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Abstract of the Dissertation

Restricted Mixture Linear Regression Models:

Estimation, Power and Sample Size Calculations

by

Zhongming Yang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2007

This dissertation focuses on restricted mixture linear regression models (RMLRM).

RMLRM are mixture models that have some regression parameters set to be equal across

the mixture components, while other regression parameters (unrestricted) may be unequal

across components. We use the Expectation-Maximization (EM) algorithm to calculate the

maximum likelihood estimates (MLE) for the regression parameters and mixing proportions.

We provide the standard errors for the MLE. We further provide two EM initialization pro-

cedures for two specific RMLRM: the mixture intercept model (MIM), where only intercepts

may differ across components, and the mixture slope model (MSM), where only slopes may

differ across components. We also propose two approximate formulas to calculate the power

and sample size for two-component normal mixture model (NMM), MIM and MSM.

Through simulation studies, we (1) investigate the null LRTS distributions of the test

iii



for two-component mixture using NMM, MIM and MSM models; (2) verify that RMLRM

techniques are more powerful to detect some specific mixtures compared to the unrestricted

mixture linear regression model; (3) verify that our power and sample size formulas are

accurate under a broad range of sample sizes.

We also apply our RMLRM in two case studies. These case studies document us that

RMLRM is an useful tool to detect different mixture mechanisms.
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Chapter 1

Introduction

1.1 Motivation

Finite mixture models are a class of statistical models that have been used in a wide range

of applications. One of the most important application areas is statistical genetics, in which

mixture distributions are used to model various qualitative and quantitative traits controlled

by underlying genetic factors [36]. When it is assumed that we know the underlying genetic

factors, variance components, logistic regression and other traditional statistical procedures

can be used to study the effects of underlying genetic factors on some specific qualitative

or quantitative traits. For example, with multiple regression models, Caspi et al. [5] found

that a functional polymorphism in the gene encoding the neurotransmitter-metabolizing

enzyme monoamine oxidase A (MAMO) moderated the antisocial behavior associated with

childhood maltreatment. In reality, the process to obtain the underlying genetic mechanism

is very costly and time consuming. A statistically oriented way to initiate this research

is: first to perform a mixture analysis on a set of data to check whether the trait can be

described by a mixture distribution. Then use segregation analysis to determine if there
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may be a suitable genetic model that is consistent with the mixture distribution detected

by the previous step. Finally, find the approximate location of the gene through linkage

analysis [36]. In this process, obtaining a valid genetic model depends on the accurate esti-

mation of mixture distribution parameters, especially, the mixture proportions. Therefore,

a sound mixture analysis strategy can assist many genetic studies.

To illustrate some specific mixture analysis tasks, consider a selection of variables de-

scribing the attributes of Pima Indians Diabetes Database [30]. The purpose of the complete

Pima data set is to study the risk factors for the incidence of diabetes in women of Pima

Indian heritage. In this selected data set we only include the following attributes:

• Number of times pregnant;

• Plasma glucose concentration in an oral glucose tolerance test;

• Diastolic blood pressure (mm Hg);

• Triceps skin fold thickness (mm);

• 2-Hour serum insulin (mu U/ml);

• Body mass index (weight in kg/(height in m)2);

• Age (years).

We have excluded the variable diabetes pedigree function. Our main interest in this data set

is glucose concentration. From data screening we know that there is apparently some linear

relationship between glucose concentration and serum insulin, and we want to know how

serum insulin influences the glucose concentration. In order to study whether there is some

genetic model that can be used to interpret this data set, we test the following hypotheses:
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1. Do the data come from a two-component mixture, such that under each one there is a

linear relationship among glucose concentration, serum insulin and other covariates?

2. Do the two linear regression lines have the same intercept? In other words, after

controlling for other covariates, does glucose concentration have the same group mean

at serum insulin baseline (value 0), but different increase rates proportional to serum

insulin in the two components?

3. Do the two linear regression lines have the same slope for serum insulin? In other

words, after controlling for other covariates, does glucose concentration have the same

increase rates proportional to serum insulin, but with a different group mean at serum

insulin baseline (value 0) in the two components?

To answer the first question, we can use the mixture linear regression models that were

first studied by Quandt and Ramsey [34]. There are no reported methods to handle the

second and third questions. Therefore, in this dissertation we carry out extensive studies

to develop methods to handle parameter estimation, statistical inference, sample size, and

power calculations for the second and third questions.

1.2 Restricted Mixture Linear Regression Models

In this dissertation, we concentrate on a subclass of the following mixture linear regression

models (MLRM):

y ∼


xTβ1 + εj with probability p1,

. . .

xTβg + εg with probability pg,

(1.1)

εj
iid∼ N(0, σ2

j ),
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0 ≤ pj ≤ 1,

g∑
j=1

pj = 1,

where
iid∼ is the notation for ‘are independent and identically distributed as’. In our subclass

model, some elements of βj may have the same values across all mixture components.

Because of this restriction on some βj elements, we call these models restricted mixture

linear regression models (RMLRM). We consider in detail two specific models:

Mixture Intercept Model (MIM) : two model components with different intercepts

and error terms but the same slope:

y ∼

 α + xTβ + ε1 with probability p,

(α + δ) + xTβ + ε2 with probability 1− p.

(1.2)

Mixture Slope Model (MSM) : two model components with different slopes and error

terms but the same intercept:

y ∼

 α + γxt + xT
c β + ε1 with probability p,

α + (γ + δ)xt + xT
c β + ε2 with probability 1− p.

(1.3)

In the mixture slope model, we assume xt is the treatment variable whose effect we wish to

study for and xc are covariates that we need control for.

For clear presentation, in this dissertation, we arrange the design matrix so that the

differences in mixture parameters βs only exist in the first d elements out of total m elements,

and let

βj = β1 +

 δj

0

 (j = 2, . . . , g). (1.4)
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Chapter 2

Mathematic Background and

Literature Review

In this chapter, I present the mathematical background and literature review of this disser-

tation.

2.1 Modes of Convergence

There are many ways for a sequence of random variables, X1, X2, . . . , to converge to

another random variable X. In this dissertation, we use the following two modes of conver-

gence(modified from [9]):

Convergence in probability : Xn converges in probability to X, Xn
P−→ X, if for any

ε > 0

Pr(| Xn −X |> ε) → 0 as n →∞;
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Convergence in distribution : Xn converges in distribution to X, Xn
D−→ X, if

Pr(Xn ≤ x) → Pr(X ≤ x) as n →∞

at every x for which the distribution function Pr(X ≤ x) is continuous.

2.2 Maximum Likelihood Estimation

Suppose y = (y1, . . . , yn)T is a data vector of n independent and identically-distributed

(IID) random variables with probability density function (PDF) f(y;θ) (θ is a m dimension

parameter vector). Then the joint density function is

f(y;θ) =
n∏

i=1

f(yi;θ). (2.1)

If we switch the roles of y and θ and take y as fixed, then the joint probability density is a

function of an unknown parameter vector θ and is defined to be the likelihood function

L(θ;y) = f(y;θ). (2.2)

The log likelihood function is defined to be

`(θ;y) =
n∑

i=1

log f(yi;θ). (2.3)

The maximum likelihood estimate (MLE) of θ, θ̂, is a vector of θ values that maximizes the

likelihood (2.2) (equivalently the log likelihood (2.3)). Typically, the MLE is a solution of

the likelihood equation:

∂`(θ;y)

∂θ
= 0, (2.4)
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where u(θ;y) = ∂`(θ;y)/∂θ is called the score function. For the MLE, we have following

optimality theorem (modified from [9]).

Theorem 2.2.1. Suppose the probability density function f(y;θ) satisfies the regularity conditions:

1. the true value θ0 of θ is interior to the parameter space Θ, which has finite dimension and

is compact;

2. the densities defined by any two different values of θ are different;

3. there is a neighborhood N of θ0 within which the first three derivatives of the log likelihood

with respect to θ exist almost surely, and for r, s, t = 1, . . . ,m, n−1E|∂3`(θ; y)/∂θr∂θs∂θt| is

uniformly bounded for θ ∈ N ; and

4. within N , the Fisher information matrix I(θ) is finite and positive definite, and its elements

satisfy

i(θ)rs = E
{

∂`(θ; y)
∂θr

∂`(θ; y)
∂θs

}
= E

{
−∂2`(θ; y)

∂θr∂θs

}
, r, s = 1, . . . ,m. (2.5)

Then:

1. θ̂ is a consistent estimator of θ0, that is, for every ε > 0 and every θ0,

limn→∞Pθ0(|θ̂ − θ0| ≥ ε) = 0. (2.6)

2. θ̂ is asymptotically efficient, which means

√
n(θ̂ − θ0) D−→ N(0, I−1(θ0)). (2.7)

and I(θ0) achieves the Cramér-Rao Bound. �

The definition of Fisher information matrix (2.5) specifies that it is the covariance
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matrix of the score function. The observed information matrix is defined to be

J(θ̂) = −∂2`(θ̂;y)

∂θ∂θT
(2.8)

and we have the approximation

θ̂
.∼ N(θ0, J−1(θ̂)), (2.9)

where
.∼ is the notation for ‘is approximately distributed as’. Equation (2.9) is used to

construct confidence regions for θ and to carry out Wald tests for components of θ0 .

2.3 Likelihood Ratio Test Statistic (LRTS)

Suppose we want to test the following hypothesis:

H0 : θ1 = θ0
1, . . . , θd = θ0

d (2.10)

against the alternative hypothesis H1 in which θ1, . . . , θd are any possible values. Then the

likelihood ratio test statistic (LRTS) for this test is defined as

λn(θ0;y) = 2{`(θ̂;y)− `(θ0;y)}. (2.11)

For the LRTS, we have the following theorem (modified from [45])

Theorem 2.3.1. Suppose the model satisfies the same regularity conditions listed in theo-

rem 2.2.1, and H0 is true. Then as the sample size n →∞,

λn
D−→ χ2

d. (2.12)
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2.4 Expectation Maximization (EM) Algorithm

The Expectation Maximization (EM) Algorithm [10] is a popular algorithm to solve max-

imum likelihood estimation equations for various mixture models. Suppose there are n

observations y = (y1, . . . , yn)T from a mixture distribution with g components. In or-

der to use EM algorithm, we introduce a zero-one membership vector of length g for ev-

ery observation yi to indicate which component the observation yi comes from. That is,

zij = 1(zil = 0, j 6= l) means yi comes from component j, and y is called the observed-data

or incomplete-data and {y, Z} is called the complete-data. The incomplete-data likelihood

function and incomplete-data log likelihood function are

L(ψ;y) =
n∏

i=1

g∑
j=1

pjfj(yi;θj) (2.13)

`(ψ;y) =
n∑

i=1

log

(
g∑

j=1

pjfj(yi;θj)

)
; (2.14)

and the complete-data likelihood function and complete-data log likelihood function are

Lc(ψ;y, Z) =
n∏

i=1

g∏
j=1

(pjfj(yi;θj))
zij (2.15)

`c(ψ;y, Z) =
n∑

i=1

g∑
j=1

zij (log pj + log fj(yi;θj)) , (2.16)

where ψ is the nonredundant parameter vector that defines all p and θ.

2.4.1 EM Procedure [26]

In order to handle the unknown Z, the EM algorithm iteratively goes through the following

two steps until there is apparent convergence of estimates.
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E-Step

Given observed data y and current estimate ψ(r), calculate the conditional expectation of

the complete-data log likelihood

E[`c(ψ;y, Z)|y,ψ(r)] = E

[
n∑

i=1

g∑
j=1

zij (log pj + log fj(yi;θj))
∣∣∣y,ψ(r)

]

=
n∑

i=1

g∑
j=1

(log pj + log fj(yi;θj))E[zij|y,ψ(r)] (2.17)

Since zij is a 0− 1 membership function,

E[zij|y,ψ(r)] = Pr{zij = 1|y,ψ(r)}

=
p

(r)
j fj(yi;θ

(r)
j )∑g

l=1 p
(r)
l fl(yi;θ

(r)
l )

. (2.18)

Let τj(yi;ψ
(r)) = E[zij|y,ψ(r)], which is the posterior probability that yi comes from the jth

component of the mixture (conditioned on current parameter estimation ψ(r)). Substitute

τj(yi;ψ
(r)) into (2.17) and define E[`c(ψ;y, Z)|y,ψ(r)] to be Q(ψ;ψ(r)). Then we have

Q(ψ;ψ(r)) =
n∑

i=1

g∑
j=1

τj(yi;ψ
(r)) (log pj + log fj(yi;θj)) (2.19)

M-Step

Given the conditional expectation of the complete-data log likelihood, Q(ψ;ψ(r)), the pur-

pose of the M-step is to maximize Q(ψ;ψ(r)) respect to ψ.

The likelihood equation with respect to the mixing proportion vector p = (p1, . . . , pg)
T

10



is

∂Q(ψ;ψ(r))

∂p
=

∂

(
n∑

i=1

g∑
j=1

τj(yi;ψ
(r)) log pj

)
∂p

= 0 (2.20)

The solution of (2.20) is

p
(r+1)
j =

n∑
i=1

τj(yi;ψ
(r))/n (j = 1, . . . , g) (2.21)

The likelihood equation with respect to θj is

∂Q(ψ;ψ(r))

∂θj

=

∂

(
n∑

i=1

τj(yi;ψ
(r)) log fj(yi;θj)

)
∂θj

= 0 (2.22)

which should be solved using the specific component PDF to obtain updates of θ(r+1).

2.4.2 Empirical Information Matrix

Since the information matrix is the covariance of the score function, the empirical informa-

tion matrix (see [27]) is

Jψψ(ψ;y) =
n∑

i=1

∂`(ψ; yi)

∂ψ

[
∂`(ψ; yi)

∂ψ

]T

− 1

n

{
n∑

i=1

∂`(ψ; yi)

∂ψ

}{
n∑

i=1

∂`(ψ; yi)

∂ψ

}T

(2.23)

Suppose the EM procedure converges to a local maximum ψ̂. Then

{
n∑

i=1

∂`(ψ; yi)

∂ψ

}∣∣∣∣∣
ψ=ψ̂

= 0. (2.24)
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Under very general regularity conditions that allow interchanging derivative and integral [21],

{
∂`(ψ;y)

∂ψ

} ∣∣∣∣∣
ψ=ψ̂

=

{
E

[
∂`c(ψ;y, Z)

∂ψ

∣∣∣y,ψ

]} ∣∣∣∣∣
ψ=ψ̂

. (2.25)

This means that the score function of the incomplete-data log likelihood equals the expec-

tation of the score function of the complete-data log likelihood function. Combining (2.23),

(2.24) and (2.25),

Jψψ(ψ̂;y) =

{
n∑

i=1

{
∂`(ψ;y)

∂ψ

}{
∂`(ψ;y)

∂ψ

}T
}∣∣∣∣∣

ψ=ψ̂

=

{
n∑

i=1

E

[
∂`c(ψ; yi, zi)

∂ψ

∣∣∣y,ψ

]
E

[
∂`c(ψ; yi, zi)

∂ψ

∣∣∣y,ψ

]T
}∣∣∣∣∣

ψ=ψ̂

. (2.26)

2.4.3 EM Convergence

As to the convergence of the EM algorithm, the following theorem (from [4]) guarantees

that every EM step increases the incomplete-data likelihood. Therefore, the EM procedure

will eventually reach a local maximum.

Theorem 2.4.1 (Monotonic EM sequence). The sequence ψ(r) defined by the EM Pro-

cedure satisfies

L
(
ψ(r+1);y

)
≥ L

(
ψ(r);y

)
(2.27)

with equality holding if and only if successive iterations yield the same value of the maximized

expected complete-data log likelihood; that is,

E[`c(ψ
(r+1);y, Z)|y,ψ(r)] = E[`c(ψ

(r);y, Z)|y,ψ(r)] (2.28)

�
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2.4.4 Implementation

In order to maximize the log likelihood function, the EM algorithm introduces n vectors of

missing value indicators Z. For every observation, there are at least two missing indicators.

That is, since we work on a parameter space with much a higher dimension than the original

one, one has a chance of converging to a local maximum. The monotonic increase property

of the EM procedure can require a large number of iterations until convergence. Given that,

there are two key implementation issues in mixture modeling: how to make sure we find a

global maximum and how to find a good initialization scheme to set the starting points.

The best way to handle the global maximum issue is to run the EM procedure multiple

times with different starting points. For instance, in calculating the MLEs assuming a two-

component normal mixture when the data were in fact sampled from an N(0, 1) distribution,

Finch et al. [13] proposed the following procedure for a two component normal mixture.

Procedure 2.4.2.

Step 1: Obtain multiple random starting values p0 for mixing proportion p by sampling

from a uniform U(0, 1) distribution;

Step 2: For every p0, calculate the starting values for the remaining three parameters ac-

cording to:

µ10 =
m∑

i=1

x(i)/m

µ20 =
n∑

i=m+1

x(i)/(n−m)

σ2
0 =

[
m∑

i=1

(x(i) − µ10)
2 +

n∑
i=m+1

(x(i) − µ20)
2

]/
(n− 2)

where x(i) denotes the ith sample order statistic and m is the integer part of np0;

13



Step 3: Run a numeric optimization algorithm on each starting point;

Step 4: Pick the best solution and estimate the probability that it is the real global maximum

from the convergence pattern of all solutions. �

As to the initialization issue, we need problem specific strategies. For example, the step

2 in the previous procedure and k-means clustering [24] in multivariate cases are effective

choices for the mixture normal distribution.

2.5 Introduction to Mixture Models and Literature

Review

Mixture modeling is a flexible strategy to handle population heterogeneity. Let the random

variable y have the probability density function (PDF)

f(y;ψ) =

g∑
j=1

pjfj(y;θj), (2.29)

0 ≤ pj ≤ 1 (j = 1, . . . , g),

g∑
j=1

pj = 1.

Each fj(y;θj) is the PDF for a homogeneous subpopulation with parameter vector θj, and

ψ is the nonredundant parameter vector that defines all p and θ.

In this mixture model, there are two levels of randomness:

Membership Level : The component membership of each observation follows a g-class

multinomial distribution with probabilities (p1, . . . , pg);
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Component Level : Conditional on the component membership, each observation has a

specific PDF fj(y;θj).

Pearson [33] and Cohen [8] estimated the parameters for the mixtures of two nor-

mal distributions with the method of moments. Besides the inefficiency problem, another

drawback of the method of moments is that we need to solve a series of algebra equations

obtained by equating sample moments to corresponding population (theoretic) moments.

These algebraic equations will change dramatically with the number of mixing components

and other assumptions. Rao [35] used maximum likelihood estimation (MLE) to solve the

same problem but with a restriction of equal variance for the two components. Assum-

ing equal variance, Tan and Chang [38] obtained asymptotic covariance matrices for the

point estimations through the method of moments and MLE respectively, and concluded

that maximum likelihood is a much more efficient method than the method of moments.

In their landmark paper [10] on the expectation-maximization (EM) algorithm, Dempster

et al. provided the EM algorithm for finding MLEs for any mixture model described by

(2.29), and pointed out that Ceppellini et al. [6] had already used EM algorithm in mixture

modeling for genetic data. Everitt [11] compared six algorithms for finding the MLE using

simulations on three data sets, and concluded that the best two methods were Newton’s

method using exact values of the gradient and Hessian matrices and the EM algorithm.

The preceding papers on mixture model estimation always assumed that the number

of mixing components is known. In reality, determining the number of mixing components

through hypothesis testing is an extremely difficult problem. Ghosh and Sen [15] pointed out

the violation of the regularity conditions for the classical asymptotic theory of the likelihood

ratio test statistic (LRTS). For the case of testing homogeneity against two-component

normal mixture with equal and known variance, Ghosh and Sen [15] also showed that,

under certain separation and boundness conditions on two normal means, the null LRTS is
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asymptotically distributed as a function of a complicated Gaussian process. For the same

problem, Hartigan [17] conjectured that, without the separation and bounded conditions,

the null LRTS is asymptotically diverges to infinite at the rate 1
2
log(log(n)). Liu and

Shao [18] proved that, for the simple homogeneity test

H0 : N(0, 1)

HA : pN(t, 1) + (1− p)N(0, 1) (2.30)

p ∈ (0, 1], t ∈ <\{0},

the null LRTS λn follows

lim
n→∞

P{λn − log(log(n)) + log(2π2) ≤ x} = e−e−x/2

, x > 0. (2.31)

The divergence of the asymptotic distribution (2.31) is at a very slow rate which could not

be detected, even with sample size of 5000 in authors’ simulation. For seven different cases of

two-component normal mixture models, Garel [14] provided the null LRTSs which also were

represented by the functions of a Gaussian process. Garel’s simulation results are different

from others. For example, his power to detect the normal mixture with Mahalanobis distance

(|µ1 − µ2|/σ) of 1.5, mixing proportion of 0.7 and sample size of 100 is 99.8%. Under

almost the same conditions (except the Mahalanobis distance is 2.0), Mendell et al. [29]

report power of 26.0%. Based on Kullback-Leibler information, Lo et al. [20] proposed the

following asymptotic distribution of the null LRTS λn

lim
n→∞

P{λn ≤ x} = Mm1+m2(x; ι), x > 0, (2.32)

to test the number of components in a normal mixture. In (2.32), m1 and m2 are the

numbers of parameter for the two hypothetical normal mixture models, Mm1+m2(·) is the
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weighted sum of χ2
1 distributions as defined by Vuong [42], and ι is the vector of m1 + m2

eigenvalues of a complicated matrix made by eight second order derivative matrices of the

two hypothetic normal mixture PDFs. Lo [19] also further extended this result to unequal

variance cases. Hall and Stewart [16] reported a theoretical power study based on the Liu

and Shao null LRTS result (2.31) for the hypothesis test problem of (2.30). They did not

provide any simulation results.

Besides these theoretic results on the null LRTS distribution and power calculations

for detecting mixtures, there are many papers using simulation and bootstrap techniques.

McLachlan [25] used a parametric bootstrap procedure to assess the null distribution of

LRTS for detecting homogeneity versus a mixture of two normal densities. Feng and Mc-

Culloch [12] provided some justification for the parametric bootstrapped LRTS by pointing

out that the MLE is consistent with the set identifying the true density function. Mendell

et al. reported simulation studies on the null LRTS distribution [40], sample size and power

calculations [29], [28] for detecting two-component normal mixture models. Maclean et

al. [23] suggested using a Box-Cox transformation to remove skewness from the data and

extended the existing normal mixture approaches to other mixture problems. Ning and

Finch [31], [32] obtained the null LRTS distribution, sample size and power results through

simulations for those Box-Cox transformed mixture analyses.

There are some studies on mixture regression models. Quandt and Ramsey [34] referred

to the mixture linear regression model (MLRM) as a switching regression model, and used

the moment generating function (MGF) to estimate parameters. They also proved that the

MGF solution had the properties of consistency and asymptotic normality. In one of their

case studies, Quandt and Ramsey used a mixture linear regression model with an identical

coefficient (out of total three coefficients) across two mixing components. Turner [41] ob-

tained the MLE and its standard error formula for MLRM by using the EM algorithm. He
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used this approach to estimate the propagation rate of a viral infection in potato plants.

Wang et al. [44] used the following mixture Poisson regression model

f(y|x,α,p) =

g∑
j=1

pjfj(y|µj)

fj(y|µj) =
1

y
µy

je
−µj (2.33)

µj = ceα
T
j x

to handle overdispersion and covariate-dependent event rates. In this paper, Wang et al.

also discussed some specific identical coefficient constraints in their model, but did not

provide any further information. In order to handle the sources of extra-binomial variation,

Wang and Puterman [43] proposed a class of mixture logistic regression models that allow

both the mixing components and mixing proportions to be dependent on covariates.
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Chapter 3

EM Algorithm for Restricted Mixture

Linear Regression Models

In this chapter, the EM algorithm is used to calculate the MLE of the mixing proportion p,

regression parameters
(
βT

1 , δT
2 , . . . , δT

g

)T
, variance components (σ2

1, . . . , σ
2
g) and their stan-

dard errors for the following restricted mixture linear regression models (RMLRM)

y =


xTβ1 + ε1 with probability p1,

. . .

xTβg + εg with probability pg,

(3.1)

εj
iid∼ N(0, σ2

j ),

0 ≤ pj ≤ 1,

g∑
j=1

pj = 1,

βj = β1 +

 δj

0

 , (j = 2, . . . , g).
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Specifically, when we calculate the MLE for all parameters, we assume the EM algorithm

has already been iterated r times, and the results are the one-step update of the MLE for

the (r +1)st iteration. In fact, the standard errors of the parameters can only be calculated

at the convergence point of the EM algorithm. When we calculate the standard errors, we

in fact assume the EM algorithm has already converged, and the final iteration number is

c.

Because of the mathematical nature of this chapter, it might be better for the reader

first to review Section 2.4.1 on the EM algorithm and preview Procedure 3.3.1 to get a

general idea of what is going to be done in this chapter, and then to read it through section

by section.

According to (2.16), the complete-data log likelihood function for mixture regression is

`c(ψ;y, Z) =
n∑

i=1

g∑
j=1

zij

(
log pj + log fj(yi,xi;θj)

)
(3.2)

where

fj(yi,xi;θj) =
1

σj

φ(
yi − xT

i βj

σj

), (3.3)

with φ the density of the standard Gaussian distribution, and θj =
(
βT

j , σj

)T
.

Suppose we have the current estimate ψ(r). The E-step of the (r + 1)th iteration for

the RMLRM follows the standard procedure listed in 2.4.1. Namely,

Q(ψ;ψ(r)) =
n∑

i=1

g∑
j=1

τj(yi;ψ
(r))
(
log pj + log fj(yi;θj)

)
, (3.4)

and

τj(yi;ψ
(r)) =

p
(r)
j fj(yi;θ

(r)
j )∑g

l=1 p
(r)
l fl(yi;θ

(r)
l )

. (3.5)

Equations (3.4) and (3.5) are straightforward, and even apply with mixture components
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fj(y;θj) have different PDFs.

In the rest of this chapter, I carry out

• the M-step calculations to obtain the one-step update for the parameter estimation;

• the calculations for the standard error for every parameter at a convergence point of

the EM algorithm.

The calculations are separated into equal and unequal variance cases respectively.

3.1 Equal Variance Case

In this section, we assume all the mixture components have the same error term variances

(σ2
1 = · · · = σ2

g).

3.1.1 Mixing Proportion (p) Estimation

The update for the mixing proportion p follows the standard formula (2.21):

p
(r+1)
j =

n∑
i=1

τj(yi;ψ
(r))/n (j = 1, . . . , g).
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3.1.2 Regression Parameter (β) Estimation

Let ξ be the parameter vector that defines all βj. Then according to section 2.4.1, the

likelihood equation for ξ is

∂Q(ψ;ψ(r))

∂ξ
=

∂

n∑
i=1

g∑
j=1

τj(yi;ψ
(r)) log fj(yi,xi;θj)

∂ξ
= 0 (3.6)

in which

log fj(yi,xi;θj) = − log(2πσ2)

2
−

(yi − xT
i βj)

2

2σ2 . (3.7)

From (3.6),

∂

n∑
i=1

g∑
j=1

τj(yi;ψ
(r))(yi − xT

i βj)
2/(2σ2)

∂ξ
= 0. (3.8)

Define Y , X and n× n diagonal matrix W
(r)
j as

Y =



y1

y2

...

yn


, X =



xT
1

xT
2

...

xT
n


,

W
(r)
j =



τj(y1;ψ
(r))

2σ2 0 . . . 0

0
τj(y2;ψ

(r))
2σ2 . . . 0

...
...

. . .
...

0 0 . . .
τj(yn;ψ(r))

2σ2


. (3.9)
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Equation (3.8) can be written as

∂

[
g∑

j=1

(Y −Xβj)
TW

(r)
j (Y −Xβj)

]
∂ξ

= 0. (3.10)

Suppose there are differences in mixture parameters βj only in the first d of a total m

elements, and assume

βj = β1 +

 δj

0

 , (j = 2, . . . , g). (3.11)

Define Xd as

Xd = X

 Id×d

0(m−d)×d


m×d

, (3.12)

and write ξ as

ξ =
(
βT

1 , δT
2 , . . . , δT

g

)T
. (3.13)

Then from (3.10) we have following likelihood equations

∂

(Y −Xβ1)
TW

(r)
1 (Y −Xβ1) +

g∑
j=2

(Y −Xβj −Xdδj)TW
(r)
j (Y −Xβj −Xdδj)


∂ξ

= 0

⇒

∂

(Y −Xβ1)
T

 g∑
j=1

W
(r)
j

 (Y −Xβ1) +
g∑

j=2

δT
j X

T
dW

(r)
j Xdδj − 2

g∑
j=2

(Y −Xβ1)
TW

(r)
j Xdδj


∂ξ

= 0

⇒

∂


(
βT

1 δ
T
2 . . . δT

g

)
A(r)



β1

δ2

...

δg


− 2

(
βT

1 δ
T
2 . . . δT

g

)
B(r)


∂ξ

= 0

⇒
∂
(
ξTA(r)ξ − 2ξTB(r)

)
∂ξ

= 0 (3.14)
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where

A(r) =



XT
( g∑

j=1

W
(r)
j

)
X XTW

(r)
2 Xd . . . XTW (r)

g Xd

XT
dW

(r)
2 X XT

dW
(r)
2 Xd . . . 0

...
...

. . .
...

XT
dW

(r)
g X 0 . . . XT

dW
(r)
g Xd


,

B(r) =



XT
( g∑

j=1

W
(r)
j

)
Y

XT
dW

(r)
2 Y

...

XT
dW

(r)
g Y


.

Therefore, we have the update for ξ as



β
(r+1)
1

δ
(r+1)
2

...

δ(r+1)
g


= A−1(r)B(r). (3.15)
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3.1.3 Variance (σ2) Estimation

The likelihood equation for σ2 is

∂Q(ψ;ψ(r))
∂σ2 = 0

⇒
∂

n∑
i=1

g∑
j=1

τj(yi;ψ
(r)) log fj(yi,xi;θj)

∂σ2 = 0

⇒
n∑

i=1

g∑
j=1

τj(yi;ψ
(r))

∂ log fj(yi,xi;θj)

∂σ2 = 0

⇒
n∑

i=1

g∑
j=1

τj(yi;ψ
(r))

[
− 1

σ2 +
(yi − xT

i βj)
2

σ4

]
= 0

⇒
n∑

i=1

g∑
j=1

τj(yi;ψ
(r)) =

n∑
i=1

g∑
j=1

τj(yi;ψ
(r))(yi − xT

i βj)
2

σ2 .

Replacing βj with β
(r+1)
j obtained from (3.15), we have the update

(σ2)
(r+1)

=

n∑
i=1

g∑
j=1

τj(yi;ψ
(r))(yi − xT

i β
(r+1)
j )2

n∑
i=1

g∑
j=1

τj(yi;ψ
(r))

=

g∑
j=1

(Y −Xβ(r+1)
j )TW

(r)
j (Y −Xβ(r+1)

j )

g∑
j=1

Tr(W
(r)
j )

. (3.16)
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3.1.4 Empirical Information Matrix

Following the definition of the empirical information matrix in section 2.4.2, suppose ψ̂ is

a convergence point of an EM calculation and c is the iteration number for ψ̂. We have

{
∂`(ψ; yi)

∂ψ

} ∣∣∣∣∣
ψ=ψ̂

=

{
E
[∂`c(ψ; yi, zi)

∂ψ

∣∣∣y, ψ̂
]} ∣∣∣∣∣

ψ=ψ̂

=

{
E

[
∂
∑g

j=1 zij

(
log pj + log fj(yi,xi;θj)

)
∂ψ

∣∣∣∣∣y, ψ̂

]} ∣∣∣∣∣
ψ=ψ̂

=

∂E
[∑g

j=1 zij

(
log pj + log fj(yi,xi;θj)

)∣∣∣y, ψ̂
]

∂ψ


∣∣∣∣∣
ψ=ψ̂

=

∂
∑g

j=1

(
log pj + log fj(yi,xi;θj)

)
E
[
zij

∣∣∣y, ψ̂
]

∂ψ


∣∣∣∣∣
ψ=ψ̂

=

{∑g
j=1 τj(yi; ψ̂)∂

(
log pj + log fj(yi,xi;θj)

)
∂ψ

}∣∣∣∣∣
ψ=ψ̂

. (3.17)

Empirical Information Matrix for Mixing Proportion p

To calculate Jpp, the (g − 1) × (g − 1) empirical information matrix of mixing proportion

p, we first have the score function

∂`(ψ; yi)

∂pj

∣∣∣∣∣
ψ=ψ̂

=
τj(yi; ψ̂)

p̂j

− τg(yi; ψ̂)

p̂g

, (j = 1, . . . , g − 1). (3.18)
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Then according to (2.26), we have

Jpp(ψ̂;y)

=

{
n∑

i=1

{
∂`(ψ;y)

∂p

}{
∂`(ψ;y)

∂p

}T
}∣∣∣∣∣

ψ=ψ̂

=



n∑
i=1

(
τ1(i)
p̂1

− τg(i)
p̂g

)2

. . .

n∑
i=1

(
τ1(i)
p̂1

− τg(i)
p̂g

)(
τg−1(i)
p̂g−1

− τg(i)
p̂g

)
...

. . .
...

n∑
i=1

(
τg−1(i)
p̂g−1

− τg(i)
p̂g

)(
τ1(i)
p̂1

− τg(i)
p̂g

)
. . .

n∑
i=1

(
τg−1(i)
p̂g−1

− τg(i)
p̂g

)2



=



n∑
i=1

(
f1(yi)− fg(yi)

f(yi)

)2

. . .

n∑
i=1

(
f1(yi)− fg(yi)

f(yi)

)(
fg−1(yi)− fg(yi)

f(yi)

)
...

. . .
...

n∑
i=1

(
fg−1(yi)− fg(yi)

f(yi)

)(
f1(yi)− fg(yi)

f(yi)

)
. . .

n∑
i=1

(
fg−1(yi)− fg(yi)

f(yi)

)2



=
n∑

i=1

1
f(yi)2


(f1(yi)− fg(yi))2 . . . (f1(yi)− fg(yi))(fg−1(yi)− fg(yi))

...
. . .

...

(fg−1(yi)− fg(yi))(f1(yi)− fg(yi)) . . . (fg−1(yi)− fg(yi))2

 ,(3.19)

where τj(i) represents τj(yi; ψ̂).
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Empirical Information Matrix for Regression Parameters

To calculate the empirical information matrix for regression parameters ξ =
(
βT

1 , δT
2 , . . . , δT

g

)T
,

we first have the score function

∂`(ψ; yi)

∂ξ
= −

∂

g∑
j=1

τj(yi; ψ̂)(yi − xT
i βj)

2/(2σ2)

∂ξ

= −

∂

g∑
j=1

w
(c)
ji (yi − xT

i βj)
2

∂ξ

= −

∂
[
w

(c)
1i (yi − xT

i β1)
2 +

g∑
j=2

w
(c)
ji (yi − xT

i βj)
2
]

∂ξ

= −

∂
[( g∑

j=1

w
(c)
ji

)
(yi − xT

i β1)
2 +

g∑
j=2

δT
j xdiw

(c)
ji x

T
diδj − 2

g∑
j=2

w
(c)
ji (yi − xT

i β1)xdiδj

]
∂ξ

= −
∂
[
ξT Ai(c)ξ − 2ξT Bi(c)

]
∂ξ

, (3.20)

where

Ai(c) =



xi

( g∑
j=1

w
(c)
ji

)
xT

i xiw
(c)
2i x

T
di . . . xiw

(c)
gi x

T
di

xdiw
(c)
2i x

T
i xdiw

(c)
2i x

T
di . . . 0

...
...

. . .
...

xdiw
(c)
gi x

T
i 0 . . . xdiw

(c)
gi x

T
di


, Bi(c) =



xi

( g∑
j=1

w
(c)
ji

)
yi

xdiw
(c)
2i yi

...

xdiw
(c)
gi yi


,

xdi = xi

 Id×d

0(m−d)×d


m×d

.
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and w
(c)
ji is W

(c)
j (i, i). Therefore,

∂`(ψ; yi)

∂ξ

∣∣∣∣∣
ψ=ψ̂

= −
∂
[
ξT Ai(c)ξ − 2ξT Bi(c)

]
∂ξ

∣∣∣∣∣
ψ=ψ̂

= −2Ai(c)ξ
(c) + 2Bi(c). (3.21)

For the regression parameter vector β1, we have the score function

∂`(ψ; yi)
∂β1

∣∣∣∣∣
ψ=ψ̂

= −2

[
xi

( g∑
j=1

w
(c)
ji

)
xT

i β
(c)
1 + xiw

(c)
2i x

T
diδ

(c)
2 + · · ·+ xiw

(c)
gi x

T
diδ

(c)
g

]
+ 2xi

( g∑
j=1

w
(c)
ji

)
yi

= − 1
(σ2)(c)

g∑
j=1

τj(i)xix
T
i β

(c)
j +

1
(σ2)(c)

g∑
j=1

τj(i)xiyi

=
1

(σ2)(c)

g∑
j=1

τj(i)xi(yi − xT
i β

(c)
j )

=
1

(σ2)(c)

g∑
j=1

τj(i)xieij (3.22)

where eij = yi − xT
i β

(c)
j . Therefore, the empirical information matrix for β1 is

Jβ1β1
=

1

(σ4)(c)

n∑
i=1

{[
g∑

j=1

τj(i)eijxi

][
g∑

j=1

τj(i)eijxi

]T}

=
1

(σ4)(c)

n∑
i=1

{[
g∑

j=1

τj(i)eij

]2

xix
T
i

}

=
1

(σ4)(c)
XT



( g∑
j=1

τj(1)e1j

)2

. . . 0

...
. . .

...

0 . . .
( g∑

j=1

τj(n)enj

)2


X (3.23)
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For the regression parameter vector δk, we first have the score function

∂`(ψ; yi)

∂δk

∣∣∣∣∣
ψ=ψ̂

= −2

[
xdiw

(c)
ki x

T
i θ

(c)
1 + xdiw

(c)
ki x

T
diδ

(c)
k

]
+ 2xdiw

(c)
ki yi

= 2xdiw
(c)
ki eik

=
1

(σ2)(c)
xdiτk(i)eik. (3.24)

Therefore, the empirical information matrix for δk is

Jδkδk
=

1

(σ4)(c)

n∑
i=1

{
τ 2
k (i)e2

ikxdix
T
di

}

=
1

(σ4)(c)
XT

d


τ 2
k (1)e2

1k . . . 0

...
. . .

...

0 . . . τ 2
k (n)e2

nk

Xd. (3.25)

Empirical Information Matrix for Variance

The score function of σ2 is

∂`(ψ; yi)

∂σ2

∣∣∣∣∣
ψ=ψ̂

=

g∑
j=1

τj(i)
∂
[
− log(2πσ2)/2− (yi − xT

i θj)
2/2σ2

]
∂σ2

∣∣∣∣∣
ψ=ψ̂

=

g∑
j=1

τj(i)
[
− 1

2(σ2)(c)
+

e2
ij

2(σ4)(c)

]
(3.26)

Therefore, the empirical information matrix for σ2 is

Jσ2σ2 =
n∑

i=1

{
g∑

j=1

τj(i)
[
− 1

2(σ2)(c)
+

e2
ij

2(σ4)(c)

]}2

. (3.27)
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3.2 Unequal Variance Case

In this section, we assume that the mixture components might have different error term

variances (σ2
1, . . . , σ

2
K) and that the EM algorithm has been iterated r times.

3.2.1 Mixing Proportion (p) Estimation

The update for mixing proportion p follows the standard formula (2.21):

p
(r+1)
j =

n∑
i=1

τj(yi;ψ
(r))/n (j = 1, . . . , g).

3.2.2 Solution for βj and σ2
j

Define η as the parameter vector that defines all βj and σ2
j . According to section 2.4.1, the

likelihood equation for η is

∂
n∑

i=1

g∑
j=1

τj(yi;ψ
(r)) log fj(yi,xi;θj)

∂η
= 0 (3.28)

in which

log fj(yi,xi;βj) = −
log(2πσ2

j )

2
−

(yi − xT
i βj)

2

2σ2
j

(3.29)

Since equation (3.28) is a nonlinear likelihood equation, we use coordinate descent meth-

ods [22] by going through the following two steps iteratively until apparent convergence:
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Step 1: Solve for βj

Suppose we have current estimations of all σ̂2
j and define ξ as a parameter vector that defines

all βj. Then the likelihood equation for ξ becomes

∂
n∑

i=1

g∑
j=1

τj(yi;ψ
(r)) log fj(yi,xi;θj)

∂ξ
= 0

⇒
∂

n∑
i=1

g∑
j=1

τj(yi;ψ
(r))

(yi − xT
i βj)

2

2σ̂2
j

∂ξ
= 0

Change W
(r)
j in (3.9) to

V̂
(r)

j =



τj(y1;ψ
(r))

2σ̂2
j

0 . . . 0

0
τj(y2;ψ

(r))
2σ̂2

j

. . . 0

...
...

. . .
...

0 0 . . .
τj(yn;ψ(r))

2σ̂2
j


(3.30)

and change A(r) and B(r) into Ĉ(r) and D̂(r) as follows,

Ĉ(r) =



XT
( g∑

j=1

V̂
(r)

j

)
X XT V̂

(r)

2 Xd . . . XT V̂
(r)

g Xd

XT
d V̂

(r)

2 X XT
d V̂

(r)

2 Xd . . . 0

...
...

. . .
...

XT
d V̂

(r)

g X 0 . . . XT
d V̂

(r)

g Xd


,
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D̂(r) =



XT
( g∑

j=1

V̂
(r)

j

)
Y

XT
d V̂

(r)

2 Y

...

XT
d V̂

(r)

g Y


.

Then we can follow the same path as in section 3.1.2 to obtain the estimate



β̂1

δ̂2

...

δ̂g


= Ĉ(r)−1D̂(r). (3.31)

Step 2: Solve for σ2
j

Suppose we have current estimates for all β̂j. From (3.28) we have the likelihood equation

for σ2
j

∂
n∑

i=1

g∑
j=1

τj(yi;ψ
(r)) log fj(yi,xi;θj)

∂σ2
j

= 0

⇒
∂

n∑
i=1

τj(yi;ψ
(r)) log fj(yi,xi;θj)

∂σ2
j

= 0

⇒
n∑

i=1

τj(yi;ψ
(r))

∂ log fj(yi,xi;θj)

∂σ2
j

= 0

⇒
n∑

i=1

τj(yi;ψ
(r))

[
− 1

σ2
j

+
(yi − xT

i β̂j)
2

σ4
j

]
= 0
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Therefore

σ̂2
j =

n∑
i=1

τj(yi;ψ
(r))(yi − xT

i β̂j)
2

n∑
i=1

τj(yi;ψ
(r))

=
(Y −Xβ̂j)

T V̂
(r)

j (Y −Xβ̂j)

Tr(V̂
(r)

j )
. (3.32)

Once there is convergence for β̂1, δ̂2, . . . , δ̂g and σ̂2
j , we take them as the solution for

(r + 1)st iteration.

3.2.3 Empirical Information Matrix

Suppose ψ̂ is the point of convergence of EM calculation, and c is its iteration number.

Empirical Information Matrix for Mixing Proportion p

For Jpp, we have the same solution as (3.19).
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Empirical Information Matrix for Regression Parameters

To calculate the empirical information matrix for regression parameters ξ =
(
βT

1 , δT
2 , . . . , δT

g

)T
,

we first have the score function

∂`(ψ; yi)

∂ξ
= −

∂

g∑
j=1

τj(yi; ψ̂)(yi − xT
i βj)

2/(2σ2
j )

∂ξ

= −

∂

g∑
j=1

v
(c)
ji (yi − xT

i βj)
2

∂ξ

= −

∂
[
v

(c)
1i (yi − xT

i β1)
2 +

g∑
j=2

v
(c)
ji (yi − xT

i βj)
2
]

∂ξ

= −

∂
[( g∑

j=1

v
(c)
ji

)
(yi − xT

i β1)
2 +

g∑
j=2

δT
j xdiv

(c)
ji x

T
diδj − 2

g∑
j=2

v
(c)
ji (yi − xT

i β1)xdiδj

]
∂ξ

= −
∂
[
ξT Ci(c)ξ − 2ξT Di(c)

]
∂ξ

(3.33)

where

Ci(c) =



xi

( g∑
j=1

v
(c)
ji

)
xT

i xiv
(c)
2i x

T
di . . . xiv

(c)
gi x

T
di

xdiv
(c)
2i x

T
i xdiv

(c)
2i x

T
di . . . 0

...
...

. . .
...

xdiv
(c)
gi x

T
i 0 . . . xdiv

(c)
gi x

T
di


, Di =



xi

( g∑
j=1

v
(c)
ji

)
yi

xdiv
(c)
2i yi

...

xdiv
(c)
gi yi


,

and v
(c)
ji is V̂

(c)
j (i, i). Therefore

∂`(ψ; yi)

∂ξ

∣∣∣∣∣
ψ=ψ̂

= −
∂
[
ξT Ci(c)ξ − 2ξT Di(c)

]
∂ξ

∣∣∣∣∣
ψ=ψ̂

= −2Ci(c)ξ
(c) + 2Di(c). (3.34)
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For the regression parameter vector β1, we have the score function

∂`(ψ; yi)
∂β1

∣∣∣∣∣
ψ=ψ̂

= −2

[
xi

( g∑
j=1

v
(c)
ji

)
xT

i β
(c)
1 + xiv

(c)
2i x

T
diδ

(c)
2 + · · ·+ xiv

(c)
gi x

T
diδ

(c)
g

]
+ 2xi

( g∑
j=1

v
(c)
ji

)
yi

=
g∑

j=1

τj(i)
(σ2

j )(c)
xieij , (3.35)

where eij = yi − xT
i β

(c)
j . Therefore, the empirical information matrix for β1 is

Jβ1β1
=

n∑
i=1

{[
g∑

j=1

τj(i)

(σ2
j )

(c)
eijxi

][
g∑

j=1

τj(i)

(σ2
j )

(c)
eijxi

]T}

=
n∑

i=1

{[
g∑

j=1

τj(i)

(σ2
j )

(c)
eij

]2

xix
T
i

}

= XT



( g∑
j=1

τj(1)

(σ2
j )

(c)
e1j

)2

. . . 0

...
. . .

...

0 . . .
( g∑

j=1

τj(n)

(σ2
j )

(c)
enj

)2


X (3.36)

For regression parameter vector δk, we first have the score function

∂`(ψ; yi)

∂δk

∣∣∣∣∣
ψ=ψ̂

= −2

[
xdiv

(c)
ki x

T
i β

(c)
1 + xdiv

(c)
ki x

T
diδ

(c)
k

]
+ 2xdiv

(c)
ki yi

= 2xdiv
(c)
ki eik

=
1

(σ2
k)

(c)
xdiτk(i)eik. (3.37)
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Therefore, the empirical information matrix for δk is

Jδkδk
=

1

(σ4
k)

(c)

n∑
i=1

{
τ 2
k (i)e2

ikxdix
T
di

}

=
1

(σ4
k)

(c)
XT

d


τ 2
k (1)e2

1k . . . 0

...
. . .

...

0 . . . τ 2
k (n)e2

nk

Xd. (3.38)

Empirical Information Matrix for Variance

For the score function of σ2
j , we have

∂`(ψ; yi)

∂σ2
j

∣∣∣∣∣
ψ=ψ̂

= τj(i)
∂
[
− log(2πσ2

j )/2− (yi − xT
i θj)

2/2σ2
j

]
∂σ2

j

∣∣∣∣∣
ψ=ψ̂

= τj(i)
[
− 1

2(σ2
j )

(c)
+

e2
ij

2(σ4
j )

(c)

]
. (3.39)

Therefore, the empirical information matrix for σ2
j is

Jσ2
j σ2

j
=

n∑
i=1

{
τj(i)

[
− 1

2(σ2
j )

(c)
+

e2
ij

2(σ4
j )

(c)

]}2

. (3.40)

3.3 Summary

In summary, without dealing with global maximum and initialization issues, we have the

following EM procedure to calculate the MLE and their standard errors for RMLRM (3.1):

Procedure 3.3.1.

given (p(0),β(0),σ(0))

repeat
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Calculate posterior probability matrix τ (2.18);

if Equal Variance then

Calculate regression parameters β(r) by (3.9), (3.1.2) and (3.15);

Calculate residual variance (σ2)(r) by (3.16);

else

repeat

Calculate regression parameters β(r) by (3.30), (3.2.2) and (3.31);

Calculate residual variance (σ2)(r) by (3.32);

until (β(r), (σ2)(r)) converges

endif

until Q(ψ;ψ(r)) converges

Calculate Empirical Information Matrix Jpp by (3.19);

if Equal Variance then

Calculate Empirical Information Matrix Jββ by (3.23) and (3.25);

Calculate Empirical Information Matrix Jσ2σ2 by (3.27);

else

Calculate Empirical Information Matrix Jββ by (3.36) and (3.38);

Calculate Empirical Information Matrix Jσ2σ2 by (3.40);

endif

return (p(∗),β(∗), (σ2)(∗), Jpp, Jββ, Jσ2σ2)
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Chapter 4

Some Mixture Linear Regression

Model (MLRM) Related Theoretic

Results and Their Application

In this chapter, we first develop some theoretical results about mixture linear regression

models and then give the EM initialization methods for two specific mixture linear regression

models: namely, the mixture intercept model (MIM) and the mixture slope model (MSM).

Besides the direct applications on EM initialization, the theoretic results developed in this

chapter also provide a theoretical foundation for power and sample size calculations for

MIM and MSM and mixture intercept detection using residual analysis.
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4.1 Linear Regression with Mixture Error Terms

Suppose we have the following linear model (a sample from it is shown in figure (4.1)):

yi = xT
i β + di + εi (4.1)

εi
iid∼ N(0, σ2)

di =


∆1 with probability p1,

. . . . . .

∆g with probability pg,

E(di) = ∆1p1 + . . . + ∆gpg = 0

where di and εi are independent of each other. If we add di into the intercept, the resulting

model is a g-component MIM.

For ordinary least square (OLS) regression on this model, the following two theorems

hold:

Theorem 4.1.1. If the design matrix X is full rank (Rank(X) = m), then the OLS estimate

β̂ = (XT X)−1XTy for model (4.1) is an unbiased consistent estimator of β with variance:

%2(XT X)−1. (4.2)

where

%2 = σ2 + ∆2
1p1 + . . . + ∆2

gpg. (4.3)

PROOF:
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Figure 4.1: Simulated Data Scatterplot of Mixture Intercept Model

Using y, d and ε to represent the observation and two error term vectors, we have

β̂ = (XT X)−1XTy

= (XT X)−1XT Xβ + (XT X)−1XTd+ (XT X)−1XTε

= β + (XT X)−1XTd+ (XT X)−1XTε.

Therefore

E(β̂) = β + (XT X)−1XTE(d) + (XT X)−1XTE(ε)

= β.
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For the random variables di, we have

E[d2
i ] = ∆2

1p1 + . . . + ∆2
gpg.

For i 6= j

didj =



∆1∆2 with probability 2p1p2,

. . . . . .

∆g−1∆g with probability 2pg−1pg,

∆2
1 with probability p2

1,

. . . . . .

∆2
g with probability p2

g,

and

E[didj] = ∆2
1p

2
1 + . . . + ∆2

gp
2
g + 2∆1∆2p1p2 + . . . + 2∆g−1∆gpg−1pg

= (∆1p1 + . . . + ∆gpg)
2 = 0.

Therefore

E[ddT ] =
(
∆2

1p1 + . . . + ∆2
gpg

)
I. (4.4)

Then

Var(β̂) = E[(β − β̂)(β − β̂)T ]

= E
{[

(XT X)−1XTd+ (XT X)−1XTε
][
dT X(XT X)−1 + εT X(XT X)−1

]}
= E

[
(XT X)−1XTddT X(XT X)−1

]
+ E

[
(XT X)−1XTεεT X(XT X)−1

]
=

(
∆2

1p1 + . . . + ∆2
gpg

)
(XT X)−1 + σ2(XT X)−1

= %2(XT X)−1.
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Since

limn→∞(XT X)−1 = 0,

β̂ is a consistent estimator of β. �

Theorem 4.1.2. If the design matrix X is full rank, then the estimate

σ̂2 =
(y −Xβ̂)T (y −Xβ̂)

n
(4.5)

for model (4.1) has expectation:

(n−m)%2

n
. (4.6)

and

σ̂2 P−→ %2. (4.7)

PROOF:

(1)

y −Xβ̂ = Xβ + d+ ε−X(XT X)−1XTy

= d+ ε−Hd−Hε,

where

H = X(XT X)−1XT . (4.8)

Since

σ̂2 =
(y −Xβ̂)T (y −Xβ̂)

n

=
dT (I −H)d+ εT (I −H)ε+ 2dT (I −H)ε

n
,
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E(σ̂2) = E
{dT (I −H)d+ εT (I −H)ε+ 2dT (I −H)ε

n

}
= E

{Tr((I −H)ddT ) + Tr((I −H)εεT )

n

}
=

(σ2 + ∆2
1p1 + . . . + ∆2

gpg)Tr(I −H)

n

=
(n−m)%2

n

where m is the dimension of β and Tr(I −H) is the trace of the square matrix I −H.

(2)

According to Lemma 3 of [2],

Var(σ̂2) =
2%4{Tr((I −H)2) + 1

2
γ2q

Tq}
n2

where q is the column vector of diagonal elements of I−H, and γ2 is the standard measure

of kurtosis for y. From Proposition 13.1.4 of [7], we have

0 ≤ qi ≤ 1.

For Tr((I −H)2), we have

Tr((I −H)2) = Tr(I −H)

= Tr(I)− Tr(H)

= n− Tr(X(XT X)−1XT )

= n− Tr(XT X(XT X)−1)

= n− rank(X).
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For γ2, we have

γ2 =
E[(yi − E(yi))

4]

%4 − 3

=
E[d4

i + ε4
i + 4d3

i εi + 4diε
3
i + 6d2

i ε
2
i ]

%4 − 3

=
E[d4

i + ε4
i + 6d2

i ε
2
i ]

%4 − 3

=
∆4

1p1 + . . . + ∆4
gpg + 3σ4 + 6σ2(∆2

1p1 + . . . + ∆2
gpg)

%4 − 3

= o(n).

Therefore,

limn→∞Var(σ̂2) = 0,

and

σ̂2 P−→ %2.

�

4.2 OLS for Mixture Models

We first study the unrestricted mixture linear regression model:

y =


xTβ1 + εj with probability p1,

. . .

xTβg + εg with probability pg,

(4.9)

εj
iid∼ N(0, σ2

j ),

0 ≤ pj ≤ 1,

g∑
j=1

pj = 1.
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When we use E(y) = Xβ to model the data from model (4.9) with OLS, we have the

following theorem:

Theorem 4.2.1. If the design matrix X is full rank, then the expectation of OLS estimate

β̂ for model (4.9) will be:

E(β̂) = p1β1 + · · ·+ pgβg. (4.10)

PROOF:

Since the OLS estimate β̂ is

β̂ = (XT X)−1XTy,

E(β̂) = (XT X)−1XTE(y)

= (XT X)−1XT
(
p1X

Tβ1 + . . . + pgX
Tβg

)
= p1β1 + · · ·+ pgβg.

�

Consider the restricted mixture linear regression model:

y =


xTβ1 + ε1 with probability p1,

. . .

xTβg + εg with probability pg,

(4.11)

εj
iid∼ N(0, σ2

j )

0 ≤ pj ≤ 1,

g∑
j=1

pj = 1,
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βj = β1 +

 δj

0

 (j = 2, . . . , g).

We call variables (dimension of d × 1)with nonzero δj unrestricted, and the other vari-

ables restricted. That is, the regression coefficients of xd+1, . . . , xm are the same for each

component.

When we apply theorem 4.2.1 to the restricted mixture linear regression model (4.11),

we have the following corollary:

Corollary 4.2.2. If the design matrix X is full rank, then the expectation of the OLS

estimator β̂ applied to the data from model (4.11) is:

E(β̂) = β1 + p2

 δ2

0

+ · · ·+ pg

 δg

0

 . (4.12)

�

If we use OLS to model mixture linear regression models, we will have unbiased estima-

tion for the restricted components. The expectations of the OLS estimator of unrestricted

parameters are weighted sum of the true parameters, with the mixing proportions the cor-

responding weights.
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4.3 EM Initialization For Mixture Intercept Model

Suppose we have the following mixture intercept model (MIM):

y =



α + xTβ + ε with probability p1,

α + δ2 + xTβ + ε with probability p2,

. . . . . .

α + δg + xTβ + ε with probability pg.

(4.13)

This can be changed into the following mixture error term model:

y =



α + δ + xTβ − δ + ε with probability p1,

α + δ + xTβ + δ2 − δ + ε with probability p2,

. . . . . .

α + δ + xTβ + δg − δ + ε with probability pg,

(4.14)

where

δ = p2δ2 + . . . + pgδg.

According to Theorem 4.1.1, the OLS estimator θ̂ = (XT X)−1XTy is an unbiased consistent

estimator which converges to

θ =

 α + δ

β

 (4.15)

and the corresponding residual is approximately

e =



−δ + ε when observation comes from component 1,

δ2 − δ + ε when observation comes from component 2,

. . . . . .

δg − δ + ε when observation comes from component g,

(4.16)
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which can be approximated with a mixture normal distribution. Based on this mixture

residual distribution, we have the following EM initialization procedure for the mixture

intercept model (supposing that we have an initial value for the mixing proportion p):

Procedure 4.3.1 (EM Initialization Procedure for Mixture Intercept Model).

• Estimate the OLS parameters from the data;

• Calculate the residuals;

• Sort residuals;

• Split the sample into g groups according p and their residual rank;

• Calculate initial values for other parameters accordingly. �

4.4 EM Initialization For Mixture Slope Model

Suppose we have the following mixture slope model (MSM):

y =



α + γxt + xT
c β + ε with probability p1,

α + (γ + δ2)xt + xT
c β + ε with probability p2,

. . . . . .

α + (γ + δg)xt + xT
c β + ε with probability pg.

(4.17)

This can be changed into following model:

y =



α + (γ + δ)xt + xT
c β − δxt + ε with probability p1,

α + (γ + δ)xt + xT
c β + (δ2 − δ)xt + ε with probability p2,

. . . . . .

α + (γ + δ)xt + xT
c β + (δg − δ)xt + ε with probability pg.

(4.18)
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If we use OLS to model (4.18). Then, the “scaled residual” (e′ = e/xt) for model (4.18) will

approximately to be

e′ =



−δ when observation comes from component 1,

δ2 − δ when observation comes from component 2,

. . . . . .

δg − δ when observation comes from component g.

(4.19)

We have the following EM initialization procedure for mixture slope model (suppose we

already have initial value for p):

Procedure 4.4.1 (EM Initialization Procedure for Mixture Slope Model).

• Estimate OLS parameters from data;

• Calculate the “scaled residuals”;

• Sort “scaled residuals”;

• Split the sample into g groups according p and their rank of “scaled residuals”;

• Calculate initial values for other parameters accordingly. �

In applications we may need to modify procedure 4.4.1 to handle extreme values of ε/xt

caused by xt near 0.
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Chapter 5

Power and Sample Size Calculations

for Three Two-Component Mixture

Models

5.1 Motivation and LRTS Decomposition

In this chapter, we study an approximate approach to perform power and sample size

calculations for detecting some two-component mixture models using the likelihood ratio

test statistic (LRTS).

Suppose we have a sample of observations y = (y1, . . . , yn)T , and we want to test:

H0 : yi
iid∼ f(yi;θ0) , g0(yi;ψ0),

HA : yi
iid∼ pf(yi;θ1) + (1− p)f(yi;θ2) , gA(yi;ψA), (5.1)
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where ψ0 = θ0, ψA = (p,θT
1 ,θT

2 )T . The LRTS is:

λ(ψ̂;y) = 2{`(ψ̂A;y)− `(ψ̂0;y)}, (5.2)

in which,

`(ψ̂j;y) =
n∑

i=1

log gj(yi; ψ̂j), (j ∈ {0, A}), (5.3)

where ψ = (ψT
0 ,ψT

A)T , and ψ̂0, ψ̂A and ψ̂ are the MLEs of their corresponding parameters.

In order to calculate the power and sample size for detecting two-component mixture

distribution against homogenous distribution, we need two LRTS distributions:

• LRTS distribution when H0 is true, which we call the null LRTS distribution;

• LRTS distribution when HA is true, which we call the alternative LRTS distribution.

We estimate the null LRTS distribution through simulations in the next chapter.

If we have a two-component normal mixture model

yi
iid∼ pN(µ1, σ

2
A) + (1− p)N(µ2, σ

2
A), (5.4)

and we mistakenly assume it is a homogenous normal model

yi
iid∼ N(µ0, σ

2
0), (5.5)

then for the MLEs µ̂0 and σ̂2
0, we have

E(µ̂0) = pµ1 + (1− p)µ2 , µ0, (5.6)

E(σ̂2
0) = σ2

A + p(1− p)(µ1 − µ2)
2 , σ2

0. (5.7)
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With the real two-component mixture model (5.4) and corresponding misspecified ho-

mogenous model (5.5), (5.6) and(5.7), the alternative LRTS equation (5.2) for this normal

mixture detecting problem can be decomposed as:

λ(ψ̂;y) = 2{`(ψ̂A;y)− `(ψ̂0;y)}

= 2{`(ψA;y)− `(ψ0;y)}+ 2{`(ψ̂A;y)− `(ψA;y)}

−2{`(ψ̂0;y)− `(ψ0;y)}. (5.8)

In the decomposition equation (5.8), 2{`(ψA;y) − `(ψ0;y)} is easily computed once we

have the parameters of p, µ1, µ2 and σA, which are the design parameters for power and

sample size calcualtion problems. Later on, we will call 2{`(ψA;y)− `(ψ0;y)} the nominal

alternative LRTS. We conjecture that {`(ψA;y)− `(ψ0;y)} is independent of {`(ψ̂A;y)−

`(ψA;y)}−{`(ψ̂0;y)−`(ψ0;y)}, and 2{`(ψ̂A;y)−`(ψA;y)}−2{`(ψ̂0;y)−`(ψ0;y)} could

be approximated by χ2
dA−d0

, where dA and d0 are dimensions of ψA and ψ0 respectively.

Therefore, we have a possibly useful approximation for LRTS as

λ(ψ̂;y)
.∼ 2{`(ψA;y)− `(ψ0;y)}+ χ2

dA−d0
. (5.9)

In the following sections, for the two-component normal mixture model (NMM), the

mixture intercept model (MIM) and the mixture slope model (MSM), we first provide an

approach to obtain nominal alternative LRTS distributions of 2{`(ψA;y)−`(ψ0;y)}. Then

we obtain power and sample size formulas based on the approximated alternative LRTS

distributions from (5.9) and the simulated null LRTS distributions.
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5.2 Nominal Alternative LRTS Distributions for Nor-

mal Mixture Model (NMM)

Suppose we have an observation from following NMM

y =

 N(µ1, σ
2
A) with probability p,

N(µ2, σ
2
A) with probability 1− p,

(5.10)

which is equivalent to

y =

 µ1 + ε with probability p,

µ2 + ε with probability 1− p,

(5.11)

where

ε
iid∼ N(0, σ2

A).

Assume that we know the true parameters for this model. Then the corresponding log

likelihood function `2(ψ2; y) for a single observation y will be

`2(ψ2; y) = log(pφ(y; µ1, σ
2
A) + (1− p)φ(y; µ2, σ

2
A))

= log

 p√
2πσA

e
−
(y − µ1)

2

2σ2
A +

1− p√
2πσA

e
−
(y − µ2)

2

2σ2
A



=



log

 p√
2πσA

e
− ε2

2σ2
A +

1− p√
2πσA

e
−
(ε− δ)2

2σ2
A


when y comes from component 1

log

 p√
2πσA

e
−
(ε + δ)2

2σ2
A +

1− p√
2πσA

e
− ε2

2σ2
A


when y comes from component 2

(5.12)
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where δ = µ2 − µ1 and ψ2 = (p, µ1, µ2, σA)T .

If we mistakenly assume that the data come from a homogeneous normal distribution,

then according to the previous section, the underlying misspecified model is

yi
iid∼ N(µ0, σ

2
0), (5.13)

µ0 = pµ1 + (1− p)µ2, (5.14)

σ2
0 = σ2

A + p(1− p)(µ1 − µ2)
2. (5.15)

The corresponding log likelihood function for a single observation `1(ψ1; y) is

`1(ψ1; y) = log

 1√
2πσ0

e
−
(y − µ0)

2

2σ2
0


= − log(

√
2πσ0)−

(y − µ0)
2

2σ2
0

=


− log(

√
2πσ0)−

(−(1− p)δ + ε)2

2σ2
0

when y comes from component 1

− log(
√

2πσ0)−
(pδ + ε)2

2σ2
0

when y comes from component 2

(5.16)

where ψ1 = (p, δ, σ0)
T .
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Therefore, for a single observation, we have the LRTS value:

λ(ψ; y) =

= 2(`2(ψ2; y)− `1(ψ1; y))

=



2 log

 p√
2πσA

e
− ε2

2σ2
A +

1− p√
2πσA

e
−(ε− δ)2

2σ2
A

+ log(2πσ2
0) + (−(1− p)δ + ε)2

σ2
0

when y comes from component 1

2 log

 p√
2πσA

e
−(ε + δ)2

2σ2
A +

1− p√
2πσA

e
− ε2

2σ2
A

+ log(2πσ2
0) + (pδ + ε)2

σ2
0

when y comes from component 2

(5.17)

where ψ = (p, µ1, µ2, σA)T .

From (5.17) we can see that λ(ψ; y) = λ(p, µ1, µ2, σA; y) is a determinate function of

y with p, µ1, µ2 and σA as parameters, and independent and identically distributed (i.i.d.)

y gives i.i.d. λ(ψ; y). There are no closed-form formulas to describe the distribution of

λ(ψ; y), but we can estimate its mean E(λ(ψ; y)) and standard deviation σλ by the sample

average λ and sample standard deviation sλ through the following simulation procedure:

Procedure 5.2.1.

• Given p, µ1, µ2 and σA;

• Let δ = µ2 − µ1 and calculate σ0 according to (5.15);

• Set sample size N = 2000 (which is large enough to get accurate estimates of E(λ(ψ; y))

and σλ);

• Create a random sample ε from N(0, σ2
A);

• Partition ε into 2 groups with proportion of group 1 as p;
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• Calculate the realizations of λ(ψ; y) according to (5.17);

• Calculate the average λ and sample standard deviation sλ from the realizations of

λ(ψ; y). �

Using the central limit theorem, for a sample of n observation y = (y1, . . . , yn)T , the

nominal alternative LRTS distribution for detecting two-component normal mixture against

homogenous normal distribution can be approximated by:

λ(ψ;y) =
n∑

i=1

λ(ψ; yi)

.∼ N(nλ, ns2
λ). (5.18)

5.3 Power and Sample Size Calculations for Normal

Mixture Model

In section 6.3, we will find the null LRTS distribution λ0(n) through simulation for specified

sample size n. Here, we assume λ0(n) is known. Given null and alternative LRTS distribu-

tions, the power and sample size calculations can be illustrated by Figure 5.1. We use the

following procedure to calculate the power:

Procedure 5.3.1.

1. Obtain the nominal alternative LRTS distribution N(nλ, ns2
λ) with design parameters

p, µ1, µ2 and σA according to Procedure 5.2.1;

2. Obtain the approximate alternative LRTS distribution λ(ψ̂;y)
.∼ N(nλ, ns2

λ)+χ2
dA−d0

;

3. Find q1−α(n), the 1− α quantile point of λ0(n);
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4. Calculate the power by integrating the area enclosed by y = 0, x = q1−α(n) and the

curve of the alternative LRTS distribution λ(ψ̂;y). �
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Figure 5.1: Power and sample size calculation by null and alternative LRTS. q0.95(n) is the
95% quantile point of the null LRTS distribution λ0(n) with sample size n. The shaded
area represents the power.

Because the approximate alternative LRTS distribution λ(ψ̂;y)
.∼ N(nλ, ns2

λ)+χ2
dA−d0

does not have a closed-form formula, it is impossible to have analytic solutions for power and

sample size. On the other hand, from the calculation point of view, there is no difference

between calculating q1−α(n) of λ0(n) and calculating that of λ0(n) − χ2
dA−d0

. Therefore, if

we can change comparing λ0(n) (null statistic) against N(nλ, ns2
λ) + χ2

dA−d0
(alternative

statistic) into comparing λ0(n) − χ2
dA−d0

(null statistic) against N(nλ, ns2
λ) (alternative

statistic) in the processes of power and sample size calculations, then we will have closed-

form solutions because of the simple analytic form of N(nλ, ns2
λ). To validate this change

for hypothesis testing, we use the following theorem:
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Theorem 5.3.2. Given two random variables X and Y that have probability density func-

tions fX(x) and fY (y) respectively, and s a real number, then

Pr(X ≤ Y + s) = Pr(X − Y ≤ s) (5.19)
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Figure 5.2: Power and sample size calculation by LRTS. q0.95(n) is the 95% quantile point
of the distribution of (λ0(n)− χ2

dA−d0
). The shaded area represents the power.

With Theorem 5.3.2, we can use Figure 5.2 to carry out sample size and power calcu-

lations. When we have a specified normal mixture model and have a certain sample size n,

we can first calculate λ and sλ according to procedure 5.2.1, then calculate the power by

following power formula:

Power(ψ, α, n) = 1− Φ

(
q1−α(n)− nλ√

nsλ

)
, (5.20)

where Φ(x) is the cumulative distribution function of the standard normal distribution. If
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we have a target power, then we have:

Power(ψ, α, n) = 1− Φ
(

q1−α(n)−nλ√
nsλ

)
⇒ Zβ =

q1−α(n)− nλ√
nsλ

⇒
√

nsλZβ = q1−α(n)− nλ (5.21)

where Zβ = Φ−1(1 − Power). In section 6.3, we will find that q1−α(n1) ≈ q1−α(n2) when

100 ≤ n1, n2 ≤ 1600. Therefore, we define q1−α as the average of q1−α(n) for those sample

sizes, and use it to equation (5.21). The sample size formula then is:

n =


2q1−αλ + σ2

λZ
2
β +

√
σ4

λZ
4
β + 4q1−αλσ2

λZ
2
β

2λ
2

 (5.22)

where dxe means smallest integer that greater than x.

5.4 Nominal Alternative LRTS Distributions for Mix-

ture Intercept Model (MIM)

Suppose we have an observation from the following MIM

y =

 α + xTβ + ε with probability p,

(α + δ) + xTβ + ε with probability 1− p,

(5.23)

ε
iid∼ N(0, σ2).

60



Assume that we know the parameters for this model. Then the log likelihood function

`2(ψ2; y) for a single observation y will be

`2(ψ2; y) = log(pf1(y;θ1, σ
2) + (1− p)f2(y;θ2, σ

2))

= log

 p√
2πσ

e
−
(y − xTθ1)

2

2σ2
+

1− p√
2πσ

e
−
(y − xTθ2)

2

2σ2



=



log

 p√
2πσ

e
− ε2

2σ2
+

1− p√
2πσ

e
−
(ε− δ)2

2σ2


when y comes from component 1

log

 p√
2πσ

e
−
(ε + δ)2

2σ2
+

1− p√
2πσ

e
− ε2

2σ2


when y comes from component 2

(5.24)

where θ1 = (α,βT )T , θ2 = (α, δ,βT )T and ψ2 = (α, δ,βT , σ, p)T
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Figure 5.3: Hypothetic Plot for Single Linear Regression on Mixture Linear Model
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Suppose we mistakenly assume the data come from a homogeneous linear model and

use OLS to model it. Then according to model (4.1), Theorem 4.1.1, corollary 4.2.2 and

figure 5.3, the corresponding misspecified model is

y = α + (1− p)δ + xTβ + ε (5.25)

ε
iid∼ N(0, %2)

where

%2 = p(1− p)δ2 + σ2 (5.26)

Then the log likelihood function (also assume we have the exact value of ψ1) for a single

observation `1(ψ1; y) with this model is

`1(ψ1; y) = log

 1√
2π%

e
−
(y − xTθ)2

2%2


= − log(

√
2π%)− (y − xTθ)2

2%2

=


− log(

√
2π%)− (−(1− p)δ + ε)2

2%2 when y comes from component 1

− log(
√

2π%)− (pδ + ε)2

2%2 when y comes from component 2

(5.27)

where θ = (α + (1− p)δ,βT )T and ψ1 = (α + (1− p)δ,βT , %)T .
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Therefore, for a single observation, we have the log likelihood ratio:

λ(ψ; y) =

= 2(`2(ψ2; y)− `1(ψ1; y))

=



2 log

 p√
2πσ

e
− ε2

2σ2
+

1− p√
2πσ

e
−
(ε− δ)2

2σ2

+ log(2π%2) +
(−(1− p)δ + ε)2

%2

when y comes from component 1

2 log

 p√
2πσ

e
−
(ε + δ)2

2σ2
+

1− p√
2πσ

e
− ε2

2σ2

+ log(2π%2) +
(pδ + ε)2

%2

when y comes from component 2

(5.28)

where ψ = (α, δ,βT , σ, p)T .

From (5.28) we can see that if we know the values of all parameters, λ(ψ; y) =

λ(α, δ,βT , σ, p; y) is a completely specified function of y with σ, δ and p as parameters.

Since y is independent and identically distributed (i.i.d.), λ(ψ; y) is i.i.d. as well. Therefore,

we can estimate its mean E(λ(ψ; y)) and standard deviation σλ by sample average λ and

sample standard deviation sλ through the following simulation procedure:

Procedure 5.4.1.

• Given σ, δ, p;

• Set sample size N = 2000 (which is large enough to get accurate estimates on E(λ(ψ; y))

and σλ);

• Calculate % according to (5.26);

• Create a random sample ε from N(0, σ2);

• Partition ε into 2 groups with proportion of group 1 as p;
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• Calculate the realizations of λ(ψ; y) according to (5.28);

• Calculate λ and sλ from the realizations of λ(ψ; y). �

Using the central limit theorem, for a sample of n observation y = (y1, . . . , yn)T ,

the nominal alternative LRTS distribution for detecting two-component mixture intercept

against homogenous intercept model can be approximated by:

λ(ψ;y) =
n∑

i=1

λ(ψ; yi)

.∼ N(nλ, nσ2
λ). (5.29)

5.5 Power and Sample Size Calculations for Mixture

Intercept Model

Following the same derivation in section 5.3, the power and sample size formulas are the

same as (5.20) and (5.22).

5.6 Nominal Alternative LRTS Distributions for Mix-

ture Slope Model (MSM)

Suppose we have an observation from the following MSM

y =

 α + γxt + xT
c β + ε with probability p,

α + (γ + δ)xt + xT
c β + ε with probability 1− p,

(5.30)

ε
iid∼ N(0, σ2).
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If we know the parameters for this model, then the log likelihood function `2(ψ2; y, xt) for

a single observation y will be

`2(ψ2; y, xt) =



log

(
p√
2πσ

e
− ε2

2σ2
+

1− p√
2πσ

e
−
(ε− δxt)

2

2σ2

)
when y comes from component 1,

log

(
p√
2πσ

e
−
(ε + δxt)

2

2σ2
+

1− p√
2πσ

e
− ε2

2σ2

)
when y comes from component 2,
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Figure 5.4: Hypothetic Plot for Mixture Linear Model with Mixture Slopes

Suppose we mistakenly assume that the data come from a homogeneous linear model

and use OLS to model it. Then according to model (5.30), corollary (4.2.2) and figure (5.4),

the corresponding misspecified model is

ŷ = α + ((1− p)δ + γ)xt + xT
c β (5.31)
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and the residual e = y − ŷ against this model is

e =

 −(1− p)δxt + ε when y comes from component 1,

pδxt + ε when y comes from component 2.

(5.32)

Then

E[e] = pE[−(1− p)δxt + ε] + (1− p)E[pδxt + ε]

= −p(1− p)δE[xt] + (1− p)pδE[xt]

= 0, (5.33)

and

%2 = V ar[e]

= pE
[
(−(1− p)δxt + ε)2

]
+ (1− p)E

[
(pδxt + ε)2

]
= p

(
(1− p)2δ2E[x2

t ] + σ2
)

+ (1− p)
(
p2δ2E[x2

t ] + σ2
)

= σ2 + p(1− p)δ2E[x2
t ]. (5.34)

The log likelihood function `1(ψ1; y, xt) corresponding to the misspecified homogeneous

linear model is

`1(ψ1; y, xt) =



− log(
√

2π%)− (−(1− p)δxt + ε)2

2%2

when y comes from component 1,

− log(
√

2π%)− (pδxt + ε)2

2%2

when y comes from component 2.
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Therefore, the LRTS for a single observation is:

λ(ψ; y, xt) = 2(`2(ψ2; y, xt)− `1(ψ1; y, xt))

=



2 log

(
p√
2πσ

e
− ε2

2σ2
+

1− p√
2πσ

e
−
(ε− δxt)

2

2σ2

)
+ log(2π%2) +

(−(1− p)δxt + ε)2

%2

when y comes from component 1,

2 log

(
p√
2πσ

e
−
(ε + δxt)

2

2σ2
+

1− p√
2πσ

e
− ε2

2σ2

)
+ log(2π%2) +

(pδxt + ε)2

%2

when y comes from component 2.

(5.35)

From (5.35) we can see that if we know the exact value on all the parameters, λ(ψ; y, xt) =

λ(α, γ, δ,βT , σ, p; y, xt) is a completely specified function of y and xt with σ, δ and p as pa-

rameters. Since y is independent and identically distributed (i.i.d.), λ(ψ; y, xt) is i.i.d. as

well. Therefore, the mean λ and standard deviation σλ of λ(ψ; y, xt) can be calculated by

procedure 5.6.1.

Procedure 5.6.1.

• Given σ, δ, p;

• Set sample size N = 2000 (which is large enough to get accurate estimates on E(λ(ψ; y))

and σλ);

• Calculate % according to (5.34);

• Create two independent random samples ε from N(0, σ2) and xt from certain distri-

bution (decided by design problems);
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• Partition ε and xt into 2 groups with proportion of group 1 as p;

• Calculate the realizations of λ(ψ; y, xt) according to (5.35);

• Calculate λ and sλ from the realizations of λ(ψ; y, xt). �

Using the central limit theorem, for a sample of n observations with y = (y1, . . . , yn)T

and xt = (xt1 , . . . , xtn)T , the nominal alternative LRTS distribution for detecting two-

component mixture slope against homogenous slope model can be approximated by:

λ(ψ;y,xt) =
n∑

i=1

λ(ψ; yi, xti)

.∼ N(nλ, nσ2
λ). (5.36)

5.7 Power and Sample Size Calculations for Mixture

Slope Model

Following the same derivation in section 5.3, the power and sample size formulas are the

same as (5.20) and (5.22).
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Chapter 6

Simulation Study

6.1 Models and Tasks

The purpose of this chapter is to find the best implementation strategies for solving restricted

mixture linear regression model (RMLRM) estimation and statistical inference problems;

and to verify some proposed methods from previous chapters. Our main interests are in the

following three mixture models:

Normal Mixture Model (NMM)

y ∼

 N(µ1, σ
2) with probability p,

N(µ2, σ
2) with probability 1− p.

(6.1)

Mixture Intercept Model (MIM)

y ∼

 α + γxt + βxc + ε with probability p,

(α + δ) + γxt + βxc + ε with probability 1− p.

(6.2)
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Mixture Slope Model (MSM)

y ∼

 α + γxt + βxc + ε with probability p,

α + (γ + δ)xt + βxc + ε with probability 1− p.

(6.3)

In order to show that RMLRM is more powerful to detect mixtures for the data from MIM

and MSM, the following unrestricted mixture linear regression model (UMLRM)

y ∼

 α1 + γ1xt + β1xc + ε with probability p,

α2 + γ2xt + β2xc + ε with probability 1− p

(6.4)

is also included.

In the following sections, we conduct simulations to

• investigate the ideal EM implementation strategies to find MLEs for NMM, MIM and

MSM.

• investigate the empirical null distributions for certain NMM, MIM, MSM and UMLRM

models.

• study the power to detect a mixture intercept model by NMM, MIM and UMLRM

models.

• study the power to detect a mixture slope model by MSM and UMLRM models.

• verify and obtain application guidelines for the power and sample size formulas (5.20)

and (5.22) for NMM, MIM and MSM models.
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6.2 Pilot Study

In order to have correct null and alternative LRTS, statisticians typically run the EM

algorithm multiple times with different starting points, and set proper stopping criterion

and maximum number of iterations for each EM run. By doing this, we hope that each EM

run will reach a local maximum, and the best solution from all the local maximums will be

the global maximum with a high probability.

For NMM, MIM and MSM, we conduct pilot studies to explore the EM implementation

strategies on number of EM runs, starting point selection, stopping criteria and maximum

number of iterations. We confirm that our EM procedures have a high probability of finding

the global maximum for LRTS under certain implementation conditions. Because of the

similarity of the results between NMM and MIM, we only report the pilot study results for

NMM and MIM.

6.2.1 Pilot Study for Normal Mixture Model (NMM)

For NMM with sample sizes 100 (1600), stopping criterion 10e−8 (10e−12) and maximum

number of iterations 2000 (5000), we carry out 25 runs of the following procedure (Proce-

dure 6.2.1) to use a two-component normal mixture model (6.1) to detect mixtures from

the data from a standard normal distribution (N(0, 1)).

Procedure 6.2.1 (Pilot Study Procedure for NMM).

1: Create a random sample x with sample size n from N(0, 1);

2: Obtain 19 starting values p0 for mixture proportion p as 0.05, 0.10, . . . , 0.95;

3: Obtain 250 random starting values p0 for mixture proportion p by sampling from a uni-
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form U(0, 1) distribution;

4: For every p0 from step 2 and 3, calculate the starting values for the remaining three

parameters according to:

µ10 =
m∑

i=1

x(i)/m

µ20 =
n∑

i=m+1

x(i)/(n−m)

σ2
0 =

[
m∑

i=1

(x(i) − µ10)
2 +

n∑
i=m+1

(x(i) − µ20)
2

]/
(n− 2)

where x(i) denotes the ith sample order statistic and m is the integer part of np0;

5: Carry out EM algorithm on each starting point, and save final results p̂, µ̂1, µ̂2 and σ̂.

�

In appendix A, we show the figures of pilot study results for four samples with sample

size 1600. These four samples give us the following three typical convergence patterns of

the LRTS results from multiples runs of EM on a single sample:

Pattern 1: The LRTS results for all random starting points (RSPs) converge to very few

domains of convergence. The global minimum and global maximum are two con-

vergence domains. This pattern mostly occurs when the global maximum of LRTS

greater than 2.0. It is demonstrated by the results from sample 5 (figure A.5 and

figure A.6);

Pattern 2: The LRTS results for most random starting points (RSPs) converge to a very

few domains of convergence, and a small proportion of LRTS results do not converge.

The global minimum and global maximum are two convergence domains. This pattern

usually occurs when the global maximum of LRTS ranges between 1.0 and 2.0. It is

demonstrated by the results from sample 2 (figure A.1 and figure A.2);
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Pattern 3: The LRTS results for all random starting points (RSPs) do not converge, or the

global maximum is not a convergence domain to which significant number of EM runs

converge. This pattern mostly occurs when the maximum LRTS is less than 1.0 and

is demonstrated by the results from sample 6 and sample 17 (figure A.9, figure A.10

figure A.13 and figure A.14).

For the NMM pilot study with sample size 1600, among the 25 simulations, there

are 7 simulations that have Pattern 1; 8 simulations with Pattern 2; and 8 simulations

with Pattern 3. The corresponding ranges of their final maximal LRTS are [1.02, 4.85],

[0.93, 2.20] and [0.09, 1.21]. For the NMM pilot study with sample size 100, among 25

simulations, there are 14 simulations that converge with Pattern 1; 11 simulations with

Pattern 2; and no simulations with Pattern 3. The corresponding ranges of final maximal

LRTS are [0.88, 10.89] for pattern 1 and [0.30, 2.63] for Pattern 2 respectively. Clearly,

it is much more difficult to find the global maximum for samples with larger sample size.

Therefore we need to set more stringent stopping criteria and increase the maximum number

of iterations as sample size increases.

From those pilot study results, we also find that the simulations with 19 predeter-

mined starting point p0 ∈ {0.05, 0.10, . . . , 0.95} also have a high probability of finding the

largest observed LRTS. To confirm this and find reasonable stopping criterion and maxi-

mum number of iterations, for the same 25 random samples with sample size 1600, we use

p0 ∈ {0.05, 0.10, . . . , 0.95} and several combinations of various stopping criteria and max-

imum number of iterations carry out EM optimization again. For every sample, we find

the five highest LRTS results under every simulation condition. All the results are listed

in Appendix A. By comparing the LRTS results obtained from the stringent simulation

condition (250 RSPs, stopping criterion 10e−12 and maximum number of iterations 5000)

and the most relaxed simulation condition (19 fixed starting points, stopping criterion 10e−4
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and maximum number of iterations 1000), we find the 0, 25, 50, 75 and 100 percentiles for

the LRTS difference are 0.0009, 0.0026, 0.0071, 0.0163 and 0.0989 respectively. The largest

LRTS difference for LRTS ≥ 3.0 is only 0.0026.

6.2.2 Pilot Study for Mixture Slope Model (MSM)

Parallel to the pilot study for normal mixture model, we also carry out a pilot study of the

mixture slope model (MSM) (6.3) to detect mixture slopes (respect to xt) with the following

null homogeneous linear model

y = 1 + 1xt + 1xc + ε, (6.5)

ε
iid∼ N(0, 1), xt

iid∼ U(0, 10), xc
iid∼ Bernoulli(0.5),

according to procedure 6.2.2. In this pilot study, we also run the pilot study procedure 25

times, and set sample size to 100, stopping criterion to 10e−10 and the maximum number

of iterations to 5000.

Procedure 6.2.2 (Pilot Study Procedure for MSM).

1: Create a random sample with sample size 100 according to null model (6.5);

2: Obtain 19 starting values p0 for mixture proportion p as 0.05, 0.10, . . . , 0.95. For ev-

ery p0 created in this step, calculate the starting values for the remaining parameters

according to procedure 4.4.1;

3: Obtain 250 random starting values p0 for mixture proportion p by sampling from a uni-

form U(0, 1) distribution. For every p0 created in this step, randomly split the sample

into 2 groups according to this p0, calculate the starting values for the remaining pa-

rameters accordingly;
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4: Carry out EM algorithm on each starting point, and save final results p̂, α̂, γ̂, β̂, δ̂ and

σ̂. �

Among the 25 simulations, there are 16 simulations with Pattern 1; 9 simulations with

Pattern 2; and no simulations with Pattern 3.

Parallel to the study of the normal mixture model, for these same 25 random sam-

ples, we also use p0 ∈ {0.05, 0.10, . . . , 0.95} and several combinations of various stopping

criteria and maximum number of iterations carry out EM optimization. Results from these

simulations are listed in Appendix A. By comparing the LRTS results obtained from the

stringent simulation condition (250 RSPs, stopping criterion 10e−10 and maximum number

of iterations 5000) and the most relaxed simulation condition (19 fixed starting points, stop-

ping criterion 10e−4 and maximum number of iterations 1000), we find the largest LRTS

difference is 0.0028.

6.2.3 Conclusion from the Pilot Studies

From our pilot studies we can conclude that:

• The difficulty for finding global maximum increases with sample size. Setting more

stringent stopping criteria and increasing the maximum number of iterations seems to

increase the chance of finding global maximum, especially for those cases with larger

sample size.

• The difficulty of finding the global maximum also depends on the true LRTS. The

EM procedure seems to have a high probability of finding global maximum for those

samples with large LRTS. Therefore, the simulated null LRTS distribution have high

accuracy for larger critical values.
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• Running the EM procedure multiple times with fixed starting point of

p0 ∈ {0.05, 0.10, . . . , 0.95} is a efficient and reliable strategy to simulate the distribu-

tion of LRTS at high percentile points.

Based on the considerations of computation time and reliability for obtaining accuracy

LRTS estimation, we will set the stopping criterion to 10−4 and the maximum number of

iterations to 1000. For some large sample cases, we will use more stringent choices and will

mention those conditions specifically.

6.3 Null LRTS Distributions

As mentioned in the literature review, simulation is needed to estimate the null LRTS distri-

butions for detecting mixture models. We carry out extensive simulations here to investigate

the null LRTS distributions for all models listed in section 6.1. Intuitively, for every homoge-

nous linear model with predetermined structure, changing regression parameters α, γ, β and

standard deviation σ only changes the orientation and dispersion of the whole distribution

of the sample data but not the geometric relationship among observations. Therefore, null

distributions should not change much under different parameter values. To verify this for

our mixture models, we carried out several simulation studies using different parameter set-

tings and sample size 200 (data not shown). The null distributions do not appear to change

with different parameter values. Accordingly, we set α, γ, β and σ all equal 1 for all the

linear mixture models.

For every mixture model, using the EM implementation strategy listed in section 6.2.3,

we ran 1000 simulations for sample sizes 100, 200, 400, 800, 1600 to obtain empirical null

LRTS distributions for each model listed in section 6.1. For NMM, we also ran 240 simula-

tions for sample size 5000 (use stopping criterion 10e−6 and maximum number of iterations
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1000) to obtain its empirical null LRTS distribution.

Table 6.1: Percentages of LRTS whose value are less than −0.01 in simu-
lated null LRTS distributions for normal mixture model (NMM), mixture
intercept model (MIM), mixture slope model (MSM) and unrestricted mix-
ture linear regression model (UMLRM)

Sample Size NMM MIM MSM UMLRM

100 0 0 0 0

200 0 0 0 0

400 0 0 0 0

800 0 0.1 0 0

1600 0 0.1 1.4 0

Table 6.2: Percentages of LRTS whose absolute value are less than 0.01 in
simulated null LRTS distributions for normal mixture model (NMM), mix-
ture intercept model (MIM), mixture slope model (MSM) and unrestricted
mixture linear regression model (UMLRM)

Sample Size NMM MIM MSM UMLRM

100 0.4 0.5 31.7 0

200 1.0 0.6 31.7 0

400 1.8 0.8 28.0 0

800 1.4 1.1 30.9 0

1600 0.7 1.0 33.8 0

Table 6.1 shows the percentages of LRTS that are less than −0.01 in every simulated

null LRTS distribution. Table 6.2 shows the percentages of LRTS whose absolute values

are less than 0.01. Taking round-off errors and the limited numbers of EM iterations into

consideration, we conclude that:
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• All the null LRTS are nonnegative;

• The values of the null LRTS for NMM, MIM and UMLRM are largely > 0.01. There

are around 30% of values for MSM ≤ 0.01.

The empirical null LRTS distributions for different models with various sample sizes

are shown in figure 6.1, figure 6.2, figure 6.3, figure 6.4. Figure 6.5 shows the empirical null

LRTS distributions of various models with sample size 1600 in a single graph. Table 6.3,

table 6.4, table 6.5, table 6.6 and table 6.7 provide the important percentiles, means and

variances for these distributions. For the finite sample sizes used in our simulation, we find

that the changes among null LRTS distributions for the same model with different sample

sizes do not have a predictable trend. Since the dependence of the null LRTS distribution

on the specific sample size is not clear, we use the null LRTS distribution which is obtained

with the same sample size as the target data set when we study the power to detect mixture

models.

For NMM, we can not detect the log log(n) rate of divergence of LRTS with sample size

5000, which agrees the finding of Liu and Shao [18]. In our simulation, the null distribution

for sample size 5000 has the largest 2.5% and 5.0% percentiles, but smallest 95.0% and

97.5% ones among all the NMM null distributions. It might not be reliable since we only

use 240 replicates in sample size 5000 case, but it may be worthy of further study.
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Table 6.3: Percentiles, means and variances for empirical null LRTS distributions of normal
mixture model (NMM) with different sample sizes

Percentile n = 100 n = 200 n = 400 n = 800 n = 1600 n = 5000

2.5% 0.0611 0.0468 0.0325 0.0253 0.0514 0.1032

5.0% 0.1041 0.1139 0.1620 0.1332 0.0922 0.1646

25% 0.6587 0.5906 0.6760 0.6118 0.6058 0.7212

50% 1.4352 1.4401 1.5219 1.4783 1.4099 1.3894

75% 2.6693 2.8424 2.9483 2.8473 3.0368 2.6493

95% 6.5039 5.8002 6.2598 5.9761 5.9913 5.0379

97.5% 8.0411 7.0062 7.4161 7.7415 7.4168 6.1532

Mean 2.0996 2.0128 2.1521 2.0769 2.0657 1.8946

Variance 4.6722 3.6299 4.4795 4.1460 4.0968 2.7603

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λλ

F
((λλ

))

n=100
n=200
n=400
n=800
n=1600
n=5000

Figure 6.1: Null LRTS distribution for normal mixture model (NMM) with different sample
sizes
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Table 6.4: Percentiles, means and variances for empirical null LRTS distributions of mixture
intercept model (MIM) with different sample sizes

Percentile n = 100 n = 200 n = 400 n = 800 n = 1600

2.5% 0.0620 0.0402 0.0500 0.0297 0.0352

5.0% 0.1345 0.1106 0.1522 0.1076 0.0881

25% 0.6911 0.5858 0.7072 0.6025 0.5701

50% 1.5816 1.4769 1.5774 1.5030 1.3783

75% 3.1635 2.9690 3.0566 2.8926 2.9930

95% 7.0375 6.4751 6.1997 6.0230 6.0419

97.5% 8.7938 7.3317 7.9590 7.7486 7.5256

Mean 2.3123 2.1075 2.2048 2.0897 2.0524

Variance 5.3395 4.1771 4.7504 4.2637 4.1338
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Figure 6.2: Null LRTS distribution for mixture intercept model (MIM) with different sample
sizes
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Table 6.5: Percentiles, means and variances for empirical null LRTS distributions of mixture
slope model (MSM) with different sample sizes

Percentile n = 100 n = 200 n = 400 n = 800 n = 1600

2.5% -0.0019 -0.0030 -0.0042 -0.0054 -0.0086

5.0% -0.0014 -0.0022 -0.0029 -0.0042 -0.0074

25% -0.0003 -0.0005 -0.0005 -0.0011 -0.0021

50% 0.4866 0.5108 0.5414 0.4655 0.3380

75% 2.0499 1.8536 1.8808 1.7776 1.6134

95% 5.1428 4.7321 5.0884 5.4740 5.1524

97.5% 6.5122 5.9085 6.9499 7.0455 6.6229

Mean 1.3547 1.2564 1.2929 1.2698 1.1688

Variance 3.9367 3.1974 3.4990 3.4817 3.4178
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Figure 6.3: Null LRTS distribution for mixture slope model (MSM) with different sample
sizes
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Table 6.6: Percentiles, means and variances for empirical null LRTS distributions of unre-
stricted mixture linear regression model (UMLRM) with different sample sizes

Percentile n = 100 n = 200 n = 400 n = 800 n = 1600

2.5% 1.4634 1.4479 1.4854 1.2264 1.2741

5.0% 1.9008 1.7665 1.7841 1.7007 1.5827

25% 3.5425 3.3675 3.3295 3.4014 3.3003

50% 5.2796 5.0736 5.0061 5.0934 4.9240

75% 7.8496 7.3431 7.1019 7.1536 7.0774

95% 12.6914 11.2815 11.4323 10.7234 11.4324

97.5% 14.6111 12.6344 13.1646 12.1602 12.5947

Mean 6.0735 5.6326 5.5775 5.5054 5.4992

Variance 12.1279 9.4450 9.2758 7.9565 9.2351
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Figure 6.4: Null LRTS distribution for unrestricted mixture linear regression model
(UMLRM) with different sample sizes
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Table 6.7: Percentiles, means and variances for the empirical null LRTS distributions for
different mixture models with sample size 1600

Percentile MSM NMM MIM UMLRM

2.5% -0.0086 0.0514 0.0352 1.2741

5.0% -0.0074 0.0922 0.0881 1.5827

25% -0.0021 0.6058 0.5701 3.3003

50% 0.3380 1.4099 1.3783 4.9240

75% 1.6134 3.0368 2.9930 7.0774

95% 5.1524 5.9913 6.0419 11.4324

97.5% 6.6229 7.4168 7.5256 12.5947

Mean 1.1688 2.0657 2.0524 5.4992

Variance 3.4178 4.0968 4.1338 9.2351
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Figure 6.5: Null LRTS distributions for 4 models with sample size 1600. (a) normal mixture
model (NMM), (b) mixture intercept model (MIM), (c) mixture slope model (MSM), (d)
unrestricted mixture linear regression model (UMLRM)
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6.4 Power to Detect Mixture Intercept Models

Consider the following mixture intercept model:

y ∼

 α + γxt + βxc + ε with probability p,

(α + δ) + γxt + βxc + ε with probability 1− p,

(6.6)

xt
iid∼ U(−10, 10),

xc
iid∼ Bernoulli(0.5),

ε
iid∼ N(0, σ2).

This model is equivalent to the mixture error term model which is described in Section 4.3.

We study the power to detect this model under the following parameter settings:

α = 1, β = 0.7, σ = 1,

p ∈ {0.15, 0.5},

γ ∈ {0.125, 0.25, 0.5, 1},

δ ∈ {1, 2, 3, 4},

n ∈ {200, 400, 800, 1600},

where n is the sample size.

The three mixture intercept detection methods used here are:

Normal mixture model (NMM): First use ordinary least squares (OLS) to fit the data.

Then test whether the residuals are mixture of two normal distributions.

Mixture intercept model (MIM): Use MIM to detect whether data come from a mix-
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ture model with two mixture intercepts;

Unrestricted mixture linear regression model (UMLRM): Use UMLRM to detect

whether data come from mixture of two linear models.

In this simulation study, for every parameter setting listed in the result tables, we first

randomly create 200 samples according to the mixture intercept model. Then for every

sample, we use our EM implementation strategy to perform mixture detection with the

three mixture intercept detection methods. All the power results with significance level

α = 0.05 are listed in table 6.8, table 6.10 and table 6.12. The results with significance

level α = 0.01 are listed in table 6.9, table 6.11 and table 6.13. In some of these tables, we

have a column labeled as ‘Power Estimated from Formula (5.20)’. In those columns, we list

powers that are estimated from Formula (5.20). Note that the estimated powers are close

to simulated ones in the majority of cases with separation δ ≥ 2.

Table 6.14, table 6.15, table 6.16 and table 6.17 show the power comparisons under

every simulation condition by using McNemar’s Test. With those tables, we conclude:

• For sample size 200, NMM usually outperforms MIM. When separation δ = 2, most

p-values from McNemar’s test are significant.

• For sample size 400, MIM sometimes outperforms NMM, and there are only 3 cases

in which MIM significantly outperforms NMM.

• For sample sizes 800 and 1600, the difference of mixture detecting power between

NMM and MIM is minor.

• MIM outperforms UMLRM in most simulations, and in almost half times, MIM sig-

nificantly outperforms UMLRM. In only one case with sample size n = 800, mixture
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proportion p = 0.5, separation δ = 1 and slope γ = 1, UMLRM significantly outper-

forms MIM.

• Based on the preceding comparisons, NMM seems to be a good choice to detect

mixture slopes.

• For every method, power is a function of the separation δ, mixture proportion p and

sample size n but is not sensitive to the regression parameter γ.

• For every method, power changes with p. The power when p = .15 is generally greater

than those of p = .50 when both powers are in the range from 30% to 100%. This

trend is also predicted by our power estimation formula (5.20).
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Table 6.8: Power (in percent) of log likelihood ratio test to detect mixture intercept
by normal mixture model (NMM) method at .05 level of significance based on 200
replicates for each alternative.

Sample By Simulation Power

γ Estimated from

Size p δ 0.125 0.25 0.5 1.0 Formula (5.20)

200 0.15 1 7.5 9.0 8.0 3.5 5.39e-06

2 54.0 55.5 57.5 61.0 59.65

3 100.0 100.0 99.0 100.0 99.02

0.50 1 6.0 10.5 6.0 9.0 1.51e-22

2 46.5 43.5 42.0 43.5 46.59

3 98.5 100.0 99.0 99.5 98.97

400 0.15 1 4.5 7.0 9.0 5.5 6.11e-03

2 82.5 83.5 81.5 83.0 83.80

3 100.0 100.0 100.0 100.0 99.98

0.50 1 5.0 7.0 4.5 7.0 8.46e-12

2 72.5 70.0 71.0 70.0 76.14

3 100.0 100.0 100.0 100.0 99.98

800 0.15 1 5.5 14.5 9.5 10.0 0.70

2 99.5 99.0 99.5 99.0 97.22

0.50 1 5.5 5.5 9.0 6.5 9.69e-05

2 95.0 96.5 97.5 96.0 95.34

1600 0.15 1 13.5 13.5 13.5 13.5 6.70

2 100.0 100.0 100.0 100.0 99.89

0.50 1 6.5 6.5 6.5 6.5 0.15

2 100.0 100.0 100.0 100.0 99.76
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Table 6.9: Power (in percent) of log likelihood ratio test to detect mixture intercept
by normal mixture model (NMM) method at .01 level of significance based on 200
replicates for each alternative.

Sample By Simulation Power

γ Estimated from

Size p δ 0.125 0.25 0.5 1.0 Formula (5.20)

200 0.15 1 4.5 3.5 2.5 1.5 8.97e-15

2 34.0 41.0 40.5 42.0 39.53

3 99.5 99.5 99.0 99.0 98.21

0.50 1 2.5 5.5 2.5 1.5 5.10e-54

2 30.0 30.0 28.0 27.5 22.73

3 97.5 99.5 98.5 97.5 97.99

400 0.15 1 1.0 0.5 1.0 0.0 8.97e-12

2 60.5 58.5 49.5 58.0 64.50

3 100.0 100.0 100.0 100.0 99.95

0.50 1 1.0 0.5 0.0 0.5 2.53e-43

2 40.0 41.0 38.0 32.0 46.53

3 100.0 100.0 100.0 100.0 99.95

800 0.15 1 2.0 4.0 3.5 3.0 2.15e-04

2 94.5 97.0 94.0 96.5 93.83

0.50 1 2.0 1.0 3.0 1.0 5.15e-17

2 84.5 88.5 90.0 89.5 88.39

1600 0.15 1 7.0 7.0 7.0 7.0 0.13

2 100.0 100.0 100.0 100.0 99.74

0.50 1 1.5 1.5 1.5 1.5 2.83e-07

2 99.5 99.5 99.5 99.5 99.35
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Table 6.10: Power (in percent) of log likelihood ratio test to detect mixture intercept
by mixture intercept model (MIM) method at .05 level of significance based on 200
replicates for each alternative.

Sample By Simulation Power

γ Estimated from

Size p δ 0.125 0.25 0.5 1.0 Formula (5.20)

200 0.15 1 6.5 7.5 7.0 3.5 2.73e-07

2 51.5 53.0 54.0 57.5 56.11

3 100.0 100.0 99.5 99.5 98.91

0.50 1 5.5 9.0 5.5 7.5 3.66e-27

2 43.0 40.0 42.5 39.0 41.95

3 98.5 100.0 99.5 99.5 98.84

400 0.15 1 4.5 7.5 10.0 6.5 3.90e-03

2 83.5 85.0 82.0 83.5 83.33

3 100.0 100.0 100.0 100.0 99.98

0.50 1 5.5 7.0 4.5 7.5 1.75e-12

2 75.5 71.0 72.5 72.5 75.37

3 100.0 100.0 100.0 100.0 99.98

800 0.15 1 5.5 15.0 9.5 10.0 0.62

2 99.5 99.0 99.5 99.0 97.17

0.50 1 5.5 5.5 9.5 6.5 6.61e-05

2 95.0 96.5 97.5 96.0 95.25

1600 0.15 1 13.5 13.5 13.5 13.5 6.34

2 100.0 100.0 100.0 100.0 99.88

0.50 1 6.5 6.5 6.5 6.5 0.13

2 100.0 100.0 100.0 100.0 99.76
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Table 6.11: Power (in percent) of log likelihood ratio test to detect mixture intercept
by mixture intercept model (MIM) method at .01 level of significance based on 200
replicates for each alternative.

Sample By Simulation Power

γ Estimated from

Size p δ 0.125 0.25 0.5 1.0 Formula (5.20)

200 0.15 1 2.0 4.0 1.5 0.5 1.52e-17

2 31.5 38.5 35.5 38.5 34.70

3 99.5 99.0 99.0 99.0 97.93

0.50 1 2.5 3.0 1.5 0.0 5.24e-64

2 25.0 27.5 26.0 24.5 18.05

3 97.5 99.0 98.5 97.5 97.65

400 0.15 1 1.5 0.5 1.0 0.0 5.91e-13

2 61.5 59.0 51.0 59.5 62.17

3 100.0 100.0 100.0 100.0 99.95

0.50 1 1.0 0.5 0.0 0.5 1.42e-47

2 40.0 41.5 40.0 32.0 43.35

3 100.0 100.0 100.0 100.0 99.94

800 0.15 1 2.0 3.0 3.5 3.0 1.63e-04

2 94.5 97.0 93.5 96.5 93.71

0.50 1 2.0 1.0 2.5 0.5 1.95e-17

2 85.0 87.5 89.5 89.5 88.14

1600 0.15 1 7.0 7.0 7.0 7.0 0.18

2 100.0 100.0 100.0 100.0 99.75

0.50 1 1.5 1.5 1.5 1.5 7.79e-07

2 100.0 100.0 100.0 100.0 99.38
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Table 6.12: Power (in percent) of log likelihood ratio test to detect mixture intercept by
unrestricted mixture linear regression model (UMLRM) method at .05 level of significance
based on 200 replicates for each alternative.

Sample γ

Size p δ 0.125 0.25 0.5 1.0

200 0.15 1 6.5 7.5 3.5 3.0

2 35.5 37.5 36.5 43.0

3 99.5 99.0 99.0 98.0

0.50 1 5.0 6.0 4.0 4.5

2 24.5 28.5 25.5 25.5

3 97.5 98.5 98.0 97.0

400 0.15 1 7.0 7.0 5.0 6.0

2 70.0 70.0 65.0 65.5

3 100.0 100.0 100.0 100.0

0.50 1 3.5 2.0 3.0 5.5

2 52.5 48.0 50.0 44.0

3 100.0 100.0 100.0 100.0

800 0.15 1 9.0 11.0 9.5 8.0

2 95.5 97.0 93.5 97.0

0.50 1 5.5 5.0 5.5 4.5

2 87.0 88.5 91.5 90.0

1600 0.15 1 10.5 10.5 10.5 10.5

2 100.0 100.0 100.0 100.0

0.50 1 2.5 2.5 2.5 2.5

2 99.5 99.5 99.5 99.5
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Table 6.13: Power (in percent) of log likelihood ratio test to detect mixture intercept by
unrestricted mixture linear regression model (UMLRM) method at .01 level of significance
based on 200 replicates for each alternative.

Sample γ

Size p δ 0.125 0.25 0.5 1.0

200 0.15 1 1.5 3.5 0.0 0.5

2 22.0 22.0 18.5 26.0

3 96.0 96.0 95.0 93.5

0.50 1 0.5 1.0 0.5 0.5

2 11.0 10.0 12.5 12.5

3 89.5 92.5 95.0 95.5

400 0.15 1 2.0 1.5 2.5 1.5

2 48.5 49.5 39.0 48.5

3 100.0 100.0 100.0 100.0

0.50 1 1.5 0.5 0.5 2.0

2 29.0 29.5 33.0 26.5

3 100.0 100.0 100.0 100.0

800 0.15 1 3.0 4.0 5.0 3.0

2 93.0 94.0 87.5 94.5

0.50 1 2.0 0.0 0.5 3.0

2 73.5 79.0 81.0 82.0

1600 0.15 1 6.0 6.0 6.0 6.0

2 99.5 99.5 99.5 99.5

0.50 1 2.0 2.0 2.0 2.0

2 99.5 99.5 99.5 99.5
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Table 6.14: Power Comparison between mixture intercept model (MIM) method and normal
mixture model (NMM) method for detecting mixture intercept at .05 level of significance.
The numbers in each cell represents (number of simulations that are detected by MIM but
not NMM, number of simulations that are detected by NMM but not MIM, p-value of
McNemar tset (minus p-value means NMM outperforms MIM)). The -,-,- represents 0, 0,
1, that is NMM and MIM give the same results.

Sample γ

Size p δ 0.125 0.25 0.5 1.0

200 0.15 1 0, 2, -0.16 0, 3, -0.08 1, 3, -0.32 -, -, -

2 0, 5, -0.03 0, 5, -0.03 0, 7, -0.01 1, 8, -0.02

3 -, -, - -, -, - 1, 0, 0.32 0, 1, -0.32

0.50 1 0, 1, -0.32 0, 3, -0.08 0, 1, -0.32 0, 3, -0.08

2 0, 7, -0.01 0, 7, -0.01 4, 3, 0.71 1, 10, -0.01

3 -, -, - -, -, - 1, 0, 0.32 -, -, -

400 0.15 1 -, -, - 1, 0, 0.32 2, 0, 0.16 2, 0, 0.16

2 2, 0, 0.16 3, 0, 0.08 1, 0, 0.32 1, 0, 0.32

3 -, -, - -, -, - -, -, - -, -, -

0.50 1 1, 0, 0.32 -, -, - -, -, - 1, 0, 0.32

2 6, 0, 0.01 2, 0, 0.16 3, 0, 0.08 5, 0, 0.03

3 -, -, - -, -, - -, -, - -, -, -

800 0.15 1 -, -, - 1, 0, 0.32 -, -, - -, -, -

2 -, -, - -, -, - -, -, - -, -, -

0.50 1 -, -, - -, -, - 1, 0, 0.32 -, -, -

2 -, -, - -, -, - -, -, - -, -, -

1600 0.15 1 -, -, - -, -, - -, -, - -, -, -

2 -, -, - -, -, - -, -, - -, -, -

0.50 1 -, -, - -, -, - -, -, - -, -, -

2 -, -, - -, -, - -, -, - -, -, -
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Table 6.15: Power Comparison between mixture intercept model (MIM) method and normal
mixture model (NMM) method for detecting mixture intercept at .01 level of significance.
The numbers in each cell represents (number of simulations that are detected by MIM but
not NMM, number of simulations that are detected by NMM but not MIM, p-value of
McNemar tset (minus p-value means NMM outperforms MIM)). The -,-,- represents 0, 0,
1, that is NMM and MIM give the same results.

Sample γ

Size p δ 0.125 0.25 0.5 1.0

200 0.15 1 0, 5, -0.03 1, 0, 0.32 0, 2, -0.16 0, 2, -0.16

2 0, 5, -0.03 0, 5, -0.03 0, 10, -0.0 0, 7, -0.01

3 -, -, - 0, 1, -0.32 -, -, - -, -, -

0.50 1 -, -, - 0, 5, -0.03 0, 2, -0.16 0, 3, -0.08

2 2, 12, -0.01 1, 6, -0.06 1, 5, -0.1 0, 6, -0.01

3 -, -, - 0, 1, -0.32 -, -, - 1, 1, 1

400 0.15 1 1, 0, 0.32 -, -, - -, -, - -, -, -

2 2, 0, 0.16 1, 0, 0.32 4, 1, 0.18 3, 0, 0.08

0.50 1 -, -, - -, -, - -, -, - -, -, -

2 1, 1, 1 1, 0, 0.32 4, 0, 0.05 1, 1, 1

800 0.15 1 -, -, - 0, 2, -0.16 -, -, - -, -, -

2 -, -, - -, -, - 0, 1, -0.32 -, -, -

0.50 1 -, -, - -, -, - 0, 1, -0.32 0, 1, -0.32

2 1, 0, 0.32 0, 2, -0.16 0, 1, -0.32 -, -, -

1600 0.15 1 -, -, - -, -, - -, -, - -, -, -

2 -, -, - -, -, - -, -, - -, -, -

0.50 1 -, -, - -, -, - -, -, - -, -, -

2 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32
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Table 6.16: Power Comparison between mixture intercept model (MIM) method and unre-
stricted mixture linear regression model (UMLRM) method for detecting mixture intercept
at .05 level of significance. The numbers in each cell represents (number of simulations
that are detected by MIM but not UMLRM, number of simulations that are detected by
UMLRM but not MIM, p-value of McNemar tset (minus p-value means UMLRM out-
performs MIM)). The -,-,- represents 0, 0, 1, that is MIM and UMLRM give the same
results.

Sample γ

Size p δ 0.125 0.25 0.5 1.0

200 0.15 1 7, 7, 1 8, 8, 1 12, 5, 0.09 6, 5 , 0.76

2 35, 3, 0 38, 7, 0 40, 5, 0 34, 5 , 0

3 1, 0, 0.32 2, 0, 0.16 1, 0, 0.32 4, 1 , 0.18

0.50 1 7, 6, 0.78 10, 4, 0.11 8, 5, 0.41 14, 8 , 0.2

2 40, 3, 0 31, 8, 0 48, 4, 0 30, 3 , 0

3 2, 0, 0.16 3, 0, 0.08 4, 1, 0.18 5, 0 , 0.03

400 0.15 1 2, 7, -0.1 9, 8, 0.81 15, 5, 0.03 13, 12, 0.84

2 31, 4, 0 33, 3, 0 40, 6, 0 38, 2 , 0

0.50 1 8, 4, 0.25 12, 2, 0.01 7, 4, 0.37 10, 6 , 0.32

2 48, 2, 0 47, 1, 0 47, 2, 0 58, 1 , 0

800 0.15 1 6, 13, -0.11 20, 12, 0.16 8, 8, 1 12, 8, 0.37

2 8, 0, 0 4, 0, 0.05 12, 0, 0 4, 0 , 0.05

0.50 1 5, 5, 1 5, 4, 0.74 13, 5, 0.06 8, 4 , 0.25

2 16, 0, 0 16, 0, 0 12, 0, 0 12, 0 , 0

1600 0.15 1 11, 5, 0.13 11, 5, 0.13 11, 5, 0.13 11, 5, 0.13

2 -, -, - -, -, - -, -, - -, -, -

0.50 1 9, 1, 0.01 9, 1, 0.01 9, 1, 0.01 9, 1, 0.01

2 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32
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Table 6.17: Power Comparison between mixture intercept model (MIM) method and
unrestricted mixture linear regression model (UMLRM) method for detecting mixture
intercept at .01 level of significance. The numbers in each cell represents (number of
simulations that are detected by MIM but not UMLRM, number of simulations that
are detected by UMLRM but not MIM, p-value of McNemar tset (minus p-value means
UMLRM outperforms MIM)). The -,-,- represents 0, 0, 1, that is MIM and UMLRM give
the same results.

Sample γ

Size p δ 0.125 0.25 0.5 1.0

200 0.15 1 3, 2, 0.65 4, 3, 0.71 3, 0, 0.08 1, 1, 1

2 22, 3, 0 36, 3, 0 36, 2, 0 32, 7, 0

3 8, 1, 0.02 6, 0, 0.01 8, 0, 0 11, 0, 0

0.50 1 5, 1, 0.1 6, 2, 0.16 3, 1, 0.32 0, 1, -0.32

2 30, 2, 0 38, 3, 0 31, 4, 0 26, 2, 0

3 16, 0, 0 13, 0, 0 7 , 0, 0.01 4 , 0, 0.05

400 0.15 1 2, 3, -0.65 1, 3, -0.32 1, 4, -0.18 0, 3, -0.08

2 28, 2, 0 22, 3, 0 31, 7, 0 22, 0, 0

0.50 1 1, 2, -0.56 1, 1, 1 0, 1, -0.32 0, 3, -0.08

2 28, 6, 0 25, 1, 0 20, 6, 0.01 16, 5, 0.02

800 0.15 1 2, 4, -0.41 3, 5, -0.48 3, 6, -0.32 1, 1, 1

2 4, 1, 0.18 6, 0, 0.01 12, 0, 0 5 , 1, 0.1

0.50 1 2, 2, 1 2, 0, 0.16 4, 0, 0.03 0, 5, -0.03

2 25, 2, 0 18, 1, 0 18, 1, 0 16, 1, 0

1600 0.15 1 4, 2, 0.41 4, 2, 0.41 4, 2, 0.41 4, 2, 0.41

2 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32

0.50 1 1, 2, -0.56 1, 2, -0.56 1, 2, -0.56 1, 2, -0.56

2 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32 1, 0, 0.32
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6.5 Power to Detect Mixture Slope Models

Consider the following mixture slope model (MSM):

y ∼

 α + γxt + βxc + ε with probability p,

α + (γ + δ)xt + βxc + ε with probability 1− p,

(6.7)

xt
iid∼ U(0, 10),

xc
iid∼ Bernoulli(0.5),

ε
iid∼ N(0, σ2).

We study the power to detect the mixture slope for this model under the following parameter

settings:

α = 1, γ = 1, σ = 1,

p ∈ {0.15, 0.5},

β ∈ {0.25, 0.5, 1},

δ ∈ {0.10, 0.20},

n ∈ {200, 400, 800, 1600}.

We use the following two methods to detect mixture slope models:

Mixture Slope Model (MSM) Use MSM to detect whether data come from a mixture

model with two different slopes.

Unrestricted Mixture Linear Regression Model (UMLRM) Use UMLRM to detect

whether data come from mixture of two linear models.
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For this simulation study, we follow the same approach as in the power study for

detecting mixture intercept models. The power results for significance level α = 0.05 are

listed in table 6.18 and table 6.20. The results for significance level α = 0.01 are listed in

table 6.19 and table 6.21. Table 6.22 and table 6.23 show the power comparisons for every

simulation condition using McNemar’s Test. With these tables, we conclude:

• MSM significantly outperforms UMLRM in most circumstances. That is, MSM is a

more powerful method than UMLRM for detecting a mixture slope model. The power

gains from MSM over UMLRM happen when the powers of MSM are around 20% -

90%, and typical power gains are over 10%.

• For both methods, power is a function of separation δ, mixture proportion p and

sample size n, but is insensitive to the regression parameter γ.
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Table 6.18: Power (in percent) of log likelihood ratio test to detect mixture slope by
mixture slope model (MSM) method at .05 level of significance based on 200 replicates for
each alternative.

Sample By Simulation Power Estimated

Size p δ γ = 0.125 γ = 0.5 γ = 1.0 from Formula 5.20

200 0.15 0.10 6.5 11.5 11.0 2.84e-03

0.20 41.5 39.0 38.5 39.20

0.50 0.10 16.0 15.0 14.0 1.11

0.20 58.0 65.0 67.5 63.95

400 0.15 0.10 10.0 7.5 10.5 0.18

0.20 52.5 63.0 56.5 60.40

0.50 0.10 16.0 15.5 18.0 6.31

0.20 93.0 89.0 87.0 84.58

800 0.15 0.10 10.5 10.5 9.0 2.28

0.20 81.5 82.5 80.0 80.66

0.50 0.10 24.0 23.0 22.0 19.15

0.20 99.5 99.5 99.5 96.63

1600 0.15 0.10 21.0 21.0 21.0 15.16

0.20 99.0 99.0 99.0 94.98

0.50 0.10 46.5 46.5 46.5 44.63

0.20 100.0 100.0 100.0 99.82
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Table 6.19: Power (in percent) of log likelihood ratio test to detect mixture slope by
mixture slope model (MSM) method at .01 level of significance based on 200 replicates for
each alternative.

Sample By Simulation Power Estimated

Size p δ γ = 0.125 γ = 0.5 γ = 1.0 from Formula 5.20

200 0.15 0.10 2.5 5.5 3.5 1.05e-10

0.20 24.5 24.0 25.5 16.47

0.50 0.10 6.0 6.5 6.0 1.86e-03

0.20 39.5 44.0 47.0 42.25

400 0.15 0.10 3.0 1.5 3.0 2.53e-07

0.20 32.0 36.0 30.0 33.61

0.50 0.10 4.0 6.0 6.5 4.37e-02

0.20 75.5 71.0 67.5 68.34

800 0.15 0.10 2.5 3.0 2.0 4.73e-03

0.20 67.5 68.5 66.0 66.29

0.50 0.10 10.0 12.0 9.5 2.08

0.20 96.0 98.0 95.5 93.03

1600 0.15 0.10 8.0 8.0 8.0 0.46

0.20 96.0 96.0 96.0 89.88

0.50 0.10 24.0 24.0 24.0 13.56

0.20 100.0 100.0 100.0 99.57
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Table 6.20: Power (in percent) of log likelihood ratio test to detect mixture
slope by unrestricted mixture linear regression model (UMLRM) method at
.05 level of significance based on 200 replicates for each alternative.

Sample γ

Size p δ 0.125 0.5 1.0

200 0.15 0.10 6.0 4.0 4.0

0.20 16.0 17.0 19.5

0.50 0.10 4.5 8.0 6.0

0.20 29.0 35.5 34.0

400 0.15 0.10 5.5 5.0 5.5

0.20 29.0 34.5 28.0

0.50 0.10 6.0 7.0 6.5

0.20 70.5 69.0 65.0

800 0.15 0.10 5.0 7.0 4.0

0.20 65.0 67.5 65.5

0.50 0.10 12.0 14.0 10.5

0.20 97.0 98.5 94.5

1600 0.15 0.10 9.0 9.0 9.0

0.20 96.0 96.0 96.0

0.50 0.10 24.0 24.0 24.0

0.20 100.0 100.0 100.0
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Table 6.21: Power (in percent) of log likelihood ratio test to detect mixture
slope by unrestricted mixture linear regression model (UMLRM) method at
.01 level of significance based on 200 replicates for each alternative.

Sample γ

Size p δ 0.125 0.5 1.0

200 0.15 0.10 2.5 1.0 1.0

0.20 7.5 7.0 8.0

0.50 0.10 0.5 1.5 2.5

0.20 16.5 17.5 14.0

400 0.15 0.10 1.5 0.5 1.5

0.20 17.5 18.0 15.0

0.50 0.10 1.0 3.0 0.5

0.20 46.0 48.0 45.5

800 0.15 0.10 2.5 3.5 1.5

0.20 53.0 54.5 50.5

0.50 0.10 6.0 6.0 2.5

0.20 89.5 93.0 91.0

1600 0.15 0.10 3.5 3.5 3.5

0.20 87.0 87.0 87.0

0.50 0.10 12.0 12.0 12.0

0.20 100.0 100.0 100.0
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Table 6.22: Power Comparison between mixture slope model (MSM) method and
unrestricted mixture linear regression model (UMLRM) method for detecting mix-
ture slope at .05 level of significance. The numbers in each cell represents (number
of simulations that are detected by MSM but not UMLRM, number of simulations
that are detected by UMLRM but not MSM, p-value of McNemar tset (minus p-
value means UMLRM outperforms MSM)). The -,-,- represents 0, 0, 1, that is
MSM and UMLRM give the same results.

Sample γ

Size p δ 0.125 0.5 1.0

200 0.15 0.10 9, 8, 0.81 21, 6, 0 19, 5, 0

0.20 52, 1, 0 45, 1, 0 41, 3, 0

0.50 0.10 27, 4, 0 24, 10, 0.02 22, 6, 0

0.20 60, 2, 0 61, 2, 0 67, 0, 0

400 0.15 0.10 15, 6, 0.05 13, 8, 0.28 15, 5, 0.03

0.20 52, 5, 0 60, 3, 0 60, 3, 0

0.50 0.10 24, 4, 0 21, 4, 0 28, 5, 0

0.20 45, 0, 0 40, 0, 0 45, 1, 0

800 0.15 0.10 14, 3, 0.01 14, 7, 0.13 13, 3, 0.01

0.20 34, 1, 0 33, 3, 0 31, 2, 0

0.50 0.10 28, 4, 0 26, 8, 0 23, 0, 0

0.20 5, 0, 0.03 2, 0, 0.16 10, 0, 0

1600 0.15 0.10 29, 5, 0 29, 5, 0 29, 5, 0

0.20 6, 0, 0.01 6, 0, 0.01 6, 0, 0.01

0.50 0.10 46, 1, 0 46, 1, 0 46, 1, 0

0.20 -, -, - -, -, - -, -, -
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Table 6.23: Power Comparison between mixture slope model (MSM) method and
unrestricted mixture linear regression model (UMLRM) method for detecting
mixture slope at .01 level of significance. The numbers in each cell represents
(number of simulations that are detected by MSM but not UMLRM, number of
simulations that are detected by UMLRM but not MSM, p-value of McNemar
tset (minus p-value means UMLRM outperforms MSM)). The -,-,- represents 0,
0, 1, that is MSM and UMLRM give the same results.

Sample γ

Size p δ 0.125 0.5 1.0

200 0.15 0.10 3, 3, 1 10, 1, 0.01 6, 1, 0.06

0.20 35, 1, 0 34, 0, 0 36, 1, 0

0.50 0.10 11, 0, 0 12, 2, 0.01 8, 1, 0.02

0.20 46, 0, 0 55, 2, 0 66, 0, 0

400 0.15 0.10 4, 1, 0.18 3, 1, 0.32 4, 1, 0.18

0.20 30, 1, 0 42, 6, 0 32, 2, 0

0.50 0.10 7, 1, 0.03 7, 1, 0.03 12, 0, 0

0.20 59, 0, 0 48, 2, 0 44, 0, 0

800 0.15 0.10 1, 1, 1 4, 5, -0.74 2, 1, 0.56

0.20 31, 2, 0 30, 2, 0 35, 4, 0

0.50 0.10 10, 2, 0.02 17, 5, 0.01 16, 2, 0

0.20 14, 1, 0 10, 0, 0 10, 1, 0.01

1600 0.15 0.10 11, 2, 0.01 11, 2, 0.01 11, 2, 0.01

0.20 18, 0, 0 18, 0, 0 18, 0, 0

0.50 0.10 27, 3, 0 27, 3, 0 27, 3, 0

0.20 -, -, - -, -, - -, -, -
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6.6 Simulation of Accuracy of Power and Sample Size

Calculation Formulas

According to the power calculation formula (5.20) for normal mixture model (NMM), mix-

ture intercept model (MIM) and mixture slope model (MSM), the power depends on the

standard deviation σ, separation δ and mixture proportion p but is not sensitive to the

regression parameters. This is confirmed by the simulations in the previous two sections.

As shown in table 6.8, table 6.9, table 6.10, table 6.11, table 6.18 and table 6.19, the powers

obtained by simulations are close to those estimated from formula (5.20) when δ ∈ {2, 3}

for NMM and MIM and δ is .2 for MSM, especially when the significance level α is .05.

In order to document the accuracy of the sample size formula 5.22, we carry out three

simulation studies for normal mixture model (NMM), mixture intercept model (MIM) and

mixture slope model (MSM) according to the following procedure:

• For significance level α = .05, power = .80 and σ = 1, calculate the necessary sample

size for every combination of separation (δ ∈ {1, 1.5, 2, 3, 4} for NMM and MIM, δ ∈

{.1, .15, .2, .3, .4} for MSM) and mixture proportion (p ∈ {.1, .2, .3, .4, .5}) according

to formula 5.22. The results are listed in table 6.24, table 6.25 and table 6.26.

• For each experiment setting in the three sample size tables (table 6.24, table 6.25 and

table 6.26), run 1000 (200 for sample size over 1000) mixture detection simulations on

randomly created samples with the corresponding sample size, and estimate the power

from these simulation results. Then list all the simulated power results in table 6.27,

table 6.28 and table 6.29. For MIM and MSM, we set all regression parameters as 1.0

except the separation δ.

In this study, we define the sample size estimation as successful if the simulated power
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is between 75% and 85% (for target power 80%). From table 6.27, table 6.28 and table 6.29,

we conclude that (under our design conditions):

• For normal mixture model (NMM) and mixture intercept model (MIM):

– When the separation δ ≥ 2, the sample size formula 5.22 provides accurate sample

size estimations for NMM and MIM in a broad range of mixture proportion p

which includes [0.1, 0.9].

– When 1 ≤ δ ≤ 2, the sample size formula 5.22 provides accurate sample size

estimations for NMM and MIM model only in two restricted ranges of mixture

proportion p, which concentrate around 0.2 and 0.8, when the separation δ de-

creases the ranges shrink;

– When the sample size formula 5.22 fails, 10 out of 11 sample size are underes-

timates of the correct sample size. The only overestimation happens in NMM

when mixture proportion p = 0.1 and separation δ = 1.

– Our sample size estimations are close to the results from [29] when δ ∈ {3, 4},

but are different when δ = 2 and p ∈ {0.1, 0.2, 0.3, 0.4}. One possible reason

for this is that we used q1−α(n1) ≈ q1−α(n2) in our derivation for sample size

estimation formula 5.22. Another reason is that we might use different simulated

null LRTS distributions. These findings are consistent with the approximate

formula systematiccaly underestimating the correct n.

• For mixture slope model (MSM):

– When the separation δ ≥ 0.2, the sample size formula 5.22 provides accurate

sample size estimations for MSM in a broad range of mixture proportion p, which

at least includes [0.2, 0.8].
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– When 0.15 ≤ δ ≤ 0.2, the sample size formula 5.22 provides accurate sample size

estimations for MSM only in a restricted range of mixture proportion p, which

includes [0.4, 0.6].

– When the sample size formula 5.22 fails, it typically suggests a larger sample size

than needed.

The above conclusions are only valid under the design condition examined. When we change

the significance level α or other regression parameters, the results might change to some

extents. This is especially true for the slope γ in MSM, which has some influence on

simulated power in a few cases as shown in table 6.18 and table 6.19.
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Table 6.24: Sample size table necessary to detect two-component normal mixture by using
formula 5.22 under given design conditions (significance level α = .05, target power = .80
and standard deviation σ = 1). The numbers in parentheses are the sample sizes published
in [29].

Separation Mixture Proportion p

δ .1 .2 .3 .4 .5

1 26915 9913 8934 9891 10421

1.5 1924 1212 1296 1591 1774

2 453 (578) 325 (459) 348 (446) 406 (452) 438 (456)

3 85 (100) 65 (76) 66 (73) 71 (73) 73 (73)

4 32 (38) 25 (28) 25 (26) 26 (26) 26 (26)

Table 6.25: Sample size table necessary to detect two-component mixture intercept by using
formula 5.22 under given design conditions (significance level α = .05, target power = .80
and standard deviation σ = 1).

Separation Mixture Proportion p

δ .1 .2 .3 .4 .5

1 27133 10003 9019 9993 10535

1.5 1941 1223 1308 1606 1791

2 457 328 351 410 442

3 85 65 67 72 74

4 33 26 25 26 27

Table 6.26: Sample size table necessary to detect two-component mixture slope by using
formula 5.22 under given design conditions (significance level α = .05, target power = .80
and standard deviation σ = 1).

Separation Mixture Proportion p

δ .1 .2 .3 .4 .5

.1 38577 13533 6886 7689 4720

.15 4515 1889 1188 1130 935

.2 1293 585 397 368 332

.3 273 136 101 93 89

.4 104 55 43 40 39
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Table 6.27: Simulation results for power (in percent) for normal mixture detection using
sample size specified in table 6.25 which has target power 80.

Separation Mixture Proportion p

δ .1 .2 .3 .4 .5

1 98.0 79.5 57.0 40.5 25.0

1.5 83.8 80.6 77.5 68.1 67.8

2 81.7 79.8 78.8 80.0 78.1

3 79.6 79.1 81.6 83.1 83.2

4 75.8 80.7 83.5 84.3 82.5

Table 6.28: Simulation results for power (in percent) for mixture intercept detection using
sample size specified in table 6.25 which has target power 80. (All the regression parameters
are set as 1.0.)

Separation Mixture Proportion p

δ .1 .2 .3 .4 .5

1 - 76.0 57.0 45.9 33.5

1.5 79.0 84.0 79.0 66.0 62.0

2 81.7 82.2 80.3 79.8 75.3

3 81.9 81.4 81.6 84.4 83.0

4 76.9 81.6 83.2 84.4 84.6

Table 6.29: Simulation results for power (in percent) for mixture slope detection using sam-
ple size specified in table 6.26 which has target power 80. (All other regression parameters
are set as 1.0.)

Separation Mixture Proportion p

δ .1 .2 .3 .4 .5

.1 - - - 97.0 88.5

.15 91.0 88.0 87.0 84.0 85.0

.2 85.7 83.7 80.8 82.4 81.9

.3 81.5 81.9 80.4 82.4 81.8

.4 78.1 79.4 77.0 80.1 79.2
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Chapter 7

Application Study

In this chapter, we apply restricted mixture linear regression model (RMLRM) to two real

data sets. Since the data sets are given, the main tasks here are parameter estimation and

model selection. For model selection, in addition to using the LRTS based on our RMLRM,

we also use the Akaike’s information criterion (AIC) [1] and the Bayesian information

criterion (BIC) [37].

7.1 Application to COGEND Data Set

Collaborative Genetic Study of Nicotine Dependence (COGEND) [3] is a retrospective study

to find the biological mechanisms, genes and environmental features that determine nicotine

consumption, and that predispose or protect individuals from the onset and persistence of

the nicotine dependence. The current data provided to us from the COGEND group consist

of 6429 individuals, with the following covariates:

• Gender;
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• Years of education;

• Race (is black or not, defined as Black);

• Number of packs of cigarettes per day;

• Years between first puff and first regular smoking (defined as: YrOn);

• Age at first puff (defined as: Age0).

For variables YrOn and Age0, we defined the transformations as LogYrOn = log(YrOn+1.5)

and LogAge0 = log(Age0).

For this data set, we try to find out whether age at first puff and race have some

influence on how long it takes to become a regular smoker. If there is relationship between

these variables, we also want to know whether this relationship changes among different

groups of people and whether there is evidence of a mixture mechanism.

In [39], the ordinary linear regression model:

LogYrOn = α + γ · LogAge0 + β · Black + ε (7.1)

was used to model this data set, and the OLS residuals were examined for a normal mixture.

In addition to the OLS model (7.1), we use following four models to study this data set:

Mixture Intercept Model (MIM)

LogYrOn ∼

 α + γ · LogAge0 + β · Black + ε with probability p,

(α + δ) + γ · LogAge0 + β · Black + ε with probability 1− p.

(7.2)
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Mixture Slope Model (MSM)

LogYrOn ∼

 α + γ · LogAge0 + β · Black + ε with probability p,

α + (γ + δ) · LogAge0 + β · Black + ε with probability 1− p.

(7.3)

Double Mixture Model (DMM)

LogYrOn ∼

 α1 + γ · LogAge0 + β1 · Black + ε with probability p,

α2 + γ · LogAge0 + β2 · Black + ε with probability 1− p.

(7.4)

Unrestricted Mixture Linear Regression Model (UMLRM)

LogYrOn ∼

 α1 + γ1 · LogAge0 + β1 · Black + ε with probability p,

α2 + γ2 · LogAge0 + β2 · Black + ε with probability 1− p.

(7.5)

Here, DMM is added by checking the results from UMLRM, and we assume equal variance

in all those 4 models.

The model selection information is listed in table 7.1, and the model estimation results

are listed in table 7.2. From these two table, we conclude:

1. From table 7.1, we can see that DMM is the best model from AIC and BIC (the

smaller the AIC/BIC value, the better the model).

2. For the full model UMLRM, the estimate of mixing proportion p is 0.650±0.0001 (p̂±

s.e.), which assure us that the LRTS should satisfy the regular conditions. Therefore,

we can test UMLRM against DMM by the likelihood ratio test using χ2
1, and get

a p-value of 0.41 for LRTS value of 0.295. This means that there is no significant
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difference on the slope of LogAge0 in two mixture components. Similarly, we also

can test UMLRM against MSM, UMLRM against MIM, and DMM against MIM.

Apparently, DMM is the best model among all mixture models from the likelihood

ratio tests.

3. The LRTSs for testing MIM against OLS is 41.439, for MSM against OLS is 65.050

and for UMLRM against OLS is 107.095, which are probably highly significant when

compared to the corresponding null LRTS distributions if all the corresponding null

LRTS distributions diverge as slowly as the case for NMM.

4. DMM is the best model among the models in table 7.1 according to the LRTS.

5. Since p̂ is far away from the boundary 0 or 1, the sample size is very large, and

UMLRM is the full model, we can use Wald tests to do statistical inference for every

single parameter in UMLRM.

Table 7.1: Model evaluation on regression models for COGEND data set.

Degree of
Models Log likelihood LRTS Freedom AIC BIC

OLS -5574.620 4 11157.240 11184.302

MIM -5553.900 41.439 6 11117.800 11151.627

MSM -5542.095 65.050 6 11094.190 11128.020

DMM -5521.220 106.800 7 11054.440 11086.267

UMLRM -5521.073 107.095 8 11056.146 11103.504

From our best model, the double mixture model (DMM), we conclude that there are

two groups of people regarding to their smoking characteristics. One group’s transformed

time to regular smoking is 4.314 ± 0.105, while the people from the second group need an

additional transformed time 0.643± 0.019 to become regular smoker. The age effect seems

the same in the two groups. In both components, subjects take less time to become regular
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smoker when they become older. On the other hand, whether a person is black or not will

not influence his time to become a regular smoker if he is in the more common component.

But in the less common component, black people seem take longer time to become regular

smoker.
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Table 7.2: Regression modelsa for COGEND data set.

Component 1 Separation
parameters (Std. Error) parameters (Std. Error)

OLS

Intercept (α) 4.682 (0.104)

LogAge0 (γ) -1.300 (0.039)

Black (β) 0.192 (0.027)

MIM

Mixing proportion (p) 0.668 (0.0001)

Intercept (α) 4.265 (0.105) (δ) 0.687 (0.018)

LogAge0 (γ) -1.228 (0.040)

Black (β) 0.172 (0.022)

MSM

Mixing proportion (p) 0.818 (0.0001)

Intercept (α) 4.632 (0.108)

LogAge0 (γ) -1.330 (0.041) (δ) 0.274 (0.009)

Black (β) 0.156 (0.023)

DMM

Mixing proportion (p) 0.654 (0.0001)

Intercept (α) 4.314 (0.105) (α2 − α1) 0.643 (0.019)

LogAge0 (γ) -1.245 (0.040)

Black (β) 0.032 (0.033) (β2 − β1) 0.447 (0.050)

UMLRM

Mixing proportion (p) 0.650 (0.0001)

Intercept (α1) 4.348 (0.145) (α2 − α1) 0.504 (0.243)

LogAge0 (γ1) -1.260 (0.055) (γ2 − γ1) 0.055 (0.089)

Black (β1) 0.033 (0.033) (β2 − β1) 0.433 (0.051)

aOLS: ordinary least regression model, MIM: mixture intercept model, MSM: mixture slope model,
DMM: double mixture model, UMLRM: unrestricted mixture linear regression model
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7.2 Application to Pima Data Set

We use OLS to build a linear model on glucose concentration and other covariates for the

Pima data set mentioned in Chapter One. We get the linear model as

Glucose = α + γ · Insulin + β · Age + ε. (7.6)

In order to answer the questions raised in Chapter One, we carry out several mixture linear

regression model analyses. Based on the OLS model (7.6), we only include the covariates

insulin and age in the mixture model study. The models used here are similar to those in

the previous section.

The model selection information is listed in table 7.3, and the model estimation results

are listed in table 7.4.

With the same procedures used in the COGEND data set, we find that the mixture

intercept model is the best model for this Pima data set. Again, the LRTS results agree

with the AIC and BIC model selection results.

From the mixture intercept model, we can conclude that:

• The Pima data set seems to come from two groups, with one component having about

84% of the total.

• The larger component has baseline glucose concentration (defined as insulin = 0)

around 80.246, and the other component has mean baseline glucose concentration

around 127.684.

• All subjects have the same glucose concentration increase rate of 0.136 per unit insulin

increase.
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Table 7.3: Model evaluation on regression modelsa for Pima data set

Degree of
Models Log likelihood LRTS Freedom AIC BIC

OLS -1804.000 4 3616.000 3631.885

MIM -1783.449 41.101 6 3576.898 3596.754

MSM -1789.659 28.682 6 3589.318 3609.174

UMLRM -1782.359 43.282 8 3578.718 3606.517

aOLS: ordinary least regression model, MIM: mixture intercept model, MSM: mixture slope model,
UMLRM: unrestricted mixture linear regression model

Table 7.4: Regression models for Pima data set.

Component 1 Separation
parameters (Std. Error) parameters (Std. Error)

OLS

Intercept (α) 79.771 (3.972)

Insulin (γ) 0.138 (0.010)

Age (β) 0.691 (0.122)

MIM

Mixing proportion (p) 0.836 (0.022)

Intercept (α) 80.246 (3.138) (δ) 47.438 (2.772)

Insulin (γ) 0.136 (0.007)

Age (β) 0.434 (0.096)

MSM

Mixing proportion (p) 0.783 (0.039)

Intercept (α) 77.835 (3.778)

Insulin (γ) 0.131 (0.009) (δ) 0.190 (0.022)

Age (β) 0.605 (0.114)

UMLRM

Mixing proportion (p) 0.839 (0.022)

Intercept (α1) 79.820 (10.529) (α2 − α1) 63.451 (10.512)

Insulin (γ1) 0.136 (0.033) (γ2 − γ1) -0.053 (0.034)

Age (β1) 0.453 (0.291) (β2 − β1) -0.188 (0.286)

117



• All subjects have the same glucose concentration increase rate of 0.434 per year older.
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Chapter 8

Conclusions

This dissertation focused on the restricted mixture linear regression models (RMLRM), es-

pecially two cases: the mixture intercept model (MIM) and the mixture slope model (MSM).

We used the Expectation-Maximization (EM) algorithm to calculate the MLEs for the

regression parameters and mixing proportions. We also provided the standard errors for

the MLE. We provided two EM initialization procedures for MIM and MSM. Through pi-

lot studies, we developed an EM implementation strategy by balancing the computation

efficiency and high probability to obtain the global maximum of the LRTS. This implemen-

tation strategy has been validated by the follow-up simulation studies for finite sample sizes

range from 100 to 1600.

We developed an approximation to decompose the distribution of the likelihood ratio test

statistic (LRTS) for testing for a two-component mixture in normal mixture model (NMM),

MIM and MSM under the alternative. Using this decomposition method, we obtained two

power and sample size estimation formulas for those mixture models. By a set of simulation

studies, we verified that our power and sample size formulas gave usable estimations under

a brand range of conditions. The results on NMM are close to a reported one [29] in many
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circumstances. We also found that the accuracy of our power and sample size formulas

drops when the separation between the two components decreases.

Through simulation studies, we investigated the null LRTS distributions of the test

for two-component mixture in certain NMM, MIM, MSM and unrestricted mixture linear

regression model (UMLRM) for sample sizes between 100 and 1600. We found that the

empirical null LRTS distribution was relatively insensitive to the sample size. We also used

simulation studies of the power to detect various mixture models by NMM, MIM, MSM and

UMLRM. We found that among NMM, MIM and UMLRM, NMM was the more powerful

method to detect mixture intercepts in many cases with sample size of 200. Among MSM

and UMLRM, MSM was the more powerful method to detect mixture slopes.

We applied the RMLRM to two case studies with real data sets. In both cases, com-

pared to the ordinary linear regression model (OLRM) and UMLRM, the RMLRM turned

out to be the better model according three different model evaluation criteria: the LRTS,

the Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC).

These two case studies demonstrated that RMLRM was a class of parsimonious mixture

models that is very easy to use to explore and test different mixture mechanisms. We

therefore believe that RMLRM will be a useful tool for searching for genetic effects and

gene-environment interactions, which are the underlying causes for many mixture distribu-

tions in genetic studies.

There is still some room to improve our study results. One direction is to have a

more advanced EM implementation strategy to make sure we have higher probability to

obtain global maximum for LRTS. One idea is to have an adaptive process to monitor the

convergence pattern(Section 6.2.1) from the multiple EM runs for every sample. For those

samples converge with Patten 3, we can run EM multiple times once more from those points

have highest LRTS results (as new starting points) and with more stringent stoping criteria

120



and number of maximum iterations.

When we derived the sample size formula (5.22), we used an approximation q1−α(n1) ≈

q1−α(n2) and have the final sample size formula as

n =


2q1−αλ + σ2

λZ
2
β +

√
σ4

λZ
4
β + 4q1−αλσ2

λZ
2
β

2λ
2

 , (8.1)

where q1−α was defined as the average of q1−α(n) for sample sizes 100, 200, 400, 800 and

1600. In order to improve the accuracy of sample size formula, we might first obtain a rough

sample size estimation nr from formula 8.1, then use formula 8.1 again but with q1−α(ni)

(ni is the closet integer with nr) replace q1−α. By repeating this process iteratively, sample

size estimation might become more accurate.
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Appendix A

Pilot Study Results

A.1 Figures for Normal Mixture Model Pilot Study

Results

For every sample, we have 4 sets of figures. Sequentially, the first set of figures shows the

simulation results based on 250 random starting points (RSPs) for p0. The second set of

figures shows the simulation results with 19 fixed starting points for p0. The third set of

figures shows only the simulation results with 250 RSPs for p0 that have LRTS values greater

than (LRTSmax + LRTSmin)/2, where LRTSmax and LRTSmin are calculated based on 269

LRTS values. The fourth set of figures shows the simulation results started with 19 fixed

starting p0 that have LRTS values greater than (LRTSmax +LRTSmin)/2. In all figures, each

row corresponds to one simulation.
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Figure A.1: Normal mixture model pilot study results for sample 2 (n = 1600) with 250
random starting p0, stopping criteria 10e−12 and maximum number of iterations 5000.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean of Component 1 (µµ1̂)

S
im

ul
at

io
n 

ID

−0.6 −0.4 −0.2 0.0 0.2 0.4

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean of Component 2 (µµ2̂)

S
im

ul
at

io
n 

ID

−0.6 −0.4 −0.2 0.0 0.2 0.4

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Standardized distance (((µµ2̂ −− µµ1̂)) σσ̂)

S
im

ul
at

io
n 

ID

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mixture proportion (p̂)

S
im

ul
at

io
n 

ID

0.0 0.2 0.4 0.6 0.8 1.0

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LRTS

S
im

ul
at

io
n 

ID

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Number of EM iterations

S
im

ul
at

io
n 

ID

0 1000 2000 3000 4000 5000

1
10

19

Figure A.2: Normal mixture model pilot study results for sample 2 (n = 1600) with 19
fixed starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12 and maximum number of
iterations 5000.
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Figure A.3: Normal mixture model pilot study results for sample 2 (n = 1600) with 250
random starting p0, stopping criteria 10e−12, maximum number of iterations 5000 and
LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are deleted.
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Figure A.4: Normal mixture model pilot study results for sample 2 (n = 1600) with 19 fixed
starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12, maximum number of iterations
5000 and LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are deleted.
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Figure A.5: Normal mixture model pilot study results for sample 5 (n = 1600) with 250
random starting p0, stopping criteria 10e−12 and maximum number of iterations 5000.
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Figure A.6: Normal mixture model pilot study results for sample 5 (n = 1600) with 19
fixed starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12 and maximum number of
iterations 5000.
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Figure A.7: Normal mixture model pilot study results for sample 5 (n = 1600) with 250
random starting p0, stopping criteria 10e−12, maximum number of iterations 5000 and
LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are deleted.
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Figure A.8: Normal mixture model pilot study results for sample 5 (n = 1600) with 19 fixed
starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12, maximum number of iterations
5000 and LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are deleted.
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Figure A.9: Normal mixture model pilot study results for sample 6 (n = 1600) with 250
random starting p0, stopping criteria 10e−12 and maximum number of iterations 5000.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean of Component 1 (µµ1̂)

S
im

ul
at

io
n 

ID

−0.6 −0.4 −0.2 0.0 0.2

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean of Component 2 (µµ2̂)

S
im

ul
at

io
n 

ID

−0.6 −0.4 −0.2 0.0 0.2

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Standardized distance (((µµ2̂ −− µµ1̂)) σσ̂)

S
im

ul
at

io
n 

ID

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mixture proportion (p̂)

S
im

ul
at

io
n 

ID

0.0 0.2 0.4 0.6 0.8 1.0

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LRTS

S
im

ul
at

io
n 

ID

0.00 0.02 0.04 0.06 0.08

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Number of EM iterations

S
im

ul
at

io
n 

ID

0 1000 2000 3000 4000 5000

1
10

19

Figure A.10: Normal mixture model pilot study results for sample 6 (n = 1600) with 19
fixed starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12 and maximum number of
iterations 5000.

127



●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

Mean of Component 1 (µµ1̂)

S
im

ul
at

io
n 

ID

−0.6 −0.4 −0.2 0.0 0.2

1
12

5
25

0

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

Mean of Component 2 (µµ2̂)

S
im

ul
at

io
n 

ID

−0.6 −0.4 −0.2 0.0 0.2

1
12

5
25

0

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

Standardized distance (((µµ2̂ −− µµ1̂)) σσ̂)

S
im

ul
at

io
n 

ID

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1
12

5
25

0

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

Mixture proportion (p̂)

S
im

ul
at

io
n 

ID

0.0 0.2 0.4 0.6 0.8 1.0

1
12

5
25

0

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

LRTS

S
im

ul
at

io
n 

ID

0.00 0.02 0.04 0.06 0.08

1
12

5
25

0

●
●
●

●
●
●

●

●
●
●

●

●
●

●

●
●

●

●

●
●
●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●

●

●
●

●
●

●
●

●

●
●

●
●
●

●
●
●
●
●
●

●

●
●
●
●
●
●

●
●
●
●
●

●
●

●

●

●
●

●
●
●
●
●

●

●

●
●

●

●
●
●
●
●

●
●

●
●

●
●
●
●
●

●
●

●

●

●
●
●
●
●
●

●
●

●

●
●
●

●
●
●
●
●
●

●
●
●

●
●
●

●
●

●
●
●
●
●

●

●

●
●

●
●
●
●
●

●

●
●
●

●

●

●
●

●
●
●

●
●
●
●

Number of EM iterations

S
im

ul
at

io
n 

ID

0 1000 2000 3000 4000 5000
1

12
5

25
0

Figure A.11: Normal mixture model pilot study results for sample 6 (n = 1600) with
250 random starting p0, stopping criteria 10e−12, maximum number of iterations 5000 and
LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are deleted.
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Figure A.12: Normal mixture model pilot study results for sample 6 (n = 1600) with
19 fixed starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12, maximum number of
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Figure A.13: Normal mixture model pilot study results for sample 17 (n = 1600) with 250
random starting p0, stopping criteria 10e−12 and maximum number of iterations 5000.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean of Component 1 (µµ1̂)

S
im

ul
at

io
n 

ID

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mean of Component 2 (µµ2̂)

S
im

ul
at

io
n 

ID

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Standardized distance (((µµ2̂ −− µµ1̂)) σσ̂)

S
im

ul
at

io
n 

ID

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Mixture proportion (p̂)

S
im

ul
at

io
n 

ID

0.0 0.2 0.4 0.6 0.8 1.0

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LRTS

S
im

ul
at

io
n 

ID

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1
10

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Number of EM iterations

S
im

ul
at

io
n 

ID

0 1000 2000 3000 4000 5000

1
10

19

Figure A.14: Normal mixture model pilot study results for sample 17 (n = 1600) with 19
fixed starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12 and maximum number of
iterations 5000.
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Figure A.15: Normal mixture model pilot study results for sample 17 (n = 1600) with
250 random starting p0, stopping criteria 10e−12, maximum number of iterations 5000 and
LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are deleted.
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Figure A.16: Normal mixture model pilot study results for sample 17 (n = 1600) with
19 fixed starting p0 (0.05, 0.10, . . . , 0.95), stopping criteria 10e−12, maximum number of
iterations 5000 and LRTS(i) ≥ (LRTSmax + LRTSmin)/2. Other starting point results are
deleted.
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A.2 Lists for Highest LRTS Results from Normal Mix-

ture Model Pilot Study

List five highest LRTS values for the 25 samples of sample size 1600 from 250 runs

of EM with random starting points. The stopping criterion and the maximum number of

iterations are set as 10e−12 and 5000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 0.5635536 1.294745 1.072115 1.924701 2.838997 0.08860385 3.242292

2 0.5635532 1.294745 1.072115 1.924701 2.838997 0.08859925 3.242292

3 0.5635531 1.294745 1.072115 1.924701 2.838997 0.08859559 3.242292

4 0.5635480 1.294745 1.072115 1.924701 2.838997 0.08859039 3.242292

5 0.5635464 1.294745 1.072115 1.924701 2.838997 0.08857682 3.242292

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 1.015727 1.328578 1.924701 0.5635536 2.199168 1.213649 0.2696057

2 1.015727 1.328578 1.924701 0.5635532 2.199168 1.213649 0.2696057

3 1.015727 1.328578 1.924701 0.5635531 2.199168 1.213649 0.2696057

4 1.015727 1.328578 1.924701 0.5635480 2.199168 1.213649 0.2696057

5 1.015727 1.328578 1.924701 0.5635464 2.199168 1.213649 0.2696057

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 1.568665 2.069853 0.3505202 4.848534 3.811048 0.9022956 1.292325

2 1.568665 2.069853 0.3505202 4.848534 3.811048 0.9022942 1.292325

3 1.568665 2.069853 0.3505202 4.848534 3.811048 0.9022932 1.292325

4 1.568665 2.069853 0.3505202 4.848534 3.811048 0.9022930 1.292325

5 1.568665 2.069853 0.3505202 4.848534 3.811048 0.9022765 1.292325

Sample 22 Sample 23 Sample 24 Sample 25

1 0.1671775 0.1616927 1.371054 0.929378

2 0.1671775 0.1616927 1.371054 0.929378

3 0.1671775 0.1616927 1.371054 0.929378

4 0.1671775 0.1616927 1.371054 0.929378

5 0.1671775 0.1616927 1.371054 0.929378
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List five highest LRTS values for the 25 samples of sample size 1600 from 19 fixed start-

ing p0 (0.05, 0.10, . . . , 0.95). The stopping criterion and the maximum number of iterations

are set as 10e−12 and 5000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 0.5635075 1.294745 1.072115 1.924701 2.838997 0.08842816 3.242292

2 0.5634571 1.294745 1.072115 1.924701 2.838997 0.08837543 3.242292

3 0.5633672 1.294745 1.072115 1.924701 2.838997 0.08781697 3.242292

4 0.5632727 1.294745 1.072115 1.924701 2.838997 0.08741121 3.242292

5 0.5632126 1.294745 1.072115 1.924701 2.838997 0.08710567 3.242292

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 1.015727 1.328578 1.924701 0.5635075 2.199168 1.21364935 0.2696057

2 1.015727 1.328578 1.924701 0.5634571 2.199168 0.62734374 0.2695738

3 1.015727 1.328578 1.924701 0.5633672 2.199168 0.02973261 0.2570691

4 1.015727 1.328578 1.924701 0.5632727 2.199168 0.02450725 0.1806021

5 1.015727 1.328578 1.924701 0.5632126 2.199168 0.01761707 0.1277288

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 1.568665 2.069853 0.3416523 4.848534 3.811048 0.9022675 1.292325

2 1.568665 2.069852 0.3416523 4.848534 3.811048 0.9019160 1.292325

3 1.568665 2.069852 0.3416523 4.848534 3.811048 0.9011290 1.292325

4 1.568665 2.069850 0.3416523 4.848534 3.811048 0.9009077 1.292325

5 1.568665 2.069850 0.3416523 4.848534 3.811048 0.9005665 1.292325

Sample 22 Sample 23 Sample 24 Sample 25

1 0.16717748 0.16169274 1.371054 0.929378

2 0.16717503 0.08021941 1.371054 0.929378

3 0.07599023 0.07620611 1.371054 0.929378

4 0.02548698 0.01928422 1.371054 0.929378

5 0.01126419 0.01847642 1.371054 0.929378
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List five highest LRTS values for the 25 samples of sample size 1600 from 19 fixed start-

ing p0 (0.05, 0.10, . . . , 0.95). The stopping criterion and the maximum number of iterations

are set as 10e−6 and 1000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 0.5615610 1.294636 1.072078 1.924677 2.838050 0.08783886 3.242141

2 0.5605051 1.294635 1.072039 1.924610 2.837066 0.08685329 3.242141

3 0.5537783 1.294634 1.072039 1.924610 2.832685 0.08152506 3.242141

4 0.5454167 1.294634 1.072039 1.924610 2.827528 0.08148298 3.242140

5 0.5431101 1.294634 1.072039 1.924610 2.823774 0.07440544 3.242140

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 1.015264 1.3283909 1.924677 0.5615610 2.199091 1.21364 0.2645797

2 1.015213 1.2722012 1.924610 0.5605051 2.199090 0.02919 0.2075024

3 1.014947 1.0483872 1.924610 0.5537783 2.199090 0.02285 0.1498254

4 1.014525 0.8947805 1.924610 0.5454167 2.199090 0.01550 0.1096358

5 1.014203 0.7867136 1.924610 0.5431101 2.199090 0.00777 0.0787382

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 1.568262 2.068951 0.3413153 4.848457 3.811007 0.9017311 1.2922088

2 1.568261 2.066360 0.3412958 4.848437 3.811004 0.8967667 1.2902800

3 1.568219 2.061688 0.3412953 4.848437 3.811003 0.8882521 1.0731705

4 1.568055 2.052841 0.3412951 4.848437 3.811003 0.8801589 0.7342403

5 1.567873 2.045081 0.3412488 4.848436 3.811003 0.8625504 0.5118575

Sample 22 Sample 23 Sample 24 Sample 25

1 0.1617292 0.0934758 1.370987 0.9286565

2 0.0780836 0.0512582 1.370970 0.9285343

3 0.0355069 0.0313076 1.370970 0.9266783

4 0.0175219 0.0109998 1.370970 0.9248821

5 0.0082942 0.0040486 1.370969 0.9233363
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List five highest LRTS values for the 25 samples of sample size 1600 from 19 fixed start-

ing p0 (0.05, 0.10, . . . , 0.95). The stopping criterion and the maximum number of iterations

are set as 10e−4 and 1000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 0.5564750 1.289480 1.068653 1.922323 2.822416 0.077091 3.239656

2 0.5551346 1.289283 1.066952 1.915778 2.812049 0.074372 3.228673

3 0.5298504 1.284576 1.066665 1.915732 2.782185 0.071994 3.228660

4 0.5258008 1.284521 1.064940 1.915544 2.782139 0.063209 3.228651

5 0.4871876 1.284451 1.064895 1.915499 2.782112 0.062198 3.228646

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 1.006335 1.289733 1.922323 0.5564750 2.196285 1.2127920 0.2440496

2 0.999849 1.272201 1.915778 0.5551346 2.191783 0.0239441 0.1782463

3 0.982570 0.875795 1.915732 0.5298504 2.191736 0.0144483 0.1291768

4 0.982556 0.744960 1.915544 0.5258008 2.191707 0.0031206 0.0919265

5 0.982516 0.704730 1.915499 0.4871876 2.191689 -0.0106960 0.0602772

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 1.560292 2.061380 0.3333734 4.847100 3.809186 0.8996562 1.2760285

2 1.549542 2.045702 0.3297904 4.839785 3.806914 0.8886076 1.2760011

3 1.539345 2.000308 0.3247375 4.839763 3.806637 0.8761912 1.0731705

4 1.539343 2.000306 0.3176581 4.839755 3.806630 0.8437032 0.7342403

5 1.539291 2.000302 0.3163081 4.839733 3.806625 0.7925276 0.5118575

Sample 22 Sample 23 Sample 24 Sample 25

1 0.1234545 0.0628374 1.367787 0.9217783

2 0.0561300 0.0270301 1.365906 0.9165858

3 0.0225779 0.0195531 1.363151 0.8837018

4 0.0031636 -0.0028043 1.362997 0.8821973

5 -0.0105910 -0.0084720 1.362942 0.8821918
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A.3 Lists for Highest LRTS Results from Mixture Slope

Model Pilot Study

List five highest LRTS values for the 25 samples of sample size 100 from 250 runs

of EM with random starting points. The stopping criterion and the maximum number of

iterations are set as 10e−10 and 5000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 2.77118 0.16154 0 0.135 4.11833 2.93271 0

2 2.77118 0.16154 0 0.135 4.11833 2.93271 0

3 2.77118 0.16154 0 0.135 4.11833 2.93271 0

4 2.77118 0.16154 0 0.135 4.11833 2.93271 0

5 2.77118 0.16154 0 0.135 4.11833 2.93271 0

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 0 0.07544 0.135 2.77118 0 0.15893 0.09069

2 0 0.07544 0.135 2.77118 0 0.15893 0.09069

3 0 0.07544 0.135 2.77118 0 0.15893 0.09069

4 0 0.07544 0.135 2.77118 0 0.15893 0.09069

5 0 0.07544 0.135 2.77118 0 0.15893 0.09069

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 0.90692 4.07236 0.05258 2.46485 0 0.98577 0.11876

2 0.90692 4.07236 0.05258 2.46485 0 0.98577 0.11875

3 0.90692 4.07236 0.05258 2.46485 0 0.00000 0.11875

4 0.90692 4.07236 0.05258 2.46485 0 0.00000 0.11875

5 0.90692 4.07236 0.05258 2.46485 0 0.00000 0.11875

Sample 22 Sample 23 Sample 24 Sample 25

1 1.33397 1.19183 4.58051 0.00485

2 1.33397 1.19183 4.58051 0.00485

3 1.33397 1.19183 4.58051 0.00485

4 1.33397 0.00003 4.58051 0.00485

5 1.33397 0.00000 4.58051 0.00485
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List five highest LRTS values for the 25 samples of sample size 100 from 19 runs of EM

with fixed starting points p0 (0.05, 0.10, . . . , 0.95). The stopping criterion and the maximum

number of iterations are set as 10e−10 and 5000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 2.77118 0.16154 0 0.135 4.11833 2.93271 0

2 2.77118 0.16154 0 0.135 4.11833 2.93271 0

3 2.77118 0.16154 0 0.135 4.11833 2.93271 0

4 2.77118 0.16154 0 0.135 4.11833 2.93271 0

5 2.77118 0.16154 0 0.135 4.11833 2.93271 0

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 0 0.07544 0.135 2.77118 0 0.15893 0.09069

2 0 0.07544 0.135 2.77118 0 0.15893 0.09069

3 0 0.07544 0.135 2.77118 0 0.15893 0.09069

4 0 0.07544 0.135 2.77118 0 0.15893 0.09069

5 0 0.07544 0.135 2.77118 0 0.15893 0.09069

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 0.90692 4.07236 0.05258 2.46485 0 0.98577 0.11875

2 0.90692 4.07236 0.00000 2.46485 0 0.00000 0.11875

3 0.90692 4.07236 0.00000 2.46485 0 0.00000 0.11875

4 0.90692 4.07236 0.00000 2.46485 0 0.00000 0.11875

5 0.90692 4.07236 0.00000 2.46485 0 0.00000 0.11875

Sample 22 Sample 23 Sample 24 Sample 25

1 1.33397 1.19183 4.58051 0.00485

2 1.33397 1.19183 4.58051 0.00485

3 1.33397 0.00000 4.58051 0.00485

4 1.33397 0.00000 4.58051 0.00485

5 1.33397 0.00000 4.58051 0.00485
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List five highest LRTS values for the 25 samples of sample size 100 from 19 runs of EM

with fixed starting points p0 (0.05, 0.10, . . . , 0.95). The stopping criterion and the maximum

number of iterations are set as 10e−4 and 1000 respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

1 2.77021 0.15889 -0.00035 0.13344 4.11804 2.93246 -0.00038

2 2.77014 0.15883 -0.00035 0.13288 4.11804 2.93221 -0.00040

3 2.77014 0.15882 -0.00036 0.13205 4.11804 2.93220 -0.00043

4 2.77010 0.15880 -0.00036 0.13021 4.11803 2.93218 -0.00043

5 2.77010 0.15875 -0.00036 0.12734 4.11803 2.93218 -0.00046

Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14

1 -0.00142 0.07329 0.13344 2.77021 -0.00183 0.15738 0.09014

2 -0.00177 0.07296 0.13288 2.77014 -0.00191 0.15491 0.07891

3 -0.00198 0.07167 0.13205 2.77014 -0.00202 0.15388 0.07883

4 -0.00206 0.07013 0.13021 2.77010 -0.00207 0.14823 0.07882

5 -0.00230 0.06928 0.12734 2.77010 -0.00211 0.14282 0.07872

Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21

1 0.90604 4.07179 0.04982 2.46457 -0.00051 0.98568 0.11747

2 0.90499 4.07176 -0.00056 2.46456 -0.00063 -0.00053 0.11696

3 0.90230 4.07176 -0.00057 2.46456 -0.00063 -0.00053 0.11546

4 0.90228 4.07175 -0.00064 2.46454 -0.00064 -0.00054 0.11363

5 0.90226 4.07175 -0.00065 2.46454 -0.00064 -0.00054 0.10835

Sample 22 Sample 23 Sample 24 Sample 25

1 1.33351 1.19176 4.57973 0.00312

2 1.33224 1.19175 4.57972 0.00183

3 1.33186 -0.00074 4.57971 -0.00100

4 1.33184 -0.00075 4.57970 -0.00142

5 1.33183 -0.00076 4.57970 -0.00174
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