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Abstra
t of the DissertationCompressible Multi Phase and Multi Spe
ies FlowClosure Model and Turbulent Analysis forRayleigh-Taylor InstabilitybyHyunsun LeeDo
tor of PhilosophyinApplied Mathemati
s and Statisti
s(Computational Applied Mathemati
s)Stony Brook University2007This thesis dis
usses the 3D Rayleigh-Taylor instability, whi
h o

urs when adense, heavy 
uid is a

elerated by a light 
uid, yielding initially well de�ned bubblesand spikes of light and heavy 
uid, ea
h penetrating into the other 
uid, followed bythe development of a layer 
onsisting of a 
omplex mixing 
ow regime.We introdu
e primitive governing equations of the 
uid mixing and average themto propose a new simple 
losure model for 
ompressible multi phase and multi spe
ies
ow with surfa
e tension and transport terms. The 
losure model is validated against`FronTier' simulations based on front tra
king method. The simulation data is alsovalidated separately against laboratorial experiments. We start with mi
ros
opi
equations for 
onservation of mass, momentum, and energy. By multiplying theiii



mi
ros
opi
 equations by a phase indi
ator fun
tion and averaging, the averagedequations for ea
h phase are obtained. For the averaging, we use the ensemble averagebased on the method and assumptions proposed by D. A. Drew and S. L. Passman.The averaging pro
ess usually results in unde�ned averages of nonlinear fun
tions ofthe primitive variables, whi
h have to be remodeled to 
lose the system of equations.We de�ne three interfa
ial quantities and propose a general 
losure model for thesequantities, whi
h satis�es all the 
onservation and boundary 
onditions. In our 
losuremodel, most of parameters are irrelevant and 
an be set to 1. We prove that the errorof our model is around 10% average over all our simulations by 
omparing it with theexa
t expression of simulations of the two vluid mi
ros
opi
 equations.As a further examination of the two 
uid mi
dros
opi
 simulation, mesh re�ne-ment and insertion of a 
alibrated Smagorinsky subgrid model are applied. Firstwe perform spe
tral analysis to 
ompare our result with 
lassi
al turbulen
e study,espe
ially the Kolmogorov power law de
ay rate. Another 
omparison is done by av-eraging the mole
ular mixing parameter over a 
ertain number of grid 
ells, yieldinga 
onventionally expe
ted value. Averaging of data over volumes with 44x to 84xside length gives the expe
ted value for ideal and surfa
e tension 
ases. The mis
iblesimulations yield this result without any averaging. The typi
al upturns in spe
traof velo
ity, density and kineti
 energy at large wavenumbers give a 
lue to assessthe ne
essity or desirability of subgrid model. We adopt one of the simplest subgridmodel, Smagorinsky type. But the magnitude of subgrid model is expe
ted to besmall, in view of the small size of the upturn.Key Words: Rayleigh-Taylor instability, 
losure, turbulen
e, Kolmogorov power,Smagorinsky subgrid.
iv
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Chapter 1Front Tra
king
In this 
hapter we brie
y introdu
e a pa
kage, `FronTier', for front tra
king.This pa
kage is used for simulations of interfa
es and provide the main sour
e of dataanalysis in later 
hapters 3 and 4. This 
hapter is only for the purpose of explaining ofhow the interfa
e is tra
ked, initially set and propagated. A more detailed des
riptionof this pa
kage 
an be found in [12℄.1.1 Lo
ally Grid Based Tra
kingLo
ally grid based method of front tra
king results from a merging of two dif-ferent methods, the grid free method and the grid based method. In the grid freetra
king, the interfa
e does not have any relation to a �nite di�eren
e grid. It isfreely propagating through a re
tangular grid. This method is very a

urate but notrobust with regard to a topologi
al bifur
ation. In grid based tra
king, the front isregularized or re
onstru
ted based on a �nite grid at ea
h time step. After propaga-tion, the points whi
h interse
t with all grid 
ell edges are found. We here assumethat there is no more than one interse
tion point on ea
h grid 
ell edge; enfor
ementof this 
riteria is the key step in resolving topologi
al ambiguities. Then the interfa
eis re
onstru
ted simply by linearly 
onne
ting these 
rossing points. This grid based1



tra
king is not very a

urate but very robust.Lo
ally grid based tra
king method takes advantage of these two methods, de-pending on the more a

urate grid free tra
king in the region without any bifur
ation,and the more robust grid based tra
king in the region with bifur
ation by 
onstru
tinga small box around it. Grid based propagation is performed in the box and the prop-agated surfa
e is re
onne
ted to the grid free surfa
e triangulation around the box.The result of this lo
ally grid based tra
king method is plausible sin
e it preserves thea

ura
y of grid free tra
king and the robustness of grid based tra
king. Figure 1.1
learly shows the advantage of using the lo
ally grid based method for tra
king theinterfa
e. In this sense it is 
omparable to the hybrid parti
le level set method whi
h
ombines Eulerian front 
apturing and Lagrangian front tra
king methods.1.2 Stati
 Interfa
eThe interfa
e 
an be des
ribed as a dis
rete topologi
al manifold whi
h is agroup of linked points. The interfa
e 
onsists of points and 
urves in 2D, points,
urves and surfa
es in 3D. Curves and surfa
es have pointers to the obje
ts whi
horganize the boundary and the obje
t it bounds. The start and end points of a
urve are 
alled nodes. The 
urves and surfa
es are 
omposed of linear segments,and ea
h linear segment has pointers to 
onne
t it to its neighbors. The interfa
eobje
ts are 
onstru
ted in ea
h re
tangular blo
k by dete
ting 
rossing points and
onne
ting them with the linear segments, and are linked to neighbors. After that, aredistribution of the interfa
e is needed to optimize the bonds in 2D and triangles in3D. To optimize points on 
urves in 2D, the total length of the 
urve is measured anddivided by the total number of bonds so that ea
h new bond has the same length. In3D the area ratio of the triangles are 
al
ulated and by deletion and re-triangulation2



Grid Free Interface

Grid Based Interface

Locally Grid Based InterfaceFigure 1.1: Grid free interfa
e (top), grid based (middle) and lo
ally grid based(bottom)
3



all the new triangles are 
ontrolled to satisfy our 
riterion.1.3 Interfa
e PropagationInterfa
e propagation is a
hieved by point propagation. There are two di�erenttypes of point propagation. One type of propagation is based on a velo
ity �eld whi
his a fun
tion of position and time. The moving front is advan
ed by solving a ordinaryequation dxdt = v(x; t) ; (1.1)for example, with a �rst order Euler or a fourth order Runge-Kutta method. These
ond type of interfa
e propagation is hyper surfa
e propagation. In this 
ase thevelo
ity depends on not only position and time but also interfa
e normal and 
urva-ture. As one point propagates, its neighbors move so that the normal and 
urvature
hange.

4



Chapter 2Rayleigh-Taylor Instability and Simulations
In this 
hapter we introdu
e the basi
 terminology of the Rayleigh-Taylor Insta-bility. Our simulation settings are also presented.2.1 Initial ConditionsThe 
omputational domain of our simulations is 2 � 2 � 8 in the x1, x2 and x3dire
tions with a grid size 128 � 128 � 512 as the �nest resolution. The interfa
e isinitially perturbed by a random 
ombination of Fourier modes. For the mass di�usionand surfa
e tension simulations, the mode numbers ranged from 8 to 16, generatingan initial averaged number of modes is 12 � 12 bubbles whi
h means there are 12bubbles in ea
h dire
tion. For the ideal simulation, the mode numbers ranged from4 to 8. The initial interfa
e position is given as a Fourier seriesx3(x1; x2) = x3;0 + Xn1;n2(an1;n2 sin(n1x1 + n2x2) + bn1;n2 
os(n1x1 + n2x2)) ; (2.1)where x3;0 is the unperturbed interfa
e position, whi
h is initially set at the middle ofthe domain height, x3;0 = 4. The 
oeÆ
ients an1;n2 and bn1;n2 are 
hosen as Gaussianrandom variables, with mean of 0 and standard deviation of 0:001. Periodi
 bound-5



aries are imposed on the x1, x2 sides of the domain and Neumann boundaries areimposed on the top and the bottom of the domain. The initial 
ow �eld is unper-turbed, with a zero velo
ity, 
onstant temperature �elds and pressure and density inea
h of the 
uids spe
i�ed by hydrostati
 isothermal equilibrium.The light 
uid is initially pla
ed above the heavy 
uid. The density ratio is 3 : 1so that the Atwood number A = (�2 � �1)=(�2 + �1) at the initial interfa
e (at theinitial time t = 0) is A = 0:5. The simulations are 
ondu
ted in the frame of anexperimental 
ontainer subje
t to a strong steady downwards a

eleration, e�e
tivelyreversing the dire
tion of gravity, whi
h thus points upward.To des
ribe the 
ompressibility of our simulations we use the dimensionless 
on-stant M2 = �g=
2h ; (2.2)where 
h is the sound speed in the heavy 
uid. In the three 
ases of simulationsanalyzed here, the 
ompressibility is M2 = 0:008. The small value of M2 brings agood approximation to nearly in
ompressible laboratory experiments, in the sensethat the density variation throughout the heavy and light 
uids due to gravitationalstrati�
ation is small in both of the experiments and the simulations.2.2 Rayleigh-Taylor Instability SimulationsRayleigh-Taylor (RT) instability, named after Lord Rayleigh and G.I. Taylor,o

urs when a dense, heavy 
uid is a

elerated by a light 
uid. Bubbles of light 
uidand spikes of heavy 
uid penetrate into the other, resulting in the development ofa 
omplex mixing layer. We are dealing with three di�erent 
ases, ideal, immis
iblewith surfa
e tension and mis
ible with mass di�usion. For instan
e, we 
an imaginethat water is pla
ed on top of oil separated by a very thin layer, and suddenly the6



layer disappears, making some initial perturbation. These two 
uids start to mix fordensity di�eren
e. Or when we put 
reme in 
o�ee, they mix in a mole
ular level.These examples show surfa
e tension and mass di�usion 
ases, respe
tively. Ideal
ase, however, 
annot o

ur in the real world so that it is not possible to 
omparesu
h simulations to experiments.In our simulations, the ideal simulation [15℄ has no surfa
e tension, no massdi�usion, no physi
al vis
osity and no thermal 
ondu
tivity. The surfa
e tensionsimulation [15℄ has a dimensionless surfa
e tension ~� equal to the experimental value[28, 30℄. The dimensionless surfa
e tension is de�ned as~� = �=(�2��g) : (2.3)where � is the 
orresponding dimensional surfa
e tension, and � is an initial wavelength 
hara
terizing the initial perturbations. � and g are density and gravity. Inour simulation, � is 2=12 = 0:167 and the 
onstant gravity is 0:14. The third simu-lation with physi
al mass di�usion [22, 23℄ models the Banerjee-Andrews air-heliumRayleigh-Taylor experiments [1℄. The mass di�usivity is dimensionalized using aninitial wave length s
ale set from observation of the 
ow, and with this setting, thedimensionless simulation mass di�usivity is identi
al to the dimensionless experimen-tal value, and expressed as ~� = �=(�pAg�) : (2.4)This simulation yields � = 0:069 in agreement with experiment.We 
ompare simulations and experiments in terms of the growth rate of themixing zone. To do this we prefer the growth rate of the bubble side of the mixinglayer rather than that of the spike side as the numeri
al results are more a

urate inthis 
ase. We de�ne the bubble growth rate by the dimensionless 
onstant � in the7



Experiment Comment � ~�SimulationRead-Youngs Immis
ible [28℄ # 29 0.073 5.7E-3Read-Youngs Immis
ible [28℄ # 35 0.066 4.6E-3Smeeton-Youngs Immis
ible [30℄ #104 0.066 8.8E-3Smeeton-Youngs Immis
ible [30℄ #105 0.072 7.3E-3Smeeton-Youngs Immis
ible [30℄ #114 0.060 7.8E-3Centroid � deviation 0:066� 0:006Average � 2 STD 0:068� 0:005FronTier (high resolution) Immis
ible 0.068 7E-3FronTier (low resolution) Immis
ible 0.056 7E-3TVD Ideal Untra
ked [14℄ 0.035-0.034 0.0FronTier Ideal Tra
ked 0.09-0.078 0.0Table 2.1: Mixing rates 
ompared: FronTier simulation 
ompared to immis
ible ex-periments and 
ontrasted to untra
ked (TVD) and ideal 
uid FronTier simulations.equation hb = �Agt2 : (2.5)The bubble of the light 
uid penetrates into the heavy 
uid by height, hb, relative tothe initial interfa
e whi
h is x3 = 4. Table 2.1 shows the values of � = �b and thedimensionless surfa
e tension ~� in di�erent experiments and simulations.
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Chapter 3Closure Model
In this 
hapter we propose a 
losure model for the interfa
ial quantity of v, pand pv. We start by introdu
ing ensemble average and the phase indi
ator fun
tionto obtain the phase averaged equations. From these ma
ros
opi
 equations, we di-re
tly derive the exa
t expressions for the three interfa
ial quantities. By modelling
oeÆ
ients in these interfa
ial quantities we have our 
losure model. This model is
ompared by another models whi
h were proposed by others.

3.1 Ensemble Average and the Phase Indi
ator Fun
tionThe ensemble average is the mean of a quantity whi
h is a fun
tion of the mi
ro-state of a system. It is a 
entral 
on
ept in statisti
al me
hani
s. Here we use thenotation, < � >, whi
h implies the spatial average over the x1; x2-plane in a 3DRayleigh-Taylor instability. 9



This average satis�es hf + gi = hfi+ hgi ;hhfi gi = hfi hgi ;h
i = 
 ;��f�t � = � hfi�t ;� �f�xi� = � hfi�xi ;where 
 is 
onstant. The �rst three of these are 
alled Reynolds' rules, the fourth isLeibniz' rule and the �fth is Gauss' rule [10, 11℄.We use two kinds of averaging for variables, one is the phase average and theother is the phase mass-weighted average. For a variable f, the phase average isde�ned as fk = hXkfi = hXki ; (3.1)and the phase mass-weighted average is de�ned asfk = hXk�fi = hXk�i ; (3.2)where � is density and Xk is a phase indi
ator fun
tion. Here the phase indi
atorfun
tion is a time and position dependent fun
tion, whi
h, literally shows if theposition is in a given phase or not, and is de�ned asXk(x; t) = 8><>: 1 if x is in phase k0 otherwiseThis means that the indi
ator fun
tion is 1 when the position x is in phase k at10



time t and otherwise 0. This is a good de�nition for the ideal and immis
ible 
asesbut it is an ambiguous de�nition for mis
ible 
ase. In this 
ase we use the 50%
on
entration 
ontour of ea
h 
uid as the interfa
e. We introdu
e a substitute, relative
on
entration, for this de�nition for the mis
ible 
ase in 
hapter 4.The ensemble average of the indi
ator fun
tionXk is denoted by �k � hXki. Then�k(x3; t) is the volume fra
tion of the horizontal layer at height x3 that is o

upiedby 
uid k at time t. Sin
e ea
h Xk is between 0 and 1, the volume fra
tion, whi
h isthe average of Xk values, must be also between 0 and 1. We noti
e here that �k isusually 
ontinuous even though Xk is dis
ontinuous.Figure 3.1 shows the Rayleigh-Taylor mixing in a hexahedron [0; 2℄� [0; 2℄� [0; 8℄at time t = 9:5 and Figure 3.2 is the distribution of the two 
uids. This �gure showsthe evolution of the bubbles of light 
uid and the spikes of heavy 
uid whi
h arepenetrating in the opposite 
uid at the height x3 = 4:5. Here the mixing zone whi
his de�ned as the region from bubble tip to spike tip (usually we use 5 � 95 per
ent ofthe whole mixing zone) is 3:376 � 4:761. Sin
e we initially set the light 
uid on the topand the heavy 
uid on the bottom (the gravity is set going upward) the oval obje
tsin Figure 3.2 are spikes or stems of heavy 
uid surrounded by the ambient light 
uid
onsidering that the height x3 = 4:5 is more on the spike side. Inside these obje
tsthe phase indi
ator fun
tion X1 = 0 and X2 = 1 while X1 = 1 and X2 = 0 outsidethe obje
ts. The 
orresponding volume fra
tion is �1(x3; t) = �1(4:5; 9:5) = 0:862 and�2(x3; t) = �2(4:5; 9:5) = 1� �1(4:5; 9:5) = 0:138 at the height x3 = 4:5 and the timet = 9:5.The property of the phase indi
ator fun
tion brings us to the topologi
al equationexpressed as �Xk�t + vint � rXk = 0 : (3.3)11



Figure 3.1: RT simulation
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 0  0.5  1  1.5  2Figure 3.2: The distribution of the light 
uid and the heavy 
uid at the height z = 4:5Inside the obje
ts X1 = 0 and X2 = 1 and outside the obje
ts X1 = 1 and X2 = 0.
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The left side of this equation is the material derivative of Xk following the interfa
e.On a point, not on the interfa
e, either Xk = 0 or Xk = 1. In either 
ase the partialderivatives vanish and satisfy the equation (3.3). When a point on the interfa
e moveswith the interfa
e velo
ity then the fun
tionXk is a jump that remains 
onstant, whi
halso makes the equation hold. The velo
ity 
omponent normal to the boundary is
ontinuous so that vint � rXk is well de�ned.3.2 General Understanding of ClosureConsider Burger's equation, Ut + UUx = 0 ; (3.4)that is, Ut + 12 �U2�x = 0 : (3.5)After ensemble average for the both sides of this Burger's equation (3.5) and by usingthe �rst one of Reynolds' rules and Leibniz' rule in the ensemble average properties(3.1), the equation be
omes hUit + 12 
U2�x = 0 : (3.6)We here have one equation and two unknowns < U > and < U2 > whi
h are the�rst and the se
ond moments. To solve this we multiply U to the both sides of theequation (3.4) and average it again, then it be
omes12 
U2�t + 13 
U3�x = 0 ; (3.7)13



we have two equations and three unknowns. If we keep repeating this pre
ision wealways have one more unknowns than equations, sin
e hUni 6= hUin in general, sothat the system is not solvable. Thus this is not a 
losed system. Thus we haveto 
lose the system by modelling 
U (n+ 1)� as a fun
tion of hUi ; hU2i � � � hUni forsome positive integer n. Then we have n equations and n unknowns, and a formallysolvable system of equations.This is the basi
 idea for 
losure. In a 
ouple of following se
tions we introdu
ethe original equations whi
h we 
all the primitive equations and average the phaseprimitive equations obtained by multiplying the phase indi
ator fun
tion to the prim-itive equations. We reformulate the nonlinear terms to gain our 
losure model.3.3 The Primitive EquationsMany numeri
al simulations in 
uid dynami
s are based on the Euler or Navier-Stokes equations. We deal with multi spe
ies and multi phase 
ow with indi
es i andk, respe
tively. A spe
ies is a mi
ros
opi
 atomi
 or mole
ular unit and distinguishedfrom phase whi
h is the tangible state of matter su
h as a solid, a liquid, or vapor.We start from the single-phase Navier-Stokes equations. The following equationsare the mi
ros
opi
 
ontinuity, momentum and energy equations in an inertial frame.��i�t +r � �iv = �r � ji ; (3.8)��v�t +r � �vv = r � � + �g ; (3.9)��E�t +r � �vE = r � �v + �v � g �r �Xi hiji +r � �rT : (3.10)where r is the gradient operator and r� is the divergen
e operator. The dependentvariables �i, v, � =Pi �i, p, E, and g denote, respe
tively, the spe
ies i mass density,14



the velo
ity, total density, pressure, total energy with E = e+v2=2 and e the internalenergy and gravity. The spe
i�
 enthalpy of spe
ies i ishi = ei + pi�i (3.11)where pi is the partial pressure of spe
ies i; ei is the spe
i�
 internal energy of spe
iesi. � is the total stress. We 
onsider Newtonian 
uids for whi
h vis
osity dependsonly on temperature and pressure, so that the 
onstitutive law for the Cau
hy stressis of the form, � = �pI+ � 0 ; (3.12)where � 0 is the vis
ous stress. Note that the rate of deformation tensor (D) 
an bebroken into a spheri
al part (�D) and deviatori
 part (D̂).D = 12 �rv + (rv)T � = �D+ D̂ ; (3.13)where �D represents pure volumetri
 rate of deformation and is simply proportionalto the sum of the diagonal element of D,�D = 13tr(D)I (3.14)and D̂ is pure shear rate of deformation,D̂ = D� �D = D� 13tr(D)I : (3.15)
15



Then the vis
ous stress T0 
an be expressed byT0 = 3�bulk�D+ 2�shearD̂= 2�shear �D� 13tr(D)I�+ �bulktr(D)I (3.16)where �shear is 
alled the �rst 
oeÆ
ient of vis
osity or shear vis
osity and �bulk thebulk vis
osity. Also � is the heat 
ondu
tivity and T is temperature. The total massdensity is � = Pi �i and !i = �i=� is the mass fra
tion of the ith spe
ies. ji is thedi�usion 
ux of the form ji = ��Xk �i;kr!i ; (3.17)where �i;j are binary di�usion 
oeÆ
ients whi
h are subje
t to the 
onstraints [2℄�i;i = 0; (3.18)Pi(�i;j � �i;k) = 0; j 6= k : (3.19)For the two spe
ies 
ase, �1;2 = �2;1. In general, the �i;j, as with the other transport
oeÆ
ients and the surfa
e tension, are thermodynami
 fun
tions, and thus dependenton temperature, pressure and the 
on
entrations !1; !2; � � � ; !N . If we plug !i = �i=�in the mi
ros
opi
 
ontinuity equation (3.8),�!i��t +r � !i�v = �r � ji (3.20)!i(���t +r � �v) + �(�!i�t + v � r!i) = �r � ji (3.21)Sin
e the total mass is 
onserved, ���t +r � �v = 0 (3.22)16



whi
h 
an be obtained by summing (3.8). From these, we 
an have a 
on
entrationequation for ea
h spe
ies, �(�!i�t + v � r!i) = �r � ji ; (3.23)equivalently, �!i�t + v � r!i = �1�r � ji : (3.24)In (3.9), the dot produ
t within the di�usion term is between the indi
es of thegradient and the divergen
e. The term proportional to ji in (3.10) represents thedi�usion of enthalpy, and is a 
onsequen
e of heat 
ux due to mass di�usion betweendi�erent spe
ies [31℄. In this paper, we formulate the equations in terms of two phases.See Cheng et al. [6℄ for extensions of the equations below to the general multi phase
ase, in the in
ompressible limit.For simpli
ity of the simulation, we assume no mass di�usion for the immis
ible
ase and no surfa
e tension for the mis
ible 
ase. Sin
e our examples only 
onsider
onstant di�usivity for binary mixtures (n = 2, �1;2 = �2;1 = � = 
onstant), and
onstant 
oeÆ
ients of surfa
e tension � = 
onstant, a 
onsequen
e of this assump-tion is that we only 
onsider 
ows that are either purely di�usive � = 0 and nomaterial interfa
es, or non-di�usive � = 0, sharp material interfa
es, but never bothsimultaneously.3.4 Averaged EquationsIn this se
tion we multiply the phase indi
ator fun
tion Xk by both sides of ea
hof the equations (3.8){(3.10), so that the equations are spe
i�ed for ea
h phase, andperform ensemble average, whi
h is based on the ideas of Drew [11℄. In this sense the17



averaged ma
ros
opi
 equations 
on
eptually present a 
hunk phase motion ratherthan the point-wise motion in the primitive mi
ros
opi
 equations. For our 3D sim-ulation in a re
tangular 
oordinate system here, the ensemble average is repla
ed aspatial average over the x1; x2-plane so that the average is assumed to be indepen-dent of x1 and x2. Even though our simulation is 3D RT in Cartesian 
oordinates wegeneralize the averaged equation in three di�erent geometri
 
oordinates, the planar,
ylindri
al and spheri
al ones by using the indi
ator s = 0; 1; 2, respe
tively. Similarto the re
tangular 
oordinate 
ase, we integrate the equations over the �, or � andz dire
tions in 
ylindri
al 
oordinates, ,over the � or � and � dire
tions in spheri
al
oordinates. This yields one or two dimensional multi-phase 
ow averaged equa-tions. When the equations are given in 
ylindri
al and spheri
al 
oordinates, thereare geometri
al sour
e terms due to the 
urvilinearity of 
oordinate systems [24℄.We use the two types of average introdu
ed in the previous Se
tion 3.1. Theaveraged quantities �i;k, �k and pk are de�ned as the phase average of the spe
ies idensities �i, density � and pressure p, respe
tively, so that we have�i;k = hXk�iihXki ; �k = hXk�ihXki ; pk = hXkpihXki : (3.25)
The quantities vk and Ek are mass-weighted averages of velo
ity v in the dire
tionof z and total energy E in phase k and those are expressed byvk = hXk�vzihXk�i ; Ek = hXk�EihXk�i : (3.26)
For later use we de�ne the three averaged interfa
ial quantities v�, p�k and (pkv)�18



by v� = hv � rXkihn3 � rXki ; p�k = hpkn3 � rXkihn3 � rXki ; (pkv)� = hpkv � rXkihn3 � rXki ; (3.27)
By averaging the adve
tion law (3.3) we get��Xk�t �+ hvint � rXki = 0 ; (3.28)whi
h be
omes by the property of ensemble average and the de�nition of v� in (3.27),���k�t �+ v����k�z � = 0 ; (3.29)where z dire
tion is the normal dire
tion.Applying the ensemble average to the equations (3.8){(3.10), we obtain the en-semble averaged equations�(�k�ki)�t +r � (�k�kivk) = hXkr � jii ; (3.30)�(�k�kvk)�t +r � (�k�kvkvk) +r � (�kRk)= r � (�k�k)� h�rXki+ �k�kg ; (3.31)�(�k�kEk)�t +r � (�k�kvkEk) +r � (�kSk)= r � hXk�vi � h�vrXki+ �k�kvk � g +*Xkr �Xi hiji++ hXkr � �rT i ;(3.32)where Rk is the Reynolds stress tensor and Sk is the turbulent 
ux of total energy,19



both for phase k,Rk = hXk�vvi�k � hXk�vi2�k hXk�i ; Sk = hXk�vEi�k � hXk�Ei hXk�vi�k hXk�i : (3.33)

We note that we 
hoose a preferred dire
tion normal to the mixing layer (x3dire
tion in 3D re
tangular 
oordinate) and integrate the equations (3.30){(3.32)over two other dire
tions tangent to it (x1x2 plane in 3D re
tangular 
oordinate).This pro
edure yields one dimensional averaged equations. We follow Drew [11℄ andearlier papers [4, 5℄ to obtain�(�k�ki)�t +rs(�k�kivk) = �kDki ; (3.34)�(�k�kvk)�t +rs(�k�kv2k) = � ��z (�kpk) + p�k ��k�z + �k�kg + �kMk ; (3.35)�(�k�kEk)�t +rs(�k�kvkEk) = �rs(�kpkvk) + (pkv)���k�z + �k�kvkg + �kEk : (3.36)Summing the equation (3.34) over i, we get the equations for total mass�(�k�k)�t +rs(�k�kvk) = 0 ; (3.37)where rsf(z) = 1zs �zsf(z)�z (3.38)is the 
urvilinear divergen
e. For 
onvenien
e, we use the following symbols to rep-20



resent the sour
e terms of (3.34){(3.36)Dki = (r � ji)k (3.39)Mk = (r � � 0)k;3 + f sk ; (3.40)Ek = (r � � 0v)k + (r � (Xi hiji))k + (r � (�rT ))k ; (3.41)in whi
h (r � � 0)k;3, and v3 mean the third 
omponent of (r � � 0)k and v. f sk is theaveraged geometri
al sour
e term, that is, the averaged 
entrifugal for
es whi
h isexpressed by
f sk = 8>>>>>><>>>>>>: 0 s = 01r 
Xk�v2�� =�k s = 11r 
Xk�(v2� + v2�)� =�k s = 2 (3.42)

3.5 A Closure ModelIn this se
tion we propose our 
losure model. As we de�ned in the previousse
tion we denote the interfa
ial averaged quantities of p; v; pv as q� where q = v; p; pv.The �rst step in the 
losure derivation is to derive an exa
t identity [16℄ from theaveraged equations, whi
h was previously derived. Here the result is extended to themulti spe
ies mass di�usion 
ases. The next step is to �nd a reasonable 
losure modeland �nally we pursue the simplest model with good approximation.3.5.1 v� ClosureWe use the notation Zk for the edge positions, i.e. Z1 is the bubble edge and Z2is the spike edge. At ea
h edge Zk the velo
ity is denoted by vk = Vk. We assume21



that (�1)kVk = (�1)k _Zk � 0, whi
h means that the mixing zone is monotonouslygrowing i.e. both pure phase 
uids are 
onstantly 
oming into the mixing zone sothat the volume of the mixing zone is in
reasing. The interfa
ial velo
ity v� at theboth edges satis�es a boundary 
ondition.v� = _Zk = vk at z = Zk (3.43)The exa
t expression for the interfa
e velo
ity v� 
an be dire
tly derived from theprevious averaged equations (3.29) and (3.37) by using the de�nition of v� in (3.27).Dividing (3.37) by �k and subtra
ting the result from (3.29), to obtain(vk � v�) ��k�z + �k [rsvk +Hvk ℄ = 0 ; (3.44)where Hvk = 1�k Dk�kDt : (3.45)Here Dk=Dt is the substantive derivative with respe
t to the velo
ity vk. We sum(3.44) over k, solve for ��k=�z, and substitute the result in (3.44). The followingtheorem gives us the algebrai
ally simpli�ed expression.Theorem 3.1. The interfa
e quantity v� has the exa
t formulav� = �v1v2 + �v2v1 ; (3.46)where the mixing 
oeÆ
ients have the fra
tional linear form�vk = �k�k + dvk�k0 : (3.47)22



The 
onstitutive fa
tor dvk is also expressed in the exa
t formdvk(z; t) = rsvk0 +Hvk0rsvk +Hvk : (3.48)The fa
tor dvk(z; t) in (3.48) 
an be interpreted as a ratio of logarithmi
 rates ofvolume 
reation for the two phases.With spatial homogeneity we de�nedvk(t) = Z Zk0Zk �(zsvk0)�z + zsHvk0dzZ Zk0Zk �(zsvk)�z + zsHvkdz ; (3.49)whi
h shows that the relative extent of volume 
reation for the two 
uid spe
ies donot depend on the spatial lo
ation in the mixing zone, whi
h means this 
losure isindependent of the exa
t expression (3.48). The ratio (3.49) satis�es the relationdv1(t)dv2(t) = 1 whi
h is equivalent to �v1 + �v2 = 1. Furthermore, dvk(t) � 0 if and onlyif �vk is nonnegative �nite for 0 � �k � 1.Before we spe
ify a simple 
hoi
e for the quantity dvk(t), we here dis
uss sensitivityof the 
hoi
e. We proposed an inequality as a 
riteria whi
h isj�qj � jq1 � q2j � jqj � j�1q1 + �2q2j q = v; p : (3.50)If (3.50) is not satis�ed then the 
losure q���k=�z is sensitive to the 
hoi
e of dqk(t).For the v� 
losure whi
h violates (3.50), the light 
uid moves away from the dire
tionof g and the heavy 
uid moves in the dire
tion of g. Thus in most parts of the mixingzone, v1 and v2 has opposite signs, so that v is nearly zero relative to �v, or in otherwords, �v is large.In Figure 3.3, we see the optimized dvk(t) to minimize the relative error where23
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e of dvk(t)the error is de�ned as error = R jdata�modelj dzR jdatajdz (3.51)at ea
h time t = 4; 7; 9. The integration extends over the mixing zone. The sensitivityof v� 
an be interpreted as follows.Also dvk > 0 is noti
eable, whi
h means the unmixed pure phase 
uids are en-trained into the mixture of the two 
uids, whi
h rises the Vk terms in (3.49) and alsothe relative 
ompression of the two densities a�e
ts on the logarithmi
 substantivederivative terms in (3.49)). In this sense our simple 
losure form of dvk isdvk(t) = �Zk0Zk �s ����Vk0Vk ���� : (3.52)This is 
learly seen in the in
ompressible, non-di�usive RT 
ase sin
e the se
ond termsin the numerator and the denominator of the identity (3.49) degenerate. This solution(3.52) is a 
onsequen
e of the 
losed form expression obtained for the solution of themodel equations and a simple 
al
ulation [17{19℄. In Figure 3.4, we plot the 
loseddvk(t) vs. t, for all of our di�erent RT data sets.24
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3.5.2 p� Closure
In the 
ase of non-zero surfa
e tension, pressure is dis
ontinuous at the interfa
e�Xk, and pk is the value of the pressure de�ned by 
ontinuity from the interior of Xk.These limiting pressures at the mi
ro physi
al level, i.e. before ensemble averaging,are related by the equationp1 � p2 = (K�n+rk�) � n+ nT [� 0℄n = K� + nT [� 0℄n (3.53)where K is the mean 
urvature and � is the surfa
e tension. At the interfa
e of two
uids, the jump 
ondition is [TTn℄ = ��Kn�rk�; (3.54)in whi
h the symbol [�℄ is de�ned as [f ℄ = f1� f2 and rk = (I�nn) �r is the surfa
etangential 
omponent of the gradient. This shows a balan
e of for
es law. Here � isthe 
oeÆ
ient of surfa
e tension. The unit normal ve
tor n is dire
ted into 
uid 1.We use the mean 
urvature K = �1 + �2 ; (3.55)where �1 and �2 are the maximum and minimum 
urvatures, and are positive whenpointing into 
uid 1. The �rst term in (3.54) shows the 
lassi
al surfa
e tension.The se
ond term in (3.54) is the Marangoni for
e, whi
h is the tangential for
e onthe surfa
e generated by a 
on
entration dependen
e of the surfa
e tension. It is
onvenient to de�ne p� = 12(p�1 + p�2) ; (3.56)26



and the 
apillary pressure p�
 = p�1 � p�2 ; (3.57)where p�k is pressure of phase k at the front state, so thatp�1 = p� + p�
2 ; p�2 = p� � p�
2 : (3.58)
In view of (3.53), p�
 is the produ
t of the surfa
e tension � and the average ofthe surfa
e mean 
urvature. Similarly we de�ne (pv)� and (p
v)� as the average andthe di�eren
e of the (pkv)�. We then de�neepk = pk + (�1)k p�
2 (3.59)ep�k = p�k + (�1)k p�
2 = p� : (3.60)
The required boundary 
ondition (3.43) for p� at the mixing zone edge Zk 
anbe reformulated as epk = ep�k = p� at Zk : (3.61)We derive an exa
t expression for p� in terms of other solution variables. Thisexa
t form will be approximated to yield a 
losed expression for p�. We start bysubtra
ting vk times (3.37) from (3.35) to obtain�k(�pk�z �Hk) + ( epk � p�)��k�z = 0 ; (3.62)where Hk = �k �g � DkvkDt � Mk�k � : (3.63)27



Adding the two equations (3.62) for k = 1; 2, we obtain(ep2 � ep1)��1�z = �1��p1�z �H1�+ �2��p2�z �H2� ; (3.64)sin
e the p� terms 
an
el when summed over k. Equation (3.64) is substituted into(3.62) and the result is solved for p�, yieldingp� � ep1 = (ep2 � ep1)�1 ��p1�z �H1��1 ��p1�z �H1�+ �2 ��p2�z �H2� : (3.65)This expression 
an be simpli�ed to give the following theorem.Theorem 3.2. The interfa
e pressure p� is expressed exa
tly asp� = �1 ��p1�z �H1� ep2 + �2 ��p2�z �H2� ep1�1 ��p1�z �H1�+ �2 ��p2�z �H2� (3.66)� �p1 ep2 + �p2 ep1 ; (3.67)where the mixing 
oeÆ
ients �pk satisfy�pk = �k�k + dpk�k0 : (3.68)The 
onstitutive 
oeÆ
ients dpk are obtained in the exa
t formdpk(z; t) = �pk0�z �Hk0�pk�z �Hk ; (3.69)This 
oeÆ
ient (3.69) represents a ratio of the for
es a

elerating the two 
uids,ea
h 
onsidered in the a

elerated frame de�ned by their respe
tive velo
ities. The�rst derivative term in this 
oeÆ
ients dpk represents the a

eleration from the pressure28



and the Hk term does that from gravity and inertial for
es. Unless Hk = �pk=�zwhi
h is hydrostati
 equilibrium, there must be a deviation between these for
es. Ifthe deviation is positive the total for
e supplies extra a

eleration to the phase k,otherwise it de
reases the total a

eleration. Figure 3.5 shows ea
h for
e. The resultis a net de
rease in the downward a

eleration of the light 
uid and a net in
reasein the upward a

eleration of the heavy 
uid, whi
h 
auses dpk < 0 and jZ1j < jZ2j.This provides that the spike growth rate is bigger than the bubble growth rate ingeneral. Also in the same �gure we 
an see the possibility that the 
oeÆ
ient dpk
an be negative so that the denominator of �pk is zero, whi
h 
auses blow-ups in ourp���1=�z 
losure.Figure 3.6 presents the distribution of those zero roots (denoted z�). One of ourtrial and error method to �nd a 
losure model was to use these points. In other words,we used dpk(z�; t) for our 
losure model. Mathemati
ally, if we plug these zero rootsin the numerator and the denominator those are supposed to be 
an
elled by usingL'hospital's rule. But it is a mistake if we do not 
onsider the numeri
al error. Sin
ewe have a �nite grid size, the numerator and denominator are 
losely but not exa
tlyzeros so that those are not exa
tly 
an
elled out and make 
onsiderably big blow-ups.Figure 3.7 and Table 3.5.2 gives a qui
k view of the error when we use those dpk(z�; t).Also the zeros do not have any spe
ial pattern so that it is hard to keep away fromthis problem with the negative dpk 
ausing the blow-ups of 
losure model.This leads us to for
e dpk to be positive. Surprisingly the 
hoi
e is not a matteron
e it is positive. Figure 3.8 shows the insensitivity of the 
losure with any 
hoi
e ofdpk whi
h is the opposite property of v� 
losure in Figure 3.3. For de�niteness, we setdpk = 1, for example. The dpk(t) satis�es the relation dp1(t)dp2(t) = 1 whi
h is equivalentto �p1 + �p2 = 1.This insensitivity 
an also be seen 
learly seen in Figure 3.9.As the two 
uids are mixing the pressures from the two 
uids have a tenden
y of29
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Surfa
e Tension Data with Surfa
e Tension Terms in FormulaTime z� dp1 dp2 Error (Per
ent)0.5230 4.0238 -2524.8900 -0.0004 2.87732.0162 4.0057 -2.5428 -0.3933 0.50714.0068 -3.0103 -0.3322 12994e+114.0169 -12.9310 -0.0773 2.87734.0089 4.0252 -0.1732 -5.7735 5.32687.0110 3.9700 -0.6640 -1.5059 85.11869.0106 3.4385 -0.0073 -136.5730 2.74824.0708 -0.9761 -1.0244 3.25014.2221 -4.8075 -0.2080 14.14694.3623 -13.5136 -0.0740 28.14314.3878 -15.8326 -0.0632 2.754410.5159 3.2253 -0.0097 -102.8710 2.17303.2610 -0.0239 -41.8760 3.58203.2686 -0.0280 -35.659 4.98753.8862 -0.6326 -1.5807 77.06123.9478 -0.6828 -1.4646 180.91004.0779 -0.9366 -1.0678 1074.70004.5665 -12.5414 -0.0797 23.27654.6345 -24.1695 -0.0414 47.41094.71613 -37.0335 -0.0270 10.8158Table 3.1: The error analysis of the 
losure p� ��1�z with dpk(z�; t)
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equilibration. This tenden
y is stronger in late time and eventually a 
entral portionof the mixing zone satis�es �~p � 0, whi
h 
an bee seen in Figure 3.10 top frame,where we show pressure di�eren
es s
aled by the mixing zone length. In the rightframe, we s
ale this di�eren
e by a unit drag for
e whi
h is �k0(�v)2=(Z2 � Z1). Wesee the pressure di�eren
e is signi�
ant near the edges of the mixing zone. This 
analso support the insensitivity of the 
losure to the 
hoi
e of dpk(t) by satisfying theinequality (3.50). 34



3.5.3 (pv)� ClosureIn the 
ase with surfa
e tension, the work asso
iated with limiting pressures isnot 
ontinuous at the interfa
e as stated at the beginning of the previous se
tion3.5.2. From (3.53), we have (p1v)� � (p2v)� = (p
v)� : (3.70)We derive a mathemati
ally exa
t expression for (pv)� using an entropy formu-lation. From (3.34) and (3.35), we get the kineti
 energy equation��t ��k�k v2k2 �+rs��k�kvk v2k2 �= vk ���(�kpk)�z + p�k ��k�z + �k�kg + �kMk� : (3.71)Subtra
ting (3.71) from (3.36), we have the internal energy equation��t (�k�kek) +rs (�k�kvkek)= ��kpkrsvk � p�kvk ��k�z + (pkv)���k�z + �kFk ; (3.72)where Fk = Ek � vkMk : (3.73)We de�ne Sk to be the entropy de�ned by the averaged variables Ek and �k usingthe equation of state and we de�ne Sk to be the dire
t ensemble average of the mi
rophysi
ally de�ned phase entropy. The pro
ess of averaging (forming the ensembleaverage) is not adiabati
, that is, the entropy is not 
onserved by the averaging35



pro
ess, so that Sk 6= Sk in general. Besides, we expe
t the averaging to satisfyan entropy inequality, leading to Sk � Sk. For an adiabati
 pro
ess, dSk = 0 anddSk = d(Sk � Sk).We assume the thermodynami
 relation is satis�ed for the averaged quantitiesTkdSk = dek + pkd� 1�k� : (3.74)From (3.72) and (3.74), we derive the entropy equation�k�kTkDSkDt = [�pkv� + pkvk � p�kvk + (pkv)�℄��k�z + �kFk : (3.75)We de�ne (pkv) = epkvk + (�1)k2 [p�
v� � (p
v)�℄: (3.76)(3.75) 
an be reformulated as�k�kTkDSkDt = [� epkv� � p�vk + (pkv) + (pv)�℄��k�z + �kFk; (3.77)Solving (3.77) for (pv)� yieldsTheorem 3.3. (pv)� is expressed exa
tly as(pv)� = p� (�pv1 v2 + �pv2 v1) + v� (�pv1 ep2 + �pv2 ep1)� (�pv1 (p2v) + �pv2 (p1v)) : (3.78)where the mixing 
oeÆ
ients �pvk satisfy�pvk = �k�k + dpvk �k0 : (3.79)36



The 
onstitutive 
oeÆ
ients dpvk 
an be obtained in the exa
t formdpvk (z; t) = �k0Tk0Dk0Sk0Dt �Fk0�kTkDkSkDt �Fk : (3.80)The pro
ess of ensemble averaging in
reases the entropy of the system, a pro
esswe 
all the positive entropy of averaging property. When the sour
e term Fk = 0, weexpe
t the entropy of averaging is positive [20℄, whi
h leads to the following theorem.Theorem 3.4. Assume the 
losures (3.46), (3.67) and (3.78) for v�, p� and (pv)�.Then the inequality [(�v1 � �p2)�ep�v + (p
v)� � p�
v�℄ ��1�z � 0 : (3.81)is a ne
essary and suÆ
ient 
ondition for the entropy of averaging inequality for thek = 1 and k = 2 
uids.By imposing homogeneity on (3.80) just as before, the 
losure be
omesdpvk (t) = Z Z0kZk �k0Tk0Dk0Sk0Dt �Fk0dzZ Z0kZk �kTkDkSkDt �Fkdz : (3.82)Similar to the p���1=�z 
losure, the 
losure for (pv)���1=�z is also insensitiveto the 
hoi
e of dpv1 , in view of the 
riteria (3.50). Figure 3.11 shows the propertyas well. The �rst and the third terms in (3.78) nearly 
an
el ea
h other, so that theinsensitivity 
omes from that of p� and also it must depend on v�. That is,(pv)� � p�v� : (3.83)37
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3.6 Another Closure Model and ComparisonWe introdu
e a similar work by Saurel and 
oworkers. As we mentioned inthe previous se
tions we denote the interfa
ial averaged quantities of p; v; pv for ourmodel, in general, q� where q = v; p; pv. For the work by Saurel et al., we use qS�instead. Two versions of 
losure models are introdu
ed. In re
ent work by Saurel etal. [7℄ they introdu
e the relaxation 
oeÆ
ients 
oming from phase intera
tion andadopt Dis
rete Equations Method (DEM) to a mi
ro stru
ture and obtain a systemof PDEs as the 
ontinuous limit of the dis
rete equations. The analysis starts withmass, momentum and energy equation with pure relaxation term in momentum andenergy equations as sour
e terms. Also the relaxation term is added to the averagedadve
tion equation. There are two versions of models, introdu
ed here, with andwithout the relaxation terms.Before applying the relaxation terms in the equations their 
losure, a related butdi�erent fun
tional form for their 
losure model is obtained. Similar to our 
losurethey also 
onsider a 
onvex sumq0S� = �Sq1 q2 + �Sq2 q1 q = v; p ; (3.84)and then de�ne vS� = v0S� + sgn���1�x � p2 � p1Z1 + Z2 ; (3.85)pS� = p0S� + sgn���1�z �� Z1Z2Z1 + Z2� (v2 � v1) : (3.86)Here Zk is the a
ousti
 impedan
e of 
uid k. Also(pv)S� = pS�vS� : (3.87)39



The other version of Saurel 
losures in
lude relaxation, as an additional termin the right hand side of the asso
iated volume fra
tion, momentum and energyequations. The terms for k = 1 are pre
isely�S(p1 � p2) volume fra
tion sour
e term (3.88)�S(v2 � v1) momentum sour
e term (3.89)�Sv0S�(v2 � v1)� �Sp0S�(p1 � p2) energy sour
e term (3.90)and for k = 2, the momentum and energy sour
e terms have the opposite sign. Here�S = AI2(Z1 + Z2) ; �S = �Z1Z2 ; (3.91)where AI is the interfa
ial area per unit volume. In (3.88), we observe that the �v
ontribution to the relaxation terms is larger than the �p 
ontribution, and as �vo

urs in the p� relaxation, the p� relaxation terms are generally signi�
ant while thev� relaxation terms (proportional to �p) are not.The 
onvex 
oeÆ
ient �Sqk also has a fra
tional linear form�Sqk = 11 + dSqk ; q = v; p (3.92)while that of ours �qk has the form�qk = �k�k + dqk�k0 ; q = v; p; pv (3.93)
It is 
ommon to both models that the �qk and �Sqk thus depend on a single pa-40



rameter dqk or dSqk . Their 
oeÆ
ients 
an be 
al
ulated asdSvk = Zk=Zk0 dSpk = Zk0=Zk ; (3.94)whi
h are derived from solutions of approximate (linearized) Riemann problems mod-eling multi phase 
ows at the sub-grid level but their 
losure does not satisfy (3.43).The Saurel et al. model supplies the missing internal boundary 
onditions at theedges of the mixing zone by imposition of equal pressures p1(z = Zk) = p2(z = Zk)[29℄.We have two interpretations of the Saurel et al. model. In the �rst, whi
h wedenote as Saurel-1, AI is regarded as a �tting parameter. The se
ond interpretationof their model takes advantage of the fa
t that AI is a 
omputed quantity in our data,and uses this time dependent value in the de�nition of the model. We denote thismodel as Saurel-2. AI is plotted as a fun
tion of time in Figure 3.12, to 
omplete thede�nition of the Saurel-2 
losure. We note that AI has the dimensions of an inverselength and takes on large values at early time as the mixing layer tends to its (small)initial amplitude.The Figures 3.13, 3.14 and 3.15 present the 
omparison of three 
losure modelswith surfa
e tension simulation, where `exa
t 'in the legend of ea
h �gure means theexa
t expression dire
tly derived from the averaged equations. In these �gure, we
an easily 
on
lude that for v���1=�z and pv���1=�z, our 
losure model is noti
eablybetter while for p���1=�z both our 
losure and the Saurel-1 (whi
h has the fra
tionallinear portion of the Saurel et al. 
losure) give a good approximation.To 
ompare these models, ours and Saurel et al.'s more expli
itly, we use an error41
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Figure 3.12: The interfa
ial area AI per unit volume plotted vs. time. This plotserves to de�ne the parameter AI for the 
losure Saurel-2.formula similar to (3.51), but in
luding a sum over the three quantities v�; p�; (pv)�,total error = 13 Xv�;p�;(pv)� R R jdata�modelj dzdtR R jdatajdzdt : (3.95)This total relative error is presented in Figure 3.16. Our main 
on
lusion from this�gure is the fa
t of ex
ellent (about 10%) agreement of our 
losures with the simula-tion data. Also in the same �gure, we show the dependen
e of the total relative erroron the value assumed for the area AI . The error is minimized for AI = 0. With the
hoi
e of AI for the Saurel-1, we 
ompare the total relative errors in Table 3.2. Insummary, our model has errors about one quarter to one half the size of those for theSaurel et al model.
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Figure 3.13: The exa
t quantity v���1=�z for the 3D RT surfa
e tension data set,with (3.44), for k = 2, and the 
losed quantity v���1=�z de�ned by (3.52) in themixing zone at an early time, t = 4 (left) and a late time, t = 9 (right). We show
losure of this paper and two interpretations of the 
losures of Saurel et al.
Closure v� p� (pv)� AverageComparison to RT dataThis paper 18% 00% 18% 12%Saurel-1 43% 02% 42% 30%Saurel-2 56% 46% 51% 51%Table 3.2: Model errors based on 
omparison to simulation data.43
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Figure 3.14: The exa
t quantity p���1=�z for the 3D RT surfa
e tension data set,with (3.69) and 
losed quantity p���1=�z de�ned by (3.66) in the mixing zone at anearly time, t = 4 (left) and a late time, t = 9 (right). We show one 
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Figure 3.15: The exa
t quantity (pv)���1=�z for the 3D RT data set, with (3.78) and
losed quantity (pv)���1=�z de�ned by (3.78), (3.79) and dpv1 = 0:1 in the mixingzone at early time, t = 4 (left) and at late time t = 9 (right). We show the 
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Chapter 4Turbulent Flow Analysis
The purpose of this 
hapter is to analyze our data based on 
lassi
al turbulen
e
on
epts in
luding 
ommon measures of mixing properties. We introdu
e severalparameters to measure the average degree of mixing of the two 
uid systems and
ompare our values with those already known. For spe
tral analysis we start withbasi
 de�nitions and see a possible approximate agreement with Kolmogorov theory.A 
hara
teristi
 upturn in the spe
tra at high wave numbers leads us to 
onsider asubgrid model, we espe
ially 
onsider Smagorinsky subgrid model. But the detailanalysis for the subgrid model should be in future work.4.1 Mixing ParametersIn Chapter 2, we studied the bubble growth rate � and its statisti
al values. Inthe expression (2.5) the Atwood number is treated as a 
onstant, A = (�2��1)(�2+�1),whi
h is independent of time. Here we 
onsider a time dependent Atwood numberA(t) previously de�ned in [14℄. The time dependent Atwood number A(t) measuresthe density 
ontrast within the bubble portion of the mixing zone. Pre
isely, thelo
al Atwood number A(x3; t) is obtained by 
hoosing representative heavy and lightdensity values and repla
ing �1; �2 in the previous Atwood number expression with47



these values, respe
tively, over a spe
i�
 height x3 at time t. The time dependentAtwood number A(t) is de�ned as an average over the top half of the bubble regionof lo
al Atwood number A(x3; t). In fa
t, the previous 
onstant Atwood number A inChapter 2 is the lo
al Atwood number of the initial mixing layer at time t = 0. Therenormalized bubble growth rate �ren 
an be de�ned by�ren = h=[2Z t0 Z s0 A(s1)gds1ds℄ : (4.1)These mixing parameters, A(t) and �ren are sensitive to extreme within the density
ontrast.We denote the point-wise values as a zero-mesh blo
k average, i.e. withoutaveraging in the de�nition of the volume fra
tion. To study the mole
ular mixingfra
tion, we introdu
e a mixing or averaging length, and average the 
uids over thislength s
ale, starting with the length of one mesh blo
k. This leads to the volumefra
tion, f1, of the light 
uid, 
al
ulated (in a possibly sharp interfa
e front tra
kingsimulation) as a grid blo
k average. We use overbars to indi
ate a spatial averageover the x1; x2 position variables, at �xed x3. Thus f1 is the volume fra
tion averagedover all x1; x2 and one mesh blo
k in the x3 dire
tion. The 
on
entration 
u
tuation,�(x3), de�ned through the varian
e�2 = (f1 � f1)2(x3) ; (4.2)is the standard deviation of the volume fra
tion f1(x3). It is a fun
tion of the x3-dire
tion height. The average mole
ular mixing fra
tion, �(x3), is de�ned as� = f1f2f1 f2 = f1 � f 21f1 � f12 = 1� �2f1 f2 : (4.3)48



1

1.5

2

2.5

3

3.5

1 2 3 4
0

0.2

0.4

0.6

0.8

1

density ρ

pr
ob

ab
ili

ty
 P

(ρ
)

Figure 4.1: Density plot of a 
ross se
tion through the middle of the mixing zone andthe probability distribution fu
tion (pdf) for the simulation with mass di�usion att = 21.We 
an interpret the numerator and denominator in (4.3) in terms of 
hemi
alrea
tions between the two 
uids. Assume a binary rea
tion. Then the numerator anddenominator of (4.3) are proportional to the mean rate rea
tion and the perfe
tlystirred rea
tion rate. Thus � is in this sense a measure of the amount of mixing thathas o

urred. Integrating the numerator and the denominator of �(x3), we de�ne themole
ular mixing fra
tion a
ross the mixing zone as� = R f1f2 dx3R f1 f2 dx3 : (4.4)49



For ideal or immis
ible 
uids (with surfa
e tension and no physi
al mass di�usion),the above de�nitions of �, � in terms of volume fra
tions are satisfa
tory. For thesimulation of mis
ible 
uids with physi
al mass di�usion, we need 
on
entration vari-ables in pla
e of the volume fra
tion variables used above. For simpli
ity, we stilldenote these as f1 and f2.By assuming that a stoi
hiometri
 mixture o

urs for f1 = 1=2, we de�ne adi�erent mixing parameter � = R min(f1; f2) dx3R min(f1; f2) dx3 : (4.5)The de�nition of the mixing parameter � is the ratio of mean of the total rea
tionprodu
t to the totally stirred rea
tion produ
t, for a rea
tion whi
h pro
eeds to 
om-pletion prior to any further di�usion (mixing) [8, 33℄. Figure 4.1 shows the density
ross se
tion at the middle of the mixing zone and the 
orresponding probability dis-tribution fu
tion (pdf) for the mis
ible 
ase of simulation at late time. The pdf showshow mu
h mixing o

urs. As it mixes more, it follow more a normal distribution.In Youngs' paper [33℄, with the density rate �1=�2 = 3, � in
reases as the meshresolution � = Æx=(�Agt2) approa
hes zero. It is there determined that � is approxi-mately 0:85 by extrapolating to � = 0. It is 
lose to 0:7 in the experiments of Wilsonand Andrews [32℄ with low Atwood number. Simulations by Dalziel et al. [9℄ andexperiments by Linden et al. [21℄ yield similar values. In a high resolution LES studyof Cabot [3℄, � is nearly identi
al to � and in
reases and approa
hes 0.79 as timeadvan
es after a period of initial entrainment.A more pre
ise des
ription of our method 
al
ulating the volume fra
tion f1 isthe following. Let �min be the minimum value of �1 and let �max be the maximumvalue of �2 at the interfa
e at time t = 0. In a regular 
ell whi
h is not 
ut by the50



interfa
e, we �nd the 
omponent at the 
enter of the 
ell. If the density is greaterthan the maximum density, we set it to the maximum density; if it is smaller than theminimum density we set it to the minimum density. The 
on
entration for a regular
ell is f1 = �max � ��max � �min ; (4.6)f2 = 1� f1; (4.7)f1f2 = f1 � (1� f1) (4.8)where � is the density at the 
enter. The inequality�min � � � �max ; (4.9)based on in
ompressible 
ow and properties of the di�usion equation, leads to0 � f1 � 1 : (4.10)For an irregular 
ell whi
h is 
ut by the tra
ked interfa
e, for instan
e, a 
orner 
ase,we �rst identify the phase whi
h the 
enter point (A) belongs to and a 
orner point(B) whi
h is in the other phase. See Figure 4.2.
The 
on
entration is de�ned asf1 = �max � ��max � �min ; (4.11)f2 = 1� f1; (4.12)f1f2 = f1 � (1� f1) (4.13)51



A

B

tracked interface

Figure 4.2: An irregular 
ell 
ut by the tra
ked interfa
e (a 
orner 
ase)where � = �A � VA + �B � VB (4.14)where �P is the density at the point P and VP is obtained by measuring the volume(in
luding the point) whi
h is determined by the interfa
e.Measurements of mis
ible experiments and analysis of untra
ked (numeri
allymass di�usive) simulations also lead to 
on
entrations rather than to volume fra
tions,so the above de�nitions are 
onsistent with this usage.In a high resolution LES study of Cabot [3℄, � is nearly identi
al to � andin
reases and approa
hes 0.79 as time advan
es after a period of initial entrainment.Next we examine the in
uen
e of the averaging length s
ale. For multiple 
ellaverages, we add the one 
ell averaged f1's and divide this sum by the number of 
ells.f1 and f1f2 are silmilarly averaged. Based on these f1; f2; f1f2 we de�ne the averagemole
ular mixing fra
tion � for the mis
ible 
ase. We 
onsider blo
k averaged volumefra
tions, with an averaging blo
k size n�x1�n�x2� n�x3, that is an average overn3 
ells. Thus the domain is divided by blo
ks. To obtain the layer averaged volumefra
tion in this 
ase, the sum of the blo
k-averaged volume fra
tions from one blo
k52
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Figure 4.3: The mole
ular mixing fra
tion � vs. the blo
k grid size, expressed asa multiple of �x. Ideal 
ase at t = 15 (top), immis
ible 
ase at t = 14 (middle),mis
ible 
ase at t = 15 (bottom).
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layer is normalized by the number of blo
ks per layer, whi
h is the total number ofgrid blo
ks divided by n2. The previously introdu
ed quantities in this se
tion 
anbe re
al
ulated based on this blo
k-averaged volume fra
tion instead of f1.In Figure 4.3, we present � vs. the blo
k size for the three simulations (ideal,surfa
e tension and mass di�usion). The mixing values � = 0 and � = 0 for zeroblo
k size averaging (no averaging) for the ideal and immis
ible 
uids are guaranteedfrom 
onsiderations of mi
ros
opi
 physi
s. The unaveraged nonzero value 0.8 at zeroblo
k size for the mis
ible 
uids results from physi
al mass di�usion, in agreementwith experimental values. Figure 4.4 shows a similar plot for � whi
h is generallyslightly bigger than � but those are nearly identi
al, whi
h is also reported in theprevious work done by Cabot [3℄. For the ideal and surfa
e tension simulations, a blo
kaveraging size (4�x)3 to (8�x)3 generates a � � 0:6 � 0:8, whi
h is similar to thatfound in previous works. For the ideal and immis
ible simulations, we 
on
lude that
uid entrainment at these length s
ales produ
es average (but not extreme) results
omparable to numeri
al mass di�usion in untra
ked 
odes. For the physi
ally massdi�usive simulations, we see little need for a mass di�usion subgrid model from thepresent analysis.The approximate agreement of the unaveraged mixing parameter � for the massdi�usion simulation, 
omparing tra
ked and untra
ked simulations and experiments isperhaps surprising. We have observed signi�
ant di�eren
es among our data, exper-iments and untra
ked numeri
ally mass di�usive simulations in regard to numeri
almass di�usion. These di�eren
es are re
orded in the mixing rate �ren and the timedependent Atwood number A(t), previously de�ned in this se
tion. While �ren, A(t)and � are measures of mixing, they are not the same measure. �ren and A(t) aresensitive to extreme values while � is sensitive to average values. To visualize the dif-feren
es between these two measures of mixing more 
learly, we display in Figure 4.555



the evolution of density in a plane through the middle of the bubble region, for themass di�usion simulation at times t = 7; 15; 21. The smaller bubbles, on the vergeof extin
tion, are also more highly di�used, and 
ontribute to the high mixing ratein �, while the larger bubbles, to feed 
ontinued overall RT mixing rate growth (i.e.�ren), show a high density 
ontrast. In this sense, � shows the high degree of averagemixing, while �ren and A(t) show only a moderate degree of mixing of extreme values.In Fig. 4.6 we examine the average mole
ular mixing fra
tion � as a fun
tion ofx3 at times t = 7; 15; 21. The mole
ular mixing fra
tion � displays a uniformly highdegree of average mixing.4.2 Spe
tral AnalysisPower spe
tra are 
al
ulated by performing a 2D Fast Fourier Transformation(FFT) on data de�ned on a horizontal plane, for example the mid-plane (the positionof the initial interfa
e) and taking the magnitude of the Fourier transformed data.The 2D Dis
rete Fourier Transform (DFT) for data f(j1; j2) 
entered at 
ell j1; j2, ofsize N �N is 
al
ulated byf̂(k1; k2) = 1N2 N�1Xj1=0 N�1Xj2=0 f(j1; j2) exp(�2�ik1j1=N) exp(�2�ik2j2=N) ; (4.15)where k1 and k2 are the x1 and x2 dire
tional wave mode numbers, whi
h satisfy0 � k1; k2 � N � 1. For the 
ase of an irregular 
ell with fra
tional volumes in ea
h
uid, the 
u
tuation is 
ell averaged with a blo
k size 1 as was done in the previousse
tion to de�ne f(j1; j2). The s
alar wave number k is 
al
ulated by k =pk21 + k22.The power spe
trum is averaged over k values in an interval (k � 1=2; k + 1=2) toredu
e noise. We use the Matlab 2D Fast Fourier Transformation. A simple example
ode is given below. 56
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V = load('velo
ity');% V is N x N velo
ity over the mid-plane.VF = load('volume_fra
tion');% VF is N x N volume fra
tion overthe mid-plane.Vflu
 = (V - mean(mean(V)).*ones(N,N)).^2.*VF;% Vflu
 is flu
tuation of the velo
ity whi
h isthe varien
e of V.Vspe
 = abs(fft2(Vflu
)./N^2);% Vspe
 is the N x N spe
trum of Vflu
 
al
ulated% from Fourier transform of Vflu
.Then the 
al
ulated spe
trum 
an be plotted by using the following 
ode.if mod(N,2) == 0ind_end = N/2; % Nyquist wave numberelseind_end = (N+1)/2;endI = ind_end^2;wave_number = zeros(I,1);annulusVspe
 = zeros(I,1);% This is the averaged spe
trum in annulus.
t = 1;for i = 1:ind_endfor j = 1:ind_endif((sqrt((i-1)^2+(j-1)^2)) < (ind_end-0.5))wave_num(
t) = sqrt((i-1)^2+(j-1)^2);VSPEC(
t) = Vspe
(i,j); 59




t = 
t + 1;endendend[wn,ind℄ = sort(wave_num);for k=1:Ispe
_v(k) = VSPEC(ind(k));endwn_end = round(wn(I));spe
_avg_v = zeros(wn_end,1);for m = 1:wn_end
ount = 0;for k = 1:Iif (wn(k) < (m+1/2)) & (wn(k) >= (m-1/2))spe
_avg_v(m) = spe
_avg_v(m) + spe
_v(k);
ount = 
ount+1;endendspe
_avg_v(m) = spe
_avg_v(m)/
ount;endplot(1:wn_end,spe
_avg_z(1:wn_end));xlabel('wavenumber k');ylabel('verti
al velo
ity flu
tuation');where the initialization part has been omitted from the text 
ode written above.This 
ode is based on the Nyquist-Shannon sampling theorem stating that an analog60



signal waveform 
an be uniquely re
onstru
ted, without error, from its samples if thesignal is band-limited and the sampling frequen
y is greater than twi
e the signalbandwidth.We present power spe
tra of the verti
al velo
ity, density and kineti
 energy
u
tuations, and 
ompare our results with the slope �5=3 based on the Kolmogorovlaw E(k) � k�5=3 : (4.16)The region whi
h follows the Kolmogorov law is the inertial subrange where energyis transfered to su

essively smaller s
ales.We �rst examine the dependen
e of the power spe
trum on height, x3, in themixing zone. Figure 4.7 shows power spe
tra of verti
al velo
ity, density 
u
tuationand kineti
 energy for the mass di�usion 
ase at t = 21. These and other spe
tralplots are 
ut o� at the Nyquist wave number k = N=2. At both mixing zone edgesthe spe
tra are small 
ompared to those within the interior of the mixing zone. Wetake the spe
trum from the mid-plane, whi
h is also 
onventional, for our spe
tralanalysis. Spe
trum averaged over the whole mixing zone also gives a similar result.Both ways are used in other studies.Figure 4.8 shows the spe
tra for the verti
al velo
ity, density 
u
tuation andkineti
 energy 
u
tuations for the mass di�usion simulation, 
al
ulated on the mid-plane, for three di�erent times. This �gure shows that the energy 
ontaining regionde
reases while the inertial range expands as time advan
es. Also we 
an see thedissipation region following the inertial range. In ea
h �gure, we lo
ate a straightline with the Kolmogorov slope �5=3 as a referen
e. The �gure shows a near mat
hto this slope. Previous works [3, 9, 33, 34℄ report a Kolmogorov velo
ity spe
trumor one 
lose to it, but generally do not distinguish between alternate theories for61
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 energy 
u
tuations(presented top to bottom) for the mass di�usion simulation at t = 21, taken at �vedi�erent horizontal planes through the mixing zone.
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the s
aling exponent [8℄. Cabot [3℄ reports a smaller than Kolmogorov slope for thedensity 
u
tuations. Poujade [26℄ argues theoreti
ally that the low wave number endof the self similar regime has a non-Kolmogorov behavior. There is a re
ent opinion
on
erning the slope of this region [26℄, whi
h states that the slope right after thewave number 
orresponding to the peak of the velo
ity spe
trum is approximately�2 and that of 
on
entration spe
trum is around �1 and these slopes are maintaineduntil right before the 
on
entration dissipation. Our data does not 
learly distinguishbehavior �2 and �5=3, but it does not suspe
t the slope �2 for the 
on
entration.Ea
h plot in Figure 4.8 show a 
hara
teristi
 upturn for k values in the range45 � 60, espe
ially at late time, 
orresponding approximately to the lengths 2�xto 3�x. In this range, the 
u
tuations are a

umulating. They 
annot be passedon to smaller grid levels as these are not available in the 
omputation. The normaldesign of a subgrid algorithm will remove this buildup through dissipation, so that thepower law spe
trum will 
ontinue with its trend to these largest available k values.We 
an see these upturns in all the plots for density, velo
ity, and kineti
 energy,whi
h indi
ates the need for a subgrid model in the mass (
ontinuity) equation andthe momentum equation.4.3 Subgrid ModelThe basi
 theory, derivations and notations for subgrid model presented hereare given in the book by Pope [25℄. A �ltering operation is de�ned to de
omposea �eld U(x; t) into the sum of a �ltered (or resolved) 
omponent u and a residual(or subgrid s
ale) 
omponent u0. In Chapter 3, we introdu
ed our averaged phasequantities whi
h are averaged in a 
ell. Sin
e these quantities are �ltered though agiven grid we need a subgrid model to �nd the residual 
omponents. This brings the64



need for residual terms in the mass, momentum and energy equations so that theseterms 
an be added to the resolved transport terms. Here we 
onsider the mass andmomentum equations only in this dissertation. Whether we need these terms or not
an be determined by 
al
ulating the value of those terms and 
omparing them withthe 
orresponding original physi
al quantities. We re
all that � denotes the di�usivityin the mass equation and � does the vis
osity in the momentum equation in Chapter3. We introdu
e subgrid models for mass and momentum equations. The mass andmomentum equations without heat 
ondu
tivity are���t + ��vi�xi = � �2��xi2 (4.17)�vj�t + �vivj�xi = ��2vj�xi2 � 1� �p�xj : (4.18)Considering that �vi 6= � vi ; (4.19)vivj 6= vi vj ; (4.20)�ltering of the equations (4.17) yields���t + �� vi�xi = � �2��x2i � �(�vi � � vi)�xi ; (4.21)�vj�t + �vi vj�xi = ��2vj�x2i � �(vivj � vi vj)�xi � 1� �p�xj : (4.22)Let qi = �vi � � vi and �ij = vivj � vi vj. The subgrid s
alar stress q and thesubgrid stress tensor � show the in
uen
e of the subgrid s
ales on the resolved ones.65



A simple model for these subgrid 
ux terms isqi = �SGS ���xi ; (4.23)� rij = �ij � 23�rÆij = ��SGS ��ui�xj + �uj�xi� ; (4.24)where �r = 12�ij is the residual kineti
 energy. The kineti
 energy term will be in
ludedin pressure term whi
h is the last term in the equation (4.22). Thus the residualsubgrid stress tensor is tra
eless. The two equations (4.21) and (4.22) eventuallybe
ome ���t + �� vi�xi = (� + �SGS) �2��x2i ; (4.25)�vj�t + �vi vj�xi = (�+ �SGS) �2vj�x2i � 1� �p�xj : (4.26)
To determine the need for these subgrid models we estimate the magnitude ofthe subgrid mass di�usion �SGS and the subgrid vis
osity �SGS. Pullin [27℄ proposeda subgrid model for the 
ux of a passive s
alar within the framework of the stret
hedvortex subgrid stress model. We do not have this vortex based subgrid model im-plemented for our simulation at this moment. As a temporary substituete, we adopta hypothesis that the subgrid S
hmidt number is 1 so that we 
an use the subgridvis
osity to 
al
ulate the subgrid di�usivity for the mis
ible simulation.To 
al
ulate the subgrid vis
osity we use the simplest subgrid model, of Smagorin-sky type, whi
h relates the eddy vis
osity to the large-s
ale strain tensor. The straintensor is de�ned as Sij = 12 ��ui�xj + �uj�xi� ; (4.27)66



and S =q2Sij Sij : (4.28)The tensor � rij 
an be modeled by� rij = �2�rSij (4.29)and mixing-length hypothesis gives�r = (Cs4x)2S �= (Cs4x)2S : (4.30)For 
omparison to the physi
al mass di�usivity, expressed dimensionlessly in(2.4), we de�ne a dimensionless subgrid di�usivity℄�SGS = �SGS�pAg� ; (4.31)�SGS = 
2�x2jjSjj2 : (4.32)We present in Table 4.3 the planar averages of �SGS, � and the ratio of them sothat we 
an 
ompare the magnitude of ea
h values over the mixing zone. From thistable we expe
t that the subgrid mass di�usion model is negligible sin
e it is less than1% of the physi
al mass di�usion. The extreme values for these subgrid quantitiesare not greatly larger than their mean values, see Figure 4.9. Neither the average northe extreme values suggest a signi�
ant role for a subgrid mass di�usion model forthis simulation.
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�SGS � �SGS=�Bubble Tip 2.2 e-06 0.0054 0.0004Mid Bubble 1.6 e-05 0.0054 0.003Mid-plane 2.3 e-05 0.0054 0.004Mid Spike 2.2 e-05 0.0054 0.004Spike Tip 2.3 e-06 0.0054 0.0004Table 4.1: Subgrid mass di�usion 
oeÆ
ients, averaged over horizontal planes, as
omputed by a Smagorinsky model, for t = 21 in the mass di�usion simulation data.
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Figure 4.9: The mid-plane plot for �SGS, at t = 21 for the mass di�usion data. (Coloravailable online.)
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Chapter 5Con
lusion
We deal with two of somewhat separate issues in this thesis, a 
losure model anda study of turbulen
e in the RT data set.The 
losures for v�, p� and (pv)� satisfy all required 
onstraints of boundary
onditions and 
onservation. The boundary 
onstraints are given in (3.43). Phase kmass and total momentum are 
onserved in the absen
e of di�usion and vis
osity inequation (3.34) and (3.35). Total energy is 
onserved a

ording to equation (3.36).Entropy should not be 
onserved be
ause averaging is non-adiabati
, but an entropyinequality is enfor
ed [20℄.Ea
h 
losure has a very simple form for its 
oeÆ
ient dqk (q = v, p, (pv)) inTable 5. The 
losure model for v�; p�, (pv)� gives very good approximation to theexa
t expression with DNS data, within about 10% of the error while the model ofSaurel et al. has about 30% of the overall error.The insensitivity of our model is also veri�ed, for whi
h the inequality (3.50) 
anbe a 
riteria. Here we note that this insensitivity for p�, (pv)� is obtained by for
ingthe 
oeÆ
ient dqk to be positive. Table 5.2 summarize the sensitivity of our 
losuremodel to the 
hoi
e of the 
oeÆ
ients dqk and to v�, also the sensitivity of Saurel'smodel to the relaxation terms. The summary results of this table 
an be interpreted69



RTdv1 (3.52)dp1 1.0dpv1 1.0Table 5.1: Summary of dqk parameter 
hoi
es for RT mixing. All 
hoi
es ex
ept thatfor dvk in the RT 
ase are insensitive. v� p� (pv)�RT: Closure sensitive to dqk ((3.50) or (3.83) invalid) yes no noRT: Closure sensitive to v� { { yesRT: Relaxation important no late time late timeTable 5.2: Summary properties related to the 
losures q�. It is remarkable that the
losures depend sensitively on their de�ning parameter dk only in the 
ase of the RTdata for the v� 
losure.as follows. The sensitive 
ase for (3.50) o

urs for v� 
losure only. This is be
ause the
omputational frame is almost same as that of the average interfa
e position. But aswe see in Figure 3.10, the pressure tends to be equilibrated so that �p is small whilethe averaged pressure is relatively big, whi
h made the inequality (3.50) hold so thatthe 
losure for p� is not sensitive to the 
hoi
e of dp. For (pv)�, we �nd (pv)� � p�v�and the 
oeÆ
ient is in
luded in p� term so that the 
losure depends on v� but theinsensitivity 
omes from p�. That is why the error between the 
losure and the exa
texpression is 
omparable to that of v� even though it is not sensitive to the 
hoi
eof dpv. Our 
losure is 
ompared with another 
losure models in
luding the relaxationterms proposed by Saurel et al. and their models have about 30% of error. Therelaxation terms make the results worse espe
ially at late time.In the se
ond part of analysis following a 
lassi
al turbulen
e study, we ob-serve the time dependent Atwood number A(t) and renormalized bubble growth rate�ren,di�erent types of mixing behaviors from the average mole
ular mixing fra
tion70



�. Brie
y, the grid level averaged mixing properties (related to �) are shared amongexperiments, tra
ked and untra
ked simulations, while the extreme values (represent-ing unmixed portions of the two 
uid mixture, related to A(t) and �ren) are morepronoun
ed in the tra
ked simulations than in the untra
ked ones.We perform the spe
tral analysis to the velo
ity, density and kineti
 energy. Thespe
tral analysis of energy gives us a good agreement with Kolmogorov �5=3 energyde
ay law. In the spe
trum we see the typi
al up-turn at large wave numbers, whi
hindi
ates the need of a subgrid model.We introdu
e and derive a basi
 subgrid model to adjust the up-turn. To dothis we use Smagorinsky type of subgrid model. We expe
t that the magnitude ofthe residual terms is small by 
onsidering the small size of the up-turn. With thehypothesis that our subgrid S
hmidt number S
SGS is 1, we have the result that thesubgrid mass di�usion is negligible.
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Chapter 6Future Work
In this 
hapter, on-going and future work is brie
y presented.We extend the turbulent 
ow analysis in Chapter 4 to another problem whi
his Ri
htmyer-Meshkov instability (RM) in 
ylindri
al geometry. Ri
htmyer-Meshkovinstability o

urs when the interfa
e between two 
uids with di�erent densities isimpulsively a

elerated by the passage of a sho
k.The 2D RM simulations were veri�ed by a mesh 
onvergen
e study. We also dealwith simulations with two phases whi
h are Tin as an exterior heavy 
uid and Lu
iteas an interior light 
uid. These two phases are initially separated by a perturbed
ir
ular interfa
e whi
h 
an be expressed by sine waves and the sho
k is moving inwardfrom outer 
ir
ular boundary. The initial Cartesian 
oordinates are transformed to apolar 
oordinates for the data analysis.In this work, the dependen
e of the interfa
ial length on the 
omputational meshsize and vis
osity is observed. We also perform spe
tral analysis and the e�e
t ofS
hmidt number (S
) on the energy spe
trum. It is known that the energy spe
trumde
ays faster in the dissipation region as the S
hmidt number is smaller. However,it might not be seen in our simulations in 
ase that the resolved s
ale 
uto� liessomewhere in the inertial range whi
h result in showing independen
e of S
. To see72



the e�e
t of S
, the implementation of the stret
hed-vortex subgrid model might beneeded, whi
h was proposed by Pullin et al. [27℄
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