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     Acute gastrointestinal bleeding (GIB) is an increasing healthcare problem due to rising 
NSAID (non-steroidal anti-inflammatory drugs) use in an aging population.  In the 
emergency room (ER), the ER physician can misdiagnose a GIB patient at least 50% of 
the time.  While it is best for a gastroenterologist to diagnose GIB patients, it is not 
feasible due to time and cost constraints.  Classification models can be used to assist the 
ER physician to diagnose GIB patients more efficiently and effectively, targeting scarce 
healthcare resources to those who need it the most. 
 
     Currently, there have not been models developed which can predict all three sources 
of bleeding simultaneously (upper, middle, and lower bleeding).  Eight classification 
models were trained and tested by performing ten repetitions of ten-fold cross validation 
on a 192 patient dataset.  The classification models considered were: artificial neural 
network, boosting, k-nearest neighbor, linear discriminant analysis, logistic regression, 
random forest, shrunken centroid, and support vector machine.  The four response 
variables classified were: source of bleeding, need for urgent resuscitation, need for 
urgent endoscopy, and disposition.  Performance was assessed by accuracy and balance 
of sensitivity and specificity.  The top three models (random forest, support vector 
machine, and artificial neural network) were externally validated.  It was determined that 
random forest performed the best overall. 
 
     The Rockall and Blatchford scores have been previously developed for upper GIB 
patients.  The random forest model was found to be comparable to these scores for upper 
GIB patients.  In addition, simulation studies were done to compare the eight 
classification models and to compare to the results obtained with the actual GIB data.  
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Simulated GIB data that was unbalanced versus balanced and correlated versus 
independent was considered, with accuracy and balance of sensitivity and specificity 
being the performance measures of the models.  Random forest was again seen to be the 
best performing model.  An online tool was developed for a user-friendly interface that 
physicians and nurses can utilize.  This online tool will be utilized in future studies in the 
hope this tool or something similar can be adopted for routine use in caring for GIB 
patients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 
 
 

v

Table of Contents 
 
 
 

List of Figures…………………………………………………………………………....vii 
List of Tables………………………………………………………………………...…...ix 
Acknowledgements……………………………………………………………………....xii 
Background and Introduction……………………………………………………………..1 

1. Model Information…………………………………………………………….2 
 
2. Comparison of Classification Models Applied to GIB Data………………….5 

2.1 Methods………………………………………………………………...….5 
2.1.1 Model Evaluation Step………………………………………………5 
2.1.2 Model Validation Step……………………………………………....6 

2.2 Individual Model Parameters……………………………………………...6 
2.3 Importance of Each Variable…………………………………………...…7 
2.4 Patients…………………………………………………………………….8 
2.5 Explanatory and Response Variables Used……………………………...10 
2.6 Results ………………………………………………………………..….11 

2.6.1 Comparison of Classification Models Results………………..……11 
2.6.2 Variable Importance Results……………………………………….23 

       2.7 Discussion of Findings…………………………………………...………25 
 

3. Comparison of Classification Models Based on Variable Importance 
Rankings……………………………………………………………………..28 
3.1 Description of the Different Variable Importance Ranking Methods.…..28 
3.2 Methods for Choosing the Variables…………………………………….29 
3.3 Comparison Between Previous Results and Current Results……...…….30 
3.4 Individual Model Parameters………………………………………...…..30 
3.5 Results and Discussion/Conclusion from Evaluating Models Using 

Variable Importance Rankings to Select the Variables………………….30 
 

4. External Validation Applied to RUGBE Database…………………………..44 
4.1 Methods…………………………………………………...………….….44 
4.2 Results from RUGBE Dataset…………………………………………...44 

 
5. Comparison of Top Performing Model to Existing GIB Scores………..……46 

5.1 Methods……………………………….………………………………….46 
5.2 Results of Comparing Random Forest, Rockall Score, and Blatchford 

Score……………………………………………………….…………….47 
 

6. Simulation Study……………………………………………….…………….50 
6.1 Individual Model Parameters……………………………….……………51 
6.2 Simulation Study Results………………………………….……………..52 

 



 
 
 
 

vi

7. Optimizing the Performance of Random Forest……………….…………….97 
7.1 Methods…………………………………………………...……….....…..97 
7.2 Optimizing Random Forest Results……………………..……………….98 

 
8. Online (Web-Based) Tool for Classifying GIB Data………………………102 

8.1 What the User Sees……………………………..………………………102 
8.2 Behind-the-Scene: How the Website Works…………………….……..107 

8.2.1 Inner Workings of the Website…………………………………...107 
8.2.2 MySQL and R…………………………………………………….109 

 
9. Final Conclusions………………………………………………………..…110 
 
10. Future Studies……………………………………………………………....111 

 
List of References……………………………………………………………....112 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

vii

List of Figures 
 

Figure 1.   Schematic of Ascertaining Outcomes for GIB Patients……………………….9 
Figure 2.   Accuracies for Source of Bleeding Response (evaluation step)……………...14 
Figure 3.   Accuracies for Resuscitation Response (evaluation step)……………………15 
Figure 4.   Accuracies for Endoscopy Response (evaluation step)………………………15 
Figure 5.   Accuracies for Disposition Response (evaluation step)……………………...16 
Figure 6.   ROC Curves for Predicting Source of Bleeding (evaluation step)…………...18 
Figure 7.   ROC Curves for Predicting Resuscitation (evaluation step)………………....19 
Figure 8.   ROC Curves for Predicting Endoscopy (evaluation step)…………………....20 
Figure 9.   ROC Curves for Predicting Disposition (evaluation step)…………………...21 
Figure 10. Accuracies for Source of Bleeding Response (based on variable importance  

rankings)………………………………………………………………....35 
Figure 11. Accuracies for Resuscitation Response (based on variable importance  

rankings)………………………………………………………………....36 
Figure 12. Accuracies for Endoscopy Response (based on variable importance  

rankings)………………………………………………………………....37 
Figure 13. Accuracies for Disposition Response (based on variable importance  

rankings)………………………………………………………………....37 
Figure 14. ROC Curves for Predicting Source of Bleeding (based on variable importance  

rankings)………………………………………………………………....39 
Figure 15. ROC Curves for Predicting Resuscitation (based on variable importance  

rankings)………………………………………………………………....40 
Figure 16. ROC Curves for Predicting Endoscopy (based on variable importance  

rankings)………………………………………………………………....41 
Figure 17. ROC Curves for Predicting Disposition (based on variable importance  

rankings)…………………………………………………………..……..42 
Figure 18. ROC Curves for Endoscopy (Comparing Rockall and Blatchford Scores and  

Random Forest)……………………………………………………….….48 
Figure 19. Simulation Study ROC Curves for Source of Bleeding Response (unbalanced  

and correlated data)………………………………………………………66 
Figure 20. Simulation Study ROC Curves for Source of Bleeding Response (unbalanced  

and not correlated data)…………………………………………………..67 
Figure 21. Simulation Study ROC Curves for Source of Bleeding Response (balanced  

and correlated data)…………………………………………………...….68 
Figure 22. Simulation Study ROC Curves for Source of Bleeding Response (balanced  

and not correlated data)……………………………………………..……69 
Figure 23. Simulation Study ROC Curves for Resuscitation Response (unbalanced and  

correlated data)……………………………………………………..…….70 
Figure 24. Simulation Study ROC Curves for Resuscitation Response (unbalanced and  

not correlated data)………………………………………………………71 
Figure 25. Simulation Study ROC Curves for Resuscitation Response (balanced and  

correlated data)………………………………………………….………..72 
Figure 26. Simulation Study ROC Curves for Resuscitation Response (balanced and not  

correlated data)………………………………………………………...…73 



 
 
 
 

viii

Figure 27. Simulation Study ROC Curves for Endoscopy Response (unbalanced and  
correlated data)……………………………………………………...……74 

Figure 28. Simulation Study ROC Curves for Endoscopy Response (unbalanced and not  
correlated data)…………………………………….……………………..75 

Figure 29. Simulation Study ROC Curves for Endoscopy Response (balanced and  
correlated data)…………………………………...………………………76 

Figure 30. Simulation Study ROC Curves for Endoscopy Response (balanced and not  
correlated data)………………………………..………………………….77 

Figure 31. Simulation Study ROC Curves for Disposition Response (unbalanced and  
correlated data)…………….……………………………………………..78 

Figure 32. Simulation Study ROC Curves for Disposition Response (unbalanced and not  
correlated data)……….…………………………………………………..79 

Figure 33. Simulation Study ROC Curves for Disposition Response (balanced and  
correlated data)……………...……………………………………………80 

Figure 34. Simulation Study ROC curves for Disposition Response (balanced and not  
correlated data)……………..…………………………………………….81 

Figure 35. Web-Based Tool – Log-In Page for Physicians……….……………………103 
Figure 36. Web-Based Tool – HTML Form Where Physicians Input Data……..……..104 
Figure 37. Web-Based Tool – HTML Form Where Physicians Input Data (At End of  

Page, Physician Presses the “Model Predictions” Button)………….….105 
Figure 38. Web-Based Tool – Model Predictions ………..……………………………106 
Figure 39. Web-Based Tool – HTML Form Where Gastroenterologists Enter in Actual  

Diagnosis……………………………..…………………………………107 
Figure 40. Web-Based Tool – HTML Form Where Physicians Input Data (Demonstrating 

Tool-Tips)………………………………………………………………108 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

ix

List of Tables 
 

Table 1.   Clinical and Endoscopic Variables Used to Determine Patient Outcomes…...10 
Table 2.   Response Variables…………………………………………………………....10 
Table 3.   Evaluation Step – Model Performance for Source of Bleeding (standard  

error)………………………………………………………..……………12 
Table 4.   Evaluation Step – Model Performance for Resuscitation (standard error)……12 
Table 5.   Evaluation Step – Model Performance for Endoscopy (standard error)………13 
Table 6.   Evaluation Step – Model Performance for Disposition (standard error)…...…13 
Table 7.   Summary of McNemar’s Test Results……………………………………...…16 
Table 8.   Validation step – Predictive Accuracies Using a 70 Patient Database………..21 
Table 9.   Evaluation Step – Predicting Resuscitation Using Secondary Approach  

(standard error) …………………………………………………………..22 
Table 10.  Evaluation Step – Predicting Endoscopy Using Secondary Approach (standard  

error) …………………………………………………………………….23 
Table 11. Variable Importance Using RF and ANN………………………………...…..24 
Table 12. Variable Importance Rankings for Source of Bleeding ………………………31 
Table 13. Variable Importance Rankings for Resuscitation …………………………….31 
Table 14. Variable Importance Rankings for Endoscopy …………………………….…32 
Table 15. Variable Importance Rankings for Disposition ………………………………32 
Table 16. Source of Bleeding Results (based on variable importance rankings)………..33 
Table 17. Resuscitation Results (based on variable importance rankings)………………33 
Table 18. Endoscopy Results (based on variable importance rankings)………………...34 
Table 19. Disposition Results (based on variable importance rankings)……………...…34 
Table 20.  Summary of McNemar’s Test Results (based on variable importance  

rankings)…………………………………………………………………38 
Table 21. Results from RUGBE Data for Source of Bleeding Response……………..…45 
Table 22. Accuracies and Area Under ROC Curves for Comparison of Scores and RF  

Model…………………………………………………………...………..47 
Table 23. 95% Confidence Intervals for the Difference Between a Scoring System and  

Random Forest………………………………………………….………..47 
Table 24. Simulation Study Results for Source of Bleeding Response (unbalanced and  

correlated data) (standard error)………………………………...………..52 
Table 25. Simulation Study Results for Source of Bleeding Response (unbalanced and  

not correlated data) (standard error)…………………………..…………53 
Table 26. Simulation Study Results for Source of Bleeding Response (balanced and  

correlated data) (standard error)………………………………………….53 
Table 27. Simulation Study Results for Source of Bleeding Response (balanced and not  

correlated data) (standard error)………………………...………………..54 
Table 28.  Summary of McNemar’s Test Results (Source of Bleeding Response)…...…54 
Table 29. Simulation Study Results for Resuscitation Response (unbalanced and  

correlated data) (standard error)………………………………………….55 
Table 30. Simulation Study Results for Resuscitation Response (unbalanced and not  

correlated data) (standard error)………………………………………….56 
Table 31. Simulation Study Results for Resuscitation Response (balanced and correlated  



 
 
 
 

x

data) (standard error)……………………………………………………..57 
Table 32. Simulation Study Results for Resuscitation Response (balanced and not  

correlated data) (standard error)……………………………………….…58 
Table 33. Summary of McNemar’s Test Results (Resuscitation Response)………….…58 
Table 34. Simulation Study Results for Endoscopy Response (unbalanced and correlated  

data) (standard error)…………………………………………………..…59 
Table 35. Simulation Study Results for Endoscopy Response (unbalanced and not  

correlated data) (standard error)……………………………………….…60 
Table 36. Simulation Study Results for Endoscopy Response (balanced and correlated  

data) (standard error)……………………………………………………..61 
Table 37. Simulation Study Results for Endoscopy Response (balanced and not correlated  

data) (standard error)…………….……………………………………….62 
Table 38. Summary of McNemar’s Test Results (Endoscopy Response)…………….…63 
Table 39. Simulation Study Results for Disposition Response (unbalanced and correlated  

data) (standard error)…………………………………………………..…63 
Table 40. Simulation Study Results for Disposition Response (unbalanced and not  

correlated data) (standard error)………………………………………….64 
Table 41. Simulation Study Results for Disposition Response (balanced and correlated  

data) (standard error)……………………………………………………..64 
Table 42. Simulation Study Results for Disposition Response (balanced and not  

correlated data) (standard error)……………………………………...….65 
Table 43. Summary of McNemar’s Test Results (Disposition Response)………………65 
Table 44. Accuracies Using Different Values for Epsilon and Tolerance for SVM –  
  Radial (Source of Bleeding, balanced and correlated)…………………...82 
Table 45. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 

Radial (Resuscitation, balanced and correlated)………………………....82 
Table 46. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 

Radial (Endoscopy, balanced and correlated)…………………………....82 
Table 47. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 

 Radial (Disposition, balanced and correlated)…………………….…….83 
Table 48. Simulation Study Results for Source of Bleeding Response (unbalanced and  

correlated data, learning/test set) (standard error)……………………….84 
Table 49. Simulation Study Results for Source of Bleeding Response (unbalanced and  

not correlated data, learning/test set) (standard error)…………………...84 
Table 50. Simulation Study Results for Source of Bleeding Response (balanced and  

correlated data, learning/test set) (standard error)…………………….…85 
Table 51. Simulation Study Results for Source of Bleeding Response (balanced and not  

correlated data, learning/test set) (standard error)…………………….…85 
Table 52. Simulation Study Results for Resuscitation Response (unbalanced and  

correlated data, learning/test set) (standard error)…………………….…86 
Table 53. Simulation Study Results for Resuscitation Response (unbalanced and not  

correlated data, learning/test set) (standard error)……………………….87 
Table 54. Simulation Study Results for Resuscitation Response (balanced and correlated  

data, learning/test set) (standard error)………………………………..…88 
Table 55. Simulation Study Results for Resuscitation Response (balanced and not  



 
 
 
 

xi

correlated data, learning/test set) (standard error)……………………….89 
Table 56. Simulation Study Results for Endoscopy Response (unbalanced and correlated  

data, learning/test set) (standard error)………………………………..…90 
Table 57. Simulation Study Results for Endoscopy Response (unbalanced and not  

correlated data, learning/test set) (standard error)……………….………91 
Table 58. Simulation Study Results for Endoscopy Response (balanced and correlated  

data, learning/test set) (standard error)……………………………….….92 
Table 59. Simulation Study Results for Endoscopy Response (balanced and not correlated  

data, learning/test set) (standard error)…………………………………..93 
Table 60. Simulation Study Results for Disposition Response (unbalanced and correlated  

data, learning/test set) (standard error)…………………………………..94 
Table 61. Simulation Study Results for Disposition Response (unbalanced and not  

correlated data, learning/test set) (standard error)……………...………..94 
Table 62. Simulation Study Results for Disposition Response (balanced and correlated  

data, learning/test set) (standard error)…………………………………..95 
Table 63. Simulation Study Results for Disposition Response (balanced and not  

correlated data, learning/test set) (standard error)…………………….…95 
Table 64. Optimizing RF Results for Source of Bleeding Response, Simulated Data  

(standard error)…………………………………………………………..98 
Table 65. Optimal RF Parameters for Source of Bleeding Response, Simulated Data  

(standard error)…………………………………………………………..98 
Table 66. Optimizing RF Results for Resuscitation Response, Simulated Data (standard  

error)……………………………………………………………..………99 
Table 67. Optimal RF Parameters for Resuscitation Response, Simulated Data (standard  

error)………………………………………………………………..……99 
Table 68. Optimizing RF Results for Endoscopy Response, Simulated Data (standard  

error)……………………………………………………………………..99 
Table 69. Optimal RF Parameters for Endoscopy Response, Simulated Data (standard  

error)………………………………………………………………...….100 
Table 70. Optimizing RF Results for Disposition Response, Simulated Data (standard  

error)……………………………………………………………………100 
Table 71. Optimal RF Parameters for Disposition Response, Simulated Data (standard  

error)………………………………………………………………...….100 
Table 72. Optimizing RF Results for Actual GIB Data (standard error)…………….…101 
Table 73. Optimal RF Parameters for Actual GIB Data (standard error)……………....101 
 



 
 
 
 

Acknowledgements 
 
     I would like to give a huge thanks to my advisor, Dr. Hongshik Ahn, for his patience 
and guidance not only on the dissertation but also with career decisions and for imparting 
his knowledge of teaching to me.  I have learned so much because of Dr. Ahn and feel I 
have grown intellectually tremendously. 
 
     I would like to give a big thanks to Dr. Atul Kumar – it has been a pleasure to work 
with him and I am grateful for all the opportunities he has given me.  Without Dr. Kumar, 
I would not have the statistical experience I do now. 
 
     I would like to thank Dr. Stephen Finch and Dr. Wei Zhu for serving on my 
preliminary exam committee and dissertation committee as well as teaching me so much 
that I know about statistics.  Thanks also to Dr. Nancy Mendell, for sharing all her 
statistical knowledge with me.  I have learned many valuable lessons from all of them 
both inside and outside of the classroom. 
 
     I also wish to thank Dr. Alan Tucker – his countless emails and chats with him have 
helped me grow as a teacher and I have learned many things from him.  I am grateful he 
has given me the opportunity to teach here at Stony Brook University for the past 3 ½ 
years and provided me with tools I can use in my later teaching years. 
 
     I would especially like to thank my family and friends for all of their support, in 
particular, my parents (Tony and Elizabeth), sister (Jennifer), fiancé (Wan Cheong), and 
best friend (Jen).  They have always been there for me, no matter what, and have always 
believed in me. 
 
     The text of this dissertation in part is a reprint of the materials as it appears in the 
journal article entitled “A decision support system to facilitate management of patients 
with acute gastrointestinal bleeding,” published in the Artificial Intelligence in Medicine 
journal.  Permission has been granted by the Elsevier publisher, under license number 
2154320444575.  I wish to acknowledge all co-authors for their consent to use material 
from this article in my dissertation.  The co-authors are: Dr. Hongshik Ahn, Dr. Bhawna 
Halwan, Dr. Bruce Kalmin, Dr. Everson L.A. Artifon, Dr. Alan Barkun, Dr. Michail G. 
Lagoudakis, and Dr. Atul Kumar. 
 
 
 
 
 
 
 
 
 



 
 
 
 

1

Background and Introduction 
 
 
 
 
     Acute gastrointestinal bleeding (GIB) is an increasing healthcare problem due to rising 
non-steroidal anti-inflammatory drug (NSAID) use in an aging population (1).  NSAIDs, 
such as aspirin and ibuprofen, are used to reduce pain, fever, or inflammation.  Often 
times acute GIB occurs in the emergency room (ER) and it is a frontline physician (non-
gastroenterologist) who is diagnosing the patient.  Delays in intervention usually result 
from failure to adequately recognize the source and severity of the bleed.  Using 
symptoms alone, physicians predict the location of a gastrointestinal lesion with only up 
to 40% accuracy as compared to endoscopy on some studies (2).  Aside from lack of 
resources, it would not be feasible for a gastroenterologist to diagnose every single case 
of acute GIB due to time and cost constraints.  In order to reduce further complications 
and mortality of patients, new strategies need to be developed to help identify those 
patients in need of urgent resuscitation and endoscopic intervention (3,4).   
 
     Although several scoring systems have been developed to risk stratify patients, there is 
no single model which is popular that helps identify patients with both upper and lower 
GIB that require urgent intervention (5,6,7,8).  The Rockall score, which utilizes clinical 
data as well as data from endoscopic findings, is used to identify only upper GIB patients 
who are at high risk.  The Blatchford score, only applicable for upper GIB patients as 
well, uses solely clinical data.  This score identifies those patients who are in need of 
urgent treatment – i.e. who need urgent resuscitation or endoscopy.  Other models have 
been developed, but not one that can be used for both upper and lower GIB and that is 
straightforward enough for a non-gastroenterologist to use.  There are several 
computational models that are potentially useful and that can identify patients with both 
upper and lower GIB and determine their need for treatment as well as disposition.  Using 
clinical and laboratory information available within a few hours of patient presentation, 
the models can be used to predict the source of bleeding, need for intervention 
(resuscitation and endoscopy) and disposition in patients with acute upper, mid, and 
lower GIB.  The hope is that these classification models can assist the ER physician in 
diagnosing the patients more efficiently and effectively. 
 
     The models considered in classifying responses for the GIB data were artificial neural 
networks (ANN), boosting, k-nearest neighbor (kNN), linear discriminant analysis 
(LDA), logistic regression (logistic), random forests (RF), shrunken centroid (SC), and 
support vector machines (SVM).  Boosting and random forests are ensemble-based 
voting methods.  SVM predicts new cases by seeing where the new case lies with respect 
to class boundaries.  kNN is an instance-based learning method, while SC and LDA 
classify new cases by computing the distance away from class centroids.  More specific 
information about each model will be briefly described in the following paragraphs. 
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1. Model Information 
 
 
 
 
     Artificial neural networks (ANNs) are thought to be models for the human brain (9).  
An ANN consists of “artificial neurons” or nodes connected together by different 
weights, the connections representing the synapses of the brain.  Functions such as 
sigmoid functions are applied to the nodes and then combined, and the output is obtained 
(by applying for example the softmax function).  If there is no hidden layer in the 
network, the ANN is simply a linear regression model.  If there are one or more hidden 
layers in the network, then the ANN becomes a non-linear generalization of the linear 
regression model.  The idea of neural networks started in the 1940s, with the first 
practical ANN being implemented in the 1950s by Frank Rosenblatt (9).  The first ANN, 
a perceptron, was a simple feed-forward model.  Later on in the 1970s and 1980s, other 
more complex models were conceived – multi-layer perceptron networks, Hopfield 
networks, and Boltzmann machines.  An advantage of using ANNs is that they can be 
very complex models.  However, this may lead to overfitting.  There are several practical 
applications for ANNs such as classification of data (medical diagnosis), pattern 
recognition (identification of faces or object recognition), and sequence recognition 
(handwritten text recognition). 
 
     In 1990, Robert E. Schapire came up with an ensemble voting method called boosting, 
where several weak classifiers are combined by weighted majority voting (10).  By 
combining the weaker classifiers, one single more powerful and accurate classifier is 
produced.  One well-known boosting algorithm is AdaBoost, which was developed by 
Schapire and Yoav Freund (11).  AdaBoost is an iterative process – for a classifier being 
trained on a given iteration, when a wrong prediction is made for a particular case, this 
case gets more heavily weighted on the next iteration.  At the end, a sequence of 
classifiers is obtained, with each new classifier “learning from its mistakes.”  The final 
decision is made by weighted majority voting among all the classifiers.  Boosting relies 
heavily on the data that it is given.  AdaBoost has been extended and modified to 
incorporate other methods and ideas, such as using bagging (BagBoost) (12) or using the 
binomial log-likelihood function in place of the exponential function as the loss function 
(LogitBoost) (13).   
 
     The method of k-nearest neighbor classifies a data point by considering the closest k 
neighbors to it.  It is thought that the neighbors will be similar to each other (9).  
“Closest” is defined by either the Euclidean distance or the Mahalanobis distance.  The 
difference between the two types of distances is that the Mahalanobis distance considers 
the correlations of the dataset and is scale-invariant.  This model is simple to implement 
except it does not perform well with high-dimensional data because neighbors may not be 
“nearby” (9).  Evelyn Fix and J.L. Hodges came up with the idea of nearest neighbors in 
1951 (9).  In 1986, Craig Stanfill and David Waltz applied the nearest neighbor concept 
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to the artificial intelligence area (9).  The value for k is found by performing cross-
validation and it is best to use an odd value for k, to break ties. 
 
     Linear discriminant analysis is a model where the decision boundaries are linear (14).  
If there are two variables, the decision boundary will be a line.  The decision boundary 
will be a plane for three variables and a hyperplane for more than three variables.  For 
diagonal linear discriminant analysis (DLDA), an equal diagonal covariance matrix is 
assumed, simplifying the problem.  A new case is classified based on how far it is from 
each class group using the Mahalanobis distance function.  The distance is calculated 
between the point where the new case lies and the “average” point for each group.   
 
     Logistic regression is a regression model that fits the log odds of the response to a 
linear combination of the explanatory variables.  It is used mainly for binary responses, 
although there are extensions for multi-way responses as well.  Coefficients are 
determined by maximizing the likelihood function.  Numerical methods, such as the 
Newton-Raphson algorithm are applied iteratively to find the coefficients.  An advantage 
for using logistic regression is that a model can be clearly and succinctly represented but 
on the flip side, it might not be able to produce complex models, leading to underfitting.  
Logistic regression is widely used in areas such as medical and social sciences. 
 
     Leo Breiman and Adele Cutler (15) developed the random forest method in 2001.  It is 
an ensemble-based method where a forest of classification trees is grown.  A subset of the 
original data samples is randomly selected with replacement for the training set to grow 
each tree.  At each node on a tree, a random sample from all the variables is selected to 
determine the best split for that node.  The number of variables selected at the first node 
is the number of variables selected for every node thereafter.  All trees are grown to their 
fullest, with no pruning done.  Once the trees are grown, majority voting among the trees 
classifies a test case.  The random forest classifier works well for high dimensional data 
like microarray data or DNA data. 
 
     Nearest shrunken centroid classifiers compare a new case to all possible class 
centroids (16).  These centroids are calculated by taking the difference between the 
average value for that class and the overall centroid, and then dividing by the standard 
deviation for that class.  The centroids are shrunk towards zero by a threshold value.  If a 
component of the centroid passes zero, then this component is set to zero.  Whichever 
class centroid the new case is closest to becomes its predicted class.  The method of 
shrunken centroid classifiers is an extension of the centroid classifier method – the 
extension was done by Tibshirani et al, in 2002 (16).  Shrunken centroid classification 
has been applied to gene expression and cancer data.  
 
     Support vector machines (SVM) first introduced by Vladimir Vapnik in 1995, finds a 
linearly separable boundary between the classes (17).  If the data is nonseparable in the 
original feature space, the data is transformed to a higher dimensional space, where the 
data becomes linearly separable.  In classifying a new case, whichever side of the 
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boundary the case falls on is the predicted class.  Solving for the boundaries is essentially 
a convex optimization problem.   
 
     These eight different classification models were evaluated and validated on a 192 
patient database.  Further, the best performing models were externally validated using an 
external database, RUGBE (Registry in patients with Upper Gastrointestinal Bleeding 
under an Endoscopy).  To assess whether it would be beneficial to use classification 
models in practice, the top performing model was compared to existing GIB scoring 
methods (Rockall and Blatchford scores).  In order to use the classification model in 
practice, it would need to be accessible to anyone.  A user-friendly web interface was 
developed in order to compare how well the classification model performs versus a 
physician at the hospital.  The ultimate goal is for a classification model to be put into 
routine use at a hospital to help diagnose patients more efficiently and effectively (either 
through a website or integrated directly into the hospital system). 
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2. Comparison of Classification Models Applied to GIB Data 
 
 
 
 
2.1 Methods 
 
     Eight predictive models including artificial neural networks (ANN), boosting, k-
nearest neighbor (kNN), linear discriminant analysis (LDA), logistic regression (logistic), 
random forest (RF), shrunken centroid (SC), and support vector machines (SVM) were 
trained and their performances compared.  All models were run in R (versions 2.3.0 and 
2.4.1, downloadable from http://cran.r-project.org/) except for ANN, which was run in 
STATISTICA (version 7.1, Statsoft, Inc, Tulsa, OK).  Model training (evaluation step) 
was performed on one set of patients and testing (validation step) was done on the 
remaining patients.  The total number of patients was 192 (122 used for the evaluation 
step and the remaining 70 used for the validation step).   
 
     The primary approach was to use selected explanatory variables to predict the 
response variable, discarding any patients with missing data (there was only at most n=3 
patients dropped).  In addition, for predicting resuscitation and endoscopy, an alternative 
selection of input variables was tried.  The predicted value of the “source of bleeding” 
response and other selected input variables (to be detailed later) were utilized to predict 
the need for resuscitation and endoscopy.  Only the evaluation step was done for the 
alternative approach.  Any categorical variables were changed accordingly to indicator 
variables.  In addition, distributions of the variables as well as correlation between 
variables were examined.  The specific explanatory variables chosen to predict each 
response will be given in Section 2.1.6. 
 
 
2.1.1 Model Evaluation Step 
 
     Ten runs of 10-fold cross validation (CV) were performed for each iteration to obtain 
a reliable result with low mean square error (MSE) and bias (18).  k-fold cross validation 
divides the data into k groups, and one group is used as the testing set while the 
remaining k-1 groups are used as the training set.  This is repeated until each group is 
used as a testing set once.  Thus for 10-fold cross validation, 90% of the data is used for 
the training set with the remaining 10% being used for the testing set.  For every 10-fold 
CV, the following statistics were calculated: accuracy (ACC: the sum of correct 
predictions divided by total predictions), sensitivity (SN: probability that the patient was 
predicted as positive given patient is truly positive), specificity (SP: probability that the 
patient was predicted as negative given patient is truly negative), positive predictive 
value (PPV: probability that the patient is truly positive given a positive prediction), and 
negative predictive value (NPV: probability that a patient is truly negative given a 
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negative prediction).  For each classification model, the results from all 10 repetitions 
were then averaged together to give a single result for each statistic calculated.   
 
     Besides using accuracy to compare the models’ performances, ROC curves were 
created and areas under the curve (AUC) were compared to assess models’ ability to 
balance sensitivity and specificity.  For creating the ROC curves, cutoff points were 
values between 0 and 1, in increments of 0.1 (first cutoff was 0, second cutoff was 0.1, 
third cutoff was 0.2, etc.).  The Mann-Whitney statistic was calculated, which is 
equivalent to the area under an ROC curve (19).  Additionally, accuracies between the 
model with the highest accuracy and the other models were compared using McNemar’s 
test.  Using the Bonferroni correction to account for multiple comparisons of models, an 
appropriate alpha value was used for each test to control the error rate.  For example, 
there were 8 models for the resuscitation response, so there were 7 pair-wise 
comparisons.  Thus for an original alpha value of 0.05, the new alpha used for a two-
sided test was 0.05/7=0.0071.  Models that had good accuracy and high values for area 
under the ROC curve were considered the best.   
 
2.1.2 Model Validation Step 
 
     After models had been trained using a 122 patient database, a separate 70 patient 
database was utilized as a test set to validate the model.  Accuracies from each model 
were compared for the validation step. 
 
 
 
 
2.2 Individual Model Parameters 
 
     Artificial neural network (Neural Networks package): The network used was 
multilayer perceptrons with back propagation.  The error function used was the cross 
entropy function.  A linear synaptic function was used and a combination of the 
following four activation functions were used: linear, hyperbolic, softmax, and logistic.  
The number of epochs to train the model was set to 100 although the network always 
converged in fewer epochs.  The learning rate was set to 0.01 and there was one hidden 
layer in the network.  For the source of bleeding response, there were 30 input neurons, 
11 hidden neurons (neurons in the hidden layer), and 3 output neurons.  For the 
resuscitation response, there were 28 input neurons, 10 hidden neurons, and 1 output 
neuron.  For the endoscopy response, there were 31 input neurons, 12 hidden neurons, 
and 1 output neuron.  For the disposition response, there were 34 input neurons, 34 
hidden neurons, and 1 output neuron.  These neurons were chosen automatically by the 
Neural Networks package. 
 
     Boosting (package boost): No features were pre-selected (presel=0) and boosting ran 
for 10 iterations (mfinal=10).  The optimal settings were found by trying different 
combinations of presel and mfinal.  The R Boosting package contains four different 
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variations of boosting: AdaBoost, LogitBoost, L2Boost and BagBoost. AdaBoost was 
excluded, as often it did not classify patients correctly and this is the oldest, original 
boosting method.  Performance of the other three boosting methods were similar.  Among 
these three approaches, LogitBoost is included in the comparison.  
 
     k-nearest neighbor (package class): Depending on what response variable was being 
classified, a different k was chosen accordingly.  By performing CV on several different k 
values, the k that yielded the highest accuracy was chosen.  The final values chosen were 
k=7 for source of bleeding and resuscitation, k=11 for endoscopy, and k=3 for 
disposition. 
 
      Linear discriminant analysis (package sma) and logistic regression (package 
stats) models: All default settings were used.   
 
     Random forest (package randomForest): All default settings were used – 500 trees 
were grown (mtry=500), the number of cases to select in the bootstrap sample for each 
tree was equal to the number of patients in the dataset (parameter sampsize), and the 
number of variables randomly sampled at each node of a classification tree was 

( )floor p where p is the number of explanatory variables (mtry= ( )floor p ).  The 

cutoff parameter used was the default, with each class having equal weight.  The variable 
option of importance was set to true.  To predict the outcome of a certain patient, voting 
was done without normalizing. 
 
     Shrunken centroid (package pamr): The best threshold value for each response was 
found by cross validation.  The best threshold value was one that gave the highest 
accuracies – a threshold of 0.2 was used for all responses.   
 
     Support vector machine (package e1071): All default settings were used; variables 
were scaled; tolerance value to terminate algorithm was set to 0.001; epsilon set to 1 (for 
insensitive-loss function).  Both the radial basis (default) and linear kernels were 
considered.   
 
 
2.3 Importance of Each Variable 
 
     For RF and ANN, the variable importance option was set to true to see if these pre-
selected variables were significant for predicting outcomes by the models.  Variable 
importance for RF is given in terms of the mean decrease in accuracy.  Hence the higher 
the number, the greater the importance of the variable.  ANN provides information about 
the importance of a variable without any ranking.  The variable importance feature for 
ANN was therefore repeated ten times in order to obtain rankings for the variables.  The 
number of times a variable was shown to be important was counted – the closer the 
number was to 10, the more important the variable.   
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2.4 Patients  
 
     Patients with acute GIB were identified from the hospital medical records database 
using ICD-9 codes for GIB.  The study was carried out in compliance with all 
institutional human investigations committee guidelines.  Eligible patients were those 
presenting with clinical manifestations of acute upper or lower gastrointestinal bleeding 
who had undergone endoscopy within 24 hours for suspected upper GIB and within 48 
hours for suspected lower GIB or if the upper endoscopy was negative.  If no obvious 
source of GIB was identified at either upper or lower endoscopy the patient was expected 
to have undergone small bowel enteroscopy or capsule endoscopy within 1 week of the 
initial episode of acute GIB.  Records of patients for whom a definite source of bleeding 
could not be identified or those with missing clinical variables required for model 
building and testing were discarded.  See Figure 1 for the algorithm for the actual 
diagnosis of patients.   
 
     A database of 122 patients was identified from retrospective chart analysis.  Clinical 
data on each patient was entered into a scannable data entry form that was then scanned 
into an SQL database and manually reviewed for errors.  Variables to ascertain clinical 
outcomes corresponding to patient data included clinical and endoscopic data as listed in 
Table 1.  These variables were identified from review of literature for their ability to 
predict outcomes amongst patients with acute GIB (20,21).  Initially only 70 patients 
were available when first building the models and having a total of 122 patients resulted 
in an insignificant improvement in performance of the models (data not shown).  A 
sample size of 122 patients was therefore deemed to be adequate.  The additional 70 
patients used in the validation step of the model were collected at a later time in a similar 
study, in compliance with all guidelines. 
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Figure 1. Schematic of Ascertaining Outcomes for GIB Patients 
 

 
 
Note: Refer to Table 1 for abbreviations 

MANAGEMENT –RESUSCITATION, ENDOSCOPY AND DISPOSITION 
Upper  
Ulcer with High risk stigmata:  Active bleeding, non-bleeding visible vessel, overlying clot, oozing. 
Varices:  Active bleeding or stigmata of recent bleed.  
AVM/Dieulafoy’s/MW tear:  ongoing bleeding/oozing recent bleeding. 
Lower  
Diverticula/Colitis/AVM/Dieulafoy’s/Varices:  active bleeding, visible vessel, overlying clot. 

Symptoms  
Dizzy, unstable CAD, SBP<90, 
orthostasis, Hct <30, INR >1.5  
 

No Yes 

No 

Yes 

URGENT 
RESUSCITATION 

ASCERTAINING SOURCE OF BLEED  
Requires endoscopic evidence of a bleeding 
source  
Upper: Proximal to ligament of Treitz. 
Mid: Distal to ligament of Treitz & proximal to 

ileo-cecal valve. 
Lower: Distal to ileo-cecal valve. 
 

Any stigmata of bleeding (active 
bleeding, visible vessel, overlying clot, 
oozing, pigmented spot, ulcer), varices 
with stigmata of bleed (cherry red spot, 
angioectasia, red wale signs), AVM’s, 
MW tear, dieulafoy’s, diverticula. 

Yes 
URGENT 

ENDOSCOPY 

Yes 

Yes or No 

ELECTIVE 
ENDOSCOPY 

INTENSIVE 
CARE UNIT 

ADMIT TO 
FLOOR 

DISCHARGE 
HOME  

Age < 60, no 
comorbidities  

No Yes 

No 



 
 
 
 

10

Table 1. Clinical and Endoscopic Variables Used to Determine Patient Outcomes 

 
 
2.5 Explanatory and Response Variables Used 
 
     Several studies in the past have evaluated risk factors of adverse outcomes and clinical 
predictors of source, severity and outcomes in patients with acute upper and lower GIB.  

Clinical correlates of source, severity and outcomes amongst patients with acute 
gastrointestinal bleeding were reviewed and are 
listed below for each corresponding response 
variable (6,7,8,20,22,23,24,25,26,27,28,29,30).  
The response variables predicted are source of 
bleeding (upper, middle, or lower intestine), 
need for urgent resuscitation (yes or no), need 
for urgent endoscopy (yes or no), and 
disposition (should patient be placed in the 
intensive care unit (ICU) or  not the ICU).  See 
Table 2 for a summary of the response variables.    
 
 
     Bleeding source: The definitive source of bleeding was the irrefutable identification 
of a bleeding source at upper endoscopy, colonoscopy, small bowel enteroscopy, or 
capsule endoscopy.  Input variables utilized to predict the source of GIB included: prior 
history of GIB, hematochezia, hematemesis, melena, syncope/presyncope, risk for stress 
ulceration, cirrhosis, ASA/NSAID use, blood pressure – systolic and diastolic 
(SBP/DBP), heart rate (HR), orthostasis, NG lavage, rectal exam, platelet count (Plt.), 
creatinine (Cr.), BUN, and INR. 
 

Presentation: Hematemesis, Hematochezia, Melena, Duration of Symptoms,  
Syncope/Presyncope 

Demographics: Age, Gender 
Past history: Prior History of GIB, Unstable CAD (coronary artery disease),  

COPD (chronic obstructive pulmonary disease) Exacerbation, CRF  
(chronic renal failure), Risk of Stress Ulcer, Cirrhosis, ASA/NSAID 
 (aspirin /non steroidal anti-inflammatory drug) Use, PPI (proton pump  
inhibitor) 

Clinical Exam: SBP/DBP (systolic blood pressure/diastolic blood pressure), HR 
(heart rate), Orthostasis, NG (nasogastric) Lavage, Rectal Exam 

Laboratory Data: Hct (Hematocrit), Drop in Hemotocrit, Plt (Platelet) Count, Cr  
(Creatinine), BUN (blood urea nitrogen), PT/INR (Prothrombin Time /  
International Normalized Ratio) 

Endoscopic Data: Ulcer, Varix, MW (Mallory-Weiss) Tear, Diverticula, AVM 
(arterio-venous malformation), Diuelafoy, Other 

Source: Upper, Mid, or Lower 
Resuscitation: Yes or No 
Endoscopy: Yes or No 
Disposition: ICU or not ICU 

Table 2. Response Variables 
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     Need for urgent blood resuscitation: Urgent blood resuscitation refers specifically to 
the administration of blood and blood products to correct loss of intravascular volume, 
and coagulopathy.  Variables to predict this outcome included hematochezia, 
hematemesis, melena, duration of symptoms, syncope/presyncope, unstable CAD, blood 
pressure, heart rate, orthostasis, NG lavage, rectal exam, hematocrit (Hct.), drop in 
hematocrit, creatinine, BUN, and INR.  Variables used to predict resuscitation using the 
second approach as described in Section 2.1 included the predicted value of the source of 
bleeding response, hematochezia, hematemesis, syncope/presyncope, blood pressure, 
heart rate, orthostasis, NG lavage, and INR. 
 
     Need for urgent endoscopy: Variables to predict need for urgent endoscopy included 
hematochezia, hematemesis, melena, duration of symptoms, syncope/presyncope, 
cirrhosis, ASA/NSAID use, blood pressure, heart rate, orthostasis, NG lavage, rectal 
exam, hematocrit, hematocrit drop, platelet count, creatinine, BUN, and INR.  Variables 
used to predict endoscopy using the second approach (described in Section 2.1) are the 
same variables used to predict resuscitation using the second approach. 
 
     Disposition: Variables to predict disposition of the patient included age, 
hematochezia, hematemesis, melena, duration of symptoms, syncope/presyncope, 
unstable CAD, COPD, CRF, risk for stress ulcer, cirrhosis, blood pressure, heart rate, 
orthostasis, NG lavage, rectal exam, hematocrit, drop in hematocrit, platelet count, 
creatinine, BUN, and INR. 
 
 
 
 
2.6 Results  
 
2.6.1 Comparison of Classification Models Results 
 
     Tables 3 through 6 summarize the results for each outcome prediction variable for the 
evaluation step using the primary approach.  Only six of the eight models were utilized to 
predict source of bleeding, since logistic regression and boosting can only be used for 2 
way classification problems in R (source of bleeding response included three outcomes).  
The results for only the linear kernel for SVM are shown because for classifying the 
source of bleeding response, the linear kernel had slightly higher values.  For the rest of 
the responses, the linear and radial kernel for SVM gave similar results.   
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Table 3. Evaluation Step – Model Performance for Source of Bleeding (standard error) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.917 

(0.008) 
0.972 

(0.005) 
0.936 

(0.007) 
0.968 

(0.005) 
0.944 

(0.007) 
0.999 

kNN 0.697 
(0.013) 

0.901 
(0.009) 

0.287 
(0.013) 

0.717 
(0.013) 

0.591 
(0.014) 

0.658 

LDA 0.931 
(0.007) 

0.965 
(0.005) 

1.000 
(0.000) 

1.000 
(0.000) 

0.935 
(0.007) 

0.987 

RF 0.943 
(0.007) 

0.980 
(0.004) 

0.932 
(0.007) 

0.967 
(0.005) 

0.959 
(0.006) 

0.998 

SC 0.914 
(0.008) 

0.965 
(0.005) 

0.890 
(0.009) 

0.946 
(0.007) 

0.927 
(0.008) 

0.978 

SVM 0.930 
(0.007) 

0.965 
(0.005) 

0.945 
(0.007) 

0.973 
(0.005) 

0.932 
(0.007) 

0.979 

 Note: ACC – accuracy; SN – sensitivity; SP – specificity; PPV – positive  
 predictive value; NPV – negative predictive value; AUC – area under ROC curve 
 
 

Table 4. Evaluation Step – Model Performance for Resuscitation (standard error) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.921 

(0.008) 
0.927 

(0.008) 
0.910 

(0.008) 
0.946 

(0.007) 
0.880 

(0.009) 
0.993 

kNN 0.884 
(0.009) 

0.903 
(0.009) 

0.852 
(0.010) 

0.914 
(0.008) 

0.835 
(0.011) 

0.890 

LDA 0.922 
(0.008) 

0.904 
(0.009) 

0.955 
(0.006) 

0.972 
(0.005) 

0.852 
(0.010) 

0.937 

Logistic 0.923 
(0.008) 

0.939 
(0.007) 

0.895 
(0.009) 

0.940 
(0.007) 

0.897 
(0.009) 

0.985 

LogitBoost 0.647 
(0.014) 

0.916 
(0.008) 

0.184 
(0.011) 

0.662 
(0.014) 

0.481 
(0.014) 

0.381 

RF 0.932 
(0.007) 

0.937 
(0.007) 

0.923 
(0.008) 

0.954 
(0.006) 

0.894 
(0.009) 

0.982 

SC 0.915 
(0.008) 

0.929 
(0.007) 

0.891 
(0.009) 

0.936 
(0.007) 

0.879 
(0.009) 

0.920 

SVM 0.941 
(0.007) 

0.938 
(0.007) 

0.945 
(0.007) 

0.968 
(0.005) 

0.899 
(0.009) 

0.964 
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Table 5. Evaluation Step – Model Performance for Endoscopy (standard error) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.778  

(0.012) 
0.801  

(0.012) 
0.733  

(0.013) 
0.849  

(0.010) 
0.665  

(0.014) 
0.913 

kNN 0.796  
(0.012) 

0.876  
(0.010) 

0.648  
(0.014) 

0.822  
(0.011) 

0.737  
(0.013) 

0.766 

LDA 0.833  
(0.011) 

0.821  
(0.011) 

0.857  
(0.010) 

0.914  
(0.008) 

0.720  
(0.013) 

0.843 

Logistic 0.787  
(0.012) 

0.871  
(0.010) 

0.831  
(0.014) 

0.815  
(0.011) 

0.726  
(0.013) 

0.853 

LogitBoost 0.627  
(0.014) 

0.891  
(0.009) 

0.138  
(0.010) 

0.658  
(0.014) 

0.403  
(0.014) 

0.404 

RF 0.790  
(0.012) 

0.854  
(0.010) 

0.671  
(0.014) 

0.828  
(0.011) 

0.712  
(0.013) 

0.871 

SC 0.811  
(0.011) 

0.838  
(0.011) 

0.760  
(0.012) 

0.866  
(0.010) 

0.717  
(0.013) 

0.801 

SVM 0.803  
(0.011) 

0.859  
(0.010) 

0.700  
(0.013) 

0.842  
(0.011) 

0.728  
(0.013) 

0.820 

 
 
 

Table 6. Evaluation Step – Model Performance for Disposition (standard error)  
 

 ACC SN SP PPV NPV AUC 
ANN 0.850  

(0.010) 
0.829  

(0.011) 
0.889  

(0.009) 
0.928  

(0.007) 
0.752  

(0.013) 
0.972 

kNN 0.876  
(0.010) 

0.923  
(0.008) 

0.798  
(0.012) 

0.886  
(0.009) 

0.858  
(0.010) 

0.881 

LDA 0.897  
(0.009) 

0.891  
(0.009) 

0.909  
(0.008) 

0.943  
(0.007) 

0.830  
(0.011) 

0.901 

LogitBoost 0.584  
(0.014) 

0.819  
(0.011) 

0.184  
(0.011) 

0.629  
(0.014) 

0.377  
(0.014) 

0.324 

RF 0.883  
(0.009) 

0.907  
(0.008) 

0.843  
(0.011) 

0.908  
(0.008) 

0.841  
(0.011) 

0.967 

SC 0.897  
(0.009) 

0.916  
(0.008) 

0.866  
(0.010) 

0.921  
(0.008) 

0.858  
(0.010) 

0.891 

SVM 0.887  
(0.009) 

0.929  
(0.007) 

0.816  
(0.011) 

0.896  
(0.009) 

0.872  
(0.010) 

0.922 

 
 
     Figures 2 through 5 depict the accuracies obtained for each individual model and each 
response variable.  The points shown are the accuracies with whiskers extending which 
represent the standard errors.  Table 7 shows summary results from doing the McNemar’s 
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test.  The model that had the smallest statistically significant difference to the highest 
accuracy model is shown.  The model that had the smallest non-statistically significant 
difference to the highest accuracy model is also shown.  Average computing time to run 
10 repetitions of 10-fold CV for all models for one response was 30-40 minutes. 
 
 

Figure 2. Accuracies for Source of Bleeding Response (evaluation step) 
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Figure 3. Accuracies for Resuscitation Response (evaluation step) 
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Figure 4. Accuracies for Endoscopy Response (evaluation step) 
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Figure 5. Accuracies for Disposition Response (evaluation step) 
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Table 7. Summary of McNemar’s Test Results 
 

 Model (accuracy) Model (accuracy) p-value 
Source of bleeding    

Least significantly different RF (0.943) LDA (0.931) 0.0004 
Least not significantly differenta – – – 

    
Resuscitation    

Least significantly different SVM (0.941) RF (0.932) 0.0027 
Least not significantly differenta – – – 

    
Endoscopy    

Least significantly different LDA (0.833) SC (0.811) <0.0001 
Least not significantly differenta – – – 

    
Disposition    

Least significantly different LDA (0.897) or 
SC (0.897) 

SVM (0.887) 0.0016 

Least not significantly different LDA (0.897) SC (0.897) 1.0000 
a All models were significantly different from highest accuracy model 
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     Overall, accuracies obtained using SVM, RF, and LDA were generally higher than the 
accuracies for the other models.  These models predicted the source of bleeding, need for 
resuscitation, and disposition correctly 88%-94% of the time.  The need for endoscopy 
was correctly predicted about 80% of the time using kNN, SVM, SC, and LDA; RF’s 
accuracy was just below 80% (79%).  In terms of accuracy, logistic regression did well 
for predicting resuscitation and endoscopy.  However it did not do well for disposition.  
This is because the algorithm for obtaining the model rarely converged.  That is, it was 
unstable (results are not reported for the disposition response).  The performance of 
boosting was worst among all models.  kNN performed the worst for predicting source of 
bleeding.  The linear discriminant analysis model appeared to demonstrate good overall 
performance with regards to all statistics (accuracy, sensitivity, specificity, PPV, NPV).  
Boosting, on the other hand, revealed an imbalance between sensitivity and specificity.  
ROC curves were constructed (Figures 6 through 9 and Tables 3 through 6), and overall 
RF and ANN have the highest AUC (area under the ROC curve), followed by SVM and 
LDA.  For predicting resuscitation and endoscopy, the logistic model had excellent AUC.  
In the validation step, RF consistently performed well compared to the other models 
(Table 8). 
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Figure 6. ROC Curves for Predicting Source of Bleeding (evaluation step) 
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Figure 7. ROC Curves for Predicting Resuscitation (evaluation step) 
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Figure 8. ROC Curves for Predicting Endoscopy (evaluation step) 
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Figure 9. ROC Curves for Predicting Disposition (evaluation step) 
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Table 8. Validation step – Predictive Accuracies Using a 70 Patient Database 
 

 Source of bleeding Resuscitation Endoscopy Disposition 
ANN 0.884 0.821 0.638 0.754 
kNN 0.783 0.821 0.667 0.783 
LDA 0.768 0.821 0.681 0.797 

Logistic N/A 0.791 0.710 N/A 
LogitBoost N/A 0.567 0.551 0.362 

RF 0.928 0.851 0.753 0.797 
SC 0.855 0.866 0.696 0.768 

SVM 0.826 0.791 0.681 0.783 
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     Overall, data from the evaluation and validation steps suggest that the RF model 
consistently performs the best.  For the secondary approach to predict resuscitation and 
endoscopy, there were no significant improvements seen for the majority of the results 
(Tables 9 and 10). 
 
 
 

Table 9. Evaluation Step – Predicting Resuscitation Using Secondary Approach 
(standard error) 

 
 ACC SN SP PPV NPV 

ANN 0.915  
(0.008) 

0.911  
(0.008) 

0.919  
(0.008) 

0.951  
(0.006) 

0.857  
(0.010) 

kNN 0.883  
(0.009) 

0.896  
(0.009) 

0.861  
(0.010) 

0.919  
(0.008) 

0.826  
(0.011) 

LDA 0.922  
(0.008) 

0.909  
(0.008) 

0.945  
(0.007) 

0.967  
(0.005) 

0.856  
(0.010) 

Logistic 0.918  
(0.008) 

0.932  
(0.007) 

0.893  
(0.009) 

0.939  
(0.007) 

0.884  
(0.009) 

LogitBoost 0.631  
(0.014) 

0.883  
(0.009) 

0.191  
(0.011) 

0.660  
(0.014) 

0.442  
(0.014) 

RF 0.934  
(0.007) 

0.943  
(0.007) 

0.918  
(0.008) 

0.953  
(0.006) 

0.902 
(0.009) 

SC 0.909  
(0.008) 

0.909  
(0.008) 

0.909  
(0.008) 

0.946  
(0.006) 

0.851  
(0.010) 

SVM 0.935  
(0.007) 

0.952  
(0.006) 

0.905  
(0.008) 

0.946  
(0.006) 

0.915  
(0.008) 
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Table 10. Evaluation Step – Predicting Endoscopy Using Secondary Approach (standard 
error) 

 
 ACC SN SP PPV NPV 

ANN 0.783  
(0.012) 

0.781  
(0.012) 

0.758  
(0.012) 

0.854  
(0.010) 

0.656  
(0.014) 

kNN 0.794  
(0.012) 

0.841  
(0.011) 

0.709  
(0.013) 

0.840  
(0.011) 

0.711  
(0.013) 

LDA 0.818  
(0.011) 

0.821  
(0.011) 

0.814  
(0.011) 

0.889  
(0.009) 

0.714  
(0.013) 

Logistic 0.792  
(0.012) 

0.840  
(0.011) 

0.705  
(0.013) 

0.838  
(0.011) 

0.708  
(0.013) 

LogitBoost 0.631  
(0.014) 

0.913  
(0.008) 

0.121  
(0.009) 

0.653  
(0.014) 

0.452  
(0.014) 

RF 0.783  
(0.012) 

0.838  
(0.011) 

0.684  
(0.013) 

0.828  
(0.011) 

0.700  
(0.013) 

SC 0.809  
(0.011) 

0.832  
(0.011) 

0.767  
(0.012) 

0.866  
(0.010) 

0.716  
(0.013) 

SVM 0.823  
(0.011) 

0.817  
(0.011) 

0.835  
(0.011) 

0.900  
(0.009) 

0.715  
(0.013) 

 
 
 
2.6.2 Variable Importance Results 
 
     The importance of each variable in predicting outcomes when using random forest and 
ANN is shown in Table 11.  Variables were common to both RF and ANN about half the 
time.  For predicting source, explanatory variables hematemesis through HR (heart rate) 
were considered significant variables.  The remaining variables had mixed ratings except 
for the last variable, ASA/NSAID, which did not seem to have a great influence on the 
performance of a model.  For predicting resuscitation, both models utilized variables 
syncope, orthostasis, hematocrit, hematocrit drop, blood pressure, heart rate, hematemesis 
and melena as important predictor variables.  The rest of the variables have mixed 
importance except for duration and unstable CAD, which do not seem to have a large 
impact on how well the model does.  Looking at the remaining two response variables, 
the results show there are also certain variables that are considered to be important for 
both models while the rest have varied importance.  These results (Section 2.6) have been 
published in Chu et al (31).  
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Table 11. Variable Importance Using RF and ANN 
 

SOURCE RESUSCITATION 
 RF ANN  RF ANN 

Hematemesis 0.1388 10 Syncope 0.1097 10 
NG Lavage 0.0692 10 Orthostasis 0.0782 10 

Hematochezia 0.0611 10 Hct. Drop 0.0495 10 
BUN 0.0484 10 DBP 0.0276 10 
Rectal 0.0374 10 Hct. 0.0232 10 
Melena 0.0221 9 HR 0.0139 10 

Orthostasis 0.0116 10 SBP 0.0114 10 
Hx. of GIB 0.0088 8 Hematemesis 0.0052 10 

HR 0.0066 10 Melena 0.0032 10 
Cr. 0.0055 7 Cr. 0.0019 1 
SBP 0.0051 4 NG Lavage 0.0019 9 
DBP 0.0043 9 BUN 0.0018 6 

Syncope 0.0032 9 Hematochezia 0.0015 10 
INR 0.0031 5 Duration 0.0011 6 
Plt. 0.0010 6 INR 0.0009 6 

Risk for Stress 
Ulcer 

0.0008 10 Rectal 0.0006 7 

Cirrhosis 0.0004 10 Unstable CAD -0.0016 5 
ASA/NSAID -0.0010 1    
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Table 11. (cont’d) Variable Importance Using RF and ANN 
 

ENDOSCOPY DISPOSITION 
 RF ANN  RF ANN 

Syncope 0.0507 10 Orthostasis 0.0585 10 
Orthostasis 0.0259 10 HR 0.0431 10 

Hct. 0.0223 10 Hct. 0.0340 10 
HR 0.0213 9 SBP 0.0287 10 

Hct. Drop 0.0188 10 Syncope 0.0271 10 
DBP 0.0178 9 DBP 0.0217 10 

Hematemesis 0.0133 10 Hct. Drop 0.0189 10 
Rectal 0.0054 9 Rectal 0.0094 10 
BUN 0.0051 5 Age 0.0070 10 
SBP 0.0046 9 NG_Lavage 0.0055 8 
INR 0.0043 2 BUN 0.0054 8 

Cirrhosis 0.0039 8 INR 0.0051 4 
Melena 0.0022 9 Risk for Stress 

Ulcer 
0.0037 8 

Plt. 0.0020 3 Plt. 0.0036 6 
Risk for Stress 

Ulcer 
0.0015 9 Melena 0.0026 9 

Duration 0.0008 8 Hematochezia 0.0022 6 
Cr. 0.0003 2 Hematemesis 0.0010 7 

ASA/NSAID 0.00008 4 Cirrhosis 0.0007 8 
Hematochezia 0.00001 9 COPD 0.0006 8 
NG Lavage -0.0004 8 CRF 0.00007 4 

   Duration 0.00001 4 
   Cr. -0.00006 3 
   Unstable CAD -0.0002 5 

 
 
 
 
2.7 Discussion of Findings 
 
     Although it would be best for patients with acute GIB to be cared for by 
gastroenterologists (32), it is too costly and logistically impossible that a 
gastroenterologist evaluate every patient.  It is also impractical to justify intensive 
resuscitation and urgent endoscopy for every patient with acute GIB due to limited 
healthcare resources.  “Expert systems” can immensely help non-gastroenterologists 
triage patients who may benefit most from urgent resuscitation and endoscopy.  These 
classification models or predictive models have been successfully utilized to optimize 
treatment and predict clinical outcomes in a variety of other conditions (33,34,35,36), 
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such as computerized interpretation of the electrocardiogram (37) and to help streamline 
and optimize care of patients with acute myocardial infarction (38), especially in a busy 
practice or in the emergency room (39).  
 
     Our objective was to develop a model to provide diagnostic and specific treatment 
recommendations for patients presenting with acute GIB.  The recommendations were 
designed to be in agreement with current evidence based guidelines for management of 
acute GIB.  The models were able to provide patient specific recommendations with 
accuracies exceeding 70-80%.  In the study, RF, SVM and LDA, all performed well in 
classification of the four response variables, in agreement with previous studies.  RF in 
particular performed exceptionally well having both high accuracies and high AUC.  RF 
and SVM are designed for high-dimensional data with a large feature space (large 
number of predictor variables) compared to the sample size and are likely to outperform 
other methods for high-dimensional data, which are unlike the current GIB data set (40).  
Logistic regression is a widely used standard regression model for binary data, and it can 
be expanded to data with more than two classes.  However, it often shows computational 
instability, such as failure to converge or the predicted value being extremely close to 1 
or 0 due to the nature of the model.  Our results support the conclusion by Ahn et al. that 
boosting strategies in general provide poor accuracies (40).  Furthermore, given the 
complexity, it is cumbersome and unwieldy compared to other methods.  Although not 
relevant to our problem, LDA and kNN require a variable pre-selection for an optimal 
performance unlike RF or SVM for high-dimensional data.  A statistical variable 
selection is often dependent on the criteria and is computer intensive.  
 
     With regards to the analysis of the importance of a variable, we show that both the RF 
and ANN models considered half of the variables to be important and the remaining half 
of varied importance.  This appears to be consistent with prior knowledge in regards to 
importance of variables identified to predict source and severity of acute GIB.  Every pre-
selected variable was important for one model or the other and therefore consistent with 
their identification in prior multivariate analyses.  Different models assigned varied 
importance to the variables due to the unique methods for evaluating variable importance.  
In RF, for every tree grown in the forest, test samples are used to count the number of 
votes cast for the correct class.  RF randomly permutes the values of a selected variable 
in the test set and put these test cases down the tree a second time.  It finds the number of 
votes for the correct class in the data with this permuted variable.  It subtracts this 
number from the number of votes for the correct class in the original data without 
permutation.  The average of this number of all trees in the forest is the raw importance 
score for the variable.  In the Statistica software, a combination of different methods is 
used to quantify variable importance for ANN.  These methods include searching 
algorithms, regularization (to avoid overfitting the model), connection weight approach, 
and sensitivity based approaches. 
 
     Since the output is based on training examples, bias can potentially be introduced 
through training examples.  We have the ability to influence the recommendations by 
modulating outcomes associated with each training example.  The model is limited by the 
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extent of the examples that is utilized to train the model.  Despite these flaws, the 
availability of such systems may facilitate and standardize the care of patients presenting 
with acute GIB.  Given that computer based tools are more likely to work if integrated 
with clinical care, validation of such a model could potentially facilitate care of patients 
with acute GIB.  It is also possible to continue to train the model prospectively to adapt to 
changing guidelines and varied clinical scenarios, allowing these predictive models to be 
portable to a broad range of locales.  Steps toward integrating a model such as random 
forest into hospital computer systems will be discussed in Section 8. 
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3. Comparison of Classification Models Based on Variable 
Importance Rankings 
 
 
 
 
     In Section 2, variables used were those thought to be important by literature research 
(mostly found by logistic regression) and those that are important to gastroenterologists.  
In this section, variable rankings were obtained by combining four different statistical 
methods.  By using a subset of these ranked variables, the models were again evaluated.  
The methods used to obtain variable rankings were: RF (using the variable importance 
option), ANN (using the variable importance option), Support Vector Machine-Recursive 
Feature Elimination (SVM-RFE), and BW ratio.  The same evaluation step as described 
in Section 2 was performed and accuracies as well as areas under the ROC curves were 
compared to the original analysis of models. 
 
 
3.1 Description of the Different Variable Importance Ranking Methods 
 
     There are several ways to rank variables.  Among them, are variable rankings done 
using classification models such as random forest, support vector machine, and artificial 
neural networks.  Another way is by ranking variables according to their BW ratios.  By 
computing the between-group sum of squares (BSS) and dividing it by the within-group 
sum of squares (WSS), we obtain the BW ratio.  This is done for each variable, where the 
groups are the different classes of the response variable.  The higher the BW ratio, the 
more important the variable is (41).  For a particular variable j, the BW ratio is as 
follows: 

( )( )
( )( )

2

2

( )
BW ratio = 

( )

i kj j
i k

i ij kj
i k

I y k x x
BSS j

WSS j I y k x x

•= −
=

= −

��

��
 

 
where jx• represents the average for variable j across all cases, kjx  represents the average 

for variable j for a particular class k, and ijx  represents a particular case value for variable 

j.  To obtain variable rankings using random forest, consider at first one single tree in the 
forest.  As mentioned in the Discussion of Section 2, test cases are put down the tree and 
the predicted class is recorded.  This is done for all the trees in the forest and the number 
of times the correct class is predicted is recorded (#VOTES_ORIGINAL).  Then the data 
for one variable, X, for the test cases are randomly scrambled up, and the test cases are 
put down each tree again.  We record the number of times the correct class is predicted 
again (#VOTES_PERMUTED).  The number of times the correct class is predicted using 
the scrambled data is subtracted from the number of times the correct class is predicted 



 
 
 
 

29

using the unscrambled data (#VOTES_ORIGINAL - #VOTES_PERMUTED).  Taking 
the average of this result across all the trees in the forest is known as the raw importance 
score for variable X.  This process is repeated for all variables.  The higher the raw 
importance score is for a variable, the more important the variable (15).  The raw 
importance score is also known as the mean decrease in accuracy, which is what is 
outputted in R. 
 
     The Intelligent Problem Solver in the Neural Networks package in Statistica selects 
the variables that are thought to be important in a model.  The Intelligent Problem Solver 
uses a combination of several different techniques including searching algorithms, 
regularization (to avoid overfitting the model), and sensitivity based approaches.  Support 
Vector Machine-Recursive Feature Elimination (SVM-RFE) removes features one by one 
in a backward elimination fashion (42).  An SVM is trained with all the features and the 
features are assigned weights.  A ranking score is assigned by squaring the weights and 
the feature with the smallest ranking score is eliminated.  This is the feature that is least 
important.  Another SVM is trained with the remaining features and a second feature is 
eliminated.  This is repeated until only one feature remains (this would be considered the 
most important feature). 
 
 
 
 
3.2 Methods for Choosing the Variables 
 
     The 4 different approaches of variable rankings were considered, with BW ratio and 
RF being done in R.  Statistica was used to run ANN while Matlab (version R2007a) was 
used to run SVM-RFE.  The number of times the variable was said to be important over 
10 runs was recorded.  All the variables were ranked in decreasing order of importance.  
The results from all 4 methods were combined by adding the standardized ranking values 
of each variable.   
 
     Since the artificial neural network method only indicates whether a variable is 
important or not in the model, for each repetition, the network was run an additional 10 
different times in order to obtain some variable ranking.  For ANN, the rankings were 
assigned by counting the number of times the variable was said to be important to the 
model (so the highest number is 10, the lowest is 0).  Also since the history of GIB 
explanatory variable (Hx_of_GIB) wasn’t broken down into indicator variables explicitly 
for ANN, the same number was assigned for each indicator variable of Hx_of_GIB so 
that we could combine the results with the other methods.  For SVM-RFE, just a list was 
given of the decreasing importance of the variables.  So the variables were renumbered, 
starting with 1 as the least important, 2 as the second least important, and 29 as the most 
important.  The variable ranking values were standardized by subtracting each respective 
mean and dividing by each respective standard deviation.  These standardized values 
were then added together to obtain an overall variable importance ranking.  When a 
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higher drop-off in the values was seen, these variables were discarded from being used in 
the model. 
 
 
3.3 Comparison Between Previous Results and Current Results 
 
     The same procedure was done for evaluating the models as described in Section 2.1 
(evaluation step only).  In particular, accuracies and area under the curves were compared 
for each response for each model using a significance level of � =0.05.  The highest 
accuracies were compared to each other for each response using the McNemar’s test.  
The same was done for the highest area under ROC curves.  For situations where multiple 
models were being compared, Bonferroni’s correction was used to control the error rate, 
with an overall � =0.05.  The statistical program, R (version 2.4.1), was used to run all the 
models, except for ANN, which was run in Statistica (version 7.1). 
 
 
3.4 Individual Model Parameters 
 
     All the same parameters were used as in the original analysis, except new values for 
the threshold were found for the shrunken centroid model and new values for k were 
found for the k-nearest neighbor model.  Also a new value for the parameter mfinal for 
boosting was found.  Using 10-fold cross-validation, the best threshold value was 0.4.  
For kNN, k=3 was used for the source of bleeding response, k=13 was used for the 
resuscitation response, and k=9 was used for the remaining two responses.  The 
parameter mfinal in the boosting model was set to 15 for the resuscitation and endoscopy 
responses and 10 for the disposition response. 
 
 
3.5 Results and Discussion/Conclusion from Evaluating Models Using 
Variable Importance Rankings to Select the Variables 
 
     Tables 12-15 show the combined variable importance rankings for each response.  
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

31

Table 12. Variable Importance Rankings for Source of Bleeding  
 

Variable Rank Variable Rank 
Hematemesis 9.527 DBP -0.321 
NG Lavage 4.230 CRF -0.390 

Hematochezia 2.998 Cirrhosis -0.533 
BUN 1.956 Hx. of GIB – upper -0.611 

Melena 1.688 Cr. -1.129 
Rectal 1.271 Syncope/Presyncope -1.285 

Hct. Drop 0.918 Plt. -1.430 
Hx. of GIB – mid 0.759 COPD -1.468 

Age 0.436 INR -1.805 
Orthostasis 0.373 Unstable CAD -2.417 

Hct. -0.034 SBP -2.565 
Hx. of GIB – lower -0.079 Sex -2.857 

Risk for Stress Ulcer -0.161 PPI -2.870 
HR -0.173 ASA/NSAID -3.722 

Duration -0.307   
 
 
 

Table 13. Variable Importance Rankings for Resuscitation  
 

Variable Rank Variable Rank 
Syncope/Presyncope 6.237 Hx. of GIB – lower -0.343 

Orthostasis 6.206 Hx. of GIB – upper -0.348 
Hct. Drop 3.106 Hx. of GIB – mid -0.382 

HR 2.599 NG Lavage -1.029 
Hct. 2.248 Cirrhosis -1.427 
DBP 2.107 Hematochezia -1.478 
Age 1.353 Unstable CAD -1.464 
BUN 1.341 Cr. -1.549 

Risk for Stress Ulcer 0.580 INR -1.839 
Hematemesis 0.435 CRF -2.628 

Plt. 0.430 COPD -2.933 
Rectal 0.291 Sex -3.439 
SBP 0.089 PPI -3.660 

Duration 0.077 ASA/NSAID -4.471 
Melena -0.112   
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Table 14. Variable Importance Rankings for Endoscopy  
 

Variable Rank Variable Rank 
Syncope/Presyncope 7.599 Hx. of GIB – lower -0.578 

HR 4.609 Hx. of GIB – mid -0.578 
Orthostasis 4.359 Cirrhosis -0.761 

Hct. 4.240 Melena -0.954 
Hct. Drop 3.551 INR -1.372 

DBP 2.485 BUN -1.432 
SBP 1.588 PPI -1.686 

Hematemesis 1.224 NG Lavage -1.739 
Age 1.042 Hematochezia -2.494 

Rectal 0.527 COPD -2.735 
Duration 0.261 ASA/NSAID -3.053 

Unstable CAD -0.078 Sex -3.922 
Hx. of GIB – upper -0.446 Cr -4.180 

Risk for Stress Ulcer -0.489 CRF -4.490 
Plt. -0.499   

 
 

Table 15. Variable Importance Rankings for Disposition  
 

Variable Rank Variable Rank 
Orthostasis 6.774 Unstable CAD -0.628 

HR 5.939 NG Lavage -0.751 
SBP 4.780 Cirrhosis -1.474 
Hct. 4.765 Hx. of GIB – lower -1.928 

Syncope/Presyncope 3.576 Hx. of GIB – upper -2.016 
DBP 2.608 Hx. of GIB – mid -2.066 

Hct. Drop 2.554 Hematochezia -2.066 
Age 1.753 Duration -2.159 

Rectal 0.636 COPD -2.271 
BUN 0.568 ASA/NSAID -2.673 

Risk for Stress Ulcer 0.151 Sex -2.916 
Plt. 0.099 CRF -3.481 

Hematemesis -0.218 Cr. -3.790 
Melena -0.413 PPI -4.746 

INR -0.622   
 
 
     Tables 16-19 and Figures 10-17 show the statistics calculated and the ROC curves 
respectively for evaluating the models using the variable importance rankings to select 
the variables to be in the models.  Table 20 shows a summary of results from the 
McNemar’s test.   
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Table 16. Source of Bleeding Results (based on variable importance rankings) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.912 

(0.008) 
0.969 

(0.005) 
0.940 

(0.007) 
0.969 

(0.005) 
0.941 

(0.007) 
0.999 

kNN 0.762 
(0.012) 

0.871 
(0.010) 

0.602 
(0.014) 

0.811 
(0.011) 

0.706 
(0.013) 

0.789 

LDA 0.923 
(0.008) 

0.975 
(0.004) 

1.000 
(0.000) 

1.000 
(0.000) 

0.953 
(0.006) 

0.988 

RF 0.947 
(0.006) 

0.986 
(0.003) 

0.951 
(0.006) 

0.975 
(0.004) 

0.973 
(0.005) 

0.998 

SC 0.923 
(0.008) 

0.976 
(0.004) 

0.907 
(0.008) 

0.954 
(0.006) 

0.952 
(0.006) 

0.968 

SVM  
(linear) 

0.922 
(0.008) 

0.976 
(0.004) 

0.932 
(0.007) 

0.965 
(0.005) 

0.953 
(0.006) 

0.974 

 
 
 
 

Table 17. Resuscitation Results (based on variable importance rankings) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.915 

(0.008) 
0.906 

(0.008) 
0.929 

(0.007) 
0.956 

(0.006) 
0.858 

(0.010) 
0.990 

kNN 0.874 
(0.010) 

0.926 
(0.008) 

0.784 
(0.012) 

0.879 
(0.009) 

0.864 
(0.010) 

0.864 

LDA 0.921 
(0.008) 

0.899 
(0.009) 

0.958 
(0.006) 

0.973 
(0.005) 

0.848 
(0.010) 

0.938 

Logistic 0.928 
(0.007) 

0.945 
(0.007) 

0.900 
(0.009) 

0.941 
(0.007) 

0.906 
(0.008) 

0.975 

LogitBoost 0.600 
(0.014) 

0.822 
(0.011) 

0.224 
(0.012) 

0.641 
(0.014) 

0.423 
(0.014) 

0.496 

RF 0.915 
(0.008) 

0.920 
(0.008) 

0.907 
(0.008) 

0.943 
(0.007) 

0.870 
(0.010) 

0.982 

SC 0.911 
(0.008) 

0.924 
(0.008) 

0.889 
(0.009) 

0.934 
(0.007) 

0.873 
(0.010) 

0.921 

SVM  
(linear) 

0.964 
(0.005) 

0.974 
(0.005) 

0.949 
(0.006) 

0.970 
(0.005) 

0.955 
(0.006) 

0.980 
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Table 18. Endoscopy Results (based on variable importance rankings) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.800 

(0.012) 
0.808 

(0.011) 
0.785 

(0.012) 
0.871 

(0.010) 
0.697 

(0.013) 
0.933 

kNN 0.761 
(0.012) 

0.859 
(0.010) 

0.584 
(0.014) 

0.789 
(0.012) 

0.695 
(0.013) 

0.761 

LDA 0.823 
(0.011) 

0.803 
(0.011) 

0.860 
(0.010) 

0.913 
(0.008) 

0.706 
(0.013) 

0.848 

Logistic 0.774 
(0.012) 

0.844 
(0.010) 

0.647 
(0.014) 

0.812 
(0.011) 

0.696 
(0.013) 

0.836 

LogitBoost 0.614 
(0.014) 

0.856 
(0.010) 

0.174 
(0.011) 

0.653 
(0.014) 

0.393 
(0.014) 

0.528 

RF 0.798 
(0.012) 

0.849 
(0.010) 

0.705 
(0.013) 

0.839 
(0.011) 

0.720 
(0.013) 

0.866 

SC 0.820 
(0.011) 

0.846 
(0.010) 

0.772 
(0.012) 

0.871 
(0.010) 

0.734 
(0.013) 

0.815 

SVM  
(linear) 

0.765 
(0.012) 

0.823 
(0.011) 

0.660 
(0.014) 

0.815 
(0.011) 

0.673 
(0.013) 

0.790 

 
 
 
 

Table 19. Disposition Results (based on variable importance rankings) 
 

 ACC SN SP PPV NPV AUC 
ANN 0.840 

(0.011) 
0.806 

(0.012) 
0.896 

(0.010) 
0.929 

(0.008) 
0.740 

(0.013) 
0.976 

kNN 0.875 
(0.010) 

0.936 
(0.007) 

0.770 
(0.012) 

0.874 
(0.010) 

0.876 
(0.010) 

0.907 

LDA 0.896 
(0.009) 

0.888 
(0.009) 

0.909 
(0.008) 

0.943 
(0.007) 

0.827 
(0.011) 

0.901 

LogitBoost 0.555 
(0.014) 

0.800 
(0.012) 

0.139 
(0.010) 

0.612 
(0.014) 

0.300 
(0.013) 

0.401 

RF 0.884 
(0.009) 

0.913 
(0.008) 

0.834 
(0.011) 

0.904 
(0.009) 

0.849 
(0.010) 

0.968 

SC 0.900 
(0.009) 

0.917 
(0.008) 

0.870 
(0.010) 

0.924 
(0.008) 

0.861 
(0.010) 

0.902 

SVM  
(linear) 

0.868 
(0.010) 

0.896 
(0.009) 

0.820 
(0.011) 

0.895 
(0.009) 

0.823 
(0.011) 

0.910 
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Figure 10. Accuracies for Source of Bleeding Response (based on variable importance 
rankings) 
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Figure 11. Accuracies for Resuscitation Response (based on variable importance 
rankings) 
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Figure 12. Accuracies for Endoscopy Response (based on variable importance rankings) 
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Figure 13. Accuracies for Disposition Response (based on variable importance rankings) 
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Table 20. Summary of McNemar’s Test Results (based on variable importance rankings) 
 

 Model (accuracy) Model (accuracy) p-value 
Source of bleeding    

Least significantly different RF (0.947) LDA (0.923) or 
SC (0.923) 

<0.0001 

Least not significantly differenta – – – 
    

Resuscitation    
Least significantly different SVM (0.964) Logistic (0.928) <0.0001 

Least not significantly differenta – – – 
    

Endoscopy    
Least significantly different LDA (0.823) ANN (0.800) <0.0001 

Least not significantly different LDA (0.823) SC (0.820) 0.1675 
    

Disposition    
Least significantly different SC (0.900) RF (0.884) <0.0001 

Least not significantly different SC (0.900) LDA (0.896) 0.0848 
a All models were significantly different from highest accuracy model 
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Figure 14. ROC Curves for Predicting Source of Bleeding (based on variable importance 
rankings) 
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Figure 15. ROC Curves for Predicting Resuscitation (based on variable importance 
rankings) 
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Figure 16. ROC Curves for Predicting Endoscopy (based on variable importance 
rankings) 
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Figure 17. ROC Curves for Predicting Disposition (based on variable importance 
rankings) 
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     For the response variable source of bleeding, the variables from Cr. and on were 
discarded (see Table 12).  For resuscitation, the variables from NG_Lavage and on were 
discarded (see Table 13).  For endoscopy, the variables from INR and on were discarded 
(Table 14).  For disposition, the variables from Cirrhosis and on were discarded (Table 
15).  To obtain the variable importance rankings, each method took less than 5 minutes to 
run.  To run the all models with the new chosen variables for one particular response 
doing 10 repetitions of 10-fold CV took about 30-40 minutes. 
 
     We observed that RF still performed best overall (in terms of accuracy and balance 
with sensitivity and specificity) with the newly selected subset of variables.  Very few 
accuracies were statistically significantly higher and there were no big differences that 
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would be useful seen when comparing the AUC values.  All the new accuracies were 
either about the same or lower for LDA.  For the kNN model, at a significance level of 
0.05, the new accuracy for source of bleeding was significantly higher while the 
remaining responses were about the same.  For the disposition response, we observed that 
the logistic regression model performs poorly as before (results are not reported).  For 
LogitBoost all the new accuracies were statistically significantly lower and the new 
AUCs were statistically significantly higher.  SC tended to show slightly higher results or 
the same results.  SVM’s new accuracies were lower except for the resuscitation response 
– this accuracy was significantly higher.  Hence there was not a consistent trend to be 
seen in comparing the accuracies and AUCs.  We do see however that random forest still 
performed consistently well for all responses using the new subset of variables.  Since 
there were no significant improvements with selecting variables using variable 
importance rankings that would be useful to us, all the models from now on will be those 
using the variables originally selected (as in Section 2). 
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4. External Validation Applied to RUGBE Database 
 
 
 
 
 
     The RUGBE (Registry in patients with Upper Gastrointestinal Bleeding undergoing 
an Endoscopy) database is a large Canadian database of patients with acute upper GIB 
from 18 participating sites across Canada.  RUGBE is a network of 6 community and 12 
tertiary care institutions from which source data is collected and entered into specialized 
electronic databases by specially trained research assistants.  All patients presenting for 
medical attention for overt upper GI bleeding or with a history of hematemesis/coffee 
ground vomiting, melena, hematochezia, or a combination of any of the above within 24 
hours preceding admission are considered for inclusion.  Patients are entered in the 
registry only if an upper GI endoscopy is performed and patients with varices bleeding 
are excluded from the database.  All data is reviewed at a single national location for 
internal logic of patient flow and biological plausibility, and ten percent of all records are 
audited on a quarterly basis by comparing them to the source data recorded in the hospital 
charts, thus further validating the abstracted information.  All participating research staff 
and monitors used a glossary that included definitions of all variables entered in the 
registry to facilitate and standardize abstracted information. 
 
 
4.1 Methods 
 
     The performance of these classification models on RUGBE data was analyzed to 
evaluate our approach of application of the model to clinical practice.  The entire 122 
patient dataset was used to train each model and the RUGBE dataset was the test set.  
Because the datasets were not completely alike, some alterations and recoding had to be 
done to both sets to assess the performance of the models.  The set of predictor variables 
used included the following: history of prior GI bleeding, hematochezia, hematemesis, 
melena, ASA/NSAID use, blood pressure, heart rate, NG lavage, rectal exam, platelet 
count, and INR.  Each model was run ten separate times and an average accuracy was 
obtained from the runs.  The top three performing models were used to predict the 
RUGBE data. 
 
 
4.2 Results from RUGBE Dataset 
 
     Patients with any missing data were deleted.  However, this led to a large reduction of 
sample size because of many missing values for two variables: NG lavage and rectal 
exam.  For this study, four separate strategies were undertaken (either deleting the rectal 
and/or NG lavage variable or keeping them both in).  Keeping the NG lavage variable in 
resulted in a higher accuracy (94%~97%).  See Table 21.  Imputation of the missing 
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values for NG lavage and rectal were also tried.  Since they were categorical variables, 
the mode was used to impute missing values.  Imputation resulted in an increase of 
accuracy for ANN and RF. 
 
 

Table 21. Results from RUGBE Data for Source of Bleeding Response 
 

 # Patients used ANN RF SVM 
Using all 8 variables 94 0.885  

(0.065) 
0.884 

 (0.003) 
0.926  

(0.000) 
Deleted NG Lavage 423 0.669  

(0.207) 
0.57  

(0.033) 
0.740  

(0.006) 
Deleted rectal 293 0.952  

(0.024) 
0.941  

(0.002) 
0.966  

(0.000) 
Deleted NG Lavage and rectal 1317 0.481  

(0.115) 
0.646  

(0.021) 
0.822  

(0.005) 
Imputation of NG Lavage and 

rectal 
1317 0.967 

(0.005) 
0.969 

(0.005) 
0.903 

(0.008) 
 
 
     Due to reduction of variables and recoding of data, LDA did not perform well on the 
RUGBE dataset. So ANN, a comparable model to RF and SVM, was used in its place.  
ANN was comparable in terms of accuracy and area under the ROC curve.  RF and SVM 
were run in R (version 2.4.1) and ANN was run in Statistica (version 7.1).  Running time 
for the three models was 10-15 minutes. 
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5. Comparison of Top Performing Model to Existing GIB 
Scores 
 
 
 
 
5.1 Methods 
 
     In Section 2, we saw that the random forest model was our top performing model, 
having a high accuracy and good balance of sensitivity and specificity.  We want to 
assess whether it would be beneficial to use this random forest model over existing GIB 
scores, such as the Rockall and Blatchford scores.  Thus we compare the random forest 
model, the Rockall score, and Blatchford score.  We assessed performance by comparing 
accuracies and area under ROC curves.  Since the Rockall and Blatchford scores are 
applicable for upper GIB patients only, these were the patients considered.  There were a 
total of 192 patients, with 126 of them being upper GIB patients.  The areas under the 
correlated curves were compared for significant differences using the method described 
by DeLong and DeLong (43).  Their method was implemented in R.   
 
     Although the Rockall score was originally designed to triage patients to high risk/low 
risk (admit to ICU/early discharge), it can also be used to determine those who are in 
need of urgent endoscopy.  Only the initial Rockall score (without endoscopic data) was 
of true interest to us because the random forest model and Blatchford score both do not 
use endoscopic data.  The full Rockall score was also examined merely to show that our 
random forest model is comparable to this even though our model does not include 
endoscopic data.  The Blatchford score is used to identify those patients in need of urgent 
treatment.  Thus we focused on the need for urgent endoscopy response.   
 
     Ten runs of 10-fold cross validation were performed.  Parameters ntree (number of 
trees grown) and mtry (number of variables randomly sampled at each node split) were 
set to 200 and 1 respectively for the random forest model.  These were the parameters 
that gave the best performance for random forest.  The initial Rockall score (pre-
endoscopy diagnosis data) ranges from 0 to 7 and the full Rockall score ranges from 0 to 
11 while the Blatchford score ranges from 0 to 23.  For creating the ROC curves, cutoff 
points for these scores were all possible integers the scores could take on.  These cutoff 
points were then scaled to be between 0 and 1.  Cutoff points for random forest were 
values between 0 and 1, in increments of 0.1.  Areas under the ROC curves were 
calculated by finding the Mann-Whitney statistic and 95% confidence intervals were 
found to compare random forest to the two existing scores.  In addition, accuracies for the 
scores and the random forest model were calculated.  This analysis was run in R (version 
2.4.1). 
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5.2 Results of Comparing Random Forest, Rockall Score, and 
Blatchford Score 
 
     Figure 18 shows the endoscopy ROC curves.  Table 22 shows the area under the curve 
for each model/score.  Without performing any tests, random forest seems to perform 
better than the Rockall score and slightly better than the Blatchford score in regards to the 
area under the ROC curve.  Table 23 shows the 95% confidence intervals for testing the 
difference between random forest and the two scoring systems.  The 95% confidence 
intervals have been adjusted for the multiple comparisons of scores and the random forest 
model (43).  Comparing the initial Rockall score and the random forest model, there is a 
marginally significant difference between them, indicating the random forest model is 
slightly better than the initial Rockall score.  There are no significant differences between 
the full Rockall score and random forest, or the Blatchford score and random forest.  
When the analysis was first performed with only 79 upper GIB patients (out of 122 
patients total), the 95% confidence interval for the difference between the initial Rockall 
score and the random forest model was [-0.160,-0.008].   
 
 

Table 22. Accuracies and Area Under ROC Curves for Comparison of Scores and RF 
Model 

 
Score system / model Accuracy Area under ROC curve 
Initial Rockall score 0.754 0.777 
Full Rockall score 0.770 0.857 
Blatchford score 0.817 0.863 
Random forest 0.810 0.869 

 
 
 

Table 23. 95% Confidence Intervals for the Difference Between a Scoring System and 
Random Forest 

 
Comparison 95% confidence interval for the difference 

Initial Rockall vs. random forest [-0.182,-0.002] 
Full Rockall vs. random forest [-0.090,0.067] 
Blatchford vs. random forest [-0.069,0.057] 
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Figure 18. ROC Curves for Endoscopy (Comparing Rockall and Blatchford Scores and 
Random Forest) 
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     Table 22 shows the accuracies calculated for each score and the random forest model.  
The Blatchford score’s accuracy and random forest’s accuracy were virtually the same.  
Standard deviations could not be calculated for the Rockall and Blatchford scores 
because there was no way the score could ever vary for a given patient.  The standard 
deviation for the random forest model however was 0.018.  Given our results, we see that 
random forest performed statistically significantly better than the initial Rockall score.  
While random forest was not statistically significant to the full Rockall or Blatchford 
score, given the higher AUCs, there is indication that random forest is a good, reliable 
model to use in classifying GIB data.  Random forest was shown to be comparable and 
not significantly worse than the full Rockall and Blatchford score.  Further, random forest 
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is applicable to all sources of bleeding (i.e. upper, mid and lower GIB) not just one 
source of GIB bleeding, and is more versatile in that it can be used to predict different 
responses as well.  Running time for this analysis took approximately 5 minutes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

50

6. Simulation Study 
 
 
 
 
 
     Aside from comparing the models using the GIB data, we want to compare the models 
using simulated GIB data to see in general how well they perform.  All eight models were 
considered.  For each response variable, simulated data was generated for four cases – a 
combination of unbalanced versus balanced data and correlated versus independent data.  
The sample size was 300 patients and the explanatory variable distributions were 
approximated by looking at the distributions from the actual GIB data.   
 
     For the source of bleeding response, the unbalanced data was divided as follows: 80% 
of the patients had upper bleeding, 15% had lower bleeding, and the remaining 5% had 
middle bleeding.  For the resuscitation and endoscopy response, the unbalanced data was 
divided as 20% patients categorized as “Yes” with the rest (80%) as “No.”  Similarly, for 
the disposition response, 20% of the patients were categorized as placed in the ICU and 
the remaining 80% were classified as not being placed in the ICU.  These resemble the 
actual proportions for GIB patients.  For the balanced data, patients were classified 
evenly, i.e. 150 patients for each class (100 patients for source of bleeding response 
because there are 3 classes).  Correlated data was simulated by generating a random 
number from the Uniform distribution, Uniform(0,0.3) for the correlation between two 
variables.  Using values higher than 0.3 caused problems in obtaining the covariances and 
generating the multivariate normal distributions.   
 
     The data was initially generated from multivariate normal distributions and then 
changed accordingly to discrete distributions and right-skewed distributions where 
appropriate.  For each class of a particular response variable, the means and standard 
deviations were taken from the real GIB data for each variable but their values 
exaggerated  – means were spread further apart to indicate clearly the distinction between 
classes, and standard deviations used for the simulation data were two times the actual 
standard deviations.  Variables were discretized by translating the original value to the 
area under the normal curve, making it a value between 0 and 1.  Then, according to the 
proportions from the real GIB data, these values were assigned into a class.  For example, 
if the input variable was 30% of the time “Yes” and 70% of the time “No”, then values 
between [0,0.3] would be “Yes” and values between (0.3,1.0] would be “No.”  
Proportions from the real GIB data were not followed exactly, but roughly followed to 
give a general idea.  Variables were converted into skewed distributions by scaling the 
values down and exponentiating them, so that the variable would follow a log-normal 
distribution, which is right-skewed, and the peak of the distribution would start close to 
x=0.  The values were then shifted over as needed to mimic the behavior of GIB 
variables.   
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     Ten-fold cross validation was done, and 100 data files were generated for each case 
for each response, resulting in a total of 1600 files in total.  The following statistics were 
calculated for each 10-fold cross validation, and their results were averaged together: 
accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.  
As an alternative analysis, only a learning and test set were created, with 300 patients 
being in the learning set and 300 patients being in the test set.  One hundred learning sets 
and 100 corresponding test sets were generated.  The same statistics were calculated for 
this.  We wanted to see whether there would be significant differences in 10-fold cross 
validation versus just a single learning and test set.  McNemar’s test was used to 
determine whether there were any significant differences in accuracies between the 
models.  As with the actual GIB data, ROC curves were created and area under the ROC 
curves were found – this was done with the 10-fold cross validation results.  Additionally, 
accuracies between the model with the highest accuracy and the other models were 
compared using McNemar’s test.  Using the Bonferroni correction to account for multiple 
comparisons of models, an appropriate alpha value was used for each test to control the 
error rate.     
 
     Since the analysis of the actual GIB data, there had been upgrades in the softwares 
used.  The simulation study was run using R (version 2.7.2) for all models except ANN, 
which was run in Statistica (version 8.0).  Due to changes in the Statistica software, the 
cross-validation option was no longer available.  Random subsampling of the data was 
used.  So, for each dataset, subsampling was done ten times to simulate 10-fold cross-
validation as closely as possible.  Further, due to computational constraints, only 5 files 
could be considered to create the ANN ROC curves instead of all 100 files.  Using all 100 
files would take 5 months (given a 40 hour work week) to simply prepare the data in a 
format that could be used to create the ROC curves.  This is considering if nothing else 
was done but prepare the data (time does not include running the models and analyses 
themselves).  For the learning/test set analysis, the learning and test sets had to be 
combined for ANN and then 50% of the dataset was randomly selected to be used as the 
test set.  There were no options to specify particular cases to be included in either the 
training or test set.  The only time particular cases could be selected was when they were 
to be included or excluded from the analysis. 
 
 
 
6.1 Individual Model Parameters 
 
     All the same parameters were used as in the original analysis (Section 2) except new 
values were found for the shrunken centroid threshold, the k for k-nearest neighbor, and 
the mfinal parameter for boosting.  A threshold of 2 was used for all responses for 
shrunken centroid.  For kNN, k=3 for all the correlated data except for the endoscopy 
response, which was k=5.  For the uncorrelated data, k=5 except for the disposition 
response, which was k=3.  For boosting, mfinal was set to 5. 
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6.2 Simulation Study Results 
 
     Tables 24-43 give the results from the simulation study for each response and each 
combination (unbalanced versus balanced data and correlated versus independent data) as 
well as summary results from performing the McNemar’s test.  Figures 19-34 show the 
16 ROC curves.   
 
 

Table 24. Simulation Study Results for Source of Bleeding Response (unbalanced and 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.844 
(0.002) 

0.970 
(0.001) 

0.362 
(0.003) 

0.862 
(0.002) 

0.778 
(0.002) 

0.772 

kNN 0.786 
(0.002) 

0.841 
(0.002) 

0.588 
(0.003) 

0.891 
(0.002) 

0.482 
(0.003) 

0.766 

LDA 0.671 
(0.003) 

0.674 
(0.003) 

0.783 
(0.002) 

0.925 
(0.002) 

0.378 
(0.003) 

0.760 

RF 0.954 
(0.001) 

0.999 
(0.000) 

0.777 
(0.002) 

0.947 
(0.001) 

0.994 
(0.000) 

0.992 

SC 0.800 
(0.002) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.005 
(0.000) 

0.500 

SVM – linear 0.816 
(0.002) 

0.963 
(0.001) 

0.232 
(0.002) 

0.834 
(0.002) 

0.606 
(0.003) 

0.651 

SVM – radial 0.800 
(0.002) 

1.000 
(0.000) 

0.004 
(0.000) 

0.801 
(0.002) 

0.038 
(0.001) 

0.503 

        a Using only 5 files with subsampling 
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Table 25. Simulation Study Results for Source of Bleeding Response (unbalanced and 
not correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.837 
(0.002) 

0.959 
(0.001) 

0.378 
(0.003) 

0.861 
(0.002) 

0.745 
(0.003) 

0.775 

kNN 0.791 
(0.002) 

0.859 
(0.002) 

0.549 
(0.003) 

0.885 
(0.002) 

0.493 
(0.003) 

0.754 

LDA 0.694 
(0.003) 

0.708 
(0.003) 

0.763 
(0.002) 

0.923 
(0.002) 

0.399 
(0.003) 

0.769 

RF 0.954 
(0.001) 

0.998 
(0.000) 

0.779 
(0.002) 

0.948 
(0.001) 

0.992 
(0.001) 

0.990 

SC 0.800 
(0.002) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.000 
(0.000) 

0.500 

SVM – 
linear 

0.812 
(0.002) 

0.963 
(0.001) 

0.218 
(0.002) 

0.832 
(0.002) 

0.581 
(0.003) 

0.639 

SVM – 
radial 

0.801 
(0.002) 

0.999 
(0.000) 

0.012 
(0.001) 

0.802 
(0.002) 

0.077 
(0.002) 

0.510 

       a Using only 5 files with subsampling 
 
 
 

Table 26. Simulation Study Results for Source of Bleeding Response (balanced and 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.770 
(0.002) 

0.686 
(0.003) 

0.869 
(0.002) 

0.740 
(0.003) 

0.848 
(0.002) 

0.856 

kNN 0.787 
(0.002) 

0.470 
(0.003) 

0.961 
(0.001) 

0.857 
(0.002) 

0.784 
(0.002) 

0.734 

LDA 0.706 
(0.003) 

0.530 
(0.003) 

0.873 
(0.002) 

0.678 
(0.003) 

0.788 
(0.002) 

0.731 

RF 0.982 
(0.001) 

0.973 
(0.001) 

0.986 
(0.001) 

0.973 
(0.001) 

0.987 
(0.001) 

0.998 

SC 0.714 
(0.003) 

0.344 
(0.003) 

0.926 
(0.002) 

0.714 
(0.003) 

0.739 
(0.003) 

0.659 

SVM – 
linear 

0.740 
(0.003) 

0.556 
(0.003) 

0.859 
(0.002) 

0.665 
(0.003) 

0.795 
(0.002) 

0.764 

SVM – 
radial 

0.481 
(0.003) 

0.487 
(0.003) 

0.578 
(0.003) 

0.366 
(0.003) 

0.694 
(0.003) 

0.513 

             a Using only 5 files with subsampling 
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Table 27. Simulation Study Results for Source of Bleeding Response (balanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.759 
(0.002) 

0.664 
(0.003) 

0.873 
(0.002) 

0.733 
(0.003) 

0.842 
(0.002) 

0.896 

kNN 0.763 
(0.002) 

0.392 
(0.003) 

0.972 
(0.001) 

0.875 
(0.002) 

0.762 
(0.002) 

0.726 

LDA 0.707 
(0.003) 

0.533 
(0.003) 

0.861 
(0.002) 

0.658 
(0.003) 

0.787 
(0.002) 

0.728 

RF 0.981 
(0.001) 

0.973 
(0.001) 

0.985 
(0.001) 

0.970 
(0.001) 

0.987 
(0.001) 

0.998 

SC 0.717 
(0.003) 

0.359 
(0.003) 

0.925 
(0.002) 

0.714 
(0.003) 

0.744 
(0.003) 

0.663 

SVM – 
linear 

0.741 
(0.003) 

0.557 
(0.003) 

0.859 
(0.002) 

0.665 
(0.003) 

0.796 
(0.002) 

0.760 

SVM – 
radial 

0.480 
(0.003) 

0.479 
(0.003) 

0.581 
(0.003) 

0.364 
(0.003) 

0.692 
(0.003) 

0.509 

             a Using only 5 files with subsampling 
 
 
 

Table 28. Summary of McNemar’s Test Results (Source of Bleeding Response) 
 

 Model (accuracy) Model (accuracy) p-value 
Unbalanced/correlated data    
Least significantly different RF (0.954) ANN (0.844) <0.0001 

Least not significantly differenta – – – 
    

Unbalanced/not correlated data    
Least significantly different RF (0.954) ANN (0.837) <0.0001 

Least not significantly differenta – – – 
    

Balanced/correlated data    
Least significantly different RF (0.982) kNN (0.787) <0.0001 

Least not significantly differenta – – – 
    

Balanced/not correlated data    
Least significantly different RF (0.981) kNN (0.763) <0.0001 

Least not significantly differenta – – – 
    a All models were significantly different from highest accuracy model 
 
 
 



 
 
 
 

55

Table 29. Simulation Study Results for Resuscitation Response (unbalanced and 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.949 
(0.001) 

0.785 
(0.002) 

0.990 
(0.001) 

0.950 
(0.001) 

0.949 
(0.001) 

0.933 

kNN 0.833 
(0.002) 

0.201 
(0.002) 

0.991 
(0.001) 

0.852 
(0.002) 

0.832 
(0.002) 

0.624 

LDA 0.938 
(0.001) 

0.741 
(0.003) 

0.987 
(0.001) 

0.937 
(0.001) 

0.938 
(0.001) 

0.883 

Logistic 0.933 
(0.001) 

0.789 
(0.002) 

0.969 
(0.001) 

0.867 
(0.002) 

0.948 
(0.001) 

0.925 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.518 

RF 0.988 
(0.001) 

0.951 
(0.001) 

0.997 
(0.000) 

0.988 
(0.001) 

0.988 
(0.001) 

0.999 

SC 0.904 
(0.002) 

0.518 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.893 
(0.002) 

0.777 

SVM – linear 0.943 
(0.001) 

0.768 
(0.002) 

0.986 
(0.001) 

0.934 
(0.001) 

0.945 
(0.001) 

0.912 

SVM – radial 0.821 
(0.002) 

0.112 
(0.002) 

0.998 
(0.000) 

0.140 
(0.002) 

0.821 
(0.002) 

0.562 

           a Using only 5 files with subsampling 
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Table 30. Simulation Study Results for Resuscitation Response (unbalanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.940 
(0.001) 

0.763 
(0.002) 

0.984 
(0.001) 

0.931 
(0.001) 

0.944 
(0.001) 

0.914 

kNN 0.819 
(0.002) 

0.112 
(0.002) 

0.996 
(0.000) 

0.860 
(0.002) 

0.818 
(0.002) 

0.619 

LDA 0.938 
(0.001) 

0.738 
(0.003) 

0.988 
(0.001) 

0.939 
(0.001) 

0.938 
(0.001) 

0.881 

Logistic 0.928 
(0.001) 

0.764 
(0.002) 

0.970 
(0.001) 

0.863 
(0.002) 

0.943 
(0.001) 

0.912 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.500 

RF 0.988 
(0.001) 

0.949 
(0.001) 

0.998 
(0.000) 

0.990 
(0.001) 

0.987 
(0.001) 

0.999 

SC 0.905 
(0.002) 

0.523 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.894 
(0.002) 

0.780 

SVM – linear 0.938 
(0.001) 

0.744 
(0.003) 

0.986 
(0.001) 

0.930 
(0.001) 

0.939 
(0.001) 

0.899 

SVM – radial 0.814 
(0.002) 

0.076 
(0.002) 

0.999 
(0.000) 

0.094 
(0.002) 

0.814 
(0.002) 

0.541 

           a Using only 5 files with subsampling 
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Table 31. Simulation Study Results for Resuscitation Response (balanced and correlated 
data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.907 
(0.002) 

0.874 
(0.002) 

0.938 
(0.001) 

0.938 
(0.001) 

0.884 
(0.002) 

0.958 

kNN 0.733 
(0.003) 

0.551 
(0.003) 

0.914 
(0.002) 

0.865 
(0.002) 

0.671 
(0.003) 

0.776 

LDA 0.864 
(0.002) 

0.763 
(0.002) 

0.964 
(0.001) 

0.956 
(0.001) 

0.803 
(0.002) 

0.882 

Logistic 0.892 
(0.002) 

0.857 
(0.002) 

0.926 
(0.002) 

0.921 
(0.002) 

0.867 
(0.002) 

0.932 

LogitBoost 0.498 
(0.003) 

0.498 
(0.003) 

0.498 
(0.003) 

0.498 
(0.003) 

0.498 
(0.003) 

0.493 

RF 0.985 
(0.001) 

0.987 
(0.001) 

0.983 
(0.001) 

0.983 
(0.001) 

0.987 
(0.001) 

0.999 

SC 0.820 
(0.002) 

0.651 
(0.003) 

0.989 
(0.001) 

0.984 
(0.001) 

0.740 
(0.003) 

0.834 

SVM – linear 0.896 
(0.002) 

0.840 
(0.002) 

0.951 
(0.001) 

0.946 
(0.001) 

0.856 
(0.002) 

0.920 

SVM – radial 0.526 
(0.003) 

0.671 
(0.003) 

0.382 
(0.003) 

0.523 
(0.003) 

0.544 
(0.003) 

0.470 

           a Using only 5 files with subsampling 
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Table 32. Simulation Study Results for Resuscitation Response (balanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.886 
(0.002) 

0.848 
(0.002) 

0.924 
(0.002) 

0.923 
(0.002) 

0.861 
(0.002) 

0.926 

kNN 0.688 
(0.003) 

0.465 
(0.003) 

0.910 
(0.002) 

0.839 
(0.002) 

0.630 
(0.003) 

0.753 

LDA 0.852 
(0.002) 

0.745 
(0.003) 

0.959 
(0.001) 

0.948 
(0.001) 

0.790 
(0.002) 

0.870 

Logistic 0.869 
(0.002) 

0.826 
(0.002) 

0.912 
(0.002) 

0.904 
(0.002) 

0.840 
(0.002) 

0.912 

LogitBoost 0.492 
(0.003) 

0.489 
(0.003) 

0.495 
(0.003) 

0.492 
(0.003) 

0.492 
(0.003) 

0.490 

RF 0.985 
(0.001) 

0.986 
(0.001) 

0.985 
(0.001) 

0.985 
(0.001) 

0.986 
(0.001) 

0.999 

SC 0.819 
(0.002) 

0.651 
(0.003) 

0.987 
(0.001) 

0.981 
(0.001) 

0.739 
(0.003) 

0.834 

SVM – linear 0.875 
(0.002) 

0.806 
(0.002) 

0.945 
(0.001) 

0.936 
(0.001) 

0.830 
(0.002) 

0.902 

SVM – radial 0.528 
(0.003) 

0.647 
(0.003) 

0.408 
(0.003) 

0.525 
(0.003) 

0.540 
(0.003) 

0.477 

           a Using only 5 files with subsampling 
 
 

Table 33. Summary of McNemar’s Test Results (Resuscitation Response) 
 

 Model (accuracy) Model (accuracy) p-value 
Unbalanced/correlated data    
Least significantly different RF (0.988) ANN (0.949) <0.0001 

Least not significantly differenta – – – 
    

Unbalanced/not correlated data    
Least significantly different RF (0.988) ANN (0.940) <0.0001 

Least not significantly differenta – – – 
    

Balanced/correlated data    
Least significantly different RF (0.985) ANN (0.907) <0.0001 

Least not significantly differenta – – – 
    

Balanced/not correlated data    
Least significantly different RF (0.985) ANN (0.886) <0.0001 

Least not significantly different a – – – 
    a All models were significantly different from highest accuracy model 
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Table 34. Simulation Study Results for Endoscopy Response (unbalanced and correlated 
data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.965 
(0.001) 

0.853 
(0.002) 

0.993 
(0.001) 

0.970 
(0.001) 

0.964 
(0.001) 

0.972 

kNN 0.814 
(0.002) 

0.188 
(0.002) 

0.970 
(0.001) 

0.610 
(0.003) 

0.827 
(0.002) 

0.588 

LDA 0.950 
(0.001) 

0.794 
(0.002) 

0.989 
(0.001) 

0.947 
(0.001) 

0.950 
(0.001) 

0.904 

Logistic 0.935 
(0.001) 

0.828 
(0.002) 

0.962 
(0.001) 

0.846 
(0.002) 

0.957 
(0.001) 

0.947 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.503 

RF 0.968 
(0.001) 

0.870 
(0.002) 

0.992 
(0.001) 

0.966 
(0.001) 

0.968 
(0.001) 

0.993 

SC 0.939 
(0.001) 

0.699 
(0.003) 

0.999 
(0.000) 

0.993 
(0.000) 

0.930 
(0.001) 

0.861 

SVM – linear 0.952 
(0.001) 

0.842 
(0.002) 

0.979 
(0.001) 

0.911 
(0.002) 

0.961 
(0.001) 

0.940 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.500 

           a Using only 5 files with subsampling 
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Table 35. Simulation Study Results for Endoscopy Response (unbalanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.958 
(0.001) 

0.819 
(0.002) 

0.994 
(0.000) 

0.972 
(0.001) 

0.956 
(0.001) 

0.960 

kNN 0.810 
(0.002) 

0.107 
(0.002) 

0.986 
(0.001) 

0.655 
(0.003) 

0.815 
(0.002) 

0.574 

LDA 0.957 
(0.001) 

0.810 
(0.002) 

0.994 
(0.000) 

0.968 
(0.001) 

0.954 
(0.001) 

0.913 

Logistic 0.935 
(0.001) 

0.822 
(0.002) 

0.964 
(0.001) 

0.851 
(0.002) 

0.956 
(0.001) 

0.942 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.010 
(0.001) 

0.800 
(0.002) 

0.492 

RF 0.970 
(0.001) 

0.878 
(0.002) 

0.993 
(0.000) 

0.971 
(0.001) 

0.970 
(0.001) 

0.992 

SC 0.942 
(0.001) 

0.711 
(0.003) 

1.000 
(0.000) 

0.997 
(0.000) 

0.933 
(0.001) 

0.868 

SVM – linear 0.949 
(0.001) 

0.833 
(0.002) 

0.978 
(0.001) 

0.904 
(0.002) 

0.959 
(0.001) 

0.934 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.500 

           a Using only 5 files with subsampling 
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Table 36. Simulation Study Results for Endoscopy Response (balanced and correlated 
data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.926 
(0.002) 

0.905 
(0.002) 

0.949 
(0.001) 

0.948 
(0.001) 

0.910 
(0.002) 

0.963 

kNN 0.688 
(0.003) 

0.574 
(0.003) 

0.802 
(0.002) 

0.745 
(0.003) 

0.654 
(0.003) 

0.730 

LDA 0.888 
(0.002) 

0.808 
(0.002) 

0.967 
(0.001) 

0.961 
(0.001) 

0.835 
(0.002) 

0.901 

Logistic 0.905 
(0.002) 

0.892 
(0.002) 

0.918 
(0.002) 

0.915 
(0.002) 

0.895 
(0.002) 

0.955 

LogitBoost 0.502 
(0.003) 

0.503 
(0.003) 

0.501 
(0.003) 

0.502 
(0.003) 

0.502 
(0.003) 

0.502 

RF 0.955 
(0.001) 

0.944 
(0.001) 

0.965 
(0.001) 

0.965 
(0.001) 

0.945 
(0.001) 

0.991 

SC 0.884 
(0.002) 

0.783 
(0.002) 

0.984 
(0.001) 

0.980 
(0.001) 

0.820 
(0.002) 

0.894 

SVM – linear 0.912 
(0.002) 

0.888 
(0.002) 

0.936 
(0.001) 

0.933 
(0.001) 

0.893 
(0.002) 

0.936 

SVM – radial 0.448 
(0.003) 

0.525 
(0.003) 

0.371 
(0.003) 

0.452 
(0.003) 

0.438 
(0.003) 

0.320 

           a Using only 5 files with subsampling 
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Table 37. Simulation Study Results for Endoscopy Response (balanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.918 
(0.002) 

0.896 
(0.002) 

0.939 
(0.001) 

0.941 
(0.001) 

0.902 
(0.002) 

0.972 

kNN 0.673 
(0.003) 

0.535 
(0.003) 

0.811 
(0.002) 

0.740 
(0.003) 

0.636 
(0.003) 

0.719 

LDA 0.898 
(0.002) 

0.823 
(0.002) 

0.974 
(0.001) 

0.969 
(0.001) 

0.846 
(0.002) 

0.911 

Logistic 0.898 
(0.002) 

0.881 
(0.002) 

0.914 
(0.002) 

0.912 
(0.002) 

0.885 
(0.002) 

0.948 

LogitBoost 0.504 
(0.003) 

0.500 
(0.003) 

0.508 
(0.003) 

0.504 
(0.003) 

0.505 
(0.003) 

0.517 

RF 0.956 
(0.001) 

0.946 
(0.001) 

0.965 
(0.001) 

0.965 
(0.001) 

0.947 
(0.001) 

0.991 

SC 0.891 
(0.002) 

0.795 
(0.002) 

0.987 
(0.001) 

0.984 
(0.001) 

0.829 
(0.002) 

0.902 

SVM – linear 0.905 
(0.002) 

0.877 
(0.002) 

0.933 
(0.001) 

0.930 
(0.001) 

0.884 
(0.002) 

0.930 

SVM – radial 0.450 
(0.003) 

0.507 
(0.003) 

0.392 
(0.003) 

0.452 
(0.003) 

0.444 
(0.003) 

0.317 

           a Using only 5 files with subsampling 
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Table 38. Summary of McNemar’s Test Results (Endoscopy Response) 
 

 Model (accuracy) Model (accuracy) p-value 
Unbalanced/correlated data    
Least significantly different RF (0.968) SVM – linear 

(0.952) 
<0.0001 

Least not significantly different RF (0.968) ANN (0.965) 0.5364 
    

Unbalanced/not correlated data    
Least significantly different RF (0.970) LDA (0.957) <0.0001 

Least not significantly different RF (0.970) ANN (0.958) 0.6604 
    

Balanced/correlated data    
Least significantly different RF (0.955) SVM – linear 

(0.912) 
<0.0001 

Least not significantly different RF (0.955) ANN (0.926) 0.8129 
    

Balanced/not correlated data    
Least significantly different RF (0.956) SVM – linear 

(0.905) 
<0.0001 

Least not significantly different RF (0.956) ANN (0.918) 0.8499 
 
 
Table 39. Simulation Study Results for Disposition Response (unbalanced and correlated 

data) (standard error) 
 

 ACC SN SP PPV NPV AUC 
ANNa 0.979 

(0.001) 
0.910 

(0.002) 
0.996 

(0.001) 
0.985 

(0.001) 
0.978 

(0.001) 
0.967 

kNN 0.912 
(0.002) 

0.576 
(0.003) 

0.997 
(0.000) 

0.977 
(0.001) 

0.904 
(0.002) 

0.800 

LDA 0.967 
(0.001) 

0.907 
(0.002) 

0.982 
(0.001) 

0.930 
(0.001) 

0.977 
(0.001) 

0.958 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

0.999 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.523 

RF 0.991 
(0.001) 

0.955 
(0.001) 

1.000 
(0.000) 

0.999 
(0.000) 

0.989 
(0.001) 

1.000 

SC 0.924 
(0.002) 

0.621 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.914 
(0.002) 

0.824 

SVM – linear 0.968 
(0.001) 

0.893 
(0.002) 

0.987 
(0.001) 

0.945 
(0.001) 

0.974 
(0.001) 

0.964 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.500 

           a Using only 5 files with subsampling 
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Table 40. Simulation Study Results for Disposition Response (unbalanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.980 
(0.001) 

0.917 
(0.002) 

0.996 
(0.000) 

0.983 
(0.001) 

0.980 
(0.001) 

0.968 

kNN 0.909 
(0.002) 

0.557 
(0.003) 

0.997 
(0.000) 

0.976 
(0.001) 

0.900 
(0.002) 

0.792 

LDA 0.969 
(0.001) 

0.925 
(0.002) 

0.979 
(0.001) 

0.921 
(0.002) 

0.981 
(0.001) 

0.967 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.493 

RF 0.992 
(0.001) 

0.962 
(0.001) 

1.000 
(0.000) 

0.999 
(0.000) 

0.991 
(0.001) 

1.000 

SC 0.926 
(0.002) 

0.632 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.916 
(0.002) 

0.829 

SVM – linear 0.972 
(0.001) 

0.903 
(0.002) 

0.989 
(0.001) 

0.955 
(0.001) 

0.976 
(0.001) 

0.969 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.500 

           a Using only 5 files with subsampling 
 
 

Table 41. Simulation Study Results for Disposition Response (balanced and correlated 
data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.966 
(0.001) 

0.956 
(0.001) 

0.975 
(0.001) 

0.976 
(0.001) 

0.958 
(0.001) 

0.993 

kNN 0.833 
(0.002) 

0.712 
(0.003) 

0.955 
(0.001) 

0.940 
(0.001) 

0.768 
(0.002) 

0.860 

LDA 0.917 
(0.002) 

0.975 
(0.001) 

0.859 
(0.002) 

0.875 
(0.002) 

0.973 
(0.001) 

0.932 

LogitBoost 0.509 
(0.003) 

0.511 
(0.003) 

0.508 
(0.003) 

0.509 
(0.003) 

0.510 
(0.003) 

0.521 

RF 0.994 
(0.000) 

0.991 
(0.001) 

0.997 
(0.000) 

0.997 
(0.000) 

0.991 
(0.001) 

1.000 

SC 0.952 
(0.001) 

0.928 
(0.001) 

0.977 
(0.001) 

0.976 
(0.001) 

0.932 
(0.001) 

0.962 

SVM – linear 0.945 
(0.001) 

0.936 
(0.001) 

0.953 
(0.001) 

0.953 
(0.001) 

0.937 
(0.001) 

0.969 

SVM – radial 0.435 
(0.003) 

0.515 
(0.003) 

0.355 
(0.003) 

0.441 
(0.003) 

0.421 
(0.003) 

0.274 

           a Using only 5 files with subsampling 
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Table 42. Simulation Study Results for Disposition Response (balanced and not 
correlated data) (standard error) 

 
 ACC SN SP PPV NPV AUC 

ANNa 0.966 
(0.001) 

0.955 
(0.001) 

0.977 
(0.001) 

0.977 
(0.001) 

0.956 
(0.001) 

0.991 

kNN 0.831 
(0.002) 

0.709 
(0.003) 

0.954 
(0.001) 

0.939 
(0.001) 

0.767 
(0.002) 

0.860 

LDA 0.915 
(0.002) 

0.982 
(0.001) 

0.848 
(0.002) 

0.867 
(0.002) 

0.979 
(0.001) 

0.931 

LogitBoost 0.491 
(0.003) 

0.489 
(0.003) 

0.493 
(0.003) 

0.491 
(0.003) 

0.491 
(0.003) 

0.502 

RF 0.994 
(0.000) 

0.991 
(0.001) 

0.997 
(0.000) 

0.997 
(0.000) 

0.991 
(0.001) 

1.000 

SC 0.960 
(0.001) 

0.944 
(0.001) 

0.977 
(0.001) 

0.976 
(0.001) 

0.946 
(0.001) 

0.971 

SVM – linear 0.951 
(0.001) 

0.942 
(0.001) 

0.961 
(0.001) 

0.960 
(0.001) 

0.943 
(0.001) 

0.973 

SVM – radial 0.434 
(0.003) 

0.501 
(0.003) 

0.367 
(0.003) 

0.439 
(0.003) 

0.422 
(0.003) 

0.275 

           a Using only 5 files with subsampling 
 
 
 

Table 43. Summary of McNemar’s Test Results (Disposition Response) 
 

 Model (accuracy) Model (accuracy) p-value 
Unbalanced/correlated data    
Least significantly different RF (0.991) ANN (0.979) 0.0013 

Least not significantly differenta – – – 
    

Unbalanced/not correlated data    
Least significantly different RF (0.992) ANN (0.980) 0.0010 

Least not significantly differenta – – – 
    

Balanced/correlated data    
Least significantly different RF (0.994) ANN (0.966) <0.0001 

Least not significantly differenta – – – 
    

Balanced/not correlated data    
Least significantly different RF (0.994) ANN (0.966) <0.0001 

Least not significantly differenta – – – 
   a All models were significantly different from highest accuracy model 
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Note: On the following ROC curves, the ANN ROC curve was found using subsampling 
with only 5 files 
 
 
Figure 19. Simulation Study ROC Curves for Source of Bleeding Response (unbalanced 

and correlated data) 
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Figure 20. Simulation Study ROC Curves for Source of Bleeding Response (unbalanced 
and not correlated data) 
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Figure 21. Simulation Study ROC Curves for Source of Bleeding Response (balanced 
and correlated data) 
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Figure 22. Simulation Study ROC Curves for Source of Bleeding Response (balanced 
and not correlated data) 
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Figure 23. Simulation Study ROC Curves for Resuscitation Response (unbalanced and 
correlated data) 
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Figure 24. Simulation Study ROC Curves for Resuscitation Response (unbalanced and 
not correlated data) 
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Figure 25. Simulation Study ROC Curves for Resuscitation Response (balanced and 
correlated data) 
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Figure 26. Simulation Study ROC Curves for Resuscitation Response (balanced and not 
correlated data) 
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Figure 27. Simulation Study ROC Curves for Endoscopy Response (unbalanced and 
correlated data) 
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Figure 28. Simulation Study ROC Curves for Endoscopy Response (unbalanced and not 
correlated data) 
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Figure 29. Simulation Study ROC Curves for Endoscopy Response (balanced and 
correlated data) 
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Figure 30. Simulation Study ROC Curves for Endoscopy Response (balanced and not 
correlated data) 
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Figure 31. Simulation Study ROC Curves for Disposition Response (unbalanced and 
correlated data) 
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Figure 32. Simulation Study ROC Curves for Disposition Response (unbalanced and not 
correlated data) 
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Figure 33. Simulation Study ROC Curves for Disposition Response (balanced and 
correlated data) 
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Figure 34. Simulation Study ROC curves for Disposition Response (balanced and not 
correlated data) 
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     As seen in Section 2 with the real GIB data analysis, random forest performs the best 
overall out of all the models.  With the simulated data, random forest significantly 
outperforms all the other models, having by far the highest accuracies and highest AUCs 
for all responses and all combinations of data.  We see that most of the other models 
follow a similar trend with a few differences compared to that with the real GIB data 
analysis.  For source of bleeding, kNN was one of the models that performed the worst.  
kNN may have performed poorly due to neighbors not being “nearby” the given test case.  
There have already been improvements on the kNN model to consider weighting the 
neighbors differently to take into account how far away they are from the test case (44).  
LDA, which had performed well prior, did not do well in predicting source of bleeding.  
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Boosting was seen to perform well with unbalanced data, but performed poorly with 
balanced data.  Poor performance of the boosting model could be attributed to the 
training set being overfitted.  Examples which were just noise could have been over 
emphasized (45).  Logistic regression for disposition performed poorly as observed 
previously since the algorithm did not converge (results not reported for disposition 
response).  A similar pattern was observed with SVM using the radial kernel – it 
performed well with unbalanced data but poorly with balanced data.  Attempt to change 
the default values for the parameters epsilon and tolerance only showed significant 
improvement when the tolerance was set to 0.1 for the source of bleeding and 
resuscitation response (only balanced and correlated data were tried).  However, some 
might consider this too large of a tolerance.  See Tables 44-47.   
 
 

Table 44. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 
Radial (Source of Bleeding, balanced and correlated) 

 
Epsilon 

 0.1 0.15 0.2 0.25 
0.001 0.41 0.44 0.46 0.44 
0.01 0.47 0.46 0.46 0.46 
0.1 0.49 0.46 0.42 0.44 

 
 

Table 45. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 
Radial (Resuscitation, balanced and correlated) 

 
Epsilon 

 0.1 0.15 0.2 0.25 
0.001 0.53 0.57 0.55 0.49 
0.01 0.51 0.54 0.48 0.52 
0.1 0.50 0.61 0.49 0.50 

 
 
 

Table 46. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 
Radial (Endoscopy, balanced and correlated) 

 
Epsilon 

 0.1 0.15 0.2 0.25 
0.001 0.46 0.45 0.50 0.47 
0.01 0.47 0.45 0.46 0.46 
0.1 0.48 0.45 0.41 0.45 

 
 
 

 
Tolerance 

 
Tolerance 

 
Tolerance 
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Table 47. Accuracies Using Different Values for Epsilon and Tolerance for SVM – 
Radial (Disposition, balanced and correlated) 

 
Epsilon 

 0.1 0.15 0.2 0.25 
0.001 0.44 0.44 0.44 0.40 
0.01 0.45 0.43 0.43 0.46 
0.1 0.47 0.46 0.43 0.43 

 
 
     Performance of SVMs can be data dependent, so for this particular balanced simulated 
GIB data, a line rather than a non-linear curve might separate the data better.  Perhaps by 
using the radial kernel, the data becomes very spread out and sparse when transformed to 
a higher-dimensional space.  Having sparse data would make it more difficult to classify 
new test cases (46).  Both boosting and SVM (radial kernel) had a poor balance between 
sensitivity and specificity with unbalanced data.  As noted with the actual GIB data 
analysis, logistic regression was not reliable in predicting the disposition response.  With 
the simulated data, we see that it yielded very poor results.  In agreement with the real 
GIB data analyses, the models with the best AUC were RF, LDA, SVM (linear kernel), 
and ANN. 
 
     The results for the data generated using a learning and test set (no cross-validation) are 
in Tables 48-63.  Same or similar results were seen for the learning/test set data as the 10-
fold cross validated data.  There were no statistically significant differences except for the 
SVM – radial model for balanced data.  This showed a significant improvement when 
using only the learning and test set.  This is most likely attributed to random chance.  For 
the remainder of the dissertation, the method used will be cross-validation. 
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84

Table 48. Simulation Study Results for Source of Bleeding Response (unbalanced and 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.815 
(0.002) 

0.963 
(0.001) 

0.268 
(0.003) 

0.841 
(0.002) 

NaNb 

kNN 0.793 
(0.002) 

0.842 
(0.002) 

0.620 
(0.003) 

0.899 
(0.002) 

0.498 
(0.003) 

LDA 0.659 
(0.003) 

0.655 
(0.003) 

0.800 
(0.002) 

0.930 
(0.001) 

0.370 
(0.003) 

RF 0.960 
(0.001) 

0.998 
(0.000) 

0.808 
(0.002) 

0.954 
(0.001) 

0.993 
(0.000) 

SC 0.800 
(0.002) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

0.020 
(0.000) 

SVM – linear 0.809 
(0.002) 

0.954 
(0.001) 

0.240 
(0.002) 

0.835 
(0.002) 

0.593 
(0.003) 

SVM – radial 0.800 
(0.002) 

0.999 
(0.000) 

0.006 
(0.000) 

0.801 
(0.002) 

0.057 
(0.001) 

           a Using only 5 files with subsampling 
b Output produced NaN (Not a Number) 

 
 
 

Table 49. Simulation Study Results for Source of Bleeding Response (unbalanced and 
not correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.821 
(0.002) 

0.968 
(0.001) 

0.244 
(0.002) 

0.841 
(0.002) 

NaNb 

kNN 0.789 
(0.002) 

0.858 
(0.002) 

0.536 
(0.003) 

0.881 
(0.002) 

0.489 
(0.003) 

LDA 0.694 
(0.003) 

0.705 
(0.003) 

0.762 
(0.002) 

0.923 
(0.002) 

0.395 
(0.003) 

RF 0.959 
(0.001) 

0.999 
(0.000) 

0.802 
(0.002) 

0.953 
(0.001) 

0.994 
(0.000) 

SC 0.800 
(0.002) 

1.000 
(0.000) 

0.001 
(0.000) 

0.800 
(0.002) 

0.018 
(0.001) 

SVM – 
linear 

0.812 
(0.002) 

0.961 
(0.001) 

0.225 
(0.002) 

0.833 
(0.002) 

0.606 
(0.003) 

SVM – 
radial 

0.802 
(0.002) 

0.999 
(0.000) 

0.016 
(0.000) 

0.802 
(0.002) 

0.086 
(0.002) 

     a Using only 5 files with subsampling 
      b Output produced NaN (Not a Number) 
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Table 50. Simulation Study Results for Source of Bleeding Response (balanced and 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.721 
(0.003) 

0.582 
(0.003) 

0.858 
(0.002) 

0.690 
(0.003) 

0.809 
(0.002) 

kNN 0.796 
(0.002) 

0.489 
(0.003) 

0.965 
(0.001) 

0.876 
(0.002) 

0.791 
(0.002) 

LDA 0.701 
(0.003) 

0.531 
(0.003) 

0.870 
(0.002) 

0.677 
(0.003) 

0.788 
(0.002) 

RF 0.984 
(0.001) 

0.978 
(0.001) 

0.987 
(0.001) 

0.974 
(0.001) 

0.989 
(0.001) 

SC 0.722 
(0.003) 

0.363 
(0.003) 

0.932 
(0.001) 

0.753 
(0.002) 

0.746 
(0.003) 

SVM – 
linear 

0.734 
(0.003) 

0.542 
(0.003) 

0.860 
(0.002) 

0.667 
(0.003) 

0.790 
(0.002) 

SVM – 
radial 

0.567 
(0.003) 

0.998 
(0.000) 

0.351 
(0.003) 

0.435 
(0.003) 

0.997 
(0.000) 

         a Using only 5 files with subsampling 
 
 
 
Table 51. Simulation Study Results for Source of Bleeding Response (balanced and not 

correlated data, learning/test set) (standard error) 
 

 ACC SN SP PPV NPV 
ANNa 0.719 

(0.003) 
0.613 

(0.003) 
0.843 

(0.002) 
0.671 

(0.003) 
0.814 

(0.002) 
kNN 0.769 

(0.002) 
0.404 

(0.003) 
0.973 

(0.001) 
0.885 

(0.002) 
0.766 

(0.002) 
LDA 0.709 

(0.003) 
0.534 

(0.003) 
0.868 

(0.002) 
0.672 

(0.003) 
0.789 

(0.002) 
RF 0.983 

(0.001) 
0.977 

(0.001) 
0.986 

(0.001) 
0.973 

(0.001) 
0.988 

(0.001) 
SC 0.726 

(0.003) 
0.346 

(0.003) 
0.945 

(0.001) 
0.784 

(0.002) 
0.744 

(0.003) 
SVM – 
linear 

0.743 
(0.003) 

0.561 
(0.003) 

0.859 
(0.002) 

0.669 
(0.003) 

0.797 
(0.002) 

SVM – 
radial 

0.574 
(0.003) 

0.989 
(0.001) 

0.368 
(0.003) 

0.445 
(0.003) 

0.993 
(0.000) 

        a Using only 5 files with subsampling 
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Table 52. Simulation Study Results for Resuscitation Response (unbalanced and 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.933 
(0.001) 

0.749 
(0.003) 

0.981 
(0.001) 

0.912 
(0.002) 

0.939 
(0.001) 

kNN 0.833 
(0.002) 

0.202 
(0.002) 

0.991 
(0.001) 

0.849 
(0.002) 

0.832 
(0.002) 

LDA 0.938 
(0.001) 

0.744 
(0.003) 

0.987 
(0.001) 

0.935 
(0.001) 

0.939 
(0.001) 

Logistic 0.930 
(0.001) 

0.779 
(0.002) 

0.968 
(0.001) 

0.865 
(0.002) 

0.946 
(0.001) 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

RF 0.990 
(0.001) 

0.957 
(0.001) 

0.998 
(0.000) 

0.993 
(0.000) 

0.989 
(0.001) 

SC 0.906 
(0.002) 

0.528 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.895 
(0.002) 

SVM – linear 0.937 
(0.001) 

0.759 
(0.002) 

0.982 
(0.001) 

0.918 
(0.002) 

0.942 
(0.001) 

SVM – radial 0.822 
(0.002) 

0.115 
(0.002) 

0.998 
(0.000) 

0.133 
(0.002) 

0.822 
(0.002) 

               a Using only 5 files with subsampling 
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Table 53. Simulation Study Results for Resuscitation Response (unbalanced and not 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.925 
(0.002) 

0.716 
(0.003) 

0.978 
(0.001) 

0.895 
(0.002) 

0.932 
(0.001) 

kNN 0.820 
(0.002) 

0.119 
(0.002) 

0.996 
(0.000) 

0.893 
(0.002) 

0.819 
(0.002) 

LDA 0.935 
(0.001) 

0.735 
(0.003) 

0.985 
(0.001) 

0.927 
(0.002) 

0.937 
(0.001) 

Logistic 0.926 
(0.002) 

0.768 
(0.002) 

0.965 
(0.001) 

0.854 
(0.002) 

0.943 
(0.001) 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

RF 0.989 
(0.001) 

0.956 
(0.001) 

0.998 
(0.000) 

0.992 
(0.001) 

0.989 
(0.001) 

SC 0.907 
(0.002) 

0.536 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.896 
(0.002) 

SVM – linear 0.935 
(0.001) 

0.750 
(0.003) 

0.981 
(0.001) 

0.912 
(0.002) 

0.940 
(0.001) 

SVM – radial 0.816 
(0.002) 

0.089 
(0.002) 

0.998 
(0.000) 

0.101 
(0.002) 

0.817 
(0.002) 

                a Using only 5 files with subsampling 
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Table 54. Simulation Study Results for Resuscitation Response (balanced and correlated 
data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.875 
(0.002) 

0.836 
(0.002) 

0.915 
(0.002) 

0.913 
(0.002) 

0.850 
(0.002) 

kNN 0.726 
(0.003) 

0.541 
(0.003) 

0.911 
(0.002) 

0.860 
(0.002) 

0.666 
(0.003) 

LDA 0.859 
(0.002) 

0.758 
(0.002) 

0.959 
(0.001) 

0.950 
(0.001) 

0.800 
(0.002) 

Logistic 0.877 
(0.002) 

0.839 
(0.002) 

0.915 
(0.002) 

0.909 
(0.002) 

0.851 
(0.002) 

LogitBoost 0.501 
(0.003) 

0.505 
(0.003) 

0.498 
(0.003) 

0.502 
(0.003) 

0.500 
(0.003) 

RF 0.983 
(0.001) 

0.986 
(0.001) 

0.981 
(0.001) 

0.981 
(0.001) 

0.986 
(0.001) 

SC 0.821 
(0.002) 

0.654 
(0.003) 

0.987 
(0.001) 

0.981 
(0.001) 

0.741 
(0.003) 

SVM – linear 0.881 
(0.002) 

0.820 
(0.002) 

0.942 
(0.001) 

0.935 
(0.001) 

0.840 
(0.002) 

SVM – radial 0.634 
(0.003) 

0.982 
(0.001) 

0.286 
(0.003) 

0.595 
(0.003) 

0.972 
(0.001) 

                a Using only 5 files with subsampling 
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Table 55. Simulation Study Results for Resuscitation Response (balanced and not 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.863 
(0.002) 

0.814 
(0.002) 

0.913 
(0.002) 

0.908 
(0.002) 

0.833 
(0.002) 

kNN 0.701 
(0.003) 

0.480 
(0.003) 

0.923 
(0.002) 

0.862 
(0.002) 

0.640 
(0.003) 

LDA 0.851 
(0.002) 

0.745 
(0.003) 

0.958 
(0.001) 

0.948 
(0.001) 

0.790 
(0.002) 

Logistic 0.873 
(0.002) 

0.830 
(0.002) 

0.916 
(0.002) 

0.909 
(0.002) 

0.844 
(0.002) 

LogitBoost 0.500 
(0.003) 

0.488 
(0.003) 

0.512 
(0.003) 

0.499 
(0.003) 

0.501 
(0.003) 

RF 0.984 
(0.001) 

0.986 
(0.001) 

0.982 
(0.001) 

0.982 
(0.001) 

0.986 
(0.001) 

SC 0.820 
(0.002) 

0.651 
(0.003) 

0.990 
(0.001) 

0.985 
(0.001) 

0.740 
(0.003) 

SVM – linear 0.877 
(0.002) 

0.811 
(0.002) 

0.944 
(0.001) 

0.937 
(0.001) 

0.834 
(0.002) 

SVM – radial 0.630 
(0.003) 

0.985 
(0.001) 

0.275 
(0.003) 

0.589 
(0.003) 

0.969 
(0.001) 

                a Using only 5 files with subsampling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

90

Table 56. Simulation Study Results for Endoscopy Response (unbalanced and correlated 
data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.946 
(0.001) 

0.820 
(0.002) 

0.978 
(0.001) 

0.923 
(0.002) 

0.956 
(0.001) 

kNN 0.813 
(0.002) 

0.128 
(0.002) 

0.984 
(0.001) 

0.678 
(0.003) 

0.819 
(0.002) 

LDA 0.949 
(0.001) 

0.798 
(0.002) 

0.987 
(0.001) 

0.942 
(0.001) 

0.951 
(0.001) 

Logistic 0.930 
(0.001) 

0.828 
(0.002) 

0.955 
(0.001) 

0.832 
(0.002) 

0.957 
(0.001) 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

RF 0.968 
(0.001) 

0.873 
(0.002) 

0.991 
(0.001) 

0.964 
(0.001) 

0.969 
(0.001) 

SC 0.940 
(0.001) 

0.706 
(0.003) 

0.999 
(0.000) 

0.992 
(0.001) 

0.932 
(0.001) 

SVM – linear 0.943 
(0.001) 

0.835 
(0.002) 

0.970 
(0.001) 

0.881 
(0.002) 

0.959 
(0.001) 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

                 a Using only 5 files with subsampling 
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Table 57. Simulation Study Results for Endoscopy Response (unbalanced and not 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.946 
(0.001) 

0.814 
(0.002) 

0.979 
(0.001) 

0.917 
(0.002) 

0.955 
(0.001) 

kNN 0.810 
(0.002) 

0.105 
(0.002) 

0.986 
(0.001) 

0.666 
(0.003) 

0.815 
(0.002) 

LDA 0.956 
(0.001) 

0.814 
(0.002) 

0.992 
(0.001) 

0.963 
(0.001) 

0.815 
(0.002) 

Logistic 0.939 
(0.001) 

0.817 
(0.002) 

0.970 
(0.001) 

0.878 
(0.002) 

0.955 
(0.001) 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

RF 0.970 
(0.001) 

0.876 
(0.002) 

0.993 
(0.000) 

0.971 
(0.001) 

0.970 
(0.001) 

SC 0.941 
(0.001) 

0.709 
(0.003) 

0.999 
(0.000) 

0.997 
(0.000) 

0.932 
(0.000) 

SVM – linear 0.948 
(0.001) 

0.824 
(0.002) 

0.979 
(0.001) 

0.911 
(0.002) 

0.957 
(0.001) 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

                 a Using only 5 files with subsampling 
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Table 58. Simulation Study Results for Endoscopy Response (balanced and correlated 
data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.903 
(0.002) 

0.881 
(0.002) 

0.926 
(0.002) 

0.926 
(0.002) 

0.888 
(0.002) 

kNN 0.691 
(0.003) 

0.568 
(0.003) 

0.815 
(0.002) 

0.756 
(0.002) 

0.654 
(0.003) 

LDA 0.883 
(0.002) 

0.806 
(0.002) 

0.959 
(0.001) 

0.953 
(0.001) 

0.833 
(0.002) 

Logistic 0.888 
(0.002) 

0.879 
(0.002) 

0.898 
(0.002) 

0.898 
(0.002) 

0.882 
(0.002) 

LogitBoost 0.491 
(0.003) 

0.493 
(0.003) 

0.488 
(0.003) 

0.494 
(0.003) 

0.487 
(0.003) 

RF 0.952 
(0.001) 

0.949 
(0.001) 

0.956 
(0.001) 

0.956 
(0.001) 

0.949 
(0.001) 

SC 0.885 
(0.002) 

0.785 
(0.002) 

0.985 
(0.001) 

0.981 
(0.001) 

0.822 
(0.002) 

SVM – linear 0.893 
(0.002) 

0.874 
(0.002) 

0.912 
(0.002) 

0.910 
(0.002) 

0.879 
(0.002) 

SVM – radial 0.557 
(0.003) 

0.968 
(0.001) 

0.146 
(0.002) 

0.534 
(0.003) 

0.904 
(0.002) 

       a Using only 5 files with subsampling 
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Table 59. Simulation Study Results for Endoscopy Response (balanced and not 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.892 
(0.002) 

0.872 
(0.002) 

0.913 
(0.002) 

0.913 
(0.002) 

0.881 
(0.002) 

kNN 0.676 
(0.003) 

0.544 
(0.003) 

0.808 
(0.002) 

0.741 
(0.003) 

0.640 
(0.003) 

LDA 0.896 
(0.002) 

0.823 
(0.002) 

0.969 
(0.001) 

0.964 
(0.001) 

0.847 
(0.002) 

Logistic 0.897 
(0.002) 

0.882 
(0.002) 

0.912 
(0.002) 

0.911 
(0.002) 

0.886 
(0.002) 

LogitBoost 0.520 
(0.003) 

0.515 
(0.003) 

0.526 
(0.003) 

0.522 
(0.003) 

0.519 
(0.003) 

RF 0.954 
(0.001) 

0.948 
(0.001) 

0.960 
(0.001) 

0.961 
(0.001) 

0.949 
(0.001) 

SC 0.892 
(0.002) 

0.797 
(0.002) 

0.987 
(0.001) 

0.984 
(0.001) 

0.830 
(0.002) 

SVM – linear 0.901 
(0.002) 

0.875 
(0.002) 

0.927 
(0.002) 

0.925 
(0.002) 

0.882 
(0.002) 

SVM – radial 0.555 
(0.003) 

0.985 
(0.001) 

0.126 
(0.002) 

0.530 
(0.003) 

0.895 
(0.002) 

       a Using only 5 files with subsampling 
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Table 60. Simulation Study Results for Disposition Response (unbalanced and correlated 
data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.972 
(0.001) 

0.887 
(0.002) 

0.994 
(0.000) 

0.975 
(0.001) 

0.972 
(0.001) 

kNN 0.914 
(0.002) 

0.580 
(0.003) 

0.997 
(0.000) 

0.980 
(0.001) 

0.905 
(0.002) 

LDA 0.966 
(0.001) 

0.915 
(0.002) 

0.978 
(0.001) 

0.919 
(0.002) 

0.979 
(0.001) 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

RF 0.991 
(0.001) 

0.957 
(0.001) 

1.000 
(0.000) 

1.000 
(0.000) 

0.989 
(0.001) 

SC 0.923 
(0.002) 

0.617 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.913 
(0.002) 

SVM – linear 0.965 
(0.001) 

0.889 
(0.002) 

0.983 
(0.001) 

0.934 
(0.001) 

0.973 
(0.001) 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

       a Using only 5 files with subsampling 
 
 

Table 61. Simulation Study Results for Disposition Response (unbalanced and not 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.977 
(0.001) 

0.901 
(0.002) 

0.996 
(0.000) 

0.981 
(0.001) 

0.976 
(0.001) 

kNN 0.904 
(0.002) 

0.523 
(0.003) 

1.000 
(0.000) 

0.997 
(0.000) 

0.894 
(0.002) 

LDA 0.967 
(0.001) 

0.935 
(0.001) 

0.974 
(0.001) 

0.905 
(0.002) 

0.984 
(0.001) 

LogitBoost 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

RF 0.992 
(0.001) 

0.960 
(0.001) 

1.000 
(0.000) 

1.000 
(0.000) 

0.990 
(0.001) 

SC 0.927 
(0.002) 

0.634 
(0.003) 

1.000 
(0.000) 

1.000 
(0.000) 

0.916 
(0.002) 

SVM – linear 0.973 
(0.001) 

0.900 
(0.002) 

0.991 
(0.001) 

0.962 
(0.001) 

0.976 
(0.001) 

SVM – radial 0.800 
(0.002) 

0.000 
(0.000) 

1.000 
(0.000) 

0.000 
(0.000) 

0.800 
(0.002) 

       a Using only 5 files with subsampling 
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Table 62. Simulation Study Results for Disposition Response (balanced and correlated 
data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.950 
(0.001) 

0.935 
(0.001) 

0.965 
(0.001) 

0.964 
(0.001) 

0.938 
(0.001) 

kNN 0.837 
(0.002) 

0.719 
(0.003) 

0.956 
(0.001) 

0.943 
(0.001) 

0.773 
(0.002) 

LDA 0.916 
(0.002) 

0.974 
(0.001) 

0.859 
(0.002) 

0.876 
(0.002) 

0.971 
(0.001) 

LogitBoost 0.519 
(0.003) 

0.519 
(0.003) 

0.519 
(0.003) 

0.521 
(0.003) 

0.517 
(0.003) 

RF 0.994 
(0.000) 

0.991 
(0.001) 

0.998 
(0.000) 

0.998 
(0.000) 

0.991 
(0.001) 

SC 0.957 
(0.001) 

0.931 
(0.001) 

0.983 
(0.001) 

0.982 
(0.001) 

0.936 
(0.001) 

SVM – linear 0.943 
(0.001) 

0.933 
(0.001) 

0.953 
(0.001) 

0.953 
(0.001) 

0.934 
(0.001) 

SVM – radial 0.517 
(0.003) 

0.998 
(0.000) 

0.036 
(0.001) 

0.509 
(0.003) 

0.892 
(0.002) 

       a Using only 5 files with subsampling 
 
 

Table 63. Simulation Study Results for Disposition Response (balanced and not 
correlated data, learning/test set) (standard error) 

 
 ACC SN SP PPV NPV 

ANNa 0.952 
(0.001) 

0.940 
(0.001) 

0.964 
(0.001) 

0.964 
(0.001) 

0.942 
(0.001) 

kNN 0.831 
(0.002) 

0.690 
(0.003) 

0.972 
(0.001) 

0.962 
(0.001) 

0.759 
(0.002) 

LDA 0.913 
(0.002) 

0.978 
(0.001) 

0.848 
(0.002) 

0.868 
(0.002) 

0.976 
(0.001) 

LogitBoost 0.503 
(0.003) 

0.509 
(0.003) 

0.498 
(0.003) 

0.504 
(0.003) 

0.502 
(0.003) 

RF 0.994 
(0.000) 

0.990 
(0.001) 

0.997 
(0.000) 

0.997 
(0.000) 

0.990 
(0.001) 

SC 0.960 
(0.001) 

0.945 
(0.001) 

0.974 
(0.001) 

0.974 
(0.001) 

0.947 
(0.001) 

SVM – linear 0.948 
(0.001) 

0.940 
(0.001) 

0.957 
(0.001) 

0.957 
(0.001) 

0.941 
(0.001) 

SVM – radial 0.514 
(0.003) 

0.979 
(0.001) 

0.049 
(0.001) 

0.497 
(0.003) 

0.888 
(0.002) 

        a Using only 5 files with subsampling 
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     All previous analyses were done on a 1.70 GHz Windows XP Professional laptop with 
512 MB of RAM.  To run the simulation study (without ANN) and obtain the statistics 
for 100 files for one particular combination (for example unbalanced and correlated data), 
required approximately 6 hours for source of bleeding and 2-3 hours for the other 
responses.  To obtain the files needed to create the ROC curves took approximately 63-65 
hours to get one combination for the source of bleeding response.  The remaining 
responses and combinations were run on a 2 GHz Vista laptop with 2 GB of RAM.  The 
running times were approximately 7-10 hours, 6-8 hours, and 10-13 hours for the 
resuscitation, endoscopy, and disposition responses respectively.  These running times 
were for a single response, one combination type of data.  Getting the statistics for ANN 
for any one response, one combination, took approximately 1 hour.  To get the files 
needed to create the ROC curves for ANN for one response, one combination, took 
approximately 30-45 minutes.  The learning/test set data, run on the Vista laptop, took a 
shorter amount of time to run the models and obtain the results. 
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7. Optimizing the Performance of Random Forest 
 
 
 
 
 
     Throughout our studies, we have seen that the random forest model consistently 
performs the best.  We know random forest already performs well, but can it do even 
better?  Random forest is known to perform more poorly with very unbalanced datasets.  
By optimizing the parameters used, can we improve random forest’s performance?  Three 
parameters of random forest that can be optimized are ntree, mtry, and cutoff.   
 
 
7.1 Methods 
 
     The parameter ntree refers to the number of trees grown in the forest.  The different 
values tried for ntree were: 100, 200, 500 (default value), 1000, and 2000.  The mtry 
parameter refers to the number of variables that are sampled randomly at each node split 
in a given tree.  Values tried for mtry started at 5, going up in increments of 5’s (5, 10, 
15, etc.), the last value tried was the largest value which was still less than the number of 
variables total.  For example, if the number of variables was 23, then the largest value of 

mtry that is tried would be 20.  The default value for mtry is ( )floor p , where p is the 

number of input variables there are altogether.  The cutoff parameter (which is a vector) 
indicates what class to place a new test case in.  The default is to weight each class 
equally (the vector containing the cutoffs would then have values 1/c, where c is the 
number of classes there are).  However, if the data is imbalanced, then it might be better 
to weight one class more heavily than the other.  Cutoff values that were tried for 
resuscitation, endoscopy, and disposition were varied by increasing the cutoff for the 
“No/not ICU” class by 0.05 on each iteration.  Thus, the cutoff for the “Yes/ICU” class 
would be decreased by 0.05 on each iteration.  For source of bleeding, the “upper” class 
would be increased by 0.05 and the “lower” and “middle” class would be decreased by 
0.02 and 0.03 respectively on each iteration.  The stopping point for cutoff values would 
be when the maximum cutoff value was reached for the “majority” class (i.e. the class 
that had the most data in it).   
 
     Ten runs of 10-fold cross-validation were done and the simulated data and actual GIB 
data were analyzed.  Parameters were optimized on each fold of the cross-validation.  
Statistics calculated were: accuracy, sensitivity, specificity, positive predictive value, and 
negative predictive value.  The optimal parameters on each fold of CV were stored and at 
the end, the average optimal parameter was found along with their respective standard 
errors.  Due to computational constraints, only 10 different files were considered for the 
simulated data, not 100 files.  
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7.2 Optimizing Random Forest Results 
 
     Tables 64-73 show the results obtained when optimizing the random forest 
parameters.  The statistics calculated are shown along with the average optimal 
parameters obtained and their corresponding standard errors.  Because of the order of the 
parameter combinations tried, the lowest ones were tried first (for example for the 
simulated resuscitation data, the parameters first tried were ntree=100, mtry=5, and 
cutoff=(0.2,0.8)).  We see that these lowest parameters were already the optimal ones in 
most cases.  If the highest parameters were tried first, these would be the optimal ones.  
Essentially, it doesn’t matter which parameters are chosen.  Random forest will do well 
regardless.  This analysis was done on the Vista laptop.  Running times were roughly 4-7 
hours for all responses for the simulated data.  Running times for the actual data ranged 
from 1-3 hours. 
 
 

Table 64. Optimizing RF Results for Source of Bleeding Response, Simulated Data 
(standard error) 

 
 ACC SN SP PPV NPV 

Unbalanced and correlated data 0.961 
(0.004) 

0.997 
(0.001) 

0.820 
(0.007) 

0.957 
(0.004) 

0.984 
(0.002) 

Unbalanced and not correlated 
data 

0.967 
(0.003) 

0.999 
(0.001) 

0.840 
(0.007) 

0.962 
(0.003) 

0.994 
(0.001) 

Balanced and correlated data 0.989 
(0.002) 

0.992 
(0.002) 

0.988 
(0.002) 

0.976 
(0.003) 

0.996 
(0.001) 

Balanced and not correlated data 0.984 
(0.002) 

0.980 
(0.003) 

0.987 
(0.002) 

0.974 
(0.003) 

0.990 
(0.002) 

 
 

Table 65. Optimal RF Parameters for Source of Bleeding Response, Simulated Data 
(standard error) 

 
 ntree mtry cutoff 

Unbalanced and correlated data 100 
(0.000) 

6.55 
(0.020) 

0.393 
(0.001) 

Unbalanced and not correlated 
data 

101 
(0.058) 

5.9 
(0.013) 

0.383 
(0.001) 

Balanced and correlated data 100 
(0.000) 

5.55 
(0.011) 

0.356 
(0.000) 

Balanced and not correlated data 105 
(0.238) 

5.35 
(0.001) 

0.379 
(0.001) 
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Table 66. Optimizing RF Results for Resuscitation Response, Simulated Data (standard 
error) 

 
 ACC SN SP PPV NPV 

Unbalanced and correlated data 0.989 
(0.002) 

0.962 
(0.004) 

0.996 
(0.001) 

0.983 
(0.002) 

0.990 
(0.002) 

Unbalanced and not correlated 
data 

0.988 
(0.002) 

0.955 
(0.004) 

0.996 
(0.001) 

0.983 
(0.005) 

0.989 
(0.002) 

Balanced and correlated data 0.987 
(0.002) 

0.992 
(0.002) 

0.983 
(0.002) 

0.983 
(0.002) 

0.992 
(0.002) 

Balanced and not correlated data 0.985 
(0.002) 

0.985 
(0.002) 

0.984 
(0.002) 

0.984 
(0.002) 

0.985 
(0.002) 

 
 
 
Table 67. Optimal RF Parameters for Resuscitation Response, Simulated Data (standard 

error) 
 

 ntree mtry cutoff 
Unbalanced and correlated data 111 

(0.525) 
5.25 

(0.008) 
0.212 

(0.000) 
Unbalanced and not correlated 

data 
100 

(0.000) 
5.7 

(0.014) 
0.227 

(0.000) 
Balanced and correlated data 100 

(0.000) 
5.45 

(0.009) 
0.214 

(0.000) 
Balanced and not correlated data 100 

(0.000) 
5.45 

(0.009) 
0.216 

(0.000) 
 
 
 

Table 68. Optimizing RF Results for Endoscopy Response, Simulated Data (standard 
error) 

 
 ACC SN SP PPV NPV 

Unbalanced and correlated data 0.968 
(0.003) 

0.878 
(0.006) 

0.991 
(0.002) 

0.960 
(0.004) 

0.970 
(0.003) 

Unbalanced and not correlated 
data 

0.977 
(0.003) 

0.912 
(0.005) 

0.993 
(0.002) 

0.970 
(0.003) 

0.978 
(0.003) 

Balanced and correlated data 0.959 
(0.004) 

0.953 
(0.004) 

0.964 
(0.003) 

0.964 
(0.003) 

0.954 
(0.004) 

Balanced and not correlated data 0.958 
(0.004) 

0.949 
(0.004) 

0.967 
(0.003) 

0.966 
(0.003) 

0.950 
(0.004) 
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Table 69. Optimal RF Parameters for Endoscopy Response, Simulated Data (standard 
error) 

 
 ntree mtry cutoff 

Unbalanced and correlated data 103 
(0.099) 

7 
(0.022) 

0.249 
(0.001) 

Unbalanced and not correlated 
data 

101 
(0.058) 

6.7 
(0.020) 

0.233 
(0.000) 

Balanced and correlated data 101 
(0.058) 

6.55 
(0.025) 

0.258 
(0.001) 

Balanced and not correlated data 100 
(0.000) 

6.4 
(0.021) 

0.243 
(0.000) 

 
 
 

Table 70. Optimizing RF Results for Disposition Response, Simulated Data (standard 
error) 

 
 ACC SN SP PPV NPV 

Unbalanced and correlated data 0.991 
(0.002) 

0.960 
(0.004) 

0.999 
(0.001) 

0.997 
(0.001) 

0.990 
(0.002) 

Unbalanced and not correlated 
data 

0.992 
(0.002) 

0.962 
(0.004) 

0.999 
(0.001) 

0.997 
(0.001) 

0.991 
(0.002) 

Balanced and correlated data 0.994 
(0.001) 

0.991 
(0.002) 

0.997 
(0.001) 

0.997 
(0.001) 

0.991 
(0.002) 

Balanced and not correlated data 0.993 
(0.002) 

0.991 
(0.002) 

0.994 
(0.001) 

0.994 
(0.001) 

0.991 
(0.002) 

 
 
 

Table 71. Optimal RF Parameters for Disposition Response, Simulated Data (standard 
error) 

 
 ntree mtry cutoff 

Unbalanced and correlated data 100 
(0.000) 

6.15 
(0.021) 

0.215 
(0.046) 

Unbalanced and not correlated 
data 

104 
(0.231) 

5.45 
(0.012) 

0.216 
(0.000) 

Balanced and correlated data 100 
(0.000) 

5.2 
(0.006) 

0.208 
(0.000) 

Balanced and not correlated data 100 
(0.000) 

5.3 
(0.013) 

0.208 
(0.000) 
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Table 72. Optimizing RF Results for Actual GIB Data (standard error) 
 

 ACC SN SP PPV NPV 
Source of bleeding response 0.946 

(0.007) 
0.979 

(0.004) 
0.945 

(0.007) 
0.973 

(0.003) 
0.957 

(0.004) 
Resuscitation response 0.928 

(0.008) 
0.932 

(0.007) 
0.918 

(0.008) 
0.952 

(0.004) 
0.886 

(0.006) 
Endoscopy response 0.789 

(0.012) 
0.847 

(0.010) 
0.681 

(0.014) 
0.832 

(0.007) 
0.706 

(0.008) 
Disposition response 0.877 

(0.010) 
0.903 

(0.009) 
0.834 

(0.011) 
0.903 

(0.005) 
0.834 

(0.007) 
 
 
 
 

Table 73. Optimal RF Parameters for Actual GIB Data (standard error) 
 

 ntree mtry cutoff 
Source of bleeding response 109 

(0.412) 
5.85 

(0.027) 
0.367 

(0.001) 
Resuscitation response 111 

(0.830) 
5.2 

(0.009) 
0.513 

(0.000) 
Endoscopy response 113 

(0.309) 
6.9 

(0.035) 
0.525 

(0.000) 
Disposition response 113 

(0.548) 
6.6 

(0.033) 
0.521 

(0.000) 
 
 
 
     Comparing these optimized results with the results for the corresponding simulated 
data and actual GIB data, there are not any significant improvements seen, although there 
are improvements seen for sensitivity and specificity values on some of the simulated 
data.  Given that there were no significant improvements seen with regards to accuracy, it 
might not be practical to optimize the parameters, given the much increased 
computational time.  Random forest already does so well, that attempting to optimize the 
parameters did not make a big difference.  Although there were significant improvements 
seen sometimes with sensitivity and specificity values, it was not consistent for every 
case.  Optimizing parameters may however be dependent on the dataset, so these findings 
might not carry over to other datasets. 
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8. Online (Web-Based) Tool for Classifying GIB Data 
 
 
 
 
 
     There would have to be a way to present the use of the random forest model that is 
easy to understand and simple to use for non-computer scientists and non-
statisticians/mathematicians.  In a nutshell, we can have a website where physicians enter 
in the patient input data and by clicking a button, the model predictions will be displayed 
on the following screen.  This concept can be further extended so that instead of the 
physician going to a website, the same steps can be integrated directly into the hospital 
computer system, making it a seamless process.  However, before this could be put into 
practice, we would have to determine whether this is something that would be accepted 
and what is the best way to present the material in the most user-friendly fashion.   
 
     This involves a two-step study.  First, the website is developed and implemented.  
Second, a survey is conducted to assess whether the web-based tool is easy to use and 
what improvements can be made.  Also, we want to find out if this is something 
physicians would consider using and what their thoughts are on the tool.  The second step 
involves testing out the website in an actual hospital setting and seeing whether there can 
be an improvement in patient management and care.  The data that physicians enter in 
will be stored in a database and the accuracies of the physician predictions, model 
predictions, and physician predictions after seeing the model predictions will all be 
compared to each other.  In the second step, the web tool will be tested at 3 different 
sites, including the Stony Brook University Medical Center and Northport Veterans 
Affairs Medical Center.  This study will be done as future research.     
 
 
 
8.1 What the User Sees 
 
     On the website, the physician must first enter in a username and password before 
gaining access to the HTML form (to ensure only those we want to have access are 
accessing the page – we don’t want any “garbage” data entries).  See Figure 35.   
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Figure 35. Web-Based Tool – Log-In Page for Physicians 
 

 
 
 
 
     The physicians input onto an HTML form the patient clinical data and their 
predictions of the 4 responses (source of bleeding, need for urgent resuscitation, need for 
urgent endoscopy, and disposition).  See Figure 36 and Figure 37.   
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Figure 36. Web-Based Tool – HTML Form Where Physicians Input Data 
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Figure 37. Web-Based Tool – HTML Form Where Physicians Input Data (At End of 
Page, Physician Presses the “Model Predictions” Button) 

 

 
 
 
 
     Upon submission of the form, the predictions from the model are displayed on the 
following page.  Physicians will then be asked to make a second round of predictions 
once they have seen the model’s predictions.  See Figure 38.  We refer to the second and 
final physician predictions as the model+physician’s predictions.   
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Figure 38. Web-Based Tool – Model Predictions  
 

 
 
 
 
     For the first step of the study, a questionnaire will be displayed on the page as well, 
asking for information and getting feedback about how they like the web tool.  On a 
separate webpage, following each patient after 30 days, the gastroenterologists will look 
at the clinical data and endoscopic data and enter in the actual diagnosis.  That way we 
can compare the accuracies of the initial physician’s predictions, model’s predictions, and 
model+physician’s predictions.  See Figure 39. 

 
 
 
 
 
 
 
 
 



 
 
 
 

107

Figure 39. Web-Based Tool – HTML Form Where Gastroenterologists Enter in Actual 
Diagnosis 

 

 
 
 
 
 
 
8.2 Behind-the-Scene: How the Website Works 
 
8.2.1 Inner Workings of the Website 
 
     In this section, we describe the technical details of how the website was developed, 
implemented and how it is maintained.  PHP (PHP: Hypertext Preprocessor), a scripting 
language that is used in conjunction with HTML, is used to validate the username and 
password.  Cookies are used to ensure that nobody is bypassing the login page and 
attempting to access the main webpage directly.  If they haven’t entered in the correct 
username and password and try to access the main webpage directly, they are redirected 
back to the login page.  JavaScript, a scripting language used on the client side, is used to 
create tool-tips (boxes that appear when the mouse hovers over a specific link) to give 
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further explanation to the input values (i.e. what units the values should be in or how the 
variable is defined).  The client here is the web browser (for example Mozilla Firefox or 
Internet Explorer).  See Figure 40.   
 
 

Figure 40. Web-Based Tool – HTML Form Where Physicians Input Data 
(Demonstrating Tool-Tips) 

 

 
 
 
 
     By using the CGIwithR package in the R statistical program, our R program can 
communicate with the web server through a CGI (Common Gateway Interface) script.  
The web server here is a computer that accepts HTTP requests and processes them, 
sending back the appropriate reply, which can be for example a new web page.  An 
HTML form is sent by the web server to a CGI script, which then passes the contents of 
the form to the R program.  A CGI script can be thought of as a messenger for 
communicating information between a CGI program (the R program in this case) and the 
web server.  The CGI script is a standard Internet protocol that translates information 
from the web server so that it is in a format that the R program can understand.   
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     The data from the HTML form is validated through an R program to ensure there is no 
invalid data entered.  Examples of invalid data would be if non-numerical characters 
(letters A-Z or a-z, symbols such as ?, !, @, #, $, etc.) were entered when an integer value 
was supposed to be entered, more than one decimal point was entered for decimal values, 
or if there were negative values entered when they were supposed to be non-negative.  If 
there is invalid data, then the user is informed of what data is invalid and is asked to 
correct the invalid data before continuing on to obtain the model’s predictions.  The R 
program also makes sure that important information is filled in, such as what site the 
physician is at and what the physician’s predictions are.  Once the form’s contents have 
been validated, the random forest model makes the predictions and the model’s 
predictions are displayed on the webpage.  The physician is asked to enter in their final 
predictions upon viewing the model’s predictions.  These predictions must be made in 
order to reach the final page.   
 
 
 
8.2.2 MySQL and R 
 
     All of the data (input data, physician’s predictions, model’s predictions, 
model+physician’s predictions, answers to the survey, and gastroenterologist’s actual 
diagnoses) are written out to a MySQL database.  MySQL is a very popular open source 
database system that uses the SQL language to retrieve information from the database 
and manage the database.  Data in MySQL is stored in tables.  By using the RMySQL 
package in R, R is able to connect to a specified MySQL database and extract 
information from the database or submit information to be stored into the database.  To 
ensure each patient entry is unique, the database automatically assigns a different patient 
id to each patient for a given site.  There is a separate table in the database for each 
website page, so by assigning an id to each patient, all the data for a particular patient can 
be matched up accordingly at the end of the study.  The R programs also do error 
checking to ensure that no patient information is entered that shouldn’t be.  For example, 
if the physician for some reason presses the Back button on their browser and tries to 
submit their data again, they won’t be allowed to submit again, otherwise it would cause 
a double entry for one patient.  On the gastroenterologist page, if a gastroenterologist tries 
to enter in the actual diagnosis for patient 106, but there was not any initial information 
for patient 106 previously, then the gastroenterologist will not be allowed to enter in this 
information.   
 
     The database has been normalized – redundant data has been eliminated in tables and 
only data that is relevant is stored in each table.  Patient IDs as well as patient initials 
have been encrypted so in the event the database is compromised, no links to patients will 
be revealed.  Further, backups are done regularly to ensure minimal loss of data.  Routine 
checks are also done to make sure the database has not been corrupted and is functioning 
properly.  The web-based tool is located at: http://achu.ams.sunysb.edu.  If you wish to be 
able to login, please send an email to achu.sunysb@gmail.com and information will be 
sent on how to log in.  
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9. Final Conclusions 
 
 
 
 
 
     Acute gastrointestinal bleeding has become an increasing healthcare concern due to 
rising NSAID use in an aging population.  With non-gastroenterologists incorrectly 
diagnosing GIB patients at least 50% of the time, it would be very beneficial to find a 
way to assist them.  We proposed that a classification model could be developed to help 
non-gastroenterologists and improve patient diagnosis and care.  These classification 
models are part of a broader group, referred to as decision support systems, i.e. a 
computerized system that takes raw information, processes it, and makes informed 
decisions and comes up with solutions.  We compared 8 different classification models, 
using actual GIB data as well as simulated data and externally validating the top 
performing models.  The best performing model, random forest, was also compared to 
existing GIB scoring systems and was seen to be comparable.  Most of the models 
performed very well with the actual GIB data and the simulated data, definitely 
improving on the accuracy of a non-gastroenterologist.  The random forest model had 
excellent performance and stood out from all the other models.  We also attempted to 
optimize random forest, but our results showed no significant improvement.  It is the 
hope and our goal that classification models can be used in practice in the hospital setting 
to assist physicians in predicting GIB responses to better care for GIB patients. 
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10. Future Studies 
 
 
 
 
 
     In Section 8, we described the web-based tool that was implemented. In future studies, 
we will develop a questionnaire to get information about ways to improve the tool and to 
assess whether the tool would be useful.  We also will perform a study in three hospitals, 
to test the tool out and see whether it is practical in the real setting.  Four hundred fifty 
patient observations will be collected and the accuracies of the physician’s predictions, 
model’s predictions, and model+physician’s predictions will be compared.  If the study is 
successful and improvement is shown with using the model over physician’s diagnosis 
alone, a similar study will be implemented at more sites (five or six hospitals or medical 
centers) and a larger number of patient observations will be collected and analyzed.  The 
ultimate goal is to be able to use a classification model to assist the doctors in order to run 
the hospital more efficiently and for it to be more cost effective.  The next step would be 
to integrate the model directly into a hospital computer system and potentially put it into 
practice all across Long Island.   
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