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Abstrat of the DissertationCompressible Multi Phase and Multi Speies FlowClosure Model and Turbulent Analysis forRayleigh-Taylor InstabilitybyHyunsun LeeDotor of PhilosophyinApplied Mathematis and Statistis(Computational Applied Mathematis)Stony Brook University2007This thesis disusses the 3D Rayleigh-Taylor instability, whih ours when adense, heavy uid is aelerated by a light uid, yielding initially well de�ned bubblesand spikes of light and heavy uid, eah penetrating into the other uid, followed bythe development of a layer onsisting of a omplex mixing ow regime.We introdue primitive governing equations of the uid mixing and average themto propose a new simple losure model for ompressible multi phase and multi speiesow with surfae tension and transport terms. The losure model is validated against`FronTier' simulations based on front traking method. The simulation data is alsovalidated separately against laboratorial experiments. We start with mirosopiequations for onservation of mass, momentum, and energy. By multiplying theiii



mirosopi equations by a phase indiator funtion and averaging, the averagedequations for eah phase are obtained. For the averaging, we use the ensemble averagebased on the method and assumptions proposed by D. A. Drew and S. L. Passman.The averaging proess usually results in unde�ned averages of nonlinear funtions ofthe primitive variables, whih have to be remodeled to lose the system of equations.We de�ne three interfaial quantities and propose a general losure model for thesequantities, whih satis�es all the onservation and boundary onditions. In our losuremodel, most of parameters are irrelevant and an be set to 1. We prove that the errorof our model is around 10% average over all our simulations by omparing it with theexat expression of simulations of the two vluid mirosopi equations.As a further examination of the two uid midrosopi simulation, mesh re�ne-ment and insertion of a alibrated Smagorinsky subgrid model are applied. Firstwe perform spetral analysis to ompare our result with lassial turbulene study,espeially the Kolmogorov power law deay rate. Another omparison is done by av-eraging the moleular mixing parameter over a ertain number of grid ells, yieldinga onventionally expeted value. Averaging of data over volumes with 44x to 84xside length gives the expeted value for ideal and surfae tension ases. The misiblesimulations yield this result without any averaging. The typial upturns in spetraof veloity, density and kineti energy at large wavenumbers give a lue to assessthe neessity or desirability of subgrid model. We adopt one of the simplest subgridmodel, Smagorinsky type. But the magnitude of subgrid model is expeted to besmall, in view of the small size of the upturn.Key Words: Rayleigh-Taylor instability, losure, turbulene, Kolmogorov power,Smagorinsky subgrid.
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Chapter 1Front Traking
In this hapter we briey introdue a pakage, `FronTier', for front traking.This pakage is used for simulations of interfaes and provide the main soure of dataanalysis in later hapters 3 and 4. This hapter is only for the purpose of explaining ofhow the interfae is traked, initially set and propagated. A more detailed desriptionof this pakage an be found in [12℄.1.1 Loally Grid Based TrakingLoally grid based method of front traking results from a merging of two dif-ferent methods, the grid free method and the grid based method. In the grid freetraking, the interfae does not have any relation to a �nite di�erene grid. It isfreely propagating through a retangular grid. This method is very aurate but notrobust with regard to a topologial bifuration. In grid based traking, the front isregularized or reonstruted based on a �nite grid at eah time step. After propaga-tion, the points whih interset with all grid ell edges are found. We here assumethat there is no more than one intersetion point on eah grid ell edge; enforementof this riteria is the key step in resolving topologial ambiguities. Then the interfaeis reonstruted simply by linearly onneting these rossing points. This grid based1



traking is not very aurate but very robust.Loally grid based traking method takes advantage of these two methods, de-pending on the more aurate grid free traking in the region without any bifuration,and the more robust grid based traking in the region with bifuration by onstrutinga small box around it. Grid based propagation is performed in the box and the prop-agated surfae is reonneted to the grid free surfae triangulation around the box.The result of this loally grid based traking method is plausible sine it preserves theauray of grid free traking and the robustness of grid based traking. Figure 1.1learly shows the advantage of using the loally grid based method for traking theinterfae. In this sense it is omparable to the hybrid partile level set method whihombines Eulerian front apturing and Lagrangian front traking methods.1.2 Stati InterfaeThe interfae an be desribed as a disrete topologial manifold whih is agroup of linked points. The interfae onsists of points and urves in 2D, points,urves and surfaes in 3D. Curves and surfaes have pointers to the objets whihorganize the boundary and the objet it bounds. The start and end points of aurve are alled nodes. The urves and surfaes are omposed of linear segments,and eah linear segment has pointers to onnet it to its neighbors. The interfaeobjets are onstruted in eah retangular blok by deteting rossing points andonneting them with the linear segments, and are linked to neighbors. After that, aredistribution of the interfae is needed to optimize the bonds in 2D and triangles in3D. To optimize points on urves in 2D, the total length of the urve is measured anddivided by the total number of bonds so that eah new bond has the same length. In3D the area ratio of the triangles are alulated and by deletion and re-triangulation2



Grid Free Interface

Grid Based Interface

Locally Grid Based InterfaceFigure 1.1: Grid free interfae (top), grid based (middle) and loally grid based(bottom)
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all the new triangles are ontrolled to satisfy our riterion.1.3 Interfae PropagationInterfae propagation is ahieved by point propagation. There are two di�erenttypes of point propagation. One type of propagation is based on a veloity �eld whihis a funtion of position and time. The moving front is advaned by solving a ordinaryequation dxdt = v(x; t) ; (1.1)for example, with a �rst order Euler or a fourth order Runge-Kutta method. Theseond type of interfae propagation is hyper surfae propagation. In this ase theveloity depends on not only position and time but also interfae normal and urva-ture. As one point propagates, its neighbors move so that the normal and urvaturehange.
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Chapter 2Rayleigh-Taylor Instability and Simulations
In this hapter we introdue the basi terminology of the Rayleigh-Taylor Insta-bility. Our simulation settings are also presented.2.1 Initial ConditionsThe omputational domain of our simulations is 2 � 2 � 8 in the x1, x2 and x3diretions with a grid size 128 � 128 � 512 as the �nest resolution. The interfae isinitially perturbed by a random ombination of Fourier modes. For the mass di�usionand surfae tension simulations, the mode numbers ranged from 8 to 16, generatingan initial averaged number of modes is 12 � 12 bubbles whih means there are 12bubbles in eah diretion. For the ideal simulation, the mode numbers ranged from4 to 8. The initial interfae position is given as a Fourier seriesx3(x1; x2) = x3;0 + Xn1;n2(an1;n2 sin(n1x1 + n2x2) + bn1;n2 os(n1x1 + n2x2)) ; (2.1)where x3;0 is the unperturbed interfae position, whih is initially set at the middle ofthe domain height, x3;0 = 4. The oeÆients an1;n2 and bn1;n2 are hosen as Gaussianrandom variables, with mean of 0 and standard deviation of 0:001. Periodi bound-5



aries are imposed on the x1, x2 sides of the domain and Neumann boundaries areimposed on the top and the bottom of the domain. The initial ow �eld is unper-turbed, with a zero veloity, onstant temperature �elds and pressure and density ineah of the uids spei�ed by hydrostati isothermal equilibrium.The light uid is initially plaed above the heavy uid. The density ratio is 3 : 1so that the Atwood number A = (�2 � �1)=(�2 + �1) at the initial interfae (at theinitial time t = 0) is A = 0:5. The simulations are onduted in the frame of anexperimental ontainer subjet to a strong steady downwards aeleration, e�etivelyreversing the diretion of gravity, whih thus points upward.To desribe the ompressibility of our simulations we use the dimensionless on-stant M2 = �g=2h ; (2.2)where h is the sound speed in the heavy uid. In the three ases of simulationsanalyzed here, the ompressibility is M2 = 0:008. The small value of M2 brings agood approximation to nearly inompressible laboratory experiments, in the sensethat the density variation throughout the heavy and light uids due to gravitationalstrati�ation is small in both of the experiments and the simulations.2.2 Rayleigh-Taylor Instability SimulationsRayleigh-Taylor (RT) instability, named after Lord Rayleigh and G.I. Taylor,ours when a dense, heavy uid is aelerated by a light uid. Bubbles of light uidand spikes of heavy uid penetrate into the other, resulting in the development ofa omplex mixing layer. We are dealing with three di�erent ases, ideal, immisiblewith surfae tension and misible with mass di�usion. For instane, we an imaginethat water is plaed on top of oil separated by a very thin layer, and suddenly the6



layer disappears, making some initial perturbation. These two uids start to mix fordensity di�erene. Or when we put reme in o�ee, they mix in a moleular level.These examples show surfae tension and mass di�usion ases, respetively. Idealase, however, annot our in the real world so that it is not possible to omparesuh simulations to experiments.In our simulations, the ideal simulation [15℄ has no surfae tension, no massdi�usion, no physial visosity and no thermal ondutivity. The surfae tensionsimulation [15℄ has a dimensionless surfae tension ~� equal to the experimental value[28, 30℄. The dimensionless surfae tension is de�ned as~� = �=(�2��g) : (2.3)where � is the orresponding dimensional surfae tension, and � is an initial wavelength haraterizing the initial perturbations. � and g are density and gravity. Inour simulation, � is 2=12 = 0:167 and the onstant gravity is 0:14. The third simu-lation with physial mass di�usion [22, 23℄ models the Banerjee-Andrews air-heliumRayleigh-Taylor experiments [1℄. The mass di�usivity is dimensionalized using aninitial wave length sale set from observation of the ow, and with this setting, thedimensionless simulation mass di�usivity is idential to the dimensionless experimen-tal value, and expressed as ~� = �=(�pAg�) : (2.4)This simulation yields � = 0:069 in agreement with experiment.We ompare simulations and experiments in terms of the growth rate of themixing zone. To do this we prefer the growth rate of the bubble side of the mixinglayer rather than that of the spike side as the numerial results are more aurate inthis ase. We de�ne the bubble growth rate by the dimensionless onstant � in the7



Experiment Comment � ~�SimulationRead-Youngs Immisible [28℄ # 29 0.073 5.7E-3Read-Youngs Immisible [28℄ # 35 0.066 4.6E-3Smeeton-Youngs Immisible [30℄ #104 0.066 8.8E-3Smeeton-Youngs Immisible [30℄ #105 0.072 7.3E-3Smeeton-Youngs Immisible [30℄ #114 0.060 7.8E-3Centroid � deviation 0:066� 0:006Average � 2 STD 0:068� 0:005FronTier (high resolution) Immisible 0.068 7E-3FronTier (low resolution) Immisible 0.056 7E-3TVD Ideal Untraked [14℄ 0.035-0.034 0.0FronTier Ideal Traked 0.09-0.078 0.0Table 2.1: Mixing rates ompared: FronTier simulation ompared to immisible ex-periments and ontrasted to untraked (TVD) and ideal uid FronTier simulations.equation hb = �Agt2 : (2.5)The bubble of the light uid penetrates into the heavy uid by height, hb, relative tothe initial interfae whih is x3 = 4. Table 2.1 shows the values of � = �b and thedimensionless surfae tension ~� in di�erent experiments and simulations.
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Chapter 3Closure Model
In this hapter we propose a losure model for the interfaial quantity of v, pand pv. We start by introduing ensemble average and the phase indiator funtionto obtain the phase averaged equations. From these marosopi equations, we di-retly derive the exat expressions for the three interfaial quantities. By modellingoeÆients in these interfaial quantities we have our losure model. This model isompared by another models whih were proposed by others.

3.1 Ensemble Average and the Phase Indiator FuntionThe ensemble average is the mean of a quantity whih is a funtion of the miro-state of a system. It is a entral onept in statistial mehanis. Here we use thenotation, < � >, whih implies the spatial average over the x1; x2-plane in a 3DRayleigh-Taylor instability. 9



This average satis�es hf + gi = hfi+ hgi ;hhfi gi = hfi hgi ;hi =  ;��f�t � = � hfi�t ;� �f�xi� = � hfi�xi ;where  is onstant. The �rst three of these are alled Reynolds' rules, the fourth isLeibniz' rule and the �fth is Gauss' rule [10, 11℄.We use two kinds of averaging for variables, one is the phase average and theother is the phase mass-weighted average. For a variable f, the phase average isde�ned as fk = hXkfi = hXki ; (3.1)and the phase mass-weighted average is de�ned asfk = hXk�fi = hXk�i ; (3.2)where � is density and Xk is a phase indiator funtion. Here the phase indiatorfuntion is a time and position dependent funtion, whih, literally shows if theposition is in a given phase or not, and is de�ned asXk(x; t) = 8><>: 1 if x is in phase k0 otherwiseThis means that the indiator funtion is 1 when the position x is in phase k at10



time t and otherwise 0. This is a good de�nition for the ideal and immisible asesbut it is an ambiguous de�nition for misible ase. In this ase we use the 50%onentration ontour of eah uid as the interfae. We introdue a substitute, relativeonentration, for this de�nition for the misible ase in hapter 4.The ensemble average of the indiator funtionXk is denoted by �k � hXki. Then�k(x3; t) is the volume fration of the horizontal layer at height x3 that is oupiedby uid k at time t. Sine eah Xk is between 0 and 1, the volume fration, whih isthe average of Xk values, must be also between 0 and 1. We notie here that �k isusually ontinuous even though Xk is disontinuous.Figure 3.1 shows the Rayleigh-Taylor mixing in a hexahedron [0; 2℄� [0; 2℄� [0; 8℄at time t = 9:5 and Figure 3.2 is the distribution of the two uids. This �gure showsthe evolution of the bubbles of light uid and the spikes of heavy uid whih arepenetrating in the opposite uid at the height x3 = 4:5. Here the mixing zone whihis de�ned as the region from bubble tip to spike tip (usually we use 5 � 95 perent ofthe whole mixing zone) is 3:376 � 4:761. Sine we initially set the light uid on the topand the heavy uid on the bottom (the gravity is set going upward) the oval objetsin Figure 3.2 are spikes or stems of heavy uid surrounded by the ambient light uidonsidering that the height x3 = 4:5 is more on the spike side. Inside these objetsthe phase indiator funtion X1 = 0 and X2 = 1 while X1 = 1 and X2 = 0 outsidethe objets. The orresponding volume fration is �1(x3; t) = �1(4:5; 9:5) = 0:862 and�2(x3; t) = �2(4:5; 9:5) = 1� �1(4:5; 9:5) = 0:138 at the height x3 = 4:5 and the timet = 9:5.The property of the phase indiator funtion brings us to the topologial equationexpressed as �Xk�t + vint � rXk = 0 : (3.3)11



Figure 3.1: RT simulation
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The left side of this equation is the material derivative of Xk following the interfae.On a point, not on the interfae, either Xk = 0 or Xk = 1. In either ase the partialderivatives vanish and satisfy the equation (3.3). When a point on the interfae moveswith the interfae veloity then the funtionXk is a jump that remains onstant, whihalso makes the equation hold. The veloity omponent normal to the boundary isontinuous so that vint � rXk is well de�ned.3.2 General Understanding of ClosureConsider Burger's equation, Ut + UUx = 0 ; (3.4)that is, Ut + 12 �U2�x = 0 : (3.5)After ensemble average for the both sides of this Burger's equation (3.5) and by usingthe �rst one of Reynolds' rules and Leibniz' rule in the ensemble average properties(3.1), the equation beomes hUit + 12 
U2�x = 0 : (3.6)We here have one equation and two unknowns < U > and < U2 > whih are the�rst and the seond moments. To solve this we multiply U to the both sides of theequation (3.4) and average it again, then it beomes12 
U2�t + 13 
U3�x = 0 ; (3.7)13



we have two equations and three unknowns. If we keep repeating this preision wealways have one more unknowns than equations, sine hUni 6= hUin in general, sothat the system is not solvable. Thus this is not a losed system. Thus we haveto lose the system by modelling 
U (n+ 1)� as a funtion of hUi ; hU2i � � � hUni forsome positive integer n. Then we have n equations and n unknowns, and a formallysolvable system of equations.This is the basi idea for losure. In a ouple of following setions we introduethe original equations whih we all the primitive equations and average the phaseprimitive equations obtained by multiplying the phase indiator funtion to the prim-itive equations. We reformulate the nonlinear terms to gain our losure model.3.3 The Primitive EquationsMany numerial simulations in uid dynamis are based on the Euler or Navier-Stokes equations. We deal with multi speies and multi phase ow with indies i andk, respetively. A speies is a mirosopi atomi or moleular unit and distinguishedfrom phase whih is the tangible state of matter suh as a solid, a liquid, or vapor.We start from the single-phase Navier-Stokes equations. The following equationsare the mirosopi ontinuity, momentum and energy equations in an inertial frame.��i�t +r � �iv = �r � ji ; (3.8)��v�t +r � �vv = r � � + �g ; (3.9)��E�t +r � �vE = r � �v + �v � g �r �Xi hiji +r � �rT : (3.10)where r is the gradient operator and r� is the divergene operator. The dependentvariables �i, v, � =Pi �i, p, E, and g denote, respetively, the speies i mass density,14



the veloity, total density, pressure, total energy with E = e+v2=2 and e the internalenergy and gravity. The spei� enthalpy of speies i ishi = ei + pi�i (3.11)where pi is the partial pressure of speies i; ei is the spei� internal energy of speiesi. � is the total stress. We onsider Newtonian uids for whih visosity dependsonly on temperature and pressure, so that the onstitutive law for the Cauhy stressis of the form, � = �pI+ � 0 ; (3.12)where � 0 is the visous stress. Note that the rate of deformation tensor (D) an bebroken into a spherial part (�D) and deviatori part (D̂).D = 12 �rv + (rv)T � = �D+ D̂ ; (3.13)where �D represents pure volumetri rate of deformation and is simply proportionalto the sum of the diagonal element of D,�D = 13tr(D)I (3.14)and D̂ is pure shear rate of deformation,D̂ = D� �D = D� 13tr(D)I : (3.15)
15



Then the visous stress T0 an be expressed byT0 = 3�bulk�D+ 2�shearD̂= 2�shear �D� 13tr(D)I�+ �bulktr(D)I (3.16)where �shear is alled the �rst oeÆient of visosity or shear visosity and �bulk thebulk visosity. Also � is the heat ondutivity and T is temperature. The total massdensity is � = Pi �i and !i = �i=� is the mass fration of the ith speies. ji is thedi�usion ux of the form ji = ��Xk �i;kr!i ; (3.17)where �i;j are binary di�usion oeÆients whih are subjet to the onstraints [2℄�i;i = 0; (3.18)Pi(�i;j � �i;k) = 0; j 6= k : (3.19)For the two speies ase, �1;2 = �2;1. In general, the �i;j, as with the other transportoeÆients and the surfae tension, are thermodynami funtions, and thus dependenton temperature, pressure and the onentrations !1; !2; � � � ; !N . If we plug !i = �i=�in the mirosopi ontinuity equation (3.8),�!i��t +r � !i�v = �r � ji (3.20)!i(���t +r � �v) + �(�!i�t + v � r!i) = �r � ji (3.21)Sine the total mass is onserved, ���t +r � �v = 0 (3.22)16



whih an be obtained by summing (3.8). From these, we an have a onentrationequation for eah speies, �(�!i�t + v � r!i) = �r � ji ; (3.23)equivalently, �!i�t + v � r!i = �1�r � ji : (3.24)In (3.9), the dot produt within the di�usion term is between the indies of thegradient and the divergene. The term proportional to ji in (3.10) represents thedi�usion of enthalpy, and is a onsequene of heat ux due to mass di�usion betweendi�erent speies [31℄. In this paper, we formulate the equations in terms of two phases.See Cheng et al. [6℄ for extensions of the equations below to the general multi phasease, in the inompressible limit.For simpliity of the simulation, we assume no mass di�usion for the immisiblease and no surfae tension for the misible ase. Sine our examples only onsideronstant di�usivity for binary mixtures (n = 2, �1;2 = �2;1 = � = onstant), andonstant oeÆients of surfae tension � = onstant, a onsequene of this assump-tion is that we only onsider ows that are either purely di�usive � = 0 and nomaterial interfaes, or non-di�usive � = 0, sharp material interfaes, but never bothsimultaneously.3.4 Averaged EquationsIn this setion we multiply the phase indiator funtion Xk by both sides of eahof the equations (3.8){(3.10), so that the equations are spei�ed for eah phase, andperform ensemble average, whih is based on the ideas of Drew [11℄. In this sense the17



averaged marosopi equations oneptually present a hunk phase motion ratherthan the point-wise motion in the primitive mirosopi equations. For our 3D sim-ulation in a retangular oordinate system here, the ensemble average is replaed aspatial average over the x1; x2-plane so that the average is assumed to be indepen-dent of x1 and x2. Even though our simulation is 3D RT in Cartesian oordinates wegeneralize the averaged equation in three di�erent geometri oordinates, the planar,ylindrial and spherial ones by using the indiator s = 0; 1; 2, respetively. Similarto the retangular oordinate ase, we integrate the equations over the �, or � andz diretions in ylindrial oordinates, ,over the � or � and � diretions in spherialoordinates. This yields one or two dimensional multi-phase ow averaged equa-tions. When the equations are given in ylindrial and spherial oordinates, thereare geometrial soure terms due to the urvilinearity of oordinate systems [24℄.We use the two types of average introdued in the previous Setion 3.1. Theaveraged quantities �i;k, �k and pk are de�ned as the phase average of the speies idensities �i, density � and pressure p, respetively, so that we have�i;k = hXk�iihXki ; �k = hXk�ihXki ; pk = hXkpihXki : (3.25)
The quantities vk and Ek are mass-weighted averages of veloity v in the diretionof z and total energy E in phase k and those are expressed byvk = hXk�vzihXk�i ; Ek = hXk�EihXk�i : (3.26)
For later use we de�ne the three averaged interfaial quantities v�, p�k and (pkv)�18



by v� = hv � rXkihn3 � rXki ; p�k = hpkn3 � rXkihn3 � rXki ; (pkv)� = hpkv � rXkihn3 � rXki ; (3.27)
By averaging the advetion law (3.3) we get��Xk�t �+ hvint � rXki = 0 ; (3.28)whih beomes by the property of ensemble average and the de�nition of v� in (3.27),���k�t �+ v����k�z � = 0 ; (3.29)where z diretion is the normal diretion.Applying the ensemble average to the equations (3.8){(3.10), we obtain the en-semble averaged equations�(�k�ki)�t +r � (�k�kivk) = hXkr � jii ; (3.30)�(�k�kvk)�t +r � (�k�kvkvk) +r � (�kRk)= r � (�k�k)� h�rXki+ �k�kg ; (3.31)�(�k�kEk)�t +r � (�k�kvkEk) +r � (�kSk)= r � hXk�vi � h�vrXki+ �k�kvk � g +*Xkr �Xi hiji++ hXkr � �rT i ;(3.32)where Rk is the Reynolds stress tensor and Sk is the turbulent ux of total energy,19



both for phase k,Rk = hXk�vvi�k � hXk�vi2�k hXk�i ; Sk = hXk�vEi�k � hXk�Ei hXk�vi�k hXk�i : (3.33)

We note that we hoose a preferred diretion normal to the mixing layer (x3diretion in 3D retangular oordinate) and integrate the equations (3.30){(3.32)over two other diretions tangent to it (x1x2 plane in 3D retangular oordinate).This proedure yields one dimensional averaged equations. We follow Drew [11℄ andearlier papers [4, 5℄ to obtain�(�k�ki)�t +rs(�k�kivk) = �kDki ; (3.34)�(�k�kvk)�t +rs(�k�kv2k) = � ��z (�kpk) + p�k ��k�z + �k�kg + �kMk ; (3.35)�(�k�kEk)�t +rs(�k�kvkEk) = �rs(�kpkvk) + (pkv)���k�z + �k�kvkg + �kEk : (3.36)Summing the equation (3.34) over i, we get the equations for total mass�(�k�k)�t +rs(�k�kvk) = 0 ; (3.37)where rsf(z) = 1zs �zsf(z)�z (3.38)is the urvilinear divergene. For onveniene, we use the following symbols to rep-20



resent the soure terms of (3.34){(3.36)Dki = (r � ji)k (3.39)Mk = (r � � 0)k;3 + f sk ; (3.40)Ek = (r � � 0v)k + (r � (Xi hiji))k + (r � (�rT ))k ; (3.41)in whih (r � � 0)k;3, and v3 mean the third omponent of (r � � 0)k and v. f sk is theaveraged geometrial soure term, that is, the averaged entrifugal fores whih isexpressed by
f sk = 8>>>>>><>>>>>>: 0 s = 01r 
Xk�v2�� =�k s = 11r 
Xk�(v2� + v2�)� =�k s = 2 (3.42)

3.5 A Closure ModelIn this setion we propose our losure model. As we de�ned in the previoussetion we denote the interfaial averaged quantities of p; v; pv as q� where q = v; p; pv.The �rst step in the losure derivation is to derive an exat identity [16℄ from theaveraged equations, whih was previously derived. Here the result is extended to themulti speies mass di�usion ases. The next step is to �nd a reasonable losure modeland �nally we pursue the simplest model with good approximation.3.5.1 v� ClosureWe use the notation Zk for the edge positions, i.e. Z1 is the bubble edge and Z2is the spike edge. At eah edge Zk the veloity is denoted by vk = Vk. We assume21



that (�1)kVk = (�1)k _Zk � 0, whih means that the mixing zone is monotonouslygrowing i.e. both pure phase uids are onstantly oming into the mixing zone sothat the volume of the mixing zone is inreasing. The interfaial veloity v� at theboth edges satis�es a boundary ondition.v� = _Zk = vk at z = Zk (3.43)The exat expression for the interfae veloity v� an be diretly derived from theprevious averaged equations (3.29) and (3.37) by using the de�nition of v� in (3.27).Dividing (3.37) by �k and subtrating the result from (3.29), to obtain(vk � v�) ��k�z + �k [rsvk +Hvk ℄ = 0 ; (3.44)where Hvk = 1�k Dk�kDt : (3.45)Here Dk=Dt is the substantive derivative with respet to the veloity vk. We sum(3.44) over k, solve for ��k=�z, and substitute the result in (3.44). The followingtheorem gives us the algebraially simpli�ed expression.Theorem 3.1. The interfae quantity v� has the exat formulav� = �v1v2 + �v2v1 ; (3.46)where the mixing oeÆients have the frational linear form�vk = �k�k + dvk�k0 : (3.47)22



The onstitutive fator dvk is also expressed in the exat formdvk(z; t) = rsvk0 +Hvk0rsvk +Hvk : (3.48)The fator dvk(z; t) in (3.48) an be interpreted as a ratio of logarithmi rates ofvolume reation for the two phases.With spatial homogeneity we de�nedvk(t) = Z Zk0Zk �(zsvk0)�z + zsHvk0dzZ Zk0Zk �(zsvk)�z + zsHvkdz ; (3.49)whih shows that the relative extent of volume reation for the two uid speies donot depend on the spatial loation in the mixing zone, whih means this losure isindependent of the exat expression (3.48). The ratio (3.49) satis�es the relationdv1(t)dv2(t) = 1 whih is equivalent to �v1 + �v2 = 1. Furthermore, dvk(t) � 0 if and onlyif �vk is nonnegative �nite for 0 � �k � 1.Before we speify a simple hoie for the quantity dvk(t), we here disuss sensitivityof the hoie. We proposed an inequality as a riteria whih isj�qj � jq1 � q2j � jqj � j�1q1 + �2q2j q = v; p : (3.50)If (3.50) is not satis�ed then the losure q���k=�z is sensitive to the hoie of dqk(t).For the v� losure whih violates (3.50), the light uid moves away from the diretionof g and the heavy uid moves in the diretion of g. Thus in most parts of the mixingzone, v1 and v2 has opposite signs, so that v is nearly zero relative to �v, or in otherwords, �v is large.In Figure 3.3, we see the optimized dvk(t) to minimize the relative error where23
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3.5.2 p� Closure
In the ase of non-zero surfae tension, pressure is disontinuous at the interfae�Xk, and pk is the value of the pressure de�ned by ontinuity from the interior of Xk.These limiting pressures at the miro physial level, i.e. before ensemble averaging,are related by the equationp1 � p2 = (K�n+rk�) � n+ nT [� 0℄n = K� + nT [� 0℄n (3.53)where K is the mean urvature and � is the surfae tension. At the interfae of twouids, the jump ondition is [TTn℄ = ��Kn�rk�; (3.54)in whih the symbol [�℄ is de�ned as [f ℄ = f1� f2 and rk = (I�nn) �r is the surfaetangential omponent of the gradient. This shows a balane of fores law. Here � isthe oeÆient of surfae tension. The unit normal vetor n is direted into uid 1.We use the mean urvature K = �1 + �2 ; (3.55)where �1 and �2 are the maximum and minimum urvatures, and are positive whenpointing into uid 1. The �rst term in (3.54) shows the lassial surfae tension.The seond term in (3.54) is the Marangoni fore, whih is the tangential fore onthe surfae generated by a onentration dependene of the surfae tension. It isonvenient to de�ne p� = 12(p�1 + p�2) ; (3.56)26



and the apillary pressure p� = p�1 � p�2 ; (3.57)where p�k is pressure of phase k at the front state, so thatp�1 = p� + p�2 ; p�2 = p� � p�2 : (3.58)
In view of (3.53), p� is the produt of the surfae tension � and the average ofthe surfae mean urvature. Similarly we de�ne (pv)� and (pv)� as the average andthe di�erene of the (pkv)�. We then de�neepk = pk + (�1)k p�2 (3.59)ep�k = p�k + (�1)k p�2 = p� : (3.60)
The required boundary ondition (3.43) for p� at the mixing zone edge Zk anbe reformulated as epk = ep�k = p� at Zk : (3.61)We derive an exat expression for p� in terms of other solution variables. Thisexat form will be approximated to yield a losed expression for p�. We start bysubtrating vk times (3.37) from (3.35) to obtain�k(�pk�z �Hk) + ( epk � p�)��k�z = 0 ; (3.62)where Hk = �k �g � DkvkDt � Mk�k � : (3.63)27



Adding the two equations (3.62) for k = 1; 2, we obtain(ep2 � ep1)��1�z = �1��p1�z �H1�+ �2��p2�z �H2� ; (3.64)sine the p� terms anel when summed over k. Equation (3.64) is substituted into(3.62) and the result is solved for p�, yieldingp� � ep1 = (ep2 � ep1)�1 ��p1�z �H1��1 ��p1�z �H1�+ �2 ��p2�z �H2� : (3.65)This expression an be simpli�ed to give the following theorem.Theorem 3.2. The interfae pressure p� is expressed exatly asp� = �1 ��p1�z �H1� ep2 + �2 ��p2�z �H2� ep1�1 ��p1�z �H1�+ �2 ��p2�z �H2� (3.66)� �p1 ep2 + �p2 ep1 ; (3.67)where the mixing oeÆients �pk satisfy�pk = �k�k + dpk�k0 : (3.68)The onstitutive oeÆients dpk are obtained in the exat formdpk(z; t) = �pk0�z �Hk0�pk�z �Hk ; (3.69)This oeÆient (3.69) represents a ratio of the fores aelerating the two uids,eah onsidered in the aelerated frame de�ned by their respetive veloities. The�rst derivative term in this oeÆients dpk represents the aeleration from the pressure28



and the Hk term does that from gravity and inertial fores. Unless Hk = �pk=�zwhih is hydrostati equilibrium, there must be a deviation between these fores. Ifthe deviation is positive the total fore supplies extra aeleration to the phase k,otherwise it dereases the total aeleration. Figure 3.5 shows eah fore. The resultis a net derease in the downward aeleration of the light uid and a net inreasein the upward aeleration of the heavy uid, whih auses dpk < 0 and jZ1j < jZ2j.This provides that the spike growth rate is bigger than the bubble growth rate ingeneral. Also in the same �gure we an see the possibility that the oeÆient dpkan be negative so that the denominator of �pk is zero, whih auses blow-ups in ourp���1=�z losure.Figure 3.6 presents the distribution of those zero roots (denoted z�). One of ourtrial and error method to �nd a losure model was to use these points. In other words,we used dpk(z�; t) for our losure model. Mathematially, if we plug these zero rootsin the numerator and the denominator those are supposed to be anelled by usingL'hospital's rule. But it is a mistake if we do not onsider the numerial error. Sinewe have a �nite grid size, the numerator and denominator are losely but not exatlyzeros so that those are not exatly anelled out and make onsiderably big blow-ups.Figure 3.7 and Table 3.5.2 gives a quik view of the error when we use those dpk(z�; t).Also the zeros do not have any speial pattern so that it is hard to keep away fromthis problem with the negative dpk ausing the blow-ups of losure model.This leads us to fore dpk to be positive. Surprisingly the hoie is not a matterone it is positive. Figure 3.8 shows the insensitivity of the losure with any hoie ofdpk whih is the opposite property of v� losure in Figure 3.3. For de�niteness, we setdpk = 1, for example. The dpk(t) satis�es the relation dp1(t)dp2(t) = 1 whih is equivalentto �p1 + �p2 = 1.This insensitivity an also be seen learly seen in Figure 3.9.As the two uids are mixing the pressures from the two uids have a tendeny of29
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Surfae Tension Data with Surfae Tension Terms in FormulaTime z� dp1 dp2 Error (Perent)0.5230 4.0238 -2524.8900 -0.0004 2.87732.0162 4.0057 -2.5428 -0.3933 0.50714.0068 -3.0103 -0.3322 12994e+114.0169 -12.9310 -0.0773 2.87734.0089 4.0252 -0.1732 -5.7735 5.32687.0110 3.9700 -0.6640 -1.5059 85.11869.0106 3.4385 -0.0073 -136.5730 2.74824.0708 -0.9761 -1.0244 3.25014.2221 -4.8075 -0.2080 14.14694.3623 -13.5136 -0.0740 28.14314.3878 -15.8326 -0.0632 2.754410.5159 3.2253 -0.0097 -102.8710 2.17303.2610 -0.0239 -41.8760 3.58203.2686 -0.0280 -35.659 4.98753.8862 -0.6326 -1.5807 77.06123.9478 -0.6828 -1.4646 180.91004.0779 -0.9366 -1.0678 1074.70004.5665 -12.5414 -0.0797 23.27654.6345 -24.1695 -0.0414 47.41094.71613 -37.0335 -0.0270 10.8158Table 3.1: The error analysis of the losure p� ��1�z with dpk(z�; t)
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3.5.3 (pv)� ClosureIn the ase with surfae tension, the work assoiated with limiting pressures isnot ontinuous at the interfae as stated at the beginning of the previous setion3.5.2. From (3.53), we have (p1v)� � (p2v)� = (pv)� : (3.70)We derive a mathematially exat expression for (pv)� using an entropy formu-lation. From (3.34) and (3.35), we get the kineti energy equation��t ��k�k v2k2 �+rs��k�kvk v2k2 �= vk ���(�kpk)�z + p�k ��k�z + �k�kg + �kMk� : (3.71)Subtrating (3.71) from (3.36), we have the internal energy equation��t (�k�kek) +rs (�k�kvkek)= ��kpkrsvk � p�kvk ��k�z + (pkv)���k�z + �kFk ; (3.72)where Fk = Ek � vkMk : (3.73)We de�ne Sk to be the entropy de�ned by the averaged variables Ek and �k usingthe equation of state and we de�ne Sk to be the diret ensemble average of the mirophysially de�ned phase entropy. The proess of averaging (forming the ensembleaverage) is not adiabati, that is, the entropy is not onserved by the averaging35



proess, so that Sk 6= Sk in general. Besides, we expet the averaging to satisfyan entropy inequality, leading to Sk � Sk. For an adiabati proess, dSk = 0 anddSk = d(Sk � Sk).We assume the thermodynami relation is satis�ed for the averaged quantitiesTkdSk = dek + pkd� 1�k� : (3.74)From (3.72) and (3.74), we derive the entropy equation�k�kTkDSkDt = [�pkv� + pkvk � p�kvk + (pkv)�℄��k�z + �kFk : (3.75)We de�ne (pkv) = epkvk + (�1)k2 [p�v� � (pv)�℄: (3.76)(3.75) an be reformulated as�k�kTkDSkDt = [� epkv� � p�vk + (pkv) + (pv)�℄��k�z + �kFk; (3.77)Solving (3.77) for (pv)� yieldsTheorem 3.3. (pv)� is expressed exatly as(pv)� = p� (�pv1 v2 + �pv2 v1) + v� (�pv1 ep2 + �pv2 ep1)� (�pv1 (p2v) + �pv2 (p1v)) : (3.78)where the mixing oeÆients �pvk satisfy�pvk = �k�k + dpvk �k0 : (3.79)36



The onstitutive oeÆients dpvk an be obtained in the exat formdpvk (z; t) = �k0Tk0Dk0Sk0Dt �Fk0�kTkDkSkDt �Fk : (3.80)The proess of ensemble averaging inreases the entropy of the system, a proesswe all the positive entropy of averaging property. When the soure term Fk = 0, weexpet the entropy of averaging is positive [20℄, whih leads to the following theorem.Theorem 3.4. Assume the losures (3.46), (3.67) and (3.78) for v�, p� and (pv)�.Then the inequality [(�v1 � �p2)�ep�v + (pv)� � p�v�℄ ��1�z � 0 : (3.81)is a neessary and suÆient ondition for the entropy of averaging inequality for thek = 1 and k = 2 uids.By imposing homogeneity on (3.80) just as before, the losure beomesdpvk (t) = Z Z0kZk �k0Tk0Dk0Sk0Dt �Fk0dzZ Z0kZk �kTkDkSkDt �Fkdz : (3.82)Similar to the p���1=�z losure, the losure for (pv)���1=�z is also insensitiveto the hoie of dpv1 , in view of the riteria (3.50). Figure 3.11 shows the propertyas well. The �rst and the third terms in (3.78) nearly anel eah other, so that theinsensitivity omes from that of p� and also it must depend on v�. That is,(pv)� � p�v� : (3.83)37
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3.6 Another Closure Model and ComparisonWe introdue a similar work by Saurel and oworkers. As we mentioned inthe previous setions we denote the interfaial averaged quantities of p; v; pv for ourmodel, in general, q� where q = v; p; pv. For the work by Saurel et al., we use qS�instead. Two versions of losure models are introdued. In reent work by Saurel etal. [7℄ they introdue the relaxation oeÆients oming from phase interation andadopt Disrete Equations Method (DEM) to a miro struture and obtain a systemof PDEs as the ontinuous limit of the disrete equations. The analysis starts withmass, momentum and energy equation with pure relaxation term in momentum andenergy equations as soure terms. Also the relaxation term is added to the averagedadvetion equation. There are two versions of models, introdued here, with andwithout the relaxation terms.Before applying the relaxation terms in the equations their losure, a related butdi�erent funtional form for their losure model is obtained. Similar to our losurethey also onsider a onvex sumq0S� = �Sq1 q2 + �Sq2 q1 q = v; p ; (3.84)and then de�ne vS� = v0S� + sgn���1�x � p2 � p1Z1 + Z2 ; (3.85)pS� = p0S� + sgn���1�z �� Z1Z2Z1 + Z2� (v2 � v1) : (3.86)Here Zk is the aousti impedane of uid k. Also(pv)S� = pS�vS� : (3.87)39



The other version of Saurel losures inlude relaxation, as an additional termin the right hand side of the assoiated volume fration, momentum and energyequations. The terms for k = 1 are preisely�S(p1 � p2) volume fration soure term (3.88)�S(v2 � v1) momentum soure term (3.89)�Sv0S�(v2 � v1)� �Sp0S�(p1 � p2) energy soure term (3.90)and for k = 2, the momentum and energy soure terms have the opposite sign. Here�S = AI2(Z1 + Z2) ; �S = �Z1Z2 ; (3.91)where AI is the interfaial area per unit volume. In (3.88), we observe that the �vontribution to the relaxation terms is larger than the �p ontribution, and as �vours in the p� relaxation, the p� relaxation terms are generally signi�ant while thev� relaxation terms (proportional to �p) are not.The onvex oeÆient �Sqk also has a frational linear form�Sqk = 11 + dSqk ; q = v; p (3.92)while that of ours �qk has the form�qk = �k�k + dqk�k0 ; q = v; p; pv (3.93)
It is ommon to both models that the �qk and �Sqk thus depend on a single pa-40



rameter dqk or dSqk . Their oeÆients an be alulated asdSvk = Zk=Zk0 dSpk = Zk0=Zk ; (3.94)whih are derived from solutions of approximate (linearized) Riemann problems mod-eling multi phase ows at the sub-grid level but their losure does not satisfy (3.43).The Saurel et al. model supplies the missing internal boundary onditions at theedges of the mixing zone by imposition of equal pressures p1(z = Zk) = p2(z = Zk)[29℄.We have two interpretations of the Saurel et al. model. In the �rst, whih wedenote as Saurel-1, AI is regarded as a �tting parameter. The seond interpretationof their model takes advantage of the fat that AI is a omputed quantity in our data,and uses this time dependent value in the de�nition of the model. We denote thismodel as Saurel-2. AI is plotted as a funtion of time in Figure 3.12, to omplete thede�nition of the Saurel-2 losure. We note that AI has the dimensions of an inverselength and takes on large values at early time as the mixing layer tends to its (small)initial amplitude.The Figures 3.13, 3.14 and 3.15 present the omparison of three losure modelswith surfae tension simulation, where `exat 'in the legend of eah �gure means theexat expression diretly derived from the averaged equations. In these �gure, wean easily onlude that for v���1=�z and pv���1=�z, our losure model is notieablybetter while for p���1=�z both our losure and the Saurel-1 (whih has the frationallinear portion of the Saurel et al. losure) give a good approximation.To ompare these models, ours and Saurel et al.'s more expliitly, we use an error41
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Closure v� p� (pv)� AverageComparison to RT dataThis paper 18% 00% 18% 12%Saurel-1 43% 02% 42% 30%Saurel-2 56% 46% 51% 51%Table 3.2: Model errors based on omparison to simulation data.43
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Chapter 4Turbulent Flow Analysis
The purpose of this hapter is to analyze our data based on lassial turbuleneonepts inluding ommon measures of mixing properties. We introdue severalparameters to measure the average degree of mixing of the two uid systems andompare our values with those already known. For spetral analysis we start withbasi de�nitions and see a possible approximate agreement with Kolmogorov theory.A harateristi upturn in the spetra at high wave numbers leads us to onsider asubgrid model, we espeially onsider Smagorinsky subgrid model. But the detailanalysis for the subgrid model should be in future work.4.1 Mixing ParametersIn Chapter 2, we studied the bubble growth rate � and its statistial values. Inthe expression (2.5) the Atwood number is treated as a onstant, A = (�2��1)(�2+�1),whih is independent of time. Here we onsider a time dependent Atwood numberA(t) previously de�ned in [14℄. The time dependent Atwood number A(t) measuresthe density ontrast within the bubble portion of the mixing zone. Preisely, theloal Atwood number A(x3; t) is obtained by hoosing representative heavy and lightdensity values and replaing �1; �2 in the previous Atwood number expression with47



these values, respetively, over a spei� height x3 at time t. The time dependentAtwood number A(t) is de�ned as an average over the top half of the bubble regionof loal Atwood number A(x3; t). In fat, the previous onstant Atwood number A inChapter 2 is the loal Atwood number of the initial mixing layer at time t = 0. Therenormalized bubble growth rate �ren an be de�ned by�ren = h=[2Z t0 Z s0 A(s1)gds1ds℄ : (4.1)These mixing parameters, A(t) and �ren are sensitive to extreme within the densityontrast.We denote the point-wise values as a zero-mesh blok average, i.e. withoutaveraging in the de�nition of the volume fration. To study the moleular mixingfration, we introdue a mixing or averaging length, and average the uids over thislength sale, starting with the length of one mesh blok. This leads to the volumefration, f1, of the light uid, alulated (in a possibly sharp interfae front trakingsimulation) as a grid blok average. We use overbars to indiate a spatial averageover the x1; x2 position variables, at �xed x3. Thus f1 is the volume fration averagedover all x1; x2 and one mesh blok in the x3 diretion. The onentration utuation,�(x3), de�ned through the variane�2 = (f1 � f1)2(x3) ; (4.2)is the standard deviation of the volume fration f1(x3). It is a funtion of the x3-diretion height. The average moleular mixing fration, �(x3), is de�ned as� = f1f2f1 f2 = f1 � f 21f1 � f12 = 1� �2f1 f2 : (4.3)48
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For ideal or immisible uids (with surfae tension and no physial mass di�usion),the above de�nitions of �, � in terms of volume frations are satisfatory. For thesimulation of misible uids with physial mass di�usion, we need onentration vari-ables in plae of the volume fration variables used above. For simpliity, we stilldenote these as f1 and f2.By assuming that a stoihiometri mixture ours for f1 = 1=2, we de�ne adi�erent mixing parameter � = R min(f1; f2) dx3R min(f1; f2) dx3 : (4.5)The de�nition of the mixing parameter � is the ratio of mean of the total reationprodut to the totally stirred reation produt, for a reation whih proeeds to om-pletion prior to any further di�usion (mixing) [8, 33℄. Figure 4.1 shows the densityross setion at the middle of the mixing zone and the orresponding probability dis-tribution fution (pdf) for the misible ase of simulation at late time. The pdf showshow muh mixing ours. As it mixes more, it follow more a normal distribution.In Youngs' paper [33℄, with the density rate �1=�2 = 3, � inreases as the meshresolution � = Æx=(�Agt2) approahes zero. It is there determined that � is approxi-mately 0:85 by extrapolating to � = 0. It is lose to 0:7 in the experiments of Wilsonand Andrews [32℄ with low Atwood number. Simulations by Dalziel et al. [9℄ andexperiments by Linden et al. [21℄ yield similar values. In a high resolution LES studyof Cabot [3℄, � is nearly idential to � and inreases and approahes 0.79 as timeadvanes after a period of initial entrainment.A more preise desription of our method alulating the volume fration f1 isthe following. Let �min be the minimum value of �1 and let �max be the maximumvalue of �2 at the interfae at time t = 0. In a regular ell whih is not ut by the50



interfae, we �nd the omponent at the enter of the ell. If the density is greaterthan the maximum density, we set it to the maximum density; if it is smaller than theminimum density we set it to the minimum density. The onentration for a regularell is f1 = �max � ��max � �min ; (4.6)f2 = 1� f1; (4.7)f1f2 = f1 � (1� f1) (4.8)where � is the density at the enter. The inequality�min � � � �max ; (4.9)based on inompressible ow and properties of the di�usion equation, leads to0 � f1 � 1 : (4.10)For an irregular ell whih is ut by the traked interfae, for instane, a orner ase,we �rst identify the phase whih the enter point (A) belongs to and a orner point(B) whih is in the other phase. See Figure 4.2.
The onentration is de�ned asf1 = �max � ��max � �min ; (4.11)f2 = 1� f1; (4.12)f1f2 = f1 � (1� f1) (4.13)51
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layer is normalized by the number of bloks per layer, whih is the total number ofgrid bloks divided by n2. The previously introdued quantities in this setion anbe realulated based on this blok-averaged volume fration instead of f1.In Figure 4.3, we present � vs. the blok size for the three simulations (ideal,surfae tension and mass di�usion). The mixing values � = 0 and � = 0 for zeroblok size averaging (no averaging) for the ideal and immisible uids are guaranteedfrom onsiderations of mirosopi physis. The unaveraged nonzero value 0.8 at zeroblok size for the misible uids results from physial mass di�usion, in agreementwith experimental values. Figure 4.4 shows a similar plot for � whih is generallyslightly bigger than � but those are nearly idential, whih is also reported in theprevious work done by Cabot [3℄. For the ideal and surfae tension simulations, a blokaveraging size (4�x)3 to (8�x)3 generates a � � 0:6 � 0:8, whih is similar to thatfound in previous works. For the ideal and immisible simulations, we onlude thatuid entrainment at these length sales produes average (but not extreme) resultsomparable to numerial mass di�usion in untraked odes. For the physially massdi�usive simulations, we see little need for a mass di�usion subgrid model from thepresent analysis.The approximate agreement of the unaveraged mixing parameter � for the massdi�usion simulation, omparing traked and untraked simulations and experiments isperhaps surprising. We have observed signi�ant di�erenes among our data, exper-iments and untraked numerially mass di�usive simulations in regard to numerialmass di�usion. These di�erenes are reorded in the mixing rate �ren and the timedependent Atwood number A(t), previously de�ned in this setion. While �ren, A(t)and � are measures of mixing, they are not the same measure. �ren and A(t) aresensitive to extreme values while � is sensitive to average values. To visualize the dif-ferenes between these two measures of mixing more learly, we display in Figure 4.555



the evolution of density in a plane through the middle of the bubble region, for themass di�usion simulation at times t = 7; 15; 21. The smaller bubbles, on the vergeof extintion, are also more highly di�used, and ontribute to the high mixing ratein �, while the larger bubbles, to feed ontinued overall RT mixing rate growth (i.e.�ren), show a high density ontrast. In this sense, � shows the high degree of averagemixing, while �ren and A(t) show only a moderate degree of mixing of extreme values.In Fig. 4.6 we examine the average moleular mixing fration � as a funtion ofx3 at times t = 7; 15; 21. The moleular mixing fration � displays a uniformly highdegree of average mixing.4.2 Spetral AnalysisPower spetra are alulated by performing a 2D Fast Fourier Transformation(FFT) on data de�ned on a horizontal plane, for example the mid-plane (the positionof the initial interfae) and taking the magnitude of the Fourier transformed data.The 2D Disrete Fourier Transform (DFT) for data f(j1; j2) entered at ell j1; j2, ofsize N �N is alulated byf̂(k1; k2) = 1N2 N�1Xj1=0 N�1Xj2=0 f(j1; j2) exp(�2�ik1j1=N) exp(�2�ik2j2=N) ; (4.15)where k1 and k2 are the x1 and x2 diretional wave mode numbers, whih satisfy0 � k1; k2 � N � 1. For the ase of an irregular ell with frational volumes in eahuid, the utuation is ell averaged with a blok size 1 as was done in the previoussetion to de�ne f(j1; j2). The salar wave number k is alulated by k =pk21 + k22.The power spetrum is averaged over k values in an interval (k � 1=2; k + 1=2) toredue noise. We use the Matlab 2D Fast Fourier Transformation. A simple exampleode is given below. 56
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Figure 4.5: Density plot of a ross setion through the middle of the bubble region,for the mass di�usion simulation, at t = 7; 15; 21. Color plot available online.
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V = load('veloity');% V is N x N veloity over the mid-plane.VF = load('volume_fration');% VF is N x N volume fration overthe mid-plane.Vflu = (V - mean(mean(V)).*ones(N,N)).^2.*VF;% Vflu is flutuation of the veloity whih isthe variene of V.Vspe = abs(fft2(Vflu)./N^2);% Vspe is the N x N spetrum of Vflu alulated% from Fourier transform of Vflu.Then the alulated spetrum an be plotted by using the following ode.if mod(N,2) == 0ind_end = N/2; % Nyquist wave numberelseind_end = (N+1)/2;endI = ind_end^2;wave_number = zeros(I,1);annulusVspe = zeros(I,1);% This is the averaged spetrum in annulus.t = 1;for i = 1:ind_endfor j = 1:ind_endif((sqrt((i-1)^2+(j-1)^2)) < (ind_end-0.5))wave_num(t) = sqrt((i-1)^2+(j-1)^2);VSPEC(t) = Vspe(i,j); 59



t = t + 1;endendend[wn,ind℄ = sort(wave_num);for k=1:Ispe_v(k) = VSPEC(ind(k));endwn_end = round(wn(I));spe_avg_v = zeros(wn_end,1);for m = 1:wn_endount = 0;for k = 1:Iif (wn(k) < (m+1/2)) & (wn(k) >= (m-1/2))spe_avg_v(m) = spe_avg_v(m) + spe_v(k);ount = ount+1;endendspe_avg_v(m) = spe_avg_v(m)/ount;endplot(1:wn_end,spe_avg_z(1:wn_end));xlabel('wavenumber k');ylabel('vertial veloity flutuation');where the initialization part has been omitted from the text ode written above.This ode is based on the Nyquist-Shannon sampling theorem stating that an analog60



signal waveform an be uniquely reonstruted, without error, from its samples if thesignal is band-limited and the sampling frequeny is greater than twie the signalbandwidth.We present power spetra of the vertial veloity, density and kineti energyutuations, and ompare our results with the slope �5=3 based on the Kolmogorovlaw E(k) � k�5=3 : (4.16)The region whih follows the Kolmogorov law is the inertial subrange where energyis transfered to suessively smaller sales.We �rst examine the dependene of the power spetrum on height, x3, in themixing zone. Figure 4.7 shows power spetra of vertial veloity, density utuationand kineti energy for the mass di�usion ase at t = 21. These and other spetralplots are ut o� at the Nyquist wave number k = N=2. At both mixing zone edgesthe spetra are small ompared to those within the interior of the mixing zone. Wetake the spetrum from the mid-plane, whih is also onventional, for our spetralanalysis. Spetrum averaged over the whole mixing zone also gives a similar result.Both ways are used in other studies.Figure 4.8 shows the spetra for the vertial veloity, density utuation andkineti energy utuations for the mass di�usion simulation, alulated on the mid-plane, for three di�erent times. This �gure shows that the energy ontaining regiondereases while the inertial range expands as time advanes. Also we an see thedissipation region following the inertial range. In eah �gure, we loate a straightline with the Kolmogorov slope �5=3 as a referene. The �gure shows a near mathto this slope. Previous works [3, 9, 33, 34℄ report a Kolmogorov veloity spetrumor one lose to it, but generally do not distinguish between alternate theories for61
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Figure 4.7: Power spetra of vertial veloity, density, and kineti energy utuations(presented top to bottom) for the mass di�usion simulation at t = 21, taken at �vedi�erent horizontal planes through the mixing zone.
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Figure 4.8: Power spetra of vertial veloity, density, and kineti energy utuations(presented top to bottom) from the mid-plane for the mass di�usion simulation att = 7; 15; 21.
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the saling exponent [8℄. Cabot [3℄ reports a smaller than Kolmogorov slope for thedensity utuations. Poujade [26℄ argues theoretially that the low wave number endof the self similar regime has a non-Kolmogorov behavior. There is a reent opiniononerning the slope of this region [26℄, whih states that the slope right after thewave number orresponding to the peak of the veloity spetrum is approximately�2 and that of onentration spetrum is around �1 and these slopes are maintaineduntil right before the onentration dissipation. Our data does not learly distinguishbehavior �2 and �5=3, but it does not suspet the slope �2 for the onentration.Eah plot in Figure 4.8 show a harateristi upturn for k values in the range45 � 60, espeially at late time, orresponding approximately to the lengths 2�xto 3�x. In this range, the utuations are aumulating. They annot be passedon to smaller grid levels as these are not available in the omputation. The normaldesign of a subgrid algorithm will remove this buildup through dissipation, so that thepower law spetrum will ontinue with its trend to these largest available k values.We an see these upturns in all the plots for density, veloity, and kineti energy,whih indiates the need for a subgrid model in the mass (ontinuity) equation andthe momentum equation.4.3 Subgrid ModelThe basi theory, derivations and notations for subgrid model presented hereare given in the book by Pope [25℄. A �ltering operation is de�ned to deomposea �eld U(x; t) into the sum of a �ltered (or resolved) omponent u and a residual(or subgrid sale) omponent u0. In Chapter 3, we introdued our averaged phasequantities whih are averaged in a ell. Sine these quantities are �ltered though agiven grid we need a subgrid model to �nd the residual omponents. This brings the64



need for residual terms in the mass, momentum and energy equations so that theseterms an be added to the resolved transport terms. Here we onsider the mass andmomentum equations only in this dissertation. Whether we need these terms or notan be determined by alulating the value of those terms and omparing them withthe orresponding original physial quantities. We reall that � denotes the di�usivityin the mass equation and � does the visosity in the momentum equation in Chapter3. We introdue subgrid models for mass and momentum equations. The mass andmomentum equations without heat ondutivity are���t + ��vi�xi = � �2��xi2 (4.17)�vj�t + �vivj�xi = ��2vj�xi2 � 1� �p�xj : (4.18)Considering that �vi 6= � vi ; (4.19)vivj 6= vi vj ; (4.20)�ltering of the equations (4.17) yields���t + �� vi�xi = � �2��x2i � �(�vi � � vi)�xi ; (4.21)�vj�t + �vi vj�xi = ��2vj�x2i � �(vivj � vi vj)�xi � 1� �p�xj : (4.22)Let qi = �vi � � vi and �ij = vivj � vi vj. The subgrid salar stress q and thesubgrid stress tensor � show the inuene of the subgrid sales on the resolved ones.65



A simple model for these subgrid ux terms isqi = �SGS ���xi ; (4.23)� rij = �ij � 23�rÆij = ��SGS ��ui�xj + �uj�xi� ; (4.24)where �r = 12�ij is the residual kineti energy. The kineti energy term will be inludedin pressure term whih is the last term in the equation (4.22). Thus the residualsubgrid stress tensor is traeless. The two equations (4.21) and (4.22) eventuallybeome ���t + �� vi�xi = (� + �SGS) �2��x2i ; (4.25)�vj�t + �vi vj�xi = (�+ �SGS) �2vj�x2i � 1� �p�xj : (4.26)
To determine the need for these subgrid models we estimate the magnitude ofthe subgrid mass di�usion �SGS and the subgrid visosity �SGS. Pullin [27℄ proposeda subgrid model for the ux of a passive salar within the framework of the strethedvortex subgrid stress model. We do not have this vortex based subgrid model im-plemented for our simulation at this moment. As a temporary substituete, we adopta hypothesis that the subgrid Shmidt number is 1 so that we an use the subgridvisosity to alulate the subgrid di�usivity for the misible simulation.To alulate the subgrid visosity we use the simplest subgrid model, of Smagorin-sky type, whih relates the eddy visosity to the large-sale strain tensor. The straintensor is de�ned as Sij = 12 ��ui�xj + �uj�xi� ; (4.27)66



and S =q2Sij Sij : (4.28)The tensor � rij an be modeled by� rij = �2�rSij (4.29)and mixing-length hypothesis gives�r = (Cs4x)2S �= (Cs4x)2S : (4.30)For omparison to the physial mass di�usivity, expressed dimensionlessly in(2.4), we de�ne a dimensionless subgrid di�usivity℄�SGS = �SGS�pAg� ; (4.31)�SGS = 2�x2jjSjj2 : (4.32)We present in Table 4.3 the planar averages of �SGS, � and the ratio of them sothat we an ompare the magnitude of eah values over the mixing zone. From thistable we expet that the subgrid mass di�usion model is negligible sine it is less than1% of the physial mass di�usion. The extreme values for these subgrid quantitiesare not greatly larger than their mean values, see Figure 4.9. Neither the average northe extreme values suggest a signi�ant role for a subgrid mass di�usion model forthis simulation.
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�SGS � �SGS=�Bubble Tip 2.2 e-06 0.0054 0.0004Mid Bubble 1.6 e-05 0.0054 0.003Mid-plane 2.3 e-05 0.0054 0.004Mid Spike 2.2 e-05 0.0054 0.004Spike Tip 2.3 e-06 0.0054 0.0004Table 4.1: Subgrid mass di�usion oeÆients, averaged over horizontal planes, asomputed by a Smagorinsky model, for t = 21 in the mass di�usion simulation data.
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Chapter 5Conlusion
We deal with two of somewhat separate issues in this thesis, a losure model anda study of turbulene in the RT data set.The losures for v�, p� and (pv)� satisfy all required onstraints of boundaryonditions and onservation. The boundary onstraints are given in (3.43). Phase kmass and total momentum are onserved in the absene of di�usion and visosity inequation (3.34) and (3.35). Total energy is onserved aording to equation (3.36).Entropy should not be onserved beause averaging is non-adiabati, but an entropyinequality is enfored [20℄.Eah losure has a very simple form for its oeÆient dqk (q = v, p, (pv)) inTable 5. The losure model for v�; p�, (pv)� gives very good approximation to theexat expression with DNS data, within about 10% of the error while the model ofSaurel et al. has about 30% of the overall error.The insensitivity of our model is also veri�ed, for whih the inequality (3.50) anbe a riteria. Here we note that this insensitivity for p�, (pv)� is obtained by foringthe oeÆient dqk to be positive. Table 5.2 summarize the sensitivity of our losuremodel to the hoie of the oeÆients dqk and to v�, also the sensitivity of Saurel'smodel to the relaxation terms. The summary results of this table an be interpreted69



RTdv1 (3.52)dp1 1.0dpv1 1.0Table 5.1: Summary of dqk parameter hoies for RT mixing. All hoies exept thatfor dvk in the RT ase are insensitive. v� p� (pv)�RT: Closure sensitive to dqk ((3.50) or (3.83) invalid) yes no noRT: Closure sensitive to v� { { yesRT: Relaxation important no late time late timeTable 5.2: Summary properties related to the losures q�. It is remarkable that thelosures depend sensitively on their de�ning parameter dk only in the ase of the RTdata for the v� losure.as follows. The sensitive ase for (3.50) ours for v� losure only. This is beause theomputational frame is almost same as that of the average interfae position. But aswe see in Figure 3.10, the pressure tends to be equilibrated so that �p is small whilethe averaged pressure is relatively big, whih made the inequality (3.50) hold so thatthe losure for p� is not sensitive to the hoie of dp. For (pv)�, we �nd (pv)� � p�v�and the oeÆient is inluded in p� term so that the losure depends on v� but theinsensitivity omes from p�. That is why the error between the losure and the exatexpression is omparable to that of v� even though it is not sensitive to the hoieof dpv. Our losure is ompared with another losure models inluding the relaxationterms proposed by Saurel et al. and their models have about 30% of error. Therelaxation terms make the results worse espeially at late time.In the seond part of analysis following a lassial turbulene study, we ob-serve the time dependent Atwood number A(t) and renormalized bubble growth rate�ren,di�erent types of mixing behaviors from the average moleular mixing fration70



�. Briey, the grid level averaged mixing properties (related to �) are shared amongexperiments, traked and untraked simulations, while the extreme values (represent-ing unmixed portions of the two uid mixture, related to A(t) and �ren) are morepronouned in the traked simulations than in the untraked ones.We perform the spetral analysis to the veloity, density and kineti energy. Thespetral analysis of energy gives us a good agreement with Kolmogorov �5=3 energydeay law. In the spetrum we see the typial up-turn at large wave numbers, whihindiates the need of a subgrid model.We introdue and derive a basi subgrid model to adjust the up-turn. To dothis we use Smagorinsky type of subgrid model. We expet that the magnitude ofthe residual terms is small by onsidering the small size of the up-turn. With thehypothesis that our subgrid Shmidt number SSGS is 1, we have the result that thesubgrid mass di�usion is negligible.
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Chapter 6Future Work
In this hapter, on-going and future work is briey presented.We extend the turbulent ow analysis in Chapter 4 to another problem whihis Rihtmyer-Meshkov instability (RM) in ylindrial geometry. Rihtmyer-Meshkovinstability ours when the interfae between two uids with di�erent densities isimpulsively aelerated by the passage of a shok.The 2D RM simulations were veri�ed by a mesh onvergene study. We also dealwith simulations with two phases whih are Tin as an exterior heavy uid and Luiteas an interior light uid. These two phases are initially separated by a perturbedirular interfae whih an be expressed by sine waves and the shok is moving inwardfrom outer irular boundary. The initial Cartesian oordinates are transformed to apolar oordinates for the data analysis.In this work, the dependene of the interfaial length on the omputational meshsize and visosity is observed. We also perform spetral analysis and the e�et ofShmidt number (S) on the energy spetrum. It is known that the energy spetrumdeays faster in the dissipation region as the Shmidt number is smaller. However,it might not be seen in our simulations in ase that the resolved sale uto� liessomewhere in the inertial range whih result in showing independene of S. To see72



the e�et of S, the implementation of the strethed-vortex subgrid model might beneeded, whih was proposed by Pullin et al. [27℄
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