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Localization is a fundamental problem in autonomous mobile robot navigation. It 

refers to the determination of the position and orientation of a mobile robot through the 

analysis of sensory data. By some authors the robot localization problem has been stated 

as the “most fundamental problem to providing robots truly autonomous capabilities" [1]. 

In this thesis, a novel localization technique for indoor mobile robot navigation 

using a collection of laser-activated RFID tags is presented. The laser-activated RFID tag 

is designed and used as the artificial landmark in the proposed localization system. They 

are distributed in the indoor environment. The robot localization is achieved through the 

combination of the stereo vision and RFID technologies and based on the principle of 

trilateration or triangulation. The localization system functions like an indoor GPS. The 

stereo vision provides the relative position between the robot and tags and the RFID tags 
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provide their absolute positions in the world coordinate. The robot can be uniquely 

located in the indoor environment by combining all the relative and absolute position 

information. Preliminary research shows that the proposed system is promising to provide 

a robust and accurate indoor localization method for mobile robots. 

 A new localization algorithm based on the trilateration and triangulation is 

presented in the second part. This algorithm can recover the robot position and 

orientation from a single image of identified landmarks taken by an onboard camera. The 

visual angle between two landmarks can be derived from their projections in the same 

image. The distances between the optical center and the landmarks can be calculated 

from the visual angles and the known landmark positions based on the law of cosine. The 

robot position can be determined using the principle of trilateration. The robot orientation 

is then computed from the robot position, landmark positions and their projections. 

Extensive simulation has been carried out. A comprehensive error analysis provides the 

insight on how to improve the localization accuracy. 

 Finally, a 2-axis laser scanner model is established to analyze the reflection 

relationship between the input and output laser beam direction caused by the rotating 

mirrors. The simplified model is calibrated and used in our localization system control 

the direction of laser beam. 
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Chapter 1 Introduction 

1.1 Motivation and Background 

Localization is a fundamental problem in autonomous mobile robot navigation. It 

refers to the determination of the position and orientation of a mobile robot through the 

analysis of sensory data. It is a key component in many successful autonomous robot 

systems. If a robot does not know where it is relative to the environment, it is difficult to 

decide what to do. The robot will most likely need to have at least some idea of where it 

is to be able to operate and act successfully. By some authors the robot localization 

problem has been stated as the “most fundamental problem to providing robots truly 

autonomous capabilities" [1]. 

Tremendous effort has been made to solve the problem of mobile robot localization, 

and a number of methods have been developed. Existing localization techniques for 

mobile robots can be classified into two categories: relative localization and absolute 

localization. The relative localization usually uses odometry, gyroscope and 

accelerometer.  Since the position estimation is based on the previous position, the error 

in the estimation will accumulate and increase over time. On the contrary, the absolute 

localization supplies information about the location of the robot independent of previous 

location estimates. The location is not derived from integrating a sequence of 
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measurements, but directly from one measurement. It uses active beacon, landmark and 

map to derive the position information. This has the advantage that the error in the 

position does not grow unbounded, as is the case with relative position techniques. 

Obviously, the absolute localization has the advantages over the relative localization. 

However, two potential problems arise when using absolute localization: 1) how to get 

the measurement and 2) how to identify the landmarks. 

The Global Positioning System (GPS) is one of the most successful tools used in 

the outdoor localization systems using absolute localization method [2-12]. By measuring 

the time-of-flight of the satellites’ radio frequency signals which include information 

about the momentary locations of the satellites, a ground-based receiver can identify the 

satellites and compute its own position based on the principle of trilateration. With clock 

synchronization and error compensation, the accuracy of GPS-based positioning has been 

improving. 

Due to the limitation of radio frequency signals, GPS can not be used in the indoor 

environment. Nonetheless, by recognizing the convenience brought by GPS in outdoor 

navigation, some researchers have made their effort to investigate GPS-like localization 

systems for mobile robots in indoor environments. These systems intend to achieve 3D 

indoor localization based on the active beacon without substantial online processing such 

as local map generation and matching. Many localization systems have been developed in 

the indoor environments [13-15]. However, their accuracy may be impaired by signal 

reflection and distortion due to the obstacles. 

Vision sensors like cameras are also widely used in the localization system. They 

can provide much more useful geometric and radiometric information. Based on the 
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camera model, we can derive the distance measurement that we need. The landmarks in 

images are easy to be identified for the human eyes, but not for computers. Since the 

images are usually 2-D dimensional and information redundant, it requires a lot of image 

processing and computation work to extract useful information. Typical image processing 

work includes filtering, edge detection, and segmentation.  

Recently, Radio Frequency Identification (RFID) becomes popular in both research 

and industry areas. It is a technology for automatically identifying objects by assigning an 

ID code to an electronic tag and retrieving the ID code using a wireless transceiver 

operating at radio frequencies. Some research has been conducted on RFID-based indoor 

mobile robot localization, where RFID tags are used as artificial landmarks [18-22]. A 

tag is easily identified by retrieving its ID code using an RFID reader. The tag ID can be 

used as an index to retrieve the accurate position of a tag from a database. However, they 

face the same problems of signal reflection and distortion.  

Inspired by the some indoor localization system and RFID technologies, we are 

trying to combine the traditional stereo vision and the RFID technology to fully utilize 

their respective advantages. We propose a new indoor localization system for mobile 

robots using laser-activated RFID tags. 

1.2 Objectives and Methodology 

The objective of our research is to create a fast and accurate absolute localization 

technique for mobile robots moving in indoor environments. We intend to learn from the 

merits of the existing localization techniques and solve the problems with the existing 
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localization systems. The design of the proposed localization system is inspired by the 

GPS and RFID technologies. 

 The proposed localization system is artificial landmark-based, with a set of 

artificial landmarks pre-installed in an indoor environment with known absolute positions 

with respect to a global frame of reference, a set of onboard sensors to detect the artificial 

landmarks and an onboard computer to process the sensory data and localize a mobile 

robot. It is less expensive than a design which uses fixed sensors to track a mobile robot. 

Moreover, the distance between an artificial landmark and the mobile robot is measured 

along the line-of-sight. The general idea of the proposed localization technique is as 

following: 

1) Artificial landmark design: A new type of RFID tag, the laser-activated RFID 

(LARFID) tag, is designed on the basis of an active RFID tag and used as the artificial 

landmark. Each LARFID tag has a unique ID, and after installation its absolute position 

in an indoor environment will be written into its own memory. The LARFID tag comes 

with a bright LED which makes it highly detectable from camera images. The LARFID 

tag will be activated by a laser beam, and then its ID and position information can be 

retrieved by an RFID reader. The LARFID tag will be deactivated when the laser beam is 

removed.  

2) Landmark detection and localization: An LARFID tag is represented by its LED, 

and its position is defined by the position of the LED. Stereo vision is used to detect the 

LARFID tags. The position of an observed LARFID tag relative to the mobile robot can 

be calculated based on the perspective geometry. A laser beam will be shot from the 

mobile robot to activate the tag, and an onboard RFID reader will detect the activated tag. 
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The tag ID will be used to retrieve the stored absolute tag position via a follow-up inquiry 

by the RFID reader. Each time only one tag will be activated.  

3) Mobile robot localization: The position and orientation of the mobile robot in 

the global frame of reference can be calculated based on the principle of trilateration or 

triangulation. The position of a LARFID tag relative to the mobile robot contains both the 

distance and bearing information. The absolute position of the tag is also known via 

RFID communication. The position and orientation of the mobile robot can be 

determined based on three or more tags. 

4) Beyond the localization system, the algorithm part is also reviewed, which gives 

us an inspiration to combine the trilateration and triangulation. A new localization 

algorithm is presented to recover the position and orientation using a single image of 

identified landmarks. 

1.3 Thesis Structure 

Chapter 2 reviews current localization system and algorithm. Different kinds of 

localization system, GPS-based outdoor localization, GPS-liked indoor localization, and 

RFID-based indoor localization are classified. The different features of those systems 

give us an inspiration to create a new system to overcome current disadvantages. In the 

algorithm part, the traditional trilateration and triangulation algorithm is also provided. 

Although many improvements have been made on those algorithms, here we provide a 

novel localization algorithm to overcome their respective disadvantages. 

In Chapter 3, a design scheme and prototype of our localization system is provided. 

The design scheme is illustrated at the beginning. Then a detailed description of 
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components and their functionality is elaborated. The stereo vision system, RFID tags, 

and laser scanner are three most important parts in our system. Both the hardware and 

software system have been established. Preliminary research shows that the proposed 

system is promising to provide a robust and accurate indoor localization method for 

mobile robots. 

Chapter 4 presents a new localization algorithm based on the trilateration and 

triangulation. This algorithm can recover the robot position and orientation from a single 

image of identified landmarks taken by an onboard camera. Extensive simulation has 

been carried out. A comprehensive error analysis provides the insight on how to improve 

the localization accuracy. 

Chapter 5 introduces the laser scanner modeling and calibration. It is a practical 

problem we solved in the construction of the localization system. A 2-axis laser scanner 

consists of two independent rotating mirrors. Geometric model is established to analyze 

the orientation of the final laser output beam caused by the two reflective mirrors. The 

simplified model is calibrated and used in our localization system control the direction of 

laser beam. 

Chapter 6 presents the conclusions and future works of this research. 
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Chapter 2   Literature Review 

2.1 Localization System 

Many localization systems have been developed using different technology. GPS is 

widely used in the outdoor environment. Due to the nature of radio frequency signal, it 

can not be deployed in the indoor environment. Therefore, GPS-liked indoor system is 

developed to achieve 3D indoor localization without substantial online processing such as 

local map generation and matching. Recently, RFID technology is also used in the 

localization. A detailed review is provided in the following sections.  

2.1.1 GPS –based Outdoor Localization 

Global Positioning System (GPS) is a worldwide radio-navigation system 

developed by the US Department of Defense. It is formed from a constellation of 24 

Earth-orbiting satellites (with 3 backup satellites) and their ground stations. These 

satellites are used by GPS receivers as reference points. The absolute position of each 

satellite is maintained and updated at the satellite, which eliminates the need of a central 

database. By measuring the time-of-flight of the satellites’ radio frequency signals which 

include information about the momentary locations of the satellites, a ground-based 

receiver can identify the satellites and compute its own position based on the principle of 
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trilateration. With clock synchronization and error compensation, the accuracy of GPS-

based positioning has been improving. Regular GPS provides an accuracy of <10m (after 

the removal of Selective Availability) [27]. Differential GPS, with pre-determined 

reference stations, can offer a positioning accuracy of 1-2m [27]. Recent technology 

based on phase measurement can achieve accuracy at centimeter or lower level, and real-

time-kinematic (RTK) GPS can provide high positioning accuracy in motion [27].  

 

Fig. 2-1 GPS-based Outdoor Localization 

 

GPS provides a convenient and powerful tool for outdoor navigation of mobile 

robots (Fig. 2-1). Li used a simple GPS for coarse estimation of robot position in outdoor 

environments [2]. Lenain et al. used RTK GPS for accurate path tracking of an 

agricultural robot in presence of slippage [3]. However, GPS receivers require an 

unobstructed view of the sky, so they are used only outdoors. They often have increased 

errors near trees or tall buildings due to signal blockage and multi-path interference [4, 5]. 

In other words, accurate distance measurement depends on “line-of-sight”. In addition, 

latency caused by data transmission, processing and communication with multiple 
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satellites increases the difficulty in dynamic applications [6]. A well-accepted solution is 

to fuse GPS data with odometry or inertial measurements to improve the outdoor 

positioning accuracy, which combines the long-term stability of GPS and real-time 

property of dead-reckoning [7-12].  

It is many people believe that GPS will become the universal standard for outdoor 

applications [4，27]. However, an indoor equivalent to GPS is difficult to realize. Due to 

signal blockage and interference, none of the currently existing RF-based trilateration 

systems work reliably indoors. If the line-of-sight between stationary and onboard 

components can be maintained, RF-based solutions may work indoors as well. 

2.1.2 GPS-like Indoor Localization 

Recognizing the convenience brought by GPS in outdoor navigation, some 

researchers have made their effort to investigate GPS-like localization systems for mobile 

robots in indoor environments. These systems intend to achieve 3D indoor localization 

without substantial online processing such as local map generation and matching. They 

are in general active beacon-based. Lai and Wu developed a robot localization system 

consisting of one onboard laser range finder with pan/tilt and four reflectors fixed in the 

environment [13]. Based on the measurement of distances between the reflectors and 

laser range finder, the 3D position of the laser range finder can be determined using 

trilateration; and the 3D orientation of the mobile robot can be obtained by measuring 

three positions of the movable laser range finder. However, a robust method for 

distinguishing the reflectors is missing, which jeopardizes the validity of robot 

localization. Yi and Choi developed a robot localization system consisting of four fixed 
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ultrasonic generators and a pair of onboard ultrasonic receivers [14]. The distances are 

calculated based on the time-of-flight. To avoid crosstalk between the ultrasonic signals, 

the RF receivers and transmitter are added to the ultrasonic generators and receivers 

respectively, and the ultrasonic generators are activated successively using different RF 

channels. However, in less open indoor environments, inaccuracy may arise in distance 

measurement due to the reflection of ultrasonic signals. Prigge and How developed a 

robot localization system based on a low frequency magnetic field which is generated by 

a few electromagnetic beacons and can penetrate some line-of-sight obstacles [15]. The 

position of a sensor is calculated based on the amplitude measurement of the magnetic 

field vector which is the sum of superimposed beacon fields. Individual beacon fields are 

distinguished based on encoded time-varying magnetic fields. However, signal distortion 

may result from eddy field noise caused by time-varying magnetic fields, additive white 

noise in circuits, and existence of ferromagnetic materials in the environments. Active bat 

[37] (Fig. 2-2) is another localization system developed in the indoor environments based 

on ultrasound signals respectively. However, its accuracy may also be impaired by signal 

reflection and distortion due to the obstacles. 

  

Fig. 2-2 Active Bat Indoor Localization System 
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2.1.3 RFID-based Indoor Localization 

Radio Frequency Identification (RFID) is a technology for automatically 

identifying objects by assigning an ID code to an electronic tag and retrieving the ID 

code using a wireless transceiver operating at radio frequencies. RFID features non-

contact and non-line-of-sight readability. The RFID reader can detect the existence of a 

tag within a certain range. RFID tags can be active, which have a power supply for 

sending their responses, or passive, which are powered by the RF energy transferred from 

the reader. In general, active tags are more reliable and more expensive, and can be read 

over a distance of tens of meters; while passive tags are less reliable and cheaper, and can 

be read over a distance from a few centimeters to a few meters [16].  

Recently, some research has been conducted on RFID-based indoor mobile robot 

localization, where RFID tags are used as artificial landmarks. A tag is easily identified 

by retrieving its ID code using an RFID reader. The tag ID can be used as an index to 

retrieve the accurate position of a tag from a database. Alternatively, since many RFID 

tags have their own memory, the position information of each tag can be stored on the tag 

directly and read out by an RFID reader later, which eliminates the need of a central 

database. This function can be very helpful in dynamic environments where landmarks 

move and need to update their locations from time to time. 

Existing RFID-based localization operates generally in two different ways. One 

way is to calculate the distance between a tag and a reader based on the time-of-flight of 

RF signals. Kim et al. developed an RFID system, including three orthogonal antennae, 

which determines the direction of a tag by comparing the signal strength in each direction 

and measures the tag-reader distance from phase shift [17]. Inaccuracy may arise due to 
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RF signal blockage and interference. Another way is based on the fact that a reader can 

detect a tag within a certain range. In the works of Tsukiyama [18,19] and Kulyukin et al. 

[20-22], passive RFID tags were used as landmarks to remind the mobile robot its 

position and help to decide next movement. The robot positioning accuracy depends on 

the RFID range and is coarse in general. Yamano et al. proposed an RFID-based mobile 

robot localization method using Support Vector Machine Learning [23]. The robot 

positioning accuracy depends on the learning resolution, and 20% ambiguity was 

reported for locating the robot at correct locations. Chae and Han proposed an active 

RFID tag-based localization method which divides the environment into small regions 

and determines the region where the robot lies by weighing each tag based on its distance 

to its region boundary [24]. The success rate of locating the robot in correct regions is 

reported as 91.5%. Hahnel et al. developed an RFID-based mobile robot localization 

method by first learning a probabilistic sensor model (Fig. 2-3), which describes the 

likelihood of detecting a tag given its position relative to the antenna, and then localize 

the robot using Monte Carlo localization based on that model [25]. However, the robot 

localization accuracy using only RFID tags is low, with a reported average error about 

2m. Jia et al. used passive RFID tags as landmarks with known absolute positions in 

vision-based localization [26]. When the mobile robot moves into the range of a tag, the 

onboard reader detects the tag and the onboard camera localized the robot relative to the 

tag. When neighboring ranges overlap, ambiguity may arise due to the mismatch between 

the detected and observed tags. Otherwise, when they are totally separated, the mobile 

robot may not be able to localize itself in the transitional region between two neighboring 
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ranges. In a word, the inaccuracy and ambiguity induced by the RFID range are the major 

problems of the existing RFID-based indoor mobile robot localization. 

 

 

Fig. 2-3 RFID-based Indoor Localization System 

2.2 Localization Algorithm 

Trilateration and triangulation are two widely adopted localization methods used in 

different systems. Many improvements have been made to solve the problem efficiently 

and accurately. Trilateration is a traditional method to locate an object using distance 

measurement. However, its disadvantage is that it can not recover the orientation 

information. Triangulation, instead of using distance measurements, uses bearing 

measurements among references to locate an object. Here we review some works related 

to these two methods. 

2.2.1 Trilateration Method 

Trilateration is a method which determines the position of an object based on 

simultaneous distance measurements from three or more known references (Fig. 2-4). It 
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is equivalent to finding the intersection of three or more spheres. Manolakis provided a 

closed-form solution to the trilateration problem [30]. He also presented a systematic 

error analysis method, taking into account the distance measurement error [31]. Coope 

derived two alternative closed-form solutions for trilateration, one based on Gaussian 

elimination and the other based on orthogonal decomposition and transformation [32]. He 

also presented a nonlinear least-square optimization method to get the approximate 

solution from erroneous measurements. Recently, Thomas and Ros proposed a general 

formulation for the closed-form solution using the Cayley-Menger determinant defined 

by constructive geometric arguments [33]. Fang showed that the formulation of 

trilateration can be simplified by defining the problem in a frame attached to one of the 

references [34]. 

 

Fig. 2-4 Trilateration Problem 

 

Many applications have been developed based on the principle of trilateration. The 

Global Positioning System (GPS) uses trilateration to locate a receiver based on the travel 

distances of radio frequency signals from the satellites [35]. It provides a powerful tool 
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for outdoor mobile robot localization and navigation [36]. In indoor environments, some 

localization systems have been developed, such as SpotOn [37], Active Badge [38], 

Active bat [39], Cricket [40], based on radio frequency [37], infrared [38], and ultrasound 

[39, 40] signals respectively. Recently, Zhou et al. have also introduced a new indoor 

localization method for mobile robots based on the laser-activated RFID landmarks [41]. 

2.2.2 Triangulation Method 

Triangulation, instead of using distance measurements, uses bearing measurements 

among references to locate an object. The basic idea of triangulation is that in a plane 

containing the references and object, the object is located at the intersection of the circles 

each of which is determined by two references and the bearing between them (Fig. 2-5). 

Cohen compared four solution methods for triangulation, i.e. iterative search, geometric 

triangulation, geometric circle intersection and Newton-Raphson iterative method, and 

showed that geometric circle intersection is the most robust one among them [42]. Betke 

and Gurvits presented a position estimation algorithm using the complex numbers 

representation of the landmarks [43]. The main advantage of this algorithm is the linear 

time complexity with respect to the number of landmarks and the robustness to the noisy 

input. Shimshoni also presented an algebraic solution by applying several transformations 

to the linear system of equations which are defined by triangulation constraints [44]. He 

showed that these transformations indeed improved accuracy. Sutherland and Thompson 

discovered that the position error is influenced by both the input bearing error and the 

distribution of landmarks [45].  
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Fig. 2-5 Triangulation Problem 

Vision sensors are widely used to measure the bearings. The structured features, 

such as doors and wall corners, are extracted from images. The 2D bearings of landmarks 

can be recovered from vertical edges. Muñoz and Gonzalez developed a 2D landmark-

based triangulation algorithm in which the bearings are derived from a single image [46]. 

Other systems utilizing the bearing measurements for localization can be found in [43, 

47-49]. 
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Chapter 3 Laser-activated RFID-based 

Indoor Localization System 

Inspired by the GPS and RFID technologies, we propose a new indoor localization 

system for mobile robots. The proposed localization system is artificial landmark-based, 

with a set of artificial landmarks pre-installed in an indoor environment with known 

absolute positions with respect to a global frame of reference, a set of onboard sensors to 

detect the artificial landmarks and an onboard computer to process the sensory data and 

localize a mobile robot. It is less expensive than a design which uses fixed sensors to 

track a mobile robot. Moreover, the distance between an artificial landmark and the 

mobile robot is measured along the line-of-sight.  

3.1 Design Scheme 

A novel type of RFID tag, the laser-activated RFID (LARFID) tag, is designed on 

the basis of the existing RFID technique, and used as the artificial landmark in the 

proposed indoor localization system for mobile robots. The LARFID tag extends an 

active RFID tag with a light-emitting diode (LED) and a laser-activated switch circuit. A 

function diagram of the LARFID-based indoor localization system for mobile robots is 

presented in Fig. 3-1. 
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Fig. 3-1 Function of the LARFID-based Localization System 

3.1.1 Active RFID Tag 

An active read/write RFID tag is used as the base of the designed artificial 

landmark. The main reason for using the active RFID tag is because it has its own power 

supply which can be easily controlled to activate and deactivate the tag. Moreover, 

comparing with passive RFID tags, active tags work more stable and can be detected over 

a longer range.  As a result, a relatively small number of artificial landmarks are needed 

for mobile robot localization. 

The unique ID of an RFID tag is used to identify the associated artificial landmark. 

An RFID reader is used to receive the assigned tag ID. The tag ID can be used as the 

index to retrieve the absolute position of the associated artificial landmark from a 

database. However, instead of doing this, in our design the absolute position of an 

artificial landmark is written into the memory of the underlying RFID tag and read out by 

the RFID reader. With this strategy, there is no need to maintain a central database for all 

the artificial landmarks in an environment for the purpose of mobile robot localization. 
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More importantly, the stored position information can be updated, which makes the 

designed artificial landmark applicable to an indoor environment under change. 

By identifying each artificial landmark using the unique ID of the underlying RFID 

tag, we intentionally avoid the shape-based and pattern-based artificial landmark designs. 

It may potentially reduce the cost of designing and fabricating a large number of 

uniquely-shaped or patterned artificial landmarks for applications in large indoor 

environments. As a result, the artificial landmarks in an environment have the same 

appearance. 

3.1.2 LED for Landmark Detection 

With the understanding that the line-of-sight plays an important role in accurately 

locating an artificial landmark relative to the mobile robot, we choose to use a line-of-

sight-based method, instead of a time-of-flight-based method, for landmark localization. 

An onboard stereo vision unit, consisting of two cameras with fixed transformation 

between them, is used to detect the artificial landmarks and measure the position of an 

observed artificial landmark relative to the mobile robot. 

In order to make landmark detection robust and avoid substantial online image 

processing, a bright LED is attached to each RFID tag and kept on constantly. In our 

design, the LED is regarded as the representative point feature of an artificial landmark, 

and the position of the artificial landmark is represented by the position of its LED. The 

apertures of the onboard cameras are intentionally minimized. As a result, with regular 

ambient lighting, the LEDs are shown as bright spots outstanding from the dark 

background in the images. To find the artificial landmarks from an image, we only need 
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to segment out the LED spots and find their centers, which does not require very 

complicated image processing procedure. 

During each localization operation, a pair of images is taken from the stereo vision 

unit, one from each camera. The correspondence between the LED spots in the two 

images can be established by using a method such as epipolar line search [28] or 

combinatorial optimization [29]. In the work of this paper, we assume that a same set of 

artificial landmarks can be observed by both cameras, which can be realized in practice 

by adjusting the relative transformation between the two cameras and limiting the pan/tilt 

range of the stereo vision unit according to the distribution of the artificial landmarks in 

the environment. More complicated situations, e.g. unequal number of LED spots 

appearing in the two images, will be studied in our future work. With the known 

correspondence, the position of each observed landmark (LED) relative to the mobile 

robot can be calculated based on the perspective geometry. 

3.1.3 Laser Activation for Localization 

Given the positions of some landmarks relative to the mobile robot, we also need to 

know the absolute positions of those landmarks in a global frame of reference in order to 

localize the robot in the same frame. In our design, the absolute position of an artificial 

landmark is stored in the memory of the associated RFID tag, and can be retrieved by 

inquiry with the tag ID using an RFID reader installed on the mobile robot.  

There is a potential problem with regular RFID tags. With regular RFID tags, the 

RFID reader detects all the functioning RFID tags within its reading range. Meanwhile, 

stereo vision recovers some artificial landmarks based on their LEDs. However, the 
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correspondence relationship between the artificial landmarks detected by the RFID reader 

and those observed by stereo vision is missing. Moreover, depending on how the artificial 

landmarks are distributed in the environment, at each moment some of them may be 

caught by the cameras, others may not. It may also be possible that the stereo vision unit 

detects some artificial landmarks which lie outside the range of the RFID reader and 

cannot be detected by the RFID reader.  

To solve this problem, we add to each active RFID tag a photodiode-based switch 

circuit which stands between the battery and function part of the RFID tag (Fig. 1). In the 

proposed system, a laser pointer with pan/tilt capability will also be installed on the 

mobile robot. The modified RFID tag is called laser-activated RFID (LARFID) tag which 

will be activated by a laser beam sent from the mobile robot. Usually the switch circuit 

on an LARFID tag is off, and the tag is not powered and not functioning. When an 

LARFID tag is detected and its position relative to the mobile robot is calculated via 

stereo vision, the robot shoots a laser beam to the LARFID tag. The laser beam hits the 

photodiode and generates a voltage signal to open the switch circuit and turn on the 

power of the tag. Once the LARFID tag is activated, it will be detected by the onboard 

RFID reader. Then the RFID reader can retrieve the absolute position of the tag, which is 

stored in the tag memory, by a follow-up inquiry with the tag ID. After this operation, the 

mobile robot turns off the laser beam. Once the laser beam is removed from the 

photodiode, the switch circuit will be closed, and the tag will be deactivated. Intentionally, 

only one laser beam is used, and each time only one LARFID tag is activated by the laser 

beam. The mobile robot decides which tag to target, and the RFID reader knows which 
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tag it detects. In this way, the correspondence between an observed LARFID tag and its 

ID is established successfully.  

To avoid using an LARFID tag which is observed by stereo vision but lies outside 

the range of the RFID reader, we set a threshold value for valid distance measurement 

based on the capability of the RFID reader, tags and laser beam and the accuracy of 

distance measurement. Only those tags at a distance from the mobile robot shorter than 

the threshold are considered valid for robot localization. 

3.1.4 Laser Activation for Robust Landmark Detection 

Besides retrieving the absolute position of an LARFID tag, the laser activation 

operation provides an easy way to check and correct the landmark matching and 

reconstruction results from stereo vision. In general, if the position of an LARFID tag 

relative to the mobile robot is reconstructed based on the correct correspondence, then 

when the laser beam hits the targeted tag, it will be activated and detected by the RFID 

reader. Otherwise, no tag physically exists at the targeted location, and nothing will be 

detected by the RFID reader, which means a mismatch in stereo vision. Then the 

landmark matching in stereo vision can be partially redone with only those mismatches. 

As a result, landmark detection and localization becomes more robust. An alternative 

method can be also used when only a small number of tags are observed. In fact, with N 

tags caught by two cameras, there are totally N2 possible tag locations in space. By 

shooting laser beam to every possible location, the robot can eventually figure out the N 

valid tag locations.  
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3.2 System Prototype 

A prototype system has been built for the feasibility study of the LARFID-based 

indoor localization technique for mobile robots. The system consists of a mobile 

subsystem (Fig. 3-2) and a stationary subsystem (Fig. 3-3). 

 

Fig. 3-2: Mobile Subsystem 

 

Fig. 3-3: Stationary Subsystem 
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3.2.1 System Components 

The mobile subsystem includes a mobile robot, onboard notebook, stereo vision 

system (two cameras), pan-tilt, laser generator and scanner, data acquisition board (DAQ), 

and RFID reader. The stationary subsystem is actually a world coordinate defined by the 

modified RFID tags. The detailed view of the main components is presented in the 

following diagram (Fig. 3-4), which also illustrates the relationship between those 

components. 

Computer 

Mobile Robot 

DO/AO 
Board 

Laser-activated 
RFID Tag  

RFID Reader

Scanner Driver 
Board 

Laser Scanner 

Laser 

Camera 
Image 

Fig. 3-4 LARFID-based Localization System Components 
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 In our experimental system, an Activmedia Pioneer3-DX mobile robot is used as 

the sensor carrier (Fig. 3-2). Pioneer3-DX is an agile and versatile intelligent mobile 

robotic platform updated to carry loads more robustly and to traverse sills more surely 

with high-performance current management to provide power when it's needed. In the 

feasibility study, we did not use the original onboard sensors, such as encoders, 

gyroscope and sonar ring, with the purpose of testing the proposed LARFID-based 

localization technique. 

 A laptop computer is mounted on the top of the mobile robot (Fig. 3-2), with Intel 

Celeron M 1.5GHz CPU and 512MB RAM. All the above-mentioned onboard devices 

are controlled by the computer, and the computations for stereo vision, laser scanning and 

localization are implemented by the computer.  

For detecting the LARFID tags and measuring their relative positions with respect 

to the mobile robot, a stereo vision unit, consisting of two Matrix Vision BlueFox USB 

cameras with Kowa 12mm lenses, is installed on the mobile robot (Fig. 3-2). This stereo 

vision set is supported by a Directed Perception PTU-D46-17 controllable pan-tilt unit 

which provides the stereo vision unit the landmark search capability.  

Melles Griot Laser Diode Driver is used to generate the laser beam. The size and 

intensity of laser can be manually adjusted according to the experiment’s needs. Since the 

laser beam is used to activate the RFID tags, its direction has to be controlled accurately. 

The Cambridge Technology Galvanometer with two controllable mirrors (Fig. 3-4) can 

accurately reflect the laser beam to the designed direction. A corresponding Scanner 

Driver Board is also required. 
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The National Instrument NI USB-6211 data acquisition board (DAQ) is used to 

generate the digital and analogy signal. The reason we need to use digital and analogy 

signal is due to the cameras and laser scanner. To capture the simultaneous images by 

two cameras, a rising edge pulse signal is used to trigger both cameras. Also, the two 

analogy input signals are required by the laser scanner server board to control the mirror 

rotating angles. 

For identifying the tags and retrieving their absolute positions, an ActiveWave 

standard RFID reader is installed under the aluminum frame (Fig. 3-2). The RFID reader 

is designed for fast and easy system integration without losing performance. The RFID 

reader consists of a real time processor, operating system, virtual portable memory, and 

transmitter/receiver unit in one small self-contained module that is easily installed in the 

ceiling or in any other convenient location. This RFID reader has a range of 85m for 

reading and 30m for writing. The corresponding active tags have the ability of long 

read/write ranger and large data storage capacity. Further more, to satisfy our system 

needs, the active tags are extended with a light-emitting diode (LED) and a laser-

activated switch circuit. 

By combining all those components together, we create a new indoor localization 

system. First of all, the LED illuminated tags are captured by the cameras simultaneously. 

We can adjust the orientation of robot and pan-tilt to make sure enough tags are captured. 

After simple image processing, the relative position of tags in the camera reference is 

derived. Using the transformation between the camera and laser scanner, the position in 

the scanner reference is derived and the corresponding laser beam is controlled to activate 

the RFID tags. Now only the signal from activated tag can be received by the RFID 
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reader. Therefore, a pair of identified absolute position and relative position is matched. 

Based on the trilateration, we can successfully recover the robot position in the world 

coordinate. The more detailed technical part about the stereo vision, modified tags, and 

the laser scanner is presented in the following sections. 

3.2.2 Stereo Vision Unit Calibration 

Stereo vision is a process of reconstructing the object depth from the fusion of two 

images captured simultaneously. Usually it requires two cameras. The basic principle of 

stereo vision is based on the geometric relationship between cameras and object, which is 

illustrated in the Fig 3-5. 

 

Fig 3-5 Stereo Vision Model 

 Several kinds of methods are available to reconstruct the object. One way is to 

find the mid-point of line segment perpendicular to the ray R and R’. Alternatively, we 

can reconstruct a scene point using a purely algebraic approach: 
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where and  are calibration matrix for two cameras. This is an over constrained 

system of four independent linear equations in the coordinates of P that is easily solved 

using the linear least square techniques. 

M M′

No matter what method we use, we have to rely on the camera intrinsic parameters 

and the transformation matrix between two cameras. This is the purpose of our stereo 

vision calibration. 

The perspective camera model is used to calibrate the camera parameters. Also, the 

distortion is considered according to the “Plumb Bob” model [51], 
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where r2=x2+y2, (x,y) is the normalized image projection, and k1 through k5 are the 

distortion coefficients.  

A camera calibration toolbox for Matlab is available at 

“http://www.vision.caltech.edu/bouguetj/calib_ doc/”. A printed black/white 

checkerboard pattern was used (Fig. 3-6), with different poses and at different distances 

from 1m to 2m, to find out the intrinsic parameters of the cameras, such as focal length, 

image center and distortion coefficients, and the transformation between the two cameras. 

The calibration results of the intrinsic parameters are listed in Table 3-I. Only k1 and k2 

are listed in the table because k3, k4, and k5 are ignorable small. 
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Considering a point P in the 3D space, its two coordinate vectors XR and XL in the 

left and right camera reference frames respectively are related to each other through the 

rigid motion transformation XR = R * XL + T. The transformation matrix between these 

two cameras can be derived from the images of chessboard taken by two cameras 

simultaneously. 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−

=

1000
3497.199659.00017.02589.0
6767.20033.00000.10056.0

9523.2902589.00063.09659.0

right
leftT

.                3.3 

 

 

Distortion coefficients -0.37199,  
0.038818… 

-0.38701, 
0.23067… 

  

 
 

Fig. 3-6 Camera Calibration Pattern 

(327.35, 237.29) (317.68, 227.17) Image center (pixel) 

Focal length (pixel) (1629.3, 1632.5) (1634.9,1637.5) 

Right Camera Left Camera Parameter 

TABLE 3-I 
CALIBRATED INTRINSIC CAMERA PARAMETERS 
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3.2.3 Laser Scanner Calibration 

The laser scanner consists of two rotating mirrors (Fig. 3-7). Each of the mirrors 

is controlled by an independent analogy signal. There is a linear relationship between the 

voltage of input analogy signal and degree of mirror rotating. With different rotating 

angles, the laser beam points to one orientation. The modeling of the laser scanner is 

established in the Chapter 5.  Here we just use the derived simplified results from Chapter 

5. In the virtual mirror coordinate frame that we mentioned in Chapter 5, the orientation 

of the output laser beam is expressed by two rotating angles, 1θ  and 2θ :  

, 0 1[-d tan2 ,  0, 0]'outP θ= ⋅ , 

out 1 2 2n  = [-tan2 , cos2 , s in 2 ]'θ θ θ .                                              3.4 

 

 
Fig. 3-7 Laser Diode and Laser Scanner 

 

On the other hand, we can reconstruct the relative position of the tag Pc in the 

camera coordinate using stereo vision. However, this position is only related to the 

camera coordinate, whose origin, the optical center, can not be physically measured. As 
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we can see in the Fig 3-8, if we want to shoot the laser beam onto the tag, we have to find 

the transformation  between the camera frame and laser scanner frame. Here arises the 

laser scanner calibration problem. 

m
cT

 Assuming , we have: m
1 2 3 4 4cT = [t ; t ; t ; t ], where t =[0, 0, 0, 1]

1 1

2 2

t Pc+d tan2 -tan2
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1θ θ
θ

⋅ ⋅
=

⋅
  

1 1

3 2

t Pc+d tan2 -tan2
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1θ θ
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⋅ ⋅
=

⋅
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Mirror 
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Fig. 3-8 Transformation between Camera and Scanner Frames 

Since we are trying to find the transformation matrix m  by calibration, we know 

the predetermined position Pc and corresponding orientation. 

cT

Let us re-organize previous equations, we have:  

1 2 2 1 1t Pc cos 2 + t Pc tan2 = -d tan2 cos 2 2θ θ θ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ θ , 
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1 2 3 1 1t Pc sin 2 + t Pc tan2 = -d tan2 sin 2 2θ θ θ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ θ .                          3.6 

But those equations are still not ready for use. Let us take the transpose on both 

sides, which only transpose the vectors and changes the sequence of vector multiple. We 

will have: 

2 1 1 2  3  1 2Pc cos 2 t  + Pc tan2 t + 0 t = -d tan2 cos 2T T T T Tθ θ θ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ θ , 

2 1 2  1 3  1 2Pc sin2 t  + 0 t + Pc tan2 t =  -d tan2 sin 2T T T T Tθ θ θ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ θ .             3.7 

Convert it to the matrix form:      ,                                                            3.8 UT = D
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This is a typical linear least-square problem. U is a 2by12 matrix with known 

variables, D is known 2 elements vector, and T is 12by1 vector which includes 12 

unknown variables. Obviously, we need at least 6 points to find a unique solution. With 

enough n points, we will have 2n equations.  is a 2nby12 matrix and  is known 

2n elements vector. According to the linear least square method, the solution is 

2nU 2nD

( ) 1T T
2n 2n 2n 2nT = U U U D

−
⋅ ⋅ .                                         3.9 

Reorganize the T to the transformation matrix . According to the equation 3.5, 

we can derive the rotating angles of scanners in the system conversely, 

m
cT

m
M CcP = T P⋅ . 

M,1-1
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2 2
M,2 M,3

1 P- tan (
2 P +P +d

θ = ⋅ ) , 
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2
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1 Ptan ( )
2 P

θ = ⋅ .                                                         3.10 
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3.2.4 Modified RFID Tags 

A novel type of RFID tag, the laser-activated RFID (LARFID) tag, is designed on 

the basis of the existing RFID technique, and used as the artificial landmark in the 

proposed indoor localization system for mobile robots. The LARFID tag extends an 

active RFID tag with a light-emitting diode (LED) and a laser-activated switch circuit 

(Fig. 3-9).  Fig. 3-10 is the prototype of the revised RFID tag. 

 
 

Fig. 3-10 Prototype LARFID tag 
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Fig. 3-9 Block diagram of the Laser-activated RFID Tag 
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3.3 Software Design 

Autonomous controlling software using C/C++ is developed to control and test our 

localization system (Fig. 3-11). Four code libraries for hardware are embedded in the 

software: robot library, camera capturing library, data acquisition board (DAQ) library 

and RFID library. 

Simultaneous Images 
Acquisition 

Image Pre-Processing 

Landmark Matching and 
Stereo Vision 

Robot 
Adjusting 

Laser Scanners 
Positioning and 
Tag Activation 

RFID Reader and Tag 
Communication 

Robot Localization 

Robot Navigation 

Ok
Fail

Fig. 3-11 Software Flow Chart 
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3.4 Experiments 

In the previous section, we have mentioned the way to calibrate transformation 

between the camera frame and laser scanner frame. The transformation matrix is 

-0.9886 0.0081 -0.1506 142.3
-0.1586 -0.0049 0.9873 54.7
0.0081 1.0000 -0.0021 -0.0023

0 0 0 1

m
cT

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

.                          3.11 

With this transformation matrix , we can convert any 3-D position derived by 

stereo vision into laser scanner reference frame in real time. Therefore, current system 

can autonomously capture and process the images, direct the laser to the tags and activate 

them, and navigate the robot moving forward. But duo to the recent arrival of RFID 

reader application programming interface (API), we haven’t been able to integrate this 

library into our system. We can only manually receive the date from RFID tags. This is 

one of our most important future works to complete this project. 

m
cT

The accuracy of the whole system lies on the on accuracy of stereo vision. The 

localization accuracy of the proposed system has been tested extensively. Given the 

absolute positions of the tags in a global frame of reference, the localization accuracy for 

the mobile robot depends on the positioning accuracy of the tags relative to the robot. The 

positions of the tags relative to the mobile robot are obtained via stereo vision. 

Relative distance measurement accuracy was tested. We fixed two LARFID tags 

on the ceiling with a certain distance which was carefully measured by hand. We grabbed 

two images simultaneously from the two cameras, corrected the distortion, segmented the 

bright spots and reconstructed the 3D positions of those two tags with respect to a camera 

frame. The distance between the two reconstructed tags was calculated and compared 
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with the known physical distance. The difference between them gives the error in relative 

distance measurement. This procedure was repeated many times with various distances 

between the tags and various distances between the tags and the cameras. The root-mean-

square error was taken as the error measure (Fig. 3-13). The results show that the 

measurement error generally increases with respect to the distance under measurement. 

The underlying reason is that the resolution of the cameras decreases as the distance 

increases. We notice that the distance measurement of the experimental localization 

system has an accuracy of <20mm from a distance of about 7m, which, as we believe, is 

sufficient for most of the indoor mobile robot applications. 
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Fig. 3-12 Variation of root-mean-square (RMS) error in relative distance 

measurement with respect to the distance between the cameras and landmarks 
 

3.5 Summary 

This chapter introduces a new artificial landmark-based indoor localization system 

for mobile robots. The proposed localization technique is inspired by the existing GPS 

and RFID-based localization techniques. In the proposed system, a new type of RFID tag, 
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the laser-activated RFID tag, is designed and used as the artificial landmark. The 

LARFID tags function like the indoor equivalent of the GPS satellites. Stereo vision and 

LARFID are combined, together with trilateration or triangulation, to localize a mobile 

robot in an indoor environment. Feasibility study shows that the proposed system is 

promising to provide a robust and accurate indoor localization for mobile robots. 

Some future research need to be conducted to complete the proposed system. The 

most important part is to integrate the RFID library into our controlling system, which 

makes this prototype fully autonomous. The design of the LARFID tag needs to be finely 

tuned to make it more compact. At the same time, a simultaneous localization and 

mapping algorithm is under consideration with the intention to automate the pre-

installation process of the LARFID tags in an unexplored indoor environment and reduce 

the cost of installation and maintenance. Also under consideration is the multi-robot 

operation with the LARFID-based localization system. 
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Chapter 4 Robot Self-Localization based on 

a Single Image of Identified Landmarks 

The previous chapter presents a new indoor localization system for mobile robot. 

The traditional trilateration method is used in the system. It can provide an accurate 

position based on the distance measurement using stereo vision. Nonetheless, the 

orientation is not easy to derive from the above information. Based on the idea of 

trilateration and triangulation, here we presented a new localization algorithm to discover 

the position and orientation of the robot. Further more, it only requires one single image. 

Before we introduce the algorithm, let us take a quick a look at the traditional localization 

algorithm. 

Trilateration determines the position of an object based on simultaneous distance 

measurements from three or more known references. It is equivalent to finding the 

intersection of three or more spheres. Radio frequency signals and stereo vision sensors 

are usually used to measure the distance. This method is simple and straightforward. 

However, the disadvantage of this method is that it can not determine the orientation 

which is quite important for the localization of mobile robot. 
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Triangulation, instead of using distance measurements, uses bearing measurements 

among references to locate an object. The basic idea of triangulation is that in a plane 

containing the references and object, the object is located at the intersection of the circles 

each of which is determined by two references and the bearing between them. The 

structured features, such as doors and wall corners, are extracted from images. The 2D 

bearings of landmarks can be recovered from vertical edges. 

So far, the research on triangulation has been focused on 2D situation, mainly 

because of the complicated mathematical formulation of the 3D triangulation. As a result, 

existing triangulation algorithms are constraint to 2D robot workspaces such as a flat-

floor indoor environment. Meanwhile, though trilateration can successfully provide 3D 

robot positions, the orientation information usually can not be directly derived.  

Combining trilateration with bearing estimation, we propose a novel method to 

recover the 3D position and orientation of a mobile robot from a single image of 

landmarks taken by an onboard camera. We assume that the involved landmarks are 

identified, and their positions are known from a map or a database. The robot localization 

consists of four steps: 

1) In the linear camera perspective projection model, the visual angle between two 

landmarks is derived from their projections in the same image. With the distances 

between the optical center and the landmarks, the robot position is calculated using 

trilateration.  

2) Distortion is corrected using “Plumb Bob” model [51]. The relative position of 

landmarks in the camera reference frame can be derived visual angles and the 

landmark positions. 
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3) The robot orientation is computed from the robot position, landmark positions and 

their projections. 

4.1 Localization Algorithm 

In this section, our localization algorithm is presented. The visual angle between 

two landmarks can be derived from their projections in the same image based on the 

perspective geometry. The distances between the optical center and the landmarks are 

computed from the constraint equations, as well as the relative position of landmarks in 

the camera frame. The robot position is determined using the principle of trilateration. A 

distortion rectified camera model is considered to improve the accuracy and estimate the 

relative position of landmarks in the camera reference frame. The robot orientation is 

then computed based on the camera model and landmark positions. 

4.1.1 Robot Position Estimation 

Our derivation is based on the pinhole camera model (Fig. 4-1). Here P  denotes 

the optical center, xy  denotes the camera frame, UV denotes the image plane, and 

denotes the image center of . In principle, the optical axis PC  is perpendicular to 

the plane , and the length of PC  is the focal length

z

C UV

UV f . In addition,  

where , denotes the ith landmark with a known position defined in the world 

frame , and  denotes the projection of in the image plane . 

iL

(1,2,3i = )

XYZ il iL UV

The camera model follows the principle of perspective projection. A detailed 

description of camera parameters and estimation algorithms can be found in a computer 
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Fig. 4-1 Pinhole Camera Model 

 

vision book such as [50]. A standard calibration toolbox can also be found at 

“http://www.vision.caltech.edu/bouguetj/calib_doc/”. 

Assuming that the camera is fixed on the mobile robot, robot positioning is 

equivalent to finding the position of the optical center ( , , )x y z ′=P . Besides, the optical 

axis  (Fig. 4-1) is chosen to represent the robot orientation in our method. We assume 

that the image center C and focal length 

PC

f are known (in practice they can be obtained 

from camera calibration), and 

f=PC , ( ),u vc c ′=C , 

( )1 1,u vl l ′=1l , ( )2 2,u vl l ′=2l , ( )3 3,u vl l ′=3l , 

( )1 1 1, ,x y z ′=1L , ( )2 2 2, ,x y z ′=2L , ( )3 3 3, ,x y z ′=3L . 

In the image frame, all the lengths are measured in the unit of pixel. Since PC  is 

perpendicular to the image plane , we have UV
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( ) ( )

( ) ( )

2 22

2 2

iu u iv v

iu ju iv jv

f l c l c

l l l l

= + − + −

= − + −

i

i j

Pl

l l
,                                         4.1 

where , , and ( )1,2,3i = (1,2,3j = ) i j≠ . 

Applying the law of cosine to the triangle , we obtain i jl Pl

                                  
2 2

1cos
2

−
⎛ ⎞+ −

∠ = ⎜
⎜
⎝ ⎠

i j i j
i j

i j

Pl Pl l l
l Pl

Pl Pl

2

⎟
⎟

j

.                                         4.2 

Moreover, in the pinhole camera model, the visual angle between landmarks i and j, 

, is the same angle between their projections, ∠ iL PL ∠ il Plj . For the convenience of 

expression, we define 12φ = ∠ = ∠1 2 1L PL l Pl2  as the visual angle between landmarks 1 and 

2. Visual angles 13φ and 23φ are defined similarly.   

Applying the law of cosine to the triangles ,  and  respectively, 

we have 

1 2L PL 1L PL3 32L PL

2 2 2
12

2 2 2
13

2 2 2
23

2cos 0

2cos 0

2cos 0

φ

φ

φ

+ − −

+ − −

+ − −

1 2 1 2 1 2

1 3 1 3 1 3

2 3 2 3 2 3

PL PL PL PL L L

PL PL PL PL L L

PL PL PL PL L L

=

=

=

,                        4.3 

where i jL L  denotes the known distance between landmarks i and j, 

( ) ( ) ( )2 2
i j i j i j

2x x y y z z= − + − + −i jL L , and iPL  denotes the unknown distance 

between the optical center and landmark i. 

Newton’s method is used to compute iPL in Equ.4.3. Once the distances iPL  

are obtained, the optical center can be located by solving a trilateration problem, 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

22 2 2
1 1 1

22 2 2
2 2 2

22 2 2
3 3 3

x x y y z z

x x y y z z

x x y y z z

− + − + − =

− + − + − =

− + − + − =

1

2

3

PL

PL

PL

.                                        4.4 

Both closed form and iterative form solutions are available [30-33].  

To sum up, the distances between the optical center and the landmarks are 

calculated from the visual angles and landmark positions using the law of cosine, and the 

robot position is estimated by trilateration. During this procedure, only the landmark 

positions and projections are used as input. No direct distance measurement is required. 

A further inspection on Equ.4.3 and Equ.4.4 reveals the geometric meaning of this 

problem. Substituting Equ.4 into Equ.3, we can formulate a system of equations  

  .              4.5 
( ) ( ) ( )

2 2 2 2 2 2

22 2 2

cos ( ) ( ) ( ) ( ) ( ) ( )ij i i i j j j

i j i j i j i j i j i j

x x y y z z x x y y z z

x y z x x x y y y z z z x x y y z z

φ ⎡ ⎤ ⎡− + − + − − + − + −⎣ ⎦ ⎣

⎡ ⎤= + + − + − + − + + + +⎣ ⎦

2 ⎤⎦

In fact, if we generalize a circle in the 2D triangulation, determined by two 

landmarks and the mobile robot, into the 3D space, it becomes a spindle torus which is 

generated by revolving the circle around the chord connecting the two landmarks. The 

surface defined by Equ.4.5 is in fact a part of the spindle torus, generated by revolving 

the arc L1PL2 about the chord L1L2 (Fig. 4-2). Like the intersection of circles in the 2D 

space, the mobile robot localization problem in the 3D space becomes to find the 

intersection of three tori. 

 

 
Fig. 4-2 Spindle Torus 
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4.1.2 Rectified Relative Position Estimation 

This previous linear perspective model is quite straightforward and easy to 

understand. However, in the practice, the camera lens has always some distortion. The 

“Plumb Bob” model [51] is introduced briefly here. 

 Assuming P to be a point with a coordinate vector Xc = [Xc, Yc, Zc] in the camera 

coordinate system. Let xn1 be the normalized projection on the image plane (Fig. 4-3). 

Then, in a linear model: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

y
x

ZY
ZX

x
cc

cc
n /

/
.             4.6 

If we assume r2 = x2 + y2, after including the lens distortion the new normalized 

coordinate xd is defined as follows: 

dxxrkcrkcrkc
x
x

x n
d

d
d ++++=⎥

⎦

⎤
⎢
⎣

⎡
= ))5()2()1(1(

)2(
)1( 642         4.7 

where dx is the tangential distortion defined as: 

              4.8 ⎥
⎦

⎤
⎢
⎣

⎡

++
++

=
xykcyrkc

xrkcxykc
dx

)4(2)2)(3(
)2)(4()3(2

22

22

In equations (4.7) and (4.8), kc is a vector that contains both radial and tangential 

distortion coefficients. Once distortion is applied, the pixel coordinates [u, v] of the 

projection on the image plane is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
)2(
)1(

1
d

d

x
x

Av
u

                                 4.9 

where A is the camera intrinsic parameter matrix as shown  
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⎥
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⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
0 0

0

vf
uf

A v

u α
.                                                      4.10 

All the camera intrinsic parameter matrix and radial and tangential distortion 

coefficients can be calibrated using the toolbox provided above. 

 

 

Fig. 4-3 Normalized Image Plane 
 

From the initial image projection ( 1 1,u vl l )′=1l , the normalized projection n1x  can be 

derived inversely according to the equation (4.7), (4.8) and (4.9). Now the direction 

vector of   can be expressed as1PL
JJJK

n1 n1 n1n  = [x (1), x (2) , 1]′
JJK

. Adding one proportional 

parameter 1λ , we have 

1 1 n1 n1PL [x (1), x (2) , 1]λ ′= ⋅
JJJK

.                                          4.11 

Since 1 21 2PL PL L L− =
JJJK JJJK JJJJK

, we have equation 

2 2
1 21 2 2 2PL PL 2PL PL L L+ − =

JJJK JJJK JJJK JJJK JJJJK
i

2
, 
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2 22 2
1 21 n1 2 n2 1 2 n1 n2n n 2 n n Lλ λ λ λ+ − =

JJK JJK JJK JJK JJJJK
i

2
L .                            4.12 

This equation is actually consistent with equation 4.3. With another two equations, 

we can find the proper iλ for those vectors using Newton’s method. 

Now the relative position of landmarks in the camera reference frame can be 

expressed as i i ni niPL [x (1), x (2) , 1]λ ′= ⋅
JJJK

. To verify our method, we will compare our 

method with stereo vision in the experiment part. 

To recover the position of camera optical center in the world frame, we have to 

apply the trilateration method discussed in the previous section. 

4.1.3 Orientation Estimation 

In a 3D environment, an orientation can be represented by a directional vector. 

Since the camera is fixed on the mobile robot, finding the robot orientation is equivalent 

to finding the camera orientation. Therefore, the optical axis PC  (Fig. 4-1) is chosen to 

represent the robot orientation. 

JJJK

In the world frame , the lines PC  and XYZ
JJJK

iPL
JJJK

 can be expressed as following  

line : p p p

x y z

x x y y z z
p p p
− − −

= =PC ,                              4.13 

line : p p

i p i p i

p

p

x x y y z z
x x y y z z
− − −

= =
− − −

iPL ,                            4.14 

where ( , ,p p p)x y z ′ is the estimated robot position P (the position of the camera optical 

center), ( ), ,i i ix y z ′ is the global position of landmark , and (iL ), ,x y zp p p ′ is the directional 

vector of PC  which needs to be determined. 
JJJK
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Corresponding to Equ.4.13 and Equ.4.14, the angle between PC  and 
JJJK

iPL
JJJK

satisfies 

the following relationship 

( ) ( ) ( )
( ) ( ) ( )

1

2 22 2 2
cos

x i p y i p z i p
ic

x y z i p i p i p

p x x p y y p z z
2p p p x x y y z z

φ − − + − + −
=

+ + − + − + −
.                4.15 

By normalizing the directional vector , we havePC 2 2 2 1x y zp p p+ + = , and Equ.4.8 

can be rewritten as 

( ) ( ) ( )
( ) ( ) ( )

1

2 2
cos

2

x i p y i p z i p
ic

i p i p i p

p x x p y y p z z

x x y y z z
φ − − + − + −

=
− + − + −

.                           4.16 

On the other hand, we can calculate icφ  using the method mentioned in previous 

section. For the linear perspective model, we have 

2 2 2
1 1cos cos

2
ic

fφ − −
⎛ ⎞+ −

= ⎜ ⎟ =
⎜ ⎟
⎝ ⎠

i i

i i

Pl PC l C
Pl PC Pl

,                          4.17 

where we have used the facts that ( ) ( )2 22
iu u iv vf l c l c= + − + −iPl , f=PC , and 

( ) ( )2
iu u iv vl c l c= − + −il C 2 . The quantities f , liu, liv, cu and cv can be obtained directly 

from the image.  

According to Equ.4.16 and Equ.4.17, we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2

2 22

i p i p i p
x i p y i p z i p

iu u iv v

2f x x y y z z
p x x p y y p z z

f l c l c

− + − + −
− + − + − =

+ − + −
.   4.18 

The system of equations represented by Equ.4.18 with ( )1, 2,3i =  can be written in 

the following matrix form 

47 
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( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
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1 1 1

2 22
1 1

1
1 1 1 2 2

2 2 2
2 2 2

2 22
2 23 3 3
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3 3 3

2 22
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x p p p
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p p

u u v v
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p x x y y z z

f x x y y z z
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f l c l c
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+ − + −
− − −⎛ ⎞ ⎛ ⎞
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p
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⎞
⎜ ⎟
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⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

,      4.19 

which gives the direction of the optical axis PC  (equivalent to the robot orientation as 

stated at the beginning of first section). 

JJJK

With the nonlinear distortion model, we have principle point . Similarly, 

the directional vector of PC  in the camera frame is  and 

( 0 0,u v ′=C )
JJJK

c c cn  = [x (1), x (2) , 1]′
JJK

1 1c n1 1 1
2 2 2 2

c n1 1 1

n n (1) (1) (2) (2) 1cos cos
n n (1) (2) 1 (1) (2) 1

n c n c
ic

n n c c

x x x x
x x x x

φ − −
⎛ ⎞′ + +⎜ ⎟= =
⎜ ⎟ + + +⎝ ⎠

JJK JJK
i

JJK JJK
+

.             4.20 

Therefore, 

( ) ( ) ( ) c n1

c n1

n n
n n

x i p y i p z i pp x x p y y p z z
′

− + − + − =
JJK JJK
i

JJK JJK .                       4.21 

c n1

c n1
1

1 1 1

c n2
2 2 2

c n23 3 3

c n3

c n3
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n n

n n
n n

n n
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x p p p

y p p p

z p p p
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4.2 Simulation Analysis 

This section carries out an error analysis of our localization method, based on the 

simulation with erroneous inputs, which provides the insight on how to improve the 

localization accuracy and robustness using our method. 

4.2.1 Simulation Setting 

The global positions and image projections of the landmarks are the basic inputs to 

our algorithm. In our simulation, we assume that they may have uncorrelated zero-mean 

Gaussian noises. The statistics of the output errors in the robot position and orientation 

estimation is obtained from extensive numerical computation.  

 
Fig. 4-4 Simulation Setting 

In the simulation, we put three landmarks (star symbols) at vertices of an 

equilateral triangle inscribed in a circle with radius r (Fig. 4-4). r is also referred as the 

baseline. The circle is laid on the XY  plane of the world frame and centered at the origin. 

Then the positions of the landmarks can be expressed as 
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( ) ( ) ( )0, ,0 , 3 2, 2,0 , 3 2, 2,0r r r r r′ ′′= = − = − −1 2 3L L L . 

We let the camera move on a spherical surface with a radius of R and centered at 

the origin of the world frame. We also keep the optical axis of the camera pointing to the 

origin of the world frame. A tilt angle α  is defined as the angle between the Z axis of the 

world frame and the camera optical axis. A pan angle β is defined as the angle between 

the X axis of the world frame and the XY projection of the optical axis. With fixed R 

and α , the camera trajectory is a circle. By varying R, α and β , we can have an 

understanding of how these factors affect the localization accuracy. 

In the following, we will examine the effect of six parameters, i.e. standard 

deviation lσ of landmark position error, standard deviation pσ of projection segmentation 

error, baseline , sphere radius R, tilt angler α and pan angle β , on the robot localization 

error.  

4.2.2 Landmark Position Error 

We have pointed out two kinds of errors above, the landmark position error and the 

projection segmentation error. Position Dilution of Precision (PDOP) is used here as a 

performance index to evaluate the effect of the landmark position error. PDOP is a GPS 

term used in geometrics engineering to describe the geometric strength of satellite 

configuration. It is a unit less measure that reflects positioning accuracy, defined as 

                               
2 2 2
x y z

l
PDOP

σ σ σ
σ
+ +

= ,                                          4.23 
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where 2
xσ , 2

yσ , and 2
zσ are the standard deviations of the robot position estimation error in 

x, y and z direction respectively, and lσ is the standard deviation of the landmark position 

error. To evaluate the accuracy of this method in orientation estimation, we extend the 

concept of PDOP into Orientation Dilution of Precision (ODOP), with a unit of degree 

per millimeter,  

a

l
ODOP σ

σ
= ,                                                   4.24 

where aσ is the standard deviation of the robot orientation estimation error which is 

defined by the angle between the actual robot orientation and the error-corrupted one. 

Simulation has been carried out to examine the effect of the landmark position 

error. The Gaussian noises are added into the landmark positions, , 

where  denotes the Gaussian random error with a standard deviation 

0i iL = L +δLi

iδL lσ , and  

denotes the actual value of the landmark positions. With different 

0iL

α  ranging from to80 , 

we can evaluate both PDOP and ODOP at different configurations. Forty camera 

positions, decided by

5o o

β , are sampled on the circle defined by each R andα .  

Fig. 4-5 is generated by setting lσ =1mm, r=1000mm and R=1500mm and 

calculating the PDOP and ODOP at various camera positions on the sphere. It turns out 

that the PDOP (and ODOP) at different camera positions on a circle are close to each 

other. Thus, a mean value of these DOP is presented for each circle along with the 

standard deviation (Fig.4-5). The other curves in Fig.4-5 are generated with the same 

parameters except lσ =3mm. Comparing these two curves, we notice they have almost 

the same PDOP and ODOP. In fact, we have also seen similar results with other lσ  

values. Therefore, we conclude that the standard deviations of the robot position 
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estimation error and orientation estimation error are linearly proportional to that of the 

landmark position error. The accuracy of the robot localization can be improved with 

accurately mapped landmark positions.  
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Fig. 4-5 PDOP and ODOP with different standard deviations of landmark position error
  

Another simulation has been carried out to examine the effect of different R values 

while having fixed ratio r/R. We have already known the PDOP and ODOP results 

generated with r/R=1000/1500 and lσ =1mm in Fig.4-5. Another example is generated 

from r=2000mm, R=3000mm and lσ =1mm. The comparison between these curves in Fig. 

4-6 shows that they have the same results of PDOP. However, the value of ODOP with 

r/R=1000/1500 is twice as big as that with r/R=2000/3000. In fact, we have obtained the 

similar results from different R but with the same r/R. Clearly, with the fixed ratio, the 
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position error is constant while the orientation error is inversely proportional to the radius 

R within small angles. A rough explanation can be derived by differentiating Equ.4.17 

cos / sinic ic icφ φΔ = Δ i iPl Pl φ .                                                   4.25 

Since ratio r/R is fixed, iPl  and icφ doesn’t change, icφΔ  is proportional to theΔ iPl . 

Moreover, according to the camera model in Fig. 4-1, we can roughly estimate: 

f
R

Δ
Δ ≈

i
i

L
Pl .                                                            4.26 

By combining  Equ.4.25 and Equ.4.26, we can say that visual angle errors are 

approximately inversely proportional to R with small angles. According to the linear 

transformation between the visual angles and robot orientation in Equ.4.19, R will have 

the same effect on the final orientation error. 
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Fig. 4-6 PDOP and ODOP with the same ratio r/R 
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The effect of variable r/R is more complicated. A further discussion about the trend 

of PDOP and ODOP with different r/R is provided in later section. 

4.2.3 Segmentation Error of Image Projections 

Segmenting landmark projections from the image may introduce some random 

segmentation error. In the simulation, the Gaussian noises are added to the positions of 

the landmark projections in the image, , where  is the Gaussian random error 

with standard deviation

0i il = l +δli iδl

pσ , and  is the actual positions of the landmark projections in 

the image. 

0il

Since the standard deviation of the projection error is in the unit of pixel, the PDOP 

is no longer available in this situation. A new measure which we call Pseudo-Position 

Dilution of Precision (PPDOP) is defined in the unit of millimeter per pixel 

                  
2 2 2
x y z

p
PPDOP

σ σ σ
σ
+ +

= .                                         4.27 

Similarly, Pseudo-Orientation Dilution of Precision (PODOP) is defined in the unit 

of degree per pixel, 

a

p
PODOP σ

σ
= .                                                    4.28 

Fig. 4-7 is generated by setting r=1000mm, R=1500mm, and pσ =1 pixel. Fig.4-7 

and Fig.4-5 show the different results with respective measures. 
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Fig. 4-7 PPDOP and PODOP with image projection error 

  

These two results are actually unified if we take Effective Pixel Size (EPS) into 

account. EPS is defined as a measure of the length that one pixel of the image occupies in 

a plane that is perpendicular to the optical axis. The unit of EPS is millimeter per pixel. It 

is estimated from the pinhole camera model. The segmentation error of the landmark 

projection can be converted to the unit of millimeter using p l EPSσ σ≈ , and we have  

                              
PDOP PPDOP EPS
ODOP PODOP EPS

≈
≈

.                                             4.29 

The EPS at R=1500mm is around 0.95 pixel/mm. A conversion between Fig.4-5 

and Fig.4-7 actually matches the relationship defined in Equ.4.29.  

Fig.4-8 is generated with the same r/R while assuming r =2000mm, R=3000mm. 

The resulting PPDOP is twice as big as that in Fig.7 while the PODOP is almost the same. 
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The reason of doubled PPDOP is that EPS has also been doubled. For the PODOP, the 

effect of EPS is balanced out by that of R which has been explained in previous section. 

Therefore, we can conclude that at the fixed ratio r/R, the variation in distance only 

affects the robot localization accuracy due to the change in EPS. 
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Fig. 4-8 PPDOP and PODOP with the same ratio r/R 

  

4.2.4 Ratio r/h 

Since all the figures above choose the same ratio r/R=1000/1500, they present the 

same trend of PDOP and ODOP. We have also examined the effect of different r/R 

values. Fig.4-9 includes the results of r/R=1000/1000, r/R=1000/1500 and 

r/R=1000/2600 respectively. Since the landmark position error and the projection 

segmentation error can be unified, only PDOP and ODOP are considered in these settings. 
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A comparison among these three curves shows that a smaller r/R results in a larger error 

in both robot position and orientation estimation. Therefore, to achieve high localization 

accuracy, a big r/R is desirable. 
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Fig. 4-9 PDOP and ODOP with different r/R 

  

One may notice that there are obvious peaks of PDOP and ODOP at some tilt angle 

in each figure. The simulation results show that the peak usually occurs when the camera 

projection on the XY plane is located at or close to the circum-circle of the equilateral 

triangle, which means the tilt angle 1sin ( )r Rα −= . The PDOP and ODOP can be 

extremely big around the peak. To achieve accurate robot localization, these camera 

poses should be avoided in the practice. An analytic explanation of this phenomenon is 

not available yet. It will be investigated in our future work. 
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4.3 Experiment 

After this simulation was implemented and the result was published, we later on 

find a way to calculate the relative position of landmarks in the camera reference frame. 

Therefore, you don’t see a separate analysis of the relative position accuracy. At that time, 

we mainly focus on the solution and accuracy of trilateration. The final position of 

camera in the world frame is the important result that navigates the robot moving forward. 

The relative positions of landmarks are just intermediate results. 

If you think carefully, the influence of our method is already embedded in the 

simulation results. This simulation results give us the way how to improve the accuracy 

and distribute the landmarks. The result of dilution of position is also consistent with 

others’ conclusion [30]. 

In the real experiment, the situation is more complicated than the simulation. The 

calibrated camera parameters have error, the lens distortion has to be considered, and the 

position and segmentation error is unknown. Most importantly, both the relative position 

of landmarks and the real position of camera can not be measured. What can we do to 

verify our method? 

First, we will take measure the relative error of our method. Although we don’t the 

real relative position of the landmarks, we can know the trajectory length if we translate 

those landmarks. If we keep the camera fixed during the landmark movement, the 

recovered distance of the two pair of positions should be equal to the trajectory length. 

The motion platform in the mechatronics lab can provide um accuracy movement which 

is good enough for our experiment. Two variables, baseline and distance, are tested in our 

experiment. At each set of variables, the landmarks are moving around as long as they are 
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inside the view of the camera and totally, we made 15 groups of data. The final results 

are presented in table 4.1. 

 

 Table 4.1 Relative Position Error 

 

150mm 

 

300mm 

            Baseline(mm) 

 

Distance(m) Mean STD Mean STD 

1.2m 0.0048 0.013 N/A 

2.4m 0.0033 0.029 0.0041 0.0088 

 

The distance and baseline measurement are roughly estimated. They are not as 

accurate as that in the simulation. The mean and standard devastation are statistics of 

difference between the measured distance and trajectory length.  The standard devastation 

is an important indicator of the accuracy. Both the value of mean and standard 

devastation is expressed in percentage. For example, at 1m distance and 150mm baseline, 

100mm movement may cause a relative error with 0.48mm mean and 1.3mm standard 

devastation.  

From the table, obviously, we can see that the long distance will cause big error 

when the baseline is fixed. On the other hand, the bigger baseline will eliminate the 

influence of longer distance. A good choice in the real situation is to keep the baseline 

and distance proportional to reduce the error caused by the longer distance. 

The second experiment we did is to compare our method with stereo vision method. 

Although we know that even stereo vision can not give the true relative position of 
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landmarks, we assume it is “accurate”. We use two simultaneously captured images to 

recover the relative position. Also, we recover the same landmarks using one of these two 

images. Ideally, their values should be the same. But actually they are not. Still we use 

the mean and standard deviation to estimate the difference between those relative 

positions. The final results are presented in table 4.2. 

 

 Table 4.2 Relative Position Comparison between Stereo Vision and Our Method 

 

150mm 

 

300mm 

            Baseline(mm) 

 

Distance(m) Mean(mm) STD(mm) Mean(mm) STD(mm) 

X 0.044 0.543 

Y -0.228 0.336 

 

1.2m 

 Z -0.242 4.252 

 

N/A 

 

X -0.267 0.607 0.165 0.749 

Y 0.164 0.292 0.030 0.664 

 

2.4m 

 Z -1.981 6.576 -0.871 5.930 

 

The setting of experiment is similar as the previous one, except that we record the 

difference in the X, Y, and Z direction in millimeter. Clearly, the STD in the Z direction 

is much bigger than those in the X and Y directions. It is easy to understand if we take a 

look at the camera frame. In the camera frame, the coordinate value in the Z direction has 

bigger value compared with those in the X and Y directions. Therefore, the standard 
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deviation will be bigger. If we put the value into percentage, their values should be 

comparable. 

Similarly, the shorter distance and longer baseline will reduce the difference 

between the results of our method and those of stereo vision. Most importantly, the 

standard deviations of those differences are acceptable, which means our method is 

comparable with stereo vision method. 

As we presented annotation in the previous section, the final robot position is the 

result that interests us. To recover the absolute position, we will inevitably introduce the 

trilateration error discussed in the simulation. We use the relative position above derive 

from stereo vision and our method to recover the absolute position respectively. The 

mean and standard deviation of the difference between absolute positions are listed in the 

table 4.3. 

 Table 4.3 Absolute Position Comparison between Stereo Vision and Our Method 

 

150mm 

 

300mm 

            Baseline(mm) 

 

Distance(m) Mean(mm) STD(mm) Mean(mm) STD(mm) 

X 21.02 18.49 

Y 9.07 8.71 

 

1.2m 

 Z 2.42 10.66 

 

N/A 

 

X 22.99 33.54 2.34 50.24 

Y 13.79 23.85 -14.40 26.71 

 

2.4m 

 Z -30.30 23.84 24.95 15.93 
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As we can see, the absolute position statistics are much bigger than relative 

positions. This phenomenon is caused by the intrinsic error amplification of trilateration 

method. It can be simply illustrated using following diagram. As we know, the geometric 

meaning of trilateration is finding the intersection of circles. In the Fig 4-10, the distance 

between centers of circles is small compared with the radius, small change in radius will 

cause big change in the intersection position, which is the exactly the case of our 

experiment: in the view of camera, the baseline is always smaller than the distance 

between camera and landmarks. Also, the amplified error is no longer restricted in the Z 

direction. We have pointed out the way to improve the accuracy of trilateration by 

increasing baseline and reduce the distance. 

 

Fig 4-10 Intersection change with radius change 

 

Finally, we are going to verify our derived orientation computation. From the 

equation 4.22, we know that the orientation accuracy largely relies on the accuracy of 

trilateration result. Using the different trilateration results derived from stereo vision and 
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our method respectively, we can compare the influence of trilateration error to the 

orientation. Since the orientation is a directional vector, we use the included angle to 

record the orientation difference. For the same position, ideally the orientation vector 

should be parallel. The comparison results are listed in the table 4.4. All the values are 

expressed in the unit of degrees. 

 

 Table 4.4 Orientation Comparison between Stereo Vision and Our Method 

 

120mm 

 

240mm 

            Baseline(mm) 

 

Distance(m) Mean(degree) STD(degree) Mean(degree) STD(degree)

1.2m 0.0045   0.0035 N/A 

2.4m 0.0022 0.0032 6.7860e-004 7.6674e-004

 

As you can see, the mean and standard deviation value are quite small, which 

means that the trilateration error has quite limited influence to the orientation 

computation. Besides that, we can also see that with the same distance-to-baseline ratio, 

the orientation error will be reduced by the longer distance. This conclusion is consistent 

with the simulation. 

When we translate the camera using the motion platform, the orientation will keep 

the same, i.e. be parallel. This provide us another way testify the accuracy of our 

orientation computation. This experiment is more meaningful because it will give us a 

dynamic view of orientation accuracy when the robot is moving. Using our method, we 
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estimation its orientation before and after translation movement. Table 4.5 gives a full 

record of its difference with difference parameter settings. 

 

 Table 4.5 Orientation Comparison in Translation Movement 

 

120mm 

 

240mm 

            Baseline(mm) 

 

Distance(m) Mean(degree) STD(degree) Mean(degree) STD(degree)

1.2m 0.0496    0.0068 N/A 

2.4m 0.0252 0.0055 0.0432 0.0079 

 

The orientation error caused by translation movement is within our acceptable 

range. And it is also constant with the simulation result. 

 

4.4 Summary  

This chapter introduces a novel effective localization algorithm for mobile robots 

based on one single image of a few identified landmarks taken by an onboard camera. 

The visual angle between two landmarks can be derived from their projections in the 

same image. The lens distortion is also considered in the model. The relative position of 

the landmarks can be calculated from the visual angles and the known landmark positions. 

The robot position can then be determined using the principle of trilateration. Finally, the 

robot orientation is computed from the robot position, landmark positions and their 

projections. 
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Simulation study has been conducted to evaluate the performance of our method 

with erroneous measurements. To achieve accurate robot localization, accurate landmark 

position estimation and projection segmentation are desired. Also, big baseline-distance 

ratio should be considered. Moreover, the camera poses associated with PDOP/ODOP 

peaks should be avoided. 

In the experiment part, we verified the relative position and absolute error which is 

consistent with the simulation result. The comparison between the stereo vision and our 

method show that these two methods are comparable. Finally, the orientation experiment 

result shows that it can provide high accuracy data. 
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Chapter 5   Modeling of Two-axis Optical 

Laser Scanner 

In the chapter 3, we have encountered the problem of converting camera frame into 

laser scanner frame. To control the output direction of laser beam, we have to find the 

relationship between the output orientation and mirror angles. The complexity of this 

problem lies on the laser scanner model.  There are two mirrors in the 2-axis optical 

scanner, each of which can rotate about its revolute axis. The two mirrors rotate 

independently from each other, and their revolute axes are perpendicular to each other. 

Whenever the mirror rotates, the reflected laser beam will change its direction. Besides, 

the transformation between the mirror coordinates adds much more complication into the 

modeling. A local frame of reference can be attached to each mirror and rotate together 

with the mirror (Fig. 5-1). 

5.1 Reference Frames of the Two-mirror System 

To define the frames of reference in the 2-mirror system, we at first define the x 

axis of a mirror-fixed frame to be coincident with the revolute axis of the mirror. In this 

way, we have x1 and x2 for the two mirror frames respectively. Next we find the mutual 
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perpendicular, L, between x1 and x2. The intersection point between L and x1 defines the 

origin of frame 1, O1, and the intersection point between L and x2 defines the origin of 

frame 2, O2. Then the z axis of a mirror frame is defined as being perpendicular to the 

mirror plane and passing through the origin, i.e. z1 for frame 1 and z2 for frame 2. The y 

axis of a mirror frame can then be obtained by the rule of right hand. As a result, the xy 

plane coincides with the mirror plane, and the z axis points to the normal direction of the 

mirror plane. As shown in Fig.1, x1y1z1 denotes frame 1, and x2y2z2 denotes frame 2. 

 

 

x1 

z1 

y1 
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y2 
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θ1 
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M2 
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O2 

O1 

 

Fig. 5-1 Frames of reference in the two-mirror system 

 

Without loss of generality, we assume that when the mirrors are at their neutral 

positions (θ1=θ2=0), the two mirror planes are physically parallel to each other (Fig. 5-2). 
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In this special case, it is clear that z1 coincides with z2. Moreover, we know that x1 is 

perpendicular to x2. Therefore, in this special case, the transformation between x1y1z1 

and x2y2z2 can be obtained as. 
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where a is the distance between the two mirror planes, and 
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Fig. 5-2 Transformation between the two neutral mirror frames 

68 



5.2 Reflection inside a Mirror Frame 

We initiate the discussion from the simplest case. Assume that a mirror-fixed frame 

of reference xyz has been defined following the rules described in previous section. We 

also assume that the incident ray hits the mirror at the origin of the frame, O. Then the 

reflected ray shoots out from O. Let nin denote the directional vector of the incident ray 

and nout the directional vector of the reflected ray. They are both normalized. Then nin 

and nout are symmetric with respect to z. 

 

x 

z 

y 

nin 

nout 

O 

 

Fig. 5-3 Reflection at the origin of a mirror frame 

 

To study the relationship between nin and nout, we notice from Fig. 5-3 that 

nout,z=nin,z, nout,x= -nin,x, and nout,y= -nin,y, which means that if nin=[a, b, c]T, nout=[-a, -b, c]T. 

This relationship can also be written in the matrix form as 

inout nTn •= ,                                                                        5.3 

69 



where . The incident and reflected lines are defined respectively as 
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where λin and λout are linear parameters. 
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Fig. 5-4 Reflection inside a mirror frame 

 

In general, when the incident ray hits a point on xy plane other than the origin (Fig. 

5-4), the equations for the incident and reflected lines become. 

outoutoutout
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npp
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λ

λ
+=

+=
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0, , 5.5 

where pin,0 denotes the position vector of an arbitrary point on the incident line, and pout,0 

denotes the position vector of an arbitrary point on the reflected line. If we choose pin,0 
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and pout,0 to be both coincident with the incident point, p0, where the incident ray hits the 

xy plane, Equ.5.5 becomes 

outoutout
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npp
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λ
λ
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+=

0

0 .                                                 5.6 

5.3 Reflection by a Rotating Mirror 

Assume that the laser pointer is physically fixed in space. As the mirror rotates 

about its x axis, the mirror frame will also rotate (Fig. 5-5). As a result, the incident line 

will be redefined within the current frame, though physically the incident line does not 

move. Correspondingly, the reflected line will change. 
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xyzp0 
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Fig. 5-5 Reflection by a rotating mirror 

We begin with defining the physically fixed incident line in xyz which corresponds 

to the neutral mirror position, i.e. θ=0. According to Equ.5, the incident line in xyz is 

in
xyz

in
xyz

in
xyz

in
xyz npp λ+= 0, ,                                                    5.7 
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where xyzpin,0 denotes an arbitrary point on the incident line defined in xyz, xyznin is nin 

defined in xyz, and xyzλin is a linear parameter defined in xyz. 

If we rotate the mirror about its x axis by an angle of θ, the frame xyz becomes 

x'y'z', i.e. 
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where x' coincides with x. nin is defined in x'y'z' as 
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Similarly, pin,0 is defined in x'y'z' as 
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Then, in x'y'z', the incident line can be written as (by applying Equ.5.8 to Equ.5.7) 
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Since the incident point in x'y'z', x'y'z'p0, should be in the x'y' plane, to calculate it, 

we let 
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Substituting Equ.5.13 into Equ.5.11, we obtain 
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Then the incident line in x'y'z' can be rewritten as 
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where x'y'z'λin is a new linear parameter defined in x'y'z'. The corresponding reflected line 

in x'y'z' can be written as 
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where x'y'z'λout is a linear parameter defined in x'y'z', and 
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Here, the relationship between the incident and reflected lines, defined in Equ.5.3, 

is used.  

For further discussion, we transform the reflected line into xyz, and obtain 
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5.4 Reflection by Two Mirrors 
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Fig. 5-6 Reflection by the two mirrors 

 

Based on Equ.5.21, the reflected line by M1 defined in x1y1z1 is 
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To M2,  is an incident line which can be transformed into xoutp1
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Based on Equ.5.21, we can obtain the reflected line by M2 defined in x2y2z2 as 
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In the practice, the situation may not be exactly the same as we discussed. We have 

to adjust the mirror frame and reflection equation accordingly. If when θ1=θ2=0, the two 

mirror planes are not parallel to each other, we can find a parallel configuration for the 2-

mirror system at first. If θ1=θ1,0 and θ2=θ2,0 at this parallel configuration, the θ1 and θ2 in 

Equ.5.22 through Equ.5.26 should be replaced with θ1-θ1,0 and θ2-θ2,0 respectively. 

In addition, if the revolute axes of the two mirrors are not perfectly perpendicular 

to each other, Equ.5.1 should be adjusted as 
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where π/2+α0 is the actual angle from x1 to x2 about z1. 

5.5 Simplified Scanner Model Derivation 

The scanner we are using has some features which can help us simplify the model. 

Assume the scanners are centered, at their zero position. The laser beam comes in from 

right, is reflected by the first mirror (We call it scanner X) up to the second mirror 

(scanner Y), and then by mirror Y to the target (Fig 5-7). Usually the beam enters parallel 

to the base of the mount and perpendicular to the axis of the X scanner, and leaves 

parallel to the base of the mount and perpendicular to the axis of the Y scanner. That is, 
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the beam changes direction by 90 degrees and height by the distance between centers of 

the X and Y scanners. 

 

Y 

X

 

Fig. 5-7   Simplified Scanner Model (1) 

A virtual mirror coordinate is set by choosing zero-centered beam output as Y-axis 

and rotating axis of Y scanner as X axis (Fig. 5-7). All the following vectors are 

measured in this coordinate system. 

Assume that distance between centers of the X and Y scanner is d, and the tilted 

angle of scanner X isα  (Fig. 5-8). 

 

Y 
d

Fig. 5-8 Simplified Scanner Model (2) 
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Let us first examine the path of the zero-center beam (Fig. 5-8). In the virtual 

mirror coordinate, the initial direction of laser beam after reflected by scanner X 

is in n = [0, -d sin , -d cos ]'α α⋅ ⋅ , and the reflection point is the origin . As we 

have discussed in the section 4.6, we have to take consideration of the initial position of 

the scanner Y. Compared with the virtual mirror coordinate, the initial angle of mirror Y 

is

in,0P  = [0, 0, 0]'

2, 0 -(90 ) / 2θ α= + . Substitute these parameters into equ.5-21, we will have 
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This result is consistent with the reality that the final laser output is along with the 

Y axis. 

Now let us further analyze the influence of two rotating mirrors. According to the 

Fig. 5-8, when the scanner rotates 1θ  degrees, the direction of beam after reflected by 

scanner X is in 1n =[-d tan2 , -d sin , -d cos ]'θ α⋅ ⋅ ⋅ α

'

, and now the reflection point is the 

in,0 = 1P [-d tan2 , 0, 0]θ⋅ . If the scanner Y rotates 2θ , the actual angle we should use in the 

computation is 2 2, 0θ θ+ . 

According to the equ.5-21, we have 

 , 0 1[-d tan2 ,  0, 0]'outP θ= ⋅                                                  5.29 

out x 2 2, 0 x 2 2, 0 1

1 2 2

1 2 2

n  = R ( ) T R (- ) [-d tan2 , -d sin , -d cos ]'
      = [-d tan2 , d cos2 , d sin 2 ]'
      = [-tan2 , cos2 , s in 2 ]'

θ θ θ θ θ α
θ θ θ

θ θ θ

+ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

α
          5.30 
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5.6 Summary 

This chapter gives a full description of the 2-axis laser scanner modeling, starting 

from reflection inside a mirror frame, reflection by a rotating mirror to the reflection by 

two rotating mirrors. The orientation of the output beam in the original reference frame 

can be derived using the input beam and rotating angle. The most important result we can 

get from one rotating mirror is 
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The practical situation is also consideration. This model can be used in a general 

purpose. Considering the scanner feature, a simplified model is used in the real 

computation. The final direction of laser beam can be estimated by the two rotating 

angles  1θ  and 2θ , with , 0 1[-d tan2 ,  0, 0]'outP θ= ⋅  and out 1 2 2n  = [-tan2 , cos2 , s in 2 ]'θ θ θ . 
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Chapter 6 Conclusions and Future Works 

6.1 Summary of Contributions 

The primary contributions of this work are introducing a new artificial 

landmark-based indoor localization system for mobile robots and presenting a new 

localization algorithm based on a single image with identified landmarks. 

The proposed localization technique is inspired by the existing GPS and 

RFID-based localization techniques. In the proposed system, a new type of RFID tag, the 

laser-activated RFID tag, is designed and used as the artificial landmark. The LARFID 

tags function like the indoor equivalent of the GPS satellites. Stereo vision and LARFID 

are combined, together with trilateration or triangulation, to localize a mobile robot in an 

indoor environment. Feasibility study shows that the proposed system is promising to 

provide a robust and accurate indoor localization for mobile robots. 

A novel effective localization algorithm for mobile robots is discovered based on 

one single image of a few identified landmarks. The visual angle between two landmarks 

can be derived from their projections in the same image. The lens distortion is also 

considered in the model. The relative position of the landmarks can be calculated from 

the visual angles and the known landmark positions. The robot position can then be 

determined using the principle of trilateration. Finally, the robot orientation is computed 
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from the robot position, landmark positions and their projections. 

Finally, a practical problem of modeling a 2-axis laser scanner is solved. This 

model illustrates the reflection inside a mirror frame, reflection by a rotating mirror and 

the reflection by two rotating mirrors. The orientation of the output beam in the original 

reference frame can be derived using the input beam and rotating angle. The practical 

situation is also consideration. Considering the scanner feature, a simplified model is 

used in the real computation. 

6.2 Future Work 

Some future research need to be conducted to complete the proposed system. The 

most important part is to integrate the RFID library into our controlling system, which 

makes this prototype fully autonomous. At the same time, a simultaneous localization and 

mapping algorithm is under consideration with the intention to automate the 

pre-installation process of the LARFID tags in an unexplored indoor environment. 

Besides, a full calibration based on the complete laser scanner model will further increase 

the activation accuracy. 

As we can see in the simulation part of our new algorithm, the error can be 

extremely big around the peak. An analytic explanation of this phenomenon is not 

available yet. It will be investigated in our future work. 
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