simply
identify 1D topological spaces that connect the external lines. This idea is
very similar to string theory calculations and goes back as far as 1974 [58].
The main challenge for this “worldgraph approach” (following [59]) is the def-
inition of Green functions on these non-differentiable topological spaces (non-
differentiable because at interacting points it is not locally R'). Previously,
for multi-loops such Green functions have been derived by a combination of

one-loop Green functions and insertions: See [60] for review. Recently in [61] a
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Figure 4.4: The topological space for a three-point interaction

more straightforward way to derive multi-loop Green functions was developed
for scalar particles using the electric circuit analog. (A similar approach was
used in [59].) Since fermion Green functions are related to bosons through
a derivative (up to additional terms due to choice of vacuum or boundary
conditions), what remains is to consistently define derivatives on these 1D
topological spaces. We will use tree graphs as our testing ground.

Consider the three-point amplitude: One has only one graph, fig. .
The arrows indicate the direction in which each 7; is increasing. For scalar
fields it was shown [61] that the appropriate Green function is proportional to
the distance between two insertions; for the 3-point graph this is taken to be
—3(7i + 7).

To define derivatives, one notes that they are worldline vectors and there-
fore must be conserved at each interaction point. This leads to the conclusion
that if we denote the worldgraph derivative on each line as D(r;), for the

three-point graph they must satisfy:
D, +D,,+D,, =0 (4.54)

This can be solved by defining the worldgraph derivatives as follows:

D, =0, -0, (4.55)
D., =0, — 0,
D., =0, — 0.,
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There is another solution which corresponds to (counter-)clockwise orienta-
tion. The choice of orientation can be fixed by matching it with the color
ordering. Since the derivative is a local operator, its definition will not be
altered if the three-point graph is connected to other pieces to form larger
graphs. The fermionic Green function then follows from the bosonic by taking

1 as a worldline scalar and ¢ as a worldline vector:

Gr(7i,75) = (W(r)Y (1)) = 2 D7 X (1) X (7)) (4.56)

Armed with these two Green functions we can show how the three-point am-
plitude works.
3-Point Tree

For the three-point tree graph fig. we start with:
A; = <V(3) (73) Ve ( )V (Tl)> (4.57)
=<kw®<ﬂ[w@vﬂ[m@vﬂ>

(W )] [ ] [ ]
F( ] (W7 ] [ ]

Now the worldline derivatives in W; are replaced by worldgraph derivatives
defined in eq. (4.55)) and they give:

(ier Dr X ()l X1y — (e - k) (4.58)
<¢62 D, X ()ellZin ki'X<ﬂ>]> — (&3 k1) (4.59)
iy Do X (rg)el XY — (e k) (4.60)

The fermionic Green functions are (with Fi; = (4(7:)0(7;))):

Fiog = -1, Fyy=-1, F3 =-1

(4.61)
For =+1, Fzp=+1, Fiz3=+1
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Using the above one can compute eq. (4.57)). The first term becomes:

Asor = ([eWr(7)] Wi (72)] Wi (7)) (4.62)
= —ezae2c1a(c[iDX® + (V" — P ) kg)ry [V00© + U7,
x [y 4 3], ik X ik Xng ik Xy
= —egcera([—(es - ka) + (V9 — P"P")esaka]-,
X[ (12) (1) + ¥ (2) 9% (1))
= 2(e3-ko)(e2-€1) +2(ex-ky)(es-€1) +2(er - k3) (€2 - €3)

A similar derivation gives the second and third terms:

Ao = (Wi (73)] [cW1 (72)] Wit (71)]) (4.63)
= 2(eg-ka)(ea-€1) 4+ 2(e - ky)(e3 - €1) +2(e1 - k3)(ea - €3)

As—s = (Wi (73)] W (72)] [cWr (1)])
= 2(e3-ko)(ea-€1) +2(ea-k1)(es - €1) +2(e1 - k3)(€a - €3)

Note that the three terms are the same, which respects the symmetry of the

graph.

4.6.1 4-point Tree

For the 4-point amplitude we have two graphs (s channel and ¢ channel, see fig.
(4.5))) constructed by connecting two three-point worldgraphs on a worldline.
The worldline in the middle is actually a modulus of the theory, and one must
insert a b ghost. We focus on the s-channel graph; the t-channel graph can

later be derived by exchanging the external momenta and polarizations in the
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Figure 4.5: The two graphs for the four-point interaction

s-channel amplitude. We wish to derive

Ay = / oodT<V(4)(7’4)V(3)(Tg)b(T)V(Q)(TQ)V(I)(71)>

- [ ar
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+ + + + o+
S
e
—
2
S—
alc
—
3

— N
(wpl
/N TN TN
~
S—
=
s
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3
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(4.64)

First we address the Green functions. As in [61] the bosonic Green function

is still —%L, where L is the length between two fields. Thus it is the same as

in the three-point case, except that when the two fields sit on opposite ends of

the modulus, one needs to add the value of the modulus 7. The worldgraph

derivatives still act the same way, since the definition is local, irrespective of

other parts of the graph. This gives the following result for the s-channel

graph:
<i€1 ' DnX(Tl)ei[Z?:lki.X(m]> = —(e1 - k2)

<i€2 : DTQX(T2)61[Z?:1 ki'X(Ti)]> = +(eg - k)
<i63 : DT3X(T3)€i[Z?:1 ki'X(Ti)]> = —(e3 - ky)
(ies- De X (r)e R BN = (e k)
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The fermionic Green functions are again more subtle. There are two types,
that for bc ghosts and that for the 7). First one notes that on the modulus,
which is a worldline, both Green functions should be a step function, as ex-
plained in section IV. This is sufficient for the b, ¢ ghosts. For 1)1, since they
can contract with each other on the same three-point graph or contract across
the modulus, one must take the combined result: For contractions on the same
three-point graph the rules are just as eq. , while for contraction across
the modulus one multiplies the two Green functions on the two vertices with

one from the modulus. For example, in the s-channel graph fig. (4.5):

(U(r)Y(7s)) = (V(r)e(rr)) (W (r)Y(73)) O(T) = —1 (4.69)

As one can see, the contraction across the modulus is broken down as if there
were a pair 17 on each end of the modulus, contracting with the vertices
separately, and a final step function due to the fact that the modulus is a
worldline. (We choose the left time to be earlier.) We now list all the relevant
Green functions for the s-channel graph. The Green functions for the bc ghosts

are

{e(r)b(T)) =1, {e(m)b(T)) =1, (c(13)b(T)) =0, (c(ma)b(T)) =0
(4.70
and the Green functions for the 1) are (recall that we have defined F;

(W (7)y(73)))

Fio =41, Fn=-1, Fz=+1, Fpz=-1
Fos=+1, F3=0, Fu=+1, Fu=-1 (4.71)

Equipped with the Green functions one can compute eq. (4.64). We do the

bc contractions first. Each term has two such contractions; using the above
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Green functions we see that the second and last terms cancel. We then have:

00 — cWI(4) Ty
Ay = dT’ (4.72)
0

Expanding out all possible contractions and implementing the Green functions

and noting that

(DX (n)DX(73)) = =26(T), (DX(72)DX (1)) = —26(T)

(4.73)
(DX (r)DX (1)) = +20(T), (DX(r)DX (1)) = +25(T)

With these Green functions in hand we arrive at the following s-channel am-

plitude:
i +3 (€1 -€4) (€2 €3) — 3 (€3 -€4) (€1 - €3) — (i + %) (€1 - €2) (€4 - €3) i
g + (€2 - k1) (€a - k3) (€1 - €3) + (€1 - k2) (€3 - ka) (€2 - €4)
Ays = s (€1 - k3) (€2 - ky) (€3 - €4) + (€4 - k) (€3 - k1) (€1 - €2)
- (61 ) k‘2) (64 ) k‘3) (62 ) 63) - (63 ) k‘4) (62 : k’l) (61 ) 64)
| — (€1 ka) (€2 - ks) (€3 - €4) — (€5 - k2) (€4 1) (€1 - €2)

(4.74)
A similar calculation can be done for the t-channel graph, and the result is
simply changing the labeling of all momenta and polarizations in the s-channel

result according to:

(4.75)

=W NN = ®»
Ll
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We arrive at:

(4.76)

Adding the two channels again gives the complete 4-point amplitude.
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Chapter 5

Off-shell superspace

5.1 Introduction

N=4 super Yang-Mills is the simplest four-dimensional quantum field theory in
terms of properties relating to symmetry, finiteness, vanishing of amplitudes,
resummation, etc. However, there is still no tractable formalism for calculating
its amplitudes that directly incorporates these features.

Up to now we have explored the structure of N=4 SYM on-shell amplitudes.
In order to efficiently explore the quantum properties of this theory, it is
desirable to have an off-shell formulation. From the light-cone superspace
formulation studied in previous chapters, one sees that the physical degree of
freedom only requires a quater of the spinor variables of the full superspace(one
only needs the chiral superfield to contain all the on-shell degrees of freedom).
This is done non-covariantly in light-cone superspace by going to the light-
cone gauge. Thus the crux of obtaining an off-shell formulation is to find a
covariant way of truncating the full superspace to a subset in which it contains
only half of the fermionic coordinates.

Approaches (for maximal supersymmetry) that incorporate the full off-shell
supersymmetry manifestly prefer the ten-dimensional theory (the d=10 N=1
introduced earlier), showing no advantages unique to four dimensions: (1)
Pure spinors [62] have complicated loop insertions (related to picture chang-
ing) that resemble BRST operators. (There is also the related problem of the
lack of a gauge-invariant classical mechanics action, and thus of the usual b

and ¢ ghosts.) (2) The use of a ghost pyramid of spinor coordinates [63] has
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a BRST operator (following from an infinite set of constraints) that becomes
complicated in the presence of a background (although it can be simply trun-
cated in applications so far), and its viability at higher loops is still being
investigated.

Although a complete formalism exists for describing 4D N=2 renormaliz-
able quantum field theories in N=2 projective superspace [64] (which, however,
could stand some further elucidation), little has been done for the N=4 analog
at the interacting level. (There is an N=3 harmonic formulation [65], but no
amplitudes have been calculated with it. Recently, a modified N=4 harmonic
superspace has been proposed [66]; however, it failed to obtain the correct
propagating degrees of freedom). In the harmonic construction, the harmon-
ics are elements of the coset (G/H) of the R symmetry group SU(N) and are

used to project out a subset of fermionic derivatives (dy) that closes
{dﬁ, dﬁ} ~ dlg or 0

such that the prepotential depends on half the superspace dyV = 0(this is
sometimes called Grassmann analyticity condition). Since the local subgroup
H usually has U(1)s, the measure acquires specific U(1) charge. In the case
for N=4,3, one has so far failed to construct an action with the correct charge
that cancels the measure(either the action has the wrong charge or an action
with the right charge but wrong degrees of freedom).

Here we present the ingredients for a new formulation of this theory based
on N=4 projective superspace [67, 68]. The basic idea is instead of us-
ing harmonics to project out the analytic fermionic derivatives, one takes
fermionic coset. (That is, one includes some of the fermionic generators in
H, as in chiral superspace). The coset is based on super anti-de Sitter coset
OSp(4[4)/0Sp(2]2)%. The global group is (anti)symmetrized subgroup of the
original superconformal group SU(4|2,2), thus the superconfomal transforma-
tion is obscured, however it is due to curved nature of the global group the
makes it possible to define this coset in a SYM background.

In this chapter [69] we set up the ingredients for either first or second ap-
proach. We introduce projective superspace based on both the superconformal
and the super anti-de Sitter group. We discuss the construction of constraints

using suitable group generators, and proceed to solve them for the simple
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N=0 case. A simple set of first-class superconformal (super AdS) constraints
for first-quantization of the superparticle (based on an earlier description for
AdS5® S5 [70]) will be given and results in a simple BRST operator. There is
a supersymmetric ghost “tower” (but not a “pyramid”) for all the coordinates.
Projective superspace is found as a first-quantized (partial) gauge choice. It is
both a (partial) unitary gauge, in that it eliminates constraints and their corre-
sponding ghosts, and a covariant gauge. The projective superspace formalism
for N=4 Yang-Mills is derived by the corresponding truncation from the full
superspace, which is possible only with projective superspace. We show how
four-point amplitudes are simpler in projective superspace than chiral. Finally
we will discuss the second quantization in this space, by introducing new field
strengths to this theory, one can show that the Bianchi identity no longer puts
the theory on-shell, and one arrives at an action possible for off-shell quanti-
zation. The new fields strengths basically breaks the self-duality relationship
among the original scalar field strengths.

Note that the simplest expression for the 4-point amplitude kinematic fac-
tor (and thus presumably the amplitude to all orders, after including the usual
scalar loop factors) in normal (super) spacetime (or its conjugate momentum
superspace), as opposed to supertwistor space, is in projective superspace [71].
(We will present a new derivation of this result from supertwistor space below.)
This is due to the fact that the projective superfield strength is a scalar, while
the chiral superfield strength, as follows from chiral supertwistor space (which
is geared for MHV amplitudes), is a tensor, whose chirality holds only at the
linearized level. This suggests that a projective formulation, at the (interact-
ing) first- or second-quantized level, would provide the simplest derivation of
this result. Also, being in spacetime as opposed to twistor space, it would

directly allow an off-shell extension.

5.2 Superspace for superconformal symmetry

Assuming one successfully construct a first or second quantized theory that de-
scribes N=4 SYM, the large spacetime symmetry of this theory(superconformal)
implies that one should be able to write the resulting amplitudes in a space

where these symmetries are manifest. Thus one can instead first look for such
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a space and then try to construct a first or second quantized theory in it.
Since the superconformal group in 4 dimensions is (P)SU(2,2|N), one would
anticipate that a suitable superspace would arise as some coset or coset of a
subgroup of this group. We would also like to have a natural truncation of the
fermionic degrees of freedom to half of the full superspace. Combining these
reasons leads us to a “Projective Superspace” [67, [68, [72]. Most of its simpli-
fications follow from the fact that its coordinates are conveniently arranged in
a single matrix.

There are various ways to arrive at this space, here we begin with a half-
coset description in which the coordinates appear in a square matrix and
therefore superconformal transformations are straightforward. Later we will
introduce an alternative derivation, more useful in constructing first class con-
straints for first quantization, which is based on the super anti-de Sitter group.

We start with the group U(2,2|N) which is a square matrix with extra

U(1)’s in comparison with the usual superconformal group. Then one defines

U(2,2|N)
TN —n)U(L1n) thus

the extra U(1)s cancel, (ii) choose a U(1) generator in the isotropy group and

a half-coset of this group by (i) first taking the coset o

divide the U(2,2|N) generators into those with positive, minus or vanishing
eigenvalue (G4, G_, Gy.) (iii) restrict to only the G generators. In a sense
we’ve mod out Gy and G_. We label this half-coset by O] U(2.21V) We

N—m)U(L1n)+"
write the U(2,2|N) coordinate as follows

M=y, g MEmm
.M , M = fi, m’
A
A A A A=a,a
7 A =a,d

The global superconformal group acts on M while the isotropy group acts on
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A.l One can now decompose a general U(2,2|N) element as
o ZaM ZyM O\ [T ow u 0 I 0
A B ZA’ M ZA’ M B 0 I 0 o w 1
f u+t vu'w  vu
B u'w u

Then the half coset correspond to using G_ and Gy to gauge away the v
and u, u' coordinates respectively. One is then left with the w coordinates
which can be represented by taking a rectangular part of the original matrix

ZaM= (Za™M, ZpyM ') and define it as a fraction of the original coordinates:

/ T O M
wMIN:(ZA/M)—le/N:<y_ )

0,m™  xu"
w is an (n|2) by (N — n|2) matrix for the case of N supersymmetries, where
“n” indicates their “twisting”: n = 0 (or N) describes (anti)chiral superspace.
Since pu, ft = 1,2, one always result in 2N spinor coordinates corresponding
to half of the fermionic coordinate of the full superspace. Thus one naturally
achieves the goal of truncating the fermionic degrees of freedom in half. The
case n = N/2 describes the preferred superspace, which allows a type of reality
condition because this matrix is then square, satisfying a form of hermiticity.
In this case for N=4 one has m,m’ = 1,2, then besides the usual 4 space
time coordinate z, there is an equal number of #, # and 4 internal coordinates
y. Unfortunately using this type of coset gives second class constraints and
quantization is difficult. This will be remedied by introducing another coset
at the expense of manifest superconformal symmetry, however the resulting
coordinates are the same thus one can still hope for manifest symmetry for
the amplitudes.

Alternatively one can start with elements Z4 ™ and Zy“ supplemented

by the constraint Z 4 MZy¢4 = 0. The general solution can be written as

Z.A/M = u'(w, ]), Z,MA = ( ! > u (51)

—w

M is also separated into M and M’ so that one can easily read where the coordinate
sits in the matrix just by reading the indices.
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one arrives at the same result.

Since Z transforms linearly under the (P)SU(2,2|N) superconformal group

a c¢
gy M = b od ) transformations for w is then represented as a fractional

linear transformations:
w' = (we + d)”"H(wa + b)

or the equivalent
w' = (aw + b)(éw + d) ™

in terms of the (P)SU(2,2|N) group element

. —1
a ¢\ d —c¢
bd) \ -b a

or in linearized form as

ow = a+ fw + wy + wew

Superconformal invariants can then be constructed by taking superdetermi-
nants of w (or multiple supertraces since sdet(eM) = est™M).

Charge conjugation for the w coordinates can be easily defined once it is
defined for the Z coordinates[68]. The goal is to find a conjugation operation
CZ such that the conjugated coordinate transforms the same way as Z under
the superconformal group. Using (pseudo)unitarity of the group element one

has CZ = Z7H7Y since
2 =29 — (C2) = (Z) MY = (2) Mg 1T = C2g (5.2)

Where T is the (P)SU(2,2|4) metric. Then Cw transforms

e W wm
—z’CO‘ﬁGB byl:l @ CO‘B(SL’BB — 95 byl;l b 0y B)Cga

The superconformally invariant (4D extension of the Hilbert space) inner prod-
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uct is then

(AIB) = [ du(@A)(w)Bw) = (BlA)

for any A and B that transform as half-densities
dw'[A'(w)]? = dw[A(w))”

where CA, which transforms in the same way as A, is defined by the relation

of complex conjugation to charge conjugation in the above inner product,
(€A)(w)[det(y)] "D [A(Cw)]', str(I) = N 2

This superspace has various descriptions in terms of cosets [67] or related
projections [68, [72]. A manifestly superconformal description is most natural
in a projective lightcone formalism [68, [72]: In that approach, one would
start with the coset of the superconformal group with respect to a classical
(isotropy) group, and take a contraction of the latter (“projective lightcone
limit”), which makes some of the original coordinates (including one from
spacetime) nondynamical. Unfortunately, the interpretation of the resulting

action remains unclear.

5.3 Super anti-de Sitter

Here we present a new approach: We first formulate the first quantized theory
in the full group space(the isometry group), that is we define the constraints
using covariant derivatives of the full group. As the isometry group we choose
the super-anti de Sitter group (in four dimensions). We then choose first-
quantized gauge conditions, which corresponds to the isotropy group. The
isotropy group is the super-anti de Sitter group in one lower dimension (three),
up to questions of signature. (Some Wick rotation is involved, since we re-
ally want 3D de Sitter symmetry, not 3D anti-de Sitter, to get anti-de Sitter
space SO(3,2)/SO(3,1), but only the anti-de Sitter symmetry can be super-
symmetrized. This Wick rotation leads to modified reality conditions, which
always occur in projective space [64, [68].) Although the manifest symmetry is

only super-anti de Sitter, the superconformal invariance of super Yang-Mills
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in D=4 guarantees the result is directly applicable to flat space. (Pure spinors
have also been used to describe 4D N=4 Yang-Mills in super AdS, but using
the maximal bosonic isotropy group [73])

Thus the “full” superspace of the isometry group is reduced to a projec-
tive coset which is represented by the w coordinates we discussed previously.
This approach has the advantage that before gauge fixing the super Yang-Mills
background can be constructed with covariant derivatives, which require the
full superspace in order to incorporate all the physical field strengths, while
after gauge fixing the theory can be quantized using just projective super-
space, which is all the super Yang-Mills prepotential should require. The fact
that our SYM theory is defined in a space that arises from a partial gauge
fixing of the larger space mirrors the fact that the action for the N=2 vec-
tor multiplet in harmonic superspace is nonlocal in the internal coordinates,
this is analogous to Coulomb-like interactions suggesting such spaces are the
result of partial gauge fixing from larger superspaces with local actions. As
discussed previously, reduction of the number of fermionic coordinates is useful
for quantization because only one quarter of those of the full superspace are
physical; any unphysical coordinates must be canceled by ghosts. However, in
such spaces nonrenormalization theorems are not obvious.

The relevant cosets are then

OSp(N[4)
OSp(n|2)OSp(N — n|2)

which can readily be seen to yield the rectangle of coordinates given above.
(This isotropy group was also found in the projective lightcone approach. The

case n=0 of this coset, namely 5 OSp(N[4)

e S Was used in [74] to describe self-

dual supergravity).
We can also take a contraction of the isometry, a graded generalization
of the contraction used to obtain the Poincare group from the anti-de Sitter

group: In terms of the algebra

[H,H} = H, [H,G/H} = G/H, [G/H,G/H} = H
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we simply drop the right-hand side of the last equation?. The result is

1[OSp(n[2)OSp(N — n[2)]
OSp(n|2)OSp(N — n|2)

where the “I(nhomogeneous)” part is just translations with respect to the
coordinates of the rectangle described above. The coset is now Abelian, and
consists of the usual “supertranslations” of the projective group: spacetime
translations(pag ), half of the supersymmetries(mya, o), and part of the R-
symmetry(t,. ). However, although the part of the isometry group acting
on Lorentz (spinor) indices is just the Poincare group, the full group is not
the super Poincare group, because the isotropy group is unchanged: The last
consists of the Lorentz group, a subgroup of R-symmetry, and the sum of the
other half of the supersymmetries and the corresponding S-supersymmetries.
So we have the usual flat spacetime, but not the usual flat full superspace.
Since the coset space is our projective superspace on which our superfields
depend, while the isotropy group is the tangent space®, this means in the
contracted case we have a flat (and torsion-free) coordinate space with a curved
tangent space, the opposite of the usual.

We will use both these cosets below (more or less simultaneously, since it’s
easy to see how to contract the former to the latter). Both isometry groups are
subgroups of the superconformal group. Before going to the coset we first show
how constraints can be constructed in the full group space. This is a general
discussion, for readers only interested in the construction for N=4 SYM, one

can skip directly to the next section.

5.4 Groups without cosets

5.4.1 Constraints

All the constraints we consider in the following sections are first-class, thus

the first quantized actions are of the form

S:/dTL, L:—?}apa+)\i9i

2This can be done by multiplying G/H by R and taking R to co
3For the usual superspace, the isotropy group is the Lorentz group
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for superspace coordinates z and their conjugate momenta p, and constraints
G and their Lagrange multipliers \¢, all as functions of the worldline parameter
T.

For reasons mentioned above, we define our “full” superspace as the entire
supergroup space, rather than just a coset. The free field equations of the
theory are expressed at the first-quantized level as constraints quadratic in the
group generators. (This is “dual” to writing them in the same form in terms of
covariant derivatives.) We begin by reducing the (symmetrized) square of the
generators: The three general (finite-dimensional) cases are for superconformal

in D=3,4,6 (or 1 more dimension for super-AdS),

OSp(N|4) : <H®H> = E ® DI ]® »

(P)SU(N2,2) : (mxmz) U e e -

OSp*(8]2N) : @@H\ - e E &[] e

(OSp has a real defining representation, OSp* has pseudoreal; thus the former
has bosonic subgroup SO(N)Sp(4), while the latter has SO*(8)USp(2N).) In

each case we have listed the 4 irreducible representations in the following order:

e (1) nonvanishing on shell, most symmetric in spacetime spinor indices;

e (2) vanishing for superconformal only, most antisymmetric in spacetime

spinor indices, includes flat Klein-Gordon;

e (3) vanishing for both superconformal and AdS, single supertrace, in-

cludes Pauli-Lubanski;

e (4) vanishing for both superconformal and AdS, double supertrace

(Casimir, with a dot for its singlet tableau), AdS Klein-Gordon.

We use graded symmetrization, so “symmetric” in the tableaux means
symmetric in the former label of the group, since in the first and last cases that

has the symmetric metric. For the cases of interest in D=4, this means that
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R-indices are considered as bosonic, and Lorentz spinor indices as fermionic,
for purposes of sign factors from reordering indices. So, e.g., str(My®) =
+M* 4. For the unitary case, dots in boxes refer to the complex conjugate
representation; ordering of the dotted block with respect to the undotted block
is arbitrary. In the cases where the ranges of the bosonic and fermionic indices
are the same (N=4), supertracelessness is undefined (str(I/) = 0), so the 3rd
constraint implies the 4th, and the 3rd is implied by the 1st (for the latter 2
cases) or the 2nd (for the former 2 cases). By “vanishing”, we mean up to
constants, for the case of vanishing superhelicity. (Nonvanishing superhelicity
can be described by introducing “spin” operators, in addition to these “orbital”
ones defined in terms of just the supergroup coordinates.)

To see that this classification of (quadratic) constraints is consistent with
the usual identification of the superconformal mass shell, we evaluate them in

the supertwistor representation, which exists for D=3,4,6: The generators G

in terms of the supertwistors ( are

D=3 :Gup= [CA: (s}, {Ca, (8] = nas
D=4: Gy = oA G}, {CGa] = 5% h:lcﬁéﬁ}

D=6 :Gup=— CA,Caqs} {CQA,beB Capnas, hab— CbA}
(5.3)

with indices A, B in the defining representation (and defining SU(2) indices
a, b for D=6), where h is the superhelicity (generating the little group U(1) for
D=4, or SU(2) for chiral D=6), which is set to vanish in our case. (For D=4
we have given the U(N|2,2) generators; in coordinate representations, only
(P)SU(NJ2,2) need be defined. Note that twistors are essentially ~-matrices
for OSp, or creation/annihilation operators for U, satisfying graded anticom-
mutation relations; thus the bosonic ones anticommute with the fermionic
ones.)

Substitution of these representations into the corresponding constraints
numbers 2,3,4 above shows they vanish up to constants for vanishing superhe-

licity, and do not vanish for number 1.
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Once the correct constraints have been identified, it’s more convenient (for
purposes of applying isotropy conditions or coupling background fields) to ex-

press the constraints in their dual form in terms of (free) covariant derivatives

(é—>d)

5.4.2 N=0

For the case N=0, we can examine arbitrary dimensions, with the generators

carrying vector indices; then we have

SO(D,2) : fE@H)S o[ 1% E D e

(The ordering is as above, but the roles of symmetry and traces have changed.)

We now outline the solution of the constraints. In the conformal case, the

constraints are, in terms of SO(D—1,1) indices,

2 p?

1 S " P, +wh,, Stmn Py

0 S PSpn + K Ppy — tr WSmn + K Py

0 S’+(D+1)uw?*+(D—-2)K-P StmnSpq] %SQ —w?—-2K-P
-1 S "K, —wk,, Simn Iy
—2 K?

for momentum P, spin S, scale weight w, and covariant derivative for con-
formal boosts K. The dimension-2 constraint allows us to choose a lightcone
frame to make the analysis simpler. The dimension-1 constraints then imply
S = w = 0 (assuming the momentum is not identically 0). The surviving
dimension-0 constraints then imply K = 0. So we are left with a massless

scalar.
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In the AdS case, in terms of SO(D,1) indices, we have

E

S [mnP ]
S [mnP ]

We again find S = 0, describing a scalar.

5.5 AdS, supergroup space

5.5.1 Constraints

We now examine the constraints in more detail for the cases of interest for D=4:
(P)SU(N]2,2) for superconformal, and OSp(N|4) for super-AdS. Conveniently,
D=4 is the only case for which there are classical supergroups for all N that can
be applied for both superconformal and super-AdS. As a result, a supertwistor
analysis can be applied for super-AdS as well as for superconformal (using the
same supertwistors).

For the superconformal group we find from the analysis of the previous

section, substituting the supertwistor expression,

. R A 1
superconformal 5 ®[ Je] @ e 1 Gup D = G(A(CG@] - §5A e593] P=0

The Kronecker d term can be considered as arising from “normal ordering”.
Note that these constraints, with all indices uncontracted, have large amount of
redundancy and thus implementing quantization leads to complicated ghosts
structure that was the main reason previous attempts of first quantization
failed.

The constraints for the AdS case are a subset of (a linear combination of)
the superconformal ones, because the OSp(N|4) generators themselves can be
derived from (graded) antisymmetrization of the (P)SU(N|2,2) ones:

A

Ga® — Gas = G nes)
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where 7 is the graded-symmetric OSp(N|4) metric. Consequently the maximal
subset of the above constraints that can be expressed in terms of OSp(N|4)
generators requires a supertrace on the indices of the above constraints, in

agreement with our previous analysis:
super — AdS [T ]de : GSus = Gy GG@‘rB) + str(I)nAB =0

The superhelicity is again required to vanish. (Note the “anomalous” 7 term
vanishes for N=4.) Similar constraints were proposed previously for the (10D)

superparticle on AdS ;®S® [71], using the superconformal isometry group.

5.5.2 Lightcone gauge

The constraints are most easily solved in a lightcone-type decomposition.
First, it’s useful to identify how the constraints relate to the more reducible su-
perconformal constraints. It will only be necessary to look at those constraints
that do not include terms with covariant derivatives corresponding to confor-
mal boosts and S-supersymmetry, since those constraints can be applied to
arbitrary massless representations of supersymmetry [75], of which the mini-
mal representation appearing in first-quantization is a special case. (So the rest
are redundant, at least after choosing conformal boosts and S-supersymmetry
as the isotropy group.) Separating out the PSU(N|2,2) indices as A = (a, a, &)

(where a = (a,d’)), those constraints are

A= §GasMCCy = P**Pad
Baa = %gaa 756’57 - Pa O.é'ﬁ-ao'z
@ac’x = %gaﬁ ao’zcﬁa — pac’vﬂ.a N
eozd = gagBd = S Bpﬁd - S’dﬂ-paﬁ - Wgﬁad
Ol e = Gan = o "p 4 7P o
GX ab o = gaﬁ ab — T aﬂ.b 5
e)’(,ab &b = gab &b - Ta dﬁ'b s
D¢ = %(Qwﬁmréaﬁ-dﬁ) = Saﬁpgd+§d5paﬁ'+wpad

where we have labeled the constraints as in [75]. Note that in D=4 the Pauli-

Lubanski equation € is equivalent to the D constraint in the presence of the
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B constraint and the Klein-Gordon equation A.
We now compare these to the OSp(N|4) constraints: In terms of covariant

derivatives of the isometry group

tab ,Naﬁ ,ﬁ_aﬁ’
dA'B _ _ﬂ.ba Saﬁ paﬁ

_ zba pﬁa gaﬁ

we have

0= 9/13 = dﬂedﬁ'DnDe —

tacgb c+ 3 b ~+ Fay b g tacnh c — Y §P v T’ra';fpﬁ 4 tacﬁB c — 7ra“/p5 y = ﬁaﬁgﬁ 4
C racqB ¢ — Sy g8 5 - pa"ypﬁ 5 ﬂ.aCﬁ.,Z? . — S"Wp? Y- pa’ygﬁ' 4
. ozl — p&rph y = S’dﬁgﬁ;y

7  paB RS
~| ... coBa ees (5.4)
. CaBA

13 b

where is proportional to the transposed element, “~” refers to extra
terms, and we have ignored symmetrization of indices, which produces terms
linear in generators. Note that extra signs from reordering of super-indices are
implicit: For example, in the supertrace of indices in the definition of the OSp
constraints, there is a factor of (—1)®?, which is —1 if both indices are Sp(4)
and 41 otherwise, because supertraced indices belong next to each other. (We
could also just use the graded symmetry of the second d factor, but we want
to use notation that applies to the general case, where d has no symmetry.)
The constraint “?” will be found to be the square of the lightcone part of the
C;ne constraint.

To analyze these constraints it’s instructive to look first at the case N=0:
In the superconformal case, we can solve the A constraint as usual. The €
constraint is then the usual Pauli-Lubanski equation for vanishing helicity: We
can thus set the spin operators S** and S48 t0 vanish. (The components of
the spin not explicitly set to vanish by this equation do not appear, and so can
be eliminated from the theory by unitary transformation, or equivalently by a
gauge condition for the gauge transformation generated by this equation.) The
D constraint does the same if we set the conformal weight w = 0: It’s the same
as the Pauli-Lubanski equation except for a (Hodge) duality transformation

on the spin (and in general also switching helicity with conformal weight). The

85



AdS case is similar except for the extra terms in A; but these drop out after
solving the Pauli-Lubanski equation.

We then choose a lightcone Lorentz frame

oy p+ O
p = _
0 p

For general N, the A and B constraints are used to solve for p_;, and 7,
and 7, as usual. The € constraint then determines S*° and S%. (Again

a D constraint is unnecessary.) Now the ? constraint will perform a similar

function for ¢,,: After plugging in the solution for 7, and 7?: , it becomes

7?ac{b =0 t~ab — tab o iﬁ_a—i-ﬂ_b—&—
C I p+

t*> as proportional to the superconformal G2+ Since the in-

We recognize i

ternal space is compact, the vanishing of the square of this operator implies its
own vanishing. (In particular, we see all the Casimirs of these modified group
generators vanish.) Thus the AdS constraints are equivalent to the larger

superconformal set: They yield the supertwistor representation.

5.5.3 Constructing the BRST Charge

Isotropy constraints (really gauge conditions) are expressed in terms of co-
variant derivatives (since they preserve the global symmetry), so from now on
we also represent the quadratic constraints (field equations) in terms of them,
also. (The supertwistor representation of the previous subsection applies only
to the group generators.) The covariant derivatives are again a subset of those
for the superconformal group. The explicit form of the latter has been given
previously; we won’t need them here (only their algebra).

In matrix notation, these constraints are

dnd" =d"'nd =0

“I'). The most interesting things about these con-

(for graded transpose
straints are that: (1) Their index structure is that of a matrix, as for the

covariant derivatives d themselves, except perhaps for the symmetry on their
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two indices: for example, the covariant derivative d*” is anti-symmetric in its
two R indices while the constraint ¢*t? . + 777", + 77" is symmetric in
the two R indices. (2) These constraints are reducible, the index structure
for their reducibility condition, and the reducibility of the reducibility condi-
tion etc, are also just a matrix. Therefore ghost for the constraints and their
reducibility condition have the same structure.

In the present case d is graded antisymmetric on its 2 indices. We then
have

d" =—d

(dnd)" = +(dnd)

The constraints are written as §; = dnd = 0. Then the reducibility conditions

are

G =dnG; — Gind = +9§ =0

93 = dnSGs + Gond = —93T =0
etc., where the sign for the symmetry of G, alternates as —++——++——...
. Explicitly, with Gy = d,

Gni1 =dnG, + <_1)n9n77d = (_1)71(“_1)/295“ =0

Using this construction for the BRST operator, and including terms for closure
(Q* = 0) leads to the result that the complete minimal BRST operator can
be written in the simple form (matrix multiplication with metric, and trace,

implied)
Q=Y Cusnpibmbn + f...

m,n=0
where the indices label the ghost generation,
bp=d
while higher generation of b represents the reducible constraint, etc. We have

Cp = —(=1)" D2l
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and similarly for b while “f...” denotes structure-constant terms. (We won’t
need those for the contracted projective case since the group is abelian.)

No nonminimal degrees of freedom are needed; we can choose a “temporal”
gauge for the first-quantized gauge fields, as is standard for D=1 and 2 (because
it doesn’t break worldsheet or spacetime Lorentz invariance). Thus, there is
only a (“1D”) tower of ghosts [72] (for all of x, 6 and y), as opposed to the
(“2D”) pyramid of ghosts (for just €) for the approach of that name.

5.6 N=4 projective superspace

5.6.1 Projective gauge

In the previous section we analyzed the first-quantized theory on shell by
simultaneously solving all the constraints explicitly and choosing a lightcone
gauge for the symmetry generated by the constraints. We can instead solve
a subset of the constraints and choose their corresponding gauges in such a
way as to manifestly preserve Lorentz covariance. This can be achieved in a
way that is equivalent to completely eliminating some of the coordinates (a
subset of those eliminated in the lightcone gauge). Since the algebra of gauge
conditions must close, this is the same as choosing an isotropy subgroup. Then
the isotropy group can be used to reduce the original constraints, eliminating
constraints, or terms in constraints, that vanish off shell as a consequence
of the vanishing of the isotropy covariant derivatives themselves. This leads
to the coset construction discussed in (5.3)) which correspond to projective
superspace.

To treat these cosets, we again divide the range of OSp(N|4) indices in half
as

A=(AA)

for the two OSp(%]2)’s. In the original matrix (or rectangular) notation the
isotropy coordinates correspond to the us, thus the coset simply means that
we are dropping the u dependence. The constraints resulting from dropping
the isotropy covariant derivatives d,,, leaving just the projective ones d,,, will
have a similar form as before, but the indices will be reduced from OSp(N|4)

to (one of the) OSp(4[2): d, has the index structure d4*" and indices are
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then contracted with one of the OSp(%|2) metrics (or its inverse). Thus the

constraints for this coset are
P = (8, C), napr = Bar; Cg);

_ _ s 0 —2
Cog = Cy = —C°F = —C%0 = ( @' OZ ) (5.5)

(If we want to keep track of dimensional analysis, we can include a factor
of the anti-de Sitter radius 1/R with the Kronecker ¢’s, but being careful to
distinguish the inverse metrics, where R appears instead of 1/R.)

In the explicit form for the BRST operator (which takes the same form as
above, but with different symmetry for the matrices, as discussed below), the
algebra for d,, closes only on d,, so Q* = 0 modulo such terms. A separate
term to enforce d, = 0 can easily be added, along with the corresponding
terms for closure of the d,,d,, algebra on d,. (Similar remarks apply to adding
a Lagrange multiplier term for d, to the Hamiltonian.) Alternatively, we can
work just in the contracted coset space, and d, can be ignored altogether. If
we use the contracted coset, the d,, are simply partial derivatives with respect
to w (up to factors of isotropy coordinates u, which can be ignored upon
restriction to the coset space). To see that this gives the desired description

for N=4 SYM we solve it in the light-cone gauge.

5.6.2 Lightcone gauge again

First we write out the different Lorentz pieces of the constraints: In terms of
LA ta @ T
To® pa®
we have

G(ab) Gaﬂ ta altba’ + Tq dﬁ-bd la a/ﬂ-ﬁa’ — Tq apﬁo'c
SAB - = al &
Gab G[aﬂ] e Mo TBa' — Pa DPpa

(with the usual signs for a fermionic index interrupting the contraction of two

fermionic indices) and similarly for the complex-conjugate constraints GA'B',
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In particular we have, from G,3, §%,, and their complex conjugates,

P=r=7t= ¢

(plus one redundant equation).

From G%* and its complex conjugate we find

o1

. /7
™ = FZtaa T

i

—a

and its complex conjugate. (§~* and its complex conjugate are redundant.)

This tells us .
w2 = —+t“a/7ra+7r+a/
b

We then have, from the remaining constraint I',, and complex conjugate,

A 1A

taa lbar = tAaa’tAab’ =0

defining

R 1
taa’ = Zfaa’ - _+7ra+7r+a’

This expression is the independent piece of the constraint from the bigger
superconformal set,

padtaa’ — MaaTaa = 0

Since the vanishing of the square of a Hermitian operator implies the van-
ishing of the operator, we find
taa’ =0

(This is clear on the original coset, since the internal space is compact, so
there is no ambiguity in normalization of states. However, things might be
more subtle on the contracted coset.) The hermiticity of this operator follows
from the fact that it is a piece of the superconformal field equations, which can
be expressed in terms of group generators (instead of covariant derivatives),
which are by definition Hermitian.

It then follows that
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(t> = 0 does not imply t,. = 0, since ¢ is not Hermitian with respect to the
charge conjugation that defines the inner product.) So x dependence is de-
termined by the Klein-Gordon equation (as usual in the lightcone formalism),
y dependence is completely determined, and 6 dependence is determined in

terms of half the original 0’s, i.e., 1/4 of those of the full superspace, as usual.

5.6.3 Counting degrees of freedom

We can count the degrees, subtracting the constraint, adding back due to
reducibility, subtracting reducibility of reducibility - - -. This is equivalent to
counting ghosts. The results of for counting ghosts can be applied
directly to the 4D case by using OSp(N|4) indices, dividing their ranges in
half, and dropping irrelevant blocks. The ghosts for odd n both indices are

primed or both unprimed, while for even n we have mixed indices:*

_ T
{ Con+1,AB, Cont1,A/B Where copq1 = <_1)n62n+1

Con,AB'

Thus the symmetry has a cycle of 4, going as asymmetric, (twice) graded
symmetric, asymmetric, (twice) graded antisymmetric.
We can now count the naive effective number of modes for any of =, 6, y .

Infinite sums can be defined, e.g., by regularization:
—1 2 1
(1+2) :1—z+z—...el—1+1—...:§

We then have for each variable (remember w carries OSp(4|2) indices)

x (two Weyl indices) : 4—-2-144—-2-3+---
= (1141 —) At (l1—141—-).2
= 3=D-1

4For example the zeroeth level are the original constraints which have both primed or
unprimed indices. The first level correspond to the first reducibility condition, which are
d,, on constraints, thus have mixed indices.
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0 (one Weyl indices) : 2N —2N +2N —2N + - --
= (1-14+1—-)-2N

1
= N — ZOf full superspace

N MY N NN _q
y (no Weyl indices) : (—=)* —2 2 (5 + )+(_)2_2,2(2 )
2 2 2 2
= 1-1+1-"-) ENQ—(1—1+1— )-g
_ N(N-2)
a 8

where for z and y we have separated the sum into averages over symme-
try/antisymmetry plus the deviations due to either. The z’s (and p’s) have just
the “transverse” degrees of freedom D — 1, which in the equivalent ghost-free
lightcone analysis arise from the gauge choice z* = 7 (and p? = 0 eliminating
p~). This agrees with the usual scalar particle, which has just z and 1 ¢; but
here there are 2 (identical) constraints for N = 0, resulting in reducibility to
cancel 1. For § we also find the number of physical degrees, which is just 1/4
that of the full superspace. However, though the y’s have no physical degrees
of freedom, they do not cancel by this counting because they are eliminated
by quadratic constraints, not linear. (But note that net bosons and fermions
cancel for N = 4, as they do at each ghost level. Also, because of the grading
the x counting is just the N = —4 case of the y counting.) Interestingly, for
the case of OSp(n|2)OSp(N—n|2) with n # 1N the sum diverges for y, even

with the above regularization, giving an extra term —(n — $N)?(1 41+ ...).

5.7 N=4 super Yang-Mills

5.7.1 Covariant derivatives

We now consider the formulation of N=4 super Yang-Mills in this projective
superspace. We first note that it is difficult to define the projective superspace
in the half-coset approach starting from the SU(4|2,2) group. For a (half)coset
to be consistently defined in a SYM background, it must be consistent to define

the vanishing of the isotropy group once the covariant derivative is extended
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to include SYM connections d, — V,,, that is:
Vi, Vu} ~V,o0r0

For the half coset approach based on SU(4|2,2), the problem is [V,,V,} =
Fuu, [Vu, Vo} =V, + F,y et.c. The presence of field strengths in the SYM
background renders the definition of the half-coset inconsistent. We will show
that in the anti de Sitter coset, the coset can be defined in SYM background.

We begin by defining the algebra of the (gauge)covariant derivatives in the
“full” OSp(N|4) space. The algebra is simply the original OSp(N|4) algebra
plus the usual flat SYM field strengths. We need to start with the full super-
space in order to incorporate all the physical field strengths. Then we will see
that when separating out the isotropy sector of the algebra(the two OSp(2|2)s,
the algebra of Vs ), a redefinition can be performed such that the isotropy
constraint can be defined in the SYM background.

As is well known the usual flat algebra for the covariant derivatives of
SYM implies field equations for the field strength for N=3 and 4. This will
be also true for our case, and we will derive the field equations shortly. In the
first quantization point of view this is not a problem since from our previous
analysis in the YM case the nilpotency of the interacting BRST charge,
which is necessary for the construction of vertex operators, implies the field
equation for the background field. In fact in any linearized quantum gauge
theory in a background of the same gauge theory, linearized gauge invariance
of the quantum theory requires the background to be on shell [76], we will here
restrict ourselves to an on-shell background. However, this background is on
shell with respect to the full nonlinear field equations, which is sufficient to
construct the Feynman rules: For example, tree graphs can be derived from
perturbative solutions to the classical equations of motion. Thus, the existence
of this construction, combined with the off-shell formulation of the linearized
theory, should be sufficient to prove the existence of the nonlinear off-shell
theory.

In addition to the usual 4 spacetime and 4N anticommuting coordinates,
this full superspace contains also internal (bosonic) coordinates for not only
the AdS R-symmetry group SO(4) but also the Lorentz group. Of course,

as for (N=0) gravity in curved space, we treat the spacetime derivatives and
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Lorentz (spin) generators as separate, even though the Killing vectors of AdS
that generate SO(3,2) do not distinguish “translations” from “Lorentz trans-
formations”. This is fully consistent with the distinction between symmetry
generators and covariant derivatives, and thus the usual coset construction
for Sp(4)/Sp(2)? (“left” and “right” action on the group elements). What is
unusual here is that we introduce coordinates for the Lorentz spin, as well as
corresponding components for the Yang-Mills gauge fields. (The Yang-Mills
gauge group is still the same; it is only that it is defined over a bigger manifold.)
This is already done for R-symmetry, in projective and harmonic superspace.
The Yang-Mills field strengths in these directions vanish, and thus gauges can
be chosen where their gauge fields do also. However, in some cases it may
prove convenient to choose gauges where they do not, as in the usual N=2
harmonic construction [77].° An interesting example is the case of selfdual
Yang-Mills (f,s = 0), even for N=0, which is known to be analogous to N=2
projective and harmonic superspaces [64] [77]. In the lightcone gauge for this
theory, we separate the + and — components of the undotted spinor index
(but not the dotted one), then one can solve some of the selfduality conditions

as

[Via:Vis] =0— Vis =014, Ay =0
Vi Vo] =0iad g =0— A =0A
(5.6)
(where V = d 4 iA) in terms of some “prepotential” A__. But the solution

Vaa Vgg] = Caﬁfa/@ { [

of the second equation automatically follows from the first when we gauge the
Lorentz invariance; the prepotential A__ appears as the connection for the

Lorentz connection V__, then we derive the same result from the algebra
Vi, Vo | =V.4 — A s=0.4A -

Pure spinors are also related to (coset) Lorentz coordinates.

°In N=2 Harmonic superspace [77] the prepotential is the connection introduced for one

of the y coordinates in the coset SJJ((E))
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5.7.2 SYM Background

We first express the covariant derivatives in manifestly SO(N) covariant form;
their algebra is the obvious combination of the OSp(N|4) algebra with that
of the flat-space super Yang-Mills covariant derivatives (and hence their field

strength):

[Vab, Ved] ~lfafe] Vb))

[Vab: Vey] —Nfac Vby
{Vaa, Vis} ~Cos(Vab + Gab) — NabVags
{Vaa, Vit —Cis(Vab + Gab) — 16V 4
{Vaa, Vi) —NabV o

[Vas, Vi) Clon Vig)

[Vaa: V.4 Cor (Vg +W,5)

[Vada Vw'a] = Caﬁ'(vav + Wav)

Vas: Vo5l = ClayVipys

[vaﬁ7 va] = ch(vgp + fﬁ'p) + Cg‘p(vav + fav)

Ve Vil = CasViyp

Using Bianchi identity on this algebra relates different field strengths
[Vab, $ed] = —Tjafc|Pb]jq)
VS, 6] = 3Wy

{Via Was)} —8fag
(5.7)
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For N=4 they imply self-duality for the scalar field strength as well as field
equations for the other field strength

Self — duality ¢*® = %eadegde
Vo Wa®] = [dar, WP o] = 0
. 1 _ _
[va ﬁ’ f%g] + Z[¢ab> [va‘yv ¢ab]] - {Wb s Wb"y} =0
[v7ﬁ7 [v757 (bab]] - 2{Wa B; Wbﬁ} - 6abcd{vvc'ya W’y d}

~4¢ab — [Poe, [daa, 6] = 0
(5.8)

where the self-duality relationship is determined only up to a phase. Later
when we discuss second quantization the goal is then to modify this algebra
such that the Bianchi identity no longer implies field equations, therefore it is
instructive to see how self-duality and field equations arise. We give a brief

sketch of the derivation in the Appendix.

5.7.3 Projective gauge

We now separate the OSp(N|4) algebra into the subsets by labelling the covari-
ant derivatives as either V, or V,,. Then the above algebra can be represented

as
[vua Vu} = vu + fuua [VU7 Vw} = Vw + fuwa [Vwa vw} = Vu + fww

The field strengths f,., fuw, fuw are denoted by their position in the algebra.
Note that N=4 is the only projective case where the V, algebra has field
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strengths, they appear as scalar field strengths ¢

[Va’b’7 Vc’d] = na’c/vb/d - nb/c’va/d
[vbcu Vaa] = nabvca - nacvba

{Vaa: Vig} = —Cap(Vap + Gap) = NtV
Vaa, Vst = —Cup(Vaw + Garty) — NV
[Vag, Vin] = —ChaVig — C15Via
[VdB’ V] = —C'WVW; - Cﬁgvb/a
[Vag; Vas] = —ChaVias — C5gVay = C5aViy — C45Vas

From the self-duality relation derived previously one has

/

~ v d/ Y N
Pab = §6ab6ad’¢c — ¢ab = Cabp, Parr = Capyp

Thus there is only one f,,, furthermore it is projective:

[Vu, 0] =0
Vu = (Valh Va,/b/, vaa, Va/d, Vag, Vaﬁ) (59)

which just arise from the Bianchi identity. ¢ can then be absorbed by (the
gauge fields of) the SO(2) derivatives :V),, = Vo + ¢Cupp and V,, =
Vab + ©Ca. (A similar procedure works for the N=2 chiral case, but not
for N=4 chiral.) The new set of isotropy covariant derivatives closes without
field strength due to 5.9, and thus it is now consistent to impose them as a
constraint

Vaﬁ - Vaﬁ == Vaa - va/d - ;b - Vg/b/ - 0

In particular, we can choose the gauge d,, = 0 (i.e., the above minus d,, = 0).
In this gauge, there is a residual gauge invariance with d, A = 0; i.e., the gauge
parameter is projective. At that point we can work exclusively in terms of V,,.

Some interesting features of this required modification are: (1) It involves
the SO(n)SO(N—n) isotropy derivatives, this is needed to absorb the projective
field strength, and hence requires the super anti-de Sitter construction. (The
analogous derivatives in flat superspace would be central charges, which would

break superconformal invariance. However, we can still use our contracted
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coset, since the isotropy group is unchanged.) (2) The modifications must
involve only a single field strength to avoid generation of field-strength com-
mutator terms (and hence nonclosure) in the algebra of isotropy constraints,
and hence both n and N—n < 2. This shows that chiral superspace does not
exist for N=4 Yang-Mills.

5.8 Projective amplitude

5.8.1 Duality

The four-point amplitude in this theory has been shown to have a simple
form in projective superspace, where coordinate/momentum duality is almost
manifest [71]. This duality is the one that results from (super) Fourier transfor-
mation, whereupon coordinates (of vertices) are replaced with loop momenta,
after applying momentum conservation. (External line momenta are also ex-
pressed as differences, by interpreting paths connecting adjacent external lines
as “half-loops”, with their own momenta.) Thus graphs are replaced with (ge-
ometrically) dual graphs [7§]. In string theory, introducing a (random) lattice
for the worldsheet, this is recognized as T-duality [79]. The AdS;®S® string
has been shown to have invariance under such a T-duality [5], implying that
N=4 super Yang-Mills has another PSU(4|2,2) symmetry that includes the
usual Lorentz and R-symmetry, but also “translation” invariance in the loop
supermomenta (of a projective or chiral superspace), and their completion to
a full dual superconformal group.

A proposal for this dual superconformal invariance of the theory had al-
ready been made directly on the N=4 Yang-Mills amplitudes [4]; however,
it requires the inclusion of twistor coordinates with both the coordinate and
momentum spaces, and is thus not a complete duality. The reason why the
twistors were found necessary is that this formulation is based on chiral su-
perspace, which is simplest for MHV amplitudes. In that space the chiral field
strengths are the selfdual parts of the (superfield which at # = 0 is the) Yang-
Mills field strength, which carries Lorentz indices. They thus use twistors to
carry these indices. An alternative would be to introduce spin coordinates;
but these do not naturally appear in chiral superspace (at least according to

our projective construction). The scalar factor of the amplitude (the purely
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spacetime-momentum factor) would then acquire additional denominator fac-
tors of momenta to cancel those introduced into the chiral external line factors,
since the Yang-Mills field strength has higher dimension than the scalars. At
least effective actions would be expected to be more complicated in this ap-
proach, since the chirality of this field strength holds only at the linearized

level.

5.8.2 From chiral to projective

Although we do not yet give the Feynman rules, we present an alternate deriva-
tion of this amplitude in projective superspace from chiral supertwistor space,
which could be generalized to known higher-point amplitudes. We do this
not to illustrate the method, which can be complicated in general (especially
if we include the effort required to derive the chiral supertwistor expressions
with which we begin), but to show the simplicity of the projective superspace
result. The method is to transform the chiral supertwistor into projective
supertwistor space by Fourier transforming half the fermionic twistor coordi-
nates; the result can then be put into projective supercoordinate space by the
usual (projective super) Penrose transform. The result can already be guessed
by noting that the four-point amplitude is both MHV and anti-MHV: For the
tree case, the chiral and antichiral supertwistor expressions are

Ay, = PE P (S) ) (S )

(12)(23)(34)(41) ~’ e [12][23][34][41]

(The sums are over external lines.) Thus we’ll find that the ubiquitous twistor
denominator of MHV, and its complex conjugate of anti-MHV, are replaced in
projective supertwistor space by their magnitude, which is directly expressible
in terms of momenta (e.g., st for the tree case).

We use the notation ¢5kl to label the 4 distinct external lines. Then the only
twistor identity we need is the equality of the MHV and anti-MHV expressions
for the pure-gluon amplitude:

(ig)* (k)"

(12)(23)(34)(41)  [12][23][34][41]

This allows us to evaluate the fermionic Fourier transform with respect to any
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one of the 4 twistor fermions (with respect to N=4, but all four of the external

lines):

47 i 52 g . 12)(23)(34) (41)\ 7
[ s ag) = Linas = aa) (S

with Einstein summation understood on identical indices. Thus this Fourier

transformation replaces the conservation d-function for total 7, = \,¢ with
one for the corresponding 7, = As(, and throws in a phase factor. In addition
to reproducing the correct relation between the above forms of the amplitude
in chiral and antichiral supertwistor space, it gives the intermediate result for

projective supertwistor space:

_ S paa)! (E maar) (D7)

‘A4H 1
ZSt

Note that this amplitude is missing an explicit d-function for conservation of
tawr (which would actually be a Kronecker d, because of the compactness of
the R-space): This conservation is implied by the other d-functions (in twistor
superspace, or on shell).

In this form, the amplitude is already expressed directly in momentum
superspace; we need only attach external line factors, which are just the (lin-

earized) projective superfield strengths ¢:

01 (3 Paa) 0" (3 Taar )1 (30 7%a)

1
4st

At = / A d®,d 3 (1)3(2)3(3) 3(4)

(The [ d'°t; should really be a sum. Of course, the ¢; conjugate to y; should not
be confused with the Mandelstam variable ¢.) For comparison, in the chiral
case, we need to multiply numerator and denominator by [12][23][34][41] to
put the amplitude into momentum space: The denominator becomes (st)?,

while for the numerator factor, including external line factors, we have

1 28] a1 falf 705

2@ EHE) ~ (Lst? (3s1)?

(54(2 Paa)58(z Taa)

(35t)°

Ay - / im0 O
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Note that there is no direct analog for the chiral supertwistor scalar wave
function in momentum (or coordinate) superspace, unlike the projective case:
It is a (super)helicity amplitude, and does not directly covariantize (except by
mutliplying by twistors to get tensors, as above). This is a consequence of the
fact that the only scalar superfield strength is projective, not chiral (even in
the linear approximation).

We can easily Fourier transform the projective amplitude back to coordi-
nate superspace: The x dependence is as usual, the dependence is the local

product, and the y dependence evaluates at y = 0:

54($1 — X2+ X3 — LL’4)

A = / 2,005 (21, 0, 0) (2, 0, 0)p 5, 6, 0) o 4, 6, 0)

2 2
Ti9T33
5.8.3 From 6 dimensions to 4 dimensions

Alternatively the same amplitude can be derived from the on-shell N=2 SYM
amplitudes in 6-dimensions since on-shell 6 dimensions is similar to off-shell
in 4 dimensions. The relevant spinor-helicity formalism for six dimensions is
given in the appendix. It is based on representing an on-shell momentum

p? =0 in terms of SU(4) twistors

pPP=0—p=pB =778 pip= §€ABCDPCD = 71" Zpa

where A € SU(4) and a,a € SU(2). One then includes the on-shell N=2
spinor coordinates as ¢, and ¢o4 and 1,2 labels the N=2. One can then map

them to the projective ones as:

QVA — qvi4 — ZAaqla

Ga=Goa = Za"qa (5.10)

The 4 point amplitude in terms of these spinor-helicity in six dimension reads[8(0]

(5.11)

EABCDEEF HFEA(]_)FFB(Q)FG (S)FHD(4)
¢ = ; 5> p)
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this can be seen as derived from (one term in the expansion)

0 p)* (@) (32 q)

st

¢(1)¢(2)¢(3)¢(4) (5.12)

which is exactly the result we derived previously. One can then look at all
the higher point amplitudes and find their corresponding projective ones. The
higher point amplitude was derived in [80] using BCFW recursion relation [18§]
for 6 dimension tree amplitude. For example for 5 point

S6 ()54 o4 (G . .
(p)0*(q)d"(q) G an(p2 - ps-pa-ps)u ™ + cyclic

512523534545551
+((p2-p3 - pa-ps) — (ps - pa-p3-pa)) G

v + cyclic] (5.13)

5.9 Second-quantization

Here we give some tentative discussion for possible second quantized construc-
tion. Since the algebra of the covariant derivatives leads to field equations for
the field strength, an off-shell formulation would require a deformed version
of this algebra. Similar situation was discussed for N=3 [65] where one intro-
duces new few strengths for the internal symmetry direction, the action then
simply gives vanishing field strength in these directions which gives back the
on-shell theory.

For the N=3 case, extra field field strengths were introduced to the covari-
ant derivatives of some of the coset coordinates. Using the coset SU(3)/U(1) x

U(1) one introduces nonvanishing field strength
V_12,Vi1]l = Fos, [Vo1,Vi1] = Fso, [V_12, Vo 1] = F11

The subscripts label the charge of the harmonic variables (R coordinates) with
respect to the two U(1)s. The vanishing of these three field strengths then leads
to the original on-shell algebra, thus the field equation can now be translated
to Fy3 = F39 = F1; = 0. This leads to the following action

S~ /A—1,2F3,0 + Ay 1 Fos+ A Fig+ -
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So the connection now becomes Lagrange multipliers and gives the desired
on-shell degree of freedom.

Note that one should look for deformation which can be removed by setting
the R field strengths(such as the F's above) to zero. This is because the
projective(analytic for harmonic approach) measure has engineering dimension
zero, and thus the action can only be built out of dimensionless field strengths.

Here we try to find the minimum set of new field strengths that puts the
theory off-shell. Since one would still like to be able to consistently impose
analytic condition Vyf = 0, we do not introduce field strengths in the V,,
(isotropy group) algebra. We list the relevant part of the algebra under dis-

cussion.”

1[VU, Vw} - Vw + qu

[vab) vcd’] - _nac(vbd’ + Kbd’) + nbc(vad’ + Kad’)

[vcﬂW Vab] = naC(vbB + Wb[ﬁ)

L4 [vaaa vcb’] = nac(vb’a + ]\[b’a)

{Vaou Vbﬁ} = _nabvag

{Vaou vb’,@} = _Caﬁ(vab’ + ¢ab’)

{Va’dm vbﬁ} = _Oaﬁ'(va'b + q_ba’b)

[Vag, Viry] = =ChaVig — Cy5Va

® Vi, Vgl = Cor (V5 +Wa5)

[Vaa, Vps] = Cay(Varg + Warg)

[va67 Vyé] = _C'yavﬁé — 5V 44

2.[Vw, Vw} - Vu + Fww

o Vay, Vel = —Nae(Vva — dva) — My (Vae — Pac)

6We label the fermionic derivatives in the isotropy group as Vy = (Vaa, Vi G)‘
"This algebra is the shifted one thus there will be no field strength for [V,,V,}, the
original projective field strength now appears in other places.
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hd [vada vbc’] = nab(vc’d + G(:’d)

o {V'yd’7 vac’} = _C*ya(vd’c’ + @d’c’) - nc’d’v’ya

{Vad7 ng} = _Cdg'(vab + Qpab) - nabvdg

[Vea, V'yﬁ.] = Caﬁ'(vcw + ch)
[ [Va/a, VW] == CM(VG,B + Wa’ﬁ)
® [V Vsl = Car(Viss + f55) + Cps(Vay + far)

where ¢ is the linear combination ¢, — ¢ap. Since the shifted algebra already
contains field strengths in the R direction, the only modify the relationship of
the R field strengths. In the new algebra K, would be identified with ¢ for
the on-shell algebra. This disassociation leads to the additional spinor field

strengths G, and M, since the Bianchi identity relates them:

1 (03

Kab’ - ¢ab’ - §{va 7Mb’a}
- 1
Ga’o'c - [vb &y ¢b’a’] - §[Va’ aj Mad]

In this language the on-shell equation becomes

Kab’ = ¢ab’
and one can anticipate an action

S ~ /Aab/(Kab’ . ¢ab’) + ..

However due to the curved nature of the coset, the projective prepotential can
not be the connections since [V,, V,,} # 0.
5.10 Conclusion

These results can be generalized to other N: For example, the simpler case
of N=2 would be useful to compare with the known harmonic and projective

formalisms. Since in general such first-quantization describes superspin 0, the
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“smallest” supermultiplet (unless additional spin variables are included), N=2
would describe a scalar multiplet, which could also be coupled to external
Yang-Mills. The R-space in that case is SO(2), corresponding to the identi-
fication of the usual projective R-space with the unit circle. Similarly, N=8
would describe (gauged) supergravity. All cases N8 could be coupled to ex-
ternal (gauged) supergravity; the formalism suggests that the tangent space
for this supergravity would be OSp(n|2)OSp(N—n|2), rather than the purely
bosonic (Lorentz and R-symmetry) tangent spaces that have been used so far.

These results can also be generalized to some other dimensions; we have

at least

(P)SU(N|2, 2)

D pu—
° OSp(N[1)

D4 OSp(N[4)
OSp(n|2)OSp(N — n|2)
OSp(iN]2)?

D3 p(g1 2)

o OSp(N ]2
U(GN[1)

(5.14)

The method for solving the constraints is similar, and correctly produces (at
least the free) supersymmetric theories in those dimensions.

Another problem is whether superconformal invariance can be made man-
ifest. A better understanding of projective lightcone limits might do that.
This might also shed some light on the relationship between the harmonic and
projective approaches: For example, for the N=2 case, we see the R-symmetry
part of the coset space in D=5 is SU(2)/SO(2), as in the usual N=2 harmonic
superspace, while the coset space in D=4 is just SO(2), so the sphere reduces
to the circle.

In principle, superconformal invariance could be made manifest by using

an action with the full superconformal set of constraints:
d(A(A/dB}BI] =0

However, this set is highly reducible: In particular, it reduces to our anti-de
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Sitter ones
dAA’ dBBlnB’A’a dAA'dBB/nBA

(with or without contraction), and the ghosts are much messier [81]. Alter-
natively, one could consider the flat-space limit (R— 00) of the anti-de Sitter
constraints,

da®dp’Chy,  do™ds? CP

e
but this loses some necessary constraints: t¢,, drops out altogether. These
different sets of constraints can be considered as related to partial gauge fixing
of the corresponding Lagrange multipliers.

It may be possible to find at least some of the superconformal invariance
through transformations of the Lagrange multipliers. For example, the usual
action for a scalar particle, f g#?, is conformal through transformation of g,
and an (A)dS metric can be obtained by redefining g by the appropriate Weyl
scale factor.

An obvious topic is the gauge-invariant field theory action for N=4 Yang-
Mills, and its second-quantization. It should be noted that the supergraph
rules will not be manifestly superconformal: The second-quantized gauge-
fixing term for Yang-Mills breaks conformal invariance, and first-quantization
requires gauge-fixing the worldline metric, which also breaks conformal invari-
ance. However, it should be possible to preserve some useful affine subalgebra.

Alternatively, by finishing the treatment of first-quantization in an exter-
nal N=4 super Yang-Mills background, it should be possible to define vertex
operators that allow supergraph calculations directly in a first-quantized ap-
proach, in analogy to string theory. It may then be possible to reproduce
many of the results of the gauge/string correspondence without requiring the
full string machinery. For example, properties such as N=4 superconformal
symmetry, or its “dual”, may be sufficient.

Unique to the case N=4, the numbers of commuting and anticommuting
coordinates cancel (at each ghost level). This suggests that potential zero-
mode problems (and their resulting picture-changing or equivalent vacuum
problems) could be directly canceled, after an appropriate (worldline-infrared)
regularization.

Even if these first-quantized methods prove useful for deriving expressions
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for S-matrices, a more important question is whether it can be helpful in cal-
culating anything relevant to confinement. In this regard, a random lattice
approach to the string would suggest that this first-quantized action for the
N=4 superparticle might lead to a first-quantized action for a 4D N=4 super-
string.
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Appendix A

Appendix: Spinor-helicity

formalism

A.1 4-dimensions

In 4-dimensions a four vector can be written in two component spinors as a

2X2 matrix p,5 = p"o,45. Then an on-shell massless momentum
P'pu = det(pas) = 0 — Pag = Aada

where X is a bosonic spinor. For SO(3,1) Ay = £, and for SO(2,2) A, and
As are real and independent. These bosonic spinors are solutions to the Dirac
equation

Paca ) = Aa(AX) =0

where we’ve used the notation

The indices are raised and lowered by SL(2,C) (the covering group of SO(3,1))

_ . 0 —
metric Cop = Cyp = —CP = 0% = | ~ OZ . The final minus sign for

o’
1
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both lines comes from when 7, j spinors are exchanged! we need to raise and
lower the SL(2,C) indices so that they are contracted northwest-sountheast
direction.

The polarization vector for a gauge vector can be represented by an arbi-

trary reference null vector vog = flafla:

)\aﬂo'c
€ = €aa = —7 2
' (V]
_ _ ,ua)\d
= €4y = Al
KNPy (A1)

These polarization vectors obviously satisfy p-e = p-é = e-€ = 0. Changing the

choice of reference vector corresponds to a gauge transformation: An arbitrary

change of v can be written as 2

i — i+ aji+ B\
One can see that a corresponds to a rescaling of €,, while under 3

]iao'z
[A]

€ — €+

which is just a gauge transformation.
The little group which in 4 dimensions is called the helicity is a U(1) phase
for SO(3,1), while for SO(2,2) it is a rescaling by R. Then (As)\, has helicity
—2(+3). Thus we see that €,(€,) has helicity —1(+1). Plugging €, into F},,
Pm€n — Pn€m = Odg')\a)\ﬁ - faﬁ

- - _ (A.2)
Pm€n — Pn€m = aﬁ)\d)\ﬁ' - fdﬁ

Flu = aﬂfa[s + Caﬁ'faﬁ {

Thus fas(fss) corresponds to helicity —1(+1). We summarize the Feynman

rules in spinor helicity

!These are bosonic spinors, so no extra minus signs when one simply exchange them. The
minus sign comes from maintaining the northwest-southeast contraction in the definition of
(i, f) and [i, j].

2The change in v cannot be arbitrary, however since the new v’ still has to satisfy v2 = 0,
this change can be understood as v’ = uji’ so that v’ remains a null vector. The space of
is two dimensional, so the new fi’ can be written on two bases, i and A
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A.1.1 External line factors

In defining the helicities, we consider all partical to be outgoing.

Scalar ¢ : 1
Spinors 7 (@) (o, = A
Spinors ¢~ (¢) [pls = Aa
HaAa
Vector A = my
Vector A = )\Cf/zbd (A.3)
(A

A.1.2 Propagators

Scalar ¢ iz
p
Spinors v 12 = 2 ’g]u‘
p p
Caﬁcaﬁ
Vector A, (A.4)

where the sum ), sums over momentum of the external lines on ones side
0 Vi’

. One can check easil
Vi, 0 ) Y

of the propagator. In general | = (
{V.Wi=-v.Ww.

A.2 ambi-twistor

Extending the usual twistor coordinates to include their conjugate gives the

ambi-twistor approach which transforms nicely under conformal group SU(2,2)

[Z4, WB] =6,F

with
Za= (:uom S‘d) ) WA = ()‘avﬂd)
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Using these variables one can represent the conformal generators as
B B L g
Ga7 =W ZA_ZdAW Zc

Extending to N=4 one includes Grassmann variables n; and 7!, where I €
SU(4)

super : Za = (fta, Nay 1), WA=\, 5%, 71)

A.3 6-dimensions

Massless momentum in 6 dimensions can also be written in terms of bosonic

spinors of the covering group of SO(6), namely SU*(4)

1 _ L
p2 =0—p'= pAB = g4 7B ay PAB = EEABC’DPCD = ZA"Zpa

1 1
then p2 = ZGABCDpABpCD = ZGABCDZAGZB aZCbZDb =0 (A5)

where A €SU*(4) and a,a € SU(2) which corresponds to the little group for
6 dimension, SO*(4)=SU(2)®SU(2). For polarization vector one again find a

null reference vector n% = WAW B |

A B
ap _ ZA W5,

H.:e. = —
a aa WCCZCa

€aa

(A.6)

Note that e ai€ i = CarCj-
F,., = pu€, — py€, can now be written in terms of spinors by substituting

€ given above:

F.. = (Fapcp)aa
E 5 E 5 E 7 E 5
~ (€aBcrZ” oZpi + €pBCEZL " oZne — €ABDEZL " aZce — €DACEL " oZBa)

(A.7)
In terms of spinor space the field strength has the following irreducible pieces

AB ABMN
F*"cp=ce¢ Fynep =0

M = MABC R pop = ZM W Zps (A.8)
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Appendix B

Appendix: Spinors in d

dimensions

Here we discuss spinors for various dimensions by building up the represen-
tation for the Clifford algebra. We follow closely the discussion in Polchinski
[82]. We begin with the Clifford algebra,

{17} = 2™ (B.1)

For our discussion we are interested in Minkowski space, and the Clifford
algebra gives the spinor representation of SO(d — 1,1). We can build up the
representation by using creation and annihilation operators, consider for even

dimensions!

1 1
%t = 5(P0+r1), aozﬁ(—rurl) (B.2)

Oé“ — %(F% 4 iFQiJrl) ,Oéi — 1(1‘\21 - Z'FQiJrl) i = 1’ 2. .k

[\]

where d = 2k+2. Note that in this construction I'’ will be anti-hermitian while
all others will be hermitian. One can easily see they satisfy {a!, o7} = 67K
and {af, a0’} = {a!T, a’T} = 0, where J = {0, j}. We can define a spinor such
that I''¢) = 0. Since V2 = 0 the dimension of states is 2%/2. On this spinor,

creation and annihilation operators have simple form and we can use them

"'We only consider even dimensions, odd dimensions can be incorporated by simply
identifying T4~ = I where T' = (i) I°I'! - .T'%~2, the chirality matrix for the lower even
dimension.
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to construct the gamma matrices. For example for d=2 k=1, we have on the

0
spinor @) = ( ) ) we have

ot 0 1 ot 00 o 0 1 — 0 1
0 0 10 10/’ 10

Iteratively one can construct higher dimension gamma matrices with lower

dimension ones using

1 0
r“:w@(O 1>u:0,1~~-d—3 (B.3)

01 0 —1
Fd_2 — ] ® 7 Fd—l — ] ® . t
10 v 0

This is the Dirac representation. Note that in this basis, I'}, T'®, I'>"*! with n =
1,2.. are purely imaginary while all other are real.

The chirality matrix is defined as I' = (i)“Z°I°T"! - .T9"1, and has the
property that {I',T''} =0, (T')?> = 1 and most importantly

1
[,5] =0 £ = — [, 1"] (B.4)

where ¥ is the (Lorentz) generators for SO(D — 1,1). This implies that in
suitable basis where I' is diagonalized, the spinors are eigenstates of I" half of
them with eigenvalue +1 the other half —1, and each sign transform within
itself under Lorentz transformation. Thus the Dirac representation is reducible
with respect to the Lorentz group. To see that the spinors splits exactly in
half with respect to I', note that each state built from 1 can be labeled by

whether it is an excited state with respect af. Consider the operator:

g g1 { +) =a'ty, &4 = {4 (B5)

2 P=v, #)=—3H)

one can then label each state by a vector § = {s',s?,---s2}, where s' are the
cigenvalue of 8/. The chirality matrix can be written as I' = 24/2805182 . .. 3%

thus one can see half of the states have even number of —% eigenvalue s’ are +1
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when acted on by I, while the other half are —1. Thus the Dirac representation
can be written as two inequivalent Weyl representation. One can project the
spinor into two independent pieces by the projection operator P, = %(1 +I), a
Weyl spinor satisfies Ay = P4, so there are 2%/2~1 complex components for
a Weyl spinor, half of a Dirac spinor. Note that in odd dimensions I'“"! is the
chirality matrix of the lower even dimension, thus one cannot define chirality
matrix in odd dimensions.

Reality conditions: Another way of reducing the number of components
of a spinor is to impose reality conditions. One has to be careful because
the condition must be imposed in such a way that it is compatible with the
Lorentz transformations. Since the Dirac representation is an irreducible rep-
resentation, the fact that I'* and I'** satisfy the same Clifford algebra implies
that they must be related through a similarity transformation. We state that

BiI"Bi' = (=)' By =T°I%..T%*+ =12k (B.6)

This is true since when I'* # I'?"*! they are real, I'* = I'"*, and B;' just
passes through T* to cancel B; with a factor of (—1)*. On the other hand
when I'* = I'?"*1 it is imaginary, IT* = —I'** and B;' just passes through
I'* to cancel B; with a factor of (—1)#2. from B, one can also construct
By =1I'By, with

ByI" Byt = (1) (B.7)

Under these similarity transformations BX* B~! = Y¥#* Since under Lorentz

transformation, a spinor transform as A’ = X#” ), then
(B7I\*) — BTy = o By (B.8)

Both A and B7')\* transform the same way under Lorentz. Thus we can

consistently impose the Majorana condition .
A= B\ (B.9)

Note that this implies \* = BA = BB*\* — BB* = 1. For B;, each gamma

matrix inside is imaginary, hence Bf = (—1)¥By, and B} = (—1)k<k{1). This

k(k+1)
2

leads to the requirement for B;Bf = (—1) = 1 which is only true when
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k = 0,3(mod 4). For B,, each gamma matrix inside is real, so ByBj =
9 (bot1) (k+2)

By = (=1)

and (T°)? = —1). Thus ByBj = (—1)

0,1(mod 4). this restricts the kind of B one can use for Majorana condition

(—1) (the extra minus sign comes from the I'° inside B,
25— 1 which is only true for k =

in various dimensions.
To impose both Majorana and Weyl conditions one must insure that the
helicity for A* is the same as BA. Using B[ B~! = (—1)*"*

B\ = B'BI'B~'\* = (-1)*B~'I™\* (B.10)

one sees that in order for B~'A\* to have the same helicity as A\, & must be
even. Thus combined with previous constraint Majorana-Weyl conditions
are only possible when k = 0(mod 4) or d = 2(mod 8).

Charge conjugation: Here we define charge conjugation matrix for arbi-

trary dimensions. The charge conjugation matrix is defined as 2
crrCt = -t (B.11)

Note that C is defined up to an overall factor which will not be important.
The reason this is charge conjugation is because for a spinor v that satisfies
the positive energy Dirac equation (y —m)i = 0 then C(y — m)y = C(y —
m)C~'Cy = (—pF —m)Cy = 0. Taking the transpose we have (C))T (—y/—m)
thus )¢ = (C1))” describes a negative energy solution or an anti-particle. To

obtain C one uses the the fact that in our representation,
rorm(ro)=! = —p# (B.12)

This is true since only I'’ is anti-hermitian while all other gammas are hermi-

tian, and (T°)~! = —T. Then we have

(-DkOB "B 'O}

B.13
(—1)*1C By, By 'C~! (B.13)

— Ht = _(pu*)T = OO0 = {

ZNote that we can also define C'; which satisfies C+F“C;1 = +T#T. This is achieved
by C; = CT. Then all properties of C'; can be derived from C. Note that since one needs
to use I, it is only possible to have both C' and C in even dimensions.

124



Thus for even k, I'° = CB;, — C = I'’B;!, for odd k, I'° = CB, — C =
I'°B,;*. Then we have

evenk OT = BT = (1)1 10 = (—1)“52110p 1 = (— 1) 10
oddk CT = TTBTTOT = (—1)M'TBT® =T°B, = (—1)" 2 T°B;"
- (—1)k(k2+1>0

(B.14)

k(k—1) k(k+1)

where we've used Bi' = Bl = (=1)" 2z By, B;' = (=1) 2 B,,and I'7 =T.
Thus for d=2,4,10 C7 = —C while for d=6 and 8 CT = C.
Equipped with C we can now rewrite the Majorana condition in more

standard form
N = BA— AT = \'BT - AT = \TBITY = \'C (B.15)

This is the usual way of stating the Majorana condition, the Dirac conjugate
(ATT?) is equal to the Majorana conjugate (\TC).
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Appendix C

Appendix: Proof of field

redefinition

Here we will prove that our field redefinition introduced in sec. satisfies
both and (2.26]). We first produce the proof at leading order, terms with
three new fields on the LHS of both equations vanish. From this experience we
will then show that the same holds for all higher order terms, namely, written
in terms of new fields, terms that are more than quadratic in x on LHS of
these equations vanish.

For terms with three field comes from the second order term in the
field redefinition, namely ¢(1) — C(2,3)x(2)x(3) with C(2,3) = rivi they

- (23)7
give
+oto o4+
—P1P2P3  P1P2P3 -
o[ pEEEEERanee@ics)  (CL
P1P2P3 (1’ 2) (2’ 3)
Using momentum conservation, (1,2) = —(3,2) = (2,3), these two terms

indeed cancel each other. The 3 field term that is generated on the LHS for
(2.26))

o[ BERR o)) - PECEEL e 02
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Using cyclic identity and relabelling the momentum for the first term we have

1 p3 p3 PLpy ol pap: ot
tr[ - _X(l)X(Q)X(?))—[pr?’plpl 4 P1P2P3bs +p3p1p2p2]
P1p2p3

323 1Ly G
+ots o +,+5 = +2~ = +2~ =
Do P3 P2P3 + Do P3 P3P2 — Do "P3P3 — P3 " P2P
S I CINCAEIEEE O R——
p1p2p3 I

- o[ ene B (©3)

where in the last two lines we used momentum conservation. This gives the
same term as the second term in (C.2]) with a minus sign.
To prove that higher field terms also cancel in (2.25)) for our field redefini-

tion, note that for n-fields the coefficients combine into

n—1
Z 0(27 >J>p?;+1’n)c(.] + 17 ) n)
j=3

(T (2 S5)
T 2.3)3,4) - (nn—1) (C.4)

where we’ve used the notation that pan) =3 ", p; and
Sj =D i3 Pr 1 Pays_iPaioj(n+1—j,n—j)+cyclic rotations] (C.5)

For example for n =7

Sy = pipslpd(5,4) +pi(4,6)+ pi(6,5)]
Sy = pilpips(4,3) +pipi(3,6) + pipg (6,5) + p3pg(5,4)]
Ss = [pipipri(3,2) +pipips (2,6) +pipsps (6,5)

4

+p3p3 g (5,4) + p3 pe p3 (4, 3)]
(C.6)

The important point is since these S; are cyclic sums over terms that are
partially anti-symmetric, S; = 0. Hence we've proven that is indeed
satisfied.

Moving on to (2.26), we use the fact that since is satisfied, this
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implies that!

ox
+ Ty
0" = 0. (C.7)

From the discussion above we see that this is indeed true. Plugging back into

[2.26] we have
00 5@88
8+[8+(I> 0] = —8—+<I> 5 8+ (C.8)

Fourier transforming into momentum space and plugging in (2.29) we have

p1p1 pzpz
)
=2 pl

= — Z C(2 CG+1 - n{pGim: g}

by j=2

(j,j +1)

= — ZC ) T{p(jﬂ,n),p(z,j)}

i PjPjt

(C.9)

Again {PGi1): D)} = PlarPes) — PlustaPly)- Since e = Ppt — B

PjPjt1 Pjit1 Pj
the RHS becomes

Pi+1
+ZC 3, m)[ — ]{P<J+1n (2}
Y4\ j=2 pj+1 J
ﬁ'
= — Z C(2,3,- -, n) =t [{pGm) P} — {PG+1m), D) }]
pl j=2 p]
Dj o
— Ly cesamBg ©10)
pl j=2 p.]

Momentum conversation then gives the LHS of ((C.9)).

"'Written in this form we neglect the superspace delta functions and spinor derivatives
that usually arise, since we know that the chiral superfield ® is now already written in terms
of chiral superfield .
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Appendix D

Appendix: Field equations from
Bianchi identity

D.1 Self-duality

The self-duality relations among the scalar field strengths arise from a par-
ticular kind of Bianchi identity[83]. Here we demonstrate on the ones in the

isotropy group, which is simpler:

[éaba éa/b’] = [{va 4 vba}v {va/' B? vb'ﬁ'}] .
= {Va 4 [Vba7 {Vfl’ 67 Vb’ﬂ}]} + {vbav [va “ {va’ ﬁ? vb’ﬁ}]}
— 0 (D.1)

thus one arrives at ¢Zab = %CabCa/b/([S“'b/. Similar procedure gives us ¢q, =
5CaCa ¢ and oy = CocClar o™
D.2 Field-equations

We start from the field equation for the spinor field strength, others can be
derived from the spinor field strength by acting on it with spinor covariant

derivatives. The relevant results from Bianchi identities that will be useful are
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as follows:

(va’da vb/ﬂy Vc’a) - [Va’o’n ¢b/c’] = 77a’b/VVc’é¢ - na’c’Wb/d
(Vaps Vaa Virg) = {Via Wt = —{Vay, W3} = [V, 0av]  (D.2)

We begin with

{Vaa, Vb/ﬁ}vwb’ﬁ] =0
—[{Vb/ﬁ, beﬁ}, Vaa] - [{vaaa Wb’ﬁ}7 Vb/ﬂ] (DS)

From the first result in ([D.2))

VIO Way = (V" 0000} | (D4)
= {va '(77 [¢a’c’7 vc U]} - [¢a’6’a {vc 07 va d}]
- {vc Ja Wc’d} - [gba’c’a qga’c’]

Then the first term in (D.3)

— [{Vb/ﬁ, Wb/,(?}7 Vaoc] - [vaaa [qba’c’a QEa/C,H (D5)
- _[éa’c” [Vaaa ¢a/c’]

Using the fact that (qﬁab, Gary, Par) are dual to (J)a,b,, Bap, Do) More precisely

1
bd
gba’c’ = §€a’c’€ ¢bd

N

~ 1 !0 ~
gbac — 5eac 6bd¢bd
[QECLIC/7 [vaaa ¢a’6’]] = [ébd7 [vaaa ¢bd“ (D~6)
= 2[&& d; Wda]
Using the second result in (D.2)) we find the second term in (D.3|) becomes

[vb’B’ {vaaa Wb’ﬂ}] = _[vb,B’ [vaﬁ’ ¢ab’]] (D7)
= 2[V 5, W] + 2, W ]
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Putting everything together we finally arrive at the field equation

Vo Wa )+ [bays WY o] + 00, Waa] = 0

Note that self-duality of the scalar field strengths is crucial in getting the field

equation. Violating this relationship will then lead to an off-shell construction.
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