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Abstract of the Dissertation 

Classification by Ensembles 

from Random Partitions 

using Logistic Regression Models 

by 

NOHA LIM 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2007 

 

        A robust classification procedure is developed based on ensemble of 

classifiers. Each classifier is built using a logistic regression tree or logistic 

regression model fitted from a different set of predictors determined by a random 

partition of the entire set of predictors. The main goal of this study is to apply 

logistic regression models to a high-dimensional data set without variable pre-

selection. For data with a smaller sample size than the feature space, variable 

selection is required to use a standard logistic regression model. The new method 

solves this problem by random partitioning of the feature space. The proposed 

method combines the results of multiple classifiers to achieve a substantially 
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improved prediction compared to the optimal single classifier. This approach is 

designed specifically for high-dimensional genomic data sets for which a 

classifier is sought. We evaluate the performance of the proposed methods 

compared to widely used classification methods using five microarray data sets 

and simulation data sets. This study shows that the performance of the proposed 

method is consistently good in terms of overall accuracy. For unbalanced data, 

this approach maintains the balance between sensitivity and specificity more 

adequately than many other classification methods considered in this study. The 

proposed method can be applied to huge data sets of binary classification besides 

microarray data. 
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Chapter 1 

Introduction 

1.1 Data Mining and Classification 

Data mining, so called knowledge discovery in database, is the technique of 

extracting meaningful information from large data sets. Due to the advancement 

of information technology, data mining of a huge database becomes an essential 

tool for making decisions. It is used in some areas as customer relation marketing 

using sales data, credit risk assessment using financial data, and diagnosis of 

patients using gene expression data. 

One of the main functions of data mining is classification. Classification is the 

procedure to build a rule using the pre-defined classes and their features in 

historical data and apply this rule to a new data for discriminating each 

observation. Many problems in science and industry require this technique 

because of their complex and huge data sets. 

Various tools and algorithms are used to perform classification. Three major 

sources are classical statistics, machine learning, and artificial intelligence. Due to 

the complexity of a problem, there is no superior approach that always performs 

best. 

In statistics, Fisher’s linear discriminant (1936) and logistic regression are 

classical and standard methods. Moreover, some modern techniques such as the 
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Bayesian approach and k-nearest neighbor have been developed. These statistical 

approaches are generally based on a probability model for each class. 

Machine learning focuses on extracting rules from the data automatically. 

Decision tree algorithms belong to this category. They classify data using a series 

of logical splitters that divide the data into nodes. The genetic algorithm is another  

technique in this area. 

A neural network is a classification algorithm in the field of artificial 

intelligence. It is a very powerful tool with the capability of pattern recognition. 

Many nodes are connected to each other and form a network. There are input, 

output, and interconnecting layers in this network, and they work like networks of 

neurons. 

There are several issues to be addressed in classification problems. First of all, 

accuracy is a major issue because it represents the performance of the classifiers. 

However, we sometimes prefer a slightly less accurate model if it is much faster 

than a more computer-intensive model, because the time required to complete 

calculation may be a main concern in analyzing high-dimensional data. Another 

important issue is the balance between sensitivity and specificity. For example, 

positive response of the data is only 10% of sample size. We can get 90% accurate 

model if it classifies all the observations as negative. However this is not a good 

classification model. Although we may lose some correct classification of 

negative responses, we have to detect more positive cases carefully. 
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1.2 Classification of Microarray Data 

Microarray is a widely used technique in cancer research. Recently it has been 

used for classification of cancers. In cancer treatment or therapy, early diagnosis 

and an accurate classification are very important. Thus, highly accurate statistical 

classification method is desired for these studies. However, one of the properties 

of microarray data is that there are many predictors with a small sample size. This 

makes microarray classification very difficult. 

Support Vector Machines (SVM: Vapnik, 1995) were developed to bypass this 

difficulty of high-dimensional data. This approach extends the boundary by 

projecting the input space to a higher dimensional space. However, this method is 

sensitive to the choice of kernel and other specifications. 

Ensemble method is another way to classify these high-dimensional data, and 

is gaining acceptance in the data mining community due to the significant 

improvement in accuracy (Breiman, 1996, 1998, 2001; Freund and Schapire, 

1996). In ensemble methods, we can build a strong classifier by combining many 

weak classifiers (Hastie et al., 2001). 

Recently two ensemble methods, boosting (Schapire, 1990, 2002) and bagging 

(Breiman, 1996), have been widely used. Both methods use a resampled learning 

set to build a base classifier. Boosting changes the distribution of the learning set 

based on previous classifiers and combines weak classifiers using weighted voting. 
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Quinlan (1996) mentioned that boosting sometimes fails, and the class 

distributions across the weight vectors become skewed.  

Bagging uses a bootstrap sample to build each base classifier. Each sample is 

chosen randomly with replacement and the final decision is made by equal weight 

voting of these base classifiers. Random Forest (Breiman, 2001) is based on this 

algorithm and gaining recognition. It combines classification trees which are built 

by bagging and random subspace of the predictors. Due to their resampling 

algorithms, both bagging and boosting cause overlap of predictor variables among 

classifiers, and consequently high correlation among the base classifiers. 

Kuncheva et al. (2003) noted that low correlation between classifiers enables one 

to improve prediction accuracy in ensembles. 

We propose a new ensemble-based approach for classification called CERP 

(Classification by Ensembles from Random Partitions). This method is designed 

specifically for high-dimensional data sets. By randomly partitioning the 

predictors to k mutually exclusive subspaces, we can avoid the problem of 

dimensionality. Since there is no overlap of chosen predictors among subspaces, 

CERP tends to have low correlation among classifiers. We use a logistic 

regression model or logistic regression tree as base classifiers. We combine the 

predicted values of these base classifiers by taking the average of the predicted 

values of the base classifiers. 

In order to further improve the accuracy, we build multiple ensembles by 
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randomly re-partitioning the feature space. As we build multiple ensembles, fresh 

new information is obtained by different partitions. 

We investigate the performance of the CERP method, and compare it with 

commonly used methods including Random Forest (RF: Breiman, 2001), Support 

Vector Machines (SVM: Vapnik, 1995), Boosting (Schapire, 1990; Freund and 

Schapire, 1996, 1997), k-Nearest Neighbors (kNN), Shrunken Centroids 

(Tibshirani et al., 2002), Linear Discriminant Analysis (LDA) and single optimal 

trees (CART: Breiman et al., 1984; QUEST: Loh and Shih, 1997).  

CERP is applied to several data sets: the prediction of estrogen receptor 

binding activity (Blair et al., 2000), detection of allelic expression of imprinted 

genes (Reik and Walter, 2001; Greally, 2002), classification of colon cancer (Alon 

et al., 1999), classification of acute leukemias into acute lymphoblastic leukemia 

(ALL) or acute myeloid leukemia (AML) based on each individual patient’s gene-

expression profile (Golub et al., 1999) and prediction of which breast cancer 

patients would benefit from adjuvant chemotherapy based on gene expression 

data (van’t Veer et al., 2002). 

 

1.3 Classification Trees and Logistic Regression 

We introduce two well-known standard methods for classification of binary 

classes. They are CART (Brieman et al., 1984) and logistic regression. They 

perform reasonably well so that many researchers use them for analyzing their 
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data. Furthermore, many new algorithms dealing with class prediction have been 

developed and derived from those two methods. 

CART is a widely used decision tree algorithm developed by Brieman. It starts 

with a binary split which has exactly two branches from the parent node. When 

we make a rule for splitting the node in a tree, we need to evaluate the function 

for splitting. In CART, one calculates the GINI index for current node c given as, 

2( ) 1 j
j

Gini c p= −∑  

where pj is the probability of class j in c. The splitting rule is chosen to maximize 

the reduction in the GINI index.  

If the variable has n distinct numerical values, there are n-1 possible splits. 

For a variable with n categories, there are 2n-1-1 possible splits. CART examines 

each and every possible split for all variables in each node. It takes one split from 

this exhaustive search based on GINI index. 

To prevent over-fitting, CART employs a pruning method which is called 

minimal cost-complexity pruning. The purpose of this step is to build a right sized 

tree by estimating the true misclassification cost. First, CART builds a full grown 

tree and then cuts the pair of leaves sequentially. In each sub-tree, 

misclassification cost and cost-complexity value are calculated using 10-fold 

cross-validation. Finally, the CART algorithm chooses the final optimal tree using 

these values. 
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The advantage of CART is that one can obtain a very clear and explicit 

classification model. Furthermore, we can see the variables associated with the 

response using the attributes used to split. However, it is difficult to apply to high-

dimensional data sets. Because there are too many features in high-dimensional 

data, CART often fails to capture some important features included in the data. 

There are several tree-structured classification algorithms such as CHAID 

(Kass, 1980), C4.5 (Quinlan, 1993), or QUEST (Loh and Shih, 1997), and many 

researchers continue developing or modifying these methods to achieve a better 

performance. All these methods commonly split the data by making branches and 

children nodes, but they have their own rules of splitting and stopping. 

Logistic regression is a standard statistical procedure for analyzing binary 

response data (y=0 or y=1, for example). The form of the model is 

ln
1

i
i

i

p x
p

⎛ ⎞
=⎜ ⎟−⎝ ⎠

β  

where pi is the probability that the response is 1 and β is a vector of regression 

coefficients. The difference of the logistic regression compared to the least-

squares regression is that the response of logistic regression is 0/1 variable, and 

the equation predicts the log odds that the observation will be 1. When we 

estimate the parameters, the likelihood function  

1

1

( ) (1 )β i i

n
y y
i i

i

L p p −

=

= −∏  
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where /(1 )
βxi

i

βxip e e= + , is used. The parameter estimates are obtained by 

maximizing this likelihood function. Unlike least-squares regression, there is no 

explicit formula for the estimation of parameters. Thus, iterative calculation is 

applied to estimate the parameters. One starts with an initial guess of the 

parameter values, fits the model iteratively, and perturbs it over and over in order 

to improve the estimation of the parameters. Finally one stops the iterations when 

the improvement of the model is less than a pre-set tolerance. 

There is a restriction on this logistic regression. The number of variables must 

be less than the sample size. Thus, one cannot apply logistic regression directly to 

high-dimensional data sets. Variable selection is necessary before we apply the 

model to high-dimensional data. However, it is difficult to find the most 

significant and appropriate predictors. 
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Chapter 2 

Enhancement of Class Prediction by Ensemble Voting 

Methods 

Hastie et al. (2001) documents that an ensemble of a combination of weak 

classifiers is a powerful committee. This section illustrates how the ensemble 

voting methods enhance the accuracy of class prediction. 

Suppose that n classifiers are independent among each other, where n is odd. 

Let iX  denotes a random variable indicating a correct prediction by the ith 

classifier. If the prediction accuracy of each classifier is p, then iX  ~ Bernoulli(p), 

and the number of accurate classifications by the ensemble majority voting 

method is ~ binomial(n, p). Let n = 2k + 1, where k is a nonnegative 

integer. Define . Then the prediction accuracy of the ensemble 

classification by majority voting is 

=
=∑n

ii 1
Y

(nA P

X

n i

}

−

1)Y k= ≥ +

                                                                             (1) 
1

(1 )
n

i
n n i

i k
A C  p p −

= +

= −∑

Lam and Suen (1997) showed that  for k = 0, 1, ... when p = .5; the 

sequence  is strictly increasing when p > .5; and  is strictly 

decreasing when p < .5. 

2 1 .5kA + =

2 1{ kA + 2 1{ }kA +

If n is large, then  by the central limit theorem. After ( , (1 ))dY N np np p⎯⎯→
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the continuity correction, the approximate probability of the prediction accuracy 

by a majority voting is 

    2 1

1 1
1 (2 2

2 (1 ) 2 (1 )k n

n npn nA A P Y P Z P Z
np p p p+

+⎛ ⎞− − ⎛ ⎞⎜ ⎟+ −⎛ ⎞= = ≥ ≥ = ≥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎜ ⎟ ⎝
⎝ ⎠

1 2 )p

⎠
    (2) 

where . Define~ (0,1)Z N ( ) (1 2 ) / (1 )f p p p= − − p , 0 < p < 1. Since  

for .5 < p < 1 and thus

( ) 0f p <

lim ( ) / 2n n f p→∞ = −∞ , we see that l  in (2). 

Function 

imn A→∞ 1n =

( )f ⋅

0= lim

 is decreasing in (0, 1) because . The 

second derivative is . Note that , 

 and . Also, 

3/2[ (1 )]p p−

0lim p↓

1} 0− <

( )f p = ∞

( ) {2f p′ = −

1}−5/2( ) 3(1 2 ){4[ (1 )]f p p p p′′ = − −

( )f p = −∞ ( )(.5)f 1p↑ f p  is convex on (0, .5) and concave on 

(.5, 1). This implies that the prediction accuracy of the ensemble voting method 

converges quickly to 1 when p is close to 1, while it converges slowly to 1 if p is 

slightly larger than .5. 

If there is a correlation among classifiers, we can use the over-dispersed 

binomial model to calculate the prediction accuracy. The beta-binomial model is 

commonly used for deriving an over-dispersed binomial model (Williams, 1975). 

Let Y be binomial(n, p) and p itself be a random variable with mean μ. Then we 

can calculate the accuracy of the ensemble classification  using the 

beta-binomial distribution. This model is restricted to the positive correlation ρ in 

order to satisfy Var(p) > 0. However, Prentice (1986) showed that the beta-

(P Y k≥ +1)
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binomial may be extended to cases where ρ < 0 for certain values. His extended 

beta-binomial model is valid when . 1 1max{ ( 1) , (1 )[ (1 ) 1] }p n p p n pρ − −≥ − − − − − − − −

Ahn et al. (2007) address that negatively correlated classifiers improve their 

prediction accuracy more rapidly than the independent classifiers, while the 

improvement slows down when the correlation increases. This result implies that 

CERP can improve the accuracy by avoiding high correlation caused by an 

overlap of the predictor variables. 

Table 1 shows the improvement of prediction accuracy by ensemble majority 

voting. We assume that the accuracy of each classifier is the same in this approach. 

Since we partition the predictor space randomly, this assumption is reasonable. 

However, because of the random variation of the accuracy among classifiers, 

there is a difference between the estimation in this approach and the estimation 

based on the assumption of unequal accuracies. For classifiers with unequal 

accuracies, we calculate the correlation between two binary classifiers as given in 

Kuncheva et al. (2003). We examined the beta-binomial or extended beta-

binomial models to estimate the correlations for the examples used in this study 

and found that they are quite close to the estimates obtained using the correlation 

between two binary classifiers given in Kuncheva et al. 

If there is no constraint of equal accuracy of base classifiers and equal 

correlation among classifiers, Breiman (2001) showed that there is an upper 
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Table 1: Enhancement of the prediction accuracy by ensemble majority voting. 
  p (prediction accuracy of each base classifier) 
n ρ 0.50 0.55 0.60 0.70 0.80 0.90 0.95 
3 -0.05  0.50  0.58  0.66  0.80  0.91  0.98  NAa 
  0.00  0.50  0.57  0.67  0.78  0.90  0.97  0.99 
  0.10  0.50  0.57  0.64  0.76  0.87  0.95  0.98 
  0.30  0.50  0.56  0.62  0.73  0.84  0.93  0.97 
7 -0.03  0.50  0.62  0.73  0.90  0.98  NA NA 
  0.00  0.50  0.61  0.71  0.87  0.97  1.00  1.00 
  0.10  0.50  0.59  0.67  0.81  0.92  0.98  0.99 
  0.30  0.50  0.57  0.63  0.75  0.86  0.94  0.97 
15 -0.01  0.50  0.67  0.81  0.96  1.00  NA NA 
  0.00  0.50  0.65  0.79  0.95  1.00  1.00  1.00 
  0.10  0.50  0.60  0.70  0.85  0.95  0.99  1.00 
  0.30  0.50  0.57  0.64  0.76  0.87  0.95  0.98 
25 -0.01  0.50  0.72  0.88  0.99  NA NA NA 
  0.00  0.50  0.69  0.85  0.99  1.00  1.00  1.00 
  0.10  0.50  0.61  0.71  0.87  0.96  0.99  1.00 
  0.30  0.50  0.57  0.64  0.77  0.87  0.95  0.98 
101 0.00  0.50  0.84  0.98  1.00  1.00  1.00  1.00 
  0.10  0.50  0.62  0.73  0.89  0.97  1.00  1.00 
  0.30  0.50  0.57  0.64  0.77  0.88  0.95  0.98 

a not available using the extended beta-binomial model by Prentice (1986) 
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bound of the generalization error * 2(1 ) /PE s sρ≤ − 2

0]<

, where 

 is the limit for the generalization error when the 

accuracy of each base classifier is higher than .5  and s is the strength of the set of 

classifiers defined as E m  and 

,* [ ( , )YPE P mr Y= X X

,YX ( , )r YX ρ  is the average correlation of the tree 

classifiers. The  is defined as ( , )mr YX

( , ) ( ( , ) ) max ( ( , ) )j Ymr Y P h Y P h jΘ ≠ Θ= Θ = − ΘX X X =  

where  is a set of classifiers and Θ  is the predictor space. This shows 

that the limit of the generalization error depends on the average correlation. 

Moreover, the ensemble accuracy converges to 1 if there is no correlation among 

the classifiers. However, there is a limitation in improvement of the accuracy. 

Because CERP uses a fixed number of disjoint subsets, the number of base 

classifiers is limited and there is a bound which is lower than 1 for the ensemble 

accuracy. Furthermore, when we increase the number of disjoint subsets (n), the 

accuracy (p) decreases due to a smaller number of predictors used in each subset. 

Thus the improvement of the ensemble accuracy is expected to be slower than 

Table 1. However, we can achieve a reasonably fast improvement in high-

dimensional data, because a large number of base classifiers can be generated. 

( , )h ΘX  
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Chapter 3 

CERP: Classification by Ensembles from Random 

Partitions 

3.1 Introduction 

We propose a method for constructing CERP. The main idea of this method is 

to gain high accuracy of prediction by combining weak classifiers. Figure 1 

illustrates the overall scheme of our approach. Let Θ be the space of the predictors. 

In order to minimize the correlation among the ensemble of classifiers, Θ is 

randomly partitioned into K subspaces (θ1, θ2, …, θK) with roughly equal sizes. 

Since the mutually exclusive subspaces are randomly chosen, we assume that 

there is no bias in selection of predictors in each subspace. In each of these 

subspaces, we build a single classification model using classification tree, logistic 

regression or logistic regression tree. CERP combines these weak classifiers by 

averaging the fitted values to gain an improvement of accuracy. Accuracies of 

these classifiers are expected to be similar due to the randomness of the partition. 

Thus we expect an improvement of the prediction accuracy as illustrated in 

Chapter 2. In order to improve further performance, we repeat this random 

partition. We classify each observation by a majority voting of these multiple 

ensembles. 

Performance of CERP depends on the number of features in one partition, and  



 
 
 
 
 
 
 
 
 
 
Figure 1: The proposed CERP approach. 
 

Data

Subspace 1 

Random partition of the predictor space

Subspace 2 Subspace k   . . . 

  . . . 

Classifier Classfier 2 Classfier 1 

An ensemble in CERP  
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the optimal partition size varies with the data. Thus, instead of using a fixed 

partition size, we search for an optimal partition size based on a nested 3-fold 

cross-validation (CV) in each learning sample in CV. We assume that the accuracy 

is unimodal as a function of the partition size. First, we partition the predictor 

space as each subspace has around n/2 predictors, build a CERP model, and 

calculate its accuracy. In the same way, we try n/3, n/4, ..., n/10 and n/12. The 

partition size resulting in the highest overall accuracy is chosen among these. 

Thus n/i will be chosen for some integer i = 2, ..., 10 or 12. The second step is to 

search the optimal size of the subspace by a dual bisection search between n/i and 

n/(i-1) and between n/i and n/(i+1) based on the overall accuracy. After this, we 

have two candidates. We take the one with higher overall accuracy. 

In order to improve the balance between sensitivity and specificity, we search 

an optimal decision threshold for classification. This approach shares the same 

principle as the methods by Pazzani et al. (1994) and Domingos (1999). Instead of 

a threshold of 0.5, a high misclassification cost may be assigned by using the rate 

of the positive responses in the data as a threshold. When r is the rate of the 

positive responses, we classify a sample as 1 if the fitted value is larger than r, 

and classify it as 0 otherwise. The rate of the positive responses is not necessarily 

the optimal choice of the threshold in terms of balancing sensitivity and 

specificity. We found in this study that the optimal threshold usually lies between 

0.5 and the rate of positive response. 
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To search for an optimal threshold, a nested 3-fold CV is performed in each 

learning set Li, i = 1, …, 10, of a 10-fold CV as follows: 

Within Li, we use a finite grid with an increment of 0.02 between 0.5 and r. 

1. By applying each of the thresholds tsj = 0.50, 0.52, …, r (or tsj = r, r + 

0.02, …, 0.48, 0.50), conduct the following nested 3-fold CV: 

Construct a CERP classifier with one ensemble in each of the learning 

samples Li(1), Li(2), Li(3) and evaluate the accuracy using the 

corresponding test samples Ti(1), Ti(2), Ti(3) by applying tsj. 

2. Choose a threshold with the highest prediction accuracy from part 1, 

say tsi. 

3. Apply tsi to the test sample Ti corresponding to Li. 

Only one ensemble is used in this nested CV because of the tendency that the 

optimal threshold for CERP is similar for one or multiple ensembles. 

 

3.2 C-T CERP: Classification Tree CERP 

C-T CERP (Classification Tree CERP) was developed by Ahn et al. (2007). 

An optimal classification tree based on the CART algorithm is used as a base 

classifier. By using the C-T CERP, we can overcome the problem of a single 

CART tree applied to high-dimensional data as discussed in Section 1.3. C-T 

CERP can capture many features due to the random partitioned data, while single 

CART utilizes a limited number of variables. Moreover, fresh new information 
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can be obtained by a different partition of the variables in each additional 

ensemble. 

In CART, a tree is fully grown until the number of samples in each node is 

less than or equal to 5 or there is only one class left in the node. This tree is 

pruned by progressively deleting branches and the misclassification cost is 

calculated in each subtree using 10-fold cross-validation. A sub-tree with the 

smallest size whose misclassification cost is less than the smallest estimated CV 

error plus 1-standard error is chosen as the final tree (1-SE rule: see Breiman et al., 

1984). In Ahn et al. (2007), a tree program written in C is used to build each 

CART tree in C-T CERP. In this study, rpart (Therneau and Atkinson, 1997) 

package in R is used to build a CART classifier in C-T CERP for a comparison of 

classification methods.  

 

3.3 LR-T CERP: Logistic Regression Tree CERP 

As an alternative to C-T CERP, we developed LR-T CERP (Logistic 

Regression Tree CERP) using a combination of the CART algorithm and logistic 

regression.  

In LR-T CERP, we build a classification tree using the 1-SE rule. The 

classification tree (rpart) in the R package is used for splitting and pruning an 

optimal size of the base tree for each subspace. We use the same option of rpart as 

in C-T CERP. We add another option for pruning the fully grown tree. If the 
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terminal node contains only one class, we prune that node with the sibling node 

together. This step is to prevent failure of fitting the logistic regression model. 

In each terminal node, we fit the full logistic regression model. When there are 

fewer observations than predictors, univariate logistic regression models 

including the intercept term is fit with each predictor, and the n-2 predictors with 

smaller deviances plus the intercept term are chosen to be included in the model. 

However, we observed that the sample size was larger than the number of 

predictors in the terminal node most the time. 

In CART, a proportion of positive responses in the leaf node is assigned as a 

fitted value. Thus, the samples in the same node have the same fitted values, and 

the result may not be influenced by thresholds for decision in C-T CERP. 

However, the fitted values are distinct in logistic regression tree in the same node. 

Thus, the performance of LR-T CERP depends on the decision threshold. 

 

3.4 LR CERP: Logistic Regression CERP 

We developed LR CERP as an alternative to C-T CERP. As a parametric 

counterpart to the classification tree, logistic regression can be used. Logistic 

regression is the most widely used method in statistics for binary classification. 

However, there is a restriction that the number of predictors must be less than the 

number of observation. Thus, we encounter a problem to select the variables 

among thousands of variables in high-dimensional data. CERP can be used to 
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solve this problem because it partitions the predictor space into smaller subsets. 

The goal of this study is, by combining results from a widely used logistic 

regression model, to develop a classifier which is comparable to other aggregation 

methods in terms of the prediction accuracy and the balance between sensitivity 

and specificity. 

Based on the CERP algorithm, we developed LR CERP by using logistic 

regression models as base classifiers. Since we partition the data so that each 

partition contains fewer number of variables than the sample size, and 

consequently we do not need to select variables. The full logistic regression 

model can be fitted in each partition. We of course can perform the variable 

selection using AIC or other criteria. However, it makes the computation more 

complex and slower, and the improvement of accuracy may not be substantial. 

The glm function in R is used to fit logistic regression model. 

LR CERP combines the results of multiple logistic regression models to 

achieve an improved accuracy of class prediction by taking the average of the 

predicted values within an ensemble. The predicted values from all the base 

classifiers in an ensemble are averaged and classified as either 0 or 1 using a 

threshold discussed in Section 3.1. Although a majority voting and averaging 

methods are fundamentally similar, the latter gave slightly better prediction 

accuracy for LR CERP in this study. 
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Chapter 4 

Existing Methods 

We compared the performance of CERP with the existing classification 

methods listed in this chapter.  Twenty repetitions of 10-fold CV are performed in 

the comparison.  Details of the comparison are given in Chapter 6. 

 

4.1 Random Forest (RF) 

RF was developed by Breiman (2001) and is available as a package named 

RandomForest in R. RF is an ensemble of single CART trees which are based on 

the values of a random vector of the feature space sampled independently and 

with the same distribution for all trees in the forest. It takes each bootstrap sample 

to generate a tree and uses this as a training set (bagging). The remaining sample 

serves as a test set. It also chooses a random subset of the predictors to find a split 

at each node. There is an option called ntree which is the number of trees to grow. 

The default value of ntree = 500 works well. The number of features selected 

randomly at each node may also vary. Ahn et al. (2007) show that square root of 

the number of predictors gives good results in many data sets. The threshold for a 

decision does not notably change the prediction. 
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4.2 Support Vector Machines (SVM) 

SVM (Vapnik, 1995) projects the input space into a higher dimensional 

feature space. In this high dimensional space, SVM builds a linear classifier. We 

used the SVM function of the e1701 package in R. The choice of kernel and the 

parameters for the transformations are sensitive to the prediction. We selected the 

linear kernel and the default option of the radial basis kernel. 

 

4.3 Boosting Methods 

AdaBoost is introduced by Freund and Schapire (1997). It makes many base 

trees (decision “stumps”: trees with a single split) and gathers them with majority 

voting. The base trees are constructed from the same data set by giving weights 

based on the previous classifier’s fit. If the current classifier is wrong, the weight 

given to this classifier is required in the next iteration. Schapire et al. (1998) 

found that boosting tends to increase the margins which are related to the 

generalization error, and a large positive margin means a greater probability of 

correct classification. LogitBoost algorithm is similar to AdaBoost. The main 

difference is that it uses the logit loss function. 

AdaBoost, LogitBoost, L2Boost and BagBoost are available in the R boosting 

package. Since the result of BagBoost is similar to that of L2Boost, we do not 

include it in the results discussed here. The mfinal option is the number of 

iterations of weighted voting. We tried 30 to 100 iterations in this study. 
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4.4 kNN: k-Nearest Neighbor Classifiers 

kNN is based on the distance among the data points, and the Euclidean 

distance is used in this study. The kNN algorithm decides the class of a new data 

point using the k-Nearest Neighbors in the learning set. The class from the 

majority voting of these k neighbors is assigned to a new observation. kNN has 

been shown to be a consistent classifier (Friedman 1997; Dudoit, Fridlyand and 

Speed 2002). 

We used the kNN function of “class” package in R. For a good prediction, 

variable pre-selection is required. We follow the method of Dudoit et al. (2002) by 

taking the highest BW ratio, which is the ratio of between group to within group 

sums of squares for each feature. For a variable j, BW ratio is defined as 

2
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where . jx  is the average expression level of variable j across all sample and kjx  is 

that of variable j across  samples belonging to class k. An optimal number of 

variables (p) and the value of k were searched in the learning phase using nested 

CV. For p, we started with 10 and increased the number by 10 while p≤100. The 

increment was gradually increased when p>100. For k, we tried the value of 1 to 

15. Pairs of (p, k) with the highest accuracy was chosen in each learning set. 
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4.5 Shrunken Centroids (SC) 

SC (Tibshirani et al., 2002) classifies the observations using shrunken class 

centroids. The standard class centroids are calculated by the average value of each 

predictor in each class divided by within-class standard deviation for that 

predictor. A new observation is classified based on a squared distance of the 

centroids of each class. However, SC shrinks these standard class centroids using 

threshold and moves them toward zero. This is a more reliable estimation of 

centroids because there may be noise in gene expression data. 

We used R package (pamr) of SC with a soft thresholding option. As 

described in Section 4.4, we performed variable selection using BW ratio in the 

learning phase for each data. 

 

4.6 LDA: Linear Dicriminant Analysis 

LDA is used to find the linear combination of features which best separate 

samples of distinct groups. It maximizes the ratio of between-class variance to 

within-class variance. There are several different algorithms for LDA. Diagonal 

Linear Discriminant Analysis (DLDA) employs a simpler rule than Fisher’s 

Linear Discriminant Analysis (FLDA) in classification which uses a linear 

discriminant function. DLDA assumes that the class densities are assumed to have 

the same diagonal matrix. The class of a new observation is determined by the 
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distance of mean vector of each group using Mahalanobis distance. DLDA 

ignores correlation among predictors and uses a simple weighted sum of the 

predictors. According to Dudoit et al. (2002), it is a consistent classifier and 

shows better generalization performance than other LDA algorithms such as 

DQDA (nonlinear discriminant analysis) and FLDA. 

Since DLDA often performs well when the dimension is reduced by a variable 

selection, we selected variables using the BW ratio as in kNN. The stat.diag.da 

and “MASS” packages in R were used for DLDA and FLDA, respectively, in this 

study. The optimal number of predictors was selected as the same way as in 

Section 4.4. 

 

4.7 Single Optimal Trees 

CART (Breiman et al., 1984) and QUEST (Loh and Shih, 1997) are based on 

binary splits. The results are provided by the optimal trees from these algorithms. 

CART searches the split exhaustively. A single CART tree is constructed and 

pruned by the 1-SE rule discussed in Section 3.1. We used the rpart package 

which is an R-version of CART. 

QUEST uses linear combination splits for improving the prediction accuracy 

over univariate split used in CART. To conduct cross-validation, we wrote a shell 

program using the executable files downloaded from the authors’ homepage 

(http://www.stat.wisc.edu/~loh/quest.html). We used the linear combination 
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option for QUEST. 
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Chapter 5 

Data Sets 

5.1 Classification of Chemicals for Estrogen Activity 

A number of environmental chemicals known as endocrine-disrupting 

chemicals (EDCs) are suspected of disrupting endocrine functions by mimicking 

or antagonizing natural hormones in animals and humans (Hileman, 1997). The 

estrogen activity database (Blair et al., 2000) contains a large and diverse estrogen 

data set. This data set contains 232 samples (chemicals) with 312 predictors. Out 

of these 232 structurally diverse chemicals, 131 chemicals exhibit estrogen 

receptor binding activity, while 101 are inactive, meaning that no activity was 

detectable in the assay. This structurally diverse data set has 312 predictors 

generated using the Molconn-Z software 4.07. The data set is given at 

http://www.ams.sunysb.edu/~hahn/research/CERP/estrogen.txt. 

 

5.2 Classification of Gene Imprinting Data 

Genomic imprinting, defined as gene expression dependent on the parent of 

origin, gives rise to numerous human diseases (Reik and Walter, 2001). Greally 

(2002) described the first characteristic sequence parameter that discriminates 

imprinted regions-a paucity of short interspersed transposable elements (SINEs). 

This finding has subsequently been confirmed by other groups. 

 27

http://www.ams.sunysb.edu/%7Ehahn/research/CERP/estrogen.txt


The genomic data collected to study imprinted genes were from the UCSC 

Genome Browser (http://genome.ucsc.edu/). Annotation data were downloaded 

for the human genome (hg16, July 2003 freeze). The data contain 131 samples 

and 1446 predictors. Among the 131 samples, 43 are imprinted and 88 are control 

genes (non-imprinted). The current data set has been made available by John 

Greally at http://greallylab.aecom.yu.edu/~greally/imprinting_data.txt. 

The sequence features of interest were repetitive elements (chrN-rmsk files), 

CpG island (cpgIsland file), transcription start sites of other genes and the exon 

count of each gene (refFene file). Each feature was examined for varying window 

sizes around the transcription start and end site. 

 

5.3 Classification of Colon Tissue Sample 

In cancer research, DNA microarray technology makes it possible to classify 

the tissue sample based on gene expression data, without prior and often 

subjective biological knowledge (Golub et al., 1999; Dudoit et al., 2002). Gene 

expression in 40 colon adenocarcinoma tissue samples and 22 normal colon tissue 

samples were analyzed with an Affymetrix oligonucleotide array complementary 

to more than 6,500 human genes (Alon et al., 1999). We used the data with 2,000 

genes of the highest minimal intensity across the 62 tissue samples. It is available 

at http://microarray.princeton.edu/oncology.affydata/index.html. 
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5.4 Classification of Leukemia Subtypes 

The Golub leukemia data set is introduced in one of the seminal papers 

applying statistical classification techniques to microarray data. Golub et al. 

(1999) classified acute myeoloid leukemia (AML) and acute lymphoblastic 

leukemia (ALL) subtypes using a variant of linear discriminant analysis based on 

gene expression profiling. We included the performance using state-of-the-art 

classifiers such as those presented by Dudoit et al. (2002) for comparing CERP 

with other classification methods. They used 38 samples of AML and ALL as 

the learning set and 34 samples as test set. Dudoit et al. (2002) combined 

these learning and test set for the analysis. Therefore, the data contain 47 

ALL and 25 AML. We obtained the data from the website 

http://www.broad.mit.edu/cancer/software/genepattern/datasets/ and pre-

processed the data as described in Golub et al. so that 3,571 genes remain in the 

data. 

 

5.5 Classification of Breast Cancer 

van’t Veer et al. (2002) used gene expression data to identify patients who 

would benefit from adjuvant chemotherapy according to classification of 

prognostication with distant metastases. The data contain 78 primary breast 

cancers: 34 from patients in poor prognosis and 44 from patients who continue to 

be disease-free (good prognosis) after a period of at least 5 years. These samples 
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have been selected from patients who were lymph node negative and under 55 

years of age at diagnosis. Out of approximately 25,000 gene expression levels, 

about 5,000 significantly regulated genes (at least a two-fold difference and a p-

value of less than 0.01) in more than 3 tumors out of 78 were selected (Dudoit et al., 2002). 

The data can be downloaded from http://www.rii.com/publications/2002/vantveer.htm. 
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Chapter 6 

Classification of Real Data Sets 

We evaluated the prediction accuracy of LR-T CERP and LR CERP along 

with the balance between sensitivity and specificity using real data sets. Before 

applying the methods, we removed the predictors that had identical values for 

more than 98% of the samples in order to reduce the possibility that a predictor in 

a learning set would not have distinct values in the CV for building a base 

classifier. For the estrogen data, 250 out of 312 predictors were selected using this 

criterion, and for the gene imprinting data, 1248 out of 1446 predictors were 

selected for the analysis. For the other data sets, all the predictors were included 

by this criterion. We perform 20 repetitions of 10-fold CV for CERP and other 

methods and take the average of the results in order to obtain a stable result. 

Twenty CVs should be sufficient according to Molinaro et al. (2005) who 

recommended at least 10 CVs in order to have low MSE and bias. 

We conducted a variable selection for kNN, SC and LDA. We used the BW 

ratio criteria in the learning phase as discussed in Section 4.4.  In SC and LDA, 

only p is searched using the same method as in kNN. An average and standard 

deviation of the number of selected variable were included in result tables. 

We found that the prediction accuracy slightly increases by having multiple 

ensembles, and 11 ensembles were enough to achieve an improvement in this 
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study.  

We compared the performance of LR CERP and LR-T CERP with other 

widely used methods. Tables 2 through 6 show the accuracy, sensitivity and 

specificity of each method. We also provide the accuracy graph of each 

classification model with a 1-sd bar in Figures 2 through 6. 

In the comparison of the methods, CERP does not require any fine tuning of 

parameters because they are determined in the training phase inside the program. 

For the most relevant comparison, we provide the best result we obtained for each 

data set for the other methods and specify the parameters used in the footnote. For 

the methods requiring variable pre-selection, an optimal number of variables is 

searched and the variables are selected by the BW ratio in the training phase. For 

kNN, the optimal value of k is also obtained in nested CV.  

DLDA did not perform well even with a variable selection for the estrogen 

data (see Table 2), because it assumes that features are not correlated. FLDA 

performed better than DLDA with variable selection, but the accuracy was still 

lower than most of the other methods. Because the data are reasonably balanced 

(proportion of the positive responses in the data is .56), the balance of sensitivity 

and specificity was good in most of the methods. In SVM, RBF performed better 

than linear kernel unlike in the other data sets. It appears to be due to a nonlinear 

relationship that was not captured using a linear function of the predictors. The 

performance of kNN and SC was not comparable to many other methods even  
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Table 2: Accuracy (standard deviation in parentheses) of classification methods 
for the estrogen data with 131 cases and 101 controls. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .81 (.02) .86 (.02) .75 (.02) 

 LR-T all .85 (.01) .89 (.01) .79 (.02) 
RFb  all .84 (.01) .88 (.01) .79 (.02) 

SVM Lin. Kernel all .79 (.01) .83 (.02) .74 (.03) 
 RBFc all .83 (.01) .89 (.02) .75 (.01) 

Boosting LogitBoost all .82 (.02) .85 (.03) .77 (.03) 
kNNd  63 (63)e .74 (.03) .83 (.03) .62 (.05) 

SC  51 (51)e .70 (.02) .75 (.03) .63 (.02) 
LDA FLDA 60 (25)e .78 (.02) .87 (.02) .66 (.03) 

 DLDA 49 (33)e .73 (.01) .76 (.02) .69 (.02) 
Single CART all .77 (.01) .88 (.02) .62 (.02) 
tree QUEST all .66 (.03) .72 (.04) .59 (.07) 

a average partition size: 6.9, 11.1 
b average number of trees: 300; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 3.1 (2.2) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 2: Comparison of accuracies (with 1-sd bars) of classification methods for 
the estrogen data. 
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after a variable selection. 

Table 3 shows that the sensitivity and specificity were 74% and 95%, 

respectively, by LR CERP, while they were 66% and 99%, respectively, by RF for 

the gene imprinting data. According to paired t-test, sensitivity of RF is 

significantly lower than that of LR CERP (t=5.34, p<0.0001*), while their 

accuracies are not significantly different. These results support the criticism about 

RF on the imbalance by Dudoit and Fridlyand (2003). For RF, we tried various 

choices of number of variables to be selected in each node of a tree, and the 

number of trees in the forest including the default option. Furthermore, we tested 

various thresholds in RF package of R. However, the results did not substantially 

differ beyond the random error. CERP gave high accuracy and good balance 

between sensitivity and specificity compared to the other methods. For DLDA, 

the accuracy reached the highest when a large number of variables were pre-

selected. The single trees show severe imbalance between sensitivity and 

specificity as well as poor accuracy. 

For the colon data set (see Table 4), LR CERP gave 85% of accuracy and 

perfect balance of sensitivity and specificity. The LogitBoost failed to give 

comparable prediction accuracy for this particular data set, although it performed 

well on the other data sets we examined. RF and SVM with RBF kernel showed 

poor balance of sensitivity and specificity compared to CERP. The difference of 

accuracy (t=3.21, p=0.0046*) and specificity (t=10.16, p<0.0001*) between RF 

 35



 
 
 
 
 
 
 
 
 
Table 3: Accuracy (standard deviation in parentheses) of classification methods 
for the imprinting data with 43 cases and 88 controls. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .88 (.02) .74 (.03) .95 (.02) 

 LR-T all .89 (.01) .72 (.04) .97 (.02) 
RFb  all .88 (.01) .66 (.03) .99 (.01) 

SVM Lin. Kernel all .84 (.02) .70 (.04) .92 (.02) 
 RBFc all .79 (.02) .46 (.04) .95 (.02) 

Boosting LogitBoost all .84 (.02) .73 (.04) .89 (.03) 
kNNd  261 (322)e .78 (.02) .67 (.05) .84 (.03) 

SC  40 (11)e .83 (.02) .70 (.03) .90 (.02) 
LDA FLDA 391 (107)e .79 (.02) .63 (.06) .88 (.03) 

 DLDA 667 (241)e .86 (.02) .63 (.04) .97 (.01) 
Single CART all .73 (.03) .40 (.10) .89 (.04) 
tree QUEST all .67 (.04) .31 (.09) .85 (.05) 

a average partition size: 61.1, 71.3
b average number of trees: 400; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 2.7 (1.7) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 3: Comparison of accuracies (with 1-sd bars) of classification methods for 
the imprinting data. 
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Table 4: Accuracy (standard deviation in parentheses) of classification methods 
for the colon data with 22 cases and 40 controls. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .85 (.02) .85 (.01) .85 (.01) 

 LR-T all .85 (.02) .87 (.01) .83 (.05) 
RFb  all .81 (.04) .88 (.01) .68 (.10) 

SVM Lin. Kernel all .85 (.03) .88 (.02) .79 (.06) 
 RBFc all .81 (.02) .94 (.02) .56 (.05) 

Boosting LogitBoost all .73 (.03) .82 (.03) .58 (.07) 
kNNd  303 (396)e .84 (.04) .88 (.02) .75 (.08) 

SC  452 (374)e .85 (.02) .87 (.02) .81 (.07) 
LDA FLDA 32 (25)e .87 (.03) .88 (.03) .84 (.05) 

 DLDA 46 (117)e .85 (.02) .86 (.02) .83 (.05) 
Single CART all .71 (.04) .87 (.04) .41 (.10) 
tree QUEST all .82 (.02) .86 (.03) .75 (.04) 

a average partition size: 138.1, 172.3
b average number of trees: 200; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 5.1 (2.3) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 4: Comparison of accuracies (with 1-sd bars) of classification methods for 
the colon data. 
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and LR CERP are significant based on paired t-test. The results shown in this 

table agree with the results by other researchers. Ambroise and McLachlan 

(2002) studied the difference of prediction error between internal and external 

cross-validation. They used SVM with a combination of linear kernel and a 

backward selection procedure. They stated that the error rate as estimated was 

above 15% in external CV. Tsai et al. (2004) reported that their prediction 

accuracy of kNN (k=1) and SVM was 84%. kNN and DLDA gave high accuracy 

with pre-selected predictors. FLDA showed the best performance with 87% 

accuracy, but this is obtained after a variable selection was done for FLDA. SVM 

performed better when the linear kernel was used instead of the radial based 

function (RBF). It is notable that QUEST is comparable to RF for the colon and 

leukemia data sets, while it performed considerably worse than RF for the other 

data sets. For this data set, RF required fewer trees (ntree=200) for the optimal 

performance compared to other data sets. 

For the leukemia data (see Table 5), all the methods gave high prediction 

accuracy ranging from 95% to 98% except for CART. This tendency of high 

accuracy is also shown in Dudoit et al. (2002). This data set also shows heavy 

imbalance (proportion of the positive responses in the data is .35) of the 

frequencies of the two classes, but the balance between sensitivity and specificity 

is not a concern because of the high prediction accuracy. 

For the breast cancer data (see Table 6), the prediction accuracies of all the 
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Table 5: Accuracy (standard deviation in parentheses) of classification methods 
for the leukemia data with 47 ALL and 25 AML samples. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .98 (.01) .96 (.00) .99 (.01) 

 LR-T all .98 (.01) .96 (.01) .99 (.01) 
RFb  all .98 (.01) .96 (.01) 1.00 (.01)

SVM Lin. Kernel all .98 (.01) .96 (.01) .99 (.01) 
 RBFc all .98 (.01) .93 (.03) 1.00 (.00)

Boosting LogitBoost all .96 (.01) .95 (.02) .96 (.01) 
kNNd  198 (507)e .97 (.02) .93 (.04) .98 (.02) 

SC  23 (16)e .96 (.01) .92 (.02) .98 (.01) 
LDA FLDA 178 (151)e .95 (.02) .92 (.04) .96 (.02) 

 DLDA 140 (367)e .97 (.01) .94 (.02) .99 (.01) 
Single CART all .81 (.03) .77 (.06) .83 (.04) 
tree QUEST all .96 (.03) .96 (.01) .95 (.04) 

a average partition size: 245.2, 238.7
b average number of trees: 200; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 3.1 (3.3) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 5: Comparison of accuracies (with 1-sd bars) of classification methods for 
the leukemia data. 
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Table 6: Accuracy (standard deviation in parentheses) of classification methods 
for the breast cancer data with 34 cases and 44 controls. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .61 (.03) .53 (.06) .66 (.03) 

 LR-T all .61 (.03) .55 (.06) .65 (.04) 
RFb  all .64 (.03) .49 (.04) .75 (.03) 

SVM Lin. Kernel all .61 (.02) .56 (.05) .65 (.02) 
 RBFc all .57 (.04) .39 (.07) .70 (.04) 

Boosting LogitBoost all .72 (.04) .64 (.07) .78 (.04) 
kNNd  707 (1040)e .63 (.05) .53 (.09) .72 (.05) 

SC  314 (622)e .60 (.03) .50 (.05) .68 (.04) 
LDA FLDA 368 (601)e .60 (.04) .55 (.06) .64 (.05) 

 DLDA 314 (685)e .61 (.02) .54 (.03) .67 (.02) 
Single CART all .54 (.03) .17 (.09) .83 (.08) 
tree QUEST all .52 (.03) .14 (.06) .82 (.06) 

a average partition size: 302.6, 343
b average number of trees: 200; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 4.3 (2.6) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 6: Comparison of accuracies (with 1-sd bars) of classification methods for 
the breast cancer data. 
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methods were lower than 65% except for LogitBoost. This low accuracy is in line 

with the results published by Moon et al. (2007). LogitBoost was superior to other 

methods in accuracy for this data. Although RF gave the second best accuracy, the 

balance between sensitivity and specificity was worse than those of CERP, kNN 

and SVM with linear kernel. Not only the performance of single tree methods, but 

also the balance between sensitivity and specificity were poor. 

Table 7 provides the performance ranking of the classification methods for the 

five real data sets based on the overall accuracy. This table shows that both LR 

and LR-T CERP are ranked the highest among all the methods compared in this 

study. They give high prediction accuracy and the ranks are in the top half for all 

five real data sets. 
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Table 7: Performance ranking of the classification method for each data set. 

  Data set  
Method Approach Estr Impr Colon Leuk Breast Avg. rank 
CERPa LR 5 2 2 1 4 2.8 

 LR-T 1 1 2 1 4 1.8 
RFb  2 2 9 1 2 3.2 

SVM Lin. Kernel 6 5 2 1 4 3.6 
 RBFc 3 8 9 1 10 6.2 

Boosting LogitBoost 4 5 11 8 1 5.8 
kNNd  9 10 7 6 3 7.0 

SC  11 7 2 8 8 7.2 
LDA FLDA 7 8 1 11 8 7.0 

 DLDA 10 4 2 6 7 5.8 
Single CART 8 11 12 12 11 10.8 
tree QUEST 12 12 8 8 12 10.4 
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Chapter 7 

Simulation Study 

7.1 Models 

We performed a simulation study to evaluate the proposed LR CERP and LR-

T CERP and compared their performance with other well known classification 

methods. This simulation consists of two parts. In the first part, predictors were 

independently generated, and in the second part, predictors were generated to 

have correlation. We generated each simulation data set with 100 subjects and 

1000 predictors. Fifty of these predictors were generated from two different 

normal distributions, and the remaining 950 predictors were generated from one 

normal distribution and served as noise. In each of the simulation data sets, the 

first fifty variables were generated from N(1, 1) for cases and N(0, 1) for controls. 

Four different models were considered in this simulation study. For models M1 

and M2, these variables were generated independently. For models M3 and M4, 

correlation was given to each pair of 50 variables. The upper-diagonal elements of 

the correlation matrix were generated randomly from the Uniform(0, 0.8) 

distribution. This correlation structure was generated once before generating  

simulation data, and used for generating all the simulation data sets from each of 

M3 and M4. The average pairwise correlation obtained in this study was 0.4255 

for M3 and 0.4053 for M4. The remaining 950 variables were independently 
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Figure 7: The structure of 4 simulation models. 
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generated from N (0, 1). The case-control ratio was given as 50:50 for M1 and M3, 

and 30:70 for M2 and M4. 
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7.2 Results 

One hundred data sets were generated from each of the four models. For each 

simulation replication, 10-fold cross validation was performed for evaluating the 

performance of each classification method. The average of the accuracies from 

the 100 simulation data sets from each classification method are reported in 

Tables 8 through 11, and Figures 8 through 11. 

As seen in the classification of the leukemia data set, simulation from M1 (see 

Table 8) showed high accuracies in all methods except for LogitBoost and CART. 

The balance between sensitivity and specificity was also good for all methods 

because the positive rate of this model is exactly .5. 

For M2 (see Table 8), RF, SVM with RBF kernel, LogitBoost and CART 

showed low accuracy compared to other methods. This result supports our 

observation that RF does not perform well for unbalanced data. These methods 

tended to classify most of the cases into majority class. CERP performed well for 

both of M1 and M2. 

The accuracies of the classification methods were lower for the models with 

correlated data (M3 and M4). Although there was no clear distinction in accuracy 

among the methods for these models, CART consistently performed worse than 

the other methods poorly for these models. LogitBoost, SVM RBF, CART and RF 

showed a severe imbalance between sensitivity and specificity for both models 

with unbalanced data (M2 and M4). 
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Table 8: Accuracy (standard deviation in parentheses) of classification methods 
for the simulation data M1. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .97 (.02) .97 (.02) .97 (.02) 

 LR-T all .94 (.03) .94 (.03) .94 (.04) 
RFb  all .98 (.01) .98 (.02) .98 (.02) 

SVM Lin. Kernel all .99 (.01) .99 (.02) .99 (.02) 
 RBFc all .98 (.02) .98 (.02) .98 (.03) 

Boosting LogitBoost all .69 (.08) .69 (.08) .69 (.10) 
kNNd  104 (189)e .96 (.02) .96 (.03) .96 (.03) 

SC  32 (35)e .99 (.01) .99 (.01) .99 (.01) 
LDA FLDA 32 (22)e .98 (.02) .98 (.03) .98 (.02) 

 DLDA 34 (43)e .99 (.01) .99 (.01) .99 (.01) 
Single CART all .69 (.07) .69 (.07) .70 (.09) 
tree QUEST all .99 (.01) .99 (.01) .99 (.03) 

a average partition size: 73.2, 82.2
b average number of trees: 305; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 11.9 (2.6) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 8: Comparison of accuracies (with 1-sd bars) of classification methods for 
simulation model M1. 
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Table 9: Accuracy (standard deviation in parentheses) of classification methods 
for the simulation data M2. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .97 (.02) .91 (.06) 1.00 (.01)

 LR-T all .96 (.02) .87 (.07) 1.00 (.01)
RFb  all .77 (.03) .22 (.08) 1.00 .(00)

SVM Lin. Kernel all .95 (.02) .85 (.07) 1.00 (.00)
 RBFc all .70 (.00) .00 (.00) 1.00 (.00)

Boosting LogitBoost all .70 (.07) .68 (.12) .71 (.07) 
kNNd  161 (238)e .95 (.02) .84 (.07) .99 (.01) 

SC  30 (13)e .99 (.01) .96 (.03) 1.00 (.00)
LDA FLDA 29 (11)e .98 (.01) .97 (.03) .99 (.01) 

 DLDA 30 (11)e .99 (.01) .99 (.02) 1.00 (.01)
Single CART all .72 (.05) .30 (.17) .90 (.05) 
tree QUEST all .96 (.03) .90 (.05) .99 (.03) 

a average partition size: 79.1 80.7
b average number of trees: 229; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 6.0 (3.0) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 9: Comparison of accuracies (with 1-sd bars) of classification methods for 
simulation model M2. 
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DLDA and SC showed high generalization accuracy for all four simulation 

models. Furthermore, they achieved a good balance between sensitivity and 

specificity even for M4 although all other methods showed poor balance for it. 

Note that these two methods used the variable selection prior to classification. 

Between the single optimal trees, QUEST performed better than CART for all 

four models. Because the simulation is based on normal distribution, linear 

combination splits may have more strength than univariate splits. 

This simulation study shows how the correlation affects the accuracy of 

ensemble when we compare the accuracies between M1 and M3, and between M2 

and M4. Two sample t-test shows the significant difference in accuracies of LR 

CERP between M1 and M3 (t=33.42, p=0.005), and between M2 and M4 

(t=35.78, p=0.004). Correlation among the predictors makes the base classifiers 

dependent to each other and causes a slow improvement of the ensemble accuracy 

as demonstrated in Chapter 2. It leads to the difference of the overall accuracies 

among the simulation models. Because the partition size is limited, ensemble 

accuracy of CERP reaches their bound which is lower than 1 as discussed in 

Chapter 2.  
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Table 10: Accuracy (standard deviation in parentheses) of classification methods 
for the simulation data M3. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .79 (.05) .79 (.05) .79 (.06) 

 LR-T all .78 (.05) .78 (.06) .77 (.06) 
RFb  all .79 (.04) .80 (.05) .78 (.06) 

SVM Lin. Kernel all .77 (.05) .77 (.06) .78 (.06) 
 RBFc all .78 (.05) .79 (.07) .78 (.07) 

Boosting LogitBoost all .74 (.06) .73 (.07) .74 (.07) 
kNNd  178 (250)e .78 (.05) .79 (.07) .77 (.07) 

SC  175 (227)e .81 (.04) .82 (.05) .81 (.05) 
LDA FLDA 169 (219)e .74 (.07) .74 (.08) .74 (.08) 

 DLDA 171 (225)e .81 (.04) .81 (.05) .81 (.05) 
Single CART all .68 (.08) .69 (.10) .68 (.11) 
tree QUEST all .77 (.06) .78 (.06) .76 (.07) 

a average partition size: 71.3, 79.5
b average number of trees: 262; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 10.8 (3.3) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 10: Comparison of accuracies (with 1-sd bars) of classification methods 
for simulation model M3. 
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Table 11: Accuracy (standard deviation in parentheses) of classification methods 
for the simulation data M4. 

Method Approach #predictors Overall Sensitivity Specificity
CERPa LR all .81 (.04) .52 (.12) .94 (.03) 

 LR-T all .81 (.04) .51 (.13) .94 (.03) 
RFb  all .77 (.04) .27 (.13) .98 (.02) 

SVM Lin. Kernel all .80 (.04) .48 (.10) .93 (.03) 
 RBFc all .70 (.00) .00 (.01) 1.00 (.00)

Boosting LogitBoost all .77 (.05) .49 (.11) .89 (.04) 
kNNd  162 (228)e .80 (.05) .51 (.12) .92 (.04) 

SC  285 (269)e .82 (.04) .75 (.09) .85 (.03) 
LDA FLDA 305 (280)e .76 (.05) .50 (.11) .87 (.06) 

 DLDA 290 (270)e .82 (.04) .73 (.08) .86 (.04) 
Single CART all .70 (.04) .19 (.16) .91 (.06) 
tree QUEST all .78 (.05) .43 (.18) .93 (.03) 

a average partition size: 72.9, 74.4
b average number of trees: 249; number of predictors: default (floor[m1/2]) 
c radial basis function (default option for the SVM function in the R package E1071) 
d average (sd in parantheses) of k obtained in the training phase: 8.4 (3.7) 
e average (sd in parantheses) number of predictors selected in the training phase 
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Figure 11: Comparison of accuracies (with 1-sd bars) of classification methods for 
simulation model M4. 
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Chapter 8 

Conclusions and Future Studies 

We have developed an ensemble-based classifier with logistic regression 

models on each of the subsets in a random partition of the parameter space. The 

new methods have the following advantages compared to other well-known 

statistical classification methods. 

 Logistic regression models can be used for a high-dimensional data with 

an improved performance without variable pre-selection.  

Computationally simple models such as LDA often require variable 

selection for an optimal performance.  The variable selection can be 

computer-intensive for a high-dimensional data, and it does not guarantee 

an optimal subset. 

 LR CERP is based on a widely used standard regression model for binary 

responses.  Thus it is substantially less computer-intensive than other 

aggregation methods such as RF or SVM. 

 The proposed methods take advantage of the CERP methods including 

low correlation among base classifiers by random partitioning of the 

feature space. 

In a logistic regression model, the balance of sensitivity and specificity relies 

highly on the threshold of classification.  We searched the optimal thresholds from 
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cross validation based on learning sets.  The balance is significantly improved 

compared to other aggregation methods such as RF and SVM for unbalanced data 

sets. 

The main idea of CERP is that we partition the feature space to mutually 

exclusive subspaces so that we can bypass the difficulty of the high-dimensional 

data. This is a major difference among CERP and other ensemble-based methods 

such as RF which uses the same feature in each classifier. Since we select a 

different subset of predictors in each classifier, we can reduce the correlation 

between classifiers and gain an improvement discussed in Chapter 2. We have 

shown empirically that huge data sets need not be handled as a whole; the 

subspaces of the feature space created through partitioning may be treated 

independently and separately until after the classifiers are developed. This gives 

CERP a huge computational advantage to tackling the growing problem of 

dimensionality. Like RF, CERP does not require variable pre-selection, thus it is 

straightforward and easy to implement the algorithm. 

We showed that LR CERP and LR-T CERP are comparable to other well- 

known classification methods. The classification methods we selected for 

comparison performed well, while no method consistently outperforms the others. 

Using a CV estimate, we demonstrated that LR CERP and LR-T CERP show 

consistently high accuracy. This high accuracy was achieved partly due to the 

diversity created among classifiers. 
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Although RF gives a high accuracy in general, it often fails to give a good 

balance between sensitivity and specificity for unbalanced data as criticized by 

Dudoit and Fridlyand (2003). According to Chen et al. (2004), the imbalance 

occurs in many classification methods because they tend to focus on improvement 

of accuracy. We also found in the analysis of gene imprinting data that RF gives a 

poor sensitivity, while it gives almost perfect specificity. This imbalance is not 

desirable because a goal here is to identify more positives (imprinted genes). The 

balance between sensitivity and specificity is improved by LR CERP and LR-T 

CERP in unbalanced data. In LR CERP and LR-T CERP, the optimal threshold 

choice helps improve the balance. We are mainly interested in showing the 

enhanced accuracy, but the better balance is a strong attribute of CERP as well. 

Further exploration of the performance of LR CERP and LR-T CERP with respect 

to imbalance will be done in the future work. 

As shown in this study, some methods such as LDA, kNN and SC often show 

an improved performance when using the pre-selected variables. However, 

variable pre-selection based on the BW ratio does not always provide the best 

performance. Furthermore, some variable selection rules are often computer 

intensive for high-dimensional data. 

Since all the parameters are determined in the training phase of the program, 

CERP does not require any fine tuning for specific data sets in the comparison. 

Thus it can be used for any type of high-dimensional data set. Although RF tends 
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to perform well with the default parameter values, the performance may depend 

on the number of classifiers or number of randomly selected predictors in each 

node of a tree. When using the RBF kernel for SVM, a fine tuning of the relevant 

parameters such as kernel width is needed. Often the default parameter value does 

not work very well for large number of attributes. 

When we performed CV, the run time of CERP was reasonable compared to 

that of other methods. For leukemia data, for example, it took approximately 20 

minutes to finish a 10-fold CV for LR CERP with 11 ensembles, and 

approximately 4 minutes for RF on a Window XP 3.0GHz machine. 

A drawback of LR CERP and LR-T CERP is that it cannot obtain the explicit 

model. This problem also appears in other ensemble-based methods. However, the 

main goal of microarray studies is to find an accurate classification model. 

Furthermore, we experienced a heavy memory consumption and long 

computation time due to the high dimensionality of data. This problem can be 

solved by using a parallel computing. 

There are a few issues remaining to be investigated. The first one is a variable 

importance. We can easily extract this information from our CERP model. We 

may assign a variable importance ranking according to the frequencies of feature 

appearing in the LR-T CERP model and the variable selection in LR CERP. 

We may encounter a problem to classify data whose response contains more 

than two classes. By modifying the base classifiers, LR CERP or LR-T CERP can 
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be used to classify dichotomous data into multiple classes. A strength of the CERP 

methodology is that various types of classifiers can be used as a base classifier. 

In LR CERP and LR-T CERP, the performance highly depends on the number 

of partitions and threshold for decision. We plan to study how these parameters 

affect the accuracy and balance between sensitivity and specificity. Furthermore, 

we can further improve the algorithm to find an optimal partition size and 

threshold. 

The source codes of LR CERP and LR-T CERP algorithms are implemented 

using R. After debugging and configuring, an R package for CERP can be 

developed and contributed to the R library. 
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Appendix 

A.1 Algorithm for the Cross-Validation of LR CERP 

1) Separate data L into 10 subsets T1, …, T10, with roughly equal size for CV. 

2) Do for i=1 to 10. 

i) Take Ti as test set and Li= L - Ti as learning set. 

ii) Search an optimal partition size (pi) and threshold (ti) for Li using 3-

fold CV. 

iii) Do for ensemble 1 to 11. 

(a) Randomly partition the predictors of Li into pi subspaces. 

(b) Do for subset 1 to pi. 

1. Fit a full logistic regression as a base classifier. 

2. Apply this model to test set Ti. 

(c) End the loop. 

(d) Take an average of fitted values for test set Ti. 

(e) Make a decision as 0/1 using threshold (ti). 

iv) End the loop. 

v) Majority vote of the decision is made using 11 ensembles. 

3) End the loop. 

4) Gather classification results for all the samples. 
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A.2 Algorithm for the Cross-Validation of LR-T CERP 

1) Separate data L into 10 subsets T1, …, T10, with roughly equal size for CV. 

2) Do for i=1 to 10. 

i) Take Ti as test set and Li= L - Ti as learning set. 

ii) Search an optimal partition size (pi) and threshold (ti) for Li using 3-

fold CV. 

iii) Do for ensemble 1 to 11. 

(a) Randomly partition the predictors of Li into pi subspaces. 

(b) Do for subset 1 to pi. 

1. Build the fully grown tree. 

2. Prune the tree using 1-SE rule 

3. Trim the nodes containing only one class. 

4. Do for terminal node 1 to k. 

i. If the sample size is larger than the number of 

predictor, fit the full logistic regression model 

ii. Else, fit the univariate logistic regression 

models with each predictor including the 

intercept term, and the n-2 predictors with 
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smaller deviances plus the intercept term are 

chosen to be included in the model. 

iii. Apply this model to test set Ti. 

5. End the loop. 

6. Take an average of fitted value for test samples Ti. 

(c) End the loop. 

(d) Make a decision as 0/1 using threshold (ti). 

iv) End the loop. 

v) Majority vote of the decision is made using 11 ensembles. 

3) End the loop. 

4) Gather classification results for all the samples. 

 

A.3 Algorithm for Searching an Optimal Partition Size and 

Threshold 

1) Do for the partition size p as each subspace has around n/2, n/3, n/4, ..., n/10 

and n/12. 

i) Fit the LR or LR-T CERP model using 3-fold CV. 

ii) Do for the thresholds tsj = 0.50, 0.52, …, r (or tsj = r, r + 0.02, …, 0.48, 

0.50). 

(a) Apply tsj  to the fitted model. 

(b) Evaluate the accuracy of 3-fold CV model. 
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iii) End the loop. 

2) End the loop. 

3) Do for the thresholds tsj = 0.50, 0.52, …, r (or tsj = r, r + 0.02, …, 0.48, 0.50). 

i) Choose p with the highest prediction accuracy using tsj. 

ii) Do the bisection method between n/i and n/(i-1) until there is no 

improvement of prediction accuracy using 3-fold CV and tsj. 

iii) Do the bisection method between n/i and n/(i+1) until there is no 

improvement of prediction accuracy using 3-fold CV and tsj. 

iv) Take the one with higher overall accuracy. 

4) End the loop. 

5) Take the pair of (p,ts) with the highest overall accuracy. 
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