Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Collaborative Information Processing and
Query Evaluation in Wireless Sensor Networks

A Dissertation Presented

by
Xianjin Zhu

to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in
Computer Science
Stony Brook University

August 2008

Copyright by
Xianjin Zhu
2008

Stony Brook University
The Graduate School

Xianjin Zhu

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy, hereby recommend
acceptance of this dissertation.

Dr. Himanshu Gupta, Dissertation Advisor
Assistant Professor, Department of Computer Science

Dr. Samir R. Das, Chairperson of Defense
Associate Professor, Department of Computer Science

Dr. Jie Gao, Committee Member
Assistant Professor, Department of Computer Science

Dr. Goldie Nejat, Outside Committee Member
Assistant Professor, Department of Mechanical Engineering,
Stony Brook University

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Dissertation

Collaborative Information Processing and Query Evaluation in
Wireless Sensor Networks

by
Xianjin Zhu

Doctor of Philosophy
in
Computer Science
Stony Brook University
2008

Data-centric is one of the most important features that make wireless sensor net-
works distinct from other types of communication networking systems. A sensor
network usually generates massive amount of data, but users only query quite high-
level summarized information. Thus, information processing and query evaluation
become fundamental problems in sensor networks.

The goal of this dissertation is to explore the potentials of sensor networks as
collaborative data processing engines. It is expected that in the near future, sensor
networks will reactively impact the physical world and interact with end users, who
stay in the same physical domain and query the sensor network anytime anywhere.
In that context, it requires that sensor nodes collaboratively process information
in an ad hoc manner rather than resorting to a centralized base station for post-
processing. We investigate essential grand challenges of collaborative processing
and query evaluation in wireless sensor networks, and aim to improve the accessi-
bility, interactivity and shareability of sensor data.

The first key problem of information processing is how to link users’ selec-
tive queries with relevant information. It is challenging because both queries and
related data can appear anytime anywhere in the network. Furthermore, a com-
plex query may depend on multi-dimensional data collected by different types of
sensors, which themselves can be distributed far apart. Thus, how to match those
different types of data is the other aspect of this brokerage problem we need to

handle. We proposed algorithms for in-network join of multiple data streams in a
sensor network, based on the observation that a sensor network can be viewed as a
distributed database system. One of our proposed approaches, viz., the Perpendicu-
lar Approach, is load-balanced, and results in substantially prolonging the network
lifetime. The Perpendicular Approach is further extended to a general double ruling
scheme for information brokerage.

The second challenge of information processing comes from the diversity of
gueries. Some queries request explicit information, e.g., temperature at a particu-
lar location. Some may ask for more implicit information, e.g., is there a traffic-
free path. Different queries request different processing techniques. Queries for
implicit information is especially challenging to be answered, since they usually
require global knowledge that is hard to be obtained through sensor’s local view.
We investigated on a group tracking problem as a specific example of processing
implicit queries. We proposed a light-weight contour tracking algorithm to process
implicit contour information and its topological features. This algorithm performs
a foundation for further information processing of spatial sensor data.

Thirdly, the underlying deployment environment has fundamental effects on
high level tasks. Designing protocols for a specific deployment is expensive and
time-consuming. Thus, it is highly desirable to have a generic approach to handle
sensor fields with complex shapes, and make the design of new protocols trans-
parent to the deployment specifics. We proposed a segmentation algorithm that
partitions an irregular sensor field into nicely shaped pieces such that existing al-
gorithms and protocols can be reusable inside each piece. Across the segments,
problem dependent structures specify how the segments and data collected in these
segments are integrated.

The ultimate goal of information processing is to return useful information to
users. Thus, it is essential to provide friendly programming paradigm. We pro-
pose a deductive framework for programming and querying sensor networks. In
this framework, sensor networks work as collaborative data processing engines and
allow users to specify with ease the high-level functionality of an application, while
hid from the low-level details. All of the above proposed collaborative processing
techniques can be fundamental blocks and integrated into this framework.

Dedicated to my parents.

Contents

Listof Tables X
LISt Of FIQUIES ..o e X
ACKNOWIEdgEMENTS XVii
Publications Xviii
1 INtrOdUCHION .. v et 1
1.1 Sensor Network Overview 2
1.1.1 Technology Trend in Sensor Networks 2
1.1.2 Application Trend in Sensor Networks 3
1.1.3 Query Engines for Sensor Networks 4
1.2 OurApproach e 5
1.2.1 Logically Flat Network Model 5
1.2.2 Contributions 6
1.3 GraphModels 9
1.4 Organization. e 10
2 Link Users with Data Anytime Anywherecccoivnn... 11
2.1 Introduction e 11
2.2 Join of Multiple Data Streams 14
2.2.1 Problem Description and Related Works 14
2.2.2 Naive Broadcast and Centroid Approaches 19
2.2.3 Perpendicular Approach (PA) in Grid Network 20
2.2.4 Perpendicular Approach in General Networks 24

Vi

2.2.5 Perpendicular Approach Without Location Information . . . 31

2.2.6 Performance Evaluation 34
2.3 Double Rulings for Information Brokerage 43
23.1 Background 43
2.3.2 Sphericaldoublerulings a7
2.3.3 DISCUSSIONS 57
Make Implicit Information Explicit 60
3.1 Introduction 60
3.2 Contour Tracking Algorithm 64
3.21 ProblemSetup 64
3.22 StateTransitions 65
3.2.3 ContourRepair e 66
3.3 Maintenance of Topological Features 72
3.3.1 Contourinitialization 73
3.3.2 Augmented contour tracking algorithm 75
3.4 Simulations 78
3.5 Contour Tree Aided Network Navigation. 82
3.5.1 Contour Tree Construction 85
3.5.2 Gradient Routing with Guaranteed Success 87
3.5.3 Restrictedrangerouting 89
3.6 DISCUSSIONS e 91
Decouple Design from Deployment, 92
4.1 Introduction 92
4.1.1 Challengesand Our Approach 95
4.2 Segmentation in Continuous Domain 97
4.2.1 Properties of generatedsegments. 99
4.3 Distributed Segmentation Algorithm in Sensor Networks 103
4.3.1 Detectboundaries. 104
4.3.2 Construct the distancefield 104
4.3.3 Computetheflowpointer. 107
4.3.4 Mergenearbysinks L. 109
435 Segmentation 113

Vil

43.6 Finalclean-up. 114

4.3.7 Evaluations 115
4.4 Extraction of adjacencygraph 117
45 Applications 119
45.1 Routingin lrregular Networks 119
45.2 FacilityLocation 122
45.3 DistributedIndex o 125
454 RandomSampling, 127
4.6 DISCUSSIONS e 129
5 Provide Easy Programming Paradigmcoiiiinnn. 130
5.1 Introduction 130
5.2 Prior Approaches, and Deductive Framework for Sensor Networks . 132
5.2.1 Prior Approaches for Programming Sensor Networks 132
5.2.2 Overview of Deductive Programming 133
5.3 Query Evaluation in Sensor Networks 140
5.3.1 Evaluation oKY-Stratified Deductive Queries 141
5.3.2 System Architecture 147
5.4 System Implementation and Performance Evaluation 149
5.4.1 Current System Implementation 149
5.4.2 Performance Evaluation 151
55 DISCUSSIONS e e 156
6 CONCIUSIONS ... e 157
Bibliography 158

viii

List of Tables

1 Various motes used in wireless sensor networks. 3

2 The path length averaged over 10000 source-destination pairs in

two different network fields, with and without segmentation. 121
3 The average hops from a sensor to its closest base station with and
without shape segmentation. 125
4 Average data insertion cost for DIM with and without shape seg-
mentation. L 127
5 Average number of trials fadtOOrandom sampling. 128
6 Averagecostpersampling. 128

List of Figures

1 Various motes. (i) telosB [1]; (ii) SunSpot [2]; (iii) Intel mote pro-
totype [3]. 3
2 Overview of Dissertation Work.

3 Storage/Replication of PAin 2D Grid Networks.

4 One-Pass Join Computation. Hetg,c R, and we assume the
join conditions to be such théfy matches only withio, to3, 132, t34.
Also, there is no join condition betweé® andRs. 23

5 lllustration of vertical paths in an arbitrary sensor network topol-
ogy, with and without markings. (a) The path from source node
(a,b) to destination(@, Yamx+ 1) constructed by GPSR. Since the
destination is out of the network field, after reaching the boundary,
the path will travel the entire boundary until it returns to the same
node and there are no other faces to go around. (b) Vertical paths for
nodes(a,b) and(a,b’). Here, the markings on the given boundary
nodes is as followsE; andEg are markedighest , E4 andEs are
markedLowest , and the rest are markediddle . So the vertical
pathVy py stops atnod&gandEs. 25

6

10

11

12

13

14

15

lllustration of horizontal paths in an arbitrary sensor network topol-
ogy. (a)Horizontal path for node, d). Here,liert andlignt are the
leftmost and rightmost nodes in the network. The pgdghy shows

that defining horizontal paths in a similar way as vertical paths does
not ensure intersection of vertical and horizontal paths. (b) Ears of
the network is cut to solve congestion aroupg; andlign. Hori-

zontal pathdd (a,b) andH(c,d) stop when reaching line§e; and

Kight- + + v o e e e e e e e e e e 27
Reduce storage by storing tuples evktlynode. Tuples are stored

at red nodes but not hollow nodes. The worst case happen when the
vertical path intersects with thek/2| + 1)-th edge of the horizon-
talpath. 29
Performance of various approaches for a spatial join of range 500
meters with memory capacity of 30 tuples/node. (a) Total energy
dissipated, (b) Number of node failures, and (c) Approximation ratio. 40
Approximation ratios over time for the spatial join of range 500

meters with different memory capacities. 40
Approximation ratios over time for different spatial-join ranges,
and non-spatialjoin.. 40

Varying replication factok and memory capacity for non-spatial

join. (@) Approximation ratio and (b) Energy dissipation, in one
(initial) time unit. 42
Non-uniform selectivity factors and join ordering for non-spatial
join. (@) The join graph depicting various selectivity factors, (b)
Greedy and sequential join orders, (c) Approximation ratio, and (d)

Energy dissipation. 42
Spherical projection (i) stereographic projection; (ii) equal area pro-
Jection. 48
A point in the pland* is projected to a poirth on the sphere. The

great circles for two producers p’ are drawninblue. 51

Replication curves of multiple producers with the same data type.
The hashed location is denoted by the dark triangle. Both the virtual
replication circles and the actual routing paths are shown. 51

Xi

16

17

18

19

20
21

22

23

The consumer follows the circle with fixed distance to the hashed
locationh to retrieve all the data with the same datatype. 53
(i) Consumer latitude curve. (ii) Consumer great circle curve. Dark
triangle denotes the hashed location; the red paths denote producer
replication curves; dashed blue paths denote retrieval curves; yel-

low square denotes one producer and magenta square denotes one
CONSUMEL. . . . o ot e e e e e e e e e e e e e e e e e 56

A field with two blobs. Figure(i)-(iii) show three valid contour net-
works of the gray band — all of them are deformation retract (intu-
itively, they all capture the fact that the gray band is connected and
has two holes) but have different local features. Figure (iv) shows
an invalid contour network. It is hard for an individual sensor to

figure out the global topology. 62
An example of thBLACK regions,k-gray band, and the contour

network. 63
State transitions of the automata running at each node. 66

Repair of a single contour. Open neighborhoods are highlighted. (i)

a andb are two operReD nodes. The repair message only travels
within the open neighborhood. (ii) A single contour cycle is broken

into multiplechains. oL 67
(i) The repair noda connects by shortest paths to the other bound-

ing segments in its open neighborhood. (ii) The o@D nodes

b,d connect to their respective bounding segment (in this case, a
segment with only closeBREDnodes). 69
() Repair fromb gets stuck since it fails to discover any other
bounding segment to connect to. Ndalbecomes closed and trig-

gers the next node to be open. (ii) Both ofeBD nodesa, b fail

to repair and become closed. The adjacent node is triggered to be
OPEN. . . . o e 70

xii

24

25
26

27

28

29
30

31

32

33

34

35

The contour networls of G. G consists of representative shortest
paths of different homotopy types (in red) and the cut locus (in thick
black lines). We show two examples of the shortest pBftesdP;
indashedcurves. 73
Definition of a cut paifp,q). 75
The repaired netwoi® and the repair regions (highlighted). Node

a has a closed bounding segment and an open bounding segment
(adjacenttoitself). o 76
Contour creation: (i) Left: new leaders appear, and existing leaders
connect to red chains. Right: a contour cycle is created. (ii) Left: a
new cycle directly attaches to a red cycle nearby. Right: a red chain

Is constructed when a gray area appears inside a black region. 79
Merging and splitting. (i) Two black regions move closer. Their

gray bands meet each other and (multiple) “bridges” are built up.

(ii) Black regions themselves merge together. 79
Snapshots of nested contour network. 79
A contour initially sits at the boundary and successfully passes
through a hole in the middle of the network field. 80
Tightness of the contour network: k)= 1. (i) k=3. 81

(i) Multi-level contours on elevation data. Colors represent eleva-
tion: purple is the highest and green is the lowest. (ii) Communi-
cation cost vs. the number of changes. (iii) Communication cost of
periodic construction vs. update interval, compared with our track-

ing algorithm. 81
The level sets of a signal field and the contour tree spanning all the
critical points (in the right). The figure also shos@medescending

paths connecting the critical points. 83
(i) A contour tree and the interior &(w) shown in the bounded

region; (ii) merge tree; (iii) splittree. 85
Examplesoftwoqueries. 88

Xiii

36 The fish network. 5000 nodes, generated by grid-perturbation dis-

37

38

39

40

41

42

43

tribution with variation. Avg. degree is 8. Boundary nodes are
shown in black. (i) Medial-axis nodes shown in dark green. Sink
nodes shown in red. (ii) The stable manifolds of the sink nodes,
shown in different colors. (iii) Nearby sinks with similar hop counts

to the boundary, along with their stable manifolds, are merged. Or-
phan nodes shown in grey. (iv) The final result after processing
orphannodes. 97
Two regular pointspy and p2) with their flow vectors. Sinkss,

S andsg) stay inside the convex hull of their closest points on the

boundary. 98
A non-degenerate segment can not contain holes. (i) when the min-
imum g is a regular point; (i) when the minimuupis a junction. . 101
Nodep is not on the medial axis, since it has a single closest inter-
val; but p has a nearby poirgfon the medial axis. 106
Nodep selects nodé as its parent(p), asb is the more symmetric
neighbor. The closest intervals of nodgb, c are shown. 108

The corridor network. (i) Opposite boundaries run parallel to
each-other, producing several sinks in succession, resulting in the
fragmented segmentation. (ii) Segmentation with threshold-based
MErging. o . o e e e 109
Segmentation with fatness-based merging. (i) The rectangular net-
work; (i) The corridor network. 112
Network with 2200 nodes, with avg 6 neighbors per node. Segmen-
tation with threshold (i} =2; (it=4. 113

Xiv

44

45

46

a7

48

49

50

Segmentation results for miscellaneous shapes and densities. (i)
cross: 2200 nodes, average 12 neighbors per node. (ii) cactus: 2100
nodes, average 9 neighbors per node. (iii) airplane: 1900 nodes, av-
erage 7.8 neighbors per node. (iv) gingerman: 2700 nodes, average
8 neighbors per node. (v) hand: 2500 nodes, average 6.5 neigh-
bors per node. (vi) single-hole: 3700 nodes, average 13 neighbors
per node. (vii) spiral: 2900 nodes, average 11 neighbors per node.
(viii) smiley: 2900 nodes, average 8 neighbors per node. (ix) star:

3900 nodes, average 9 neighborspernode. 116
An example of adjacency graph. (i) An irregular sensor field with
four segments; (ii) The corresponding adjacency graph. 119

() Network topology (ii) Load distribution with segmentation-
aided routing. (iii) Load distribution in GPSR without segmenta-
tion. Black nodes are with load 800transmissions; red nodes are
with load > 500 transmissions; green nodes are with lga@®00
transmissions; yellow nodes are with loadLOOtransmissions . . . 122
(i) Network topology (ii) Load distribution with segmentation-
aided routing. (iii) Load distribution in GPSR without segmenta-
tion. Black nodes are with load 800transmissions; red nodes are
with load > 500 transmissions; green nodes are with lga@00

transmissions; yellow nodes are with loadlOOtransmissions. . . . 122
The average hops from a sensor to its closest base station over var-
iouskin a cross-shapenetwork. 124

(i) Distribution of storage load in basic DIM structure. (ii) Distrib-
ution of storage load in shape segmentation integrated DIM structure.126

System Architecture. 148

XV

51

52

53

54

Thejoin interfaceat a sensor node. Newly generated (base or de-
rived) tuples are fed into the join interface, which generates partial
and/or complete results by joining with local tables. The complete
results are sent to tletorage interfacéor hashing, while the partial

results are forwarded to the next node on the vertical path (for the
Perpendicular Approach). Partial results received from other nodes
are treated similarly. In addition, newly generated tuples are also
routedforstorage. 150
Effect of message loss probability on result inaccuracy, for varying
network sizes. 154
Total communication cost incurred by various programs for varying
network size, for three different message loss probabilities. 155
Average communication cost per node incurred by the generated
code using Naive-Broadcast and Perpendicular Approach for vary-

ing transitive factor. L oL 156

XVi

Acknowledgements

| am grateful to my advisor, Professor Himanshu Gupta, for giving me great
advice and guidance during my graduate studies. Himanshu opened the door of
sensor-network research to me and gave me a lot of freedom to explore this field.
Besides advice on research, | will also always remember the support and encour-
agement he gave me on other aspects. He was always there at every frustrating
moment | had. Without his help and encouragement, this dissertation would not be
possible.

| am grateful to Professor Jie Gao for her great advice. It is my honor to get
the opportunities to work with Jie. She shared a lot of nice ideas with students and
gave me deep insights into the research areas of sensor networks and geometry. Jie
is not just a good advisor, but also a great friend. She always gave me warm cares
and helps on study and life.

I would like to thank Professor Samir Das, for his kind advice on my research.
| would like to thank Professor Goldie Nejat, for being my committee member
and giving me feedback on my dissertation work. | want to thank all my coau-
thors: Himanshu Gupta, Jie Gao, Samir Das, Joseph Mitchell, Rik Sarkar, Bin
Tang, Zongheng Zhou and Xiang Xu. Working with them has always been enjoy-
able and productive. | also want to thank all my friends at Wireless Networking
and Simulation Lab: Jing Cao, Pralhad Deshpande, Shweta Jain, Anand Kashyap,
Ritesh Maheshwari, Vishnu Navda and Anand Prabhu Subramanian. They made
the group warm and my life at Stony Brook colorful and fun.

Finally 1 want to thank my parents for their endless love. This dissertation is
dedicated to them.

Publications

1. Xianjin Zhu, Rik Sarkar, Jie Gao, Segmenting A Sensor Field: Algorithms
and Applications in Network Design. To appear in ACM Transactions on
Sensor Networks.

2. Xianjin Zhu, Rik Sarkar, Jie Gao, Joseph S. B. Mitchell, Light-weight Con-
tour Tracking in Wireless Sensor Networks. Proc. of the 27th Annual
IEEE Conference on Computer Communications (INFOCOM’'08), 1175-
1183, April, 2008.

3. Rik Sarkar, Xianjin Zhu, Jie Gao, Leonidas J. Guibas, Joseph S. B. Mitchell,
Iso-Contour Queries and Gradient Routing with Guaranteed Delivery in Sen-
sor Networks. Proc. of the 27th Annual IEEE Conference on Computer
Communications (INFOCOM’08), 960-967, April, 2008.

4. Xianjin Zhu, Rik Sarkar, Jie Gao, Shape Segmentation and Applications in
Sensor Networks. Proc. of the 26th Annual IEEE Conference on Computer
Communications (INFOCOM’07), 1838-1846, May, 2007.

5. Xianjin Zhu, Himanshu Gupta, Fault-Tolerant Manycast to Mobile Destina-
tions in Sensor Networks. Proc. of the IEEE International Conference on
Communications (ICC’07), 3596-3603, June, 2007.

6. Zongheng Zhou, Himanshu Gupta, Samir Das, Xianjin Zhu, Slotted Sched-
uled Tag Access in Multi-Reader RFID Systems. Proc. of the IEEE Interna-
tional Conference on Network Protocols (ICNP’07), 61-70, October, 2007.

7. Rik Sakar, Xianjin Zhu, Jie Gao, Hierarchical Spatial Gossip for Multi-
Resolution Representations in Sensor Networks. Proc. of the International
Conference on Infomation Processing in Sensor Networks (IPSN’07), 420-
429, April, 2007.

Xvili

8. Rik Sakar, Xianjin Zhu, Jie Gao, Double Rulings for Information Brokerage
in Sensor Network. The 12th Annual International Conference on Mobile
Computing and Networking (MobiCom’06), 286-297, September, 2006.

9. Xianjin Zhu, Bin Tang, Himanshu Gupta, Delay Efficient Data Gathering
in Sensor Networks. The International Conference on Mobile Ad-hoc and
Sensor Networks (MSN’05), 380-389, December, 2005.

XiX

Chapter 1
Introduction

Wireless sensor networks, combining sensing with communication and com-
putation capabilities, enable a level of fine sensing resolution that was never
achieved before. Sensor nodes are able to sample the physical world at a high spatial
and temporal resolution and generate a massive amount of data. Thus, data-centric
is one of the most important features that make sensor networks distinct from other
types of networking systems. How to store, process, transmit and retrieve useful
information from massive sensor data to aid diverse applications becomes a funda-
mental problem in sensor networks.

In this dissertation, we aim to explore the potential of sensor networks as col-
laborative data processing engines. It is expected that in the near future, the func-
tionalities of sensor networks will go beyond simple data collection as in traditional
scientific sensing applications, and will reactively impact the physical world and
interact with end users, who live in the same physical domain and query the sensor
network anytime anywhere. In that context, it requires that sensor nodes collab-
oratively process information in the network rather than resorting to a centralized
base station for post-processing. We investigate on key challenges of collaborative
processing and query evaluation, and propose novel algorithms and protocols to
tackle those challenges.

CHAPTER1. Introduction 2

1.1 Sensor Network Overview

Wireless sensor networks [4—7]are multihop ad hoc networks formed by a large
number of resource-constrained sensor nodes. Two sensor nodes can either com-
municate with each other directly if they are within each other’s transmission radius
or indirectly using intermediate nodes. The data generated in a sensor network is
simply the readings of the sensing devices on the nodes. Devices in sensor net-
works are usually battery powered and not necessarily rechargeable. Thus, energy
efficiency is one of the major concerns in the design of sensor network protocols.

1.1.1 Technology Trend in Sensor Networks

The most typical embedded devices used in current sensor networks are called
motes [1-3, 8]. Each mote is equipped with a short-range radio, a low-power CPU,
limited processing memory and battery energy, and some sensing devices. Vari-
ous motes have been developed and put on the shelf. Newer generations of motes
will have higher capabilities, including processing capability, memory, etc. while
keeping the price low and size small (see Figure 1 and Table 1). The increase of
memory (especially flash memories) means that the sensor network with thousands
of devices as a whole has huge storage capacity.

With the rapid growth of new embedded hardware and technologies, sensor
networks will become heterogeneous and user-friendly. Devices with different
capabilities are combined to accomplish sensing tasks in a collaborative manner.
More powerful nodes may be intermixed with standard sensing nodes to handle ei-
ther more demanding sensing modalities (such as images or video) or to provide
microserver-class machines with additional local processing and storage. Mobile-
handheld devices (e.g., PDA and cell phones) will become important elements of
sensor networks and allow end users interact with sensor networks in real-time. In
applications such as Nokia's SensorPlanet [9] and Microsoft SensorMap [10], users
are able to submit and share data from their own cell phones/PDAs. The integra-
tion of sensor networks with handheld or human/vehicle-carried devices also makes
mobility one important feature of sensor networks.

CHAPTER1. Introduction 3

The technology trends with increased memory, more powerful processing ca-
pability, heterogeneity, mobility and real-time interaction make in-network process-
ing feasible and important.

0] (ii) (iii)
Figure 1: Various motes. (i) telosB [1]; (ii) SunSpot [2]; (iii)) Intel mote prototype [3].

mica [1] telosB/tmoteSky [8] SunSpot [2]
Microcontroller | Atmel Atmega 128L| Texas Instruments MSP430 ARM 920T
RAM (KB) 4 10 512
ROM 128KB 48KB 4MB
Radio CC1000 916Mhz | CC2420 250kbps 2.4GHz 2.4 GHz 802.15.4

Table 1: Various motes used in wireless sensor networks.

1.1.2 Application Trend in Sensor Networks

The development of wireless sensor networks was originally motivated by mil-
itary applications such as battlefield surveillance. Its fine granularity sensing capa-
bilities make it widely used in scientific research for dense sampling, environment
and habitat monitoring [11-13]. Most of these early sensor network applications
ask for simple distributed data collection systems, in which each node samples the
environment and sends the signals back to a central base station.

With the advance of hardware and communication technology, sensor net-
works are enabling novel applications by supplying real-time sensing and situation
understanding. It has moved into our daily life, creating a smart environment that
interprets and adapts to dynamic situations and aids human activities. A diverse set
of applications for sensor networks cross different fields including healthcare, home
automation, traffic control, agriculture, environment and many others. The mostim-
portant feature of these new arising applications is that users of sensor networks are

CHAPTER1. Introduction 4

people that stay and roam in the same physical space as the network, rather than
scientists operating remotely from the observation site. Embedded users can inject
gueries into the network anytime anywhere, and expect to receive feedback from
the network in real-time. Users and sensor networks are no longer passively con-
nected. They actively interact with each other and impact each other’s decisions.
The network is not only used to collect data for posterior analysis, but also required
to provide real-time actionable information to its users, based on the current state
of the world.

1.1.3 Query Engines for Sensor Networks

Most existing query engines regard sensor networks as simple distributed data
collection systems and are built upon a many-to-one collection model. Examples
of such query engines are TinyDB [14] and Cougar [15]. In those systems, sensor
nodes send data towards a centralized base station via a tree-like structure. To
minimize energy consumption, it is suggested to perform in-network processing at
internal nodes of the tree [15, 16], such as aggregation, filtering, compression, etc.

However, such many-to-one model has fundamental limitations. It scales
poorly as sensor networks grow large in size. The centralized servers become bot-
tlenecks and nodes around servers can be depleted much faster than other nodes,
which may soonly result in a non-functionable disconnected network. More im-
portant, as sensor networks serve a diverse and distributed community of users, the
strong dependency on servers hurts the accessibility of sensor data and the interac-
tivity of the network to users.

So, it is worth asking the following fundamental question: “What is a good
guery engine for a large scale wireless senor network with potential diverse ap-
plications?” Observations from technology and application evolution that (1) new
technology makes sensor nodes capable of in-network processing and storage; (2)
new applications exhibit high variety and require real-time interaction with the net-
work, suggest the following features for a suitable query processing engine for a
large scale reactive sensor network:

e Accessibility: Enable low-latency access to selective sensor data for end
users with diverse interests.

CHAPTER1. Introduction 5

e Interactivity: Provide real-time interaction with users, get feedback from
users and intelligently react to the physical world.

e Transparency: Hide underlying implementation details from users, let users
concentrate on high-level functionality of the network.

e Expressibility: Support diverse applications with various high-level queries;
make information sharable among users.

1.2 Our Approach

We look upon a large scale wireless sensor network as a collaborative integral
data processing engine. We propose collaborative information processing and query
evaluation technigues based on a logically flat network model, wherein sensor nodes
collaboratively extract useful information via local processing and evaluation; users
are hidden from low-level implementation details by a deductive programming par-
adigm and simply specify high-level queries with logic rules. We focus on tackling
the fundamental challenges in collaborative processing and query evaluation and
explore the potentials of sensor networks as data processing engines with good ac-
cessibility, interactivity, transparency and expressibility.

1.2.1 Logically Flat Network Model

The diversity of new applications and the explosive growth of sensor networks
motivate us to choose a fairly flat network model for general design instead of
the many-to-one collector model. Specifically, in a flat network model, we logi-
cally consider all nodes play roughly the same role and have similar computation
and communication capabilities. Most nodes at different times perform, at some
level, all three of these functions: (1) data acquisition, local processing and event
detection, (2) query injection into the network for certain types of data, and (3)
information routing and/or aggregation to communicate with other nodes.

The flat network model essentially removes the strong dependency on central
servers, thus avoids single point of failures and improves the robustness and scal-
ability. More importantly, it enables seamless real-time interactions with mobile

CHAPTER1. Introduction 6

users. On the other hand, it also imposes new challenges on information process-
ing and query evaluation. Without centralized authorities and global coordination,
information processing must be performed in network in a distributed and energy-
efficient manner. Since each sensor node can only obtain limited local knowledge,
it requires intelligent collaborations among thousands of sensor nodes to achieve
high-level global objectives through local processing and communications, while
keeping in mind the general design criteria such as energy-efficiency and load bal-
ance.

Note that we talk about the flat model at the logical data level, regarding it as a
virtual abstract of the underlying real deployment. The physical implementation of
a sensor network can still be hierarchical and heterogeneous [17]. More powerful
nodes can easily simulate the proposed algorithms and act as proxies for sets of
mote-level nodes.

1.2.2 Contributions

We investigate on in-network data processing and query evaluation, but our
scope goes beyond simple aggregation queries [16, 18, 19]. Under the logically flat
network model, we do not rely on any special powerful node or any global knowl-
edge. We push intelligence down to individual sensor node, and let sensor nodes
collaborate with each other to achieve global query objectives via local processing.

The theme of our research is to answer the key question of collaborative
processing and query evaluation in sensor networks:

“How to extract global information of users’ interests from pieces of local
knowledge each sensor node has?”

Under this general goal, we address the following specific challenges in this
research domain.

1) Link users’ interests with data anytime anywhere.There are two corre-
lated subproblems involved. The first question for information processing is how
to link users’ queries with data, since both queries and related data can appear any-
time anywhere in the network. This is one of the central problems of information
discovery, dissemination, and brokerage. Besides that, to infer high-level useful
information, it is also critical to link multi-dimensional data. In most applications,

CHAPTER1. Introduction 7

events of interest are usually implied from the combination of multiple pieces of
data collected by different types of sensors, which may be distributed far apart.

We proposed an in-network join scheme which takes a database approach to
treat multiple types of sensor values as different database tables and compute join
on them based on certain conditions. The join-based approach provides a general
way to detect complex event and evaluate high-level queries. This scheme can
be further generalized to provide an efficient, load-balanced and locality-sensitive
double-ruling scheme for information brokerage.

2) Make implicit information explicit. The diversity of applications poses
different requirements and queries on sensor networks. Some applications retrieve
more explicit information, e.g. asking for temperature at a particular location. But,
there are also other applications that are interested in implicit information, e.g.,
group behavior of a set of sensors, contours at certain levels, the evolvement of
blobs, etc. To retrieve those implicit information, it requires non-trivial techniques.

We proposed a contour tracking algorithm to process such type of implicit
level set information. It tracks information of interests and captures the topolog-
ical changes when the signal field evolves over time. This algorithm provides a
foundation for further information processing of spatial sensor data.

3) Decouple network design from specific deployment.The diversity of
sensor network deployment comes naturally from the diversity of geographical fea-
tures of the underlying environment, and has essential influence on network design.
In most scenarios, it is infeasible to carefully deploy thousands of sensor nodes in
a pre-planned organized way, due to unforeseen obstacles, poorly accessibility, and
possible changes in the environment, etc. It is thus desirable to automate the net-
work design process and let the sensor nodes self-organize to a properly functioning
network and carry out required tasks.

We proposed to develop a unified approach to handle complex network geom-
etry, in particular, a segmentation algorithm that partitions an irregular sensor field
into nicely shaped pieces such that algorithms that assume a uniform and dense
sensor distribution can be applied inside each piece. Across the segments, problem
dependent structures specify how the segments and data collected in these segments
are integrated. This enables the re-use of existing protocols on an irregular network
and make the development of new protocols transparent to the specifics of the shape

CHAPTER1. Introduction 8

of a sensor field.

4) Provide easy programming paradigm.The ultimate goal of information
processing is to return useful information to users, thus it is important to provide
friendly interface for users to query/access the network.

We proposed a deductive programming paradigm, wherein the overall collabo-
rative functionality of a sensor network application can be easily represented using
deductive (logic) rules. It allows the users to easily specify the high-level func-
tionality of an application, while hiding the low-level details related to distributed
computation, resource constraints, energy optimizations, etc. The system translates
the high-level specifications to distributed energy-efficient code to run on every in-
dividual network node automatically.

Summary. All the above work focus on providing information processing and
guery evaluation techniques through collaborations among sensor nodes to achieve
global objectives (i.e., matching users’ interests, reasoning, obtaining topology in-
formation) via local processing and communications. The four pieces of work in-
vestigate on collaborative processing at different angles, from information broker-
age, information-guided network navigation to the impact of network topology and
programming paradigm. Each work standalone provides algorithmic foundations
for designing future sensor network architecture. All of them together can be pack-
aged into the deductive framework (see Figure 2). In this framework, users’ queries
can be injected into the network anytime anywhere in the form of logic programs,
which will be translated into a set of rules and evaluated by our query evaluation
engine (Chapter 5) with the multi-table join algorithm (Section 2.2) in the core. The
guery evaluation layer sits above a set of network services like network topology
discovery using shape segmentation (Chapter 4), signal field topology discovery
using contour tracking and contour tree algorithms (Chapter 3) and various rout-
ing protocols. The evaluated queries can be further linked with related information
and returned to users via an information brokerage scheme like double-ruling (Sec-
tion 2.3).

CHAPTER1. Introduction 9

I Deductive Framework

Informationbrokerage
(double ruling)

i

Query Evaluation
(mutli-table join, programming paradigm, etc.)

______________ | U ——
1 . : . . 1
Discover network Discover signal field
1 topology topology 1
(shape segmentation) (contour tracking, etc.)
1 1
| |

Routing Protocols
F (point-to-point routing, iso-contour routing, low-value path, etc.) |

I
|
|
|
|
|
|
|
|
|
' "Network Service . :
|
|
|
|
|
|
|
|
|
|

Figure 2: Overview of Dissertation Work.

1.3 Graph Models

Before presenting the main work of this dissertation, | would like to first intro-
duce three graph models used in later chapters.

A sensor network can be modelled as a gr&pk (V,E), with V as the set
of sensor nodes and there is an edgec E if nodei and nodej can directly
communicate with each other. The graph can be directed if the links between sensor
nodes are asymmetric, i.e., nodean communicate with nodgbut not true vice
versa. Depending on different communication models, the set of éfigas be
defined differently.

Unit Disk Graph Model (UDG). In UDG, each node has uniform transmission
range of radius 1, two nodes can communicate with each other if and only if their
distance is no more than 1. It is showed in [20] that in UDG model, if two edges
intersect with each other, there must be a node connecting with all the other three
nodes. We used this property in later Chapters to take advantage of broadcast nature
of wireless channel.

CHAPTER1. Introduction 10

UDG is simple and useful for theoretical analysis, but does not precisely cap-
ture the complex characteristics of radio communication. In reality, the transmis-
sion range can become far from a perfect unit disk, especially in a complex envi-
ronment.

d-Quasi Disk Graph Model (d-QUDG). Quai disk graph model [21, 22] is pro-
posed to represent the irregular radio shape. WeD(sg) denotes the distance
between nodeand nodgj. In d-QUDG:

e if D(i, j) < d, edgesj € E;
e if D(i,j) > 1, edges; ¢ E;
e if d <D(i,]) < 1, edges;j exits with certain probability.

Lossy Radio Model. To capture link dynamics, each edge in the graph can be an-
notated with a weight representing the packet loss probability on this link. Such
lossy radio model has been incorporated in the widely used sensor network simula-
tor Tossim [23].

1.4 Organization

In Chapter 2, we present the distributed join and double ruling schemes for
information brokerage in senor networks. In Chapter 3, we discuss contour tracking
problem to extract implicit contour information. In Chapter 4, we handle underlying
complex shaped sensor field with shape segmentation algorithm. In Chapter 5,
a deductive framework is proposed to provide easy programming paradigm. We
conclude the dissertation in Chapter 6.

Most work presented in this dissertation is done under the supervision of Pro-
fessor Himanshu Gupta and Professor Jie Gao, and is the product of collaborations
with other co-authors. The work on Double Ruling (Section 2.3), Contour Track-
ing (Chapter 3) and Shape Segmentation (Chapter 4) is joint work with Rik Sarkar.
Bin Tang contributed to the implementation of Perpendicular Join Scheme without
location information (Section 2.2.5). | would like to thank Xiang Xu for working
on building up the test-bed for the Deductive Programming Paradigm work.

Chapter 2

Link Users with Data Anytime
Anywhere

2.1 Introduction

Most popular applications of sensor networks, e.g., target tracking, emergency
rescue, health-care management, fall into the categories of event detection and real-
time sense-and-respond, in which sensor networks provide large-scale intense mon-
itoring over the environment, and/or tracking of interesting targets, as well as deliv-
ering the relevant data to the interested parties. Each sensor node typically generates
a stream of data items that are readings obtained from the sensing devices on the
node. Multiple nodes, with their low-level readings, may collaboratively arrive at
a high-level semantic event report, e.g., ‘dangerous contamination’, ‘traffic jam’.
Users of the sensor networks may well be embedded in the same physical space
and inject queries to the network at any time searching for certain types of data.

These large-scale sense-and-respond applications impose new challenges and
requirements on data discovery and delivery protocols.

1. Events of interest may be derived from multiple types of sensor readings,
which are spatially/temporarily distributed over the entire sensor network.
How to find correlated information from massive data in a distributed efficient
way is a challenging problem.

2. On the other hand, data queried by users are often highly selective. Sensor

11

CHAPTER2. Link Users with Data Anytime Anywhere 12

nodes may detect numerous events of different types at the same time, among
which each user is only interested in a much smaller subset. Since queries
can be injected into the network at anywhere and events can be detected by
any sensor node, how to link users’ interests with related events is the other

interesting problem we address here.

Matching Multi-dimensional Information. Simple events can be derived from a

set of sensor readings of the same type, e.g., abnormally temperature reading higher
than a threshold. Complex events may involve multiple different types of data ob-
tained by different sensors, e.g., explosion event is detected only if light, sound, and
temperature readings satisfy certain conditions. Since data is spatially distributed
at different locations, which can not be predicated in pribe first challenge of
in-network processing and query evaluation is to find correlated information from
multi-dimensional data.

Most recent works on in-network processing addressed aggregation, selec-
tion and compression [14, 16, 18, 19, 24—-26] on single type of sensor readings, but
few work considered exploring the correlation among multi-dimensional data for
high-level event reasoning. The vision of sensor networks as distributed database
systems [16, 25, 27] naturally motivates us to considefjdireoperator, which is
expressive on presenting complex connections among multi-dimensional data, for
general event detection and information matching. Unfortunately, although join has
been extensively studied in traditional database systems [28-31], the proposed algo-
rithms typically work in a centralized setting with ample computational resources
or in a distributed environment but machines can directly talk to each other and
communication cost is not a big issue, there is no much prior work on distributed
implementation of join in sensor networks. The difficulty here is due to the fact
that each sensor node could generate tuples for any stream table, so a stream ta-
ble crosses over all nodes in the network and a node does not know where other
data (especially the matched data) are. In addition, we must always keep energy-
efficiency in mind. Distributed implementation of join must minimize the commu-
nication cost incurred, since message communication between sensor nodes is the
main consumer of energy [4]. In particular, load-balanced implementation strate-
gies are essential to prolong the network lifetime, because unbalanced strategies are
likely to render the network ineffective or inoperable much sooner.

CHAPTER2. Link Users with Data Anytime Anywhere 13

The main contribution of our work is the design of various distributed imple-
mentations for join in sensor networks. In particular, we propose the Perpendicular
Approach (PA) which is communication-efficient and load-balanced, and in fact,
incurs near-optimal (within a constant factor) communication cost for binary joins
in grid networks. PA works by using appropriately defined horizontal and verti-
cal paths for data storage and join-computation respectively. The approach is able
to efficiently incorporate joins with spatial constraints, and can be generalized to
sensor networks without location information [32]. We analyze the communication
cost of our approaches, and compare their performance through extensive simula-
tions onns2[33] simulator. We observe that use of PA results in a substantially
prolonged network lifetime compared to other approaches. The performance gap is
much larger for the more realistic scenario of joins involving spatial constraints.

Matching Information Producer and Consumer. Since both queries and events
of interest can appear anytime anywhere in the network, there is a missing link
between information consumer and information producer. Users (information con-
sumers) do not know where to find useful data, and sensors detecting certain type
of events (information producers) do not know where to deliver those data. Thus,
how to match users’ interests with events detected is the second issue we must solve
for in-network information processingWe model the problem as the matching
of information producersthat perform data acquisition and event detection, with
information consumenrg/ho search for this information. Naturally in a sensor net-
work there can be multiple producers that generate a variety of data types as well
as multiple consumers, possibly mobile, that search for relevant information.

Emergency response applications and distributed control systems often impose
a high requirement on the access delay at users to ensure event reports or control
commands being delivered on time, since information ages fast and stale data is
useless. Data queried by users are often highly selective. Furthermore, the arrival of
gueries may be spatially and temporally distributed. We aim to develop a scheme for
large-scale networks that support low-delay queries for multiple users that search
selectively for data types discovered and stored in the network.

We proposed a spherical double rulings scheme which stores data replica at
a curve instead of one or multiple isolated sensors. The consumer travels along
another curve which guarantees to intersect with the producer curve. The double

CHAPTER2. Link Users with Data Anytime Anywhere 14

rulings is a natural extension of the flat hashing scheme such as GHTs [34] with im-
proved query locality, i.e., consumers close to producers find the data quickly, and
structured aggregate queries, i.e., a consumer following a curve is able to retrieve
all the data. Further, by the flexibility of retrieval mechanisms we have better rout-
ing robustness and data robustness. We show by simulation that the double rulings
scheme provides reduced communication costs and more balanced traffic load on
the sensors.

In the following, we first propose efficient schemes for distributed implemen-
tation of the join operator in sensor networks. The main contribution of this work is
a Perpendicular Approach which bridges relevant information together. Then, we
extend the perpendicular approach to a spherical double ruling scheme, and use it
to solve the problem of matching information producer and consumer. Note that
the Perpendicular Approach is a special case of Double Ruling. Thus, the two level
matching problems — multi-dimensional information matching and information
producer/cosumer matching are solved in a unified way.

2.2 Join of Multiple Data Streams

In this section, we address efficient and load-balanced in-network implementa-
tion of join operator. As mentioned before, the sensor network data corresponding
to readings of sensing devices can be modeled as relational data streams. In addi-
tion, there may be other data streams in the network corresponding to derived views
(such as detected events). Each of the data streams may be generated by an arbi-
trary set of nodes (perhaps, the entire network), and a node may generate tuples for
multiple streams. The node that generates a particular tuple is referredasrite
node Each data stream is maintained asiding window[35-37], by storing only
a bounded number of tuples (typically, most recent).

2.2.1 Problem Description and Related Works

Problem Description. Given n data stream®i,Ro, Rs, ..., R, (not necessarily
distinct and a data stream may even correspond to a derived view) in a sensor net-
work, we wish to comput&; X R, X ... R, in a communication-efficient and

CHAPTER2. Link Users with Data Anytime Anywhere 15

load-balanced distributed manner. We do not make any assumptions about the join
conditions in the join query. However, since the sensor data is highly correlated in
the spatial domain [38, 39], we give special consideration to spatial joins (formally
defined below) and modify our techniques to efficiently incorporate them. Due to
limited memory resources, we constrain a join operation to the join of sliding win-
dows [35—-37] of operand streams. Temporal correlation is implicit in the fact that
join is computed over the sliding windows. We output the joined result as a data
stream across the network just like the operand data streams, for appropriate stor-
age across the network and/or further use as an operand data stream. Since sensor
nodes generate streaming data asynchronously and continuously, we evaluate join
in an incremental manner, such that the arrival of a new tuple will only generate
new results associated with that tuple.

Definition 1 Spatial Join. A join between two data strearRsandR; is said to be
aspatial joinof rangesif the join condition is aconjunctionof (|R;.nodeLocation-
R;j.nodeLocatiopn< s) and other arbitrary predicates. Her@odeLocatioris the
attribute for the location of the tuple’s source node, gmd-y| is the distance
betweerx andy.

Performance Criteridur main performance criteria of a join implementation is the
resultingnetwork lifetime In general, network lifetime is defined as the time after
which the network is rendered “useless” (ineffective or inoperable) or disconnected,
due to failure of enough nodes. However, the precise definition of the network life-
time depends on the specific objective of an application. In either case, the network
lifetime is prolonged by conserving overall battery energy and uniform depletion of
battery resources across the network. The former is achieved by minimizing com-
munication cost [4] and the latter by a load-balanced implementation. Thus, we
focus on design of communication-efficient and load-balanced implementations. In
our simulations, we define network lifetime in terms of the approximation ratio of
the obtained join results.

Motivation. One of the strong motivations for distributed implementation of join in
sensor networks is that the join operation forms the core of (bottom-up) evaluation
of deductive rules, as shown in our concurrent work [40]. The above is particularly
significant due to the recent interest and suggestion of deductive programming as

CHAPTER2. Link Users with Data Anytime Anywhere 16

an appropriate vehicle for declarative programming of sensor networks [40,41] and
in general, for declarative networking [42, 43]. For instance, [40, 41] shows that
typical sensor network applications such as shortest path tree, vehicle trajectories,
localization, etc. can be expressed as simple deductive programs.

Another specific motivation for join implementation is event detection, one of
the most prominent applications of sensor networks.ed@ntindicates a point in
time of interest based on certain conditions over the sensor data. In certain cases,
events may simply depend on the local value of a sensor reading. Higher-level
events or complex events may be specified using composition operators over the
primitive events. In particular, the complex events may be represented as a join,
involving spatial and temporal constraints, as illustrated below.

Motivating Example 1.Consider a sensor network deployed in an underground
mine to detect explosions. Let us assume that the event of an explosion is char-
acterized by interaction between three phenomena/events viz., sound, light, and
temperature, and each phenomenon is detected by respective sensors. A tempera-
ture event is said to occur when the temperature sensed at any sensor node reaches
(or increases) by a certain threshold. Light and sound events are similarly defined.
Each of these events is detected locally, and stored in the respective tables along
with the locally computediurationof the event.

Theexplosion everis defined to occur when the following conditions are sat-
isfied [44]. (i) The light, sound, and temperature events occur within 10 meters of
each other, (ii) The ratio of the durations of sound and light events is atéssne
constant depending on the speeds of sound and light), and (iii) The duration of the
temperature event is at least 60 seconds. The query that can be run in the network
to detect the above explosion event is as follows.

SELECT *, event as “EXPLOSION”

FROM Sound, Light, Temperature

WHERE |Sound.location-Light.locatign< 10
AND |[Light.location-Temperature.locatipa 10
AND |Sound.location-Temperature.locatien10
AND Sound.duration> 60
AND Sound.duration/Light.duratiox ¢
AND Temperature.duratior 60

CHAPTER2. Link Users with Data Anytime Anywhere 17

The above query may result in &splosion event stream being generated in the
network. Note that above every pair of streams has a spatial-join of range 10, and
the temporal correlation is implicit in the maintenance of sliding windows.

Motivating Example 2 Consider a sensor network deployed for tracking moving
vehicles. Each sensor has some means (possibly, vibration or magnet sensors) of
detecting presence of a vehicle in the proximity. Consider the event: A vehicle
surrounded (from all four directions) by four other vehicles [45]. If detection of a
vehicle by a node results in generation of a corresponding record in a global table
T, then detection of the above event requires a 5-way self-join of the Tabsng

an appropriately definesbrroundedoredicate over fiveodeLocation —arguments.

Motivating Example 3Consider a more complex event defined overBxmgosion

event stream of Example 1: A vehicle surrounded (from all four directions) by four
explosion events within a certain time window. Here, the location of an explosion
event can be defined as the centroid of the sound, temperature, and light event
locations. This example illustrate the use of a derived view stream in defining a
involved event query.

Related Works. The vision of sensor network as a database has been proposed
by many works [15, 27, 46], and simple query engines such as TinyDB [25] have
been built for sensor networks. However, prior research has only addressed limited
SQL functionality - single queries involving simple aggregations [14, 16] and/or
selections [25] over single tables [47], or local joins [16]. So far, it has been con-
sidered that correlations such as median computation or joins should be computed
on a single node [16, 25, 48]. In a recent work [49], authors consider a combina-
tion of localized and centralized implementation for a join operation wherein one
of the operands is a relatively small static table which is used to flood the network.
However, the problem of distributed implementation for general join operation has
not been addressed yet in the context of sensor network, except in below described
recent works [50, 51].

In [50, 51], authors addressed in-network implementation of join over two ta-
bles assuming a fixed query source. In particular, in [50], they addressed in-network
implementation of the general join operation of two relational tables, and presented
an optimal algorithm which incurs provably optimal communication cost under
reasonable assumptions. In [51], they considered in-network implementation of

CHAPTER2. Link Users with Data Anytime Anywhere 18

joins with range predicates, and developed communication-efficient hash-join and
index-join implementations. The problem addressed in this work is more general
than the above works in that in our work, we consider join of multiple (two or
more) data streams. More importantly, the focus of this work is the development
of communication-efficienand load-balanced implementations in networks with-

out a fixed/static query source. Note that hashing and indexing techniques such as
that used in [51] are not directly applicable for join of more than two data streams,
unless we restrict ourselves to very specialized join conditions.

The similar idea as our approach is also used in the literature of informa-
tion dissemination and retrieval [52-55], wherein queries are interested in a certain
type of data. However, all above works restrict to nice formed networks (grid net-
work with direct communication between any pairs of machines [53], random grid
with constraint geographical flooding [54] or uniformly densely deployed senor
network [55]) rather than a general network. In addition, the problem of informa-
tion brokerage [55] has different criteria from this multi-dimensional information
matching, which leads to specific design and implementations. However, our treat-
ments of these two problems indeed have generic principal and similar core ideas.
We will discuss the information brokerage problem in Section 2.3.

In addition to the work done in the context of sensor network databases, there
is a large body of work done on efficient query processing in data stream process-
ing systems [56-59]. In particular, [60] approximates sliding window joins over
data stream and [61] has designed join algorithms for joining multiple data streams
constrained by sliding windows. However, a data stream processing system is not
necessarily distributed, and hence, minimizing communication cost is not the focus
of the research.

There has also been a lot of work on multi-join query in parallel database
systems [28-31]. In such systems, there are powerful communication facilities
for passing messages among processors, SO communication cost is not an issue.
The focus of parallel join is on how to allocate processors so that the total execu-
tion time of a set of joins can be minimized. Sensor networks differ significantly
from parallel database systems because of severe resource limitations and multihop
communication-cost model in sensor networks. Thus communication efficiency is
a major concern in sensor networks.

CHAPTER2. Link Users with Data Anytime Anywhere 19

2.2.2 Naive Broadcast and Centroid Approaches

In this section, we present a couple of simple approaches, viz., Naive Broad-
cast and Centroid (CA), for distributed implementatiofiRpf< R, X ... R, where
eachR; is a data stream in the network. Here, we consider only in-network imple-
mentations since routing all sensor data to a central server would incur prohibitive
communication costs [4,62]. However, CA is essentially an optimized in-network
centralized approach.

Naive Broadcast Approach (BA).The simplest way to implement a join of multi-

ple data streams is to broadcast each generated tuple to the entire network, and store
all the sliding windows at each node. Then, the join can be computed locally at any
network node. In case of spatial joins, a tupleRpfneeds to be broadcast only
within a region of radiusnax; s, wheres;j is the range of the spatial-join between

R andR;. Note that a non-spatial (or non-existent) join is a spatial-join of infinite
range. This approach is infeasible in most cases due to severe memory constraints
in sensor networks. The other way to do naive broadcast is to store tuples locally
but compute join by broadcasting tuples within a certain region. In the following,
we refer to this approach as BA. In BA, all partial results need to be broadcast again
until a final result is generated. In the case of join without spatial constraints, it
requires flooding the entire network a lot of times.

Centroid Approach (CA). CA works by first choosing appropriattorage re-
gions(Ci, Co2,...,Cn in the network for storing the sliding windows for the streams
Ri1,Ry, ..., R, respectively. To facilitate efficient computation of join, the regions
C1,C2,...,Cn (not necessarily different) are all located close to each other. Each
generated tuplé of each streanR is first routed from its source node to its stor-
age regionCj, where it is stored at some node with available memory (see below
for details). Thereafter, the tupteand the resulting intermediate tuples are routed
through the regiong’y, Co,...,Ci-1, Ci+1,---,Cn (in some order) to compute the
join result.

Storage Regions, Routing, and Storalyet p; be the rate of generation of tuples
of data streanR;, and let®; be the set of nodes (possibly, the entire network)
generating the tuples d&. Let us define the centroid as the location in the

network that minimizes the valug!' ; pid(R, C), whered(%;, C) is the average

CHAPTER2. Link Users with Data Anytime Anywhere 20

number of hops between a node®y and C. Now, it can be shown (we skip the
simple proof here) that choosing the storage regions closely around the centroid
C minimizes the total communication cost (number of hops traversed) of CA for
dense networks. However, nodes around the cenff@de congested and could be
depleted faster than other nodes. When sufficient nodes in the storage region fail, a
new storage region is selected and all nodes informed.

The location of the storage regions can be either broadcast to the entire network
initially or maintained at the node closest to the network center. The above allows
each generated tuple to be routed to the required storage regions using geographical
routing. In sensor networks without location information, we need to construct and
maintain routing paths from each node to the storage regions. In either case, when
a new arrival tuple of streamR; reaches the nodeclosest to the center afj, the
nodel searches for a close-by nodednwith available memory. Such a node can
be found by broadcasting an appropriate request message to natlegathering
responses from nodes that have available memory, and picking the closest node
among them. After storage, the tugléalong with other intermediate results) is
routed to other storage regions (in some order) for computation of join.

2.2.3 Perpendicular Approach (PA) in Grid Network

In the following, we describe the Perpendicular Approach (PA), which is load-
balanced and communication-efficient. We start by describing PA in grid networks,
and then, generalize it to general topologies with and without location information.

Definition 2 2D Grid Network. A two-dimensional (2D)n x m grid networkis
a network formed by placing a node of unit transmission radius at each location
(p,d) (1 < p<mandl<qg<m)inatwo-dimensional coordinate system.

Join of Two Streams in Grid Networks. In a 2D coordinate space, every horizon-

tal line (i.e., a line parallel tg-axis) intersects every vertical line (i.e., a line parallel

to y-axis). Thus, if each generated tuple is stored at all nodes of some horizontal
line, then the set of nodes on any vertical line will collectively contain all sliding
windows. Here, we arbitrarily choose horizontal lines for storage and vertical lines
for join-computation; however, their roles can be easily swapped.

CHAPTER2. Link Users with Data Anytime Anywhere 21

ot b

Tuple (of some
,,,,,,, tiR stream) at its
§t? source node

~— Stored tuples
i on2mrow and
"""" 3d column.

Figure 3: Storage/Replication of PA in 2D Grid Networks.

Based on the above observation, PA consistsvof phasesviz., storage and
join-computation. Consider a grid network with data stre&nandR,, and a tuple
t (of either data stream) generated at coordingpes).

e Storage Phaseln the storage phase, the tuplés stored (replicated) along
theqt" horizontal line i.e., at all nodes whosecoordinate isy. This ensures
that set of nodes osachvertical line collectively contain the entire sliding
windows forR; andR,. See Figure 3.

¢ Join-computation Phasén the join-computation phase, we rodtalong the
p'" vertical line to compute the result tuples duet tf.e.,t X R, ort X Ry
depending of whetheris in Ry or Ry). The result tuples are computed by
locally joiningt with matching tuples oR; or R stored at nodes on tha"
vertical line.

To maintain time-based sliding windows [35], each stored tudéept in the
local memory of nodé until 1, + 15+ T; time after its arrival at, wherety, is the
interval of the sliding window, ands andt; are the upper bounds on the time to
complete the storage and join-computation phases respectively. To correctly handle
simultaneously generated tuples across the network, we start the join-computation
phase for a tuple only after the completion of its storage phase. Thus, we introduce
a delay oftg between the start of two phases. The correctness of above approach
follows from the more general claim in Theorem 5.
Spatial Joinslf Ry X Ry is a spatial-join of rangs, then a tupldé (of Ry or Rp)
generated atp,q) is stored at only those nodes on i horizontal line that are
within a range ofs from (p,q). Similarly, in the join-computation phase, the tuple
t is routed only to nodes within a rangesfrom (p,q) on thep'" vertical line.

CHAPTER2. Link Users with Data Anytime Anywhere 22

Communication Cost within Constant Factor of Optinvale now show that PA in-
curs communication cost within a constant factor of optimal (in addition to being
perfectly load-balanced) for uniformly generated data streams in a grid network.

Theorem 3 Consider ammx mgrid network with the data streaniy andR; being
generated uniformly over the entire network. The total communication cost (total
number of tuple-hops traversed) incurred by PA to compute the jdfa ahdR; is

at most eight times the minimum communication cost needed.

Proof. For simplicity, we assume a general (non-spatial) join; however, the proof

easily generalizes to spatial joins. First, it is straightforward to see that the total

communication cost incurred by PA is at m@st units for each generated tuple.
Note that in anm x mgrid network, there are at least /2 disjoint pairs(ly, I)

of nodes such that the distance (in hops) betweeandl, is m/2. The above is

true since there are at leasf2 such disjoint pairs of nodes on each vertical and

horizontal line, and there aradisjoint vertical or horizontal lines. Now, consider a

pair of nodeql1,12) in the above set of disjoint pairs. Each tuplef R; generated

by 11 must join with each tupl# of R, generated by nodds. Since, the distance

betweenl; andl, is m/2, the communication cost incurred in joinihngndt’ is

at leastm/2. Thus, if each network node generates one tuple eacRifandRy,

then the minimum communication cost incurred in computing the join of tRege

generated tuples is at leash/2)(m?/2)2 = m*/2. If the generation of operand

tuple is uniform, the minimum communication cost requirechjg} per generated

tuple, which is one-eighth of that incurred by PA. Ll

Multiple Streams in Grid Networks. Consider a grid network with data streams
R1,Ro,...,Ry. PA can be generalized to handle more than two data streams as
follows. First, the storage strategy remains the same as before, i.e., each tuple
generated atp, q) is still stored along thef™ horizontal line. However, in the join-
computation phase, we need to traverse the vertical line in a more involved manner.
Below we describe two schemes, viz., one-pass and multiple-pass, for traversing
the vertical line in the join-computation phase. We start with a definition.

Definition 4 Partial Result. Let Ry, Ry, ..., Ry be given data streams and lebe
a tuple ofR;. A tupleT is called apartial result(of Ry X Ry... X Ry) for t if

CHAPTER2. Link Users with Data Anytime Anywhere 23

Vertical
Line

<t;p,toaits> NN
<t10 ’[23 t32> (p]q’) 24l 34
101231434 <to Local Tables for

Streams R, and R,
<ty x>

<tyorloptz > <tjo|lz> |
22| |ts2)
)

Complete <ty
Results (p,Ja’-1

Partial
Results

Figure 4: One-Pass Join Computation. Hetre£ R;, and we assume the join conditions to
be such that;g matches only with1,tr3, 132, t34. Also, there is no join condition between
R anng.

Te(tXR, XR,... R,) wherek<n—1andi, # j for anyl. If k=0, thenT =t,
which is also considered a partial result. Ki= n— 1, thenT is called acomplete
result

One-Pass Schem€onsider a tuple (of some data stream) generated at a node
(p,q). In the one-pass scheme, the tupis first unicast to one end (i.g.p,0)),

and then, is propagated through all the nodes orptheertical line by routing it

to the other end. At each intermediate ndgeq’), certain partial and complete
results (as defined above) are created by joining the incoming partial results from
(p,d — 1) with the operand tuples stored @, q'). The computed partial results
along with the incoming partial results are all forwarded to the next Gpdg + 1).

See Figure 4. Certain incoming tuples may join with the operand tuples stored at
(p,q) to yield complete results, which are then output and not forwarded. The
partial results generated at the last node (other end) are discarded.

Theorem 5 Given data stream®,Ry,...,R, in a sensor network, the Perpen-
dicular Approach (with one-pass join-computation scheme) correctly computes
RiX Ry X ... Ry, in response to distributed (and possibly, simultaneous) gen-
eration of tuples. We assume boundedndt;, the time for completion of storage
and join-computation phases respectively, and no message losses.

Proof. By description of the scheme and the definition of complete results, the
one-pass scheme outputs only those tuples that belong to the final join result. To
show that every tuple of final join result is eventually output, consider an arbitrary

CHAPTER2. Link Users with Data Anytime Anywhere 24

tuple T in the final result. Lefl be the result of matching dft,to,...,tn}, a set

of ntuplest; € R one from each data stream. ligt{for somel < n) be the tuple
amongt;’s whose storage phase was completed the last. Now, we claim that the
tuple T must be output during the one-pass join-computation phate lbétt, be
generated at nod@,q). When the join-computation phasetpftarts, the storage
phase of eact) (1 <i < n) has been completed by definitionland the fact that the
join-computation phase af starts after the completion of its storage phase. Thus,
during the join-computation phase Bpf each of the tupleg is available at some
node on thep!" vertical linel and the tuple; encounters (in some arbitrary order)
each one of theggtuples. Thus, the tupl€ is eventually output. Ll

Multiple-Pass Schemdn the multiple-pass scheme, the join-computation phase
takes place in a certain order of data streams. Each iteration of the multiple-pass
scheme is essentially a one-pass scheme involving join of a data stream with partial
results generated in the previous iteration. More formally, let the predetermined
join-ordering of data streams b®,,R;,,..., R, _, (not including the stream of the

new tuplet). In the first iteration, the tupleis propagated through the vertical line
(from one end to another) to join wifR,. In general, in thé" iteration, the partial
results obtained from the previogk — 1)!" iteration are propagated through the
vertical line to join withR;,. Thus, the partial results generated in kfkiteration
constitutet X R, X ... R,,.

2.2.4 Perpendicular Approach in General Networks

We now generalize the PA approach to general network topologies. The main
challenge in generalizing PA is to define appropriate notions of horizontal and verti-
cal paths such that each horizontal path intersects each vertical path. In addition, we
do not want to involve too many nodes in a particular path, since that would waste
scarce resources in network. Due to network topology being dynamic and limited
resources at each node, we do not wisbdostructand maintain generic horizontal

LAvailability of t; at a node follows from the fact thatandt; matched to fornT (and hence, must
have been generated witly of each other), and a tupteexpires at nodé only afterty + ts+T;
time of its arrival al. Here,1yy is the interval of the time-based sliding window.

CHAPTER2. Link Users with Data Anytime Anywhere 25

® (a, +)

A

@ I
Figure 5: lllustration of vertical paths in an arbitrary sensor network topology, with and
without markings. (a) The path from source nddeb’) to destination@, Yamx+ 1) con-
structed by GPSR. Since the destination is out of the network field, after reaching the bound-
ary, the path will travel the entire boundary until it returns to the same node and there are no
other faces to go around. (b) Vertical paths for nogeb) and(a',b’). Here, the markings

on the given boundary nodes is as follovi&s: andEg are markedighest , E4 andEs are
markedLowest , and the rest are markétiddle . So the vertical pathly iy stops at nod&g

andEs.

and vertical paths for each network node. Therefore, we build paths on-the-fly. Ide-
ally, we would like the horizontal and vertical paths to be the set of nodes encoun-
tered during routing to source-node-specific destinations. Moreover, we would like
the communication and data replication costs to be near-perfectly balanced across
the network. The presence of topological holes and arbitrary boundaries of the
network make the implementation in general topologies particularly challenging.
Keeping the above challenges in mind, we first introduce location-based routing in
the context of path construction, then we define the vertical and horizontal paths
respectively.

Location-Based Routing. In sensor networks, nodes are typically referred to by
their geographic locations (instead of IDs), and each node is aware of its location
(using GPS or localization techniques [63]). Thus, in this section, we consider sen-
sor networks with location information, and design techniques which use location-
based routing (described below) for routing between nodes/locations. We do gen-
eralize our techniques to networks without location information in Section 2.2.5.

In location-based routingprotocols, the destination is specified by its geo-
graphic location. Due to severe memory constraints, the location-based routing
protocols in sensor network are reactive (on-demand), and determine the next hop
on the fly. One simple location-based routing protocol is the greedy approach [64]
wherein each node forwards the packet to the neighbor closest to the destination.

CHAPTER2. Link Users with Data Anytime Anywhere 26

However, greedy approach can ggtickat nodes that have no neighbor closer

to the destination than itself. In contrast, face-routing [64] protocol routes the
packet through a sequence of faces (in an extracted planar subgraph of the net-
work) that intersect the line segment connecting the source and the destination. For
efficiency, face-routing is combined with the greedy approach — yielding the well-
known GPSR [64] protocol.

Vertical Paths in General Networks. For a node at a locatiofp,q) in the net-

work, we denote itvertical pathasVp q and define it as the concatenation of the
paths traversed (or set of nodes encountered) when a packet is routed using GPSR
protocol from(p,q) to (p, Ymin— 1) and from(p,q) to (p, Ymax+ 1). Here,Ynaxand

Ymin are the largest and smallgstoordinate values in the entire network. Since
there is no node at locatiofp, Ymax+ 1) or (p,Ymin— 1), Vp q includes the entire
network boundary (since the external face intersects the line segment connecting
the source and destination) (see Figure 5(a)). In general, the boundary nodes are
part of every vertical path. To choose minimal segments on the boundary, we mark
the boundary nodes and modify the GPSR protocol as described below.

Definition 6 Markings on Boundary Nodes.A node(p,q) on the boundary is
markedHighest (Lowest) if there is no network node such thatl has an edge
intersecting the linx = p and has ay-coordinate greater (less) tham Otherwise,
the node(p, q) is markedMiddle . See Figure 5 (b).

Redefining Vertical Path8ased on the above markings, we construct a vertical
pathVpq such that: (i) It is a continuous path connectsmmeHighest node to
somelLowest node; this is to ensure intersection with every horizontal path (defined
later). (ii) It deviates as little as possible froma= p; this is to efficiently incorporate
spatial joins (as discussed later). (iii) It includes as few nodes as possible, and is
different for different(p,q); this is for efficiency and load-balance. Keeping in
mind the above considerations, we still def\g, as the set of nodes traversed
when routing(p,q) to (p, Ymax+ 1) and(p, Ymin— 1), but modify the behavior of
GPSR on the boundary as follows.

On way to(p, Ymax+ 1), if GPSR reaches a boundary ndddf | is marked
Highest , then GPSR stops and the vertical path is completed; else GPSR is directed
to (i) a non-boundary neighbor afwith a highery-coordinate than, or (ii) (if

CHAPTER2. Link Users with Data Anytime Anywhere 27

Hy,.q -- Bad Horizontal Path

S =

e

Xt (b) Xogrt

Figure 6: lllustration of horizontal paths in an arbitrary sensor network topology.
(a)Horizontal path for nodgc, d). Here liert andlsignt are the leftmost and rightmost nodes

in the network. The patliyag shows that defining horizontal paths in a similar way as
vertical paths does not ensure intersection of vertical and horizontal paths. (b) Ears of the
network is cut to solve congestion arouhgk; and l;gnt. Horizontal pathsH(a,b) and

H (c,d) stop when reaching line§e; andXignt .

no such non-boundary neighbor exists) the left or right boundary neighbbr of
whichever is on the shorter path to some node matkgkkst . For instance, in
Figure 5 (a), on the path frorfta,b) to (a,Ymax+ 1), at Ez GPSR is directed to

the left boundary neighbdg,, while atE, GPSR is directed to a non-boundary
neighborC. GPSR is similarly modified on reaching a boundary node on way to
(p,Ymin— 1). The boundary-node markings and information (left or right boundary
neighbor for directing GPSR) can be computed periodically in a centralized manner
at some node.

Definition 7 Vertical Path. Vertical pathV,q for a node at a location(p,q) is
defined as the concatenation of the paths connestomyeHighest node tosome
Lowest node (or set of nodes encountered) when a packet is routed using GPSR
protocol from(p, q) to (p, Ymin— 1) and from(p,q) to (p, Ymax+ 1). Here,Ynaxand

Ymin are the largest and smallegtcoordinate values in the entire network.

Horizontal Paths in General Networks. Defining horizontal paths precisely in

the same manner as vertical paths will not ensure intersection of a horizontal path
with each vertical path. For instance, $égqandV,, in Figure 6 (a). Hence, we
define horizontal paths as in Definition 8. Theorem 9 proves pairwise intersection
of such defined vertical and horizontal paths.

Definition 8 Horizontal Path.Letlet; andlignt be the leftmost (i.e., the node with
the smallesk-coordinate) and rightmost nodes respectively in the entire network.

CHAPTER2. Link Users with Data Anytime Anywhere 28

We denote thaorizontal patifor a node at locatior(p,q) asHp q and define it as
the concatenation of paths traversed by the GPSR protocol when a packet is routed
from (p,q) to lright and from(p,) to lje+t.

Theorem 9 Consider two arbitrary nodesp, q) and (r,s) in a connected sensor
network. The path¥, q andH; s intersect, i.e, the paths contain a common node or
a pair of edges (one from each path) that cross each other.

Proof. By definitionVy q is a continuous path connecting a pair of notes-
(hy,hy) to L = (Ix,ly) such thatd is markedHighest andL is markedLowest . It
can be shown that andL lie on different sides of; s(or one of them lie®nH;),
sinceH; s is a continuous path from the leftmost nolgg: to the rightmost node
lright In the network. Thusyy q intersectd; s. L]

Overall Approach. Using the above notions of horizontal and vertical paths, over-

all PA works as follows. Each tuple(of any data stream) generated at a node
(p,q) is first stored on every node bf, . In the join-computation phase, the tuple

t is routed through all the nodes & . Note that due to the wireless broadcast
advantage, the tupleis automatically received at at least one node of each edge
that crosse¥, q.2 The above observation allows us to actually reduce storage cost
by storing each tuple only on a subset of (instead of every) nodes on the horizontal
path during the storage process, without affecting the correctness. We can use either
one-pass or multiple-pass scheme for the join-computation phase.

Storage vs. Communication Cost Tradetrfftead of storing tuples at every nodes

on the horizontal path, we can store tuples at every other node. More generally,
to reduce data replication further, we could store a tuple on éBnyode on the
horizontal path for an appropriately chosen paramkt@figure 7). Ifk > 2, we

need to broadcast the tugl¢o the | k/2| + 1-hop neighborhood of every node on
the vertical path during the join-computation phase, to ensure correctness.

Theorem 10 If tuples are stored at evesth node on the horizontal path, the new
arrival tuple needs to be broadcagt/2| + 1-hop neighborhood of every node on
the vertical path during the join-computation phase, to ensure correctness.

2This is due to the property of unit-disk graph model stated in Section 1.3.

CHAPTER2. Link Users with Data Anytime Anywhere 29

X L 4 y
A A
4 Vs N
oL = = = [O EE L OO0
a b Cc d
of

Figure 7: Reduce storage by storing tuples evktlynode. Tuples are stored at red nodes
but not hollow nodes. The worst case happen when the vertical path intersects with the
(Lk/2] + 1)-th edge of the horizontal path.

Proof. Suppose the intersected edgesEyeon the vertical path any on the
horizontal pathP,g, and only nodea andd store a particular tuple (see Figure 7).
The farthest distance froexor f) to (aord) is | k/2] 41, whenEp. is the(| k/2]| +
1)-th edge of the horizontal path. $k/2| + 1 is sufficient to meet a tuple. [

Dynamic Topologies and Fault Toleran¢® is immune to changes in the topolo-

gies (node failures or additions), since the vertical and horizontal paths are con-
structed dynamically (on the fly) using the GPSR protocol. In addition, the mark-
ings on the boundary nodes need not be up to date for correctness, because if GPSR
reaches a node with no markings (due to obsolete information) we can always re-
sort to normal GPSR. Finally, the approach is inherently fault-tolerant to node/link
failures, since in an irregular topology a vertical pafly, is likely to intersect a
horizontal patiH; s at multiple nodes/edges. Essentially, the join result is likely to
contain duplicate result tuples due to the above phenomenon — making the approach
fault-tolerant.

Traffic Congestion ProblenThe horizontal paths may result traffic congestion in
the region around thge st and lyight nodes®> We can solve the above congestion
problem by excluding the “ears” of the network (Figure 6(b)). In particular, we
periodically determine two value§e f andXignt such that (i) the number of nodes
betweenXight and X+t is large, and (ii) the number of nodes with an edge inter-
secting with each of the lines= Xjght andx = X+t is also large. For a given node
(P,), if Xiignt < porp < Xett (i-., if (p,q) is in the ear), then we choose a node
(p',d) such thaiXiest < p' < Xignt- Else, let(p’,d') = (p,q). Now, we define the
horizontal pattH, 4 as the concatenation of the following paths: (i) Path traversed

31t is for this reason that we defined vertical paths differently than horizontal paths. Otherwise,
defining vertical paths in a manner similar to horizontal paths does ensure correctness (intersection).

CHAPTER2. Link Users with Data Anytime Anywhere 30

when routing from(p’,q') to (Xeft,q’) until x= Xt is reached, and (ii) Path tra-
versed when routing frorfp’, d') to (Xiignt, o) until Xx= Xignt is reached. However,

with above definition of a horizontal path, intersection of paths (Theorem 9) can-
not be guaranteed for the above notion of horizontal/vertical paths. Nevertheless,
in our simulations over random dense networks, we observed that as per the above
definitions, each horizontal path still intersected with each vertical path.

Extensions. The proposed PA can be easily incorporated with spatial join, which
is one of the most common cases in sensor networks. We further discuss range-join
and other complex queries combing joins with selections and aggregations.

Incorporating Spatial Joingor spatial joins, we need to store and propagate each
tuple along only parts of the paths. For a data stré€anet s = max; 5j wheres;

is the range of the spatial-join betweBpandR;. Note that a non-spatial join is a
spatial-join of infinite range. Now, let, be such that th&-coordinate of any node
on any vertical patiVp q is most(p+dy) and at leastp — dy). In other wordsgy

is the maximundeviationof any vertical path from its vertical. Similarly, lef, be

the maximum deviation of any horizontal path from its horizontal line. Then, for
spatial joins, the vertical pat¥, q used for a tuple oR; at(p,q) is the concatenation

of paths traversed when routing frofp,q) to (p,q+s +dy) and from(p,q) to
(p,q—s —dy). Similarly, the horizontal pathlp q used is the concatenation of paths
traversed when routing froitp, g) to (p+s +dx,q) and(p,q) to (p—s — dx,).

Note that the valuel (dy) used forHp ¢ (Vpq) @above should only be such that
the deviation of a vertical (horizontal) path of any node within a rangg fstbm
(p,q) is at mosty (dy). Thus, forH, q orV; q, we need to care about path-deviations
of only those nodes that are within a rangesdfom (p, q). Thus, the valuedy and
dy depend only on the local network density, and hence, can be gathered periodically
from nodes within a range &f. Such gathering of deviations can be achieved by
each node broadcasting its path-deviations to nodes within a rargge of

Incorporating Range JoinRange-joins (Definition 11) can be regarded as a gener-
alization of spatial-join and converted into spatial join by hashing a joined attribute
to a geographical location. The hash function we choose must satisfy locality sensi-
tive property [65]. A hash functioh(u) = (x,y) satisfies locality sensitive property,

if lu—v| < sthend(h(u),h(v)) < g(s) whereu andv are the attribute values, is

the distance function, anglis some function. Based on the above property, we

CHAPTER2. Link Users with Data Anytime Anywhere 31

can map a tuple with attribute valueto locationh(u). For a data strearR,, let

S = max; sj wheres;j is the range on attributes of the range-join betwBegand

Rj, we useg(s) as the range of the spatial constraint and replicate data (compute
join) only on a segment of the horizontal (vertical) path as the way in the spatial
join.

Definition 11 Range JoinA join between two data strearRsandR; is said to be
arange joinof rangesif the join condition is aconjunctionof (|R.att — R;.att| <'s)
and other arbitrary predicates. Herajtis the join-attribute for the operand tables.

Combining with Selections/Aggregatiorisis straightforward to combine our join
scheme with other query schemes, since the derived join results can be treated in
the same way as sensed streaming data and regarded as inputs for other operators.
To optimize communication cost, we can generate query evaluation plans that push
down selection/aggragtions, so that tuples are filtered/aggregated before join. Es-
sentially, it reduces the generating rate of operand streams of the join operator, and
would not affect other parts of our join schemes.

2.2.5 Perpendicular Approach Without Location Information

Our PA is built on top of location-based routing protocol, and hence, assumes
that each node is aware of its geographic location. However, in certain applica-
tions, location information is either not accurate enough or not even available. For
such sensor networks, we define perpendicidgions viz., k-dominating set (de-
fined below) andk-hop neighborhood for some carefully choderfor each node
I, and use them for storage and join-computation. Since we need to traverse the
k-dominating set, we use connectedominating sets instead.

Definition 12 k-Dominating Set; Clusterheads; ConnectddDominating Set;
Gateways. In a given graphG, a k-dominating setK-DS) Sis a subset of ver-
tices of G such that each vertex i@ is within thek hops of some node &8 We
refer to each node in the s&tas aclusterhead A subset of verticeS is called a
connectedk-dominating setK-CDS)if C is ak-DS and the subgraph induced by
C in G is connected. A-CDSC can be thought of as composed ok-®S S of
clusterheads and a s€t— Sof gatewaysused to connec.

CHAPTER2. Link Users with Data Anytime Anywhere 32

Constructing Connectedk-Dominating Sets k-CDS). The authors in [66] pro-

posed a distributed and localized algorithm for constructikgZdS, which is suit-

able for our purposes. Since the connectivitkeEDS is critical to our approach,

we use reliable messaging (using messages acknowledgments and retransmissions)
with [66]'s approach. In addition, we use the approach with multiple times with
different sets of node IDs to construct multideCDS. We refer the reader to [66]

for details of their approach. To achieve load-balance, we construct multiple such
k-CDS by using different random IDs for each node. With each node also as-
sociate an arbitrary (preferably, the closés@DS, and maintain a path connecting

| to the associatektCDS.

Tuple Storage and Join-Computation Phases.Note that eaclk-DS intersects

(i.e., has a common node) withkahop neighborhood of any node. Thus, te

DS andk-hop neighborhoods can be looked upon as “perpendicular” to each other.
We connected th&-DS to allow easy propagation of tuples (for storage or join
computation) over the clusterheads. In our discussion, we usedsfor storage

of tuple and th&-hop neighborhoods for the join-computation phase. In particular,
each new tuple generatedlas routed over th&CDS associated withand stored

at the clusterheads. For join-computation, the tuple is joined (using a multiple pass
scheme) with the tuples stored in thénop neighborhoodN(l) of I. Note that

Nk(1) is guaranteed to contain complete sliding windows of each data stream, since
it intersects with everi-DS.

Choice of Parameters.The parameterk needs to be carefully chosen to optimize
performance. In particular, if we use tlkeDS for storage, then largésr entails
lesser degree of replication and larger communication cost and delay. Opposite is
the case whek-hop neighborhoods are used for storage. Alksshould be chosen
such that &-hop neighborhood is large enough to store all the sliding windows.
After having choselk, we construct multiple number of sukhCDS to ensure that
each node is a clusterhead in at least one ok{G®S.

Dynamic Topology. The constructe&-CDS are preprocessed data structures, and
hence, need to be maintained in response of changes in topologies (node failures or
additions). In our discussion, we assume that a failing node informs its neighbors
about its impending failure. Such an assumption is reasonable for failures due to

CHAPTER2. Link Users with Data Anytime Anywhere 33

battery depletion. The above assumption can be easily relaxed by requiring each
node to send periodic beacons. Since, €a€@DS can be maintained indepen-
dently, we consider maintenance of a singleDSC.

Node AdditionsWhen a new nodkjoins the network, it gather&+ 1)-hop neigh-
borhood information. If there is no clusterhead in KakBop neighborhood, then
selects itself as a new clusterhead. In either dasennects itself t&€ (using new
gateway nodes) using the gathefkd- 1)-hop information. Here, we have assumed
that the node is connected to at least one network node.

Gateway Node Failuregefore a gateway nodg dies, it gathers-hop neighbor-
hood information (for somB and constructs a Steiner tree (in a centralized manner)
connecting the neighbors ¢f that are inC. The nodes in the constructed Steiner
tree are added to the getand notified of their membership in theCDSC.

Clusterhead Failuréhe situation is more complicated when a clusterhigdalils.

Here, we select some of the neighbordiphs new clusterheads, connect the se-
lected new clusterheads with new gateways (if needed), and add all of these new
nodes taC. Let B be the set of neighbors df that are in th&k-CDSC, andB be

the set of neighbors df, that are not irC. We start off by selecting each element

of B as a clusterhead, and designate each elemdhtsfatemporary clusterhead

Next, we determine which nodes Bishould be selected as clusterheads. First, all
neighbors ofl, (i.e., BU B) broadcast @robe message in theik-hop neighbor-
hoods. Consider a nodehat had onlyiy, as its clusterhead. Ifdoesnotreceives
aprobe message from any node B) then it sends aake-permanent message to

the lowest-1D temporary clusterhead thaeceived grobe message from. A tem-
porary clusterhead selects itself as a clusterhead (i.e., adds it€3lbtoreceiving

a make-permanent message from any node. Finally, we add additional gateway
nodes to connect the newly added clusterheads, by computing a Steiner tree (in a
centralized manner) connecting them. Such a Steiner tree can be constructed by the
failing clusterheady, (before failure) by gathering certain neighborhood informa-
tion.

CHAPTER2. Link Users with Data Anytime Anywhere 34

2.2.6 Performance Evaluation
2.2.6.1 Communication Cost Analysis

In this section, we analyze the total communication cost incurred in various
approaches, which will be used to develop a heuristic for the join-ordering problem.
Here, we define the communication cost incurred as the sum of the total number of
hops traversed by each operand tuple. We start with considering the approaches in
sensor networks with location information.

Definition 13 Selectivity Factor. The selectivity factorop of a join condition
P between two data streant§ and R; is defined as the fraction of tuple pairs
(one each fromR; and R;) that satisfy the join conditioP. More formally,

op = R 2R/ (RIIR}]).

Communication Cost in One-pass PAIn PA, the total communication cost is
due to storage and join-computation. For a newly generated tuple, the communi-
cation cost incurred in PA (in either one-pass or multiple pass) for storage is just
the hop-length of the horizontal path. The communication cost incurred during the
join-computation phase of the one-pass PA for sensor networks with location infor-
mation can be computed as follows. Consider a vertical pathroddes. Let us
assume that the tuples of each sliding window are uniformly distributed along the
vertical path. Consider a newly generated tuplef data streanir; (we choosdr;

for simplicity of presentation). In the one-pass schem#averses along the verti-

cal path from one end (first node) to another eidl fiode). Consider thé" node,

i.e., the node that ishops away from the first node on the vertical path. Below, we
derive an expression ch,Z(rT), the number ohewpartial results generated at the

I'" node due tdy, t, (some tuple oR,; we chooseR, for simplicity), and a set of

n— 2 data streams other thd® andR,. Here,n < n since we are counting only
partial results. LeR' denote the part of the sliding window f& stored between

the first and thé!" nodes. Note thgR/| = |Rj|I /L if we assume uniform distribution

of tuples across the vertical path. Then, the expressioNﬁ(ﬁ) can be written as

NP = > [laMtXR XR,...R_]

SCi 2{3,...,n}

CHAPTER2. Link Users with Data Anytime Anywhere 35

where the summation is taken over all subsets ofsiz from {3,...,n} andS=
{i1,i2,...,ia—2} is an instance of such a subset. Now,dg} denote the selectivity
factor of the join condition betwedR, andR,. Then, we get
Nm= > (I ow][(RiIL).
S Ca2{3,...,n} uyve(sU{1,2}) ues
Now, the total
number of partial results generated| %t node ISZn 5> ,N/(N)|R|/I. Recall
that each of the partial results of simeraverses the remaining part of the vertical
line, and hence, incurs a communication cost(@f—1). If Ly, is the hop-length of
the horizontal path (and hence, the communication cost incurred for storage), the
total communication cost (QPA_Cost) incurred by PA one-pass scheme due to a
tuplet; of Ry can be given by:
L n-1 n

OPPACost=Lp+» > > AL-DHN/(MR|/I. (1)

=1 n=2i=2
The above equation also applies to sensor networks without location information
with Ly, being the size of the regiokCDS ork-hop neighborhood) used for storage
andL being the size of the other region used for join-computation.

Communication Cost in Multiple-Pass PA.Computation of communication cost

in the case of multiple-pass PA depends on the join ordering. For simplicity, let us
assume that the order of the joinRs, Rs, ..., R,. Consider a newly generated tuple

t1 of Ry. We start with considering networks with location information. In ithe
iteration of the multiple-pass scheme, the partial results corresponding to the tuples
int; X Ry X R3... R traverse the entire vertical path to find matches fRm, the

next data stream in the join ordering. Before that, each of these generated partial
results also traversds/2 hops to get to the first node (to get ready for the next
iteration). Since the first iteration incurs a communication codt @fop-length

of the vertical path), the total communication cost (R _Cost) incurred by PA
multiple-pass scheme for the join orderiRg Rs, ..., R, in response to a generated
tuplet; of Ry is:

n-1
MP_PA Cost=15L(> i(|Re||Rs|...[RI)] 0isi,)
i=2

1<iy,ip<i

+Lh+L. (2)

CHAPTER2. Link Users with Data Anytime Anywhere 36

Recall thaty, (hop-length of the vertical path) is the communication cost incurred
during the storage phase. As before, the above equation also applies to sensor
networks without location information.

Communication Cost in Centroid Approach (CAhe above analysis for multiple-

pass scheme can also be used to compute the communication cost incurred by CA.
If r is the memory available at each node, thigm/r is the number of nodes in the
storage regiort; storing the sliding window foR;. Let D; is the average distance

(in hops) between a network node and the storage reg@ipandd be the average
distance (in hops) between two storage regions. Then, the total communication
cost (CACost) incurred by CA in the join-computation phase for the join-ordering
Ro,Rs, ..., Ry in response to a generated tuplef Ry is:

n—-1
CA Cost= (Y (d+[Ryal/M)) (Rl .. R] 0uir)
i=2

1<iy,ip<i

+D1+2|Ry|/r + (d+|Re| /). (3)

Above, 2|Ry|/r is the communication cost incurred in searching for a node with
available memory irC1, and(d + |Rp|/r) is the cost of routing to and broadcasting

t1 in the storage regioQs.

Communication Cost in Naive Broadcast Approach (BBA can be looked upon

as a special case of PA, wherein the horizontal path only has the origin of the tuple,
and the vertical path has all nodes in a circular region (the entire network in join
without spatial constraints). Thus, the same formula of PA can be directly applied
here. The total communication cost of multi-pass BA is showed as follows.

n—1
BA_Cost=N(> i(|Re[[Rs|...[R|) J] o) +N. (4)
i=2

1<iq,ip<i

Join Ordering Problem. The join-ordering problem of finding an optimal order-

ing of data streams that minimizes the overall communication cost (Equation 2 for
multiple-pass PA or Equation 3 for CA) can be shown to be NP-hard using a re-
duction from maximum clique [67]. Note that the above join-ordering problem is

equivalent to finding the optimal left-deep tree for evaluation of the given join query,

CHAPTER2. Link Users with Data Anytime Anywhere 37

and that the overall communication cost incurred in our multiple-pass PA and CA is
proportional to the sum of the sizes of the intermediate results. Thus, we could di-
rectly use the techniques developed in [67] to determine a communication-efficient
join-ordering of data streams. In particular, we use the greedy heuristic of [67]
which works by first selecting the data stream that minimizes the communication
cost incurred in the last iteration of the join-computation phase, as the last stream
in the ordering. After picking the last data stream, the best choice for last-but-one
data stream in the ordering is selected, and so on. The above greedy heuristic essen-
tially works on the premise that the communication cost incurred in the last iteration
dominates the overall cost. As typical sensor network queries are long running, we
assume that all the catalogue information needed (estimated sizes, locations of the
operand relations and join selectivity factor) can be gathered by initial sampling of
the operand tables.

2.2.6.2 Simulation Results

We present our simulation results that compare the performance of various
approaches. We simulate our algorithmsr®2 [33], a general purpose network
simulator capable of simulating wireless ad hoc networking protocols. Since our
techniques are targeted for large sensor networks (hundreds of nodes), it was infea-
sible to simulate our techniques on real sensor networks or real sensor data (since
the largest available data we could find online is for 30-40 nodes).

Parameter Values and Settings.We generated random sensor networks by ran-
domly placing 1000 nodes in an area3ff00x 3000meters. We fix the transmis-

sion radius of each node to be 250 meters to ensure a connected network graph,
and consider the case of join of 4 data streams. Each stream is generated uniformly
across the network at the rate of 150 tuples per unit time. We compute the join based
on a sliding window of size 150 tuples (or one unit time) for each data stream. The
default memory capacity at each node is 30 tuples, but we vary it in one set of
experiments. Note thahe absolute value of the sliding window size or memory
capacity per node is immaterial for purposes of performance comparibas, we

only vary the ratio of sliding window size to the memory capacity by varying the
latter. We set the battery energy, transmission power, receiving power of each node

CHAPTER2. Link Users with Data Anytime Anywhere 38

to 120J, 0.28W, and 0.14W respectively. By default, we store a tuple on etrey

node (of the horizontal path) in the storage phase, and do a one-hop broadcast from
each node on the vertical path; we consider different replication factors in one set
of experiments. We use a uniform selectivity factor (1/2 for spatial joins and 1/10
for non-spatial join) for all pairs of streams. For the given selectivity factors and
sizes of sliding windows, the communication-cost Equations 1 and 2 suggest that
the multiple-pass will be more efficient than the one-pass scheme. Thus, we use
multiple-pass scheme for PA. Note that beyond the choice of one-pass vs. multiple-
passthe absolute value of selectivity factors does not have any effect on the relative
performance of the approachds one set of experiments, we use non-uniform se-
lectivity factors, and compare the performance of one-pass versus multiple-pass
with different join-orderings.

Performance MetricsWe use the following performance metrics (over time) to
measure the performance of our approaches: total battery energy dissipated (i.e.,
total communication cost), number of battery-depleted nodes, and “approximation
ratio” of the output results. Thapproximation ratioof an approach at a given time

is defined as the ratio of (i) the number of result tuples output by the approach, to
(i) the total number of tuples in the actual join result (computed independently in a
centralized way), due to the input tuples generated in th& lasiits of time. In our

graph plots, we choosE to be 10 units. The approximation ratio metric signifies
the current state of the network (based on last 10 units of time) and incorporates
almost all aspects of the performance of an approach. Thus, we use approximation
ratio as our main performance criteriofNetwork lifetimecan be defined as the
amount of time for which the approximation ratio remains above a certain thresh-
old; we consider 80% threshold in our discussions. Low approximation ratio could
be due to node failures, message collisions, non-availability of sliding window tu-
ples due to limited memory and/or network partitioning. We expect load-balanced
and efficient PA to have a much higher network lifetime than CA.

Approacheskor the given parameter values, the Naive Broadcast approach is infea-
sible; e.g., for default values each node can only store 57.3%0=300F /(600x
1(500)?)) of the entire sliding windows and thus, the approximation ratio can be at
most 57.3%. Thus, we implement thecal Storage (LSapproach, which stores
each tuple only locally (at its source node) and uses multiple passes (as in the

CHAPTER2. Link Users with Data Anytime Anywhere 39

multiple-pass PA scheme) for join computation. In each pass, each partial result
is broadcast upto the range of the spatial join or to the entire network for the case
of non-spatial join. LS approach is load-balanced, but incurs more communication
cost than PA. Below, we compare CA, PA, and LS approach for various parameter
values and settings. For the PA scheme, we include all the overhead cost, except
for the minimal (two messages per boundary node) one-time cost of computing the
boundary nodes and markings. Also, duplicates are an inherent fault-tolerant fea-
ture of PA, and are not eliminated. Finally, as discussed in Section 2.2.3, the result
tuples are output across the network. Collecting results at a cewalwill have
similar problems as in the Centralized Approach discussed in Section 2.2.2; hash-
ing of result tuples or shipping them to a central server connected to all nodes will
have similar cost for all schemes and is thus ignored.

Spatial Join of Range 500 Meters. We start with considering performance of
various approaches for the case of a spatial join of range 500 meters. As mentioned
before, we use aadditional (beyond the selectivity due to the spatial constraint)
selectivity factor of 1/2 for all pairs of streams. We plot our simulation results in
Figure 8. We see that the rate of energy dissipation in PA is less than in CA or LS.
The rate of energy dissipation tapers off in each approach after some time, due to
decrease in the number of active nodes. We notice that in PA the nodes start failing
much later than in CA or LS, due to the communication-efficient and load-balanced
operation of PA. Finally, we can see in Figure 8(c), that the approximation ratio of
PA stays close to 100% for a long time. Essentially, when all nodes are alive, the
fault-tolerance of the approach makes up for the few lost messages. The message
collisions were observed to be rare due to “non-convergent” communication pattern
and low rate of tuple generation. If we use the approximation ratio threshold (for
network lifetime) of 80%, then the network lifetime of PA is about 3 times longer
than that of LS and about 12 to 15 times longer than that of CA.

Varying Memory Capacitiedn Figure 9, we compare performance of various ap-
proaches for different values of memory capacities (10, 60, and 90 tuples per node).
We observe that PA continues to outperform both CA and LS by a large factor (3
to 10) in terms of the network lifetime. Note that LS approach doesn’t change
with change in memory capacity. We observe that the performance of PA is same
for memory capacities of 30 or more, and the performance of CA improves with

CHAPTER2. Link Users with Data Anytime Anywhere 40

-
[N}
)
o
=)

=
o

=
o
o
=}
=)

®
=]

©
&
Q
=]

@
=]

IS
=}

N
N
=}
=)

—=PA
-©-CA
—+LS

[N}
2
Q
=]
N}
o

Energy dissipation (J)
Number of dead nodes
1]

o

Approximation ratio (%)

2
o

10 20 30 40 50
Time

10 20 30 40 50
Time

Figure 8: Performance of various approaches for a spatial join of range 500 meters with
memory capacity of 30 tuples/node. (a) Total energy dissipated, (b) Number of node fail-
ures, and (c) Approximation ratio.

=
Q
r=4

=
o
S
=
o

< < <
s S T% s
o 80 © 80} 8 o 80
= = =
) \ [g -=PA
60 60 60,
5 5 5 oA
< 40 I 40 < 40
£ £ £
x x x
9 20 9 20 9 20
Q. Q. Q.
Q. Qo Q.
< o S = < 4 S < 9
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Time Time Time

(a) 10 tuples per node. (b) 60 tuples per node. (c) 90 tuples per node.

Figure 9: Approximation ratios over time for the spatial join of range 500 meters with
different memory capacities.

increase in memory capacity.

Different Spatial-Join Rangek Figure 10(a)-(b), we consider other ranges of spa-
tial join, viz., 750 and 1000 meters. Since the transmission radius is 250 meters,
considering lower range value is too perfect for PA, and a value of 1500 or higher
will almost cover the entire network (and hence, equivalent to a non-spatial join).
Here, we plot only the approximation ratio, since itincorporates all the performance

=
o

o

=]

E’\i Q\o, %0 . Q\i -=PA
S 80 o BOH -e-cA O 80 -e-CA
E E 70| —+Ls E —+LS
c 601} c 60 c 60
S S S
g S w g a0
£ £ w =
9 20 9 5 9 20
o o o
o Se Q 10 o
< Sooccockamy < < 4
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Time Time Time
(a) Range of 750 m. (b) Range of 1000 m. (c) Non-spatial join.

Figure 10: Approximation ratios over time for different spatial-join ranges, and non-spatial
join.

CHAPTER2. Link Users with Data Anytime Anywhere 41

metrics. For the range of 750 meters, the network lifetime of PA is about 3 times
longer than LS and about 20 times longer than CA. For the range of 1000 meters,
both CA and LS have an effective network lifetime of zero, while that of PA is about
10. The low approximation ratios of CA or LS (even in the initial phases) is due to
a large number of message collisions in the join computation phase, which requires
repeated broadcast (within the storage region for CA or entire network for LS) for
each computed partial result. Note that even though CA does not incorporate spa-
tial joins, performance of CA worsens with increase in spatial-join range due to the
increase in the overall selectivity factor.

Non-Spatial Join. As mentioned before, for non-spatial join, we use a selectivity-
factor of 1/10 for each pair of streams. Since the overall selectivity-factor for the
non-spatial join is perhaps (they aren’t easily comparable) less than the spatial join
of range 1000, we see that CA and PA perform better for the latter. See Figure 10
(c). Moreover, we see that LS performs very poorly; it has an approximation ratio
of at most 50%.

Varying Replication Factork) and Memory Capacityln this set of experiments,

we vary the replication factds, which signifies how often we store each tuple on a
horizontal path. As mentioned in Section 2.2.4, if we store a tuple at &/enpde

on the horizontal path, then we need to dpk#2| + 1-hop broadcast from each
node on the vertical path. However, in most cases, the last hop broadcast is not re-
quired due to the inherent fault-tolerance of the approach and the random network
topology. Thus, we use 1-hop broadcastkct 2, and fork = 3 or 4 we do the
last-hop broadcast with a 20% probability. Figure 11(a) plots the approximation
ratio of PA for varying memory capacity. Here, we plot the approximation ratio
during one unit of initial time, when all nodes are alive. As expected, we see that
the approximation ratio decreases with decrease in memory capacity or replication
factor. In Figure 11(b), we plot the communication cost for varjkra;md memory
capacities per node. Increasekishould result in more energy dissipation. How-
ever, we notice that = 1 incurs a much higher communication cost thaa 2 or

3, due to a large number of duplicate partial results generated kheh From the

given plots in Figure 11, we can conclude that to achieve an approximation ratio of
at least 80%, we should uge= 2 (with one-hop broadcast) for memory capacity

of 20 or higher. For lower memory capacities, higher values afe needed. Note

CHAPTER2. Link Users with Data Anytime Anywhere 42

)
pa
S
|
O
%
5

= PA (k=1)
-e-PA (k=2)
——PA (k=3)
~-PA (k=4)

N
5}

N

404 —#PA (k=1)
30 -6-PA (k=2)
20 —+PA (k=3)
108 ~-PA (k=4)

-

o
2]

Approximation ratio (%
o g
Energy dissipation (J)
-
[%))

o

5 10 15 20 25 30 35 40 100 15 20 25 30 35 40
Memory per node Memory per node

3

Figure 11: Varying replication factolkk and memory capacity for non-spatial join. (a)
Approximation ratio and (b) Energy dissipation, in one (initial) time unit.

x10°

o
=3

—~ 12
Stream 1 54 Stream 2 IS s
Initial | Greedy | Sequential g 80 s 10
Stream | Ordering | Ordering © 2 s
.05 t T < 60 =%
0.1 o5 | 1 | [324] | [234] S 2
2 [413] | [3,41] g 0 i \
.05 3 [1 ,2,4] [4.1 ,2] é 20 -6-One-pass PA§ < -6-One-pass PA
4 213 123 S —=—Multi-pass PA (Greed 8 2 —&-Multi-pass PA (Greedy)
Stream4 01 g 3 (2.1,3] [1.2.3] Z ——Multi-pass PA (Seguehtial] —+—Multi-pass PA (Sequential)
- ream Se0s

5 10 15 20 25 30 5 10

15 20 25 30
Time Time

Figure 12: Non-uniform selectivity factors and join ordering for non-spatial join. (a) The
join graph depicting various selectivity factors, (b) Greedy and sequential join orders, (c)
Approximation ratio, and (d) Energy dissipation.

thatk = 1 is never a good choice.

Effect of Join OrderingWe now depict the effect of join-ordering on the perfor-
mance of PA. In this set of experiments, we choose non-uniform selectivity fac-
tors as shown in Figure 12(a). We compare the performance of one-pass PA and
multiple-pass PA. For the multiple-pass PA, we use two different join orderings,
viz., greedy (as described in Section 2.2.6.1) and sequential (where each new tuple
iteratively picks the next data stream in sequence). See Figure 12(b). We see in
Figure 12 (c)-(d) that the multiple-pass PA with greedy join ordering performs the
best, followed by the multiple-pass PA with sequential join ordering.

Summary of Simulation Results.In our simulations, we have compared PA with
other approaches for a wide range of network parameters. In general, we observed
that PA resulted in a much longer network lifetime for computation of join, due to
its communication-efficiency and load-balance. For spatial joins, LS outperformed
CA, while for non-spatial joins LS performed very poorly. In general, the perfor-
mance of CA and PA improve with increase in memory capacity. In the full version
of the paper [32], we present more extensive experiments including evaluating our

CHAPTER2. Link Users with Data Anytime Anywhere 43

techniques in an irregular topology.

2.3 Double Rulings for Information Brokerage

In this section we address the problemrdbrmation brokeragevhich, spec-
ifies how data is collected and stored as well as how queries are routed to discover
relevant data. We model the problem as the matchingpfofmation producers
that perform data acquisition and event detection, witbrmation consumeraho
search for this information. Naturally in a sensor network there can be multiple
producers that generate a variety of data types as well as multiple consumers, pos-
sibly mobile, that search for relevant information. We aim to develop a scheme for
large-scale networks that support low-delay queries for multiple users that search
selectively for data types discovered and stored in the network. | present the key
ideas of double rulings in this section and leave all details in our publication [55].

2.3.1 Background

Early work on information discovery and routing follow two basic approaches:
data-centric routing [68] and data-centric storage [69]. Data-centric routing takes
a reactive approach, as in directed diffusion [68] and TinyDB [14]. Little collab-
orative preprocessing is performed. Thus the discovery of the desired information
usually relies on flooding the network. This approach targets at infrequent queries
for streaming data type so that the cost of flooding can be justified and amortized
by the following long-term data delivery. For queries from multiple consumers
for the same data source, the performance deteriorates as data sources might be
re-discovered separately by multiple consumers. The delay incurred by informa-
tion discovery may also be too high for real-time queries in emergency response or
delivery of control demands.

Data-centric storage is proposed for large-scale networks with many simulta-
neously detected events that are not necessarily desirable for all users [34,69], as in
the applications considered here. A producer leaves data on rendezvous nodes for
consumers to retrieve. Thus data across space and time can be aggregated at ren-
dezvous nodes. Prior work includes geographical hash tables (GHTSs) [34] where

CHAPTER2. Link Users with Data Anytime Anywhere 44

data is hashed by its data type to geographical locations. The node closest to the
hashed location is identified as the rendezvous node. The consumer applies the
same hash function and retrieves data from the same rendezvous node. Data and
guery delivery to the rendezvous node is implemented by geographical routing such
as GPSR [64]. GHTs have greatly reduced the communication cost and energy con-
sumption by avoiding network-wide flooding for information discovery. Its simplic-

ity is also attractive. There are a few weaknesses with GHTs though. First, the data
retrieval scheme is not distance-sensitive. Even when the consumer is close to the
producer, it may have to go to a far away rendezvous node. Second, the rendezvous
node for popular data queried by many consumers imposes a communication bot-
tleneck. This artifact in traffic patterns may eventually hurt the network lifetime.
Third, the rendezvous node is a single point of failure. Structured replications on
mirror nodes can be adopted to improve the system robustness but at a high cost
of communication. Fourth, the property that data is randomly scattered in the net-
work is good for load balancing, but bad for structured data organization and subse-
guently bad for queries that require cross-type data aggregations. Improvement of
the flat hashing by hierarchical hashing has been investigated with hash locations
aware of data correlation, i.e., similar data is stored close by, or query locality, i.e.,
nearby consumers should discover producers more quickly [70-72].

2.3.1.1 Double rulings

Our approach is to develop what is caléalble rulingsscheme, an extension
of the basic GHTs hashing. The idea is to choose the rendezvous nodes along a
continuous curve, instead of one or multiple isolated sensor nodes, as in the case
of GHTs [34]. The motivation is two-fold. Data delivery from data source to a
rendezvous node is implemented by multi-hop routing. Thus it is natural to leave
information hints along the trail that the data travels on, at no extra communication
cost. Furthermore, data hint replication on multiple nodes provides more flexibility
for a consumer to discover relevant data — it is easier to encounter a 1D curve than
a 0D node.

The core idea of a basaouble-rulingscheme is exactly the same as the Per-
pendicular Approach we proposed in Section 2.2. In the context of information
brokerage, it works as follows: data or pointers are stored at nodes that follow

CHAPTER2. Link Users with Data Anytime Anywhere 45

a replication curvewhile a data request travels alongedrieval curve Any re-

trieval curve intersects the replication curve for the desired data. Thus successful
retrieval can be guaranteed. For an easy familiar case, assume the network is a two-
dimensional grid embedded in the plane with nodes located at all the lattice points.
The information storage curves follow the horizontal lines. The information re-
trieval curves follow the vertical lines. To be differentiated with the double rulings
we will propose, we call this simple double rulings scheme the rectilinear double
rulings. Notice that the data retrieval curves are independent of the location of the
data sources. In fact, a consumer traveling along the vertical line through itself is
guaranteed to hidll horizontal storage lines, and thus is able to fadldthe data
stored in the network. This double-ruling scheme is also distance sensitive — if the
producer and consumer are actually near each other, they must also be near each
other along the path connecting them using the horizontal and vertical lines. By
replicating data on more nodes that are not in close proximity with data sources or
hashed locations as in GHTSs, double rulings scheme enables better fault tolerance
against geographically concentrated node failures.

Despite all these good properties, the rectilinear double rulings idea is so far
restricted on networks with nice graph structures, e.g., those that resemble grids [54,
73, 74], due to its rich geometric flavor. The recent work by Fangl. [75] also
studied double rulings for routing purpose in a general sensor field with non-trivial
topology. We also note that rumor routing [76] can be considered as a probabilistic
double rulings scheme. Information producer takes a walk (either a random walk or
a straight trajectory) and leaves data pointers on the trail. A consumer travels along
another walk hoping to encounter one of the data pointers. Any two walks have a
probability to intersect. The consumer sends out enough retrieval walks to have a
sufficiently high probability to meet with one of the event curves. Essentially the
challenge of designing good double rulings is to find data replication and retrieval
paths that intersect, are not too long each (not too many replications), and are evenly
spread out across the network. In our join work [32], the Perpendicular Approach
is extended to general topologies by routing along appropriately defined horizontal
and vertical paths. It can be directly used for information brokerage. In this work we
further investigate double rulings schemes with a focus on the flexibility of retrieval
mechanisms.

CHAPTER2. Link Users with Data Anytime Anywhere 46

2.3.1.2 Our contribution

We propose a simple double rulings scheme that actually has GHTs as a sub-
case. Same as in GHTs, a data item is hashed by its data type (also called key in
GHTSs) to a geographical location. However, instead of traveling along the geo-
graphical greedy path to the rendezvous node, the producer travels along a circle
that goes through itself and the rendezvous node and replicates data or data point-
ers on the way. We show that this simple modification to GHTs suddenly allows a
large variety of retrieval mechanisms. The consumer does not necessarily travel to
the hashed location to retrieve the data. It only needs to hit the replication curve.
And we show that there are many such retrieval curves. Thus the consumer has
great flexibility to design its retrieval strategy subject to the current network load
and energy level. Among these retrieval schemes, several have special properties:

e Distance-sensitive retrieval:if the consumer is of distanagfrom the pro-
ducer, the consumer can discover the data with a coSt@f, although nei-
ther has the knowledge of each other’s location or the bound. ohhis is
an attractive feature in many applications, as information will be most use-
ful, thus queried more frequently, in the spatiotemporal locale where it was
collected.

e Aggregated data retrieval: in GHTSs, if a consumer is interested in multiple
data types, such as detections of both vehicles and animals, the consumer has
to visit multiple rendezvous nodes for these data types to collect all the data.
In our double rulings scheme, we show there is a simple rule based on which
one can design a curve (actually many such curves) that will surely intersect
with all replication curves of desired data types. Thus the consumer travels
along a simple curve and gather all the information.

e Double rulings retrieval: the most powerful retrieval mechanism is to travel
along any double ruling curve (among many such curves) that will intersect
all replication curves. Thus a user can discover all the information discovered
and stored in the network. This has further applications in data collection by
data mules.

Our double rulings scheme improves the weaknesses of GHTs, with modestly
increased replication. As explained above, it supports distance-sensitive retrieval

CHAPTER2. Link Users with Data Anytime Anywhere 47

and structured data retrieval. In addition, the double rulings scheme has substan-
tially improved load balancing and robustness to node failures. With the flexibility

in retrieval curves, the rendezvous node is no longer a bottleneck since retrieval
curves may not necessarily visit it. We show that the data storage admits a local re-
covery scheme. If the sensors in a certain region are destroyed, then all the relevant
data are stored on the boundary and thus can be locally recovered. Compared with
structured replication in GHTs or hierarchical hashing that aims to improve data ro-
bustness, the double rulings scheme imposes much lower communication cost for
replication, since the replicas are organized along a closed curve that are easy to
visit.

We name this new double rulings scheapherical double rulingsto be dif-
ferentiated from the simple double rulings scheme with vertical/horizontal lines
(which is denoted asectilinear double rulings As it may not be apparent, the
spherical double rulings philosophically generalizes rectilinear double rulings and
contains it as a subcase. The key insight about the difference between spherical and
rectilinear double rulings and why the spherical double rulings provides more nice
features will be discussed in subsection 2.3.3.1, after the description of our design.

2.3.2 Spherical double rulings

In this section we will use a continuous domain for the intuition and easy
explanation. In a discrete network, a continuous double ruling curve can be easily
implemented by a path in the network in a greedy fashion [77]. The implementation
details and evaluations are presented in [55]. Asin GHTSs, we assume that the sensor
nodes know their geographical locations and a few parameters of the sensor field
such as the diameter and the boundary.

2.3.2.1 Projective mapping

For an easy explanation, we use projective geometry to map sensor nodes onto
a sphere. There are several ways of projecting points on a sphere one-to-one to
points in the plane. One commonly used mapping is stereographic projection [78].
Specifically, we put a sphere with radiugangent to the plane at the origin. Denote
this tangent point as the south pole and its antipodal point as the north pole. A point

CHAPTER2. Link Users with Data Anytime Anywhere 48

h* on the plane is mapped to the intersection of the line thrdugéind the north

pole with the sphere. See Figure 13 (i). This provides a one-to-one mapping of the
projective plané? to the sphere, with the north pole mapped to the point of infinity.
More details on projective geometry can be found at [79]. Stereographic projection
preserves circularity. Any circle on the sphere, including great circles, is mapped
to a circle in the plane. It is also a conformal mapping, i.e., one for which local
(infinitesimal) angles on a sphere are mapped to the same angles in the projection.
It does not preserve distances or area, however. The distortion around the north pole
can be high.

h
hod
(i)

Figure 13: Spherical projection (i) stereographic projection; (ii) equal area projection.

Let the sphere be defined by the equati®r- p) - (x — p) = r? wherep is the
center of the sphere, amds its radius. The straight line from a poigto the north
pole of the sphere (denoted hy, is given byl(t) = q+tv, wheret is the parameter
andv = n—q. Then the intersections of the straight line with the sphere are defined
by the roots of the quadratic equation

t2(v-v)+t(2v- (q—p))+ ((@—p)- (q—p)—r?) =0.

One root corresponds to the north poleand the other is the projection. Thus,
given the sphere, and a point in the plane, we can compute the mapping of the point
on the sphere.

Conversely, given a poirtt on the sphere, its projection on the plane will
lie on the straight lind’(t) = h+tw, wherew = h —n. We define the plane by
(x—0) -z = 0 whereo is the origin, andz is the unit vector perpendicular to the
plane. Then the projection dfon the plane is given by

(o—h)-zW.

h*=p(h)=h+ Wz

CHAPTER2. Link Users with Data Anytime Anywhere 49

The stereographic projection maps an infinite plane onto a sphere. For a sensor
network field, the area in which the sensor nodes lie correspond to a finite region
of the plane. Let this region be call&l Thus, any point infS maps to a point
h = (x,y,2) on the sphere where< k for some0 < k < 2r. The radiug can be
adjusted for a suitable value kfin this range. The distance from the origin to the
pointh* = p(h) is given by2r,/z/(2r — z). Also, the distance from the origin to
the point(x,y,0) is given by/z(2r —2).

With the knowledge of the sensor field, we can place the sphere at the center of
the sensor field. Suppose the furthest sensor node is of didbafroen the origin
(the south pole of the sphere). Then the paranietee., thez-value of the highest
projection on the sphere, is at m@st- m‘%z. In [55], we show that for a finite
region, we can choosesuch that the mapping gives a constant distortion on the
distances. Specifically, we choos@sD/(2\/€), € > 0. k= 2re/(1+¢€). Recall
that circles on the sphere map to circles in the plane. The next Lemma shows that
the lengths on the circle on the sphere is not too much different from the lengths on
the circle in the plane. The proof can be found in the full version paper [55].

Theorem 14 Consider any two pointp; and p2 on the sphere with their projec-
tions on the planep(p1) andp(p2). If the distance fronp; to p along a circle is
d, and the distance betwe@iip;) andp(p2) along the projection of the circle i

then we have
2r

2r_k:1+s.

-~ <
gs

Whene = 1, all the points map to the bottom half sphere. We usually teke
a constant larger than 1. For any two point§jrtheir distance irs along a circle is
within a constant factor of the distance between their mappings on the sphere along
the corresponding circle.

We used(-,-) to represent the geodesic shortest distance between two points
on the sphere ang | to represent the Euclidean distance in the plane. Thus we
have,

Corollary 15 |p*g*| < (1+¢)d(p,Q).

Proof. The shortest distance betwepsg on the sphere must be along a circle.
The distance betwegpi andq* along the projected circle in the plane is bounded

CHAPTER2. Link Users with Data Anytime Anywhere 50

by (1+¢€)d(p,q). Further, the Euclidean distance of two points is always smaller
than the distance along any circle. THpsqg*| < (1+¢€)d(p,q). L]

With this mapping specified, we will explain our replication and retrieval
schemes on a sphere. The above theorems imply that we can focus on the dis-
tances on the sphere. The real distances travelled in the sensor field are bounded by
at most a constant multiplicative factor

2.3.2.2 Data replication

For points on a sphere, there is an intuitive double ruling scheme — any two
great circles of the sphere must intersect. Thus we can use great circles as the dou-
ble rulings to replace the horizontal and vertical lines in rectilinear double rulings.
There is one difference however. In rectilinear double rulings, the replication curves
and the retrieval curves purely depend on the locations of producers and consumers.
Through each node, there is a unique horizontal line and a unique vertical line. A
point on a sphere, however, stays on infinitely many great circles. This property
implies that the producer and consumer curves can have a lot of flexibilities, as we
will see in the following.

We design a double rulings scheme that actually includes GHTs as a special
case. Each data type is hashed to a geographical lod#tias in GHTs. When a
producer routes towards the hashed location, instead of following the geographical
greedy route as in GHTSs, it follows the great circle defined by its own location
and the hashed locatidn denoted byC(p, h). Data from different producers with
the same data type will be routed to the same hashed location where information
aggregation can be performed. All the great circles with §pe h) pass through
the hashed locatioh, as well as the antipodal poiﬁt Thus there are actually two
rendezvous nodek,andh, located far away in the network that have all the infor-
mation of the same data type. Notice that the hashed locatiepends only on the
data type. Thus the locatidncan be derived by a simple geometric computation.
See Figure 14 for an example.

By the properties of stereographic mapping, a great circle is mapped to a circle
in the plane. In particular, the image of any great circle of the sphere encloses the

4This is subject to the assumption that the projective curve is within the sensor field and the
sensors are dense enough such that the hop count of the path is proportional to its Euclidean length.

CHAPTER2. Link Users with Data Anytime Anywhere 51

Figure 14: A point in the planéh* is projected to a poirtt on the sphere. The great circles
for two producers, p’ are drawn in blue.

tangent point of the sphere and the projected plane. These circles, i.e., replication
curves, may have different sizes and centers. Figure 15 shows the actual routes

followed by multiple producers.

Figure 15: Replication curves of multiple producers with the same data type. The hashed
location is denoted by the dark triangle. Both the virtual replication circles and the actual
routing paths are shown.

The hash function picks two geographical locatibhandh*. The rendezvous
nodes are selected as those closest to these locations and can be discovered by
greedy forwarding in a similar way as in GHTs [34]. We abuse the notation a
little bit and useh* andh* to represent the hashed rendezvous nodes as well. The
data is always replicated at the hashed rendezvous rfodasd h*. Data of the

CHAPTER2. Link Users with Data Anytime Anywhere 52

same type from multiple producers is aggregated at the rendezvous Imoded
h*. Dependent on the storage requirement, other nodes on the replication curve
either store the real data or simply a pointer to where the real data is stored.

2.3.2.3 Data retrieval

With this new routing strategy from producers to hashed locations, the retrieval
scheme for the consumgrcan be more flexible than that in GHTs. Observe that
the mapping described in section 2.3.2.1 leaves an empty region near the north pole
of the sphere that projects to points outside the network, and it is possible that a
curve chosen by the consumer on the sphere intersects the replication curve in this
region. However, circular curves on the sphere will have two intersections on the
producer curve, and we select our retrieval curves in ways that ensure that atleast
one of the intersections projects to a point inside the network. We present a number
of such retrieval rules as well as their properties.

GHT retrieval
Obviously the same retrieval rule as in GHTs can still be used, with two ren-
dezvous nodes though.

Definition 16 GHTSs retrieval rule the same as in GHTSs, the consumer can route
to the hashed locationhor h, whichever is closer, to retrieve all the data of the same

type.

This retrieval scheme, as in GHTSs, suffers from two disadvantages. It is not
distance sensitive. Even when the consumer is actually close to producer, the hashed
location might be far. On the other hand, popular data items will create communica-
tion bottleneck around the rendezvous nodes that hold them. With the simple mod-
ification of the replication curve, we show in this section several retrieval schemes
that are distance sensitive and also alleviate traffic hot spot for popular data. Be-
sides, itis attractive to have the flexibility of different data retrieval schemes, simply
for load balancing and routing robustness.

Distance-sensitive retrieval
Assume that the distance between a producer and a consumer on the sphere
is d, we would like to have a retrieval scheme where the distance traveled by the

CHAPTER2. Link Users with Data Anytime Anywhere 53

consumer i©(d). Such a retrieval scheme is nandistance-sensitiveNotice that

the consumer does not know where the producer is and vice versa. The goal of the
retrieval scheme is to travel along a curve that hits the replication curve as quickly
as possible.

Figure 16: The consumer follows the circle with fixed distance to the hashed location
retrieve all the data with the same data type.

If we rotate the sphere so that the hashed locdtiamat the north pole, then
the replication curve is exactly a longitude curve. The distance-sensitive retrieval
scheme follows the latitude curve searching for a replication curve. We denote
by L(qg,h) this latitude curve. It is not necessarily a great circle. There are two
intersectionsy, v, between the retrieval curve and the replication curve, as shown
in Figure 16. Now we claim that the closer one, in this cass of distance at most
d-11/2 from the consumer along the latitude cubvg, h). Obviously, the minimum
distance from a poir to a set of point€(p, h) is always smaller than the distance
from g to one point in this set, for exampfe The following lemma says that the
distance betweegq andu along the latitude curvi(g, h) is at most a factor oft/2
of this shortest distance. The proof of the lemma appears in [55].

Lemma 17 Take a longitude curv€ through the north polé and a latitude curve
L(qg,h) through a pointg. Assume that is the closer intersection & andL(q, h)
to g. Denote byk' the distance betweespandu alongL(g,h) andk the shortest
distance frong to C on the sphere. Theki/k < 11/2.

The consumer, however, does not know which direction to go tb(grh) to
find the closer intersectiom This can be easily solved by a doubling trick, where
the consumer chooses a direction randomly and travels a dis2anei¢h i initially

CHAPTER2. Link Users with Data Anytime Anywhere 54

set ad). If the consumer has not encountered an intersection@(ifhh), it turns
around, increasdsby 1 and travels a distanc along the opposite direction from
g. The process stops when the consumer discovers the closer intersection. Suppose
at this point we have a parametethendr/2 > k' > 2-2, wherek is the distance
from qto u alongL(qg,h) andd = d(p,q), the shortest distance betwepy on the
sphere. The total distance traveled by the consumer is bounded by

i—1

2.3 214K <o -2<9md/2-2.
j=0
In summary, we have

Definition 18 Distance-sensitive retrieval rulethe consumer travels along the
circle on the sphere with equal distance to the hashed locdti@nd uses a dou-
bling trick to discover the closer intersection with the replication curve. The dis-
tance traveled by the consumer is at mogt), if the distance between producer
and consumer id on the sphere.

The bound on the consumer cost is for the worst case scenario. We show by
simulation later that the performance is pretty good if we just choose a random
direction. We note that here we focus on the continuous replication and retrieval
curves. In a discrete network, the curves are realized by routing paths. When
two continuous curves intersect, the corresponding routing paths may either have a
common node, or have a pair of crossing links. We remark that under a unit disk
graph model, if there are two crossing links, then one node must have links to all the
other three nodes. With wireless broadcasting, all the nodes in the neighborhood
can hear the message and are able to respond if they have the data. In practice,
a consumer can also explicitly check the neighbors along the retrieval path or a
producer explicitly store pointers on the neighbors along the replication path.

Aggregated data retrieval

The data replication scheme enables a number of interesting retrieval schemes
for aggregated data. If the consumer travels along the latitude €ggvh) with h
as the north pole, it actually can discover all the data with the same data type. In
fact, anyclosed curve that separate the hashed locativom its antipodal poinh
will intersect all the replication curves with the same data type. Thus a consumer

CHAPTER2. Link Users with Data Anytime Anywhere 55

is given great flexibility in choosing the retrieval curve according to the current
network traffic load and energy consumption level. We formalize the data retrieval
rule for aggregated data of several data typg$, i =1,---,m.

Definition 19 Aggregated data retrieval rulethe consumer searching for all the
data with data typgT;}, i =1,---,m, can follow a data retrieval curve that, for
each data typ4d;,

e either goes through the hashed locattos h(T;) or h, where the aggregates
are computed and stored;

e Or is a closed curve that separatbsrom h, collects all the relevant data
and computes the aggregates.

We remark that the above retrieval rule does not specify a unique retrieval
curve but allow infinitely many possibilities. In fact, this is one of the advantages
provided by this double rulings scheme. The design of a retrieval curve satisfying
this rule can be performed at each consumer node. All the information needed is
the data type and their hashed locations. Thus multiple consumers searching for the
same data type may choose, by their own decisions, different routes. This flexibility
of data retrieval rule enables load balanced traffic patterns and routing robustness.

Double rulings retrieval
The double rulings property enables a full power retrieval scheme. A consumer
g following any great circle will definitely cross all the producer curves.

Definition 20 Full power data retrieval rule:the consumer travels along any great
circle and is able to retrievall the data stored in the network.

Locality-aware data recovery

The idea of replicating on a 1-dimensional curve, rather than a 0-dimensional
point, greatly enhances the system robustness to failures. In GHTs, geographical
routing with the combination of greedy forwarding and perimeter routing is used to
deliver data to the hashed node. A planar subgraph, such as the relative neighbor-
hood graph or the Gabriel graph, is subtracted from the connectivity graph. When
greedy forwarding can not find a neighbor closer to the destination, perimeter rout-
ing is adopted to traverse the face in the planar graph. Specifically, the hashed

CHAPTER2. Link Users with Data Anytime Anywhere 56

0] (it)
Figure 17: (i) Consumer latitude curve. (ii) Consumer great circle curve. Dark triangle
denotes the hashed location; the red paths denote producer replication curves; dashed blue

paths denote retrieval curves; yellow square denotes one producer and magenta square de-
notes one consumer.

geographical location, most likely, does not have a sensor node right there. Thus
perimeter routing will be adopted to tour around the face that encloses the hashed
location. The basic GHTs scheme relieves data loss at the home node, the one clos-
est to the hashed location, by replicating the data around these perimeter nodes.
However all the perimeter nodes are still in geographical proximity thus a ‘block
error’ that destroys the sensors in a nearby region may destroy all the replicas.
Structured replication can be used to improve the system robustness and relieve
the traffic bottleneck at the home rendezvous node, in cases when too many events
with the same key are detected in the network. Producers only put data at a nearby
mirror node, while consumers may need to access multiple mirror nodes until they
get what they want. The mirror nodes are chosen in a hierarchical way by using
guad-tree structure. For the 1-level replication, the sensor field is partitioned into
4 equal size quadrants. The hashed location falls in one of them. 3 mirror nodes
are chosen as those with the same relative locations inside other quadrants. More
replication can be made in a recursive way. Such structured replication is costly
since the mirror nodes are chosen to be geographically sparse. Replication along a
curve improves the robustness without paying extra communication cost. Further

CHAPTER2. Link Users with Data Anytime Anywhere 57

we show that our replication rule supports local recovery when a group of nodes
die.

In our spherical double rulings scheme, the hashed node is no long the single
point of failure. If the nodes in the neighborhood of the hashed rodee de-
stroyed, the nodes on the boundary of the destroyed region contain all the relevant
information and can be used to recover the aggregates. This is possible as long as
the destroyed region does not include both the hashed lodatowl its antipodal
pointr_l. Sinceh andh are geographically fairly apart in the network, a local disaster
is not likely to cover such a large region. All replication curves for this data type
will leave data replicas on a curve connecthngndﬁ, thus intersect the boundary
of the destroyed region. So all the data replicated inside the destroyed region have
their corresponding replica on some boundary nodes. These boundary nodes can be
detected by a local greedy sweeping as in [80], or by using a topological method as
in [81].

2.3.3 Discussions

In this work we propose a simple replication mechanism that supports flexible
retrieval mechanisms. Here, we compare the spherical and basic double rulings
schemes and discuss future works along this directions.

2.3.3.1 Spherical and rectilinear double rulings

After the detailed description on spherical double rulings and the various nice
features it provides for data retrieval and recovery, we will give some insights on the
key difference between spherical and rectilinear double rulings and why replacing
vertical/horizontal lines with circles suddenly makes our lives so much easier. The
following discussion is on a philosophical and mathematically abstract level and the
goal is to help the readers better understand the essence of our design.

Let us begin with some superficial differences between spherical and rectilin-
ear double rulings. Through each point in a plane, there is only a unique horizontal
and vertical line. Data replica are left on the horizontal line through the producer,
which depends completely on the producer location. Different producers (not on
the same horizontal line) with the same data type store data on parallel horizontal

CHAPTER2. Link Users with Data Anytime Anywhere 58

lines. Thus data items with the same type do not encounter each other and can not
be aggregated in-network. The nice thing in spherical double rulings is to introduce
a hash location that brings the producer curves with the same data type together at
the hashed node. This allows data aggregation at the hashed location, consistent
aggregated data query, etc.

From a projective geometry’s point of view, however, two horizontal lines do
intersect — at the point of infinity. As the projective plane is simply a sphere with
the point of infinity mapped to the north pole by stereographic mapping, we can
consider the rectilinear double rulings a special case of spherical double ruling —
with all data types hashed to the point of infinity! Obviously there is no reason
that all data types be hashed to the same node (point of infinity, i.e., the north
pole of the sphere). In addition hashing to the point of infinity is not feasible in
a finite sensor field. The spherical double ruling scheme essentially makes two
natural modifications to rectilinear double rulings to do it right: we distribute hash
locations grouped by data types and bring all hashed locations back to be within a
finite sensor field.

However, which scheme is the best fit depends on our needs. For the im-
plementation of join, we believe rectilinear double rulings (i.e., Perpendicular Ap-
proach) is sufficient because retrieval flexibility is not its major concern and more
important, PA can easily incorporate spatial constraints.

2.3.3.2 Future Works

Double rulings with mobile nodes
Information collection and delivery can explicitly use mobile nodes, such as

data mules [82—86]. This is motivated by the observation that nodes around static
sinks suffer from unbalanced traffic and energy consumption. Furthermore, con-
trolled mobility helps to get around fundamental capacity problems imposed by
insufficient sensor density. In an extreme case, such as a disconnected network,
mobile nodes have to be involved to deliver information between two disconnected
components. However, designing the moving trajectory for data mule is challeng-
ing. One obvious metric is to have the data mule travel a short distance. Finding
the shortest path that visits all the communication ranges of the nodes with data is

CHAPTER2. Link Users with Data Anytime Anywhere 59

a traveling sales man problem and is NP-hard [87].

We observe that data mules can be naturally combined with double ruling
approaches to shorten the traveling distance of the data mule, with a modest in-
network storage and aggregation. A mobile node physically traveling along a con-
sumer curve is able to retrieve all the data in the network. This substantially de-
creases the distance traveled by the data mule. If the network is uniformly deployed
in a squared region afnodes. The shortest traveling salesman path is rougfity
(visiting each node), but the double ruling curve has length rou@lyn).

Advanced hashing

An additional variance that is not discussed is the choice of data-centric hash
functions. The choice of hash functions is orthogonal to the double rulings scheme.
In [55] we had used a uniform random hash function. Advanced hashing schemes,
such as the one used in DIFS [88] or any distance-sensitive hashing schemes [65]
that preserve data proximity can be directly incorporated. For example, we may
prefer to hash similar data types nearby that may facilitate efficient aggregated data
retrieval and rang join. The discussion of advanced hashing mechanisms and their
interaction with double rulings will be interesting future work.

Sensor field with irregular shape

The spherical double rulings scheme is designed for a nicely distributed sen-
sor field. In the case that sensors are deployed in an irregular shape with holes, the
double ruling curves may accumulate on the hole boundaries. We can either resort
to rectilinear double rulings as in the join work [32], or we can define double ruling
curves in a virtual coordinate system that adhere to the underlying network geom-
etry [75, 89]. For example, in the virtual coordinate system defined by the medial
axis of the sensor field [89], there are natural double rulings curves, those that are
parallel to the medial axis and those perpendicular to the medial axis.

Another approach to apply double rulings mechanism in a sensor field with
complex geometry is to partition the sensor field into nicely shaped components and
construct double ruling curves for each piece as inGhe>ER-based scheme [75].

We can also use our shape segmentation scheme presented in Chapter 4 to partition
the field into nice shaped pieces and apply double rulings inside each piece.

Chapter 3

Make Implicit Information Explicit

3.1 Introduction

Most physical measurements exhibit strong spatial and temporal correlations,
since physical phenomena are predominantly governed by the law of diffusion.
Thus, spatially distributed sensor readings represents a time varying signal field.
Studying the topology of such signal field and make its implicit but rich features
explicit becomes fundamental for further information processing. In this section,
we address the problem of tracking contours represented by binary sensors, and we
focus on light-weight maintenance of changing contours and their topologies over
time. This abstracted problem is motivated by a variety of tracking and monitoring
applications.

Contour tracking scenarios. Consider an application scenario in which the sen-
sors are used to detect and track chemical pollution. Each sensor measures the
chemical intensity in its vicinity. As chemical contamination often comes from
some pollution source, and the propagation of contaminants is typically by water
current, wind, or diffusion, the pollution map exhibits strong spatial correlation and

is often modeled and represented by a smooth signal field. The contaminated re-
gions, having sensor readings above a danger threshold, naturally form a number of
(possibly nested) blobs. Over time, the blobs may morph, merge, or split, indicating
the pollution movement and/or the effectiveness of pollution treatment.

60

CHAPTER3. Make Implicit Information Explicit 61

In another example, a group of targets moving in a field may alert the mon-
itoring acoustic sensors nearby. Target movements in nature, such as human, ve-
hicle, animal movements, have a tendency to be clustered. A group target can be
monitored by tracking the contour of acoustic readings above a certain threshold.
Contour changes reveal important information, e.g., the formation of a team or
gathering, the dispersion of vehicles, or certain animal activities.

Contour tracking can also be applied to monitoring the health of the network
itself. A well-behaving network should avoid traffic congestion and unbalanced
energy depletion. Each node can locally determine its “health level” based on its
traffic load and energy reserves. A contour tracking protocol identifies the con-
gested regions and low-energy regions, providing the user a global view of network
health.

Note that, in all of the above application scenarios, simply detecting nodes
around the boundary of the evolving blobs is not sufficient. There can be a large
number of nodes within a thick band identifying themselves on the boundary based
on local readings, but none of them has a clear idea of the global picture of the
entire signal filed — the number of disconnected pieces, the merging/splitting of
them, the nesting relationships, etc. Those topological features of these contours
are often of special interest to users. When monitoring contaminants, a user may
query for a low-risk path through the geographical domain of the sensor field; if
completely surrounded by hazardous chemicals, then special care (e.g., a rescue
helicopter) may be needed. In tracking group targets, we may want to ensure that
the targets do not surround a certain landmark. In monitoring network health, we
want to make sure the network remains connected.

The challenges of contour tracking. We proposed a distributed algorithm that
maintains, on the fly, the contours and their topological changes, while minimizing
the use of network resources. We focus on the maintenance of contours of a single
level-set (as in the scenarios above); the algorithm can be applied to the multi-level
contours case and, potentially, to learning topological features of the sensor field.

We first survey previous work on tracking and contour detection and then ex-
plain the challenges of light-weight contour tracking.

Most prior work on tracking by distributed sensors focused on tracking of in-
dividual targets (e.g, vehicles, humans, animals) moving in the field (see [90-95]

CHAPTER3. Make Implicit Information Explicit 62

°® @® @® ©@

(ii) (iii) (iv)
Figure 18: A field with two blobs. Figure(i)-(iii) show three valid contour networks of the
gray band — all of them are deformation retract (intuitively, they all capture the fact that
the gray band is connected and has two holes) but have different local features. Figure (iv)
shows an invalid contour network. It is hard for an individual sensor to figure out the global
topology.

and references therein). Tracking of a continuously deforming blob or of groups of
targets is not as well studied. One could apply existing target tracking algorithms to
each individual in the group, but this is not onhefficient since only the sensors

near the boundary of a possibly large blob need be involved, buirasdficient

since important topological changes (e.g., splitting and merging of blobs) are not
easily available. Litet al.[96] studied the problem of tracking a half-plane shadow

by using geometric duality, exploiting the continuity of the contour and identifying
the “frontier” sensors that may be included in the shadow in the future. Their ap-
proach, however, requires node locations, centralized pre-processing, and non-local
communications.

In the static scenario, when the targets do not move or when considering a
snapshot of chemical spreading, the problem reduces to detecting the boundary or
the “holes” in the network, where sensors have abnormal readings. There has been
a lot of work on boundary detection [80, 81, 97-102]. In the dynamic setting, one
can periodically run a hole detection algorithm to discover contours. However, a
major issue is choosing the update frequency — frequent updates waste network
resources and infrequent updates miss critical changes. The update frequency is
often dictated by the highest frequency of changes in the contours. Further, periodic
update schemes requires global coordination and good network synchronization.

The problem we want to tackle here is to construct and maintaionéour
networkthat abstracts the global topology of the contour components. This is very
tricky since the topology of the contours represents a global feature of the signal
field, and thus, an individual sensor cannot easily tell the computed contour network
is valid or not (see an example in Figure 18). Our goal is to devise an algorithm in

CHAPTER3. Make Implicit Information Explicit 63

which each node maintains some local states, yet collectively they accomplish the
global task.

Our contribution. We propose a light-weight and distributed algorithm to track
the contours as they evolve over time. We construct and mainteantur net-

work, which tightly surrounds the contours and captures precisely the important
topological features, e.g., how many connected components and how the contour
components are connected and nested. See Figure 19 for an example.

\Elack region
-gray band

contour network

Figure 19: An example of theBLACK regions k-gray band, and the contour network.

As the contours evolve, the basic idea is to freeze the valid segments in the
old contour network, and only repair the contour network where it is broken. We
propose a local algorithm such that, within only a local neighborhood of the broken
contour, a node without the global knowledge can still repair the contour network
and maintain the topological properties. Our algorithm has the following character-
istics.

¢ the topology of the contours is captured precisely;

e the communication cost is “output-sensitive”, being proportional to the mag-
nitude of the changes to the contours, with the algorithm adapting automati-
cally to the frequency and intensity of changes in the input data; and,

¢ the algorithm requires only local communication and does not require node
location information.

The light-weight contour tracking algorithm serves as a fundamental network
monitoring module, providing the basic input for further processing and represen-
tation of the signal field, e.g., for contour aggregation and simplification [103, 104].
It also allows efficient use of system resources, since the nodes not in the vicinity
of the contour can stay on low duty-cycle and thus reduce energy consumption.

CHAPTER3. Make Implicit Information Explicit 64

We present in Section 3.2 a distributed and practical implementation of the
algorithm. Augmented with an additional process, we provide theoretical guarantee
on the contour network property. We include the proofs in Section 3.3.

3.2 Contour Tracking Algorithm

3.2.1 Problem Setup

We consider a set of sensor nodes densely deployed in an environment of in-
terest. We abstract the problem by assuming a continuous signatfesering
the entire domain. Each senddnas a reading, which is a discrete sample of the
signal field at the location of measuring the value of a physical phenomenon being
monitored. We consider the sensors are static, but the signal field evolves over time.
For description simplicity, we focus on single-level contour tracking; i.e., there is a
certain predicate that specifies the range of sensor readings of interest to us, and we
define for each sensor a 0/1 variable called the “contour value” of the sensor.

Definition 21 Contour value The contour valuer(i) of nodei is set to 1 if the
reading of noda is within the range of tracked contour levels, and 0 otherwise.
The set of contour values within the 1-hop neighborhood of na@ecluding i
itself) is denoted by (i).

A practical concern of the contour tracking algorithm is to deal with the issue
of robustness of using the discrete values to approximate the continuous signal field.
In particular, our algorithm only keeps track of contours of “sufficient significance”,
which is formulated in terms of colors:
Definition 22 Color: The colorc(i) of nodei is defined as:

e BLACK: 0¢V(i),iand all of its neighbors have value 1.

e WHITE: 1¢V(i), i and all of its neighbors have value 0.

e GRAY: 0€V(i)andleV(i), anode thatis neitheBLACK nor WHITE.
Thus, to enhance the robustness of the system we keep track of the connected com-

ponents oBLACK nodes, calledblack regions This introduces two benefits. First,
a collection of sensors with “salt-and-pepper” type of contour values do not have

CHAPTER3. Make Implicit Information Explicit 65

significant contours to be tracked by our algorithm. Thus, we are more robust to
noises in sensor measurement: A single value 1 in a group of sensors with value
0 does not trigger contour creation; rather, only when there is sufficient evidence
witnessed by a node and all of its neighbors having value 1 does it indicate the node
is BLACK and there is a contour worthy of tracking. SeconBLack node cannot

be adjacent to &VHITE node, by definition. There is @RAY band that separates

the BLACK regions fromWHITE regions. We are interested in learning and main-
taining the shape and topology of tBeACK regions; symmetrically, we can track

the WHITE region by reversing the contour values. Our algorithm outpatswour
networkinside theGRAY band and tightly surrounding tH®&LACK regions as they
evolve over time.

Definition 23 Contour network A network of GRAY nodes withink hops from
BLACK regions. Nodes of the contour network are calRED nodes.

All of the contour tracking operations are performed on GRAY nodes
within k hops fromBLACK regions, denoted adsgray band k here is a para-
meter that characterizes the tightness of the contour network in approximating the
boundaries of th8LACK regions. See an example in Figure 19. Wekstt 2 in
our simulations.

In this section we will describe a practical algorithm for contour tracking in a
distributed network. An augmented version of the algorithm, described in the next
section, can be proved to maintain a contour network with the same topology as the
k-gray band.

3.2.2 State Transitions

Our contour tracking algorithm is abstractly thought of as an automaton run-
ning at every sensor node. The state transition of the automata is based on the states
of k-hop neighbor nodes, and does not require location information. The color of
nodei is the “state” of the automaton running at nodsee Figure 20). Information
stored at each node is minimal, including its node ID, contour value, coloRand
neighbors on the contour network.

Nodei notifies all of its1-hop neighbors about the change of its contour value
v(i); and notifies itk-hop neighbors about the change of its color/state. All transi-
tions happen whew(i) changes or nodereceives notifications from neighbors. At

CHAPTER3. Make Implicit Information Explicit 66

Last 1 disappears frow(i)

First 1 appears iN (i)

Ly 103peVv()
/g)\ Join /" | Last 1 disappears frovi(i)
i GRﬁY Leave i Last O disappears frde(i)

Contour Creation

First O appears iN (i)

Last O disappears froivi(i)
Figure 20: State transitions of the automata running at each node.

states S3GRAY) or S4 RED), nodei tracks its neighborhood to decide whether to
stay at current state or changeBoACK/WHITE. If nodei finds at least one neigh-

bor with different contour value from itself,remains in current state; otherwise it
transits to S1 or S2 depending ©fi). To do this, a node maintains two counters
recording the number of neighbors with contour value 1 and O respectively, and de-
crease/increase the corresponding value as informed by its neighbors. \REen a
nodei turns toBLACK/WHITE, i must leave the contour network, which may result

in a broken contour. Therefore, the transition fr&msD to BLACK/WHITE triggers
contour repair. On the other hand, if n&RAY nodes find that they are close to
BLACK nodes but cannot sd®eED nodes nearby (within itk-hop neighborhood),
which is possibly a sign of the appearance of a lBlacCK region, thoseGRAY

nodes would start to collaboratively construct a new contour. The operations of
contour creation and contour repair are atomic operations that are not interrupted
by other transitions. Nodes are locked when they enter into either of these two
phases until the repair/creation is finished. In the following, we discuss the details
of contour repair.

3.2.3 Contour Repair

There are different cases that require contour repair — a single contour moves,
expands, shrinks, splits, or multiple contours merge to one. Because every node can
only see the changes within its local neighborhood, a sensor node has absolutely no
idea of the global changes of the contour topology. Therefore, the major challenge
in contour repair is to reconnect the broken contours in a distributed fashion, such

CHAPTER3. Make Implicit Information Explicit 67

that the resulting contour network is still topologically valid. In the following, we
first describe the scenario of repairing a single contour cycle, then move to the cases
of simultaneous repair of multiple contours, contour merging and splitting.

3.2.3.1 Repair of a single contour cycle

When a set oRED nodes leave the contour cycle (in the case of Figure 21 (i)
these nodes change B1LACK), this leaves part of the contour cycle invalid and a
few nodes with a missin@eD neighbor. We call these nodes@senRED nodes
such asa andb.

Definition 24 OpenRED Nodes & ClosedRED Nodes When aRED node loses
(one or more) of its currenRED neighbors, it becomes open. Otherwise, it stays
as closedRED node. ARED node may also become open if triggered by others. An
openRED node actively repairs the broken contour.

When aRED node first becomes open, it is responsible for repairing the bro-
ken cycle. It initiates a repair message within #agray band, looking for other
(open or closedRED nodes to connect to. However, without location informa-
tion a sensor node lacks the sense of directions. If we allow the repair message to
propagate freely in thie-gray band, the resulting cycle may not be valid (as shown
in Figure 21(i)). Therefore, it is important to block traffic traveling in the wrong
direction, implied by the closeRED neighbors of the opeRED node.

repaired contour
e 740 """ o..
open neighborhood o
) a: Black region
b 9
o

Black region Q.
0 0> c ./2 <k

0] (ii)
Figure 21: Repair of a single contour. Open neighborhoods are highlighted afylb are
two openRED hodes. The repair message only travels within the open neighborhood. (ii)
A single contour cycle is broken into multiple chains.

Definition 25 Blocked neighborhood and open neighborhooa RED node is de-
fined to be alock nodeif it is closed and is at least k-hops away from an open

CHAPTER3. Make Implicit Information Explicit 68

RED node in a connected component of a contour cycle. The union & o
neighborhoods of block nodes is thiocked neighborhoo®. The rest of thek-
gray nodes is called thepen neighborhoo® = G \ B. The open neighborhood
has a number of disconnected components, denot€xl. as

Clearly each connected open neighborh@ptias at least one op&eD node.

The repair message only travels within the open neighborhood, as shown in Fig-
ure 21 (i). Since the repair operation is confined inside €adhere is no interfer-
ence between the repair efforts in different connected components.

Notice that for the two open nodasb, without the knowledge of each other,
each would attempt to repair the contour. We suppress the repair messages by the
ID of the initiator. In particular, the repair message will not be forwarded when it
either (i) enters the blocked neighborhood, or (ii) arrives at some nodes who have
received repair messages initiated by other oRem nodes with IDlower than
its initiator. As the repair message is forwarded, an aggregation tree roaesd at
also cached on the nodes who forward the message. This aggregation tree helps the
openRED nodes gather information aboRED nodes encountered on the way. In
particular, when a node stops forwarding, it returns with the ID ofRE® nodes
it learned so far. At an internal node of the aggregation tree, a node propagates up
the aggregated information when all of its children have reported their information.

If an openRED node learned through the information gathered that there is another
openRED node with smaller ID, then it retires. The node with smaller ID, called
therepair nodefor this open neighborhood, is responsible for the repair and selects
a path connecting to the other opBeD node. TheGRAY nodes on this path are
invited to join the cycle and turn tBED.

In general, aRED cycle may be broken into multiple chains (Figure 21(ii)).
The repair is done in a similar way. All of the nodes with at ldasbps away from
an openRED node block theik-hop neighborhood. If a left-over contour chain is
shorter thark, it is hard to distinguish the correct repair direction from the wrong
direction at operReD nodes. Those short chains become un-repairable.

For un-repairable chains the op&eD nodes find they are on chains with
length? < k. They remove themselves from the contour network and turn back to
GRAY. Eventually the entire short chain disappears. Remaining repairable chains
still participate in cycle repair (Figure 21 (ii)). WhenREeD cycle is broken into

CHAPTER3. Make Implicit Information Explicit 69

all short chains, it is good time to discard all un-repairable chains and reconstruct a
new cycle from scratch using cycle creation algorithm, to be explained later.

3.2.3.2 Simultaneous repair, merging and splitting oBLACK regions

When multipleBLACK regions are close, their repair processes may interfere
with each other. An opeRED node may see multiple opdReD nodes. This typi-
cally happens when the topology of tBeACK regions changes, i.e., tWBLACK
regions merge together or o2 ACK region splits into several, the contour net-
work will need to capture the new topology.

When aRED nodea first becomes open, again it initiates a repair message
which is propagated in thke-gray band as before (with theth hop closedRED
neighbor ofa blocking the message propagation). We focus on the open neighbor-
hoodQ; containinga. If there are multiple opeRED nodes inO;, again the repair
messages from all but the one with lowest ID are suppressed. The repair message
travels to every node in an open neighborh@jdnd is only stopped if it hits the
BLACK regions, or the boundaries of tkegray band, or blocked by tHehop node
of some block nodes. Thuslearns about these block nodes, which are grouped
into bounding segments

Definition 26 Bounding segmentsWe take th&ReD nodes withirk-hop of an open
neighborhoodd; and denote them tHsoundingRED nodesof O;. Each connected
component of the bounding nodes is calldabainding segment

A bounding segment may or may not have an oRem node. See Figure 22
for two examples. Now the repair nodeimply connects through shortest paths to
each and every bounding segment.

Cc
(i) (ii)
Figure 22: (i) The repair node connects by shortest paths to the other bounding segments
in its open neighborhood. (ii) The op&ED nodes, d connect to their respective bounding
segment (in this case, a segment with only cloRed nodes).

CHAPTER3. Make Implicit Information Explicit 70

In a special case, an op&ED node may not see any boundiRgD node in
a different segment than itself, the contour repair operation gets stuck. Figure 23

°
o

o'c‘)

Black region

Black r(la)gion

0] (ii)
Figure 23: (i) Repair fromb gets stuck since it fails to discover any other bounding segment
to connect to. Node becomes closed and triggers the next node to be open. (ii) Both open
RED nodesa, b fail to repair and become closed. The adjacent node is triggered to be open.

shows two such scenarios. The open neighborhood of hadé-igure 23 (i) has

only one bounding segment containing itself. In this case the repair operation at
will terminate and nod® stays as it is. The next node adjacenbjan this case,
nodec, will now become an open node and attempts to repair the contour. Figure 23
(if) shows a case when bo#andb can not discover anReD nodes other than those
connected to them. This will eventually leav&aD segment as part of the contour
network.

It is possible that some nodes between nearby red chains change states and
becomek-gray. In such a case the red chains may need to be connected or merged
together to reflect desired homotopy. As such, a simple check for presence of red
nodes within thé&-neighborhood does not always suffice. So, a newly tukagichy
node does the following. It looks at its conneckegray neighborhood (by initiating
ak-hop flood and aggregation), and verifies that the red nodes in this neighborhood
form atree. If they do not, then all these red nodes are eliminated and become open.
Open red nodes start contour repair as described above.

3.2.3.3 Contour creation and disappearance

Initially, as aBLACK region appears and grows, the creation of a new contour
is triggered at somBLACK nodes that have @RAY neighbor but cannot séeeD
nodes in itsk-hop neighborhood, because this indicates the appearance of a new
BLACK region not tightly surrounded. THBLACK node turns it$<SRAY neighbor

CHAPTER3. Make Implicit Information Explicit 71

to an operRED node.

Now aGRAY nodei enterscontour creatiorphase. It is possible that multiple
GRAY nodes try to create a new contour for the s@8neck region. To avoid every
GRAY node repeating the same thing, tBeAY nodes who want to start a contour
will participate in a local leader selection procedure. The leader selection algo-
rithm selects a node as a leader if no other node withik-iteighborhood becomes
a leader. This can be done with any clustering algorithm or by local message sup-
pression. After that, only leaders participate in the creation. The distance between
any two leaders is at leaktop apart.

The leaders become op&ED nodes. But we consider thehop neighbor-
hood of a leader to be blocked to a different leader node. Now the leaders use the
contour repair algorithm to find other leaders to connect to. The repair messages
from leaders will meet either other boundiRgD nodes or nodes with repair mes-
sages from other leaders/repair nodes. In both cases, the leader with smaller 1D
will be selected to build a path to connect to the desired p@&RAY nodes on the
path will turn toRED too and together with the leaders form a red chain with length
at leastk. With the same contour repair protocol these chains will eventually be
connected to a contour network.

The contour network disappears as the corresponding black regions disappear,
because opeRED nodes that are supposed to repair the cycle will detect that they
are not withink-hop of anyBLACK node. ThosdRED nodes would remove them-
selves from the contour automatically, and the contour disappears eventually.

3.2.3.4 Summary of the repair algorithm

The general principal of contour repair is that the valid segments of old contour
network is still usable and repair only happens where the contour is broken. The
repair node connects througlspanning tredo all other bounding segments of its
open neighborhood.

We also emphasize a few issues in the implementation for algorithm robust-
ness: (1) The contour network in an open neighborhOpid repaired by the open
RED node with the minimum ID in the bounding segments. Thus even in a dis-
tributed setting there is always consistency agreed upon who makes the decision.
(2) When a node is involved in a repair procedure, it is temporary locked and does

CHAPTER3. Make Implicit Information Explicit 72

not participate in other repair procedures. When the repair operation terminates,
the repair messages and the nodes who forwarded them will be refreshed. (3) The
repair effort is confined within the open neighborhood, whose size is proportional
to the contour changes.

In most common scenarios, when there are no small black regions that newly
show up in thek-gray band, it can be proved that the proposed repair algorithm gen-
erates a contour network that is a deformation retract okitpeay band. Intuitively
this means that the contour network is a proper “thinning” ofélggay band, cap-
turing all of the topological information of the band, e.g., how many holes there are
and how they are connected/nested. We handle the small holes in Section 3.3 and
give a rigorous proof of this homotopy equivalence property.

3.3 Maintenance of Topological Features

The previous section focuses on the practicality and implementation details for
contour tracking. The main contribution in this section is to provide a theoretical
understanding of contour tracking. In the proofs we consider a continuous setting
in which there ar@8LACK regions andVHITE regions inR?, separated by &RAY
band. Thek-gray bandg contains theSGRAY points within distancé from BLACK
regions. The contour network is denoted@yan algorithm invariant is thd C G.

Our main theoretical result is an algorithm (an elaboration of that of the previous
section, handling small holes insidg) that, upon stabilization (when nodes no
longer change state) computes a contour network with precisely the same topology
as thek-gray band.

Rigorously, we show that the contour netw@ks a deformation retract of the
k-gray bandg. A continuous mapt: G x [0,1] — G is defined as @eformation
retractionif, for everyxin G, ain G, andt € [0,1], i(x,0) =x, (X, 1) € G, (a, 1) =
a. A deformation retraction is thus a homotopy between the identity magp and
aretract ofG ontoG. G is called a deformation retract ¢f. See [105]. Intuitively,

a deformation retraction shrinks a space to a 1-dimensional graph, while keeping
the same topology of cycles and connected components.

CHAPTER3. Make Implicit Information Explicit 73

3.3.1 Contour initialization

We first study in a static setting how to construct a contour network that is
topologically equivalent to thk-gray band even with small holes. This algorithm
will also be used as a subroutine in the contour repair algorithm, but is confined to
the local neighborhood of the contour changes. The contour construction algorithm
is motivated by an earlier boundary detection algorithm [81], but is much simplified.

Without loss of generality we assume th@tis connected and hdsholes.

We compute theshortest path magor an arbitrary rooty, which summarizes the
shortest path(s) fromto every point inG. The union of points with two or more
shortest paths of different homotopy typese called theut locus C. It is known

thatC is a forest (letC; denote thdth tree ofC) with m interior vertices (called
SPM vertices h+ m branches, connecting theholes and then vertices to the
region boundary. The removal of the cut locus leagesimply connected and any
shortest path cannot cross a cut branch or go through an SPM vertex [106]. The
contour network is computed by putting back shortest paths of different homotopy
types, which, together with a part of the cut locus, form the contour net@ork
(Figure 24).

Figure 24: The contour networlG of G. G consists of representative shortest paths of
different homotopy types (in red) and the cut locus (in thick black lines). We show two
examples of the shortest patRsandP; in dashed curves.

In particular, once we remove the cut locus, the resulting figldC has no
holes, and its outer boundary consists of the boundaries of holes and segments of
cut branches, in an alternating fashion. On each such connected cut segment, we
pick a pointx; (therepresentative poijtand connect to X; along a shortest path

Two paths with the same start and end points of different homotopy types get around the holes
in different ways; thus, one cannot be continuously deformed to the other without jumping over
some holes.

CHAPTER3. Make Implicit Information Explicit 74

(representative padh For all representative points on one connected component of
the cut locusC;, their representative paths have different homotopy types — for any
two such path®;,P,, as we continuously deform their endpoirfgo x, within G,

one cannot continuous defoffto P,. Notice that there can be multiple representa-
tive paths with the same endpoiqtas long as they have different homotopy types.

Let C/ denote the subtree @f that connects the representative pointsSanNow,

the contour networlG = (U;jP;) U (UiC{) is the collection of representative paths
and the subtrees connecting the representative points in each cut locus component.

3.3.1.1 Gis a deformation retract of G

Lemma 27 Gis a planar graph inGg, and each face contains exactly one hol&of

Proof. G s a planar graph, since any shortest path cannot cross a cut branch or
go through an SPM vertex [106]. We remove all of the pathand the cut locus

C. We are left with a set of connected components; each comporgnipse with

its boundary consisting of two patl, P,, a portion of the boundary afnehole,

and some cut branches. Now we put b&ckC/ and obtain the faces @&. Notice

that the pieces adjacent to the same hole boundary are combined as oneGace in
Thus, each face contains exactly one hole. L]

Theorem 28 G is a deformation retract o.

Proof. We will describe a continuous map: G x [0,1] — G that shrinksg to
G. In particular, we remov& and are left with a number of connected components
Gi, each containing a hold;, corresponding to one faég of G.

We first describe how to deforrg; to . We use a continuous functioh
to map the boundary of the hole . Now, we extend this functiori to a map
1% such that the point € dH; is deformed through the shortest path frarto its
corresponding poinf(x) on K. All of the points on this shortest path are also
mapped tof (x) accordingly. It can be easily verified that this is a continuous map
and is a deformation retraction frofy) to F. The union of these maps inside each
G; is the deformation retract. L]

CHAPTER3. Make Implicit Information Explicit 75

3.3.1.2 Implementation in a discrete network

This contour construction algorithm can be implemented in a discrete network
as follows. We start from an arbitrary nodend flood thek-gray band. Thek-
gray band ha#$ holes, which can be detected by discovering ¢henodesi.e.,
the nodes with two or more shortest paths &b different homotopy type. Denote
by C; a connected component of the cut nodes. These cut nodes are detected by
checking whether two neighboring nodes have their least common ancestor (LCA)
“far” away (on the other side of the hole) and their shortest paths “far” apart as
well. Such a pair is called aut pair. See Figure 25 for an example. By using
appropriate parameters to define “far”, holes above a given size can be detected by
the recognition of these cut nodes [81].

Figure 25: Definition of a cut pai(p,q).

To find the representative paths, we will first remove the edges between all
cut pairs. The cut nodes are left in different connected components. Now we will
take one node from each connected component, denoted &yd include irG the
shortest path from to x;. If any subset of thesg’s belong to the same connected
componenC;, they are connected by a tree witlf@ This tree is also included
in G.

3.3.2 Augmented contour tracking algorithm

We consider the snapshot of two different signal fields. For the first snapshot,
we have a topologically valid contour netwdskfor its k-gray region,G. WhenG
changes tag’, any point that has changed its col@LACK, WHITE, GRAY) will
erase the contour network in its radiksieighborhood. The part d& unerased
contains some broken segments.

The augmented repair algorithm does just one additional operation on top of
the repair algorithm in the previous section. In an open neighbor@pdecall
that the repair node connects through shortest paths to all other bounding segments

CHAPTER3. Make Implicit Information Explicit 76

of O;. Now, we also include new holes that possibly pop ujn This is by
including in addition the “local contour network” iQ;, constructed by the contour
initialization algorithm described above.

We argue that after the repair the resulting netw@fks topologically equiv-
alenttoG’. NetworkG' has two parts — the old contour netwddg C G and the
newly repaired parGy.

Theorem 29 The contour networla’ is a deformation retract of thk-gray region
G', after the contour repair is done.

Proof. Consider first the old contour networ, and thek-gray regiong. We
removeG from G. We are left with a number of disconnected componefis,

Each one of them is an annulus (band), surrounded by a hole boundary and a face
F of the old contour networks. By assumption, we have a deformation retract

m; from I"j to F. Define thewidth of G as the maximum radius ball centered at a
point p € G such that the removal of this ball does not change the topology. of

The width ofl"; is at mostk — otherwise, there will be BLACK node withGRAY
neighbors but do not haReD nodes within distanck. Thus, this node will trigger
contour creation.

\ gluing boundary
m

Figure 26: The repaired networks’ and the repair regions (highlighted). Nodéas a
closed bounding segment and an open bounding segment (adjacent to itself).

Consider an open neighborho@g it has some bounding segments, some with
an openRED end (calledopenbounding segments), some without (callddsed
bounding segments). We define the repair redg®® O; that includes all of the
nodesp such thatri(p, 1) maps to a closed bounding segmenGpf Intuitively, we
are extending the open neighborhd@duntil it hits the closed bounding segments.

Now consider the new contour netwo®. We remove the repair regioh
and the old contour networts, from G’. This leaves a number of disconnected

CHAPTER3. Make Implicit Information Explicit 77

component$’, I} CTj. If I'; =Tj, then we define the deformation retractigrin

I"j to be the same as If F’j c I, i.e., part of the contour oR has been removed;
thus,r’j has the shape of a deformed band. This is because the removal of any point
onF and its radiuk neighborhood will “break” the annulus;, since the width of

I'j is at mostk. Now I is bounded by part of a hole boundaty and part of the
faceF’ C K, and two “gluing boundaries” adjacent to some repair regions. We map
Hj to F{ with a continuous function.

We now consider a repair regidt). We first assume that each open neighbor-
hoodQ; is simply connected. Then the repair operation connects with shortest paths
from the repair node; € O; to the bounding segments 6. The repaired contour
is completely insiddr;. This partitions the repair region into pieces such that each
piece is bounded by a contour network segnfehta hole boundary segmehy,
and gluing boundaries adjacent to sofi{és. We mapH; to F’ with a continuous
function.

If the open neighborhood has holes, then the repair operation will also include
the “local contour network” fo©;, which will partition O; into disconnected pieces,
each face containing exactly one hole with the outer face homotopy equivalent to
the outer boundaryQ;. This does not interfere with the shortest paths to connect
to the bounding segments. Again, the union of any additional shortest paths with
the local contour network is still a planar graph.

What this says is that we are able to obtain a continuous mapping of each hole
boundary inG’ to a face boundary d&'. With the same argument as in Theorem 28,
the homotopy equivalence is established. Ll

In fact, the proof in the previous theorem states that we can start from a contour
network, remove any subset of it, and use the contour repair algorithm to successful
repair it. Since we freeze the nodes involved in an open neighborhood under repair,
later value changes will be handled after the atomic repair process is finished. The
repair operations in different non-overlapping open neighborhoods do not interfere
with each other and are handled simultaneously and independently. Thus as long as
the signal field stabilizes, the contour network will capture the same topology of the
k-gray band. In a dynamic environment, as long as the computation efficiency can
catch up with the data change rate, a valid contour network can be maintained. The
topological equivalence result implies the following properties listed below with

CHAPTER3. Make Implicit Information Explicit 78

proof omitted from this version.

Corollary 30 The following properties are true when the contour netw@rtabi-
lizes (i.e., no point switches its state):

1. A continuous curve connecting oBeACK and onéWHITE point will have
to crossG. A continuous curve connecting tiBa.ACK points, from different
connected components will have to cr@s

2. The contour network is planar with a planar embedding.

3. Since all of the repair work happens in the open neighborhood, the com-
munication cost for contour repair is proportional to the amount of contour
changes.

3.4 Simulations

We implemented the contour tracking algorithm described in Section 3.2 in a
simulator written in C++, since the algorithm covers all cases of contour evolve-
ment, and works well in practice. We simulated on a network with 4000 nodes
distributed in a field of siz&00x 500units. Each node has transmission radius of
15 units. We set the parametkr= 2 by default, and vark in one set of exper-
iments to discuss its impact on the performance of the algorithm. The simulator
takes a data field with arbitrary shape as inputs; in particular, we experimented with
both simulated and real data (e.g., Figure32). We simulate dynamic changes among
a sequence of stabilized states of a contour field. Between two states, sensor nodes
can change their contour values in an arbitrary order. Video clips of some simulated
examples can be found at [107].

Snapshots of Contours.We first show a set of snapshots at intermediate stages
of the algorithm. Figure 27 shows the process of contour creation when a new
black region appears. Initially, a few nodes within tkgray band elect them-
selves as leaders and start contour creation. Since contour creation is done in a
distributed manner, when new leaders appear, other leaders may already connect
to red chains (Figure 27 (i), left). A complete cycle after creation is showed in
Figure 27 (i) (right). In some cases, a new black region may be so close to an ex-
isting black region that thek-gray bands already merge together. Then, the new

CHAPTER3. Make Implicit Information Explicit 79

contour directly attaches to the existing contour, which guarantees homotopy equiv-
alence (Figure 27(ii)). Contour creation is also triggered when gray/white areas are
born inside black regions. The merging and splitting of contours are symmetric

0] (ii)
Figure 27: Contour creation: (i) Left: new leaders appear, and existing leaders connect to
red chains. Right: a contour cycle is created. (ii) Left: a new cycle directly attaches to a
red cycle nearby. Right: a red chain is constructed when a gray area appears inside a black
region.

U] (ii)
Figure 28: Merging and splitting. (i) Two black regions move closer. Their gray bands
meet each other and (multiple) “bridges” are built up. (ii) Black regions themselves merge
together.

(ii)
Figure 29: Snapshots of nested contour network.

processes. Figure 28 (i) and (ii) show what happens when two originally distant
black regions (e.g., the two regions in Figure 27(ii)) move closer and closer. When

CHAPTER3. Make Implicit Information Explicit 80

theirk-gray bands just touch, a bridge is automatically constructed to connect those
two contours together. In Figure 28 (i), two bridges appear, which exactly cap-
ture the white hole between them. If two black regions move towards each other
further and eventually merge together, the contours also merge into a larger one
(Figure 28(ii)). If we look at these snapshots in a reverse order, they exactly repre-
sent a typical process of contour splitting. More interesting snapshots are shown in
Figure 29.

Irregular Network Fields with Holes. Our contour tracking algorithm is naturally
resilient to boundaries and holes with arbitrary shapes. In Figure 30, we show
examples of contour networks when a black region attaches to boundaries. The
collection of contour pieces correctly separates the black regions from white.

Figure 30: A contour initially sits at the boundary and successfully passes through a hole
in the middle of the network field.

Multi-level Contours. Multi-level contours can be easily supported by applying
the single-level contour tracking algorithm at each level independently. In Figure 32
(i), we show the multi-level contours corresponding to the elevation data of a small
area in Maryland. We takB discrete ranges as contour levels of interest. Some
sensor nodes may be on multiple contours at the same time if those contours are
close to each other. The algorithm correctly maintains the topology of multi-level
contours.

Impact of Parameter k. The parametek controls the tightness of the contour
network to the enclosed black regions. Figure 31 shows different contour networks
with different choices ok for the same snapshot of the contour field. Wkena 1,

the k-gray bands are very narrow and have not met each other; thus, those two
black regions are still enclosed by two separated red cycles. WWitB, thek-gray

CHAPTER3. Make Implicit Information Explicit 81

@i (ii)

—8- Light-weight tracking
—*—Periodical reconstruction

Communication cost
Communication cost

\\“\nﬁ

80 100

0 2000 4000 6000 8000 10000 12000 0 20 40 60
Number of change Update interval

(ii) (iif)

Figure 32: (i) Multi-level contours on elevation data. Colors represent elevation: purple is
the highest and green is the lowest. (ii) Communication cost vs. the number of changes.
(iii) Communication cost of periodic construction vs. update interval, compared with our
tracking algorithm.

bands overlap and red cycles attach to each other. The average distance in terms
of hop counts from each red node to a closest black node is about 1.0, 1.4, 1.7, for
k=1, 2, 3, respectively; i.e., akincreases, the contour network becomes “loser”.

The parametek also affects the communication cost and the completeness of
the contour network. Larget incurs more transmissions (see Figure 32(ii)); on
the other hand, ik is too small, the contour network is easily broken into pieces
because a narroigray band may not be a connected piece. Thus, there is a trade-
off between communication cost, tightness and completeness. In our simulations,
we find thatk = 2 is suitable for most cases.

Communication Cost. We evaluate the efficiency of our algorithm in terms of
communication cost, measured by the number of transmissions incurred during the
transition from one stabilized state to the next. We use 10 different contour fields
as inputs, and run simulations on each filed for 5 rounds.

Figure 32 (ii) shows that the communication cost is approximately linear in
the number of changes, since all operations in our algorithm are executed locally.

CHAPTER3. Make Implicit Information Explicit 82

We further compare the performance of our algorithm with a periodic contour
reconstruction scheme (see Figure 32 (iii))). We can run any boundary detection
algorithm to reconstruct contours periodically. In simulations, we chose to use our
contour creation algorithm, since it is essentially a light-weight boundary detection
algorithm, which captures the rough boundaries of the network field, and much
cheaper than other accurate boundary detection algorithms. The update interval
is defined based on the number of changes and is varied 1 to 100. If we run the
periodical reconstruction scheme at every change, it will incur much higher cost,
about30 times the cost of our tracking algorithm, which is out of the range of
Figure 32 (iii). With larger intervals, the cost of the periodic reconstruction scheme
is reduced, but more critical changes are missed. When the update interval is set
to about every 40 changes, it achieves a comparable communication cost with our
tracking algorithm, but sacrifices in tracking quality.

3.5 Contour Tree Aided Network Navigation

To further explore the usage of contour tracking in real-time interaction with
users, we propose to build up a compact data structure — distributed contour tree,
which helps the users navigate the signal field. The details are presented in [108].

Consider a scenario in which sensors and users (such as rescuers or patrol offi-
cers) are embedded in the same physical space. Users carry hand-held devices and
are able to directly communicate with nearby sensors. In particular, the users want
to obtain directions to places that require attention or service, which are indicated
by the sensor data being within a specified range. A naive solution is to flood from
the query node the entire network, with all the nodes within the range responding
to the query. This, however, can be quite energy expensive as many nodes not in-
volved in the query will still be checked. Instead, we would like to quickly get the
iso-contours of the limits of the query range and only report those nodes back to
the user. These iso-contours bound the regions of interest, and may involve much
fewer nodes than all of the nodes within the query range. To abstract the problem,
we want to support the following routing and navigation function with a low com-
munication cost:

Iso-contour query: from a query nodgfind the iso-contours at value And its

CHAPTER3. Make Implicit Information Explicit 83

variations such as counting/reporting iso-contour components at given value/range.
The most intuitive solution is to use gradient routing, by exploiting the natural
continuity of the signal field. Starting from the query nagléhe query message can
be greedily guided either downhill or uphill, depending on the comparison of the
value atg and the target value This greedy descent routing is simple and requires
only local knowledge. Thus it has been explored in a number of settings for low-
cost data-centric routing [109-113]. Greedy descending/ascending can typically
lead the query message to one iso-contour, unless the query message reaches a
local minimum or local maximum, in which case the query gets stuck. Indeed,
using simple gradient descent for an iso-contour query has a serious defect: the
signal field may have multiple peaks and valleys, and greedy descending discovers
at most one iso-contour, and is not able to discover all of the iso-contours due to the
existence of local optima.

® local maximum e local minimum ® saddle point
O query node —» descending path --- query trail

Figure 33: The level sets of a signal field and the contour tree spanning all the critical
points (in the right). The figure also showsmedescending paths connecting the critical
points.

Figure 33 shows an example of a potential field by drawing its level sets. Red
colors mean hot and blue colors mean cold. We also show all the local maxima,
minima and saddle points. A greedy gradient routing from a query gdoeking
for a desired level contour will follow the local gradient and climb up the mountain.
Once the query reaches the desired level it can locally trace out one contour, e.g,
the contour on the left peak in the figure. However with only local information the
query does not know whether there are other peaks and if so where they are.

CHAPTER3. Make Implicit Information Explicit 84

The difficulty here is that the greedy gradient routing is completely local, while
iso-contours reflect the global topology of the signal field. This is a general problem
in navigation with a potential field, as has also been studied in robotics: with only
information about the local potential one lacks the big picture of the signal field
which is important for guaranteed success. In particular, the collection of critical
points (local maxima, minima and saddle points) represents the global topology of
the signal field. Thus, in order to make the local greedy descend algorithm always
work, one needs to augment it with a compact representation of the critical points
and their relationships.

Our contribution. We propose to investigate distributed algorithms to pre-process
the iso-contour structures, say with our contour tracking algorithm, of the signal
field by what is called theontour tred114], using which a gradient routing scheme
can successfully discovell iso-contours. In short, a contour tree is a tree on all
the critical points of the signal filed and captures the topology of the iso-contours.
It is a special case of thReeb graphin Morse theory [115]. Take Figure 33 as

an example, the right figure shows the topological contour tree consisting of eight
vertices, corresponding to two local maxima, three local minima, and three saddle
points. A contour tree captures how the connected components of the iso-contours
merge/split as we increase/decrease the isovalue.

We propose an algorithm for the construction of the contour tree in a
fully distributed manner. The basic idea is similar to the centralized construc-
tion [114,116-118]. But we need to account for numerous robustness issues due to
local noise and degeneracies, and lack of global coordination. We use distributed
sweeps [119], initiated at local maxima and minima to identify the saddle points
and nodes on the saddle contour. Next an information dissemination phase follow-
ing the contour tree structure distributes necessary information for gradient routing.
The preprocessing involves all together four rounds of sweeps of the signal field
and has a linear message complexity.

With such distributed contour tree structure, we design iso-contour routing and
low-value routing with guaranteed success. We note here that in this work we only
consider a static signal field, because the problem for a static signal field is already
quite challenging. In practice, as the signal evolves over time we can periodically
execute the contour tree construction phase. The maintenance of the contour tree

CHAPTER3. Make Implicit Information Explicit 85

for a time-varying signal field will be future work. In the following, we briefly
describe the contour tree construction algorithms and two routing schemes built on
top of that. We leave details in the full version paper [108].

3.5.1 Contour Tree Construction

A contour tree is essentially a combination of a merge tree and a split tree (see
Figure 34). At a merge saddle (e.@.jn Figure 34(ii)), two contour components
merge into one; and at a split saddle (esgn Figure 34(iii)), one contour compo-
nents splits into two. The basic idea of the contour tree construction algorithm is
that we build up a merge tree and a split tree by sweeping top down and bottom up
separately, then combine them together. Without loss of generality, we explain the
details with the sweep top down here.

P,
Py

0] (ii) (iii)
Figure 34: (i) A contour tree and the interior @&(w) shown in the bounded region; (ii)
merge tree; (iii) split tree.

A node has ithigher neighborsas the subset of neighbors with value strictly
higher than itself, and itfower neighborsas the subset of neighbors with value
strictly smaller than itself. Each sweep is initiated and labeled by a critical node (a
maximum, minimum or a saddle node). A node identifies itself as a local maximum
if it discovers that all its 1-hop neighbors have value no greater than itself. It then
initiates a sweep top down. The sweep algorithm runs in a distributed fashion on
all the nodes. A node has two possible statygeptand not swept Each local
maximum node initializes itself as a swept node. When a node has all of its higher
neighbors in the swept state, it changes itself to be swept. The nodes who participate
in the sweep do not need to be synchronized. They decide on their own state and
advance the sweep frontier with only local knowledge.

In the sweep initiated by a local maximup the sweep message carries the
tuple (p, ¥ (p)), i.e., the node ID and value qf. Each node being swept will

CHAPTER3. Make Implicit Information Explicit 86

keep this information, as well as from which nodes it received this information.
We define adescending patls a path in which each node has a value no greater
than its precedent. During the sweep the information about a local maxipem
propagated along descending paths fromin additional each node swept learns
an ascending pointer which eventually leads to the local maximum. If a node gets
two sweep messages from different local maxima, this indicates that two contour
components start to merge. Thus a saddle should be identified.

Definition 31 We define a node to be raerge saddle nodi it is the one with
highest iso-value with two descending paths from different critical points (other
merge saddles or local maxima), i.e., it receives two sweep messages from different
critical points.

Since the nodes advance the sweep frontier in a distributed fashion, it may
happen that two nodes at the same time both receive the sweep messages from
two peaks. In a distributed setting we need to worry about two issues: (i) two
nodesu, v (or more) may become potential merge sad@é&%, P,) for the same two
peaks. In this case only the real saddle node (the one with highest isovalue) should
survive. (ii) it may happen, if the sweep frontier does not proceed in the same speed,
that the lower saddle may be discovered before the higher saddle. We resolve the
ambiguities by the traversal of the contour component at a potential saddle. The
details are in [108]. Similarly, we can identify split saddles by sweeping bottom up.

After identifying all the nodes on the critical contours, we use gradient de-
scending and ascending paths to discover the contour tree. Starting from a merge
saddlep = M(P,P,), we follow gradient ascending paths towafjsP, respec-
tively. If the ascending path toward reached?; before it hits any other critical
contour level, therp will considerP; its parent in the contour tree. If the ascending
path towards$> hits a split saddle contous, then p will consider S as its other
parent in the contour tree. Similarfyalso sends a descending path and identify its
child in the contour tree. The operations for a split saddle, maximum/minimum are
very similar. Thus, the contour tree will be detected precisely as the combination of
the merge tree and the split tree.

Information stored at each node.The invariant we maintain on a nogas: (1) the

CHAPTER3. Make Implicit Information Explicit 87

maximum/minimum valuel, ™ (w),|~ (w), inside theinterior of its contour compo-
nentC(w); (2) the maximum/minimum valu& ™ (w), E~(w), inside theexterior of
C(w). For example, in Figure 34 (i). A nodeon an arcAB has a contour compo-
nentC(w) in betweenC(A) andC(B). The contour compone@(w) decomposes
the entire signal field into two components, timerior and theexterior, corre-
sponding to the two subtrees when eddggis removed. The interior contains the
critical pointA, which is reachable fror@(w) via a gradient ascending path. The
exterior contains the critical poir8, which is reachable by a gradient descending
path. In additionw also keeps the node ID of the local maxima/minima it stores.
This information is to guarantee that when we send a query message either uphill
or downhill, we know for certain that there exist some contours for which we are
looking. For the consideration of network load balancing, each node also keeps in-
formation about the contours that split offfmerge together at #smiending merge
saddleor descending split saddleTake saddle\ in Figure 34 (i) as an example.
The contour componer@(A) is the union of two contour€;(A) andCy(A) that
just merge together. Thus we keep at each nodeC(p), with p on the arcAR
(with A as a descending split saddle), (1) the maximum/minimum values of the in-
terior/exterior of bottCs (p) andCz(p); (2) gradient descending pointers leading to
Ci(p) or Cz(p) or both. This information helps us decide before we reach a saddle
contour, whether it is worth visiting one or two of the contour components that split
off of it and if so, how to get there.

To summarize, each node only keeps a small constant amount of information.
The information can be easily obtained by another two-round sweeps.

3.5.2 Gradient Routing with Guaranteed Success

The gradient algorithm uses only the information stored at a node and its im-
mediate neighbors. Starting@tve first check whetheris beyond the range of the
signal field, in which case we do not travel even one step and immediately return
0. Effectively, this is by checking whethér (q) < xandE*(q) < x, orl—(qg) > x
andE~(q) > x. If not, we know that there must be some non-empty iso-contours at
levelx and we use a greedy gradient algorithm to find them. At the query qode

e If IT(q) >x>17(q), theng initiates a query message to follow the gradient

CHAPTER3. Make Implicit Information Explicit 88

uphill.

e If ET(q) >x>E(q), thenqginitiates a query message to follow the gradient
downhill.

We first explain the ascending query message fipnif a query message hits a
nodew with isovaluex, it will then start a traversal along the contour component
C(w). This is done by the same algorithm as explained earlier. At the same time, we
also need to check at whether it is worth getting even higher up — it is possible
that at the interior o€(w) there are still contours of value Again this is done by
checking a higher neighbor of, sayv, whether *(v) > x> 1~ (v).

For an ascending query message at a wgdRipposev stays on an arc witp
being an ascending merge saddle. Then we will check for two pareptsiehoted
by p1, p2, whether we will need to ascend on one peak or both of them. Luckily
this information has been disseminated for all the nodes on this arc. W ik
check the value range within the interior©f(p),Cx(p) respectively. If the query
valuex falls in the rangew will initiate an ascending query message for it. See the
red query in Figure 35 as an example of two query messages, one for each peak.

M \/%)1 @p) (, o ssz _____
i g
-

Figure 35: Examples of two queries.

For an ascending query message towards say ped#kw has ascending point-
ers topy, this query message is simply delivered by gradient ascent routing, as the
query fromq shown in Figure 35. If not, then the query message will follow a
contour at a random value (belo#(p) and abovef (w)) and follow the index-
decreasing path, in order to cross the ridge and discover some ascending paths to
P1.

For a descending query message towards a merge safidien one pealps,
this query message will hit the saddle cont@(p), from which it learns the value
range outsid€(p) and the value range insi@(p). Again dependent on the query
valuex, the query message may split into two, one for the exteridZ(qf) and

CHAPTER3. Make Implicit Information Explicit 89

continuing to go downhill, and one for the interior@f(p) and going uphill. See

the black query in Figure 35 for an example. The query looking for peakgain,

may not have an ascending pointer immediately. Then the query will take a random
contour in betwee@(p) and the lower critical contour, follow the index-decreasing
direction until it discovers the ascending pointerxo In both contour-following
routing, we may go a random number of hops further after ascending pointers are
discovered, in order to avoid always using the nodes on the ridge.

This two scenarios basically cover all the details of gradient routing. All other
cases are symmetric and omitted here. The main idea is to send the query mes-
sage along the contour tree, possibly splitting at internal branches, and discover all
components of the iso-contour of interest. To summarize,

e The gradient routing algorithm is completely local and distributed and suc-
cessfully findsall contour components at a given query level.

e Every step of the routing algorithm jigstified we send a query message only
when we are sure there is something to be found. So no message will end up
in vain.

e The routing scheme does not have to go through the saddles or follow critical
contours, thus does not overload those nodes.

We note that this iso-contour query is the most basic query of a family of
gueries on iso-contours. Other iso-contour queries include: reporting the number
of contours at valug, in particular, is there a single contour component? Range-
limited queries (count/report contours within a value range)? These can be handled
with either the iso-contour query as a subroutine, or by using a similar gradient
routing algorithm. We omit the details here as the extension is relatively straight-
forward.

3.5.3 Restricted range routing

In this section we consider the problem of finding paths within a restricted
range of values in the network.
Routing request - nodést), rangda, b| : Find a path? between nodesandt
such that at every nodeon ?, a < ¥ (x) < b, abbreviated aa < ¥ (?) <b.

CHAPTER3. Make Implicit Information Explicit 90

Keeping in mind that every nodg its contour componer®(p) are mapped
to the same point in the contour tree by the retractionwe state the following
theorem:

Theorem 32 A suitable restricted range path exists in the network if and only if a
corresponding path exists in the contour tree.

Proof. The proof is simple whemandt are on the same edge of the contour tree.
In the following, we prove the case where they are mapped to different edges, and
F(9), F(t) € [abl.

A path in the contour tree implies a path in the network. This is easy,
since a path in the tree can be realized as a set of ascending/descending paths in
the network. Simply following the path in the tree frao t will construct the
required path in the network.

A path in the network implies a path in the tree. We prove the case only for
F (P) < b, the other inequality follows symetrically. Suppose for contradiction that
there is a suitable path in the network, but no such path exists in the contour tree.
We represent the maximum height on the patimimx(?). Let P’ be the unique
path in the tree between imageséndt in the tree. Then by our hypothesis,
max(?) < b < max(?’). Since the contour tree is produced by a retracfigrand
vr, F(R(r)) = F(r), the path? is mapped to the tree as a connected gragtr)
with max R (P)) < max(?’) and spanning andt. Thus,® (?) must contain?’.

We can now remove all extraneous edges leasn@) = ?’, with max?’) =
max(R (P)) = max((P)) contradicting the hypothesis. L]

Lemma 33 In any subtreeT’ of a contour tree there is a node whose removal di-
vides the subtree int8 connected components each containing at n2g8tthe
number of nodes ii’.

Theorem 34 A contour tree admits a labeling scheme of label size at @@dsgn),
such that the max value on the path between any two nodes in the tree can be derived
from their labels.

CHAPTER3. Make Implicit Information Explicit 91

3.6 Discussions

We study the problem of contour tracking with binary sensors and propose
a light-weight distributed algorithm that locally repairs broken contours as they
deform, while guaranteeing that the maintained contours capture the global topo-
logical features. We focus on information processing and topology maintenance
aspects of the problem. Furthermore, we presented the distributed construction of
a contour tree and its application in iso-contour queries by gradient routing with
guaranteed delivery. For future work, we plan to explore further the applications of
the contour tracking algorithm in processing dynamically changing spatial sensor
data. One direction is to combine it with our concurrent work in contour tree [108]
to construct a distributed dynamic contour tree for guided navigation.

Chapter 4
Decouple Design from Deployment

We studied the topology of a signal field in Chapter 3, then study the topology
of the network field and its impact on information processing in this chapter.

4.1 Introduction

In most scenarios, it is infeasible to carefully deploy thousands of sensor nodes
in a pre-planned organized way, due to unforeseen obstacles, poor accessibility,
and possible changes in the environment, etc. Sensor nodes are typically randomly
thrown into the domain to be monitored (e.g., dropped from an aircraft), and start
with no knowledge of the big picture, such as its relative position in the network, or
the global shape of the field to be monitored. The diversity of the deployment set-
tings comes naturally from the diversity of geographical features of the underlying
environment, and has essential influence on network design. It is thus desirable to
automate the network design process and let the sensor nodes self-organize into a
properly functioning network and carry out required tasks in an automatic manner.

The geometric properties of a sensor field represent an important character of
the network, as sensor nodes are embedded in, and designed to monitor, the physical
environment. First of all, the physical locations of sensor nodes impact on the sys-
tem design in all aspects from low-level networking and organization to high-level
information processing and applications. Clearly sensor placement affects connec-
tivity and sensing coverage, which subsequently affects basic network organization

92

CHAPTER4. Decouple Design from Deployment 93

and networking operations. Recently a number of research efforts have identified
the importance of not only sensor locations, but also the global geometry and topo-
logical features of a sensor field. The ‘topology’ here means algebraic topology and
refers to holes or high-order features. In the literature, uniformly random sensor de-
ployment inside a simple geometric region (i.e., without holes) is arguably the most
commonly adopted assumption on sensor distribution — but is rarely the case in
practice. The real distribution usually adds specific requirements and constraints to
the network design. These deployment specifics also play an important role in the
selection of different protocols and the calibration of protocol parameters. Many
algorithms and protocols proposed for a dense and uniform sensor field inside a
simple geometric region, may have degraded performance when they are applied to
an irregular sensor field with holes, etc.

Let us use routing as an example. Geographical routing, in which a packet
is greedily forwarded to the neighbor that is geographically closest to the destina-
tion [64, 120, 121], has attracted a lot of interests. It is simple, elegant, and has
little routing overhead. In a dense and uniform sensor field with no holes, geo-
graphical forwarding produces almost shortest paths and is robust to link or node
failures and location inaccuracies. However, when the sensor field is too sparse, has
holes or a complex shape, greedy forwarding fails at local minima. This is due to
a mismatch of routing/naming rules with the real network connectivity. Two nodes
that are geographically close may actually be far away in the connectivity graph.
Local face routing can get the message out of a local minima but often incur high
load on nodes along hole boundaries. To achieve load balanced routing when these
topological features (e.g., holes) become prominent, the naming and its coupled
routing protocol should represent the real network connectivity and adjust to these
topological features accordingly [89,122].

The global topology of a sensor field also has fundamental influence on how
information gathered in the network should be processed, stored and queried. In
a sensor field with narrow bottlenecks, more aggressive in-network processing is
expected to minimize the traffic flowing through bottleneck nodes. In a centralized
storage scheme, one or a few base stations are typically placed in the sensor field.
These base stations are much more powerful than sensor nodes and they serve as
data processing and storage centers, as well as gateway nodes through which users

CHAPTER4. Decouple Design from Deployment 94

access the sensor data. Since communication is the major source of energy con-
sumption, it is desirable to find a good placement of base stations such that the
average distance from a sensor to its nearest base station is minimized and that
no traffic bottleneck is created during the data delivery from sensor nodes to their

respective base stations.

In a distributed storage scheme, the global geometry should be taken into ac-
count to achieve better load balance on storage nodes. Many existing information
processing algorithms do not account for the global geometry of a sensor field yet.
Atypical example is the quadtree type of geometric decomposition hierarchy, which
has been extensively used to exploit spatial correlation in sensor data (e.g., DIFS,
DIM [71, 88]) for efficient multi-resolution storage. In a sensor field with holes, a
standard geometric quadtree (the bounding rectangle is partitioned into four equal-
size quadrants recursively) may become unbalanced with lots of big empty leaf
blocks. An imperfect partition hierarchy subsequently affects the performance, es-
pecially load balance, of all algorithms and data structures built on top of it. In an-
other example of geographical hash tables (GHTSs) [34], a random rendervous node
is chosen to hold the data of a certain type for users to query. Random sampling of
a sensor node can be conducted by choosing the node closest to a random location.
To achieve a uniform distribution, the sampling probability needs to be adjusted by
the area of the corresponding Voronoi cell [123,124]. In an irregular sensor field,
the Voronoi cells have vastly varying areas. Thus the sampling efficiency suffers as
a lot of trials end up being rejected.

One approach to deal with irregularly shaped sensor field is to develop virtual
coordinates with respect to the true network connectivity, as in the case of rout-
ing [89, 122] or information storage and retrieval [75]. One may follow this line
and re-develop algorithms for all the other problems on virtual coordinate systems.
But both the development of virtual coordinates and topology-adaptive algorithms
on top of that are highly non-trivial. We propose to develop a unified approach to
handle complex geometry, in particular, a segmentation algorithm that partitions
an irregular sensor field into nicely shaped pieces such that algorithms that assume
a uniform and dense sensor distribution can be applied inside each piece. Across
the segments, problem dependent structures specify how the segments and data col-
lected in these segments are integrated. There is not much prior work on segmenting

CHAPTER4. Decouple Design from Deployment 95

a sensor field. The mostly related one, byokar et al. [101], proposed a bound-

ary detection algorithm with which one can organize sensor nodes by ‘junctions’
and ‘streets’. Our goal is to further explore segmentation algorithms suitable for a
discrete sensor field as well as applications that can benefit from it.

4.1.1 Challenges and Our Approach

We consider a static sensor network with an irregular shape. We take the
viewpoint to regard the sensor network as a discrete sampling of the underlying
geometric environment and develop a ‘shape segmentation’ algorithm. Although
the analysis of geometric shapes has been extensively studied in graphics and com-
putational geometry with many shape segmentation algorithms proposed in the lit-
erature [125-129], these algorithms typically work in a centralized setting with
ample computational resources. Shape segmentation problem for a discrete sensor
field faces a number of new challenges, and requires non-trivial algorithm design to
achieve sufficient robustness to input inaccuracies.

e Sensor nodes start with no idea of the global picture. We consider the ap-
proach of collecting all information at a centralized node not a scalable solu-
tion. Segmentation algorithm needs to be automatic and distributed in nature.

e Sensor nodes may not know their geographical locations. Automatic and
scalable localization (without GPS) is still a challenging problem. Even when
they do, the locations may come with large inaccuracies.

e When sensor locations are not available, the distance between two nodes is
often approximated by their minimum hop count value, which is always an
integer. This rough approximation introduces inevitable noise to any geomet-
ric algorithms that use the hop count to replace the Euclidean distance.

We propose to adapt a shape segmentation scheme by using flow com-
plex [125] to sensor networks. The algorithm uses only the connectivity infor-
mation and does not assume that sensors know their locations. We first discover
all the hole boundaries and the outer boundary. This can be done with any existing
boundary detection algorithm. Indeed efficient boundary detection algorithms have
been proposed with only the connectivity information [81, 97-101, 130]. We use
the output of Wangpt al. [81] in our segmentation algorithm. We let the boundary

CHAPTER4. Decouple Design from Deployment 96

nodes flood inward and every node records the minimum hop count from the bound-
ary. Each node is then given a ‘flow direction’, the direction to move away fastest
from boundaries. A node may be singular with no flow direction and is named as
asinkl. The sensor field is partitioned to segments in a way that nodes in the same
segment flow to the same sink. This naturally partitions the sensor field along nar-
row necks. In the geometric version, all the sinks stay on the medial axis of the
field, which is the set of points with at least two closest points on the boundary
and constitutes a ‘skeleton’ of the shape. In a discrete network, sinks may appear
far away from the medial axis due to local noises and connectivity disturbances.
In addition, in degenerate cases such as a corridor with parallel boundaries, many
nodes on the medial axis may be identified as sinks. We apply a local merging
process such that nearby sinks along the medial axis with similar hop counts from
the boundary, together with their corresponding segments, are merged. In the end,
each segment is given a unique identifier by the sink(s). All the nodes in the same
segment are informed of the identifier distributed along the reversed flow pointers.
The algorithm is communication efficient. It involves a couple of limited flooding
from the boundary nodes to the interior of the network. All the other operations
only involve local computations. With given boundaries, the segmentation algo-
rithm incurs a total transmission cost©fn) if nodes synchronize during message
transmissions. We tested the segmentation algorithm under various topologies and
node densities. We observed intuitive segmentation along narrow necks in a sensor
field with reasonable average node degree (argund).

The segmentation algorithm is expected to run at the initialization stage to aid
network design and the calibration of network protocols. The understanding of the
global topology and in particular, the automatic grouping of the sensor nodes into
segments with simple shape, provides a generic approach to handle sensor field
with different node distribution. This enables the re-use of existing protocols on
an irregular network and makes the development of new protocols transparent to
the specifics of the shape of a sensor field. We have studied the influence of global

INotice that the sink we refer to is not a data sink or aggregation center (base station), although
the sinks are good indicators of where to place base stations or aggregation centers. We discuss the
problem of base station placement in Section 4.5.2.

CHAPTER4. Decouple Design from Deployment 97

topological features on various fundamental problems in network design, e.g., rout-
ing, base station placement, data storage and uniform sampling, and evaluated the
performance improvements by integrating segmentation algorithm with existing al-
gorithms that currently assume a simple geometric sensor field.

el A e,
e Samn
- '
-) -
u e
K. L o -

% "
I ..J’-"' g o e

L
ok

0

Figure 36: The fish network. 5000 nodes, generated by grid-perturbation distribution with
variation. Avg. degree is 8. Boundary nodes are shown in black. (i) Medial-axis nodes
shown in dark green. Sink nodes shown in red. (ii) The stable manifolds of the sink nodes,
shown in different colors. (iii) Nearby sinks with similar hop counts to the boundary, along
with their stable manifolds, are merged. Orphan nodes shown in grey. (iv) The final result
after processing orphan nodes.

4.2 Segmentation in Continuous Domain

We first introduce some notations and definitions defined in the continuous
domain [125]. In the next section we show how to adapt them in a discrete network.
For a connected continuous regif denote by3 its boundaries, represented by a
set of closed curves, each bounding either an inner hole or the outer boundary. For
a pointx € R, the distance fronx to the boundaries is define by functib(x) =
min{||x— p||? : p € B}. Themedial axisis the set of points irR with at least two
closest points on the boundary. The distance fundti@continuous, and smooth
everywhere except points on the medial axis. We call a poatritical point, or

CHAPTER4. Decouple Design from Deployment 98

asink if x is inside the convex hull of its closest points @y denoted by (x).

For example, sinls; has three closest points on the boundary and stays inside the
triangle spanned by them. All non-critical points are called regular. driwer,

d(x), is defined as the closest point#f(x) (e.g., in Figure 37, the driver qf; is

the smaller black dot). For a sink, the driver is itself. Now tlosvis defined as

a unit vectorv(x) = H)’E%gg” (i.e., the direction that points away from its driver),

if x# d(x) andO otherwise. It has been proved in [125] that the flow direction
follows the greatest descent of the distance funckiohere are also a few easy

observations of the flow vectors, as stated below.

Figure 37: Two regular pointsif; andpy) with their flow vectors. Sinkss{, s, andsz) stay
inside the convex hull of their closest points on the boundary.

Observation 35 For a connected continuous regidR with boundary3, the fol-
lowing holds.

e All sinks must stay on the medial axis.

e Any pointp not on the medial axis will have a unique driver which is its
closest point on the boundary. Thp$lows towards the medial axis.

¢ All the points will eventually flow to sinks.

The stable manifoldof a sinkx, denoted ass(x) is simply the set of points
that flow to it by following the flow directions. Our segmentation algorithm will
partition the network by the stable manifolds. The discussion below concentrates
on the properties of the generated segments in the continuous setting that are helpful
for our algorithm development in the discrete setting.

CHAPTER4. Decouple Design from Deployment 99

4.2.1 Properties of generated segments

If all points flow to the same sink, the entire region becomes one stable man-
ifold. Thus, there is at least one segment in any region. In Figure 37 there are a
total of three sinks and two large stable manifolds (the stable manifols fisra
degenerate segment). Singsands; correspond to local maxima of the distance
functionh(x), sink s is a saddle of(x). Rigorously, we define degenerate sink
to be the sink with only two closest points on the domain boundary and the rest of
sinks amon-degeneratéNe first look at properties of non-degenerate segments.

In a segment, the sink can be considered, to some extent, a ‘center’ of the
segment. To understand what these segments are, we realize that they map to balls
of maximal size. Rigorously, we have the following theorem. Define a ball centered
at a point to bdocally maximalif the ball is entirely inside the regio® and by
moving the center of the ball infinitesimally one cannot enlarge the size of the ball.

Theorem 36 All locally maximal balls are centered at sinks.

Proof. Consider a locally maximal baB centered at node. If X is not a sink,

it must have a flow direction. TheBwill become larger if the center of the ball is
shifted a small distance in the direction of the flow, because the distance function
increases along the follow direction. This contradicts to the factBhatlocally
maximal. Sax must be a sink. Ll

This theorem gives some properties of the non-degenerate segments induced.
Intuitively, we want to obtain a few number of large and ‘fat’ pieces. One way to
measure the fatness of a segmg(i) is to consider the largest ball, completely
inside R, centered at a point insidg(x) against the minimum circumscribed ball
of $(x) 2. Theorem 36 says that we obtadimon-degenerate segments, in each
segment the largest ball centered inside is exactly the locally maximal ball centered
at the sink of this segment. If we merge two non-degenerate segments, the fatness
of the resulting segment will be hurt since the size of the largest ball centered inside
the segment does not increase but the size of the minimum circumscribed ball may
increase. One may improve the fatness of segments by reducing the sizes of the
minimum circumscribed balls, at the expense of introducing more segments.

2Note that the largest ball centered at a point inside the segment is only required to be completely
inside® and may actually intrude outside this segment.

CHAPTER4. Decouple Design from Deployment 100

A second property of a non-degenerate segment is that it is simply connected
and does not have holes.

Theorem 37 A non-degenerate segment is simply connected and does not contain
holes.

Proof. The proof is by contradiction. Suppose there are one or more holes inside
a non-degenerate segmehtvhich has only one critical point (sink). Since the
medial axis is a deformation retract of the dom&in131, 132], the medial axis
has cycles corresponding to the holes in§gdall the points not on the medial axis
will follow flow directions towards the medial axis, upon reaching which the flow
directions follow the medial axis to reach the sink. Thus, inside the segiheat
have the same number of cycles on the medial axis corresponding to the holes of
S Let us just focus on one such cy&eon the medial axis (and one hdt. All
points on this cycle flow to the sink in this segment.

On the cycleC, we examine the distance function to the network boundary
h. Note thath is continuous function an@ is compact. Let’s consider the point
p and pointg on C on whichh reaches maximum and minimum on the cyCle
respectively. The local maximum is either a sink, or flows to a sink that lies
outsideC, but in either case, it is the sink at which all flows®tonverge. Now we
argue that the local minimummis a degenerate sink also insiSewhich will show
contradiction to the claim.

There are two possible cases for the paing is either a junction on the medial
axis, or aregular point on the cydle If gis a regular point, theqis in fact a saddle
of the distance functioh, as along the line segments connectytg each of its two
closest points on the boundayy, gz, the distance function will decrease; and along
the medial axis, the distance function increases. Now we argue thast stay on
the line segment connectimgqy, thus provingy is a degenerate sink. If otherwise,
then location ofj will not coincide with its driver there will be a direction along the
medial axis in which distance to the boundary decreases. This contradicts with the
fact thatq is a local minimum or€C. An example is shown in Figure 38 (i).

If gqis ajunction point and a minimung,stays outside the convex hull (i.e., the
triangle) formed by its 3 closest poinds, gz, gz on the region boundary. Depending
on where the driver stays, by moving infinitesimally along the three branches of the

CHAPTER4. Decouple Design from Deployment 101

medial axis that join afj, there is only one direction that leads to an increasing
distance away from the boundary — when moving away from the driver. See an
example in Figure 38 (ii). On the other hand, sigads a local minimum orC there
are two directions, moving along which will lead to increasing distances from the
boundary. This is a contradiction, implying thtannot be junction point on the
medial axis.

In summary, any non-degenerate segment can not contain a hole inside.

(ii)

Figure 38: A non-degenerate segment can not contain holes. (i) when the mingsian
regular point; (i) when the minimurg is a junction.

The above two theorems show that the non-degenerate segments are simply
connected, locally maximally fat segments. Now we look at degenerate segments
and in fact we will need to merge them to come up with nicely defined fat segments.

For degenerate segments, their fatness, according to our first definition is al-
ready 1 — as the maximum ball centered inside a degenerate segment is actually
the same as the minimum circumscribed ball, although most of this ball is intruding
outside the degenerate segment. However, this is not what we want in a meaningful
segmentation. In particular, when there are parallel boundary segments, there can
be infinitely many degenerate segments, each being a line segment perpendicular to
the boundary. We thus propose to merge them into segments of significant size.

To do that, we consider a second way to define the fatness of a segment as
the ratio of the radius of the maximum inscribing ball and that of the minimum
circumscribing ball. When we restrict the maximum ball to be completely inside
the segment (not just be within the regi®), then the fatness of a non-degenerate
segment becomes 0. Now we would like to merge nearby degenerate segments to
improve the fatness (in the second definition). As a remark on the two definitions of

CHAPTER4. Decouple Design from Deployment 102

fatness, the first definition captures the local geometry and curvatures and identifies
the real bottlenecks of the shape; the second definition, though being more widely
adopted in the past literature, is here used more as a rescue to handle degenerate
segments.

For degenerate segments, the fatness measure in the second definition suggests
that two degenerate segments should be merged if this improves the fatness of the
segments. This represents one option in our algorithm to decide whether two seg-
ments should be merged or not. It is an automatic procedure to find a small number
of fat segments such that merging any two will hurt the fatness. We will discuss the
details of the implementation of this idea in the discrete network in Section 4.3.4.1.

With the above segmentation algorithm, we prove that non-degenerate seg-
ments and segments merged based on fatness measure do not contain holes inside.
Again, the following theorem considers the continuous case only.

Theorem 38 Segments merged from degenerate critical points based on fatness
measure do not contain holes inside.

Proof. Consider a segment formed by merging multiple degenerate segments
together. Suppose for the sake of contradiction and w.l.o.g that all these segments
are merged into a segmeatvith a hole in the middle.

First of all, we only merge degenerate segments. If the resultant se@nent
contains a hole, it must be that the cycle on the medial axiS ofrresponding
to this hole will have all the points on it as degenerate sinks. This saysSthat
must an annulus — as a strict maximum (strictly greater than the minimum) of the
distance functiorn(x) on this cycle is a non-degenerate sink. Suppose the width of
the annulus iV, the outer circumference has lendgth ThenF > 2riw. And the
length of medial axis i$> MW. When the merging process produces a segment that
contains a part of the medial axis longer thénthis segment does not participate
in merging any more, since the fatness will be reduced with further merging. Thus
it is not possible to have a single segment covering the eniiféength cycle. [

Last we remark that the properties we prove about the segments produced
by the segmentation algorithm hold for now only in the continuous case. When
we have a discrete network, the idea is to use the same intuition and the goal is

CHAPTER4. Decouple Design from Deployment 103

to develop lightweight algorithm to automatically segment the network in a fully
distributed manner.

4.3 Distributed Segmentation Algorithm in Sensor
Networks

The flow and stable manifolds described in section 4.2 naturally partition a
continuous domain into segments along narrow necks with each stable manifold as
a segment. In this section we show how to implement the flow and the segmentation
in a discrete sensor field, when we do not have node location information, nor the
distance function. Unlike the continuous case, here we approximate the Euclidean
distance function to the boundary by the minimum hop count to boundary nodes.
As for the notion of closegbointson the boundary, an interior nodehas one or
more closesintervals— each interval is a consecutive sequence of nodes on the
boundary with minimum hop count from We want to find, for each sensgra
flow pointer that points to one of its neighbors, signifying ‘fastest’ movement away
from the boundary. The challenge is to assign these flow pointers and identify the
sinks in a robust way such that there is no loop and an intuitive segmentation can
be derived. We describe an outline of the algorithm followed by the details of each
step.

e Detect boundaries. Find the boundaries of the sensor field using the al-
gorithm described in [81]. This algorithm identifies boundary nodes and
connects them into cycles that bound the outer boundary and interior hole
boundaries of the sensor field.

e Construct the distance field. The boundary nodes simultaneously flood
inward the network and each node records the minimum hop count to the
boundary, as well as the interval(s) of closest nodes on the boundary. Nodes
on the medial axis can identify themselves as the closest intervals they have
are not topologically equivalent to a segment (two or more intervals, a cycle,
etc.).

e Compute the flow. Each nodex computes a flow pointer that points to its
parent— the neighbor with a higher hop count from the boundary and the

CHAPTER4. Decouple Design from Deployment 104

most symmetric closest intervals on the boundary among all such neighbors.
Nodes on the medial axis with no neighbor of higher hop count besimke
See Figure 36(i) and (ii).

e Merge nearby sinks.Nearby sinks on the medial axis with similar hop count
from the boundary are merged intsamk clusterand agree on a singkeg-
ment 1D

e Segmentation. The nodes that ultimately flow to the same sink cluster are
grouped into the same segment. We let each sink disseminate the segment
ID along the reversegarent pointers. See Figure 36 (iii) for the merged
segments.

e Final clean-up. Due to irregularities in node distribution, some nodes have
locally maximum hop count to boundary but do not stay on medial axis —
thus did not get recognized as sinks. These, and nodes that flow into them are
left orphan In the final clean-up phase, we merge the orphan nodes to their
neighboring segments. Figure 36 (iv) shows the final result.

4.3.1 Detect boundaries

The segmentation algorithm can use any existing boundary detection algorithm
to detect boundaries. Here, we choose to use the boundary detection algorithm pro-
posed by Wangt al.[81]. This algorithm requires only the connectivity informa-
tion. The boundaries of inner holes and outer boundary are assigned unique identi-
fiers, and nodes along each boundary cycle are assigned ordered sequence numbers.
Every boundary node thus knows the identifier and the length of the boundary to
which it belongs, and its own sequence number on that boundary. We refer to the
set of nodes on boundajfyasB;.

4.3.2 Construct the distance field

With the boundary nodes identified, we construct a distance field such that
each node is given a minimum ‘distance’ to the sensor field boundary. Since we
do not assume location information, our only measure of distance in the network
is the number of hops to the boundary nodes. The problem is that a node typically
has more than one nearest boundary nodes with the same hop counts away (thus

CHAPTER4. Decouple Design from Deployment 105

may be identified to be on the medial axis). Hence we keep natltdsest node

but theinterval of closest nodes. An intervalon the " boundary cycle is simply

a sequence of nodes along the boundary cycle. It can be represented uniquely by
a 4-tuple(j,start,end, |Bj|), wherestart andend are the two end point$B;| is

the length of thg'™" boundary.

We have the boundary nodes synchronize among themselves [133, 134] and
start to flood the network at roughly the same time. The boundary nodes initiate a
flood with messages of the for(h, h) wherel is an interval nearest to the transmit-
ting node, andh is the distance to nodes inlnitially, | is set to the boundary node
itself, andh is set to0. A nodep keeps track of the s&, of intervalsof boundary
nodes nearest to it. On receiving a message), a nodep compare to its current
distanceh,, (hp is initially set to infinite at non-boundary nodes) to the boundary:

e If h> hp, discard the current message.

e If h < hp, discard all existing intervals, skf :=h, S, := {I} and sendl,h+
1) to all neighbors.

e If h=hp, merge with adjacent and overlapping intervals on the same bound-
ary if there is any. Otherwise, simply addnto S,. Send(l,h+1) to all
neighbors.

To tolerate the noises caused by hop count measure, we consider two hop
countsh; andh; equal if|hy — hp| < d. Simulation results show that= 1 works
well in practice. Thus, each node keeps all closest intervals to boundaries, and the
hop counts of any two nodes included in the intervals are at most one hop different.
In a special case, a node may have a single closest interval which covers the entire
boundary cycle, e.g., the center of a circular disk. We also treat such special nodes
as medial-axis nodes. More rigorously, after this computation of sets of nearest
intervals for all nodes in the network, nodes on the medial axis can be identified as
follows:

Definition 39 Nodes on the medial axisA nodep is a medial-axis node if its set
of closest interval$§, are not topologically equivalent to a segment.

Based on the above definition, a node with a single closest interval is not on
the medial axis. But a node with two or more closest intervals (&.tn,Figure 37)

CHAPTER4. Decouple Design from Deployment 106

or a cycle of boundary nodes (e.g., the center of a disk) is on the medial axis. Our
definition of the medial axis differs from the one used in existing articles (e.g. [89]),
in which a node is on the medial axis if it has multiple closest points on the boundary
— in our definition we do not include nodes with multiple closest boundary points
forming a single segment along the boundary. The purpose of this new definition
is to further eliminate possible noisy medial axis nodes due to the discreteness of
the network setting. For the difference of the two definitions, we can rigorously say
something in the continuous case. In particular, they only differ at some limit points:
for each node with multiple closest points along a segment on the boundary, it is
guaranteed to find a nodg infinitesimally close top, such thatg has multiple
closest intervals (and thus identified in our definition). This following theorem
implies that while our definition does not include terminal vertices of medial axis,
it does include points arbitrarily close to it.

Theorem 40 In a continuous domairk with boundary3, for each nodep with
multiple closest points along a segment on the boundary, we can find aghode
infinitesimally close t@, such thaty has multiple closest intervals.

Proof. Node p has multiple closest boundary points forming a segnseston
the boundary. Consider the bl centered ap and with radius|ps;| (see Fig-
ure 39). The ball must be completely inside the field anddagsas an arc. The
curvature at all points on the asgs;, including the endpoints, i&/|psi|. And the
curvature at boundary points infinitesimally away frems,, outside the arc, is
strictly smaller tharll/|ps;|. Now, takeq on the bisector of the two pointg, s,
and ofe distance away fronp, with € — 0, the ballB’ centered ag will have two
closest intervals, pass through boundary pasp@nds, respectively. Ll

Figure 39: Nodep is not on the medial axis, since it has a single closest intervaly bas
a nearby poing| on the medial axis.

CHAPTER4. Decouple Design from Deployment 107

What is the most appropriate analog of the continuous medial axis in a discrete
network is yet to be debated. We find our definition more robust (produces fewer
noisy medial axis nodes) and suitable for our purposes. Figure 36(i) shows the
medial axis of the fish network found with this protocol. The protocol described
above is easy to implement and works well in simulations. As pointed out in [89], if
all boundary nodes initiate the flood at about the same time, then this method keeps
the total communication cost very low. The distance field can also be constructed
with two rounds of boundary flooding: in the first round each node records the
hop count to the boundary; in the second round each node broadcasts their closest
intervals. To simplify the theoretical analysis of message complexity, we use the
two-round version in Section 4.3.7.1.

4.3.3 Compute the flow pointer

Once each nodp learns its minimum distandg, from the boundaries and the
intervals of closest nodes at distarfgefrom it, it can construct the flow pointer
and find sinks locally. Observe that for any pair of neighboring nquasdq, if
hp < hg, then the closest intervals pfmust be included in the closest intervals of
g. Rigorously¥l € S;,31" € §such that C I

Each node createsflow pointerto its parent the neighbor who is strictly
further away from the boundary than itself, and whose closest intervals are most
symmetricwith respect to its own closest intervals. In Figure 40, npdgelects
nodeb as its parent(p) because the mid point dfs interval is closer to the mid
point of its own interval. The intuition behind this is to select the neighbor that
represents the best movement away from all parts of the boundary. We make this
notion rigorous by defining the angular distance of two neighboring nodes.

Definition 41 Mid point: The mid pointmid(l) for an intervall defined on the
boundaryj, is theM-th element in the continuous sequence modBjpof I, if
|I| is odd, else it is the mean of tl(\% -th and the(“2 +1)-th elements.

Definition 42 Angular distance The angular distancé(p,q) between neighbor-
ing nodesp andq with hp < hq is defined as:

Z mln\mld —mid(l")]
IeSp

CHAPTER4. Decouple Design from Deployment 108

Figure 40: Node p selects nodé as its parent(p), asb is the more symmetric neighbor.
The closest intervals of nodg b, c are shown.

| andl” must be on the same boundary.

Using the functiond, each nodep selects a neighbay such thathp < hg,
and the sum of distances from the mid points of its intervals to the corresponding
intervals ofq is less than that for any other neighborpof

Definition 43 Flow pointer. Let Hp be p's neighbors with higher hop count from
the boundary, i.ehp < hg, for g € Hp. Then the parent o, v(p) is defined as the
neighbor inHp with minimum angular distance(p) = arg mirheré(p,q).

A typical node, for example in Figure 40 would have only one boundary
interval nearest to it. Nodes on the medial axis have more than one such interval, in
which case, the parent is chosen based on the sum of mid point distances instead of
a single distance, as described above.

Definition 44 Sink: A nodec is asink, if cis a medial-axis node, and has locally
maximum hop count from the boundary.

The sinks of the fish network, by this definition, are shown in Figure 36(i).
Sinks are those medial-axis hodes without a parent. With the flow, the sequence
of directed edges starting at any non-sink n@dends at a unique ro@t Since a
nodep selects its parent only if its parent has a higher hop count from the boundary,
there cannot be a cycle in the directed graph implied by the flow. Thus, the nodes
in the network are organized into directed forests, with the nodes in the same tree
flow to the same root by following their flow pointers. In a continuous domain, the
stable manifold®f the sinks form the segments. In a discrete network, the analog
of the stable manifoldbf a sinkc would be the directed tree rootedatsuch that
any directed path in this tree endscat

CHAPTER4. Decouple Design from Deployment 109

4.3.4 Merge nearby sinks

The stable manifolds of the sinks, i.e., the trees rooted at the sinks, can be
directly taken as the segmentation. This works fine with non-degenerate stable
manifolds. However, there can be possibly a lot of degenerate stable manifolds and
this may result in a heavily fragmented network (see Figure 36(ii)). This happens
when there are a cluster of sinks on the medial axis, and there is a tree rooted at
each. This situation becomes severe when some parts of boundaries run parallel
to each other. See Figure 41(i). In this case we have a sequence of nodes on the
medial axis where no node is farther from the boundary than its neighbors, and all
these nodes become sink nodes.

(ii)
Figure 41: The corridor network. (i) Opposite boundaries run parallel to each-other, pro-

ducing several sinks in succession, resulting in the fragmented segmentation. (ii) Segmen-
tation with threshold-based merging.

We would like to merge nearby sinks with similar distances from boundary as
well as their corresponding segments. We call the merged sisk&kaluster We
propose two merging schemes here. In the first scheme, the sink of each segment
locally maintains the fatness measure of its segment and chooses to merge with
other segments only if merging helps to improve the fatness. Thus, this schemes
automatically generates sufficiently ‘fat’ segments and users are hidden from the
implementation details. When applications have specific requirements, for exam-
ple, a few number of large segments, users may want to get involved to control the
result. For that purpose, we propose the second scheme to merge nearby sinks to-
gether with their segments based on a user-defined thresHalthe following, we
discuss the details of these two merging schemes.

CHAPTER4. Decouple Design from Deployment 110

4.3.4.1 Merge by fatness

The fatness-based merging scheme consists of the following three steps. The
sinks of the segments take responsibility of the following computation. Note that to
handle degenerate segments we define fatness in the second definition as the ratio of
the radius of the maximum inscribing ball and that of the minimum circumscribing
ball.

e Measure the fatness of the segment by recording the radii of the largest in-
scribed ball and minimum enclosing ball.

¢ Identify if a segment is degenerate or non-degenerate.

e Merge nearby segments based on the fatness measure.

At first, each sink maintains the fatness of its segment. We use the hop count
distances of the closest and the furthest nodes on the segment boundary to esti-
mate the radii. A node identifers itself on the segment boundary if at least one of
its neighbor resides in a different segment. Nodes on the segment boundary send
messages through flow pointers towards the sink, so that sink nodes can record the
smallest and largest hop count to approximate the radii of the largest inscribed ball
and the minimum enclosing ball.

A sink recognizes its segment as a degenerate segment if the radii of the largest
inscribed ball is small (e.g., the smallest hop count of nodes on the segment bound-
ary is less than 2) or much smaller than that of the minimum circumscribed ball.
Otherwise, the segment is a non-degenerate segment. Theorem 36 suggests that
merging two non-degenerate segments will hurt fatness. So in this scheme, we only
allow degenerate segments to merge with other segments.

The sink of a degenerate segment walks along the medial axis to search for
other sinks to merge (in a sparse network when the medial axis is not connected,
we searcl®? or 3 hop neighbors for nearby medial-axis nodes). The fatness of the
merged segment is measured as follows. The radius of the largest inscribagd ball
issetto(ry1+r2+h(s1,s))/2, whereinr; andr; are the radii of the largest inscribed
balls of original segments ainds;, s,) is the distance (approximated by hop counts)
between the corresponding two sinks. The radius of the minimum circumscribed
ball of the resulted segmenth, = max Ry, Rz, rm), whereR; andR; are the radii
of the minimum circumscribed balls of the original segments. Two sinks with their

CHAPTER4. Decouple Design from Deployment 111

segments merge together if the fatness of both segments intréfase segments
decide to merge, the sink of the larger segment becomes the leader of the merged
sink cluster and takes responsibility of further merging.

It is possible that a sink can receive multiple merge requests at the same time.
All requests are processed sequentially. Depending on the order of the merge, the
resulted set of segments can be different. There are possibly thin segments left be-
cause all adjacent segments are fat enough and further merge will hurt their fatness.
But, Theorem 45 guarantees that the number of segments is at most twice plus one
the number of segments generated by the optimal algorithm based on fatness mea-
sure, and at least half of them have fatness at least half of the maximum. Examples
of segmentation based on fatness measure are showed in Figure 42.

Theorem 45 The number of segments produced by merging degenerate segments is
at most one plus twice the number of segments generated by the optimal algorithm
based on fatness measure. The fatness of at least half the segments is at least half
of the maximum.

Proof. The method above operates only on regions of degenerate sinks. It does
not involve non-degenerate sinks, so we can safely leave those out of consideration.
We then show that the claim holds for any connected sequence of degenerate sinks,
hence for the overall network.

First of all, by merging the degenerate segments, one can verify that the fattest
one can possibly get is a square with fatnesg2. Consider a maximal connected
set of degenerate sinks Each segment i must be of same width, s&y. Let the
length spanned by all segmentsdielL. The optimal segmentation clustefsnto
at least| L /W | segments each of fatness at mbs/2. Now, consider adjacent seg-
mentsS, §; after clustering. i, l; are the lengths of these segments respectively,
thenl; 41 > W, otherwise these would have been merged. Thus, this produces at
most2|L/W | 4 1 segments.

3Depending on applications, this condition can be relaxed to allow to merge as long as the fatness
of at least one segment is improved, which allows a degenerate segment to be possibly merged with
a non-degenerate segment. This will reduce the number of segments and remove thin segments, but
may hurt the fatness of non-degenerate segments. We stick to the original condition in the following
discussion

CHAPTER4. Decouple Design from Deployment 112

Also observe that sinde+1j > W, at least one of each such phit; is larger
thanW /2. The fatness of this segment would bel /v/5. Which is more than half
of 1/v/2. Thus at least half the segments are half as fat as the maximum fdiness.

s
e

TR W S S g Ly LRl T
o n U S
e
'.‘:1_\:- ;,\L% &.. ko |_-':-§-,‘f:-..' '!‘n%;;_\fg o .#ﬁ,-ﬂ“n ":;,

'..'h'ﬂ\:'i‘:l':\‘ﬂ-'.- L) ';‘:i-f\f!- -!':-?Fh e l:?-v e l'.'.'-".'. -

0] (ii)
Figure 42: Segmentation with fatness-based merging. (i) The rectangular network; (ii) The
corridor network.

4.3.4.2 Merge by user-defined threshold

The above fatness-based merge scheme guarantees that the generated set of
segments are fat enough, and makes the whole process automatic and hidden from
the users. However, some applications may have specific requirements on the seg-
ments other than the fatness criteria. For example, users may want to be involved
in controlling the total number of segments generated. To satisfy that, we propose
a merge scheme based on user-defined threshwlé want to merge nearby sinks
with similar distances from the boundary and cluster those sinks into a sink clus-
ter. Here, a sink clusteK is represented by the tupléd, hmax, hmin), whereid
is the minimum ID of all the sinks in the cluster, i.e., the ID of {kaderof the
cluster. hmax and hyin, are the maximum and minimum distances from any sink
to the boundary respectively. We set a user-defined thresholdjuarantee that
|Nmax — hmin| < t. Each sink node waits for a random interval to start the merg-
ing process to avoid contention. Initially each sink is by itself a sink cluster, and
also a sink cluster leader. A sink cluster leader searches along the medial axis for
nearby sinks (or sink clusters) to be merged. Specifically, a sink cluster leader
sends asearch messagef its current sink clustefid, hmax, hmin) to all neighbor-
ing nodes on the medial axis. Each medial-axis npdé cluster(id’, h ., 0,
on receiving this message, executes the following ruleHjgt = max(hmax, hinay)
andHmin = min(hmin, ')

CHAPTER4. Decouple Design from Deployment 113

e if |Hmax— Hmin| > t, discard the message.

e else forward the message to all neighboring nodes on the medial axis. Fur-
thermore, ifp is a sink cluster leadep would like to merge its sink cluster
with c’s sink cluster.

When two segments merge, the sink with the smaller ID becomes the leader of
the sink cluster and sends out a new search message looking for sink clusters to be
merged. The process terminates automatically when no merging request is received
after a timing threshold.

(ii)
Figure 43: Network with 2200 nodes, with avg 6 neighbors per node. Segmentation with
threshold (i)t = 2; (i) t = 4.

The variabld is a threshold defined by the user. It determines the granularity
of segmentation. Smaller valuestoimply that merging step will stop at a small
change of the distance from the boundary and hence collect fewer sinks together
into sink clusters. Thus there will be more segments created by the algorithm. For
larger values of, the algorithm will create fewer and larger segments. Figure 43
shows the differences caused by variation in the value lofmany such situations,
the most preferable segmentation is likely to be dependent on the nature of the
application. We leave it to the user’s discretion to set the value Nibte that the
user can change the valuetaven after the network has been deployed by flooding
a message from any one node in the network. This would require a re-computation
of only the last three steps of the algorithm, starting at merging of sinks.

4.3.5 Segmentation

Each sink cluster defines a segment, as all the trees rooted at nodes in the sink
cluster. To create the segments of the network, each sinkopdepagates the 1D

CHAPTER4. Decouple Design from Deployment 114

of the sink cluster to all the nodes in the tree rooted dthis can be simply done by
reversing the flow pointers. The ID of the sink cluster is also considered as the ID
of the segment. Figure 36(iii) and Figure 41(ii) show the result of this construction.

4.3.6 Final clean-up

Due to noises and local disturbances, it is possible that some nodes have lo-
cally maximum hop count to the boundary, but are not medial-axis nodes. This
is likely to happen in sparser regions of the network or near the boundaries if the
boundaries detected are not tight. In such cases, the node at the local maximum and
all nodes in the tree rooted at it are left without any segment assignment. We refer
to such nodes agrphan nodege.g., the grey nodes in Figure 36(iii)). At the fi-
nal clean-up stage, we assign the orphan nodes to a nearby segment. In a connected
network, there always exists an orphan npadeich that some neighbqrof pis not
orphan. Each such nogeselects randomly a non-orphan neighlgpand merges
to that segment. This is executed by all orphan nodes until all nodes are assigned a
segment. More specifically, each orphan ngdeitially checks its neighborhood
to find a non-orphan neighbgr If this check fails, the orphan simply waits for fur-
ther notifications from its neighbors. After an orphan joins a segment, it notifies all
its neighbors. Thus, each orphan is involved in at most two message transmissions,
one for checking neighborhood and the other for notification. Figure 36(iv) shows
the final result.

Depending on the requirements of applications, the information about the
newly formed segments can be disseminated across the network. Each segment
has a natural leader — the sink node whose ID the segment takes. This sink node
easily collects information about the segment such as node count, neighboring seg-
ments, bounding rectangle (if location information is available) etc. This informa-
tion can be delivered to all nodes in the network, by transmitting along the medial
axis and reversed flow pointers. Since the global features of the network have been
abstracted into a compact presentation, each node only transmits and stores a small
amount of data.

CHAPTER4. Decouple Design from Deployment 115

4.3.7 Evaluations
4.3.7.1 Algorithm complexity

We analyze the complexity of the segmentation algorithm with given bound-
aries, and consider it proportional to the number of messages transmitted. We as-
sume the unit disk graph model during analysis. But the segmentation algorithm
works with more general communication models with bi-directional links in prac-
tice. Except the boundary detection, the segmentation algorithm contains five steps.

The step of constructing the distance field incurs a few rounds of limited flood-
ing. For the simplicity of analysis, we consider the two-pass implementation of
this step and suppose boundary nodes synchronize among themselves during flood-
ing [89]. In the first pass, nodes record the minimum hop count from the bound-
aries. If the boundary nodes flood inwards almost simultaneously, each node will
receive the message from the closest boundary node earlier than any other bound-
ary nodes, thus each node only broadcasts once and all messages received later
are suppressed. In the second pass, nodes broadcast their closest intervals. Since
nodes can remember all neighbors with lower hop counts in the first round, each
node only constructs and broadcasts its final interval once after receiving messages
from all neighbors with lower hop counts. An interval can be represented simply
by its boundary-ID and end-points, which@1) storage. Observe that since we
merge adjacent intervals, a non-medial axis node will store exactly one segment,
using O(1) storage. A medial axis node that is not a vertex of the medial axis,
will store exactly2 intervals. A medial axis vertex can be the meeting point of at
most a constant number of branches of the medial axis (in UDG model). Each such
branch contributes at mo&tintervals, resulting irO(1) intervals overall. Thus, at
any given time a node can represent its interval®(t). Therefore, the distance
field can be constructed with(n) messages, whereis the number of nodes in the
network.

Other steps only involve local operations, so the cost of each is at@tost
For example, in the final step of cleaning up orphan nodes, eachi fiostebroad-
casts once to find a neighbor with assigned segment. If it succeeds, joodeone
of its neighbors’ segment and notifies all its neighbors. Otherwise, neueply
waits for further notification. Thus, every node is only involved in two message

CHAPTER4. Decouple Design from Deployment 116

transmissions.

In summary, the proposed shape segmentation algorithm is efficient and in-
curs communication cost @(n) in total if nodes synchronize among themselves.
Otherwise, the algorithm may incu@n?) communication cost in the worst case.
Here, the bigoO notation hides a constant including the density of the network.

(ix)

Figure 44: Segmentation results for miscellaneous shapes and densities. (i) cross: 2200
nodes, average 12 neighbors per node. (ii) cactus: 2100 nodes, average 9 neighbors per
node. (iii) airplane: 1900 nodes, average 7.8 neighbors per node. (iv) gingerman: 2700
nodes, average 8 neighbors per node. (v) hand: 2500 nodes, average 6.5 neighbors per
node. (vi) single-hole: 3700 nodes, average 13 neighbors per node. (vii) spiral: 2900
nodes, average 11 neighbors per node. (viii) smiley: 2900 nodes, average 8 neighbors per
node. (ix) star: 3900 nodes, average 9 neighbors per node.

CHAPTER4. Decouple Design from Deployment 117

4.3.7.2 Simulations

We simulated the algorithm for different shapes of network, and found that
an intuitive partitioning into pieces with regular shape is obtained. We use grid-
perturbation distribution with variation in the simulations. These networks either
represent practical scenarios, like an intersection of two roads (Figure 44(i)), rooms
connected by a corridor (Figure 41), or some pathetically difficult cases we come up
with. Several examples are shown in Figure 44. In general, the algorithm performs
consistently well when the average degred is 8 or higher. Good results can
be obtained for networks of low density by considering a two or three hop neigh-
borhood in the steps of finding flow pointers, merging the sinks and constructing
segments. We used a three hop neighborhood in simulations.

4.4 Extraction of adjacency graph

After segmenting an irregular sensor field into a set of nicely shaped segments,
we can apply existing protocols and algorithms inside each piece independently.
However, to get global results about the entire network, it requires a high-level
structure to integrate the segments together. We propose to extract a cadfjpact
cency graphof the segments.

Definition 46 Adjacent SegmentsTwo segments ands; are adjacent if there
exists a nodep in segments that has at least one neighbor in segment In
Figure 45(i), the green and pink segments are adjacent to each other.

Definition 47 Adjacency Graph In an adjacency grapls = (V, E), each segment
s is denoted as a vertex in V. There is an edge; € E betweenv; andvj, if
the corresponding two segmestands; are adjacent to each other. An adjacency
graph is showed in Figure 45(ii).

An adjacency graph is compact. Its size is proportional to the number of seg-
ments, which is a small constant in most scenarios. We construct this adjacency
graph by using the nodes on the boundaries of the segments to discover the adja-
cency information locally. More specifically, the construction contains the follow-
ing two steps:

CHAPTER4. Decouple Design from Deployment 118

e Construct local adjacency graph. Nodes on the boundaries of segments
propagate the IDs of the adjacent segments along the flow pointers towards
one of the sinks of the sink cluster. Intermediate nodes cache received mes-
sages (together with possible extra information, e.g., hop counts to the bound-
ary nodes) for future usage. Messages with the same information can be
suppressed if necessary. All sinks further forward the collected information
to the sink cluster leader, which only requires one or two hop transmissions
since all sinks are close to each other. Eventually, the leader can gather a
local picture about what segments are adjacent to itself.

e Construct global adjacency graph.To get a complete adjacency graph, sink
cluster leaders exchange their adjacency information via the shortest paths
through segment boundary nodes built up during the first phase. After that,
leaders push the global graph down to other nodes inside its segment via
reversed flow pointers.

We may also augment the adjacency graph with additional useful information
on its vertices and edges. For example, if the nodes are aware of their locations,
vertices can be associated with the locations of sinks, which will be useful to get
a global rough layout; edges can be associated with the Euclidean distance/hop
counts between two sinks for finding shortest paths at the top level. In general,
we can augment the graph with whatever information gathered by sink nodes, for
example, the size of a segment, the number of nodes on the boundary between
two segments, etc. These information would aid the design of efficient and load
balanced protocols. The above two-phase construction algorithm makes the aug-
mented adjacency graph presented at multiple resolutions at sensor nodes, which
will further facilitate the applications. Each node only knows rough information
about far-apart segments based on the adjacency graph; but it can store more de-
tailed information about the closest adjacent segments (e.g. the shortest paths to the
boundaries). We will elaborate the usage of segmentation together with adjacency
graph through various applications in Section 4.5.

CHAPTER4. Decouple Design from Deployment 119

()
-/

(i) (i)
Figure 45: An example of adjacency graph. (i) An irregular sensor field with four segments;
(ii) The corresponding adjacency graph.

4.5 Applications

In this section, we present several specific applications that benefit from shape
segmentation. These applications are commonly encountered during network de-
sign, spanning fundamental problems such as facility placement and routing, as
well as data processing, such as data storing and uniform sampling. At the appli-
cation level, we assume that location information can be made available depending
on applications’ requirements. But our shape segmentation scheme runs without
any geographical information. In fact, the geographical information only gives a
node local picture of its neighborhood, but nodes are still unaware of the global
features of the network. Simulation results show that shape segmentation improves
performance in terms of efficiency and load balance, and facilitates the selection of
protocols and the calibration of protocol parameters.

4.5.1 Routing in Irregular Networks

Multi-hop routing is one of the most fundamental functionalities of all kinds of
communication networks. Readers can refer to a survey paper [135] to get a com-
prehensive understanding of routing challenges and protocols in sensor networks.
Among the huge literature on routing, geographical routing becomes one of the
most popular protocols in sensor networks because it is nearly stateless and avoids
message flooding. However, as we mentioned before, inaccurate location informa-
tion and complex topological features cause geographical routing to have degraded

CHAPTER4. Decouple Design from Deployment 120

performance in practice. Routing protocols proposed upon virtual coordinate sys-
tems [89,122] do overcome the above weaknesses, but involve non-trivial design of
virtual coordinates dependent on the deployment features.

Network segmentation approaches this problem by partitioning the sensor
field, so that existing algorithms are still useful inside each segment. It provides a
generic recipe for both routing and other applications — inside a segment, existing
protocols can still be reused; across segments, an application-dependent structure
integrates segment-level data together. Thus, routing and other upper level applica-
tions can be conducted in a universal and flexible way. For example, we can choose
different protocols for intra-segment and inter-segment routing, purely depending
on application requirements. Routing across segments is achieved with the seg-
mentation adjacency graph. Suppose a source Ragsegments wants to send
packets to destinationin segmens;. x first finds a desired high level path frogn
to sj on the adjacency graph by using inter-segment routing. Inside each segment,
packets are routed towards the boundary nodes or the destination with intra-segment
protocol. The two-level routing scheme follows the philosophy of [122]. But the
partitioning of the sensor field is done in a different manner. We discuss the details
and possible protocols that can be used at these two levels.

e Inter-segment routing. We use the adjacency graph for global route plan-
ning. There can be multiple paths from one segment to the other. In Fig-
ure 45, two paths connect the left (green) segment to the right (dark blue)
segment. Depending on available augmented information and application re-
guirements, we can use different criteria to choose a desired path. For exam-
ple, distance information (or hop counts) augmented on edges can be helpful
to find the shortest path; the number of boundary nodes between two seg-
ments implies if there is a bottleneck, which can be used to distribute traffic
loads on multiple paths. After selecting a path, packets are forwarded along
the set of segments on the path sequentially.

e Intra-segment routing. Intra-segment routing is used for routing packets be-
tween a pair of nodes inside the same segment. Since each segment relatively
has a nice shape (i.e., with simple geometry, without holes), most routing
protocols proposed in the literature can be directly used for this purpose. We
can use geographical routing if location information is available; we can also

CHAPTER4. Decouple Design from Deployment 121

use landmark-based routing by simply putting landmarks at the boundaries
of the segments. What routing protocol to use inside a segment is totally in-
dependent of inter-segment routing. Each segment can even choose its own
protocol. This gives more flexibility to users.

We compare the performance of routing aided by segmentation with
GPSR [64] without segmentation. Simulations are conducted on the network
showed in Figure 46(i) and Figure 47(i). 10000 source-destination pairs were cho-
sen in each topology. For the topology in Figure 46(i), sources and destinations
were selected from either the left segment or the right segment. In the other topol-
ogy (Figure 47(i)), sources were from the segment at the left-upper corner, and
destinations were at the right-bottom corner. We use GPSR combined with manhat-
tan routing for intra-segment routing and for inter-segment routing, we distribute
traffic to multiple (e.g., 2 paths in both tested topology) high-level routes based on
the size of the segments on the path.

average path length | topology of Fig 46(i)| topology of Fig 47(i)
routing with segmentation 39.73 36.38
GPSR 49.13 30.67

Table 2: The path length averaged over 10000 source-destination pairs in two different
network fields, with and without segmentation.

From the simulations, we found that the path length averaged on 10000
pairs in both network fields are close to GPSR. In the topology of Figure 46(i),
segmentation-aided routing produces shorter paths than GPSR. Since each segment
has relatively nice shape, geographical routing can work well inside segments.
Routing along the outer boundary, which happens more frequently in GPSR, is
avoided by inter-segment routing. Figure 46 and Figure 47 show the load distri-
bution in the networks, which is counted as the number of transmissions incurred
at each node. The darker the color, the higher load a node has. It is clear that
nodes with higher load are around boundaries without segmentation. With segmen-
tation, more nodes are involved in packet forwarding. Thus, traffic is more evenly

“Basically, if a source aixs, ys) wants to transmit packets to a destinatiofxatyy). Packets are
first greedily forwarded to the closest node(af yq4) along a roughly vertical path, then that node
forwards packets to the destination along a roughly horizontal path, or vice versa.

CHAPTER4. Decouple Design from Deployment 122

distributed among nodes.

'-um--vi Foner
704 ;

7

i

e oy el 0 5 e U

(i) (ii) (iii)
Figure 46: (i) Network topology (ii) Load distribution with segmentation-aided routing.
(iii) Load distribution in GPSR without segmentation. Black nodes are with lo&800

transmissions; red nodes are with loadb00 transmissions; green nodes are with load
> 300transmissions; yellow nodes are with loadLOOtransmissions

mEa m, Egma g8
LR el
UL L ob)
R Rt Py o B

TR

5

o
u
L
ulim

0] (ii) (iii)
Figure 47: (i) Network topology (ii) Load distribution with segmentation-aided routing.
(iii) Load distribution in GPSR without segmentation. Black nodes are with le&0D0

transmissions; red nodes are with loadb00 transmissions; green nodes are with load
> 300transmissions; yellow nodes are with loadLOOtransmissions.

4.5.2 Facility Location

The problem of base station placement is usually a concern at the very begin-
ning of network design. An intuitive optimization criterion is to place multiple base
stations in a way such that the average distance from a sensor to its nearest base sta-
tion is minimized, so the total energy consumption for data transmissions between
sensors and base stations can be minimized.

CHAPTER4. Decouple Design from Deployment 123

Solutions for the above placement problem can be classified into two cate-
gories. One class includes several centralized approaches based on mathemati-
cal models (e.g., integer linear programming) [136, 137]. Centralized approaches
give optimal or near-optimal solutions, but they are not suitable for sensor net-
works wherein nodes are self-organized and do not have any global knowledge. By
observing the similarity between the placement problem and the clustering prob-
lem, a second approach adapts existing clustering algorithms Kergeans clus-
tering [138]) to suggest the placements of base stations. Specificalyneans
algorithm,k random locations are selected as the cluster centers. Then the rest of
the nodes are partitioned intoclusters, with all the nodes closest to one center
put in the same cluster. Then the centroid of each cluster is picked as the new cen-
ter and the algorithm iterates until the centers do not move much. Although the
adapted clustering algorithms work well in practice, there are a few limitations of
those algorithms.

e The number of base stations to be placed (parank@teray depend on the
specific deployment of the sensor network, thus is hard to specify before
hand.

e Typically k random locations are selected as the initial locations inkthe
means algorithm. Different initial locations result in different final placement.

e The clustering algorithms try to place base stations based on the distances
between cluster centers and the rest of the nodes, but do not respect the geo-
metric features of the underlying physical environment. Inside one cluster
bottlenecks can still occur.

Motivated by the limitations of the existing algorithms, we found that segmen-
tation provides an alternative solution for the placement problem. The number of
segments gives a natural choice koand the set of sinks can be directly replaced
by base stations. More important, the segmentation reflects the significant geomet-
ric features of a sensor field, and avoids placing a base station to cover two groups
of sensors connected by a narrow bridge. To aggregate data from sensors in each
segmentation, the aggregation tree has been implicitly constructed during the seg-
mentation phase. Every node can simply follow the flow pointers to forward data to
base stations. By aggregating data within each segment first, we can dramatically

CHAPTER4. Decouple Design from Deployment 124

reduce network traffic through bottlenecks.

We compare the average distance (hop counts) between a sensor node and
its closest base station under different network topologies. We first test the best
k for an irregular sensor field by running thkemeans algorithm with differerk.

Figure 48 shows the average distance from a sensor to its closest base station over
k in a cross-shape network field (Figure 44(i)). As the number of base stations
increases, the average distance is reduced, but the cost of deployment increases. To
be the most cost effective with a reasonable budget, Figure 48 suggests to place
4 ~ 6 base stations, since the average distance can not be reduced much with more
than6 base stations. This is consistent with the number of segments (5 segments)
the segmentation algorithm gives. Thus, in the following comparisons, we only
compare the segmentation approach tokimeans algorithm withkk equal to the
number of segments, which is a good indication of the number of base stations
needed. We compare the segmentation approachkantleans algorithm. With

12

10¢

Average hops

Figure 48: The average hops from a sensor to its closest base station over vaiioas
cross-shape network.

segmentation, one solution is to place a base station at the centroid location of
the sink cluster at each segment. Each node chooses the base station inside the
same segment as its own base station. Furthermore, we combine the segmentation
with k-means algorithm by using the centroid location of sink clusters as the initial
placement, then running-means algorithm based on that. The performance of
three approaches is showed in Table 3. Khmeans algorithm with the initial
position as the sinks of the segments works the best. One thing worth noticing is

CHAPTER4. Decouple Design from Deployment 125

that the pure segmentation approach achieves comparable performance compared to
k-means algorithm and the combined one, but avoids the cost of multiple iterations
required in thek-means algorithm, and more importantly, it suggests a good choice
for the parametek, deciding which is typically a challenge in the standeitieans
algorithm.

average hop counts | cross| plane| corridor | fish
k-means 5.02 5 7.42 | 11.58
shape segmentation | 5.76 | 5.78 7.83 | 12.01
k-means over segmentatiord.95 | 494 | 7.36 | 11.55

Table 3: The average hops from a sensor to its closest base station with and without shape
segmentation.

4.5.3 Distributed Index

Distributed index for multi-dimensional data (DIM [71]) is a quadtree type
hierarchy that supports efficient multi-resolution data storage and range query. The
key idea of DIM is to map an event with certain values to a specific area called as
zong and store the event with geographic routing to the node owning that zone. The
zone is determined by dividing the bounding rectangle of the network alternatively
with a vertical or horizontal line until there is a single node inside the zone. When a
node generates an event, it estimates the destination zone based on the event value
and routes it towards there.

DIM provides a scalable index structure for data storage and performs well in
a network field with simple geometric topology. However, it suffers a lot from load
unbalancing in a complex shaped sensor field. For a network with arbitrary shape,
there will be large empty space in the bounding rectangle. Some nodes (especially
those boundary nodes) must take care of a larger zone, and hence store more data
than others. Overloaded nodes would be depleted faster than other nodes, which
may lead to network partitioning and shorten network lifetime.

With shape segmentation, we can avoid above problems by applying DIM on
each segment. Specifically, we first divide the entire event range into several sub-
ranges. Lel\; denote the number of nodes belonging to itHesegment, and\

CHAPTER4. Decouple Design from Deployment 126

250
200
150

100

(ii)
Figure 49: (i) Distribution of storage load in basic DIM structure. (ii) Distribution of
storage load in shape segmentation integrated DIM structure.

denote the total number of nodes. Sub-ranges are divided based on the ratio of
N; /N. The first segment takes care of events within rg@gd; /N), and the second
segment takes care of the rarje/N, (N1 + N2)/N), and so on. A new generated
event is divided into several sub-events, each of which is sent towards the corre-
sponding segments respectively. Inside each segment, the sub-event is processed in
the same way as the basic DIM algorithm.

To compare the performance of DIM with and without shape segmentation,
we run simulations on various network scenarios. We genefi#i@@0events with
values uniformly distributed in a fixed rang@, 1000, and stored them into the
network. Figure 49 shows the distribution of storage load for the cross network.
We can see that the boundary nodes in the basic DIM structure suffer much higher
loads than the rest of the network. On the other hand, with shape segmentation,
since each segment has tighter bounding rectangle and each node is associated with
an almost equal sized zone, data is seen to be well distributed across the network
with no particular preference for occurrence of peaks. The peaks in Figure 49(i)
reach248 while the highest peak in Figure 49(ii) is orthp.

Shape segmentation also helps reduce communication cost by mapping events
into more accurate locations. Table 4 shows that the average communication cost in
terms of hop counts for every event insertion is much less with shape segmentation
in all three different network scenarios, viz. cross (Fig. 44(i)), corridor (Fig. 41) and
fish network (Fig. 36). In the cross and corridor network, shape segmentation saves

CHAPTER4. Decouple Design from Deployment 127

60% ~ 70% cost. The gain in fish-type network is abd@%, not as significant
as the previous two cases. The reason is that each piece of ‘fish’ does not tightly
match with its bounding rectangle.

cost per event insertion | cross | corridor | fish
without shape segmentatigr293.69| 359.21 | 254.37
with shape segmentation| 84.15 | 151.05 | 204.58

Table 4: Average data insertion cost for DIM with and without shape segmentation.

4.5.4 Random Sampling

We discuss the benefits of shape segmentation with another example - random
sampling. Uniform random sampling of a sensor node is a fundamental opera-
tion that is used as a basic element in many scenarios such as geographical hash
tables [34], geographical gossip [124] and information diffusion and storage [139].

The basic sampling procedure works as follows [123]. A node who wants to
pick a random sensor in the network first chooses a random geographical location
inside the bounding rectangle, and uses geographical routing to route towards that
location. The message will eventually arrive at the node closest to the picked loca-
tion. A nodep is picked with a probability proportional to the area of its Voronoi
cell. To achieve a uniform sampling distribution, the acceptance probability of sam-
pling at each node needs to be adjusted, as the one with a large Voronoi cell is more
likely to be picked. Basically, each sampled node will be accepted with probability
ri =min(t/a;,1), wheret is a given threshold ang is the area of the Voronoi cell
associated with node If a node rejects a sample, it will pick a new location and
repeat the above process. In an irregular sensor field, the Voronoi cells of different
nodes have vastly varying areas. Nodes with large Voronoi cells are picked more
likely, yet often get rejected afterwards. Thus, the sampling efficiency suffers as a
lot of trials end up in vain. Furthermore, since the fate of each sample can only be
determined at the destination node, samples may be rejected after traveling a long
path, which incurs expensive communication cost and wastes network resources.

Random sampling integrated with shape segmentation can dramatically reduce
the number of unnecessary trials, at the same time achieving uniform sampling. The

CHAPTER4. Decouple Design from Deployment 128

adapted algorithm runs as follows. Each time before sampling, we first randomly
select a segment. Each segment is selected with probaBiktyN; /N. After that,

we pick a random location within the bounding rectangle of the selected segment.
Within each segment we apply the same sampling algorithm and sampling rejec-
tion policy as before. Segments are divided into Voronoi cells with much smaller

variation, thus no node would reject samples with abnormally high probability.

We run simulations on the same three typical networks. Results are averaged
on 10 rounds, and in each round, we randomly pid0 samples. For the basic
random sampling algorithm, we seto the ratio of the size of the network field and
the total number of nodes. Each segment has its pasthe ratio of the segment
size and number of nodes belonging to that segment. In Table 5, we compare the
average number of trials taken to g€t0 samples. The basic random sampling al-
gorithm tried168, 149and136times for ‘cross’, ‘corridor’ and ‘fish’ respectively.
Shape segmentation reduces the numb&fi#115and123 Table 6 shows the av-
erage communication cost per sample. As expected, the cost in shape segmentation
case is less than the basic case.

no. of trials cross| corridor | fish
without shape segmentation 168 149 | 136
with shape segmentation| 112 115 | 123

Table 5: Average number of trials fatO0random sampling.

cost per sampling cross | corridor | fish
without shape segmentatiomM77.84| 511.95 | 361.80
with shape segmentation| 102.49| 182.32 | 238.47

Table 6: Average cost per sampling.

With the same observation we got in DIM, shape segmentation shows different
levels of improvements in different network scenarios. For these two applications,
the performance more or less depends on whether the bounding rectangle is tight
enough. We notice that this is due to an inherent assumption of the basic sampling
algorithm that uses a bounding rectangle on the sensor field. Further improvement
can be made by using a tighter polygon to approximate the shape of the segment in
the basic sampling algorithm.

CHAPTER4. Decouple Design from Deployment 129

4.6 Discussions

We introduced a simple distributed algorithm that partitions an irregular sen-
sor field into nicely shaped segments, by using the connectivity information. We
show that segmentation is a generic approach to handle complex geometric features
and improve the performance of algorithms that assume a nice regular sensor field.
We mainly presented several common problems encountered during network de-
sign and management. But the applications of shape segmentation can go beyond
that. For example, the recent work on information dissemination and collection by
sweeps [140] can be directly integrated with shape segmentation and be applied
inside each segment. Shape segmentation can also help the construction of virtual
coordinate systems. Take a landmark-based routing scheme [122] for an example in
which the placement of landmarks has a critical impact on its performance. Since
the segments have a nice shape, a few landmarks inside each segment would suffice
for routing in and between segments.

We summarize the impact of shape segmentation as follows:

e Provides at a global level a compact way to represent the underlying diverse
geometric features of a sensor network field, and makes the network design
and protocol development transparent to the specific deployment.

e Facilitates the design and development of new topology-adaptive protocols
and makes existing protocols that assume nice shaped field reusable.

e Gives users great flexibility to ‘mix-and-match’ protocols and calibrate im-
portant protocol parameters with respect to the specific deployment.

In shape segmentation, a generally unsolved issue is that there is no well ac-
cepted definition on good segmentation so far. The choice of appropriate segmen-
tation may also depend on the applications. For example, a spiral-like sensor field
is equivalently nice as a long corridor for routing protocols, but it needs to be seg-
mented further for applications that require a quad-tree type hierarchy. We proposed
two schemes to give certain guarantees on the fatness of the segments but also pro-
vide flexibility for the upper level applications to pick a definition and choose proper
segmentation granularity. One interesting problem is to classify applications into
several categories so that more precise segmentation definitions can be found for
each category. We regard this as our future work.

Chapter 5

Provide Easy Programming
Paradigm

5.1 Introduction

Programming a sensor network application remains a difficult task, since the
programmer is burdened with low-level details related to distributed computing,
careful management of limited resources, unreliable infrastructure, and energy op-
timizations. Thus, developing a powerful programming framework for sensor net-
work is critical to realizing their full potential as collaborative processing engines.
There has been some progress in developing operating system prototypes [141,142]
and programming abstractions [143, 144]; however, these abstractions have pro-
vided only minimal programming support. Prior work on viewing the sensor
network as a distributed database provides a declarative programming framework
which is amenable to optimizations. However, it lacks expressive power, and the
developed database engines (TinyDB [145], Cougar [15]) for sensor networks im-
plement only a limited functionality. On the other hand, the recently proposed
Kairos [146] framework is expressive, but is based on a procedural language and
hence, difficult to translate to efficient distributed code. Thus, the overall vision of
a programming framework that automatically translates a high-level user specifi-
cation to efficient distributed code remains far from realized. In general, a perfect
programming paradigm for sensor networks must achieve the following.

130

CHAPTERS5. Provide Easy Programming Paradigm 131

¢ Be sufficiently expressive.

e Be declarative, i.e., provide users with a high-level abstraction of the net-
work, while hiding all the network machinery such as distributed computing,
efficient storage, communication efficiency, etc.

e Be amenable to automatic optimizations (especially, related to energy con-
sumption) without much input from user.

We motivate use of deductive approach for programming of sensor networks, and
design and develop a query engine for distributed evaluation of general (with strat-
ified negation) deductive queries. In particular, our developed system facilitates
automatic translation of high-level deductive queries into optimized nesC node that
runs on individual sensor nodes.

Proposed Deductive Approach. We propose a programming framework based
on a deductive paradigm; our proposed framework is declarative, fully expressive
(Turing complete), and most importantly, amenable to automatic translation into
efficient distributed code. Deductive approach has been recently used with suc-
cess for declarative specification of network routing protocols [42] and overlay
architectures [147]. In the context of programming sensor networks, our deduc-
tive approach is motivated by the basic observation that sensor networks essentially
gather sets of “facts” by sensing the physical world, and sensor network applica-
tions manipulate these facts. We believe that the collaborative (involving multiple
nodes) functionality of a sensor network application can be easily represented us-
ing fact-manipulation deductive rules. The local arithmetic computations such as
signal-processing, data fusion, etc. may be inefficient to represent using deductive
rules, and hence, are embedded in locally-processed built-in functions written in
procedural code. Embedding such local computations in locally-processed proce-
dural functions does not affect the communication efficiency of the translated code.
The above approach facilitates easy high-level specification of an application, and
is amenable to optimizations. To realize the overall vision of a powerful program-
ming framework, we develop techniques for communication-efficient evaluation of
deductive programs in resource-constrained sensor networks over streaming data.
Based on the developed query processing techniques, our system will automatically
translates a given high-level specification of an application into optimized distrib-
uted code that runs on individual nodes.

CHAPTERS5. Provide Easy Programming Paradigm 132

5.2 Prior Approaches, and Deductive Framework for
Sensor Networks

In this section, we start with an overview of prior approaches for programming
sensor networks. Then, we give an overview of deductive programming, and illus-
trate the power of our approach through various illustrations. Finally, we propose
some extensions and restrictions to the deductive framework to tailor it to program-
ming of sensor networks.

5.2.1 Prior Approaches for Programming Sensor Networks

NesC and Programming Abstractions. The Berkeley motes platform provides

the C-like, fairly low-level programming language calleelsC[142] on top of the
TinyOS [141] operating system. However, the user is still faced with the burden
of low-level programming and optimization decisions. There has been some work
done on developing programming abstractions [143, 144,148-151] for sensor net-
works; however, these abstractions provide only minimal programming support.
Finally, authors in [152] propose an interesting novel approach of expressing com-
putations as “task graphs,” but the approach has limited applicability.

Sensor Network as a Distributed DatabaseRecently, some works [15, 46, 145]
proposed the powerful vision viewing the sensor network as a distributed data-
base. The distributed database vision is declarative, and hence, amenable to op-
timizations. However, the current sensor network database engines (TinyDB [145],
Cougar [15]) implement a limited functionality of SQL, the traditional database
language. In particular, they only handle single queries involving simple aggrega-
tions [14, 16, 153] or selections [154] over single tables [155], local joins [16], or
localized/centralized joins [49] involving a small static table. These approaches are
appropriate for periodic data gathering applications. SQL is not expressive enough
to represent general sensor network applications. Moreover, due to the lack of an
existing SQL support for sensor networks, there is no real motivation to choose
SQL. Our deductive approach is essentially an expansion of the initial vision of
viewing the sensor network as a database. In effect, we propose use a more expres-
sive deductive approach, and propose to build a full-fledged efficient logic query

CHAPTERS5. Provide Easy Programming Paradigm 133

engine for sensor networks.

Procedural Languages. Recently proposed Kairos [146] provides certain global
abstractions and a mechanism to translate a centralized program (written in a high-
level procedural language) to an in-network implementation. In particular, it pro-
vides global abstractions suchges _available _nodes, get _neighbors , and re-

mote data access. Kairos is the first effort towards developing an automatic trans-
lator that compiles a centralized procedural program into a distributed program
for sensor nodes. However, Kairos does not focus much on communication effi-
ciency; for instance, the abstractiget _available _nodes gathers the entire net-
work topology, which may be infeasible in most applications.

In some sense, our approach has the same goals as that of Kairos — to automat-
ically translate a high-level user specification into distributed code. However, since
Kairos approach is based on a procedural language, itis much harder to optimize for
distributed computation. Through various examples in Section 5.2.2.1, we suggest
that our proposed framework will likely yield more compact and clean programs
than the procedural code written in Kairos. Moreover, the deductive programs for
the examples in Section 5.2.2.1 yield efficient distributed implementations involv-
ing only localized joins.

In general, we feel that procedural languages are unlikely to be very useful in a
restricted setting such as sensor networks, since they are not declarative and would
be hard to distribute and optimize for communication cost.

5.2.2 Overview of Deductive Programming

Predicate logic is a way to represent “knowledge” and can be used as a lan-
guage for manipulating tables of facts. In logic data model, each table (relation)
of facts is looked upon as a predicate having an argument for each table attribute.
The simplest model of predicate logic, Datalog, consists of a set of declarative logic
rules, possibly involving recursion and negations. Datalog without recursion is as
expressive as the traditional database language SQL without aggregations. In our
proposed programming framework, we use full first-order logic which extends Dat-
alog by allowing function symbols in the arguments of predicates, and thus, making
the framework Turing complete [156]. We illustrate the need for function symbols

CHAPTERS5. Provide Easy Programming Paradigm 134

in Example 49 of Section 5.2.2.1. Essentially, in full first-order logic, the argu-
ments of a predicate may be arbitrary terms, where a term is recursively defined as
follows. A termis either a constant, variable, éfts,to, ..., t,) where each; is a

term andf is a function symbol. In this general context, a logic rule is written as

H :— G1,Gy,...,Gy.

H is called thehead and Gy,...,Gy are thebody subgoals The head and the
subgoals are of the forml(ts,to, . ..,tm) Wherep is a predicate ants are arbitrary
terms.

Built-In Predicates, and Added Featur€ertain predicates that are given a con-
ventional interpretation such a§ < Y, are calledbuilt-in and can appear in the
body subgoals. In our framework, a user may define additional built-in predicates,
in which case the user provides the procedural code to evaluate the predicate. Note
that built-in predicates can be easily used to specify built-in functions, and hence,
we usebuilt-in functionsdirectly in the logic rules. For sake of ease in program-
ming, we allow restricted use of negated subgoals, lists, Prologdi@fandbagOf
constructs which allow construction of lists in a similar way as Group-By construct
of SQL.

Motivating Characteristics of A Deductive Approach. In short, our choice of
deductive approach is motivated by its following characteristics. Firstly, a deduc-
tive programming framework is declarative and hence, amenable to optimizations.
In our context, the optimization of logic programs is largely embedded in the effi-
cient data storage schemes, in-network implementation of join, join-ordering, and
guery optimization techniques. Secondly, a deductive framework augmented with
function symbols is fully expressive; in particular, it is more expressive than the
prior distributed database approach. Extensive use of function symbols (or lists)
does make optimizations difficult, but we anticipate that function symbols will be
used in limited contexts and hence, allow their use for full expressibility. Thirdly, a
deductive framework has strong theoretical foundations and can be easily extended
to include other specialized deductive frameworks.

Prior Use of Datalog in Declarative NetworkinBecently, Datalog without nega-
tions has been used for declarative specification of network routing protocols [42]
and overlay architectures [147], resulting in very compact and clean specifications.

CHAPTERS5. Provide Easy Programming Paradigm 135

The approach was shown to be efficient, secure, expressive for intended purposes,
and amenable to query optimizations. This recent success of use of deductive
gueries for declarative networking adds to the promise of our deductive approach

for programming sensor networks.

5.2.2.1 lllustrating the Power of Deductive Approach

As done in [146] to illustrate Kairos’ expressibility and flexibility, we also
illustrate the power of our approach by describing how it may be used to program a
few different distributed computations that have been proposed for sensor networks:
vehicle tracking, localization, routing tree construction, and vehicle trajectories. We
start with discussing the use of built-in functions to embed arithmetic computations.

Representing Signal-Processing, Data Fusion, and Other Arithmetic Compu-
tations. Certain aspects of sensor network applications involve local arithmetic
computations such as signal processing, data fusion, synthesis of base data, etc.
Such arithmetic computations may be too inefficient to represent in a deductive
framework, and hence, are embedded in locally-processed built-in functions coded
in a procedural language. Such a representation does not compromise on the com-
munication efficiency on the translated distributed code. Distributed arithmetic
computations are embedded in built-in aggregates with specialized distributed im-
plementations. For instance, in vehicle tracking [109,157], arithmetic computations
involve estimating belief states, information utilities, and estimate of the future tar-
get location; the first two computations are local, while the last computation re-
quires thanaximumaggregate. See Example 48 below. Finally, certain other arith-
metic techniques such as data compression may be embedded in the query engine.

Example 48 Signal Processing in Vehicle Tracking. The given program repre-
sents the algorithm for tracking vehicles described in [157]. The algorithm uses
probabilistic and signal-processing techniques to maintain posterior distribution
(belief state of the vehicle location.

CHAPTERS5. Provide Easy Programming Paradigm 136

U(ig,t+1,ug) :— P(i,t,v),G(i,i1),2(i,t + 1,2),
Z(i1,t+1,21),u1 =1(v,2,2)
P(ig,t+1) :— P(i,t,v),G(i,i1),G(i,i2),U(i1,t + 1,u1),

U(iz,t+1,u2),u1 < Up
P(iy,t+1,F(v,2)) :—P(i,t,v),Z(i,t+1,2),G(i,i1),
NOT P'(ig,t+1)

At any time instant, only one node namely the leader node is active. The
leader applies a measurement of its observation and produces an updated belief
state about the vehicle location. The updated belief is then passed onto one of
the neighboring nodes with the highest “utility information,” which becomes the
new leader, and the process repeats. In the given program, we have used the same
variable symbols as used in [157]. For a nodat timet, P(i,t,v) signifies the
belief state value, U (i,t,u) signifies the information utility value, andZ(i,t,z)
signifies the sensed value Also, G(x,y) represents the network edgésand|
are locally-processed built-in functions. The functiemepresents the Equation 3
of [157] which computes the updated belief state at the new leader nodd, and
computes the information utility of a local node. The first logic rule in the given
program computes the information utility of a neighlbpof the leader nodg and
the third rule computes the new leader node and the new belief state. The predicate
P'(i1,t + 1) signifies thai; doesnothave the highest information utility. The given
logic program is more compact than the corresponding procedural code written in
Kairos (see [146]). .

Example 49 Parallel Trajectories: Need for Function Symbols.We now illus-
trate the need for function symbols in our programming framework. Essentially,
function symbols are required when we want to create non-atomic values.

traj([Re,Ry]) : — report(Ry),report(Rz),clos€Ry, Ry),
NOT notStartRepo(Ry)
notStartReportR;) : — report(Ry),report(Ry),clos€Ry, Ry)
traj([X|Re, Ry]) : — traj([X|Ry]),report(Rz),clos€Ry, Ry)
completeTra([X|R]) : — traj([X|R]),NOT notLastRepo(R)
notLastReportR;) :— report(Ry),report(Ry),clos€Ry, Ry)
parallel(L1,Lp) : — completeTrafL1),completeTrafL,),

isParallel(Ly,L2)

CHAPTERS5. Provide Easy Programming Paradigm 137

Here, we us&to represent the triplék, y,t) signifying the locatior(x,y) and
timet of vehicle detection, and compute vehicle trajectory paths from the base data
report(R) For simplicity, we assume that at any instant there is only one sensor
detecting the target, so thjectory can be directly synthesized using a sequence
of report tuples. For clarity, we use lists instead of function symbols; the list no-
tation [X|Y] signifiesX as the head-sublist antias the tail-element. We use two
locally-processed built-in functionsiosechecks if two reports can be consecutive
points on a trajectory (i.e., close enough in the spatial and temporal domains), and
IsParallel checks if two trajectories are parallel.

Example 50 Shortest-Path Tree Here, we give a logic program for constructing
a shortest path tre¢l() with a given root nodeA). in a given network grapfs.

logicH Program:

H(A,A,0).
H(A X 1) i — G(A)X)
H'(y,d+1) :— H(,y,d),(d+1)>d H(,xd),G(xYy)

H(x,y,d+1) : — G(xy),H(,,x,d), NOT H(y,d+1)

The predicatéd (x,y,d) is true if there is a path of lengtthfrom A to y using
the edge(x,y); essentiallyH (x,y,d) gives the set of edges added in the breadth-
first search at'" level. The predicatél’(y,d + 1) is true if there is already a path
from A to y of length shorter thad + 1; the last two terms in the third rule are to
ensure safety (to bourd). The given logic program is more compact than the 20
lines of procedural code written in Kairos [146]. More importantly, it can be easily
translated into distributed code that incurs near-optimal communication cost.

Example 51 Another Version of Object Tracking. Here, we present another ver-

sion of vehicle tracking, which uses a simple algorithm based on DARPA NEST
demonstration software, described in [143, 144]. Each node takes periodic mag-
netometer readings and compares them to a threshold value. Nodes above the
threshold communicate with their neighbors and elect a leader. We define leader
to be a node with the largest magnetometer reading within its 2-hop neighborhood.
The leader computes the centroid of its neighbors’ sensor readings, and transmit
to a base station. As in previous examplesGéx,y) be the network graph. Let

CHAPTERS5. Provide Easy Programming Paradigm 138

V(x,v,1,t) be the base table, whevés the above-thresholdnagnetometer reading
andl is the estimate of the object location by nodat timet. In the below pro-
gram, the table/predicateeadexx,t) signifies that the nodeis a leader at timé.
The predicatéeaderis defined in terms of the predicatotL(x,t) which signifies
thatx is not a leader at time. Alternatively, we could have used an aggregation
function maxfor definingLeader Now, we define the predicateoc(x,y,l,t) to
collect the object-location estimates of the leader neighbors. In particular, predi-
cateLoc(x,y,l,t) is true if x is a leader at time, y is within 2-hops ofx, andl is

the object-location estimate at nogleFinally, the predicat€trd(x, c,t) computes
the centroid of location-estimates for each leadbased on théoc(x,y,l,t) facts.
We use the Prolog-construbagOfto assemble all the location-estimates in a list
L, for each instantiation ofx,t) (i.e., GroupByx,t in terms of SQL). The built-in
predicatecentroid(L,c) is used to compute the centroid of the values inLlist

NotL(x,t) = V(X V,o,1),V(Y,v1,.,1),G(X,Y),V< Vg
NotL(x,t) t—= V(X v, .,1),V(Y,v1,,1),G(%,2),G(zy),v< V1
Leadefx,t) :— NOT Notlxt),V(x,_,_t)

Locgx,y,l,t) :— Leaderxt),V(y,l,t),G(x 2),G(zYy)
Locgx,y,l,t) :— Leaderxt),V(y,_l,t),G(Xy)
Locgx,x,1,t) :— LeadeKxt),V(x,_Il,t)

Ctrd(x,c,t)

bagOfl, (x,t) Locgx,y,l,t),L),centroidL,c)

Limitations of the Deductive Approach. As with any programming framework,
deductive programming has its own limitations. In particular, logic programs are
sometimes non-intuitive or difficult to write; e.g., the shortest path tree program of
Example 50 is clean and compact, but quite non-intuitive compared to a procedural
code. As such the deductive framework is targeted towards expert and trained users,
for whom the relief from worrying about low-level hardware and optimization is-
sues would far offset the burden of writing a logic program.

1The check for reading being above a given threshold can be done locally, and hence, ignored in
the given logic program for clarity.

CHAPTERS5. Provide Easy Programming Paradigm 139

5.2.2.2 Restriction ofXY-Stratification

In this section, we discuss the need to restrict our frameworkXYoe
stratification. We start with discussing various levels of stratifications and recur-
sions.

Programs without Negationg.he basic Datalog programs have no negated sub
goals. Such programs are severely limited in its expressive power and cannot ex-
press many of the queries of practical interest. For this set of programs, our evalua-
tion techniques support arbitrary recursions with tuple insertions, but no deletions.

Stratified Programdn-order to support more general queries, we must add nega-
tions in the queries. However, evaluation of logic programs with unrestricted nega-
tion and recursion is infeasible in sensor networks, since it will require a series of
distributed fixpoint checks for evaluation of well-founded semantics [158]. There-
fore, we evaluate restricted negations rather than arbitrary negations. The most
restrictive programs with negations are called as stratified programs. In stratified
programs, there are no cycles through negations in the program’s “dependency”
graph. In other words, there may be positive cycles, but no negative cycles at the
predicate level. Same as the first case, we only support tuple insertions.

Locally-Stratified ProgramsThe slightly more general usage of negations is
locally-stratified programs. In locally-stratified programs, for any ground atom

A, it is not possible for the negation of atom A to appear in a resolution path from
A. However, this notation is not useful in sensor networks, since determination of
local-stratification is undecidable [159] and depends on the given instance of the
base data. Note that in sensor networks, the base data is dynamic and not even
available until run-time.

XY-Stratified ProgramsFor the above reasons, we restrict ourselvesXiy
stratified programs [160] which are essentially programs that are locally-stratified
with an ordering imposed (by built-in arithmetic functions) on the argument values
of the derived facts. The atoms of header predicate must be in the same level or
higher level strata of the atoms of predicates in the body. For instance, the program
of Example 50 is locally-stratified for ang (base data) becaust(x,y,d + 1) de-

pends directly or indirectly oil (x,y,d") only ford > d’. Such ordering helps the
compiler easily check if a program }Y-stratified. More importantXY-stratified

CHAPTERS5. Provide Easy Programming Paradigm 140

programs are locally non-recursive, which make the support of tuple deletions fea-
sible.

5.3 Query Evaluation in Sensor Networks

For in-network evaluation of logic programs, we choose the bottom-up
approach (instead of top-down approach) because the bottom-up approach is
amenable to asynchronous distributed implementation and incremental evaluation,
has minimal main-memory requirements, and requires the simpler term-matching
operator [161] (instead of unification). The seminaive bottom-up approach with
magic-sets is at least as efficient as the top-down approach [161, 162]. Magic-set
transformations can increase the program size considerably, but the program code
is stored in the flash memory which is ample.

For a distributed implementation of the bottom-up approach, each fact table
(base table or derived) is partitioned across the entire network, possibly, using in-
dexes or hashing. Each sensor naadependentlyhandles” all facts hashed to
itself. Here handling a fact involves evaluation of logic rules that involve the sub-
goal corresponding tb Newly derived facts are hashed to appropriate locations,
where duplicates are eliminated. In our context, the seminaive trick is subsumed in
the incremental maintenance of intermediate results (which is anyway needed for
streaming data) and duplicate elimination of derived facts. Evaluating a logic rule
may usually involve a join of multiple tables, which may involve broadcast/routing
of facts to appropriate locations to search for matching facts. Thus, at the core of
the distributed bottom-up approach lies an in-network algorithm for join of multiple
data streams as discussed in previous section. In case of logic rules with function
symbols or lists, evaluation of a join predicate involves the simple “term-matching”
operator [161].

The details of in-network implementation of join [32] can be found in Chap-
ter 2. We omit the details here.

CHAPTERS5. Provide Easy Programming Paradigm 141

5.3.1 Evaluation ofXY-Stratified Deductive Queries

In this subsection, we discuss the evaluatioR ¥fstratified deductive queries.
In particular, we discuss how to handle negations and deletions in a locally non-
recursive logic program.

High-Level PlanPerpendicular Approach (PA) can maintain a join-query result in
response to simultaneous insertions. We start with generalizing PA to handle dele-
tions into the operand streams. Eventhough the base operand streams may be insert-
only streams, generalizing PA to handle deletions is fundamental to generalizing it
to evaluateXY-stratified deductive programs. As a second step, we generalize PA
to maintain (and thus, evaluate) query results represented by single deductive rules
involving negated subgoals. In later steps, we include recursion into single deduc-
tive rules, and then, generalize it to general single-stratum and arbitrary stratified
programs.

Generalizing PA to Handle Deletions. Consider data streanf®;, Ry, ..., R, in

a sensor network. LeRy,Ry,..., Ry also denote theurrent sliding windows of
respective data streams, and let the join-query régult R,... X R, be stored (as

a set, without duplicates) in a distributed manner across the network based on some
hashing scheme.

Let us consider deletion of a tupte from the streanR;. For now, lets as-
sume that there are no other insertions/deletions. To maintain the join-query result,
we need to compute X Ry... X R, and “delete” it from the maintained join-
query result. However, due to set semant{¢®, —t1) X Ry... X R, may not be
equal to(Ri X Ry... X Ry) — (t1 X Ry... X R,). We can solve the above prob-
lem using one of the following means: (i) Store results as bags, or keep a count
of multiplicity of each result tuple as suggested in [163], (ii) Keep the actual set
of derivations (as described later) for each result tuple, or (iii) Use the rederivation
technique of [163]. The counting technique (or bag semantics) is difficult to im-
plement accurately for a fault-tolerant technique such as Perpendicular Approach,
since fault-tolerance yields non-deterministic duplication of results. Also, counting
technique is not applicable to general recursive queries [163]. We discuss an ap-
proximate implementation of counting technique later. The rederivation technique
of [163] will require distributed computation of maintenance queries, and hence,

CHAPTERS5. Provide Easy Programming Paradigm 142

will result in a lot of communication overhead. However, the technique of keeping
the actual set of derivations (as described below) incurs no additional communica-
tion overhead and guarantees correctness. Storage of set of derivations does incur a
space overhead, which may be minimal if most tuples have only a small number of
derivations.

Definition 52 Source Node; Tuple ID; Derivation of a Tuple. Source node of a
tuple is the node in the network where the tuple is generated (for a base tuple) or
hashed (for a derived tuple). We uge) to denote the source node of a tuple

The tuple-ID is an identifier that uniquely identifies each tuple in a (base or
derived) data stream. For our purposes, we (kg),1;) as the ID of a tupld,
wherert; is at local timestamp 4lt(t) when the tuplé wasinserted

A derivation of a derived tupleis thelist of tuple IDs, one from each of the
operand streams, that match/join to yidld Note that a tuple may have multiple
different derivations. In a general deductive program, a derivationioludes the
rule-ID used to derive the tuple, but does not include the tuple IDs corresponding
to negated subgoals. Due to recursive rules, a derivation may include a tuple-1D
from the same table as

Now, to accurately maintaif = R; X Ry... X R, in response to deletions
from an operand stream, we store (and maintagtof all derivations with each
tuple inT. When a tupld; is deleted fromRy, we computel; =t1 X Ry... X R,
along with the derivation of each tupleTa. Then, for each derived tupten T, we
subtract the set of derivations bin T; from the set of derivations dfin T. Set of
derivations are similarly maintained in response to insertions into operand streams.
The tuplet is deleted from (inserted into) frofm if the resulting set of derivations
of t becomes empty (non-empty) (see proof in Theorem 53). The computation of
Ty constitutes the join-computation phase for deletiom ofin the storage phase,
the tuplet; is deleted from all the nodes where it was stored in the storage phase of
its insertion (i.e., from all the nodes on the horizontal line at its source node, in case
of PA). Note that a deletion of a derived tuple occurs only at its source node (due to
the hashing scheme).

Theorem 53 (1) A tuple is inserted only at the insertion of the first derivation; (2)
a tuple is deleted only at the deletion of last derivation.

CHAPTERS5. Provide Easy Programming Paradigm 143

Proof. (1) Itis easy to easy that the first derivation of a tuple means the creation of
a new tuple. Since the join results are stored as a set, other derivations of the same
tuple would not result in the insertion of that tuple.

(2) Atuple needs to be deleted if it has no derivations any more, so it should be
deleted when its last derivation is deleted. To prove the second part of the theorem,
we also need to prove that the tuple can still be derived when some derivations
(but not the last one) are deleted. Since we restricted ourself to instance-acyclic
logic programs, each tuple at tné strata only depends on tuples at the same or
lower level stratum. For a derivatidd = <r1,rp,...,r,>, rj corresponds to either
a ground atom or a tuple with derivatiogs,r5, ..., ry,>, ands(r{) <= r;) (S(r)
denotes the strata level of. Since there are finite number of predicate instances at
each level of strata and no instance cycles, if we substitutereeatursivelyy; can
be eventually represented by a set of ground atoms. Therefore, as long as a tuple
has some derivations, that means it can still be derived by a set of ground atoms,
which validates its existence.

I

Deductive Rule with Negated Subgoals.We now generalize our approach to
maintain a query resull represented by a safe deductive rule with negated sub-
goals. Let

T:- Ry...,R,, NOT S,...,NOT S,

Above, eachR; or S; (not necessarily distinct) is a data stream in the sensor
network. As mentioned in Definition 52, a derivation of a tuple contains tu-
ple IDs corresponding to only the positive subgoals. For a safe rule, such a
derivation list uniquely defines the derived tuple. To maintaéinin response

to an isolated insertion/deletioj into the streamR;, we first computeT] :
—11,R2,Rs,..., Ry, NOT S, ..., Sy (along with the derivation of each tuple T{)

as follows. Essentially, in the join-computation phase, we compute and propa-
gate partial results df MR, X ... X R, (join of only the positive subgoals), and
delete partial or complete results that match with a tuple from sgm&hen, we
add/subtract (for insertion/deleti®}) the set of derivations iii; from the original

set of derivations iT. Similarly, to process an isolated insertion/deletion fri$m

we first computel® = Ry,..., Ry, t,NOT S,...,NOT S, and then add/subtract

CHAPTERS5. Provide Easy Programming Paradigm 144

the set of derivations from the original set of derivationsl'in To maintainT in
face of simultaneous updates across the network, we use the following strategy.

e Suppose the difference between local clocks of any pair of nodes is bounded
by At.. For a tuple inserted into or deleted from a data stream, we start its
join-computation phase after the completion of its storage phase, and wait
for At time, i.e., the join-computation phase starts after At time. The
inserted tuples are kept fay, + 1s+ 1j + At time before expiration. For a
deleted tuple, the tuple is first marked as “deleted” and physically deleted
from the local memory after, + 1s+ 1j + At time.

¢ In the join phase, a new tuple with timestamginsertion or deletion) only
matches with tuples with timestamps beford he following theorem proves
the correctness of the above strategy.

Theorem 54 The above described strategy correctly maintains the query result
T:- Ry,...,R,, NOT S,...,NOT S,

in face of simultaneous updates to the given operand streams, under bounded mes-
sage delays.

Proof. LetRy,...,Ry,S.,...,Sn denote the sliding windows of the respective
streams an® = <ry,r»,...,r,> denote a possible derivation of some tuplelere,
eachr;j is a tuple-ID of a tuple irR;, andri may be equal to; fori # j. We show
that our described strategy for handling simultaneous updates correctly maintains
the query-result, by showing that the insertion and deletioD can be correctly
maintained by handling updatesmfands;.

Let B be the tuple (corresponding to anor ans;j) with timestampt whose
join-computation phase was completed the last among all siscands;j’s. Such
a tupleB exists, due to our update strategy. Since the join-computation phdse of
starts atr + 15+ At, at that time, all inserted tuples with timestamp befotewve
been stored, sB can find all matches. In particular,

e If B corresponds to an insertion gf and nos;j’ is matched, the would be
inserted; otherwise, no change happens.

e If B corresponds to an deletion Bf and nos;’ is matched, the would be
deleted; otherwise, no change happens.

CHAPTERS5. Provide Easy Programming Paradigm 145

e If B corresponds to an insertion sf, and allri’s have been inserted, thén
would be deleted; otherwise, no change happens.

¢ If B corresponds to an deletion sf, and allri’s have been inserted, thén
would be inserted; otherwise, no change happens.

In summary, the derivatioB is indeed computed during the join-computation phase
of B, and hence, correctly updated.
Together with Theorem 53, the evaluation strategy correctly maintains query
results.
L]

Multiple Rules with Common Head Predicate.In the above paragraphs, we have
outlined a generalized Perpendicular Approach that maintains a query result repre-
sented by a single non-recursive deductive rule (with negated subgoals), in response
to simultaneous insertions or deletions to operand tables. Such a scheme can be eas-
ily generalized to maintain a deductive program consisting of mul tiple deductive
rules (with negation over base tables) with the same head predicate. Essentially, we
assign a unique ID to each deductive rule, and include the rule-ID in the derivation

of each result tuple. Then, maintenance of a program with multiple deductive rules
becomes equivalent to maintaining each rule independently.

Incorporating RecursiomAs mentioned before, the query-result tuples are hashed

to appropriate locations in the network. Thus, the query result can be looked upon
as a (derived) stream of tuples distributed across the network, with insertions and
deletions occuring across the network. A tuple in the output result is considered to
be generated/deleted at the hashed location only when the set of derivation changes
from null to non-null and vice-versa. The above facilitates evaluation of recursive
deductive rules, as long as the negation is only over base data streams, since the re-
cursive subgoal can be treated just like any operand stream. Here, the derivation of
a result tuple may contain the tuple ID of a tuple from the same table. However, the
number of derivations of any tuple will still be finite (even for recursive programs).

General Single-Stratum Programs. Above, we have described that our scheme
works for incremental evaluation of queries represented by (a union of) multiple
deductive rules, with recursion and/or negation as long as the negation is over base
streams. Generalization of the scheme and the correctness argument, for a general

CHAPTERS5. Provide Easy Programming Paradigm 146

single-stratum deductive program is straightforward. In a single-stratum deductive
program, there may be multiple deductive rules with negation and/or recursion,
but the negation is only over the base data streams. Essentially, each defined IDB
(derived view) is hashed/stored appropriately across the network, and treated as
a data stream. The correctness of the approach follows from the previous result
(Theorem 54) and the fact that the number of derivation of any tuple always remain
finite (for programs without function symbols).

General Stratified (Multiple Strata) Logic Programs. Itis interesting to note that

the above scheme also works for general stratified (in particulaX Yestratified)
programs due to the following observation. Consider the set of predi€atesing

derived by theit" stratum. By the definition of strata, each negated subgoals in (the
rules defining)?, is over a predicate from a lower stratum. Moreover, the lower-
stratum predicates can be essentially looked upon as base predicates/tables for a
higher-stratum. In other words, higher-strata predicates are essentially recursive
programs with negation over only lower-strata predicates which can be considered
as based tables for higher-strata predicates. Thus, higher-strata predicates can be
maintained due to updates (insertions or deletions) in the lower-strata predicates
exactly as outlined before. Note that the change in the set of derivations for each
tuple in the lower-strata iaot required to be propagated to the higher-strata; we
only need to propagate actual insertions (when the set of derivations changes from
null to non-null) and actual deletions (when the set of derivations changes to null)
to the higher-strata predicates.

The above facilitates asynchronous computation of fixpoint, i.e., we don’t need
to wait for the fixpoint of lower-strata predicates to be reached (which never hap-
pens, due to the streaming base data) before evaluating higher-strata predicates.
However, a deduced fact in a higher-strata predicate may have to be later re-
tracted/deleted due to updates in the lower-strata; or, we could wait for certain time
before “finalizing” a fact. The latter is acceptable/reasonable due to bounded-size
sliding windows [36, 37] for streams and implicit temporal correlation in sensor
data. Our correctness arguments and claims essentially guarantee that the fixpoint
will eventually be reached if and when the streaming base data stops.

Other Generalizations. The above scheme can be easily generalized to handle
built-in functions, since the evaluation of join-conditions and execution of built-in

CHAPTERS5. Provide Easy Programming Paradigm 147

functions is done only locally. For the same reason, incorporating function symbols
in deductive rules only requires extending the evaluation of join-condition using the
term-matching operator. However, introduction of function symbols in deductive
programs gives rise to many issues such as non-termination of programs, infinite
derivation sets, difficulty in optimizing programs.

Aggregates are typically represented in logic rules by using the Prolog’s all-
solutions predicate to construct a list of values to be aggregated, then, computing
the desired aggregate. However, an efficiemplementatiorshould aggregate the
elements iteratively (for incremental aggregates) without actually constructing the
list. Thus, we would use TAG [14] or fault-tolerant synopsis diffusion [19] tech-
niques for incremental aggregates (without actually constructing the list). For non-
incremental aggregates, we need to first construct the list.

5.3.2 System Architecture

In this subsection, we give an overall architecture of our system for in-network
processing of logic queries, and address memory requirements of our system.

Overall Query Processing Architecture.Figure 50 depicts our overall system ar-
chitecture and high-level plan of in-network evaluation of logic queries. Basically,
the user specifies a deductive program, consisting of Datalog-like logic rules pos-
sibly, with recursion XY-stratified negation, function symbols, lists and Prolog’s
all-solutions predicates (to represent aggregates succinctly). The user specified
logic-program is first optimized using magic-set [161] transformations, and then
translated into machine code which represents distributed bottom-up incremental
evaluation of the given user program. The compiled code is then downloaded into
each sensor node. Within each sensor node, there is a layer of in-network imple-
mentations of relational operators (such as join), aggregates, and built-in predi-
cates/functions. The above layer is in addition to the usual layers of routing and
networking layers.

Memory Requirements. Currently available sensor nodes (motes) have 4 to 10
KB of RAM and 128 KB or more of on-chip flash memory. The memory capacities
have evolved over years [164], and latest Intel mote is being designed with 64 KB
RAM [3]. In our system, the user program essentially consists of the generic join

CHAPTERS5. Provide Easy Programming Paradigm 148

% -

|

|

I Bottom-up Control

Logic Program I Other Layers Control

Central |

|

|

|

|

Sensor Node

|

|

|
|

|

|
Frapments, Control |
Base Facts Structures/Data |
|

|

|

|

|

|

|

Vlews
Magic || Sets Server

Transformed Rules El‘;
—|=

Flash (Code space)

User Program

‘ Relational Ops, Agsregates, ‘

Compiled Code and Built-in Functions

|

. I
for distributed bottom-up | ‘Networking, Routing, Protocols ‘
incremental evaluation u |

Figure 50: System Architecture.

interface, the list of join-conditions for the deductive rules, and code for the built-in
functions. This is in addition to the other networking layers. A typical on-chip flash
memory is large enough to easily contain the native code for various system layers
and the user program.

Now, the strain on sensor nodes’ main memory is due to (i) run-time control
structures used by various system layers and the bottom-up approach, and (ii) ma-
terialization of views (i.e., storage of intermediate derived facts) during execution
of user program. Note that the list of join-conditions are read-only part of the user
program, and hence, can reside on the on-chip flash memory. During program ex-
ecution, we need to load into RAM only one rule’s join-condition list at a time.
Thus, the run-time control structures are expected to take minimal main memory.
The materialized views are stored in a distributed manner across the network. So,
the total main memory available for storing materialized views is the cumulative
main memory of the entire networkhus, we expect the available main memory
resources to be sufficient for most user programs. For instance, fogied pro-
gram of Figure 52(a), the materialized views &tgH’, andJ, and based on the
storage scheme discussed in Section 5.4, eachystbees only tuples of the form
H(_.y,), J(x,_) or H'(y,_) wherex is a neighbor ofy. Thus, the total number of
tuples stored at any node is at most 2 to 3 times its degree. In a stable state, each
node contains a single tuple bff. Note that in general the materialized views are
required for communication efficiency and are inherent to the user program, rather
than the programming framework. Since views are maintained as sliding windows,
the space required for materialized views can be adjusted depending on the available

CHAPTERS5. Provide Easy Programming Paradigm 149

memory and desired accuracy of results. In addition, the techniques for selection
of views to materialize can be used to further satisfy the given memory constraints
while maintaining sufficient accuracy of results.

Computation Load of Our Approach. Most of the processing in our system is

in the form of distributed evaluation of logic rules or local built-in functions. The
bottom-up evaluation of logic rules requires simple local operations such as term-
matching [161], join-predicate evaluations, arithmetic comparisons, etc., and hence,
result in minimal processing load. The processing load due to arithmetic-intensive
local built-in functions is inherent to a user program, i.e., largely independent of
the programming framework. Thus, our overall framework and approach is not
expected to increase the processing load on the network.

5.4 System Implementation and Performance Evalu-
ation

In this section, we present details of our current system implementation, and
present performance results that illustrate the efficacy of our proposed approach and
guery evaluation techniques.

5.4.1 Current System Implementation

The main focus of our system is to automatically translate high-level user pro-
gram written in form of deductive rules to nesC code that runs on individual sensor
nodes. The generated code must represent our outlined query evaluation strategy.
In particular, we translate a given user program into distributed nesC code as fol-
lows. First, we developed nesC interface components for various in-network join
implementations corresponding to the Naive Broadcast, Local Storage, and Perpen-
dicular Approaches as described in Chapter 2. These components reside on each
node, and are very generic, i.e., do not need to be changed (or newly generated)
for a specific user program. Any given user (deductive) program is now translated
into the database schema (list of predicates and attributes) and the list of deduc-
tive rules (i.e., the list of subgoals and join conditions for each rule). The list of

CHAPTERS5. Provide Easy Programming Paradigm 150

User Logic
Program
List of Hash
Tables |I Condition |
TNe\IN I Complete
upes Generic Join " Reslts
Partial Interface Partial
Results Results
Built-in
Functions

Figure 51: Thejoin interfaceat a sensor node. Newly generated (base or derived) tuples
are fed into the join interface, which generates partial and/or complete results by joining
with local tables. The complete results are sent tostheage interfacdor hashing, while

the partial results are forwarded to the next node on the vertical path (for the Perpendicular
Approach). Partial results received from other nodes are treated similarly. In addition,
newly generated tuples are also routed for storage.

rules and join-conditions are used by the generic join implementation to evaluate
the predicates in the program. See Figure 51. Our current version of the system
can handle general deductive programs without function symbols. In addition, the
current implementation handles simple arithmetic built-in functions and predicates
such as addition, subtraction, equality, less than, etc. In the current implementation,
the hashing scheme of the derived results (i.e., the choice of join-attribute to use for
geographic hashing) is given by the user.

The current implementation has been written in nesC and tested on TOSSIM,
and the Perpendicular Approach join implementation is based on a 2D grid topol-
ogy. In the immediate future implementations, we plan to (i) incorporate the gener-
alized version of Perpendicular Approach join-implementation for arbitrary topolo-
gies, and (ii) incorporate use of arbitrary user-defined built-in functions (written in
procedural code), aggregations, and function symbols.

Comparison of Program SizesIn general, the deductive programs are expected to
be much shorter and compact (few logic rules) compared to the corresponding nesC
code. However, logic programs are sometimes non-intuitive to write. As such de-
ductive framework is targeted towards expert and trained users, for whom the relief

CHAPTERS5. Provide Easy Programming Paradigm 151

from worrying about low-level hardware and optimization issues would far offset
the burden of writing a logic program. The size of the generated/translated nesC
code is of not much relevance to the performance comparison — since the trans-
lation is done automatically and a typical flash memory of a sensor node is large
enough to easily store the executable of resulting program code. In our framework,
the generated code essentially includes the set of join conditions and the procedural
code for user-defined built-in functions; the code for the join implementation is
common to all user programs.

5.4.2 Performance Evaluation

In this subsection, we present our simulation results for implementation of
one of the deductive program examples. In particular, we present our results for
thelogicH program of Example 50 for the shortest path tree. [BgecH program
of Example 50 incorporates quite a non-trivial combination of negation and recur-
sion, and the resulting query evaluation algorithm is quite different from the native
implementation.

Evaluations of other program&ther examples of deductive programs from Sec-
tion 5.2.2.1 naturally yield communication-optimal translations. For instance, in the
program of Example 48, if we use a hashing scheme suclthat_), U (i, _,) and
Z(i,_,) are stored at node each tuple only costs one transmission (one broadcast
to all neighbors), which results in essentially the same algorithm and performance
as the distributed code in a procedural language. Similar argument and analysis
holds for the other programs shown in Section 5.2.2.1 and also other programs.
Below, we start with discussing details of the distributed evaluatidoagpéH
program, and then, present simulation results comparing the performance of the
code translated from the deductive program with the procedural (nesC) program.

Distributed Evaluation of logicH Program. For convenience, we repeat the
logicH program here; recall th&dgicH can handle general graphs with cycles.
logicH Program:

H(A,A,0).

H(A X, 1) i — G(AX)

H(y,d+1) :— H(y.d),[d+1)>d,H(xd),6(xy)
H(x,y,d+1) : — G(x,y),H(-,x,d), NOT H(y,d+1)

CHAPTERS5. Provide Easy Programming Paradigm 152

Hashing Schemes, and Join Strategyne above logicH program produces a
shortest-path tree rooted at node We assume that the faG(x,y) is available
(stored) at both the nodesandy, which essentially means that each node is aware
of its immediate neighbors. Singeis the only join-attribute irH (x,y,d), a tuple
H(x,y,d) is hashed to the node Similarly, a tupleH’(y,d) is hashed to the node

Based on the above hashing scheme, all pairs of joining tuples reside in neighboring
nodes.

Naive-Broadcast Approacii.he Naive-Broadcast Approach of evaluating the
joins in the third and four rules dingicH entail that one of the tables be broadcast
to neighboring nodes, while the other table be stored locally at each node. Thus, we
broadcast and store each tuplé ,y,) at all the neighbors of. Thus, the above ap-
proach requires only one message transmission for each update (insertion/deletion
of tuple) intoH tables. The above hashing scheme and broadcast strategy means
thatH’(y,) andH(_,y,) can derived at their hashed locations itself. Thuspifig
communication cost incurred in the entire evaluation of the logic program is the
replication of eachH to the neighbors of the generating node.

Perpendicular Approach.In the Perpendicular Approach, tuples are stored
and propagated for join-computation along horizontal/vertical paths. During the
join-computation phase of a rule involving a negated subgoal, we first compute the
complete result corresponding to the positive subgoals, and then, check for exis-
tence of tuples corresponding to the negated subgoals at the hashed location. For
instance, in the case of thegicH program,H(_,y,d) is inserted after checking if
there is aH’(y,d) aty.

Distributed EvaluationFor thelogicH program, initially, the nodé@ generates the
factH(A, A, 0) using the first logic rule, and each neighbxasf A then generates a
factH(A, x,1) using the second rule. Recall that derivation of a new fact is looked
upon as generated at ilmshednode. Thus, based on our hashing strategy, the
factH (A, A, 0) is considered to be generated at nddandH (A, x,1) is considered

to be generated at noce In the Naive-Broadcast approach suggested in previous
paragraph, each insertion or deletion oftrtuple is broadcast to the neighbors
of the generating node. Such a broadcast oHan _,|) tuple may result in new
derivations of soméd’(_,1 + p) tuple (p > 0; due to the third logic rule) and/or
someH (_,_,l1 + 1) tuple (due to the fourth logic rule). If the set of derivations of

CHAPTERS5. Provide Easy Programming Paradigm 153

a tuplet becomes non-empty from empty in the above process, then thettigple
considered to be an insertion to the corresponding table. Insertiod'@¢f d) tuple
may result in deletions of a tuplé(_, _,1) due to the fourth logic rule. Since the
given program isXY-stratified with finite strata (bounded by the diameter of the
network), the above process is guaranteed to terminate to a fixed point.

Optimization.ThelogicH program for shortest path tree can be optimized by
a simple aggregation or “pushing down projection.” Note that the evaluation of
the third and fourth logic rules itogicH is independent of the value of the first
argument of the subgoal predicatésThus, we do not need to process an insertion
H(z x,d), if there already exists a tuplé(Z,x,d). Thus, we need to only process
insertions or deletions af(y,d) whereJ(y,d) : — H(x,y,d). We can thus rewrite
thelogicH program as follows.

logicJ Program:

H(AA,0).

H(A,x, 1) — G(AX)

‘J(y7d) L= H(Xay>d)

H'(y,d+1) = J(y,d), (d+1) > d',J(x,d),G(xY)
H(x,y,d+1) — G(x,y),J(x,d), NOT H(y,d+1)

Simulation Results.We now compare the performance of our translated/generated
code for thdogicH andlogicJ programs with the optimized distributed code written
in nesC.

Simulation Setup, Various Programs, and Performance Met¥esrun our simu-
lations using the TOSSIM simulator on a sensor network with a grid topology. Un-
less being varied, the total number of nodes is chosen to be 497ir Agrid
network). In certain simulations, we vary the message loss probability to compare
the robustness of various approaches. We simulate a message loss probability of
by ignoring a message at the receiver with a probabilit.of

We compare the performance of various programs using two performance met-
rics, viz., theresult inaccuracyandtotal communication costHere, we define the
result inaccuracyas the ratio of the number of missed shortest paths over the total
number of shortest paths computed by a centralized program.

In our simulations, we compare the performance of three programs: the opti-
mized distributed nesC code, generated code folodieH program, and generated

Result inaccuracy (%)

CHAPTERS5. Provide Easy Programming Paradigm 154

code for thdogicJ program. In both the above generated codes, we use the Naive-
Broadcast Approach of join computation, because of just 1-hop spatial constraint
of the joins involved. In addition, we show the effectiveness of the Perpendicu-
lar Approach of computing join by simulating the programs for larger “transitivity
factor.”

Varying Message Loss Probability this first set of experiments, we vary the mes-
sage loss probability and compare the result inaccuracy of various programs in net-
works with different size. First, we confirmed that when there are no message
losses, the accuracy of the result is 100% for all the programs. In Figure 52, we
observe that the generated code for lilgicH andlogicJ programs (with Naive-
Broadcast Approach of join computation) compute al@@36correct shortest paths

for message loss probability upi6% The result inaccuracy continues to increase
with increase in message loss probability. However, we observe that the perfor-
mace of the translated code is close to the procedural code, and logicH is even more
robust (i.e., have a lower result inaccuracy value) than procedural code for small
values of message loss probability.

w
o
w
o
w
o

Il ogicH Ml ogicH 5IogicH
[Clogicd [Jlogicd logicJ
Il Procedural code Il Procedural code Il Procedural code

N
3]
N
(&)

= N
(4] o
N
o

[N
o

10

Result inaccuracy (%)
=
o

H
(%))

Result inaccuracy (%)
-
[$;)

(4]
(4]
o

2

2 4

4 6 8 10 6 8 10 2 4 6 8 10
Message loss probability (%), 25 nodes Message loss probability (%), 49 nodes Message loss probability (%), 64 nodes

Figure 52: Effect of message loss probability on result inaccuracy, for varying network
sizes.

Varying Network Sizeln Figure 53, we plot the total communication cost incurred
by various programs for varying network size. We observe that the total commu-
nication cost incurred by all programs is largely proportional to the total number
of nodes in the network. Moreover, the generated codegofgicH and logicJ
programs (with Naive-Broadcast Approach) perform close to the procedural code,
with logicJ performing much better . The communication cost incurretbgicJis
about twice as that of procedural code, due to the insertions and deletidfyst

Total communication cost

CHAPTERS5. Provide Easy Programming Paradigm 155

The total communication cost of all approaches deceases when the message loss
probability increases.

Varying Transitive Factorin this set of experiments, we modify the various pro-
grams to compute shortest-path trees(for variousk), whereG is the network
graph andG¥ is defined as the graph wherein there is an edge between any two
nodesx andy that are withink-hops in the network grap®. We refer tok as

the transitive factor Note that here we are only changing the definition of what

a shortest-path tree is, while keeping the network graph (transmission radii and
neighborhoods of each node) the same. Our logic programs can be easily changed
to reflect the above. In Figure 54, we show the effeck @n the total commu-
nication cost incurred by various programs for computing the shortest-path tree in
GX for varyingk. We focus on comparing the performance of Perpendicular and
Naive-Broadcast here. We notice that the communication cost of both approaches
increases with increase K This is because with the increasekinthe number

of paths with shortest length increases which results in more numbe(o¥, d)

tuples for the samg andd. However, PA grows slower than Naive-Broadcast,
and eventually beats Naive-Broadcast wken 4, which suggests that PA is more
suitable for join operators that involve far-apart tuple matching.

1000 1000 1000
Il logicH Il logicH
gool [JlogicJ 800 [Jlogicd
Il Procedural code IlProcedural code

Il logicH
800 [Jlogicd
Il rrocedural code

600 600 600

400 400 400

flflil ”Z;.MHl “ad

16 25 36 81 16 25 81 16 25 36 81
Number of nodes (P 0) Number of nodes (P 5%) Number of nodes P= 10%)

201

o
Total communication cost

Total communication cost

o

Figure 53: Total communication cost incurred by various programs for varying network
size, for three different message loss probabilities.

Summary of Simulation Results.From the above simulations, we can see that the
code translated from the logic program would produce correct results, at the same
time, results in similar communication cost as the native implementations. For ap-
plications with local join, Naive Broadcast would be the best choice, while PA is
expected to outperform other approaches in a large scale network with multi-hop

CHAPTERS5. Provide Easy Programming Paradigm 156

1000

[l Perpendicular Approach
800; M Naive Broadcast

6001

400r

Average cost per node

2007

1

2 3 4
Transitive factor (k)

Figure 54: Average communication cost per node incurred by the generated code using
Naive-Broadcast and Perpendicular Approach for varying transitive factor.

tuple matching. One additional feature of the deductive approach is its robustness,
which is an important factor in failure-prone sensor networks. In addition, we ob-
served that the main-memory used at each node fdogieH andlogicJ programs

were minimal (8-10 tuples per node, with at most two derivations per tuple).

5.5 Discussions

We proposed and motivated the deductive framework, and designed a full-
fledge query engine for in-network evaluation of deductive queries in a sensor net-
work. We presented implementation details of our system that compiles a given
user deductive program into distributed code that runs on individual nodes. There
are many challenges that need to be addressed for an optimized (in terms of main
memory usage and communication efficiency) implementation of an in-network
deductive query engine, including (i) Efficient implementation of the counting ap-
proach for incremental maintenance of join queries; such an implementation is un-
likely to be fully accurate but will have minimal space overhead, (ii) Automatic
determination of attributes to use for hashing derived results to minimize overall
communication cost, (iii) Efficient implementation of the Rederivation approach
of [163] which will pave the way of in-network evaluation of general deductive
programs, with locally-stratified [159] negation, and (iv) The problem of selection
of views to materialize in the context of sensor networks. The above challenging
issues are of great interest to us, and will be addressed in future works.

Chapter 6
Conclusions

Wireless sensor network is a rapid growing area. It contains rich research
problems, requires multi-disciplinary knowledge and enables collaboration among
multiple fields, including networking, database, geometry, signal processing and
security, etc.

This dissertation focused on exploring the full potentials of sensor networks as
data processing engines by investigating on key challenges in collaborative process-
ing and query evaluation. We remark that the techniques we discussed in this dis-
sertation aim to provide high-level abstract of functionalities of sensor networks
as collaborative processing engines. While the sensor networks become more and
more heterogeneous with a mix of various devices of different capabilities, our tech-
niques should be thought of as virtual abstracts that can be implemented on top of a
hierarchical and heterogeneous physical network. More powerful nodes can easily
simulate these algorithms and act as proxies for sets of mote-level nodes.

Information processing is a fundamental problem for sensor networks due to
its inherited data-centric feature. With the flourish of new novel applications, it is
worth continuing on improving the accessibility, interactivity and shareability of
sensor data, to server more diverse communities of end users. Along that direc-
tion, lots of interesting problems are worth pursuit, e.g., multi-query optimization,
mobility-aided information processing, security and privacy issues of data com-
munication and sharing, etc. The techniques proposed in this dissertation form
foundations for future researches and exploration.

157

Bibliography

[1] “Crossbow technology, inc.” http://www.crossbow.com.
[2] “Sun spot project.” http://www.sunspotworld.com/.
[3] Intel Research, “Intel mote,” http://www.intel.com/research/exploratory/motes.htm.

[4] G. J. Pottie and W. J. Kaiser, “Wireless integrated network send0osyi-
munications of the ACMol. 43, no. 5, pp. 51-58, 2000.

[5] D. Estrin, R. Govindan, and J. Heidemann, “Embedding the internet: Intro-
duction,”Communications of the ACMol. 43, no. 5, pp. 38—41, May 2000.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century chal-
lenges: Scalable coordination in sensor networks,Praceedings of the
ACMI/IEEE International Conference on Mobile Computing and Network-
ing, August 1999, pp. 263-270.

[7] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduction:
Overview of sensor networks|EEE Computervol. 37, no. 8, pp. 41-49,
August 2004.

[8] “Motive, inc.” http://www.moteiv.com/.
[9] “Nokia’s sensorplanet. http://www.sensorplanet.org.”
[10] “Microsoft sensormap. http://atom.research.microsoft.com/sensormap/.”

[11] “http://www.greatduckisland.net/.”

158

CHAPTERG6. Conclusions 159

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An
analysis of a large scale habitat monitoring application3@&mSys '04: Pro-
ceedings of the 2nd international conference on Embedded networked sensor
systems2004, pp. 214-226.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity
and yield in a volcano monitoring sensor network,”@%DI '06: Proceed-

ings of the 7th symposium on Operating systems design and implementation
2006, pp. 381-396.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networR&M SIGOPS Operating
Systems Reviewol. 36, no. S, pp. 131-146, 2002.

Y. Yao and J. Gehrke, “The cougar approach to in-network query processing
in sensor networksACM SIGMOD Recorgvol. 31, no. 3, pp. 9-18, 2002.

Y. Yao and J. E. Gehrke, “Query processing in sensor network€JxR’03:
Proceedings of the First Biennial Conference on Innovative Data Systems
Research2003.

O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,

R. Govindan, and E. Kohler, “The tenet architecture for tiered sensor net-
works,” in SenSys '06: Proceedings of the 4th international conference on
Embedded networked sensor syste2086, pp. 153 — 166.

N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and be-
yond: new aggregation techniques for sensor network§emSys '04: Pro-
ceedings of the 2nd international conference on Embedded networked sensor
systems2004, pp. 239-249.

S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis diffusion
for robust aggregation in sensor networks,”"SenSys '04: Proceedings of
the 2nd international conference on Embedded networked sensor systems
2004, pp. 250-262.

CHAPTERG6. Conclusions 160

[20] H. Breu and D. G. Kirkpatrick, “Unit disk graph recognition is np-hard,”
Comput. Geom. Theory Applol. 9, no. 1-2, pp. 3—24, 1998.

[21] L. Barriére, P. Fraigniaud, and L. Narayanan, “Robust position-based routing
in wireless ad hoc networks with unstable transmission range&IALM
'01: Proceedings of the 5th international workshop on Discrete algorithms
and methods for mobile computing and communicatigfel, pp. 19-27.

[22] F. Kuhn and A. Zollinger, “Ad-hoc networks beyond unit disk graphs,” in
DIALM-POMC '03: Proceedings of the 2003 joint workshop on Foundations
of mobile computing2003, pp. 69-78.

[23] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable
simulation of entire tinyos applications,” 2003.

[24] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Processing complex
aggregate queries over data streamsSiGMOD '02: Proceedings of the
2002 ACM SIGMOD international conference on Management of, @92,
pp. 61-72.

[25] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “The design of an ac-
quisitional query processor for sensor networks SiIGMOD’03: Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management
of Data, 2003, pp. 491-502.

[26] D. Donoho, “Compressed sensintEE Transactions on Information The-
ory, vol. 52, no. 4, pp. 1289-1306, 2006.

[27] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database systems,” in
MDM '01: Proceedings of the Second International Conference on Mobile
Data Managemenf001, pp. 3-14.

[28] D. A. Schneider and D. J. DeWitt, “A performance evaluation of four parallel
join algorithms in a shared-nothing multiprocessor environment,” vol. 18,
no. 2, 1989, pp. 110-121.

CHAPTERG6. Conclusions 161

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

K.-L. Tan and H. Lu, “Processing multi-join query in parallel systems,” in
SAC '92: Proceedings of the 1992 ACM/SIGAPP Symposium on Applied
computing 1992, pp. 283-292.

J. P. Richardson, H. Lu, and K. Mikkilineni, “Design and evaluation of par-
allel pipelined join algorithms,” vol. 16, no. 3, 1987, pp. 399-4009.

H. Lu, M.-C. Shan, and K.-L. Tan, “Optimization of multi-way join queries
for parallel execution,” i'vLDB '91: Proceedings of the 17th International
Conference on Very Large Data Bas&891, pp. 549-560.

X. Zhu, H. Gupta, and B. Tang, “Join of multiple data streams in sensor
networks,” Stony Brook University, Tech. Rep., 2007, http://www.cs.sunysb.
edu/*hgupta/ps/joinSN.pdf.

K. Fall and K. Varadhan, “Thens manual,” available from http://www-
mash.cs.berkeley.edu/ns/.

S. Rathasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,
“GHT: A geographic hash table for data-centric storage in sensornets,” in
Proc. 1st ACM Workshop on Wireless Sensor Networks ands Applications
2002, pp. 78-87.

A. Arasu, S. Babu, and J. Widom, “The cqgl continuous query language: se-
mantic foundations and query executiofifie VLDB Journalvol. 15, no. 2,
pp. 121-142, 2006.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and archi-
tecture for data stream managemeiitje VLDB Journglvol. 12, no. 2, pp.
120-139, 2003.

L. Ding, N. Mehta, E. Rundensteiner, and G. Heineman, “Joining punctuated
streams,” iIrEDBT’04: 9th International Conference on Extending Database
Technology2004, pp. 587-604.

CHAPTERG6. Conclusions 162

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong, “Model-
based approximation querying in sensor networ DB Journal no. 4, pp.
417-443, 2005.

H. Gupta, V. Navda, S. R. Das, and V. Chowdhary, “Efficient gathering of
correlated data in sensor networks, NtobiHoc '05: Proceedings of the 6th
ACM international symposium on Mobile ad hoc networking and computing
2005, pp. 402-413.

H. G. et al., “Deductive approach for programming for sensor net-
works,” Stony Brook University, Tech. Rep., 2007, http://www.cs.sunysb.
edu/~hgupta/ps/logicSN.pdf.

D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and
I. Stoica, “The design and implementation of a declarative sensor network
system,” inSenSys '07: Proceedings of the 5th international conference on
Embedded networked sensor syste2087, pp. 175-188.

B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declarative
routing: extensible routing with declarative queries,” StGCOMM ’05:
Proceedings of the 2005 conference on Applications, technologies, archi-
tectures, and protocols for computer communicatj@u5, pp. 289-300.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Ma-
niatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative networking:
language, execution and optimization,”$hGMOD ’'06: Proceedings of the
2006 ACM SIGMOD international conference on Management of, 28@6,

pp. 97-108.

S. Li, S. H. Son, and J. A. Stankovic, “Event detection services using data
service middleware in distributed sensor networks,” pp. 502-517, 2003.

L. Guibas, “Sensing, tracking, and reasoning with relatioiSEE Signal
Processing Magazinevol. 19, no. 2, 2002.

CHAPTERG6. Conclusions 163

[46] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, and
S. Shenker, “The sensor network as a database,” University of Southern Cal-
ifornia, Computer Science Department, Technical Report, 2002,

[47] S.Madden and J. M. Hellerstein, “Distributing queries over low-power wire-
less sensor networks,” BIGMOD '02: Proceedings of the 2002 ACM SIG-
MOD international conference on Management of d&@02, pp. 622-622.

[48] B. Bonfils and P. Bonnet, “Adaptive and decentralized operator placement
for in-network query processing,” iRroceedings of Information Processing
in Sensor Network2003, pp. 47-62.

[49] D. J. Abadi, S. Madden, and W. Lindner, “Reed: robust, efficient filtering
and event detection in sensor networks,MhDB '05: Proceedings of the
31st international conference on Very large data ba2€95, pp. 769-780.

[50] H. Gupta and V. Chowdhary, “Communication-efficient implementation of
join in sensor networks Ad Hoc Networksvol. 5, no. 6, pp. 929-942, 2007.

[51] A.Panditand H. Gupta, “Communication efficient implementation of range-
joins in sensor networks,” iIMASFAA'06: International Conference on
Database Systems for Advanced Applicati@@96, pp. 859-869.

[52] S. Y. Cheung, M. H. Ammar, and M. Ahamad, “The grid protocol: A high
performance scheme for maintaining replicated ddEEE Transaction on
Knowledge and Data Engineeringol. 4, no. 6, pp. 582-592, 1992.

[53] T. W. Yan and H. Garcia-Molina, “The sift information dissemination sys-
tem,” ACM Transactions on Database Systend. 24, no. 4, pp. 529-565,
1999.

[54] X. Liu, Q. Huang, and Y. Zhang, “Combs, needles, haystacks: balancing
push and pull for discovery in large-scale sensor networks3danSys '04:
Proceedings of the 2nd international conference on Embedded networked
sensor systems ACM Press, 2004, pp. 122-133.

CHAPTERG6. Conclusions 164

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R. Sarkar, X. Zhu, and J. Gao, “Double rulings for information brokerage in
sensor networks,” iMobiCom’06: Proceedings of the ACM/IEEE Interna-
tional Conference on Mobile Computing and NetworkiSgptember 2006,
pp. 286—297.

R. M. et al., “Query processing, resource management, and approximation
in a data stream management,”@DR’03: First Biennial Conference on
Innovative Data Systems Resear203.

D. Carney, U.CCetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: a new class
of data management applications,” Ww.DB ’'02: Proceedings of the 28th
international conference on Very Large Data Bas#302, pp. 215-226.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-
stein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah,
“TelegraphCQ: Continuous dataflow processing,” StGMOD’03: ACM
SIGMOD international conference on Management of da@03, pp. 668—
668.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: a scalable contin-
uous query system for internet databases3iGMOD’00: ACM SIGMOD
international conference on Management of d&@a00, pp. 379-390.

A. Das, J. Gehrke, and M. Riedewald, “Approximate join processing over
data streams,” ir8SIGMOD ’'03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of d&a03, pp. 40-51.

M. H. et al., “A stream database server for sensor applications,” Purdue Uni-
versity, Tech. Rep., 2002.

S. Madden and M. Franklin, “Fjording the stream: An architecture for
gueries over streaming sensor data, 1@DE’02: 18th International Con-
ference on Data Engineering@002, pp. 555-566.

CHAPTERG6. Conclusions 165

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor local-
ization for very small devicesJEEE Personal Communications Magazjne
vol. 7, no. 5, pp. 28-34, 2000.

B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for wire-
less networks,” infMobiCom ’00: Proceedings of the ACM/IEEE Interna-
tional Conference on Mobile Computing and Networki@§00, pp. 243—
254,

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based prstable distributions,” ir6CG '04: Proceedings
of the twentieth annual symposium on Computational geom2094, pp.
253-262.

J. Wu and J. Cao, “Connected k-hop clustering in ad hoc networksZRi®
'05: Proceedings of the 2005 International Conference on Parallel Process-
ing, 2005, pp. 373-380.

T. Ibaraki and T. Kameda, “On the optimal nesting order for computing n-
relational joins,”ACM Transactions on Database Systerd. 9, no. 3, pp.
482-502, 1984.

C. Intanagonwiwat, R. Govindanj, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networkdglom-
Com’00: Proceeding of the 6th Annual Int’l Conference on Mobile Comput-
ing and NetworkingAugust 2000, pp. 56—-67.

S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
centric storage in sensornet$CM SIGCOMM Computer Communication
Reviewvol. 33, no. 1, pp. 137-142, 2003.

J. Li, J. Jannotti, D. Decouto, D. Karger, and R. Morris, “A scalable location
service for geographic ad-hoc routing,” Rroceedings of 6th ACM/IEEE
International Conference on Mobile Computing and Network@0O0, pp.
120-130.

CHAPTERG6. Conclusions 166

[71] X. Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-dimensional range
gueries in sensor networks,” lroceedings of the first international con-
ference on Embedded networked sensor systerCM Press, 2003, pp.
63-75.

[72] S. Funke, L. Guibas, A. Nguyen, and Y. Wang, “Distance-sensitive routing
and information brokerage in sensor networks,DIBOSS’06: Proceedings
of IEEE International Conference on Distributed Computing in Sensor Sys-
tems July 2006, pp. 234-251.

[73] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination
model for large-scale wireless sensor networksMibiCom '02: Proceed-
ings of the 8th annual international conference on Mobile computing and
networking New York, NY, USA: ACM Press, 2002, pp. 148-159.

[74] 1. Stojmenovic, “A routing strategy and quorum based location update
scheme for ad hoc wireless networks,” SITE, University of Ottawa, Tech.
Rep. TR-99-09, September, 1999.

[75] Q. Fang, J. Gao, and L. J. Guibas, “Landmark-based information storage and
retrieval in sensor networks,” INFOCOM’'06: The 25th Conference of the
IEEE Communication Societjpril 2006, pp. 1-12.

[76] D. Braginsky and D. Estrin, “Rumor routing algorthim for sensor networks,”
in WSNA '02: Proceedings of the 1st ACM international workshop on Wire-
less sensor networks and applicatip602, pp. 22—-31.

[77] B. Nath and D. Niculescu, “Routing on a curv&CM SIGCOMM Computer
Communication Reviewol. 33, no. 1, pp. 155-160, 2003.

[78] H. S. M. Coxeter|ntroduction to Geometry2nd ed. New York: John Wiley
& Sons, 1969.

[79] P. SamuelProjective Geometry New York: Springer-Verlag, 1988.

[80] Q. Fang, J. Gao, and L. Guibas, “Locating and bypassing routing holes in
sensor networks,” itMobile Networks and Applicationsol. 11, 2006, pp.
187-200.

CHAPTERG6. Conclusions 167

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Y. Wang, J. Gao, and J. S. B. Mitchell, “Boundary recognition in sensor
networks by topological methods,” iMobiCom’'06: Proceedings of the
ACM/IEEE International Conference on Mobile Computing and Network-
ing, September 2006, pp. 122-133.

D. Jea, A. A. Somasundara, and M. B. Srivastava, “Multiple controlled
mobile elements (data mules) for data collection in sensor networks.” in
IEEE/ACM Int'| Conference on Distributed Computing in Sensor Systems
(DCOSS) 2005, pp. 244-257.

W. Lindner and S. Madden, “Data management issues in periodically discon-
nected sensor networks,” Rroceedings of Workshop on Sensor Networks at
Informatik 2004.

Z. Vincze and R. Vida, “Multi-hop wireless sensor networks with mobile
sink,” in CONEXT'05: Proceedings of the 2005 ACM conference on Emerg-
ing network experiment and technologyNew York, NY, USA: ACM Press,
2005, pp. 302-303.

A. Kansal, M. Rahimi, W. J. Kaiser, M. B. Srivastava, G. J. Pottie, and D. Es-
trin, “Controlled mobility for sustainable wireless networks, lHEE Sensor
and Ad Hoc Communications and Networks (SECON’2@p4, pp. 1-6.

R. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: Modeling a three-
tier architecture for sparse sensor networksJEREE SNPA Workshqoiay
2003, pp. 30-41.

E. M. Arkin and R. Hassin, “Approximation algorithms for the geometric
covering salesman problenDiscrete Appl. Math.vol. 55, no. 3, pp. 197—
218, 1994.

B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker, “DIFS:
A distributed index for features in sensor networks,Piroceedings of First
IEEE International Workshop on Sensor Network Protocols and Applica-
tions May 2003, pp. 163-173.

CHAPTERG6. Conclusions 168

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

J. Bruck, J. Gao, and A. Jiang, “MAP: Medial axis based geometric routing
in sensor networks,” iMobiCom '05: Proceedings of the ACM/IEEE Inter-
national Conference on Mobile Computing and NetworkiAggust 2005,

pp. 88—102.

L. J. Guibas, “Sensing, tracking and reasoning with relatio£E Signal
Processing Magazineol. 19, no. 2, pp. 73—-85, March 2002.

F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor collabo-
ration,” IEEE Signal Processing Magazineol. 19, no. 2, pp. 61-72, 2002.

J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,
“Tracking a moving object with a binary sensor network,”3enSys '03:
Proceedings of the 1stinternational conference on Embedded networked sen-
sor systems2003, pp. 150-161.

W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham, “On target tracking with
binary proximity sensors,” ilPSN '05: Proceedings of the 4th international
symposium on Information processing in sensor netw@@85, p. 40.

T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh, “Vigilnet:
An integrated sensor network system for energy-efficient surveillaACsVi
Transactions on Sensor Netwoyksl. 2, no. 1, pp. 1-38, 2006.

N. Shrivastava, R. M. U. Madhow, and S. Suri, “Target tracking with bi-
nary proximity sensors: fundamental limits, minimal descriptions, and algo-
rithms,” in SenSys '06: Proceedings of the 4th international conference on
Embedded networked sensor syste2086, pp. 251-264.

J. Liu, P. Cheung, L. Guibas, and F. Zhao, “Apply geometric duality to
energy efficient non-local phenomenon awareness using sensor networks,”
IEEE Wireless Communication Magazine, special issue on Wireless Sensor
Networks: Theory and Systendgcember 2004.

CHAPTERG6. Conclusions 169

[97] S. Funke and C. Klein, “Hole detection or: how much geometry hides in
connectivity?” inSCG '06: Proceedings of the twenty-second annual sym-
posium on Computational geometB®006, pp. 377-385.

[98] S. Funke, “Topological hole detection in wireless sensor networks and its ap-
plications,” inDIALM-POMC ’'05: Proceedings of the 2005 Joint Workshop
on Foundations of Mobile Computing005, pp. 44-53.

[99] S. P. Fekete, A. Killer, D. Pfisterer, S. Fischer, and C. Buschmann,
“Neighborhood-based topology recognition in sensor networks&ALGO-
SENSORSser. Lecture Notes in Computer Science, vol. 3121, 2004, pp.
123-136.

[100] S. P. Fekete, M. Kaufmann, A. Kller, and N. Lehmann, “A new approach
for boundary recognition in geometric sensor networksPrioceedings 17th
Canadian Conference on Computational Geome2605, pp. 82—85.

[101] A.Kroller, S. P. Fekete, D. Pfisterer, and S. Fischer, “Deterministic boundary
recognition and topology extraction for large sensor networksProteed-
ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms 2006, pp. 1000—1009.

[102] R. Ghrist and A. Muhammad, “Coverage and hole-detection in sensor net-
works via homology,” iInPSN’05: Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Netwa2k®5, pp. 254—-260.

[103] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond average:
Toward sophisticated sensing with queries,JRSN’03: Proceedings of In-
formation Processing in Sensor Netwqrkgril 2003, pp. 63-79.

[104] S. Gandhi, J. Hershberger, and S. Suri, “Approximate isocontours and spatial
summaries for sensor networks,”liBRSN '07: Proceedings of the 6th inter-
national conference on Information processing in sensor netwamd7, pp.
400-409.

[105] A. Hatcher,Algebraic Topology Cambridge University Press, 2002.

CHAPTERG6. Conclusions 170

[106] J. S. B. Mitchell, “A new algorithm for shortest paths among obstacles in the
plane,” Annals of Mathematics and Artificial Intelligenceol. 3, no. 1, pp.
83-105, 1991.

[107] “Contour tracking vedios: http://www.cs.sunysb.edxjzhu/contour.html.”

[108] R. Sarkar, X. Zhu, J. Gao, L. J. Guibas, and J. S. B. Mitchell, “Iso-contour
gueries and gradient routing with guaranteed delivery in sensor networks,” in
INFOCOM’'08: Proceedings of the 27th Annual IEEE Conference on Com-
puter Communication®pril 2008, pp. 960-967.

[109] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor netwaonksrha-
tional Journal of High Performance Computing Applicatipmsl. 16, no. 3,
pp. 90-110, 2002.

[110] J. Liu, F. Zhao, and D. Petrovic, “Information-directed routing in ad hoc sen-
sor networks,1EEE Journal on Selected Areas in Communicatjomd. 23,
no. 4, pp. 851-861, April 2005.

[111] J. Faruque and A. Helmy, “Rugged: Routing on fingerprint gradients in sen-
sor networks,” inCPS '04: Proceedings of the The IEEE/ACS International
Conference on Pervasive Servic2804, pp. 179-188.

[112] J. Faruque, K. Psounis, and A. Helmy, “Analysis of gradient-based routing
protocols in sensor networks,” DCOSS’05: IEEE/ACM Internationl Con-
ference on Distributed Computing in Sensor SystHe5.

[113] F. Ye, G. Zhong, S. Lu, and L. Zhang, “GRAdient Broadcast: A robust data
delivery protocol for large scale sensor networSCM Wireless Networks
(WINET) vol. 11, no. 2, March 2005.

[114] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore,
“Contour trees and small seed sets for isosurface traversa§C@ '97:
Proceedings of the thirteenth annual symposium on Computational geome-
try, 1997, pp. 212-220.

CHAPTERG6. Conclusions 171

[115] J. W. Milnor, Morse Theory Princeton, NJ: Princeton University Press,
1963.

[116] M. de Berg and M. van Kreveld, “Trekking in the alps without freezing or
getting tired,”Algorithmica vol. 18, pp. 306—-323, 1997.

[117] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all dimen-
sions,” InSODA'00: Proceedings of the eleventh annual ACM-SIAM sympo-
sium on Discrete algorithm2000, pp. 918-926.

[118] S. P. Tarasov and M. N. Vyalyi, “Construction of contour trees in 3D in
O(nlogn) steps,” inSCG '98: Proceedings of the fourteenth annual sympo-
sium on Computational geometr3998, pp. 68-75.

[119] P. Skraba, Q. Fang, A. Nguyen, and L. Guibas, “Sweeps over wireless sensor
networks,” inIPSN '06: Proceedings of the fifth international conference on
Information processing in sensor networke06, pp. 143-151.

[120] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed
delivery in ad hoc wireless network3fVireless Networksvol. 7, no. 6, pp.
609-616, 2001.

[121] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc
routing: Of theory and practice,” iRODC '03: Proceedings of 28 ACM
Int. Symposium on the Principles of Distributed Comput2@03, pp. 63—
72.

[122] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang, “GLIDER: Gradient
landmark-based distributed routing for sensor networkdNiFOCOM '05:
Proceedings of the 24th Conference of the IEEE Communication Society
vol. 1, March 2005, pp. 339-350.

[123] B. A. Bash, J. W. Byers, and J. Considine, “Approximately uniform random
sampling in sensor networks,” iDMSN '04: Proceeedings of the 1st in-
ternational workshop on Data management for sensor netw@@g4, pp.
32-39.

CHAPTERG6. Conclusions 172

[124] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic gossip:
efficient aggregation for sensor networks,”IRSN '06: Proceedings of the
fifth international conference on Information processing in sensor networks
2006, pp. 69-76.

[125] T. K. Dey, J. Giesen, and S. Goswami, “Shape segmentation and matching
with flow discretization,” InWADS '03: Proceedings of workshop on Algo-
rithms and Data Structure2003, pp. 25—-36.

[126] T. Sebastian, P. Klein, and B. Kimia, “Recognition of shapes by editing shock
graphs,” inlCCV '01: Proceedings of International Conference on Computer
Vision, 2001, pp. 755-762.

[127] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, “Shock
graphs and shape matching,1@CV '98: Proceedings of International Con-
ference on Computer Visiph998, pp. 222-229.

[128] F. F. Leymarie and B. B. Kimia, “The shock scaffold for representing 3d
shape,” inProceedings of 4th International Workshop Visual For2001,
pp. 216-228.

[129] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology match-
ing for fully automatic similarity estimation of 3d shapes,” ${tGGRAPH
'01: Proceedings of the 28th annual conference on Computer graphics and
interactive technique001, pp. 203-212.

[130] S. Funke and N. Milosavljevic, “Network sketching or: How much geometry
hides in connectivity?—part ii,” I8ODA '07: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorith@®07, pp. 958—-967.

[131] H.I. Choi, S. W. Choi, and H. P. Moon, “Mathematical theory of medial axis
transform,”Pacific Journal of Mathemati¢sol. 181, no. 1, pp. 57-88, 1997.

[132] A. Lieutier, “Any open bounded subset Bf' has the same homotopy type
than its medial axis,” ifSM '03: Proceedings of the eighth ACM symposium
on Solid modeling and application2003, pp. 65-75.

CHAPTERG6. Conclusions 173

[133] J. Elson, “Time synchronization in wireless sensor networks,” Ph.D. disser-
tation, University of California, Los Angeles, May 2003.

[134] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for
sensor networks,” irsenSys '03: Proceedings of the 1st international con-
ference on Embedded networked sensor sys2003, pp. 138-149.

[135] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: a survey[EEE Wireless Communicationgol. 11, no. 6, pp. 6—
28, 2004.

[136] Y. Shiand Y. T. Hou, “Approximation algorithm for base station placement
in wireless sensor networks,” BECON ’'07: Proceedings of IEEE Commu-
nications Society Conference on Sensor and Ad Hoc Communications and
Networks 2007, pp. 512-519.

[137] R. Chandra, L. Qiu, K. Jain, and M. Mahdian, “Optimizing the placement of
integration points in multi-hop wireless networks,” I[@GNP '04: Proceed-
ings of International Conference on Network Protoc@804, pp. 271-282.

[138] J. B. MacQueen, “Some methods for classification and analysis of multivari-
ate observations,” iRroceedings of 5-th Berkeley Symposium on Mathemat-
ical Statistics and Probabilityl967, pp. 281-297.

[139] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiquitous access to
distributed data in large-scale sensor networks through decentralized erasure
codes,” inProc. Symposium on Information Processing in Sensor Networks
(IPSN’05) April 2005, pp. 111-117.

[140] P. Skraba, Q. Fang, A. Nguyen, and L. Guibas, “Sweeps over wireless sensor
networks,” inIPSN '06: Proceedings of the fifth international conference on
Information processing in sensor network906, pp. 143-151.

[141] D. C. et al., “TinyOS,” http://www.tinyos.net, 2004.

[142] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The
nesC language: A holistic approach to networked embedded systems,” in

CHAPTERG6. Conclusions 174

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Proceedings of Programming Language Design and Implementation (PLDI)
2003.

M. Welsh and G. Mainland, “Programming sensor networks using abstract
regions,” iNNSDI'04: Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementa004, pp. 3-3.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighborhood
abstraction for sensor networks,”froceedings of the International Confer-
ence on Mobile Systems, Applications, and Sery@®&4, pp. 99-110.

S. R. Madden, J. M. Hellerstein, and W. Hong, “TinyDB: In-network query
processing in tinyos,” http://telegraph.cs.berkeley.edu/tinydb, 2003.

R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming wireless
sensor networks using kairos,” MCOSS’05: International Conference on
Distributed Computing in Sensor Syste2305.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and |. Stoica,
“Implementing declarative overlays3IGOPS Oper. Syst. Regvol. 39, no. 5,
pp. 75-90, 2005.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: A mechanism for integrated communication and computation,” in
19th International Symposium on Computer Architegt@eld Coast, Aus-
tralia, 1992, pp. 256—-266.

R. Newton and M. Welsh, “Region streams: functional macroprogramming
for sensor networks,” iIDMSN ’04: Proceeedings of the 1st international
workshop on Data management for sensor netwd84, pp. 78-87.

E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: a programming model
for event-driven embedded systems,”"SAC '03: Proceedings of the 2003
ACM symposium on Applied computjriap03, pp. 698—704.

T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George,
L. Gu, T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and

CHAPTERG6. Conclusions 175

A. Wood, “Envirotrack: Towards an environmental computing paradigm for
distributed sensor networks,” I€DCS’04: Proceedings of the 24th Inter-
national Conference on Distributed Computing Syste2084.

[152] A.Bakshi, J. Ou, and V. K. Prasanna, “Towards automatic synthesis of a class
of application-specific sensor networks,”@ASES '02: Proceedings of the
2002 international conference on Compilers, architecture, and synthesis for
embedded systen002, pp. 50-58.

[153] S. Madden, R. Szewczyk, M. Franklin, and D. Culler, “Supporting aggre-
gate queries over ad-hoc wireless sensor networkd¥arkshop on Mobile
Computing and Systems Applicatip@802.

[154] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design
of an acquisitional query processor for sensor networks3IBMOD’03:
ACM SIGMOD international conference on Management of 2083, pp.
491-502.

[155] S. Madden and J. M. Hellerstein, “Distributing queries over low-power wire-
less sensor networks,” BIGMOD’02: ACM SIGMOD international confer-
ence on Management of da002, pp. 622—-622.

[156] S. A. Tarnlund, “Horn clause computabilityBIT, vol. 17, no. 2, 1977.

[157] J. Reich, J. Liu, and F. Zhao, “Collaborative in-network processing for target
tracking,” inEuropean Association for Signal, Speech and Image Processing
2002.

[158] S. Abiteboul, R. Hull, and V. Vianu, EdsFoundations of Databases
Addison-Wesley Publishing Co., Inc., 1995.

[159] P. Cholak and H. A. Blair, “The complexity of local stratificatiomuinda-
menta Informaticagevol. 21, no. 4, 1994.

[160] C. Zaniolo, N. Arni, and K. Ong, “Negation and aggregates in recursive rules:
the LDL++ approach,” irDeductive and Object-Oriented Databas&993,
pp. 204-221.

CHAPTERG6. Conclusions 176

[161] J. D. Uliman,Principles of Database and Knowledge-Base Systems: Volume
II: The New Technologies New York, NY, USA: W. H. Freeman & Co.,
1990.

[162] R. Ramakrishnan, D. Srivastava, and S. Sudarshan, “Controlling the search in
bottom-up evaluation,” ifProceedings of the Joint International Conference
and Symposium on Logic Programmjd®92, pp. 273-287.

[163] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views incre-
mentally,” in SIGMOD '93: Proceedings of the 1993 ACM SIGMOD inter-
national conference on Management of d&t@93, pp. 157-166.

[164] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler, “The mote revolution:
Low power wireless sensor network devices,Hroceedings of Hot Chips
16: A Symposium on High Performance Chip804.

