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Abstract of the Dissertation 
 

Ensemble Methods for Classification with Applications to Genomics 

by 
 

Melissa Jane Fazzari 

Doctor of Philosophy 
 

in 
 

Applied Mathematics and Statistics 
Stony Brook University 

2007 

 

The wealth of data generated in genomics research gives the promise of individualized 

medicine, treatment, and risk assessment.  Proper classification of individuals or samples 

into different disease states or risk groups has become an increasingly important step in 

this process.  There are a multitude of classifiers available, from standard statistical 

models to more current machine learning classification.  This dissertation examines 

commonly used classifiers in the genomics setting, decomposing error into bias and 

variance components, and evaluates the effects of high dimension.  By understanding 

how errors are made, we may begin to understand and improve upon the model building 

process.  With this goal in mind, classifier ensembles are explored.   Ensembles are 

created using a diverse set of stand-alone classifiers and several aggregation methods are 

evaluated.  In addition, two novel ensemble methods are explored.   The first creates 

partitions in the feature space and builds classifiers within each subspace.  The second 

allows the ensemble combining weights to vary, depending on the location of each test 

point for which prediction is sought.  Using estimates of bias and variance, the most 

stable classifiers receive the most weight.  Finally, variable importance is briefly 

examined, comparing simple univariate ranks with multivariable summaries.  Several 

real-world, high dimensional data sets are explored and serve as representative examples 

from the genomics domain. 
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Chapter 1 

 

Introduction 
 
________________________________________________________________________ 

“The message to biologists is clear:  If you want to work with microarrays, you 

need to find yourself one of these precious experts….”  

 

     The above is a quote from a featured article in Nature [63], one of the most influential 

and high-impact scientific publications in the world. The “precious experts” being 

described in this review of microarray technology are, perhaps surprisingly, statisticians.   

     Why are statisticians increasingly such important players in this arena?    In short, the 

promise of genomics with respect to personalized medicine, drug discovery, and 

individual health management is possible only if the wealth of data coming from these 

technologies is properly collected, processed, and analyzed.  And, at the end of the line, 

the translation from lab to clinic is one of the highest priorities, for both scientific and 

financial reasons [56, 47].   Although it may be of scientific interest to examine the 

heterogeneity of genomic markers in a population, the impact of this observation must 

also be quantified and understood with respect to clinically relevant outcomes.  It is only 

this step that will allow an interesting observation to become something that will change 

the course of medicine – from diagnosis to treatment to management of disease.   

Successful translation relies heavily on computational, bioinformatic, and statistical 
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collaboration, and is often focused on what is the topic of this dissertation – building 

successful and generalizable classifiers. 

     Genomics represents a broad domain; however whether the platform is copy number, 

methylation, gene expression or DNA sequence features, statistical and computational 

analyses within this area usually follow the same general process and have the same 

deficiencies.   First, given the current cost of technology in many applications, the sample 

size is typically low.  This is expected to change for the better in the near future since 

more genomics-based exploratory studies are being included as primary or secondary 

goals in grants and clinical trials.  Small sample size presents a challenge even for the 

most simple of analytic goals, because statistical separation of signal from noise is harder 

to detect when there are few independent observations.  In addition, the use of complex 

models tends to be almost superfluous given the inability to detect interacting and 

complex relationships.  Second, important features are seldom known a priori; they are 

simultaneously mined and analyzed with thousands of other potential features.  Most of 

the collected data is likely noise, at least for the purpose for which it was mined. It is 

usually left to the statistician to filter out the low signals or noise and then decide how to 

prioritize remaining features and build the model.   Third, the dimension of the problem 

tends to be huge.  Not too many years ago, the term “large p” meant a variable list in the 

tens or hundreds.  Today, “large p” means tens or hundreds of thousands of potentially 

informative and overlapping predictor variables.  Overlapping features are common - 

gene expression levels tend to be organized within larger clusters, representing gene 

pathways.  Sequence features such as repetitive sequences also co-localize within blocks 

of DNA.  Given these obscure relationships, lack of a priori information, and small 

sample sizes, the model building process becomes very complex. 

     In this thesis, the successful building of classifiers with genomic data is examined.  An 

in-depth study of individual classifier performance is done, and the bias-variance 

decomposition of each classifier is explored.  Although the relative performances of 

many types of standard and novel classifiers have been evaluated numerous times [6], 

there has been little to date that compares classifiers in terms of the bias and variance 

breakdown.  In addition, changes in bias and variance across increasing dimensions are 
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explored.  Two classifiers with equal accuracy may have very different breakdowns with 

respect to error.   

     Ensemble methodology for combining individual classifiers is then examined, and two 

novel combination methods are presented.   The first combination method is made up of 

classifiers that are based on mutually exclusive partitions of the original input feature set.  

The second uses diverse base classifiers, each built on the same feature set.  Finally, a 

brief exploration of variable importance is presented.  For the primary data set, a study of 

imprinted genes, an in-depth analysis of feature importance is presented.  A univariate 

screening method is compared to multivariable methods in order to highlight the 

strengths and drawbacks of both approaches.  In addition, the confidence of each 

prediction is established, and hard-to-fit observations are identified.   

 

1.1 Dissertation Overview 

 
1.1.1 Individual classifiers 

 
     There are several types of classifiers considered in this dissertation.  For each, an in-

depth examination is provided.  This thesis illustrates, supportive of the no free lunch 

theorem [72], that there is no universally best classifier for the genomics domain, or any 

domain.   Going further, there is likely no “best” classifier even within one dataset.  This 

is supported by comparisons of accuracy over several data sets as well as observing the 

behavior of a set of classifiers within a particular data set.  To gain further insight into 

classifier performance, classification error is broken down into bias and variance 

components.  Given the complexities of many classifiers, examination of bias and 

variance is informative in understanding the effect of tuning parameters, dimension, and 

complexity.  It has been observed, and shown by others [17, 19, 22, 37] that bias and 

variance for classification error do not operate as observed in the squared error setting, 

where there is an additive effect due to both components.  In classification, there is an 

interaction between bias and variance such that the typical bias-variance tradeoff fails to 

hold.   In addition, typical “high bias” estimators, can be powerful classifiers.  Since the 
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actual prediction is not important in classification all that is required is that the prediction 

be on the correct side of the decision boundary.  High variance estimators can be low 

variance classifiers because high variance in the estimation setting does not necessarily 

mean that the classification coming from noisy predictions is also noisy.   

     In addition, we examine the potential for each classifier to over-fit the training data 

and find that certain classifiers are much more dependent on the training set than others, 

thus subject to larger amounts of over-fitting. 

 

1.1.2 Ensembles 

 
     In the book The Wisdom of Crowds [60], it is observed that the general consensus (of 

lay persons and experts alike) is often much more accurate than the testimony of one 

“expert”.  Similarly, in a trivia-based television show, the vote of the audience tends to 

have a much higher success rate in correctly answering the question posed than that of 

the friend that is called to be the “expert” helper.  Why is this?   

     Predictions that are made from a consensus of different experiences, biases, and 

attitudes tend to be, on average, highly accurate.  We can theoretically examine this to 

show that the majority vote of a set of diverse opinions has a higher accuracy than each 

individual opinion. 

     Using this theoretical justification, ensemble methodology is growing in popularity 

across many domains.  In genomics, one of the most common ensemble methods used to 

date is Breiman’s Random Forest [10].  A reason for the popularity of Random Forest is 

that it is easy to use, well understood, and in a convenient procedure in a popular 

statistical software package [44].  It also happens to be a highly consistent and accurate 

classifier across many applications.  But ensemble methodology is just in the early stages 

of development, and other methods of classifier combination must be explored.   

Ensembles work because of both variance and bias reduction capabilities, depending on 

the construction.  Regardless of which method is used, the success of the ensemble 

approach depends on the diversity of the individual members.   

     We may achieve diversity in multiple ways, and in this work we build ensembles 

using a set of distinct classifiers, relying on the differences in flexibility, loss function, 
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and regularization imposed by each.  We then examine the simple and weighted averages 

of these diverse predictions, and compare the performance to the individual results. 

     A natural extension to the weighted average is the assignment of weights that are 

based on the individual test point.  Global performance of a classifier in terms of 

accuracy and similar measures fails to take into account regions in the input space that 

are not well-served by this classifier.  In this dissertation, a novel combining strategy is 

proposed, which takes local performance into account.  Instead of applying the same set 

of classifiers to each test point, this method allows the weights to change, depending on 

locality.  Some classifier weights may be set to zero, accounting for highly biased regions 

in the input space.  It is hypothesized that certain classifiers may perform differently in 

various regions of the input space; therefore any method that takes this locality into 

account will offer an advantage over global forms of classification.  We show this gain 

through simulation, with the assumption that the highly biased region is known.  In 

reality, understanding of the input space is difficult, and the estimated weights may be 

unstable, and estimating them may over-fit the training data.   Location of the test point is 

assessed by Euclidean distance, which may also be unreliable in high dimensions.  In 

addition, a new global classifier is briefly described and examined [1, 45].  This classifier 

partitions the feature space randomly and fits models in each sub-region defined by the 

partition.  A simple majority or average vote across all of the base decisions is performed 

to generate a final prediction.   

     Taking an average of the prediction scores generated from an ensemble of good stand-

alone classifiers often results in stable performance, as well as providing better measures 

of confidence for each observation.   If classifier selection bias is taken into account, 

simple averaging is likely more accurate and has lower variability than selection of the 

“best” classifier.   As we will illustrate, there is no best classifier; therefore selection of 

one classifier on the basis of a training set may not yield the best performances when 

applied to another data set.  
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1.1.3 Variable importance and screening 

 
     Variable importance can mean many things, depending upon the application and 

goals.  In genomics data, variable importance measures can simple signify which genes 

are representative of a subgroup of genes that are most informative.  They represent one 

representation of a multitude of many good feature sets that can be used in a classifier.   

     Univariate ranking methods summarize one kind of importance.  It addresses those 

variables that are informative when examined singularly in the model.   For the most part, 

this importance measure appears to reflect importance on a broader scale.  However, 

there is likely a set of features that are not important by themselves, but informative only 

in the presence of other features.  Univariate assessments of variable importance will 

likely discard or down-weight these predictors.   

     Methods to examine variable importance in different ways are emerging.  Backwards 

elimination using a support vector machine is able to capture which features have the 

highest weights and are thus retained in multiple iterations of backward selection.  

Random Forests, due to the use of bagging and flexible trees, is able to capture the 

importance of features in a multivariable fashion by assessing the impact of deletion or 

permutation of features on the overall accuracy [9, 10, 16].  In addition, joint effects are 

able to be detected given the flexible nature of the classifier.  The variable importance 

statistics output by this procedure are extremely informative, and often yield new insights 

into the analysis.   

     In this work, we examine the variable importance measures for our primary data set:  

the prediction of imprinted genes.  A detailed analysis gives an overview of the 

relationships between different sequence features, as well as which features are important 

in predicting imprinting class status. The stability of each observation in this data set with 

respect to predictions across classifiers is used to examine prediction confidence.  It is 

expected that the larger the stability at X=x, the further away the observation is from the 

theoretical decision boundary.   The grouping of observations into “hard” and “easy” 

cases provides more information about genes on an individual level. 
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1.2 Organization of this dissertation 
 

     This dissertation presents a detailed evaluation of many commonly applied classifiers 

as well as an overview of ensemble methodology, bias-variance decomposition, and 

variable screening and importance.  The main contributions of this dissertation and 

results are found in Chapters 6-9 and represent methodological development in 

ensembles, further understanding of high dimension in classification, and a novel 

application of ensembles in the prediction of imprinted genes.  The work is organized as 

follows: 

• Chapter 2 gives an introduction to classification in the genomics setting and 

presents the several real-world applications in this domain.  The primary analysis 

is a study of imprinted genes.   

• Chapter 3 provides an extensive overview of different classifiers that are 

commonly used, as well as their similarities and differences. 

• Chapter 4 presents the background of error decomposition in the classification 

setting, describing the bias-variance breakdown that will be used extensively 

throughout this dissertation.  

• Chapter 5 presents an overview of ensemble methodology. 

• Chapter 6 presents a novel approach to combine classifiers using combining 

weights that are derived based on local performance. 

• Chapter 7 presents the performance of individual classifiers with respect to 

varying dimension.  This is a novel examination of the bias-variance 

decomposition for classifiers in the genomics domain.   

• Chapter 8 presents the performance of several ensemble methods, including the 

proposed combination strategy using location detailed in Chapter 6. 

• Chapter 9 presents a brief overview of variable importance for gene imprinting.  

This represents the first comprehensive analysis of univariate and multivariable 

variable importance measures in the prediction of human imprinted genes. 

• Chapter 10 presents conclusions and future work in this area. 
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Chapter 2 

 

Classification in Genomics and Data Sets 

Used 
 

     One of the most important analyses conducted in the area of genomics is the 

classification of samples or genes on the basis of processed array signals or sequence data 

mined from publicly available genome browsers.   Gene expression “signatures” or 

“profiles” are typically statistical or machine learning-derived classifiers containing a few 

up to thousands of gene expression intensities as predictors, along with binary outcomes 

such as disease recurrence or tumor grade.  The goal of these expression models is to 

adequately represent and predict the variation in outcome using genetic signatures.  Gene 

expression is an indication of what proteins the cell is trying to express, although this 

relationship is an imperfect one.  Gene expression is only one type of measurement that 

can be measured using arrays.  Commonly used arrays include the following:  

comparative genomic hybridization (CGH), protein expression, single nucleotide 

polymorphisms (SNPs), and methylation. In CGH, researchers look directly at the 

genomic DNA, rather than the expression profile of RNA, allowing direct measurement 

of the copy number of a given gene.   The pre-processing of these types of arrays is 

complex, and not a subject of this dissertation.  Rather, we will focus on the processed 

data, and the building of classifiers to predict clinically relevant outcomes.  This is the 

likely end-product of genomics-based research – the translation to clinical medicine.   
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     As with any clinical model, we wish to not only predict, but also to understand.   By 

understanding which genes are involved with outcome, we may focus therapies and limit 

expensive testing to a handful of important genes.  However, until we are able to predict 

well, our understanding is, at best, incomplete.  Therefore, accurate prediction remains 

the primary goal, with variable importance as a secondary, but vital, part of the process.  

There is a multiplicity of good classifiers, and their relationships to one another are 

difficult to quantify.  Given this, important features should be evaluated and isolated 

based on multiple versions of events in order to be fully robust to deficiencies in the 

training set, or selected model, or selected classifier. 

     Building genomic-based classifiers was originally performed by the biologists 

themselves.  Early publications in this field centered on the “two-fold” effect of genes, 

and less attention was paid to the variance of each gene’s measurement or building 

multivariable models.  Gene “profiles” or “genetic signatures” became popular as 

statistical and machine-learning techniques were used with increased frequency and as 

sample sizes became larger.  Common classifiers used have ranged from simple DLDA-

type models [27], to more complex Random Forest techniques [13, 33, 36,61], Support 

Vectors Machines [12, 15, 30, 35], and combined models [51,11] 

 

2.1 Imprinting in humans 

 
     The process of sexual reproduction dictates that mammals inherit two copies of every 

gene, one from the mother and one from the father. At most loci, both alleles are actively 

transcribed and functionally equivalent. Imprinted genes represent an exception to this 

rule, as the transcriptional activity of each allele is determined by the gender of the 

parental germ line to which it was most recently exposed [73].  Genomic imprinting is an 

epigenetic marking on a gene based on the parent-of-origin resulting in one allele being 

“turned off” [21].  This parental legacy is initiated by epigenetic modifications such as 

DNA methylation, which is established in the parental germ line and maintained 

throughout somatic development in the offspring. Individual germ-line marks can control 

the allele-specific silencing or activation of multiple neighboring genes, which leads in 



many instances to clusters of imprinted transcripts.  The reasons behind this phenomenon 

are not fully understood, however it is believed that the “imprinting tag” is due to the 

methylation of parent-specific domains that are established during gametogenesis.   
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entire genome.  Instead, researchers are looking for ways to prioritize genes with respect 

to testing.   

     It has been observed previously that DNA sequence characteristics can be used to 

predict regions along the genome where imprinted genes reside [28, 46].  Using these 

genomics-based tools to predict imprinted genes, researchers will be able to prioritize 

genes for further testing and validation.   

 

 

 
 
Figure 2:  Human Imprinting Map.  The 11 chromosomes presented are those where 
imprinted genes have been found to date.  It is expected that there are many more 
undiscovered imprinted genes in the genome. 
 

 

 

     In this dissertation, a set of human imprinted genes are compared with a set of non-

imprinted genes on the basis of many DNA sequence features flanking each gene’s 

transcription start site.  Previous research on human imprinting examined sequence 

features singularly [28], and was more descriptive in nature.  Other groups have 

examined the prediction of murine imprinted genes using support vector machines [21].  
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To date, there is no systematic and large-scale study of human imprinted genes using 

sequence features alone that generates predictions for the rest of the genome.  Although 

similarities are expected to exist with respect to mouse models, it is the goal of this 

project to build a classifier based on DNA sequence features designed specifically for the 

human genome.  The window of each flanking region is varied from 10kb to 500kb and 

the sequence information is collected.   The goal of the analysis is to build a highly 

accurate classifier based on easily attained DNA sequence characteristics, since this 

classifier will be used in regions of interest to pinpoint genes that are good candidates for 

further testing.   The sequence information collected included data on repetitive 

sequences, CpG islands, and exon number.  Repetitive sequences are those patterns in 

DNA that repeat – such as LINES (long interspersed repetitive sequences) and SINEs 

(short interspersed).  These sequences are known specifically as retrotransposons, since 

they can reproduce themselves and insert themselves into DNA.  ALUs (about 300 base 

pairs in length) are part of the SINE class of retroelements, and are the largest family 

within the SINE class of elements.  ALU’s main purpose, it is believed, is to replicate and 

copy themselves into new areas of the genome.  This insertion is responsible for a 10% 

growth in the human genome since divergence from the chimpanzee.  Since ALUs do not 

actually contain the proper machinery by which to insert themselves, they use the 

enzymes produced by LINE elements.  This makes ALU and L1s (in the LINE class) 

highly related, since it is dependent upon the continued activity of LINE elements for 

survival [29].  Of great interest is the fact that ALUs are rich in CpG dinucleotides, which 

is the principal substrate for DNA methylation.  When ALU inserts itself, it is inserting 

CpGs.  L2 and MIRs have a similar piggy-backing relationship, where if L2 elements 

become inactive, MIR elements become inactive.  CpG islands are more formally defined 

to be regions in the genome with a higher than expected concentration of CG 

dinucleotides.  It is expected that the methylation occurs in these regions, therefore 

characterization of the gene with respect to the number of CpG islands is informative.   

 

 

 



 
Figure 3:  Flanking region of each gene 

 

 

2.2 Publicly available genomic data sets used 

 
     The data sets detailed in this section are all publicly available data sets that have been 

previously used as benchmarking and illustrative problems in the field of genomics.  A 

brief description is provided, along with a summary of sample size and feature set size.  

Further details may be found in Appendix A and in each of the referenced journal articles 

that are the source for this data.  These data sets represent common classification 

applications in genomics, and are varied with respect to noise, sample size, class balance, 

and features. 

 

Colon cancer (Alon, 1999)  

 
     The data set used is composed of 40 colon tumor samples and 22 normal colon tissue 

samples, analyzed with an Affymetrix oligonucleotide array [5].  A set of 2,000 high 

intensity gene measurements is publicly available (see Appendix A).  This data set is a 

commonly used benchmarking data set, representative of many high dimensional 
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genomics-based data sets.  The goal of the analysis is to accurately classify samples as 

cancerous or normal using gene expression levels.     

 

Estrogen receptor (Blair, 2000) 

 
     A number of environmental chemicals known as endocrine-disrupting chemicals 

(EDC’s) are suspected of disrupting function by mimicking or antagonizing natural 

hormones in animals and humans.  The FDA’s National Center for Toxicological 

Research (NCTR) estrogen activity database contains 232 samples (structurally diverse 

chemicals) and 312 predictors [7].  Out of the 232 chemicals, 131 exhibit estrogen 

receptor binding activity, while the remaining 101 are inactive, meaning that no activity 

was detectable in the assay.  The data set is publicly available (see Appendix A) and 

consists of 232 independent observations (representing structurally diverse chemicals), 

activity status, and 312 potential predictors of activity. 

  

Prostate cancer (Singh, 2002) 
 

     Prostate tumors are heterogeneous tumors, resulting in high variability in outcome 

measures, even after adjustment for important clinical characteristics.  While age, serum 

PSA, Gleason score and performance index are all independent clinical correlates of 

outcomes, whether or not a set of gene expressions could predict outcome is of interest.  

If gene expression can predict outcomes such as disease progression and PSA recurrence 

at the time of diagnosis or treatment, the course of therapy could be tailored to patients 

with higher or lower risk, as well as provide information with respect to prognosis.   

     The prostate data set [57] in this dissertation consists of 52 prostate cancer samples, 

and 50 normal samples.  Gene expression measurements of over 6,000 genes are 

available along with class status (see Appendix A).  The goal of this study is to build 

models that can accurately predict class status.  While this is not the final goal – the 

ultimate goal is to identify genes that are differentially expressed between cancerous and 

normal tissue – this data set provides a good benchmarking set to build classifiers.   
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Lymphoma data set (Alizadeh, 2000) 

 
     Diffuse large B-cell lymphomas (DLBCL’s) are the most common subtype of non-

Hodgkin’s lymphoma.  They represent a clinically heterogeneous group, with respect to 

both treatment response and clinical outcomes.  It was of interest to examine whether 

these differences could be further explained by the molecular characterization of the 

tumor.   Alizadeh [4] identified two variants of DLBCL samples with different patterns of 

clinical behavior in a total of 46 samples.  Using the 4,026 gene expression measurements 

available, the goal is to build a classifier that classifies DLBCL subtype using gene 

expression measurements. 
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Chapter 3 

 

Commonly Used Classifiers in Genomics 
 
     Some of the standard classification techniques will be discussed in this chapter.  There 

is a mix of statistical methods that have been used for decades, as well as machine-

learning techniques that are relatively new.  The main advantage to the newer techniques 

is that they offer some form of regularization internally, which gives them good 

generalization performance.  Whether these new methods yield a consistent and 

substantial improvement over much simpler standard techniques is a current subject of 

debate [20, 72, 31], and depends on the goals of analysis. 

 

3.1   The support vector machine (SVM) 

 
     A Support Vector Machine [70] is known as a maximum margin classifier.  The SVM 

maps the input vectors into a feature space, often of higher dimension, depending on the 

kernel used.  In this feature space, a maximal separating hyperplane is constructed.  This 

hyperplane is called maximal separating, because it maximizes the distance from it to the 

closest positive and negative correctly classified points in the feature space.  By 

maximizing this margin, we are ensuring good generalization performance relative to 

other hyperplanes that separate the data.  The closest points in terms of class separation 

are the so-called support vectors, and these are the primary data points on which the SVM 



is based.  Points that exist far from the boundary have no impact on the resulting 

classifier.   

     If we look at an SVM with the feature space as the original input space (i.e. using the 

simple dot product as our kernel), we can easily apply this understanding to higher 

dimensional feature spaces.  Suppose we have a data set with two predictors, X and Z and 

the data are linearly separable.  The small data set in Table 1 is a good illustration. 

 

 

Table 1:  An illustrative data set for input into SVM 

 

 

 

 

 

 

    

Y 

 

X1 

 

X2 

+1      1         0 

+1       2         -1 

-1 0 1 

-1        -1 2 
 

 

The data are obviously separable in the input space; therefore we may illustrate SVM 

using the simple dot product for the kernel.  We would like to use these predictors in a 

model to classify new cases vs. controls (Y=+1 or -1 respectively).    

The hyperplane is such that 0w x b⋅ − = .  w represents the norm to the hyperplane, and b 

is the offset that forces the hyperplane to pass through the origin.  The closest points to 

the hyperplane defined by w are those where w x b k⋅ − = .  Without loss of generality, we 

let k=1.  Then, the two parallel hyperplanes to the optimal hyperplane are defined as: 

1)     for all y = +1 1w x b⋅ − ≥ +

2)     for all y = -1 1w x b⋅ − ≤ −

All other points are then defined relative to the points on the margin.   

     If the training data are linearly separable, we are able to have no data points within the 

two margins, and the distance between the two hyperplanes, which is equal to 2/||w||, is 

thus maximized in the SVM algorithm.    
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The resulting optimization may be expressed as [69]: 

       

   
21m i n

2w
w         subject to: ( )i iy w x 1⋅ ≥  

This means that we are maximizing the margin, under the constraint that all of the cases 

(y = +1) are on one side of the hyperplane, and all of the controls (y = -1) are on the 

other.  By maximizing the margin, we are ensuring good generalizability since we have 

greater margin for error on new testing observations, compared to non margin-

maximizing hyperplanes. 

     In our small example, the best separator is the line going through the origin and 

passing through the point [1,1].  The two support vectors are the points closest to the 

hyperplane, and are the only ones that are utilized in the SVM to determine the decision 

boundary.  If we removed the two extreme points, the classification would not change.  

This adds robustness to the support vector machine, as extreme points do not contribute 

to the decision function as they would in (for example) discriminant analysis, which 

utilizes this information in the estimation of covariance.    Figure 1 illustrates the data 

points from this simple artificial example, as well as the separating line found using 

linear SVM.   

     Test points that fall directly onto the hyperplane are equal to zero by design, meaning 

no informative decision on class.  To the right of this hyperplane are the predicted cases, 

the further away from the decision plane the more confident the prediction.   
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    Figure 4:  Classification in input space using SVM.  The gray area depicts  
    the region where the negative (-1) class is the predicted class. The  
    yellow area is predicted to be the positive (+1) class.   
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Soft Margin SVM 

 
     Soft-margin SVM allows for errors in the classification of some training set 

observations by the addition of slack variables (ξ ).  The slack variable for observation i 

from the training set measures the distance of this observation from the correct class 

margin.   

 

 

Figure 5:  Example of a slack variable for soft-margin SVM

  

ξ

   

 

     Therefore, if observation i is correctly classified, but on the margin, ξ i = 0.  If the 

observation falls past the margin, but still on the correct side of the decision (boundary 

observation), then ξ i  is a value between 0 and 1.0.  If the observation falls on the wrong 

side of the decision hyperplane then ξ i  is a value greater than 1.0.  Figure 5 illustrates 

such a situation.  The observation is misclassified and the value of the slack variable is 

therefore greater than 1.0.  Therefore, the total sum of these slack variables becomes part 
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of the minimization, and its impact is controlled by the cost parameter C.  The objective 

function becomes: 

   
2

, , 1

1min
2

n

iw b i
w c

ξ
ξ

=

+ ∑  

Subject to: 
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   ( ) 1i i iy w x b ξ⋅ − ≥ − 0i  i∀  ,  ξ ≥

The C parameter controls the total amount of error in the training set, and represents a 

trade-off between margin size and misclassification of the training samples.  If C is very 

small, then there is a low cost to misclassification of training samples.  We sacrifice some 

training samples in order to achieve a more robust decision.  This generally results in a 

wider margin, but more bias.  If C is large, then there is a higher cost of misclassifying 

training samples, resulting in a classifier that is more tailored to the training set, with a 

smaller margin, and likely higher variance (over-fit).  If C is infinite (meaning that the 

penalty for misclassified training samples is infinitely large), then we have a hard-

margined SVM, if it exists. 

 

Non-linear SVM 

 
     When the data are not linearly separable in the original space, it is possible to build the 

linear classifier in an expanded space, called the feature space, and work with the same 

optimization problem in this new space.  As the number of features is usually large and 

exhibit complex relationships both to each other and to outcome, it may be that the data 

are linearly separable in an expanded space, such as one that considers interactions and 

non-linear functions of the predictors.  Mapping the original data points into a higher 

dimension is done through kernels.  Kernels are functions that give us the inner product 

between two data points in feature space.  Therefore, if we know the kernel, we may 

determine the inner product, or similarity between any two points in any space.  Selection 

of the kernel is non-intuitive for many genomics problems; however standard kernels 

used are linear, polynomial and Radial Basis [62].  The choice of kernel dictates the 

overall flexibility, or capacity of the resulting classifier.   



 

 

Table 2:  Commonly used kernels for Support Vector Machines 

Kernel K(xi,xj) Form Parameters needed 

Linear ( )i jx x⋅  
Cost parameter only 

 

Radial Basis 

(RBF) 

2

2exp
2

i jx x
σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

 

Cost, sigma 

 

Polynomial 

 

( )1
d

i jx x⋅ +  

 

Cost, polynomial degree 

 

 

     We may use the same optimization as before, but w can now be written as a linear 

function of the n training points (since the training points exist in a subspace of the 

expanded feature set). 

 

1
( )

n

i i
i

w c x
=

= Φ∑  where ( )ixΦ  is the mapping from input to feature space  Most 

observations will have ci=0 because the weight is only positive if the point is closest to 

the maximum margin hyper-plane - a support vector. 

  

If we re-write the objective function in its general form: 

 

 2

1

1min (1 ( ))
n

i kf i
y f x f

C+
=

− +∑  

 

The first term minimizes the hinge loss across all training samples, ensuring a small 

training error, while the second term is a regularization term that controls the tradeoff 

between smoothness and error.  C is defined as before – if C is large, then we likely have 
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a small margin and higher dependence on the training set boundary observations.  If C is 

small, we discard the maximum margin separator in favor of a more regularized solution. 

 

Parameter Tuning 

 
     In addition to kernel choice, the parameters must be carefully tuned in order to obtain 

a meaningful classifier.  If, for example, we use the RBF kernel with a very small sigma, 

we essentially create the “Christmas tree” effect – with small balls around the support 

vectors- and highly biased decisions elsewhere (see Figure 6), whose value depends on 

the balance of cases to controls.  This type of model is useless, as the generalization to 

new data sets will be low.  The result of such a model will be high bias in most regions of 

the input space.  An example of this is a set of points called “Admiral’s delight”.  The 

base of the arrow are cases (Y=+1), while the two lines making up the arrow are controls 

(Y=-1).  Figure 6 illustrates the effect of having a very small sigma parameter.  The 

hyper-balls have width that is controlled by sigma; therefore setting the width too small 

will yield small balls around all of the instances.  This will result in 100% training 

accuracy, but dismal generalization. 

 

 

 



 
Figure 6:  The “Christmas Tree” Effect in Radial Basis SVM.  The width of 

the Gaussian kernel is too small, thus creating small hyper-balls around training samples 

that are predicted to be the positive class. 

 

 

 

     The final SVM discriminant function is a weighted sum of the similarities between the 

test point, and the support vectors.  The Vapnik-Chervonenkis (VC) dimension [63] 

(related to the number of parameters, but not always) of the problem can be infinite using 

the RBF kernel, since perfect classification (shattering the points) can always be achieved 

on the training set regardless of the number of data points.  K  Nearest neighbor (KNN) 

classification with K=1 also has infinite VC dimension, however KNN is an instance-

based rather than margin-based learner, therefore it tends to exhibit high variance (over-
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fitting).  On the other hand, SVM’s do not overfit, even with this high flexibility, because 

it depends on only the support vectors and maximizes the margin of these vectors.  We 

use SVM at the default parameters (gamma=1/p and C=1), since these are reasonable 

parameter levels [62] given the dimension, however further evaluation (though not an 

exhaustive search) of parameters within a range between 0.001 and 10 for gamma (which 

is defined to be 1/σ2) and C=0.10 to 10 for cost yielded negligible or deleterious effects 

on classification performance.   

 

3.2 Diagonal linear discriminant analysis (DLDA) 

 
     Diagonal linear discriminant analysis is a simple classifier that uses the weighted 

contributions from a set of predictors to classify observations.  The form of the classifier 

is: 

{ }2

2

( )

1
arg min g kg

g

G
x

k
g

µ

σ

−

=
∑  

where k is the class (0,1) and G represents the set of G predictors.  Basically, for each 

new testing observation, we examine the normalized Euclidean distance (assuming a 

common diagonal covariance matrix) between the new observation and each class mean 

vector.  The class that gives the smallest distance is the resulting classification for the test 

observation.  DLDA can be regarded as a weighted vote of univariate classifiers, which 

can be highly successful if enough diverse features are combined, resulting in a classifier 

with both low bias and low variance.  However, DLDA may also have a lot of bias due to 

the simplicity of its decision function, and this bias may increase as more features are 

added. 

     As is clear from this, the individual contributions are not modified by the 

multivariable relationships between different predictors.  Therefore, two highly correlated 

predictors are treated as independent.  In addition, we estimate a common covariance 

matrix for each class, which may smooth between-class differences.  Although these 

assumptions are quite unrealistic in the genomics setting since 1) gene expression and 

other measures tend to follow a pattern of co-regulation and 2) it is likely that the 
 25



 26

expression variability is greater in diseased samples than in controls or vice-versa, DLDA 

has been shown to be a useful and consistently good classifier [20].   

 

3.3 Classification and regression trees (CART) 

 
     Classification and Regression Trees are a commonly used method, though often now 

seen as base members in ensembles [10].  It is a flexible, non-parametric procedure that 

creates a decision tree based on a greedy splitting process.  The root node, containing all 

of the observations, is split based on the Gini index (see section 3.6), which measures the 

purity in each daughter call.  This split is achieved through an exhaustive search of the 

best variable and split.  Once the two daughter nodes are formed, the process starts over.  

Multiple splits on the same variable as permitted, allowing for a flexible representation of 

the data.  It is clear from the process that CART is a high variance classifier, and multiple 

runs across different training sets often yields highly variable decisions.  Often, the bias 

can be made very low since on average these flexible trees are able to represent the 

decision boundary well.   CART trees are the base members used in the Random Forest 

ensemble [10]. 

 

3.4 Random Forest (RF) 

 
     Random Forest is a method developed recently by Breiman [8, 10].   It is an 

ensemble-based approach, using fully grown CART trees as base members of an 

ensemble.  As mentioned in the previous section, CART trees are highly flexible 

representations; they are completely non-parametric and offer an attractive solution to the 

high dimensional data issue.  Since the tree is built one split at a time, the search for the 

“best” tree is as simple as searching for the best splitting predictor and cut-point at each 

node.  At the final leaves of the tree, the class decision is based on the proportion of cases 

vs. controls in each particular node.  In RF, the trees are fully grown, therefore they are 

grown to a depth that is usually considered to be too training-set specific, therefore over-

fit.  As stand alone classifiers, decision trees without pruning tend to display extremely 
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high variance and therefore lower generalization accuracy.  For example, in an illustrative 

data set, the average accuracy of a base tree in the RF ensemble was 66%, with 60% of 

the error accounted for by net variance.  This leaves a lot of room for improvement, and 

by taking many of these trees, the variance is subsequently reduced to 10% of the error.  

The bias may be slightly reduced; however this reduction is inconsistent across 

applications and usually of minor benefit.  Each base classifier contributes one vote to the 

majority-vote-based ensemble decision.  Test cases are subsequently predicted by 

dropping the observation down all of the trees in the ensemble.  Since fully-grown CART 

trees are likely to be over-fit, they tend to have highly variable performance across many 

different training sets.  The RF ensemble exploits this high variance and creates an 

ensemble with much reduced variance (see Chapter 4), thus reducing overall error.    

Since the amount of variance reduction is highly dependent on the level of diversity in 

the base CART trees, the RF procedure attempts to create trees that are as diverse as 

possible.  Random Forest creates diversity in two ways:  it perturbs the training set used 

by taking bootstrap samples for each tree generated (bagging) and it selects a random 

subspace of the predictors at each node.  Bagging is a common approach to building 

ensembles, which allows different models of the same class to be built.  By perturbing the 

data for each bagged sample, the model is being estimated a slightly different training set 

each time, therefore increasing the diversity (reducing the correlation) between 

classifiers.  Based on a small empirical study of bagging, the average correlation of the 

base trees appears to be reduced, as expected, however the average accuracy of each base 

tree also decreases, thus resulting in zero net gain in ensemble accuracy (Table 3).  It is 

likely that due to bootstrap selection, there are fewer independent pieces of information 

for training, and the resulting base trees have higher error.  The main advantage of 

bagging in random forest is the useful information about accuracy and variable 

importance, as well as an internal testing set for each tree.  Roughly 1/3 of the data are 

not selected for any one bootstrap sample. Therefore, 1/3 of the data is considered out of 

bag (OOB) samples.  The OOB samples may then be used as the test data to assess error 

rates.   The OOB error estimates reported in Random Forest are quite similar to those 

reported using cross validation (data not shown).   



     The other diversity increasing process is how Random Forest changes the potential 

predictors available for selection.  At each node, a random subset of the predictors is 

retained, and the best splitter is selected out of this smaller group.  The random selection 

of predictors at each node allows the resulting trees to be as different as possible, with the 

possibility of different variables at or close to the important root splits.  Given this, each 

CART tree is a different representation of the data.  Due to this variable selection 

process, the resulting tree is not optimal with respect to any fixed subspace of the data.  

 

 

 

Table 3:  Impact of Bagging on the Imprinting Data Set 

Type Ensemble 
accuracy 

Base Tree
accuracy 

Min 
 

Max 
 

Avg. 
corr 

Min  Max  

 
Bagged 

 

0.875 

 

0.654 

 

0.338 

 

0.931 

 

0.086 

 

-0.70 

 

0.96 

 
Non-
Bagged  

 

0.880 

 

0.696 

 

0.408 

 

0.944 

 

0.125 

 

-0.61 

 

0.98 

 

 

 

3.5   K nearest neighbors (K-NN) 

 
      K nearest neighbors is a well-known non-parametric instance-based learner.  For each 

testing sample, the K nearest neighbors (usually in Euclidean distance) are found and 

classification is based on the majority vote.  Different variants of K-NN exist – such as 

weighted majority voting or different distance metrics.  Usually, better performance is 

found by standardizing the data prior to analysis to avoid high variance predictors having 

too much influence [53].   
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     The main issue in K-NN is dimensionality.  In large dimensions, data become sparse 

and the concept of distance becomes meaningless.  In very large dimensions, there is 



usually little difference between the two closest points and the two points that are furthest 

from each other .  Therefore, variable pre-screening or reduction to the first several 

principal components is typically performed prior to analysis to reduce dimension.   

 

3.6 Logistic regression 

 
     Logistic regression is a standard statistical model used to relate a binary outcome 

variable (y=0,1 for example) to a set of predictors.  The form of the model is: 

log
1

p x
p

β
⎛ ⎞ ′=⎜ ⎟−⎝ ⎠

 

where p is the probability that y=1.  Therefore, we transform probability to odds and then 

fit a linear function.  Logistic regression is a commonly used model, especially when the 

primary goal is description.  This is because the parameter estimates have direct 

probabilistic interpretation. 

     In high dimensional classification, using logistic regression poses a challenge.  

Maximum likelihood estimation can be problematic when the data are sparse.  Infinite 

parameter estimates occur when the data are perfectly separated – which may be due to 

sparseness.  Although this is not ideal, the posterior predictions generated based on this 

model are still useable; however they may be extreme (0 or 1).  This may cause the 

predictions on the test set to be completely opposite of the true class.  Of larger concern, 

the number of variables able to be modeled must be less than the number of observations 

in the training set, and sometimes far less.  Given the uncertainty in which predictors out 

of thousands are most informative in a multivariable sense, standard logistic regression 

may be unstable.   

     The apparent instability of logistic regression has prevented it from being used in 

many high dimensional classification settings.  Different forms of regularization exist 

such as ridge regression which will constrain the size of the parameter estimates, however 

they are not considered in this dissertation. 

     Logistic regression has some similarities to SVM.  Both methods weight observations 

that are far from the decision boundary less than those observations that are close to the 

 29



 30

boundary [32].  This is in contrast to discriminant analysis (LDA, DLDA, and variants) 

which use all of the observations equally in estimating covariance and means.   This 

property can be advantageous with outlying observations, but loses efficiency compared 

to LDA when the data are multivariate normal. In order to better understand SVM, our 

primary linear classifier for this study; and its similarities to logistic regression, we 

briefly provide more detail in the next section. 

 

3.7 The diversity of different classifiers 

 
     For linear classifiers such as logistic regression, DLDA, and SVM with a linear 

kernel, the feature space is divided by a hyperplane.  Random Forest divides the feature 

space into hyper-rectangles.  Nearest neighbor approaches divide the space into 

polyhedral cells – a Voronoi tessellation.    Non-linear classifiers, such as SVM with an 

RBF kernel, fit non-linear complex surfaces in input space using an expanded feature 

representation to linearly separate the classes.   

     The diversity of classifiers comes from many sources.  First, diversity is in the 

different geometries of the way the feature space is divided.  As described above, the 

decision surface being fit is very diverse.  Second, due to the typically small sample size 

available for each problem, each classifier needs to discern between noise and pattern 

relying on relatively few training points.  Too few data points in the space can make the 

resulting classifier too simple, and therefore biased.  Also, too few data points with a 

flexible classifier can make the space appear to be governed by a very complex decision 

boundary – and therefore the result is over-fitting.  Third, each classifier is being 

optimized based on different criterion.  Logistic regression attempts to maximize the log 

likelihood.  SVM minimizes the hinge loss.  Random Forest minimizes the Gini index at 

each node, which is an impurity measure based on the products of the proportions of each 

class in each node.  This is a measure of the variance of the prediction within each node.  

 

 

 



 

Table 4:  Loss functions used by different classifiers 

 

Classifier Loss (y in [-1,1] ) 

Logistic regression Logit loss:  ( )( )log 1 i iy f xe−+  

SVM Hinge loss:  ( )max 0,1 ( )i iy f x−  

Random Forest Gini index:  ( )0 0 0 1 1 11 p p p p p p− + +  
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Figure 7:  Hinge (blue) versus logistic loss (pink) 

 

 

     In Figure 6, we observe that the hinge and logit loss operate in a similar way.  

Observations that fall to the right of zero are ones that are correctly classified.  Both loss 

functions assign a positive penalty which diminishes linearly as the prediction moves 

away from the boundary.  For misclassified observations, to the right of zero, both loss 

functions assign higher penalties the further away from the decision boundary.   
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An array of diverse classifiers 

 
     In trying to maximize diversity, we consider the following classifiers: 

 

1. SVM using a simple dot product (linear kernel) in input space 

2. SVM using the RBF (Gaussian) kernel in expanded feature space 

3. DLDA using a simple weighted sum of univariate distances 

4. CART with a simple splitting rule based on node size (min n for split=10) 

5. k-NN with k=3.  The number of nearest neighbors was set to be 3 prior to 

analysis.  It represents a compromise between higher variance (smaller k) and bias 

(larger k), favoring a slightly more over-fit classifier. 

 

Of course each classifier is attempting to classify the same set of observations; therefore 

there will always be a good level of overlap between them for easy-to-fit observations, as 

well as observations that are incorrectly classified due to noise (Bayes error).    

     The output of each classifier may be a binary decision, or some sort of prediction 

score.   A prediction in the interval [0,1] is easily obtained in CART and kNN by 

considering the proportion of each class that falls into the same node or neighborhood as 

the test point.  DLDA and SVM output a class label, but it is possible to obtain 

predictions by using logistic regression, treating the function value as the input variable.   

     By taking the classifier with the highest accuracy, we are failing to take the selection 

bias into account.  By including the selection of the best classifier (which we denote as 

*best*) into the cross validation, we are obtaining a more realistic assessment of the true 

accuracy of the *best* classifier.  Thus for each cross validation, we select the best 

classifier out of the five using bootstrapped accuracy estimates and use this classifier on 

the test set.  This is important since the best classifier on the training set (or perturbed 

versions of the training set) may not be the best classifier on the test set.  This captures 

the variability in selecting an optimal classifier and corrects for this bias in the final 

estimates of accuracy.  The level of selection bias depends on the variability of the best 

classifier across iterations.  Therefore, we present the individual accuracies along with the 

accuracy of the *best* classifier.   
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3.8 Variable screening 

 
     In many of the classification methods presented above, the dimension of the problem 

should be considered.  A good portion of the potential predictors in any large mined study 

are simply noise and can be removed from the analysis without further consideration or 

deleterious effect.  For simplicity, noise is usually defined based on the univariate test 

performance.  Those variables with small absolute values of the test statistic are likely to 

be uninformative overall.  In this work, we used the BW statistic to rank genes.  The BW 

statistic is defined as the between to within sums of squares and is a common ranking 

criterion [20].  However, any non-parametric analogue or variant may be used. Variables 

that are highly associated with class status are retained.  Although p-values may be used 

as a tool to assess whether this association is statistically significant, the simultaneous 

testing of thousands of hypotheses creates a multiple testing issue, and the chance for 

many false positives using p < 0.05.  The correction of p-values for multiple testing is an 

active area of research and is not explored in this work. Given the exploratory nature of 

the analyses, and the fact a simple ranking of predictors based on the magnitude of the 

test statistic is invariant to p-value adjustment, we do not perform any formal p-value 

adjustment to determine the set of selected features.   

     In this thesis, initial variable screening is performed for many of the analyses.  If we 

allow variable screening to be a part of the cross validation, then the error rates are more 

realistic than if we fix the set of predictors on the basis of their performance on the entire 

data set.  Both approaches are valid if the inference of the results is conditional upon the 

fixed parameters.  In this work, variable pre-screening is performed by augmenting the 

feature set with 10% noise, randomly generated from a N(0,1) distribution.  A natural 

threshold in the ranked list would then be where the first appearance of an artificial 

variable is detected.  If a feature is ranked below an artificial variable generated 

independently of class status, then it likely contains negligible information.  Although 

this method is quite ad hoc, it appears to correlate well to the “hump” of the information 

curve.  This approach has been used previously in other applications [48, 55] to provide a 
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stopping rule for model selection using an exhaustive search of all models, but it has not 

been utilized in genomic variable screening to our knowledge.  Nonetheless, it provides 

an intuitive and reasonable stopping point for inclusion into the informative set. 

     The reason we do not fix the number of predictors selected is because the relevant 

number will vary for each data set.  In data with a high number of correlated predictors, 

the ranked list has clusters of variables that take the top positions.  If p is fixed, then we 

may miss information due to only a few clusters being selected.  By allowing p to vary, 

we allow the informative set to be data-specific.   

     The drawback to using a univariate approach is obviously that we may miss important 

joint effects or interactions.  However, given the sample sizes involved, as well as the 

lack of a priori knowledge about such relationships, we assume that the likelihood of 

such important interactions between features not already included in the relevant set of 

predictors is small.  This assumption will be explored further in Chapter 9. 

  

3.9 Statistical packages used 
 
     All analyses and data manipulation were performed using R statistical software.  

Specifically, we used the following procedures and tuning parameters: 

   

   Procedure  Tuning parameters 

 

CART        rpart   minsize=10 

Random Forest randomForest  mtry=sqrt(p) (default),  

ntrees=500 (prediction) or 1000 (VI) 

SVM-linear  e1071   kernel=”linear”, C=1 (default) 

SVM-RBF  e1071   kernel=”radial”, C=1, gamma=1/p (default) 

DLDA              stat.diag.da  none 

kNN   kknn   k=3   

 

 

 



 

 

 

Chapter 4 

 

The Decomposition of Error into Bias and 

Variance 
 

     In the linear regression setting, the evaluation of a predictive model may be based on 

the mean squared error of prediction at X=x.   
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2MSEP =    2 2ˆ ˆ( ) (( ( ) ) ) ( ( ))Y YE y y f x y E y f x− = − + −

MSEP is an estimate of the average loss (over Y) by using as the prediction for y at 

input X=x for a fixed dataset.  The systematic component of y is f(x).  The first term 

represents an error term that is under our control through our selected model and will 

vary as our dataset varies.  The second term represents an irreducible error (the variation 

of y around the true function f at X=x) that is independent of the training set used.  We 

take the expectation over all training sets D: 

ŷ

[ ]DE MSEP =   2 2
, ˆ ˆ( ) (( ( ) ) ) ( ( ))D Y D YE y y E f x y E y f x− = − + − 2

and further decompose the first, reducible, term: 

[ ] [ ]2 2

2

ˆ ˆ ˆ(( ( ) ) ) ( ( ) ) ( )

ˆ ˆ( ) var( )
D D DE f x y f x E y E y E y

bias y y

2ˆ⎡ ⎤− = − + −⎣ ⎦
= +

 

 

The bias term is the difference between the systematic part of the true function (f(x)) and 

the expected prediction based on the model.  Therefore, if a model has very low bias, 

then across different datasets we expect our model to be close to the “truth” on average.    
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)

The variance term represents the variance of prediction at X=x about its expectation 

(across D).  This variance is independent of the underlying function f(x), since it is 

entirely dependent on the classifier and its stability across all datasets D.  There is a well-

understood bias-variance tradeoff [49].  The effects of bias and variance are additive, and 

therefore for a given error rate, we may decrease the variance, but at a cost of increasing 

the bias.  For an extreme example, if we always predict y to be 7, regardless of the dataset 

D, then we have no variance in our predictions across D, however we will probably have 

lots of bias since we will not be capturing the true function over the input space.  If we 

over-fit the model, we expect the variance to be high, but the bias to be lower.  Why is 

the variance high?  Across D, our predictions in fitting this complex model will be quite 

variable.  Different data sets will produce quite different parameter estimates for the 

model.  If we have built the model using data-driven methods such as variable selection 

and estimation on the training set; then this variability will be even more of an issue.  The 

more intense the model selection procedure, the more likely it is to introduce variability 

when repeating this procedure across D.  In addition, if we allow the best model to be 

selected from a large model space, then we will likely have high variance even if the final 

model is in fact small.  The size and components of the final model will be varied from 

training set to training set, which will also contribute to the variance.    When sample 

sizes are small many models are not well-supported by the data, and there is a 

multiplicity of equally “good” models which results in large variability across data sets.    

In classification, the same concerns about over- and under-fitting are present for the 

reasons described.  However, the impact of variance and bias may be different in the 

classifier setting where we try to classify each observation into one of k classes.  When 

we build a predictive model we are likely not as concerned with our estimates of the 

posterior probability P(Y=c|X=x), c=0,1,2,…,k.   Typically, we either want just the 

predicted class or a ranking of observations (from which we may take the top m 

observations as the “highest-risk” subset).  Both situations do not require precise 

estimates for the posterior probability.  For example in the two-class problem, low 

estimation error  is likely less of a goal than a low 

classification error .  In this setting, our classifier may have bias, however the 

predicted class is correct.  The bias of the model is only important when the expected 

ˆ( 1| ) ( 1|P Y X P Y X= − =

ˆPr( )y y≠



prediction at X=x takes us out of the correct class.  Friedman  [22]  calls this positive 

boundary bias.  When a particular region of the input space at X=x has positive boundary 

bias, we are predicting the incorrect class on average across D.   

     For classification-based models, evaluation of error based on squared error is less 

appealing and new ways to evaluate these models were proposed [19, 22, 38, 39] based 

on 0/1 loss.  Using a 0/1 loss function does not result in the familiar additive relationship 

between bias and variance as for squared error loss.    

 

4.1   Decomposition in classification 
 

4.1.1 Friedman’s 0/1 loss  

 
     For classification problems, Friedman [22] defines the probability of misclassification:  

 where (x) is the predicted class and equals  ( )ˆPr ( )y x y≠ ŷ

1 , ,  ˆ ( ) 0.50f x ≥

         0,   else.   

 

     Given a particular training set, D, the misclassification error rate depends on whether 

the predicted class agrees with the Bayes (optimal) class .  If it does, then the error 

rate is the irreducible error associated with the Bayes rule.  If it does not agree, then there 

is an increased error rate above that of the Bayes risk which is equal to: 

( )By x

( )ˆ ˆPr ( ) | ( ) ( )By x y y x y x≠ ≠  = [ ]max ( ),1 ( ) 2 ( ) 1f x f x f x− = −  

Therefore, the error rate may be decomposed as: 

ˆ ˆPr( ( ) ) 2 ( ) 1 Pr( ( ) ( )) Pr( ( ) )B By x y f x y x y x y x y≠ = − ≠ + ≠  

When we average across all datasets D we have (conditioned on point x in the input 

space): 

ˆ ˆPr( ) 2 1 Pr( ) Pr( )B By y f y y y y≠ = − ≠ + ≠  

     Friedman then shows that ˆPr( )By y≠  is the tail area (direction depending on whether 

f(x) is greater than or less than 0.50) of the predicted distribution function.  To 
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understand the distribution of ˆ ( )f x  (where the population is based on training sets D), 

Friedman then approximates it using a normal distribution with parameters 

ˆ ˆ( ( )), ( ( ))E f x Var f x .  Since the computation of ˆ ( )f x is usually a complex averaging 

process, the normal distribution is reasonable.  Using this, Friedman then shows that  

ˆ 0.50ˆPr( ( ) ( )) ( 0.50)
ˆvar

B
Efy x y x sign f

f

⎡ ⎤−⎢ ⎥≠ = Φ −
⎢ ⎥⎣ ⎦

 

     To be clear, if f(x) is 0.20 (Bayes class is class 0) and we have prediction ˆ ( )f x , the 

probability that the classes will not agree is equal to the probability that ˆ ( )f x  is greater 

than 0.50 – where ˆ ( )f x  is assumed to be normally distributed with mean and variance 

given above.  Since  

ˆ0.50ˆˆPr( ( ) ( )) Pr( ( ) 0.50) Pr( )
ˆvar

ˆ0.50
ˆvar

ˆ 0.50( )
ˆvar

B
Efy x y x f x Z
f

Ef

f

Ef

f

−
≠ = > = >

⎡ ⎤−⎢ ⎥= Φ
⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥= Φ −
⎢ ⎥⎣ ⎦

 

Where Φ(Z)= Pr(Z>z) is the upper tail probability of the standard normal distribution.  So 

what does this error depend on? 

     With ˆvar( ( ))f x > 0, we have a classifier that varies depending on the training set used 

(variance is equal to zero if the learner gives a constant prediction at X=x regardless of 

training set D used).  Given this variability across training sets, the error depends on how 

far away our prediction is from the boundary of 0.50.  If we have a bias from 0.50 and a 

small variance, then the error is maximized.  If we have a bias, but a large variance, then 

the error is smaller.  This is because we have a chance with a high variance classifier to 

swing over to the correct side of the classification from time to time.  If we have no 

classification bias, that is ˆ ( )f x  is on the same side of 0.50 as f then  and the 

error is reduced to the irreducible error of the Bayes risk.  Therefore, if we have a learner 

ˆ( ) ( )By x y x=
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with estimation bias ˆ( ) ( )f x f x− , the impact in the classification setting is dependent on 

whether the resulting classification is the same as the Bayes classifier.  A learner that is 

biased, but on average correct with respect to class, is just as good in the classification 

setting.  Therefore, should we adopt more typically biased learners with low variance?  

As long as the bias is the “negative” kind described in Friedman caused by over-

smoothed estimates of the posterior probabilities (like naïve Bayes or kNN), then it seems 

we should.   

 

4.1.2 Kohavi and Wolpert’s decomposition 

 
     Kohavi and Wolpert [39] provide one of the most widely used decompositions into 

bias and variance for 0/1 loss.  In addition, they also provided a method by which these 

two quantities may be estimated from the data.  They propose that YF and YH are 

independent, where YF denotes the Pr(y=1) at X=x and H denotes the hypothesized class.  

This is true, because the probability of class 1 at input X=x depends only on f(x).   The 

expected 0/1 loss is then defined to be: 

E(C) = 2 2( )( var )x x
x

P x biasσ + + x∑  where 

( )2 21 {Pr | Pr( | )}
2x F H

y Y

bias Y y X x Y y X x
∈

= = = − =∑ =  

21
2var 1 ( | )x H

y Y
P Y y X x

∈

⎛ ⎞
= − = =⎜ ⎟

⎝ ⎠
∑  

2 21 (1 ( | ) )
2x F

y Y

P Y y X xσ
∈

= − = =∑  

     In this definition, the squared bias of the classifier is the squared difference between 

the average y at X=x and the predicted y.  Therefore, we are comparing the distribution 

functions at X=x, as opposed to the Bayes class and the predicted class.  If the two class 

designations agree, the bias could still be non-zero because the probability of Y=1 at X=x 

may be different.  This is problematic, since we would like the bias term to be equal to 

zero if the Bayes class and predicted class are the same.   However, consistent with what 
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we want, if the classifier is constant (independent of the dataset used) then the variance of 

the prediction will be equal to zero since at X=x the probability that the prediction is 

equal to y is 1 or 0 leaving just the irreducible error.   

 

4.1.3 Domingos’ unified bias-variance decomposition 

 
     One of the problems in Friedman’s decomposition is that while he explains the impact 

of bias and variance in the classification setting, he largely leaves both quantities 

undefined.   Kohavi and Wolpert’s decomposition, while popular, also suffers from some 

important drawbacks, such as letting the Bayes optimal classifier to have a non-zero bias.  

While both of these decompositions both illustrate and enhance the understanding of bias 

and variance in classification, they have drawbacks and limitations, as mentioned above.  

Due to these issues, we have used the decomposition as per Domingos [19]. 

     Domingos proposes a single definition of bias and variance for any loss function.  

(Keeping with the terminology of the Domingos  paper:  t=the true class, y=predicted 

class, ym =E(y) and yB=optimal (Bayes) class) 

[ ] [ ], 1 2( , ) [ ( , )] ( , ) ( , )D t t B B m D mE L t y c E L t y L y y c E L y y= + +  

= c1 noise + bias + c2 variance(y) 

Under two-class classification and a symmetric loss function 

c1=      
( ) ( ) 1 2 ( ) 2 ( )

(1 2 ( ))(1 2 ( ))
D B D B D B D BP y y P y y P y y P y y

B X V X
= − ≠ = − ≠ = = −

= − −
1

c2 =   (1-2B(X))   which is equal to 1 if unbiased instance, and -1 if biased. 

Therefore we have: 

                   [ ] [ ], ˆ ˆ( ) (2 ( ) 1) 1( ) 1( ( ) )D t D B t B DE y y P y y E t y E E y y≠ = = − ≠ + −          (D1)  

for an unbiased classifier, and  

                   [ ] [ ], ˆ ˆ( ) 1 (2 ( ) 1) 1( ) 1( ( )D t D B t B D )E y y P y y E t y E E y y≠ = + = − ≠ − −     (D2) 

for a biased classifier. 

This is equivalent to: 

, ˆ( ) (1 2 ( ))(1 2 ( )) ( ) ( ) (1 2 ( )) ( )D tE y y B X V X N X B X B X V X≠ = − − + + −  
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     When the predicted class, on average, is consistent with the Bayes class (D1), the 

average error of the unbiased classifier is made up of two terms – the noise term N(x) and 

the variance term V(x).  The net variance is the difference of the unbiased variance (the 

variance attributed to the unbiased inputs) and the biased variance.  The noise term is 

multiplied by a quantity that is positive, and equal to 1 if the individual predictions are 

always the optimal ones.  If this is the case, then the decomposition reduces to just the 

N(x) term.  Otherwise, the noise term is modified by the probability that for an individual 

prediction, it is correct while the Bayes prediction is wrong.  This is what is called the 

wrongly-right impact as described by Friedman [22]. 

     When the predicted class, on average, is inconsistent with the Bayes classification 

then the average error has a subtractive variance component.  This agrees with 

Friedman’s assessment of the impact of variance on error – that increasing variance will 

reduce error in situations where there is bias.   In addition, the noise term will be 

multiplied by a negative term.  If the noise term is large, such that the Bayes classifier has 

a large error component, then we will have more situations where the prediction agrees 

with t, even though it disagrees with the Bayes class.   

 

Types of variance in classification – good and bad 

• Vu  - Variation of predictions around the correct (optimal) 

prediction. 

• Vb - Variation of predictions around incorrect class.  We want this 

to be high. 

• Net variance Vn   =  Vu - Vb 

      

Both Domingos and Friedman show that the relationship between bias and variance is 

multiplicative and that the impact of bias is specific to the input region and whether this 

input region has positive or negative boundary bias.  The minimization of positive 

boundary bias should be a focus of classification, especially base classifiers for 

ensembles, since when the entire input space has negative boundary bias; we may 

minimize the variance and end up with a strong classifier.   

 



     The error rate of a classifier across all datasets D can be decomposed as: 

[ ]
ˆ ˆ ˆPr( ) Pr( ) Pr( ) Pr( ) Pr( )

ˆPr( ) Pr( ) Pr( )
ˆPr( )[2 Pr( ) 1]
ˆPr( )[2 ( ) 1]

B B B B

B B B

B B

B

y y y y y y y y y y
y y y y y y
y y y y
y y f x

≠ = ≠ = + = ≠

= ≠ = − ≠

= ≠ = −
= ≠ −

 

where f(x) is the Bayes (optimal) classifier.  Therefore, the interest is in how ˆPr( )By y≠  

depends on f̂ .    This quantity is the probability that the Bayes class is not equal to the 

predicted class from the model.  Friedman calls the mis-estimation of f(x) “boundary 

bias”, since we can view f(x) as the optimal boundary separating class 1 from class 0.  

The boundary bias may be written as: 

                                  ( )ˆ ˆ, (0.5 )(b f Ef sign f Ef= − − 0.5)

This is showing that the effect of mis-estimating the probability function f(x) on the 

misclassification error is dependent only on whether the expected predicted class falls on 

the correct side of the Bayes boundary or not.  If we consistently get the class wrong, 

then we have positive boundary bias, which will impact the misclassification rate.  If we 

have bias, but are consistently on the correct side of the decision boundary, then there is 

no impact to the error rate.   

     The impact of this is as follows:  For low variance classifiers, the classification error 

rate depends entirely on whether there is positive boundary bias over a large portion of 

the input space.  For high variance classifiers, the error rate will decrease with decreasing 

variance (through aggregation or model averaging) only if there is no positive boundary 

bias.  Otherwise, the presence of positive boundary bias will cause the error rate to 

increase as variance decreases. 
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4.1.4 James’ bias-variance effects  

 
     James details explicit rules that any decomposition should satisfy under any loss 

function [37].  Using this framework, he produces definitions of bias and variance 

suitable for non-squared error loss functions, including 0/1 loss.   

 

     The rules for any decomposition are as follows: 

 

i) When using squared error loss, the definition of bias and variance must reduce to 

the standard definitions 

ii) The variance term must measure the variance of the predictions, and must 

therefore be independent of the true response function.   

iii) The bias term must measure the differences between the systematic parts of the 

classifier and the response and should be equal to zero if there are no systematic 

differences. 

 

     Using these rules, James defined an additive decomposition comprised of noise, 

variance effect and systematic effect components.   Variance effect (VE) is a measure of 

how prediction error changes when we use instead of E( ) to predict y.   The 

systematic effect (SE) is a measure of how prediction error changes when we use E( ) 

instead of E(y) to predict the response.    

ŷ ŷ

ŷ

VE = PT,C(T≠C) – PT(T≠SC) 

SE = PT,(T≠SC) – PT(T≠ST) 

 

The basic definitions used in this paper are identical to the ones given in Domingos.  The 

net variance of Domingos (Vn), is identical to the variance effect (VE) of James when the 

noise effect N(X) is zero. 
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4.2 Estimation of bias and variance from real data  

 
     Estimation of bias and variance from real data is hindered because we do not know the 

true functional relationship.  However, we may assume that the noise component is equal 

to zero (thus putting the noise term as part of the bias term).  Kohavi and Wolpert’s 

approach is to divide the data into two parts – one training set (D) and a test set (E).   

Since we want to get many different training sets (N training sets in total), we sample m 

observations without replacement from D.  To get training samples of size m, D was 

chosen to be of size 2m.  Each classifier built on the N training samples is evaluated on 

the same test set E.   James [37] uses a bootstrap approach by producing 50 bootstrap 

samples to fit the classifier to each.  For the noise term, he uses a neighborhood approach 

instead of assuming that the noise is zero.  The general approach of Webb [71] for 

generating test samples is used for this study.  We perform k fold cross validation 

multiple times, thus ensuring that each unique observation has an equal number of tests 

for computation of accuracy.   Bias and variance terms are computed for each observation 

on all loops where the observation was in the hold-out test set.  Therefore, we evaluate 

the stability of prediction at X=x for each observation 50 times.  In all analyses, the value 

of k is set to 4 in order to have a large test set for each run.  This four-fold iteration was 

performed 50 times, as per Webb.  Experiments in allowing the number of iterations to be 

higher (k=100) did not change the resulting estimates of bias and variance substantially 

enough to warrant the extra computing time. 

 

 

 

 

 

 

 

 

 



 

Algorithm for estimation of bias and variance from real data sets 

when the true function is unknown 

Step 1 Perform k-fold cross validation (here, k=4). 

Step 2 Repeat J times (J=50) 

Step 3 This generates J test sets and J learners based on 

training samples 

Step 4 At each X=x, we estimate the mode of the 

predictions.  The variability of the classifier is 

then the average loss incurred by the prediction 

to the main (mode) prediction. 

Step 5 The bias term is the loss incurred by the mode 

relative to the optimal prediction (here just the 

true class designation).   

Step 6 Variance is separated in Vu and Vb terms, 

depending on whether it comes from a biased or 

unbiased observation.   

Step 7 Bias and variance components are then 

averaged over all examples (X=x) to get an 

overall summary for the classifier.   

Step 8 The margin M(x) of the classifier at X=x is 

2Pr(YH=1|X=x) -1.  We want to maximize this 

across all X=x.  Maximizing the margin is a 

combination of minimizing bias and increasing 

variance for biased observations and decreasing 

variance for unbiased observations.   
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Chapter 5 
 

 Ensemble Methodology 
 

     Commonly used ensembles are believed to be primarily variance reduction tools 

which can optimize classifier performance by driving down the variance on low-bias 

classifiers.   Ensemble methods such as Random Forest have been shown to have good 

performance over a wide range of classification problems.  The ensemble accuracy tends 

to be considerably higher than the accuracy of a single tree and is often competitive with 

or superior to other methods such as SVM, LDA, and logistic regression.  The gain 

comes primarily from the variance reduction of combining fully grown decision trees.  

Bias reduction may be present if the forest of trees is majority-correct on average.  

However, if there is a substantial area of the input space with positive boundary bias, the 

combining of models will deteriorate classification performance and the ensemble 

performance as a whole may decline or remain the same.   

 

5.1 Bias versus variance reduction in ensembles 

 
     If an observation is unbiased with a particular classifier, then on average it is classified 

correctly.  However, due to over-fitting, there is some variability with the prediction.  If 

we consider a set of classifiers, each predicting independently at X=x, then it is 

understood that the average prediction smoothes out some of the noise, and variance is 
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lower.  If an observation is biased, then we do not want this variance reduction, we want 

the majority of the classifiers to be correct on average.   

 If the observation at X=x is located at a point close or on the wrong side of the 

theoretical decision boundary, or is outlying, the predictions for this case will likely be 

biased for some of the classifiers.  If we combine a set of classifiers such that the biases 

are diverse, then we may reduce the overall bias of the ensemble by producing a majority 

unbiased classification.   

 

5.2 Prentice’s extended Beta-Binomial model 

 
           The general results of the probability of consensus was first recognized by Condorcet 

in 1795 [14] and later expanded upon by Lam and Suen [43].  The impact of aggregation 

on ensemble accuracy is also illustrated via simulation using the beta-binomial model and 

the extended beta-binomial model.  Prentice showed that the beta-binomial model may be 

extended to cases where ρ < 0 for certain values [52].  He calls this the extended beta-

binomial distribution, however the interpretation as a convolution of a beta and binomial 

random variable does not hold under negative correlation structures.  We may use these 

distributions based on average correlation and average accuracy to obtain the expected 

ensemble accuracy gains when combining K classifiers.  Based on the formulas, and 

illustrated by Table 5, the ensemble accuracy is quickly driven to 1.0 as the number of 

base classifiers increases and the correlation is negative.  There is a limit to the 

magnitude of negative correlation as K increases.   This is due to the constraint that the 

covariance matrix must be non-negative definite.  The model used is a restrictive 

parametric model, with constant correlation between classifiers and constant accuracies 

assumed.  In real applications, this consistency would be unlikely to hold.  Therefore, the 

table serves as a useful guide for expected gains of an ensemble, but actual ensemble gain 

is likely to be lower than that projected by this model. 

 

 

 



 

             Pr(correct) for each base classifier 

  Num Trees Rho 0.55 0.60 0.70 0.80 0.90 
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0.00 

0.10 

0.30 

 

0.579 
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0.30 
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0.857 

 

NA 
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NA 
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0.951 

 

101 

 

-0.01 

0.00 

0.10 

0.30 

 

NA 
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NA 
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Table 5:  Theoretical Accuracy Gains: Ensembles of Correlated Classifiers. 
The pdf of the beta-binomial model is valid when ρ  ≥  max{ -p (n-p-1)-1 , -(1-p)(n-(1-p)-
1)-1}.  NA - Denotes ρ resulting in  a non admissible pmf for the extended beta-binomial 
distribution  
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5.3 Bias-variance and ensemble gains 

 
          Friedman [22] showed that in two-class problems, we may decompose classification 

error into: 

                                    ( ) 2 1 P( ) (B BP y y f y y P y y≠ = − ≠ + ≠ )                                    

where f is our target function, the last term is irreducible Bayes risk, and the first term is 

the additive risk of our classifier.  We may further analyze the first term by considering 

the distribution of our model’s outputs.  If we assume that ( )f x is approximately normal 

in distribution, then it is easily shown that, for classification, all we require is E ( )f x  to 

be on the same side of the decision rule as the Bayes classifier, regardless of its distance 

with respect to the actual prediction.   

           In using the ensemble-based prediction Af (x) in place of E[f(x)] and making the 

reasonable assumption that  Af  (x) has an approximately normal distribution, Friedman 

shows that the reduced variance of Af  (x) increases the predictive accuracy.  The average 

of many independent classifiers will have a reduction in variance of the order of 1/K, 

where K is the number of base classifiers in the ensemble.  However, this assumes that 

the boundary bias of each input x is negative.  Points with negative boundary bias for a 

particular classifier are those points described above that are consistently on the same 

side of the Bayes decision function.  If the bias is positive, then decreasing the variance 

will have the opposite effect and will actually increase the error.  Therefore, it is 

important to combine classifiers that are diverse in their errors and reasonable with 

respect to individual predictive ability.  Ensembles can make a set of poor classifiers even 

worse, since a reduction in variance for a set of points with positive boundary bias will 

reduce the chance of correct classification.  Therefore, the base classifiers of an ensemble 

should be high variance classifiers, as opposed to high bias ones, since the gains in 

accuracy with aggregation are primarily obtained though variance reduction, as opposed 

to bias reduction.   
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Table 6:  Variance Reduction with Ensembles.  K denotes the number of base classifiers 
andC  denotes the average pair-wise correlation among classifiers. 
 

 

Base classifiers                                        Var[ Af (x)]  

 

Independent               1 ( ( ))Var f xK  

 

Correlated           ( 1)1 ( ( )) ( ( ))KVar f x C Var f xK K
−+ ×  

 

 

 

 

 

 

 

 

     Based on these results, current research has been focused on creating ensembles with 

the maximum diversity between base classifiers as possible.   Diversity between 

classifiers will decrease the variance, providing a more stable estimate of E[f(x)].  

Measuring diversity, however, has been less than clear-cut.  There are many ways to 

measure diversity of an ensemble and no consistent definition for diversity that has a 

clear relationship to gains in accuracy [40, 41].   This may be due to the confounding 

issue of boundary bias, as discussed above.  The reduction in variance with independent 

classifiers does not consistently result in comparable gains in accuracy.  

 

5.4 Ensemble diversity 

 
           It is clear from the variance decomposition given above that by combining predictions 

of several classifiers, we will be able to obtain a more stable estimate of E[f(x)].  The 

stability of the estimate depends on the relationships between the base classifiers, with 

less or negatively correlated classifiers (i.e.: diverse classifiers) resulting in lower 

variance.  However, this formation is, at best, only tending towards lower ensemble 

errors.  Diversity may be measured in several ways, including pair-wise correlations and 

non-pair wise entropy base measures, but there is no single way that has a direct 

relationship with ensemble accuracy.  The reason for this is that there is a trade-off 
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between bias and variance.  High bias classifiers tend to be less correlated with respect to 

making errors, however the interaction between boundary bias and variance may result in 

ensemble performance that is worse than the average performance of a single classifier.  

High variance classifiers, though likely to have low bias, will often be quite non-diverse 

and therefore the ensemble gains will often be modest at best [3]. 

 

5.5 Breakdown in ensemble gains 

 
           In our beta-binomial models, we illustrate the improvement in accuracy over when 

combining n multiple classifiers.  Here, we assume average pair-wise correlation (ρ) and 

classifier accuracy (p).  From the model-based estimates, adding even moderately 

correlated classifiers will always reduce ensemble error.   Negatively correlated 

classifiers further enhance the predictive ability of the ensemble.   

           In Kuncheva et al., the accuracy in multiple classifier systems was explored [42].  

Diversity was measured by Yule’s Q statistic  

1 2 1 2

1 2 1 2

ˆ ˆ ˆ ˆ( ) ( )(
ˆ ˆ ˆ ˆ( ) ( )(

P y y y P y y y yQ
P y y y P y y y y

)
)

= = − = =
=

= = + = =
 

(Note: |Q| > |ρ|), and the limits of majority vote accuracy were derived.  In this paper, an 

example of the breakdown in the ensemble gains is simply illustrated using a three 

classifier ensemble with ten observations.  Each individual classifier has p=0.60, and 

average Q equal to 0.33, (positive correlation between classifiers).  When the pattern 

below was observed, the ensemble accuracy was 0.40 – a decrease over any individual 

model.   

3 classifiers correct   4/10 

  1st classifier correct     2/10 

2nd classifier correct  2/10 

3rd classifier correct  2/10 

The average correlation was 0.33 for each pair.  From our table, we expect the ensemble 

accuracy to be increased – from 0.60 to 0.616.  Not a large gain, since only three 

classifiers, but a gain nonetheless.   
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 52

           Examination of the pattern above shows why this ensemble system failed.  There were 

4 observations out of ten that were classified correctly with any individual classifier.  The 

rest of the observations could be considered hard to classify observations.  Each 

individual classifier was able to correctly classify 2/6 hard to classify observations; 

however each had a different set of observations where the model worked correctly.  If 

each set corresponded to some locality within the input space, and this location was 

identifiable, then we may achieve 100% accuracy using an ensemble of properly 

weighted classifiers. 

           The assumption for the beta-binomial and extended beta-binomial is that the 

Pr(correct classification) is equal to p (on average).  This means that each observation has 

the same chance of being correctly classified by the model and the areas of error are 

random.  When an observation is hard to classify, the areas of error are not random and 

the theoretical results do not agree with the actual accuracy observed.   

 

5.6 Simulation of the effects of positive boundary bias 

 
           If, for a portion of the input space, we have positive boundary bias, the reduction in 

variance will increase the error rate.  Therefore, the asymptotic results illustrated using 

beta-binomial models all assume that the expected predictive ability of each classifier is > 

0.50 over the entire input space.  If we have hard-to-classify observations, then we will 

have the gains in reducing variance offset by those regions where there is positive 

boundary bias.   

      To examine this, I simulated observations with positive boundary bias using the 

extended beta-binomial distribution and differing proportions of bias.   Figure 8 

illustrates the results of this simulation.  The top curve is the accuracy gains that we 

expect under no bias.  All observations have the same probability of having a correct 

prediction for each base learner – there are no hard-to-fit observations.  It is clear that the 

accuracy never decreases, and approaches 1 as the number of base classifiers tends to 

infinity.  This is the situation that illustrates the theoretical justification of why ensembles 

work.  However for the simulated situations where there are a proportion of observations 



with positive boundary bias, the effect of combining trees can actually be negative.  If a 

large proportion of the input space is biased, then reducing the variance will actually 

increase the error rate.  The bottom curve illustrates the situation where the average 

accuracy is greater than 50%, however when combining these classifiers we end up with 

an ensemble with much lower accuracy.  Many of the observations are biased; therefore 

decreasing the variance has a deleterious effect on error rates.  For moderate levels of 

bias, the gain is in combining the first 3-9 trees and then the accuracy is observed to 

decrease as more trees are added.  This is consistent to what has been observed in real 

data, where the gain is in the first few members of the ensemble.   

  
Figure 8:  Loss of accuracy due to averaging biased classifiers.  The proportion varied is 
the proportion of unbiased observations such that Pr(correct)=0.85. 
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Chapter 6 
 

 

Building Ensembles 

 
     Ensembles have been constructed in multiple ways.  Usually, the base classifiers are 

constructed to be as diverse as possible, while maintaining a reasonable level of accuracy.   

Diversity is introduced in many ways, for example: 
 

• Random selection of features 

• Perturbation of the data set 

• Re-weighting of the data set to focus on misclassified observation 

 

Randomly selecting features out of the set is a staple of the Random Forest algorithm 

[10], as detailed in Chapter 3.  Ho [33] also uses a random feature selection.  By 

considering only portions (mutually exclusive or with overlap) of the input space, 

different classifiers may be constructed.  It is expected that classifier accuracy will vary, 

since some selected subsets may contain no informative features, while others will 

contain highly informative features.  However, if there are many base classifiers in the 

ensemble, the effect of a few poorly fitting classifiers on the ensemble decision will be 

negligible.  Diversity will also vary since many data sets contain highly correlated 

features.   
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     Perturbation of the data set is another method by which different classifiers may be 

constructed.  Perturbation often involved bootstrapping the original data set B times, and 

creating B classifiers using the perturbed data.  If the data set is representative of the 

population, then this process mimics the random sampling from the parent distribution.  

The classifiers built are often diverse due to the selection and estimation biases inherent 

in variable screening, model selection, and parameter estimation.   

     Although bootstrapping can be considered a re-weighting of observations, the third 

type of diversity is based on a special re-weighting.  This type of ensemble is used in 

boosting algorithms.  Boosting creates diverse models iteratively.  Iteration 1 fits a weak 

model (often a decision stump) to the data, all observations equally weighted.  The next 

iteration then re-focuses on those observations that are misclassified by the initial model.  

This process continues for many iterations (usually 50 or more) and then the final 

decision is based on the weighted vote of all of the classifiers.   Boosting has been shown 

to be a highly successful ensemble technique, often reducing both bias and variance, 

however it suffers when a hard-to-fit observation is repeatedly focused on, regardless of 

whether it is an outlier or not.   

     In this chapter, two new methods for creating ensembles are explored.  The first, 

Classification by Ensembles of Random Partitions (CERP) creates diversity in a similar 

way to Random Forest, however the features are partitioned at the initial stage of analysis 

and this remains fixed.  Therefore, the ensemble is made up of k classifiers, one from 

each of the k disjoint feature sets.   Multiple ensembles could be constructed, each with a 

different partitioning scheme, and the ensemble of ensembles combined into a final 

classification.  The advantage of this approach is that any base classifier may be used, 

including decision trees (CT-CERP) [1] and logistic regression models (LR-CERP) [45].   

     The second method of creating an ensemble of classifiers is quite different than the 

first.  Diversity is achieved by using different classifiers, instead of different subsets of 

features.  Different classifiers will create a set of diverse decision boundaries.  The 

combination of these classifiers is explored, with simple averaging and weighting 

methods compared.  In addition, local weights are derived which allow the ensemble 

weights to be varied depending on the location of the test point in the feature space.  This 



is another novel method which uses bootstrap estimates of bias and variance at each 

training point X to weight the different classifiers.   

     As mentioned previously, there are several methods available for combining 

classifiers using order statistics [64-66], majority vote [1, 10, 45], and weighted 

averaging [2, 59, 74].  We examine a subset of these approaches in the next section. 

 

6.1 Global methods of combining 
 

     Pepe shows that a linear combination of markers (or in this case classifiers) is optimal 

under Neyman-Pearson lemma [50].   

Linear combination of K classifiers:      
1

K

i i
i

w C
=
∑

where Ci is the decision or prediction of the ith classifier in the ensemble.   

     If the predictions are multivariate normal, then the optimal weights are the LDA 

weights [59].   We then may use these K variables as inputs into a linear discriminant 

anslysis to derive weights for each classifier.  Similar to the LDA approach, we may 

estimate weights using logistic regression, under the logit assumptions, to maximize the 

likelihood.  Given the potential for over-fitting, a bootstrap or cross validated estimate of 

each observation’s predictive score is used for all classifiers.   

 

The Neyman-Pearson Lemma: 
 
Let θ` and θ`` be distinct fixed values of θ so that Ω={ θ`, θ``} and let k be a positive 
number. 
 

1 2

1 2

( `; , ,... )
( ``; , ,... )

n

n

X X XL
X X X

kθ
θ

≤  for each point (X1,…Xn) C∈ , otherwise * C∈

   
The C is the best critical region of size α for testing: 
 

Ho:  θ= θ` 
Ha:  θ= θ`` 

 
If we use this lemma, then the best test for each input point is based on the likelihood 

ratio.  If we fix the FPR (size α), then for this fixed FPR (fixed specificity), the test with 
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the most power (i.e. highest TPR or sensitivity) is based on the likelihood ratio.  

Therefore, when we have K prediction scores from K classifiers, then the uniformly most 

powerful test is based on the linear combination of Y1,…,Yk.  The risk score is some 

monotone increasing function of Lβ(Y), which approximates some transformation of the 

likelihood ratio. 

 

Simple Average 
 

     Simple averaging has been shown to be a robust method to combine classifiers and 

under independence and equal performance assumptions across base classifiers, is 

optimal [24, 25, 59, 64] with respect to overall error.   Using each classifier, the ensemble 

prediction is: 

     where 
1

K

i i
i

w C
=
∑ 1

iw
K

=  

 

Weighted averaging    
 

   When we have a set of K classifiers with varying levels of accuracy, a weighted 

average may prove to be beneficial.  It makes intuitive sense that a classifier with a high 

level of generalization accuracy (assessed via cross validation or bootstrap) has a higher 

weight assigned to it, given that we are more confident in its prediction.  If we directly 

use the estimated accuracies of the classifiers, we can assign weights to each classifier 

without fitting a model, using the optimal weights constructed in [24,25].  The weights 

are constrained to be non-negative and have a unit sum.  The construction of weights 

should be based on an out-of-bag or test set assessment of accuracy to avoid over-fitting 

and are estimated as: 

1

1
(1 )

1
(1 )

i
i K

kk

pw

p
=

−
=

−∑
    where pi is the estimated accuracy for classifier i; i=1,2,…,K 
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Under independence assumptions, the weights above are optimal [24] with respect to 

minimizing error.  If classifiers are correlated, but have equal pair-wise correlations, this 

optimality also holds.  This weighting scheme penalizes uneven performance across 

classifiers more heavily than weights derived from each individual classifier’s proportion 

of the total accuracy, and yields very similar weights to the normalized Adaboost 

weights.  Differences may be observed if the range of individual performances is very 

high.  Determination of the optimal weights is difficult, given the varying correlations 

between classifiers and the range of accuracies for a particular problem.  In addition, 

computation of optimal weights may have little impact on the overall accuracy compared 

to a simple average, unless the range of accuracies across classifiers is large [24, 25]. 

 

Other methods for combining classifiers: 
 

Low Bias    
 

     Low-bias combining relies on the fact that averaging is generally a variance reduction 

tool in many ensemble systems, therefore we may deal with the bias component 

separately and then seek to reduce variance.  Valentini [67, 68] successfully applies this 

approach to SVM classifiers by first exploring the lowest bias combination of tuning 

parameters, and then bagging the data to produce hundreds to SVMs built under the 

selected tuning parameters.   

 

Low correlation     

 

     Low-correlation combining selects the three classifiers with the lowest pair-wise 

correlation.  First, the two classifiers with the lowest pair-wise correlation are selected, 

and then third member is selected if it has the lowest average correlation to the two 

already selected.  The reasoning behind this is that the variance reduction is impacted 

strongly by diversity, thus we attempt to create the most diverse ensemble [41].  The 
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drawback to this approach is that low correlation is often achieved by poorer performing 

classifiers - an example of the tradeoff between diversity and performance. 

 

6.2    Classification by ensembles of random partitions (CERP) 
 

     A global ensemble method was developed [1] based on randomly partitioning the 

feature set to create k disjoint sets of predictors of roughly equal numbers of predictors.  

The strength of this method is that any base classifier may be used in the ensemble.  

CERP, our initial ensemble system, is based on optimal classification trees.  LR-T CERP 

constructs logistic regression trees.  Further details, as well as the performance of this 

method across many data sets may be found in [1, 45].  The number of partitions was set 

to be N/j, where j (j=1,2,….) is found based on a cross-validated search.  The optimal 

threshold is based on a grid search. 

     Through partitioning of the feature set, we obtain sets of predictors that may be quite 

diverse.  In addition, a big advantage of CERP is that we do not need to handle the entire 

data set as a whole; we may process large data sets by analyzing smaller dimensions in 

parallel.  Although for 1,000 predictors this is not much of an advantage, for p as large as 

100,000 predictors it promises great computational efficiency.  In addition, CERP 

provides a way to integrate the results across several platforms, while keeping each 

model platform-specific.   

     The results of CERP have shown it to be comparable or superior across a wide-range 

of data sets, compared to classifiers such as Random Forest, DLDA, SVM, LDA and 

Logitboost.   In addition, CERP achieves better balance with respect to sensitivity and 

specificity than Random Forest, which is a strength in many classification studies when 

there is a large unbalance.  Many classifiers are naturally biased towards the majority 

class. 
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6.3 Local combining of classifiers 

 
     Local weighting allows the set of classifier weights or expert classifiers to vary, 

depending on what input point we are examining.  Classifiers are built on the entire data 

set, thus retaining overall performance measures; however the aggregation of these 

classifiers is weighted to allow higher weights for those classifiers that are both locally 

unbiased and low variance.  Classifier weights are determined using a bootstrap 

evaluation of bias and variance of each classifier at the training input point, according to 

Domingos’ decomposition of classification error (see section 4.1.3).  If an observation is 

easily and consistently classified, then the prediction based on D training sets is not likely 

to vary significantly.  If an observation is harder to classify, then the classifier may 

exhibit higher variance or higher bias in that region.  Examination of several good base 

classifiers can highlight whether this behavior is consistent over all classifiers, or the 

result of one or two poor classifiers for that region of the input space.  Location of the test 

observation is determined by a nearest neighbor approach.  The main advantage of this 

approach is that it applies variance reduction through averaging classifiers only in areas 

of the input space where variance reduction is beneficial.  In areas of the space where 

high variance is important (i.e. input points where all classifiers are biased), there is no 

aggregation and the highest variance biased classifier is applied.   The main difficulty of 

this approach is the determination of the neighborhood for each test observation.   

 

Neighborhood of the test point   

 
     The location of the test observation is determined using the nearest neighbors.  

Although there is no a priori number of neighbors able to be justified, we examined k=1 

and k=3 in both the original feature space and also in the first 5-10 dimensions defined by 

the principal directions using SVD on the standardized feature matrix.   Given the high 

dimensionality of the datasets under consideration, we consider the main directions of the 

data with respect to variability to better determine the nearest neighbor.  Other methods 

of nearest neighbor could easily be considered. 



Schema for Local weighting: 
 

i=1,2,…n  denote the n observations in the dataset 

b=1,2,…B  denote the B bootstrap samples generated 

j=1,2,…p  denote the p classifiers used in the ensemble 

y   denote the true class (assuming noise is zero) 

,ˆi by   denote the predicted class for obs i, in bootstrap sample b 

 

1. For the training set, create B perturbed samples via bootstrap 

2. Examine the stability of each classifier using the OOB samples as test samples.   

3. Stability si,j:  the proportion of times classified correctly by classifier j 
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4.  Estimate Bias for classifier j at X=x corresponding to obs i :   

    Bi,j(X=x)  ,

,

1, 0.50

0, 0.50
i j

i j
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s
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5.  Estimate Variance for classifier j at X=x corresponding to obs i:      

   Vi,j(X=x)  ,1 i js= −

6.  Derive weighting scheme for each observation based on the stabilities of the  

     r ≤ p (selected unbiased or full set of ) classifiers. 
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Chapter 7 
 

 

Individual Classifiers – Performance and 

Decomposition 

 
   The performance of each classifier is examined in four of the genomic data sets both 

by accuracy estimates, as well as estimated bias and variance.  Random Forest, an 

ensemble approach, is included in this examination, as well as the simple average of all 

classifiers.  An outline of the procedure used is included in the Appendix (B).  Included 

in this assessment is the ensemble-based prediction of all classifiers, computed via simple 

averaging of individual predictions.  The impact of dimensionality is assessed by taking 

only a subset of the total set of predictors available.  The subset of predictors is selected 

on the basis of the BW ranking, therefore it is expected that the amount of information 

added will diminish with each new variable added, given that there are seemingly no joint 

effects or interactions that add large amounts of information.   
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7.1 Imprinting data 

 
   The imprinting data set has many highly correlated variables by design.  Since each 

window was constructed to be overlapping segments of the flanking region of each gene 

transcription start site (TSS), there is high correlation among elements of varying window 

sizes, as well as correlation between repetitive elements that are highly similar 

biologically.   

   Figure 9 shows each individual classifier’s and ensemble-based performance as the 

number of retained predictors is varied from 5 to 150 predictors.  When the set of 

predictors is small, most of the information is overlapping due to the large clusters of 

highly correlated features that exist in the data set.  Many of the top ranks are taken up by 

ALU elements, thus representing such a cluster.  Therefore, it is not surprising to see that 

the information gain continues for all classifiers up to about 100 predictors.  Random 

Forest and SVM-RBF clearly dominate across this range of p, with overlapping and 

sometimes crossing accuracy curves.    Linear-SVM as 3-NN are similar in performance, 

with a consistently lower accuracy than RF and SVM-RBF.  DLDA shows the most 

movement across this range, with accuracy increasing to about 80% from a starting point 

of less than 70%.  CART appears to be consistently the worse performer in this set, with 

accuracy that is quite low.   At about p=100, the amount of information being extracted 

clearly levels off for many classifiers, indicating that the addition of more predictors has 

a marginal impact on performance.   



 
Figure 9:  Individual Classifier Accuracy for the Imprinting Data for p=5 to 150 
predictors. 
 

 

 

 

     As the number of predictors is expanded into the hundreds, differences between 

classifiers begin to emerge.  Most classifiers maintain the total accuracy achieved in the 

earlier stages (when the information leveled off).  For CART and Random Forest –noise 

included in the feature list is easily handled due to the greedy way it adds variables, 

therefore it was expected that moderate dimension (and likely increasing amounts of 

noise) would have little impact on performance.   SVM-RBF and 3-NN both decline in 

accuracy with increasing dimension.  Linear SVM stabilizes at p=500 predictors and 

retains accuracy.  Interestingly, DLDA shows the same momentum as before, with 
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accuracy steadily increasing as variables are added to the weighted sum.  When p reaches 

1,000 predictors, DLDA’s performance is almost the same as that achieved by Random 

Forest.   

 
Figure 10:  Imprinting Data Set. Individual Classifier Accuracy for p=5 to 1,000  

 

 

     The reduction in accuracy for both SVM-RBF and 3NN as dimension is increased was 

explored.  The initial conclusion was that the high dimension coupled with the 

complexity of the classification yielded high variance.  However this is not the case.  

Figure 11 shows the average bias for each classifier.  As it is clear, more than 90% of the 

error is accounted for by bias.  Even after accounting for the fact that some of the bias 

term is noise (we bundle noise and bias together in this process), the bias is generally 

increasing as dimension increases.  For SVM-linear, RF, CART, and DLDA, the level of 
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bias remains quite flat across the range of p, after the initial steep transition from the 

under-fitted models (high bias) when p is low.  For SVM-RBF and 3-NN, bias is low 

when the dimension is reasonable, yet increases after about 200 predictors.  

 
    Figure 11:  Classifier Average Bias for the Imprinting Data 

 

 

     The RBF kernel used in SVM may be sensitive to dimension for many reasons.  First, 

the form of the RBF kernel is essentially squared Euclidean distance, so the curse of 

dimensionality is an issue.  The curse of dimensionality means that the observations in 

high dimensional space are extremely sparse.  The distance between the two closest 

observations is not very different than the distance from the two furthest observations 

when the dimension is high, so the concept of closeness has less meaning.  The same 

phenomenon occurs with kNN- another measure that uses Euclidean distance.  Second, at 
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a fixed level of gamma (which controls the spread of influence of each support vector), 

an increasing dimension means that the control of each support vector diminishes.  Third, 

as dimension increases, there is likely a large increase in the amount of noise directions.  

Since SVM and kNN consider the entire space, noisy and meaningless directions could 

obscure more informative directions.  The impact of this high dimension is that the bias 

term of both classifiers increases as p increases.   This can also be illustrated by 

examining the average number of support vectors used in the training set.  For p=100, 

there are about 55 support vectors on average, for p=1000, this number almost doubles to 

95.   This means that the dependence on the training set is very high when p is large.  

However this does not result in increased variance, as expected with increased 

dependence on the training set.  What appears to happen is that as dimension increases, 

the concept of distance becomes meaningless, and the support vectors do not have the 

reach of influence for many of the points.  SVM does not ignore any noisy or irrelevant 

directions in the data.  Thus, the decision for a subset of observations is close to zero (no 

decision), resulting in bias.  Trials to improve this by changing the gamma or cost 

parameters (large C should minimize bias) for p=1,000 did not alter the results in any 

meaningful way, and this bias remains the dominant factor in test error.  There is no 

making up for the large bias through tuning in high dimensions.  Therefore over-fitting 

the training set with the RBF kernel through too small a width parameter can cause high 

variance in test sets, but high bias may also occur in high dimensions due to the local 

nature of the kernel.   

     Evaluation of the variance yields less information, since the errors are mostly derived 

from bias terms.  Of interest, is the fact that SVM-RBF is observed to have similar net 

variance (though slightly higher) to Random Forest.  Since Random Forest is an 

ensemble of classifiers, the low bias and low variance achieved by SVM-RBF makes 

SVM-RBF, with proper variable screening, a very competitive classifier.  The lower 

variance is due to the internal variance minimization – namely the margin maximization 

that occurs in the procedure. 



 
Figure 12:  Net Variance of each classifier for the Imprinting Data.  Net variance added 
to bias is equal to classifier error. 
 

 

 

     The training set error is a highly biased estimator of the generalization performance.  

As dimension increases, for most classifiers the training error tends to get closer and 

closer to 1.0.  By adding information to the classifier, we expect to never lose accuracy 

with respect to the training points.  However, if we fit the training set too well, we are 

finely tuning our classifier to the nuances of those specific observations.  This has the 

tendency to over-fit the data, and thus performs poorly in new testing sets.  Figure 13 

illustrates the training minus test error for a few classifiers of interest.  The DLDA 

classifier has a training set accuracy that increases as p increases and then flattens out, 

indicating no new information.  The test accuracy continues to climb steadily, indicating 

that the classifier continues to learn and thus bias continues to drop.  The difference 

between accuracies (training and test) is an indication of the amount of optimism in the 
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in-sample estimate.  SVM-RBF on the other hand, has training accuracy that rises and 

stabilizes to 1.0, meaning that the hyper-plane in expanded feature space fits the training 

set perfectly.  However, as p increases past about 200 predictors, the testing accuracy 

decreases, meaning that the classifier is over-fitting in the higher dimensional spaces.  

Linear SVM, on the other hand, has a flat training and testing accuracy, which indicates 

that this classifier does not increasingly over-fit as p increases.  It is interesting to 

examine the spread between training and testing accuracy.  DLDA has a narrow 

difference, while SVM has a much larger band of difference.   

 
Figure 13:  Classifier training vs. test accuracy in the Imprinting Data 
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7.2 Colon data 

 
     The colon data set has some interesting aspects.  First, DLDA is again extremely 

sensitive to the number of predictors retained.  The optimal number of predictors for this 

classifier appears to be about 25.  Initially, there is a steep increase in accuracy for DLDA 

from p=5 to 25 predictors, showing the information gained by taking the weighted vote of 

a larger set of features.  After p=25, the accuracy appears to stabilize for many of the 

classifiers.  For DLDA, however, the increasing dimension is detrimental and its 

accuracy steadily drops.  As the dimension grows larger, the performance of this 

classifier declines rapidly without stabilizing.  The other classifiers appear quite immune 

to increasing dimension, or even display slightly increasing accuracies for large p (SVM-

linear and 3NN).  Linear SVM suffers from higher bias, causing the overall accuracy to 

be lower than its more flexible counterparts.   

 

 

 

 

 



 
Figure 14:  Colon data set.  Classifier accuracy across varying dimensions 

 

 

     Examination of the bias (again, the dominating term in the error) yields a noisy trend 

for all of the classifiers (Figure 15).  The bias term does not decrease monotonically with 

each new predictor being added, which may be an indication that the univariate ranking is 

not reflective of the multivariable importance of each predictor.  DLDA has the lowest 

bias at p=15-25 predictors, but then displays increased bias as p is increased.   
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Figure 15:  Colon data set.  Average Bias across varying dimensions 

 

 

In Figure 16 the reason for the bias in DLDA becomes clearer – as p is increased past 

p=30, the training error actually increases – there is no learning taking place.  The DLDA 

classifier is doing a worse job fitting the training set.  As a result, the test set is becoming 

increasingly biased.  Again, the band between test and training accuracy is narrower than 

the band corresponding to the SVM classifiers. 

     SVM with RBF kernel has a smaller difference between test and training set 

accuracies when compared with SVM-linear.  This is an indication that SVM is resistant 

to over-fitting in some situations, even when a more complex feature space is used.  

CART is a poor classifier in this data – it displays both high bias and high net variance.  

Compared to Random Forest, which are fully grown CART trees, the bias for CART 
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(with minor regularization since tree splits are stopped when the node size reaches 10) is 

0.19 (vs. RF’s bias at 0.16).  Of course we may attribute this to the fact that the trees in 

RF are fully grown.     

  
 
Figure 16:  Colon data set.  Training and test accuracy across varying dimensions 
 
 
7.3 Estrogen data 

 
     The estrogen data set has 332 predictors in total therefore it is representative of a 

much smaller data set than the other studies.  However, similar to the others, there is a 

leveling off of accuracy after about 75-100 predictors – most of the information gain 

comes with the addition of the first 10-20 highest ranked features (Figure 17).  For the 

non-linear classifiers, the increase in accuracy and decrease in bias is most steep in the 
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first 50 predictors added, while the same set of predictors does not yield the same 

information gain for the more rigid classifiers such as DLDA and linear SVM (Figure 

18).  This indicates that the decision surface may be more complex, and the linear 

classifiers are not representing it as well as the more flexible ones.  For all classifiers, the 

bias dominates the error term, though CART shows a high level of unbiased variance, 

which makes it both a high bias and high variance classifier in this situation.  The simple 

average of classifiers shows extremely low bias across all levels of p, and appears to be 

much smoother and more stable when dimension is changed.  Since the bias is lowered, 

the good variance is lowered accordingly, while the bad variance (unbiased observations 

varying around the true class) is in the middle range of all of the classifiers. 

  
Figure 17:  Estrogen data set. Classifier accuracy across varying dimensions 
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Figure 18: Estrogen data set.  Average Bias across varying dimensions 
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Figure 19:  Estrogen data set.  Unbiased variance across varying dimensions 
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Figure 20: Estrogen data set.  Biased variance across varying dimensions 

 

     Figure 21 depicts the effect of dimension on the training and testing accuracies for 

each classifier in the Estrogen data set.  DLDA shows a small difference in accuracies 

between the training and test estimates, which indicates a low level of over-fitting.  Since 

the bias in the DLDA classifier dominates, this is expected.  The linear SVM classifier 

seems to have a slight increase in over-fitting as p is increased.  The SVM-RBF classifier 

has low levels of over-fitting, thus evidence that the regularization that is internal to SVM 

can provide some protection against over-fitting. 
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Figure 21:  Estrogen data set.  Training and test accuracy across varying dimensions 
 

 

 

     The difference between training and testing accuracies is once again very narrow 

across p for DLDA, and wider for SVM.   All classifiers exhibit a lack of over-fitting that 

increases as p increases. 
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7.4 Prostate data 

 
     The prostate data has similar trends as the other data sets.  DLDA again proves to be 

extremely sensitive to dimension, with a sharply reduced accuracy after 100 predictors.  

Examination of the training set performance yields the same diminished performance in 

high dimensions, which indicates that the classifier is too rigid as p is increased – it 

cannot learn the decision function under the strict assumptions of uncorrelated features 

and equal variances.  For the other classifiers, performance is quite flat across the range 

of p and there appears to be little over-fitting in the data, even as p gets very large.  

Linear SVM appears to have a high unbiased variance (bad variance) in lower 

dimensions, causing lower accuracy, but then achieves high accuracy in higher 

dimensions as this variance is reduced and bias is also lowered.  Thus linear SVM is a 

low variance and low bias classifier in this application. 

 
Figure 22:  Prostate data set.  Classifier accuracy across varying dimension 
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Figure 23:  Prostate:  Average Bias across varying dimensions 

 

 

 

 

     The bias term is again the dominant contributor to error.  DLDA has a sharply rising 

bias, while the other classifiers are flat or have slightly lowered bias across the range of p.  

For linear SVM, the bias is low at small values of p, however the variance of the 

unbiased observations is large, thus causing error to be markedly higher in this range of 

p.  As more variables are added, this variance decreases and the overall error thus 

decreases. 
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Figure 24:  Prostate data set.  Unbiased variance across varying dimensions 
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Figure 25:  Prostate data set.  Biased variance across varying dimensions 
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Figure 26:  Prostate:  training and test accuracy across varying dimensions 
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Chapter 8 
 

Ensemble Results 
 

 

 

     The performances achieved in the five data sets are examined, and general patterns 

observed in each of the data sets.   As detailed in Chapter 3, variable screening was 

performed in order to reduce the data set to a subset of the most informative predictors.  

The average number of variables retained was p=175 (Imprinting), p=58 (Estrogen), 

p=127 (Colon), p=460 (Prostate) and p=268 (Lymphoma).  This average number was 

computed by taking the average numbers of variables retained in the informative set 

across all iterations.  Features were retained if they had a BW rank higher than that of any 

artificial variable.  Examination of the accuracy curves in Chapter 7 for each data set 

gives empirical evidence that this approach is satisfactory, given the flattening of each 

curve at or close to this retained number, with a few exceptions.  For the Colon data set, 

the retained number appears to be too large, occurring at a flat portion of the curve for all 

of the classifiers.  Despite retaining too many predictors, it appears to have not harmed 

accuracy for any of the classifiers except DLDA.   

     All data set performance is based on an ensemble containing the five individual 

classifiers described in section 3.6.1.  Within each loop of the cross validation, each 

classifier was presented with the same set of pre-screened predictors (the informative 

set), based on the variable screening method described in Chapter 3.   The screening was 

performed on the designated training set within each CV loop to obtain accuracy 
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estimates that are as close to unbiased as possible.  Although classifier performance may 

improve slightly with a feature set selected optimally for each method, the primary 

comparison of interest is the ensemble performance vs. that of the individual classifiers.  

In addition, the set of gene selected reflects those genes that appear to have some 

discriminatory information in a univariate sense.  Optimization of each classifier may be 

performed with respect to number of predictors, as well as many other factors such as 

tuning parameters, therefore the results presented may differ slightly from the highest 

attainable performance.    

 

 8.1   Imprinting data 
 

 Individual classifiers 
     The best individual classifier is SVM-RBF.  It has the lowest bias across classifiers, as 

expected given the variable reduction and flexibility of the classifier.  It also achieves 

reasonably low variance, due to the regularization internal to SVM.  CART is the worst 

performing classifier, with relatively both high bias and variance.   

 

 Ensembles 
     The results of the imprinting data set show that all of the ensemble methods tend to 

produce slightly better accuracies compared to individual classifiers.  If we take the 

selection of the best classifier into account (section 3.6.1), the *best* classifier has an 

accuracy of 0.84, compared with an ensemble accuracy of 0.86.  Both the simple (SA) 

and weighted average (GW) produce similar results, and the local average follows 

closely, but has slightly higher estimated net variance.  This is to be expected, since the 

estimation of locally derived weights from the training set is likely to increase variance.  

There appears to be little gain in defining the locality of the test point, indicating that the 

classifiers likely perform similarly to the global performance throughout the input space.   

     Random Forest also performs well, with slightly higher bias, and lower variance.   
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Table 7:  Summary of Performances: Imprinting Data Set.  SD(acc) denotes the standard 
deviation of the accuracy estimate. 
 

    Individual members                                Ensembles               

 CART 

SVM-

RBF 

SVM-

linear 

DLD

A 3-NN SA 

 

GW local RF 

accuracy 0.75 0.85 0.83 0.81 0.83 0.86 0.86 0.85 0.86

SD(acc) 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02

sensitivity 0.61 0.73 0.67 0.65 0.69 0.70 0.68 0.68 0.67

specificity 0.82 0.91 0.91 0.89 0.91 0.94 0.94 0.94 0.95

   

Bias 0.18 0.11 0.14 0.16 0.11 0.11 0.11 0.11 0.12

Vu 0.13 0.06 0.07 0.07 0.08 0.05 0.05 0.05 0.04

Vb 0.06 0.02 0.03 0.04 0.03 0.02 0.02 0.02 0.02

Net Var 0.07 0.04 0.04 0.03 0.05 0.03 0.03 0.03 0.02

 

 

8.2 Colon data 
 

Individual classifiers   
     The accuracy of the *best* classifier was 0.83, which was usually selected to be 

SVM-RBF or k-NN a vast majority of the time.  The best classifiers were SVM-RBF and 

nearest neighbors.  The difference between linear and RBF kernel-based SVM indicates 

that there is some non-linearity that is better approximated by more local methods.  Even 

the more flexible CART does not perform well in this data set.   DLDA ended up doing 

poorly given the variable selection process.  Although the number of variables selected 

was on average quite small (about 27 predictors were retained), any variability in this 

number retained would cause large swings in performance for DLDA, given the observed 

trends as the number of predictors increased (see Chapter 7).   
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Ensembles 
     Random Forest does not perform as well as the other ensemble classifiers, despite its 

flexibility.  Since the other ensembles are based on a mix of diverse classifiers, they are 

able to fit the data well, and as a result perform well.  The weighted average performs 

best out of the three, indicating that the higher weights of SVM-RBF and k-NN act in 

reducing the bias, as well as maintaining a low net variance.  It appears that the main bias 

reduction comes from the minority class.   

 

 

 

 

 

Table 8:  Summary of Performances: Colon Data Set.  SD(acc) denotes the standard 
deviation of the accuracy estimate. 
 

    Individual members                                Ensembles               

 CART 

SVM

-RBF 

SVM-

linear DLDA 3-NN SA 

 

GW local RF 

accuracy 0.74 0.84 0.79 0.78 0.83 0.84 0.85 0.84 0.81 

SD(acc) 0.05 0.03 0.04 0.06 0.04 0.03 0.03 0.04 0.03 

sensitivity 0.81 0.88 0.87 0.80 0.88 0.88 0.88 0.88 0.88 

specificity 0.62 0.75 0.66 0.75 0.72 0.76 0.78 0.76 0.69 

          

Bias 0.21 0.18 0.15 0.18 0.13 0.13 0.13 0.13 0.18 

Vu 0.11 0.02 0.09 0.07 0.06 0.05 0.04 0.05 0.04 

Vb 0.06 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0.03 

Net Var 0.05 -0.01 0.06 0.04 0.05 0.03 0.02 0.03 0.01 
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8.3   Estrogen data 
 

Individual classifiers   
     The *best* classifier had a performance of 0.79, with a higher level of variability in 

which classifier was selected to be the best.  SVM-RBF performs well again in the 

estrogen data set, along with k-NN.  There are close performances by CART and linear 

SVM, but DLDA lags behind in performance due to its sensitivity to the number of 

features selected.  SVM-RBF achieves a very low bias, but also has a low net variance, 

making it a very good classifier for this data set. 

 

Ensembles 
     On average, all of the ensemble methods out-performed individual classification.  

Random Forest was the best ensemble, achieving similar bias reduction when compared 

to the three other ensemble methods, along with a low net variance.  Weighted averaging 

performs slightly better than non-weighted since it takes into account the low bias 

performances of SVM-RBF and k-NN.   

 

 

Table 9:  Summary of Performances: Estrogen Data Set.  SD(acc) denotes the standard 
deviation of the accuracy estimate. 
 

Individual members                              Ensembles    

 CART 

SVM

-RBF 

SVM-

linear DLDA 3-NN SA 

 

GW local RF 

accuracy 0.78 0.81 0.77 0.73 0.80 0.82 0.83 0.82 0.84 

SD(acc) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 

sensitivity 0.83 0.87 0.88 0.76 0.85 0.89 0.89 0.88 0.89 

specificity 0.72 0.74 0.64 0.68 0.73 0.73 0.74 0.75 0.77 

          

Bias 0.19 0.16 0.20 0.25 0.18 0.16 0.15 0.15 0.15 

Vu 0.07 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.03 

Vb 0.04 0.02 0.03 0.03 0.04 0.02 0.02 0.02 0.02 

Net Var 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.01 
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8.4   Prostate data 
 

Individual classifiers   
     The *best* classifier had an overall accuracy of 0.93, and was usually selected to be a 

support vector machine.  All of the classifiers display low net variance, indicating that the 

bias observed in a good classifier such as SVM may be dominated by the noise in the 

system or observations that are hard-to-classify.  The linear SVM was the best performer, 

achieving a remarkably low bias in comparison to the others.   

 

Ensembles 
     Due to the higher bias in many of the other classifiers, the ensembles performed 

slightly worse than the individual linear SVM.  There is no apparent gain in using an 

ensemble, since the linear SVM appears to be consistent across all perturbations of the 

data set. 
 

Table 10:  Summary of Performances: Prostate Data Set.  SD(acc) denotes the standard 
deviation of the accuracy estimate 
 
   Individual members                              Ensembles    

 CART 

SVM

-RBF 

SVM-

linear DLDA 3-NN SA 

 

GW local RF 

accuracy 0.85 0.91 0.94 0.78 0.89 0.92 0.92 0.91 0.92 

SD(acc) 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 

sensitivity 0.88 0.90 0.93 0.82 0.86 0.90 0.90 0.89 0.89 

specificity 0.81 0.92 0.95 0.73 0.92 0.93 0.93 0.94 0.94 

          

Bias 0.13 0.09 0.05 0.24 0.10 0.09 0.08 0.08 0.08 

Vu 0.06 0.00 0.02 0.02 0.02 0.00 0.01 0.01 0.01 

Vb 0.03 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 

Net Var 0.02 0.00 0.01 -0.01 0.01 0.00 0.00 0.01 0.01 
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8.5   Lymphoma data 
 

Individual classifiers   
     There were many good classifiers for this data set, with DLDA having the highest 

accuracy and the *best* classifier also achieving an accuracy of 0.96.  This is likely the 

easiest data set to fit, however CART is observed to have significant problems with 

extremely high unbiased variance, and as a result, high net variance.   

 

Ensembles   
     The three ensembles based on the aggregation of the individual classifiers out-perform 

Random Forest by having a lower bias, though slightly higher net variance.  Random 

Forest seems to have the same bias issues as observed in the CART procedure. 

 

 

 

Table 11:  Summary of Performances: Lymphoma Data Set.  SD(acc) denotes the 
standard deviation of the accuracy estimate 
 
   Individual members                             Ensembles    

 CART 

SVM-

RBF 

SVM-

linear DLDA 3-NN SA 

 

GW local RF 

accuracy 0.75 0.96 0.96 0.97 0.89 0.96 0.96 0.96 0.94 
SD(acc) 0.06 0.02 0.03 0.02 0.04 0.02 0.02 0.03 0.02 
sensitivity 0.73 0.97 0.97 0.99 0.84 0.97 0.98 0.98 0.97 
specificity 0.78 0.96 0.95 0.94 0.95 0.95 0.95 0.95 0.91 
          
Bias 0.09 0.02 0.02 0.02 0.09 0.02 0.02 0.02 0.06 
Vu 0.17 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02 
Vb 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 
Net Var 0.16 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.00 
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8.6   Summary of results 

 
     In this small, but representative, set of genomic data sets, it is clear that classifier 

performance varies, and that there is no dominant classifier on all data sets in this 

domain.  Issues such as dimension and tuning affect results greatly, making a valid 

comparison of classifiers difficult for methods which are sensitive to these parameters.  

We attempted to fix the set of predictors under consideration by applying a simple 

threshold based on the univariate ranking.  Although this may cause the performance of 

some classifiers to be slightly reduced compared to the absolute optimal performance, we 

feel that a comparison based on a fixed set is justified given that this reduced list 

represents an informative set for the problem at hand.  Based on this fixed set, classifiers 

were evaluated and several observations were made.   

     The first is that the support vector machine classifier is an extremely powerful and 

consistent classifier.  Depending on the kernel used, the results were always comparable 

or superior to other methods of classification.  The RBF kernel appears to be the best 

performing across the range of genomic data sets.  Despite its complexities, SVM appears 

to be quite a low variance classifier, with less over-fitting of the training set and good 

generalization capabilities.  As examined in Chapter 7, the success of this classifier 

depends upon the feature set used.  Although it generally performs well across a wide 

range of dimensions due to internal regularization, there are cases where the 

dimensionality may cause poor results, such as in the imprinting data set.  DLDA has a 

varied performance, due to its high level of dependence on the number of retained 

features.  In the same data set (Colon), DLDA achieved both the best and worst 

performances.  In the imprinting data set, the DLDA classifier went from one of the 

worst, to the best individual classifier.  This observation is slightly different than that of 

Dudoit [20], who found DLDA to be consistently the best performer in a small set of 

microarray data sets.  The difference may lie in the fact that Dudoit et al. pre-selected a 

small set of predictors (p=30 or 40), therefore DLDA’s sensitivity to dimension was not 

observed. 
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     Random Forest was shown to be a good ensemble-based classifier across all of the 

data sets, consistent with other reports [10, 13].  It is obviously superior to using a single 

CART tree, achieving low net variance and a lowered bias.  Some of the bias reduction 

may come from the fully-grown trees used in RF, compared to the CART tree, which was 

stopped from growing too large by requiring a minimum size of 10 in each node to split.  

There are likely more successful methods to prune or regularize CART to prevent over-

fitting, thus the results achieved here are likely to not represent the maximum possible 

accuracy.  Despite this, the results observed in this study are highly consistent with those 

observed in others on the same data sets [1].   

 

 

 
Table 12:  Summary of Performances across five representative  
genomic data sets, rounded to the closest 0.50, taking ties into account. 
 

 

 

Individual classifiers: 

Classifier Average Rank  

across data sets 

(min, max) 

CART 4.4 (3,5) 

SVM-RBF 1.5 (1,2) 

SVM-Linear 2.5 (1,4) 

DLDA 4.0 (2,5) 

3-NN 2.5 (2,4) 
 
 

Ensembles:  

SA 2.5 (1,3) 

GW 2.0 (1,2) 

Local (locally optimal) 3.0 (2,4) 

RF 2.5 (1,4) 
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     The combining of classifiers, either through a simple or weighted average proved to 

be a successful approach for these applications.  The reduction in error was mainly bias-

related, therefore it is likely that the decisions of each classifier were likely quite stable 

(low variance) across training sets, but for a subset were stably incorrect.  Through the 

consideration of multiple diverse representations, this bias was reduced.  The poor 

prediction of a single classifier was mitigated by the good predictions of the others.  The 

weighted average was beneficial in some cases; however the simple average also 

performed very well, despite the presence of some poor individual classifiers.  

Comparing the weighted and simple average performances to Random Forest, we find 

that both all three are successful strategies; however the weighted average appears to be 

more stably successful across data sets.    

     The locally-derived weighting scheme does not improve the predictive performance of 

the ensemble.  Although the computed weights are diverse across observations, 

signifying that there are some classifiers that perform better for specific observations, the 

identification of the nearest neighbor to the testing point, as well as the estimation of the 

proper weights has obvious limitations.  It is, however, a method that should be explored 

with larger data sets.  The idea that different classifiers may be selected and combined 

uniquely for a particular observation is akin to applying different models in different 

parts of the space – a common application.   
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Chapter 9 
 

Variable and feature set importance  
 
 

 

     In most genomic studies there are two goals.  The first goal is the accurate prediction 

of new observations.  How we predict is often not as important as the results of the 

prediction (i.e. accuracy).  Therefore issues like dimensionality, multicollinearity, and 

magnitude of effects are usually secondary to obtaining a good fit to the data.  The 

second goal, which requires a much more in-depth understanding of the decision 

function, is the examination of how features contribute to the overall fit.  Understanding 

the contributors to the chosen classifier can allow construction of new hypotheses, as well 

as confirmation existing theories.   

     The most common method of assessing variable importance is a simple univariate 

ranking.  This is a highly informative process, yielding a set of features that each exhibits 

a strong association with class status or response.  Usually, there are clusters within the 

rankings, representing groups of highly correlated variables.  Therefore, one of the 

strengths of a univariate importance measure is that we retain the entire set of informative 

genes, since all genes within a given cluster will have similar test statistic magnitudes.  

The main drawback to this approach is that we fail to consider multivariable or non-linear 

aspects to the data.  In addition, the optimal set of singular predictors may not be the 

optimal multivariable set for a given classifier.  Some genes are likely to work jointly- 

yielding marginal or uninformative associations alone, but highly significant associations 
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with class status when considered together.   We may exclude such variables, thus losing 

information and classifier performance without even knowing it.  

     Multivariable methods are often performed via a greedy search, such as is done in 

stepwise selection, backwards selection or similar.   It is computationally prohibitive to 

search exhaustively for many genomic-based applications.  These greedy selection 

strategies have been around for a long time in traditional regression modeling, and have 

found a new importance given the large numbers of features being considered and the 

computational efficiency they possess in screening large numbers of variables.  In SVM 

for example, new variable importance measures are based on a backwards deletion of 

features that have little weight or negligible impact on the margin when removed one at a 

time, or in groups [30, 75].  Alternatively, Random Forest determines variable 

importance via sensitivity analysis by perturbing the data one-by-one for each feature and 

observing the impact on purity or accuracy [10, 16].  Both types of methods may easily 

be applied to many types of classifiers.   

     As we have shown, most classifiers will benefit when used in conjunction with 

variable screening.  The removal of noisy and unreliable directions will allow proper 

evaluation of the classifier within a more informative subspace.  If we examine the 

figures in Chapter 7 we observe that as the number of features are increased from smaller 

sets to much larger sets, there is a consistent leveling off of information across all data 

sets considered.  This leveling off may signify that all of the informative genes are being 

captured successfully by the top univariate ranks.  However, this leveling off may also be 

an indication that we are at the limit with what may be captured given the sample sizes 

we are using; subtleties in the data are unable to be clearly learned with so few 

observations.  Although classifier performance does not currently seem to be hampered 

with the use of the top features from the univariate list, it is informative to compare the 

univariate rankings with those determined by multivariable methods, and summarize 

across both methods. 

     Random Forest outputs a variable importance ranking that is based on the change in 

accuracy or Gini purity index when the variable in question is randomly permuted in all 

trees it is present in.  If the variable is in many trees, and is consistently close to the root 

node, the impact of perturbing the data will be large.  If the feature is in few trees, or 
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close the bottom leaves, then the impact is likely minor.  The advantage to using this 

importance measure is clear – we are considering importance in a multivariable setting, 

as well as over hundreds of trees based on perturbed data.  The only drawback to this 

method is that there is a reported bias inherent in the RF procedure, biasing the greedy 

selection process towards features with larger numbers of potential splits [58].  If there is 

a selection bias in how features are added to trees, then there will be a bias in their 

importance using a sensitivity analysis.  In our comparison, the set of important features 

in RF is defined to be those that are ranked higher than any artificial variables. 

     We compare the rankings based on the univariate BW statistic and Random Forest VI 

measure in Table 13.  The top ranking features according to RF importance are relatively 

far down the univariate list.  L2 and AT rich counts are considered most informative, 

followed by CR1, ALU, and MER type features.  The difference in ranking, particularly 

for L2 and AT rich is striking, yet we have likely captured many of these predictors for 

the multivariable classifiers since they are, on average, ranked before the noise features.  

Therefore, in terms of inclusion into our informative set, there is a high level of 

consistency between the rankings.  In the extremes, the lowest ranking features in 

Random Forest are very low ranking in the BW based test, or not present at all in the pre-

screened variables.    
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Table 13:  Variable importance measures for the imprinting data set.  RF importance is 
based on the RF analysis of importance and BW rank is based on the univariate summary 
of information 
 

Feature RF - importance BW rank 
L2_DNSC500 1.452736606 201 
L2_DNSC250 1.31952056 70 

ATRICH_UPSC250 1.270920053 65 
ATRICH_DNSS500 1.25945717 94 

CR1_DNES500 1.243351189 27 
ALU_DNSS500 1.23086399 1 

MER1T_DNES250 1.200909678 233 
ALU_DNSC500 1.191346081 3 
ALU_DNES250 1.188149396 11 

MER1T_DNEC250 1.141197417 47 
s15 1.137938788 22 

ATRICH_UPSS250 1.128641761 88 
ALU_DNSC250 1.128432538 8 
CR1_DNSS500 1.126541131 40 
CR1_DNEC500 1.1152653 23 
ALU_DNSS100 1.107512375 6 
MIR_DNSS250 1.085808748 48 

ATRICH_UPSC500 1.054211927 81 
ALU_DNEC500 1.029981591 14 
ALU_DNES500 1.02388921 12 

L2_DNSS500 1.020285586 226 
MER1T_DNSC500 1.009059126 50 
ATRICH_DNSC500 0.99575449 78 

L2_DNSS250 0.986175526 117 
L2_DNES500 0.982621392 NA 

ATRICH_DNES500 0.978675985 128 
MIR_DNSC500 0.969180705 55 
ALU_DNSC100 0.955719243 9 
ALU_DNSS250 0.94614827 5 
CR1_DNSC500 0.92875167 19 

MER1_UPSS500 0.927121818 NA 
CR1_DNES250 0.924897973 128 

GCRICH_DNSS100 0.912136915 235 
ALU_DNSS25 0.902461446 4 

CPG_GENEBODY 0.885623011 73 
ALU_DNEC250 0.88201224 13 
MIR_DNEC500 0.868004997 76 
ALU_DNES50 0.867248669 46 

ATRICH_DNSS250 0.866467553 210 
SIMREP_UPSS250 0.86336915 21 
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Table 13: continued from previous page 
 

Feature RF – importance BW rank 
MER1_UPSS250 0.853078796 NA 
ALU_DNSS50 0.851263804 2 
CR1_DNSS250 0.829445103 156 

ATRICH_UPSS500 0.827885448 119 
MIR_DNSS500 0.812599464 186 
MIR_DNSC250 0.803829331 26 

MER1T_DNEC500 0.790945645 56 
ALU_UPSC50 0.787591518 16 
MIR_DNEC250 0.78395724 34 
ALU_DNES100 0.775813025 35 

MER1T_DNSS500 0.74250387 146 
ALU_UPSC250 0.735940549 44 
ALU_DNSC25 0.733974368 10 

ATRICH_DNEC500 0.733878249 90 
TC2_DNSS500 0.727501212 101 

ATRICH_DNES250 0.724648649 NA 
ALU_UPSC100 0.724179575 25 
ALU_DNEC100 0.722369666 32 

MER1T_UPSC500 0.713028127 86 
L2_DNEC250 0.710601406 164 
TC2_UPSC500 0.709844168 54 
ALU_UPSS50 0.698891726 15 
ALU_DNSC50 0.68962069 7 
CR1_DNSS100 0.685598774 232 
CR1_UPSS500 0.680529 58 
ALU_DNES25 0.679608997 33 
L1_UPSC250 0.670963852 NA 

MER1T_DNSS250 0.660013958 NA 
MIR_DNSS100 0.652591515 131 

ATRICH_DNEC250 0.641577678 225 
GCRICH_DNSS50 0.6233838 115 
MER1T_DNES500 0.61878625 193 

L2_UPSS500 0.603230923 NA 
ALU_DNEC50 0.598314865 45 

GCRICH_BDYS10 0.593465103 92 
ALU_UPSS250 0.592305492 37 
ALU_UPSC25 0.584142318 18 
ALU_UPSS5 0.582773082 36 

TC2_UPSS500 0.581624745 49 
SIMREP_UPSS500 0.566384117 71 

TC2_DNES500 0.558064892 91 
CR1_DNEC250 0.556785638 66 
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Table 13:  continued from previous page 
 

MIR_DNES100 0.554526442 182 
CR1_DNSC250 0.552058714 89 
MIR_UPSC250 0.545406827 95 
ALU_UPSS25 0.544317804 17 

GCRICH_DNSC250 0.543782305 NA 
ERVL_UPSS250 0.543573622 NA 

ATRICH_UPSC100 0.539443243 80 
ALU_UPSS100 0.537602715 20 
ALU_DNSS10 0.535002748 30 

GCRICH_UPSS10 0.530668512 230 
s13 0.527777218 57 

L2_DNSC25 0.519420229 NA 
MIR_DNSC100 0.516374352 53 

PIGGY_DNSS500 0.51468268 135 
PIGGY_DNES500 0.511875571 130 

ALU_DNES10 0.510338355 60 
TC2_UPSC250 0.510286949 116 
MIR_UPSS250 0.50872554 157 
MIR_UPSS50 0.492483432 243 
ALU_UPSS10 0.487853988 43 
CR1_DNES100 0.482068086 220 

SIMREP_UPSS100 0.477446489 59 
MER1T_UPSS500 0.472842077 238 
CRICH_UPSS250 0.471893924 NA 
GNUM_DST250 0.47113947 NA 

L1_DNES50 0.460398017 NA 
L2_UPSC250 0.458204776 NA 

ALU_DNEC10 0.457028686 68 
GCRICH_BDYC10 0.45623144 110 

CPG_DST25 0.454216966 NA 
TIP100_DNSC500 0.450380776 NA 
ATRICH_DNSS50 0.446572287 159 

ALU_UPSC500 0.443806782 114 
m1 0.442242118 NA 

ALU_UPSC10 0.440106884 39 
L2_UPSC500 0.438766249 NA 
CPG_DST10 0.432596948 132 

CR1_UPSC500 0.432273059 41 
L2_DNEC500 0.429468016 245 

CRICH_UPSS50 0.428076117 224 
MIR_DNSS10 0.425234422 154 

CRICH_DNES100 0.424492338 NA 
CR1_UPSC250 0.419092454 108 
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      If we examine features individually, it is clear that many highly ranking features in 

RF are lower on the list in the BW set.  This is due mainly to the large clusters of 

correlated predictors that dominate the tops spots on the univariate rankings.  The ALU 

cluster (highlighted) represents such a cluster.  These predictors are all highly related, and 

come from the larger ALU windows.  Retaining all of these features is generally not 

harmful with respect to any classification procedure, since accurate prediction tends not 

to be hampered by collinearity in many methods of classification. 

     A descriptive approach to understanding likely clusters in the set of informative 

features is to use principal components analysis (PCA) and examine those features with 

high loadings (>0.60) on unique factors.  Given the set of components, we are able to 

examine the univariate rankings to gauge cluster importance (Table 14).  The ALU 

cluster is clearly the dominating cluster, with the highest average rankings, as well as a 

high visibility in the screened subset.  AT rich elements, ranked highly on the RF list, are 

also ranked well in the cluster rankings, though it is much less dominant of a feature in 

univariate ranks when compared with ALU.  CR1 sequence features are related to LINES 

– they are known as “L3’s” and represent an ancient feature of DNA that is shared with 

birds (CR=chicken repeats).  This is observed in the data as CR1 and L1 elements share a 

common component.  Both ranked lists show that CR1 and L1s are important features.  

There is a bigger presence of L1 elements in the ranked list (11% vs. 6%), and they 

occupy a higher average univariate-based rank than CR1 elements (156 vs. 116) which is 

also observed in the RF rankings.  The s15 and s16 motifs are also biologically related 

motifs and are ranking highly in both lists. 

     Although L2-type features are highly ranked in the RF list, with the most important 

feature being a large window L2 count, it ranks only 201 in the univariate rankings.  In 

fact, the first appearance of L2 in the univariate list occurs at rank=70, followed by 

another at rank=117.  At first glance this appears to be quite a large difference between 

ranking systems; however L2 elements are associated with MIR elements, which are 

highly ranked via the BW statistic.  L2 and MIR elements are biologically related since 

MIR elements die off when L2 elements do.  A factor that should be considered is that 

Random Forest has an element of randomness to it, given that it relies on bootstrapped 

data and random selection of features.  Even with 1,000 trees under consideration, the 
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important features will vary based on run and criterion used (Gini index vs. accuracy 

reduction).  The high level of consistency between the univariate and multivariable 

rankings gives more stability and reliability to which features are important for this data 

set.  This consistency does not mean that we can ignore relationships between variables 

(recall the poorer performance of DLDA in many examples) and non-linear aspects to the 

data.  It does indicate that selecting a good-sized informative set based on univariate 

ranks is a practical approach in variable screening for data sets of this size and type.   

 
 
 
 
 
 
 

         Table 14:  Components of sequence features using PCA and their average ranking based 
on univariate ranks.  Proportion of screened set is relevant for features with equal 
numbers of initial features under study and represents the proportion of times the 
element (over varying window and count/size) appears in the screened set. 

 
Cluster Cluster Rank  

 
Proportion of screened set* 

ALU 1 15% 
AT rich 2 5% 
S15/s16 motifs 3 -- 
MIR/L2 4 10% / 3% 
MER 5 4% 
ERV/CR1/L1/Piggy/Tc2 6 3%/ 6%/ 11%/ 13%/ 11% 
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Variable importance using support vector machines 
 

     As a secondary approach to multivariable feature importance, we use a backwards 

selection approach for SVM to assess which variables are considered important for this 

classifier.  Backwards selection has been a common screening approach in the regression 

literature, and the process used in SVM by the machine learning community suffers from 

the same issues and strengths.  There are two (quite similar) approaches that are currently 

most used, SVM-RFE (recursive feature elimination) and Recursive SVM [30, 74].  R-

SVM assesses variable importance through evaluation of the individual weight 

coefficient  in the SVM classifier, but adjusts this weight by the difference in class 

means.  This has the effect of being more robust to outliers and noise, since all of the 

training data are used in computing the mean differences (instead of just the support 

vectors).  SVM-RFE uses the square of the weight corresponding to each feature, and is 

based completely on the support vectors, rather than the average observation.  This 

approach (which uses only those observations on the boundary, rather than the “average” 

observation) can also be advantageous in finding informative predictors; however the 

best method is, as always, data-dependent.  The main goal in either method is to derive a 

set of informative features, with the understanding that the top ranked features within the 

retained subset may not be most important outside of the set.  Both feature elimination 

methods will be impacted by multicollinearity since it is expected that correlated features 

will have a diminished ranking due to their non-uniqueness.  However, it is expected that 

at least one representative feature from each cluster will be present in many moderate-

sized informative sets.  In order to arrive at a single informative set, we ran several 

iterations of elimination until the size of the informative set was reasonable.   

 

 

 

 

 

 

 



General Overview of Recursive Feature selection in SVM  
1. Fit the SVM classifier using the full set of predictors 
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i ix

2. Compute the weights, wi for each predictor      

1

n

i i
i

w yα
=

=∑   

where:  

αi is non-zero for all support vectors 

yi is the class status of obs. i 

xi is the feature measurements for obs. i   

                                                                                                           

3. SVM-RFE:  Rank features by wi2 

4. R-SVM:  Rank features by wi (m1-m0), where m1 and m0 are the class means 

of the two classes. 

5. Remove the bottom 25% of features. 

6. Repeat analysis on reduced feature set. 

 

 

     We repeated this process eight times, ending up with a list of 240 informative features.  

Stopping was based on the size of the data set, rather than the accuracy of the resulting 

model since the goal of this analysis is to explore the most important features.  Table 15 

gives the top 25 features obtained from backwards selection of a SVM with RBF kernel 

using the squared weight as the ranking criterion.  There was little difference between the 

two ranking criteria in this data set.  As it is clear, the set of informative features is again 

comprised of ALU, CR1, MIR and L2 elements.  This is supportive of both the RF 

variable importance results and the univariate results, giving a clear indication that the 

same set of predictors is informative over a multitude of different classification strategies.   

If we allow the process to run for 10 iterations, we end up with a reduced subset of 135 

predictors.  Figure 16 shows the top 25 features in this informative set.  The relative 

positions have changed, with CR1 and MIR elements having a higher rank than ALU, as 

well as a bigger presence of L2 elements.  The redundancy of the ALU elements is likely 

resulting in more of these important, but overlapping elements being removed from the 
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informative set.  Consistent with univariate and RF-based measures, the large windows 

(250-500) are the dominant window size observed in the RFE-based set.  In using SVM, 

this result is particularly striking.   

 
 
 
 
 
 
 
 
Table 15:  Variable importance based on recursive SVM selection.  The final rank is 
based on 8 iterations of backwards selection based on the criterion used in R-SVM 
 

Feature Rank 

CR1_DNEC250 1 
CR1_DNEC500 2 
ALU_DNSS500 3 
ALU_DNES500 4 
ALU_DNSC500 5 
CR1_UPSC500 6 
CR1_DNSC250 7 
ALU_DNES250 8 
ALU_DNEC250 9 
ALU_DNSS250 10 
MIR_DNSC250 11 
CR1_DNSS500 12 
CR1_UPSS500 13 
CR1_UPSC250 14 
MIR_DNSS250 15 
MIR_DNEC250 16 
MIR_DNSS500 17 
CR1_UPSS250 18 
CR1_DNSS250 19 
L2_DNSC250 20 
L2_DNSC500 21 

MIR_DNES500 22 
MIR_UPSS250 23 
MIR_UPSC250 24 
L2_DNEC250 25 
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Table 16:  Variable importance based on recursive SVM selection.  The final rank is 
based on 10 iterations of backwards selection based on the criterion used in R-SVM 
 

Feature Rank 

CR1_DNSC500 1 
MIR_DNSC250 2 
CR1_DNEC250 3 
MIR_DNSS250 4 
MIR_DNEC250 5 
ALU_DNES250 6 
ALU_DNSS250 7 
CR1_UPSS500 8 
L2_DNSC500 9 
L2_DNSC250 10 
L2_DNEC250 11 
MIR_UPSS250 12 
MIR_UPSC250 13 
CR1_DNSS250 14 
MIR_UPSS500 15 
L2_DNSS250 16 

ERV1_DNES250 17 
L1_DNSS250 18 
L2_DNES250 19 

ALU_UPSS250 20 
ALU_UPSC250 21 

SIMREP_UPSS250 22 
L2_UPSC500 23 

ERVL_DNSC500 24 
L2_UPSS250 25 

 

 
     The results obtained are based on the RBF kernel.  If we instead use a linear kernel 

for the support vector machine, we will end up with a different set of ranks, based on the 

relative impact of each feature on the margin.  However, it is observed that many of the 

same elements are present in both sets of informative features.   
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Window Size      

 
    The most informative window size appears to be in the range of 250-500, as opposed 

to smaller, more local influences captured by using narrow windows flanking the gene.  

In considering the entire informative set based on either univariate ranks or Random 

Forest importance, Simple Repeat elements and to a lesser extent ALU and MIR 

elements, have a larger range of informative widow sizes (5 to 500kb), meaning that the 

narrowly defined windows are part of the informative set, in conjunction with the 

information in the larger windows.  For these elements, the local aspects of the gene 

appear to be informative in addition to more global patterns.  For other important 

sequence features, the informative window sizes are primarily those that are in the range 

of 250 to 500kb.   This is true of MER, L2, CR1, and AT rich elements.  If we consider 

the recursive process using SVM, we observe the same trends.  As we further refine the 

list based on more iterations of backwards elimination, the informative set increasingly 

becomes based on windows of 250-500kb only.   This provides important insights with 

respect to local vs. global control of the gene. 

 

Stability of Predictions across classifiers 
 

     One advantage to having ensembles of classifiers is that we may create subtypes of 

observations within outcome class.  If we use the stability of each prediction At X=x 

estimated via bootstrap or cross validation, we may take the median stability as a 

summary measure.  When we use several classifiers, we are able to further assess the 

stability of prediction across classifiers. Observations that are easy for any classifier to 

predict consistently may be robustly labeled as “easy” observations.  Observations that 

cause disagreement between classifiers (the diverse predictions that ensembles benefit), 

and those with low margins, are considered “boundary” observations.  Finally, those 

observations that are consistently misclassified by all systems across all training samples 

are labeled as “hard” observations.   
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     If an observation is far from the theoretical decision boundary, it is expected that 

most, if not all, classifiers will correctly classify this observation most of the time.  In 

other words, the stability at X=x for each classifier will be close to 1.0.  If an observation 

is close to the theoretical decision boundary then the predictions of most classifiers will 

be noisy or consistently incorrect (for a biased classifier).  Given this, observations may 

be re-evaluated based on the ease of prediction.  In the imprinting data set, there are 7 

hard-to-classify cases (MEST1, NNAT, PLAGL1, COPG2, PEG10, ZNF215, CPA4).  Of 

these, 5 out of 7 (71%) are paternally expressed genes (ZNF215 and CPA4 are maternally 

expressed), many (4/7) residing on chromosome 7.  Chromosome 7 currently contains 3 

imprinted gene clusters – one of which is comprised of CPA4, COPG2 and MEST1 on 

the q arm (7q32).  Therefore, there is some evidence that this specific cluster has 

sequence characteristics that are different than the other imprinted genes, thus making 

these member genes harder to classify.  In future analyses, it may be preferable to remove 

this cluster.  In addition, NNAT is a paternally expressed gene that is located within a 

non-imprinted gene (BLCAP).  It therefore is likely that the regions flanking NNAT are 

highly characteristic of a non-imprinted gene.   
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Chapter 10 
 

Conclusions and Future Work 

 
 

     There are many classifiers, and tens of variants of each classifier, all with the same 

general goal:  to provide a classification scheme with high levels of accuracy across all 

testing sets.  Classification differs from estimation in one important regard – the usual 

additive bias and variance breakdowns in estimation error do not always hold in 

classification.  Traditional high bias estimators can become powerful classifiers, since 

high estimation bias, such as that caused by over-smoothing, does not always result in a 

loss of classification efficacy.  As Friedman points out [22], all we need to have is the 

observation be on the correct side of the decision boundary.  Therefore, it has been 

observed that simple classifiers such as DLDA or naïve Bayes will perform as well as 

complex methods such as SVM.  This relative similarity between simple and complex has 

been characterized by Hand [30] as an “illusion of progress”, meaning that the novel 

classifiers being constructed are no better than the set of standard classifiers that existed 

decades ago.  Despite the success of simple classifiers across many applications, there is 

a growing body of work to suggest that the newer methods are also highly successful 

classifiers, as well as strong estimators.   Methods such as Support Vector Machines and 

Ensemble-based classifiers have been shown to complement, and sometimes offer a 

substantial advantage to, standard methods, as illustrated in this work.  The regularization 

offered internally through the SVM process is shown to be highly successful in the 
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genomics domain.  Although these methods are more “black box” than a simple DLDA, 

new ways to measure variable importance are emerging, and using multiple 

representations of the data via ensembles provides informative summaries of the data.   

     This dissertation attempts to evaluate some of the most common classifiers with 

respect to error, and focuses on the decomposition of this error into bias and variance.  

The strength of this decomposition is that it offers a hint of why certain classifiers fail, 

and the impact of high dimension with respect to error.  Although bias and variance have 

been evaluated previously [17, 38], it was studied to provide empirical evidence 

concerning variance reduction in bagging and bias reduction in boosting - there is little to 

date that studies this decomposition to evaluate individual classifiers with respect to 

increasing dimension and complexity.  Although high error, whatever the source, is 

detrimental, knowledge of whether this error occurs due to high variance as opposed to 

high bias is informative for many reasons.  First, high variance is typically associated 

with over-fitting, which is usually attributed to a large number of parameters being 

estimated.  The classifier fits the training data so well that it produces highly varying 

predictions on new data.  On average, the classifier is correct since the true signal is being 

modeled correctly along with the noise from the training set.  High variance is able to be 

corrected – either through simplification of the model, or larger sample sizes, or through 

model averaging.   

     High bias comes from lack of representation, which is attributed to under-fitting the 

data, either with fewer parameters than needed (for example:  missing an important 

predictor in the model) or a too rigid classifier (linear models instead of non-linear).  We 

show that Support Vector Machines may exhibit high bias when the dimension is too 

large and as a result the support vectors have no reach or influence except in their 

immediate area.  The classification boundary imposed by the classifier is off from the 

true boundary.  Bias may be corrected by expanding the model complexity or adding new 

features, however it is a harder problem to fix. Assuming that there is no noise term, bias 

represents the classifier’s inability to correctly and consistently classify a set of 

observations within the larger data set.   

     We show the breakdown of bias and variance for each classifier and find some 

surprising results.  First, the simple classifier DLDA is highly sensitive to dimension, 
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more so than any of the more complex classifiers.  Also, DLDA suffers, as expected, 

from high bias in many situations, but also can display a larger than expected net variance 

relative to other classifiers.  Support vector machines, on the other hand, can display low 

bias and variance, despite their complexities.  However, contrary to many reports, SVM’s 

are not resistant to the curse of dimensionality.  As we observed, kernel methods which 

use Euclidean distance may be adversely affected by high dimension.  In such 

dimensions, the decision function may consist of spikes corresponding to the area close to 

the support vectors, and a flat decision surface elsewhere.  This will result in a high 

training accuracy, but a highly biased classification of new data.  SVMs often benefit 

greatly from variable reduction, and this reduction may explain why linear SVM is often 

found to be similar in performance to the RBF kernel.  If linear SVM can handle high 

dimensions as well or better than RBF kernels (which are more local in nature), then 

studies where all features are included may be biased towards linear kernels.  In addition, 

in high dimensions the data are likely separable, thus the regularization achieved using a 

linear kernel may result in better generalization.  High dimension also appears to affect 

the simple classifiers.  DLDA has a high sensitivity to increasing dimension.  In cases 

where added dimension is detrimental, it is often the bias term that increases, rather than 

the variance.  The rigidity of this classifier that often allows low variance and low bias 

with fewer predictors, may change into a high bias classifier when more variables are 

considered as the impact of this rigidity becomes more pronounced.   

     Ensembles are the next step in classification progress.  It has been shown, both 

theoretically and empirically that combining predictions based on perturbations of a fixed 

classifier is largely a variance reduction technique, assuming that the biases of the 

classification do not change.  We explore several alternative ensembles that use different 

classifiers, rather than different versions of the training sets, such as in bagging.  This 

method, although intuitive and quite simple, has not been explored fully in the 

bioinformatics or machine learning literature.  The main advantage to combining a set of 

diverse classifiers appears to be in bias reduction, as opposed to variance reduction.  The 

diversity introduced by the different classifiers created a majority unbiased classifier at 

X=x, resulting in lower bias.  How to exploit this lowered bias further is another research 

topic.  Although the location-specific weighting used in this study proves to not confer 



 111

much advantage over simple averaging or global weighting, it should be explored with 

larger samples sizes and more variation in how location is assessed in future studies.   

     In conclusion, ensembles offer a way to consistently combine a set of classifiers to 

yield a comparable or superior accuracy.  Even a simple average of five classifiers 

offered a stable and robust method to aggregate decisions.  The weighted average was 

observed to be the best combination method in this study, as it offers some protection 

again a few poor classifiers in the set.  Using bootstrap-based estimates of accuracy, 

rather training estimates likely prevented over-fitting, therefore this is the recommended 

approach for weight construction.  Although we used a fixed set of predictors on each 

classifier, future work will allow diverse platforms (such as gene expression and protein 

abundance) to be integrated, evaluated separately, and then combined.  The added 

diversity stemming from independent predictor sets is the main idea of CERP, and will 

likely enhance the success of combining diverse classifiers based on different or 

combined sets of features.  It is likely that ensembles will benefit from base member 

selection as much as models benefit from variable selection, a future research direction in 

this area [34]. 

     Variable importance is a vital aspect of building classifiers, especially given the 

sensitivity of some methods to dimension.  In addition, understanding which variables are 

the largest contributors to the decision allows new hypotheses to be made regarding 

disease, potential gene targets to be explored for treatment, or more simply which 

features to measure and focus on in future studies.  Variable importance was briefly 

examined in the imprinting study, with the goal of understanding the multivariable 

rankings obtained by Random Forest and SVM in the context of the univariate rankings 

via the BW statistic.  While it is hard to completely characterize the relationships of 

features to response given the complexities of the classifiers involved, we may begin to 

examine the differences in ranking through careful examination and a priori knowledge 

of feature relationships.  We found that in the imprinting data set, each method was 

telling a similar story, and that the set of informative features mainly consisted of the 

patterns of ALU, MIR, L2, and CR1 sequence features in more far-reaching areas around 

the gene.  Research, already underway, will take these individual importance measures 
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and combine them to allow multiple representations to be summarized to gain a wider 

picture of importance for a particular problem.   

     It is also possible to use bootstrapped estimates of stability in conjunction with 

stability over a set of classifiers to determine which observations sit closer to the 

boundary and are, therefore, predicted with less certainty across many forms of classifier 

and over many training sets.  This is informative for many reasons.  First, there may be 

new observations that cannot be predicted with much certainty.  If we simply output a 

class label, we fail to understand whether the assignment has been made with confidence.  

Examining the prediction across multiple classifiers and across multiple perturbations of 

the data gives a better idea of whether it is a hard to fit observation, or simply the wrong 

classifier was used to predict.   

 

In summary, this dissertation made the following contributions: 

 

• A comprehensive bias-variance breakdown for many standard classifiers 

across varying dimension to examine the effects of using large feature sets 

• Novel approaches in ensemble methodology were explored.  A locally 

optimal weighted ensemble was created. 

• An ensemble of classifiers that combines via a simple or weighted average 

can improve or maintain accuracy, with some additional stability with 

respect to performance across and within data sets 

• Using diverse classifiers can lower bias, as opposed to the variance 

reduction observed in bagging procedures.   

• A classifier for genomic imprinting based on the ensemble of five diverse 

classifiers was built 

• An understanding of the important features with respect to imprinting 

• A comparison of Random Forest’s variable ranking, SVM-based feature 

elimination method, and a univariate approach on the imprinting data set. 
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Limitations 

 
     The limitations of this work are similar to those present in any comparative analysis of 

classifiers.  The success of any comparison rests on the minimization of all biases that 

favor one classifier over another.  The performance of each classifier was maximized 

with: 1) the selection of variables based on information content to reduce noise, 2) a good 

understanding of how each method works, and 3) appropriate tuning parameters and 

regularization.  Despite this, there may be some inadvertent biases towards some methods 

over others, especially given that some classifiers require more effort in achieving 

maximum performance.  Support vector machines are an example of such a classifier, 

where user experience is a big contributing factor to its success.  Random Forest, on the 

other hand, is a plug-and-go classifier, requiring no experience other than simple data 

input.   

     Given this important issue, we point out the following features of the analyses 

performed in this work.  First, the main comparison in Chapter 7 is primarily an 

examination of dimension within each classifier, rather than a comparison between 

classifiers.  Any observations made regarding relative classifier performance were based 

on general patterns observed.  In Chapter 8, the new ensemble methods examined all 

depended completely upon the performances of the individual classifiers.  Therefore, any 

bias in any of the classifiers would impact the results of the ensembles under 

investigation equally.   

     A second limitation was in the estimation of bias and variance.  We folded the noise 

term (the unavoidable variance) into the bias term due to its difficulties in estimation 

from small data sets.  This likely inflated the bias term, perhaps considerably.  However, 

the bias estimated from each classifier under consideration was limited by the same noise 

term.   The impact of a zero noise term is thus on the absolute level of bias estimated.  

The dominance of bias over variance observed in each data set may be lessened, however 

it is unlikely that the conclusions of this work will change. 

     A third limitation is the size of the data sets and range of problems considered.  

Although the five data sets under investigation were considered representative of 

genomics-based problems, they are only a small fraction of the types of data sets that may 
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be encountered.  Therefore, all results based on these data should be interpreted as valid 

for the data sets on which they were ascertained.  The generalization of results should be 

treated with caution, since each user will have their own biases and each data set will 

have its own nuances.   

     Finally, the set of classifiers used in the ensemble is, of course, arbitrary.  This line of 

research is not dependent upon any particular fixed set of classifiers, yet the decision of 

which methods to include in this work had a solid basis.  First, the included classifiers 

were felt to represent some of the best, most diverse, and most commonly used state-of-

the-art classifiers.  Each can be considered a stand-alone classifier, as illustrated by their 

individual performances.  Support vector machines and Random Forest are relatively new 

classifiers, but are widely considered to be important and successful innovations.  DLDA 

was the simple, yet successful, classifier highlighted in Dudoit.  Nearest neighbor is an 

instance-based classification technique, and CART is a flexible tree-based approach that 

serves as the base member in Random Forest.    

 

 

 

 

 

 

 

 

 

 



 115

References 

1. Ahn, H., Moon, H., Fazzari, MJ, Lim, N., Chen, J. J. and Kodell, R. L. 

Classification by Ensembles of Random Partitions. Journal of Computational 

Statistics and Data Analysis 2007;51:In Press 

2. Alexandre LA, Campillo AC, Kamel M.  Combining Independent and Unbiased 

Classifiers using Weighted Average.  Proceedings of the International Conference 

on Pattern Recognition, 2000. 

3. Ali K.  On the link between error correlation and error reduction in decision tree 

ensembles.  UCI Technical Report 1995. 

4. Alizadeh, A., Eishen, M., Davis, E., Ma, C. & et al.  Distinct types of diffuse large 

b-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–

511. 

5. Alon,A., Barkai,N., Notterman,D.A., Gish,K., Ybarra,S., Mack,D., and 

Levine,A.J. (1999) Broad Patterns of Gene Expression Revealed by Clustering 

Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays.  

Proc. Natl. Acad. Sci. 1999; 96:6745-6750. 

6. Austin, PC.  A Comparison of regression trees, logistic regression, generalized 

additive models, and multivariate additive regression splines for predicting AMI 

mortality.  Statistics in medicine 2007; In press  

7. Blair RM, Fang H, Branham WS, Hass BS, Dial SL , Moland CL, Tong W, Shi L, 

Perkins R, Sheehan DM.  The Estrogen Receptor Relative Binding Affinities of 

188 Natural and Xenochemicals: Structural Diversity of Ligands  

Toxicol. Sci 2000; 54: 138-153.  

8. Breiman,L. Bagging predictors. Machine Learning 1996; 24: 123–140 

9. Brieman L. Arcing classifiers.  Annals of Statistics 1998; 26(3):801-849 

10. Breiman,L. Random forests. Machine Learning 2001;  45: 5–32 

11. Burnham, Kenneth P. and David R. Anderson. Model Selection and Multimodel 

Inference: A Practical Information-Theoretical Approach.  2nd ed. New York: 

Springer-Verlag, 2002. 



 116

12. Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic 

diseases associated to single point protein mutations with support vector machines 

and evolutionary information. Bioinformatics. 2006 Nov 15; 22(22):2729-34. 

13. Chen XW, Lieu M.  Prediction of protein-protein interactions using random 

decision forest framework.  Bioinformatics 2005 Dec 15;21(24):4394-400 

14. Condorcet, M.  Sur les elections par scrutiny. Histoire de l’Academie Royale des 

Sciences, 31-34, 1781. 

15.  Del Rio M, Molina F, Bascoul-Mollevi C, Copois V, Bibeau F, Chalbos P, Bareil 

C, Kramar A, Salvetat N, Fraslon C, Conseiller E, Granci V, Leblanc B, Pau B, 

Martineau P, Ychou M. Gene expression signature in advanced colorectal cancer 

patients select drugs and response for the use of leucovorin, fluorouracil, and 

irinotecan. J Clin Oncol. 2007 Mar 1;25(7):773-80 

16. Diaz-Uriarte R, Alvarez de Andres S.  Variable selection from random forests:  

application to gene expression data.  Tech. report. 

http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html 

17. Dietterich,T.G. Ensemble methods in machine learning. In Kittler,J. and Roli,F. 

(eds), First Intl. Workshop on Multiple Classifier Systems, Lecture Notes in 

Computer Science.  Springer Verlag, New York, 2000; 1–15 

18. Domchek SM, Eisen A, Calzone K, Stopfer J, Blackwood A, Weber BL. 

Application of Breast Cancer Risk Prediction Models in Clinical Practice. Journal 

of Clinical Oncology 2003; 21(4):593-601 

19. Domingos, P.  A Unified Bias-Variance Decomposition and its Applications  

Proc. 17th International Conf. on Machine Learning, 2001. 

20. Dudoit S, Fridyland JF, Speed TP: Comparison of discrimination methods for 

tumor classification based on microarray data.  JASA 2002; 97:77-87.  

21. Falls JG, Pulford DJ, Wylie AA, Jirtle, RL.  Genomic Imprinting:  Implications for 

Human Disease.  American Journal of Pathology 1999; 154(3):635-647. 

22. Friedman J. On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality. Data 

Mining and Knowledge Discovery 1997, 1(1): 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16895930&query_hl=8&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17327601&query_hl=13&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17327601&query_hl=13&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=17327601&query_hl=13&itool=pubmed_docsum
http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html
http://portal.acm.org/citation.cfm?id=593439&coll=GUIDE&dl=GUIDE&CFID=60821158&CFTOKEN=84810781


 117

23. Freund Y., and Schapire, R. E. Experiments with a new boosting algorithm, In 

Proc. 13th International Conference on Machine Learning 1997; pp. 148-146. San 

Francisco 

24. Fumera G and Roli F. A Theoretical and Experimental Analysis of Linear 

Combiners for Multiple Classifier Systems. IEEE Trans. Pattern Anal. Mach. 

Intell 2005; 27(6): 942-956  

25. Fumera G and Roli F. Linear Combiners for Classifier Fusion: Some Theoretical 

and Experimental Results. In Proc. Int. Workshop on Multiple Classifier Systems 

2003; pp:74-83 

26. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ.  

Projecting individualized probabilities of developing breast cancer for white 

females who are being examined annually. J Natl Cancer Inst. 1989; 81:1879-

1886. 

27. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller 

H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular 

classification of cancer: class discovery and class prediction by gene expression 

profiling. Science 1999; 286:531-537 

28. Greally JM.  Short Interspersed transposable elements (SINEs) are excluded from 

imprinted regions in the human genome.  Proc Natl. Acad. Sci.  2002; 99:327-332 

29. Greally, JM.  Personal communication 

30. Guyon I, Weston J, Barnhill S, Vapnik V.  Gene selection for cancer classification 

using support vector machines.  Machine Learning, 2000. 

31. Hand DJ.  Classifier technology and the Illusion of Progress.   Statistical Science. 

2006; 21(1):1-14 

32. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning: Data 

Mining, Inference and Prediction. Springer Verlag, 2002. 

33. Ho, TK . The Random Subspace Method for Constructing Decision Forests. IEEE 

Trans. on Pattern Analysis and Machine Intelligence 1998; 20 (8): 832-844  

34. Ho TK.  Multiple classifier combination:  Lessons and next steps.  Hybrid 

Methods in Pattern Recognition, World Scientific 2002; Kandel, A and Bunke H 

(eds.). 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Roli:Fabio.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2593165&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2593165&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2593165&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2593165&dopt=Abstract
http://cm.bell-labs.com/cm/cs/who/tkh/papers/df.pdf
http://cm.bell-labs.com/cm/cs/who/tkh/papers/df.pdf


 118

35. Huang YL, Chen DR.  Support vector machines in sonography: application to 

decision making in the diagnosis of breast cancer. Clin Imaging. 2005 May-

Jun;29(3):179-84.    

36. Izmerlian G.  Application of the random forest classification algorithm to a 

SELDI-TOF proteomics study in the setting of a cancer prevention trial.  Ann N Y 

Acad Sci. 2004;1020:154-74. 

37. James, G (2003).  Variance and Bias for General Loss Functions.  Machine Learning 51, 

115-135 

38. James, G., and Hastie, T. Generalizations of the Bias/Variance Decomposition for 

Prediction Error, Technical Report, Department of Statistics, Stanford University 1997 

39. Kohavi, R and Wolpert, DH.  Bias Plus Variance Decomposition for Zero-One 

Loss Functions.  Proceedings of the Thirteenth International Conference Machine 

Learning 1996. 

40. Kuncheva L.I., S.T. Hadjitodorov, Using Diversity in Cluster Ensembles, Proc. 

IEEE International Conference on Systems, Man and Cybernetics, The Hague, The 

Netherlands, 2004; 1214-1219 

41. KunchevaL.I. Diversity in multiple classifier systems (Ed.), Information Fusion 

2005; 6 (1): 3-4 

42. Kuncheva, LI, Whitaker, CJ, and Shipp, CA. Limits on the Majority Vote 

Accuracy in Classifier Fusion.  Pattern Analysis and Applications 2003;  6:22-31 

43. L. Lam and C. Y. Suen. Optimal combinations of pattern classifers. Pattern 

Recognition Letters 1995, 16(9):945-954. 

44. Liaw A. and Wiener M. Classification and Regression by randomForest. R News, 

2(3):18-22, December 2002 

45. Lim N, Ahn H, Moon H.  Classification by Ensembles of Random partitions of 

Logistic Regression models.  Journal of Computational Statistics and Data 

Analysis.  Submitted. 

46. Luedi PP, Hartmink AJ, Jirtle, RL.  Genome-wide prediction of imprinted murine 

genes.  Genome Research  2005; 15:875-884. 

47. Michiels S, Koscielny S, Hill C.  Prediction of cancer outcome with microarrays: a 

multiple random validation strategy.  Lancet 2005. 365(9458):488-92. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15705458&query_hl=3


 119

48. Miller, A.  Subset Selection in Regression.  2nd Edition.  Chapman and Hall/CRC 

2002 

49. Opitz, D. and Maclin, R. Popular Ensemble Methods: An Empirical Study 1999; 

11:169-198 

50. Pepe, MS, Tinaxi C, and Longton, G.  Combining Predictors for Classification 

Using the Area under the Receiver Operating Characteristic Curve.  Biometrics 

2006; 62:221-229.   

51. Pittman J, Huang E, Dressman H, Horng CF, Cheng SH, Tsou MH, Chen CM, 

Bild A, Iversen ES, Huang AT, Nevins JR, West M.  Integrated modeling of 

clinical and gene expression information for personalized prediction of disease 

outcomes.  Proc Natl Acad Sci 2004; 101(22): 8431–8436 

52. Prentice, R.L. (1986).  Correlated Binary Regression Using an Extended Beta-Binomial 

Distribution, with Discussion of Correlation Included by Covariate Measurement Error. 

Journal of the American Statistical Association 81:321–327. 

53. Ripley BD. Pattern Recognition and Neural Networks, Cambridge University 

Press, 1996 

54. Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S. Boosting the Margin: a new 

explanation for the effectiveness of Voting methods.  Annals of statistics 1998, 26, 1651-

1686. 

55. Shatland ES, Kleitman K, Cain EM. A new strategy of model building in Proc 

Logistic with automatic variable selection, validation, shrinkage and model 

averaging. 2004; SUGI '29 Proceedings. Cary, NC: SAS Institute, Inc. 

56. Simon R.  When is a genomic classifier ready for prime time?  Nature Clinical 

practice Oncology 2004; 1(1):4:5. 

57. Singh,D., Febbo,P.G., Ross,K., Jackson,D.G., Manola,J., Ladd,C., Tamayo,P., 

Renshaw,A.A., D’Amico,A.V., Richie,J.P., Lander,E.S., Loda,M., Kantoff,P.W., 

Golub,T.R. and Sellers,W.R. Gene expression correlates of clinical prostate cancer 

behavior, Cancer Cell 2002; 1(2):203-209. 

58. Strobl C, Bolesteiux, A, Zeilies A, Hothorn T. Bias in random forest variable 

importance measures: Illustrations, sources and a solution. BMC Bioinformatics 

2007, 8:25 



 120

59. Su, JQ and Liu, JS.  Linear Combinations of Multiple Diagnostic Markers.  

Journal of the American Statistical Association.  Vol. 88, No. 424.  Dec 1993 

60. Surowiecki, J.  The Wisdom of Crowds: Why the Many Are Smarter Than the Few 

and How Collective Wisdom Shapes Business, Economies, Societies and Nations, 

2004.  Little, Brown ISBN 0-316-86173-1 

61. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., and Feuston, B.P. 

Random Forest: A Classification and Regression Tool for Compound 

Classification and QSAR Modeling. J. Chem. Inf. Model 2003; 43 (6):1947-1958 

62. Tibshirani R, Hastie T, Narasimhan B, Chu G.  Diagnosis of multiple cancer types 

by shrunken centroids of gene expression.  PNAS 2002; 99(10):6567-6572 

63. Tilstone C.  DNA microarrays: Vital statistics.  Nature 2003; 424:610-612  

64. Tumer K and Ghosh J.  Error Correlation and Error Reduction in Ensemble 

Classifiers. Connection Science 1996; 8(3/4):385–404 

65. Tumer, K and Ghosh, J.  Analysis of Decision Boundaries in linearly Combined 

Neural Classifiers.  Pattern Recognition 1996; 29(2):341-348 

66. Tumer K and Ghosh J. Linear and order statistics combiners for pattern 

classification. In A.J.C. Sharkey, editor, Combining Artificial Neural Nets, pages 

127--161. Springer-Verlag, London, 1999.  

67. Valentini G and Dietterich TG. Low Bias Bagged Support Vector Machines. In 

Proc. ICML 2003. 

68. Valentini G and Dietterich TG.  Bias variance analysis of Support Vector 

machines for the Development of SVM-based ensemble systems.  Journal of 

Machine learning Research.  2004; 5, 725-775.  

69. V. Vapnik and A. Chervonenkis. "On the uniform convergence of relative 

frequencies of events to their probabilities." Theory of Probability and its 

Applications, 16(2):264--280, 1971. 

70. Vapnik, V. and Cortes, C. Support vector networks Machine Learning 1995; 20, 

273–293. 

71. Webb G.I. and Conilione P.  Estimating Bias and Variance from data.  Tech Report, 2006.  

Available at http://www.csse.monash.edu.au/~webb/ 

http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0316861731
http://ic.arc.nasa.gov/people/kagan


 121

72. Wolpert DH. and Macready WG.  No free lunch theorems for optimization. IEEE 

Transactions on Evolutionary Computation 1997. 

73. Wood AJ, Oakey RJ.  Genomic Imprinting in Mammals: Emerging Themes and 

Established Theories.  PLoS Genet. 2006; 2(11): e147 

74. Woods K, Kegelmeyer, WP, and Bowyer, K.  Combination of Multiple Classifiers 

Using Local Accuracy Estimates.  IEEE transactions on Pattern Analysis and 

Machine Intelligence 1997; 19(4)  

75. Zhang X, Lu X, Shi Q, Xu X, Leung HE, Harris LN, Iglehart JD, Miron A, Liu JS, 

Wong WH.  Recursive SVM feature selection and sample classification for mass-

spectrometry and microarray data.  BMC Bioinformatics 2006. 7:197 

 

 

 

 

 

 

 

 

 

http://ieeexplore.ieee.org/iel1/4235/12703/00585893.pdf%3Farnumber%3D585893


 122

 

Appendix   

 
Appendix 1.  Publicly available genomic data sets 

Data set    web-site  

1. Colon Data (Alon)    http://microarray.princeton.edu/oncology/ 
2. Estrogen Data (Blair)               www.ams.sunysb.edu/~hahn/research/ 
3. Prostate Data (Singh):                   www.broad.mit.edu/cgi-bin/cancer/publications 
4. Lymphoma data (Alizadeh):          http://llmpp.nih.gov/lymphoma/data.shtml 

 

Appendix 2.  Outline of procedure used to examine individual 
classifier performance (Chapter 7) 
 

1. The data are split into a training set and test set using 4-fold cross validation.  The 
test set consists of ¼ of the data, and the training set ¾.  

 
For each of the 4 folds of the CV: 

2. On the training set only, the variables are pre-screened using the BW statistic as 
defined in section 3.7.  The top M ranked predictors are retained.   

3. The classifiers discussed in section 3.6 using the packages detailed in section 3.8 
are used to fit the training data based on the M predictors retained in step 2. 

 
On the test set: 
4. The classifiers are used to predict the class of the test set and the individual 

accuracies are estimated 
5. Steps 1-4 are repeated 50 times (50 iterations of four-fold CV) 
6. The mode of the predicted classes for classifier k (k=1,2,…,K) is determined.  

The observation is biased for classifier k if is the mode is not equal to the true 
class. 

7. The variance is the proportion of times the prediction varies from the mode 
8. The accuracy, variance and bias are averaged across all observations 
 
 
 
 

http://www.broad.mit.edu/cgi-bin/cancer/publications
http://llmpp.nih.gov/lymphoma/data.shtml


 123

 
 

Appendix 3.  Outline of procedure used to examine ensemble 
performance (Chapter 8) 
 

1. The data are split into a training set and test set using 4-fold cross validation.  The 
test set consists of ¼ of the data, and the training set ¾.  

 
For each of the 4 folds of the CV: 

2. On the training set only, the variables are pre-screened using the BW statistic.  All 
features with a higher BW score than the best artificial variable are retained as 
part of the informative set (section 3.7)   

3. The classifiers discussed in section 3.6 using the packages detailed in section 3.8 
are used to fit the training data based on the M predictors retained in step 2. 

4. A nested bootstrap analysis is performed within the training set to estimate the 
accuracy of each classifier to be used in construction of the combining weights 
(section 6.1) 

5. For training observation i, all OOB bootstrap samples are used to compute 
accuracy. 

6. Local weights (section 6.3) are determined by determining the nearest neighbor to 
the test point from the training set and using the weights from that observation 
based on bootstrap estimated accuracies. 

7. Global weights are determined by averaging the bootstrap-based accuracy 
estimates over all observations 

 
On the test set: 
8. The classifiers are used to predict test set class and the individual accuracies are 

estimated 
9. The ensemble-based prediction is computed using the prediction of each classifier 

at the test point and the weights derived by the training set. 
10. Steps 1-4 are repeated 50 times (50 iterations of four-fold CV) 
11. The mode of the predicted classes for classifier k (k=1,2,…,K) is determined.  

The observation is biased for classifier k if is the mode is not equal to the true 
class. 

12. The variance is the proportion of times the prediction varies from the mode 
13. The accuracy, variance and bias are averaged across all observations 

 
 

 


