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Abstract of the Dissertation

Compressible Multi Phase and Multi Species Flow
Closure Model and Turbulent Analysis for
Rayleigh-Taylor Instability

by

Hyunsun Lee

Doctor of Philosophy
in

Applied Mathematics and Statistics
(Computational Applied Mathematics)

Stony Brook University
2007

This thesis discusses the 3D Rayleigh-Taylor instability, which occurs when a
dense, heavy fluid is accelerated by a light fluid, yielding initially well defined bubbles
and spikes of light and heavy fluid, each penetrating into the other fluid, followed by

the development of a layer consisting of a complex mixing flow regime.

We introduce primitive governing equations of the fluid mixing and average them
to propose a new simple closure model for compressible multi phase and multi species
flow with surface tension and transport terms. The closure model is validated against
‘FronTier’ simulations based on front tracking method. The simulation data is also
validated separately against laboratorial experiments. We start with microscopic

equations for conservation of mass, momentum, and energy. By multiplying the
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microscopic equations by a phase indicator function and averaging, the averaged
equations for each phase are obtained. For the averaging, we use the ensemble average
based on the method and assumptions proposed by D. A. Drew and S. L. Passman.
The averaging process usually results in undefined averages of nonlinear functions of
the primitive variables, which have to be remodeled to close the system of equations.
We define three interfacial quantities and propose a general closure model for these
quantities, which satisfies all the conservation and boundary conditions. In our closure
model, most of parameters are irrelevant and can be set to 1. We prove that the error
of our model is around 10% average over all our simulations by comparing it with the
exact expression of simulations of the two vluid microscopic equations.

As a further examination of the two fluid micdroscopic simulation, mesh refine-
ment and insertion of a calibrated Smagorinsky subgrid model are applied. First
we perform spectral analysis to compare our result with classical turbulence study,
especially the Kolmogorov power law decay rate. Another comparison is done by av-
eraging the molecular mixing parameter over a certain number of grid cells, yielding
a conventionally expected value. Averaging of data over volumes with 4Az to 8Ax
side length gives the expected value for ideal and surface tension cases. The miscible
simulations yield this result without any averaging. The typical upturns in spectra
of velocity, density and kinetic energy at large wavenumbers give a clue to assess
the necessity or desirability of subgrid model. We adopt one of the simplest subgrid
model, Smagorinsky type. But the magnitude of subgrid model is expected to be
small, in view of the small size of the upturn.

Key Words: Rayleigh-Taylor instability, closure, turbulence, Kolmogorov power,

Smagorinsky subgrid.
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Chapter 1

Front Tracking

In this chapter we briefly introduce a package, ‘FronTier’, for front tracking.
This package is used for simulations of interfaces and provide the main source of data
analysis in later chapters 3 and 4. This chapter is only for the purpose of explaining of
how the interface is tracked, initially set and propagated. A more detailed description

of this package can be found in [12].

1.1 Locally Grid Based Tracking

Locally grid based method of front tracking results from a merging of two dif-
ferent methods, the grid free method and the grid based method. In the grid free
tracking, the interface does not have any relation to a finite difference grid. It is
freely propagating through a rectangular grid. This method is very accurate but not
robust with regard to a topological bifurcation. In grid based tracking, the front is
regularized or reconstructed based on a finite grid at each time step. After propaga-
tion, the points which intersect with all grid cell edges are found. We here assume
that there is no more than one intersection point on each grid cell edge; enforcement
of this criteria is the key step in resolving topological ambiguities. Then the interface

is reconstructed simply by linearly connecting these crossing points. This grid based
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tracking is not very accurate but very robust.

Locally grid based tracking method takes advantage of these two methods, de-
pending on the more accurate grid free tracking in the region without any bifurcation,
and the more robust grid based tracking in the region with bifurcation by constructing
a small box around it. Grid based propagation is performed in the box and the prop-
agated surface is reconnected to the grid free surface triangulation around the box.
The result of this locally grid based tracking method is plausible since it preserves the
accuracy of grid free tracking and the robustness of grid based tracking. Figure 1.1
clearly shows the advantage of using the locally grid based method for tracking the
interface. In this sense it is comparable to the hybrid particle level set method which

combines Eulerian front capturing and Lagrangian front tracking methods.

1.2 Static Interface

The interface can be described as a discrete topological manifold which is a
group of linked points. The interface consists of points and curves in 2D, points,
curves and surfaces in 3D. Curves and surfaces have pointers to the objects which
organize the boundary and the object it bounds. The start and end points of a
curve are called nodes. The curves and surfaces are composed of linear segments,
and each linear segment has pointers to connect it to its neighbors. The interface
objects are constructed in each rectangular block by detecting crossing points and
connecting them with the linear segments, and are linked to neighbors. After that, a
redistribution of the interface is needed to optimize the bonds in 2D and triangles in
3D. To optimize points on curves in 2D, the total length of the curve is measured and
divided by the total number of bonds so that each new bond has the same length. In

3D the area ratio of the triangles are calculated and by deletion and re-triangulation
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all the new triangles are controlled to satisfy our criterion.

1.3 Interface Propagation

Interface propagation is achieved by point propagation. There are two different
types of point propagation. One type of propagation is based on a velocity field which
is a function of position and time. The moving front is advanced by solving a ordinary
equation

dx
i v(x,t) (1.1)

for example, with a first order Euler or a fourth order Runge-Kutta method. The
second type of interface propagation is hyper surface propagation. In this case the
velocity depends on not only position and time but also interface normal and curva-
ture. As one point propagates, its neighbors move so that the normal and curvature

change.



Chapter 2

Rayleigh-Taylor Instability and Simulations

In this chapter we introduce the basic terminology of the Rayleigh-Taylor Insta-

bility. Our simulation settings are also presented.

2.1 Initial Conditions

The computational domain of our simulations is 2 X 2 x 8 in the zy, x5 and x3
directions with a grid size 128 x 128 x 512 as the finest resolution. The interface is
initially perturbed by a random combination of Fourier modes. For the mass diffusion
and surface tension simulations, the mode numbers ranged from 8 to 16, generating
an initial averaged number of modes is 12 x 12 bubbles which means there are 12
bubbles in each direction. For the ideal simulation, the mode numbers ranged from

4 to 8. The initial interface position is given as a Fourier series

x3(1, T2) = T30 + Z (Qny oy SIN(N12 + N2a) + by iy cOS(N1Ty + NoT2)),  (2.1)

ni,n2

where x5 is the unperturbed interface position, which is initially set at the middle of
the domain height, 259 = 4. The coefficients a,, ,, and b,, ,, are chosen as Gaussian

random variables, with mean of 0 and standard deviation of 0.001. Periodic bound-

5



aries are imposed on the x, x5 sides of the domain and Neumann boundaries are
imposed on the top and the bottom of the domain. The initial flow field is unper-
turbed, with a zero velocity, constant temperature fields and pressure and density in
each of the fluids specified by hydrostatic isothermal equilibrium.

The light fluid is initially placed above the heavy fluid. The density ratiois 3 : 1
so that the Atwood number A = (ps — p1)/(p2 + p1) at the initial interface (at the
initial time ¢ = 0) is A = 0.5. The simulations are conducted in the frame of an
experimental container subject to a strong steady downwards acceleration, effectively
reversing the direction of gravity, which thus points upward.

To describe the compressibility of our simulations we use the dimensionless con-

stant

M? = \g/c; | (2.2)

where ¢;, is the sound speed in the heavy fluid. In the three cases of simulations
analyzed here, the compressibility is M? = 0.008. The small value of M? brings a
good approximation to nearly incompressible laboratory experiments, in the sense
that the density variation throughout the heavy and light fluids due to gravitational

stratification is small in both of the experiments and the simulations.

2.2 Rayleigh-Taylor Instability Simulations

Rayleigh-Taylor (RT) instability, named after Lord Rayleigh and G.I. Taylor,
occurs when a dense, heavy fluid is accelerated by a light fluid. Bubbles of light fluid
and spikes of heavy fluid penetrate into the other, resulting in the development of
a complex mixing layer. We are dealing with three different cases, ideal, immiscible
with surface tension and miscible with mass diffusion. For instance, we can imagine

that water is placed on top of oil separated by a very thin layer, and suddenly the

6



layer disappears, making some initial perturbation. These two fluids start to mix for
density difference. Or when we put creme in coffee, they mix in a molecular level.
These examples show surface tension and mass diffusion cases, respectively. Ideal
case, however, cannot occur in the real world so that it is not possible to compare

such simulations to experiments.

In our simulations, the ideal simulation [15] has no surface tension, no mass
diffusion, no physical viscosity and no thermal conductivity. The surface tension
simulation [15] has a dimensionless surface tension & equal to the experimental value

[28,30]. The dimensionless surface tension is defined as

&=o0/(\Apg) . (2.3)

where o is the corresponding dimensional surface tension, and A is an initial wave
length characterizing the initial perturbations. p and g are density and gravity. In
our simulation, A is 2/12 = 0.167 and the constant gravity is 0.14. The third simu-
lation with physical mass diffusion [22,23] models the Banerjee-Andrews air-helium
Rayleigh-Taylor experiments [1]. The mass diffusivity is dimensionalized using an
initial wave length scale set from observation of the flow, and with this setting, the
dimensionless simulation mass diffusivity is identical to the dimensionless experimen-

tal value, and expressed as

v=v/(A/ Ag)). (2.4)

This simulation yields o = 0.069 in agreement with experiment.

We compare simulations and experiments in terms of the growth rate of the
mixing zone. To do this we prefer the growth rate of the bubble side of the mixing
layer rather than that of the spike side as the numerical results are more accurate in

this case. We define the bubble growth rate by the dimensionless constant « in the
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Experiment Comment Q o
Simulation

Read-Youngs Immiscible [28] # 29 0.073 5.7E-3
Read-Youngs Immiscible [28] # 35 0.066 4.6E-3
Smeeton-Youngs Immiscible [30] #104 0.066 8.8E-3
Smeeton-Youngs Immiscible [30] #105 0.072 7.3E-3
Smeeton-Youngs Immiscible [30] #114 0.060 7.8E-3
Centroid + deviation 0.066 £ 0.006

Average + 2 STD 0.068 = 0.005
FronTier (high resolution) Immiscible 0.068 7E-3
FronTier (low resolution)  Immiscible 0.056 7E-3
TVD Ideal Untracked [14]  0.035-0.034 0.0
FronTier Ideal Tracked 0.09-0.078 0.0

Table 2.1: Mixing rates compared: FronTier simulation compared to immiscible ex-
periments and contrasted to untracked (TVD) and ideal fluid FronTier simulations.

equation

hy = aAgt? . (2.5)

The bubble of the light fluid penetrates into the heavy fluid by height, hy, relative to
the initial interface which is 23 = 4. Table 2.1 shows the values of & = «; and the

dimensionless surface tension ¢ in different experiments and simulations.



Chapter 3

Closure Model

In this chapter we propose a closure model for the interfacial quantity of v, p
and pv. We start by introducing ensemble average and the phase indicator function
to obtain the phase averaged equations. From these macroscopic equations, we di-
rectly derive the exact expressions for the three interfacial quantities. By modelling
coefficients in these interfacial quantities we have our closure model. This model is

compared by another models which were proposed by others.

3.1 Ensemble Average and the Phase Indicator Function

The ensemble average is the mean of a quantity which is a function of the micro-
state of a system. It is a central concept in statistical mechanics. Here we use the
notation, < - >, which implies the spatial average over the xy,xs-plane in a 3D

Rayleigh-Taylor instability.



This average satisfies

() = ¢,
ory _ o
i
0x; ox; '

where c¢ is constant. The first three of these are called Reynolds’ rules, the fourth is

Leibniz’ rule and the fifth is Gauss’ rule [10, 11].

We use two kinds of averaging for variables, one is the phase average and the
other is the phase mass-weighted average. For a variable f, the phase average is

defined as
fe = (X f) / (Xk) (3.1)

and the phase mass-weighted average is defined as

fe = (Xpf) | (Xip) (3.2)

where p is density and X} is a phase indicator function. Here the phase indicator
function is a time and position dependent function, which, literally shows if the
position is in a given phase or not, and is defined as

1 if x is in phase k

Xk (X, t) =
0 otherwise

This means that the indicator function is 1 when the position x is in phase k at
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time ¢ and otherwise 0. This is a good definition for the ideal and immiscible cases
but it is an ambiguous definition for miscible case. In this case we use the 50%
concentration contour of each fluid as the interface. We introduce a substitute, relative

concentration, for this definition for the miscible case in chapter 4.

The ensemble average of the indicator function Xy is denoted by 5, = (Xj). Then
Br(x3,t) is the volume fraction of the horizontal layer at height x3 that is occupied
by fluid £ at time t. Since each X is between 0 and 1, the volume fraction, which is
the average of X} values, must be also between 0 and 1. We notice here that S is

usually continuous even though X} is discontinuous.

Figure 3.1 shows the Rayleigh-Taylor mixing in a hexahedron [0, 2] x [0, 2] x [0, 8]
at time t = 9.5 and Figure 3.2 is the distribution of the two fluids. This figure shows
the evolution of the bubbles of light fluid and the spikes of heavy fluid which are
penetrating in the opposite fluid at the height x5 = 4.5. Here the mixing zone which
is defined as the region from bubble tip to spike tip (usually we use 5 ~ 95 percent of
the whole mixing zone) is 3.376 ~ 4.761. Since we initially set the light fluid on the top
and the heavy fluid on the bottom (the gravity is set going upward) the oval objects
in Figure 3.2 are spikes or stems of heavy fluid surrounded by the ambient light fluid
considering that the height x5 = 4.5 is more on the spike side. Inside these objects
the phase indicator function X; = 0 and X, = 1 while X; = 1 and X5 = 0 outside
the objects. The corresponding volume fraction is 5 (z3,t) = £;1(4.5,9.5) = 0.862 and
Ba(x3,t) = P2(4.5,9.5) = 1 — (£1(4.5,9.5) = 0.138 at the height x3 = 4.5 and the time
t=9.5.

The property of the phase indicator function brings us to the topological equation

expressed as

X
—at’“ + U - VX =0 . (3.3)
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Figure 3.1: RT simulation
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Figure 3.2: The distribution of the light fluid and the heavy fluid at the height z = 4.5
Inside the objects X; = 0 and X, = 1 and outside the objects X; =1 and X, = 0.
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The left side of this equation is the material derivative of X}, following the interface.
On a point, not on the interface, either Xy = 0 or X, = 1. In either case the partial
derivatives vanish and satisfy the equation (3.3). When a point on the interface moves
with the interface velocity then the function X} is a jump that remains constant, which
also makes the equation hold. The velocity component normal to the boundary is

continuous so that v, - VX is well defined.

3.2 General Understanding of Closure

Consider Burger’s equation,

that is,

m+%@ﬂx:0. (3.5)

After ensemble average for the both sides of this Burger’s equation (3.5) and by using
the first one of Reynolds’ rules and Leibniz’ rule in the ensemble average properties

(3.1), the equation becomes
Lo
(U%+§QJ%:0. (3.6)

We here have one equation and two unknowns < U > and < U? > which are the
first and the second moments. To solve this we multiply U to the both sides of the
equation (3.4) and average it again, then it becomes

1

3 (U2, +3(U%), =0, 7

13



we have two equations and three unknowns. If we keep repeating this precision we
always have one more unknowns than equations, since (U") # (U)" in general, so
that the system is not solvable. Thus this is not a closed system. Thus we have
to close the system by modelling (Uln + 1)) as a function of (U),(U?)---(U") for
some positive integer n. Then we have n equations and n unknowns, and a formally

solvable system of equations.

This is the basic idea for closure. In a couple of following sections we introduce
the original equations which we call the primitive equations and average the phase
primitive equations obtained by multiplying the phase indicator function to the prim-

itive equations. We reformulate the nonlinear terms to gain our closure model.

3.3 The Primitive Equations

Many numerical simulations in fluid dynamics are based on the Euler or Navier-
Stokes equations. We deal with multi species and multi phase flow with indices i and
k, respectively. A species is a microscopic atomic or molecular unit and distinguished

from phase which is the tangible state of matter such as a solid, a liquid, or vapor.

We start from the single-phase Navier-Stokes equations. The following equations

are the microscopic continuity, momentum and energy equations in an inertial frame.

dpi

5 +V-pv=-V-j, (3.8)
0
%+V-pvvzv-7+pg, (3.9)
ap—E—I—V- vVE =V -7V +pv- —V-Zh-'-+V-nVT (3.10)
ot p = pv - g i iJi . .

where V is the gradient operator and V- is the divergence operator. The dependent

variables p;, v, p = > . pi, p, E, and g denote, respectively, the species ¢ mass density,
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the velocity, total density, pressure, total energy with E = e+v?/2 and e the internal

energy and gravity. The specific enthalpy of species 7 is

h = e+ 2 (3.11)

Pi

where p; is the partial pressure of species 1; e; is the specific internal energy of species
1. T is the total stress. We consider Newtonian fluids for which viscosity depends
only on temperature and pressure, so that the constitutive law for the Cauchy stress
is of the form,

T=—-pl+1", (3.12)

where 7' is the viscous stress. Note that the rate of deformation tensor (D) can be

broken into a spherical part (D) and deviatoric part (D).

~

D:%Wv+Wﬂﬂ:ﬁ+D, (3.13)

where D represents pure volumetric rate of deformation and is simply proportional

to the sum of the diagonal element of D,

-1

D= gtr(D)I (3.14)
and D is pure shear rate of deformation,

. : 1
D=D-D=D— ;ux(D)I. (3.15)
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Then the viscous stress TV can be expressed by

T/ _ 3/Lbulkf) + 2lushea1"f)

1
= 2y shear [D — gtr(D)I] + " r(D)I (3.16)

shear i called the first coefficient of viscosity or shear viscosity and p"“* the

where p
bulk viscosity. Also k is the heat conductivity and T is temperature. The total mass
density is p = >, p; and w; = p;/p is the mass fraction of the ith species. j; is the

diffusion flux of the form

ji=—pY vixVew; (3.17)
K

where v; ; are binary diffusion coefficients which are subject to the constraints [2]

l/z',i = 0, (318)

>i(vig —vig) =0, j £k . (3.19)

For the two species case, v1 o = 5;1. In general, the v; j, as with the other transport
coefficients and the surface tension, are thermodynamic functions, and thus dependent
on temperature, pressure and the concentrations wy,ws, - -+ ,wy. If we plug w; = p;/p

in the microscopic continuity equation (3.8),

Ow;p

5 +V - wpv=-V-j (3.20)
dp ow; _ .
wl(a + V- pv) + p( 5 TV Vw;) ==V -} (3.21)
Since the total mass is conserved,
@—FV'pV:O (3.22)

ot
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which can be obtained by summing (3.8). From these, we can have a concentration

equation for each species,

Ow; .
p( Yy Vw;)) =-V-ji, (3.23)
ot
equivalently,
9 +v-Vw;, = —lv ji (3.24)
= AR :

In (3.9), the dot product within the diffusion term is between the indices of the
gradient and the divergence. The term proportional to j; in (3.10) represents the
diffusion of enthalpy, and is a consequence of heat flux due to mass diffusion between
different species [31]. In this paper, we formulate the equations in terms of two phases.
See Cheng et al. [6] for extensions of the equations below to the general multi phase

case, in the incompressible limit.

For simplicity of the simulation, we assume no mass diffusion for the immiscible
case and no surface tension for the miscible case. Since our examples only consider
constant diffusivity for binary mixtures (n = 2, 115 = v»; = v = constant), and
constant coefficients of surface tension o = constant, a consequence of this assump-
tion is that we only consider flows that are either purely diffusive 0 = 0 and no
material interfaces, or non-diffusive v = 0, sharp material interfaces, but never both

simultaneously.

3.4 Averaged Equations

In this section we multiply the phase indicator function X} by both sides of each
of the equations (3.8)—(3.10), so that the equations are specified for each phase, and

perform ensemble average, which is based on the ideas of Drew [11]. In this sense the

17



averaged macroscopic equations conceptually present a chunk phase motion rather
than the point-wise motion in the primitive microscopic equations. For our 3D sim-
ulation in a rectangular coordinate system here, the ensemble average is replaced a
spatial average over the xy, xo-plane so that the average is assumed to be indepen-
dent of z; and x5. Even though our simulation is 3D RT in Cartesian coordinates we
generalize the averaged equation in three different geometric coordinates, the planar,
cylindrical and spherical ones by using the indicator s = 0,1, 2, respectively. Similar
to the rectangular coordinate case, we integrate the equations over the 6, or § and
z directions in cylindrical coordinates, ,over the 6 or # and ¢ directions in spherical
coordinates. This yields one or two dimensional multi-phase flow averaged equa-
tions. When the equations are given in cylindrical and spherical coordinates, there

are geometrical source terms due to the curvilinearity of coordinate systems [24].

We use the two types of average introduced in the previous Section 3.1. The
averaged quantities p;j, pr and py are defined as the phase average of the species i

densities p;, density p and pressure p, respectively, so that we have

(3.25)

The quantities vy and Fj, are mass-weighted averages of velocity v in the direction

of z and total energy E in phase k and those are expressed by

o= a2 g XepB) (3.26)

(Xep) 7 T (X

For later use we define the three averaged interfacial quantities v*, p; and (pxv)*
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P (V- VX . _ (pems - VX) o (kv - VXR)
o o= () = , 3.27
(n3 . VXk> Pk (n3 . VXk> (pk ) <Il3 . VXk> ( )
By averaging the advection law (3.3) we get
0X
<8_tk> + (Uit - VX)) =0, (3.28)

which becomes by the property of ensemble average and the definition of v* in (3.27),
0Pk 9Pk
— (—)=0 3.29
<8t>+v<8z ’ (3:29)
where z direction is the normal direction.

Applying the ensemble average to the equations (3.8)—(3.10), we obtain the en-

semble averaged equations

a(ﬂgtpki) + V- (Beprivi) = (XkV - Ji) (3:30)
W + V- (Brprvive) + V- (BiRi)
=V - (Bite) — (TVXk) + Brprg (3.31)
% + V- (BepeviEr) + V- (BrSk)

=V- (XkTV> — (TVVX/C> + kakvk ‘g + <ka . thjz> + <ka . HVT) ,

(3.32)

where Ry is the Reynolds stress tensor and Sy is the turbulent flux of total energy,
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both for phase k,

(Xppvv)  (Xppv)’ S, — (XipvE) — (XppE) (Xipv) _ (3.33)

R = T B (Xe) 5, B (Xnp)

We note that we choose a preferred direction normal to the mixing layer (z3
direction in 3D rectangular coordinate) and integrate the equations (3.30)—(3.32)
over two other directions tangent to it (xzyz5 plane in 3D rectangular coordinate).
This procedure yields one dimensional averaged equations. We follow Drew [11] and

earlier papers [4,5] to obtain

a(ﬁgtﬂk_i) + V*(Brprive) = BrDri , (3.34)

0 0 0

7@?:%) + V° (Brprvy) = _g(ﬁkpk) +PZ% + Brprg + BrM. (3.35)
E

76(6'“5: 2 + V (Brprvr B) = —V* (Brpror) + (ka)*% + Brprvrg + Brle - (3.36)

Summing the equation (3.34) over i, we get the equations for total mass

a(%tpk) + V*(Brprvr) =0, (3.37)
where
V() = %a’z;i{;(z) (3.38)

is the curvilinear divergence. For convenience, we use the following symbols to rep-
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resent the source terms of (3.34)—(3.36)

Dyi = (V- ji)k (3.39)
M}c = (V . Tl)k73 + fi; s (340)
= (V-7'V)p+ (V- (Z hiji))e + (V - (6VT))y (3.41)

in which (V - 7'),3, and v mean the third component of (V - 7'); and v. f is the
averaged geometrical source term, that is, the averaged centrifugal forces which is

expressed by

0 s=0
fi = %<kavg> 164 s=1 (3.42)

% (Xep(vg +03)) [Br s =2

\

3.5 A Closure Model

In this section we propose our closure model. As we defined in the previous
section we denote the interfacial averaged quantities of p, v, pv as ¢* where ¢ = v, p, pv.
The first step in the closure derivation is to derive an exact identity [16] from the
averaged equations, which was previously derived. Here the result is extended to the
multi species mass diffusion cases. The next step is to find a reasonable closure model

and finally we pursue the simplest model with good approximation.

3.5.1 v* Closure

We use the notation Zj, for the edge positions, i.e. Z; is the bubble edge and Z,

is the spike edge. At each edge Z; the velocity is denoted by vy = V. We assume
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that (—1)*V; = (=1)*Z; > 0, which means that the mixing zone is monotonously
growing i.e. both pure phase fluids are constantly coming into the mixing zone so
that the volume of the mixing zone is increasing. The interfacial velocity v* at the

both edges satisfies a boundary condition.

v =2, =wv, at z2=2 (3.43)

The exact expression for the interface velocity v* can be directly derived from the
previous averaged equations (3.29) and (3.37) by using the definition of v* in (3.27).

Dividing (3.37) by py and subtracting the result from (3.29), to obtain

9P

(’Uk — U*) E + ﬂk [stk + H]g] =0 , (344)
where
L Dy.px
H? — . 3.45
K o Di (3.45)

Here Dy /Dt is the substantive derivative with respect to the velocity vy. We sum
(3.44) over k, solve for 05;/0z, and substitute the result in (3.44). The following

theorem gives us the algebraically simplified expression.

Theorem 3.1. The interface quantity v* has the exact formula
vt = pivy + psur (3.46)

where the mizing coefficients have the fractional linear form

= Br
P B+ Ay

22
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The constitutive factor dj, is also expressed in the exact form

stkf + H]g/

dZ(Z’t) = vsvk+HU
k

(3.48)

The factor dj(z,t) in (3.48) can be interpreted as a ratio of logarithmic rates of
volume creation for the two phases.

With spatial homogeneity we define

Zk/a Say.,
/ M%—ZSH,’;,dz
Z

0z
w) = 22 e , (3.49)
/ d +2°H.dz
7 0z

which shows that the relative extent of volume creation for the two fluid species do
not depend on the spatial location in the mixing zone, which means this closure is
independent of the exact expression (3.48). The ratio (3.49) satisfies the relation
dj(t)d5(t) = 1 which is equivalent to p} + 8 = 1. Furthermore, dj(¢) > 0 if and only
if 417 is nonnegative finite for 0 < g, < 1.

Before we specify a simple choice for the quantity d}(¢), we here discuss sensitivity

of the choice. We proposed an inequality as a criteria which is

1Aq| = |1 — | < g = |Bin + Bage] a=v, p. (3.50)

If (3.50) is not satisfied then the closure ¢*0/0z is sensitive to the choice of d(t).
For the v* closure which violates (3.50), the light fluid moves away from the direction
of g and the heavy fluid moves in the direction of g. Thus in most parts of the mixing
zone, v; and vo has opposite signs, so that v is nearly zero relative to Av, or in other
words, Awv is large.

In Figure 3.3, we see the optimized dj () to minimize the relative error where
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Figure 3.3: The sensitivity of v*0/;/0z with different choice of d} ()

the error is defined as
[ |data — model| dz
[ |dataldz

(3.51)

error =
at each time ¢ = 4,7,9. The integration extends over the mixing zone. The sensitivity
of v* can be interpreted as follows.

Also dj > 0 is noticeable, which means the unmixed pure phase fluids are en-
trained into the mixture of the two fluids, which rises the Vj terms in (3.49) and also
the relative compression of the two densities affects on the logarithmic substantive

derivative terms in (3.49)). In this sense our simple closure form of dj is

= (%)

This is clearly seen in the incompressible, non-diffusive RT case since the second terms

Vier
Vi

. (3.52)

in the numerator and the denominator of the identity (3.49) degenerate. This solution
(3.52) is a consequence of the closed form expression obtained for the solution of the
model equations and a simple calculation [17-19]. In Figure 3.4, we plot the closed

di(t) vs. t, for all of our different RT data sets.
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Figure 3.4: The closed quantity d}(¢) from (3.49) compared to the value from (3.52)
for 3D RT data. Left to right: ideal, surface tension and mass diffusion data.
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3.5.2 p* Closure

In the case of non-zero surface tension, pressure is discontinuous at the interface
0X%, and py, is the value of the pressure defined by continuity from the interior of Xj.
These limiting pressures at the micro physical level, i.e. before ensemble averaging,

are related by the equation
pr—p2= (Kon+ Vo) -n+n’[rIn= Ko +n’[7'|n (3.53)

where K is the mean curvature and o is the surface tension. At the interface of two

fluids, the jump condition is
[T"n] = —cKn — V0, (3.54)

in which the symbol [-] is defined as [f] = f; — f, and V| = (I—nn) -V is the surface
tangential component of the gradient. This shows a balance of forces law. Here o is
the coefficient of surface tension. The unit normal vector n is directed into fluid 1.

We use the mean curvature

K= K1+ Ko s (355)

where x; and k5 are the maximum and minimum curvatures, and are positive when
pointing into fluid 1. The first term in (3.54) shows the classical surface tension.
The second term in (3.54) is the Marangoni force, which is the tangential force on
the surface generated by a concentration dependence of the surface tension. It is

convenient to define
* 1 * *
p = 5(?1 +p2) ) (3-56)
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and the capillary pressure

Pe=D1— P, (3.57)

where pj is pressure of phase k at the front state, so that

o %

D
i

(3.58)
In view of (3.53), p’ is the product of the surface tension o and the average of

the surface mean curvature. Similarly we define (pv)* and (p.v)* as the average and

the difference of the (pxv)*. We then define

~ Pe
I pk+(—1)’“5 (3.59)
o= pi+ (DM = (3.60)

The required boundary condition (3.43) for p* at the mixing zone edge Zj can

be reformulated as

prk=pp=p" at Zj. (3.61)

We derive an exact expression for p* in terms of other solution variables. This
exact form will be approximated to yield a closed expression for p*. We start by

subtracting vy times (3.37) from (3.35) to obtain

~ * aﬁk o
5k(g—Hk)+(pk—p )E_O , (3.62)
where
Dkvk ./\/lk
Hy = py (9 T D E) (3.63)



Adding the two equations (3.62) for k = 1,2, we obtain

(172—171)%:51 (%—fh) + 2 (%—Iﬁ) ) (3.64)

since the p* terms cancel when summed over k. Equation (3.64) is substituted into

(3.62) and the result is solved for p*, yielding

(P2 — p1) B ( Hl)

pr—pi= : (3.65)
P (% ) + B2 (ap? H2)
This expression can be simplified to give the following theorem.
Theorem 3.2. The interface pressure p* is expressed exactly as
B ( Hl) P2+ o ( H2) (3.66)
po= 3.66
ﬂl (% — ) + 62 (ap2 H2)
= P2+ pspr (3.67)
where the mizing coefficients p, satisfy
B
e 3.68
The constitutive coefficients db, are obtained in the exact form
% _ g,
dj(2,t) = F5— | (3.69)
Ok _ H
0z k

This coefficient (3.69) represents a ratio of the forces accelerating the two fluids,
each considered in the accelerated frame defined by their respective velocities. The

first derivative term in this coefficients dj, represents the acceleration from the pressure
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and the Hy term does that from gravity and inertial forces. Unless Hy = dpy/0z
which is hydrostatic equilibrium, there must be a deviation between these forces. If
the deviation is positive the total force supplies extra acceleration to the phase k,
otherwise it decreases the total acceleration. Figure 3.5 shows each force. The result
is a net decrease in the downward acceleration of the light fluid and a net increase
in the upward acceleration of the heavy fluid, which causes dj < 0 and |Z,| < |Zs|.
This provides that the spike growth rate is bigger than the bubble growth rate in
general. Also in the same figure we can see the possibility that the coefficient dj,
can be negative so that the denominator of 4 is zero, which causes blow-ups in our

p*0f1/0z closure.

Figure 3.6 presents the distribution of those zero roots (denoted z*). One of our
trial and error method to find a closure model was to use these points. In other words,
we used d (z*,t) for our closure model. Mathematically, if we plug these zero roots
in the numerator and the denominator those are supposed to be cancelled by using
L’hospital’s rule. But it is a mistake if we do not consider the numerical error. Since
we have a finite grid size, the numerator and denominator are closely but not exactly
zeros so that those are not exactly cancelled out and make considerably big blow-ups.
Figure 3.7 and Table 3.5.2 gives a quick view of the error when we use those d}(2*,1).
Also the zeros do not have any special pattern so that it is hard to keep away from

this problem with the negative d}, causing the blow-ups of closure model.

This leads us to force d? to be positive. Surprisingly the choice is not a matter
once it is positive. Figure 3.8 shows the insensitivity of the closure with any choice of
d? which is the opposite property of v* closure in Figure 3.3. For definiteness, we set
dp =1, for example. The dj(t) satisfies the relation df(¢)d5(t) = 1 which is equivalent

to uf + pb = 1.This insensitivity can also be seen clearly seen in Figure 3.9.

As the two fluids are mixing the pressures from the two fluids have a tendency of
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Figure 3.5: Top: the numerator and denominator of the exact d(z,t) in the mixing

zone at 9, using (3.69). Center and bottom: the first terms dp;/0z and the second
terms Hy, of the numerator and denominator at ¢ = 4 (top) and 9 (bottom).
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Figure 3.6: The distribution of the zeros z* of the denominator of p*%.
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Figure 3.7: p*22 with df(t) = df(2*,t) for all z* at time ¢ = 11 with RT surface
tension data.
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‘ Surface Tension Data with Surface Tension Terms in Formula ‘

Time z* dy d5 Error (Percent)
0.5230 | 4.0238 | -2524.8900 | -0.0004 2.8773
2.0162 | 4.0057 -2.5428 -0.3933 0.5071

4.0068 -3.0103 -0.3322 12994e+11
4.0169 | -12.9310 -0.0773 2.8773
4.0089 | 4.0252 -0.1732 -5.7735 2.3268
7.0110 | 3.9700 -0.6640 -1.5059 85.1186
9.0106 | 3.4385 -0.0073 | -136.5730 2.7482
4.0708 -0.9761 -1.0244 3.2501
4.2221 -4.8075 -0.2080 14.1469
4.3623 | -13.5136 -0.0740 28.1431
4.3878 | -15.8326 -0.0632 2.7544
10.5159 | 3.2253 -0.0097 | -102.8710 2.1730
3.2610 -0.0239 -41.8760 3.5820
3.2686 -0.0280 -35.659 4.9875
3.8862 -0.6326 -1.5807 77.0612
3.9478 -0.6828 -1.4646 180.9100
4.0779 -0.9366 -1.0678 1074.7000
4.5665 | -12.5414 -0.0797 23.2765
4.6345 -24.1695 -0.0414 47.4109
4.71613 | -37.0335 -0.0270 10.8158

Table 3.1: The error analysis of the closure p*% with d} (2*,t)

—t=4
1 ---t=7
——t=9
. 0.8r
S
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Figure 3.8: The sensitivity of v*9;/0z with different choice of d?(¢)
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Figure 3.9: The exact quantity p*0f;/0z with (3.66) and closed quantity p*03,/0z
defined by (3.67) for 3 choices of dj at ¢t = 4 (top) and ¢ = 9 (bottom). The four
curves are indistinguishable.
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Figure 3.10: Left: the scaled pressure difference Ap/(Zs— Z;) is plotted vs. the scaled
height (z — Z1)/(Zs — Z1) at t = 0.5, 2, 4, 7, 9 for the 3D RT surface tension data.
Right: the ratio of pressure difference and unit drag force py (Av)?/(Zy—Z;) at t = 9.

equilibration. This tendency is stronger in late time and eventually a central portion
of the mixing zone satisfies Ap = 0, which can bee seen in Figure 3.10 top frame,
where we show pressure differences scaled by the mixing zone length. In the right
frame, we scale this difference by a unit drag force which is py (Av)?/(Zy — Z1). We
see the pressure difference is significant near the edges of the mixing zone. This can

also support the insensitivity of the closure to the choice of df(t) by satisfying the

inequality (3.50).
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3.5.3 (pv)* Closure

In the case with surface tension, the work associated with limiting pressures is

not continuous at the interface as stated at the beginning of the previous section

3.5.2. From (3.53), we have

(p1v)* — (p2v)* = (pev)™ .

(3.70)

We derive a mathematically exact expression for (pv)* using an entropy formu-

lation. From (3.34) and (3.35), we get the kinetic energy equation

a 2 2
(51#)1:%) +V? (5kﬂkvkv—k>

ot 2 2
0 0
= o [0 | OB g+ My
0z 0z

Subtracting (3.71) from (3.36), we have the internal energy equation

0
En (Brorer) + V* (Brprvrer)

0 0
= —BpeVivg — p}zvk% + (pk’l))*% + BrFr

where

Fk; == gk —Uk./\/lk .

(3.71)

(3.72)

(3.73)

We define S to be the entropy defined by the averaged variables E} and py using

the equation of state and we define Sy to be the direct ensemble average of the micro

physically defined phase entropy. The process of averaging (forming the ensemble

average) is not adiabatic, that is, the entropy is not conserved by the averaging
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process, so that S; # Sy in general. Besides, we expect the averaging to satisfy

an entropy inequality, leading to S; > S;. For an adiabatic process, dS;, = 0 and

dSy = d(Sg — S).

We assume the thermodynamic relation is satisfied for the averaged quantities

1
deSk = d@k +pkd (—) .
Pk

From (3.72) and (3.74), we derive the entropy equation

DSy,

0
BrprTe—— = [—prv™ + prvk — pruk + (pkv)*]ﬂ + BiFr -

Dt 0z

We define
(=1)*

(Pxv) = Pk + [prv*™ — (pev)™].

2
(3.75) can be reformulated as
DS - 9,
ﬂkﬂkaTtk = [—prv* = pu + (Prv) + (pv)*]% + BeFk,
Solving (3.77) for (pv)* yields
Theorem 3.3. (pv)* is expressed exactly as
(pv)" = p" (" 02+ 4y 01) + 0" (U1"P2 + 113" P1)

— (1" (P2v) + 41" (Prv))
where the mizing coefficients 1, satisfy
Br
py, =

B+ & B
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The constitutive coefficients di’ can be obtained in the exact form

Dk/Skl

P L — Fir
AP (z,1) = Dt . (3.80)
7,25 g
Pk Di k

The process of ensemble averaging increases the entropy of the system, a process
we call the positive entropy of averaging property. When the source term Fj, = 0, we

expect the entropy of averaging is positive [20], which leads to the following theorem.

Theorem 3.4. Assume the closures (3.46), (3.67) and (3.78) for v*, p* and (pv)*.

Then the inequality

(117 — 1) APAY + (pev)” — piv] == >0 . (3.81)

s a necessary and sufficient condition for the entropy of averaging inequality for the

k=1 and k =2 fluids.

By imposing homogeneity on (3.80) just as before, the closure becomes

Zi DSy
/ plekl MOk —fk/dZ
Z

Dt
&y (1) = 2 . (3.82)
/k 7,25k g
— VA
" Pl Di k

Similar to the p*0p;/0z closure, the closure for (pv)*df;/0z is also insensitive
to the choice of di”, in view of the criteria (3.50). Figure 3.11 shows the property
as well. The first and the third terms in (3.78) nearly cancel each other, so that the

insensitivity comes from that of p* and also it must depend on v*. That is,

(pv)* =~ p*v* . (3.83)
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Figure 3.11: The exact quantity (pv)*0f;/0z for the 3D RT data set, with (3.78) and
the closed quantity (pv)*90:1/0z defined by (3.78), (3.79) for d}” = 0.1,1.0, 10,100 at
early time, t = 4 (left) and at late time ¢t = 9 (right).
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3.6 Another Closure Model and Comparison

We introduce a similar work by Saurel and coworkers. As we mentioned in
the previous sections we denote the interfacial averaged quantities of p, v, pv for our
model, in general, ¢* where ¢ = v,p,pv. For the work by Saurel et al., we use ¢°*
instead. Two versions of closure models are introduced. In recent work by Saurel et
al. [7] they introduce the relaxation coefficients coming from phase interaction and
adopt Discrete Equations Method (DEM) to a micro structure and obtain a system
of PDEs as the continuous limit of the discrete equations. The analysis starts with
mass, momentum and energy equation with pure relaxation term in momentum and
energy equations as source terms. Also the relaxation term is added to the averaged
advection equation. There are two versions of models, introduced here, with and

without the relaxation terms.

Before applying the relaxation terms in the equations their closure, a related but
different functional form for their closure model is obtained. Similar to our closure

they also consider a convex sum

¢% = 1% + 3l q=v,p, (3.84)
and then define
v = v"* 4+ sgn 051 P21 (3.85)
81: Zl + ZQ ’ ’
9 2,2,
S 1S%
— — . 3.86
p P+ sen <82> <21+Zg (2 = 1) ( )

Here Z; is the acoustic impedance of fluid k. Also

(pv)%* = p™*o* . (3.87)
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The other version of Saurel closures include relaxation, as an additional term
in the right hand side of the associated volume fraction, momentum and energy

equations. The terms for £ = 1 are precisely

1% (p1 — p2)  volume fraction source term (3.88)
A (v —v1) momentum source term (3.89)
N0 (vy — vy) — p°p"** (p1 — p2)  energy source term (3.90)

and for £ = 2, the momentum and energy source terms have the opposite sign. Here

s Ap

= N =uz2, 3.91

1

where A; is the interfacial area per unit volume. In (3.88), we observe that the Av
contribution to the relaxation terms is larger than the Ap contribution, and as Aw
occurs in the p* relaxation, the p* relaxation terms are generally significant while the

v* relaxation terms (proportional to Ap) are not.

The convex coefficient u,‘jq also has a fractional linear form
Sq _ 1 —
ppl=———, q=uv,p (3.92)

while that of ours pf has the form

q 614:

= (=0,p,pv 3.93

It is common to both models that the pj and ,u,fq thus depend on a single pa-
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rameter dj or d,fq. Their coefficients can be calculated as

A" = 24/ 20 & = 21/ 2 (3.94)

which are derived from solutions of approximate (linearized) Riemann problems mod-
eling multi phase flows at the sub-grid level but their closure does not satisfy (3.43).
The Saurel et al. model supplies the missing internal boundary conditions at the
edges of the mixing zone by imposition of equal pressures p;(z = Zy) = pa(z = Z)

[29].

We have two interpretations of the Saurel et al. model. In the first, which we
denote as Saurel-1, A; is regarded as a fitting parameter. The second interpretation
of their model takes advantage of the fact that A; is a computed quantity in our data,
and uses this time dependent value in the definition of the model. We denote this
model as Saurel-2. Aj is plotted as a function of time in Figure 3.12, to complete the
definition of the Saurel-2 closure. We note that A; has the dimensions of an inverse
length and takes on large values at early time as the mixing layer tends to its (small)

initial amplitude.

The Figures 3.13, 3.14 and 3.15 present the comparison of three closure models
with surface tension simulation, where ‘exact ’in the legend of each figure means the
exact expression directly derived from the averaged equations. In these figure, we
can easily conclude that for v*0/;/0z and pv*0/3;/0z, our closure model is noticeably
better while for p*d3;/0z both our closure and the Saurel-1 (which has the fractional

linear portion of the Saurel et al. closure) give a good approximation.

To compare these models, ours and Saurel et al.’s more explicitly, we use an error
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Figure 3.12: The interfacial area A; per unit volume plotted vs. time. This plot
serves to define the parameter A; for the closure Saurel-2.

formula similar to (3.51), but including a sum over the three quantities v*, p*, (pv)*,

[ [ |data — model| dzdt
[ [ |data|dzdt

1
total error = 3 Z( (3.95)
P ,\pv

)*

This total relative error is presented in Figure 3.16. Our main conclusion from this
figure is the fact of excellent (about 10%) agreement of our closures with the simula-
tion data. Also in the same figure, we show the dependence of the total relative error
on the value assumed for the area A;. The error is minimized for A; = 0. With the
choice of A; for the Saurel-1, we compare the total relative errors in Table 3.2. In
summary, our model has errors about one quarter to one half the size of those for the

Saurel et al model.
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Figure 3.13: The exact quantity v*0f;/0z for the 3D RT surface tension data set,
with (3.44), for £ = 2, and the closed quantity v*0/;/0z defined by (3.52) in the
mixing zone at an early time, ¢ = 4 (left) and a late time, ¢ = 9 (right). We show
closure of this paper and two interpretations of the closures of Saurel et al.

Closure

,U*

p* (pv)* | Average

Comparison to RT data

This paper | 18%
Saurel-1 43%
Saurel-2 56%

00% 18% 12%
02%  42% 30%
46%  51% 51%

Table 3.2: Model errors based on comparison to simulation data.
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Figure 3.14: The exact quantity p*df;/dz for the 3D RT surface tension data set,
with (3.69) and closed quantity p*0f;/0z defined by (3.66) in the mixing zone at an

early time, t = 4 (left) and a late time, t = 9 (right). We show one closure from this
paper and two interpretations of the Saurel et al closures.
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Figure 3.15: The exact quantity (pv)*0f;/0z for the 3D RT data set, with (3.78) and
closed quantity (pv)*0p;/0z defined by (3.78), (3.79) and d} = 0.1 in the mixing
zone at early time, t = 4 (left) and at late time t = 9 (right). We show the closure
from this paper and two interpretations of the Saurel et al closures.
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Figure 3.16: Comparison of the model error (3.95) for three closures. Of these, only
Saurel-1 depends on the value of A; as a fitting parameter; these plots serve to locate
the best fit value of A; (A; = 0) and thus to define the Saurel-1 closure.
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Chapter 4

Turbulent Flow Analysis

The purpose of this chapter is to analyze our data based on classical turbulence
concepts including common measures of mixing properties. We introduce several
parameters to measure the average degree of mixing of the two fluid systems and
compare our values with those already known. For spectral analysis we start with
basic definitions and see a possible approximate agreement with Kolmogorov theory.
A characteristic upturn in the spectra at high wave numbers leads us to consider a
subgrid model, we especially consider Smagorinsky subgrid model. But the detail

analysis for the subgrid model should be in future work.

4.1 Mixing Parameters

In Chapter 2, we studied the bubble growth rate a and its statistical values. In
the expression (2.5) the Atwood number is treated as a constant, A = (pa—p1)(p2+p1),
which is independent of time. Here we consider a time dependent Atwood number
A(t) previously defined in [14]. The time dependent Atwood number A(f) measures
the density contrast within the bubble portion of the mixing zone. Precisely, the
local Atwood number A(z3,t) is obtained by choosing representative heavy and light

density values and replacing p;, p2 in the previous Atwood number expression with

47



these values, respectively, over a specific height x3 at time ¢. The time dependent
Atwood number A(t) is defined as an average over the top half of the bubble region
of local Atwood number A(xz3,t). In fact, the previous constant Atwood number A in
Chapter 2 is the local Atwood number of the initial mixing layer at time t = 0. The

renormalized bubble growth rate a,., can be defined by

Cren = h/[2 /Ot /OSA(sl)gdslds] . (4.1)

These mixing parameters, A(t) and «,., are sensitive to extreme within the density

contrast.

We denote the point-wise values as a zero-mesh block average, i.e. without
averaging in the definition of the volume fraction. To study the molecular mixing
fraction, we introduce a mixing or averaging length, and average the fluids over this
length scale, starting with the length of one mesh block. This leads to the volume
fraction, fi, of the light fluid, calculated (in a possibly sharp interface front tracking
simulation) as a grid block average. We use overbars to indicate a spatial average
over the 1, 2, position variables, at fixed z3. Thus f; is the volume fraction averaged
over all x1, x5 and one mesh block in the x3 direction. The concentration fluctuation,

o(z3), defined through the variance

o® = (fr = f1)*(w3) , (4.2)

is the standard deviation of the volume fraction fi(x3). It is a function of the x3-

direction height. The average molecular mixing fraction, (z3), is defined as

, TE_L-T_,_
===l =1-—.
fifo fi— fi fifo
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Figure 4.1: Density plot of a cross section through the middle of the mixing zone and
the probability distribution fuction (pdf) for the simulation with mass diffusion at
t=21.

We can interpret the numerator and denominator in (4.3) in terms of chemical
reactions between the two fluids. Assume a binary reaction. Then the numerator and
denominator of (4.3) are proportional to the mean rate reaction and the perfectly
stirred reaction rate. Thus 6 is in this sense a measure of the amount of mixing that
has occurred. Integrating the numerator and the denominator of f(x3), we define the

molecular mixing fraction across the mixing zone as

O — fmd%
fﬁﬁdﬂ% '
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For ideal or immiscible fluids (with surface tension and no physical mass diffusion),
the above definitions of #, © in terms of volume fractions are satisfactory. For the
simulation of miscible fluids with physical mass diffusion, we need concentration vari-
ables in place of the volume fraction variables used above. For simplicity, we still

denote these as f; and fs.

By assuming that a stoichiometric mixture occurs for f; = 1/2, we define a

different mixing parameter

_J min( ) ds

_ Jwin(fi, fo
f min(ﬁa E) de ‘

(11

(4.5)

The definition of the mixing parameter = is the ratio of mean of the total reaction
product to the totally stirred reaction product, for a reaction which proceeds to com-
pletion prior to any further diffusion (mixing) [8,33]. Figure 4.1 shows the density
cross section at the middle of the mixing zone and the corresponding probability dis-
tribution fuction (pdf) for the miscible case of simulation at late time. The pdf shows

how much mixing occurs. As it mixes more, it follow more a normal distribution.

In Youngs’ paper [33], with the density rate p;/p; = 3, © increases as the mesh
resolution £ = dx/(aAgt®) approaches zero. It is there determined that © is approxi-
mately 0.85 by extrapolating to £ = 0. It is close to 0.7 in the experiments of Wilson
and Andrews [32] with low Atwood number. Simulations by Dalziel et al. [9] and
experiments by Linden et al. [21] yield similar values. In a high resolution LES study
of Cabot [3], = is nearly identical to © and increases and approaches 0.79 as time

advances after a period of initial entrainment.

A more precise description of our method calculating the volume fraction f; is
the following. Let pyi, be the minimum value of p; and let p.« be the maximum

value of py at the interface at time ¢ = 0. In a regular cell which is not cut by the
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interface, we find the component at the center of the cell. If the density is greater
than the maximum density, we set it to the maximum density; if it is smaller than the
minimum density we set it to the minimum density. The concentration for a regular

cell is

_ Pmax — P
fl B Pmax — pmin, (46)
fo = 1-fi, (4.7)
fife = Hx(1=fi) (4.8)

where p is the density at the center. The inequality

Pmin S P S Pmax (49)

based on incompressible flow and properties of the diffusion equation, leads to

0<f,<1. (4.10)

For an irregular cell which is cut by the tracked interface, for instance, a corner case,
we first identify the phase which the center point (A) belongs to and a corner point

(B) which is in the other phase. See Figure 4.2.

The concentration is defined as

o Pmax _ﬁ
fl B Pmax — pmin’ (411)
fo = 1=fi, (4.12)
fifa = fix(1=f1) (4.13)
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tracked interface

Figure 4.2: An irregular cell cut by the tracked interface (a corner case)

where

ﬁ:pA*VA—i—pB*VB (414)

where pp is the density at the point P and Vp is obtained by measuring the volume
(including the point) which is determined by the interface.

Measurements of miscible experiments and analysis of untracked (numerically
mass diffusive) simulations also lead to concentrations rather than to volume fractions,
so the above definitions are consistent with this usage.

In a high resolution LES study of Cabot [3], = is nearly identical to © and
increases and approaches 0.79 as time advances after a period of initial entrainment.

Next we examine the influence of the averaging length scale. For multiple cell
averages, we add the one cell averaged f,’s and divide this sum by the number of cells.
f1 and f; fo are silmilarly averaged. Based on these fi, fo, f1fo we define the average
molecular mixing fraction # for the miscible case. We consider block averaged volume
fractions, with an averaging block size nAx; x nAxs X nAxs, that is an average over
n? cells. Thus the domain is divided by blocks. To obtain the layer averaged volume

fraction in this case, the sum of the block-averaged volume fractions from one block
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Figure 4.3: The molecular mixing fraction © wvs. the block grid size, expressed as

a multiple of Az. Ideal case at ¢ = 15 (top), immiscible case at ¢ = 14 (middle),
miscible case at ¢t = 15 (bottom).
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layer is normalized by the number of blocks per layer, which is the total number of
grid blocks divided by n%. The previously introduced quantities in this section can

be recalculated based on this block-averaged volume fraction instead of f;.

In Figure 4.3, we present © vs. the block size for the three simulations (ideal,
surface tension and mass diffusion). The mixing values © = 0 and = = 0 for zero
block size averaging (no averaging) for the ideal and immiscible fluids are guaranteed
from considerations of microscopic physics. The unaveraged nonzero value 0.8 at zero
block size for the miscible fluids results from physical mass diffusion, in agreement
with experimental values. Figure 4.4 shows a similar plot for = which is generally
slightly bigger than © but those are nearly identical, which is also reported in the
previous work done by Cabot [3]. For the ideal and surface tension simulations, a block
averaging size (4Ax)? to (8Ax)3 generates a © ~ 0.6 — 0.8, which is similar to that
found in previous works. For the ideal and immiscible simulations, we conclude that
fluid entrainment at these length scales produces average (but not extreme) results
comparable to numerical mass diffusion in untracked codes. For the physically mass
diffusive simulations, we see little need for a mass diffusion subgrid model from the

present, analysis.

The approximate agreement of the unaveraged mixing parameter © for the mass
diffusion simulation, comparing tracked and untracked simulations and experiments is
perhaps surprising. We have observed significant differences among our data, exper-
iments and untracked numerically mass diffusive simulations in regard to numerical
mass diffusion. These differences are recorded in the mixing rate a,., and the time
dependent Atwood number A(t), previously defined in this section. While a.p,, A(t)
and © are measures of mixing, they are not the same measure. ., and A(t) are
sensitive to extreme values while O is sensitive to average values. To visualize the dif-

ferences between these two measures of mixing more clearly, we display in Figure 4.5
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the evolution of density in a plane through the middle of the bubble region, for the
mass diffusion simulation at times ¢t = 7,15,21. The smaller bubbles, on the verge
of extinction, are also more highly diffused, and contribute to the high mixing rate
in ©, while the larger bubbles, to feed continued overall RT mixing rate growth (i.e.
Qiren), show a high density contrast. In this sense, 6 shows the high degree of average
mixing, while o, and A(t) show only a moderate degree of mixing of extreme values.

In Fig. 4.6 we examine the average molecular mixing fraction # as a function of
x3 at times t = 7,15,21. The molecular mixing fraction # displays a uniformly high

degree of average mixing.

4.2 Spectral Analysis

Power spectra are calculated by performing a 2D Fast Fourier Transformation
(FFT) on data defined on a horizontal plane, for example the mid-plane (the position
of the initial interface) and taking the magnitude of the Fourier transformed data.
The 2D Discrete Fourier Transform (DFT) for data f(j;,j2) centered at cell ji, jo, of

size N x N is calculated by

N—-1N-1

2 1 o . o

f(kl,kg) = m E E f(jl,jg) exp(—?mkljl/]\/') exp(—2mk2]2/N) s (415)
J1=072=0

where k; and k9 are the x; and x5 directional wave mode numbers, which satisfy
0 < ki, ks < N — 1. For the case of an irregular cell with fractional volumes in each
fluid, the fluctuation is cell averaged with a block size 1 as was done in the previous
section to define f(ji, j2). The scalar wave number k is calculated by k = \/m
The power spectrum is averaged over k values in an interval (k — 1/2,k + 1/2) to
reduce noise. We use the Matlab 2D Fast Fourier Transformation. A simple example

code is given below.
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Figure 4.5: Density plot of a cross section through the middle of the bubble region,
for the mass diffusion simulation, at ¢ = 7,15,21. Color plot available online.
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Figure 4.6: The mixing parameter 6 vs. the mixing zone height for the mass diffusion
simulation at ¢t = 7,15, 21.
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V = load(’velocity’);

% V is N x N velocity over the mid-plane.

VF = load(’volume_fraction’);

% VF is N x N volume fraction overthe mid-plane.

Vfluc = (V - mean(mean(V)) .*ones(N,N)). 2.*xVF;

% Vfluc is fluctuation of the velocity which isthe varience of V.
Vspec = abs(fft2(Vfluc)./N"2);

% Vspec is the N x N spectrum of Vfluc calculated

% from Fourier transform of Vfluc.

Then the calculated spectrum can be plotted by using the following code.

if mod(N,2) == 0

ind_end = N/2; 7% Nyquist wave number
else

ind_end = (N+1)/2;

end

I = ind_end"2;
wave_number = zeros(I,1);
annulusVspec = zeros(I,1);

%» This is the averaged spectrum in annulus.

ct = 1;
for i = 1:ind_end
for j = 1:ind_end

if ((sqrt ((i-1)"2+(j-1)"2)) < (ind_end-0.5))
wave_num(ct) = sqrt((i-1)"2+(j-1)"2);

VSPEC(ct) = Vspec(i,j);
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ct = ct + 1;

end

end

end

[wn,ind] = sort(wave_num);
for k=1:1I

spec_v(k) = VSPEC(ind(k));
end

wn_end = round(wn(I));

spec_avg_v = zeros(wn_end,1);

for m = 1:wn_end
count = 0;
for k = 1:1

if (wn(k) < (m+1/2)) & (wn(k) >= (m-1/2))
spec_avg_v(m) = spec_avg_v(m) + spec_v(k);
count = count+1;

end

end

spec_avg_v(m) = spec_avg_v(m)/count;

end

plot(1:wn_end,spec_avg_z(1:wn_end));
xlabel (’wavenumber k’);

ylabel (’vertical velocity fluctuation’);

where the initialization part has been omitted from the text code written above

This code is based on the Nyquist-Shannon sampling theorem stating that an analog
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signal waveform can be uniquely reconstructed, without error, from its samples if the

signal is band-limited and the sampling frequency is greater than twice the signal

bandwidth.

We present power spectra of the vertical velocity, density and kinetic energy
fluctuations, and compare our results with the slope —5/3 based on the Kolmogorov

law

E(k) ~ k™3 (4.16)

The region which follows the Kolmogorov law is the inertial subrange where energy

is transfered to successively smaller scales.

We first examine the dependence of the power spectrum on height, z3, in the
mixing zone. Figure 4.7 shows power spectra of vertical velocity, density fluctuation
and kinetic energy for the mass diffusion case at ¢ = 21. These and other spectral
plots are cut off at the Nyquist wave number £ = N/2. At both mixing zone edges
the spectra are small compared to those within the interior of the mixing zone. We
take the spectrum from the mid-plane, which is also conventional, for our spectral
analysis. Spectrum averaged over the whole mixing zone also gives a similar result.

Both ways are used in other studies.

Figure 4.8 shows the spectra for the vertical velocity, density fluctuation and
kinetic energy fluctuations for the mass diffusion simulation, calculated on the mid-
plane, for three different times. This figure shows that the energy containing region
decreases while the inertial range expands as time advances. Also we can see the
dissipation region following the inertial range. In each figure, we locate a straight
line with the Kolmogorov slope —5/3 as a reference. The figure shows a near match
to this slope. Previous works [3,9,33,34] report a Kolmogorov velocity spectrum

or one close to it, but generally do not distinguish between alternate theories for
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Figure 4.7: Power spectra of vertical velocity, density, and kinetic energy fluctuations
(presented top to bottom) for the mass diffusion simulation at t = 21, taken at five
different horizontal planes through the mixing zone.
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(presented top to bottom) from the mid-plane for the mass diffusion simulation at
t=17,15,21.
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the scaling exponent [8]. Cabot [3] reports a smaller than Kolmogorov slope for the
density fluctuations. Poujade [26] argues theoretically that the low wave number end
of the self similar regime has a non-Kolmogorov behavior. There is a recent opinion
concerning the slope of this region [26], which states that the slope right after the
wave number corresponding to the peak of the velocity spectrum is approximately
—2 and that of concentration spectrum is around —1 and these slopes are maintained
until right before the concentration dissipation. Our data does not clearly distinguish

behavior —2 and —5/3, but it does not suspect the slope —2 for the concentration.

Each plot in Figure 4.8 show a characteristic upturn for k£ values in the range
45 ~ 60, especially at late time, corresponding approximately to the lengths 2Ax
to 3Az. In this range, the fluctuations are accumulating. They cannot be passed
on to smaller grid levels as these are not available in the computation. The normal
design of a subgrid algorithm will remove this buildup through dissipation, so that the
power law spectrum will continue with its trend to these largest available k values.
We can see these upturns in all the plots for density, velocity, and kinetic energy,
which indicates the need for a subgrid model in the mass (continuity) equation and

the momentum equation.

4.3 Subgrid Model

The basic theory, derivations and notations for subgrid model presented here
are given in the book by Pope [25]. A filtering operation is defined to decompose
a field U(x,t) into the sum of a filtered (or resolved) component u and a residual
(or subgrid scale) component u'. In Chapter 3, we introduced our averaged phase
quantities which are averaged in a cell. Since these quantities are filtered though a

given grid we need a subgrid model to find the residual components. This brings the
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need for residual terms in the mass, momentum and energy equations so that these
terms can be added to the resolved transport terms. Here we consider the mass and
momentum equations only in this dissertation. Whether we need these terms or not
can be determined by calculating the value of those terms and comparing them with
the corresponding original physical quantities. We recall that v denotes the diffusivity

in the mass equation and p does the viscosity in the momentum equation in Chapter

3.

We introduce subgrid models for mass and momentum equations. The mass and

momentum equations without heat conductivity are

Op  Opv; 0?%p
Zr — 4.17
ot " o e (4.17)
ovj v, o*v; 1 dp
'} — _ = 4.18
ot ox; 'uaxﬁ p 0x; ( )
Considering that
pvi F# P, (4.19)
T A T (4.20)
filtering of the equations (4.17) yields
ot or; 027 ox; ’ )
I T 25~ T — s 1 Op
% Jav; U; _ Ma 1)2] B (U705 — ; 7;5) 1 op ‘ (4.22)
ot ox; 0x; ox; p Ox;

Let ¢; = pv; — p v; and 755 = v;u; — v; U;. The subgrid scalar stress q and the

subgrid stress tensor 7 show the influence of the subgrid scales on the resolved ones.
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A simple model for these subgrid flux terms is

dp

: (4.23)

ij = —HSGS 8xj 8ZEZ )

qgi = Vsgs

a.’l’)i
2
Ty = Tij — gﬁlr

(4.24)

where k, = %Tij is the residual kinetic energy. The kinetic energy term will be included
in pressure term which is the last term in the equation (4.22). Thus the residual
subgrid stress tensor is traceless. The two equations (4.21) and (4.22) eventually

become

op  IpT; *p

Fris o = (v + vsas) 922 (4.25)
ov; 0v;U; o*v; 10p

ot ox; (1 + isas) ox?  pdx; (4.26)

To determine the need for these subgrid models we estimate the magnitude of
the subgrid mass diffusion vggs and the subgrid viscosity pusgs. Pullin [27] proposed
a subgrid model for the flux of a passive scalar within the framework of the stretched
vortex subgrid stress model. We do not have this vortex based subgrid model im-
plemented for our simulation at this moment. As a temporary substituete, we adopt
a hypothesis that the subgrid Schmidt number is 1 so that we can use the subgrid

viscosity to calculate the subgrid diffusivity for the miscible simulation.

To calculate the subgrid viscosity we use the simplest subgrid model, of Smagorin-

sky type, which relates the eddy viscosity to the large-scale strain tensor. The strain

~—1(&E+a%>, (4.27)

W 5 axj 890,

tensor is defined as

%]
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and
S =1/2S;; Sij - (4.28)

The tensor 7;; can be modeled by

T, = =215y (4.29)

and mixing-length hypothesis gives
v, = (C;Ar)?S = (C,Ar)°S . (4.30)

For comparison to the physical mass diffusivity, expressed dimensionlessly in

(2.4), we define a dimensionless subgrid diffusivity

o~ Vsas

= 4.31
Vsas )\\/A—g)\ ) ( )
Vsgs = C2A{L‘2||S||2 . (432)

We present in Table 4.3 the planar averages of vsgg, v and the ratio of them so
that we can compare the magnitude of each values over the mixing zone. From this
table we expect that the subgrid mass diffusion model is negligible since it is less than
1% of the physical mass diffusion. The extreme values for these subgrid quantities
are not greatly larger than their mean values, see Figure 4.9. Neither the average nor
the extreme values suggest a significant role for a subgrid mass diffusion model for

this simulation.
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VsGs v Vsas/V
Bubble Tip | 2.2 e-06 | 0.0054 | 0.0004
Mid Bubble | 1.6 e-05 | 0.0054 | 0.003
Mid-plane 2.3 e-05 | 0.0054 | 0.004
Mid Spike 2.2 e-05 | 0.0054 | 0.004
Spike Tip 2.3 e-06 | 0.0054 | 0.0004

Table 4.1: Subgrid mass diffusion coefficients, averaged over horizontal planes, as
computed by a Smagorinsky model, for ¢ = 21 in the mass diffusion simulation data.

Figure 4.9: The mid-plane plot for vsgs, at ¢ = 21 for the mass diffusion data. (Color
available online.)
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Chapter 5

Conclusion

We deal with two of somewhat separate issues in this thesis, a closure model and

a study of turbulence in the RT data set.

The closures for v*, p* and (pv)* satisfy all required constraints of boundary
conditions and conservation. The boundary constraints are given in (3.43). Phase k
mass and total momentum are conserved in the absence of diffusion and viscosity in
equation (3.34) and (3.35). Total energy is conserved according to equation (3.36).
Entropy should not be conserved because averaging is non-adiabatic, but an entropy
inequality is enforced [20].

Each closure has a very simple form for its coefficient dj (¢ = v, p, (pv)) in
Table 5. The closure model for v*, p*, (pv)* gives very good approximation to the
exact expression with DNS data, within about 10% of the error while the model of

Saurel et al. has about 30% of the overall error.

The insensitivity of our model is also verified, for which the inequality (3.50) can
be a criteria. Here we note that this insensitivity for p*, (pv)* is obtained by forcing
the coefficient di to be positive. Table 5.2 summarize the sensitivity of our closure
model to the choice of the coefficients dj and to v*, also the sensitivity of Saurel’s

model to the relaxation terms. The summary results of this table can be interpreted
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RT
47 (3.52)
& | 1.0
| 1.0

Table 5.1: Summary of d] parameter choices for RT mixing. All choices except that
for dj in the RT case are insensitive.

U* p* (p?))*
RT: Closure sensitive to dj ((3.50) or (3.83) invalid) yes 10 10
RT: Closure sensitive to v* - - yes
RT: Relaxation important no late time late time

Table 5.2: Summary properties related to the closures ¢*. It is remarkable that the
closures depend sensitively on their defining parameter d; only in the case of the RT
data for the v* closure.

as follows. The sensitive case for (3.50) occurs for v* closure only. This is because the
computational frame is almost same as that of the average interface position. But as
we see in Figure 3.10, the pressure tends to be equilibrated so that Ap is small while
the averaged pressure is relatively big, which made the inequality (3.50) hold so that
the closure for p* is not sensitive to the choice of d”. For (pv)*, we find (pv)* ~ p*v*
and the coefficient is included in p* term so that the closure depends on v* but the
insensitivity comes from p*. That is why the error between the closure and the exact
expression is comparable to that of v* even though it is not sensitive to the choice
of dP?. Our closure is compared with another closure models including the relaxation

terms proposed by Saurel et al. and their models have about 30% of error. The

relaxation terms make the results worse especially at late time.

In the second part of analysis following a classical turbulence study, we ob-
serve the time dependent Atwood number A(t) and renormalized bubble growth rate

Qren,different types of mixing behaviors from the average molecular mixing fraction
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6. Briefly, the grid level averaged mixing properties (related to 6) are shared among
experiments, tracked and untracked simulations, while the extreme values (represent-
ing unmixed portions of the two fluid mixture, related to A(t) and «ye,) are more
pronounced in the tracked simulations than in the untracked ones.

We perform the spectral analysis to the velocity, density and kinetic energy. The
spectral analysis of energy gives us a good agreement with Kolmogorov —5/3 energy
decay law. In the spectrum we see the typical up-turn at large wave numbers, which
indicates the need of a subgrid model.

We introduce and derive a basic subgrid model to adjust the up-turn. To do
this we use Smagorinsky type of subgrid model. We expect that the magnitude of
the residual terms is small by considering the small size of the up-turn. With the
hypothesis that our subgrid Schmidt number Scsgg is 1, we have the result that the

subgrid mass diffusion is negligible.
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Chapter 6

Future Work

In this chapter, on-going and future work is briefly presented.

We extend the turbulent flow analysis in Chapter 4 to another problem which
is Richtmyer-Meshkov instability (RM) in cylindrical geometry. Richtmyer-Meshkov
instability occurs when the interface between two fluids with different densities is

impulsively accelerated by the passage of a shock.

The 2D RM simulations were verified by a mesh convergence study. We also deal
with simulations with two phases which are Tin as an exterior heavy fluid and Lucite
as an interior light fluid. These two phases are initially separated by a perturbed
circular interface which can be expressed by sine waves and the shock is moving inward
from outer circular boundary. The initial Cartesian coordinates are transformed to a

polar coordinates for the data analysis.

In this work, the dependence of the interfacial length on the computational mesh
size and viscosity is observed. We also perform spectral analysis and the effect of
Schmidt number (Sc¢) on the energy spectrum. It is known that the energy spectrum
decays faster in the dissipation region as the Schmidt number is smaller. However,
it might not be seen in our simulations in case that the resolved scale cutoff lies

somewhere in the inertial range which result in showing independence of Sc. To see
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the effect of Se¢, the implementation of the stretched-vortex subgrid model might be

needed, which was proposed by Pullin et al. [27]
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