Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Structure Analysis to Large Size Electronic

Systems and Its Application for
Optimized Electronic Design

A Dissertation Presented
by
Yang Zhao

to

The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electrical Engineering
Stony Brook University

August 2008

Stony Brook University
The Graduate School

Yang Zhao

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dr. Alex Doboli, Dissertation Advisor

Associate Professor of Electrical and Computer Engineering

Dr. Thomas Robertazzi, Chairperson of Defense

Professor of Electrical and Computer Engineering

Dr. Monica Fernandez-Bugallo

Assistant Professor of Electrical and Computer Engineering

Dr. Edward H. Currie, Outside Member

Chief Information Officer of Tritium Technologies, Inc.

This dissertation is accepted by the Graduate School

Lawrence Martin

Dean of the Graduate School

i

Abstract of the Dissertation

Structure Analysis to Large Size Electronic

Systems and Its Application for
Optimized Electronic Design

by
Yang Zhao
Doctor of Philosophy
in
Electrical Engineering
Stony Brook University

2008

The discovery of small-world and scale-free properties of many nature,
society and artificial complex networks has stimulated a great deal of in-
terest in studying the underlying organizing principles of various complex
networks. This study presents a methodology that helps to understand
large size electronic circuits’ topologies before the physical realization of
the system.

My data show that large size electronic circuits’ netlists have broad-

scale patterns and large clustering coefficients. Both attributes are very

1l

different from random graphs. Furthermore, I introduce a model to ex-
plain the large clustering coefficient of electronic circuits’ netlists. By ap-
plying this structure analysis, I propose an analytical algorithm for general
floorplan and placement in the physical design of VLSI (Very Large Scale
Integration). The new algorithm implements a partitioning based method
in a top-down hierarchical way, which uses hM ETS as a hypergraph and
circuit partitioning tool. The floorplanning blocks are represented in in-
teger programming formulation and accurately placed using a non-linear
solver named SNOPT. This new method decreases the CPU time when
taking electronic circuits with large number of blocks.

In addition to this electronic circuits’ floorplan and placement exper-
iment, this study offers an approach to performance predictive collabo-
rative control of UAVs (Unmanned Autonomous Vehicles) operating in
environments with fixed and pop-up targets. I find an integer linear pro-
gramming based solution for assigning and scheduling the fixed targets to
UAVs and for computing the slack time intervals used for collaborative
actions.

The common topic for both studies is based on problem solving tech-
nique. The algorithm of electronic circuits’ floorplan and placement is re-
alized by INLP (Integer Non-Linear Programming), and the tasks’ schedul-
ing and assigning for different UAVs are constructed by ILP (Integer

Linear Programming).

v

Contents

Listof Figures. .
Listof Tables. X
Acknowledgements. Xi

1 Introduction
1.1 Thesis Motivation .

1.2 Goals and Contributions .

g w =

1.3 Thesis Organization .

2 Finding Broad-Scale Patterns in Large Size Elec-

tronic Circuit
2.1 Introduction .
2.2 Related Work .

2.2.1 Scale-free networks .

@\l\l@m

2.2.2 Small-world networks .
2.3 Large Size Electronic Circuit Degree Distribution.11
2.4 Large Size Electronic Circuit Clustering Coefficient. 14

2.4.1 Definition of clustering coefficient. 14

2.4.2 Random graph and BA model’s clustering coefficient 15

2.4.3 TF model’s clustering coefficient 15
2.5 Discussion 16
26 Conclusion 19

3 A Hierarchical Mixed Integer Programming Based

Algorithm for Floorplanning in VLSI Design 20

3.1 Imtroduction 20
3.2 Problem Description oL 23
3.3 Top-Down Methodology 24
3.4 Mixed Integer Programming Method 28
3.4.1 Mixed integer programming formulation 28
3.4.2 Nonlinear model using SNOPT 30
3.5 Simulated Annealing (SA) Algorithm 33
3.5.1 Topology change moves 34
3.5.2 Objective function 35
3.6 Terminal Propagation (TP) Algorithm 36
3.6.1 Reasons to import Terminal Propagation (TP) algorithm . . . 36
3.6.2 How to implement TP with Hercules. 38
3.6.3 TP’sexperiments 39
3.7 Software Implementation 42
3.8 Design Limitations o oo 43
3.9 Computational Experiments 44
3.10 Conclusion L 45

4 ILP Based Task Assignment and Scheduling for

vi

Collaborating Unmanned Autonomous Vehicles 48

4.1 Introduction 48
4.2 Related Worko 51
4.3 Problem Description and Modeling 53
4.3.1 Collaborative approach 55
4.3.2 Problem modeling 58
4.4 Proposed Algorithm 60
4.4.1 Taskstart time oo 61
4.42 Taskend time oo 61
4.4.3 Task allocation to UAVs 62
4.4.4 Task scheduling to UAVs 62
4.4.5 UAV flight time to fixed targets 63
4.4.6 UAV collaboration 63
4.4.7 Pop-up targets 66
448 Cost function L Lo 69
4.5 Case Study 70
4.5.1 Constraint 1, individual task start and end time 70

4.5.2 Constraint 2, define the flight time between successive targets 72
4.5.3 Constraint 3, define tasks’ scheduling between successive threads 73
4.5.4 Constraint 4, the flexibility of UAVs for collaboration 73
4.5.5 Constraint 5, the flexibility of UAVs for handling a pop-up target 75

4.5.6 Final cost function to minimize 76

4.5.7 A simple example to calculate flexibility 7

4.6 Conclusion 80

5 Conclusions and Future Work 82

vii

B.ACONCIUSIONS . . . o oo 82

5.2 FUture WOrK . 84
Bibliography 87
A MCNC Benchmark Floorplanning Graphs 97
B Collaborating UAVs’ Constraints for 3-Thread 102

viil

List of Figures

2.1

2.2

2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Simulation Results for Scale-free networks, with N = my+t = 12506, mg =
3, m = 2(circles). The slope of the solid line is vy =2.74. 9

Probability distributions of the connectivity ¢ for £ = 3 and various

valuesof p [14] 10
(a) An electronic circuit (b) Its corresponding graph 11
Degree Distribution of ibm01 — 05 and random graph 12
Degree Distribution of :bm01 and BA model(mo=3,m=2) 13

Degree Distribution of ibm01 and TF model(mg =3,m =2,P, =0.2) 17

Hierarchical Floorplanning 25
Top_Down Algorithm in Pseudo Code 27
Mixed Integer Programming Formulaiton using binary numbers . . . 30
Non-linear model of the floorplanning problem 32
Simulated Annealing’s Swap Move 35
Simulated Annealing’s Rotate Move 36
Simulated Annealing’s Shift Move 37

(a) Modules connected to an external terminal. (b) A net connecting
modules in different blocks. (c¢) Modules in blocks B and C are replaced
by dummy modules P1 and P2. Each point denotes a module or an

external terminal. 38

X

3.9

3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Al
A2
A3
A4
A5

Terminal Propagation with Hercules Top-Down Algorithm Core in

Pseudo Code 40
Dummy Points of a Partition 41
UAV movement towards fixed and pop-up targets 54
Decision making for collaborative UAV operation 56
Decentralized controller for UAV operation 58
Task graphs for fixed target handling 59
Strategy for pop-up targets 61
Modeling for dynamic collaboration 64
Flexibility in collaboration 65
0/1 variables for UAV collaboration modeling 67
Average distance to pop-up target 69
Case Study 70
Case Study, Index Representation 71
Index Representation for Thread-3 Example 7
Time axis for Fls 1o o o o 79
Final optimum floorplan obtained by Hercules for ami49 97
Final optimum floorplan obtained by Hercules for ami33 98
Final optimum floorplan obtained by Hercules for hp 99
Final optimum floorplan obtained by Hercules for xerox 100
Final optimum floorplan obtained by Hercules for apte 101

List of Tables

2.1
2.2
2.3

3.1
3.2

4.1
4.2

tbm01 — 05 curve fitting v oo 14
tbm01 — 05 clustering coefficient 15
1bm01 — 03 and T'F' clustering coefficient 17
Comparisons of Hercules Method with/without Terminal Propagation 41

Comparisons of Hercules Method with Murata et al.’s EXACT, DIS2+POST

and Kim et al.’s SA-CT+LP, SA-LP 46
Time assignment for different thread/cities 78
Flexibility for thread-3 example 79

x1

Acknowledgements

I would like to thank my advisor, Dr. Alex Doboli, for his guidance and help
throughout my Ph.D study. He has taught and helped me in my research with
great patience and kindness. From him, I have learned the manner of a devoted and
energetic scientist and a knowledgeable and caring teacher.

I want to thank my committee members: Dr. Thomas Robertazzi, Dr. Monica
Fernandez-Bugallo, and Dr. Edward H. Currie, for their time and effort in reviewing
this work, and attending my dissertation defense. Thanks to Dr. Wendy Tang and
Dr. Hui Zhang for being my preliminary defense committee members. Their advice
is greatly appreciated.

I wish to thank Rohit Pai for his initial work on floorplanning algorithm, it is
the ancestor of Hercules now. I am grateful to Hui Zhang, Ying Wei and Sankalp
Kallakuri for their inspiring suggestions and talks. Their thoughts and work directly
contributed to my research life.

I am deeply indebted to my friends Ming Ma, Zejie Zhang, uncle Qidong Cao,
Lihua Yu, Anfei Li. I will never forget their invaluable support and help at the most
needed time in my life.

Thanks to all the colleagues, classmates, and friends who made this dissertation
possible and a joyful experience for me: Hua Tang, Nattawut Thepayasuwan, Bhaskar
Mukherjee, Yulei Weng, Lei Wang, Junling Zhou, Pengbo Sun, Jing Gao, Meng Wang,

Cristian Ferent and Varun Subramanian.

I am thankful for my wife Peihua Yuan. She gives me hundred percent support no
matter what, she stands beside me and gives me a swift kick when I need it. She loves
me and forgives me. She is my best friend and a truly soul mate. I am so fortunate
and grateful, thanks for the happiness and sadness we shared, sharing and will share.

Finally I wish to express my deepest gratitude for the constant support, under-
standing and love from my parents. My dear mother Chen Yi and my adored father
Weiren Zhao. 1 am also very grateful to my parents in law, aunt, uncle and all my
cousins, specially to Liang Pan for his friendship and help. This dissertation is also a
gift to my grandfather, Chung-Yao Chao, Suzhi Yi and grandmother Yibing Huang

for their deep love.

Chapter 1

Introduction

1.1 Thesis Motivation

Complex networks are capable of describing a wide range of systems in nature
and society, frequently cited examples include the World Wide Web (a network of
routers and computers connected by physical links), the brain (a network of neu-
rons), an organization (a network of people). While traditionally these systems have
been modelled as random graphs, it is increasingly recognized that the topology and
evolution of real networks are governed by robust organizing principles [6].

For over a century, modelling of physical as well as non-physical systems and pro-
cesses has been performed under an implicit assumption that the interaction patterns
among the individuals of the underlying system or process can be embedded onto
a regular structure such as a Euclidean lattice. In late 1950s, two mathematicians,
Erdos and Rényi (ER), made a breakthrough in classical mathematical graph theory.
They described a network with a complex topology by a random graph [2]. Their work
has become the foundation of the random network theory, and was followed by con-
tinuous studies over the next 40 years and continues even today. Although intuition

clearly indicates that many real life complex networks are neither completely regu-

lar nor completely random, the ER random graph model has proven to be the only
sensible and rigorous approach for most scientists thinking about complex networks
for nearly half of a century. This is due to the absence of super computational power
and detailed topological information about very large scale real world networks.

In the past few yeas, the computerization of data acquisition and the availability
of high computing power have led to the emergence of huge databases on various real
networks of complex topology. In this endeavor, two significant recent discoveries are
the small-world effect and the scale-free feature of most complex networks.

In 1998, in order to describe the transition from regular lattice to a random
graph, Watts and Strogatz (WS) introduced the concept of small-world network [13].
A interesting popular manifestation of the ”"small-world effect” is the so-called ”six
degrees of separation” principle, suggested by a social psychologist, Milgram , in
the late 1960s [3]. A prominent common feature of the ER random graph and the
WS small-world model is that the connectivity distribution of a network peaks at
an average value and decays exponentially. Such networks are called ”exponential
networks” or “homogeneous networks,” because each node has about the same number
of link connections.

Another significant discovery in the field of complex networks is the observation
that many large scale complex networks are scale-free, that is, their connectivity
distributions are in a power-law form that is independent of the network scale [4] [5].
Unlike an exponential network, a scale-free network is inhomogeneous in nature: most
nodes have very few link connections and yet a few nodes have many connections.
The discovery of the small-world effect and scale-free feature of complex networks
has led to dramatic advances in the field of complex networks theory in the past few
years.

Electronic circuits can be viewed as networks in which vertices (or nodes) are

electronic components (e.g. logic gates in digital circuits and resistors, capacitors,

diodes and so on in analogic circuits) and connections (or edges) are wires in a broad
sense. Therefore, large size electronic circuit topologies can be seen as a complex
networks. In the system-on-chip (SoC) field, the chips are getting more and more
compact and complex. As a result, design and circuit optimization becomes quite
difficult. In this thesis, a basic topology structure inside the electronic circuit netlists
is implemented to optimize the floorplan and placement process in VLSI physical
design. In Chapter 4, a similar problem solving technique utilizing an integer linear
programming algorithm is used to study the performance predictive collaborative
control of Unmanned Autonomous Vehicles (UAV) in environments with fixed and

pop-up targets.

1.2 Goals and Contributions

A review of the literature confirms that there has been little work [7] done on
the electronic circuits with complex network theory. The work presented in this
thesis is just a preliminary step, and focus on large size electronic circuit netlists.
Two circuit topology characteristics have been found in the broad-scale patterns and
large clustering coefficient. These attributes are shown to be very different from
random graphs, usually assumed for representing circuit topologies. Furthermore, a
Triad formation (TF) model is introduced to explain the coexistence of broad-scale
patterns and large clustering coefficients.

In considering the electronic circuit topologies structure, a hierarchical mixed
integer programming based algorithm for floorplanning in VLSI design is developed.

The method is novel in that:

1. A top-down level hierarchical floorplanning methodology is used instead of the

traditional flat level structure. This methodology significantly reduces the com-

putational time when handling the large size electronic circuits compared to

other methods.

. It uses a mixed integer programming-based algorithm to represent the flooplan
solutions topology. This method uses binary variable pairs to represent any two
blocks relative positions. It can be simply merged and optimized with simulated

annealing’s different perturb moves.

. The use of a non-linear solver package called SNOPT (which is also based on
mixed integer nonlinear programming [MINLP]) reduces the number of con-

straint variables in the floorplanning problem.

. The final MCNC benchmark example results show that Hercules (the name of
the developed algorithm) has some advantages when solving large size electronic
circuit netlist floorplans. It is noted that further improvement may be possible
if more structure information is used in the partition step before the top-down

framework.

. The non-linear solver package SNOPT has different implementations depend-
ing on the type of problem to be solved. Chapter 4 describes an integer linear
programming method for task assignment and scheduling in UAVs’ application.
Mixed-integer linear programming (MILP) is a powerful optimization method
that extends continuous linear programming to include binary or integer deci-
sion variables.[8]-[12] These 0/1 integer variables can be further used to model
logical constraints such as collision avoidance rules, tasks scheduling constraints

and flexibility constraints for UAVs’s collaboration.

1.3 Thesis Organization

Chapter 2 details how to find Broad-Scale patterns and large clustering coefficient
in a large electronic circuit. A new hierarchical mixed integer programming based
algorithm for floorplanning is analyzed in Chapter 3. In Chapter 4 an integer linear
programming method is implemented for task assignment and scheduling for collabo-
rating UAV (Unmanned Autonomous Vehicles). Chapter 5 presents conclusions based

on the work embodied in this thesis and suggests area for future study.

Chapter 2

Finding Broad-Scale Patterns in Large Size

Electronic Circuit

2.1 Introduction

It is a common practice to represent systems with complex topologies and un-
known organizing principles as random graphs. However, there is strong evidence
that real networks and systems are complex and well structured, thus not random.
For example, the power-law degree distribution (scale-free network) was observed for
the World Wide Web by Barabasi and Albert in 1999 [4]. Later, this power-law
distribution feature was found in many other large-scale network topologies, includ-
ing social and biological networks. These observations are quite intriguing and may
apply to electronic design automation (EDA). Traditionally EDA, very large circuit
and system netlists are assumed to be random networks. Then, steps like circuit
partitioning, placement and routing operate are using the random network assump-
tion, and without considering any details about the netlist structure. However, as we
explained in Section 5, knowing the structural properties of netlists can improve the
quality of design automation tools.

In this chapter we analyze and contrast electronic circuit topologies with scale-

free graph topologies. The analysis of electronic circuit topologies has been done by
methods analogous to those used to analyze scale-free graphs [6]. We present evidence
for the existence of broad-scale patterns in electronic circuits as well as an analysis of
their degree distributions and clustering coefficients. Broad-scale networks [7]define
power-law degree distributions within a certain range. P(k) ~ k=7 f(k/k*), where k*
gives the cutoff degree.

This chapter has the following structure. Section 2 summarizes related work
of scale-free network and small-world network. Section 3 and 4 first analyze the
large size electronic circuit properties, including degree distribution and clustering
coefficients, and then introduces a model to explain the observed large clustering
coefficient. Section 5 discusses how the properties of large size electronic circuit
netlists can help placement and routing in the physical design problem and conclusions

are presented.

2.2 Related Work

In the past few years, following the discovery of small-world and scale-free net-
works, the underlying organizing principles of various natural and artificial complex

systems have been studied.

2.2.1 Scale-free networks

Networks with a power-law degree distribution are called scale-free[4]. For a large
number of networks, including the World-Wide Web[18], Internet[19], metabolic and
protein networks[20, 21], the degree distribution has a power-law tail with an exponent

v (see equation 2.1).

Pk) ~ k7 (2.1)

where k is the degree of a given node, representing the number of edges connecting
it with other nodes and P(k) is defined as the (normalized) probability of nodes having
k edges[6]. In addition to the power-law phenomena observed in many complex
system, Barabési and Albert[4] further introduced the Barabdsi-Albert model(BA
model), which can generate a network with a power-law degree distribution. There
are two basic mechanisms in the BA model, one is Node Growth and the other is
Preferential Attachment [4, 5, 6].

(1) Node Growth: Starting with a small number(mg) of nodes, at every timestep
a new node with m(< myg) edges is added that links it to m different nodes already
present in the system.

(2) Preferential Attachment: When choosing the nodes to which the new node
connects, it is assumed that the probability I/ that the new node will be connected

to node ¢ depends on the degree k; of node i, such that

k) = ' (2.2)

After t time steps, the PA rule results in a network with N = ¢t + mg nodes and
mt edges. The PA rule assumes that the likelihood of receiving new edges increases
with the node’s degree. This assumption involves two hypotheses: first, that I1(k)
depends on k, in contrast to random graphs in which I7(k) = p, and second, that
the functional form of I7(k) is linear in k[6]. Numerical simulations indicate that

this network evolves into a scale-free state with P(k) following a power-law with an

10

O BA model
— slope=2.74

107

._.
Ow
T

log(P(K))

,a
O‘
T

10 F

107° L L

degree k

Figure 2.1: Simulation Results for Scale-free networks, with N = my +t =

12506, mo = 3, m = 2(circles). The slope of the solid line is v = 2.74.

exponent v = 3 (Fig. 2.1). The bigger the number of nodes, the closer v nears to 3.

2.2.2 Small-world networks

Between completely regular and completely random systems, Watts and Strogatz
[13] found some systems which are highly clustered, but have small characteristic path
lengths. These networks are called small-world. In the real world, social networks
have the typical small-world characteristic, where most people are friends with their
immediate neighbors. For example, classmates in the same school or colleagues in the
same office. On the other hand, many people have a few friends who are far away,
such as pen pals in other countries.

In order to represent small-world networks, Watts and Strogatz introduced an
interesting model, referred to as W.S small-world model [13, 14]. The WS model can

be generated as follows:

10

107 +

POOOOO
CorNP

cocoToTTT

S *+bood]

10°

Pp(c)

10
-10

10

1072k

10 L L L L L L L

Figure 2.2: Probability distributions of the connectivity c for k£ = 3 and various values

of p [14]

Step 1: Start with regular network: Begin with a one-dimensional N vertex ring,
each vertex being connected to its 2k nearest neighbors.

Step 2: Randomized rewiring: Randomly rewire each edge of the network with
probability p. Long range connections will be introduced in this step.

The probability distribution of the connectivity ¢ should satisfy equation 2.3. The

degree distribution of a sample small-world network is shown in Fig. 2.2

min(c—k,k) —k—n
R0 =3 (S)a-m ez e (3

Comparing the BA model’s degree distribution with the WS model’s degree distri-
bution, we can find the distinct differences. For WS model(Fig. 2.2), the connectivity

distribution of the network is homogenous, which peaks at an average value(<c>= 6)

10

(b)
Figure 2.3: (a) An electronic circuit (b) Its corresponding graph

and decays exponentially. For the BA model(Fig. 2.1) of a scale-free network, their
connectivity distributions have a power-law form, and the average degree <k > can

not be summarized from the degree distribution graph.

2.3 Large Size Electronic Circuit Degree Distribu-
tion

Electronic circuits can be viewed as networks in which vertices (or nodes) are
electronic components (Fig. 2.3).

In the present case reference is made to the IBM-PLACE benchmark circuits in
Generic Hypergraph formats. Inside a netlist file, there are thousands of nets and
nodes. For example, ibm01 netlist has 12282 nodes and 11507 nets. Therefore, they

are large size electronic circuit netlists. The nodes correspond to the logic gates in

11

O ibm01

x ibm02

& 4o + ibmo3

o} Q% * * ibmo4

107 % #o o ibmo05
i} x * random

b4 * § g % . "

10 10" 10
degree k

Figure 2.4: Degree Distribution of ibm01 — 05 and random graph

a digital circuit. The edges connecting any two nodes represent the connectivity of
the circuits netlists. Using the formalism of graph theory, the whole circuit can be
described in terms of a flat graph G, consisting of a vertex set V(G) and an edge set
E(G)[16].

The analysis of a network’s degree distribution can help determine which kind of
networks large electronic netlists belong to. The degree distribution for the five large
electronic circuit netlists(ibm01 — ibm05) are shown in Figure 2.4. For comparison,
a random graph’s distribution is included on the same scale. This random graph’s
degree distribution satisfies Poisson distribution (N = 10000, < k>= 6) which shows
the large scale electronic circuit netlists are not random graphs and illustrates that
the degree distribution has power-law curve within certain range and having a bottom
cut-off point at k* =~ 3,4. The power-law curve becomes indiscernible after k > 30,
because there are always a few nodes that have large degree, but the number of these
nodes is small, approximately 1 — 2% of the total number of nodes. The average

degree has been also calculated as <k>~ 4 — 6.

12

O BA model

—— BA-slope=2.74

* ibm01

— — ibm01-slope=2.66

log(P(K))

H
S,
T

10 F

107° I I
10 10 10 10
degree k

Figure 2.5: Degree Distribution of ibm01 and BA model(mg = 3,m = 2)

The Figure 2.5 depicts the degree distribution comparison between :bm01 and
BA model. It presents the expected distribution for a corresponding BA model with
the same number of nodes(N = 12506) for ibm01. The results show that both the
curves and 7 values are quite close. Within the power-law range, curve fitting gives
an exponent vy ~ 2.66, the corresponding BA model’s v ~ 2.74.

For different scale-free networks, numerical values of the exponent for various
systems are diverse, but most of them are in the range of 2 < v < 3 [15]. Compared
with Table 2.1, all these large size electronic circuit netlists v comply with this con-
dition. From a degree distribution point of view, it can be concluded that large size

electronic circuits have broad-scale patterns.

13

Table 2.1: ibm01 — 05 curve fitting v

IBM files | Number of | Range of Node —y
Nodes k Percentage[%]

ibmO1 12506 k € [4,30] 66% 2.66

ibm02 19342 k € [4,30] 2% 2.30

ibm03 22853 k € [3,30] 88% 2.44

ibm04 27220 k € [3,30] 92% 2.63

ibm05 28146 k € [4,30] 82% 2.42

2.4 Large Size Electronic Circuit Clustering Coef-

ficient

2.4.1 Definition of clustering coefficient

The clustering coefficient C' measures the cliquishness of a network, which is de-
fined as follows[13]. Given a selected node ¢ in the network, having k; edges which
connect it to k; other nodes; then at most k;(k; — 1)/2 edges can exist between them.
The ratio between the number E; of edges that actually exist between these k; nodes

and the total number k;(k; —1)/2 gives the value of the clustering coefficient of node i.

2F;
L = 2.4
Ci ki(k; — 1) (2.4)

The clustering coefficient of the whole network C' is the average of all individual

CZ"S.

N
C = <C> = 21 G (2.5)

14

Table 2.2: ibm01 — 05 clustering coefficient

IBM files | Average Degree | Clustering Crand | C/Chrand
<k> Coefficient C' | x1074
ibmO1 4.8 0.16 3.96 412
ibm02 5.9 0.15 291 520
ibm03 4.6 0.13 2.10 617
ibm04 4.4 0.10 1.69 568
ibm05 5.8 0.11 2.05 542

2.4.2 Random graph and BA model’s clustering coefficient

In a random graph, since the edges are distributed randomly, the clustering coef-
ficient is Crgng = p = <—]’f,> [6]. Small-world networks, in addition to a short average
path length, always have a relatively high clustering coefficient. Comparing the BA
model of scale-free network with a random network, the BA model’s clustering coeffi-
cient is about five times higher [6]. The large size electronic circuit netlists clustering

coefficient has been analyzed at Table 2.2.

2.4.3 TF model’s clustering coefficient

The clustering coefficient of large size electronic circuit netlists is so big that the
BA model can’t explain it. In order to represent large size electronic circuit netlists,
a new model is proposed which has both the power-law degree distribution and the
high clustering.

Reviewing the BA model of the scale-free network, it is noted that there is an im-
portant step called Preferential Attachment (PA). In this step, the newly introduced

node is always attached to the existing node with large degree. Through this process,

15

the large degree node becomes larger, the small degree node becomes smaller. Finally,
an examination of the network shows that there are a few hubs inside it, representing
the large degree nodes, and all the other nodes become too scattered to compose
clustering. This is the reason that the BA model’s clustering coefficient is not big
enough as the real world scale-free network. Petter and Beom [17] offered a Triad
formation (TF) method to increase the scale-free network’s clustering coefficient. It
is well known that a triad is the simplest graph composition which is fully connected,
and C' = 1. Their idea was to introduce more triads to increase the final network’s
clustering coefficient, so they modified the BA algorithm by adding an additional
step.

If an edge between v and w was added in the previous PA step, then add one more
edge from v to a randomly chosen neighbor of w to form a triad. If there remains no
pair to connect, do a PA step instead.

In order to make the clustering coefficient tunable, the TF step is performed
with the probability P, and the PA step with the probability 1 — P;. By using this
method, the corresponding T'F01 — T'F03 models (with same number of nodes) for
1bm01 — ibm03 are obtained. Obviously, the clustering coefficient increases from the
original BA model. TF model’s clustering coefficient is quite close to their actual
cluster coefficient as seen from Table 2.3. The T'F01 model’s degree distribution is
further achieved as shown in Fig 2.6. Not only the cluster coefficient has increased
dramatically from the original BA model, but also the power-law property has been

preserved.

2.5 Discussion

The physical design(circuit layout problem) is normally divided into system parti-

tioning, floorplanning, placement, and routing. Each of the steps must be performed

16

Table 2.3: ibm01 — 03 and T'F' clustering coefficient

IBM files Clustering Cpa | C/Cga
TF model Coefficient C' | x1072
ibmO1 0.16 0.25 64
ibm02 0.15 0.26 57
ibm03 0.13 0.24 59
TFOL(P, = 0.2) 0.15 0.25 | 60
TFO2(P, = 0.1) 0.14 026 | 54
TF03(P, = 0.05) 0.13 0.24 59
g
"o, |
%

10° 10' 10° 10°
degree k

Figure 2.6: Degree Distribution of ibm01 and T'F model(mo = 3, m = 2, P, = 0.2)

17

and each depends on the previous step. However, the trend is toward completing
these steps in a parallel and iterating, rather than in a sequential manner. If some of
the circuit topologies are known before the physical design process, they can be used
to facilitate floorplanning and placement steps.

The broad scale-free degree distribution shows that major topological differences
exist between random networks and large size electronic circuit netlists. For the ran-
dom networks, most nodes have approximately the same number of links, k =<k >,
the exponential decay of P(k) guaranteeing the absence of nodes with significantly
more links than <k >. In contrast, the power-law distribution of the most nodes in
large size electronic circuit netlists implies that the structure has two different kinds
of nodes. There are numerous nodes with only a few links, but a few nodes have a
very large number of degree or links. These nodes can been seen as hubs inside a
circuit. When system partitioning is imposed, considering these hubs can result in
these hubs being distributed in different partition parts. During floorplanning, when
the sub-circuits(blocks) locations are assigned, if there is more than one hub in the
sub-circuits(blocks), these hubs should be kept close to each other. By doing this,
the highly connected blocks are kept physically close to each other which minimizes
interconnection area and wirelength in the next placement and routing steps.

The large clustering coefficient of large size electronic circuits netlists implies there
may be some patterns of interconnections occurring in complex electronic circuits.
The patterns or building blocks are found in many fields of science, such as bio-
chemistry, neurobiology, ecology, and engineering [22]. The patterns of large size
electronic circuits netlists can help in locating the logic cell within the flexible blocks
in the placement step. For a special case, if there are many cliques (fully connected
graph) inside the blocks, then during the placement step, these cliques may become
recognizable as basic cells and it won’t matter what nodes inside a cell, because all

of the nodes wirelengths are the same in a clique.

18

2.6 Conclusion

This chapter explains that large size electronic circuit netlists have broad scale-
free patterns by offering their power-law degree distribution in a range and comparing
it with BA model. Also it was found that the circuit’s clustering coefficient is too
large for BA model. The introduced T'F model delivers a proper answer to the
large clustering coefficient. The results presented may save tedious optimization work
during placement and routing, and help to provide new ways of generating a large

circuit testbench, which are important objectives for future work.

19

Chapter 3

A Hierarchical Mixed Integer Programming Based

Algorithm for Floorplanning in VLSI Design

3.1 Introduction

The chapter focuses on the floorplan and placement design problem of very large
scale integrated (VLSI) circuits. At these particular design steps, the VLSI circuit
is seen as a set of rectangular blocks (modules) on a two dimensional surface such
that no two blocks overlap, while optimizing certain objectives (minimize chip size
and total wire length). Floorplanning helps solve such problems. This is related to
placement, since the blocks shape and pin positions on the periphery of chip compo-
nents are fixed. Floorplanning becomes more and more important for a hierarchical
layout style used in very deep sub-micron design. The topic has been studied [26]
for more than a decade. The rectangular block in VLSI circuit (netlists) consists
of hundreds or thousands cells, which may performs logical or arithmetic operations
such as AND,NOR and flip-flops, and the size of each block is predetermined. Blocks
are grouped into two types according to their shape and flexibility, viz., hard and soft
blocks. Hard blocks are rigid and have fixed shapes, while soft blocks have widths

and heights that are free to change provided that their aspect ratios remain within

20

a certain range. In the following discussion, the focus is on soft blocks so that any
topology can be handled properly.

One of the early works in the flooplanning field was done by [28] and [29]. Wong
and Liu [29] propose a normalized Polish expression to represent slicing floorplans
and use a simulated annealing (SA) algorithm to obtain a floorplan. The novelty of
their methodology is the simultaneous consideration of the shape and interconnect
information. But SA fails as the number of blocks increases. The methodology
developed in this thesis improves on this aspect by using hMETIS as partition tool
to reduce a big netlist into levels of small netlists. The top-down framework make
the SA algorithm more efficient. Young et al. [39], [40] extend Wong’s algorithm to
handle cases which certain blocks should be adjacent to specific boundaries of a chip.
To handle nonslicing floorplans, Murata et al. [32] and Murata and Kuh [33] offer
methods based on the sequence-pair topology presentation, while Nakatake et al. [35]
and Kang et al. suggest methods based on the bound-sliceline-grid (BSG). In these
methods, a floorplan topology is represented by a pair of sequences of block indexes,
and for a BSG, which is a plane dissected into several rectangles by horizontal or
vertical line segments.

Temo Chan [30] and Pinhong Chen [31] both uses linear programming to solve
the floorplan sizing problem. The sizing problem is modeled as a convex optimization
problem. Based on sequence-pair representation [32] [33] and a linear programming
method [31], Kimet al. [34] suggested that a floorplan design problem can be split
into two sub-problems namely the topology generation and floorplanning area min-
imization (FAMP). The topology generation step helps to fix the relative positions
of blocks so that the wire length can be minimized. In FAMP, blocks positions (x,y
coordinates) and dimensions (width and height) are further determined such that
the total area is minimized. However, splitting the problem into two stages may di-

minish the solution quality since the two stages are done sequentially and relatively

21

independently.

A preferred approach is to focused on the floorplanning problem in which soft
blocks are to be placed within a chip for the objective of minimizing chip size and
total wire length. The work carried out in this thesis developed a top-down level
framework, and implemented a partition tool hMETIS first to reduce a big problem,
such as that of most previous studies. In previously published work, other authors
treated the floorplanning problem in a flat level, with the result that the computation
time increased as the size of problem (number of blocks) was increased. The method
proposed in this thesis offers substantial benefits when the floorplanning problems
are large in terms of size. In this method the mixed integer programming formulation
(MIP) introduced by Sutanthavibul et al. [37] is used to represent the topology of
floorplans instead of sequence-pair which were commonly used in previous papers.
For reasons that will be discussed, the MIP model is more concise and clearer when
describing a small number of blocks relatively positioned. Blocks width-height ratio
and exact positions are solved by a non-linear solver, called SNOPT [25]. This also
makes a difference with the linear programming approximation methods [30] [31]
[34] mentioned before. Because of the particular partition-based method used for this
work, terminal propagation (TP) step [53] is reinforced in the programming to further
decrease the wire length. The SA algorithm was also chosen to find a best MIP that
gives the best floorplan: one with the minimum total wire length and chip size.

The rest of this chapter is organized as follows. In Section 2, the definitions used in
this thesis are presented, and a description of the floorplanning problem is provided.
Section 3 introduces the Top-Down floorplanning methodology. A Mixed Integer
Programming (MIP) formulation and non-linear constraints generation for SNOPT
are presented in Section 4. This is followed by a discussion of how to implement
simulated annealing (SA) and terminal propagation (TP) separately in Section 5 and

Section 6. To test the performance of the methods, computational experiments were

22

carried out and the results are shown in Section 7. Finally, Section 8 concludes with

a summary of this work and the conclusion is drawn therefrom.

3.2 Problem Description

In the floorplanning problem under discussion, blocks are assumed to be rectan-
gular and have defined area. There are three kinds of blocks in this treatment. A
hard block is a module whose width and height are given, but its position coordinates
are arbitrary. A soft block is a module which can has various shapes as far as its
aspect ratio is within a given range [Ry min, Ru.maz]- The position of soft blocks are
also arbitrary. The last group of blocks called pre-placed blocks whose width, height
and their coordinates are all fixed. The following notations are used to describe a

block on the plane.

Parameters Definitions

n Number of blocks.

m Number of nets in the netlist.

Wy, Py The width and height of block wu.

Ty Yu The coordinates of the lower left corner of block wu,

referred to as the coordinates of block w.

w?, hY The width and height of net bounding box of net k.
A, A, = h, X w,, the area of block u.
R, R, = h,/w,, the aspect ratio of block w.

Ry mins Rumae Lower and upper limits of the aspect ratio of block w.

We, e The width and height of the chip’s floorplan.

Since soft blocks have the most freedom, focus is restricted to the floorplanning

23

problem for soft blocks. The methods for hard and pre-placed blocks can be further
extended based on the soft block analysis. The objective of the present floorplanning
problem is to minimize chip size and total wire length. Chip size is defined as the
total area of the smallest rectangle that encloses all blocks of the chip. While the total
wire length is defined as the sum of the wire length for each of the netlists net. Here,
a net is composed of set of pins, which belong to certain blocks and 1/O pads inside
this net. Because the positions of pins within soft blocks are unknown before exact
shapes of the blocks are determined. It is assumed that the pins of each block are
located at the block’s center. To calculate the wire length of a net, the half perimeter
wire length (HPWL) estimation method is used. This method provides a very good
estimate for wire length approximation and is commonly used in other research [33],
[39], [40] and [34]. The HPWL method consists of finding the smallest bounding
rectangle (net-bounding box) that encloses all the centers of blocks in the net.

The following floorplanning problem is presented as a mixed integer nonlinear

programming (MINLP) [34] formulation. The objective is to minimize:

S (wh 4+ hh) and w, * h.

3.3 Top-Down Methodology

This section discusses the overall floorplan design methodology. First a parti-
tioning based method is used to break down the large input netlist into smaller sub-
circuits. Secondly, a hierarchical approach is implemented such that at each step a
small number of blocks (sub-circuits) undergo a finer floorplanning step. Therefore a
top-down hierarchical algorithm structure is imposed. The partitioning based method

employs hMETIS [37], while the finer floorplanning step is carried out with a non-

24

N ! O
S
e}?x\’ a-nm T Vo
-7 v v
\ - L .

)
A\
2

Figure 3.1: Hierarchical Floorplanning

linear solver package called SNOPT [25]. The software implementation developed
in this work is called Hercules since it is capable of application to large industrial
circuits as the MCNC' [27] benchmark examples.

Hercules utilizes hierarchical floorplanning technique for large industrial circuits.
A floorplan can be said to have a hierarchical structure if it can be achieved by
recursively partitioning a rectangle into K (partition size) parts as illustrated in Fig.
3.1. The hypergraph partitioning package hMETIS [37] was used for this purpose.
The input to Hercules was the MCNC' benchmarks netlist and node areas in GSRC
[27] format. The other adjustable parameters in hMETIS include the number of
simulated annealing iterations and the partition size K. Additional details of the
general framework and package implementation are discussed next.

The top-down algorithm begins with the partitioning of the input netlist into
K parts using hMETIS, and is called the level one partitioning. After a series of
preliminary tests, the hMETIS configurations are chosen such that vertices which
are connected by the entire hyperedge are grouped together (CType=4). The load
imbalance factor (UBfactor) is set to 5. The number of bisections (Nruns) performed
is set to 10. The Fiduccia Mattheyses one-way scheme with refinement is performed.

The refinement parameter (VCycle) is set to 3 which provides the best found solution

25

in a given number of iterations. Reconstruction is allowed, ensuring that the partitions
retain the remaining portion of the hypergraph which were cut.

The K macros undergo the floorplanning step as explained in the previous section.
The floorplanning step takes inputs like the bounding area (A), cutset coefficients
and the areas (A,) of the individual macros. For this stage the bounding area (chip
area) is assumed to be the sum of the areas of all the nodes (blocks) with a certain
area relaxation, restricted to 1% — 5%. As far as the later nonlinear programming
(SNOPT) can select a smaller percentage and place the blocks. Therefore, it becomes
possible to achieve the objective of minimizing chip size. The individual areas (wixh;)
of the macros are the sums of the areas of all the blocks within the macros. The
bounding width (W) and height (H) at this level can be calculated as v/A since the
chip is assumed to have a square shaped. The cutset coefficients a;; used in the
nonlinear model (SNOPT) are the number of nets that connect macro i and macro
j after the partitioning process. After the first level floorplainning process, each of
the soft macros width (w;) and height (h;) can be calculated using the same scheme
(w; = hy = VA,).

The second level partitioning step involves partitioning one of the K macros. To
ensure that every group of nodes (blocks) is assigned a valid location on the chip. It
is necessary to iterate through the node list and keep partitioning the macro which
a target node belongs to. The recursive process stops when a point is reached for
which the target node has no neighbors in the partition to which it belongs. Thus
this target node can be placed with this particular partition’s size and position. The
algorithm is presented in pseudo code in the Fig. 3.2.

At each step the nodes in the macro under consideration are isolated. The sub-
netlist is extracted from the original netlist information. The sub-netlist or the macro
netlist includes only those nodes which are present in the macro. Then the partition-

ing is done by using hMETIS recursively. After the partitioning process, the parti-

26

for each node € NodeList
(it node not placed

(while node not placed

(Find_Neighbours(node)

if neighbors <1
then node is placed

(Get_Macro Netlist
Get_Macro Nodelist

Partition_Macro

do

then d Update_Partition_Information
o

Generate_Interconnect_Information
else

Generate_Area_Information

Success = Floorplanning(Interconnect,Area)

this discussed in Sec 3.4, 3.5 and 3.6

if Success ==
then AssignCoordinates

else BackTrack Partitioning

Figure 3.2: Top_Down Algorithm in Pseudo Code

27

tioning interconnect and area information are computed and are used to do the next
floorplanning(Interconnect, Area) (Fig. 3.2). If for some reason the floorplanning
step is unsuccessful then the changes made by the partitioning process is undone.
When the algorithm encounters a node which belongs to a macro which could not be
successfully floorplanned in the first attempt, the partitioning size K would be cut
down for that macro before a second attempt is made. This makes the floorplanning

problem easier by decreasing the number of variables.

3.4 Mixed Integer Programming Method

3.4.1 Mixed integer programming formulation

One of the most common ways to describe the floorplan topology is using se-
quence pairs [33]. However, here a slightly different method, called the Mixed Inte-
ger Programming (MIP) formulation using a pair of binary matrices, was used for
this purpose [37]. It proposes an analytical approach using 0/1 integer variables to
present the floorplan topology, and using integer programming to solve the floorplan
optimization problem.

The main constraint in solving floorplanning area minimization (FAMP) [34] prob-
lems is the prevention of overlap. Considering the overlapping constraints of any pair
of rectangular blocks ¢ and j, there are four ways to position two macros such that
they do not overlap each other. Let (w;, h;), (w;, h;) be the width and height of block
i and j. Let (z;,y;) and (x;,y;) describe the x and y coordinates of the lower left

corners of macros i and j. The overlapping constraints can be modeled as:

z; +w; <, iis to the left of j (3.1)

T, —w; > T i is to the right of j (3.2)

28

yi +hi <y iis below j (3.3)

yi —h; >y, iis above j (3.4)

At this stage 0/1 integer variables z; ; and y; ; (Fig. 3.3) are added so that only one
of the above inequalities is satisfied. In addition to the overlap constraints bounding
constraints are also added to make sure that the macros are held within the bounding
rectangle. If W and H are the width and height of the bounding rectangle then the
bounding constraints are given by |x; + w;| < W and |y; + h;| < H. W can be equal
to sum of the width of all the macros while H can be equal to sum of heights of all

the macros. Thus the equations can be rewritten as:

i +w; — (xj+ W (2 +ui5)) <0 (3.5)
yi+hi —(y;+ Hx (14 x5 —y;5)) <0 (3.6)
z; —w; — (x; — W (1= +yi;)) >0 (3.7)
yi—hy = (y; — H* (2 =25 —y35)) 2 0 (3.8)

First of all, these four overlap inequalities can be easily implemented in the non-
linear model SNOPT’s constraints. Secondly, from Fig. 3.3 it is seen that when
handling the small number of macros in floorplanning, using 0/1 binary numbers is
more clearer and easier than the sequence pair method [33] to represent the relative
positions between two modules. And the top-down structure guarantees that only

the small number of modules are floorplanned. Last but not least, when defining the

29

three different moves in simulated annealing step (SA) in Sec. 6, the MIP representa-
tion provides unique advantages when handling swap, move and rotation. For these
reasons, the binary number expression in Mixed Integer Programming is preferred

and not the commonly used sequence pair representation.

top(1,1)
/N

|&ft(0,0) right(1,0)
Z N

N 4

bottom(0,1)

Figure 3.3: Mixed Integer Programming Formulaiton using binary numbers

3.4.2 Nonlinear model using SNOPT

Based on the previous discussion of the overall top-down design flow and the
floorplan design representation form, it is appropriate to consider the nonlinear mod-
elling of the floorplanning problem. This step corresponds to an important function
Floorplanning(Interconnect, Area), which is also mentioned in the top-down pseudo
code in Fig. 3.2. The nonlinear solver used is called SNOPT [25], which employs SQP
(Sequential Quadratic Programming) [52] methods to solve a MINLP (Mixed Integer

Nonlinear problem) with smooth nonlinear objective functions, such as the floorplan

30

design problem under discussion. The modelling language used is AMPL, which gives
the flexibility of hooking up any solver with the defined ampl model.

The macros considered for FAMP (Floorplan Area Minimization Problem) [34]
are rectilinear in shape and are defined by width and height. The pin positions are
assumed to be in the center and the Manhattan Half Perimeter Wire Length (HPWL)
model is enforced. Since all the macros are considered to be soft blocks, which means
they are only defined by their exact size and the width and height of each macro
are not known. There is a need to specify the range of aspect ratio for each of the
soft macros so that the final dimensions assigned are not too large or too small. The
upper and lower ratio limit selected is (Ryin, Rimaz) = (0.1,10). The bounding width
W and the height H are given as the input parameters to the problem. The complete
nonlinear model is given in Fig. 3.4.

The total bounding area considered is the sum of the areas of all the macros in
the bounding box. No routing space has been allocated at this level and thus the
total wasted area at this point is approximately zero. Therefore, the minimization
objective in effect minimizes the total interconnect between the K (partition size)
macros. The term [;; specifies the manhattan wire length of the net that connects
macros ¢ and j. Each of these terms are multiplied by a cutset coefficient «;;. The
cutset coefficient defines the number of wires that connect the two macros which
belongs in two different partition. This information is carried out from the previous
hMETIS partition step. Thus the sum of the product of cutset coefficient and the
manhattan wire length gives a measure of the total wire length inside the bounding
box.

From (B.1) to (3.20) in Fig. 3.4, the terms z;; and y;; are the binary variables
as introduced in Sec. 3.4.1, which are used to specify the referential position of each
macro with the other. In other words a set of z;; and y;; represent the topology of

floorplan. The overlap constraints prevent the macros from overlapping each other.

31

Minimize : L
L= aj*l; Vijes
]
ziy; =C C € (0,1),Yi,5€8
yi; =C C e (0,1),Vi,5€8
Overlap Constraints :
i+ w; — (x;+ W (x5 +y;;)) <0 (i is to the left of j)

ri—w; — (x; =W (1 =2y +yi;)) >0 (i is to the right of j)
yi+hi —(y;+ Hx (14 x5 —y;)) <0 (iis to the bottom of j)
vi—h; — (yj — H* (2= —y;5)) >0 (i is to the top of j)

Boundary Constraints :

IN

0 Vie S

(yi+h)—H < 0 Vies

Area Constraint :

Aspect ratio constrain :

) S Rmaac

=

E

3

IA
=&

Wire Length Constraints :

(@i + wi/2) = (z; + w;/2) + (y; + h;/2) — (yi + hi/2) —
(@i +wi/2) — (x5 +w;/2) + (yi + hi/2) — (y; + ;/2) = b
(@ +w;/2) = (@i +wi/2) + (y; + h;/2) — (yi + hi/2) = U
(@ +w;/2) = (@i +wi/2) + (yi + hi/2) = (y; + h;/2) = b

ININ A

IN

Figure 3.4: Non-linear model of the floorplanning problem

32

(3.12)

(3.13)
(3.14)

(3.15)

(3.16)
(3.17)

(3.18)

(3.19)

—~ —~ — —~
DO [\]
] —

~— ~— ~— ~—

Each macro has an overlap constraint with every other macro. The binary variables
using in MIP (Mixed Integer Programming) ensure that one and only one overlap
equation is satisfied for each pair of macros. The bounding constraints are needed to
ensure that each macro is confined to the bounding area. One of the most important
constraints is the aspect ratio constraint. The aspect ratio of each macro is specified
as a range and the lower and upper limits are defined as (Rpin, Rmaz). The terms w;
and h; are the unknowns in nonlinear program. However the area of each macro can
be specified as the product of the w; and h; because of the use of a nonlinear modelling
package SNOPT. This can be seen as a superior to other linear program methods.
When using a linear program as [31] [33] [34], a linearized approximation can always
be introduced, and this may further impact the effectiveness and optimization of
the final floorplanning result. The final set of wire length constraints specify that
the center-to-center manhattan distance is the minimum distance between a pair of

macros. Only connected macros have wire length constraints.

3.5 Simulated Annealing (SA) Algorithm

In this study, we use an SA algorithm to find a combination of binary numbers
which gives a valid relative position among all the macros and generates the best floor-
plan. In SA algorithm, an initial floorplan solution is repeatedly improved by making
small changes until no further improvements can be made by such changes. Unlike
greedy algorithms, SA algorithms can avoid getting trapped in the local optimum
value by allowing occasional uphill moves which deteriorate the objective function.
The uphill move is allowed with a probability given by exp(—A/T), where A is the
difference between the current objective function values and neighborhood solutions,
and T is a control parameter called the temperature. The temperature is initially

assigned a large value which is gradually decreased by a predetermined method, called

33

the Cooling Schedule.
The following shows the three topology change moves and the main objective

function of the SA algorithm.

3.5.1 Topology change moves

MIP (MizedInteger Programming) is used to represent two macro’s position
relationship as discussed in Section 3.4.1. By defining a pair of binary numbers
(x_array,y_array), which is chosen from (0, 0), (0,1),(1,0) and (1, 1) as left, bottom,

right and top shown in Fig. 3.3, the three basic moves can be easily implemented.

1. Swap move (Fig. 3.5)

Two macros are randomly selected and only change the x_array in the corre-
sponding pair of binary numbers, two macros swap their positions in horizontal
or in vertical direction. The swap direction (horizontal/vertical) is decided by

the remaining y_array (0/1).

2. Rotate move (Fig. 3.6)

Two macros ¢ and j are randomly selected and only change the y;;(y_array) in
the corresponding pair of binary numbers (z;;,v;;). if y;; changes from 0 to 1,
block 7 moves counter clockwise around block 7. Otherwise, if y;; changes from

1 to 0, block 7 moves clockwise. (with equal probability).

3. Shift move (Fig. 3.7)

Two macros ¢ and j are randomly selected, and if ¢ and j are not neighbors
(there are macros between them either horizontally or vertically), shift macro
1 and j together as neighbors. The choice of horizontal or vertical shift is by

equal probability.

34

@

y_array=0,
X_array switch 0/1.
[

(1,0

!

(0.0 :
:

y_array=1,
x_array switch 0/1.

0.1

Figure 3.5: Simulated Annealing’s Swap Move

In each iteration of the suggested SA algorithm, the three methods are randomly

selected with probabilities 0.3, 0.3 and 0.4.

3.5.2 Objective function

Once a floorplan is generated from a topology change move, the total wire length
is recalculated while considering both soft macro’s pin position and chip input-output

(1/0) pads.

WLtotal = WLblocks + WLpads + WLTP (324)

From (3.24), the SA objective function composed of wire length for inter macros
(L in Fig. 3.4), wire length between I/O pads and macros and wire length from
terminal propagation (T'P). The first two are both computed in half perimeter wire

length (HPW L), the last one is an objective function adjustment because of the top-

35

.

y array . -
changes Voo
0-1 Co
bV
(O/’V\O/) /’
, (1,0)
4
. \
) \
y_array:,
changes N
1_0 \\\
" - =
0,1

Figure 3.6: Simulated Annealing’s Rotate Move

down hierarchical structure. The terminal propagation wire length is discussed in Sec.
3.6. Note that a floorplan generated by this method always satisfies all constraints of
the problem because the above three topology moves are carefully selected. The SA
algorithm can be applied only to valid topologies. The SA algorithm takes charge of

reducing the total wire length at this level.

3.6 Terminal Propagation (TP) Algorithm

3.6.1 Reasons to import Terminal Propagation (TP) algo-

rithm
Dunlop and Kernighan [53] first introduced the terminal propagation (T'P) algo-
rithm in the procedure for V' LST circuits placement. They considered not only the

internal nets of the subcircuit but also the nets connected to external modules at

higher levels of the hierarchy. An example is shown in Fig. 3.8a, where the entire

36

Shift2and 5 together ~ Affected Blocks

(a) Before Shift Move

1 2 5 3 4 6
L

now neighbors
(b) After Shift Move

Figure 3.7: Simulated Annealing’s Shift Move

circuit is divided into two sections. If a module is connected to an external terminal
on the right side of the chip, the module should preferably be assigned to the right
side of the chip. Thus the modules shown in Fig. 3.8a are in the right region. The
method proposed by Dunlop and Kernighan is called the terminalpropagation algo-
rithm, and is further explained in Fig. 3.8b,c. Consider the net connecting modules 1,
2 and 3 in block A. This net is connected to the other modules in blocks B and C. In
Fig. 3.8c the modules in block C are represented by a "dummy” P2 on the boundary
of block A. Similarly, the modules in block C are represented by a ”dummy” module
P1 on the boundary of block A. After partitioning, the net-cut would be minimized
if modules 1, 2 and 3 were placed in the bottom half of A.

TP is the essential technique for the success of min cut type placement. It leads
to better bisection results for placement compared to that of pure partitioning. This
is because T'P uses geometrical information of external terminals. Returning to con-
sideration of the floorplanning problem, since the partition-based tool hMETIS was

used to break down the large circuit, the circuit is separated into several levels. Be-

37

tween any upper and bottom level there are external connections just like min cut
placement problem. It is necessary to import T'P into Hercules top-down structure.
In the following Sec. 3.6.2, the details about how to merge T'P with Hercules are

discussed.

/’

4 A
P A

(b) (0

C
Rl

Figure 3.8: (a) Modules connected to an external terminal. (b) A net connecting
modules in different blocks. (¢) Modules in blocks B and C are replaced by dummy

modules P1 and P2. Each point denotes a module or an external terminal.

3.6.2 How to implement TP with Hercules.

To add the T'P algorithm to the original Hercules top-down structure algorithm in
Fig. 3.2, new core methodology pseudo code is introduced as shown in Fig. 3.9. After
getting the partition information from hM ET1S, the upper level dummy node con-
nectivity information is collected and input to the nonlinear programming SNOPT
for calculating W Lp (see equation 3.24). In order to calculate W Lyp, the fixed po-

sition around the specific block before nonlinear solver step must be assigned. Eight

38

fixed dummy points are introduced as shown in Fig. 3.10. All the upper level nodes
beyond this block are mapped into these dummy points based on which region the
extend nodes are in. For example, if a node A in region 2 has connections with the
current level partitions, then A is mapped to point 2. Any connections between this
extend node and the nodes inside the block will be mapped to the connections be-
tween the dummy point 2 and the sub-block that the inside nodes are in. To reduce
the computation, only points from 1 to 4 in the programming are recorded, 5 to 8 are

the exactly reverse points corresponding to these four points.

3.6.3 TP’s experiments

The performance of the terminal propagation (7'P) algorithm can be verified when
doing floorplanning experiments in MCNC [27] testbench. For comparison reasons,
these five testbenches were run using the two methods separately, one with terminal
propagation, the other without terminal propagation. These two methods produced
similar chip size and cpu time, but large percentage reduce when focusing on the
final half perimeter wire length (HPW L). The simulate annealing iteration is 500.
Each method was tested at least 10 times. And in each case, the optimum result
was selected. The results are listed in Table 3.1. fa, b and ¢ in (a, b, c) denote the
numbers of soft blocks, nets and 1/O pads, respectively. The reason why the apte-s
testbench has no terminal propagation results is the small number of blocks, only
9 blocks exist. Therefore its floorplanning problem is treated in a flat level. The
other four testbench HPWL results show that the terminal propagation algorithm
optimizes the floorplanning problem effectively. The larger number of blocks that the
testbench has, the more H PW L decreases.

39

for each node € nodelist

while node not placed

P = the current level partition nodes

D = the upper level nodes which have connections with P,

(assigned to 8 points depict in Fig. 10)

I P = Interconnection in P

A = Area of partitions in P

ID = Interconnection between P and D

success = Floorplanning(I P, A, 1D)

if success

update positions

else

BackTrack partitioning

Figure 3.9: Terminal Propagation with Hercules Top-Down Algorithm Core in Pseudo

Code m

T : 10
s _+—1 .~
/ Vi
Ay s
6 L - - - === 2
Ax
5 4 3

Figure 3.10:

Dummy Points of a Partition

Table 3.1: Comparisons of Hercules Method with/without Terminal Propagation

HPWL apte-s XErox-s hp-s ami33-s ami49-s
(1) (9,97,73)1 | (10,203,2) | (11,83,45) | (33,123,42) | (49,408,22)
Hercules no T'P n/a 399201 128173 50526 748273
with T'P 303169 377217 120243 46107 655869
percentage n/a -5.5% -6.2% -8.7% -12.3%

41

3.7 Software Implementation

The Hercules program is written in C/C++ on a Sun-Blade Solaris platform. The
nonlinear solver is fortran based and needs a Fortran based and therefore a Fortran
compiler is required to run. The Hercules program can be invoked by the following
command lines :
hercules <file in GSRC format> <nodes list> <Cluster Size> <Scale> <Simulation
Iterations> <Partitioning Size> <TP parameter>

nets file :

The nets file is a GSRC format file which contains the circuit netlist information,
including blocks and 1/O pads connectivity information.

nodes list file :

The nodes file is a GSRC format file which contains all the blocks area, and 1/O pads
pre-fixed positions.

Cluster Size :

This parameter is designed to set the clustering or partitioning approach. If the
parameter is greater than 0 then it defines the max clustering size allowed. This
feature is still under construction and should be disabled by setting the parameter to
0.

Scale :

This parameter is used to scale the areas of the blocks. This was added because the
solver cannot handle large values and it may be necessary to scale the areas initially.
However the total wire length is computed in a way that takes the scaling factor into
consideration.

Simulation Iterations:

This parameter sets the partitioning size K to be used at each level of partitioning.

TP Parameter:

42

Is the switch parameter which determines whether or not the user wants to implement
terminal propagation into Hercules.

After a successful run the program will generate three files. The .place file con-
tains the coordinates of each block with respect to the chip boundary. This file also
contains the time required for execution, the levels of partitioning, the number of
times hMETIS has been called, the Kruskal’s minimal spanning tree (MST) [44] [45]
wire length and the conventional half perimeter wire length (HPWL). The .netlen file
describes the amount contributed by each net to total wire length. The .mag file can

be used to view the floorplan results graphically by using Magic [46] layout software.

3.8 Design Limitations

The top down design approach has a few limitations as does the approach used in
this work. One of the most important issues is global optimization of the problem.
The approach used involved breaking up a complex problem into a number of simpler
problems and using the solutions of these sub-problems to get the solution to the
complex problem. Thus many locally optimized solutions are computed in the hope
that these will eventually lead to the final globally optimized solution. This however
may not be the case. In the context of the approach employed a group of four to
eight macros undergo floorplanning and the interconnect optimization is done between
these groups of macros. Thus when a partition undergoes the floorplanning step the
partition gets isolated since the neighboring interconnect information is not used. The
macros having connections external to the partitions they belong to may move further
away from each other and increase the total wire length. The partitioning process
focuses on reducing the cut set so that the partitions are not highly connected. But
even an initially insignificant wire at level one could become critical at a later high

level since the length of the wire eventually increases if the cells it connects move away

43

from each other. The situation can be explained as the assumed non-critical wires
become of more and more critical importance as the top down process continues. This
may also lead to timing delays and reduce the speed of the circuit or in the worst
scenario the circuit may fail to work. A possible solution to this problem is discussed

in the future work section.

3.9 Computational Experiments

In this study, the Hercules top-down method for generating a floorplan from mixed
integer programming (M IP) was compared with the algorithm of Murata and Kuh
[33] and Kim et al. [34] and on the Microelectronics Center of North Carolina (MCNC)
benchmark examples (apte-s, xerox-s, hp-s, ami33-s and ami49-s). For the recursive
partition step using hM ETIS, the unified partition size was fixed at 4. For the
simulation annealing algorithm suggested in this study, the iteration number was set
to 500. The experiments were done on a 500-MHz SUN Blade work station and
SNOPTG6.0 was used to solve nonlinear programs with the Hercules algorithm.

The two algorithms of Murata and Kun [33], are known as EXACT and DIS2+POST,
and they were obtained from a 250-MHz DEC Alpha work station. The Kim et al.
[34]’s algorithm named SA-CT+LP and SA-LP, were used to test the benchmark
on a 500-MHz Pentium III processor. Both of Murata and Kim’s methods use the
sequence-pair to represent the topology of a floorplan and use a S A algorithm to find
the best sequence-pair in a single flat level. In the test problems, both the lower and
upper limits on the aspect ratio of the chip were set to 1.0, thus the chip should be
of a square shape (Fig. A.1 — Fig. A.5).

Table 3.2 shows the detailed results of the comparison. First, compared with
EXACT and DIS24+POST from Murata et al., the floorplans obtained from the al-

gorithms suggested in Hercules are much better in terms of the half perimeter wire

44

length (HPWL) and slightly better in terms of the chips size except for hp-s. Secondly,
if SA-LP, which has the best performance over current algorithms, is used, Hercules
gives very close values (< 1%) of Area and HPWL in three out of five benchmarks
(xerox, ami33 and ami49) with a much shorter computation time. Particularly for
ami49 the largest benchmark case, Hercules shows slightly better performance for
Area (—0.18%) and HPWL (—1.2%) metrics with the computation time almost 250
times faster than SA-LP. The best final floorplanning graphs for the MCNC bench-
marks are also provided in Appendix (Fig. A.1-Fig. A.5).

3.10 Conclusion

In this chapter, the floorplanning problem has been analyzed in some detail to
obtain the objective function of minimizing the total wire length and the chip size. A
new top-down hierarchical floorplanning structure is given for the problem, and mixed
integer programming formulation is used to represent the topology of floorplans. In-
side the top-down frame, hMETIS is first implemented as a partition tool to break
down the original large circuit into different levels. Within a partition level, the finer
floorplanning problem was solved by a nonlinear solver called SNOPT. The overall
wire length objective minimization (W Lyt = W Lyjoeks + W Lpaas+W Lrp) was embed-
ded in SA algorithms, which are used to find a near-optimal floorplan. After taking
into account the external connections between different partition levels, the terminal
propagation method was used and the improvement was quite effective (H PW L aver-
age decreased 8.2%), and the largest benchmark ami49 H PW L decreased as much as
12%). Results of computational tests on well-known benchmark problems confirmed
that Hercules gives good or similar solutions compared with the existing algorithms,
and the respective cpu times are shorter especially when handling the large number

of blocks benchmark examples.

45

Table 3.2:

DIS2+POST and Kim et al.’s SA-CT+LP, SA-LP

Comparisons of Hercules Method with Murata et al’s EXACT,

apte-s XEerox-s hp-s ami33-s ami49-s
(9,97,73)1 | (10,203,2) | (11,83,45) | (33,123,42) | (49,408,22)
EXACT Area(p?) 46553329 | 19509889 | 8826841 1159929 35581225
HPWL(u) 344358 401254 118819 53393 775104
cpu (sec) 789 1198 1346 75684 612103
DIS2+POST| Area(u?) 46635241 | 19474569 | 8868484 1162084 36048016
HPWL(u) 421174 533990 157166 51346 850305
cpu (sec) 1.32 2.06 2.05 28.09 50.40
SA-CT+LP | Area(u?) 46726924 | 19352812 | 8835280 1158363 35613678
HPWL(u) 243412 452686 121519 51383 746924
cpu (sec) 2.74 3.92 5.01 115.1 402.4
SA-LP Area(u?) 46561640 | 19350308 | 8830586 1157829 35520644
HPWL(u) 278178 376092 101011 45759 663689
cpu (sec) 496.5 4872.0 1659.9 16260.0 68995.1
Hercules Area(u?) 46588820 | 19359094 | 8836351 1158809 35457336
HPWL(u) 303169 377217 120243 46107 655869
cpu (sec) 48 50 61 190 277
HPWL—SA{ +8.9% +0.3% +19% +0.76% -1.2%
LP
Area—SA- | 40.058% | +0.045% | +0.065% +0.085% -0.18%
LP
LP

46

However, there are some potential future work to do. Since Hercules uses hMETIS
to first partition the original large circuit into smaller one. The partition size K
is a very important parameter which has non-replaceable influence throughout the
floorplanning design. If the inner structure characteristics in a circuit netlist [54]
can be found before the floorplanning design, and this information used to decide
every partition level’s partition size K, the final solutions will be further improved.
Also, the nonlinear solver SNOPT has limitations when handling large number of
variables. Reducing and merging different variables and constraints is worthy of

additional study.

47

Chapter 4

ILP Based Task Assignment and Scheduling for

Collaborating Unmanned Autonomous Vehicles

4.1 Introduction

Unmanned Autonomous Vehicles (UAVs) are emerging as a breakthrough technol-
ogy for numerous applications in manufacturing, military, environment monitoring,
infrastructure monitoring, and so on [55], [56], [57]. These applications involve a
functionality (behavior) that must be achieved under strict constraints (e.g., dead-
lines, precision, safety, energy resources, etc.), and optimized costs, such as the value
(utility) of the achieved objectives, the time required to meet the objectives, and
the spent energy. In addition, UAVs must safely operate in hard-to-predict or even
unknown environments and conditions, including moving obstacles and dynamically
emerging threats [58], [59]. This poses interesting new challenges for the development
of decision making (control) systems, which ought to provide optimized and reliable
response in both predictable and hard-to-predict instances.

UAVs sense the environment through a rich set of sensors and compute a response
that is delivered through various actuators, including those used for moving. UAVs

perform a large set of activities, including the computations of trajectories and iden-

48

tification of the control values for travelling along a trajectory, signal sampling and
processing (including image processing), communication with other UAVs as well as
specific activities, such as target detection, handling and assessment [60], [61], [62],
[57].

In many situations, UAVs must often operate collaboratively, so that complex
activities can be undertaken jointly by a group of UAVs [55], [56], [57], [63], [64].
The nature of collaboration is often decided dynamically at run time, depending on
the context-specific situations. For example, a UAV might not be able to meet the
deadlines set for the tasks due to unforeseen overheads, such as the time required
to avoid moving obstacles. In this case, the UAV interrogates other neighboring
UAVs, some of which may have more flexible deadlines, if they can participate in a
collaborative effort.

A major challenge for UAVs is the requirement that they are able to provide
predictable and reliable operation in hard-to-predict environments and situations.
Traditionally, reactive control has been the de facto solution for functioning in sit-
uations that cannot be characterized off-line. Depending on the conditions which
are identified on-line, the controller selects the most suitable response from a set of
predefined strategies. Each response strategy is characterized by specific outcomes
and performance, such as execution time, energy consumption, and so on. While
certain ”fixed-point” properties can be proven for reactive behavior (like stability
and reachability) [63], [65], [66], properties which depend on dynamic attributes (e.g.,
the frequency of being in a state) are harder to prove unless restrictive functioning
conditions are assumed. Thus, important performance metrics, e.g., execution time
and resource (energy) consumption, are hard to accurately estimate and guarantee
for reactive control procedures. The alternative to reactive procedures are off-line
static control methods [56], [67]. These methods work very well if the operational

conditions and the environment are fully known, and hence the UAV behavior is

49

deterministic. The performance of the control methods can be precisely estimated
in this case. However, static methods have little or no flexibility in adapting to un-
known situations. Therefore, it is challenging to devise general control strategies with
predictable performance and that operate efficiently in hard-to-predict conditions.

This work is based on an approach to devising performance predictive methods
for collaborative control of UAVs operating in environments with fixed and unknown
(pop-up) targets. The control strategy allocates targets to specific UAVs and sched-
ules in time the handling of the targets assigned a particular UAV, so that the deadline
associated with the fixed targets are all met. In addition, the method maximizes the
chances of pop-up targets being properly handled by UAVs. The behavior of pop-up
targets is described in terms of probabilistic distributions for their appearance in a
given zone and time interval. The third optimization criterion is to maximize the
flexibility of UAVs to participate in collaborative actions in which multiple UAVs
participate jointly to handle the same fixed target. This goal is addressed by com-
puting the slack time margins that can be used by a UAV in collaborative actions
while still meeting the deadlines of its assigned tasks. Please note that the approach
does not select the UAVs statically that participate in collaboration since this would
limit their operational flexibility in unknown situations. Instead, each UAV decides
on-line whether or not it will respond to a request for collaboration depending on its
then available slack time. If the slack time is less than the computed margin then the
UAV can not participate without violating the deadlines.

The proposed decision making approach assumes a two-level control hierarchy:
the upper level strategy is a static procedure which determines the allocation and
scheduling of the fixed targets to individual UAVs. The lower level strategy is reactive,
and controls the handling of pop-up targets and a UAV’s responses to requests for
collaborative activities. The reactive components decisions are based on inputs from

the UAV’s sensors as well as the slack time constraints allocated to the UAV through

20

the static decision making process. An Integer Linear Programming (ILP) based
solution for assigning and scheduling the fixed targets to UAVs and computing the
slack time intervals used for collaborative actions and pop-up target handling is the
basis for the work that follows.

This chapter is organized into six sections. Section Two summarizes related work.
Section Three defines the addressed problem, and presents the modeling solution used
for assigning and scheduling tasks to UAVs. Section Four discusses the ILP modeling
of the problem, and a case study is described in Section Five. Finally, conclusions

are presented.

4.2 Related Work

This section summarizes existing work on control for autonomous systems.

Brogan and Hodgins [68] present distributed control techniques for groups with
significant dynamics. Similar to the method by Reynolds, there are only simple
interactions between neighboring individuals. Interactions include communication,
cooperation, and coordination strategies. Individuals have inertia, which imposes re-
strictions on the position and velocity gradients. Therefore, the computed trajectories
and velocity control rules must not only address collision avoidance and flocking but
also prevent steep changes in direction and velocity.

Brock and Khatib [69] describe a method in which distributed control is achieved
through superposition of global and local requirements. Global requirements are
static (e.g., the starting and ending points of a trajectory), and are modeled similar to
virtual elastic strips that would span the tow points. Any changes from the trajectory,
such as to avoid an obstacle, introduces an elastic force that attempts to pull back
the robot to the planned trajectory. Local requirements, such obstacle avoidance,

are expressed through local interactions, i.e. repulsive forces between obstacles and

o1

moving robots. Then, the elastic and repulsive forces are used for velocity tuning and
trajectory modification. In addition, the method relies on global information, e.g.,
robot priorities, and global trajectory re-planning to avoid any collisions. The method
by Yamaguchi [64] uses attraction forces to targets and neighbors, and repulsive forces
to obstacles for coordinated pattern formation for security against invaders. The
author proves stability of the control rule, but does not suggest a general method for
finding the local behavior rules of global requirements.

Leonard and Fiorelli [70] suggest a 2D distributed vehicle control based on artificial
potentials and virtual leaders. Vehicles interact following potential fields following a
logarithmic law. There is an attraction force toward distant neighbors, so that group
forming is encouraged, and there are repulsive forces and velocity matching with the
close neighbors. In addition, virtual leaders define an additional local potential, which
aids group formation. Finally, dissipative forces attempt to match a vehicles velocity
to a desired velocity value. Vehicle control is guided by the forces defined by loga-
rithmic laws for the four potential fields. The authors also describe the mathematical
rules that lead to certain formations, such as an equilateral triangle and hexagonal
lattice.

Another artificial field-based approach is described by Mamei, Zambonelli, and
Leonardi [71]. Distributed control is based on computational fields (called Co-Fields),
which act as an enabling global infrastructure between mobile agents. Co-fields are
dynamic, and are influenced by moving actors. Actors move along the field waveforms,
following either downhill, uphill, or equipotential lines. The goal of vehicle control is
avoiding collisions, forming predefined patterns, or vehicle meeting, but the authors
suggest that finding the Co-Fields required for a certain goal is still an open research
problem. The method presented in [59] combines nonlinear model predictive control
with potential field concepts for conflict-free trajectory planning. Other field-based

control methods are discussed in [72], [65].

52

Schouwenaars, Valenti, Feron, How, and Roche [67] discuss UAV trajectory gen-
eration for cooperative missions between manned and unmanned vehicles. A MILP
(mixed integer linear programming) method is proposed for optimized real-time tra-
jectory planning to avoid obstacles and threats in a partially-known environment. A
cooperative task scheduling method is presented in [55].

Rathbun et al. [58] propose path planning algorithms for UAV navigation in un-
certain environments. The position of obstructions is known only within a limited
accuracy. Trajectories are found using evolutionary algorithms (EA) that implement
the following operators, (i) mutate and propagate, (ii) crossover, (iii) goto goal, and
(iv) mutate and match. Obstacle intersection probability is defined for both moving
and fixed obstacles. As optimization is carried out, more information is gathered
about the position of the obstacles, which improves the accuracy of the probability
functions. The cost function relates the goal to reach the desired target, minimizing
the amount of used fuel, and minimizing the probability of UAV collision with an
obstacle. As the position of the obstacles becomes known, trajectories are replanned
such that they maximize the probability of success, and minimize the change in tra-
jectory (as compared to the already existing trajectory). Other EA based approaches
are presented in [62], [61].

Trajectory planning based on graph search methods using A* and D* methods
are discussed in [73], [74].

4.3 Problem Description and Modeling

This section defines the addressed problem and presents the proposed modeling.
Figure 4.1 summarizes the UAV behavior scenario. Multiple UAVs must coop-
eratively handle targets located in a 3D environment. Each UAV moves along a

non-linear trajectory at a variable speed using a trajectory computing algorithm sim-

93

Pop-up targets
S

B

®
Fixed target y .

Fixed target
Pop-up targets

=
§ Trajectory

UAV
Pop-up targets

Fixed target

Figure 4.1: UAV movement towards fixed and pop-up targets

ilar to [75], [76]. UAVs are heterogeneous, and therefore may have different dynamic
characteristics (e.g., speed and acceleration). The speed magnitude and speed gradi-
ents are bounded.

Targets are of two types: fixed targets and pop-up targets. Fixed targets are
positioned at known locations, and must be handled before a predefined time limit.
Otherwise, the entire mission is considered compromised. Pop-up targets are posi-
tioned at random places within a given 3D region, appear at random time instances,
and disappear after a random time interval. The group of UAVs must handle all
fixed targets before their time limit expires, and also maximize the probability of
handling as many pop-up targets as possible. Fixed obstacles are present in the 3D
environment, and must be avoided by the moving UAVs.

Handling targets consists of the following sequence of activities: (i) flying to the
target location, (ii) detecting the target (e.g., through different sensors), (iii) com-
pleting certain target-related tasks such as taking pictures of the target, and (iv)
assessing the results of the described activities [56], [67]. The latter three activities

have known execution times, but the first step may be of variable duration, depending

o4

on the position and flight characteristics of the UAV. It is assumed that each UAV can
handle multiple fixed and pop-up targets, and that UAVs can collaboratively handle
the same fixed target. For example, one UAV might detect and handle the target,
and then transmit all the information to another UAV, which will do the assessment
of the results for that target. This scenario is useful considering that UAVs have dif-
ferent capabilities (e.g., achievable speed), and resources (such as amounts of fuel). A
slower UAV positioned nearby can do the assessment, while the more powerful UAV
moves towards handling the next target. As a trade-off, the collaborative scenario
involves communication overhead for information transmission between the UAVs,
and also additional distances to be travelled (thus, higher fuel consumption) by the
UAVs involved in collaboration.

Pop-up targets can be handled while a UAV flies to the target. If a pop-up target
appears, the UAV might decide to carry out the necessary tasks related to that target,
if the time required to do so does not result in violating the timing constraints for
that UAV with respect to its assigned fixed targets. If time permits, multiple pop-up
targets can be handled before the UAV arrives at the next fixed target.

In summary, this section has discussed the following problem: An algorithm must
be developed for handling N fixed targets by M UAVs with known but different
characteristics. Each fixed target must be handled before its predefined time limit
expires. In addition, the probability of handling as many pop-up targets as possible

must be maximized.

4.3.1 Collaborative approach

Figure 4.2 presents the decision making approach proposed for controlling the
behavior of UAV groups. The approach represents a trade-off between centralized

decision making, which is efficient and offers predictable performance (e.g., guaran-

95

Pop-up targets and the
Fixed targets probabilities of their
and their pop-up regions and pop-u|
Group of UAVs deadlines time intervals

I

Centralized step:

(1) Allocation and scheduling of fixed targets
to individual UAVs
(2) Compute intervals for coolaborative

behavior
(3) Compute regions for pop—up target handling

Y

Decentralized step:
Reactive behavior of individual UAV

using the allocation, scheduling,

and constraint behavior information

Figure 4.2: Decision making for collaborative UAV operation

o6

tees the satisfying of the predefined deadlines), and decentralized control, which is
more scalable and more flexible with respect to handling new situations. Centralized
decision making is at the level of the entire UAV group, and decentralized control is
at the level of each individual UAV.

This approach uses an off-line, centralized decision making step to compute the
allocation of fixed targets for each UAV, and the temporal scheduling of the activities
related to the handling of a target. In addition, the centralized step also calculates
the constraints that encompass the collaborative behavior of each UAV. During oper-
ation, each UAV decides dynamically (after a collaboration request has been received)
whether it will participate to the collaboration, or not. The decision is made based
on its current situation, such that the deadlines of the allocated fixed targets are
not violated. Since collaboration requests are formulated dynamically and cannot
be predicted a priori, the optimization goal is to maximize the chances of a UAV
participating in collaborations by computing the allocation and scheduling solution
that maximizes its flexibility to participate in collaborations.

Similarly, the centralized decision process calculates constraints that maximize
the likelihood of handling pop-up threats while satisfying the deadlines of the fixed
targets. The handling of pop-up threats is also decided locally by each UAV during
operation depending on its current situation and the deadlines of the assigned targets.

Each UAV executes its own decentralized controller, which implements a reactive
behavior expressed through a Finite State Machine (FSM). The controller determines
the specific actions of a UAV, e.g., pursuing a fixed target, satisfying a request for
collaborations, or handling a pop-up threat. Figure 4.3 shows the structure of the
reactive controller. In normal operation mode, the UAV is handling a fixed target fol-
lowing the allocation and scheduling decisions of the centralized step. If the controller
detects that the deadlines fixed for the target currently being handled cannot be met,

it formulates a request for collaboration. If the request is granted by another UAV

o7

Deadlines not

Request
collaboration

Handle fixed
targets

Request for
collaboration

Participate to finished

Handle pop-up
targets

collaborative

activities

Figure 4.3: Decentralized controller for UAV operation

then the UAV moves on to handling the next assigned fixed target. If the request is
not granted then the UAV might decide to continue with the current activity even
though this results in violating the target’s deadline, or leaving the task unfinished in
order to move on to the next assigned target. Similarly, pop-up targets are handled
if the related constraints allow it.

The focus of this discussion is on the centralized decision making algorithm, includ-
ing target allocation and scheduling, as well as the computing of constraints related
to the collaborative actions and pop-up threat handling required for the decentralized
controller. The next section presents the proposed UAV behavior modeling used for

centralized decision making.

4.3.2 Problem modeling

Figure 4.4 illustrates the task graph for handling N fixed targets. Each target
handling activity is an independent thread of tasks consisting of separate tasks for
flying, detection, handling, and assignment. Task dependencies express the required

order of performing the tasks. Since the N targets are known, the times for detection,

o8

Fixed target 1 Fixed target N

no

Communicate

no

Communicate

same UAV?

yes yes yes

Handle

same UAV?

no no

Assessment Assessment

Assessment

Figure 4.4: Task graphs for fixed target handling

handling, and assignment are fixed for a given UAV type. Note that these times are
different for UAVs with different characteristics. In contrast, the flight time is not
known in advance because the time required for reaching a target depends on the
computed UAV trajectory and the decision to handle any encountered pop-up target.
Moreover, the UAV trajectory depends on the position of the fixed target previously
handled by the UAV, and therefore on the previous decisions on target allocation and

scheduling.

1. Fixed targets
The task graph includes tasks that can represent a collaborative behavior be-
tween multiple UAVs in handling the same fixed target. For example, after the
target was detected by an UAV, the methodology allows other UAVs to handle
and/or assess the target. These actions are represented by conditional blocks
(the blocks labelled as "same UAV?” in the figure), which continue with the

tasks for communication and flight, if a different UAV is involved. The com-

29

munication time is fixed (since the amount of data to be transferred is given),
but the flight time is variable as it varies with the position of the UAV entering
the collaboration. The flight time includes the total time spent by a UAV for
moving for a new activity as well as the time for accomplishing that activity.
Since the nature of the collaborative activity is decided online, the actual flight
time is not known during the off-line centralized decision making step, and in-
stead the methodology should maximize the overall capability of a UAV group

for collaborative activity.

2. Pop-up targets
Figure 4.5 summarizes the main characteristics of pop-up target modeling. Pop-
up targets can randomly appear at any point in a known regions. For example,
in the figure, the pop-up target can be positioned at any point in the cubic
volume. The time at which a pop-up target appears, and the length of time
that the target is observable are random. This discussion assumes that the
probability of a pop-up target appearance is constant over a given 3D volume
and also constant for a given time interval. However, this methodology also
supports more sophisticated scenarios in which probabilities follow distributions

that vary over time.

4.4 Proposed Algorithm

This section describes the centralized task assignment and scheduling problem as
an Integer Linear Programming (ILP) problem. The model is then solved using an
existing ILP solver to obtain the centralized controller of a UAV group. Figure 4.4 is
provided to explain the ILP expressions. The following equations are used to build

the ILP model:

60

Expected region
for pop-up target

i Pop-up target
|

S Position i+1
(xi, yi, zi)

Position i

(xf, yf,2f)

I I I I
! non-preemptive | preemptive ! non—preemptive;

flight flight flight
Figure 4.5: Strategy for pop-up targets

4.4.1 Task start time

The start time of a task ¢ is larger than the end time of its preceding task j:

ti,start 2 tj,end (41)

4.4.2 Task end time

Liend = Vistart + T1,; 11 + 2o To+ o+ 2 Ty (4.2)

The end time for executing a task (e.g., detection, handling, and assessment) is
equal to the start time of the task plus the time 7T; required for UAV; (i = 1,..., M)
to perform the task. Values of T; are constants for a set of UAVs. The variable z; is

one, if the task is performed by U AV, otherwise it is zero.

61

4.4.3 Task allocation to UAVs

Each task pertaining to a fixed target must be allocated to the specific UAV, that
performs the task. For task k, this requirement is expressed as follows:

Y mip=1 (4.3)

1€eUAV's
4.4.4 Task scheduling to UAVs

Each UAV can handle multiple fixed targets, one target at a time. The set of ILP
equations must include relationships that constraint the UAV to execute a single task
at a time. For the tasks pertaining to the same fixed target, these constraints are
implicitly introduced by the equations 4.1, which represent the sequencing constraints
of the tasks.

For the tasks related to different fixed targets allocated to the same UAV, the
constraint is that the UAV handles a new target only after it finished handling the
current target. Allowing the UAV to intertwine the handling of the two targets would
result in unnecessary temporal overhead due to the extra distance the UAV must
travel between the two fixed targets. This overhead obviously affects the optimality
of the scheduling result.

A 0/1 variable z; ; is defined for each pair of fixed targets ¢ and j. If both targets
are handled by the same UAV, then the variable being one indicates that task i is
handled before task j, and after task j, if the variable is zero. This constraint is

captured as follows:

T‘i,end S ,I‘j,startzi,j E Lk il j + T — Zij § Tk Zxkj (44)
keUAV s keUAV s

Tjend < Ti start(1 — 2i) E TpiTry + Too(l + 255 — E Tk Tk ;) (4.5)
keUAV s keUAVs

T, is a very large value.

62

4.4.5 UAV flight time to fixed targets

The flight time 7', to a fixed target depends on the previous position of an UAV,
which results from the fixed target allocation and scheduling. Target allocation and
scheduling is computed by ILP equation solving, and is obviously unknown at the
time of setting up the ILP equations. The proposed solution is to introduce a 0/1
variable w; ; for each pair ¢ and j of fixed targets to describe the UAV that successively
handles the two targets (one immediately after the other). If the variable is one then
target ¢ is handled before j. Otherwise, the variable is zero. In addition, the same
UAV must handle both tasks.

The flight time T, to a fixed target j is defined as follows:

T 1y o Z w; jDist(target;, target;) x (Z Ti k%)) (4.6)
Vtarget; k€U AV s

The next constraint expresses the fact that each task is handled by one UAV after

the UAV handles exactly one task (with the exception of the ”dummy” start node),

so for each task i:

Z wi; =1 (4.7)

Vtarget;

4.4.6 UAYV collaboration

In collaboration, the identity of the collaborating UAVs and the nature of the
activities involved in collaboration is not known for centralized decision making, but
instead is decided during UAV operation. The centralized decision making assigns
and schedules tasks so that the flexibility of collaboration (if needed) is maximized.

As shown in Figure 4.4, a UAV might decide to collaborate after each of the
activities related to a task, such as the fly, detect, and handle activities. The flexibility
for collaboration depends on the slack time between the end of the current activity

and the beginning of the next activity, and the deadline of the target handling for

63

Fixed target k

Start
Fy

etect

yes

Handle
Collaborative

activity

Stop

HEREn
HEtE

‘

Figure 4.6: Modeling for dynamic collaboration

which the collaborative action is requested. The more overlapping exists between the
slack time and the deadline the more flexibility exists in collaborating to meet the
deadline (e.g., the deadline is before the starting of the slack time, or after the end
of the slack time) then there is no possibility of the UAV to participate in handling
the target.

Figure 4.6 is used to explain the ILP equations for collaboration. For each target
k, we define SetC), as the set of targets for which the assigned UAVs are candidates
for collaboration. SetC} can be set statically based on the geographical proximity of
the targets (this information is known), or can be decided dynamically at run time
depending on the current slack time of a UAV, and hence its flexibility to fly to

more distant targets without violating the deadlines of its assigned targets. In this

64

Deadline k - > Tk Deadline k

Ti,start Tj,start

Figure 4.7: Flexibility in collaboration

discussion, Set(), is assumed to be static.
The flexibility in participating to a collaborative handling of target k between

activities i and j (scheduled in this order) is proportional to the following value:

Fl; j i o< [Activity; ena, Activity; stare) N [(Deadline), — ZTk), deadliney] (4.8)

Variables Activity; ¢na and Activity; siare are the end time of Activity ¢ and the
start time of Activity j. [Activity; ena, Activity; sare) represents the time interval
defined by the two moments. Deadliney is the deadline set for target k, and »_ T}
is the time required to perform all activities related to target k, e.g., detect, handle,
and assess.

Figure 4.7 illustrates the definition of the flexibility constraint for UAV collabo-
rating on the handling of target k. Targets i and j are allocated to the UAV. The

condition for collaboration is defined by the following equations:

T ena < Deadline;, — Z Ty (4.9)

Deadliney, < Tj sart (4.10)

65

The equation for the flexibility for UAV m is shown in equation 4.11. Where x,, ;
and z,,; are both equal to one, it means the same UAV m are handling Activity;
and Activity;. o,y is required to equal to zero, which means UAV m is not initially
assigned to Activityg, but UAV m plans to handle Activity, on account of flexibility

Fli, 5, k’s calculation.

Flij i X T iTm i (1 — 2 1) (Deadliney, — T; ena) (T stare — Deadliney,) (4.11)

The total flexibility of an UAV to participate to collaborative activities is:

Fli’j - Z Fli,j,k (412)
keSetCy,

The overall cost function includes a term to maximize the flexibility of UAVs

participating to collaborative activities.

4.4.7 Pop-up targets

Each pop-up target has a specific probability of appearing in a given 3D area, and
remains visible for a time which is also defined as a probability over a certain interval.
The proposed modeling assumes that the target has equal probability of appearing
in a known volume, and similarly, the time of being visible is a uniform probability
over a given interval.

A main goal of centralized decision making is to maximize the chances of handling
as many pop-up targets as possible. The chances of a pop-up target becoming visible
depends on the constant probability as well as the time associated with the preemptive
flight mode, during which the UAV can handle a pop-up target (see Figure 4.5).
Assuming that time T, is the time when point X; (the beginning of the preemptive
flight segment) is reached, and time T, is the time when point X; (the end of the

66

Pop-up target

==
==
Target2 =
Target4
= ’ Xi Xf ®
’/TargetS

Target 1

Figure 4.8: 0/1 variables for UAV collaboration modeling

preemptive flight segment) is traversed by the UAV. The chances of the pop-up target

PP; appearing during that time interval is as follows:

prr, = (Tx; = Tx,)Probpp, oppearance (4.13)
Thus, increasing the chances of handling a pop-up target involves increasing the
time interval defined by the time moments 7'y, and T'x ;e This is obviously correlated
to the decisions of assigning fixed targets to UAVs, and then scheduling the targets.
For example, in Figure 4.8, increasing the chances of handling the pop-up target
might require deciding that Target, is not handled by the UAV in order to increase
the length of the time interval Tx, — T, while still meeting the deadline constraints
associated with Target,.
Using Figure 4.8 as an illustrative example, the expressions for the time moments

Ty, and T, are defined as follows:

|Xz - XTargetg |

Tx. = traree 4.14
X; T g t3,end SpeedUAV ()
|XTarget4fX ’
trarae =T, — 4.15
T g t4,sta7‘t f SpeedUAV ()
and
| X — X
Ty, <Txy, + ——— 4.16
=TT speedy ay (4.16)

67

speedy Ay is a known constant in the equations. Also, the relationship includes an
inequality (equation 4.16) as the UAV might travel at a lesser speed than the value
speedy 4y in order to increase the chances of the pop-up target being observed by the
UAV.

The time required for the UAV to cover the segment between targets Target; and
Target;, including the handling of a pop-up target is as follows:

Tflight = Tnon,pnl + Tpreempt + Tnon,pr,Q (417)

where the variables T),on pr1 and T4, pr2 are the times required for the non-
preemptive zone at the beginning and at the end of the segment (see Figure 4.5),

and variable T}, ¢empr Tepresents the time of preemptive flight.

Xz' - X arget;
Tnon,pr,l = | Targets (418)
speedy ay
‘XTarget' - Xf|
Tronpra = ! 4.19

The following equation is valid, where values Tperect, THandle aNA T Assessment are
constant:

Tpreempt = Tfly + TDetect + THzmdle + TAssessment (420)

The value of variable T}, is the time it takes to the UAV to fly to a visible pop-up
target. This time obviously depends on the position of the pop-up target, which is
random inside a given 3D region. For the centralized decision making step, T}, is
estimated to be the average of the flight time assuming that the pop-up target has
equal probability of appearing inside the 3D area of volume V.

1 i, distance(X)dX
speedy ay Vv

Ty = (4.21)

where distance(X) represents the distance from an arbitrary point X inside the vol-

ume V' to the line defined by T'arget; and Target,;.

68

Zone for pop-up targets

,X:—\. $.
AN X X X
LOXE(2) N
X Target i
X J
X\

N
N
N
N
N

Target |
Figure 4.9: Average distance to pop-up target

Figure 4.9 presents the case in which the volume V' of a pop-up target’s zone
cannot be predicted. Instead, the pop-up target can emerge as a set of points, which
are labelled with 'x” in the figure. In this case, the flight time to a pop-up target is
estimated as follows:

1 > iex distance(X;)

T —
W= speedy ay Card(X)

(4.22)

X is the set of all points in which the pop-up target can be placed, and X; is one
of the points. Card(X) is the cardinality of the set X.

4.4.8 Cost function

The cost function is a weighted sum that expresses the goals of (i) minimizing the
cumulated penalties for exceeding the predefined deadlines for the static targets, and

(ii) maximizing the probability for handling pop-up targets:

69

FT4

FT1

Figure 4.10: Case Study

Cost = a X Z (TIL',end - E,deadline)z + ﬁ X ZpPPz + vy X Z Fl'i,j (423>

Vtargets; Vtargets; ;

4.5 Case Study

This section presents the ILP equations for the case study in Figure 4.10. The case
study includes two UAVs, four targets (FT) and one pop-up target (PT) positioned
between targets 2 and 3. Figure 4.10(b) shows the task graph for this application.
Each of the four threads corresponds to one of the fixed targets. The model was

developed for Ip_solve ILP solver or SNOPT solver [52].

4.5.1 Constraint 1, individual task start and end time

The following equations define the task start and end times for tasks Fly (index

2), Detect (index3), Handle and Assessment (index 4) of the first thread:

T1 < T2_start (4.24)

T2 end = T2 start + T2, 1021 + T2 0022 (4.25)

70

1
threadl thread4
threa’cy w\reaﬁ
5 8 1

Fly 2 1
Detect 3 6 9 12

' ' ' '

Handle
and

7 10 13
Assessment \ //

Figure 4.11: Case Study, Index Representation

4

22 1+222=1 (4.26)

T2_end < T3_start (4.27)

T3 end = T3 start + T3¢y 1231 + T3¢y 0232 (4.28)
x31+2x32=1 (4.29)

T3 end < T4_start (4.30)

T4 end = T4 _start + T4ep 1241 + T4ep 2042 (4.31)
w41+ a4 2=1 (4.32)

T;,,, is the time it takes UAV j to perform task i. Variables zi_k are 0/1 variables
with value 1 if task 7 is allocated to UAV k, and value 0 otherwise. Similar equations

were introduced for all the activities or tasks in the graph 4.10 and 4.11.

71

4.5.2 Constraint 2, define the flight time between successive

targets

The following equations define the flight time between successive targets depend-
ing on the allocation of targets to UAVs and the order in which threads are visited.
Such equations are introduced between each possible sequencing of the two targets
i and j. The 0/1 variables zi_j are 1, if thread i is executed before thread j, thus
target ¢ is before target j.

TF1 > d21 4 22_1Ts + 221 + 25_1Tse — 3T (4.33)
TF1 > d31 4 23.1Ts + 22_1Ts + 28 1T — 3T (4.34)
TF1 > d41 + 24 1T + 22_1Ts + 11175 — 3T (4.35)

dij is the time it takes a UAV to fly the distance between target ¢ and j at a
constant average speed. T, is a very large value. The reason for giving both x5_1
and x2_1 in the same equation 4.33 is to guarantee that target 2 and 1 are both
handled by the same UAV 1. The same requirements apply to x8_1 and x11_1 for
thread 3 and 4 separately. If zi_1 is changed to xi_2, or the second index to 2, the
other three corresponding constraints are obtained for targets handled by UAV 2.
(Equation 4.36 — 4.38)

TF1 > d21 4 22_1Ts + 22 2T + 252Te — 3T (4.36)
TF1 > d31 + 23.1T + 22.2T0 + 28 2T — 3T (4.37)
TF1 > d41 + 24 1T + 22 2T + 112T5 — 3T (4.38)

72

4.5.3 Constraint 3, define tasks’ scheduling between succes-

sive threads

The next set of equations is defined for each pair of tasks of the four parallel
threads. They indicate that a UAV can execute a single task for each of the two
threads at consecutive times, such as task assessment (index 4) of thread 1 and fly
(index 5) of thread 2 (Fig. 4.10), and task assessment (index 7) of thread 2 and fly
(index 2) of thread 1 in this case as shown next. The 0/1 variables zi_j are 1 if thread
1 is performed before thread j. Otherwise, if zi_j are 0 when thread 7 is performed
after thread j. T is a very large constant. Equation 4.39 to 4.43 are tasks’ scheduling
between thread 1 and 2. In this example, for the 4 threads case, it contains C? = 6

different pairwise zi_j. Therefore there are a total 24 tasks’ scheduling constraints.

T T

T4_end < T5_start + Taoz2_1 + Tso — %Oxél,l — ?’Ox&l (4.39)
Ty Ty

T4 end < T5_start + Thoz2_1 + T — 7:64,2 - 73:5,2 (4.40)
T T

T7 end < T2 start + Tooz1 2 + T, — 71‘7,1 — 73:2,1 (4.41)
T T

T7 end < T2 start + Tooz1 2+ T, — 71‘7,2 — 73:2,2 (4.42)

2124 221=1 (4.43)

4.5.4 Constraint 4, the flexibility of UAVs for collaboration

The following equations define the flexibility of UAVs to collaborate. Variable
Fl; ; is the flexibility of UAV collaboration in handling thread k (target k) while
performing thread ¢ (target ¢) and j (target j). And Flj;; also means thread i
is handled before j. For instance, Fl3 1 is the flexibility of UAV collaboration in
handling thread 3 while performing thread 1 and 2 originally.

73

T
Fl3 15 < —(Deadline3 — T4_end)(T5_start — Deadline3) + Tw, — 721,2 -

T T T
— =741 - —=251—-—(1-281 4.44
1 7 4:65 4(x8.1) (4.44)

T
Fl3 15 < —(Deadline3 — T4 _end)(T5_start — Deadline3) + Tw, — 721,2 -

T T T.
— 2x42 - =252 — —=(1 — 282 4.4
2 7 4:65 4(r8.2) (4.45)

Deadlinek is the deadline for target k. Equation 4.44 and 4.45 are both for
flexibility F'l3_ o, the only difference is equation 4.44 expresses that both target 1 and
2 are preassigned to UAV1, target 3 is originally not assigned to UAV1. Only in this
way does target 3 have the flexibility to reassigned to UAV1 between target 1 and
2. For equation 4.45, all the conditions are the same except target 1 and 2 are now
preassigned to UAV2, and target 3 is originally not assigned to UAV2. So target 3 has
the flexibility to reassigned to UAV2 between target 1 and 2. Similar relationships
exist for all the triplets of targets.

Knowing how to calculate triplets targets allows the addition of this new group
of constraints into the objective function. Thus, the fixed target scheduling with
optimized flexibility can be selected. It is one way for collaborating UAVs targets

assignment and scheduling.

74

4.5.5 Constraint 5, the flexibility of UAVs for handling a
pop-up target

The flexibility of a UAV in handling the pop-up target positioned between the

fixed target 2 and 3 is given as follows.

Tw
popup < —(PR)(T8_start — T7_end) + To, — ?z2,3 —

T T

T
popup < —(PR)(T5_start — T10_end) + T, — ?z3,2 -

Too Too

PR in the above equations 4.46 and 4.47 is the uniform probability of the pop-up
target to appear.

1. Explanation for handling pop-up targets

From equation, it is seen that the larger the time interval between target 2 and
3, the higher the probability for a UAV to handling the pop-up target. Equation
4.46 is for 223 equals to 1, 8.1 and z7_1 are equal to each other. Or in the
other words, target 2 is handled before 3, and target 2 and 3 are handled by
the same UAV. For equation 4.47, z3_2 equals to 1, 25_1 and x10_1 are asked
to be equal. Thus target 2 is handled after 3. Still both target 2 and 3 are
handled by the same UAV. If any one of above requirements fails, [popup| is not

maximized.

5

2. Limitation for handling pop-up targets

For some unknown reason, the non-linear solver (SNOPT) could not solve situ-
ations that involve handling pop-up targets properly. One possible explanation
is the occurrence of a negative value in the objective function. An additional
problem occurs when there is more than one pop-up target, the number of vari-
ables increase dramatically. The number of constraints also increases. These

non-linear solver’s limitations are discussed briefly in Section 5.2.

4.5.6 Final cost function to minimize

The cost function to be minimized is as follows:

min: T4+ Y Flj;+POPUP (4.48)

ijk=1...4
The first term T'14 is the T_end time for all 4 targets.(Fig. 4.11) T'14 should

satisfy the following 4 inequity equations.

Tiend < Tl4 (4.49)
T7end < T14 (4.50)
T10.end < Tl4 (4.51)
T13.end < T14 (4.52)

T4,T7,T10 and T13 are the end time of thread 1, 2, 3 and 4 separately in Figure
4.11. Therefore, the first term 714 is the completion time of the four threads to be
close to the fixed deadline. This captures the timing constraints. The second term
minimizes variables F'l; j ;. Since their values are negative, it actually maximizes the
flexibility of UAV collaboration. The last term POPU P maximizes the probability

of handling pop-up targets as the value of POPUP is always negative.

76

thread3

th rea(i/

e

Detect -

'

Handle
n
Assessment \

Figure 4.12: Index Representation for Thread-3 Example

thread2

Ol | -——
(o]

-
P I

-/
'S

- O
- O

' M S
~
Y
o
__

e[~
N

4.5.7 A simple example to calculate flexibility

As illustrated in Figure 4.12, suppose there are three fixed targets (FT) and two
UAVs. The figure shows the task graph for this specific case, each of the three threads
corresponds to one of the fixed targets.

The constraints group can be easily structured from 4.5.1 to 4.5.4. All these con-
straints are expressed in mixed-integer linear programming format, with 0/1 integer
variables x; ; and z; ;. For simplicity reasons, there are some constants inside the con-
straint group, such as the fly time between differen threads or cities. The model thus
can be solved by the non-linear solver SNOPT. One of the possible time assignment
results is given in table 4.1.

From table 4.1, we can see that both of the fixed threads 1 and 2 are handled by the

7

Table 4.1: Time assignment for different thread/cities
Thread | 1 | 2 | 3

Index
Start 0100 0
End 30 | 140 | 30
Deadline | 50 | 200 | 50
UAV;, 1|1 |2

same UAV 1, and fixed thread 3 is handled by the other UAV 2. To calculate UAVS’
flexibility for collaboration as explained in 4.5.4, flexibility table 4.2 is obtained.

The reason some flexibility values are not applicable is because the two original
targets are handled by different UAVs. Fox example, FI1_2_3. FI1_2_3 means putting
fixed target 1 between target 2 and 3. From table 4.1, 5.1 = 1, and 28 2 = 1, which
means target 2 is handled by UAV 1, while target 3 is assigned to UAV 2. Thus,
F11.2_3 is not applicable (N A).

From equation 4.53 and Figure 4.13, it is clear that Fl3 ;5 = 1000. Thus, the
fixed target 3 has the flexibility of 1000 to be handled by UAV 1. Originally target
3 was assigned to UAV 2. By doing this rearrangement and cooperation, UAV 2
can be saved for other uses. Therefore, this thread-3 task assignment and scheduling
for collaborating UAVs is successful. For the complete constraints group, please see

Appendix B.

Fl3; 5 = (Deadline3 — T4 _end)(T5-start — Deadline3) = (50 —30)(100 —50) (4.53)

78

Table 4.2: Flexibility for thread-3 example
Thread | Thread-3

Index
T11 140
Fl123 NA
Fl1.32
Fi2.13 NA
Fi2.31

Fi312| FI3.12
Fi32.1| =1000

Threadl_end Thread?2_start
| 4
T4_end T5_start
Deadline3 time
3d A 90 1(:)0
" 20 50 |

Figure 4.13: Time axis for Fl3 o

79

4.6 Conclusion

This chapter describes the problem of Unmanned Autonomous Vehicles (UAVs)
collaboration for target handling as a task graph scheduling and assignment prob-
lem. The chapters offers a mathematical modeling of the problem based on Mixed
Integer Nonlinear Programming. The formulation can be tackled using state-of-the-
art solvers, or can be used as a starting point for developing optimization heuristics.
Each target handling activity is a parallel thread consisting of the four consecutive
processes: UAV flying activity, target detection process, handle, and assessment pro-
cess. The novelty is in developing a formal description of multi-UAV collaboration as
compared to similar work which mostly focuses on single UAV control.

For task graph scheduling and assignment, the proposed methodology is based
on the same solving technique (Mixed Integer Nonlinear Programming) as the algo-
rithms in Chapter 3 (hierarchical mixed integer programming based algorithm for
floorplanning in VLSI design). The main step of the methodology includes allocation
and scheduling of fixed-position targets to individual UAVs, computing the time in-
tervals for collaborative behavior, and finding the regions within which pop-up target
can be safely handled by an UAV without violating timing constraints. We also put
forth the idea of decentralized UAV control, which uses the allocation, scheduling,
and constraints information for controlling the reactive behavior of each UAV.

For a case study with two UAVs, four targets and one pop-up target, the chap-
ter discusses the constraints and the cost function for the Mixed Integer Nonlinear
Programming description. After we input the constraints and the cost function into
the integer linear/nonlinear program solver SNOPT, we compute the optimum task
scheduling and assignment result for the two UAVs. We also calculate the UAV flexi-
bility to handle new pop-up targets. Results of this case study displayed that integer

linear programming is a good optimization framework for extending continuous linear

80

programming problem to include binary or integer decision variables for solving the
UAV collaboration problem. These variables can be used to model logical constraints
such as obstacle and targets’ deadline avoidance rules.

MINLP modeling for collaborating UAVs is a very recent research topic. There
are many potential research directions for this work. For example, SNOPT cannot
handle large number of variables and constraints. Therefore, if we want to tackle
a large application with many threads and UAVs, or if we want to obtain a real-
time trajectory optimizer, which includes more environment-related unknowns, we
must build a new solver. It needs to combine heuristic optimization methods, such
as Genetic Algorithm(GA), Simulated Annealing(SA) algorithm etc, with MINLP

method for offering an optimal yet fast solution.

81

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation work focuses on three main topics. First, it analyzes the topo-
logical structure of large size electronic circuits. Secondly, it proposes a hierarchical
mixed integer programming based floorplanning algorithm that attempts to exploit
the fact that certain VLSI networks may have structural patterns. Finally, to further
extend integer linear programming(ILP) method for optimization, we propose a Mixed
Integer Nonlinear Programming (MINLP) based algorithm for task assignment and
scheduling for collaborating Unmanned Autonomous Vehicles (UAVs). Hence, the
common challenge behind the three main topics is the problem of using MINLP based
algorithms for solving various optimization problems. Specifically, the algorithm for
electronic VLSI circuit floorplanning is realized by integer non-linear programming,
and the problem of collaborating UAVs is handled by integer linear programming.

The dissertation’s first part presents the new idea of studying VLSI electronic
circuits using approaches originated from the area of complex systems. Through ex-
periments, we showed that large size VLSI electronic circuits have broad scale-free

patterns. We computed their power-law degree distribution in a range, and we further

82

compared it with existing scale-free network models, in particular BA model. The
proposed triad formation (TF) model explains how to generate a large clustering coef-
ficient inside large-size electronic circuits. At the same time, the coexisting of broad
scale-free patterns for degree distribution and large clustering coefficients suggests
that there may exist some clusters or motifs inside the circuits’ network. Under-
standing these particular electronic circuit topologies structure can help the tedious
optimization work during floorplanning and placement in VLSI physical design. For
instance, if we identify that there are many cliques (fully connected clustered graph)
inside one block, we can exploit this knowledge by finding and using the cliques as ba-
sic cells in floorplanning and placement without handling the nodes inside a cell (as in
traditional methods), because all the wire length inside a clique will remain the same
for different cell placements. Also, if we perform floorplanning using a partition-based
hierarchical algorithm, like our new floorplanning algorithm Hercules, the partition
size K could be set-up a-priori, so that K is equal with the number of clusters at
each level. By doing this, the minimal cut size between different partitions is reduced.
Therefore, the final performance (e.g., total wire length) is also improved.

As the second contribution of the thesis, we developed a hierarchical Mixed Inte-
ger Nonlinear Programming based algorithm for floorplanning in VLSI design. The
algorithm is called Hercules. The method is based on several aspects. Inside the
top-down structure, we first use hMETIS partitioning method to tackle the large size
of a circuit by building a hierarchical partitioning structure at different levels. Within
each partitioning level, the finer floorplanning problem is solved by SNOPT guided
by simulated annealing (SA) algorithm which sets the relative positioning constraints
for the floorplanner. After taking the external connections into account, terminal
propagation (TP) method is performed. Experimental results on standard bench-
mark examples (MCNC benchmark) show that the proposed method offers results of

similar quality in a much shorter time than modern floorplanning algorithms.

83

The third topic is an extended application of Mixed Integer Nonlinear Program-
ming method to predictive collaborative control of UAVs (Unmanned Autonomous
Vehicles) in partially known environments. The MINLP model for fixed targets as-
signing and scheduling was proposed. The work also studied UAVs flexibility in
handling pop-up targets. MINLP models are also solved using SNOPT, the same
solver package we applied in the previous floorplanning algorithm. UAVs collabo-
rative performance for a higher number of pop-up targets, or with more unknown

environment parameters, and real-time trajectory optimizer are still open questions.

5.2 Future Work

So far my research has focused on complex network structure, its application
to large size electronic systems, such as floorplanning algorithms in SoC (System
on Chip) physical design procedure, and target/task assignment and scheduling for
collaborating UAVs. In order to achieve the broad goals enumerated in Chapter 1,
following topics need to be further studied. I currently see these directions to improve

the work presented in this dissertation.

1. Deeper Relationship Between Circuits and Complex Networks

The discovery of broad-scale patterns and large clustering coefficient is the first
characteristic we find in the electronic circuit structure analysis. In complex
network context, there are more intensive relationships between the topology
and the dynamics of complex networks. Is there any similar relationship be-
tween circuit building blocks and circuit evolving networks? Does the top-down
hierarchical partitioning process still satisfy complex networks’ properties? How
to differentiate network structures with the same statistical information, such

as degree distribution, clustering coefficient and minimal distance? All these

84

questions are intriguing.

. Hierarchical Partitioning and Clustering Identification

Hierarchical partitioning is conceptually a top-down procedure because it looks
at the entire circuit as a basic entity. In contrast, clustering identification is
a bottom-up procedure since it brings highly connected nodes together. Thus,
clustering looks at the individual nodes and their connections as basic entities.
The previous chapters showed that we probably could reduce the wire length by
considering a combination of partitioning and clustering in a same algorithm. To
find the best approach one has to check the inherent nature of the target circuits
at a certain point during the top-down process. If the graph begins to show signs
of isolated clusters, then partitioning may disturb this structure if the chosen
partitioning size is not reasonable. For instance, if there are four individual
clusters and the chosen partitioning size is larger than four, the inherent nature
of the graph is broken and the cut sets will be increased. Therefore, clustering
may not always be the right choice if all nodes are highly connected to each
other. Highly connected nodes lead to the formation of one single cluster,
which includes all the nodes. This formation defeats the purpose of breaking
up the circuit. There are some work incorporated hierarchical clustering in
the algorithm [42] [43], but the complete solution for any clustering problem
is still very difficult. It is also a challenge research topic in graph theory in

mathematics.

. Solver Feasibility Study

In floorplanning algorithm in Chapter 3, and tasks’ assignment and scheduling
for collaborating UAVs in Chapter 4, the non-linear solver SNOPT showed some

limitations, especially when we handled a large number of variables. Therefore,

85

the topic about how to merge and reduce different variables and constraints
in MILP/MINLP is worth to study more. As we mentioned in Chapter 4’s
conclusion, the best way to solve UAVs’ collaboration with more number of
unknown environment parameters is to create our own integer linear program

solver combined with new optimization methods.

. UAVs Real-Time Trajectory Optimizer

Many of UAVS’ tasks are preplanned using reconnaissance or environment in-
formation. Because of the solver’'s (SNOPT) limitation, it is very difficult to
include all the unknown environment parameters. For example, pop-up targets
and a real-time trajectory simulation are still missing in the experiment. If
we could combine some new optimization methods, such as Genetic Algorithm
(GA), Simulated Annealing (SA) or other heuristic models with the non-linear
solver (SNOPT), the UAVS’ task planning flexibility and optimized trajectory

solutions could be obtained more thoroughly.

86

Bibliography

1]

S. H. Strogatz, ”Exploring complex networks”, Nature, vol. 410, pp. 268-276,
March 2001.

P. Erdos and A. Rényi, ”On the evolution of random graphs”, Publ. Math. Inst.
Hung. Acad. Sci., vol. 5, pp. 17-60, 1959.

S. Milgram, "The small-world problem”, Psychology Today, vol. 2, pp. 60-67,
1967.

Albert-Lészl6 Barabasi, Réka Albert, ”Emergence of Scaling in Random Net-
works”, Science, vol. 286, pp. 509-512, Oct 1999.

Albert-Laszlé Barabasi, Réka Albert, Hawoong Jeong, ”Mean-field theory for
scale-free random networks”, Physica A, vol. 272, pp. 173-187, July 1999.

Réka Albert, Albert-Laszlé Barabasi, ”Statistical mechanics of complex net-

works” | Reviews of Modern Physics, vol. 74, Jan 2002.

Cancho et al, ”The Topology of Technology Graphs: Small World Patterns in
Electronic Circuits”, Phys. Rev. E, vol.64, 046119, Sept 2001.

Kott, A., Advanced Technology Concepts for Command and Control, Xlibris
Corp., Philadelphia, PA, 2004.

87

[9]

[10]

[11]

[12]

[13]

Samad, T., and Balas, G., Software-Enabled Control: Information Technology
for Dynamical Systems, Wiley /IEEE Press, Hoboken, NJ, 2003.

Butenko, S., Murphey, R., and Pardalos, P., Recent Developments in Cooperative
Control and Optimization, Kluwer Academic, Norwell, MA, 2003.

Grundel, D., Murphey, R., and Pardalos, P., Theory and Algorithms for Coop-
erative Systems, vol. 4, Series on Computers and Operations Research, World

Scientific, Hackensack, NJ, 2004.

Floudas, C. A., Nonlinear and Mixed-Integer Programming Fundamentals and

Applications, Oxford Univ. Press, Oxford, England, UK, 1995.

D.J. Watts, S.H. Strogatz, ” Collective dynamics of 'small-world’ networks”, Na-
ture, vol. 393, pp. 440, 1998.

A. Barrat, M. Weigt, ”On the properties of small-world network models”, Eur.
Phys. J. B, vol. 13, pp. 547-560, 2000.

Kwang et al, ” Classification of scale-free networks”, PNAS, vol. 99, no. 20, 12583-
12588, 2002.

Douglas B. West, "Introduction to graph theory”, Prentice Hall, 2001.

Petter Holme, Beom Jun Kim, ” Growing Scale-Free Networks with Tunable Clus-

tering”, Phys. Rev. E, 2002.

R. Albert, H.Jeong, & A.-L. Barabasi, ”Diameter of the World-Wide Web”,
Nature, 400, pp. 130-131, 1999.

M. Faloutsos, P. Faloutsos, & C. Faloutsos, ”On Power-Law Relationships of the
Internet Topology”, ACM SIGCOMM?Y99, Rev.29, pp. 251-260, 1999.

88

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, & A.L.Barabasi, " The large-scale
organization of metabolic networks”, Nature , 607, 651, 2000.

H. Jeong, S.P. Mason, S.N. Oltvai, & A.-L.Barabasi, Nature, London.411, 41,
2001.

R. Milo, S. Shen-Orr et al, Science, vol. 298, pp. 824-827, 2002.

G. Karypis and V. Kumar, ”Multilevel k-way hypergraph partitioning”, VLSI
Design, Vol.11, No.3, pp. 285-300, 2000.

S. Sutanthavibul, E. Shragowitz and J. Ben Rosen, ” An analytical approach to
floorplan design and optimization”, Proc. 27th ACM/IEEE Design Automation
Conference, 1990.

Stanford Business Software, http://sbsi-sol-optimize.com, 2006.

N. Sherwani, ” Algorithms for VLSI physical design automation”, Kluwer Aca-
demic Publishers, 1995.

Gigascale Systems Research Center, http://www.gigascale.org/bookshelf/, 2006.

R. Otten, ” Efficient floorplan optimization”, in Proc. IEEE Int. Conf. Computer-
Aided Design, pp. 499-502, 1983.

D. F. Wong and C. L. Liu, ” A new algorithm for floorplan design”, in Proc. 23rd
ACM/IEEE Design Automation Conf., pp. 101-107, 1986.

Temo Chen and Micheal K. H. Fan, ”On convex formulation of the floorplan area

minimization problem”, inProc. Int. Symp. Physical Design, pp. 124-128, 1998.

P. Chen and E.S.Kuh, ”Floorplan sizing by linear programming approximation”,

inProc. 87th Design Automation Conf., pp. 468-471, 2000.

89

[32]

[34]

[35]

[36]

[37]

[38]

[39]

H. Murata, K. Fujiyoshi and Y. Kajitani, ”VLSI module placement based on
rectangle-packing by the sequence-pair” , IEFE Trans. Computer-Aided Design,
vol. 15, pp. 1518-1524, Dec. 1996.

H. Murata and E.S.Kuh, 7”Sequence-pair based placement method for
hard/soft /preplaced modules”, inProc. Int. Symp. Physical Design, pp. 167-172,
1998.

J. Kim and Y. Kim, ”A linear programming-based algorithm for floorplanning in
VLSI design”, IEEE Trans. Computer-Aided Design, vol. 22, pp. 584-592, May.
2003.

S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani, ”Module placement on
BSG-structure and IC layout applications”, inProc. IEEE Int. Conf. Computer-
Aided Design, pp. 484-491, 1996.

M. Kang and W. Dai, ”General floorplanning with L-shaped, T-shaped and
soft blocks based on bounded slicing grid structure”, inProc. Asia South Pacific
Design Automation Conf., pp. 265-270, 1997.

S. Sutanthavibul, E. Shragowits and J.Ben Rosen, ”An analytical approach to
floorplan design and optimization”, in Proc. 27th ACM/IEEE Design Automation
Conf., pp. 187-192, 1990.

A. Dunlop and B. Kernighan, ” A procedure for placement of standard-cell VLSI
circuits”, IEEE Trans. Computer-Aided Design, vol. 4, pp. 92-98, Jan. 1985.

F. Y. Young, D. F. Wong and H. H. Yang, "Slicing floorplans with boundary
constraints”, IEEE Trans. Computer-Aided Design, vol. 18, pp. 1385-1389, Sept.
1999.

90

[40]

[41]

[47]

[48]

F. Y. Young and D. F. Wong, ”Slicing floorplans with range constraint”, IEEFE
Trans. Computer-Aided Design, vol. 19, pp. 272-278, Feb. 2000.

F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong, "Handling soft mod-
ules in general nonslizing floorplan using lagrangian relaxation”, IEEE Trans.

Computer-Aided Design, vol. 20, pp. 687-692, May 2001.

T. Yamanouchi, K. Tamakashi, and T. Kambe, ”"Hybrid floorplanning based
on partial clustering and module restructuring”, in Proc. IEEE Int. Conf.

Computer-Aided Design, 1996, pp. 478-483

S. Dongen, ”A clustering algorithm for graphs”, Technical Report, Stichting
Mathematich Centrum, 2000.

M. Sarrafzadeh and C. K. Wong, ”An introduction to VLSI physical design”,
McGraw-Hill companies, Inc., 1996.

N. Sherwani, ” Algorithms for VLSI physical design automation”, 3rd Edition
Kluwer Academic Publishers, 1999.

R. Mayo, M. Arnold, W. Scott, D. Stark and G. Hamachi, 71990
DECWRL/Livermore Magic Release”, Technical Report, Western Research Lab-
oratory, 1990.

C. M. Fiduccia and R. M. Mattheyses, ”A linear time heuristic for improving
network partitions”, IEEE/ACM, Design Automation Conference, 1982.

A. Ranjan, K. Bhazargan, M. Sarrafzadeh, ”Fast hierarchical floorplanning with
congestion and timing control”, Proc. ICCADO00, 2000.

91

[49]

[51]

[52]

[53]

[54]

[55]

[56]

A. Ranjan, K. Bhazargan, S. Ogrenci, M. Sarrafzadeh, ”Fast floorplanning for
effective prediction and construction”, IEEE Transaction on VLSI Systems, vol.

9, No. 2, April, 2001.

H. Yamazaki, K. Sakanushi, and Y. Kajitani, "Optimum packing of convex-
polygons by a new data strcture sequence-table”, in Proc. IEEFE Asia Pacific
Conf. Circuits Syst., 2000, pp. 821-824

K. H. Yeap and M. Sarrafzadeh, ” A unified approach to floorplan sizing and
enumeration”, IEEE Trans. Computer-Aided Design, vol. 12, pp. 1858-1867, Dec.
1993.

P. Gill, W. Murray and M. Suanders, ”SNOPT: An SQP algorithm for large scale
constrained optimization”, SIAM Journal on Optimization, vol. 12, pp.979-1006,
2002.

A. E. Dunlop and B. W. Kernighan, ”A procedure for placement of standard-
cell VLSI circuits”, IEEE Trans. Computer-Aided Design, vol. 4, pp. 92-98, Jan.
1985.

Y. Zhao and A. Doboli, ”Finding broad-scale patterns in large size electronic

circuit netlists”, IEEE Midwest Symposium on Circuits and Systems, Aug. 2005.

A. Gil, K. Passino, S. Gananpathy, ”cooperative Task Scheduling for Networked
Uninhabited Air Vehicles”, IEEE Transactions on Aerospace and Electronic Sys-
tems, 2007.

J. How, E. King, Y. Kuwata, ”Flight Demonstrations of Cooperative Control for
UAV Teams”, AIAA "Unmanned Unlimited” Technical Conference, Workshop
and Fxhibit, 2004.

92

[57]

[58]

[59]

[63]

[64]

I. Kaminer, O. Yakimenko, ”Cooperative Control of small UAVs for Naval Ap-
plications”, 43rd IEEE Conference on Decision and Control, 2004.

D. Rathbun, B. Capozzi, ” Evolutionary Approaches to Path Planning Through
Uncertain Environments”, Proc. of the american Institute of Aeronautics and

Astronautics (AIAA), 2002.

D. Shim, H. Chung, H. Kim, S. Sastry, ” Autonomous Exploration in Unknown
Urban Environments for Unmanned Aerial Vehicles”, Proceedings of the AIAA
GN & C Conference, 2005.

J. Borenstein, Y. Koren, ”"Real-Time Obstacle Avoidance for Fast Mobile
Robots”, IEFEE Transactions on Systems, Man, and Cybernetics, vol. 19, pp.
1179-1187, Sept/Oct. 1989.

B. Capozzi, J. Vagners, ”Evolving (Semi) Autonomous Vehicles”, Proc. of the
AIAA Guidance, Navigation and Control Conference, 2001.

D. Fogel, L. Fogel, ”Optimal Routing of Multiple Autonomous Underwater Ve-
hicles through Evolutionary Programming”, Proc. of the Symposium on au-

tonomous Underwater Vehicle Technology, pp. 44-47, 1990.

B. J. Moore, K. Passino, ”Decentralized Redistribution for Cooperative Patrol”,

International Journal on Nonlinear and Robust Control, 2007.

H. Yamaguchi, ” A Distributed Motion Coordination Strategy for Multiple Non-
holonomic Mobile robots in Cooperative Hunting Operations”, Robotics and Au-

tonomous Systems, vol. 42, pp. 257-282, Elsevier, 2003.

H. Tanner, A. Jadbabaie, G. Pappas, ”Stable Flocking of Mobile Agents, Part I:
Fixed Topology”, Proceedings of the IEEE Conference on Decision and Control,
pp. 2010-2015, 2003.

93

[66]

[68]

[69]

[70]

[71]

[72]

[73]

H. Tanner, A. Jadbabaie, G. Pappas, ”Stable Flocking of Mobile Agents, Part
IT: Dynamic Topology”, Proceedings of the IEEE Conference on Decision and
Control, pp. 2016-2021, 2003.

T. Schouwenaars, M. Valenti, E. Feron, J. How, ”Linear Programming and Lan-
guage Processing for Human/Unmanned-Aerial-Vehicle Team Missions”, Journal
of Guidance, Control, and Dynamics, vol. 29, no. 2, March-April, pp. 303-313,
2006.

D. Brogan, J. Hodgins, ” Group Behaviors for Systems with Significant Dynam-
ics”, Autonomous Robots, pp. 135-153, Kluwer, 1997.

O. Brock, O. Khatib, ”Real-Time Obstacle Avoidance and Motion Coordination
in a Multi-Robot Workcell”, Proceedings of the IEEE International Symposium
on Assembly and Task Planning, pp. 274-279, 1999.

N. Leonard, E. Fiorelli, ”Virtual Leaders, Artificial Potentials and Coordinated
Control of Groups”, Proceedings of the IEEE Conference on Decision and Con-
trol, pp. 2968-2973, 2001.

M. Mamei, F. Zambonelli, L. Leonardi, ” Distributed Motion Coordination with
Co-Fields: a Case Study in Urban Traffic Management”, Proc. International

Symposium on Autonomous Decentralized Systems, 2003.

H. Van Dyke Parunak, S. Brueckner, J. Sauter, ”Digital Pheromone Mechanisms
for Coordination of Unmanned Vehicles”, AAMAS, 2002.

J. Mitchell, D. Keirsey, ”"Planning Strategic Paths through Variable Terrain
Data”, Proc. of the SPIE Conference on Appplications of Artificial Intelligence,
vol. 4, pp. 172-179, 1984.

94

[74]

[77]

[81]

[82]

A. Stentz, ”Optimal and Efficient Path Planning for Partially-Known Environ-
ments”, Proc. of the International Conference on robotics and Automation, vol.

4, pp. 3310-3317, 1994.

O. Yakimenko, V. Dobrokhodov, ”Airplane trajectory control at the stage of

rendezvous with maneuvering object algorithms synthesis”, IEFEFE, 1998.

O. Yakimenko, ”Direct method for rapid prototyping of near-optimal aircraft
trajectories”, AIAA Journal of Guidance, Control, and Dynamics, vol. 23, no.

5, pp. 865-875, 2000.

A. Goossens, G. Koeners, J. Tadema, E. Theunissen, ” Using Simulation to Refine
UAV Operator Station Functional Requirements”, ATAA Modeling and Simula-
tion Technologies Conference and Exhibit, 2004.

J. Bellingham, ”Coordination and Control of UAV Fleets using Mixed-Integer
Linear Programming”, Master of Science Thesis, MIT, 2002.

D. Coombs, M. Herman, T. Hong, M. Nashman, ” Real-time Obstacle Avoidance
Using Central Flow Divergence and Peripheral Flow”, ICCV, pp. 276-283, 1995.

J. Cortes, S. Martinez, T. Karatas, F. Bullo, " Coverage Control for Mobile Sens-
ing Networks”, Proceedings of the IEEFE International Conference on Robotics €
Automation, pp. 1327-1332, 2002.

P. Fahlstrom and T. Gleason, Introduction to UAV Systems, UAV Systems INC.,
second edition, 1998.

V. Gazi, K. Passino, ”Stability Analysis of Swarms”, IEFE Transactions on
Automatic Control, vol. 48, no. 4, pp. 692-697, April 2003.

95

[83] V. Gazi, K. Passino, "A Class of Attractions/Repulsion Functions for Stable
Swarm Aggregations”, International Journal of Control, vol. 77, no. 18, pp.

1567-1579, 2004.

[84] M. Gendreau, A. Hertz, G. Laporte, A Tabu Search Heuristic for the Vehicle
Routing Problem”, Management Science, vol. 40, no. 20, pp. 1276-1290, October
1994.

[85] R. Hooke and T. A. Jeeves, ”Direct Search Solution of Numerical and Statistical
Problems”, Journal of the Association for Computing Machinery, vol. 8, no. 2,

pp. 212-229, 1961.

[86] H. Kim, D. Shim, S. Sastry, ”Flying Robots: Sensing, Control and Decision

Making”, International Conference on Robotics and Control, 2002.

[87] Y. Liu, M. Simaan, J. Cruz, ”"an Application of Dynamic Nash Task Assignment
Strategies to Multi-Team Military Air Operations”, Automatica, vol. 39, pp.
1469-1478, 2003.

96

Appendix A

MCNC Benchmark Floorplanning Graphs

The best floorplanning solutions of MCNC benchmark examples (ami49, ami33,
hp, xerox, and apte) obtained by Hercules are given in Fig. A.1 — Fig. A.5 for

references.

Figure A.1: Final optimum floorplan obtained by Hercules for ami49

97

Figure A.2: Final optimum floorplan obtained by Hercules for ami33

98

Figure A.3: Final optimum floorplan obtained by Hercules for hp

Figure A.4: Final optimum floorplan obtained by Hercules for xerox

100

Figure A.5: Final optimum floorplan obtained by Hercules for apte

101

Appendix B

Collaborating UAVs’ Constraints for 3-Thread

1. Scheduling tasks in the same thread for thread 1 only
T1 < T2 _start;

T2 end =T2_start + TF1 %221+ TF1 % x2_2;

221+ 222 = 1.0;

T2 < T3._start;
T3 end = T3_start + 10 *x x3_1 4+ 10 * 23_2;

31+ 232=1.0;

T3 < T4_start;
T4 end = T4 _start + 20 x x4_1 4 20 % x4_2;

x4 1+ 242 =1.0;

Same scheduling tasks’ equations for thread 2 and thread 3.

102

2. Constraints for task T14
T4 end < T14;
T7 end < T14;
T10_end < T14;
3. Constraints for tasks’ scheduling for successive threads

1M = 1000000;

Thread scheduling for thread 1 & 2.
T4 end < ThH_start + 1M * 221 +2M — 1M s« x4_1 — 1M % x5_1;
T4 _end < TH_start + 1M * 221 +2M — 1M % 242 — 1M % x5_2;
T7 end <T2_start + 1M * 212+ 2M — 1M % 271 — 1M % 22_1;
T7 end <T2_start + 1M % 21 2 +2M — 1M x 272 — 1M * x2_2;
Thread scheduling for thread 1 & 3.
T4 end < T8 start +1M % 23 1 +2M — 1M x x4 1 — 1M % 28_1;
T4 end < T8 _start + 1M x z3_1 +2M — 1M x 242 — 1M * x8_2;
T10.end < T2 start + 1M % 21 3+ 2M — 1M % 210_1 — 1M * 22_1;
T10.end < T2 start + 1M % 21 .3+ 2M — 1M x 2102 — 1M * x2_2;
Thread scheduling for thread 2 & 3.
T7 end < T8_start + 1M % 232+ 2M — 1M 271 — 1M * x8_1;

T7 end < T8 start + 1M * 232 +2M — 1M % x7 2 — 1M * x8_2;
T10_end < Th_start + 1M % 223+ 2M — 1M x x10_1 — 1M * x5_1;

T10_end < TH_start + 1M % 223 +2M — 1M % 2102 — 1M x x5_2;

103

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
(B.15)
(B.16)

(B.17)

(B.18)
(B.19)
(B.20)

(B.21)

(B.22)

(B.23)
(B.24)

(B.25)

	Text1: ii

