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Abstract of the Dissertation

Scheduling divisible loads for parallel and real time systems,
distributed networks, and computational grids

by

Taeyoung Lim

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2007

In this dissertation, four scheduling problems in parallel video processing systems,

real-time systems, networks, and computational grids are considered.

Communication delay in a processor network is very critical to the throughput of a

parallel video processing system. The interaction of communication and computation

is examined here in a number of contexts. First, a simultaneous distribution and

collection method (SD) from the root processor to children processors via a multi-

port switch network is proposed. For the proposed mechanism, we analyze the video

encoding time and derive a closed-form solution for a multi-port star interconnect

network. The results show that the total encoding time is significantly faster than a

previous method, Parallel Interlaced (PI) [1], based on a bus network. In addition,
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we achieve scalability in terms of the number of processors because of the concurrent

communication.

The deleterious impact of communication on computation for computers is one of

the factors that affect performance of computers in a network. A scheduling method

considering this interference of communication on computation is proposed in detail

and analyzed here from the perspective of divisible load theory in heterogeneous net-

works and grids. Each processor is divided into two virtual processors with different

computing speeds according to the degree of overlapping communication. These two

virtual processors are used to obtain one equivalent computing speed. Through this

process we obtain the closed-form solution for the processing time considering the

effect of communication on computation. In addition, interference aware schedul-

ing is extended from sequential distribution to simultaneous distribution and applied

to parallel video processing. A concurrent scheduling method considering commu-

nication interference (IA-COMP) reflects more realistic and accurate results in this

specific application.

It will be increasingly common that multiple source nodes originate workload to

sink nodes in very large heterogeneous networks. A multi-source scheduling scheme

through network partitioning is proposed. All sink nodes are involved in only one

partition associated with a single source node. In partitioning the network, the sum

of computing speeds of the sink nodes in each partition should be similar to one

another for the initial network partition. Each partition is evaluated by running

an optimal single-source sequential load distribution scheduling method whenever

network partitioning is repeated. After every evaluation, new partitions could be
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constructed by transferring sink nodes from one partition to another or rearranging

the sequence of sink nodes receiving load from the source node within a partition.

We iterate this partitioning and evaluation via a genetic algorithm until a globally

near-optimal solution is approached or obtained.

It has been increasingly important to provide performance guarantees to deadline-

constrained jobs originating from large scale experiments. To satisfy the deadline of

workloads, computing and communication capability should be guaranteed and each

workload should be estimated through a schedulability test before submission. In

doing so, divisible load theory (DLT) has recently been extended with real-time char-

acteristics, where the job with the earliest deadline is the first scheduled. However,

such a method still is limited to only a homogeneous cluster environment. In this pa-

per, scheduling heuristics involving network partitioning are proposed for large scale

heterogeneous Grid/cluster systems. The minimum number of nodes obtained from

a homogeneous model is used in two-level schedulability test of a job in the original

heterogeneous system. The entire network is fragmented into small partitions, where

the minimum number of children nodes are selected to be just large enough to sat-

isfy the deadline of each job for each partition. Intensive simulations show that our

proposed real-time scheduling method via DLT provides not only feasible solutions

applicable to a heterogeneous system, but shows also good performance than in terms

of the rejection ratio of jobs.
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Chapter 1

Introduction

1.1 Background

In this dissertation, four outstanding scheduling problems and their performance mod-

elings are considered.

First, in parallel video processing, various scheduling algorithms to assign video

frames to multiple processors have been presented to find both the maximum process-

ing throughput and I/O utilization. Load (video frame) partition schemes through

DLT (divisible load theory) are shown to obtain a good performance in parallel video

encoding [5]. However the scheduling algorithms based on sequential communication

have inherent limitations on communication in terms of throughput and the optimal

number of processors. Concurrent scheduling algorithms on concurrent communi-

cation and a star and tree network topology are investigated using divisible load

analysis [6, 7], since the star and tree topology is a good solution for master-worker

style of parallel applications with independent divisible tasks.
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Second, when both communication and computation on each processor are exe-

cuted simultaneously, the computing capability experiences degradation due to the

impact of communication on the same processor in networks and grids. It is meaning-

ful to model communication interference on computation with estimating computing

power more accurately in the presence of interference in networks and grids.

The third problem involves very large heterogeneous networks. Here, it will be

increasingly common that multiple source nodes create and originate large amounts of

data (workload) and any sink node can receive data from one of a number of source

nodes. For high energy and nuclear physics experiments, large amounts of data

originate from distant experiments. Such data requires a high computational power

and network based computing platforms in these types of experiments. Minimizing

the time to process workload originated from various sources presents a great challenge

that could give rise to a range of new applications.

Finally, it has been also important to provide performance guarantees to deadline-

constrained jobs originating from large scale experiments. To efficiently cope with

these heavy workloads, divisible load theory (DLT) with real-time characteristics has

been recently important in a heterogeneous grid/cluster systems, where the job with

the earliest deadline is first scheduled. grid systems are inherently heterogeneous,

since the different nodes in each site are connected to one another with different link

speeds. A major trend is that cluster systems are also heterogeneous in the computing

capability as well as in the link speed, the so-called heterogeneous cluster systems [8].
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1.2 Motivation

����� ���� �

���	
���	�

��


����

���� �����������

������� ! "#$%Tier 2

Tier 0

���	&���	' (��) *

Tier 1

+,"+ � -./!0�1!�2�

3(3( 3(Tier 3

���� 4��5�6��7
(89��:

���� ����������� ���� �����������

;6�7���� ����

Figure 1-1: A multi-source heterogeneous Grid/cluster network configuration of the
ATLAS project.

For high energy and nuclear physics experiments, large amounts of data origi-

nate from distant experiments. For example, a couple of universities in tier-2 sites

should connected through a couple of WAN (wide area network)s to BNL (Brookhaven

National Laboratory) in the ATLAS project [9, 10] as shown in Fig 1-1. In this con-

figuration, large bulk data can be delivered from multiple sites in tier-1 to a site in

tier-2. Also, each site can have heterogeneous cluster systems with different comput-

ing capability and there is a heterogeneous computing and link capability even within

each cluster system. Specifically, the hardware of RACF (RHIC ATLAS Computing

Facility) of STAR project consists of a combination of commodity-based processing

servers, enterprise class UNIX servers and highly-specialized mass storage systems

connected together by a high-speed network infrastructure. The RACF is an exam-
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ple of heterogeneous system with currently over 4000 processors and different link

speeds. Such data require a high computational power and network based computing

platforms. To satisfy the deadline of each job, sophisticated scheduling algorithms

with respect to deadlines are needed. All of these recently emerging platforms require

a sophisticated scheduling strategy to efficiently make use of distributed computers,

high-speed networks and storage resources in terms of deadlines.

1.3 Contribution

For concurrent scheduling in parallel video processing, three contributions are made.

First, a concurrent scheduling policy is significant for showing not only a more efficient

scheduling method for parallel video encoding but also good scalability in the number

of processors. Second, the extensive discussion here relating various interconnection

topologies to this work should be of interest to other researchers. Third, the choice of

scheduling policy has a greater impact on performance than whether or not the root

node does computation for the network considered in this work. All in all divisible

load modeling as it has been developed for parallel video processing by researchers

including ourselves, has been shown to be a useful and cost effective tool for system

performance prediction.

As for interference aware scheduling with sequential distribution in a tree topology,

the following contributions are made: First, interference aware (IA) scheduling can

be analytically modeled. Optimal load allocations, speedup and makespan are found

in closed form equation. Second, interference aware scheduling produces a realistic
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modeling with a larger makespan and smaller speedup than modeling that does not

take communication interference into account. Third, the results and policies with a

tree topology here can be extended to other scheduling policies and interconnection

topologies.

For multi-source scheduling, a specific network partitioning technique via the use

of a genetic algorithm is proposed. The network is fragmented into several partitions

matching the number of source nodes. Computation in each partition is independently

performed on a single source and multiple sink nodes. That is, a complicated problem

for multi-source scheduling is simplified into several single source scheduling problems

after network partitioning. Through this algorithm we can obtain the effect of the

concurrent communication with simultaneous distribution policy.

For deadline-constrained scheduling, real-time modeling from the perspective of

DLT (divisible load theory) and application specific scheduling algorithms are pro-

posed in a fully heterogeneous Gird/cluster systems. The minimum number of nodes

obtained through a homogeneous model to satisfy the deadline of a job is applied to

network partitioning. Through application specific scheduling it is possible to adapt

the sequence of load distribution to the characteristics of a job. To enhance network

performance guarantee for deadline constrained jobs, every job is scheduled with DLT

(divisible load theory) and the EDF (earliest deadline first) policy where each job is

sorted in the order of the earliest deadline to be evaluated if each job is schedulable

within its deadline.
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1.4 Outline

In this dissertation, four kinds of different scheduling methods, concurrent scheduling

and interference aware scheduling, multi-source scheduling, and deadline-constrained

scheduling algorithms are proposed for parallel system and fully heterogeneous grid

networks. These algorithms deal with concurrent communication in parallel video

processing, communication interference on processing, workloads originating from

multiple sources, and deadlines in real-time systems, respectively. The primary net-

work is a fully heterogeneous tree network which is commonly used in parallel/cluster

systems and grid networks.

In chapter 2, a simultaneous distribution scheduling method for parallel video

processing based on multi-port communication is proposed. Here we discuss an

efficient scheduling mechanism, SD (Simultaneous Distribution), for parallel video

processing which distributes raw video loads and collects encoded video results con-

currently among the root (control) processor and each child worker processor in a

star topology with a multi-port interconnect. We consider two cases: one is that

load is assigned to the root processor (SD-COMP) and the other is that no load is

assigned to the root processor (SD-NO). For the two cases, we obtain closed-form

solutions for the total video processing time, and then compare these results in terms

of the performance under the optimal number of processors which is proposed for

previous scheduling algorithms, such as PI and PR [1, 11]. Both of the two cases

using our strategies show much better performance in video processing and several

times less finish time for the parameters we use than those under the optimal number
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of processors of previous methods, such as PI and PR. From the practical point of

view, feasible hardware interconnect networks, such as fat-tree or a multi-port tree

network, are investigated and proposed for concurrent scheduling methods in parallel

video processing.

In chapter 3, we consider communication interference on computation and propose

Interference aware (IA) scheduling method to realistically model sequential distrib-

ution in a tree network. It is a very common situation in networks and grids that

both communication and computation on each processor are executed simultaneously.

When the impact of communication in sending or receiving load is considered, the tra-

ditional divisible load sequential distribution model should be modified. In this paper

we analytically develop an optimal scheduling policy in the presence of interference

of communication on computation for the sequential distribution and simultaneous

start scheduling method which is one of traditional DLT (divisible load theory) mod-

els [12,13]. This particular load distribution policy is chosen for illustrative purposes-

certainly other scheduling policies could be modeled in an interference aware context.

In addition, the interference aware scheduling method considering concurrent com-

munication (IA-COMP) is proposed and applied to parallel video processing. The

IA-COMP method shows a little bit slow finish time due to the communication inter-

ference than the SD-COMP method, but the IA-COMP is found to be more realistic

and accurate modeling.

In chapter 4, a multi-source scheduling scheme through network partitioning is

proposed. All sink nodes are involved in only one partition associated with a single

source node. In partitioning the network, the sum of computing speeds of the sink

7



nodes in each partition should be similar one another for the initial network partition.

Each partition is evaluated by running an optimal single-source sequential load dis-

tribution scheduling method whenever network partitioning is repeated. After every

evaluation, new partitions could be constructed by transferring sink nodes from one

partition to another or rearranging the sequence of sink nodes receiving load from

the source node within a partition. We iterate this partitioning and evaluation via a

genetic algorithm until a globally near-optimal solution is approached or obtained.

In chapter 5, divisible load theory (DLT) has been extended with real-time char-

acteristics, where the job with the earliest deadline is the first scheduled. To satisfy

the deadline of workloads, computing and communication capability should be guar-

anteed and each workload should be estimated through a schedulability test before

submission. In this chapter, deadline-constrained network partitioning scheduling is

proposed for large scale heterogeneous grid/cluster systems. The minimum number

of nodes obtained from a homogeneous model is used in testing the schedulability of a

job in the original heterogeneous system. The entire network is fragmented into small

partitions with the minimum number of processors for each job with deadline con-

straint, where the minimum number of children nodes are selected to be just enough

to satisfy the deadline of each job.
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Chapter 2

Concurrent Scheduling

In parallel video processing, various scheduling algorithms have been presented such

as PI (parallel interlaced) and PR (parallel recursive) which can assign video frames

to multiple processors. For these two algorithms other researchers [1, 11] found both

the maximum processing throughput and I/O utilization, and the optimal number

of processors for each of algorithms under a bus architecture, using divisible load

analysis [6, 7]. However the scheduling algorithms have inherent limitations of a bus

architecture on communication in terms of throughput and the optimal number of

processors.

A scheduling method considering result collection as well as load distribution

overheads was first proposed by Barlas [14] in modeling the divisible load like video

processing and database query processing. Those applications are based on architec-

ture which shares a single communication channel and which is modeled on a tree

topology which consists of the single root node and several children nodes. In [5],

divisible load like video frames are considered with respect to software functional-

9



ity to minimize the processing time of the video encoding on a bus architecture.

Each video frame is divided into 16 x 16 blocks and each block is distributed to chil-

dren processors. Since software functionality like motion estimation demanding much

time is performed for each divided block on each child processor, this load partition

scheme obtains a good performance in parallel video encoding. Results and problems

in scheduling divisible load on a star and tree network (including a bus architecture)

were covered in [15]. The authors show that the star and tree topology is a good

solution for master-worker style of parallel applications with independent divisible

tasks.

Here, we propose an efficient scheduling mechanism, SD (Simultaneous Distrib-

ution), for parallel video processing which distributes raw video loads and collects

encoded video results concurrently among the root (control) processor and each child

worker processor in a star topology with a multi-port interconnect. Note that simul-

taneous distribution was proposed by Piriyakumar and Murthy [16] and analyzed by

Hung and Robertazzi [17]. We consider two cases: one is that load is assigned to the

root processor and the other is that no load is assigned to the root processor. For the

two cases, we obtain closed-form solutions for the total video processing time, and

then compare these results in terms of the performance under the optimal number

of processors which is proposed for previous scheduling algorithms, such as PI and

PR [1,11]. Both of the two cases using our strategies show much better performance

in video processing and several times less finish time for the parameters we use than

those under the optimal number of processors of previous methods, such as PI and

PR. In terms of the number of scalable processors, our proposed method, SD, reaches

10



up more than twice the optimal number of processors of PI or PR .

Of practical interest is that we propose a multi-port star topology among the

root (control) processor and children worker processors. This means that the control

processor has ports to each of the children processors for I/O communication. One of

the reasons to select the multi-port star topology is that there is only communication

between the root processor and each of children processors without communication

among children processors. The other aspect is that the star topology is cost effective

model for parallel video processing and relatively simple to implement compared with

other complex architectures, such as 2D meshes, or Hypercubes.

We know that when the number of processors is small, the factors that affect the

total processing time are the method to distribute and collect load as well as the root

processor participation in computation. As the number of processors increases, all

of the simultaneous scheduling methods (SD) show better performance than each of

the sequential scheduling methods, such as PI or PR, because all of the SD methods

have good scalability. However when the number of processors is 30, the performance

improvement of the SD-COMP method (SD with computation) is 6 times as much as

that of the sequential distribution method, PI. As for the SD-NO (SD with NO com-

putation) method, the improvement of the SD-COMP with respect to SD-NO is just

1.3 times better. This is because the most critical part in efficient load distribution

is how to distribute and collect load rather than whether or not the root processor

involves load computation, when the number of processors is large enough to process

the whole load.
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2.1 Concurrent Communication In Parallel Video

Processing

2.1.1 Interconnect Topology
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Figure 2-1: Block diagram for multi-port interconnection network.

In this section, a one-to-many interconnect is considered, which consists of one

root (control) processor with multiple ports and m children processors. The root

(control) processor distributes raw video data (load) and collects the encoded video

data (results) to/from each child processor simultaneously via multiple ports. While

the children processors encode the video, the root processor waits for the encoded

video data from each child processor.

From the perspective of hardware implementation, the above interconnect can

be logically modeled on various topologies such as a star, fat tree, hypercube, and

mesh/torus topology. For a hypercube topology, the simultaneous use of links was

proposed to obtain faster communication and it was found that there is no need to

use all the processors to obtain an optimal solution. In this hypercube topology

12



each processor needs multiple ports, for example, 8 ports in the Intel iPSC/860,

to concurrently communicate each other [18]. For a 3D-mesh topology, we can use

multiple links to simultaneously communicate, but its ports are constrained 1 to 6 in

commercially available computers, such as the Cray X3D. Similarly in the Cray XT3

computer using a 3D-torus topology, each processor has 6 ports [19,20].

The above hypercube and 3D-mesh, 3D-torus interconnects are not appropriate for

parallel video processing using our methods as all of the processors in the networks

have multiple ports. Our star topology requires each child processor to have only

one port. The root processor in our scheduling methods is the only processor to

have multiple ports. Therefore we take into account more suitable solutions for our

scheduling method based on a master-slave structure and analyze the complexity,

feasibility, and cost-effectiveness in terms of the implementation point of view.

Topology # of Node # of Links Degree Network
Diameter

Model

Hypercube N = 2n nN
2 n n Intel iPSC

3D-Mesh N = p(3) 3p2(p− 1) 4 6 3(p-1) Cray X3D

3D-Torus N = p(3) 3p(3) 6 3bp
3c Cray XT3

Binary Fat-
tree

N = 2h − 1 N-1 3 2(log2 N − 1) CM5

Star N N-1 N-1 2 Cray XD1
Multi-port
Memory

N N-1 N-1 2 IBM RS6000

Optical
BUS

N N 1 1 Cray T90

Table 2.1: The Properties of topologies. ′n′: a dimension of Hypercube, ′p′: the
number of nodes along one edge of Mesh and Torus, ′h′: the height of the binary tree.
(K.Hwang et al. [2], Duato et al. [3], http : //www.netlib.org/benchmark/top500
[4]).

In previous work, we proposed a method which has output buffers in the root
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processor to be used for output ports as a way to implement simultaneous commu-

nication [17]. This can be implemented via multi-port memory as long as each child

processor has a different memory partition in the root processor.

In a star topology, the root processor uses multiple ports with a direct intercon-

nect to simultaneously communicate with children processor. For example, there are

switching devices which support 12 communication ports per chassis and can be ex-

panded to several hundreds of processors in commercially manufactured system like

Cray XD1 [20]. In this star topology the root node only has multiple ports and so it

can be suitable for parallel video processing applications in terms of cost-effectiveness.

This is because resources like the frame buffer in which raw and encoded image data

are stored, are placed at the root node and only accessed through the root processor

by all children processors in a star topology. The root node sends and receives data

to or from a port of each child and then simply extracts or stores the data from the

port to the frame buffer. Extending the star topology means increasing the fan-out of

the root node. This makes the growth complexity one, which is better than most of

other topologies such as 3D-Mesh, 3D-Torus, and Hypercube. The root node has to

be modified in order to cope with an extra node, while all the other nodes can remain

unchanged. A disadvantage of this topology lies in the fact that the root processor can

become a communication bottleneck. However, since there is little communication

among children processors in our proposed scheduling methods, this communication

bottleneck does not significantly affect the overall performance.

In a fat tree topology, processors are located at the terminal nodes and switches

are at the internal nodes. Transmission bandwidth in a fat-tree is increased by adding
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more links as nodes moves up the tree close to the root. For example, to alleviate the

bottleneck of nodes close to the root node the commercial model CM5 used a four-

way interconnect for each node to have four children nodes. If we only consider the

performance, a fat-tree topology can be a good alternative to our methods. However,

with respect to cost-effectiveness this topology requires more switches and links to

connect processors than those of a star topology.

On the other hand, we can consider a optical bus topology to satisfy the simultane-

ous communication on the bus architecture in implementing our parallel video process-

ing application. For example, the Jitney Optical Bus with 20 channels (500Mb/s/ch)

has been designed for high speed parallel computing and successfully demonstrated

in IBM AS/400 and RS6000 power parallel systems test-beds [21]. Meanwhile, as

system frequencies move into from the MHz range to the GHz range, shared buses

are generally migrated into point-to-point switches. Implementing switches within a

chip limits the number of ports per chip to 6 or 8 ports. Currently, optical intercon-

nect is generally used in packet-switched point-to-point network topologies, such as

3D Torus and fat-tree. Nevertheless, the models with reconfigurable optical buses are

likely to become feasible architectures in the near future [22].

In summary, although there are tradeoffs, star and tree architectures are most

feasible for our proposed scheduling methods in video processing from the cost-

effectiveness point of view.
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2.1.2 Scheduling Scenario

We have two scenarios for simultaneous scheduling. The first scenario is for the root

processor to only distribute and collect load without computation. This is because we

try to compare its performance with the sequential method in previous papers [3, 4].

Here we assume that our multi-port star network is homogeneous, which means all

of the children processors are identical in terms of the computing speed. In addition,

the communication speed between the root processor and each child processor is

also identical. The other case is for the root processor to do both communication,

such as load distribution and result collection, and some of the computation (video

encoding). Here we assume that all of the children processors are homogeneous in

terms of computing speed and communication speed as in the previous scenario, but

the root processor speed can be different from the children’s speed.
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Figure 2-2: The simultaneous load distribution in a tree network.

In Fig. 2-2, the value of ′k′ is defined as the ratio of the amount of result (an
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encoded video) obtained from each child processor to the amount of load sent (an

original raw video). That is, the fraction of load may or may not be assigned to

the root processor. If it is assigned, the root processor not only distributes load

and collects results to/from each child processor, but also joins computation itself.

Otherwise, the root processor just distributes and collects load. Here ′k′ is the ratio

of the result received to the original load sent.

k =
result received

load sent

We have the three cases as follows:

• k = 1, if the amount of load sent is same as the amount of result received.

• k < 1, if the amount of load sent is greater than the amount of result received.

This case is typical in digital video processing due to compression.

• k > 1, if the amount of load sent is less than the amount of result received.

2.1.3 Notation

The variables we will use in the following are based on work in the papers [6, 7, 11].

αi : The load fraction assigned to the ith link-processor pair (where i = 0, 1, 2, . . . , m).

wi : The inverse computing speed at the ith processor (where i = 0, 1, 2, . . . , m).

zi : The inverse communication speed on the ith link (where i = 0, 1, 2, . . . , m).

Tcp : Computing intensity constant.

Tcm : Communication intensity constant.
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Tf,m : The finish time. Time at which each processor completes computation.

Then αiwiTcp is the time to process the fraction i of the entire load on the ith

processor. Note that the units of αiwiTcp are [load] x [time/load] x [dimensionless

quantity] = time. Likewise, αiziTcm is the time to transmit the fraction i of the entire

load over the ith link. Our goal is to propose more efficient scheduling methods and

analyze the solution in parallel video processing through concurrent communication.

2.2 Simultaneous Distribution Scheduling (SD)

We assume that the root processor has a faster computing speed than that of the

children processors, while all of the children are identical in terms of computing

speed and link speed. We consider the case of a homogenous processor network,

which means all children processors except the root processor are identical. ; the

inverse processor speed is w1 = w2 = . . . = wm = w and the inverse network speed is

z1 = z2 = . . . = zm = z.

2.2.1 No computation on the root processor (SD-NO)

In this strategy the root processor does not join computation by itself, but just dis-

tributes load and collects results to/from the children processors. The timing diagram

for concurrent scheduling is shown in Fig. 2-3, which distributes load simultaneously

to the children processors. Here the root processor does not execute computation in

itself, but just distributes and collects load. In all of the scheduling policies to be
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considered we force all activities to terminate at the same time instant, as otherwise

load could be redistributed for a better solution [12, 13]. From the timing diagram

for SD-NO, as shown in Fig. 2-3, the equations for SD-NO scheduling are obtained

as follows.

α1zTcm + α1wTcp + α1kzTcm = α2zTcm + α2wTcp + α2kzTcm (2.1)

α1 =
(z + kz)Tcm + wTcp

(z + kz)Tcm + wTcp

α2 = α2 (2.2)

From equation (2.2), we deduce as follows:

α1 = α2 = α3 = . . . = αm (2.3)

The normalization equation that all of the load fractions is summed up 1 is

m∑
i=1

αi = 1 (2.4)

From equation (2.3) and (2.4), we obtain

α1 ×m = 1, α1 =
1

m
(2.5)
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Figure 2-3: The timing diagram for the SD-NO method.

αm ×m = 1, αm =
1

m
(2.6)

The total processing time for the entire load, Tf,m is achieved as

Tf,m = α1zTcm + α1wTcp + α1kzTcm = α1(1 + σ + kσ)wTcp (2.7)

where σ =
zTcm

wTcp

From the above equation (2.5), the total processing time, Tf,m can be rewritten as

follows:

Tf,m =
(1 + σ + kσ)

m
wTcp (2.8)
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Our finding is that the total processing time decreases in inverse proportion to

the number of children processors.

2.2.2 Computation on the root processor (SD-COMP)

In the case load is assigned to the root processor and some computation is done on

the root processor itself. As for the root processor, the processor speed is greater than

those of children processors, which means the inverse value of the root processor, w0,

is less than w.
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Figure 2-4: The timing diagram for the SD-COMP method.

The SD-COMP scheduling method is illustrated in Fig. 2-4, where load is si-

multaneously distributed to the children processors and the root (control) processor

computes load assigned to itself as well as distributes and collects load. From the
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timing diagram in Fig. 2-4, the equations for the SD-COMP method, in which the

root processor has load assigned, are obtained as follows:

α0w0Tcp = α1z1Tcm + α1w1Tcp + α1kz1Tcm (2.9)

α1z1Tcm + α1w1Tcp + α1kz1Tcm = α2z2Tcm + α2w2Tcp + α2kz2Tcm (2.10)

. . .

αm−1zm−1Tcm + αm−1wm−1Tcp + αm−1kzm−1Tcm

= αmzmTcm + αmwmTcp + αmkzmTcm (2.11)

The normalization equation is different from the previous one in the SD-NO

method, in that the load fraction to the root processor, α0 is added as follows

α0 + α1 + α2 + . . . + αm = 1 (2.12)

From equation (2.9),

α0 =
[(z1 + kz1)Tcm + w1Tcp]

w0Tcp

α1 =
1

γ1

α1 (2.13)

where γ1 =
w0Tcp

[(z1 + kz1)Tcm + w1Tcp]
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From equation (2.11),

αi =
[wi−1Tcp + (zi−1 + kzi−1)Tcm]

wiTcp + (zi + kzi)Tcm

αi−1 = qiαi−1 (2.14)

where qi =
[wi−1Tcp + (zi−1 + kzi−1)Tcm]

wiTcp + (zi + kzi)Tcm

, i = 2, 3, . . . m

Equation (2.14) can be represented as

αi = qiαi−1 = (
i∏

l=2

ql)α1 (2.15)

i = 2, 3, . . . m

From equations (2.9),(2.11), the normalization equation (2.12) becomes

1

γ1

α1 + α1 + α2 + . . . + αm =
1

γ1

α1 + α1 +
m∑

i=2

αi = 1 (2.16)

[
1

γ1

+ 1 +
m∑

i=2

(
i∏

l=2

ql)]α1 = 1 (2.17)

α1 =
1

[ 1
γ1

+ 1 +
∑m

i=2(
∏i

l=2 ql)]
(2.18)

From the timing diagram, Fig. 2-4, we can obtain the finish time with m+1 processors,
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Tf,m, as follows:

Tf,m = α0w0Tcp =
1

γ1

α1w0Tcp (2.19)

While the finish time with only one processor, Tf,0, is

Tf,0 = α0w0Tcp = w0Tcp (2.20)

The speed-up, which is the ratio of job finish time of one processor to that on

m + 1 processors, can be obtained as:

Speedup =
Tf,0

Tf,m

= γ1 × 1

α1

= 1 + γ1[1 +
m∑

i=2

(
i∏

l=2

ql)] (2.21)

Since
∏i

l=2 ql can be simplified as [w1Tcp+(z1+kz1)Tcm]

wiTcp+(zi+kzi)Tcm
, the speed-up, Speedup in

equation (2.21)and the finish time, Tf,m in equation (2.19)can be derived as follows:

Tf,m =
1

γ1

α1w0Tcp =
w0Tcp

1 + γ1

(
1 +

∑m
i=2

[w1Tcp+(z1+kz1)Tcm]

wiTcp+(zi+kzi)Tcm

) (2.22)

Speedup = 1 + γ1

[
1 +

m∑
i=2

[w1Tcp + (z1 + kz1)Tcm]

wiTcp + (zi + kzi)Tcm

]
(2.23)

For a special case, a homogeneous network, all of children processors have the same

processing speed and all of the links have the same transmission speed, the finish
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time, Tf,m is

Tf,m =
w0Tcp

1 + γ1[1 + (m− 1)]
=

w0Tcp

1 + γ1 ×m

=
w0Tcp

1 + m×
[

(1+K)zTcm+wTcp

w0Tcp

]

=
w0Tcp

1 + m× [(1 + K)σ∗ + q∗]
(2.24)

where γ1 is from (2.13), σ∗ = zTcm

w0Tcp
, and q∗ = w

w0
. From (2.21), speed up for a

homogeneous network (all children processing speed and all link speed are identical)

is obtained as follows:

Speedup =
Tf,0

Tf,m

= 1 + γ1[1 +
m∑

i=2

1]

= 1 + γ1 ×m (2.25)

Since the inverse computing speed, w and the inverse communication speed, z is

identical among all processors and links in homogeneous network respectively, the

value of qi from (2.14) not only becomes one, but the value of
∏i

l=2 ql is also one. It

can be seen that the value of speedup is linearly related to the number of processors

in a simultaneous distribution and collection method.
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Figure 2-5: The finish time versus the number of processors for SD-NO, PI and PR
load scheduling methods.

2.3 Performance Analysis And Comparison

2.3.1 Speedup of the SD-NO method

In this section, for the SD-NO (Simultaneous Distribution with NO computation)

scheduling method, we assume that the root processor is identical to each child proces-

sor in terms of computing speed. The root processor does not have load assigned to

itself, but just distributes and collects load to/from children processors, We consider

the same parameters as those of PI and PR in papers [1,11]. The inverse computing

speed of the processor, w, is 1.0, and the inverse communication speed, z, is 0.2. Both

Tcp and Tcm are 1.0. Three values of the ratio, k, are considered: 0.2, 1.0, and 1.8.

In Fig. 2-5 (a), our load scheduling mechanism, SD-NO shows a much better

performance than PI and PR. When the number of processors is 12, which is the

optimal number of the processors in PI, the SD-NO method shows more than 2 times
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less processing time as PI and PR. Especially when we consider more processors

added in the network, for example, 30, the difference is much larger, which is above 6

times for PI. This means our mechanism, SD-NO, is more scalable and cost effective

in terms of the computing speed. When the number of processors increases from 12

to 30, the performance of the system increases almost 6 times, while the number of

processors only increases 2.5 times.

In Fig. 2-5 (b), we see that for all three cases of the ratio, k, where k < 1, k =

1, k > 1, our mechanism shows a much better performance than that of PI. In terms of

the optimal number of processors, SD-NO shows almost 2 times better performance

than that of PI for three ′k′ values. When we consider processor scalability, for a

number of processors of 30, SD-NO achieves much better performance than that of

PI. That is more than 10 times, 8 times, and 6 times improvement for each of k > 1,

k = 1, k < 1.

2.3.2 Speedup of the SD-COMP method

In this section, for the SD-COMP (Simultaneous Distribution with Computation)

scheduling method, we assume that the root processor is different from the children

in terms of computing speed and has load to compute itself. So the root processor

not only distributes and collects load to/from children processors, but also computes

load. The ratio of load received to load sent, k, is chosen as 0.2, since we suppose the

case k is less than 1, as is usually the case for compressed results.

In Fig. 2-6 (a), we assume that the computing speed of the root processor for
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(b) The root processor is twice, 5 times, and
10 times as fast as a child processor.

Figure 2-6: The finish time versus the number of processors for SD-COMP, SD-NO,
PI, and PR load scheduling methods on a homogeneous network.

SD-COMP is twice as much as that of each child processor. That is the inverse

computing speed of the root processor, w0, is half of that of each child, ′w′. We see

that SD-COMP method is continuously faster for SD-NO method, and much faster,

for example more than 6 times, for PI and PR method up to the number of processors,

30. In terms of processor scalability, SD-COMP has a more improved result. When

the number of processors increases from 12 to 30, the performance of SD-COMP goes

up 2.24 times to 6 times as fast as respectively that of PI. However, SD-COMP and

SD-NO method shows similar performance and good scalability.

From Fig. 2-6 (b), we consider three cases of computing speed of the root proces-

sor for SD-COMP.Those are twice, 5 times, and 10 times as fast as that of each

child processor. When the number of processors is small, for example 2 to 5, the

performance of the SD-COMP method is much better than the SD-NO, PI, and PR
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methods, because the root processor of the SD-COMP method participates in com-

putation itself, involving around 20% to half of the whole load. While the number of

processors increases to 12, all of the SD methods show 2.4 times, 3 times, 4 times,

5 times improvement in the processing time irrespective of load assigned to the root

processor. As the number of processors increases up to 30, all of the SD methods

show still better performance than the PI and PR methods, because all of the SD

methods have good scalability in the number of processors. However when the num-

ber of processors is 30, the performance improvement of the SD-COMP is small, just

1.3 times, against the SD-NO method as compared to 6 to 8 times against PI and PR.

One point to note is that when the number of processors is small, it is the method to

distribute load as well as the root processor speed that is important to total process-

ing time. The other point is that when the number of processors increases enough,

the most critical part is the method to distribute and collect load simultaneously or

sequentially rather than whether load is assigned to the root processor.

This work is meaningful for showing not only a more efficient scheduling method

for parallel video encoding, but also good scalability in the number of processors.

2.4 Conclusion

This work leads to the following conclusions:

• This work is meaningful for showing not only a more efficient scheduling method

for parallel video encoding but also good scalability in the number of processors.

• This work is novel in proposing a method of modeling interference aware com-

29



putation that leads to more realistic results.

• The extensive discussion here relating various interconnection topologies to this

work should be of interest to other researchers.

•We find that the choice of scheduling policy has a greater impact on performance

than whether or not the root node does computation for the network considered in

this work.

• Finally many factors influence performance results obtained through mathe-

matical (divisible) modeling including scheduling policy, interconnection topology,

memory hierarchy, fixed communication delays, and the potential use of front-end

processors. Most papers, like this one, consider a small number of these factors for

reasons of space, tractability and novelty but the most accurate modeling would take

most if not all of these factors into account.

All in all divisible load modeling as it has been developed for parallel video process-

ing by researchers including ourselves, has been shown to be a useful and cost effective

tool for system performance prediction.
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Chapter 3

Interference Aware Scheduling

In a situation in networks and grids that both communication and computation on

each processor are executed simultaneously, the computing speed experiences degra-

dation due to the impact of communication on the same processor. Here we propose

a scheduling method considering communication interference, so called , interference

aware (IA) scheduling, and develop analytically an optimal scheduling policy in the

presence of interference of communication on computation for the sequential distri-

bution. This particular load distribution policy is chosen for illustrative purposes-

certainly other scheduling policies could be modeled in an interference aware context.

When load is distributed to children processors, the computing speeds of the root

and children processors are degraded by communication (sending and receiving load).

Only during certain phases of load distribution and processing is communication ac-

tive. It is only during these times that computation is affected by communication.

We define the affected inverse computing speed, w
′
i, and the unaffected inverse com-

puting speed, w
′′
i separately. The load fraction for each processor, αi, is also divided
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into two portions, α
′
i for the affected load and α

′′
i for the unaffected load. From the

relationship among the processors in our model, we find 3m + 3 unknown variables

and 3m + 3 equations where m + 1 is the number of processors. We can reduce the

number of equations from 3m + 3 to m + 1 by using the equivalent processor concept

and techniques, which means that both the affected and unaffected processing capa-

bility of each processor can be merged into a single processor which has equivalent

processing capability.

3.1 Sequential Distribution Model and definition

In this paper sequential distribution and simultaneous start scheduling is investigated

under the interference of communication on computation in a heterogeneous single

level tree (star) topology.

3.1.1 Sequential distribution model for a heterogeneous tree

When the impact of communication in sending or receiving load is considered, the tra-

ditional sequential distribution model is slightly changed as in Fig. 3-1. The comput-

ing speed of each processor is decreased only when communication and computation

overlap. This means that the original inverse computing speed, wi, is changed into

w
′
i in case computation overlaps sending or receiving load. The load fraction to each

processor, αi, is divided into α
′
i for the affected computation and α

′′
i for unaffected

computation.
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Figure 3-1: Interference aware sequential load distribution in a tree topology.

3.1.2 Notation

αi : The load fraction assigned to the ith processor (where i = 0, 1, 2, . . . , m).

α
′
i : The load fraction assigned to the ith processor with communication (where

i = 0, 1, 2, . . . , m).

α
′′
i : The load fraction assigned to the ith processor without communication (where

i = 0, 1, 2, . . . , m).

wi : The inverse computing speed at the ith processor (where i = 0, 1, 2, . . . , m).

w
′
i : The inverse computing speed at the ith processor when sending or receiving load

(where i = 0, 1, 2, . . . , m).

w
′′
i : The inverse computing speed at the ith processor which is not affected by the

communication (where i = 0, 1, 2, . . . , m).
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weq
i : The equivalent inverse computing speed at the equivalent node, nodeeq

<i>, col-

lapsed from a single level tree rooted at node<i> (where i = 0, 1, 2, . . . , m).

zi : The inverse communication speed on the ith link (where i = 0, 1, 2, . . . , m).

Tcp : Computing intensity constant.

Tcm : Communication intensity constant.

Tf,m : The finish time (makespan). Time at which the root processor and m children

processors complete computation.

Tf,0 : The finish time. Time at which computation ends for a single root processor.

3.2 Interference aware scheduling (IA)

3.2.1 Timing Diagram for Sequential Distribution

The mechanism of interference aware scheduling via sequential load distribution and

simultaneous start is presented in Fig. 3-2. From this timing diagram, we obtain the

relationships among the processors. The following equations is used for this sequen-

tially distributed interference aware model. Since there are 3m+3 unknown variables

and 3m + 3 equations, we can deduce the corresponding closed-form solution. From

the seven basic equations we can define all of the relationships between processors.

First, the normalization equation consists of the sum of all load fractions assigned
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Figure 3-2: Timing diagram for IA (Interference Aware) sequential distribution and
simultaneous start.
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to the root processor and each child processor.

m∑
i=0

αi = 1 (3.1)

Each load fraction, αi, for each processor is fragmented into two load fractions: one

is α
′
i for the affected processor and the other α

′′
i for the unaffected processor.

αi = α
′
i + α

′′
i i = 0, 1, . . . , m (3.2)

The following equation comes from the relationship between the root processor and

the first child processor. The time to compute one fragmented load α
′
0 in the affected

part, using w
′
0, and load fragment α

′′
0 in the unaffected part, using w

′′
0 , of the root

processor should be equal to the time to distribute the load α1 to the child processor

1 and compute one of the fragmented loads, α
′′
1 , in the unaffected part, using w

′′
1 of

the child processor 1.

α
′
0w

′
0Tcp + α

′′
0w

′′
0Tcp = α1z1Tcm + α

′′
1w

′′
1Tcp (3.3)

The time to compute one of the fragmented loads, α
′′
0 in the unaffected part, using

w
′′
0 of the root processor should be equal to the time to compute one of fragmented

loads, α
′′
m in the unaffected part, using w

′′
m of the last child processor.

α
′′
0w

′′
0Tcp = α

′′
mw

′′
mTcp (3.4)
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The time to compute one of the fragmented loads, α
′
0 in the affected part, using w

′
0

of the root processor should be equal to the time to distribute the whole load to all

children processors except the load, α0, for the root processor.

α
′
0w

′
0Tcp =

(
m∑

i=1

αizi

)
Tcm (3.5)

The time to distribute the i-th load, αi over the i-th link to the i-th processor is equal

to the time to compute one of the fragmented loads, α
′
i in the affected part of the i-th

processor.

αiziTcm = α
′
iw

′
iTcp i = 1, 2, . . . , m (3.6)

Equation (3.7) says that the time to compute one of the fragmented loads, α
′′
i−1 in

the unaffected part of the i−1 -th processor is equal to the time to distribute the i-th

load, αi, to the i-th processor and compute one of the fragmented loads, α
′′
i in the

unaffected part of the i-th processor.

α
′′
i−1w

′′
i−1Tcp = αiziTcm + α

′′
i w

′′
i Tcp i = 2, 3, . . . ,m (3.7)

3.2.2 Analytical solution

From equations (3.2) and (3.6), one obtains

α
′′
i = αi − α

′
i i = 0, 1, . . . ,m (3.8)
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α
′
i =

(
ziTcm

w
′
iTcp

)
αi

= kiαi, ki =
ziTcm

w
′
iTcp

i = 1, 2, . . . , m (3.9)

Substitute equation (3.9) into (3.8)

α
′′
i = αi − kiαi = (1− ki)αi, i = 1, 2, . . . , m (3.10)

From (3.4) and (3.10)

α
′′
0 =

w
′′
m

w
′′
0

α
′′
m =

w
′′
m

w
′′
0

(1− km)αm, km =
zmTcm

w′
mTcp

(3.11)

From equation (3.5)

α
′
0 =

Tcm

w
′
0Tcp

(
m∑

i=1

αizi

)
(3.12)

Substitute equations (3.11) and (3.12) into equation (3.2)

α0 =
Tcm

w
′
0Tcp

(
m∑

i=1

αizi

)
+

w
′′
m

w
′′
0

(1− km)αm

= c0

(
m∑

i=1

αizi

)
+ r0(1− km)αm, c0 =

Tcm

w
′
0Tcp

, r0 =
w
′′
m

w
′′
0

(3.13)
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In equation (3.7) we replace α
′′
i with αi by using equations (3.10) and (3.11)

(1− ki−1)αi−1w
′′
i−1Tcp = αiziTcm + (1− ki)αiw

′′
i Tcp

= [ziTcm + (1− ki)w
′′
i Tcp]αi i = 2, 3, . . . , m (3.14)

We can simplify equation (3.14) in terms of αi

αi =
(1− ki−1)w

′′
i−1Tcp

[ziTcm + (1− ki)w
′′
i Tcp]

αi−1

= qiαi−1, i = 2, 3, . . . ,m

=

(
i∏

l=2

ql

)
α1

qi =
(1− ki−1)w

′′
i−1Tcp

ziTcm + (1− ki)w
′′
i Tcp

(3.15)

From equations (3.13)and (3.15) we can obtain α0 with respect to α1

α0 = c0

(
m∑

i=1

αizi

)
+ r0(1− km)αm

= c0

(
α1z1 + α1q2z2 + +α1q3q2z3 . . . + α1

m∏

l=2

qlzm

)
+ r0(1− km)α1

m∏

l=2

ql

=

[
c0

(
z1 +

m∑
i=2

(
i∏

l=2

ql)zi

)
+ r0(1− km)

m∏

l=2

ql

]
α1

= p0α1

p0 = c0

(
z1 +

m∑
i=2

(
i∏

l=2

ql)zi

)
+ r0(1− km)

m∏

l=2

ql (3.16)

Above in equation (3.16), we assume all of links speed are identical each other,
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Figure 3-3: The equivalent processor concept for IA (interference aware) scheduling.

which means zi = z, (i = 1, 2, . . . , m). Then p0 becomes p0 = c0

(
1 +

∑m
i=2(

∏i
l=2 ql)

)
z+

r0(1− km)
∏m

l=2 ql. The normalization equation also leads to

p0α1 + α1 +

(
m∑

i=2

i∏

l=2

ql

)
α1 = 1

α1 =
1

p0 + 1 +
(∑m

i=2

∏i
l=2 ql

) (3.17)

• Equivalent processor in a heterogenous tree topology

The virtual nodes of each processor are merged into one node which is identical to

the combined value of two virtual nodes of each processor with respect to processing

capability, as illustrated in Fig. 3-3. From the perspective of processing time, the sum

of the affected and unaffected processing capability of each processor is equal to that

of each equivalent processor, as the timing diagram in Fig. 3-4 indicates. This means

that each virtual processor tree is replaced with the single equivalent processor, weq
i

so that we can refine the closed-form solution and calculate the speedup for the whole

complex network. Here w
′
i, inverse computing speed, is affected by the interference
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Figure 3-4: Timing diagram of the equivalent processor for Interference Aware se-
quential distribution and simultaneous start scheduling.

of communication, w
′′
i is not affected for the ith processor.

From the timing diagram we can obtain

αiw
eq
i Tcp = α

′
iw

′
iTcp + α

′′
i w

′′
i Tcp (3.18)

Substitute equation (3.9) and (3.10) into the above equation (3.18), so that

αiw
eq
i = kiαiw

′
i + (1− ki)αiw

′′
i ,

weq
i = kiw

′
i + (1− ki)w

′′
i , i = 1, 2, . . . ,m (3.19)

Finally, we can obtain the closed-form solution for the finish time from the per-

spective of the equivalent processor by substituting α1.
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Finish time is

Tf,m = α1w
eq
1 Tcp

= α1[k1w
′
1 + (1− k1)w

′′
1 ]Tcp

=
[k1w

′
1 + (1− k1)w

′′
1 ][

p0 + 1 +
(∑m

i=2

∏i
l=2 ql

)]Tcp (3.20)

The speed-up is

Speedup =
Tf,0

Tf,m

=
w0Tcp

α1w
eq
1 Tcp

=
w0

weq
1

· 1

α1

=
w0

weq
1

·
[
p0 + 1 +

(
m∑

i=2

i∏

l=2

ql

)]
(3.21)

Equation (3.21) can be represented in the homogeneous network by the ratio of the

communication delay to the computation time of a unit load, that is the parameter

σ = zTcm

wTcp
.

σ
′
=

zTcm

w′Tcp

, σ
′′

=
zTcm

w′′Tcp

(3.22)

Then ki = ziTcm

w
′
iTcp

= zTcm

w
′
Tcp

of equation (3.9) becomes σ
′

and r0 = w
′′
m

w
′′
0

= w
′′

w
′′ of

equation (3.13) is one, because of the homogeneous network.
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So an equation for q from qi in equation (3.15) is obtained

1

qi

=
ziTcm + (1− ki)w

′′
i Tcp

(1− ki−1)w
′′
i−1Tcp

=
zTcm + (1− k)w

′′
Tcp

(1− k)w′′Tcp

= 1 +
1

(1− k)

zTcm

w′′Tcp

= 1 +
σ
′′

1− σ′
=

1− σ
′
+ σ

′′

1− σ′
=

1

q

q =
1− σ

′

1− σ′ + σ′′
(3.23)

Equation p0 of equation (3.16) is

p0 =
zTcm

w′Tcp

(
1 +

m∑
i=2

(
i∏

l=2

ql)

)
+ 1 · (1− km)

m∏

l=2

ql

= σ
′
(

1− qm

1− q

)
+ (1− σ

′
)qm−1 (3.24)

The speedup in terms of σ
′
and σ

′′
is

Speedup =
w0

weq
1

·
[
σ
′
(

1− qm

1− q

)
+ (1− σ

′
)qm−1 +

1− qm

1− q

]

=
w0

weq
1

·
[
(σ

′
+ 1)

(
1− qm

1− q

)
+ (1− σ

′
)qm−1

]
(3.25)
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3.3 Numerical Solution and comparison

3.3.1 Numerical Solution Parameters

In this section, we assume a homogenous network in which each child processor has

the same computing and link speed, and the root processor can have a different speed

in order to focus on modeling the interference of communication. The parameters for

this experiment, chosen for illustrative purposes, are as follows. In all experiments,

the constants for the computation intensity, Tcp and communication intensity, Tcm

is set to one. The inverse value of the root processing speed, w0 is set to one, but

the inverse values of the children processors’ speeds, wi are set to two, which means

each child processor has half as much computing speed as the root processor. The

degradations of computing speed for sending and receiving load are modeled as two

third and half as much as the initial value respectively. The inverse communication

speed, z in the network is set to 0.5 in measuring the finish time and speed-up (Fig 3-

5) and is varied from 0.1 to 1.0 in investigating the effect of communication speed on

computation (Fig 3-6).

3.3.2 Numerical Solution Results

Finish T ime : The plot for finish time (makespan) in Fig. 3-5 (a) shows that both

IA (Interference Aware) and SD (Sequential Distribution) scheduling have a similar

pattern from the point of view of the finish time as the number of processors increases

from 2 to 20 in Fig. 3-5 (a). As the number of processors increases 2 to 20, the finish

time of the IA method is around 90% of the SD method.
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(b) Speed up

Figure 3-5: The IA (Interference Aware) scheduling versus the SD (Sequential Dis-
tribution) Scheduling.

Speedup : When we plot the speedup of both IA and SD scheduling in Fig. 3-5 (b),

as the number of children processors increases, both of the speedups are saturated to

some level. In general, the plot of SD is more steep than that of IA scheduling as the

number of processors is varied from 2 to 10. Specifically, the number of processors

that saturation occurs at is 10 in IA scheduling, while it is 15 in SD scheduling. Also

IA scheduling reaches saturation earlier than SD scheduling.

Communication Speed : The plots in Fig. 3-6 demonstrate what happens to the

finish time when the number of processors is fixed to 10 and the inverse value of

communication speed increases from 0.1 to 1.0 gradually. We can see that the IA

method is more sensitive to the effect of communication speed than the SD method.

Intuitively this is apparent because the IA method considers the interference of com-

munication on computation, one of important factors in the finish time. Meanwhile,

we can observe that as the inverse constant value of communication speed, z increases,
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speed-ups of both the IA and SD methods drop down drastically. For the IA method,

when the inverse value of communication speed is large, that is, communication speed

is slow, the speed-up is very low.
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(a) Finish time (makespan) vs. commu-
nication speed
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(b) Speed up vs. communication speed

Figure 3-6: The IA (Interference aware) scheduling method versus than the SD (Se-
quential Distribution) method in terms of communication speed.

Interference aware scheduling produces a schedule with a longer finish time and less

speed-up than traditional sequential distribution mechanism, because of the degra-

dation of computing power due to communication interference. However, this result

is more realistic, since it reflects the existing effect of communication on computing

power in practical computing world.
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3.4 Interference Aware Scheduling In Parallel Video

Processing

Here we propose the IA-COMP (Interference Aware COMP) modeling method con-

sidering the interference between computation and communication in parallel video

processing. In the IA-COMP method when computation and communication occur in

the root processor at the same time the computing speed degrades [17]. In reflecting

this assumption, we separate the computing speed into three categories: two are for

sending / receiving load, and the third is for computing only. When we compare

the IA-COMP method with the SD-COMP method, we see that the throughput of

the IA-COMP method is somewhat less than that of the SD-COMP. Intuitively this

result is apparent because the IA-COMP method has degradation on the computing

speed due to the interference of communication. However it is meaningful that the

IA-COMP method is closer to accurately modeling the real world environment.

3.4.1 Notation for the IA method

The variables used for modeling the impact of communication are added in this chap-

ter.

αi : The load fraction assigned to the ith link-processor pair (where i = 0, 1, 2, . . . , m).

α
′
i : The load fraction assigned to the ith link-processor pair when sending load (where

i = 0, 1, 2, . . . , m).

α
′′
i : The load fraction assigned to the ith link-processor pair when neither sending
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nor receiving load (where i = 0, 1, 2, . . . ,m).

α
′′′
i : The load fraction assigned to the ith link-processor pair when receiving load

(where i = 0, 1, 2, . . . , m).

wi : The inverse computing speed at the ith processor (where i = 0, 1, 2, . . . , m).

w
′
i : The inverse computing speed at the ith processor when the load is sent (where

i = 0, 1, 2, . . . , m).

w
′′
i : The inverse computing speed at the ith processor which is not affected by the

communication (where i = 0, 1, 2, . . . , m).

w
′′′
i : The inverse computing speed at the ith processor when the load is received

(where i = 0, 1, 2, . . . , m).

weq
i : The equivalent inverse computing speed at the equivalent node, nodeeq

<i>, col-

lapsed from a single level tree rooted at node<i> (where i = 0, 1, 2, . . . , m).

zi : The inverse communication speed on the ith link (where i = 0, 1, 2, . . . , m).

Tcp : Computing intensity constant.

Tcm : Communication intensity constant.

Tf,m : The finish time. Time at which each processor completes computation.

3.4.2 Interference aware scheduling (IA-COMP)

In this scenario, IA-COMP(Interference aware with computation on the root proces-

sor), we consider the interference to the computing speed of the root processor during

communication with its children processors [18]. When the root processor computes
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the load assigned to itself, it experiences degradation of the computing speed due to

the internal interference of distribution and collection to/from the children proces-

sors. The computing speed with communication is different from that without it.

The inverse computing speed of the root processor is broken into three parts, w
′
0 for

sending load, w
′′
0 for no communication, and w

′′′
0 for receiving a result. In addition,

the load, α0 for the root processor should also be broken into α
′
0, α

′′
0 , and α

′′′
0 in a

similar manner (see below).

In general, we assume that the computing speed of the root processor can be

different from that of each child processor, while all of the children are identical in

terms of both computing and link speed, in order to compare its performance with

other methods under the same parameters. From the timing diagram in Fig. 3-7, the

equations for the IA-COMP scheduling method are obtained as follows.

The load fraction assigned to the root node, α0 is broken into three fractions: the

first is α
′
0 for the affected inverse computing speed in sending load, w

′
0 and the second

is α
′′
0 for the unaffected inverse computing speed, w

′′
0 , and the third is α

′′′
0 for the

affected computing speed when receiving results, w
′′′
0 . One has :

α0 = α
′
0 + α

′′
0 + α

′′′
0 (3.26)

α
′
0w

′
0Tcp = α1z1Tcm = . . . = αmzmTcm (3.27)
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Figure 3-7: The timing diagram for the IA-COMP(Interference Aware scheduling
with computation the root processor) method.

α
′
0 =

ziTcm

w
′
0Tcp

αi, i = 1, 2, . . . m (3.28)

α
′′
0w

′′
0Tcp = α1w1Tcp = . . . = αmwmTcp (3.29)

α
′′
0 =

wi

w
′′
0

αi, i = 1, 2, . . . m (3.30)

α
′′′
0 w

′′′
0 Tcp = α1kz1Tcm = . . . = αmkzmTcm (3.31)
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α
′′′
0 =

kziTcm

w
′′′
0 Tcp

αi, i = 1, 2, . . . m (3.32)

As for the root processor, the computing speed can be greater or smaller than that

of the children processors, which means that the inverse value of the root processor

remains the original value, w0. The inverse computing speed of children processors

is represented as w1 = w2 = . . . = wm = w, and the inverse link speed of children

processors as z1 = z2 = . . . = zm = z, because of homogeneous computing and link

speed. We can simplify the equations as follows:

From equation (3.27)

α1 = α2 = . . . = αm (3.33)

From equation (3.28), (3.30), and (3.32)

α
′
0 = σ

′
αi, σ

′
=

ziTcm

w
′
0Tcp

, i = 1, 2, . . . m (3.34)

α
′′
0 = ραi, ρ =

wi

w
′′
0

, i = 1, 2, . . . m (3.35)

α
′′′
0 = σ

′′′
αi, σ

′′′
=

kziTcm

w
′′′
0 Tcp

, i = 1, 2, . . . m (3.36)
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From equation (3.26) we can obtain for i =1

α0 = σ
′
α1 + ρα1 + σ

′′′
α1 = (σ

′
+ ρ + σ

′′′
)α1 = γα1 (3.37)

Substituting equation (3.37) into the normalization equation (2.12),

γα1 + mα1 = 1

α1 =
1

m + γ
(3.38)

From the timing diagram Fig. 3-7, the finish time with m + 1 processors, Tf,m is

Tf,m = α0w0Tcp = γα1w0Tcp =
γ

m + γ
w0Tcp (3.39)

The finish time on a single root processor, Tf,0 is

Tf,0 = α0w0Tcp = w0Tcp α0 = 1 (3.40)

The speedup is

Speedup =
Tf,0

Tf,m

=
w0Tcp(

γ
m+γ

)
w0Tcp

=
m + γ

γ
(3.41)

3.4.3 Comparison of the SD-COMP and IA-COMP method

In this section, we compare only two scheduling methods, SD-COMP and IA-COMP

(Interference Aware scheduling with Computation), because for the SD-NO method
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Figure 3-8: The SD-COMP scheduling method versus IA-COMP method.

computation does not overlap with communication. We assume that the computing

speed of the root processor can be different from that of each child processor and the

root processor does computation and communication (distribution and collection) at

the same time.

In Fig. 3-8 (a), the parameters are set up as follows: the number of processors

increases 1 to 30 and the computing speed of the root processor is twice as fast as

that of each child processor. When computation and communication overlap each

other in the root processor, we assume that the computing speed is reduced to half of

the original value in sending, and one third of the original value in receiving from all

children processors. This means that the inverse computing speed, w
′
0, becomes twice

as large when sending, and w
′′′
0 , three times as large when receiving as the original

inverse computing speed of the root processor.

As we expect, the result we obtain is that the finish time of the IA-COMP schedul-
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ing method is a bit longer than that of the SD-COMP method. This is because of the

interference of distribution and collection on computing speed of the root processor.

As the number of processors increase linearly, the difference between them becomes

small, because only the root processor suffers from the interference of communication

on computation. From another perspective, the ratio of SD-COMP to IA-COMP is

92% for two processors as well as 96% for 30 processors in Table 3.1.

In Fig. 3-8 (b), we set the number of processors as 12 and make the communication

speed decrease, which means that the inverse of the communication speed, z increases

from 0.1 up to 1.0. As the communication speed decreases 10 times, the processing

time of both the SD-COMP and the IA-COMP methods is twice as large as the

starting value. Table 3.2 shows that the ratio of SD-COMP to IA-COMP is also

decreased as the link speed is decreased proportionally, because the IA-COMP is

more affected than SD-COMP by the communication speed.

# of Processors 2 5 10 12 20 30
IA-COMP 0.3736 0.2585 0.1675 0.1454 0.0951 0.0664
SD-COMP 0.3438 0.2340 0.1528 0.1342 0.0902 0.0640

Ratio of SD to IA 92% 91% 91% 92% 95% 96%

Table 3.1: The ratio of SD-COMP to IA-COMP method in terms of finish time for
the number of processors.

z 0.2 0.4 0.6 0.8 1.0
IA-COMP 0.09456 0.11190 0.12894 0.14569 0.16216
SD-COMP 0.09366 0.10979 0.12536 0.14040 0.15493

Ratio of SD to IA 99.04% 998.11% 97.22% 96.37% 95.54%

Table 3.2: The ratio of SD-COMP to IA-COMP method in terms of finish time with
communication speed decreased.

Finally, we apply a scheduling method considering the influence of communication
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on processor computation to parallel video processing to obtain more realistic and

accurate modeling.

3.5 Conclusions

Based on this work the following conclusions can be drawn:

• Interference aware scheduling can be analytically modeled. Optimal load allo-

cations, speedup and makespan can be found in closed form.

• Interference aware scheduling produces schedules with a larger makespan and

smaller speedup than modeling that does not take communication interference into

account.

• Modeling interference is realistic but is only one aspect of computer modeling.

Other factors that affect results that have been considered in the literature separately

include start up costs, memory hierarchy, the inclusion of front end processors and

the choice of scheduling policy.

• The results and policies here are meant to be representative. They can be

extended to other scheduling policies and interconnection topologies.

All of this indicates that more realistic models of computers operating in networks

and grids are obtainable with some effort.
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Chapter 4

Multi-source scheduling

4.1 Motivation

In very large heterogeneous networks, it will be increasingly common that multiple

source nodes create and originate large amounts of data (workload) and any sink node

receives data from one of a number of source nodes. For high energy and nuclear

physics experiments, large amounts of data originate from distant experiments. Such

data requires a high computational power and network based computing platforms

in these types of experiments. Minimizing the time to process workload originated

from various sources presents a great challenge that could give rise to a range of new

applications.

So far research in this area includes [23] where tasks arrive according to a basic

stochastic process to multiple nodes and [24] which presents a first step technique for

scheduling divisible loads from multiple sources to multiple sinks, with and without

buffer capacity constraints.
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In [25], optimal solutions were presented for single-round model and asymptoti-

cal optimal solutions for a multi-round model were obtained in scheduling divisible

workloads in a heterogeneous network. Two cases with overlapping and no overlap-

ping of communication and computation were considered for communication latency.

However, these algorithms were targeted for scheduling workload originating from a

single source node. For multiple sources more sophisticated scheduling methods are

necessary to obtain optimal solutions.

In previous work [26], a method of scheduling load originating from multiple

sources via concurrent communication was proposed in which all of the source nodes

simultaneously distributed their load to all of the sink nodes. Even though this pro-

posed scheduling method yielded a closed form solution, all of the source nodes are

forced to have multiple ports to support concurrent communication. In terms of

cost-effectiveness with respect to hardware, the scheduling method using sequential

communication can be improved upon.

Heuristics to find the best processor-link pair arrangement on parallel processor

were investigated in [27]. To minimize the time for all of the nodes in a network to

process an entire load, a greedy method to swap an adjacent pair and another method

to search neighborhoods not covered by adjacent swapping were presented. It was also

shown that suboptimal solutions could be obtained for a small number of processors

using monetary cost as the optimization criteria. Also in [28] other heuristics for

optimal load distribution sequencing were proposed in terms of monetary cost needed

to utilize computation and communication. By swapping the position of two logically

adjacent processors, the optimal load distribution sequence was found to improve
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computation and communication cost for a single level heterogeneous tree network.

Specifically, optimal load distribution for a homogeneous bus network is shown to

involve sequencing which is non-decreasing in the order of the sum of the computation

and communication costs.

The paper [29] proposed a method of scheduling multiple sources and multiple

sinks for efficient use of distributed resources via network partition. Also, min cost

and multi-commodity flow is used in formulating a scheduling method for steady

state divisible load in a linear network model. However, techniques for transient

state scheduling were not extensively covered where divisible load can dynamically

vary with more complicated network topologies and multiple source nodes.

Our Contribution

In this paper, a method to schedule workload from multiple source nodes is pro-

posed by a specific network partitioning technique via the use of a genetic algo-

rithm. It is assumed that multiple source and sink nodes are randomly scattered and

connected to each other over the network. The network is fragmented into several

partitions matching the number of source nodes. Computation in each partition is

independently performed on single source and multiple sink nodes. That is, a com-

plicated problem for multi-source scheduling is simplified into several single source

scheduling problems after network partitioning. In this approach, each partition is

simultaneously evaluated by running an optimal single source load scheduling algo-

rithm. Through this procedure we can obtain the effect of concurrent communication

with simultaneous distribution scheduling. Sophisticated heuristic approaches such

as genetic algorithms [30] can be considered in partitioning a network for this multi-
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source load scheduling optimization problem. In applying genetic algorithms, a new

partition can be created by transferring a sink node from one partition to another.

A new offspring partition can be obtained by changing the order to distribute load

from a source node to the sink nodes in each partition. This procedures to create

new partitions via genetic algorithms is repeated until solution time converges to a

minimized value.

4.2 Multi-source scheduling in a large heteroge-

neous network

4.2.1 Problem formulation and definition

In a large heterogeneous network, it is very common that loads originating from

multiple source nodes are distributed to multiple sink nodes. While all the source

nodes can distribute loads to all the sink nodes, some of sink nodes can be divided to

join a specific partition related to a source node. The goal is to minimize the time to

finish all the jobs submitted from every source node. For a heterogenous network with

multiple sources, source nodes are each assigned to one partition respectively. For a

sink node which can be connected to multiple source nodes, we need make a decision

on which source node is a good candidate as illustrated in Fig. 4-1. In doing so,

we can consider several parameters such as the computing speed and communication

speed in each partition.

αi,j: The load fraction assigned from the ith source node to the jth sink node.
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wi: The inverse computing speed on the ith processor.

zi: The inverse link speed of the ith link.

Tcp: Computing intensity constant:

The entire load can be processed in wiTcp seconds on the ith processor.

Tcm: Communication intensity constant:

The entire load can be transmitted in ziTcm seconds over the ith link.

Tf,i: The finish time:

Time when all of the processors in the ith partition complete computation.

Thus αiziTcm is the time to transmit the fraction αi of the entire load over the

ith link. Note that the units of αiziTcm are [load] × [time/load] × [dimensionless

quantity] = [time]. Likewise, αiwiTcp is the time to process the fraction αi of the entire

load on the ith processor. Note that the units of αiwiTcp are [load] × [time/load] ×

[dimensionless quantity] = [time].

4.2.2 Two source scheduling

In this section, multi-source scheduling can be explained in details for the network

with two source nodes and multiple sink nodes. A sink node can be assigned to one

of both source nodes via network partitioning. The number of partitions via network

partitioning should be the same as the number of source nodes. In Fig. 4-2, two

source nodes are fully connected with seven sink nodes each other. The partition 1 is

composed of one source node, three sink nodes, and the partition 2 is one source node

and four sink nodes. This can easily generalized to situations where the amount of
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computing capability in each partition is different perhaps because of differences in the

amount load generated by each source. The partition model can also be generalized

to have multiple source nodes in each partition.
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Figure 4-2: Two partitions should be created so that the sum of the computing speed
( 1

w
) of both partitions can be similar each other if possible.

Within a partition as an example, the sequential distribution strategy is applied

from the root to children nodes. The finish time of two partitions can be different,

because the capability of both partitions is different in terms of the computing speed

and the link speed. As illustrated in Fig. 4-3, the goal is to minimize finish time to

complete sequential distribution and computation from the perspective of the entire

network.

We can obtain two finish times, Tf,1, Tf,2, one for each partition respectively. Here

Tw is the waiting time, the difference between finish time, Tf,1 and Tf,2 resulting from

each partition. During the waiting time, Tw, one partition should wait for the other

62



�� ���

����
����

����
����

����
����

����
����

	
��
���
��� �����
�
��
� ���
���
�� �
���
�
�
������������ �����
� ��� ��
���� ! �
�" #����

$�

��� ��% ��&

%�' %�( %�)

���

�*+,

����
����

��%

����
����

���

����
����

��&

����
����

%�'

����
����

�*+-

%�(

%�)

�*+,

�*+,

�*+,

�*+-

�*+-

./

�0

$0

$1

$2

$3

$4

$5

Figure 4-3: Timing diagram for multi-source scheduling with sequential distribution
in a network with two source and seven sink nodes. Tf,1 and Tf,2 are the finish times
and Tw is the waiting time.
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partition to complete jobs. It is highly possibility that these two finish times are

different, since the computing speed and the link speed of nodes are usually different

in each partition. We determine the larger value among two finish times as the

solution for this network configuration.

Tf,1 = α1,1z1Tcm + α1,2z2Tcm + α1,4z4Tcm + α1,7z7Tcm + α1,7w7Tcp

Tf,2 = α2,3z3Tcm + α2,5z5Tcm + α2,6z6Tcm + α2,6w6Tcp

Furthermore, we can use genetic operators such as crossover and mutation to

reconstruct network partitions in order to find an optimal network partition.

4.2.3 Network partitioning

For multiple sources, we need more capable methods to schedule load distribution.

There can be a method for all of the sources to distribute load to all of the sink nodes.

However, we propose a network partitioning technique to schedule multi-source load

distribution. This scheduling method is that the largest finish time among all the

partitions is minimized from the perspective of the entire network. The entire network

is fragmented into several small network partitions matching the number of source

nodes based on the sum of the computing speed in a partition. We construct the sum

of the computing speed in each partition to be as similar as possible. After network

partitioning, all the partitions are executed independently to obtain the finish time

at the same time. Within each partition, all nodes participate in computation via a

traditional sequential distribution model using DLT (divisible load theory). From the
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results from every partitions, we can obtain the finish time. If a partition completes

computation first, it waits until other partitions complete their loads. So the finish

time when the last partition completes its load is selected as the final finish time for

the entire network. The goal is to minimize the gap between the finish times of all

the partitions, because the gap is the waiting time from the perspective of the entire

network. We continue this partitioning and evaluation process until we can obtain

near optimal solution time over the entire network.

• Initial partitioning We divide an initial randomly constructed network

into smaller partitioned networks according to the computing speed of each sink node.

That is, we assign a random sink node to one of the partitions, and then the others

to the remaining partitions to which every source node is already assigned. When

the second sink node is added into the partition which has already sink nodes, we

compare the sum of the computing speed of sink nodes with those of other partitions.

If the sum of computing speeds of nodes in the partition for the sink node to be

added is less than those of other partitions, the sink node is added. Otherwise, the

sink node should be added into the other partition which has the smallest sum of the

nodal computing speeds.

• Adaptive partitioning

We make the total computing speed of all of the sink nodes in each partition

to have a similar capability among partitions. Each partition which consists of one

source and several selected sink nodes can be changed moving the member sink node

between partitions.

Then the locally optimal solution time is measured for all of the partitions, and the
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maximum value among them is determined as a solution time for all of the partitions

over the entire network. This partitioning continues to converge at a small value

through this series of procedures as in Fig. 4-4.

One of the simple methods to move a sink node between partitions is to move the

sink node with the smallest computing speed. It makes sense in that the sink node

with the smallest computing speed has a more local impact.

4.2.4 Load distribution sequencing

In this section, the optimal sequencing to find the optimal processor-link pair is

considered in a single level tree network where the single source sequentially distribute

load to sink nodes on a tree network. The goal of the optimal sequencing is to find

the optimal sequence to distribute load to sink nodes by swapping two processor-link

pairs without any change of computing link speed and obtain the minimum finish

time under the optimal sequence in a partition. Because the order of load distribution

affects the finish time, sink nodes can be arranged to complete the workload, resulting

in an effective increase in computing power. Heuristic methods, such as processor

arrangement proposed in the previous work [28] can be used to find the optimal

sequence in terms of monetary cost incurred from the use of the respective processor

and link pair. That is, a current profile is kept about processor-link pair and updated

every time two adjacent processor-link pairs are swapped each other, until the optimal

sequence of processors is obtained. To improve the processor arrangement, several

initial profiles were considered as starting points, and a neighborhood of processor is

66



Figure 4-4: Flowchart for multi-source scheduling via genetic algorithm in grid net-
work
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extended to other pairs which are not covered by adjacent processor-link pair. In this

paper, the initial profile is a network partition resulting from crossover operation.

Such a network partition is used as a starting point in finding the optimal load

sequencing. Also swapping algorithm of processor-link pairs is applied not only to

adjacent nodes, but also to two randomly selected sink nodes.

When finding the optimal sequence in a network under the sequential load distri-

bution scenario, the previous processor arrangement method is limited to a number

of processors at 20, while our proposed optimal load sequencing goes to more than

200 processors. The reason is that the evaluating function of processor arrangement

to obtain monetary cost is much more complex than ours to simply find the finish

time. Another reason is computing power has advanced since the original publica-

tion [27]. So our optimal load sequencing method can be applied to a large network

with the large number of processors as well as parallel systems with a small number

of processors.
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Algorithm 1 Multi-source scheduling algorithm
1: // Initial Population

2: Generate multiple sources and sink nodes, {source1,source2;sink1, sink2,. . . ,sink N}

3: src1 comp , src2 comp ← rand[1,20];

4: src1 comm , src2 comm ← rand[0.1,1.0];

5: sink[i] comp ← rand[1,20]; // i=1 to m

6: sink[i] comm ← rand[0.1,1.0]; // i=1 to m

7: // Initial Network Partitioning

8: part1.src = src1; part2.src = src2;

9: for i = 1 to #Nodes do

10: if part1(Σ(sink[i] comp)) < part2(Σsink[i] comp)) then

11: part1[n1].sink = sink[i];

12: else

13: part2[n2].sink = sink[i];

14: end if

15: end for

16: Tfm best = Max(part1 Tfm, part2 Tfm);

17: // Adaptive Network Partitioning

18: Crossover operator : Go to Algorithm2

19: Mutation operator : Go to Algorithm2

20: // Selection of the fitness solution

21: if Tfm new < Tfm best then

22: Tfm best = Tfm new;

23: end if

24: //Termination

25: if (Tfm best ' ρ) AND (T wait best ¿ ε) then

26: terminate;

27: end if
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Algorithm 2 Adaptive Network Partitioning - crossover and mutation operation
1: {Crossover operator}

2: for i = 1 to #Nodes do

3: index1 = random[1,Nodes];

4: index2 = random[1,Nodes];

5: switch(part1, index1, part2, index2);

6: Tfm new = Max(part1 Tfm, part2 Tfm);

7: if (Tfm new < Tfm best then

8: Tfm best= Tfm new;

9: end if

10: end for

11: {Mutation operator}

12: for i = 1 to #partitions do

13: #PNodes = Number of sinks in a partition

14: for j = 1 to #PNodes do

15: n1 = rand[1,#PNodes]

16: n2 = rand[1,#PNodes]

17: mutate(n1, n2)

18: Tfm new = Finish Time(partitioni);

19: if (Tfm new < Tfm best) then

20: Tfm best= Tfm new;

21: end if

22: end for

23: end for
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4.3 Multi-source scheduling via genetic algorithm

In this section, we propose a heuristic mechanism for multi-source scheduling method

via genetic algorithms in which the network is fragmented into the same number of

partitions as the number of source nodes.

4.3.1 Genetic algorithm heuristics

• Representation

The source nodes and sink nodes of each partitioned network are represented by

a string of binary digits. We assume that there are the number of ’m’ source nodes

and the number of ’n’ sink nodes in the entire network. Each partition can be shown

as follows:

partition1 = (1,0, . . . ,0:1,0,0, . . . ,1)

partition2 = (0,1, . . . ,0:0,0,1, . . . ,0)

. . .

partitionm = (0,0, . . . ,1:0,1,0, . . . ,0)

The first half of the string is for the source nodes and the second half of the the string

is for the sink nodes delimited by semi-colon(’:’). A source node and sink nodes can

participate the only one partition.

The second representation is expressed as a string sequence to distribute load from

the source node to sink nodes.

Parent partition = (s1, k1, k2, k4, k7)
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Offspring1 = (s1, k2, k1, k4, k7)

Offspring2 = (s1, k4, k2, k1, k7)

Offspring3 = (s1, k7, k2, k4, k1)

• Initial population

The initial population of M source nodes and N sink nodes are randomly generated.

We can execute a genetic algorithm either with initially no partition and a fully

connected network or initially with partitioned networks for the entire network.

• Genetic operators

Crossover operator The crossover operator is used to exchange randomly cho-

sen sink nodes among partitions with respect to the inverse the computing speed.

There exist a variety of crossover operators, which perform single crossover, or group

crossover operation.

Mutation operators The mutation operator is used to change the sequence

to distribute load from source node to children sink nodes within each partition.

Through this mutation operator, a new partition with a different sequence of nodes

can be created. The solution for this partition is also different from the previous

parent partition. We can obtain the locally optimal solution for each partition as

long as the size of partition is small enough to evaluate finish time for all of the

combinatorial sequence of nodes.

• Fitness function to evaluate partitions

The following closed-form solution for finish time (makespan) of each partition

with sequential distribution and simultaneous start scheduling mechanism [12, 13] is
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used as a fitness function in evaluate each partition

Tf,m =
w0Tcp

1 + k1

[
1 +

∑m
i=2(

∏i
l=2 ql)]

) (4.1)

k1 =
w0

w1

, qi =
[wi−1Tcp + zi−1Tcm]

wiTcp

, i = 2, 3, . . . m

We evaluate all the partitions by this fitness function to find the maximum solution

among partitions and determined the maximum solution as the value for the fittest

in each round.

4.3.2 Network partitioning via crossover operator

During every round of partitioning, the maximum finish time among partitions is

recorded until the recorded finish time converges to a specific value. Through this

heuristic approach, we can schedule load distribution originating from multiple sources

to obtain a near-optimal solution. An example of scheduling procedures via genetic

algorithm can be shown in Fig. 4-5 in detail. From the initial partition, we can obtain

the finish time of each partition with sequential load distribution from each source

node to sink nodes within a partition. The finish time from each partition is different,

and so we need to schedule the members of each partition to make the sum of the to-

tal computing speed of each partition as similar to each other as possible. Otherwise

load could be transferred between partitions and an improved solution would result.

Using the crossover operator, the sink node K7 in partition 1 is exchanged with the

sink node K5 resulting in partition 2 as Fig. 4-5 (a), (b).
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(b) The second partition
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(c) The third partition
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(d) The final partition

Figure 4-5: The network partitioning via the crossover operator.
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The initial Partition

partition1 = (1,0:1,1,0,1,0,0,1)

partition2 = (0,1:0,0,1,0,1,1,0)

The second Partition

partition1 = (1,0:1,1,0,1,1,0,0)

partition2 = (0,1:0,0,1,0,0,1,1)

The new partition in Fig. 4-5 (c) becomes a new offspring originating from the previous

partition via the crossover operator.

The third Partition

partition1 = (1,0:1,0,0,1,1,0,0)

partition2 = (0,1:0,1,1,0,0,1,1)

If the crossover operation is applied enough times to converge at a specific value

for each partition, a near-optimal value can be obtained. In this Fig. 4-5, the third

partition results in the minimum finish time, Tf,m = 0.7835 among all the partitions.

The final Partition

partition1 = (1,0:0,0,0,1,1,1,0)

partition2 = (0,1:1,1,1,0,0,0,1)

4.3.3 Load sequencing via mutation operator

The mutation operator in this paper is used in finding the optimal sequence to dis-

tribute load from the source node to children sink nodes within each partition. If this
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(f) The sixth sequence

Figure 4-6: Node sequencing via the mutation operator.

76



optimal sequence is determined, we can find the local optimal solution of the finish

time for each partition of the network which can be varied according to the order to

distribute load to the children sink nodes. The sequence of load distribution is left to

right in direction. That is, in an example, Fig. 4-6 (a), the source node, S2 distributes

load first to the sink node, K3, next to K5, and last to K6. As illustrated in Fig. 4-6,

when the mutation operator is applied to the initial parent partition, new offsprings

with different sequences for receiving load from the source node result. Even though

the sum of the computing speeds of sink nodes is kept unchanged, the finish time, Tf,2

of each offspring in the partition 2 can change according to the sequence of receiving

load. The possible combinatorial sequences of sink nodes receiving load from the

source node is six for this case.

Parent partition = (s2, k3, k5, k6)

Offspring1 = (s2, k3, k6, k5)

Offspring2 = (s2, k5, k3, k6)

Offspring3 = (s2, k5, k6, k3)

Offspring4 = (s2, k6, k3, k5)

Offspring5 = (s2, k6, k5, k3)

Through the mutation operator, we can obtain the local optimal solution for sequen-

tial distribution scheduling in a single tree partitioned network. That is the minimal

finish time, Tf,2 is 0.8851 for the fifth sequence in Fig. 4-6.
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4.4 Performance analysis and comparison

In this experiment, a fully heterogenous network is considered to be applicable to

more general scenarios. That is, each computing speed of source and sink nodes

and each link speed among source nodes and sink nodes are different. Each inverse

value of computing speed, wi is randomly assigned within 1 to 20 and each inverse

value of link speed, zi is also randomly assigned within 0.1 to 1.0. It is assumed that

source nodes are fully connected to all of the sink nodes and each source node can be

connected to all sink nodes. The link speed between every source node and one sink

node is also considered to be identical.

• The finish time In Fig. 4-7, we set the number of sink nodes to 100 and two

source nodes. Each partition is evaluated by the fitness function (4.1) resulting from

sequential distribution scheduling policy. After the whole network is fragmented into

partitions, each sink node receives and computes load from a source node sequentially.
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(a) The finish time, w=(1,20),
z=(0.1,1.0)
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(b) The finish time, w=(1,4), z=(0.1,1.0)

Figure 4-7: The near-optimal solutions for the finish time, Tf,m
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In Fig. 4-7, the solution for the finish time and the waiting time are gradually con-

verged to a specific value. One of the remarkable results from our proposed method is

that we can obtain the near-optimal solution for the finish time sooner than expected.

Every generation the finish times from each partition are calculated, and larger value

is selected as solution, since a partition with small finish time should wait for the other

partition to complete a job. The finish time converges to the specific small value after

around 1500 generations. At the point we can also obtain the minimum waiting time

between partition 1 and 2. The other result is node scalability which means that we

can increase the number of sink nodes from 10 to hundreds, such as 200, with two

source nodes, while our proposed network partitioning algorithms are converged to

the near-optimal solution with algorithm execution time around 1 minute. Through

these results, our proposed network partitioning scheduling is shown to be very scal-

able in terms of the number of processors as well as fast in the algorithm execution

time.

In Fig. 4-7, we can see that the finish time varies every time the crossover operation

is applied to the partition 1 and 2. From these values of the finish time the only better

value is selected and recorded being compared to the previous best value. After a

solution is obtained through this crossover operation, the mutation operator is applied

to the partition. Within a partition with fixed sink nodes, a better solution is found by

swapping node sequence. In reality, a better solution for the partition resulting from

the crossover operation is found, since the sequence of load distribution can affect the

finish time. Through these two operators, crossover and mutation, a near-optimal

solution close to optimal solution is obtained.
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• The waiting time
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Figure 4-8: The near-optimal solutions for the waiting time, T w

In Fig. 4-8, the waiting time is varied along with the evaluation of partitions. Even

though the finish time decreases to a small value, the reason for the waiting time to

go up and down is that the waiting time is the difference between two partitions. If

one partition has a very small value and the other partition has a somewhat larger

value, the gap can be bigger than the previous values.

4.5 Conclusion

In this paper, sophisticated heuristics for scheduling workloads originating from mul-

tiple source nodes in large heterogeneous networks are proposed. Through association

of network partitioning and genetic algorithms we can obtain a feasible solution for

a combinatorial problem and suggest a more cost-effective scheduling method com-
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pared to the concurrent scheduling method based on concurrent communication for

multi-source scheduling.
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Chapter 5

Real-time scheduling

It has been increasingly important to provide performance guarantees to deadline-

constrained jobs originating from large scale experiments. To efficiently cope with

these heavy workloads, divisible load theory (DLT) with real-time characteristics

has been recently important in a heterogeneous Grid/cluster systems, where the job

with the earliest deadline is first scheduled. It is a major trend that the cluster

system is also heterogeneous in the computing capability as well as in the link speed,

so-called, heterogeneous cluster systems [?]. The previous work is only limited to

a homogeneous cluster environment [31] and different available processing time is

considered in [32, 33], a fully heterogeneous system was not modeled in the sense of

schedulability yet.

For example, the ATLAS (A Toroidal LHC ApparatuS) is one of the particle

detector experiments using the Large Hadron Collider (LHC), at the European Or-

ganization for Nuclear Research (CERN) in Switzerland, where CERN, the tier 0

site generates the original experimental data and couple of tier 1 sites including BNL
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archive and distribute the data in each site to a couple of universities in the tier 2 site

so that the universities can analyze the data [9]. From the BNL point of view, nine

institutes in tier 2 of the ATLAS project, such as University of Michigan, SLAC (Stan-

ford Linear Accelerator Center), and Boston University, should be connected through

a different WAN (wide area network), such as, ESnet, Ultralight, or Internet2 to

BNL (Brookhaven National Laboratory) as shown in Fig 5-1. In this configuration,

each site can have heterogeneous cluster systems with different computing capability

and there is a heterogeneous computing and link capability within each cluster sys-

tem. Specifically, the hardware of the RACF (RHIC ATLAS Computing Facility) of

the STAR project in BNL consists of a combination of commodity-based processing

servers, enterprise-class UNIX servers and highly-specialized mass storage systems

connected together by a high-speed network infrastructure. The RACF is an exam-

ple of heterogeneous system with currently over 4000 processors and a distributed

and centralized disk storage farm (1 PB of on-line disk storage).

After the RHIC (Relativistic Heavy-Ion Collider) at Brookhaven National Lab-

oratory came on-line in 1999, the Solenoidal Tracker At RHIC (STAR) experiment

began data taking and concurrent data analysis that will last about ten years. STAR

needs to perform data acquisition and analyzes over approximately 250 tera-bytes

of raw data, 1 peta-bytes of derived and reconstructed data per year. Such data

in STAR experiments require bulk file transfers between heterogeneous systems in

sites within a limited time over heterogeneous network. To satisfy the deadline of

each job, sophisticated scheduling algorithms with respect to deadlines are needed.

In [24,34], all of these recently emerging platforms require a sophisticated scheduling
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Figure 5-1: A heterogeneous Grid/cluster system example, TeraPaths network con-
figuration of the ATLAS project.
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strategy to efficiently make use of distributed computers, high-speed networks and

storage resources in terms of deadlines and scheduling methods for a data intensive

Grid operating under capacity constraints.

In [35], distributed scheduling algorithms to schedule tasks with deadlines and

resource requirements were proposed. When a task arrives at a node, the node de-

termines the nodes to which the task is assigned to complete execution before its

deadline. In doing so, the focused addressing algorithm was proposed where the task

is scheduled on a node whose computing capability is estimated to be sufficient to

complete the task before its deadline. This distributed scheduling was shown to be

effective even in a hard real-time environment. In [36], scheduling algorithms for

deadline-constrained jobs were covered in a multiprocessor environment. When a

set of tasks is scheduled on a multiprocessor system to satisfy deadlines, a heuristic

algorithm to consider the tasks with shortest deadlines was shown to effective for dy-

namic scheduling in real-time systems, where the task was represented by the worst

case execution time, deadline, and resources requirement.

Our Contribution

An experimental data delivery job between the tier 1 and the tier 2 sites to satisfy

a specific deadline should be scheduled and prioritized as a special data flow. To

enhance the network performance guarantee provided for deadline constrained jobs

motivated by the TeraPaths project, every job is scheduled with DLT (divisible load

theory) and EDF (earliest deadline first), where each job is sorted in the order of

the earliest deadline to be evaluated if each job is schedulable within its deadline.

Real-time scheduling with divisible load theory is applicable to jobs with deadlines
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for heterogeneous Grid/cluster systems.

In this paper, real-time modeling from the perspective of divisible load theory

is proposed for a heterogeneous Grid/cluster computing. In doing so, the minimum

number of nodes to satisfy the deadline of a job are obtained through a homoge-

neous model transformed from a original heterogeneous model. Application specific

scheduling adapted to the characteristics of a job is proposed, where the sequence of

load distribution can be varied so that a job is communication-centric or computation

intensive.

5.1 Models and problem description

5.1.1 Models and definition

In this section, the task, system, and scheduling model are discussed.

• Task (Job) Model A task Ti is assumed as an aperiodic independent task

which is represented as (Ai, σi, Di), where Ai is the arrival time of the task, σi is the

data size of the task, and Di is the duration of the task. The actual deadline is greater

than or equal to Ai+Di which is applied to a test to check if a task is schedulable.

• System Model A heterogeneous model in which processor capability and link

bandwidth are different from one another is considered. A heterogeneous single level

tree network is assumed in which the root processor, P0 is connected to m number of

children processors, P1, P1, ..., P1 via LAN or WAN.

• Divisible load scheduling model In this heterogeneous single level tree net-
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work, the load scheduling policy follows the sequential distribution and staggered

start policy from the DLT (divisible load theory) point of view [13]. The root proces-

sor sequentially distributes the fractions of a job to a number of children processors

selected to be large enough to satisfy its deadline. The children processors participate

in processing a job after receiving the entire load completely. The root processor is

assumed not to participate in the job processing.

• Real-time scheduling model In 1973 Liu and Layland [37] proposed an

preemptive earliest-deadline-first (EDF) scheduling and rate monotonic scheduling

(RMS) policy for systems of independent aperiodic and periodic tasks with the rel-

ative deadline of each task. Especially, the processor utilization was proven to be

maximized by dynamically assigning the priorities to the periodic tasks on the basis

of the current deadlines. This utilization bound provides a simple and effective EDF

schedulability test. Here, we select EDF policy for an independent aperiodic task

(job) to handle the parameters, such as timing constraints, resource (processors and

links) allocation requirements, and dynamic priority based on the deadlines. When-

ever a new task arrives, the task is inserted into a queue of ready tasks on the basis

of deadlines.

• Definition

αi: The load fraction assigned to ith processor.

wi: The inverse computing speed on the ith processor.

zi: The inverse link speed of the ith link.

Tcp: Computing intensity constant:
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The entire load can be processed in wiTcp seconds on the ith processor.

Tcm: Communication intensity constant:

The entire load can be transmitted in ziTcm seconds over the ith link.

Tf,m: The finish time: Time when m number of of the processors complete computation.

5.1.2 Problem description

In the TeraPaths project [38] in Brookhaven National Laboratory a performance guar-

antee is considered for the problem of supporting reliable, large bulk data movement

in terms of network bandwidth. A data delivery job to satisfy a specific deadline

should be scheduled and prioritized as a special data flow. Moreover, if a job needs to

be processed by a specific deadline, the problem to deal with this real-time schedul-

ing is more challenging. In doing so, every job is sorted in the order of the earliest

deadline to be evaluated if each job is schedulable within its deadline.

Divisible load theory can be extended to real-time scheduling of jobs with deadlines

for homogeneous cluster systems [31]. However, heterogeneous models have not only

been a major trend in network based Grid computing systems, but also is common

in cluster computing systems. However, it is difficult to obtain the minimum number

of nodes enough to satisfy a deadline of each job in a heterogeneous model from DLT

model, since the equation for the finish time of a heterogeneous model is not simplified

with regard to the number of nodes and the minimum number of nodes needed to

satisfy the deadline of a job can not be obtained in a heterogeneous model.

To solve this problem, we propose a deadline-constrained network partitioning and

88



application specific scheduling heuristics. In a deadline-constrained network partition-

ing algorithm, the minimum number of processors is obtained through transforming

a heterogeneous model into a couple of homogeneous models. When the minimum

number of nodes is applied into the heterogeneous model, the rejection ratio of the

heterogeneous model can be found. The rejection rate of a heterogeneous model is

studied in terms of a homogeneous model and the minimum number of nodes is ob-

tained. In application specific scheduling, a heterogeneous model can be arranged

according to the characteristics of the application. The jobs with EDF (earliest dead-

line first) policy are applied to the arranged (sorted) heterogeneous models, bases on

computing intensive, communication centric, and both computing and communica-

tion centered applications.

5.2 Deadline-constrained scheduling in a hetero-

geneous model

5.2.1 Application specific scheduling in a heterogeneous model

According to the characteristics of a job, three kinds of load distribution sequences

for the children processors to receive a fraction of a job from the root processor in a

heterogeneous model can be considered. The sequence of load distribution affects a job

execution time in a heterogeneous model as illustrated in Fig 5-2. The sequence of the

children processors can be sorted for the purpose of load distribution in the decreasing

order of computing speed, 1
wi

, link speed, 1
zi

, and a combination of computing speed,
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1
wi

, and link speed, 1
wi

. If a job is assumed to be computation intensive, computing

speed based sequencing can be considered, or if it is communication centric, link speed

based sequencing can be considered. A model considering both computing and link

speed is also sometimes possible.
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Figure 5-2: A heterogeneous model with deadline-constrained jobs.

• HT-COMM is applied to the heterogeneous network in which the order to receive

load is sorted in the decreasing order of communication speed.

• HT-COMP is applied to the heterogeneous network in which the order to receive

load is sorted in the decreasing order of computing speed.

• HT-BOTH is applied to the heterogeneous network in which the order to receive
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load is sorted in the decreasing order of the sum of communication and computing

speed for a given processor.
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Figure 5-3: Timing diagram for a heterogeneous model.

From the timing diagram in Fig. 5-3, the equations for the finish time in a het-

erogeneous model are obtained as follows. We assume that one root processor and m

number of children processors participate in a job processing

Tf,m = α1z1Tcm + α1w1Tcp

= α1z1Tcm + α2z2Tcm + α2w2Tcp

= α1z1Tcm + α2z2Tcm + α3z3Tcm + α3w3Tcp

. . .

= α1z1Tcm + α2z2Tcm + . . . + αmzmTcm + αmwmTcp (5.1)
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From equation (5.1),

αi =
wi−1Tcp

wiTcp + ziTcm

αi−1 = qiαi−1 (5.2)

where qi =
wi−1Tcp

wiTcp + ziTcm

, i = 2, 3, . . . m

All of the load fractions is summed up 1 in the following equation (5.4).

α1 + α2 + α3 + . . . + αm = 1 (5.3)

αi = qiαi−1 = (
i∏

l=2

ql)α1, i = 2, 3, . . . m (5.4)

Plug-in equation (5.3) into (5.4), we obtain

α1 + q2α1 + (q3q2)α1 + . . . + (
m∏

l=2

ql)α1 = 1

[
1 +

m∑
i=2

(
i∏

l=2

ql)

]
α1 = 1

α1 =
1[

1 +
∑m

i=2(
∏i

l=2 ql)
] (5.5)

The finish time for the job assigned to m children processors, Tf,m is achieved as

Tf,m = (z1Tcm + w1Tcp)α1

=
z1Tcm + w1Tcp[

1 +
∑m

i=2(
∏i

l=2 ql)
] (5.6)
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5.2.2 Deadline-constrained network partitioning

Transforming a heterogeneous network into a homogeneous one
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Figure 5-4: Transformation of a heterogeneous network into a homogeneous network

we examine two possibilities to transform a heterogeneous network into a homo-

geneous one. One is a homogeneous network using average computing ( 1
avg w

) and

average link speed ( 1
avg z

) in Fig 5-4 (b) and the other one is a homogeneous network

using the slowest computing ( 1
max w

) and slowest link ( 1
max z

) speed of a heterogeneous

network in Fig 5-4 (c). The reason to transform a heterogeneous model into a homo-

geneous model is that the minimum number of processors to satisfy the deadline of

each job for a homogeneous network is used in evaluating the original heterogeneous

network. This minimum number of processors for a job can be obtained only from

a homogeneous model with equal computing and link speed. This minimum number
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of processors is again applied to the original heterogeneous network to test if a job

with a deadline constraint is schedulable. This is our schedulability test. The same

minimum number of children processors from the heterogeneous network is selected

and applied to the solution for the finish time in a heterogeneous model.

The inverse value of computing speed, wi and and the inverse of link speed, zi in a

heterogeneous network is mapped to w and z in a homogeneous network respectively.

All of the computing and link speed of a transformed homogeneous network are

identical one another. There are two alternatives to decide the computing and link

speed when a heterogeneous network is transformed into a homogeneous network. One

is to select the slowest speed, and the other is to select the average speed among them.

If the slowest speed is selected, the capability of computing and communication in a

homogeneous network is always less than those in a heterogeneous network. Selection

of the slowest speed in a heterogeneous network is regarded as a very conservative

policy in terms of deadline constraints, since any combination of processor and link

speed in a heterogeneous network is greater than those in a transformed homogeneous

network. Alternatively, if the average speed is selected for a homogeneous network,

the capability of computing and communication in a homogeneous network depends

on how the processors and links are related to those in a heterogeneous network.

• Minimum number of nodes from a homogeneous model

Given the finish time for each job in (5.8), we can calculate the minimum number

of nodes enough to satisfy the deadline of a task, as illustrated in [31]. For the

transformed homogeneous model, it is assumed that the inverse computing and link

speed are w and z, which can be the average value or the maximum value from the
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original heterogeneous model.

The finish time for the transformed homogeneous model is

Tf,m = (zTcm + wTcp)α1 = (zTcm + wTcp)
1− q

1− qm
(5.7)

where q =
wTcp

zTcm + wTcp

It is assumed that each task T = (A, σ, D) has a start time s, then we have constraints

that the sum of the finish time and the start time should be less or equal to the sum

of the arrival time and duration of a task.

Tf,mσ + s ≤ A + D (5.8)

(zTcm + wTcp)
1− q

1− qm
σ ≤ A + D − s (5.9)

Through simplification, we have the following relationship

qm ≤ 1− zTcmσ

A + D − s
(5.10)

m ln q ≤ ln γ, where γ = 1− zTcmσ

A + D − s
(5.11)

Finally, the minimum number of nodes for a transformed homogeneous model, m can

be obtained as (5.12), since the value, q is between 0 and 1, ln q is negative.

m ≥ d ln γ

ln q
e (5.12)
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• Two-level schedulability test for a heterogeneous network
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Figure 5-5: Deadline-constrained network partitioning in a heterogeneous tree net-
work

The entire system or network is fragmented into several smaller networks dedi-

cated to a job assigned by the root processor. The number of the selected children

processors are the same as the minimum number of nodes obtained from a transformed

homogeneous network. As illustrated in Fig 5-5, a job with the earliest deadline is

assigned to a minimum number of children processor of high capability in the first se-

quence and called a highest priority partition. A job with the next deadline is assigned

to the next minimum number of children processors from the remaining nodes and

called medium priority partition, and there is a lowest priority partition respectively.

Of course the use of more than three priority fragments could be contemplated.

As illustrated in Fig 5-6, a job with the earliest deadline is assigned to children

processor which have higher capability in the computing speed or link speed sorted
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Figure 5-6: Timing diagram for deadline-constrained network partitioning in a het-
erogeneous tree network.
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according to the order of load distribution. Within a partition, a fraction of job is

sequentially distributed to the children processors selected. Therefore, we can obtain

the execution time of each job assigned to children processors, and evaluate whether

or not each job is schedulable enough to satisfy its deadline. The goal is to schedule

more jobs to satisfy their deadline from the perspective of the entire network.
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Figure 5-7: Two-level schedulability test in a heterogeneous model.

In Fig 5-7, a two-level schedulability test algorithm is proposed. In the moderate

scheduling test, the minimum number of nodes are obtained from the homogeneous

network , HMavg transformed by the average computing and link speed in a original

heterogeneous network, and applied to the schedulability test to verify the assigned

job. Then in conservative scheduling test, the minimum number of nodes are obtained
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from the homogenous model, HMslow with the slowest computing and link speed in

a original heterogeneous network. The only minimum number of nodes are assigned

to a job and used in conservative test if the job is schedulable. The reason to select

the slowest processor from a heterogenous network is that the minimum number of

nodes to satisfy the deadline of a job in a homogeneous network must satisfy the

deadline of the job in a heterogeneous network only if every processor and link speed

in a heterogeneous is larger than that in a homogeneous network.

Algorithm 3 Deadline-constrained scheduling algorithm
1: • Step 1 : Jobs with deadline arrive at job queue in the root node and sorted in the

order of the earliest deadline first.

2: • Step 2 : Transformation of a heterogeneous to homogeneous model

3: Step 2-1 : Rearrange a heterogeneous model in the order of decreasing computing speed, link

speed, or both of computing and link speed.

4: Step 2-2 : Transform either average or smallest computing, and link speed in a heterogeneous

model into a homogeneous model, HMavg or HMslow.

5: • Step 3 : Moderate Schedulability test

6: Step 3-1 : Obtain the minimum number of nodes, nmin to satisfy deadline of the selected job in

a homogeneous network, HMavg

7: Step 3-2 : Obtain the finish time, Tf,nmin with nmin for the original heterogeneous network.

8: Step 3-3 : If Tf,nmin + start time, s <= Deadline, then accept the job, else go to step 4.

9: • Step 4 : Conservative Schedulability test

10: Step 4-1 : Obtain the minimum number of nodes, nmin to satisfy deadline of the selected job in

a homogeneous network, HMslow

11: Step 4-2 : Obtain the finish time, Tf,nmin with nmin for the original heterogeneous network.

12: Step 4-3 : If Tf,nmin + start time, s <= Deadline, then accept the job, else reject it.

13: • Step 5 : Count the accepted jobs to satisfy deadline
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5.3 Performance analysis and comparison

5.3.1 Simulation parameters

In this experiment, a fully heterogenous network is considered to be applicable to

more general Grid systems and cluster systems. It is assumed that the root processor

is fully connected to all of the children nodes.

The configuration of the simulation follows most of the previous simulation model

explained in [31]. That is, for a task (job), Ti = (Ai, σi, Di), inter-arrival times, Ai are

assumed to follow the exponential distribution with a mean of 1
λ
, and average data

variation, σi, are the normal distribution, and the durations, Di follow the uniform

distribution. The system load is a metric defined as

SystemLoad =
TotalTaskNumber × ExecutionT ime

TotalsimulationT ime
.

To evaluate the performance of real-time scheduling, the metric, RejectionRatio

is used, which is the ratio of the number of jobs rejected to the total number of jobs

arriving the root processor.

The another metric, FinishT ime is the time each job is completed with the

number of processors in a respective network from DLT’s point of view.

5.3.2 Performance analysis

It is meaningful to effectively schedule jobs with deadlines in a heterogeneous model,

since a heterogeneous model has been dominant on a Grid computing as well as
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cluster computing. Through the DLT methodology we can schedule more deadline

constrained real time jobs to satisfy their deadlines. The inverse value of computing

speed, wi is randomly assigned within 1 to 100 and the inverse value of link speed, zi

is also randomly assigned within 0.1 to 1.0.

System Model Computing / Link Speed Scheduling Policy # Nodes

HM (Homo)
MIN

EDF AN (All Nodes)
AVG

FIFO MN (Min Nodes)
MAX

HT (Hetero)

RANDOM
COMP ( 1

wi
) EDF AN (All Nodes)

COMM ( 1
zi

) FIFO MN (Min Nodes)
BOTH ( 1

wi
+ 1

zi
)

Table 5.1: The notations for the algorithms tested in the simulation.

In the TABLE 5.1, for the model, HM is an abbreviation for homogeneous and

HT for heterogeneous. For a homogeneous model, computing/link component is

used to obtain the minimum number of nodes in satisfying deadline of a job. MIN

is a homogeneous model with the minimum computing and link speed transformed

from the heterogeneous model, AV G is with the average speed, and MAX represents

the maximum speed case. For a heterogeneous model, the nodes in a heterogeneous

model are sorted according to the characteristics of application: COMP is sorted in

the decreasing order of computing speed, COMM is communication speed, BOTH

is a combination of computing and communication speed, and the RANDOM is the

randomly generated nodes. In scheduling policy, EDF is the earliest deadline first

algorithm, and FIFO is First-In-First-Out policy. For the number of nodes used in

job execution, MN means that the minimum number of nodes are selected from
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the available nodes of the systems to process a job, and AN means that all of the

nodes in the system are used. These four components can be combined to evaluate

the algorithms. For example, HT-EDF-MN means that the minimum number of

nodes are selected in scheduling jobs with the earliest deadline first (EDF) policy in

a heterogeneous model.

• Finish time The finish times are obtained for the original heterogeneous model

and various transformed homogeneous models. As shown in Fig. 5-8 (a), the homo-

geneous model with the slowest computing and link speed, HM-MIN has the largest

finish time, and for the heterogeneous model, HT-RANDOM has good performance

similar to the homogeneous model with the fastest computing and link speed, HM-

MAX as the number of processors increase when the ratio of link to computing speed,

σ = avg zTcm

avg wTcp
, is small as ’0.125’. Interestingly, when the ratio σ becomes larger, ’0.27’

in Fig. 5-8 (b), HT −RANDOM is a little bit larger than HT − AV G in the finish

time. We select the model that the ratio σ is relatively large in the following simula-

tions, since the parameters with the large σ are easily compared with the homogeneous

model in earlier work [31].

• Effect of the System Load As the rejection ratio of jobs is illustrated in

Fig 5-9, the rejection ratio for the heterogeneous network is between the average

homogeneous network and minimum homogenous network. In several simulations,

the rejection ratio of the heterogeneous model is varied on the computing and link

speed randomly generated. As the system load increases, the rejection ratio also is

increased, since the overhead is imposed on each model.

• Effect of Inter-arrival time
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(b) Slow computing and link speed

Figure 5-8: The finish time for heterogeneous and transformed homogeneous models.
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Figure 5-9: The rejection ratio for heterogeneous and transformed homogeneous mod-
els with the system load.
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Since inter-arrival time is modeled to exponentially be distributed, as the inter-

arrival time increase, the less jobs arrive. As the less jobs arrive, the rejection ratios

of three models, HT-RANDOM, HM-AVG, and HT-BOTH are also decreased to zero

after inter-arrival time is above 1200 as shown in Fig 5-10. However, the rejection

rate of HM-MIN keeps higher than other models, such as HT-RANDOM or HM-AVG,

since the finish time of HM-MIN is too large to be accepted. The reason the finish

time of HM-MIN is large is that the model HM-MIN consists of the slowest computing

and link speed from the original heterogeneous model.
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Figure 5-10: The rejection ratio for heterogeneous and transformed homogeneous
models with inter-arrival time (1/λ).

• EDF vs. FIFO

In Fig 5-11, the effect of the order of jobs, EDF and FIFO is investigated for either

a heterogeneous or homogenous model. When the link speed with large 1
zi

is fast, the

curve drops down very quickly as the inter-arrival time of jobs increases larger, as
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shown in Fig 5-11 (a), which means that the rejection rate is more sensitive to the

number of jobs within a specific period. The difference of EDF and FIFO policies

is not very large in the rejection rate, when the link speed is relatively fast. As for

the case the link speed is slow in Fig 5-11 (b), it is clear that EDF policy shows

better performance than FIFO policy, since the curve of EDF is below that of FIFO

gradually. The rejection rate of a heterogeneous model, HT-FIFO and HT-EDF is

higher than that of a homogeneous model, HM-AVG-FIFO and HM-AVG-EDF with

average computing and link speed. The reason is that the finish time of a homogeneous

model generally smaller than that of a heterogeneous model, when the link speed is

relatively slow as shown in Fig 5-11 (b).
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(b) Slow link speed (zi is large)

Figure 5-11: EDF versus FIFO in a heterogeneous and homogeneous model.

• Application specific arrangement

In a heterogeneous model, we can arrange the jobs to be adapted to application

specific model. That is, according to the characteristics of application, the nodes
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participating in the system can be ordered as a computation intensive model, a com-

munication centric model, and an integrated computation and communication model.

The integrated model, HT-BOTH, shows the lowest rejection rate, while more jobs in

communication centric model,HT-COMM are schedulable than those in computing

intensive model, HT-COMP as shown in Fig 5-12. Interestingly, computing inten-

sive model, HT-COMP, is likely to show high rejection ratio, and often higher than

randomly ordered model, HT-RANDOM. Since the finish time is affected by com-

munication speed and computing speed, in the randomly generated heterogeneous

model, it can not be guaranteed that the jobs sorted in the order of computing speed,

HT-COMP, are more admitted than the randomly generated model, HT-RANDOM.
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Figure 5-12: The rejection ratio of application specific heterogeneous systems.

• Effect of Network partitioning

Under the situation needed small nodes for the task, network partitioning methods

using the minimum number of nodes for each task shows lower rejection ratio than
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(b) Nodes = 128

Figure 5-13: Minimum nodes network partitioning in a heterogeneous model.

those methods all of nodes involved. However, as shown in Fig 5-13, the greatest

factor influencing the rejection rate is which scheduling policy is used. In the general

case jobs are sorted in the order of the earliest deadline with the EDF policy performs

better than the policy when the jobs are sorted in the order of arrival with the FIFO

policy.

5.4 Conclusion

In this chapter, divisible load theory is extended to model deadline-constrained jobs

with the EDF (earliest deadline first) policy in a heterogeneous Grid/cluster systems.

According to deadlines, the entire network is fragmented into a couple of smaller

networks with the number of nodes enough to satisfy each job’s deadline. The het-

erogeneous network can be arranged to fit the characteristics of applications which are

computing intensive, communication-centric, or both computing and communication.
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Through a two-level schedulability test algorithms to test if each job completes before

its deadline, we can check schedulability of a job under moderate condition or strict

condition for heterogeneous systems. Our proposed real-time scheduling algorithms

are not only one of feasible solutions for a heterogeneous model common in the real

computing and network environment, but shows also good performance than in terms

of the rejection ratio of jobs.
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Chapter 6

Future Research and Conclusion

6.1 Conclusion

In this dissertation we proposed sophisticated scheduling algorithms dealing with con-

current communication, communication interference on computation, workloads from

multiple sources, and deadline constrained jobs in large scale heterogeneous networks

and computational Grids. For the first two problems, concurrent communication

and communication interference on computation, concurrent scheduling and interfer-

ence aware scheduling algorithms are proposed and the closed-form solutions for the

execution time are mathematically developed and analyzed via DLT (divisible load

theory). Specifically concurrent scheduling algorithms are applied in parallel video

processing application to show better performance than the previous algorithms. It

is very meaningful to consider the effect of communication interference one of the

affecting factors on system performance and develop the closed-form equation for the

execution time in scheduling algorithms, since interference, to the best of our knowl-

109



edge, is not formulated in the closed-form solution in the design parameters to date.

Also, concurrent scheduling and interference aware scheduling can be combined to

apply to parallel video processing to show more realistic modeling.

For the next two problems, workloads from multiple sources and deadline con-

strained jobs, multi-source scheduling algorithms are devised and the solutions are

experimentally obtained using a genetic algorithm and DLT and real-time scheduling

with an integrated EDF (earliest deadline first) policy. This DLT is applied to fully

heterogeneous Grid/cluster systems. Scheduling workloads originating from multiple

sources is a combinatorial problems and heuristic algorithms and its near-optimal

solutions are obtained via the approach of genetic algorithms, since the optimal solu-

tion can not be found in the closed-form formula. The result via the use of a genetic

algorithm shows that the plots do converge which we conjecture can be regarded as

a globally optimal value for the experimental parameters. In real-time scheduling,

we are challenged to integrate one of traditional real-time scheduling algorithms, the

EDF policy, and DLT’s sequential distribution scenario and apply the scheduling

algorithm to a fully heterogeneous model, since real-time scheduling and DLT is a

very good match in terms of scheduling arbitrarily divisible workloads. Our proposed

real-time scheduling with EDF and DLT applicable to fully heterogeneous model is

believed to be meaningful in that DLT’s scheduling algorithms and mathematical

solutions are combined with algorithms in real-time scheduling for either periodic or

aperiodic task. Hence this series of work in the dissertation can be applied to difficult

problems in mission critical real-time applications
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6.2 Future research

In the future, real-time scheduling proposed in this dissertation can be extended to

deal with individual jobs originating from multiple sources under deadline constraints.

Also, multi-round scheduling from DLT’s perspective can be combined with RMS

(rate monotonic scheduling) in the real-time scheduling for a periodic tasks.
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Figure 6-1: Multi-source real-time scheduling scenario

For example, as shown in Fig. 6-1, a periodic data transfer can occur among

multi-source and sink sites over a guaranteed QoS network. Multiple source nodes

are assumed to have data replication that can be divided into the number of fractions

and distribute a fraction of data to sink nodes. Here, we can assigned a number of

fractions according to the size of bandwidth assigned to the links. With DLT and

RMS scheduling, we can schedule periodic massive data transfer with time-constraints

over the deterministic bandwidth for data transfer. Through multi-source real-time

scheduling algorithm, we can obtain better throughput of data transfer.
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