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Abstract of the Dissertation

A Control Framework for Continuous Time
Adaptation in Modern Day Embedded

Systems

by

Sankalp Kallakuri

Doctor of Philosophy

in

Electrical Engineering

Stony Brook Univeristy

2007

Modern day embedded systems require frequent changes in their
archirecture due to the variations in the market requirements and
the environment the embedded system is placed. For example,
the data traffic that is seen by the embedded system may vary
in amount and regularity. The quality requirements of the out-
put may vary also vary. The variations impose constraints which
cant be efficiently obtained by a static architecture and redesign-
ing would severly affect time to market and cost due to over de-
signed solutions. The over design comes in because the design
may be done to handle all the varied scenarios and the full ca-
pabilities of the system would rarely be used. In a mobile com-
puting/communication system power requirements are tantamount
and there are number of schemes that used to control the voltage
levels or alertness of these devices. There has been substantial
work done in power conservation with the help of various control
methods. We would like to extend some of these control methods
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to the problem of controlling reconfigurable architectures in a dy-
namically varying environment.

The control methods started off with using discrete time mod-
els and then evolved to continuous time models for embedded sys-
tems. The continuous time methods have proven to give realis-
tic representation of the dynamics of the system as compared to
discrete time models. Another classification of the control meth-
ods can be done with respect to the deterministic and stochastic
control frameworks. Deterministic control has been the classical
approach used by engineers and computer scientists to device con-
trol methods due to the fact that most embedded systems are still
synchronous and events occur at integral multiples of clock peri-
ods. The trend toward using continuous time methods has come
about due to asynchronous operation and the fact that though the
tasks may have discrete execution time values the values may exist
over a large range and may follow a distribution in terms of their
frequency of occurrence. Which led us to the usage of continuous
time stochastic modeling for the embedded systems.

The control framework we use is based on CTMDP ( Con-
tinuous Time Markov Decision Processes). These are a class of
Dynamic Programming methods which implement stochastic con-
trol policies. These methods have been used for dynamic schedul-
ing,load sharing and inventory control among other engineering
and econometric problems. The beauty of these methods is that
a queueing model of an architecture can be easily mapped to CT-
MDP framework. With appropriate rewards and constraints incor-
porated from the specifications of the application these methods
throw the design problem as linear programming problem. We have
studied cases where the problem may not be linear and methods
have been developed so that the problem could be linearised.

The thesis aims at identifying the need of reconfigurability in
different architectures and different applications. Such a study was
necessary in order to systematically study the different design re-
quirements and appropriate modifications in the control method.
The embeddede architectures have beem broadly split into 3 sub-
systems by us , they are 1) the communication sub-system 2) the
processing sub-system and 3) the memory sub-system. Untill now
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we have concentrated on the communication and processing sub-
systems. Designing the communication sub-system involved bus
arbitration policies for synthesized bus architectures for real world
applications. The stochastic arbitration policies were tested with
other heuristics in a queueing model based simulation of the em-
bedded architecture. They were compared on the basis on several
performance metrics like buffer size, data loss, power conservation
and delay. A design environment was developed in which the poli-
cies were sequentially used on a queueing model of the architecture
and systematic data collection can be done and results can be plot-
ted and analysed.

Experiments were performed for small test architectures as well
as complex architectures for real world applications. The experi-
ments were performed for a Hitachi SH DSP and an IBM Network
processor. The synthesized bus architectures could be classified as
architectures with and without redundant paths between proces-
sors as well as architectures with and without hierarchy. In terms
of bus architectures hierarchy pertains to the existence of bridges
that facilitate bus to bus communication instead of bus to proces-
sor environment. This introduction of bridges causes a master slave
kind of environment which leads to a non linear problem definition
making the problem intractable in the current frame work. One
of the promising solutions to this problem seems to be to split the
system into sections that could be modeled as a linear problem and
then stitch the components together at higher hierarchical level.

In the processing sub-system experiments we initially tried a
separate style of modeling in which the workloads were character-
ized by empirical curves obtained from the design specification re-
quired by the physical phenomenon being tracked. The curves were
then split into windows where they were mapped bye parametriz-
able closed form functions. The second modeling method was to
model the workloads as queueing requests. The communication
sub-system optimizations led us to explore multiple suboptimal
policies, which were optimal under certain conditions dictated by
the workload. The policies were tested on cycle-count accurate as
well queueing models of the architecture. The models were en-
hanced by making use of large and somewhat complex cycle-count
accurate models as well as software profiling data in order to ob-
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tain accurate service request rates and service provider utilizations.

In the future we shall try to dynamically manage the resources
in the memory sub-system. The hardware resources available for
computation can be classified into several configurations and the
reconfiguration would involve selecting configurations in a continu-
ously varying environment. We shall also extend the methodology
to memory management. In hierarchical memories the manage-
ment of caches and virtual memories provides opportunity for ex-
ploration of several trade offs between the cache management and
eviction policies and the transactions caused by the instruction
set over the platform. We would like to model the transactions
as CTMCs and solve for optimal memory transaction patterns by
using MDPs.
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Chapter 1

Introduction

1.1 Overview

Modern day applications have high performance requirements in terms
of power consumption, timing requirements, area constraints but there is a
growing need to allow the designs to have flexibility in order to attain varied
performance goals. Varied performance goals manifest themselves due to the
differing environments the embedded applications created due to a dynami-
cally changing market and available technology at a macro level and due to
changing data traffic scenarios or power conservation schemes at a micro level.
A large sector of EDA/CAD industry and academia is now concentrating on
providing reconfigurability within the embedded systems they develope. The
major advantage of having a reconfigurable system of course is that it can be
provided as solution to a larger application domain as compared to static or
non reconfigurable embedded systems, the second big advantage is that it can
handle the need for dynamic architecture variation based on the variations of
the environment the embedded system is in.

This chapter gives brief insight into the following topics

• outlines the need for reconfigurability in different embedded applications.

• gives a brief comparison the current methods that deal with reconfig-
urable architectures.

• explains why is system level evolution needed and why is it useful.

• use of CTMDPs in controlling reconfigurable architectures.

• our research incentives and contributions.

• organisation of this report.
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1.1.1 Need for Reconfigurability

The embedded systems currently available deal with a vast range of ap-
plications and are placed in environments that vary hence demanding varied
requirements from the embedded system [104][45].The levels at which recon-
figurability can be provided is varied and different applictions demand recon-
figuarbility at different levels of granularity, for example the smart memory
systems developed in [59]. The work in reconfigurable architectures has been
FPGA based and the earlier designs tended to be more RTL level reconfigura-
tion rather than system level reconfiguration[70] [62]. The approaches though
on programmable platforms like FPGAs were designed to tackle mostly static
or slow reconfiguration. The order of the day though is to have run time re-
configurability [11] and it should be available at varied levels of granularity
and different subsystems of the embedded solution [12]. The reason we want
to stress in the reconfigurability in different subsystems is that the constraints
and requirements of different systems within the reconfigurable embedded so-
lution are different . We have considered three main subsystems

• Communication Sub System

• Processing Sub System

• Memory Sub System

Different applications like Nework Processors, Multimedia chips, Sensor Net-
works and Scientific Computing have different types and levels of reconfigura-
bility requirements in order to satisfy contraints on buffer size,QoS,Delays,Data
loss, Scalability and Power Conservation. A detailed discussion of reconfigura-
bility requirements, types and levels of reconfigurability required in different
applications has been presented in the second chapter.

1.1.2 Need for system level evolution and control

The system is made of several components each of which may or may not
have a need to change with the environment the embedded system is in. Ideally
the evolution of the system should be continuous allowing the system to be
in optimal state of productivity, but there has to be a discretisation because
the architecture of the system can change only in discrete steps. Though
the changes are discrete the time taken between them should be continuous
in order to allow the system to follow the real world environment variations
closely. The representation of this evolution by a stochastic process naturally
lends it continuous time variation. The reconfiguration is not only in the
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architectures but to some extent also in the control policies themselves. As
compared to RTL level reconfiguration and FPGA based reconfiguration this
scheme is a more abstract and deals with the system as a whole. There have
been attempts made at system level reconfiguration[80] [12] [11] but the control
policies for these were either not discussed or were primitive when compared
to the control policies discussed in this proposal.

1.1.3 Control methods for reconfigurable Architectures

Various control methods have been used for controlling various parameters
in an embedded systems. The control methods can be classified in several ways
some of which are

• discrete or continuous time methods[44][74]

• stochastic or deterministic methods[74][75]

• predictive or adaptive methods[52][110]

These methods have been compared and contrasted in this section. Most of
these methods have been used in power manangement,memory management
and data traffic management and hence fit well into the framework we are
working in. The most basic policy which has been used is the Time out policy.
This policy will keep the system or the component of the system in low power
state, if the time till the next event will be such that the low power state
will allow power saving, inspite of the power consumed in the transition to
the low power state and the return to a more alert state [5] [6]. The timeout
methods were discrete time methods with a threshold time beyond which it
would be feasible was a fixed quantity [44]. The fact that these methods
would put the system in the sleep state only after a certain threshold and
wake up only after a certain threshold they would incur some penalty in the
performance. In order to overcome these drawbacks predictive methods were
developed. The predictive methods had either a static prediction or dynamic
prediction. In both the cases essentially the correlation between the past power
down times was used in order to predict the the time of next powerdown cycle.
In stochastic control methods probabilities are defined over the states of the
system as well as the possible actions that can be taken in these states[74]
[75]. In general policies implemented have actions which could depend on a
history of states and actions [24]. A more detailed discussion about the control
methods has been given in the third chapter.
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1.1.4 Use of CTMDPs in control of system evolution

The CTMDPs or Continuous Time Markov Decision Processes are a class
of methods that form a subset of dynamic programming methods. They have
been used in dynamic scheduling ,load sharing and power management prob-
lems among others. They allow us to define and prove mathematical optimality
for the control policies developed which was not available with the heuristic
methods. These processes can be reduced to Semi Markov or Discrete Time
Markov processes for purpose of mathematical analysis. For a comprehensive
discussion on Markov Decision processes and related issues we would refer you
to [25]. We will refer to the use of these methods in power management a lot
in this prelim as substantial work has been done in adapting these methods
to SoC power management [10][76]. We have explored some improvement in
these methods which have not been tried in the power management scenario
as yet, we are also trying to elegantly extend this theory to problems which
do not fit well into the CTMDP framework.

1.1.5 Contributions and Incentives

One of the incentives for pursuing this problem was the ongoing research
in Bus Synthesis in our research group [99] [100]. The Bus Synthesis effort
resulted in layout aware bus architectures which were sensitive to the com-
munication load as well as the floor planning of the embedded system. The
next natural step in designing the communication subsystem after the obtain-
ing the bus architecture was designing arbitration policies for the buses. The
continuous time nature of the tasks and traffic in SoCs led us toward using
continuous time stochastic models. We realized that use of such models also
lends itself well to the application of stochastic optimisation methods like CT-
MDPs,which we then used and would like to further explore. An incentive for
pursuing the possible continuous time adaptation in the processing subsystem
was again due to ongoing research in our group for real time systems and sen-
sor networks [107] [108]. This effort deals with making differing sets of HW
resources vailable to match timing constraints. We would like to explore the
optimisation of this process.The third incentive was that the CTMDP meth-
ods allow us to analyse in a mathematical framework the optimality of the
generated policies for control.

The novel contributions in this report are:

• a systematic study of scenarios in applications and architectures that
would require continuous architectural adaptation as discussed in Chap-
ter 2.
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• the use of continuous time stochastic models in the design of arbitration
policies and buffer allocation for Communication Subsystem of an SoC
as discussed in Chapter 4. Especially the formulation of the arbitra-
tion problem for finite queues in the presence of redundant servers and
hierarchy in the queueing network.

• extension of the continuous time adaptation modeling to the Processing
Sub System as discussed in Chapter 5.

• studying the use of multiple sub-optimal policies in an environment
where the requirements vary drastically. Sensor nodes provide such a
case study as put forward in Chapter 6.

• improvement to the request rate generation models for transaction level
simulators as shown in Chapter 7.

1.1.6 Organisation of this Preliminary Proposal

The following chapters of this report are as follows :
Chapter(2) deals with a detailed study of the need for continuous time adapta-
tion in different architectures while they are utilised in different applications,
chapter(3) is a detailed comparison of control methods , chapter(4) is an ex-
planation of CTMDps as well as a discussion of the experiments and results,
chapter (5)is an extension to the continuous time modeling effort (6) is a case
study of sensor network nodes which need reconfiguration and exist in envi-
ronments which may require very different levels of computation, chapter (7)
is the future directions of the research effort and chapter (8) is the conclusion.
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Chapter 2

Continuous Time Adaptation in Embedded

Systems

2.1 Introduction

In this chapter, a study of different embedded architectures and applica-
tions in terms of requirements for continuous evolution.

The following table has been discussed in detail with respect to the require-
ments in the industry for some applications and how the static architectures
fall short and what dynamic improvements are required.The discussion is split
over the two domains of architectures and applications and current reconfig-
uration requirements and reconfiguration abilities have been discussed. The
difference between current reconfiguration concepts and schemes and the ones
used by us is that the current methods are usually deterministic and based
on discrete time steps [6][13]. Another difference between our approach and
the current methods is that at whatever granularity the changes take place
in the actual architecture, they could be efficiently abstracted into the state
space of a CTMDP[10]. The feasibility and need of the control methods we
propose may be limited in some scenarios due to pre existing infra structure
in a particular sector, hence it is imperative to classify the sectors where these
methods would find use.

2.2 Detailed Discussion

The performance requirements placed by applications on architectures vary
with the applications. The suitableness of an architecture is judged by how
well it satisfies these performance requirements. The differences in the perfor-
mance requirements and the resources that can be provided by an architecture
is what causes the performance of a certain product to go down and creates
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requirements for new architectures for example a change of protocol for a mo-
bile communication chip. In case a requirement for a different architectural
resources presents itself sometimes it is faster and cheaper to have the resources
available and they can be adapted for different usage at run time in a contin-
uous fashion. We have studied the following applications and enumerated the
pertinent performance requirements. The applications are mobile computing,
sensor networks, scientific computing and biomedical applications. We have
also studied how well these applications get mapped to certain architectures
as depicted in Figure 2.2. In some cases the need for continuous time adap-
tation is felt and in some there it hasn’t been pertinent both these situations
have been discussed in deatil. There are certain cases where there has been
no discussion because of a large mismatch between the requirements of the
application and the resources the architecture can provide.

2.2.1 Requirements,Constraints and Trade offs in Mo-
bile Computing

Mobile computing no longer deals with just voice or text. With the ad-
vent of PDAs,laptops and cellular phones equipped with cameras the traffic
has changed to more advanced applications like web browsing,email and au-
dio/video decoding [103][95][94]. The communication between the cores or
modules in a mobile computing SoC solution would involve heavy amount of
traffic flowing through the SoC due to such high end applications [102].

• Buffer Space: The availability of buffer space is a problem because the
space available on chip is very limited compared to regular networks.
Thus efforts have been made to have optimal buffer size in presence of
video traffic [102].

• Bus Structure: Apart from buffer space the availability of buses is also
an issue and developing efficient communication subsystems that can
handle the on-chip traffic is an important issue as discussed in [53] [29]
and [117].

Apart from having a very efficient communication sub system the Mo-
bile Computing applications need to have a processing sub system which can
provide error free data after it has been decoded from the modulated signal.

• QoS-Performance Trade offs: The requirements on the processing sub
system are that it should be able to keep the bit error rate low and keep
the performance within some specified QoS level. Trade offs between the
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QoS and performance are used in order to have maximum utilisation of
processing power. For example in a wireless environment where there is
fading and the inclusion of an extra finger in the rake receiver can help
keep the bit error rate low but in turn increase the power consumption
[83][2].

2.2.2 Requirements, Constraints and Trade offs in Sen-
sor Networks

Sensor networks have very different constraints and requirements as com-
pared to real networks or other computing applications as shown in [37] [88] .
The idea of sensor networks is to have a small amount of processing done to
the data and then to stream the data on the network.

• Space and Power Constraints: Major constraints for the sensor nodes
are space and power consumption. Thus the processing subsystem does
not need to be very advanced and usually the sensor node architectures
are microcontroller or DSP based. The nodes have to be small as large
numbers have to be cheaply made available in order to monitor vast
spaces. The OS and the controllers have to be light weight and highly
customised to the application[96].

• Fast and Light: In sensor networks one of the trade offs is between the
on board processing and real time data flow. The aim of the sensor
networks is to have minimal amount of processing and provide samples
of the environment being monitored in real time. This calls for optimal
amounts of storage and processing power being made available on a
sensor node[43] .

• Trade offs in Hardware for Control and Processing: Another trade off
in sensor networks is between using a single processor which is shared
among the control and data processing or to use separate processors
which would take care of the data processing and the control. The idea is
that the shared processor will take less space and on chip communications
would be lesser than the two processor solution which is the default in
current systems, for example the MICA motes [115], but the independent
processors will be easy to build and are already available as sensor node
architectures.

• Varying Connectivity requirements: The sensor network will sample a set
of parameters in the environment it is placed and contain some spatial
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Figure 2.1: Adaptation in node storage due to variation in network
topology

representation of the environment. In case the data collected from the
network is analysed offline and temporal variations of the parameters in
the space monitored by the network are of no consequence then synchro-
nisation between the nodes need not be done but this usually doesn’t
happen [119] [20]. In case the variation of the monitored space over time
is necessary then the need for synchronisation would be neccessary or
at least the data collected would have to be tagged with time of collec-
tion so that corresponding samples of the space can be assimilated[119].
The communication may not involve a central base station so the way in
which data packets move about in the network would require a flexible
communication and storage subsystem and the spatial knowledge about
the temporal status of the network would lie in the community of nodes
and not in any particular node. This may cause variable connectivity
patterns between the sensor nodes and thus will affect the storage and
communication subsystems on the nodes due to the redistribution of traf-
fic as shown in Figure 2.1. Since the sensor nodes may communicate by
wireless the connectivity patterns could change dynamically. The need
to store and process data would be dynamically varying and the buffers
placement in the network topology and the size of the buffers would have
to be varied dynamically.
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2.2.3 Requirements,Constraints and Trade offs in Sci-
entific Computing

Scientific computing has two basic approaches one is to use supercomputers
which have huge amount of computing resources or to use clusters of smaller
computers. An example of a large monolithic supercomputer is a Cray X-MP
from Cray inc. [14] and Earth Simulator from NEC [19] which is capable of
35.61 TFLOPs.

• Load Sharing and Management: The requirements in these sytems are
that the load of the task should be equally shared among the processors
in order to have the fastest execution of the task. Another requirement
is to have an efficient management of queues and stacks.

• Memory Requirements: In many cases the memory available turns out to
be a constraint for applications to be run on supercomputers and while
designing them memory requirments of possibly a decade in the future
are provided [51].

• Monolithic versus Distributed:There exists a trade off though between
the two approaches. In the distributed computing case where there are
several general purpose processors interacting ther will be need for net-
work processing systems like routers and switches to handle the commu-
nication whereas the communication in the monolithic machines would
be more like a GPP but at a large scale. In case the computation is
distributed over several smaller computers then the communication time
betweeen the inidvidual processors could be significant and would have
to be taken into consideration [72].

2.2.4 Requirements,Constraints and Trade offs in Biomed-
ical Applications

Biomedical applications involve robust and fault tolerant design [58]. Most
biomedical systems have very robust design.

• Fault Tolerance and Slow Degradation : They have slow degradation
of resources in certain systems which must not fault suddenly and yet
should be able to sustain very long battery lifes. These are devices like
hearing aids,pacemakers and defibrillators. They usually have very low
power consumption and as some of them may be internal to the human
body the prospect of replacement is avoided as it would involve surgery.
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• Real Time Monitoring: The Monitoring of biomedical signals involves
real time processing of the incoming signals. Accurate display and anal-
ysis of the sigals is required in case of life support systems which have
to monitor a patient and accurately display the vital signals as well as
comprehend situations which require alarms to go off [41]. The system
apart from being fault tolerant should be able to commmunicate in real
time with sensors and displays.
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Figure 2.2: Evolution requirements in embedded applications and ar-
chitectures
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2.2.5 Continuous Time Reconfiguration in DSPs for Mo-
bile Computing

The use of DSPs in mobile computing is due to their ability to execute
signal processing operations like filtering ,equalisation ,FFTs and algorithms
like Viterbi decoding[97]. The DSPs have an ability to perform high precision
floating point arithmetic at high speeds due to availability of multiple process-
ing elements or in some cases multiple datapaths. They have circular buffers
to perform convolution which is a basic operation in many signal processing
applications. To show the high amount of parallelism available in a DSP given
below is an example of the datapath of the C64x DSP[97]. The C64x has two
datapaths each with 4 processing units and a 32x32 bit register file as shown in
Figure 2.3. Each register file has 6 write ports and 10 read ports which enable
parallel read/write operations of operands/results from all processing units.
Several operations can be executed in parallel like six 32-bit additions, four
16-bit multiplies,eight 10-bit multiplies and two 8-bit Galois field multiplies
[1].

The DSPs used in mobile computing are available in three basic flavours
1) Application Specific, 2) Domain Specific and 3) General Purpose [27]. The
application specific have highly customised datapaths and are built for highly
specific tasks like speech decoding [66].They have a heavy initial cost due
to the high application specific nature. The domain specific have a smaller
time to market and cost as compared to the application specific as they are
specialised to perform certain sub tasks like equalisation or viterbi decoding
[67] [26], e.g Tic540 and TCSi Lode. They can be used for other purposes too,
but are designed with a certain application or set of applications in mind.The
general purpose are the ones prevalent in currently used devices. They have
very small time to market but lack in performance compared to the domain
specific DSP’s.

• Trade Offs in DSPs: With reconfigurable DSPs the trade off between
time to market and performance could be reduced by using the recon-
figurability to adapt to the the new requirements instead of redesigning
the chip, in other words one could say that with reconfigurability the do-
main specific DSPs could also handle the applications of the application
specific DSPs. Apart from the changing standards set by the market
the chips are also sensitive to QoS like parameters where they could use
more computational resources in case the output accuracy requirements
get more stringent [2] [80].

• Reconfiguration Requirements : The reconfigurabilty requirements and
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possibilities in these DSPs can be seen at all the three subsystems though
more in the processing and communication subsystem than in the mem-
ory subsystem. The processing subsystem is the one that goes through a
change depending on the QoS requirement and its changes cause changes
in the communication subsystem too, for example in [80] we see that
the number of fingers in a Rake receiver could be increased if the bit
error rate has to be reduced. In the Chameleon RCP by [80] the pro-
cessing subsystem is highly reconfigurable with several processing units
each reconfigurable within itself to operate on data types of variable
length. This demands reconfigurability in the memory subsystem too.
The various constraints that are expected to manifest themselves in such
a adaptive scenario would be time bound distribution of data in the com-
munication subsystem and minimal resource utilisation in the processing
subsystem. The memory subsystem is expected to have the least change
requirements and hence is being left alone for this sector of the applica-
tion/architecture space defined in Figure 2.2.

The demand of the current scenario to change the from one configuration to
another in a single clock cycle for the Chameleon RCP requires the alternate
configuration to be stored and then used when the need be. This kind of
reconfiguration may be needed in cases where there is a fundamental change
in the protocol and the processing apparatus at a base station needs to go
through an automatic change to handle the update in the protocol. This kind
of reconfiguration would need very hard timing constraints on the system.
Though the reconfiguration is very quick the flaw with this methodology is
that there can be only a limited number of alternate configuration of the
system which is stored and the decision as to what this alternate configuration
would have to be decided by the designer. In the control methodology we
propose the change to an alternate configuration could still be made in a clock
cycle but to with a changing environment the system shall be able to choose
a different configuration without designer intervention so it may take a couple
of more clock cycles to reach the optimal configuration but there need not be
any designer intervention.

The reconfiguration requirements and possibilities in the subsystems have
been depicted in 2.2 and their relative degrees of adaptation have been depicted
by the height of the graphs.
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2.2.6 Continuous Time Reconfiguration for DSPs in Sen-
sor Networks

As sensor networks are relatively new the possible use of DSPs in them
has not been explored extensively [105]. The use of DSPs in doing energy
efficient data transfer has been explored. The data transfer is energy efficient
because the node performs a fourier transform on the data or does an on site
analysis of the data and then transmits it. This is done because it is easy
to scale or threshold the fourier components and transmit minimal amount of
components. The data is obtained by using inverse tranforms at the receiving
end. The number of sensing elements in the network may be very large and
the networks life would have to be extended to its limit. Thus making power
conservation an issue. Another issue with a large number of nodes is the
data storage and communication as the nodes may need to send data directly
to other nodes and there may not be a central base station raising many
communication and storage issues [28].

The use of DSPs is primarily going to be in the data processing section
of the sensor nodes as the sensors will be dealing with an analog environment
and the Analog to Digital Converters shall be interfaced with the DSPs which
shall take care of the sampled digital output. Though the need or type of
evolution that would be required in a DSP based architecture for a sensor
network would depend a lot on what the sensor network is being used for, we
can at this moment make some comment on the possible requirements.

Continuous time adaptation will be needed in the buffers used to store the
sent and received data as their environment changes. DSPs usually have very
advanced proccessing subsystems as shown in 2.3 but their communications
subsystems aren’t very advanced in the sense they usually do not have ability
to handle different protocols and packet lengths and are usually dependent on
a coproccessor like a GPP or a microcontroller to handle the external commu-
nication [69]. The DSPs communicate with peripherals like A/D converters
and memories under the control of the coproccessor. Thus adaptation of the
communication sub system of the DSP would be needed but a better solution
than changing the DSPs already specialised architecture would be to allow the
coprocessor to handle the adaptation needed for a sensor node.

The reconfiguration requirements have been shown in 2.2. The major
reconfiguration requirements are in the processing subsystem.
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2.2.7 Continuous Time Reconfiguration for DSPs in Sci-
entific Computing

DSPs are used in many scientific applications like geology,hydrology and
astronomy. The reason DSPs are used is that they have some features not
available in other architectures like multiple bus architectures,multiple pro-
cessing units which can function in parallel. They can usually perform mul-
tiple read/write operations simultaneuously from I/O or memory. They may
have multiple DMA channels for high speed data movement without processor
interference, special addressing modes with circular or bit reversed addresses
and instructions that could handle normalisation and saturation [98] [30].

The applications are essentially imaging based and involve very data in-
tensive work which cannot be handled by single proccesors available in the
market now. The work being data intensive there is a need for splitting the
tasks among several processors. Instead of alloting different tasks to different
processors the approach here is to split the acquired data over several proces-
sors and the the output is then combined together. These applications do not
require very high reconfigurability but do require a high amount of parallelism.
The incoming data may be split across several DSPs to speed up the process-
ing especially in SAR(Synthetic Aperture Radar) in which there are several
small aperture radars which have there images stitched together[49] [55].

Continuous reconfigurability is a requirement of systems where the envi-
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ronment or application puts varying demands which isn’t seen in these appli-
cations. The output usually has to have very high accuracy and resolution and
trade offs are not tolerated, so a brute force method is used, in which the high-
est requirement of computing power has to be provided. The low adaptation
requirements have been shown in 2.2.

2.2.8 Continuous Time Reconfiguration for DSPs in Biomed-
ical Applications

Many biomedical applications involve DSP based computation and we have
examined the need for continuous time online adaptation in these applications.
The DSPs have been used in varied biomedical applications like hearing aids
and monitoring biomedical signals [58]. The use of continuous time architec-
tural adaptation seems minimal in these applications but there are a few which
need it.

There is a need for architectural reconfiguration in hearing aids [61]. The
ability to reconfigure the device will allow better speech encoding decoding al-
gorithms to be run on the same device and there wont be need to design a new
hearing aid. There is a need for power management for devices like hearing
aids which run on batteries but this has been achieved through power man-
agement policies like using varied voltage levels and very low current designs
[63]. The possibility of exploring trade offs in fault tolerance and power con-
sumption in the hearing aids has been explored too. Though fault tolerance
is very important for biomedical systems, especially for critical life support
systems but for hearing aids a slight degradation in performence could be tol-
erated for the sake of giving the device a longer battery life by reducing the
power consumption [58]. The adaptation requirements are only in the process-
ing subsytem and the memory subsystem and communication subsytem are
expected to be static 2.2.

2.2.9 Continuous Time Reconfiguration for Multimedia

Chips in Mobile Communication

Multimedia chips are becoming a necessity in mobile computing devices
with still picture and video clip transmission becoming the need of the day.
The need for reconfigurability is heavy in these applications as the available
bandwidth decides the quality of the picture that is being sent.

• Buffer Space dependance on Channel Speed: The slower channels would
have to accumulate the video transmission in a buffer before displaying
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the video as the display would require a continuous stream of frames
which may not be available in a slow channel. This variable level of
resolution in the video quality and the buffering would impose varying
constraints on the processing subsystem and the communication subsys-
tem hence there is a need for continuous adaptation.

• Qos Based Adaptation: The need for continuous time reconfigurability
also manifests itself due to the possible data shaping that shall occur and
the different data shaping schemes will need a dynamic buffer allocation
technique [94] . The ORbit scheme developed in [95] is a possible solution
to this problem.In this method the video traffic is not recieved in a
temporally ordered sliding window fashion but the frames arrive out of
order and are stored in their compressed form. Then these frames are
compared with some of the frames that special frames and are sent across
due to their content which would help reconstruct the video clip inspite
of jitter in the video stream. This method of sending some key frames
with their temporal time stamp in advance and then allowing out of
order buffering causes variation in the buffer lengths because the buffer
lengths can be used as constraints for the number of ORBit type frames
to be stored for a certain tolerance in the video quality as shown in
Figure 2.4. Thus allowing a trade off between the video PSNR and the
number of frames to be stored.

Though the ORbit method seems efficient and is claimed to be faster than
some GA based methods, we would like to test its optimality when compared
to CTMDP based methods discussed in later sections of this report. The
reason we feel the CTMDP methods could outperform the ORbit method is
that we can obtain theoretical or mathematical optimality in a control policy
obtained throught the CTMDP methods, whereas in the ORbit method ap-
pears to have originated due to the modelling of the distortion due to frame
based jitter in video traffic. Apart from this, the buffer allocation should be
done not just based on PSNR of the video but also taking into account other
parameters like the on chip bus structure and the traffic patterns that would
occur on it, which again leads us toward multiobjective CTMDP based opti-
misation for continuous time reconfigurability. The adaptation requirements
of the subsystems have been shown in 2.2, the communication and processing
subsystems require high levels of continuous adaptation.
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2.2.10 Continuous Time Reconfiguration for Multime-

dia Chips in Sensor Networks

In sensor networks the data accumulated from the environment has to be
processed and presented in a easily understandable mannner. The data should
be easy to visualise and analyse so that a technician or other reactive embedded
system could act accordingly when it receives the data. In sensor networks
especially multi hop networks where data packets could arrive through different
paths and there is no central base station there is an issue of which packets to
keep and which to discard [92] [93] in terms of preserving video quality.

• Bandwidth versus Resolution: Another issue is when and by how much
the resolution of a video stream should be reduced. The need for this
reduction in resolution comes about due to a large number of streams
being needed to have a complete spatial representation which means
very large bandwidth requirements. So in order to have a complete
representation yet use a lower bandwidth the streams could be selectively
degraded in their resolution or scalable compression could be used [89].In
order to have this variable resolution and selective data acceptance as
in Figure 2.4 there will be need for reconfigurability in the processing
sub-system and the communication sub-system.
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• Mixed Traffic Environments: The continuous time adaptation would be
needed due to the varied video quality as well as the possible coexistence
of other media like sound and text and processing resources and buffer
requiremnets will vary. Characterisation of these variations has been
studied in [102],a stochastic modeling technique that links and compares
the data network traffic with the on chip traffic has been presented in
order to study the buffer space requirements. An example of a mix-
ture of wireless traffic has been discussed in [101]. It shows a wireless
military environment useful for tracking and shooting down hostile in-
coming missiles or planes. It involves airborne,seabourne and land based
surveilance of an area. Due to the different geography channels chracter-
istics for transmission are different thus different communication proto-
cols are used but they have to be coherent to the sensors in the different
regions of the war theatre.

Adaptation in multimedia chips for sensor networks will be felt mainly in the
communication subsystem and the processing subsystem as shown in Figure
2.2 due to the varying QoS requirements as well as the mixed traffic scenarios.

2.2.11 Continuous Time Reconfiguration for Multime-
dia Chips in Biomedical Applications

Many biomedical applications involve video and audio data processing[71].
The need for multimedia chips to handle images with high resolution and
sounds of very low amplitudes and high frequencies has been felt. One such
application is virtual colonoscopy which involves 3D Volume rendering of the
colon and is a non invavsive method of diagnosing colon related ailments can-
cer bein the major one. The regular chips cannot handle the resolution re-
quirements and some architectures [34] [71] have been developed which allow
parallel data flow and have fixed bandwidth interconnects between the pro-
cessors to aid 3D visualisation of data from MRI ,CT Scan, PET,SPECT like
biomedical imaging techniques. The ability to paralelise the 3d visualisation
comes from ray tracing methods.

Though like other architectures used in biomedical engineering these have
limited capabilities and need in terms of reconfiguration because is almost
always done keeping in mind worst case scenarios and reconfiguration is not
needed or implemented as shown in Figure 2.2.
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2.2.12 Continuous Time Reconfiguration for Network
Processors in Mobile Computing

Base stations for wireless routers need network processors. The tasks im-
plemented by the Network procesor are to identify packets in terms of their
size,content,protocol and destination. To manage the flow i.e to do some
queueing management on the packets. To route the packets, which would
mean a switch which could deal with variable length packets is required. Most
of the tasks from the Network Layer of the OSI Data Networks stack including
fragmentation, regrouping and security are implemented in network processors
[81].

Dynamically configurable network processors are now available in the mar-
ket [80] and their abilities are being tested as compared to static architectures
[101]. The reconfigurable can adapt to the varying traffic environment includ-
ing varying traffic intensity and varying packet types[101].These architectures
have a very high reconfigurability in their processing subsystem as seen in
[80].The need for reconfigurability comes about due to the various different
protocols and packet lengths that a base station could be encountering in a
wireless environment. The varied packet types and protocols that could coexist
in an environment will cause the architectural requirements to change dras-
tically depending on the protocol being encountered at a given instant. The
CS2000 from Chameleon systems is such a reconfigurable network processor
but we feel the control methodology for the reconfiguration is primitive and
basically uses an on /off type control whereas dynamic reconfigurability should
be able to capture more detailed and smooth architectural reconfiguration.

Efforts have been made to characterize the data traffice characterisics with
statistical methods traces of internet traffic are available and have been anal-
ysed for the type of traffic in terms of the types of protocols being used ,packet
sizes and media [15]. This type of analysis would fit in very well with making
decisions regarding the dynamic adaptation of a network processor in terms
of the switching fabric and queue management system as shown in 2.5. The
adaptation requirements in all three sub-systems have been shown in Figure
2.2.

2.2.13 Continuous Time Reconfiguration for General Pur-
pose Processors in Mobile Computing

This section deals with the use of general purpose processors in mobile
computation. We also try to examine if there is a need for reconfigurability and
would it be feasible to provide it. As applications get more and more complex
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the cost to build ASIC solutions for them increases. This has brought about a
new school of thought which aims implementing extremely complex tasks on
general purpose processors in order to save on the initial capital investment
which is high in ASICs. The general purpose proccessors are used in mobile
devices like PDAs and laptops since power saving is the first priority these
devices have some reconfigurability present in them to do power management
but architectural reconfiguration has not been explored for GPPs. The scope
of architectural reconfiguration in GPPs is minimal as most of the processing
is left to the software and there is no application specific hardware. One
of the reasons there is no architectural reconfiguration in the GPPs is that
they are usually interfaced with a DSP as a coprocessor when used in Mobile
Computing applications [69] [84] and the reconfiguration if any would be in
the coprocessor rather than the GPP as reflected in 2.2.

2.2.14 Continuous Time Reconfiguration for General Pur-
pose Processors in Biomedical Applications

GPPs are used in biomedical engineering for image proccessisng applica-
tions like MRI,Spect and PET but they are used to run complex statistical or
signal processing like algorithms which would be too complex and expensive for
ASIC implementation. Some small offline enhancements to GPPs have been
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studied for imaging applications and show that the flexibility offered by the
GPP may be useful as ASIC architectures may have components that lie idle
for many instructions and cost in area. Whereas the GPP will be using a small
pool of processing power which will have a high utilisation [90]. The need for
continuous time adaptation of the architectures for GPPs in Biomedical sys-
tems has not been felt,the reason being that the applications do not encounter
traffic based or QoS based variations which can be explored for adaptation
in the architectures. GPPS by themselves aren’t customised towards imaging
applications but the flexibility they offer is useful and efforts have been made
to get hybrid systems with multiple processors which are able to incorporate
some of the GPP features [87].

2.2.15 Continuous Time Reconfiguration for General Pur-

pose Processors in Sensor Networks

GPPs may also see use in sensor networks as they offer flexibility and less
effort to design and produce. At this moment though there is only specu-
lation and most sensor node architectures are DSP or microcontroller based
[84]. The architectures are DSP or microcontroller based due to the space
and power consumption constraints met by them. DSPs and microcontrollers
have more application specific architectures compared to GPPS,hence provide
better performance for the same or lesser area compared to a GPP. Another
disadvantage of using GPPs is that they have very complicated instruction
sets and operating systems which aren’t necesssary for the low processing re-
quirements of a sensor node [96]. Since the use of GPPs hasnt been explored
yet the possibilty of their being need for continuous time adaptation in GPPs
for Sensor Networks doesnt make sense at this point in time. Though in order
to visualise the data provided by the network or for analysis of the data by a
technician there could be need for a GPP.

2.3 Summary

In this section we studied various applications and architectures which may
or may not need continuous time reconfigurability. Some observations are that
applications with high communication are the ones which need the maximum
amount of architectural reconfigurability for example mobile computing and
sensor networks. The reconfigurability we have discussed is not only needed at
run time but is needed over a more detailed and varied granularity level as com-
pared to the current FPGA based reconfigurable computing community. For
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such a flavour of reconfigurability the control methods have to allow for more
fexibility and should be able to match the architecture to the requirements in
a more optimal fashion. In the figure 2.2 we have presented a comprehensive
view of the possible continuous time reconfiguration that would be needed in
the various architectures depending on which application they are used in.The
DSPs used in Mobile Computing and Sensor Networks have a need for contin-
uous time adaptation in there communication as well as processing subsystems
while the ones used in Scientific Computing do not see much adaptation. The
DSPs used in Biomedical applications need some adaptation especially if slow
architectural degradation is required. The multimedia chips used in Mobile
Computation and in Sensor Networks need adaptation in the processing and
communication subsystems with the ones used for Sensor Network applications
need reconfigurability in the memory susbystem also. The network processors
need reconfigurability in all three subsystems but can be used in only the Mo-
bile Computing applications. The General Purpose Processors have minimal
need for adaptation but find use in almost all applications as shown in figure
2.2. The next section will deal with existing control methods and possible new
methods that could be used.
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Chapter 3

Control Methods for Reconfigurable

Embedded Systems

3.1 Introduction

In this chapter we present a discussion of the control methods used in
embedded systems.

In embedded system design qualitative as well as quantitative performance
evaluation methods have been extensively used [76] [68]. The disadvantage of
qualitative performance evaluation techniques is its difficulty to capture any
dynamic behavior like task scheduling and arbitration. For example,the qual-
ity of hardware/software partitioning is traditionally evaluated by a cost func-
tion which models number of synchronization points, number of interactions in
handshakes between processes, duration of idle periods etc [112]. The parame-
ters describing the above mentioned attributes of a system in the cost function
do not vary dynamically, thus making it difficult to calculate system latencies
and power consumption. In order to capture the variations in these attributes
there is a need for flexible models, which incorporate arbitration and schedul-
ing details, and can accurately track the state of the system. Quantitative
performance evaluation relies on simulating the system for a sufficiently long
period of time with input data, which possesses the required characteristics for
accurately modeling the system [54]. Quantitative values can be accurately
obtained for the performance attributes of a system. Simulation based perfor-
mance evaluation has the drawback of long simulation times in case of large
systems with less information known prior to the simulation.

During system design the constraints that are needed to be maintained
while defining a policy are obtained by the simulator in its exploration loop.
We quantitatively find certain parameters of the architectures using stochastic
models, and then simulate the stochastic process that underlies the function-
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ing of those architectures. Many problems in architecture selection, power
estimation, and power management can be studied by stochastic simulation
methods. The various architectures have been modeled as networks of queues
with the elements of the architecture modeled as service providers, service re-
questers and service queues [76]. The advantages of using stochastic simulation
in context of embedded systems are abstraction of gate level and RTL level
characteristics into the system level, as well as capturing interactions between
between parameters like delay, queue lengths and power consumption which
may not be caught while doing qualitative analysis or simulating deterministic
models [68].

The control methods have been studied under the following classifications.

• discrete or continuous time methods [44][74]

• stochastic or deterministic methods [74][75]

• adaptive predictive or static predictive methods [52][110]

3.1.1 Discrete and Continuous time methods

The initial efforts in control methods were based on discrete time policies
where typically the control would be at RTL level and thus closely linked with
the clock period [31] [9]. With system level design the time taken by tasks on
processors are no longer discrete and have values over continuous ranges and
these values have certain distributions. As an example we plotted the time
taken by the gzip program for zipping files of the same size but with different
amounts of variance in the data. We found some interesting characteristics
from the plot 3.1. We found that there exists a range of values over which the
execution time exists and there exists a trend in the distribution of execution
times. Hence the reconfiguration should take place in continuous time in order
to match the variation in the execution time on tasks. The discrete time
method in [68] uses a Discrete Time Markov Process to model the events
in an embedded system. These aren’t as accurate as the Continuous Time
Makov Chain(CTMC) models used in [74] [75] [76]. In the CTMC models the
transitions between states have a finite transition time associated with them
and this is closer to the real world situation as compared to the discrete time
methods in which the transition between states is instantaneous.
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Figure 3.1: Distribution of execution times for gzip program on 1000
byte files with varying no of “ones” in the 1000 bytes

3.1.2 Stochastic and Deterministic Methods

Another set of competing approaches toward control of embedded systems
are deterministic and stochastic methods [74][6]. The idea behind stochastic
methods is to have decisions that are taken with some probability rather than
with complete certainity under the influence of some stimuli. In modern em-
bedded systems the decisions are usually deterministic but with increasingly
complex systems with multiple components being developed the control sys-
tems themselves are becoming complicated. The stochastic methods are used
heavily to check the robustness and reliability [40]. Due to the complexity of
the system and its dependance on multiple components the use of stochastic
methods allows extendible modelling of components and abstracts away the
details of each component. The extendibility of the stochastic models comes
about due to the ease with which the distributions of the components can be
incorporated into the system model[82][17][18]. Thus in order to get optimal
deterministic control policies for such systems is hard and in some cases may
be impossible. One of the methods to get optimal control policies is a class
of dynamic programming methods called Markov Decision Processes (MDPs).
The application of Continuous-Time Markov Decision Processes (CTMDP)
and Generalized Stochastic Petri Nets to do dynamic power management has
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been discussed extensively by Pedram et al. in [75] [74]. The use of CTMDP
involves modeling the architecture into entities like Service Providers, Service
Requesters and Service Queues. The CTMDP method of modeling provides
greater accuracy [76] [74] as compared to discrete time methods proposed in
[68]. Optimizing the power vs. delay trade off in non stationary load environ-
ments has been in part or wholly the motivation of the use of the CTMDP
as it is an improvement over the adaptive and predictive methods [10]. An
alternative policy generation method using CTMDPs has been suggested by
Feinberg [24] [23] the advantages of which are that the mathematical optimal-
ity is guaranteed for the solution provided , whereas in [76] the policy may be
found but through a much higher computational cost. Another advantage of
[24] is that it can be easily applied to problems apart from power management
,whereas the methods in [76] are mostly suited to power management.An ex-
ample of deterministic methods is the thresholding based control of sleep state
of a strong ARM SA-100 processor as discussed in [6]. The method uses a plot
of the idle times and active times. The plot shows that the idle times were
long enough for the processor to transit into sleep state and return if they were
greater than a certain threshold. The threshold was obtained from the plot
such that the idle times if occurring beyond the threshold would mostly extend
long enough for a valid power down cycle. This threshold is called the break
even time because at the threshold the system would just about break even
with respect to the power saved in the sleep mode and the power consumed in
the transition between modes..

The power management methods mentioned above do not capture all the
requirements of an efficient arbitration policy or a policy generation method
that comes up with efficient policies. Adapting the methods for arbitration
will involve introducing concepts like fairness, mutual exclusion, deadlock pre-
vention and starvation which are critical for designing arbitration policies. The
implementation of these concepts has been left to the OS in the existing power
management methods [76], but since we are trying to use these methods for
bus arbitration the above mentioned requirements should be implicit with the
arbiter design and not controlled by the OS.

3.1.3 Adaptive and Predictive Methods

The adaptive and predictive methods are two ways of implementing con-
trol. The adaptive methods use events to adapt themselves to the current state
of a system whereas the predictive methods can forecast the possible state of a
system and adapt themselves to the possible oncoming state[6]. The predictive
methods try to predict the time at which a future event would take place and
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thus can help optimise the use of resources by shutting down parts that would
be expected to be idle for the predicted period of time. The prediction meth-
ods have a disadvantage when compared with the adaptive methods which
is that the predictive methods need some sort of precharacterisation of the
system as well as the workload. The stochastic optimisation methods studied
in this report are of the predictive type and depend on queueing models of
the architecture and on workloads models as stochastic processes with rates
extracted from core graphs of the system.

To get a model for the structure of the architecture is not very hard but
a precharacterisation of the workload or traffic is not easy. Efforts have been
made in order to characterize the traffic in presence of different traffic inten-
sities and protocols in [102] and [15]. The characterisation of on chip commu-
nication while taking into account for diffrent types of failures ,packet drops
and latency requirements has been made in [17] and [18]. The performance of
the Network on Chip system using stochastic communication was tested and
the effect of the data upsets on latency and energy dissipation was studied in
[18].

In order to overcome the challenge of complete precharacterisation the
adaptive methods have been employed which vary the policies as the system
faces new environments.The adaptive methods use some predefined policies in
a look up table and interpolate among them if the system load characteristics
arent suited to the policies in the look up table[6]. The policies stored in the
table are optimal for a certain traffic pattern but due to the dynamic traffic
variation they may not be opitmal for all patterns encounterd. The selection
of which set of policies to use or interpolate between is judged by analysing
the traffic characteristics over a window of time. These methods have been
shown to work almost as well as optimal policies computed offline in [6].

3.1.4 Artificial Intelligence Based Methods

Though it is possible to develope optimal control policies with the help
of stochastic predictive methods and near optimal policies with the adaptive
stochastic policies there is a need to solve for policies offline in both the the
above methods. Efforts have been made to use AI based methods to solve
constrained based problems [110]. An example has been described in [110]
in which the jet propulsion system of a rocket has been modeled with a set
of states with control actions dealing with the control of various valves and
the stimuli being provided by physical sensors for the controller to gauge the
state of the system. These methods perform online searches on graphs that
describe the system and make changes to the possible actions that can be
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taken in a particular state. In theory these methods have been claimed to
have an optimality analogous to the offline methods discussed in the previous
subsections [111]. Some of the new concepts in this effort are that they allow
for failures of the system which may not have been thought of in the design of
the system. Another difference is that there is no offline solving and the system
is continuously forced towards different goals. The set of states which can be
counted as valid goal states is updated due to the current states and events
occuring in the system. Problems with these methods could be explosion of
the state space and the need of pruning the space to a set of good goal states
,which has been modeled as an AI problem called Reactive Planning which is
an NP Hard problem[110].

3.1.5 Summary

In this section we presented a discussion of the different control methods
that have been tried or could be tried for reconfiguration or adaptation in
embedded systems. According to us a continuous time,stochastic,online and
adaptive method would be an optimal solution to the adaptation control prob-
lem and our future work section will deal more with how we plan to obtain
such poilicies. The next section deals with the methods we have studied and
implemented.These can be classified as continuous time,stochastic,predictive
methods.
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Chapter 4

Stochastic Modeling of Embedded Systems

and CTMDPs for controlling reconfigurable

systems

4.1 Introduction

In this chapter we present a stochastic modeling approach for comparing
arbitration policies while doing arbiter design. By modeling the architecture
as a network of queues, we can observe the average delays experienced by
requests, time spent to service a request, transition rates between different
states, average queue lengths, and get good estimates for worst case delays
and queue lengths. We have applied stochastic modeling to bus arbitration by
mapping the components of the architecture to entities like service providers,
service requesters and service queues [76].

The policies that have been implemented based on (1)time spent by a re-
quest in a buffer (2)number of requests in a buffer and (3)packetisation of the
requests. The model has only one ergodic chain which means, all the states
communicate with each other and there are no absorbing states. The queue
also has finite length and the requests which do not get an empty server at the
time they arrive within the system are lost. Once the components have been
mapped to one of these entities the operation of the architecture is treated as
a Poisson process with interactions between the components modeled as expo-
nential interarrival times with averages maintained constant over large number
of state transitions to maintain stationarity [79]. After every transition the
queue lengths are examined and recorded and so is the time spent by the sys-
tem in that state. By using networks of queues we can split the architecture
into components that can be examined separately as entities independent of
their neighborhood, and thus allowing us to concatenate components into ar-
chitectures, and then estimate the performance of the arbitration policy for
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Figure 4.1: Basic block diagram of a system

that architecture. The metrics over which policies have been judged are power
consumption, delay, loss rate and maximum buffer size. In some scenarios
the control will have to be done at different hierarchy levels so there will be
dependence among the interarrival times and the control will have to commu-
nicate with the control at a higher level. Data is extracted from the simulation
model, and used in a set of LP equations [75] [23] to give stochastic policies
optimised in terms of power vs. time spent in queue and queue length trade
off.

The studied policies are classified as heuristic and stochastic. The stochas-
tic policies can be further classified into deterministic as well as randomised
policies.The simulations have been divided into two stages: 1) applying heuris-
tic policies to a queueing model, and extracting transition rates which are used
in a CTMDP to find optimal policies for arbitration, and 2) using the policy
obtained from the CTMDP on the queueing model and comparing the policies
in terms of performance metrics average and worst case queue length, power
consumption and loss.

We haven’t modeled the delays associated with control signals. The control
signals have been assumed to be instantaneous, but some power consumption
has been attributed to control signals. The simulation times are short even for
medium size systems and small sets of possible topologies for an architecture
specification, but could be long for large systems with large number of possible
topologies as the delay characteristics will change with topology.

In order to check the feasibility of applying such MDP based methods to
arbitration problems we have generated some arbitration policies for a network
processor architecture [16] and compared the performance of the policies. We
verified the behaviour of these methods in non-Markovian environment and
compared them with the classical Markovian environment results. The arbi-
tration policies with mathematical optimality may not be obtainable for some
architectures. The explanation of when such situations can occur is beyond
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the scope of this thesis, and an effort to go around this problem has been
made by adding constraints extracted from the real world system and finding
the best sub optimal policy. Policies with mathematical optimality may be
obtained but may not be suitable to the real world because the policies are
based on models which are incomplete or inaccurrate for example, the model
may use a distribution that does not accurately model the traffic,or does not
catch the possible congestion or starvation in the system.

4.2 System Modeling Simulation Flow

The proposed design methodology is presented in Figure 4.3. Bus architec-
tures are modeled as continuous time queues, as shown in Figure 4.2(b). The
CTMDP models used through the entire flow have only one ergodic chain.
This means that all the states communicate with each other, and there are
no absorbing states. Queues have finite lengths. The requests, which do not
get an empty server at the time they arrive, are lost. The operation of the
architecture is treated as a Poisson process. The interactions between compo-
nents is modeled as exponential interarrival times with averages maintained
constant over large number of state transitions. This is needed for maintaining
stationarity [79].

The first step of the methodology simulates the system queuing model
with an heuristic arbitration policy. Data is extracted from the simulation
model, and used next to compute stochastic policies optimized in terms of
power consumption under maximum queue length constraints. The heuristic
policy looks at the time spent by the request for allowing the clients to serve
it. This policy gives unbiased transition rates between states of the system.
After every transition, the queue lengths are examined and recorded, and so
is the time spent by the system in that state. The traffic has been maintained
at stationary exponential rates. This is necessary for the model to represent a
CTMC (Continuous Time Markov Chain). The transition rates of the CTMC
are extracted from the simulation.

Transition rates are then used to find steady-state probabilities for state-
action pairs, i.e. given the system is in a certain state what action will it select.
Rates are inputs to a set of linear programming (LP) equations [23] [75]. The
LP cost function expresses the power consumption in each transition from one
state to the other. The CTMDP, which is an LP using the transition rates of
a CTMC and constraints on the queue length as inputs, finds the steady-state
probabilities for state-action pairs. Thus, the policy that we talk about is a set
of probabilities associated with choosing certain actions when in a given state.
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Policies are optimal in the sense that they find the transitions that consume
the least power while keeping the queue lengths within fixed constraints.

After obtaining the probabilities for state-action pairs, the randomized
stochastic policy [76] and the KSwitching strategy [24] are simulated. The
constraints to the LP equations are then changed, and a deterministic policy
is obtained. The deterministic policy is then simulated on the queuing model.
Heuristic policies, such as time spent, time + length, and round robin policies,
are then also implemented. The results of the simulation for all (heuristic and
stochastic) policies are collected and plotted. In our experiments, simulations
were carried out in Matlab 6.5 [57]. The queuing models and simulation were
done based on [48] and [54]. The performance metrics over which policies have
been judged are power consumption, data loss rate, average and maximum
buffer size.

After arbitration policy selection, the methodology redistributes the buffer
space to reduce data loss. The selected arbitration policy is simulated on the
queuing model with a constant amount of buffer space allotted to a particular
bus-processor pair. Data loss is recorded. The loss and buffer size used are
utilized as costs in the CTMDP-based redistribution of the buffer space. Then,
the policy is re-simulated on the architecture with customized buffer space
distribution, as shown in Figure 4.3. The results of the data loss as well
as the new distribution are plotted, and compared with other buffer space
distribution policies, like time-out policy.

By using networks of queues, we can split the architecture into components
that can be examined separately as entities independent of their neighborhood.
This allowed us to concatenate components into architectures, and then esti-
mate the performance of the arbitration policy for that architecture. In some
scenarios the control will have to be done at different hierarchy levels. So,
there will be dependence among the interarrival times, and the control will
have to communicate with the control at a higher level.

We haven’t modeled the delays associated with control signals. The control
signals have been assumed to be instantaneous, but some power consumption
has been attributed to them. Simulation times are short even for medium size
systems, but could be long for systems with large number of possible topologies
as delay attributes change with topology.The bus arbitration policies that have
been implemented based on (1) time spent by a request in a buffer, (2) number
of requests in a buffer, and (3) packetization of the requests.
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4.3 Discussion about Policies Implemented

Once the policy has been obtained it is implemented over the queueing
model .The following are the policies which have been implemented:1)Round
Robin,2)Time+Length policy,3) Randomised stochastic policy [76], 4)Deter-
ministic stochastic policy, and 5)K-switching strategy [24]. The policies that
have been compared are by no means an exhaustive set of available arbitration
policies, but we have tried to present a set that would enable us to show a
comparison between the basic flavours of policies available as well as some very
recent stochastic policies, like K-Switching strategy.

4.3.1 Heuristic Policies

Round Robin

The server is accessible in turn by all processors irrespective of how long
their requests have waited in the queue, the queue lengths, or the power con-
sumed by the sequence of transitions followed in the round robin. The draw-
back of the roundrobin policy is that the order of accessing the resource is
fixed and requests have to wait for their turn, thus increasing the time spent
in buffers and the required buffer lengths.

Time+Length Policy

The Time+Length policy looks at the queue lengths in the buffers, and
selects the request waiting at the beginning of the longest queue to be serviced
by the bus. In case there are two or more longest queues then it selects the
request which has waited longest. In case the time spent by the requests is
also the same then it will randomly pick one of them. This policy manages
the queue lengths and the time spent in buffers well, but is blind to aspects
like regulating power consumption and deadlock prevention.

4.3.2 Stochastic Policies

These policies have been obtained through a set of LP equations, which
were given inputs regarding constraints and transition rates by extracting them
from a simulation of the queueing model of the system as shown in Figure 4.3.

The state transition probabilities are extracted and then used to find the
steady state probabilities of the embedded Markov Chains. These probabilities
have been used in the simulation to verify the correctness of the simulation as
well as estimate valid constraints and rewards when the LP is used. The LP
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takes the transition rates and constraints and the reward function as inputs,
and gives a set of probabilities for the state action pairs. These are used by
the arbiter to randomly assign the bus to a processor.

Randomised Stochastic Policy

This is an ideal case and results in an optimal policy [24], and has been used
as a yardstick for the rest of the policies. For the LP to return a randomised
stochastic policy all the constraints for all actions should push the system
toward an optimal solution. In case for a particular state the constraint isn’t
valid, and does not effect the system then the policy will have a deterministic
action associated with that particuar state.

Deterministic Stochastic Policy

In a Deterministic stochastic policy though the approach to device the
policy is to use a CTMDP, the solution provided by the LPs will choose only
one action in every state with probability one. Depending on the constraints
that are given to the LP, the output solution it provides could be, and and is
more likely to be a deterministic policy [68]. These deterministic policies aren’t
optimal and finding an optimal policy among the deterministic policies is an
NP hard problem. The LP gives a deterministic policy when the constraints
imposed on the queue lengths are implicit with in the equality constraints
imposed by the CTMC. In case the constraints further reduce the space, and
aren’t implicit then the policy turns out to be a randomised policy.
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K-Switching Strategy

Another approach is to use a piecewise constant policy, i.e over a certain
period of time it will select only one action in a given state. Though this policy
is deterministic over intervals of time, it has to assign every action in a state
some amount of time. This time interval over which it implements exactly one
action is variable, and depends on the state action pair probabilities which are
obtained from the LP. Theoretically this policy defines a similar semi Markov
chain over the space as the randomised stochastic policy, and thus the rewards
that it will earn will be the same as that of the optimal randomised stochastic
policy[23] [24]. Thus this policy has been proposed instead of the finding
an optimal policy among deterministic policies, which aren’t optimal when
compared to the randomised policy.

4.4 Mathematical Modelling

In case we know the timing characteristics of the service requests it may
be possible to avoid lengthy simulation by using analytical methods to find the
the required buffer sizes and arbitration policies but these would fail to explore
all the possible scenarios and would give only average or worst case scenarios.
Apart from that the numbers produced by the analytical methods can be
compared with the results of the simulation to validate the simulation results.
we ran several simulations to study M/M/1, M/D/1, M/G/1, M/M/1/K,
M/D/1/K and M/G/1/K queues in order to compare their characteristics.
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Some of the results of have been displayed in Appendix II. The infinte buffer
space queues were approximated by finite queues with a buffer size of two
million.

4.4.1 Finite number of Customers

We initially assumed we have a finite number of customers M each with
an arriving parameter of λ. We also have m number of servers with service
parameter µ. The system also has a finite amount of storage room such that
the total number of customers in the system (queueing plus those in service)
is no more than K. We assume M ≤ K ≤ m,i.e customers arriving to find K
customers already in the system are lost [48].

(λ)=arrival rates, (µ)=service rates
M=Number of customers, k= customers in sytem, m=number of servers

λk =

{

λ(M − k) if 0 ≤M ≤ k − 1,
0 otherwise

µk =

{

(µ)k if 0 < k < m,
(µ)m if k > m

Case1: Multiple Servers
There are two cases that have to be considered 1) if number of customers in
queue ≤ number of servers and 2) if number of customers in queue ≥ number
of servers

0 ≤ k ≤ m− 1

pk = p0(
k−1
∏

i=0

)
λ(M − i)

(i+ 1)µ
(4.1)

The probability pk is the probability of there being K customers with in
the system. The model has customers with arrival service rates which also
vary with time but the changes in the arrival rate that have been dealt with
in these experiments are sudden jumps which occur rarely and the rates have
been maintained constant over large stretches of time in case there are multiple
service providers their rates of service could be differ from each other but are
maintained constant throughout the experiment, thus the equation for the
queue being in state K can be written as:

pk = p0(
k−1
∏

i=0

)

∑k−1
i=1 (λM−i+1)
∑i+1

j=1(µj)
(4.2)
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m ≤ k ≤ K

pk = p0(
m−1
∏

i=0

)
λ(M − i)

(i+ 1)µ
(
k−1
∏

i=m

)
λ(M − i)

mµ
(4.3)

as in previous case

pk = p0(
m−1
∏

i=0

)

∑k−1
i=1 (λM−i+1)
∑i+1

j=1(µj)
(
k−1
∏

i=m

)

∑k−1
i=m(λM−i+1)

mµ
(4.4)

Case2: Single Server In case there is just one server the cases reduce to
one case.

pk = p0(
k−1
∏

i=0

)
λ(M − i)

(i+ 1)µ
(4.5)

but the model has customers with different service rates

pk = p0(
k−1
∏

i=0

)

∑k−1
i=1 (λm−i+1)
∑i+1

j=1(µj)
(4.6)

We may calculate the expected number of requests in the system from

N =
M
∑

k=0

kpk (4.7)

The arbitration policies will be looking at the queue lengths and the av-
erage time spent to make decisions. The power consumption could be related
to the time spent by a request in the system. As long as the resource is idle
we could say that it isn’t consuming any power. Thus a greedy policy which
shuts off the service provider as soon as the service is done would be the best
if trying to save power is the only goal.

In many cases the the interarrival times may not be exponential and this
will cause the loss of Markovian property but this problem has been elegantly
dealt with in [75] by using the stage method in which the non-exponential
service requests could be handled by using series or parallel connections of ex-
ponential servers.The method allows analysis of non stationary service requests
as the Markovian property will be preserved in the Erlangian distribution re-
sulting from the combination of exponential servers.The timing characteristics
of the data may be non exponential though [75][74].

4.4.2 Finite Buffer Space

We found that the finite population model does not fit the bus architectures
requirements well. The finite population model requires a finite number of
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customers cycling to the system but in reality there can be any number of
customers but they have to be appearing from a finite number of sources
or in our case processors. So the buses can talk only to a finite number of
processors but the processors can request the bus as much as the input data
or the processing taking place within them would require. To model this we
have used an M/M/1/K queueing model.

It has been assumed that all processors have poisson process for generat-
ing requests. The processors make requests to different buses depending upon
which other processor they must talk to. The poission process is further split
into poision processes of lower rates depending on how many buses the pro-
cessor talks too. From the bus side looking into the queue the bus recieves
requests from various processors. We let the rate at which the bus gets re-
quested be (λ). The following equations for a M/M/1/K system have been
obtained from [48].

λk =

{

λ if k ≤ K,
0 otherwise

µk = µ k = 1, 2, 3.....K

The probability of there being k customers in teh queue is given by pk

pk = p0

k−1
∏

i=0

λ

µ
k ≤ K (4.8)

which is the same as

pk = p0

(

λ

µ

)k

k ≤ K (4.9)

and
pk = 0 k ≥ K (4.10)

On solving for po and pk we get

p0 =
1 − λ/µ

1 − (λ/µ)K + 1
(4.11)

pk =







1−λ/µ

1−(λ/µ)K+1

(

λ
µ

)k
0 ≤ k ≤ K,

0 otherwise
(4.12)

We may calculate the expected number of requests in the system from

N =
K
∑

k=0

kpk (4.13)
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The finite buffer space has been used as a constraint while designing the
control policies with the CTMDP methods. Certain observations which would
be useful for our methodology would be as follows.

• For finite queues the loss rate can be predicted in case the server utiliza-
tion, and service rates are known.

• The waiting time in the queue tends to the product of the average service
time with the buffer size as the server utilization increases.

• The dependence of the loss rate on the service time distribution. For the
same server utilisation level for finite queues the loss rates were found to
be different fordifferent service rate distributions

4.5 Transition from Queueing Model to CT-

MDP based optimisation Problem

The CTMC is defined by a transition rate matrix. The transition rate
matrix is modified to form the transition rate matrix of a CTMDP by incor-
porating the concept of actions. The transitions between any two states could
occur with different rates depending on the the action selected. In our case the
action would be a choice between redundant paths for transmitting data. The
physical significance of this redundant path will be that the data transfer will
have different latency as well as power consumption depending on the path.
The redundant paths are made available to balance the communication load
across the buses in order to have minimal conflict as well as lower bus speed
requirements [99] [100]. The arbitration policies will have to find efficient dis-
tribution of the load among the buses while managing the queue lengths and
power consumed by IP cores. The IP cores will consume power in their steady
state and the data transfer will have different rates. These facts are used in
the CTMDP to assign different rewards to the steady state power consumption
and the different paths.

The transition rate matrix of the CTMDP can be used as an input to
an LP, which find an optimal set of state action probabilities to optimise the
power consumption in the architecture while minimising the queue lengths and
the time spent by requests in the queues. The constraints needed for the LP
can be obtained by simulating an unbiased arbitration policy on the queueing
model and recording the average and worst case queue lengths, the average
and the max time spent by request in the queue. While fixing the constraints
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consideration has been given to concepts important to any arbiter like fairness,
prevention of deadlock and starvation.

4.5.1 Problem Formulation for Bus Arbitration

This section gives a brief yet pertinent explanation of Continuous Time
Markov Decision Processes (CTMDP). An in depth study of Average Re-
ward Constrained Continuous-Time Markov Decision Processes can be found
in [23][24][25]. A Continuous-Time Markov Decision Process is the set

{I,A,A(.),q,K,r} ,

I is a finite state space, A is a finite action set, and A(i) is a set of actions
available at state i ∈ I . q(i,j,a) is a transition rate from state i ∈ I to state j ∈
J, if action a ∈ A(i) is selected. q(i,j,a) ≥ 0 for i 6= j, and

∑

j∈I q(i, j, a) = 0
for all i ∈ I . K = 0,1.... is the number of criteria, rk(i, a) is a reward rate
for criterion k = 0,..,K, if action a is selected in state i.

In the thesis, the concept of state is defined as the processors, which is to
be assigned to buses at a given instant. Every bus is associated with a Markov
Chain. The chain is in state i, if processor i is putting data on that bus. Action
A is to make a choice between a set of redundant paths between the IP cores.
Since paths have different lengths, and data on them suffers different delays,
rates q(i,j,a) also differ. Figure 4.5 shows the CTMCs for the bus architectures
without and with redundant paths shown in Figure 4.4. The differing rates
are chosen with differing probabilities as a consequence of the state-action
pair probabilities generated by the LP. A(i) are the set of available actions in
a particular state. These vary from one to how many ever redundant paths
are available from that state to the set of possible next states. The reward
function, which is maximized by the LP, has one performance quantity over
which optimization is taking place, such as power consumption.

The transition rates when normalized give the state transition probabilities
for the Markov Chain, as if the transition rate is infinite for the CTMDP for a
particular transition occurring due to a particular action. One way of looking
at it is as if the actions are defining sets of Markov Chains on the space. The
state transition probabilities were computed, and then used to find the steady
state probabilities of the embedded Markov Chains. These probabilities have
been used in the simulation to verify the correctness of the simulation, as well
as estimate valid constraints and rewards when the LP is used. The LP takes
the transition rates and constraints, and the reward function as inputs, and
gives a set of probabilities for the state action pairs. Computed probabilities
were then used by the arbiter to assign a bus to a processor. There is an issue
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with the action being the next processor which sort of merges the concept of
action with the concept of next state. Thus, the action may have to be isolated
in a physical sense from the next state, i.e. the action could be redundancy in
paths while making a transition, different sets of priorities or traffic scenarios,
which will define different transition rates on the queuing model. In the thesis
we have used redundant paths among the processors as the actions.

For a system in which multiple processors can simultaneously access mul-
tiple buses, each combination of states in the Markov Chains (MCs) for the
buses could define a state for the overall system. For example in Figure 4.2(a),
a possible state of the system is the set {(P4, B1), (P1, B2)}, where processor
P4 accesses bus B1, and processor P1 communicates using bus B2. The two
pairs are states in the MCs for the two buses. Figure 4.8 shows how the state
is represented. The figures shows at time t processor 1 has possesion of bus
A and bus B. At time t+1 processor 1 looses bus B to processor 3. The state
of the the period from time instant t till time instant t+1 would have been
X(1,a)X(1,b) and at time instant t+1 the state would change to X(1,a)X(3,b).
The number of such processor bus pairs which are needed to define the system
state would be equal to the number of buses. Considering the states of the
overall system would be useful, if the access of certain processors to buses has
to be coordinated, e.g., specific data communications must be synchronized.
However, the thesis does not consider such requirements, and therefore it did
not utilize the state of the overall system for defining CTMDP models. In
addition, this modeling procedure would result in models with a very large
number of states.

Constraints prevent starvation and deadlock, and provide fair allocation of
resources. By applying bounds on the space in which the LP searches for a so-
lution, we can limit the space to regions where it can’t give solutions that cause
starvation. The deadlock occurrence may not be prevented completely by the
constraints and bounds placed on the LP, but it can be reduced. There are
four conditions that have to occur in order to have deadlock in a system [91]:

• Mutual exclusion condition: each shared resource is allocated to exactly
one process at a time.

• Hold and wait condition: processes currently holding resources can ask
for new resources.

• No preemption condition: resources once allocated can’t be forcefully
taken away, they have to be released by the process.

• Circular wait condition: there is a chain of two or more processes, each
waiting for a resource held by the other.
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Figure 4.6: Bus architectures for Examples 1, 2, and 3.

We reduced deadlock by attacking the last condition. This has been done
by exploring the transition rate matrix for possible cycles, where the tran-
sitions are high among processors that share more than one resource. The
cost function was modified, such that these cases are converted to cases where
one resource is favored in one of the states, and the second in the other, thus
reducing the possibility of deadlock.

Different actions are associated with different reward rates rk(i, a), due
to the different rates available to the Markov Chain when a separate action
is chosen. These rewards and the transitions rates with constraints obtained
from the first simulation run are given to a set of equations shown below. The
reward (cost) function is made up of the possible expected rewards that can be
obtained by choosing an action, as well as the rewards that are earned while
in that particular state. Constraints are on the queue lengths that occur while
the buses serve the processors.

Maximize
∑

i∈I

∑

a∈A(i)

ro(i, a)xi,a

Such That

∑

a∈A(j)

q(j, a)xj,a −
∑

i∈I

∑

a∈A(i)

q(i, j, a)xi,a = 0, j ∈ I,

∑

i∈I

∑

a∈A(i)

rk(i, a)xi,a ≥ Ck, k = 1, ..., K,

∑

i∈I

∑

a∈A(i)

xi,a = 1,

xi,a ≥ 0, i ∈ I, a ∈ A(i),

Transition rates meet the constraint q(i,a) = -q(i,i,a) [24] and as shown in
Figure 4.9. The figure shows a processor and how the rates of the continuous
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Figure 4.7: Queuing models for Figure 4.6

time markov process relate to the state transitions. The rate at which the
processor regains control of the bus is used as a measure of the rate of how
long the bus is in possesion of that particular processor. The second relation
which is brough about by the equality constraints of the markov chain is
depicted as the sum of the rates of the bus being provided to all processors
j from processor i is equal to the the rate at which the bus is provided to
processor i from processor i itself. The set of LP equations consist of a reward
function, which has to be maximized, and a set of equality constraints derived
from the steady-state equations of the Markov Chains and a concept called
uniformization. Uniformization is a method to reduce the Continuous Time
Markov Process to a Discrete Time Markov process, which is equivalent to
the continuous time process in terms of the rewards or reward rates associated
with the states [24][25]. There is a set of inequality constraints obtained from
simulations, and bounds on the space that the LP can find a solution in. The
output of the LP is a set of state-action pair probabilities, which are the long
run probabilities of choosing a certain action, if the system is in a given state.
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Figure 4.8: Representation of the system state

Example 1: Given below are the equations for bus B2 of the architecture
with redundant buses between processors shown in Figure 4.6. Its queuing
model is in Figure 4.7.

Maximize
r1,b2x1,b2 + r3,b2x3,b2 + r4,b2x4,b2 (4.14)

Equality constraints are

q1,b2x1,b2 = q1,1,b2x1,b2 + q3,1,b2x3,b2 + q4,1,b2x4,b2 (4.15)

q3,b2x3,b2 = q3,3,b2x3,b2 + q1,3,b2x1,b2 + q4,3,b2x4,b2 (4.16)

q4,b2x4,b2 = q4,4,b2x4,b2 + q1,4,b2x1,b2 + q4,3,b2x4,b2 (4.17)

Another modeling alternative would be to define MC states that also con-
sider the state of queues, e.g., instantaneous queue length. This modeling
would be more accurate, and offer better control over queue attributes, like
maximum queue length. However, the models suffer from an extremely large
state space. The possible states that a queue could take are from zero oc-
cupancy to the maximum possible queue size. This is much larger than the
possible states in the current formulation. The present formulation uses an
average estimate of the queue length. For any FIFO queue, the average length
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Figure 4.9: Relation between the continuous rate quantities

of queues is directly proportional to the rates at which requests fill in the
queue [79]. Queue lengths are inversely proportional to service rates [79], but
all queues will see the same service rate. Hence, the dependence of queue
lengths is solely on the arrival rates.

4.5.2 Randomized and Deterministic Stochastic Poli-
cies

The policy allocates the appropriate bus to a processor as per the state-
action pair probability of that processor needing a bus and getting allotted a
certain bus.

ϕ(a|i) =
q(i, a)xi,a

∑

a∈A(i) q(i, a)xi,a

if
∑

a∈A(i)

q(i, a)xi,a > 0,

otherwise

ϕ(a|i) = I(a = a),where a is an arbitrary element of A(i)
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This set of probabilities is directly used to implement a randomized stochas-
tic arbitration policy, which chooses the buses for processors in a random
fashion. Though random, the probabilities are such that they optimize power
consumption. Since every processor doesn’t talk to every bus, the number of
actions, and the number of possible actions available at every state are differ-
ent. They are defined by the set Ax = a ∈ A(i) : xi,a > 0, for all valid actions
in a state.

In case the action chosen in the above policy is the same each time the
system is in a given state, the resulting policy is called a deterministic stochas-
tic policy. This situation occurs if the constraints do not force the LP to use
the actions with higher cost. For example, the action in a given state with
the maximum reward can be chosen every time without violating any of the
constraints.

Example 2: For a randomized stochastic policy ϕ, the probability of using
bus B2 for traffic from processor 1 is

ϕ(b2|1b2) =

q(1b2, b2)x1b2,b2

q(1b2, b1)x1,b1 + q(1b2, b2)x1b2,b2 + q(1b2, b3)x1b2,b3

The state has been defined with a subscript of b2 to signify that this
equation is for bus B2.

4.5.3 KSwitching Strategy

The alternative policy generation method proposed in [24] is as follows.
The probabilities obtained from the LP are converted to lengths of time over
which the system performs a particular action while in a particular state.
Thus, the processors get allotted buses for periods of time, which depend
upon the state-action pair probabilities. After fixing a certain ordering of the
actions, the policy cycles through the whole set actions. In our methodology,
this means that given a processor has to talk to another, then in case there
are redundant paths available, it uses the redundant paths for time lengths in
proportion with the probabilities given by the LP.

snl(i, x) =
ln(1 − q(i, a(i, l)))xi,a(i,l)
∑n(i,x)

m=l q(i, a(i,m))xi,a(i,m)

(4.18)

sl(i, x) = −
snl(i, x)

q(i, a(i, l))
(4.19)
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ψ(i, t) = a(i, l), ifAx(i) 6= a, and Sl−1(i, x) ≤ t < Sl(i, x)

where a is an arbitrary element ofA(i), ifAx(i) = φ

sl is the time length between two successive epochs, hence Sl(i, x) =
Sl−1(i, x)+sl(i, x). The above equation signifies that between epochs Sl−1(i, x)
and Sl(i, x) the system always chooses action a(i, l) given it is in state i. Hence,
the KSwitching strategy has the same average rewards as the randomized
stochastic policy. The reason for using KSwitching strategy is that LP may
return a deterministic stochastic policy, which isn’t optimal. In case the LP
returns only deterministic policies then it is an NP-hard problem to find an
optimal policy among the deterministic policies. In other words a stationary
optimal policy may not exist for a certain problem. In order to avoid this prob-
lem, we used KSwitching policy, which is a piecewise linear approach towards
solving the problem, and gives us the best sub-optimal policy. [24] offers more
insight into this problem.

Example 3: In Figure 4.7, the length of time that bus B2 is in control
of processor 1 under KSwitching policy is proportional to sl(1b2, b2), which is
given by:

snl(1b2, b2) =
ln(1 − q(1b2, a(1b2, l)))x1b2,a(1b2,l)

∑n(1b2,b2)
m=l q(1b2, a(1b2, m))x1b2,a(1b2,m))

sl(1b2, b2) = −
snl(1b2, b2)

q(1b2, a(1b2, l))

Where l is an index for the epochs. m is an index of all possible actions
available at a state in a certain inter-epoch period. It is necessary to tag
the terms with the discrete index l because the set of actions available at the
state could be different at different epochs. This is due to the derivation of
this policy from Randomized Markov Policy, which depends on the number of
jumps and the current state to decide on which action to select [23] [24].

4.6 Buffer Insertion Method

The optimal buffer sizing problem was formulated in a CTMDP framework
as follows. Similar to CTMDPs for bus arbiter modeling, states are defined
by processors accessing a bus in the system. An action is to give a certain
processor control over the bus. Rates q(i, a) are the request rates of the
processors. Rates q(i, j, a) are the rates of processor i giving up bus a for
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another processor j. Traffic rates q(i,j,a) and q(i,a) were obtained from simu-
lating the system queuing model with time + length policy and equal amount
of buffer space allotted to every processor-bus pair (see the design flow in Fig-
ure 4.3). Future work could improve the estimation of the rates by simulating
the models for other policies also. However, the challenge is to do an edu-
cated guess about the policy, which offers the best predictions. Exhaustively
considering all policies results in very long simulation times. Rewards ro(i, a)
are the average loss rates obtained from simulation. Coefficients rk(i, a) are
the average queue lengths encountered in simulation. Different actions were
associated with different reward rates due to the different rates available to
the Markov Chain when a separate action is chosen. These rewards as well as
the transitions rates were used to set up the CTMDP model shown below.

The buffer insertion problem was formulated as a negative dynamic pro-
gramming problem [25], as rewards are negative quantities. The cost function
has to be maximized The value function or the possible value taken by the cost
function is optimal, if it has the maximum value. (since costs are negative).
we maximized them, had they been positive quantities, we would have mini-
mized the costs. We used LP-based methods for solving the CTMDP. CTMDP
models for buffer insertion involve five kinds of relationships: (1) equality con-
straints, (2) inequality constraints, (3) cost function, (4) lower bounds, and
(5) upper bounds. The constraints in the set of equations physically relate to
the finite buffer space available for a bus. Inequality constraints ensure that
the used buffer space is less than a certain fixed quantity. The arrival rates
used in the simulation were obtained from the core graph in [99]. The service
rates were related to the bus bandwidth. The reward (cost) function is made
up of the expected rewards that are obtained by choosing an action, and the
rewards that are earned while in that particular state. The total reward was
maximized. Constraints are on the queue lengths that occur while the buses
serve the processors.

Maximize
∑

i∈I

∑

a∈A(i)

ro(i, a)xi,a (4.20)

Such That
∑

a∈A(j)

q(j, a)xj,a −
∑

i∈I

∑

a∈A(i)

q(i, j, a)xi,a = 0, j ∈ I, (4.21)

Similar to the modeling in Section III, the CTMDP model has a set of equal-
ity constraints derived from the steady-state equations of the Markov Chains,
and the uniformization concept. Uniformization reduces a Continuous Time
Markov Process to a Discrete Time Markov Process, so that the two are equiv-
alent in terms of the rewards or reward rates associated with the states [24][25].
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Inequality constraints ensure that the used buffer space is less than a certain
fixed quantity.

∑

i∈I

∑

a∈A(i)

rk(i, a)xi,a ≤ Ck, k = 1, ..., K, (4.22)

A set of inequality constraints (as shown below), had been obtained from the
simulations exploration loop, and bounds were placed on the space the LP can
find a solution in. In addition,

∑

i∈I

∑

a∈A(i)

xi,a = 1, (4.23)

xi,a ≥ 0, i ∈ I, a ∈ A(i), (4.24)

Transition rates meet the constraint q(i,a) = - q(i,i,a) [24]. The optimal
distribution of this space, as well as insertion of extra buffer space is obtained
from the solution of this model. The solution is a set of state-action pair
probabilities, which are then translated into physical quantities for the buffer
space. The translation uses the KSwitching policy [24] over which the system
performs a particular action while in a particular state. The KSwitching policy
has been explained in Equations 4.18 and 4.19 of the previous subsection.
Thus, processors get allotted buffer space depending upon the state-action
pair probabilities, i.e. which bus it is talking to. In our system this means
that the buffer space gets divided into a certain ratio in proportion with the
probabilities found from the model solving.

Up to this point, the methodology considered only bus architectures that
handle only communications between processors. However, in Figure 4.10,
Architecture 2 has buses b, f, and g that are connected to each other through
bridges. The communication between processors 2, 3, and 5 involves insertion
of buffers, and requires a controller to take into account the traffic from all
three processors while making arbitration decisions for any of these three buses.
One of the problems with designing such an arbiter is that it requires solving
quadratic equations due to the interaction between two buses. In case the
buses talk to each other through bridges, the equality constraints and the
cost function have quadratic terms. An equation may have more than one
quadratic term.

Example 4: To illustrate what kind of equations exist in case buses talk
to buses, we presented below the equations for bus b in Architecture 1 and Ar-
chitecture 2, as shown in Figure 4.10. The equations for bus b in Architecture
1 are:

Maximize
r2,bx2,b + r3,bx3,b (4.25)
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Figure 4.10: Bus architecture which need splitting

Equality constraints

q2,bx2,b = q2,2,bx2,b + q3,2,bx3,b (4.26)

q3,bx3,b = q3,3,bx3,b + q2,3,bx2,b (4.27)

For bus b in Architecture 2, the equations with quadratic terms are:
Maximize

r2,bx2,b + r3,bx3,b + r5,fx5,fx5,b + r5,fx5,gx5,b (4.28)

Equality constraints

q2,bx2,b = q2,2,bx2,b + q3,2,bx3,b + q5,2,bx5,fx5,b

+q5,2,bx5,gx5,b (4.29)

q3,bx3,b = q3,3,bx3,b + q2,3,bx2,b + q5,3,bx5,fx5,b

+q5,3,bx5,gx5,b (4.30)

q5,bx5,f + q5,bx5,g = q3,5,bx3,b + q2,5,bx2,b

+q5,5,bx5,fx5,b + q5,5,bx5,gx5,b (4.31)

The solution we propose for this problem is to split the bus architecture
into a set of independent linear systems separated from each other by buffers.
The set of equations for each one of the linear modules is solved separately.
The fashion in which the system is split is shown in Figure 4.11. The system
has been split into four subsystems, as shown in Figures 4.12 and 4.13. Each
of the four subsystems has a set of linear equations associated with it. In order
to find the optimum for the entire system, all equations are solved together,
and not sequentially for each subsystem. In Figure 4.12, buses b, f, and g
for subsystem 1 were initially communicating. After the split, bus b becomes
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Figure 4.11: Bus architecture splitting and buffer insertion

a shared resource between buffer b1, buffer b2, and processors 2 and 3, thus
isolating it from buses f and g. Splitting enabled us to write a set of linear
equations for the bus.

Maximize
r2,bx2,b + r3,bx3,b + rb1,bxb1,b + rb4,bxb4,b (4.32)

Equality constraints

q2,bx2,b = q2,2,bx2,b + q3,2,bx3,b + qb1,2,bxb1,b

+qb4,2,bxb4,b (4.33)

q3,bx3,b = q3,3,bx3,b + q2,3,bx2,b + qb1,3,bxb1,b

+qb4,3,bxb4,b (4.34)

qb1,bxb1,b = qb1,b1,bxb1,b + q2,b1,bx2,b + q3,b1,bx3,b

+qb4,b1,bxb4,b (4.35)

qb4,bxb4,b = qb4,b4,bxb4,b + q2,b4,bx2,b + q3,b4,bx3,b

+qb1,b4,bxb1,b (4.36)

This set of equations is for bus b in Figure 4.12. In this set, bus b is a
shared resource between the two processors 2 and 3, as well as buffers b1 and
b4. The state of the system is actually given by a bus-processor pair, but since
we are writing equations only for bus b, we considered only the processor using
bus b as the state of the system. After solving the CTMDP for this system of
equations, the state-action pair probabilities were translated into buffer space
requirements by using the KSwitching policy for a certain processor-bus pair.
Then, the system is simulated with the new buffer lengths, and data losses are
recorded, as shown in Figure 4.3.
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Figure 4.13: Subsystem 2,3, and 4 bus architecture in Figure 4.11

4.7 Preliminary Experiments with Queuing Mod-

els

We have considered the ”Virtex-2 Pro” reconfigurable processor-embedded
FPGA . The ”Virtex-2 Pro” can have upto 4 ”PC 405 Power PCs” communi-
cating with reconfigurable IBM Core Connect bus architecture.The architec-
ture is that of four processors communicating with a bus and each one of them
have buffers into which they write requests these requests are then serviced by
the bus. The target architecture could be presimulated with different arbitra-
tion policies the best of which could be mapped to the reconfigurable ” Virtex
2 Pro” processor-embedded FPGA.
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The bus has an arbiter which looks at the queue lengths and/or time spent
by a request while waiting in a queue to decide which processor should get the
service of the bus. The arbiter has the following policies:

• Policy (A) Queue length: Looks at the number of requests in the queues
and selects the longest queue to be serviced if there are two or more
longest queues of equal length it will select one at random.

• Policy (B) Time spent: Looks at the time spent by a request in the queue
and will give the bus to the request that has waited longest. If there are
two or more requests with equal longest waiting time it will select one
at random.

• Policy (C) Length+Time: Looks at the number of requests in the queues
and selects the longest queue. If there are two longest queues of equal
length then it will look at the time spent by the request in those two
and will allocate bus to the one with longest wait time. If the wait times
turn out to be equal too then it selects at random.

• Policy (D) Packetise: Looks at the number of requests in the queues
and collects requests untill a packet of requests have been formed. This
packet is then served by the bus. The bus arbitration is as in Policy A.

These policies have been implemented on the model with finite population.
The parameters studied and enumerated in Table 4.7 are the average queue
length for the queues (AVGQLEN[i],i = 1..4 is the number of procesors), the
maximum queue length (MAXQLEN[i], i=1...4), the average loss rate for each
queue (AVGLOSS[i],i=1...4), the average power consumed in each policy,the
total number of requests serviced (COUNT) and the time taken to service
them (TOTAL-TIME), which is not in units of physical time but is the time
step used in the simulation. A crude throughput in the form of a ratio of
count over time has also been shown (CNT/TIME). While calculating power
consumption each request has been assigned one unit of power and every time
the bus goes to a different processor the switching power has been assigned
0.1 units of power.

4.7.1 Discussion

The queues for the different processors behave differently due to the arrival
rates associated with the different processors are different this brings about the
need to analyze the behavior of each processor under each policy. A general
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Table 4.1: Comparison of heuristic policies for architecture 1
Parameter Policy A Policy B Policy C Policy D

(1) (2) (3) (4) (5)

AVGQLEN-1 0.1280 1.0924 0.3720 0.1252

AVGQLEN-2 0.0623 0.1512 0.1816 0.0615

AVGQLEN-3 0.0274 0.0440 0.0802 0.0270

AVGQLEN-4 0.1292 0.2137 0.6186 0.1290

MAXQLEN-1 2 7 4 2

MAXQLEN-2 2 5 3 2

MAXQLEN-3 2 2 3 2

MAXQLEN-4 2 1 3 2

AVGLOSS-1 0.0030 0.6361 0.0000 -

AVGLOSS-2 0.0005 0.2423 0.0000 -

AVGLOSS-3 0.0005 0.4369 0.0000 -

AVGLOSS-4 0.0030 0.1509 0.0000 -

POWER 1.2347 2.1442 1.2222 1.2186

COUNT 3310 2107 3332 3333

TOTAL-TIME 467.15 730.96 421.89 492.71

CNT/TIME 7.0900 2.8800 7.9000 6.76

characterization of the policies has been given below the exact behaviour has
been displayed through Table 4.7.

• Policy (A) Queue Length: The policy displays a very good max queue
length .For example in case of the “Virtex 2-Pro” the worst case scenario
is that the queue length is going to 2, so the buffer size could be fixed
at 2 and has a good throughput but suffers from loss of data.

• Policy (B) Time spent: The policy performs worse than other policies in
almost all aspects so we conclude that looking at wait time in arbitration
while trying to use a finite storage, loss system is not good as looking at
the number of waiting requests in a queue for arbitration.

• Policy (C) Time+Length: This policy is best in terms of throughput but
is not very good in case of max queue lengths.

• Policy (D) Packetise: This policy has the smallest power consumption
and moderate throughput. This policy doesn’t have any loss associated
with it as the bus starts servicing only once there are N requests waiting
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in the queues unlike the other policies where requests are continuously
serviced and are lost if they arrive and find the system full.

The Packetise policy has the lowest power consumtion and the lowest loss
rate as the requests are combined into packets and then sent, but this also
results in a large delay in the buffer and the buffer sizes are large too. The
TimeSpent policy on the other hand has a very small queue length but a large
loss rate and the reason for the small queue length is not the eficiency of the
time spent policy but the large loss rate. The Length and the Time + Length
policy can behave in a similar fashion and have average performance in all the
performance metrics.

Thus, depending on which metric is important to the designer he can make
a choice of policy if the policy assigned is static for some of the metrics the
policies could be chosen on the fly depending on the state of the system. The
size of buffers, the idle time of a shared resource and average loss rate of a
system are some of the parameters one could estimate from these simulations.
The bottlenecks in a system could be found out by observing which nodes in
the stochastic model suffer from loss or congestion and a proposed alternative
architecture to remove the bottleneck could be simulated and compared with
the one suffering from loss or congestion. This paper has used only determin-
istic policies for arbitration in future works we shall study randomised policies
for arbitration as well differing approaches to obtain such policies.

4.8 Experiments to Compare Heuristic and Stochas-

tic Policies

All the policies discussed were implemented on the queueing models for
two architectures. Both architectures have implementations with and without
redundant paths between the processors. The experiments have been per-
formed for the bus architectures shown in Figure 4.6 Figure 4.14 and Figure
4.17 The queueing models for the first architecture have been shown in Figure
4.7.The first architecture is a preliminary example which we used to study and
explain the technique, and test it before applying it to a more complex real
world application .The second architecture is an IBM Network Processor with
3 buses a processor and a number of peripherals and controllers which manage
the communication with the outside world as well as in the Network Processor
itself . The architectures for the IBM Network Processor have been obtained
from [99] and [100]. The queueing models were built by using connectivity
information from the architecture and the arrival rates of the requests were
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determined from the core graph [99] of the IBM Network Processor . The
constraints discussed in the previous section deal with queue lengths and the
time spent in the queues. The reward function incorporates the steady state
as well as the transition power consumption. We have compared redundant
and non redundant bus topologies as well as compared heuristic and stochastic
policies. Several sets of results have been displayed in Appendix 1. Concise
versions of the results have been displayed as figures and tables through the
following sections.

The MDP for the network processor had fifteen states and upto four actions
depending on presence of redundancies. The LP solver used was the ”linprog”
command in matlab. It took 7-8 iterations to solve the equations for the
simple architecture and took 22-23 iterations to solve the set of LP equations
the difference in number of iterations of the LP solver was negligible as model.
We make this statement to show the feasibility of real world applications.

The experimental results obtained after simulating the policies on the
queuing model of the architectures consist of the power consumption, the aver-
age and maximum queue lengths encountered and the maximum time spent by
a request in a queue. Confirming our intuition the heuristic policies consume
more power as they are oblivious to the power consumption.The comparison of
the policies has been done over different traffic environments. The experiments
were performed for exponentially distributed arrival times and exponentially
distributed uniformly distributed and deterministic and departure times. Fig-
ure 4.15 is the legend for the policies that have been implemented and studied.
The stochastic policies consume lesser power yet have small queue lengths. In
case the heuristic policies do manage the queue lengths well then the power
consumption in them is very large as in Time + Length policy. The Average
and Maximum queue lengths are lesser in the cases with redundancy than the
ones without. The results closest to intuition were obtained for exponential
arrive and depart times as observed in the exponential distribution. Though
the results for the policies arent as good as the exponential arrive and depart
time case,the cases with Deterministic arrival and departure rates ,exponential
arrivals with deterministic or uniform departures also show improvement with
introduction of redundancy use of stochastic policies, this is due to the expo-
nential arrival rate causing markovian arrival and departure processes as in
Figure 4.16. The behaviour of the heuristic policies is similar in the case with
the redundant paths and without redundant paths as observed in Figures 4.16
and4.18 this is becaues these policies can be seen as a class of deterministic
policies. They see a certain state in terms of the queue lengths or the delays
in the system and react in a deterministic fashion to it.

The stochastic policies did not do well in the deterministic traffic environ-
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Table 4.2: Comparison of policies
ARRIVE TIME DEPART TIME No Redundancies Redundancies
DISTRIBUTION DISTRIBUTION BEST POLICY BEST POLICY

EXP EXP 3 (HEURISTIC) 4 (STOCHASTIC)

EXP UNIF 3 (HEURISTIC) 4 (STOCHASTIC)

EXP DET 3 (HEURISTIC) 4 (STOCHASTIC)

ment especially when there were no redundancies in the architecture as seen
in Figure 4.14. In the case without redundancies the stochastic policies fail
to perform well because in the case without redundancies the all 3 stochastic
policies will reduce to the same policy as there is only one action available at
every state. In the graphs for the non redundant case we see that the ran-
domised stochastic policy as well as the deterministic stochastic policy behave
in a similar fashion whereas in the case with redundancies the randomised
policy does outperfom the the deterministic stochastic policy as it uses the
alternative actions available to it at every state. Though the K-Switching has
large power consumption in the case without redundancies it does manage to
give very good control over the queue lengths.In the case with redundancies
the K-Switching appears to be optimal among the policies discussed and gives
low power consumption with small queue lengths. The deterministic policy
consumes about the same power as the randomised policy but since it chooses
the same action in a state it tends to have a larger maximum queue length.
The K-Switching cycles through every action in a state and if the constraints
are not very conservative, then it may ignore them and greedily give maximum
time to the least power consuming state action pairs. In the case without re-
dundancies the power consumption in the Randomised stochastic policy as well
as the Deterministic policy is high. In Table 4.8 we list the best policies among
the policies we studied for the different traffic scenarios for architectures with
and with out redundancies. Please refer legend for the policy names.

4.8.1 Experiments for Bus Arbitration Policies

The first set of experiments compared the stochastic bus arbitration poli-
cies produced using the proposed methodology with heuristic policies. Stochas-
tic policies were produced to minimize power consumption under maximum
queue length constraints. The reward function used in the stochastic mod-
els incorporated the steady-state power consumption as well as the transi-
tion power consumption. Experimental results were observed for the resulting
power consumption, the average and maximum queue lengths encountered,
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and the maximum loss experienced in a certain policy. Figure 4.15 is the
legend for the arbitration policies that have been implemented and studied.

Comparisons have been done over different traffic environments, including
exponentially distributed arrival times, and exponentially distributed, uni-
formly distributed, and deterministic departure times. Such queues pertain
to the M/G/1/K category [48]. Similar distributions have been considered
by several recent work. [8] uses M/M/1/K queues for modeling interconnect
channels in integrated circuits. These queues are a subset of M/G/1/K queues,
and correspond to exponential arrival and departure times. [76] uses uniform,
exponential, and normal traffic for simulating disk access interarrival times.
Combinations of more than one exponential distributions are used in [75][76]
to capture non-exponential interarrival times.

All bus arbitration policies were implemented on the queuing models for
bus architectures without redundant and with redundant paths between the
processors. The used bus architectures are shown in Figure 4.14, and Fig-
ure 4.17. The two architectures are for an IBM Network Processor with three
buses, a processor, and a number of peripherals and controllers. The two bus
architectures have been obtained from [99] and [100]. The queuing models were
built and simulated by using connectivity information from the architecture.
The arrival rates of the requests were determined from the core graph [99] of
the IBM Network Processor.
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Figure 4.14: Network Processor architecture without redundant paths

Figure 4.16 presents the experimental results obtained for heuristic and
stochastic policies applied to the architecture without redundant paths, and a
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Figure 4.16: Results for Network Processor without redundant paths

buffer length constraint of 160 entries in the buffer. This is a typical size for
a fast set of data registers. Figure 4.18 shows the results for the architecture
with redundant paths and same buffer size constraints. For non-redundant bus
architectures, round robin policy offered the lowest power consumption, but its
data loss was very high. Time + length policy had higher power consumption,
but its data loss was minimal, and maximum queue length was small. Among
heuristic policies, KSwitching policy resulted in the lowest power consumption
and data loss. The maximum queue lengths were similar in all stochastic cases.
For redundant bus architectures, KSwitching policy offered the lowest power
consumption and data loss. Also, the maximum queue length was smaller than
in the other cases. Among heuristic policies, time + length policy offered fairly
good results, including a very small data loss. All policies, but KSwitching,
had a large maximum queue length. Similar results were obtained for buffer
length constraints of 480 and 640 elements.
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Figure 4.17: Network Processor architecture with redundant paths

The results for the different traffic environments have been discussed be-
low. The behavior of the policies was similar in cases of exponential arrivals
with exponential or uniform departures. Hence, the discussion has been split
over two sub-headings, (1) one for the case with exponential arrivals and expo-
nential or uniform departures, and (2) the other for exponential arrivals with
deterministic departures.

• Exponential arrivals and deterministic departures: Stochastic policies
did not do well in the deterministic traffic environment, especially when
there were no redundancies in the architecture, as seen in Figure 4.16.
This is because all three stochastic policies reduce to the same policy, as
there is only one action available at every state.

• Exponential arrivals and exponential or uniform departures: Figure 4.16
shows that for the non-redundant case, the randomized stochastic pol-
icy and the deterministic stochastic policy behave in a similar fashion.
Though the KSwitching policy has large power consumption in the case
without redundancies, it gives very good control over the queue lengths.

In the case with redundancies, the KSwitching policy performs best
among all policies. It gives the lowest power consumption with a small
queue lengths. The KSwitching policy cycles through every action in
a state, and if the constraints are not very conservative, then it may
ignore them, and greedily give maximum time to the least power con-
suming state-action pairs. In the case without redundancies, the power
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Figure 4.18: Results for Network Processor with redundant paths

Table 4.3: Loss at processors under varying total buffer size
PROCESSOR Buf 160 Buf 320 Buf 640

pre post pre post pre post
1 70 83 41 40 48 0
4 80 100 78 55 74 0
15 107 90 99 12 88 0
16 96 82 84 0 93 0

consumption in the randomized stochastic policy and the deterministic
policy is high.

4.8.2 Experiments for Buffer Sizing

These experiments used a network processor [99] as a test architecture
for buffer insertion and buffer space distribution. It provides opportunity to
explore the different scenarios of buses talking to other buses, as well as buses
that talk only to processors, and do not need explicit insertion of buffers. The
architecture has been shown in Figure 4.19. Bridges are connections between
buses, and need buffers to be inserted apart from all buses, which have buffers
to handle the traffic coming in from the processors.
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Table 4.4: Total loss under varying total buffer size
TOTAL BUFFER SPACE TOTAL LOSS

pre post
320 580 207
368 576 161
400 557 47
432 566 2
480 535 0
512 517 0
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Figure 4.19: Network Processor bus architecture with buffers and
bridges inserted

Figure 4.19 shows the Network Processor architecture with buffers inserted
as arrows, and the buffers between buses and bridges as dotted arrows. In
Figure 4.20, we have plotted the loss rates at the processors before and after
the buffer sizing, as the first and second bars of Figure 4.20. We found that
though the loss rates decreased drastically for some processors (such as for
example processor 16), they increased slightly for some processors, e.g., for
example processor 1. However, the overall loss decreased. The third bar in
Figure 4.20 are the loss rates for timeout policy. In this policy, the processors
request is not served, if the data in the buffer times out, i.e. reaches a threshold
time. The threshold time chosen was the average time spent by a request in a
buffer.

We repeated these experiments for ten iterations, and found that though
the loss may increase for some processors, the overall loss of the system de-
creases by about 20% as compared to the constant buffer sizing policy, and
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50% for the timeout policy. We feel the difference before and after resizing
could be improved with better profiling and weighing of the loss at processors,
i.e. allowing some losses to be more important than the others.

Table 4.8.1 presents the variation in the loss rates before and after sizing
the buffers. We have presented the results only for a few processors, which
show significant variation. However, a similar trend was observed for the rest
of the processors. We observed that some processors loss rates may increase
when the buffer space is very limited, as in the 160 units case. In this case,
the redistribution doesn’t provide much improvement. We increased the total
buffer space from 160 units to 320 units, and then to 640 units. The loss rates
after resizing decreased with the increase in buffer space, and was zero for
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buffer space of 640 units.
Table 4.8.2 compares the total loss before and after sizing, while the total

buffer space available was increased. The total loss decreased with and without
sizing, as we increase the total buffer space. The decrease in the case with
sizing according to the KSwitching policy is much sharper, as shown in the
third column of Table 4.8.2. For buffer space values beyond 480 units, the
loss after resizing remained zero, while the total loss before sizing decreased
gradually.

The distribution of the buffer space being our main concern, we observed
the distribution of the buffer space of 160 units among the 16 processors, as
shown in Figure 4.21 (left), as well the distribution of the space among the four
buses in Figure 4.21 (right). We also looked at the buffer space distribution
at each of the buses. The distribution of buffer space for buses 1 and 2 is in
Figure 4.22, and for buses 3 and 4 in Figure 4.23. The distribution of space
among the buses as well as the distribution of space at the individual buses
among processors does not match the ratio of traffic in the simulation model
of the bus architecture. This is due to the connectivity provided by the bus
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architectures modifying the traffic.

4.9 Summary

Using the the stochastic modeling based environment we generated arbitra-
tion policies and compared the policies over several parameters. The stochas-
tic policies could outperform the heuristic policies, and the Randomised policy
and K-Switching policy in particular tend to give better results than the rest
of the policies in terms of power and delay and power vs quelength trade off.
The arbitration policies could give fair and starvation free arbitration due to
the extra bounds on the LP. The MDP based methods can be used to solve
difficult arbitration problems in practical scenarios.
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Chapter 5

Continuous Time Adaptation in Processing

Subsystem

Sensor networks are emerging as a revolutionizing technology for many
important applications in national security, health care, environmental mon-
itoring, infrastructure security, food safety, manufacturing automation and
many more [60, 77]. In fact, the vision is that sensor networks will offer ubiq-
uitous interfacing of the physical environment to centralized databases and
computing facilities [109]. Efficient interfacing has to be provided over long
periods of time and for a variety of environmental conditions, like changing
temperature and weather conditions, variable amounts of energy, presence of
moving objects and so on. In this context, a key problem that ought to be
tackled is that of devising embedded software and hardware architectures that
can effectively operate in continuously changing, hard-to-predict conditions.
In addition, architectures should be cheap and energy sparing - considering
that their batteries are hard to be replaced or replenished.

For moving vehicle tracking, one of the main applications of sensor net-
works, the vehicle’s velocity, trajectory and position defines the required sam-
pling rate, hence the throughput constraint for image processing [109]. Varying
throughput constraints necesitate continuous adaptation of a sensor node’s
architecture, including selection of the supply voltage and clock frequency,
allocation of hardware resources to software tasks and reconfiguration of func-
tional blocks. Architecture adaptation for vehicle tracking is challenging be-
cause static, off-line prediction of a vehicle’s movement is quite inaccurate in
real-life. Even if vehicle movement is predictable with a certain accuracy, the
resulting off-line model is highly non-linear and discontinuous in many points.
Therefore, it is quite inefficient to address this architecture adaptation problem
by typical embedded design methods [21, 46, 76], which consider static, quasi
static or stationary scenarios that are described through fixed, off-line models.
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Figure 5.1: Throughput variation for tracking

As explained in the paper, vehicle tracking requires expression of uncertain
performance requirements, on-line model identification as well as a scheme for
continuous architecture adaptation to varying performance needs.

5.1 Motivation

Sensor nodes operate in environments with continuously changing attributes.
Figure 5.1 presents a fragment of the throughput constraint variation plot that
we experimentally found for a sensor node that tracks one moving object. More
results are presented in Section 5. The throughput requirement of a node is
highly dependent on the trajectory, speed and proximity of the moving object.
Please note that the speed requirements at time moments t1 and t2 are about
10 and 100 times higher than in the steady state - when the tracking activity
is low. In fact, requirement variations are even higher, if several fast moving
vehicles are simultaneously monitored. Other changing attributes include the
amount of energy stored in a sensor node’s battery, the topology of a sensor
network, the temperature of the environment, the air humidity, and so on.

Designing the software and hardware architecture of sensor nodes is es-
sentially different from that of traditional embedded applications due to the
need to accommodate performance requirements that rapidly change in a wide
range. For our example, the architecture should be capable of adjusting in less
than 20 units of time to speed requirements that are about 50 times larger.
Also, most of the time these systems operate in environments that are hard to
predict. In spite of some rough predictions that can be made, in real settings,
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the actual moving of vehicles is hard to anticipate. There are simply to many
factors that influence it, like time of the day, sensor node positioning, road
and weather conditions, and much more. Therefore, it is hard to estimate
the best-average-worst case situation in which the architecture will actually
operate and optimize it for these cases. Finally, the wireless network topology
that these nodes form is ad-hoc and highly dynamic, and thus variable com-
puting and communication loads will be allocated to the individual nodes. In
conclusion, sensor node architectures do not fit the typical embedded system
design paradigm, in which hardware and software are co-optimized for a static
or predictable set of performance constraints [21, 46, 76]. Instead, optimiza-
tion should be conducted on-line - during execution, in response to punctual
performance requirements in an environment hard-to-predict.

An immediate consequence of these differences is that sensor node archi-
tectures should not be optimized off-line using worst-case design approaches.
Reason is that - even for simple cases in which the worst case is predictable, it
would lead to over-design with unfeasibly high costs and energy consumptions.
For example, optimizing the system for the maximum throughput2 in Figure
5.1 would mean that the architecture is not really customized to the applica-
tion for most of the time. Even worse, over-design is further amplified, if the
architecture runs multi-tasking applications for which worse case situations
rarely occur simultaneously. For example, a high throughput requirement for
the face detection algorithm [109] does not imply that data compression and
communication should be fast also. If the moving vehicles are not of interest
then there is few data to be sent to the central server. Besides a much larger
cost, the hardware would also consume more energy due to larger controller
and decoder circuits - even if the unused functional units are shut down. For
sensor nodes, the area constraint is essential as various RF, analog, digital and
memory circuits need to be squeezed within a tiny silicon area. Having more
transistors intuitively represents more energy waste due to leakage currents.
Hence, on-line optimization should continuously minimize the amount of un-
used resources in addition to minimizing energy consumption and meeting
throughput constraints. Minimizing power consumption through minimizing
the amount of unused resources, thus the architecture over-design, is similar
to [35].

The thesis proposes a procedure for modeling continuously changing through-
put requirements and then describes a technique for selecting the optimal set
of design points (DP) that accommodate variable throughput constraints at
the expense of minimum energy consumption. The proposed methods are dis-
cussed in the context of image processing for face (moving object) detection
in sensor networks [109]. In our experiments, each DP represented a certain
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clock frequency and supply voltage of the sensor node processor, even though
the methods support a more general formulation of architecture adaptation,
including hardware reconfiguration or task repartitioning [56]. We explained
that continuously varying throughput constraints can be collectively expressed
using performance bands with linear, quadratic and exponential variation de-
pending on the vehicle movement characteristics, like velocity, trajectory and
position. Then, any actual throughput variation is contained in a band. As-
suming that each throughput variation within a band has the same probability
of occurring, we presented an analytical procedure for selecting the optimal
set of DP for different kinds of performance bands. Energy consumption is
modeled using a metric called over-design factor similar to Henkel [35]. Ex-
periments study the effectiveness of performance modeling and DP selection
procedures.

On-line optimization methods, including on-line software optimization and
run-time hardware reconfiguration [33, 56, 113], fall into two categories: (1)
methods that select on-line from a set of optimal alternatives computed off-
line [50, 56, 85, 86, 116] and (2) methods that conduct on-line optimization
[4, 73] , e.g., Dynamo - a software optimization method proposed by Bala et
al [4]. The proposed DP selection technique pertains to the first category,
and is original in that it focuses on design for continuously changing, hard-to-
predict performance constraints. Existing work on dynamic partitioning for
reconfigurable hardware suggests dynamic selection from a set of binary or
source code that is sent to the hardware modules [85, 86]. However, this work
does not explain how the set of alternative binary code should be decided.
Other approaches are for reducing energy consumption by dynamic resource
allocation [64, 46]. They predetermine the hardware configurations for certain
static design requirements, and then search among them by using heuristics
to improve energy consumption. Finally, voltage scheduling reduces power
consumption by dynamically selecting the processor supply voltage from a
predefined set [3, 116]. The main contributions of this paper are in proposing
a procedure for modeling continuously varying throughput requirements as
well as an analytical method for computing the optimal set of design points
for dynamic performance constraints.

As in the case of the communication subsystem the processing subsystem
also needs continuous adaptation in presence of varying QoS requirements and
available processing resources. The state of the processing subsystem could
be defined as the amount of active resources that are being used for compu-
tation at a given instant of time. An example of a system that uses differing
numbers of architectural resources has been discussed in [107] and [108]. In
this effort the available hardware resources have been made available in terms
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of the number of processing elements of various types as well the HW/SW
partitioning of that set of processing elements. The application in consider-
ation was a face recognition sensor. The hardware resources have increasing
levels of processing element numbers in Table 5.1 and these configurations
when used can provide satisfaction to certain timing constraints. We have
used a part of the table in [108]. In case a timing constraint is not satisfied
then a configuration with higher number of processing elements could be used.
As the processing elements have been shared across the tasks allowing high
utilisation of the elements in parallel to complete a task faster. Thus the con-
figurations with higher resources would be able to satisfy much tighter timing
constraints. The various timing constraints that could be satisfied by certain
processing subsystem architecure have been listed in Table 5.1.

Table 5.1: Possible resource configurations [108]
Resource sets Adders Multipliers NAND Gates

Set 1 128 128 512
Set 2 512 128 512
Set 3 128 512 512
Set 4 512 512 512
Set 5 1024 1024 512

The states and transitions of the models for the architectural reconfigura-
tion have been shown in 5.2 . The Markov Chain shows that each state can
transition to every other state. The reason all such transitions are available
to the system is that though most of the time the transitions will be like a
birth death process only to the neighbhouring state sometimes changes may be
sudden and drastic requiring transitions to states which are very different from
the current state. An example of when such drastic changes could be needed
is if the QoS is user controlled like in present day video streaming applications
where there is a choice of video quality (low,medium,high).

5.2 Problem Description

Figure 5.3 shows a simplified presentation of the sensor node architecture.
The node tracks the environment using a camera. The predictor block con-
ducts on-line estimation of the performance requirements for the architecture
(in our case system throughput). Based on dynamic prediction, the controller
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Table 5.2: Constraint Satisfaction and Reconfiguration conditions
[108]

Tasks Set 1 Set 2 Set 3 Set 4 Set 5
Cr <588 <425 <365 < 365 < 192

Crth <440 151-513 61-151 32-61 <32
Cb <320 320-365 365-425 192-365 <192

Cbth <440 440-513 61-151 32-61 <32
Gmean <155 155-180 41-52 52-78 <52
Gfmean <17 <20 <17 <21 <22

Cov <301,500 <218,000 <255,590 <24,518 65,536
Sum <245,000 <218,000 <255,590 255,590- 311,296-

311,296 327,680
Th <147 <170 <50 <61 <32
Pick <282,600 282,600- 282,600- 326,860- 373,555-

326,860 326,860 373,555 393,216

Set 1

Set 5 Set 4

Set 3

Set 2

Figure 5.2: State transition diagram for the Processing Subsystem
adaptation
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Figure 5.3: Sensor node architecture

circuit decides the voltages and frequencies of the hardware resources, includ-
ing general-purpose processors, executing each task. Processing results are
then communicated to other sensor nodes or to the base stations using a net-
working module followed by a transceiver block.

In this paper, architecture adaptation to dynamic throughput requirements
is achieved through modifying the supply voltage and clock frequency of the
processors. Voltages vi and frequencies fj pertain to a set of discrete values
V = {V1, V2, ..., Vk} and F = {f1, f2, ..., fm} respectively fixed for a certain
processor [39]. For ASIC, in general, the cardinality of set V is decided by the
specific fabrication process as well as the amount of silicon area that is assigned
for voltage regulators, level shifters etc. For SoC with multiple voltage islands
[38], set V includes all distinct voltage values of the islands. Similarly, the
cardinality of set F depends on the complexity of the clocking circuitry, like
PLLs, frequency dividers, and so on. In reality, the cardinality of the discrete
sets V and F is not too large given the constraints imposed by the electronic
circuits used to realize the two sets.

The product DPS = V × F defines the discrete space of design points
(DP) that can be obtained for a certain sensor node architecture. Intuitively,
the pair (vmin, fmin) defines the architecture with least processing speed ca-
pability, and the pair (vmax, fmax) corresponds to the DP with highest com-
puting speed. In fact, the set DPS can be pruned by eliminating the Pareto
dominated points, however, this does not change the essence of the presented
architecture adaptation methodology. In addition, one could consider a more
general definition of the set DPS, including dynamically reconfigurable archi-
tectures, reconfigurable processors, on-line software optimization, and so on.
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Figure 5.4: Throughput constraint variations

The proposed methodology is applicable to the more general definition of set
DPS too.

Problem Definition. To simplify the reasoning, we considered that only
Pareto optimal design points (DP) are present in the set DPS describing an
adaptable architecture. The architecture iteratively executes the same func-
tionality under throughput requirements that change dynamically. The ar-
chitecture adaptation scheme assumes that the current DP ought to be used
at least for the next iteration, and can be replaced only at the end of an
iteration. Then, for a given maximum limit LIM on how many of DP can
be selected from the set DPS (e.g., due to extra electronics required or the
memory space needed to store reconfiguration data or binary code alterna-
tives), the problem is to determine the subset DPS ′ ⊂ DPS with cardinality
Card(DPS ′) ≤ LIM , such that (a) the varying throughput requirements are
always satisfied and the (b) the total over-design factor of the architecture
over the entire execution period is minimized. The over-design factor (defined
in Section 4) expresses power consumption reduction similar to [35].

5.3 Experiments

Experiments studied the (A) modeling power of performance band mod-
eling and (B) over-design factor reduction through design point selection.
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A. Throughput constraint variation modeling. We first studied the depen-
dency of throughput variation modeling on the time window length used by
the performance requirements predictor block in Figure 5.3. The predictor
block performs model identification at the end of each time window to identify
the kind of performance bands that should be used. Such an experiment is im-
portant not only for understanding the modeling power of performance bands
but also for identifying the processing and memory needs for the predictor
block.

The throughput constraint curves measured in experiments have been ap-
proximated by three different functions over a selection of different time win-
dow lengths. The measured throughput requirement (equal to the image sam-
pling speed) has been shown in Figure 5.4. As explained in Section 4, the
three functions used are (1) linear, (2) quadratic and (3) exponential. The
window length was kept constant over each approximation run, and a curve of
the above mentioned three types was selected to approximate the throughput
requirement curve over the time window length. The selection for the function
was done by minimizing the mean square error between the approximation
and the actual throughput constraint curve.

The approximations show some dependency on the time window length.
The different window lengths caused a selection of different approximation
functions over the same region, as the mean square error seen by the window
over a certain region will be different as the window size changes - hence result-
ing in selection of different approximation functions. Smaller window sizes led
to usage of linear segments (thus linear performance bands) in a predominant
manner, as shown in Figure 5.5. In the larger window lengths, the fast sam-
pling speed variation suited the exponential and the quadratic performance
bands. The exponential functions were used to map in regions where the rate
of variation in the sampling speed was very steep as seen in Figure 5.6. The
quadratic performance bands were useful to approximate regions where the
curvature was large even though the rate of variation in the sampling speed
curve was not much. For very large windows the approximations did not look
like the actual sampling requirements, as seen in Figure 5.7.

The values of the linear performance band coefficients (amin, amax, bmin,
bmax, cmin and cmax), which define the performance variation curves have been
listed in Table 5.3. The variance of the coefficients was found to increase in
general with the number of windows used or with decreasing of the window
lengths. In some cases, the approximations with quadratic or exponential
functions were not very feasible and the solvers provided solutions, which
were close to step functions as the intercept coefficients in the approximation
curve were predominant and the coefficients of the higher powers of t or the
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Table 5.3: Coefficients for the linear (lin), quadratic (quad) and ex-
ponential (exp) performance bands

Type Win amax amin bmax bmin cmax cmin

lin 40 0.2360 0.0006 13.9799 0 - -
exp 40 0.1761 0.0004 14.1561 0.0031 - -
quad 40 0.0172 0 0.5620 0.0002 13.9799 0
lin 50 0.2081 0.0010 13.9799 0 - -
exp 50 0.0706 0.0003 14.0505 0.0032 - -
quad 50 0.0131 0.0000 0.5003 0.0002 13.9799 0
lin 80 0.1498 0.0011 13.9799 0 - -
exp 80 0.0040 0.0000 13.9840 0.0001 - -
quad 80 0.0059 0.0000 0.3222 0.0003 13.9799 0
lin 100 0.1265 0.0028 13.9799 0 - -
exp 100 0.0006 0.0000 13.9805 0.0000 - -
quad 100 0.0042 0.0000 0.2911 0.0009 13.9799 0
lin 200 0.0691 0.0040 13.9799 0 - -
exp 200 0.0000 0.0000 13.9799 0.0000 - -
quad 200 0.0013 0.0000 0.1829 0.0051 13.9799 0

exponential of t were small.
B. Design point selection. The second set of experiments observed the

over-design factor (ODF) reduction through DP selection. The obtained per-
formance bands were used to approximate the throughput requirements and
calculate the optimal set of DP, as shown in Section 4. For the design points
there were ODF, which had to be calculated in order to show the over-design
in the system over a particular time window. In the first row (FleDP) of Table
5.4, we showed the characteristics of the ODFs calculated for the optimal DP
sets selected by our methodology to find the DP with the minimum ODF. In
current practical scenarios, the possible DPs are fixed [39], and are not ob-
tained based on an application, as in our case. The second row (FixDP) in
Table 5.4 gives statistics for such fixed design points.

Figures 5.8 and 5.9 show the possible design points for time window lengths
of 40 and 80 seconds as calculated by our methodology. Figures 5.10 and 5.11
present the selected design points for the case where the total set of design
points is fixed. For the case with fixed design points, we looked at a fixed
number of design points in each window, where as for the optimal design point
extraction method we stored a variable number of design points depending on
how fast the sampling speed was varying in that particular window. Table 5.4
indicates the difference between the ODFs for a window length of 80 as shown
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Figure 5.5: Throughput constraint variation modeling for small time
windows

in figures 5.11 and 5.9.
The design points are defined in terms of the operating frequency of the

processor. We have used a face detection algorithm [109] as our application
executed on two IBM PowerPC 750 FX processors [39]. The reason we are
using two processors is that each one of the processors could be used for a
dedicated task, and thus we would have more control over the power saving
ability of each processor. The face detection algorithm was split into two main
tasks (1) Skin Feature Extraction and (2) Face Template Matching [109], which
are carried out in a pipelined fashion. The IBM PowerPC has the ability to

Table 5.4: ODF for time window length =80
DP1 DP2 DP3 DP4 DP5 DP6 DP7

FleDP 0.2153 0.0069 0.0040 0.0291 0.0315 0.0110 0.0114
FixDP 0.5818 0.0229 0.0317 0.5964 2.1450 0.6121 0.5818
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Figure 5.6: Throughput constraint variation modeling for large time
windows

work at variable voltage and frequency levels [39]. The DPs in our experiments
for the fixed design points case vary as 8 discrete levels ranging from fmax to
fmax

16
. fmax is the maximum operating speed, which is needed to handle the

worst case timing constraints. The worst case timing constraints occurs at the
maximum sampling speed required. As seen from Figure 5.4, this is close to
16 samples per second, which means that 16 iterations of the face detection
algorithm would have to be run in one second.

Using the instruction set of the PowerPC and the software specification
of the application, we found the total number of clock cycles, which would be
required for each iteration of the face detection algorithm. We found fmax to
be 65 MHz. At situations other than the worst case the PowerPCs shall run
at a fraction of this fmax, thus benefiting from the relative power saving at
the lower frequencies [39]. The two separate tasks have different computation
requirements, and the two processors will work at different fractions of their
maximum frequency.
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Figure 5.8: DP selection for small time windows and flexible DP set
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Figure 5.9: DP selection for large time windows and flexible DP set

Table 5.5: ODF for varying Window Lengths
Window fixed DP set flexible DP set
length avg max min avg max min

40 0.1532 1.0684 0.0100 0.0351 0.0568 0.0013
50 0.1810 1.3861 0.0273 0.0442 0.0729 0.0058
80 0.3380 2.4614 0.0347 0.0848 0.1299 0.0023
100 0.4526 3.1869 0.0589 0.1289 0.2058 0.0116
200 1.1587 6.7278 0.0729 0.3484 0.5297 0.1766

In Table 5.5 we listed the characteristics of ODF values for the design
points closest to the curves. We saw that ODFs were larger for the fixed
set of design points case as compared to the flexible set of design point case.
In the flexible design points case the design points were brought closer to
optimal, i.e. having a smaller over design factor. ODFs increase with the
window lengths as the approximations get less accurate as the window length
increases. The average values of the ODFs were used to approximate the
relative power savings between the fixed set of design points and the flexible
design points cases. These ODFs correspond to the excess resources being
utilized. In our case, the over-design corresponds to the system operating at
a frequency greater than that required by the current processing load. The
lower frequencies allow usage of lower voltage levels thus allowing further power
saving [39] The frequencies range from fmax to fmax

16
and the supply voltage

levels vary from Vdd to 75% of Vdd. At frequency fmax only the use of supply
voltage Vdd is permitted, but at lower frequencies, like fmax

2
and fmax

4
, one

can use 87.5 % of supply voltage Vdd and can go still lower to 75% of Vdd for
frequencies like fmax

8
and fmax

16
. By doing this we can achieve more than linear

saving in power while we reduce the frequency.
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Figure 5.10: DP selection for small time windows and fixed DP set
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Experiments show that having smaller time window length reduces ODF
significantly. For example, for a fixed DP set, decreasing the window length
from 200 seconds to 40 seconds reduced ODF by more than six times. The
ODF reduction is about ten times for flexible DP selection. This explains that
architecture adaptation is very beneficial especially for situations in which
node processors execute cumbersome algorithms, e.g., image processing. ODF
is about four times smaller for a flexible DP set compared to a fixed DP set.
This motivates that it is beneficial to select first an optimal set of DP points,
which is then used to design a customized image processor for that set of
supply voltages. Energy consumption can be up to one order of magnitude
smaller as compared to using a general-purpose processor with a pre-defined
set of supply voltages.

5.4 Conclusion

The chapter dealt with furthering the modeling of the processing subsys-
tems performance. The variation in the requirements of the processing subsys-
tem. Although the section promotes with modeling the analytical functions
which approximate the real performance curve over small windows the model-
ing technique was found to be somewhat cumbersome. The part of the mod-
eling scheme which deals with discretizing the performance space and defining
design points however was found to be useful in the next step of the research
effort. The concepts of over design factors and optimal window lengths have
been carried foward however characterising the performance requirements with
analytical functions wasn’t pursued further. The modeling with queues and
random processes was used in the subsequent efforts.
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Chapter 6

Energy Conscious Online Architecture

Adaptation for Varying Latency Constraints

in Sensor Network Applications

6.1 Introduction

Sensor network applications face continuously changing environments, which
impose varying processing loads on the sensor node. This paper presents an
online control method which adapts the architecture to minimize energy con-
sumption while satisfying varying latency constraints. The method predicts
processing load requirements over a finite time window and accordingly adapts
the architecture. The behaviour of the hardware modules over time has been
approximated with a Continuous Time Markov Process. Adaptive image pro-
cessing for vehicle tracking was used as a case study for this approach. Sensor
networks are emerging as a main technology for many applications in national
security, health care, environmental monitoring, infrastructure security, food
safety, manufacturing automation and many more [60] [77]. In fact, the vision
is that sensor networks will offer ubiquitous interfacing between the physical
environment and centralized databases and computing facilities [109]. Efficient
interfacing has to be provided over long periods of time and for a variety of
environment conditions, like moving objects, temperature, weather, available
energy resources and so on. In this context, a key problem that ought to
be tackled is that of devising embedded software and hardware architectures
that can effectively operate in continuously changing, hard-to-predict condi-
tions. In addition, architectures should be cheap and consume tiny amounts
of energy - considering that their batteries are hard to replac or replenish.

For moving vehicle tracking, one of the main applications of sensor net-
works, the vehicle’s velocity, trajectory and position defines the required sam-
pling rate, hence the latency requirement for image processing [109]. In this
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case, architecture adaptation is challenging because static, off-line prediction of
a vehicle’s movement is quite inaccurate in real-life. Even if vehicle movement
is predictable, the resulting off-line model is highly non-linear and discontinu-
ous in many points. Therefor, it is quite inefficient to address this architecture
adaptation problem by using typical embedded design methods [6] [21] [46]
[76]. These consider static, quasi static or stationary scenarios, which all can
be described through fixed, off-line models. As explained in the paper, vehicle
tracking requires on-line model identification as well as continuous architecture
adaptation to varying performance needs.

This paper presents a novel approach for online customization of embed-
ded architectures that function in non-stationary environments. The crux of
the approach is a synthesis technique for developing online controllers that
adapt the data-path of an architecture to varying latency constraints while
minimizing energy consumption. The approach includes three steps: (i) look
ahead on performance parameters (like image sampling rate and system la-
tency) by buffering input data coming in a given time window, (ii) dynamic
processing requirements prediction using a linear estimator activated at the
end of every window period, and (iii) on-line architecture adaptation. Since
our design is for a non-stationary environments, the control policy varies with
the environment but is stationary within a time window. Adaptive control
policy design is based on expressing the operation over time of the data-path
blocks as Continuous Time Markov Process (CTMP). A set of linear equations
is set-up to reflect block utilization rates, buffer space constraints, and total
energy consumption. Obtained utilization rates affect the adaptation thresh-
olds of control policies. For systems with high utilization we could achieve
upto 29% lesser power compared to greedy policy.

The proposed architecture adaptation method is different from other dy-
namic adaptation techniques including on-line software optimization and run-
time hardware reconfiguration [33] [56] [113]. For example, dynamic partition-
ing for reconfigurable hardware selects the regions of the binary or source code
to be sent to hardware modules [85] [86]. Other approaches are for reducing
energy consumption by dynamic resource allocation [46] [64]. They predeter-
mine the hardware configurations for certain static design requirements, and
then search among them by using heuristics to improve energy consumption.
We view the problem in a slightly different manner and feel there is a need to
have a quick though sub-optimal control methodology for systems functioning
in drastically varying dynamic environments, in which, optimal static policies
do not exist, or exist only in the case in which under utilization of powered
up hardware resources is ignored. In the latter case, the system suffers drastic
overdesign to meet performance constraints under all possible load conditions.
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Figure 6.1: Trajectories and Sampling speeds

The paper is organized as follows. Section 2 presents a motivating example
and Section 3 defines the adaptive control problem. Section 4 details the
mathematical modeling of the system and of the control policy. Section 5 is a
discussion of results followed by conclusions in Section 6.

6.2 Motivating Example

In order to strengthen our case for the presence of highly varying process
load environments, we present an example in which we show a relatively simple
moving objects tracking scenario. We considered a camera based sensor [109],
which is tracking a moving object, such as a person or vehicle. The tracking
granularity requirement demands one image sample per meter of distance trav-
eled by the object, in order to have a trace of the object’s trajectory accurate
to within one meter distance of the object’s actual location at all times. If the
object is traveling at a speed of 20 m/s this sampling speed would translate
to having 20 samples/s for the camera.
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Obviously, varying velocity of the object would require variation in the
sampling speed, but the distance of the object from the sensor as well as the
angle at which the object is traveling with respect to the focal plane could cause
additional variation in the sampling speed requirements, as shown in Figure
6.1. In Figure 6.1(a), though trajectories are straight, the velocity component
tangential to the camera’s focal plane is varying, but varying smoothly. The
sampling speed requirement changes faster for the trajectories nearer to the
sensor, as observed in Figure 6.1(b). It may be possible in this case to create
estimation models for the sampling rate, but this is a simple and non realistic
scenario as compared to the one in Figure 6.1(c). Sampling rates in Figure
6.1(c) do not follow a smooth variation, and include points of discontinuity
due to sudden changes in the vehicle’s movement, like stopping, changes in
direction, acceleration, and so on.

Through the mentioned example, we identified following attributes for
sampling speed (thus also system latency) variation during vehicle tracking:

• Sampling speed and latency constraints are constantly changing with-
out following any particular mathematical law. Performance variations
might include several peak and bottom points and different convexities,
concavities and discontinuities.

• Performance requirement magnitudes pertain to broad ranges of values.
For example, the latency requirement for a busy sampling period can be
10× or even 100× higher than the sampling need for idle times.

• Performance variation gradients are in a wide range. Figure 6.1(a) shows
that some variations are quite mild whereas others are very steep.

For this type of applications, it is difficult to formulate a static mathe-
matical model that estimates performance needs without resulting in gross
mispredictions. Such a ”hypothetical” model would be highly nonlinear, dis-
continuous and partially defined. Most of the existing embedded design meth-
ods [21] [46] cannot be used in this case, as they need well defined, static
description of performance constraints. It is intuitively understood that stat-
ically calculated optimizations are of little relevance in cases not covered by
the estimation models. Stationary optimal control policies are quite unsuit-
able [24] because of discontinuities that are difficult to be handled by ordinary
differential calculus. Hence, due to the discontinuous nature of the perfor-
mance curves, these systems fit better into the framework of discrete events
[7][54]. We modeled the system dynamics with discrete events formulated over
a fixed window of time used to sample the future performance requirements
of the system. As it is also difficult to predict the possible changes in process-
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Figure 6.2: Architecture for proposed methodology

ing load, a finite look ahead on this processing parameter is the best way of
learning future processing loads.

6.3 Problem Description

Problem Definition: For a given hardware architecture, device an adaptive,
on-line control policy for each hardware resource such that (a) fixed buffer
space and (b) varying latency constraints are met and (c) energy consumption
is minimized.

To address the specifics of moving vehicle tracking problems, we propose
a processing approach based on following three defining points:

1. There is a look ahead on performance parameters like sampling rate and
latency.

2. Based on the look ahead there is a dynamic processing requirement pre-
diction.

3. Online architectural adaptation takes place to reduce energy consump-
tion and meet buffer space and varying latency constraints.

Look ahead and dynamic performance prediction is conducted within a fixed
time window over which the data collected is to be processed.

Figure 6.2 presents the architecture that we used for implementing dy-
namic adaptation. During look ahead for the next window, the incoming data
is buffered. The controller uses the inputs from the sampling rate look ahead
to update its control policy. The controller makes changes to the pool of
hardware with the updated policy after each window.
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The time window length (WL)is a design parameter, and will have to be
decided by the designer based on empirical data obtained from simulations
of the particular application. Intuitvely, large time windows allow superior
prediction but lengthen the adaptive response time and need more storage
space. We ran several experiments to view the possible trends in the processing
load variation as well as looked at the application’s specification to gauge what
window size would serve us. Although smaller window sizes would track the
variations in requirements better, we have a lower limit to the window length.
Specifically, we selected the limit to be the time required to process one sample
if all resources of each type were used.

We defined data load (DL) as the data amount in terms of number of
samples, which must be procesed in a time window. In the tracking example
this amount of data may vary, depending on the rate the object moves. If DL
is high then the number of hardware resources turned on is larger in order to
meet the tighter timing constraint. There is an upper limit to DL based on
the the hardware processing blocks and memory space being made available
for it by an architecture.

6.4 Mathematical Modeling

We characterized the dynamics of the system architecture in the follow-
ing manner. The state of the sytem is defined in terms of the resources that
it is made up of. For example, a system with L, M and N number of re-
sources of types R1, R2 and R3 would have a state space vector S of the form
S = {R1

1, R
1
2...R

1
L, R2

1, R
2
2...R

2
M , R3, R3

2...R
3
N}. Hence, if there are 10 elements for

each of three types of resources, which are, ALUs, shifters and multipliers, the
possible values that could be taken by each element of the state space is a
cost which depends on the status of that element. In addition, each resource
type Ri can be in one of its Z different modes. Resource modes depend on
the processing activity of a resource and its present power mode status. Ev-
ery element of each resource type has following four modes: (1) powered up
and processing, (2) powered up and idle, (3) powered down, and (4) powered
down and being requested. Please note that there are only two control actions
asociated with each element, power up and power down. The obtained control
policy is used to implement the controller block in Figure 6.2.

We encountered two major decision making steps while doing the mathe-
matical modeling of this problem. The first being what mathematical frame-
work would best model the variation of the system state over time, and the
second being what control policy could quickly adapt with the system. The
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traditional methods [6] [46] [76] have been designed for static or stationary
environments where there isn’t a need for adaptation in the control policies.
These issues were presented next.

A. System state variation modeling. As motivated in Section 2, we decided
to express the system state variation using difference equations. The difference
equation that characterises the system is given by

Sk+1 = f{Sk, Uk, Ek} (6.1)

which states that the next state is a function of the current state, the
control vector Uk and certain look ahead Ek. The control vector Uk is a set
of control actions that were taken at the kth time instant. The sampling
rate variation has been obtained by monitoring the incoming data rate, which
works at the granularity of the window length. The effect of this look ahead
is modeled by the term Ek.

Buffering data over the time window allows the control method to obtain
knowledge of the latency requirements of the system for the window period,
hence it can incorporate this knowledge into the decisons it makes.

B. Control policy. The controller implements the following control pol-
icy, which consists of certain state transitions under certain conditions. The
decisions taken in the control policy are which hardware elements and how
many of them to turn on or turn off. The control policy scales in the following
manner for all types of elements, though the actual policy for each will differ
in numbers.

U(w) =











NT
4 , NT

2 , NT
3 −→ N1 if SRw < SRw+1,

NT
2 −→ N3 and NT

4 −→ N1 if SRw = SRw+1,

NT
2 , NT

4 , NT
1 −→ N3 if SRw > SRw+1,

(6.2)

SRw and SRw+1 are the sampling requirements of the current window and the
next window respectively. SRMAX is the maximum sampling speed the system
can tackle. Beyond this sampling speed there will not be enough hardware
resources to speed up the processing. The number of elements that make the
transition from current state i are given by NT

i . Nj is the number of devices
that need to be in next state j during next time window. The elements that
transit to state j follow the priority with which they are listed. THe policy
has been formulated in the following manner for the first case of the control
policy shown above.

if SRw > SRw+1,

N1 =

{

∑

u∈Uw
λ1,u N(1 + ∆SRw) if SRw+1 < SRMAX ,

N otherwise,
(6.3)
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NT
2 =

{

N2 if N1 ≥ N2

N1 − N2 otherwise
(6.4)

NT
4 =











0 if N1 < N2

N4 if N1 − NT
2 ≥ N4

N1 − N2 − N4 if N1 − NT
2 < N4

(6.5)

NT
3 =











0 if N1 − N2 < N4

N3 if N1 − NT
2 − NT

4 ≥ N3

N1 − N2 − N4 − N3 if N1 − NT
2 − NT

4 < N3

(6.6)

Equations (3)-(6) basically state the optimal control policy according to which
any element, which is idle and powered up should be either shut down or put
to use depending on the next windows latency requirements. The prediction
of the powered up elements in the next state N1 was done by taking into
consideration the change in sampling rate ∆SR = SRw−SRw+1

SRw
, as well as the

likelihood λ of an hardware element being in state ”1” (power up and process-
ing) which we have approximated by the steady state probability of an element
being in state ”1” α1 =

∑

u∈Uw
α1,u. Linear equations (7)-(11) are solved to

find the steady state probabilitiesαi,u. Likelihood captures the global influence
of a certain hardware resource on system performance, thus it jointly reflects
the criticality of the block with respect to timing, buffer size needs and energy
consumption, as well as the amount of resources of that kind in an architecture.

The policy states that if any element is powered down and being requested
it should be turned on or shut down again depending on sampling rates. The
power down or power up has to be done from different states depending on
the severity of the gradient. Thus, elements in state ”4” should move to state
”1” first, then if N1 is not satisfied, elements from state ”2” should make
transitions, and so on. This is a set of constraints for the elements of type R1

which are N1 in number. Similar constraints exist for the other elements and
for the two other cases of the control policy.

C. Finding the likelihood factors. Finding the precise likelihood value of
a resource is an NP-complete problem, as it requires finding the optimal ar-
chitecture for given constraints. Instead, we approximated likelihood with the
steady state probability of a single hardware element modeled as Continuous
Time Markov Chain (CTMC) [24], as shown in Figure 3. CTMC were previ-
ously used for control policy design, including power mode controllers [6] [76]
and bus arbiters [42]. Another advantage of this modeling is that it offers -
for each hardware resource, a figure of merit that cumulatively expresses its
time criticality, usage, energy consumption and impact on buffer size. Defin-
ing likelihood using an heuristic cost function would have been an alternative.
However, having no rigorous mathematical support, we avoided this possibility.
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Figure 6.3: State transitions for power modes

*
Steady state probabilities α1,u were calculated by modeling the mode

changes q(j, u) are the rates for choosing certain transition u while in a certain
mode j. The rates q(i, j, u) and q(j, u) have been obtained by using a simple
scheduling algorithm. The scheduling algorithm works on a threshold of time
after which the hardware element powers down. The threshold depends on the
energy consumed in powering down Eturnoff +Eturnon and the energy saved
by being in the power down mode over a certain period of time Pdnt. The
time threshold is given by Tth, Tth =

Eturnoff+Eturnon

Pdn
Thus for all idle times

tidle ≥ Tth the hardware element will be powered down.
The rates q(i, j, u) are the rate for selecting a certain action while being

in state i and going to state j, as shown in [76][24]. Bpropki, a are the buffer
occupancy rates for the hardware elements, and we treat them as costs which
cannot exceed a certain amount of available buffer space.

∑

u∈U(j)

q(j, u)αj,u −
∑

i∈I

∑

u∈U(i)

q(i, j, u)αi,u = 0, j ∈ S, (6.7)

∑

i∈S

∑

u∈U(i)

Bpropk(i, u)αi,u ≤ Ck, k = x, y, z, (6.8)

∑

i∈S

∑

u∈U(i)

αi,u = 1, (6.9)

αi,u ≥ 0, i ∈ S, u ∈ U(i), (6.10)

The goal of minimizing the energy consumption of the system while meet-
ing buffer size constraints is expressed by the following set of equations.

minimize Cwindow =
N
∑

i=1

U(i)
∑

u=1

D
∑

k=1

Ckαi,u (6.11)
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Cwindow is the total cost over the time window, and is the sum of the cost
incurred at each clock cycle.

Ck =
L
∑

a=1

Cxa,k +
M
∑

b=1

Cyb,k +
N
∑

c=1

Czc,k (6.12)

The cost at kth clock cycle is given by a summation of the costs incurred by all
hardware elements. We would like to state at this point that this summation
of costs is simply in the mathematical modeling, and the controller will not
be performing such summing operations, and will not be looking at the cost
function. These equations will be solved offline and the solution shall be
encoded into the controllers. If each hardware processing block has the four
modes presented in Section 3, the cost functions of the elements follow the
following pattern.

Cxi,k =



















Pup∆t + Bprop if xi,k = 1,
Pup∆t + Bprop if xi,k = 2,
Pdn∆t + Bprop if xi,k = 3,
Pdn∆t + Bprop if xi,k = 4,

(6.13)

The cost of an element in the powered up states (state ”1” and state ”2”) is
the costs associated with being powered up Pup. In state ”3” and state ”4”
the cost is simply that of powering down, and in each state there is an added
penalty based on the buffer space that got occupied while the element was
being requested Bprop.

The equations could be solved for the state space as a whole but this would
lead to too many equations due to the large state space we are dealing with.
We have made an assumption that the steady state transitions probabilities of
an individual element would be the same for all elements of its type. Another
assumption we made is that it is safe to consider the steady state transition
probabilities of each element independent of the probabilities of the other,
since the timing delays of the elements are different and obey the following
relationship Tmull >> Talu = Tshift and the occurrence of instructions that
utilise these elements in an algorithm is different too. The occurrence rates
of intructions which could use these resources in the RGB to CMY colour
conversion algorithm that we considered had a the highest rate for intructions
which could use ALUs followed by multipliers and shifters. In other words the
number of adders powered up has no correlation with the number of multipliers
powered up as they wouldn’t make much difference in satisfaction of overall
timing constraints.

D. Controller circuit. The output of the set of equations is the steady
state probabilities for the state and control action pairs given by αi,a as shown
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in [24]. These steady state probabilities αi,as with the sampling rate are used
in the controller. They provide the basic structure for the control policy and
these are then scaled by the sampling rate as in equation (3).

6.5 Experiments
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Figure 6.4: Taskgraphs

The task graphs we used have been shown in Figure 6.4. The task graphs
used belong to the R,G,B to Y,Cb,Cr colour space conversion algorithm, which
is composed of three task graphs executed in parallel [109]. Several instances
of thistask graphs may also be run on parallel on separte pixels of the image.
Though the graphs have similar structure their execution times will depend
on the incoming data due to the several data dependent branching operations.
The powering up and powering down of Hardware resources consequently has
differing rates even if the processing load or samples per sec. remains the
same.
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We implemented a SystemC model of an architecture which has a bank of
10 ALUs, 10 Multipliers and 10 Shifters. Each of the resources has a controller
which implements the control policy discussed in section 4. The elements are
connected to a data bus, which carries the sampled data. The controllers are
sensitive to the sampling rate and perform a buffering operation depending
on Data Load and a look ahead on the sampling rate before powering up or
powering down resources during a window. The equations (7)-(11) were solved
using MATLAB6p1 to obtain steady state probabilities αi,u. The steady state
probabilities for each type of resource were then embedded into the controllers.
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Figure 6.5: Sampling Requirements and Total Power

The sampling rate variation has been shown in Figure 6.5. The reason we
chose such variation is we wanted to test how well the control policy adapts
to the varying required processing rate. The power consumption trend follows
the required sampling rate as more resources get turned on to meet the smaller
latency constraints for higher sampling rates. The ”Greedy” policy which turns
on every requested resource and turns them off based on a time threshold Tth,
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to which we compared our ”Adaptive” policy, tends turn on more resources
hence has a larger power consumption. To its advantage the Greedy policy
manages to track the variation in processing requirements faster. For a window
length of 10 clock cycles and a data load of 480 we found the total power
consumption in the adaptive policy was 29% lesser than that of the greedy
policy. The Data Load of 480 signifies that a maximum of 480 samples could
be buffered, though the actual maximum buffer space used was close to 200
samples hence we could have applied tighter buffer space constraints on the
equations (7)-(11) and used a smaller buffer space.
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Figure 6.6: Power trends for different resources
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The individual types of resources had their own controllers, hence had
different trends in terms of their power consumption. The ALU had a high
utilization rate due to the large number of ALU operations in the task graphs.
Due to the large number ALU operations the ALU bank had fraction of ALUs
powered on all the time and extra ALUs were turned on/off depending upon
the requirements as shown in Figure 6.5. The greedy policy tracked the varia-
tion better but overdesigned in terms of turning on more ALUs which became
idle over a certain fraction of the window length.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

POWER 
[mw] 

TIME[clock cycles] 

WL = 2 

WL = 10 

WL = 50 

WL=100 

Figure 6.7: Varying Window Lengths

The shifters had a low utilization as there are only 2 shift operations among
the 81 total operations in the three task graphs. The greedy policy turned on
the shifters exactly when needed and performed better than the adaptive policy
in terms of power consumption. The adaptive policy performed poorly as it
tried to adapt when there really wasn’t need to adapt. The adaptive policy
kept some shifters powered up even though they were idle as seen in Figure
6.6. It also unnecessarily powered up extra shifters while trying to adapt to
the second peak in processing requirements shown in Figure 6.5.

The multipliers had a low utilization rate similar to the shifters and the
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greedy policy performed better in terms of lower power consumption. We see a
large spike in the multipliers graph in Figure 6.6. This is because the adaptive
policy tried to turn off all multipliers when the sampling rate went very low
as shown in Figure 6.6. This created a backlog of ”multiply” operations which
were then serviced at once by turning on extra multipliers.

The window length has to be carefully selected in order to allow the adap-
tive policy to track the variation in the sampling requirements yet conserve
power. This effect can be observed for the ALU banks from Figure 6.7, in which
the adaptive policy tends to look more like the greedy policy and consumes
more power while trying to track varying processing requirements, for exam-
ple, when window length (WL)=2. With longer window lengths (WL)=10,
50 and 100 the policy reduces power consumption while being insensitive to
the varying latency requirements, thus the adaptive policy will require larger
buffer space for larger windows. In case the window length is large its possi-
ble that the hardware resource will become idle over a fraction of the window
length thus wasting power. Since the ALU had a high utilization rate this
did not occur. In resources with low utilization the power trend with varying
window size was different.

In the experiments the power savings from the ALU dominate the poor
performance of the control policy in the case of shifters and multipliers. In
case of low utilisation rates of resources or low occurrence rates of instructions
which could utilise a particular resource the greedy policy, which turns on all
requested resources, may perform comparably with the adaptive policy. In
future attempts we shall apply the adaptive policy to a commercial core which
has power down modes and selectively controllable resources.

6.6 Conclusions

We have shown that the adaptive policy performs well for resources with
high utilization rates under varying latency constraints. We could obtain up to
29% lesser power consumption compared to a greedy policy for certain design
constraints. With well chosen window length and data load parameters we
can get a control policy which is obtained offline, yet can be near optimal for
online adaptation of embedded systems suffering varying latency constraints.
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Chapter 7

Future Work

7.1 Continuous Time adaptation in the Mem-

ory subsystem

In modern day embedded system memories are hierarchical and consist of
levels of successively faster and smaller memories closer to the processor. This
is based on the data locality principle where in the data or a set of instructions
required by the processor are close to each other. If the data or instructions
are adjacent or near in the memory space it makes sense to move that sector
of memory to a fast small memory close to the processor so that the memory
access is faster. A description of the hierarchical memory subsystem has been
given in [36]. In the hierarchical structure of memories has been shown. They
are usually made up of a cache which is usually a fast small memory which
contains some of the memory blocs that reside in the main memory. The
main memory gets loaded with data from the disk. There are numerous trade
offs between block sizes ,cache sizes and replacement policies which have been
illustrated in [36]. We would like to extend the possible improvements to
these methods by introducing continuous architectural reconfiguration to the
hierarchical memory subsytem.

Reconfigurable memories with variable granularites of access have been
proposed for different applications with very different memory access patterns
[59]. The memory is modular with reconfigurable tiles and has been mapped
to applications like the Hydra Multiprocessor[32] which has irregular and in-
termittent memory access as well as the Imagine Streaming Processor [78]
which has a very regular memory access pattern due to the streaming media
applications. The use software based statistical profiling data shall be used
in the future to generate empirical distributions for the service requests being
made. Instead of using closed form mathematical random process generators
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to provide the service requests. The modeling methodolgy shall be much faster
than RTL yet accurate like cycle count accurate modeling. The use of con-
tinuous time modeling has been used in some power management policies for
DRAMs in which the gap between the memory access was modelled by an
exponential distribution [22]. The modeling shall exploit the different power
modes and configuration of the DRAM memory module as well as transactions
at a chipset level.

We would like to explore using the constraints and trade offs involved
in designing hierarchical memories and cache management to be extended
to controlling the reconfigurable memory modules in hardware while being
optimised for reducing miss rate, miss penalty and improving hit rate in a
cache based hierarchical system. We shall attempt to throw the problem as
an MDP problem too.

7.2 New Online Adaptation Methods for Con-

strained Reconfiguration

The predictive methods used in [74] [75] need offline solving for the gener-
ation of control policies. There are a new set of methods that provide online
control. The manner in which these methods work is that they provide the sys-
tem with a set of sstates which could be viewed as the goal states of the system.
The system is working in order if it can obtain these states. The difference
with regular dynamic programming methods which essentially work on similar
paradigms of attaining an optimal state in finite time [25] is that the goal
states are continuously updated depending on the physical stimuli provided as
input to the controller. This method of controlling based on reaction to stim-
uli is called Reactive Planning which is an NP hard AI problem. It has been
thrown in a Partially Observable Markov Decision Process (POMDP) frame-
work in order to maintain the markov nature between the temporal variation
of the states. The sytem model is a Hidden Markov Model which predicts the
next possible set of system states with some probability. The control actions
are chosen such that the probablity of the system being in a high reward goal
state is maximised as in the predictive methods. These methods fit better into
the continuous adaptation idea as they react to stimuli continuously and do
not offline solution of equations in oredr to generate control policies.
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7.3 New Performance Modeling and Simula-

tor Building Techniques

RTL and cycle accurate simulators although accurate and necessary are
extremely time consuming. Designers and testers do not need the accuracy
provided by such methods at all times. Small and incremental changes in
design can be analyzed by statistical methods faster and more efficiently as
compared to resimulating at cycle accurate or RTL levels. Previous efforts at
improvng statistical performance analysis have involved extracting important
parameters on which a computers performance depends [118]. Most bench-
mark based performance analysis methods depend on sampling schemes and
benchmark characteristics to speed up simulations [114]. Another approach is
to save the state of a computer system and advance through a set of instruc-
tions in a functional fashion at high speed and then return to cycle accurate
simulation [106]. These efforts are usually for certain subset of an instruction
set [106].

This effort focuses on making statistical modules for the hardware. An
entire piece of hardware would be replaced by a statistical module in a HDL
or C++ simulator. This style of hybrid modeling would be an easy fit into
transaction level models. Statistical simulators are useful in situations where
the time taken to simulate the system at RTL level or even transactional or
cycle accurate levels would taketoo long. The statistical characteristics of the
hardware module will be hard coded into the module and would abstracted
away from the effects of the individual benchmark. The statistical module
shall be independent of warm up behaviour too and shall behave in the same
fashion throughout the simulation.

The use of distributions allows us to analyze average cases as well as ex-
treme cases and also gives us an idea how often a extreme case may occur.
This helps prevent over-designing. Distributions could be closed form distri-
butions that are generated from mathematical formulas or could be empirical
distributions which have been obtained from raw data from a previous cycle
accurate or transactional simulation which may be too painstaking.

The use of statistical mapping to model the architectures allows us to come
up with fast closed form mathematical performance prediction methods. In
some cases these methods can provide estimates in a few minutes.The use of
models shown in Figure 7.1 where a statistical matrix is inserted into a cycle
count accurate (transactional) model written in systemC or C++ would be
particularly useful in the industry where the timing numbers for a particlar
component or core may be unknown or uncertain. This matrix would convert
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Figure 7.1: Method
software performance data into hardware bottleneck predictions.
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Examples: The following are examples this effort is currently concentrat-
ing on.

• Platform Transactions: At a platform level there can be several cores
or processors interacting with a shared bus as shown in 7.2 In such
systems high level performance parameters are used to determine where
the bottlenecks are. Throughputs, latencies and bandwidhts of buses and
memory subsystems are checked to ensure the system meets performance
requirements.

The operation of the system can be modeled at a transaction level where
different transactions such as cache access,snoops and memory accesses
are modeled in terms of discrete number of clock cycles and probability
distributions. The Figures 7.2 and 7.3 show the paths of a snoop and a
memory read. These transactions could take differing amounts of time in
clock cycles depending on hardware design-point parameters like queue
sizes, cache sizes, cache sizes, bus availability and DRAM latencies. By
creating distributions along these dimensions of parameters with respect
to clock cycles valuable correlations could be obtained between the per-
formance parameters and hardware design-points.
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Figure 7.3: read miss path

Figure 7.4: execution times

• DCT module:This work is being extended to incorporate software pro-
filing data into the statistical models. The data shown in Figure 7.4is
the execution time of a DCT method in a JPEG software run on a sin-
gle processor. This data corresponds the input data as shown in Figure
7.1. use statistics from profiling on a single processor to estimate per-
formance in case the same application is mapped to several processors.
The attempts shall be to characterize relationships between the the tim-
ing distributions on a single procesor with those of the same application
mapped to several cores in a NoC or multi core processors. In Table
7.3 the statistical module to replace a DCT hardware module has been
shown. The designer has to plug in the statistical module in order to
produce the waiting times in column 1 with the required probability
distribution shown in column 2.

This is a very rough of approximation of the possible execution time distri-
bution. Extensions could be to utilize the the percentage time execution data
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Figure 7.5: percentage time

Table 7.1: Statistical Plugin
EXEC. TIME EXEC TIME

VALUE seconds DISTRIBUTION

0.1 0.9

0.2 0.24

0.3 0.29

0.4 0.20

0.5 0.8

0.6 0.6

0.7 0.4

shown in Figure 7.5 to further skew the data to get more realistic distributions.

7.4 Summary

In this chapter we presented several possibilities for inprovement and ex-
trapolation of our research efforts in contunuous adaptation of embedded sys-
tems. With this chapter we conclude our discussion and the next chapter
is a set of conclusions. Statistical plug ins will speed up design and offer a
framework to predict bottlenecks.
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Chapter 8

Conclusion

8.1 Introduction

In conclusion we would like to present a brief summary about our goals.
The ones we have achieved and the ones we wish to explore further. We also
discuss the the methods and techniques used to achieve these goals.

The primary goal of the report was to present a discussion on the need
and the ways of providing continuous time adaptation in the architecturtes
of modern embedded systems. This involved a systematic study of various
architectures and applications in which we could exploit the use of continuous
time architectural reconfiguration. We also compared different control tech-
niques in order to understand which would be most feasible in a continuously
varying environment. We compared the control policies in order to ascertain
their suitability by means of simulation. In the previous sections we saw the
need for continuous time adaptation, the different control methods could be
used in continuous time adaptation and experiments that support the use of
stochastic models and stochastic optimisation to generate control policies for
continuous time adaptation. A categorical enumeration of our acheivements
has been listed below.

• Using Stochastic Processes to Model On-Chip Traffic: The use of stochas-
tic models has been heavily used in reliability and fault tolerance testing
of embedded systems [40] [82] [47] and used in some power manage-
ment and estimation techniques [75] [74] [6] [65]. We have presented a
strong case for extending this concept of stochastic modeling for SoC
design, especially in the design of the control policies for varied subsys-
tems. We have successfully used stochastic models of the communication
subsystem in order to device arbitration policies for the communication
subsystem.



107

• New Online Adaptation Methods for Constrained Reconfiguration: The
predictive control methods need a precharacterisation of the workload
which may be tedious and difficult to obtain. In [110] and [111] we
see that control policies based on reactive systems have been designed.
These would need a continuous update of the state as well as a set of
goal states which are a set of states that would define the optimal oper-
ation of the embedded system. The systems are called reactive because
the constraints change due the interactions within the states and with
external stimuli causing a different set of goal states to be formed.

• Continuous Time Adaptation: The central theme of our effort has been
continuous time modeling and we have successfully used continuous time
models in order to capture the timing charactersitics of a modern day
embedded system. We have provided a detailed study of the possible use
of continuous time adaptation in various applications and architectures.
The incentives for using continuous time adaptation are 1) not having
to redesign systems from scratch in presence of changes in protocols
or traffic patterns ,2) allowing the embedded systems to be intelligent
and change themselves in a continuously varying environment and 3)
Efficiently managing architectural resources while handling trade offs
with respect to QoS and Power Consumption in a continuously varying
environment.

• Simulation of Queueing Models : We have successfully used queues for
modeling the bus architectures of real world applications. Though not
novel ,the use of queueing theory to model the on chip communication
helped us analyse the diferent arbitration policies for different archi-
tectures bye simulating the the traffic under control of a given pol-
icy. We checked the performance of the policies by sequentially running
them on the queueing models and plotting their performance. We also
extensicvely studied queues to understand various instances of micro-
architecture where the architecture could be modeled by queues.

• Using CTMDPs to generate control policies: The use of CTMDPs al-
lowed us to present the arbitration problem of the communication sub
system as well as the hardware resource allocation problem of the pro-
cessing subsytem in a formal mathematical framework. The policies
generated using this method can be acheive theoretical optimality in
terms providing a set of actions for maximising the possible reward ob-
tained from any state of the system. Heuristic control policies do not
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lend themselves well to an analysis of their optimality but have been
compared with our methods by means of simulation.

The mapping of arbitration problem to the queueing network and further
mapping the quantities from the queuing model to the linear programming
based CTMDP solution was the novel and major contribution of the thesis. In
the future we shall be extending continuous time architectural adaptation to
the Memory Subsystem and transaction level models while improving the cur-
rent models for the service request generators. We would also like to compare
offline policy generation methods with online policy generation or AI based
methods in order to see if the online or AI based methods can help us adapt
the architecture better while in continuously varying environment. A major
thrust shall however be made towards extending these methods towards plat-
form and chipset performance testing where the fast performance prediction
is imperative and even cycle count accurate simulations may seem too slow.
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Chapter 9

Appendix 1

Results for experiments with varied traffic patterns on the Network Pro-
cessor architecture.
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Figure 9.1: Results for Network Processor without redundant paths
exponential arrival and exponential departure times
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Figure 9.2: Results for Network Processor without redundant paths
exponential arrival and uniform departure times
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Figure 9.3: Results for Network Processor without redundant paths
exponential arrival and constant departure times
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Figure 9.4: Results for Network Processor with redundant paths ex-
ponential arrival and exponential departure times
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Figure 9.5: Results for Network Processor with redundant paths ex-
ponential arrival and uniform departure times
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Figure 9.6: Results for Network Processor with redundant paths ex-
ponential arrival and constant departure times
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Figure 9.7: Results for Network processor without redundant paths
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Figure 9.8: Results for architecture in Figure 4.7 with redundant
paths exponential arrival and departure times
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paths exponential arrival and constant departure times
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Figure 9.10: Results for architecture in Figure 4.7 with redundant
paths exponential arrival and constant departure times
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Figure 9.11: Results for architecture in Figure 4.7 with redundant
paths exponential arrival and uniform departure times
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Chapter 10

Appendix 2

Results for experiments with queues to compare server utilization vs loss
and queue length characteristics.

Figure 10.1: Results for M/M/1 queues
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Figure 10.2: Results for M/D/1 queues
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Figure 10.3: Results for M/U/1 queues
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Figure 10.4: Results for M/M/1/K queues
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Figure 10.5: Results for M/D/1/K queues
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Figure 10.6: Results for M/U/1/K queues
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