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Abstract of the Dissertation 

The Chemical Composition of Sinking Particles and their Vertical 

Dynamics in the Open Ocean 

by 

Jianhong Xue 

Doctor of Philosophy 

in 

Marine and Atmospheric Science 

Stony Brook University 

2008 

 

Sinking particles are one of the main vehicles for transporting chemical species, 

including carbon, from surface waters to the deep ocean and sediments. This process 

reduces the partial pressure of carbon dioxide in the surface mixed layer, and plays an 

important role in the oceanic carbon cycle. This thesis focuses on the vertical dynamics 

of sinking particles, and their chemical compositions and degradation trajectories. 

A new method, based on fitting Fourier series to time-series data from sediment 

traps, was developed to estimate settling velocities (SV’s) of sinking particles in the open 

ocean.  The results showed that estimation of SV’s is more reliable when single-elements, 

rather than element ratios, are used as tracers. Modal settling velocities estimated using 

single-tracer fluxes with good temporal resolution, averaged separately for each tracer, 

are 205±74 m/d. This new estimate is in essential accord with measurements made using 

Indented Rotating Sphere sediment traps in “setting velocity” mode at the same site. 

 iii
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Three-dimensional Principal Components Analysis (PCA) was applied to data on 

the organic composition of sinking particles collected in MedFlux. The results showed 

that constructing a 1-dimensional “degradation index” is oversimplified, and the 

trajectory from the first 2 or 3 axes is more informative. 

Masses were summed with all the major chemical components, including organic 

matter (OM), opal, CaCO3, and lithogenic minerals, for sinking particles. The summed 

mass is often less than the mass that is directly measured. This mass deficit is also 

observed for sinking particles at the Ross Sea, but not for those collected from other US 

JGOFS deep ocean sites.  OM was found to be directly related to mass deficit, especially 

in shallow water where OM content in particles is high. I hypothesize that water bound to 

organic molecules or minerals particles, especially in samples from shallow depths, may 

not be totally dehydrated after oven drying. 
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CHAPTER ONE: Introduction and background 

 

 

 

1. Introduction 

 

 Sinking particles are one of the major vehicles for transporting carbon and other 

biologically-associated elements from surface waters to the ocean interior.  During transit, 

the flux of sinking particles is greatly attenuated due to dissolution and decomposition, 

releasing chemical elements and dissolved organic matter into the surrounding water.  A 

small fraction of particles eventually reaches the sea floor and provides a food source for 

benthic organisms.  This transport process not only removes particulate elements from 

the surface ocean, but also controls the vertical distribution of the transported elements 

(Anderson, 2003).  Sinking particles overall play an important role in the biogeochemical 

cycles of many chemical elements in the ocean.  

Among all elements that are affected by sinking particles, carbon attracts the most 

concern because the transport of organic carbon reduces the partial pressure of carbon 

dioxide ( ) in the surface mixed layer, allowing the ocean to take up more 

atmospheric  than would otherwise be possible (Sarmiento and Gruber, 2006); this 

mechanism has become known as the ‘biological pump’ (Fig. 1.1).  In the euphotic zone 

(defined by the depth of water that have 0.1% light level of the surface, generally less 

than 200 m in the open ocean), and in the presence of necessary nutrients, phytoplankton 

transform dissolved  into organic forms through photosynthesis: 

2pCO

CO2

2CO
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2612622 666 OOHCOHCO +⇒+  

This process decreases the  in surface water, and thus enhances  transfer from 

atmosphere to the surface ocean.  However, most of the primary production is converted 

back to  and nutrients by zooplankton respiration or bacterial remineralization within 

the euphotic zone.  Only about 10% of primary production, mostly in the form of fecal 

pellets and phytoplankton aggregates, is exported out of the surface layer (e.g., Eppley 

and Peterson, 1979; Bacon et al., 1996).  On their way to the ocean floor, sinking 

particles are continuously subject to degradation, and less than 1% of the primary 

production reaches the sediment. Understanding the chemical and dynamical 

characteristics of sinking particles is critical to the understanding of the biogeochemical 

cycle of carbon in the ocean and its affect on atmospheric  and climate change.  Two 

factors are key to determining the carbon transport efficiency of the biological pump: the 

settling velocity (SV) of sinking particles, and the degradation rate of POC in sinking 

particles. Faster sinking rates leave less time for degradation, increasing the efficiency of 

the biological pump; for the same reason, faster degradation rates reduce the efficiency of 

the pump.     

2pCO 2CO

2CO

2CO

The collection of sinking particles has relied mainly on the use of sediment traps. 

“Sinking” particles can also be collected by in situ pump systems, where particles 

collected on the Teflon or Nitex screen (those larger than 53 or 70 µm, depending on the 

mesh of the screen) are defined as the sinking fraction, and the particles on the glass fiber 

or microquartz (0.7 or 1.0 μm) are defined as the suspended fraction (Bishop et al., 1984).  

Since the 1980s, sediment trap data have been collected at many depths and locations 

around the world ocean (Klaas and Archer, 2002; Honjo et al., 2008).  
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 This thesis presents the studies on the vertical dynamics of sinking particles, the 

chemical composition of sinking particles, and the degradation trajectories of sinking 

particles based on their organic biomarkers, using mathematical modeling and statistics.  

In the following, I summarize the background of these studies, and the questions to be 

solved in this thesis. 

 

2. Background 

 

2.1. The vertical dynamics of sinking particles in water column 

  

 In a simple way, sinking particles can be visualized as small spheres.   A 

mathematical description of settling velocity of small spheres was first developed by G. 

Stokes in 1850, and is now known as Stokes’ law (e.g., Mann and Lazier, 1991; Diercks 

and Asper, 1997; Waite et al., 1997): 

μ9
)(2 21

2 ddgrV −
=   ,                                                (1.1) 

where  V = velocity of fall (cm sec-1); 

 g = acceleration of gravity (cm s-2); 

 r = ‘equivalent’ radius of particle (cm); 

 = density of the particle (g cm-3);  1d

 = density of ocean water (g cm-3); and  2d

 μ = kinematic viscosity of ocean water (dyne s cm-2 or g cm-1 s-1). 
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In Eq. (1.1), particle radius ( r ) and density ( ), are the keys for determining particle SV, 

assuming ocean water has constant density ( ) and viscosity (

1d

2d μ ).  However, these two 

parameters for sinking particles are not easily determined because sinking particles do not 

exist in regular shapes, but as single particles of various shapes, and as aggregates, as 

flocs and marine snow, and have significant physical and biological transformations in 

the water column (Eisma, 1986; Fowler and Knauer, 1986; Hill, 1998). 

The size and density of sinking particles are subject to continuous modification by 

many processes, among which aggregation and disaggregation are two major processes 

(Clegg and Whitfield, 1990; Clegg and Whitfield, 1991; Cochran et al., 1993; Jackson 

and Burd, 1998).  Small particles can aggregate into large particles aided by Brownian 

diffusion, laminar and turbulent shear, and differential sedimentation.  Zooplankton 

ingest phytoplankton cells or small particles, producing large fecal pellets.  Zooplankton 

feeding can also break up particles by sloppy feeding and swimming, and microbial 

decomposition can also lead to particle disaggregation.  Physical disaggregation occurs if 

the frictional force or shear difference between the water and particles is sufficient to 

break the particles apart (Jackson, 1990; Burd and Jackson, 2002).  Both the size and 

density of sinking particles are dynamically variable, and determining the parameters 

controlling these dynamics is not simple. Many studies have been conducted on particle 

size spectra (e.g., Sheldon et al., 1972; McCave, 1975; Bishop et al., 1980), but the 

uncertainty in the size spectra is high due to the large range of variation on the spectra 

(Jackson and Burd, 1998).  A model that reaches beyond Stokes’ law is clearly needed to 

replace it , and to quantify the settling rate spectra or bulk settling rates of sinking 

particles. 
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 Many SV measurements for specific types of sinking particles, such as for 

ultraplankton, diatoms, and fecal pellets, have been made; these results are summarized 

in Table 1.1 (modified from Table 1 in Waniek et al., 2000 and Table 1 in Hill, 1998). 

These particles were collected in field, but their sinking velocities were measured in a 

laboratory using cylinders via simple observations (e.g., Smayda, 1969; Small et al., 1979; 

Bienfang, 1980; Bruland and Silver, 1981).  Later it was argued that the SVs estimated in 

the lab and those from field work do not match well because sinking particles are fragile 

(Alldredge and Gotschalk, 1989; Hill et al., 1998).  There were also measurements for 

aggregates and marine snow by in situ photography in a variety of environments (Table 

1.1); settling rates in these studies are in the range of 48 – 328 m/d (Hill, 1998).  Using 

the information in Table 1.1, Waniek et al. (2000) concluded that 100 – 200 m/d is the 

typical sinking speeds of large particles. However, there are big compositional 

differences among particles sinking in the water column, the in situ measurements of any 

single aggregate may not represent the average velocity of sinking particles.  

 A “benchmark” method for obtaining settling rate has been defined and used since 

1980’s. This method is to compare the distribution of flux and constituents from sediment 

traps at different depth (Deuser et al., 1981; Honjo, 1982; Billett et al., 1983; Deuser, 

1986; Fowler and Knauer, 1986; Honjo, 1996).  For example, Deuser et al. (1981) found 

that variation of bulk constituents and size fractions of sinking particles, collected at the 

depth of 3200 m in Sargasso Sea, were closely tied to the annual cycle of primary 

production in the surface water; they concluded that sinking particles fully went through 

water column within 60 days, which is the trap interval time.  Siegel and Deuser (1997) 

pointed out that sinking speeds range from 50 to 200 m/d based on these earlier studies.  
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However, most of these traps were opened for at least 30 days, and the resolution is 

limited for the estimation of sinking velocity.  

Using molar ratios of particulate organic carbon (OC), inorganic carbon (IC), 

biogenic Si, Ca, and Al from time-series sediment taps at US JGOFS ASPS (Arabian Sea 

Process Study) and EqPac (Equatorial Pacific Process Study), Berelson (2002) recently 

estimated that the average settling rates of sinking particles were 83 – 331 m/d.  These 

time-series traps were generally open for time intervals of 8.5, 14 or 17 days, much 

shorter than those from earlier traps (≥ 30 days).  For each tracer ratio, Berelson (2002) 

estimated how much time was required for a pattern of fluxes in shallow traps to reach 

the deeper trap by linearly regressing the ratios measured in these two series of traps 

under a range of integer cup delays (0, 1, 2, …).  The "best" cup shift was determined as 

the one that has largest average linear regression coefficient among all of the tracer ratios.  

Settling velocities were then calculated as (depth difference)/(("best" cup shift)*(cup 

rotation time)). However, in most cases (14 out of 18 in Berelson’s study), the no-shift 

case (0 delay) showed the best correlation. Berelson then used 0.5 cup shift instead of 0 

for the above SV calculation to avoid an infinite result.  This approximation might have 

biased his estimation from real SVs.  

 In mathematics, a Fourier series decomposes a complex continuous function into 

the sum of several simple periotic functions, which are all functions of time. Fourier 

series have been successfully used in physical oceanography to decompose waves by 

their frequencies (e.g., Jacobs et al., 1993; Massel, 2001). As the fluxes of sinking 

particles are also approximately periodic with year, season, or month, Fourier series is 

used in this thesis to fit the flux of sinking particles, and to develop a new method for the 
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estimation of SV. In this study, the MedFlux time-series sediment traps were deployed in 

2003 and 2005, at the DYFAMED site in the northwestern Mediterranean Sea, and had 

much shorter time intervals (4 – 6 days) for each cup than any studies in US JGOFS 

(Peterson et al., 2005; Lee et al., submitted).  This high-resolution sediment trap data 

might help give a better estimation of settling rate.  

In general, the settling rate for sinking particles, as one of the key parameters for 

studying particles dynamics in the ocean, is still not clear.  In this thesis, we try to 

develop a new method by fitting a Fourier series with sediment trap data collected during 

the US JGOFS and MedFlux studies.   

  

2.2. The study of degradation trajectories of sinking particles by principal component 

analysis 

 

 The distribution of particulate organic matter (POM) in the ocean is mainly a 

function of in situ production in the surface ocean (Lee and Cronin, 1984).  In the 

euphotic zone (0-200 m), particles are mainly produced by phytoplankton through 

photosynthesis.  Zooplankton respiration and microbial decomposition are two important 

processes degrading these particles.  Only about 5~10% of the surface primary 

production is exported out of the euphotic zone.  Mesopelagic zone (200-1000 m), or the 

twilight zone, provides an important connection between the euphotic zone and the deep 

ocean.  In the twilight zone, the particles from the surface ocean are continuously 

subjected to decomposition by bacteria or grazing by zooplankton.  Most of the organic 

matter is recycled back into inorganic carbon and nutrients.  There may be aggregation 
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and disaggregation between suspended (smaller on size) particles and sinking particles in 

this layer (Lee et al., 2004).  However, little is known about the importance of these two 

processes in controlling the chemical and physical properties of particles in the midwater 

column.  In the deep ocean (>1000 m), the concentration of POM is very low (less than 1 

µM C) and almost constant with depth (Loh and Bauer, 2000), suggesting that the 

decomposition rate is very low, and POM is very refractory in deep ocean.  Wakeham 

and Lee (1993) pointed out that the chemical composition of sinking particles in deeper 

water is different from their original sources, the plankton biomass in the upper layer, 

because of selective degradation for POM.  The labile compounds are degraded, and the 

refractory compounds become more concentrated with depth.  For example, amino acids 

serine (SER) and glycine (GLY) were more enriched in sinking particles with depth 

(Siezen and Mague, 1978; Lee and Cronin, 1984).  The long chain fatty acids such as C24 

are degraded less readily than short chain fatty acids like C16 (Wakeham and Lee, 1993).  

The organic composition of sinking particles can be used to determine their degradation 

status.  

The organic composition of POM, including amino acids, lipids, and pigments, 

can be used to indicate the degradation status of sinking particles, assuming that the 

sinking particles from different depths come from the same sources.  In many cases, 

however, the source of organic matter is subject to seasonal variations (Lee et al., 2000).  

For example, diatoms are usually the dominant species during the spring bloom, while 

coccolithophores are the dominant species after blooms; as expected, these two algae 

have different organic compositions, with diatoms being enriched with glycine (GLY) 

and threonine (THR), and coccolithophores with aspartic acid (ASP) (Lee et al., 2000).  
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Therefore, the organic composition of sinking particles may reflect not only the 

degradation status, but also the source of a particle.  How to choose an appropriate 

statistical method to sort out the information of degradation or source is a challenging 

task, particularly when dealing with a large data set of organic compounds.   

Principal component analysis (PCA) is a statistical technique that can reduce a 

multi-dimensional data matrix to fewer dimensions, so that the re-expressed dataset 

represents most of the information from the original dataset.  More importantly, the re-

expressed dataset can be visualized much more easily and quantitatively.  Using PCA on 

amino acid data with different diagenetic status, from fresh phytoplankton to degraded 

sedimentary organic matter, Dauwe et al. (1999) showed that the systematic variation of 

the data matrix of amino acids can be explained by the first principal components (PC), 

which can be interpreted as a degradation index (DI).  Later, Sheridan et al. (2002) 

applied PCA to organic compositional data of suspended particles from the Equatorial 

Pacific ocean, to trace their degradation state, and found that the first PC decreased as 

samples became more degraded.  Using compositional data of sinking particles from the 

Southern Ocean, Ingalls et al. (2003) cautioned that the 1st PC may also reflect the source 

of the POC, in addition to the degradation degree. Besides giving information on 

degradation, PCA also has been used to classify biomarkers according to their different 

sources (marine or terrigenous), to classify differences among samples, or trace the fate 

of OM in marine environment, etc (e.g., Yunker et al., 1995; Moncheva et al., 2001; 

Yunker et al., 2005).  

Even though PCA is becoming increasingly used in the field of marine organic 

geochemistry, its principles, limitations, and further applications have been rarely 
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reported or explored.  For example, in most of the PCA applications, only the first and/or 

second principal components (PCs) have been used for data interpretation.  In many cases, 

however, the third PC explains almost as much of the variance of the data matrix as does 

the second PC, so that including the third PC may provide much additional valuable 

information.   

In this thesis, we aim to further explore PCA technical details including data 

standardization, and comparison of 3D and 2D PCA plots for resolving trajectories of 

degradation. 

  

2.3. Quantifying the mass of sinking particles by their major chemical compositions 

  

 The major components of sinking particles include organic matter (OM) and 

minerals.  The mineral fraction can be further categorized into CaCO3, biogenic opal 

(SiO2.H2O), and lithogenic minerals.  OM concentration in sinking particles varies 

greatly; it can be as high as 50% in particles within the euphotic zone, and decreases to 

about 10% in the mesopelagic ocean.  Accordingly, the mineral content increases with 

depth, becoming over 90% at depths over 1000 m (Armstrong et al., 2002).  The types of 

minerals in sinking particles are site specific.  Sinking particles from most open oceans 

(e.g., equatorial Pacific, Arabian Sea, and North Atlantic) are enriched with CaCO3, as 

high as 50-70% in deep waters (Honjo and Manganini, 1993; Honjo et al., 1995; Honjo et 

al., 1999).  But the concentration of opal in sinking particles from the Southern Ocean 

can reach 80% (Collier et al., 2000; Honjo et al., 2000).  In equatorial Pacific and 

Southern Ocean, there are almost no lithogenic minerals due to the low aeolian input 
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(Honjo et al., 1995; Honjo et al., 2000).  In Arabian Sea or North Atlantic, lithogenic 

mineral is about 10% in sinking particles (Honjo and Manganini, 1993; Honjo et al., 

1999). 

 The flux and composition of sinking particles have been extensively studied in 

different oceans (e.g., Lee and Cronin, 1982; Wakeham et al., 1984; Honjo and 

Manganini, 1993; Honjo et al., 1995; Honjo et al., 1999; Collier et al., 2000; Honjo et al., 

2000; Prahl et al., 2000).  The measurements of total mass and the major chemical 

compositions of sinking particles are important, because they not only represent the total 

amount of the bulk material or a single element being transferred from surface to ocean 

interior, but also provide information about the relationship of organic vs. inorganic 

components (Armstrong et al., 2002).  The total mass and compositions of sinking 

particles collected by time-series sediment traps can also be used for benchmark 

estimates of particle sinking velocity (Chapter 2: Xue and Armstrong, submitted).  As 

directly connected to the preservation of OC in deep oceans, OC is a key parameter to 

quantify carbon fluxes with depth, and to understand diagenetic processes in the water 

column (e.g. Wakeham and Lee, 1993; Lee et al., 2000).    

 Aluminum (or titanium) in sinking particles is often used to estimate the flux of 

lithogenic minerals in the water column since the only sources of Al and Ti are from 

aeolian and fluvial transport after the weathering of the continental crust (Taylor and 

Mclennan, 1995).  The Al (or Ti) content in sinking particles is low (e.g., ~0.06% in 

equatorial Pacific, Honjo et al., 1995), so its measurement might not be accurate enough 

especially when the sample size is small.  Consequently, the total mass minus the mass of 

OM, CaCO3, and opal is often used to represent lithogenic minerals (e.g., Haake et al., 
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1993; Takahashi et al., 2000).  However, we found that the sum of OM, CaCO3, opal, and 

lithogenic minerals (calculated from lithogenic Al and Al/Ti), the calculated total mass, 

did not always match the measured total mass for sinking particles in MedFlux study, as 

shown later in this thesis.  The difference between the measured and calculated mass is 

beyond the analytical errors, and mechanistic explanations are needed.   

 In this thesis, we will compare the calculated total mass with the measured total 

mass for sinking particles from MedFlux and US JGOFS studies, and discuss the possible 

mechanisms leading to the observed mass deficit. 

 

3. Research questions 

 

Overall in this thesis, I try to address the following main research questions: 

1. How can we estimate the SV for sinking particles using the benchmark method? 

2. How does PCA work and how can we explore different aspects of PCA to solve 

geochemical problems, particularly in the field of particle geochemistry? How do 

3D and 2D PCA work to track degradation trajectories for sinking particles? 

3. How different is the measured total mass of sinking particles from the total mass 

calculated by summing their major chemical compositions? How can we explain 

this systematical mass difference observed? 

 

4. Thesis organization 
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 In this thesis, I will investigate the chemical composition of sinking particles and 

their vertical dynamics in water column.  In this Chapter I, the background of this study 

on sinking particles is presented, and the research questions are introduced.  Chapter II 

investigates the settling velocities of sinking particles by introducing a new benchmark 

method based on fitting Fourier series to time-series sediment trap data from MedFlux 

and JGOFS studies.  Chapter III explains the mechanisms and applications of PCA to the 

geochemistry of particulate matter. I provide both 3D and 2D PCA to investigate 

degradation trajectories of sinking particles. In chapter IV, I will show that the difference 

between measured and calculated mass for sinking particles is systematic, and I discuss 

the possible reasons for this difference.  In Chapter V, I summarize the conclusions for 

this thesis, and suggest future research directions.  
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    Sinking speed     
Particle type   m/day   References 
     
Phytoplankton Ultraplankton <0.1-2 * Bienfang (1980) 
 Net plankton <10-20 * Smayda (1970) 
 Diatoms 10->70 * Passow (1990) 
 Diatoms 100-150  Brillett et al. (1983) 
 Diatom frustule 71-100  Honjo & Manganini (1993) 
 Algal aggregates 40-150 * Smetacek (1985) 
 Marine snow 1-368 * Alldredge & Silver (1988) 
 Marine snow 112 + Alldredge & Gotschalk (1989) 
 Aggregate 48-244 + van Leussen & Cornelisse (1993) 
 Mud aggregates 133 + ten Brinke (1994) 
 Aggregate 86-259 + Dyer et al. (1996) 
 Aggregate 190 + Hill et al. (1998) 
 Aggregate 86-328 + Sternberg et al. (1999) 
Protozoans Foraminifera 30-4800 * Kuenen (1950) 
 Radiolarians 350 * Kuenen (1950) 
 Acantharia 600 * Antia et al. (1993) 
Zooplankton Amphipoda 875 * Smayda (1970) 
 Chaetognata 435 * Smayda (1970) 
 Heteropoda 1400 * Vinogradov (1961) 
 Pteropoda 760-2270 * Smayda (1970) 

Fecal material 
Nauplii & 

copepiodids 5-28 * Paffenhoffer & Knowles (1979) 
 Crustacae 20-150 * Small et al. (1979) 
 Salps 450-2700 * Bruland & Silver (1981) 
 Aggregate 100 * Fowler & Knauer (1986) 
 Fecal pellets 36-376  Smayda (1969) 
Sinking particles  >100  Deuser (1986) 
  50-200  Siegel & Deuser (1997) 
    83-331   Berelson (2002) 
* references see Waniek et al. (2000);  
+ references see Hill (1998).  

 

 

Table 1.1 Sinking speeds (m/d) for different kinds of particles. 
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Figure 1.1 Simplified biological pump (De La Rocha, 2003). 
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CHAPTER TWO: An improved “benchmark” method for estimating 

particle settling velocities from time-series sediment trap fluxes 

 

 

 

Abstract 

 

A new method, based on fitting Fourier series to time-series (TS) data from 

sediment traps, has been developed to estimate the settling velocities (SV’s) of sinking 

particles in the open ocean. This new method was applied to data from MedFlux, as well 

as from the US JGOFS NABE, EqPac, and ASPS studies. Fluxes of mass and of four 

chemical tracers, as well as the molar ratios of the latter, were plotted on logarithmic 

scales; Fourier series were then fit to these data. In each case we determined the most 

likely sinking velocity using a likelihood-based nonlinear fitting algorithm. Variation 

among estimates using single tracers was significantly less than variation using tracer 

ratios; we therefore concluded that estimates based on single tracers are to be preferred to 

estimates based on tracer ratios. Our results also showed no obvious differences among 

SV’s estimated using different single tracers. The best estimate of settling velocity using 

single tracer fluxes with good temporal resolution (i.e, for sites with cup rotation times ≤  

8.5 days) is 205 m/d, with standard deviation 74 m/day. For MedFlux data alone (which 

has a resolution of 4-6 d), the estimate is 220 ±  65 m/d. This latter value is within 10% of 

the estimate of average sinking velocity (242 ±  31 m/d) made using MedFlux IRS traps 

in “sinking velocity” mode.  
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1. Introduction 

 

Sinking particles are major vehicles for transporting organic carbon from surface 

waters to the deep ocean. This transport reduces the partial pressure of carbon dioxide 

(the ) in the surface mixed layer, allowing the ocean to take up more atmospheric 

than would otherwise be possible (Sarmiento and Gruber, 2006). Because it 

determines the residence time of sinking particles in the water column, settling rate is one 

of the major factors that determine the depth at which organic carbon is remineralized. 

Therefore, accurate estimation of settling velocity is critical for understanding 

mechanistically the role of the ocean in determining atmospheric .  

2pCO

2CO

2CO

Recently it has been conjectured that the flux of organic carbon is determined by 

its quantitative association with ballast minerals (opal for diatoms; calcite for 

coccolithophorids and foraminifera; aragonite for pteropods; and dust; see Armstrong et 

al., 2002; François et al., 2002; Klaas and Archer, 2002). In the MedFlux program we 

have been seeking to identify mechanisms that determine observed patterns, so that we 

can understand and predict their variability in space and time. A central focus of our 

research has developed around the use of Indented Rotating Sphere (IRS) sediment traps 

in "settling velocity" (SV) mode (Peterson et al., 2005, and submitted; see also 

Armstrong et al., submitted; Lee et al., submitted). These traps sort particles into settling 

velocity classes, enabling flux estimates and chemical analyses of particles as functions 

of settling velocity. In an analysis of mass fluxes during the eight deployments of these 

settling velocity traps, Armstrong et al. (submitted) estimated modal settling velocities 

(that is, settling velocities with the highest mass fluxes per settling velocity interval) of 
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"fast settling" particles to be 353 m/d, with a standard deviation of 76 m/d, while the 

average velocities of the “fast sinking” fraction is much lower: 242 ±  31 m/d. These 

values are somewhat (but not radically) higher than the “canonical” range 80-200 m/d 

(Honjo, 1996; Siegel and Deuser, 1997; see also Armstrong et al., submitted).  

The method of choice for assessing settling velocity using time-series trap data is 

to compare the time of arrival of a sediment peak at one depth to its time of arrival at a 

deeper depth; this approach has become known as the “benchmark” method (Deuser et 

al., 1981; Honjo, 1996). In the present case, a “benchmark” estimate of settling velocities 

is made possible by the fact that IRS traps can also be deployed in “time series” (TS) 

mode (Peterson et al., 2005). In TS mode, the IRS valve is rotated several times per day, 

and the sediment on the IRS valve is deposited in whichever cup is open at the time of 

rotation. We analyzed MedFlux time-series data statistically to give an estimate of 

sinking velocity at the DYFAMED site that was independent of the estimates from 

“settling velocity” (SV) mode. In addition, we reanalyzed data from the North Atlantic 

Bloom Experiment (NABE) (Honjo and Manganini, 1993) and from the US JGOFS 

Equatorial Pacific study (EqPac) and Arabian Sea Process Study (ASPS) used by 

Berelson (2002). This analysis was performed using a new, more powerful 

implementation of the benchmark method.  

Using time-series trap data from the US JGOFS EqPac and ASPS studies, 

Berelson (2002) estimated particle settling velocities to be 83 – 331 m/day. Berelson used 

ratios of organic carbon (OC), biogenic Si (BioSi), Ca, and Al fluxes from different 

depths in the water column, arguing that ratios may have less measurement error than do 

measurements of individual tracers, and so would be more useful for assessing sinking 
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velocity. While the first statement may be true, the second – that ratios are better for 

assessing sinking velocity – is not, as will be shown below. 

For each tracer ratio at each site, Berelson (2002) regressed the ratio measured in 

cup n in a deep trap on the same ratio measured in cup m in a shallower trap; his goal was 

to estimate how much time (in terms of cup rotation intervals) it took for a pattern of 

fluxes in the shallower trap to reach the depth of the deeper trap. Berelson performed 

separate regressions for a range of integer cup delays n – m = {0,1,2…} between upper 

and lower traps. The "best" cup shift, which was used in calculating the settling velocity 

of particles from the upper depth to the lower depth, was determined (roughly) as the 

shift having the largest average regression coefficient across tracer ratios. Settling 

velocities were then calculated as (depth difference)/(("best" cup shift)*(cup rotation 

time)). However, in most cases (14 of 18 in Berelson’s study), the no-shift case n – m = 0 

showed the best correlation. To avoid the possibility of infinite settling velocity (= depth 

difference/(n – m)), Berelson made the assumption that when the best shift was n – m = 0, 

he would use a cup shift of 0.5 cups. This assumption inflates the transit time between 

depths, and so biases Berelson’s results towards lower settling velocities.  

This problem notwithstanding, Berelson then compared settling velocities 

between “shallow” trap pairs to settling velocities between “deep” trap pairs. This 

comparison was made separately for EqPac and ASPS. However, within each of these 

data sets, he did not specifically compare deep and shallow estimates from the same site; 

e.g., for the EqPac comparison he used shallow settling velocities from the Equator, 5N. 

and 5S, while the deep velocities were from the Equator, 5N, and 12S. He concluded that 

settling velocity tended to increase with depth.  
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There are three problems with this conclusion. First, since most of the cup shifts 

were 0.5 cups, his sinking velocity estimates depend more on the spacing between traps 

than on their time offsets. Second, the composition of settling material, and hence its 

settling velocity, may depend as much or more on site than it does on depth; it would 

therefore be highly desirable to make depth comparisons only within sites. Third, in sites 

with traps at three depths, data from the middle trap were used to estimate time offsets 

between both the upper pair of traps and the lower pair of traps; any error in the middle 

trap thus shows up in both upper SV and the lower SV, causing them to be negatively 

correlated.  

To avoid these problems, we devised a method whereby three Fourier series, 

differing only in their absolute timing, were fit simultaneously to data from shallow, 

middle, and deep traps at each site where data from three depths were available. (See 

Materials and Methods for details.) The estimated timing differences were then used in 

settling velocity calculations. In our method, timing differences can be any real number, 

and are not restricted to integer multiples of cup rotation time.  

Here we apply this new method to data from MedFlux, from the US JGOFS 

NABE, and from the studies used by Berelson (2002). We also present results on whether 

measurements of single elements or ratios of elements are better indicators of settling 

velocity. We compare the estimated SV’s to those found by Berelson (2002) and to 

estimates from MedFlux SV traps. Finally, we comment on the minimum timing between 

successive time-series cups needed to achieve satisfactory results. 

 

2. Materials and methods 
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2.1. Sample collection 

 

Particles in the MedFlux study were collected using IRS (Indented Rotating 

Sphere) time-series sediment traps (Peterson et al., 2005) at the DYFAMED site 

(43°25'N, 7°52'E) in the northwestern Mediterranean Sea 

(http://alpha1.msrc.sunysb.edu/MedFlux/). Separate collections were made from March 

to May in 2003, from May to June in 2003, and from March to April in 2005. IRS traps 

have 11 collection cups, plus a twelfth position that is open during trap deployment and 

retrieval. During deployment, each cup was open for a programmed interval of 4 to 6 

days. Trap depths and deployment dates for each deployment are listed in Tables 2.1 and 

2.2. Total mass and masses of ballast elements (inorganic carbon (IC), biogenic silica 

(BioSi), and aluminum (Al)) and organic carbon (OC) were measured after collection. 

Total Si, not BioSi, was measured in March to April 2005.  

 We also analyzed data from the US JGOFS North Atlantic Bloom Experiment 

(NABE), equatorial Pacific (EqPac), and Arabian Sea (ASPS) studies. These data were 

collected by Honjo and others (Honjo and Manganini, 1993; Honjo et al., 1995; Honjo et 

al., 1999) between 1989 and 1995; they are available on the US JGOFS website 

(http://usjgofs.whoi.edu/). Generally, time-series cups in NABE, EqPac, and ASPS were 

open for 14, 17, and 8.5 days, respectively. Many of these traps have continuous data for 

an entire year. For NABE 34N, fluxes at the shallow trap for the first half-year were 

much lower than those for middle and deep traps; many were close to zero, perhaps due 
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to some technical problem during sampling. We therefore considered only data from the 

second half-year in our study. 

 

2.2. Statistical Methods 

 

 We fit Fourier series expansions to the time-series data described in the previous 

section. We used Fourier series only to characterize the temporal patterns occurring at 

successive depths, so that these patterns could be aligned and their time-offsets estimated; 

we did not use these fits to estimate the “power” associated with each mode, or any other 

potential use of Fourier series. 

Usually data from a triplet of traps, (a shallow trap, a mid-depth trap, and a deep 

trap), deployed during the same time period, were analyzed together. All data (either for a 

single tracer, or for ratios between two tracers) were pretreated by transforming onto a 

logarithmic scale, followed by subtracting the mean of TS sample for each depth before 

analysis, leaving only the temporal pattern. These three sets of pretreated time series data 

were then fit simultaneously to the following harmonic curves: 

 

      

) 
F s(t j ) = ak cos(kω(t j − φsk ))

k=1

m
∑

) 
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SVsm
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∑ ]
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In Eq. (2.1), , , and  are model predictions of pretreated time series 

data at shallow (s), middle (m), and deep (d) traps, respectively, at the time of closing  

of the jth collection cup. In equation (2.1),  is the amplitude and   

)(ˆ
js tF )(ˆ

jm tF )(ˆ
jd tF

 t j

ak φsk  is the phase shift 

for the kth Fourier component for the shallow layer; ω is the frequency (d  ) of the first 

Fourier component at k = 1;   

−1

Δzsm   and Δzmd  are depth differences between shallow and 

middle, and middle and deep traps, respectively; and  SVsm and  are the 

corresponding mean settling velocities (SV’s) for particles in these two depth intervals. 

The ratios Δ

 SVmd

zsm /SVsm Δ and      are therefore the estimated delays (or offsets) of 

the fitted pattern between shallow and mid-depth traps, and between mid-depth and deep 

traps, respectively. Losses of material with depth are reflected in the parameters 

zmd / SVmd

 psm and 

  psd . At the MedFlux DYFAMED site and at EqPac-12S, only two traps were deployed; 

therefore only the shallow and middle equations were considered in Eq. (2.1). 

Since particle fluxes have well-defined annual cycles, we used one year as the 

fundamental period if the length of data set was equal to or more than one year. 

Otherwise, we chose the fundamental period to be the closest integer divisor of 366 days. 

For example, the fundamental period for a 61-day time series was taken to be 61 (= 

366/6) days, and the fundamental period for a 170-day series was 183 (=366/2) days.  

Maximum likelihood is a well-known statistical method for finding the most 

likely values for a set of parameters. The logarithm of the likelihood, log(likelihood), is 

usually used instead of likelihood itself because likelihood is often a very small value and 

it can be interpreted more easily with a logarithm scale (Edwards, 1992; Hilborn and 

Mangel, 1997; Burnham and Anderson, 1998; Armstrong et al., 2002).  In this study, data 
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points were fit by maximizing log(likelihood) values  using the following 

equation: 

  log(L)
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Eq. (2.2) is based on a normal error distribution for the difference between the observed 

and predicted values: the    are observed shallow, middle, or deep layer data points, the 

 are predicted values at these points, n is the number of data points in the time series, 

and σ is the standard deviation for the difference between and . The value of m, the 

number of Fourier components, was usually between 5 and 7; adding additional Fourier 

components increased      very little. Estimated settling velocities 

Yj

log(L

jŶ

 Yj jŶ

) SVsm  and  

were constrained to be in the range 10 – 1000 m/day.  

SVmd

 Berelson (2002) used linear-scale molar ratios for SV estimation. Here we used 

log-transformed ratios to remove the asymmetry between A/B and B/A: fits using A/B 

may give different results than fits using B/A, whereas log(A/B) = log(A) – log(B) = 

–log(B/A), so that a fit of log(A/B) yields a temporal pattern that is identical (except for 

sign) to a fit of log(B/A).  For the single-tracer fits, we used Inorganic Carbon (IC) rather 

than Ca, which was used by Berelson (2002) to represent CaCO3, assuming that all IC is 

in CaCO3. For comparing the use of single tracers to the use of ratios, we used only the 

three ratios OC/Al, OC/BioSi, and OC/IC because the other ratios are not independent. 

We also performed fits on log-transformed data using mass fluxes and fluxes of the four 

elemental tracers discussed above.  
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3. Results 

 

3.1. Log-transformed (single tracers) or log(tracer ratios)? 

 

3.1.1. Insights from MedFlux March – May 2003 

 

 Settling velocities (SV’s) were estimated from log-transformed data on mass 

fluxes and fluxes of four chemical tracers, and on three different elemental molar ratios 

(OC/Al, OC/BioSi, and OC/IC), for time-series sediment traps data from the MedFlux 

DYFAMED site in March to May 2003 (Table 2.1, first row). Estimates of settling 

velocity based on molar ratios had a higher mean settling velocity (393 m/d) and a much 

larger coefficient of variation (cv = 0.82) than estimates from single tracers (mean 216 

m/d and cv = 0.22). To explore the basis for these results, we plotted (Fig. 2.1) time series 

of fluxes, plus model fits, for both single tracers and their molar ratios at shallow (238 m) 

and middle depths (771 m). The top five panels in Fig. 2.1 show results using fluxes of 

mass and of the four chemical tracers. These figures show that different single tracers 

yield slightly different estimates of settling velocity. However, these differences are 

minor (range: 144 – 276 m/d), so that use of one tracer in preference to another should be 

made on scientific, as opposed to statistical, grounds. 

The bottom 3 panels in Fig. 2.1 show that fits using molar ratios can produce SV 

estimates that vary widely (range: 181 – 761 m/d). There is almost no visible cup delay 
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between upper and lower layers using OC/IC as the tracer; but the other two molar ratios 

(OC/Al and OC/BioSi) show obvious shifts between these two depths.  

This difference may be explained as follows: use of molar ratios combines 

temporal patterns from two tracers; for example, log(OC/Al) = log(OC) – log(Al) 

depends on both OC and Al. If the two tracers in a ratio have contrasting temporal 

patterns, the resulting overall pattern will be enhanced; but if they have similar patterns, 

the signal will be reduced. This difference may help explain the large coefficient of 

variation in the fits using tracer ratios, and argues for choosing single elements for SV 

estimation. The using of molar ratios by Berelson (2002) for assessing sinking velocity 

may not an appropriate method. 

 

3.1.2. Analysis of the complete data set 

 

 To investigate quantitatively how well single tracers and tracer ratios work for the 

complete data set, we estimated SV’s at all the open-ocean sites (4 couplets and 11 

triplets of traps; see Table 2.1) using the same tracers.   Data from EqPac 5S were 

excluded because the sediment traps at this station were too close to one another in depth. 

Estimated SV’s are shown in Table 2.1, along with the summary statistics {mean, 

standard deviation sd, and coefficient of variation cv = sd / mean}, both for SV’s 

estimated using single tracers and SV’s estimated using tracer ratios.  

 As shown in Table 2.1, most (21 of 26) of the cv’s estimated using elemental 

molar ratios are higher than those obtained using single tracers. A nonparametric one-

sided binomial test was applied to this ratio (cv) shows (cv)single tracer < (cv)ratios to be 
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significant at p < 0.001. We conclude that use of single elements gives more consistent 

results across tracers; single elements were therefore used for the SV estimation in the 

rest of this paper. 

 

3.2. Particle SV’s estimated using log(single tracers) 

 

Table 2.2 gives time offsets (Δzsm /SVsm  or   Δzmd / SVmd ) for sinking particles 

from 4 couplets and 11 triplets of time-series sediment traps, and the best-fit settling 

velocities estimated from them, for total mass and for the four chemical tracers, 

respectively. Examination of these results showed that not all estimates were of equal 

quality. For the MedFlux DYFAMED site, estimated cup shifts were between 0.87 and 

10.5 days, with an average of 4.59 days; estimated delays were therefore comparable to 

the DYFAMED cup rotation time (4 – 6 days). In contrast, many of the deployments at 

NABE and EqPac had much longer cup rotation schedules; the estimated delay was often 

only a fraction of a cup.  

To assess the importance of this resolution issue for our estimates of settling 

velocity, we divided the data set into three groups: the first group included only MedFlux 

data (15 estimates); the second group included all estimates made using data from traps 

with rotation times ≤  8.5 d (75 estimates, including those from MedFlux); and a third 

group with rotation times ≥  14 d (55 estimates). (Estimates from EqPac 5S, were again 

excluded.)  

The cumulative distribution functions (cdf) for these three groups are shown in 

Fig. 2.2. First, the cdf from MedFlux data is S-shaped, which is typical of a unimodal 
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distribution; this unimodality is confirmed in Fig. 2.3. In contrast, neither of the other two 

groups is ‘S’ shaped: both curves have a relatively flat region between 400 and 600 m/d, 

which means that few SV’s fall in this range. The histograms (Fig. 2.3) for SV’s of these 

two groups show clearly that both groups have two modes, centered at ~175 and 800 m/d 

for the high-resolution data and at ~100 and 850 m/d for the low-resolution data. The 

distribution for the total data set is also bimodal, with modes at ~150 and 875 m/d. 

We interpret these results as implying that the MedFlux results, being of the 

highest resolution, are unimodal because their resolution is sufficient to allow the Fourier 

method to work well in almost all cases. In contrast, at many other sites the data are not 

sufficiently resolved to allow the method to pick out a pattern. In these cases, the fact that 

we imposed a maximum SV of 1000 m/d has caused results to pile up in an apparent 

second mode, which we deem to be an artifact. 

To eliminate this artifact, we analyzed the data in Fig. 2.3 by excluding any SV > 

400 m/d, which visually appears as a natural break point in Fig. 2.3. The means and 

standard deviations of the remaining data (also highlighted in gray color in Table 2.2 for 

settling velocities) are listed in Table 2.3. The average settling velocity increases with 

increasing resolution (from 126 m/d for low-resolution data, to 205 m/d for high-

resolution data, to 220 m/d for MedFlux data), while the standard deviation and 

coefficient of variation decrease. We conclude that the relatively slow sinking speeds of 

classical studies (summarized in Honjo, 1996) are at least partly due to the low resolution 

of the data available at that time.  

 

3.3. Do sinking velocities increase or decrease with depth? 
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 In Table 2.4 we compare cup offsets and inferred sinking velocities for all data in 

our study. As noted in the Introduction, Berelson (2002) concluded that sinking velocity 

increases with depth. His conclusion is based on a comparison of SV’s estimated at 

“shallow” and “deep” trap pairs; this comparison was made separately for ASPS and 

EqPac. In each of these regions, “shallow” SV’s were pooled and compared to pooled 

“deep” SV’s in the same region; no attempt was made to compare shallow and deep traps 

from the same site. Berelson’s conclusion (his figure 5) was that settling velocity 

increases with depth. Comparing the error bars in his figure, it is clear that this trend was 

statistically significant at EqPac but not at ASPS. 

Berelson’s estimates of sinking velocities (Table 2.4; results taken from his Table 

2.1, but excluding the result from EqPac 5S) support his conclusion: in 6 out of 8 cases, 

the SV between the deeper trap pair was greater than the SV between the shallower trap 

pair. However, Table 2.4 also contains SV’s estimated using our Fourier technique, 

which allows an analysis based on shallow and deep trap pairs at the same site. 

Considering only the data from EqPac and ASPS used by Berelson (2002), our estimates 

indicate that the deep SV was greater than the shallow SV at only 3 of 9 sites; when the 

NABE sites are added, deep SV’s were greater at only 5 of 11 sites. Our results stand in 

contradiction to those of Berelson (2002). However, since none of these results (including 

Berelson’s) is statistically significant (exact binomial tests), we conclude that these data 

by themselves do not provide strong evidence for or against an increase of sinking 

velocity with depth. 
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Table 2.4 also contains a comparison of cup shifts estimated in the present paper 

with those reported in Berelson (2002). For EqPac and ASPS, Berelson reported 4 cup-

shifts of 1.0 cup and 14 cup-shifts of 0.5 cup. Our procedure produced cup shifts between 

0.10 and 1.10. For the 18 cup shifts that can be compared between studies, 12 of ours 

were shorter than those in Berelson (2002), and the other 6 were slightly longer than 

Berelson’s.  

 

4. Discussion 

 

We estimated sinking velocities between 26 pairs of traps, in each case making 5 

estimates using different tracers. In each case we determined the most likely value for the 

velocity at which signals are propagating down the water column. We then computed the 

averages of these velocities across tracers. Since estimates using different tracers are not 

independent, we cannot test whether results using different tracers differ significantly in a 

statistical sense. However, note that among the 15 couplets of high-resolution traps (3 

from MedFlux and 12 from ASPS, indicated in bold in Table 2.2), settling velocities for 

all tracers were <400 m/d  in 7 couplets, all SV’s were >400 m/d in 3 couplets, and SV’s 

were mixed in 5 couplets. More interesting, when aluminum is excluded as a tracer, all 

SV’s are <400 m/d in 10 couplets, all are >400 m/d in 4 couplets, and estimates are 

mixed in only one couplet.  These results suggest that even if differences among tracers 

do exist, they are usually unimportant (at least if Al is excluded as a tracer). They also 

suggest that use of Al in tracer ratios (Berelson, 2002) may lead to problems in SV 
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estimation, perhaps because of the “excess aluminum” problem (see Lee et al., submitted; 

and Chapter 4 of this dissertation).  

In the present study, we estimated the average SV to be slightly more than 200 

m/day. Assuming that two traps are deployed 1000 m apart, it would take about 5 days 

for sinking particles to settle from the upper trap to the lower trap. To have an offset 

comparable with the cup rotation time, sampling would need to be done with 5-day or 

better resolution time for each cup. For the DYFAMED site, average cup shifts for each 

deployment interval were between 0.38 and 1.83, with a grand average of 0.89 cup, so 

that the estimated shift was comparable to the resolution of the data at DYFAMED (4 to 

6 days). An interesting study would be to simulate sinking of a spectrum of particles, 

simulate sampling by a depth series of sediment traps, then see what resolution would be 

needed to capture the time delays in the patterns. However, to produce reliable results 

such a study would require use of a sophisticated model of particle interaction. Since the 

data on which such a model might be produced are only now becoming available 

(Armstrong et al., submitted; Trull et al., in press), such a study would at this point be 

premature. 

Finally, one of the distinct advantages of our method is that it can be used to 

estimate SV’s between 2 or more pairs of traps at the same time; it therefore provides a 

method for investigating whether sinking velocity increases with depth that is free from 

the statistical correlation problems outlined in the Introduction.  In Table 2.5 we have 

listed all 11 triplet traps, with the difference for log(likelihood) between two cases: in 

case A we allowed two SV’s, one between the upper and middle traps and one between 

the middle and lower traps; in case B we fitted only a single SV for the whole water 
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column. To justify an extra parameter (2 SV’s instead of 1), the log(likelihood) in case B 

must be at least 2 log(likelihood) points above that for case A (Hilborn and Mangel, 

1997). This criterion was met for all tracers at only one station (NABE 34N), and only for 

a few tracers at other two station (ASPS 2SW and ASPS 5). Curiously, both the NABE 

34N and the ASPS 5 sites were “low resolution” (Table 2.2), with ≥  14 d cup rotation 

times. We again conclude that there is no strong evidence for increased sinking velocities 

with depth.  
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Station deployment  Depth (m) SV (m/d) by log(tracer) SV(m/d) by log(tracer ratio) 

  interval upper lower mass OC IC BioSi Al mean sd cv OC/Al OC/BioSi OC/IC mean sd cv 

                  

MedFlux 3/06/03-5/06/03 238 771 210 229 224 276 144 216 48 0.22 235 181 761 393 321 0.82 
 5/14/03-6/30/03 117 1918 172 231 293 219 179 219 49 0.22 115 320 507 314 196 0.62 
 3/4/05-4/28/05 313 924 169 180 165 389 702 321 233 0.73 212 283 49 181 120 0.66 
                    

NABE-48N 4/3/89-4/2/90 1110 2109 47 116 59 40 45 61 31 0.51 787 19 680 495 415 0.84 
  2109 3734 145 252 176 52 61 137 83 0.61 825 49 778 550 435 0.79 

34N 10/16/89-4/2/90 1248 1894 111 175 115 102 82 117 35 0.3 577 828 249 551 290 0.53 
  1894 4391 615 571 350 688 987 642 230 0.36 498 527 711 579 116 0.2 
                    

EqPac-Equator 2/02/92-1/07/93 880 2284 930 878 883 780 851 864 55 0.06 28 29 61 39 19 0.48 
  2284 3618 233 54 609 118 294 262 216 0.83 688 804 12 501 428 0.85 

12S 2/02/92-1/07/93 1292 3594 142 879 109 47 53 246 356 1.45 79 151 386 206 161 0.78 
5N 2/02/92-1/07/93 1200 2100 131 113 154 122 121 128 16 0.12 43 378 744 388 351 0.9 

  2100 3800 859 829 950 859 717 843 83 0.1 27 914 43 328 507 1.55 
                    

ASPS-2NE 11/13/94-4/26/95 903 1974 252 818 719 782 682 650 229 0.35 84 965 931 660 499 0.76 
  1974 3141 245 291 263 241 305 269 28 0.11 858 810 530 733 177 0.24 

3NE 12/2/94-2/8/95 858 1857 833 657 719 908 768 777 98 0.13 348 249 699 432 236 0.55 
  1857 2871 780 852 542 922 780 775 143 0.18 719 10 786 505 430 0.85 

4NE 11/13/94-4/26/95 821 2229 190 167 139 232 749 296 256 0.87 258 891 741 630 331 0.52 
  2229 3478 142 194 148 134 53 134 51 0.38 251 886 223 453 375 0.83 

2SW 5/25/95-9/09/95 924 1996 153 275 166 188 71 170 73 0.43 949 531 270 583 343 0.59 
  1996 3159 98 76 82 116 736 222 288 1.3 214 843 89 382 404 1.06 

3SW 6/28/95-9/17/95 888 1882 297 262 365 271 290 297 41 0.14 103 450 127 226 194 0.86 
  1882 2991 186 205 161 293 186 206 51 0.25 760 284 645 563 248 0.44 

4SW 6/11/95-8/23/95 807 2215 880 787 880 833 674 811 86 0.11 805 204 127 379 371 0.98 
  2215 3489 584 462 754 582 224 521 196 0.38 45 13 564 207 309 1.49 
5 12/6/94-4/30/95 800 2363 145 90 191 134 94 130 41 0.32 965 44 930 646 522 0.81 

    2363 3915 499 848 877 800 658 736 157 0.21 228 125 792 382 359 0.94 
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Table 2.1 Settling velocities (SV’s) estimated using either single tracers or tracer ratios. Stations with triplets of traps (shallow, 
middle, deep) are highlighted in gray. Data from EqPac 5S were excluded because the sediment traps at this station were deployed too 
closely in depth. Summary statistics (mean, standard deviation (sd), and coefficient of variation cv = sd / mean) are listed in each row. 
In 21 of 26 cases, the cv for single tracers was less than the cv for ratios; this proportion is significant at p < 0.001 (exact binomial 
test). 
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Station deployment Depth (m) cup rotation offset (d) Settling velocity (m/day) 

  interval upper lower period (d) log(mass) log(OC) log(IC) log(BioSi) log(Al) log(mass) log(OC) log(IC) log(BioSi) log(Al) 

               
MedFlux 3/06/03-5/06/03 238 771 5.5 2.54 2.33 2.38 1.93 3.71 210 229 224 276 144 

 5/14/03-6/30/03 117 1918 4.5 10.5 7.8 6.14 8.21 10.08 172 231 293 219 179 
 3/4/05-4/28/05 313 924 5 3.62 3.4 3.7 1.57 0.87 169 180 165 389 702 
               

NABE-48N 4/3/89-4/2/90 1110 2109 14 21.4 8.61 16.9 24.9 22.1 47 116 59 40 45 
  2109 3734 14 11.2 6.45 9.21 31.3 26.6 145 252 176 52 61 

34N 10/16/89-4/2/90 1248 1894 14 5.84 3.69 5.6 6.33 7.91 111 175 115 102 82 
  1894 4391 14 4.06 4.37 7.13 3.63 2.53 615 571 350 688 987 
               

EqPac-Equator 2/02/92-1/07/93 880 2284 17 1.51 1.6 1.59 1.8 1.65 930 878 883 780 851 
  2284 3618 17 5.72 24.9 2.19 11.3 4.53 233 54 609 118 294 

12S 2/02/92-1/07/93 1292 3594 17 16.2 2.62 21.2 49.2 43.7 142 879 109 47 53 
5N 2/02/92-1/07/93 1200 2100 17 6.85 7.96 5.86 7.38 7.45 131 113 154 122 121 

  2100 3800 17 1.98 2.05 1.79 1.98 2.37 859 829 950 859 717 
               

ASPS-2NE 11/13/94-4/26/95 903 1974 8.5 4.25 1.31 1.49 1.37 1.57 252 818 719 782 682 
  1974 3141 8.5 4.76 4.01 4.44 4.84 3.82 245 291 263 241 305 

3NE 12/2/94-2/8/95 858 1857 8.5 1.2 1.52 1.39 1.1 1.3 833 657 719 908 768 
  1857 2871 8.5 1.3 1.19 1.87 1.1 1.3 780 852 542 922 780 

4NE 11/13/94-4/26/95 821 2229 8.5 7.41 8.42 10.1 6.07 1.88 190 167 139 232 749 
  2229 3478 8.5 8.81 6.43 8.44 9.35 23.6 142 194 148 134 53 

2SW 5/25/95-9/09/95 924 1996 8.5 7.02 3.9 6.46 5.7 15.2 153 275 166 188 71 
  1996 3159 8.5 11.9 15.4 14.2 10 1.58 98 76 82 116 736 

3SW 6/28/95-9/17/95 888 1882 8.5 3.35 3.8 2.72 3.67 3.43 297 262 365 271 290 
  1882 2991 8.5 5.95 5.4 6.89 3.79 5.95 186 205 161 293 186 

4SW 6/11/95-8/23/95 807 2215 8.5 1.6 1.79 1.6 1.69 2.09 880 787 880 833 674 
  2215 3489 8.5 2.18 2.76 1.69 2.19 5.7 584 462 754 582 224 
5 12/6/94-4/30/95 800 2363 17 10.8 17.4 8.2 11.7 16.7 145 90 191 134 94 

    2363 3915 17 3.11 1.83 1.77 1.94 2.36 499 848 877 800 658 
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Table 2.2 Time offsets (days) estimated for sinking particles from 4 couplets and 11 triplets of time-series sediment traps, and their 
estimated SV’s, from single tracers (total mass and four chemical constituents). Stations with triplets of traps are again highlighted in 
gray. Data are grouped into two classes by cup rotation times: cups rotating in ≤  8.5 days in boldface, and cups rotating in ≥  14 days. 
Settling velocities less than 400 m/d are highlighted in gray.  



 

 

  number of number of SV's       
Data category trap pairs  < 400 m/d mean sd cv 

      
All data 26 83 172 83 0.48 

      
Low resolution 11 34 126 73 0.58 

(rotation interval>=14d)      
      

High resolution 15 49 205 74 0.36 
(rotation interval<=8.5d)      

      
MedFlux 3 14 220 65 0.29 

 

 

Table 2.3 Numbers of trap pairs and summary statistics, arranged by data-resolution class, for sites and tracers where the SV was 
estimated to be less than 400 m/d (these are highlighted in gray in the last 5 columns of Table 2.2). See text for further details.  
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Station deployment interval Depth (m) distance cup rotation period this paper   Berelson(2002) 

    upper lower (m) (d) SV(m/d)* offset cup#   SV(m/d) offset cup# 
           

MedFlux 3/06/03-5/06/03 238 771 533 5.5 216 0.45  - - 
 5/14/03-6/30/03 117 1918 1801 4.5 219 1.83  - - 
 3/4/05-4/28/05 313 924 611 5 321 0.38  - - 
           

NABE-48N 4/3/89-4/2/90 1110 2109 999 14 61 1.16  - - 
  2109 3734 1625 14 137 0.85  - - 

34N 10/16/89-4/2/90 1248 1894 646 14 117 0.39  - - 
  1894 4391 2497 14 642 0.28  - - 
           

EqPac-Equator 2/02/92-1/07/93 880 2284 1404 17 864 0.1  83 1 
  2284 3618 1334 17 262 0.3  157 0.5 

12S 2/02/92-1/07/93 1292 3594 2302 17 246 0.55  271 0.5 
5N 2/02/92-1/07/93 1200 2100 900 17 128 0.41  106 0.5 

  2100 3800 1700 17 843 0.12  200 0.5 
           

ASPS-2NE 11/13/94-4/26/95 903 1974 1071 8.5 650 0.19  252 0.5 
  1974 3141 1167 8.5 269 0.51  137 1 

3NE 11/13/94-4/26/95 858 1857 999 8.5 777 0.15  235 0.5 
  1857 2871 1014 8.5 775 0.15  261 0.5 

4NE 11/13/94-4/26/95 821 2229 1408 8.5 296 0.56  331 0.5 
  2229 3478 1249 8.5 134 1.1  294 0.5 

2SW 5/25/95-9/09/95 924 1996 1072 8.5 170 0.74  252 0.5 
  1996 3159 1163 8.5 222 0.62  274 0.5 

3SW 5/25/95-12/15/95 888 1882 994 8.5 297 0.39  117 1 
  1882 2991 1109 8.5 206 0.63  261 0.5 

4SW 5/25/95-12/15/95 807 2215 1408 8.5 811 0.2  - - 
  2215 3489 1274 8.5 521 0.29  300 0.5 
5 12/6/94-12/15/95 800 2363 1563 17 130 0.7  92 1 
    2363 3915 1552 17 736 0.12   183 0.5 
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Table 2.4 Average settling velocities and cup shifts estimated using single tracers (total mass and 4 critical elements) are compared to 
results from Berelson (2002). The vertical distances between upper and lower depths, and the number of days each cup was open, are 
also noted.  
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Station deployment  Depth (m) log(Likelihood) difference between Case A & Case B 
  interval shallow middle deep log(mass) log(OC) log(IC) log(BioSi) log(Al) 
          

NABE-48N 4/3/89-4/2/90 1110 2109 3734 1.11 0.08 0.86 0.24 0.13 
34N 10/16/89-4/2/90 1248 1894 4391 4.52 3.06 3.62 3.51 8.53 

          
EqPac-Equator 2/02/92-1/07/93 880 2284 3618 0.11 0.66 0.05 0.02 0.07 

5N 2/02/92-1/07/93 1200 2100 3800 0.61 0.63 0.22 0.98 0.29 
          

ASPS-2NE 11/13/94-4/26/95 903 1974 3141 0.01 1.41 1.54 1.81 0.72 
3NE 11/13/94-4/26/95 858 1857 2871 0.28 0.27 0 0.23 0.2 
4NE 11/13/94-4/26/95 821 2229 3478 0.21 0.05 0 0.29 0.21 
2SW 5/25/95-9/09/95 924 1996 3159 0.76 5.99 1.88 0.87 1.02 
3SW 5/25/95-12/15/95 888 1882 2991 0.05 0.1 0.36 0.02 0.48 
4SW 5/25/95-12/15/95 807 2215 3489 0.26 0.02 0.11 0.12 0.46 

5 12/6/94-12/15/95 800 2363 3915 2.13 2.7 1.26 1.19 1.93 
 

 

Table 2.5 Eleven triplets of time-series sediment traps analyzed by Berelson (2002) were reanalyzed to assess whether deeper particles 
sink faster than shallower particles. Data from EqPac 5S were again excluded. Case A: Sinking particles were allowed to have 
separate SV’s for shallow/middle and middle/deep trap pairs. Case B: Sinking particles were constrained to have only a single SV for 
shallow/middle and middle/deep trap pairs.  Likelihood differences must differ by at least two log(likelihood) points to justify an 
additional parameter (see text); only the NABE 34N site, and a few tracers at ASPS sites 2SW and 5,  meet this criterion, and many 
sites have miniscule differences between fits made with one vs. two sinking velocities. This test provides little evidence that deeper 
particles sink faster. 
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Figure 2.1 Fits of the model to demeaned log-transformed single tracers (top 5 subplots) and tracer ratios (bottom 3 subplots). Data are 
from MedFlux time-series sediment traps at 238m (upper depth) and 771m (lower depth) at the Mediterranean DYFAMED site, from 
March to May 2003; they were pretreated by transforming onto log scales, followed by subtracting the mean of each trap record before 
analysis. 



 
 
 
Figure 2.2 Cumulative distribution function (cdf) curves for the SV’s for: (a) MedFlux 
data only; (b) data with cup rotation times ≤  8.5 days (including MedFlux data); (c) data 
with cup rotation times ≥ 14 days; (d) all data in Table 2. The MedFlux data produce an 
S-shaped distribution, indicative of a unimodal distribution, whereas the other data sets 
produce cdf’s indicative of bimodal distributions; see also Fig. 2.3. See text for further 
details.  
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Figure 2.3 Histograms of SV estimates for the four data sets shown in Fig. 2.2.  
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CHAPTER THREE: Using principal components analysis (PCA) along 

with cluster analysis to study the organic geochemistry of sinking 

particles in the ocean 

 

 

 

Abstract 

 

 Principal components analysis (PCA) is a statistical tool that can be used to re-

express large multivariate datasets in a way that the first few dimensions account for the 

majority of the variance in the data.  Although the application of PCA in marine organic 

geochemistry is becoming more and more popular, the capabilities of PCA have not been 

systematically explored.  In this chapter, we illustrate the use of PCA through a series of 

examples that arose while investigating the geochemistry of sinking particles during the 

MedFlux project. Our results show that attempting to construct a 1-dimensional 

“degradation index” is in most cases oversimplified, and that viewing the degradation  

trajectories using the first 2 or 3 principle components (PC’s) is more informative.  Use 

of three - dimensional PCA is indicated when the variance explained by the third 

eigenvalue is comparable in magnitude to that explained by the second eigenvalue. We 

also discuss the use of scree plots and cluster analysis in helping decide whether a 1D, 2D, 

or 3D PCA most efficiently portrays the essential information in the dataset.   
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1. Introduction 

 

In the field of marine organic geochemistry, more and more geochemical data are 

being collected due to the development of modern instrumentation.  For example, 

different lipids compounds, including both fatty acids and neutral lipids, are analyzed and 

become available by the use of gas chromatography-mass spectrometry (GC-MS). 

Methods to detect patterns and reduce noise in huge databases are therefore becoming 

more important to geochemists.  An appropriate statistical technique is often crucial to 

sift the “story” out of a puzzling dataset, or to visualize a large dataset.  Principal 

Component Analysis (PCA) is a statistical technique that can be used to capture much of 

the information in a large multi-dimension data matrix in fewer dimensions, so that the 

re-expressed dataset can be visualized easily and quantitatively. 

 Previous applications of PCA in marine geochemistry fall into three categories.  

First, PCA has been used to classify biomarkers according to source (i.e., terrigenous or 

marine) and to trace the fate of organic matter (OM) in the oceanic environment (Yunker 

et al., 1995; Goni et al., 2000; Zimmerman and Canuel, 2001; Dittmar, 2004; Yunker et 

al., 2005; Hu et al., 2006).  Second, the similarity and differences among samples have 

been investigated according to their variables, and grouping information also has been 

obtained through PCA (Moncheva et al., 2001; Gonzalez-Silvera et al., 2004; Schrimm et 

al., 2004); Third, the relationship among variables has been tracked, and summary 

statistics (i.e.,  “degradation indices”) have been developed using PCA (Mariano et al., 

1996; Dauwe and Middelburg, 1998; Dauwe et al., 1999; Sheridan et al., 2002; 

Yamashita and Tanoue, 2003; Boehme et al., 2004).   
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A second statistical method, cluster analysis, can also be used to explore the 

relationships among geochemical samples.  However, cluster analysis only gives sample 

cluster information without giving any information of the variables within each group. 

Using PCA in concert with cluster analysis gives much more information than is possible 

using either method alone, as we will illustrate in the following examples.  

PCA has been used in geochemistry for many different purposes; however, there 

has not been a systematic description of its principles, coupled with examples of how to 

apply this technique to geochemical datasets.  For example, most of the applications of 

PCA in geochemistry have assumed that the first 1 or 2 dimensions of a PC are adequate 

for capturing the essential structure, so that the conclusions of these studies are based on 

the first one or two principal components (PCs).  In particular, the 3rd PC often explains 

as much variance as the 2nd PC, yet its use is rarely considered.  

 In this chapter, we start by explaining how PCA works. Several geochemical 

datasets, mainly organic compositions of sinking particles from the MedFlux project, will 

then be discussed as examples of PCA application. We present most of our results with 

both 2D and 3D structure. The use of scree plots and cluster analysis in deciding whether 

a 3D PC structure is necessary and helpful in a given situation will be discussed.  

 

2. Method 

 

2.1. Intuition on PCA 
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 PCA is a mathematical technique to re-express a dataset with a new coordinate, 

especially for those data of high dimension, so that the first few dimensions explain as 

much as possible of the variance.  Here we use an artificial dataset to explain the 

principles in a more intuitive way.  This dataset, with two variables  and , is plotted 

in Fig. 3.1a. A correlation, which is always between -1 and 1, is a single number that 

represents the relationship between two variables. If the correlation is positive, the 

relationship between two variables is positive; otherwise, the relationship is negative. The 

correlation matrix for these two variables is: 
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which means the correlation for  and  is 0.54. The goal of PCA is to re-express the 

dataset with another two dimensions  and  in a new coordinate so that both new 

dimensions are linear combinations of  and :  
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With the proper choice of u11, u12, u21, and u22, the axis  (the first principal component) 

will express maximum variance of data, the second dimension  (the second principal 

component) exhibits the second maximum variance, and these two dimensions will be 

orthogonal (at right angles; “orthogonal” is the n-dimensional analog of  “perpendicular”) 

to each other.  is a matrix of eigenvectors (or characteristic vector) with 
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orthonomal character (orthogonal for two columns, and each column has length 1; see 

Appendix A for more explanations). 

The variances of the original data points in the  and  directions are 12.6 and 

5.4, respectively (Fig. 3.1a). The linear combinations of  and  are simply 

projections of all data points onto new axes  and . As shown in Fig. 3.1b, after 

transformation the largest variance is 15.8, increasing the variance among dataset from 

70% on axis to 88% of the total variance on axis (the first PC). However, PC1 

does not account for all of the variance among dataset; it only gives information along 

. The left variance (2.2) is on the second PC, which contains all of the information not 

included in PC1. If there are more than two variables on original dataset, PC2 will have 

the largest variance among the left PC’s.  There is no correlation between  and , as 

shown by the correlation matrix:  
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X1 2

1Z Z
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 This is just a simple illustration of the principles of PCA.  In reality, there are 

usually more than two variables in a given dataset. In these more general cases, PCA is 

used to find the first few dimensions that represent the maximum variances for data 

points among a multidimensional space. More mathematical details on the mechanisms of 

PCA can be found in Appendix A.  

 

2.2. Questions regarding the performing of PCA 
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 In order to perform a PCA analysis, several key factors must be considered, 

including how to standardize the original geochemical data and to decide how many 

principal components should be considered.  For example, there are many ways of 

standardizing the data, which may lead to different conclusions.  Therefore, choosing an 

appropriate standardization is a key to apply the PCA and make appropriate interpretation.  

Here we consider a dataset from MedFlux to illustrate the performing of PCA.  

Particles in this MedFlux study were collected using IRS time-series sediment 

traps at 117m at the DYFAMED site in the northwestern Mediterranean Sea from March 

to May 2003 (http://www.msrc.sunysb.edu/MedFlux/) (Lee et al., submitted). These traps 

have 11 collection cups, which were open sequentially for preset time intervals during 

trap deployment. X is the dataset for 11 samples with measurements of 17 amino acids 

(mole percentage in composition, data listed in Table 3.1) in each cup.  

  

2.2.1. How should the original data be standardized? 

 

 In the raw dataset X, the values of each variable are often differ in magnitude, or 

even in units.  For example, the mole%’s and variances of  the amino acids ASP, GLU, 

SER, GLY, and ALA are about one order of magnitude larger than those of BALA, 

GABA, and MET.  Without standardization, the dominant amino acids like ASP would 

account for a much larger percentage of the variance in the linear combination, the re-

expressed dataset Y, than the minor amino acids.  In many cases, the minor components 

are often the key, more unambiguous biomarkers that for indicating geochemical 

processes  For example, the amino acids GABA and BALA are clear indicators of 
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bacterial degradation, although they account less than 1% of the amino acids in sinking 

particles (Dauwe et al., 1999; Sheridan et al., 2002).  If the scientific question is best 

attacked by conferring the same weight to all of the measurements (as in often the case in 

geochemical studies), X should be standardized before performing the PCA.  The most 

common and simplest way to standardize the data, assuming all measurements are 

equally important, is, for each variable, to subtract its mean and to divide by its standard 

deviation:  

j

jj
j

XX
T

σ
−

=        ,                                                       (3.3) 

where is the raw data of jth variable for all samples, jX jX is the mean of jth variable 

over all samples, jσ is the standard deviation of jth variable for all samples, and is the 

transformed data of jth variable for all samples.  This transformation converts each 

variable in the dataset into a new variable with zero mean and unit standard deviation.  

As a result, all variables have the same weight.  It should be noted that the 

standardization may amplify the noise brought by some minor variables whose values 

have relatively larger analytical errors. 

jT

There are other types of standardization techniques such as mean normalization, 

maximum normalization, range normalization, autoscaling, minimum-maximum 

transformation, and half-range and central value transformation in chemistry (Moreda-

Pineiro et al., 2001).  For example, the minimum-maximum transformation maps the 

minimum value of each variable into 0 and the maximum value into 1 so that all sample 

data range between 0 and 1.  No matter which standardization technique is chosen, the 
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key is to re-assign a score for each variable in each sample so that the standardized 

dataset is better for solving a specific question. 

It is important to choose the most appropriate way of standardizing the data pre-

treatment method based on the specific dataset and the specific question to be solved.  

For example, in the case that will be discussed later, BALA and GABA are important 

bacterial degradation indicators, even though their mole percentages are much smaller 

than those of other major amino acids.  Standardizing data using Eq. 3.3 can increase the 

relative weight of these two amino acids among all of the variables, and is very helpful 

for investigating degradation pathways in sinking particles.   

 

2.2.2. How many principle components (PCs) should be retained in a PCA? 

 

The total number of PCs extracted is the same as the number of variables in a 

PCA analysis. In a successful PCA the first few PCs explain most of the variance in the 

data.  As such, the original dataset is simplified and reduced to fewer dimensions.    

There are several ways to determine how many PC’s to retain (Lattin et al., 2003). 

One simple method is to plot the distribution of eigenvalues.  In this method (Fig. 3.2), 

eigenvalues are ordered from largest to smallest. The resulting figure is known as a scree 

plot, and the eigenvalues are the variances explained by the corresponding PC’s.  In Fig. 

3.2, which shows the scree plot for the amino acid database (Table 3.1), there is a 

significant decline in explained variance between the third and the fourth eigenvalues. 

This region is therefore, the ‛elbow’ for this curve; only the PCs before the elbow are 

included (Cattell, 1966; Lattin et al., 2003).   
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For the amino acid dataset, the first three PC’s together explain 87% of the 

variance (46%, 23%, and 18%, respectively).   Retention of the first 3 PC’s is suggested 

by the location of the knee in Fig. 3.2; the resulting 3D plot is shown in Fig. 3.3a, 

including Figs. 3a-1 & 3a-2 (This plot and all the left 3D plots in this chapter are all 

viewed from two different angles.). For comparison, a plot retaining only the first 2 PC’s 

is shown in Fig. 3.3b. Clearly, these 11 cups are well-separated in the 3D plots. Sample 

cups TS 09-12 in the 2D structure, however, are not separated well from sample cups TS 

06-09. 

The grouping character for the 11-cup samples by PCA could also be examined 

by cluster analysis (Fig. 3.3c), another statistical method that can be used to visualize the 

relationships among cups. The advantage of cluster analysis is that its groupings consider 

all of the dataset variance compared to the 60-90% represented by the first few PCs in 

PCA analysis.  With cluster analysis, cups close to each other are more highly correlated 

than those that are not.  Cluster analysis shows that these 11 cups are separated into three 

groups: TS02-05, TS06-09, and TS10-12, consistent with the 3D PCA result. In contrast, 

the 2D plot the group TS10-12 mistakenly appears to lie inside group TS06-09.  Thus the 

addition of the third PC in this case not only more accurate in conveying grouping 

information; it also is needed to convey the basic structure of the dataset.   

 

2.2.3. How many variables should be retained for PCA? 

 

Redundant variables have been discussed to discard unnecessary variables 

without the loss of extra variation, especially when the environmental dataset contains 
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large number of variables (King and Jackson, 1999). In geochemistry studies, some 

variables do not show much distinction among data. The adding and deleting of them 

from dataset does not affect the variations among samples. These types of variables could 

be disregard before the performing of PCA to simplify result. A useful example by 

deleting some unnecessary variables will be given in case 3 in the application part.  

The eigenvector is the loadings of each variable on the new axes. For example, 

the first column of eigenvector represents the loadings of each variable on the first PC. 

These loadings also represent the correlations of each variable with corresponding PC’s 

(Lattin et al., 2003). If the loading of a variable is very low, it means that the variable has 

low correlation relationship with the corresponding PC. For the amino acid dataset, the 

first three columns of eigenvector are listed in Table 3.2 with a 3D plot shown their 

loadings on each PC in Fig. 3.3a. The first PC (PC1), for example, exhibits good 

correlations with amino acids ALA, TYR, GABA, HIS, and VAL, which are all have 

high positive loadings above 0.28 on the x axis.  The first PC, also clearly negative 

correlated with SER, which has negative loadings -0.33 on PC1.  However, BALA does 

not show good correlation with the first PC as its loading is very low (0.04) on PC1.  The 

second PC (PC2), has high correlation above 0.29 with ILE, ARG, LEU, PHE, LYS, as 

well as ASP (-0.41), but BALA, ALA, and TYR (correlation below 0.05).  The third PC 

(PC3) has high correlation with GLU and THR (above 0.30), as well as GLY and BALA 

(negative, lower as -0.46).  But it does not show much correlation with LYS, ALA, and 

TYR (absolute correlation below 0.06).  Those variables that have higher loadings on 

each PC contribute more to the variance among data. 
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Using the student t test, correlation between two sample groups is significant if 

correlation coefficient r > 0.28 (80% significance) for sample number n=11.  With this 

criterion, the variable that has correlation coefficient with any remained PCs above 0.28 

should be kept for PCA.  In this example, amino acids except MET will be remained for 

80% significance. Without the non-significant correlated amino acids MET, the new PCA 

result is shown in Fig. 3.4, which is very similar to the one with all amino acids 

information.  The grouping information does not changed, but the variance explained by 

the first three PC’s increases slightly from 87% to 89%.  Therefore, choosing 

significantly correlated amino acids for PCA can help increase relative variance 

explained by the remained PCs.  It is very useful in many other cases when the number of 

variables is very large and some of the variables are not significantly distinct among 

samples.  This is the first step to reduce the dimension of dataset without losing much 

information among samples. 

There are some other questions regarding the operation of PCA. For example, 

there is still interest in finding a most approximate degradation direction among samples; 

through we have found in this study that the degradation trajectories do not simply follow 

a straight curve. There is question on how to rotate the axes to get a single degradation 

direction and to obtain all of the loadings of samples on that direction. This question is 

beyond the interesting of this study, but could be found in Appendix B in case of 

interesting. 

 
3. Applications  
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3.1. Case 1: using 3D plots from PCA to visualize degradation trajectories of sinking 

particles with different settling velocities 

 

Sinking particles are one of the main vehicles to transform OC from surface to 

deep ocean.  The settling rate of sinking particles and the degradation rate of them are the 

two factors that determine how deep OC be transported into ocean, or how long CO2 can 

be stored in the ocean.  Degradation of sinking particles in water column has been well 

studied (Wakeham and Lee, 1993).  However, it is still not very clear how different 

degradation is for particles with different settling rate.  Sinking particles were collected 

using a NetTrap from 200 m in May 2003 at DYFAMED site in western Mediterranean 

Sea.  These particles were separated by elutriation into 4 classes (A, B, C and D) with 

different settling velocity: >230 (A), 115-230(B), 58-115(C), and <58(D) m/day.  To 

investigate their degradation trajectory with time, the four classes of particles were 

incubated for 5 days.  Around 70 components (amino acids, pigments, lipids and 

carbohydrates) were measured for these four classes (ABCD) of particles at each time 

point: 0, 12, 24, 48, and 120 hours (Goutx et al., 2007; Lee et al., submitted).  We tried to 

differentiate the degradation patterns among the four classes of sinking particles.  PCA is 

an efficient statistical method to integrate this large dataset, and can help to sieve out the 

degradation patterns.  

After the data are standardized with Eq. 3.3, the PCA results showed that the first 

few PCs explained 22%, 21%, 14%, 9%, 6%, 5%, 5%... of the total variance, respectively.  

Theoretically, the fourth eigenvalue is more like the elbow of the scree plot (Fig. 3.5a), 

and the first four PCs will explain 66% of the total variance.  The 3D PCA result, 
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however, will be presented instead for visualization since 4D figure is harder to be shown 

by picture.  Fig. 3.5b is a 3D plot including the first three PCs and their loading 

information.  For the variables, it is known that GLU and ASP, chlorophyll, pyrophide, 

and fucoxanthin represent relatively fresh phytoplankton, either diatom or coccolithpores 

(Sheridan et al., 2002).  In contrast, the amino acids BALA, GABA, the pigments 

phaeophytin, the deoxysugars fucose and rhamnose, and lipid metabolites represent a 

more degraded state.  As Fig. 3.5b shown, the degradation direction is therefore, 

approximately from left to right on PC1, from backward to forward on PC2, and from 

upper to lower direction on PC3.  With this 3D plot, particles of different settling 

velocities have different composition initially; the 3D coordinates for A and B are (-0.20 

0.42 0.05) and (-0.36 -0.16 0.05), and they are (-0.26 -0.23 0.49) and (0.24 0.27 0.38) for 

C and D at time 0.  Slower sinking particles (C and D) are more bacterial and 

zooplankton related due to the biomarker GABA along PC1.  During the incubation, 

however, all the four classes go from initial stage to the more degraded direction (shown 

by arrows in Fig. 3.5b) with time, and become more similar in composition than they are 

in initial states.  After 5 days, classes C (0.49 -0.03 -0.25) and D (0.46 -0.08 -0.16) are 

almost identical, A (-0.01 0.33 -0.23) and B (-0.11 -0.26 -0.30) both have tendency to 

merge to that point but might take longer time than 5 days.  Moreover, slower sinking 

particles degraded more rapidly than faster sinking particles.  In comparison, the 2-

dimentional PCA (Fig. 3.5c) could not separate sinking particles B from C, as they are 

separated in a 3-D PCA.  Clearly, the 3-D PCA is more consistent with results from 

cluster analysis (Fig. 3.5d). In contrast, the 1-dimensional PC gives little details on the 

degradation trajectories of sinking particles with different SV. Over all, with the original 
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dataset of 20×70 matrix, the 3D PCA makes it possible to directly visualize these 

degradation patterns of the sinking particles with different settling rates.  

 

3.2. Case 2: using PCA to sort out the effects of mercuric chloride and protease inhibitors 

on the degradation of particles  

 

Mercuric chloride (HgCl2) and protease inhibitors (PI) are often used to inhibit 

bacterial or enzymatic activity in environment samples.  These inhibitors are necessary in 

preserving the sinking particles, which have to be collected in several months’ periods 

using sediment traps, to make sure that enough amounts of materials are collected.   

However, how these inhibitors affect the composition of sinking particles is not known.  

Tens of organic compounds are usually measured to characterize the composition of 

particles.  To evaluate the effect of inhibitors, PCA provides an efficient way of 

combining all the organic compound together, to discern the compositional changes.    

In the experiment, we used a diatom culture of Thalassiosira pseudonana to 

represent marine particles, and HgCl2 and PI were added to the diatom cultures.  The 

culture was incubated for 33 days (Liu et al., 2006).  A series of variables were measured, 

including amino acids, pigments, lipids, C and N at time zero and time 33 days.  Ctrl-0, 

PI-0, and HG-0 were samples with control, PI-treated, HgCl2-treated at time zero.  Ctrl-

33, PI-33, HG-33 and PI+HG-33 were samples with control, PI-treated, HgCl2-treated, 

both PI- and HgCl2-treated after 33 days.  PCA was applied on the whole dataset to test 

how the particle composition changes between inhibitor treated and the control samples, 

and how the individual organic components had been preserved during the incubation. 

 63



PCA results showed that the second eigenvalue is the elbow in scree plot (Fig. 

3.6a), and the first two PCs explain 43% and 25%, in total, 68% of the variance.  The 2D 

plot clearly separate these 7 samples into three groups (Fig. 3.6c): 1) Ctrl-0, PI-0, and 

HG-0; 2) Ctrl-33 and PI-33; 3) HG-33 and PI+HG-33.  The degradation direction is along 

with PC1, with the fresh on the right side to the degraded on the left side.  The first group 

(projections 4.5, 3.3, and 3.2 on x axis) is on the right side along x axis, containing most 

organic compounds representing fresh diatomic matter, such as GLU, SER, and 24-

methyl-5,24(28)-dien-3B-ol.  There is no significant difference between samples with PI-

treated, HG-treated and controlled one at the initial status, as expected.  The second 

group (projections -3.8 and -7.0 on x axis), on the left side along PC1, has more bacterial 

degraded product, GABA.  Within this group, PI-treated sample is similar in organic 

composition with the control sample, suggesting that PI does not inhibit the degradation. 

The third group (projections 1.4 and -1.7 on x axis) is located between group 1 and 2, 

with HG-33 more closed to group 1 along PC1, suggesting that HG did not fully inhibit 

the degradation of OM.  Adding PI into HG-treated sample does not help much either.   

However, group 3 (projections -5.4 and -3.9 on y axis, see Fig. 3.6c) is also separated 

from group 1 (projections 2.2, 1.2, and 2.3 on y axis) and group 2 (projections 1.7 and 2.0 

on y axis) along PC2, indicating Hg can also lead to specific compositional change of 

OM.  The HG-treated samples are more enriched with amino acids THR, TYR, ASP, 

ARG, and fatty acids 16:0, 14:0.  A significant fraction of Chl a was transformed to its 

allomer in the HG-treated samples.    

This grouping character could also be seen by cluster analysis (Fig. 3.6d) results, 

the adding of PC3 (12% variance) with 3D structure (Fig. 3.6b) could increase total 
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variance to 80% in report.  The grouping information, however, is very similar with that 

from 2D results, and is also consistent with cluster analysis.  As the second eigenvalue is 

the elbow for scree plot, the third eigenvalue (5.0) is not comparable with the second one 

(10.3), and the first two PCs have already explained 68% of the variance, 2D plots for 

PCA are good enough for grouping these samples. 

The effects of different inhibitors are clearly differentiated by the PCA plot in a 

semi-quantitative way.  The results suggest that PI is not a good inhibitor at all, and Hg 

can cause some degree of degradation by chemical oxidation.  In addition, the PCA plot 

allows one to quickly find out the inhibitor effect on specific organic compound.  For 

example, 18:4, 20:5 were not preserved well while 16:0, 14:0 became enriched under the 

effect of Hg (Figs. 3.6b and 3.6c).    

 

3.3. Case 3: using PCA to test association of natural radioisotopes with organic  

compounds in sinking particles 

 

The natural radionuclides, daughter and parent pairs of  210Po/210Pb and 234Th/238U, 

have been used to trace the fluxes of sinking particles in the ocean.  This is based on the 

disequilibrium between the daughter and parent radioisotopes in the surface ocean due to 

their different particle activities and half-lives (Rama and Goldberg, 1961).  In general, 

210Po and 234Th have higher particle affinity than 210Pb and 238U, respectively.  In addition 

to the deficiency of 234Th or 210Po relative to their parents, we also have to know the 

ratios of Th or Po to carbon.  These ratios can be obtained from particles collected by 

either in situ pumps or sediment traps (Buesseler et al., 2006).  Unfortunately, these ratios 
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vary significantly with particle types or size.  One key factor in controlling Th/C or Po/C 

ratios is how these isotopes associate with the organic compounds, and the degrades of 

this association are unclear.  In this study, we take advantage of all the chemical 

compound and isotope information in the sediment trap particles collected during the 

MedFlux project, and use PCA to find their correlations.  

Time series sediment trap samples (14 cups in total) were collected at the 

DYFAMED site in the western Mediterranean Sea from March to June 2003 (Stewart et 

al., 2007).  Natural radioisotopes 210Po, 210Pb, 234Th, 228Th, along with organic 

components (amino acids, lipids, and pigments), organic carbon, nitrogen, tracer metals 

(Fe, Zn, Ti), and minerals were measured.  We use PCA to transform the data into the 

first few dimensions, which explains most of the variance among samples.  The 

relationship between radioisotopes and different components will be investigated using 

the first few PCs. 

In the original dataset, there are 86 variables for each of the 14 samples.  PCA 

was performed after the data were standardized.  In the preliminary runs, those 

insignificantly correlated variables are deleted for final PC result; only 34 variables are 

remained.  The variances that could be explained by the first few PCs are 37%, 19%, 

10%, 7%, 6%, 6%....etc.   Although the second eigenvalue is more like the elbow from 

the scree plot (Fig. 3.7a), the first two PCs only gives 56% (lower than 60%) variance, 

which would increase to 66% by adding the PC3.  In the 3D structure, samples are 

grouped into three (Fig. 3.7b).  Samples collected in March (cup 1-4) were grouped 

together, enriched in diatom-related fecal pellets (28D5,22; 28D5, 24(28);SER, pyro-a, 

phytol, C20:1).  Samples collected in April (cup 5-9) are in the second group, enriched in 
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bacterial degradation products (BALA, GABA, BR15/17).  The remaining cups (10-14) 

collected in May and early June are in the third group, mainly fresh phytoplankton-

derived (Chla, OC, TN, Fuco).  The first PC could be seen as zooplankton degradation 

index, and the second PC is more about bacterial degradation index.  The overall 

degradation index direction is approximately running from Chla to BALA, as shown in 

Fig. 3.7b.  In the 2D structure, the grouping information is somewhat different with that 

from 3D, as cups 10 and 11 obviously go with the second group (Fig. 3.7c). Cluster 

analysis offers a way to check the grouping information, which is more consistent with 

the PCA results from 3D structure (Fig. 3.7d).  3D structure is therefore preferred even 

when the second eigenvalue is the elbow for scree plot but the first two PCs explain less 

than 60% variance. 

The radionuclides 210Po and 210Pb are more abundant in samples 10-14, which are 

dominant by fresh phytoplankton-derived material.  The OC, TN, Chl-a, fuco, Zn and 

amino acid MET, have very closed loading with these two radioisotopes and are more 

likely to be associated with them.  The isotopes, 234Th and 228Th, are loaded close to both 

the phytoplankton-derived and bacterially-degraded groups.  Overall, Th is more 

correlated with degraded materials than with 210Po and 210Pb.  The possible explanation is 

that 210Po can be taken up by phytoplankton cells, rather than simple absorption onto the 

cell surface, so that Po is associated with labile organic material.  In contrast, 210Pb is 

abundant in sample 10-14, mostly from the input of Saharan dust in May 2003 event; 

higher 234Th and 228Th in more degraded material may reflect the high surface to volume 

ratio of small particles, and 228Th is probably more associated with degraded material 

than 234Th as 228Th has more positive loadings on both PC1 and PC2(Stewart et al., 2007).  
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With the aid of PCA, it is much easier to sift out the possible association mechanisms 

between radio isotopes and organic compounds, especially for a formable large dataset.   

 

3.4. Case 4: using PCA to compare amino acid compositions in time series (TS) and 

settling velocity (SV) sediment trap samples  

 

The newly invented SV traps can be used to separate particles based on their in-

situ sinking velocities (Peterson et al., 2005).   It is important to understand the 

compositional differences among particles with different SV’s, if we are to decipher what 

factors control the SV’s.  Particles were collected with IRS time-series sediment traps at 

the DYFAMED site (200 m depth) in the western Mediterranean Sea from March to May, 

2003.  Settling velocity traps (there were two SV traps, and they were duplicated) and TS 

traps were deployed concurrently; these two types of traps collected the same particles, 

but with difference mode of processing the particles  (Peterson et al., 2005).  Seventeen 

types of amino acids were compared for both TS and SV samples, in order to investigate 

the correlation between amino acids composition and settling velocity, and how the TS 

and SV samples are correlated.  Those cups that have similar sources for sinking particles 

in either TS or SV traps are assumed to have similar amino acids allocate distributions, 

which could be revealed by PCA. 

PCA results show that there is no obvious elbow for the first 5 components in the 

scree plot (Fig. 3.8a).  In order to visualize the data more easily, we take the first three 

PCs, which explained 32%, 22% and 17% (71% in total) of the total variance among 

samples, and make a 3D plot using these three PCs (Fig. 3.8b). The TS and SV samples 
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are positioned by their amino acids allocated information.  Based on the degradation 

indicators of BALA and GABA, and the relative fresh amino acids of SER, GLY, THR 

and ASP, we define the degradation direction as from left to right side on PC1, and from 

negative to positive values on PC2.  There is no obvious degradation information on PC3.  

Particles in TS02-06 are less degraded than those in later cups TS07-12.  Particles in 

SV104, 204, 203, 205 are fresher than those in the other SV cups.  TS samples and SV 

samples are basically separated on PC3, with TS series on the top of SV series.  TS02-06, 

SV104, SV203, SV203 and SV205 have similar composition, which may be due to SV 

cup 04 collected the same particles as TS02-06.  This grouping information is consistent 

with the results from cluster analysis (Fig. 3.8d).  Since the flux of sinking particles in TS 

02-06 accounts for 80% of the flux during the whole sampling period, and SV04 accounts 

for 32% of the total flux, only part of the particles that collected by TS 02-06 go into 

SV04, with the settling velocity in the range of 196-490 m/d.  The rest of the particles 

collected during TS02-06 are separated into other SV traps.  Particles in TS07-12 are 

grouped together, but are different on composition with any of the SV cup samples. The 

particles collected by SV mode traps are, therefore, more likely reallocated during the 

separation of them by different SV’s.  The two series SV trap samples (i.e. SV102-SV112 

and SV203-SV212) are similar on their amino acids compositions for each corresponding 

cups as expected, and there is no significant distinction between these two series.  Most 

of the SV particles are grouped together except SV102 103, 104, and 204.  The first two 

PCs, which explained 54% variance in total, are explained with a 2D PCA plot (Fig. 3.8c) 

as well. An overlap does not exist in 3D PCA plot (Fig. 3.8b) and cluster analysis (Fig. 

3.8d) between TS 11-12 and SV cups 111-112, but is found in 2D figure. The adding of 
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PC3 in this specific case is therefore, giving more accurate information than just using 

the first two PCs.  

 

4. Conclusions and future work 

 

This chapter has described the basic principles of PCA, and demonstrated how to 

use PCA to investigate geochemical problems with the focus on the sinking particles in 

the ocean.  Our results clearly show that PCA is a powerful tool to seek relationships 

among many variables and to group the samples, when dealing with large dataset.  Our 

results also show that constructing each 1-dimensional PC for “degradation index” is 

oversimplified, and the trajectory from the first 2 or 3 axes is more informative.   

PCA, however, is only a semi-quantitative statistical approach.  We group the 

samples close on loadings together, yet we often need to quantify the similarities among 

samples in the same group.  Combining cluster analysis and PCA in a quantitative way 

may be a solution that needs to be explored.  Organic matter including sinking particles is 

usually differentiated by source and degradation.  While PCA provides a feasible 

approach to sort these factors out as this study showed, these two are often tangled 

together. These how to better separate these two factors and determine the real 

degradation index warrants further investigation.  Moreover, it may be possible to 

construct a universal OM database from different environments including rivers, lakes, 

estuaries, costal oceans, and to map the OM compositions to their sample locations.  With 

the database, it may be possible to tell the sources and degradation status for an unknown 

sample, using PCA.   
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% ASP GLU HIS SER ARG GLY THR BALA ALA TYR GABA MET VAL PHE ILE LEU LYS 
TS-02 7.86  7.58  1.46  9.87 5.53 16.90 7.73 0.52  11.28 3.70  0.56  0.53 5.79 4.12 3.88 6.86 5.83 
TS-03 9.89  8.56  1.59  10.43 4.69 16.11 7.28 0.38  11.47 3.80  0.42  0.55 5.48 3.83 3.52 6.52 5.50 
TS-04 8.59  8.22  1.68  10.04 4.38 16.82 7.46 0.45  12.31 4.25  0.48  0.44 5.97 3.65 3.42 6.27 5.59 
TS-05 10.88  9.81  1.42  10.32 4.03 15.37 7.57 0.56  11.94 3.96  0.43  0.43 5.65 3.48 3.13 5.98 5.05 
TS-06 9.07  10.07  1.62  8.03 4.74 16.74 7.24 0.71  12.30 4.25  0.67  0.41 5.77 3.44 3.14 5.87 5.95 
TS-07 7.06  8.35  1.87  7.41 4.88 16.79 7.46 0.66  13.12 4.65  0.70  0.41 6.78 3.66 3.61 6.37 6.22 
TS-08 8.84  10.41  1.92  6.76 4.38 15.31 7.41 0.53  13.31 4.70  0.74  0.29 6.75 3.35 3.35 5.98 5.96 
TS-09 7.67  10.46  1.99  7.23 4.46 15.05 7.57 0.58  13.45 4.60  0.80  0.31 6.55 3.37 3.28 6.11 6.54 
TS-10 8.26  10.73  1.74  7.37 4.53 14.80 7.64 0.62  13.00 4.50  0.82  0.61 5.97 3.48 3.25 6.27 6.41 
TS-11 9.27  11.24  1.66  6.72 4.39 13.75 7.94 0.29  13.03 4.62  0.83  0.37 6.31 3.56 3.47 6.38 6.19 
TS-12 9.30  11.49  1.71  6.93 4.44 13.68 8.04 0.31  12.53 4.38  0.71  0.58 6.13 3.63 3.51 6.36 6.26 

  
 

Table 3.1 The 17 amino acids mole% information for sinking particles collected by 11 cups in time-series sediment traps in 

DYFAMED site, March to May 2003.  
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  PC1 PC2 PC3 

ASP -0.108 -0.411 0.253 
GLU 0.262 -0.160 0.304 
HIS 0.292 0.137 -0.169 
SER -0.326 -0.136 -0.088 
ARG -0.160 0.393 -0.135 
GLY -0.199 0.070 -0.456 
THR 0.069 0.166 0.474 

BALA 0.043 -0.033 -0.462 
ALA 0.348 0.036 -0.064 
TYR 0.343 0.054 -0.042 

GABA 0.308 0.181 0.079 
MET -0.184 0.095 0.252 
VAL 0.282 0.194 -0.126 
PHE -0.287 0.291 0.087 
ILE -0.150 0.425 0.089 
LEU -0.193 0.380 0.184 
LYS 0.258 0.296 0.043 

  
 

Table 3.2 The loadings of variables on the first three PC’s for amino acids data collected 

in DYFAMED site, March to May 2003. These loadings represent the correlation 

relationship of each variable with corresponding PC’s.  
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(a) 

 
 

(b) 

 
 
 

Figure 3.1 (a) The plot of an artificial dataset, which has two variables and , for the 
explanation of PCA mechanisms. The maximum variance of dataset is along with , and 
the second maximum variance is along with . (b) The axes have been rotated to have 

and  as the new axes; the variances among data along with both and  are 
along listed. 

1X

1Z

2X

2Z

1Z
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Figure 3.2 The scree plot of eigenvalues (i.e. variances explained by each principal 
component) for amino acids dataset of time series sediment trap samples in March to 
May 2003, DYFAMED site Mediterranean Sea. There is a significant decline in 
explained variance between the third and the fourth eigenvalues. This region is therefore, 
the ‛elbow’ for this curve; and the forth eigenvalue is not comparable with the third one. 
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(a-1) 

 
(a-2) 
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(b) 

 
(c) 

 
 
 
Figure 3.3 The plots of (a) the first 3 principal components (with two view angles, a-1 & 
a-2); (b) the first 2 principal components, (c) cluster analysis, for amino acid dataset of 
time series sediment trap samples in March to May 2003, DYFAMED site Mediterranean 
Sea. Eleven cups were grouped into three: 02-05, 06-09, and 10-12, consistent with the 
observation from 3D PCA shown by Fig. 3.3(a). 
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(2) 

 
 
 

Figure 3.4 A test on the 3D plots (with two view angles,1 & 2) of the first 3 principal 
components for amino acids dataset of time series sediment trap samples in March to 
May 2003, DYFAMED site Mediterranean Sea with the variable amino acids MET 
deleted in original dataset.  
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(a) 

 
 

(b-1) 
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(b-2) 

 
(c) 
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(d) 

 
 
 
Figure 3.5 The (a) scree plot of eigenvalues; and plots of (b) the first 3 principal 
components (with two view angles, b-1 & b-2); (c) the first 2 principal components (see 
also Goutx et al., 2007), and (d) cluster analysis, to visualize the degradation trajectories 
of sinking particles with different settling velocities which were collected in MedFlux. 
Classes B and C were completely separated by their compositions on cluster analysis, 
which is consistent well with 3D PCA on Fig. 3.5(b), but they were not shown on 2D 
PCA (Fig. 3.5(c)).  
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(b-1) 
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(b-2) 

 
(c) 
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(d) 

 
 
 
Figure 3.6 The (a) scree plot of eigenvalues; and plots of (b) the first 3 principal 
components (with two view angles, b-1 & b-2); (c) the first 2 principal components (see 
also Liu et al., 2006), (d) cluster analysis, to find out the effects of mercuric chloride and 
protease inhibitors on the degradation of particles in MedFlux. This cluster grouping 
information is consistent with both 2D and 3D PCA results.  
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(b-2) 

 
(c) 
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(d) 

 
 
 
Figure 3.7 The (a) scree plot of eigenvalues; and plots of (b) the first 3 principal 
components (with two view angles, b-1 & b-2); (c) the first 2 principal components (See 
also Stewart et al., 2007); and (d) cluster analysis, to test the association of natural 
radioisotopes with organic compounds in sinking particles. This cluster grouping 
information is more consistent with the 3D PCA results on Fig. 3.7(b). 
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(b-1) 
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(b-2) 
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(d) 

 
 
 
Figure 3.8 The (a) scree plot of eigenvalues; and plots of (b) the first 3 principal components (with two view angles, b-1 & b-2); (c) 
the first 2 principal components; and (d) cluster analysis,  to compare the amino acids organic compounds in sinking particles 
collected from time-series sediment traps or SV mode sediment traps. This grouping information is more consistent with 3D PCA plot 
in Fig. 3.8(b).  



CHAPTER FOUR: The difference (mass deficit) between measured and 

calculated masses of sinking particles in the ocean  

 

 

 

Abstract 

 

 In 2003 and 2005, sinking particles were collected from depths of ~200m, ~800m, 

and ~1800m at the DYFAMED site in the Mediterranean Sea as part of the MedFlux 

project, using both time-series and settling-velocity sediment traps. We analyzed the 

major chemical components of these sinking particles, including organic matter (OM), 

opal, CaCO3, and lithogenic minerals. At DYFAMED, the sum of the masses of these 

components is often less than the mass that is measured directly, leading to an observed 

mass deficit. For comparison, we also analyzed US JGOFS data from several sites, using 

the same algorithms as we had applied to MedFlux data. We found that the estimated 

mass deficits for sinking particles from the (relatively shallow) Ross Sea were large, but 

that particles collected from deep-ocean sites, including the Arabian Sea, equatorial 

Pacific, Southern Ocean, and North Atlantic, had mass deficits close to zero. Our 

analyses also showed that OM content is directly related to mass deficit, especially in 

shallow water where OM content is high. We hypothesize that water bound to organic 

molecules or to minerals in the sinking particles, especially those from shallow depths, 

may not be totally removed during oven-drying, and that tightly-bound water molecules 

may cause the observed mass deficit. Analytical error may also contribute variance to the 
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mass deficit, especially where sample size is small, although our study suggests that it is 

not the major factor contributing to mass deficit. 
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1. Introduction 

 

Sinking particles are the main vehicles transferring carbon from surface to deep 

ocean waters, temporarily or permanently removing carbon from the active carbon cycle.  

In this respect, sinking particles play a very important role in reducing global warming 

(Sarmiento and Gruber, 2006). This carbon transport is often called the biological pump, 

and its efficiency is directly determined by the composition and settling velocity of 

sinking particles: how much carbon is carried by sinking particles and how fast it is 

transported determine the amount of remineralization that can occur with depth.   

Sinking particles in the ocean typically consist of organic matter (OM) and ballast 

minerals. The ballast minerals, as defined here, include biogenic opal, calcium carbonate 

(CaCO3), and lithogenic minerals. During the transit from surface waters to the ocean 

interior, most of the organic carbon in sinking particles is remineralized at depths of 100-

1000 m, in the so-called twilight zone, releasing inorganic carbon to surrounding 

seawater (Wakeham et al., 1997).  Sinking particles settle faster when they are by 

becoming large and when they contain ballast minerals that have greater density. By 

analyzing extensive sediment trap data, Klaas and Archer (2002) found that most of the 

organic matter (OM) (83%) in sinking particles is associated with CaCO3, which is much 

denser than opal and more abundant than terrestrial minerals.  

The flux and composition of sinking particles have been extensively studied in 

different ocean areas (e.g., Lee and Cronin, 1982; Wakeham et al., 1984; Honjo and 

Manganini, 1993; Honjo et al., 1995; Honjo et al., 1999; Collier et al., 2000; Honjo et al., 

2000; Prahl et al., 2000). The total mass of sinking particles is an important parameter, 
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not only for representing the total amount of the bulk materials being transferred from 

surface to deep waters, but also for providing information about the relationship between 

organic and inorganic components. Total mass in sediment traps can be obtained directly 

by measuring the mass of sinking particles after the particles are oven dried at 60°C, or 

indirectly by summing the masses of the major chemical components. To calculate the 

mass of sinking particles indirectly, we summed the masses of four components: organic 

matter (OM), CaCO3, opal, and lithogenic minerals. These masses were based on 

measured elemental concentrations: organic carbon (OC) for OM, inorganic carbon (IC) 

for CaCO3, biogenic Si for opal, and lithogenic Al or Ti for lithogenic minerals (Honjo et 

al., 2000). By summing the four components, one can obtain a calculated mass. Since Al 

and Ti concentration data are not always available, or are relatively low in sinking 

particles and are difficult to accurately measure, lithogenic minerals are often calculated 

by subtracting the masses of OM, CaCO3, and opal from the measured mass, under the 

assumption that the measured mass matches well with calculated mass (Haake et al., 

1993; Takahashi et al., 2000). Using US JGOFS data, however, we will show that the 

sum of OM, opal, CaCO3, and lithogenic minerals is systematically lower than the 

measured mass at several sites; that is, that there is a mass deficit. Here we define mass 

deficit MD as the difference between 1 and the ratio of the sum mi∑ of the 4 major 

components  and the measured total massmi Mmeas :  

MD =1− mi∑
Mmeas

                                                                  (4.1) 

We know of no previous studies that report a comparison between measured and 

calculated mass fluxes.   
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Aluminum or titanium is usually used to estimate lithogenic mineral contributions 

because the only source of Al and Ti is aeolian and fluvial transport of material from the 

continental crust, where Al/Ti is on average 15.4 (Taylor and Mclennan, 1995).  However, 

recent studies have shown that a significant fraction of Al in sinking particles exists as 

“excess” Al, which is Al scavenged from the water column as the particle sinks; excess 

Al is defined as: 

Alexcess = Altotal − (Al /Tilitho) ×Titotal  .                                          (4.2) 

This excess Al can cause measured Al/Ti ratios to be much higher than 15.4; for example, 

they can be as much as 30 in the equatorial Pacific Ocean (Dymond et al., 1997; Kryc et 

al., 2003). Excess Al is mostly in the form of Al(OH)3 and Al2O3 , and is a major  

component of particles collected at DYFAMED , where it can contribute as much as ten 

percent of total mass (Lee et al., submitted).  However, even when excess Al hydroxide is 

included, total mass still does not reach 100% of the measured mass for many samples 

from the DYFAMED site and from some other open ocean sites.   

In this chapter we calculate mass deficits using Eq. (4.1) for sinking particles 

collected in sediment traps at different open ocean sites (Mediterranean Sea, equatorial 

Pacific, Arabian Sea, Southern Ocean including Ross Sea, and North Atlantic), and 

investigate the relationship of mass deficit to measured mass, sampling depth, and 

chemical composition. Possible causes of mass deficits will then be discussed; we 

conjecture that water bound to compounds in sinking particles is the most likely cause.  

 

2. Method 
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2.1. Sample collection 

 

MedFlux time-series samples were collected using indented rotating sphere (IRS) 

sediment traps at the DYFAMED site (43°25'N, 7°52'E) in the northwestern 

Mediterranean Sea (http://alpha1.msrc.sunysb.edu/MedFlux/, see also Lee et al., 

submitted). Samples were collected from early March to early May 2003 (Period 1 or P1, 

2003), mid-May to the end of June 2003 (Period 2 or P2, 2003), and early March to the 

end of April 2005 (Period 1 or P1, 2005) at two depths (see Lee et al., submitted, for 

details). Each time-series deployment collected material in 11 cups; each cup collected 

for 4 – 6 days. An aliquot (20% or 30%) from each cup sample was used to determine 

mass. Other sample splits were used for organic carbon, inorganic carbon, biogenic silica, 

Al, and Ti measurements. In 2005, only total silica was measured.  

Settling velocity (SV) traps were used for the first time in 2003; they were 

deployed in 2003 at 238 and 117 m, and in 2005 at 313, 524, and 1918 m; time-series 

IRS sediment traps were deployed simultaneously (Peterson et al., 2005; Lee et al., 

submitted). A technical description of the settling velocity traps is given in Peterson et al. 

(2005). Sinking particles were collected and separated into fractions having minimum in 

situ sinking velocities from 0.68 m/d to 979 m/d. Samples were then analyzed for total 

mass, OC, IC, biogenic Si, Al and Ti.  

In addition to the data from MedFlux, we also analyzed time-series sediment trap 

data from the US JGOFS Arabian Sea Process Study (ASPS), equatorial Pacific Ocean 

study (EqPac), North Atlantic Bloom Experiment (NABE), Antarctic Environment and 

Southern Ocean Process Study (AESOPS), and Ross Sea component of AESOPS.  These 
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last data are available from the US JGOFS website: 

http://usjgofs.whoi.edu/mzweb/data/Honjo/sed_traps.html.  

 

2.2. Total mass and chemical composition measurements and calculations 

 

Particles collected by each sediment trap cup were split using a McLaneTM WSD 

splitter and were filtered onto Nuclepore or glass fiber filters (Peterson et al., 2005; 

Wakeham et al., submitted). Mass was measured with a semi-micro balance (10-5 g 

capability) on a 30% split (in 2003) or 20% split (in 2005) after washing with 5 mL 

deionized (DI) water and drying overnight at 60°C (Lee et al., submitted). Total carbon 

was measured using a Carlo Erba model 1106 Elemental Analyzer (in 2003) or model 

1602 CNS analyzer (in 2005) (Peterson et al., 2005; Lee et al., submitted). IC was 

determined by subtracting OC mass from the mass of the non-HCl-treated split. In 2003, 

samples were sequentially leached with base and acid to separate biogenic and lithogenic 

silica; Si was then measured by graphite furnace atomic absorption spectrometry (GF-

AAS) using a Perkin-Elmer AAnalyst 800 spectrometer. Al and Ti were measured using 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) on a ThermoFinnigan 

Element II ICP-MS. In 2005, total Si, Al, and Ti were measured by GF-AAS using a 

Perkin-Elmer AAnalyst 800 spectrometer after samples were digested in 750 uL 

concentrated HCl, 250 uL concentrated HNO3, and 50 uL concentrated HF (all trace 

metal clean) for one week and then diluted to 10mL with MilliQ water (Lee et al., 

submitted).  
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The major chemical components, OM, opal, CaCO3, lithogenic minerals, and 

excess Al hydroxides, were calculated based on elemental percentages in both MedFlux 

and US JGOFS samples. To obtain OM, we multiplied OC by 2.199 (Klaas and Archer, 

2002). CaCO3 was calculated stoichiometrically from inorganic carbon (IC), with the 

assumption that all IC is present as calcium carbonate (Lee et al., submitted). Opal is 

present as SiO2.nH2O, where n can vary from 0.4 to 1.5 (Mortlock and Froelich, 1989; 

Collier et al., 2000; Honjo et al., 2000); we used SiO2.H2O (Lee et al., submitted) in this 

study. In 2003 we calculated opal from biogenic Si; in 2005 we calculated opal from 

{biogenic Si} = {total Si} – {lithogenic Si}, assuming a ratio of 3 between lithogenic Si 

and lithogenic Al (Klaas and Archer, 2002). Lithogenic mineral is calculated from 

lithogenic Al ( Ti) times 11.9 (Lee et al., submitted). Hydrated Al was calculated 

from {excess Al} = {total Al} – {lithogenic Al}, multiplied by 3 (= 81/27), where 81 is 

the molecular weight of hydrated Al in seawater assuming it is 76.2% Al(OH)4
- and 

23.7% Al(OH)3 (Vandenberg et al., 1994; Lee et al., submitted) and 27 is the atomic 

weight of Al.  However, all Al was assumed to be lithogenic in the NABE and AESOPS-

noRS data, as Ti data were not available. In the Southern Ocean Al is present only in 

trace amounts (~0.1%), so the possible presence of excess Al in these samples was 

ignored.  

×4.15

 

3. Results 

 

3.1. Mass deficits in different oceans 
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3.1.1. Mass deficits in the MedFlux study 

 

Ternary plots are often used to depict the relative percentages of three 

components in a sample that sum to a constant. Ternary plots have been widely used in 

geosciences, for example, to depict rock classifications according to their compositions 

(e.g., percentages of quartz, feldspar, and mica) (Philip and Watson, 1988). Since mass 

deficit MD is defined as the difference between 1 and the sum of the OM  and 

{ballast minerals}  (Eq. 4.1), a ternary diagram can be used to display 

relationships among these three variables.  

measM/

measM/

In a ternary plot, each side of the triangle represents 0% of one of the components, 

and the corner of the triangle opposite the base represents 100%.  A typical MedFlux 

example is shown in Fig. 4.1a; the percentages of OM, ballast minerals, and mass deficit 

in this example are 30%, 23%, and 47%, respectively.  Samples with composition 

percentages outside the range 0 – 100% are located outside the triangle. These samples 

have negative mass deficit; i.e., the sum of OM and ballast minerals is greater than the 

measured total mass.   

Sinking particle compositions from MedFlux time-series (TS) traps show large 

ranges in their relative percentages (Fig.1a and Table 4.1): OM  (0.05 – 0.66), 

{ballast minerals}  (0.25 – 1.72), and mass deficit (-1.05 – 0.56). There is clearly a 

seasonal trend for the MedFlux samples: most spring (P1) 2003 and spring 2005 sinking 

particles have similar OM content (0.05 – 0.40), but 2005 samples (0.45 – 1.10) have 

much higher ballast minerals content than in 2003 (0.25 – 0.73). Much wider range of 

OM  (0.10 – 0.66) and {ballast minerals}  (0.26 – 1.50) were observed for 

measM/

measM/

measM/ measM/
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summer (P2) 2003 samples. The changing intervals in mass deficit were (0.10 – 0.56) for 

most P1 2003 samples, (0.20 – 0.37) for most P1 2005 samples, and (-1.05 – 0.39) for P2 

2003 samples. During each collection period, significant differences in the major 

components of particles were found in shallow-water (117 – 313 m) samples, but not in 

deep-water (771 – 1918 m) samples. All P1 2003 samples from 238 m have positive mass 

deficits (average 0.34 with a standard deviation of 0.09).  In contrast, the mass deficit is 

quite negative (average -0.42, with standard deviation 0.40) for P2 2003 samples from 

313 m.  

MedFlux samples from sinking velocity (SV) traps are very similar in OM, ballast 

mineral, and mass deficit composition to those from concurrently deployed time-series 

traps (Fig. 4.1b and Table 4.1). The only exception is for SV trap samples collected at 

117 m in P2 2003, most of which have positive mass deficits, while time-series traps 

from the same period have negative mass deficits. Particles collected in SV traps in P1 

2005 show compositional changes with depth: shallow-water samples (313 m) have 

significantly higher OM  (range (0.06 – 0.37) and mean 0.17) and lower {ballast 

minerals} (range (0.22 – 0.78) and mean 0.56) than those from deeper (1918 m) 

water (OM  range (0.04 – 0.18) and mean 0.07; {ballast minerals} range 

(0.52 – 1.51) and mean of 0.80) ; deep-water (1918 m) samples show only a slightly 

lower mass deficit than shallow-water (313 m) samples.  

measM/

measM/

measM/ measM/

OM , {ballast minerals} , and mass deficit were also calculated, 

using with the same assumptions that were applied to the MedFlux data, for sinking 

particles collected at US JGOFS sites. Particles from the Ross Sea were all from shallow 

water (200 – 481 m). Similar to MedFlux samples, they show wide ranges in OM

measM/ measM/

measM/  
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(0.10 – 0.90), {ballast minerals}  (0.13 – 0.95), and mass deficit (-0.10 – 0.45) 

(Fig. 4.1c and Table 4.1).  Particles from other sites (ASPS, EqPac, NABE, and 

AESOPS-noRS (AESOPS with Ross Sea excluded)) are all from deeper waters (> 800 m) 

and are more uniform in their compositions: OM  (0.05 – 0.30), {ballast 

minerals}  (0.60 – 1.10), and mass deficit (-0.20 – 0.20) (Fig. 4.1c and Table 4.1).   

measM/

measM/

measM/

 

3.1.2. Mass deficits in both MedFlux and US JGOFS studies 

 

Mass deficits for all samples are shown in Fig. 4.2, along with their sampling 

depths. Most of the samples in MedFlux and the Ross Sea have positive mass deficits; 

they were mostly collected in shallow waters (< 1000 m). All other samples from US 

JGOFS studies were collected in deeper waters (> 800 m), and have mass deficits that are 

mostly within the range (-0.20 – 0.20).  

A box plot is a simple graphic way of depicting a data distribution by plotting 5 

summary statistics: the median, the 25% and 75% quartiles, and the maximum and 

minimum values. Here we define the range between the 25% and 75% quartiles, the 

middle half of the data, as the box width, and the range of this box as the box range. Box 

plots for each study are shown in Fig. 4.3. Samples from the MedFlux study have the 

highest median mass deficit (0.24), and its box range is positive (0.12 – 0.33). Samples 

from Ross Sea, which are all at shallow depths (200 – 481 m), also have a higher median 

for mass deficit (0.08) and a positive box range (0.02 – 0.24). Mass deficits in the other 

sites (ASPS, EqPac, NABE, and AESOPS-noRS), however, all have medians that are 

close to 0.  Their box widths all include zero or are very close to zero (Fig. 4.3 and Table 
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4.2). Therefore, the mass deficits in MedFlux and Ross Sea are substantially positive, 

whereas the mass deficits in other open oceans are not.  

 

3.1.3. Sensitivity study of MD by chosen different parameters for the calculation of major 

components in both MedFlux and JGOFS 

 

 The five major components of total mass were calculated by their corresponding 

elements using assumed parameter values to convert elements to compounds. However, 

most of these parameters values are still the subject of discussion. For example, Dymond 

et al. (1997) used 15.4 as the average of the Al/Ti ratio from a typical crustal source, 

while Formental et al. (2003) give a higher value (18.5) for average Saharan dust. The 

Al/Ti ratio was used in the present study to differentiate lithogenic Al from the excess Al, 

which exists mainly as hydrated Al. Lithogenic minerals have been calculated in previous 

studies as 11. 9 or 12.15 times lithogenic Al (e.g., Honjo et al., 2000; Lee et al., 

submitted). For opal, the number of water molecules associated with each biogenic Si  

ranges from 0.4 to 1.5 (Mortlock and Froelich, 1989; Collier et al., 2000; Honjo et al., 

2000). The choice of  parameter values might therefore make a substantial difference in 

the calculation of MD.  

 For the MedFlux study, box plots were made for MD calculated by choosing six 

sets of parameters for opal, lithogenics, and excess Al (see legends of Fig. 4.4 for details). 

Crustal Al/Ti was set at either 15.4 or 18.5; two values (11.9 or 12.15) were used for the 

estimation of lithogenic minerals; the number of water molecules associated with each Si 

atom was varied between 0.4 and 1.5 for each mole of biogenic silicon. Although the 
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medians of MD for these six cases vary from 0.21 to 0.25, all of these medians are still 

significantly positive and the box position for MD’s are all greater than 0. No matter 

which set of parameters are used for calculations, MD is substantially positive in 

MedFlux.  

 The content of Al is much lower in all the JGOFS studies (~1% in ASPS and 

NABE, ~0.06% in EqPac, and ~0.5% in AESOPS) than at the DYFAMED site (~5%). 

MD varies within 0.25% of measured total mass for the choice of parameter value (11.9 – 

12.15) for lithogenics in these JGOFS studies. The chosen of parameter value for the 

calculation of lithogenic minerals does not affect MD substantially. Therefore Fig. 4.5 

shows only a comparison of MD by changing numbers for the calculation of opal for both 

MedFlux and JGOFS. When more water is assumed to be associated with opal 

(SiO2.1.5H2O), MD is generally lower (by 0.02 – 0.10) in all studies (Fig. 4.5a) than 

shown in Fig. 4.3 (SiO2.H2O). If a lower level of hydration is assumed (SiO2.0.4H2O), 

MD was higher by 0.01 – 0.07 (Fig. 4.5b) than in Fig. 4.3. The water assigned to opal has 

its largest effect on MD in AESOPS because opal is the major composition of total mass 

in most samples collected in AESOPS. The medians for AESOPS-noRS cross zero, from 

-0.08 in Fig. 4.5a to 0.09 in Fig. 4.5b; the median in the Ross Sea varies between 0.02 

and 0.14, but stays positive. In general, MD is substantially positive and higher in both 

MedFlux and Ross Sea, and it is closer to zero in other JGOFS studies, no matter how 

much water chosen for the calculation of opal. 

 

3.2. Mass deficits and measured masses 
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 The IRS traps used in MedFlux have 0.0184 m2 collection areas (Peterson et al., 

2005), which is much smaller than the traps used at the other sites (0.5 m2) (Honjo and 

Manganini, 1993; Honjo et al., 1995; Honjo et al., 1999; Collier et al., 2000; Honjo et al., 

2000; Prahl et al., 2000; Peterson et al., 2005). The quantity of particles collected by each 

cup in MedFlux (0.4 – 93 mg) for the measurement of total mass is therefore one or two 

orders of magnitude lower than those from ASPS, EqPac, NABE, and AESOPS, which 

are usually hundreds to thousands of milligrams. Low sample sizes might have led to 

greater analytical errors in measurements of both total mass and of the mass of each 

element in MedFlux. To investigate this possibility, total measured masses for MedFlux 

were compared to those from JGOFS studies.  

Total flux or dry mass was determined by measuring only a fraction of each 

sample; the other splits were used for the analysis of OM, IC, biogenic Si, Al, and other 

elements. In MedFlux, 20% or 30% of the sample was used for the mass measurement. 

For the JGOFS samples, mass splits were 30% (ASPS, EqPac, NABE, and AESOPS-

noRS) and 20% (Ross Sea) (Honjo and Manganini, 1993; Honjo et al., 1995; Honjo et al., 

1999; Collier et al., 2000; Prahl et al., 2000). As shown in Fig. 4.6, measured masses 

could be high as thousand of milligrams in waters shallower than 2000 m, or could be 

hundreds of milligrams in waters deeper than 2000 m. In contrast, measured masses in 

MedFlux study were all less than 50 mg. Mass deficits were usually seen in smaller size 

samples (Fig. 4.7a); as measured total masses increase, the range of mass deficits also 

become smaller. This relationship also holds for each study separately (Fig. 4.7b-4.7e): as 

measured masses increase, mass deficits approach zero, except in MedFlux and Ross Sea 

samples, where mass deficits are slightly positive (details are given below). 
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Analytical errors can be estimated from measurement errors for each element. In 

MedFlux for example, the analytical error for C is ±2%, for biogenic Si is high as 50%, 

and for Al is about 20%. These analytical errors were propagated to the calculation of 

MD and are shown in Fig. 4.8 by each MedFlux samples, for which the average error is 

±0.08. With the consideration of error bars for each sample, the MD in MedFlux is still 

substantially positive.  

Overall, analytical error in the measurement of mass or of other chemical 

components may be one of the important factors leading to the relatively larger variance 

in mass deficits in MedFlux and Ross Sea samples, especially for the smallest samples. 

However, the mass deficits in MedFlux and Ross Sea samples are systematic, suggesting 

that an explanation other than measurement error is needed.     

 

3.3. Mass deficit and the sample collection depths 

 

 To investigate the possible effect of depth on mass deficit, data from all studies 

were grouped into 6 based on their collection depth: 0-750 m, 750-1500 m, 1500-2500 m, 

2500-3400 m, 3400-4000 m, and >4000 m. These figures were chosen because their 

endpoints correspond to gaps in the data; see Fig. 4.2. As mentioned earlier, most of 

MedFlux and all Ross Sea samples were collected in shallow sediment traps and fell into 

the 0-750 m group, all the other US JGOFS samples were collected in deeper waters (≥ 

800 m). Box plots of both mass deficits and measured masses are shown for each of the 6 

depth groups (Figs. 4.9a & 4.9b). Samples collected from 0-750 m, which are all 

MedFlux and Ross Sea particles, have the largest median (0.17) and the most positive 
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box width (0.04 – 0.30) of mass deficit; samples collected in the other 5 groups (> 750 m) 

have much lower medians (0.02, -0.01, 0, -0.01 and -0.02) and box widths (all within (-

0.05 – 0.05)) for their mass deficit. A two-sample t test shows that the mass deficits in the 

first group are significantly (0.05% level) higher than any other 5 groups. No significant 

relationship between mass deficit and sample collection depth was found in deeper waters 

(> 750 m). Meanwhile, the 0-750 m group has the smallest measured masses (10.2 mg for 

the median and (3.9 – 31.6) mg for the box width); the other 5 groups (> 750 m) have 

much higher measured masses (e.g., mean 136 mg and (54 – 290) mg box width for 

group 750-1500 m)   

 Note that most of the shallow-water samples (e.g., MedFlux samples) also have 

lower measured masses; it is therefore necessary to determine whether the high mass 

deficits in 0-750 m group were caused by low measured masses or by a depth effect. As 

shown in Fig. 4.7c, most of the mass deficits in the Ross Sea (all collected between 200 

and 500 m) were positive, even when the measured masses were as high as thousands of 

milligrams, where the effect of low mass should be small. The AESOPS-noRS study, in 

which all samples were collected deeper than 980 m, had very similar ranges for 

measured masses to those samples in Ross Sea. There should also be no “study effect” 

caused by differences in measurement protocols for total mass and for the other chemical 

components, since the Ross Sea study was part of AESOPS. The mass deficits in 

AESOPS-noRS were, however, mostly within (-0.20 – 0.20), and had both median and 

mean close to 0. These observations provide evidence that depth does have an effect on 

samples from shallow water (less than 1000 m).  
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3.4. Sensitivity study of the parameters for calculating five major components on 

mass deficit  

 

 As mentioned earlier, calculated mass is obtained by summing the masses of the 

four major chemical components, or five if excess Al is included, based on their 

elemental concentrations, using certain constant parameters for the ratio of chemical 

component to its corresponding measurement. For example, the 2.199 for OM and OC 

(Table 4.3) is based the ratio used by Klaas and Archer (2002). Inaccuracy in these 

parameters may therefore cause calculated mass values to depart from measured mass. 

Assuming no mass deficit for all studies, we applied multiple regression analysis to test 

the reasonableness of these parameter values. Samples that have mass deficits in their box 

width (see Table 4.3 and Fig. 4.2) were chosen as the most representative samples for 

each site, and were used in the multiple regression tests, so that the random errors caused 

by low sample sizes were mostly avoided.  Results are shown in Table 4.3. The numbers 

of samples that have mass deficits in box width, which were used in the multiple 

regressions, are also listed. 

 Literature parameters or their ranges are listed in Table 4.3. Parameters with their 

95% confidence intervals that were estimated using multiple linear regressions are also 

listed in Table 4.3. Estimated parameter values that are beyond ±20% of literature 

parameters or their averages are shown in bold in this table. They include parameters for 

OC in MedFlux, LithoAl (lithogenic Al) and XsAl (excess Al) in MedFlux, Ross Sea, 

and EqPac, and XsAl in ASPS.  No parameter is assigned to excess Al in NABE and 

AESOPS-noRS because all Al was assumed to be lithogenic in these two studies.  Since 
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Al is very low in samples from the Ross Sea (~ 0.03%) and EqPac (~ 0.06%), and there is 

almost no excess Al in ASPS, the 5 black boldface parameters without highlights would 

not be expected to have a large effect on the calculation of total mass. The 3 boldface 

parameters (all from MedFlux) highlighted with gray in Table 4.3 are all significantly 

larger than literature values. Since OM is a very important contributor to total mass 

especially in shallow waters (~ 20% in MedFlux and ~ 30% in the Ross Sea; see Table 

4.1), and the Al concentration in MedFlux is 5 – 135 times higher than at the other 

JGOFS study sites (Chou and Wollast, 1997), the choice of literature values for these 

three parameters might have significantly underestimated calculated mass, which in turn 

might have caused the large mass deficits at MedFlux and the Ross Sea. The higher the 

OM and Al contents in MedFlux and Ross Sea, the lower the calculated total masses and 

the greater the mass deficits are for these two sites. Reasons for the departure of the 

multiple regression results from literature values will be discussed below. 

 To investigate further the effects of each elemental composition on mass deficit, 

the dependencies of mass deficit on OC, IC, biogenic Si, lithogenic Al, and excess Al, are 

shown in Fig. 4.10. MedFlux and Ross Sea data are separated from the other JGOFS data 

because they are different not only in the total measured mass, but also in the depths at 

which the sediment traps were deployed. Most samples of TS 117m in MedFlux 2003 P2 

were outliers from the rest of MedFlux study, and were excluded in these regressions. 

 Four relationships, OC and MD, BioSi and MD in the MedFlux and Ross Sea data, IC 

and MD in all studies, are significant (see their r’s in Fig. 4.10).   

 

4. Discussion 

 112



 

 Mass deficits of sinking particles collected from different open oceans are mostly 

in the range (-0.20 – 0.20), but are especially large for samples collected at the 

DYFAMED site in the Mediterranean Sea, in the range of (-1.04 – 0.57) (Fig. 4.2 and 

Table 4.1). The sample treatment procedure might be one factor leading to the large 

observed mass deficits.  To determine the mass of sinking particles, samples collected by 

sediment trap are pretreated by removing the salt and drying the samples in an oven 

(Honjo and Manganini, 1993; Lee et al., submitted).  Rinsing the samples with DI water 

removes salts absorbed onto the filter and particle surfaces. Any residual salt would cause 

an overestimate of the mass of the samples.  We used 5 ml of DI water, which should be 

enough to thoroughly rinse the salt from the 0.4 um Nuclepore filters used in MedFlux. In 

general, with enough care, the residual salts on the particles and the filter surface are 

negligible. The other factor is that the analytical error for total and elemental masses 

might be large for low-mass samples, as suggested by the relationship between measured 

masses and mass deficits (Fig. 4.7), especially considering that the samples must be split 

into subsamples.  For example, large variations in mass deficit were found in MedFlux, 

Ross Sea, and AESOPS-noRS when total measured mass was less than 50 mg. When the 

measured mass increases to 200 mg, all the mass deficits decreased to within ±0.20. Mass 

deficit is therefore at least partially random because of relatively large analytical errors 

for samples with low mass. 

For samples with high mass in which analytical error cannot explain the mass 

deficit, there must be some other factors. Our multiple regression results (Fig. 4.10) 

indicate that organic matter is directly related to the mass deficit: the higher the content 
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of organic matter, the higher the mass deficit.  One possible factor that could lead to an 

overestimate of mass is water trapped or bound within the particles. Tightly-bound water 

molecules might not evaporate at the oven temperatures we used, leading to higher 

measured mass values than calculated mass.  Thus the water trapped in the dried sample 

might explain the mass deficit. Bound water may be tightly bonded to organic matter 

through hydrogen bonds, which may be strong enough to withstand the drying conditions 

(Sutton and Sposito, 2005; Liu and Lee, 2006).  Another factor to be considered is that 

organic matter in the surface ocean may be more hydrated than matter from depth.  For 

example, transparent exopolymer particles (TEP), a type of highly hydrated gel, are 

abundant in sinking particles in the surface ocean, and it can be very difficult to totally 

dehydrate TEP during the drying procedure (Passow, 2002).  In addition to organic 

matter, hydrated inorganic minerals such as Al(OH)3, SiO2, MgCO3 and other carbonate-

bearing minerals may also trap or contain extra water (Adams et al., 1991; Vandenberg et 

al., 1994; Gaffey, 1995; Ruiz et al., 1997; Railsback, 1999)..  For example, each Al(OH)3 

may  be associated with two crystallized water molecules in complexes.   

Based on Redfield’s CNP ratios, the representative molecular formula of sinking 

organic material is (CH2O)106(NH3)16(H3PO4). The water and oxygen of this formula was 

once thought to be seriously overestimated due to the combining of nominal structural 

units (CH2O and NH3) into polysaccharides and proteins during dehydration (Hedges et 

al., 2002). While the water molecules in this structure may be overestimated, a small 

amount of bound water molecules may still exist within the dried particles.  Hedges et al. 

(2002) also pointed out that it is difficult to accurately measure the elemental percentage 

for organic hydrogen, oxygen, and sulfur. Therefore, the drying process during sample 
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pretreatment might not expel all the bound water molecules, leading to higher measured 

mass than calculated mass. Alternatively, some smectite water might be lost from CaCO3 

or lithogenic minerals by over-drying the sample, which would lead to lower measured 

mass than calculated mass. In our calculations, no H2O is assigned to organic matter, 

CaCO3, and lithogenic minerals, and only one H2O is assigned to each biogenic Si; 

whether there is additional H2O in these components is not known.   

In addition, the multiple linear regression results (Table 4.3) show that the 

parameters used for OC and Al (both lithogenic Al and excess Al) used in calculating 

total mass may have been underestimated in the MedFlux study. However, these same 

results may be interpreted not as showing that the parameter values were wrong, but 

instead that some water was trapped in either OM or lithogenic materials. Since both OC 

and Al are major contributors to total mass in MedFlux samples, water bound with either 

OC or Al might significantly affect the mass.  As shown by Fig. 4.1c, OC is also a 

dominant component in particles from the shallower waters of the Ross Sea (Fig. 4.1c). 

Therefore, the high concentration of OM, with trapped or bound water, is a possible 

explanation for positive mass deficit in shallow waters.   

The statistical results show that the mass deficit is significantly negatively 

correlated with IC for MedFlux and Ross Sea samples (r=0.69; n=222) (the 2003 P2 TS 

samples from 117m have not been included in the regression as these samples were 

outliers from the rest of MedFlux samples) and for the rest of the JGOFS data (r=0.34, 

n=898).  However, no significant correlation between mass deficit and other major 

components was found for these data (Fig. 4.10). So it appears that mass deficit is large 

with high amounts of OM, opal, and lithogenic minerals, or with low amount of CaCO3.  

 115



This suggests that OM, opal or lithogenic minerals are the main water-carrying reagent 

rather than CaCO3 according to our hypothesis about bound water in the sinking particles.     

The averaged mass deficits are positive for particles of MedFlux and Ross Sea, 

while they are near zero for particles from the other sites (Fig. 4.3). Both MedFlux and 

Ross Sea particles are from shallow waters, and their OM percentages vary substantially. 

The calculated total mass is therefore, more consistent with its measured mass for sinking 

particles collected in deeper oceans using the current calculation method. This 

consistency for deep ocean samples suggests that our protocol for mass calculation is 

appropriate, especially the coefficients for calculating different components. It is not 

clear though how much water is trapped into either OM or lithogenic materials at shallow 

depths. A rough estimate of the water content in OM, lithogenic mineral, and excess Al in 

MedFlux study can be made by assuming that the departure from literature values of all 

the multiple regression results were caused by H2O bound to each component. For 

example, the H2O bounded into OM in MedFlux is estimated by: 

%29%100
1.3

199.21.3
=×

−  

where 3.1 is the multiple regression result for the ratio between OM and OC in MedFlux 

in Table 4.3, and 2.199 is the literature parameter for it. In this way, we estimate that the 

H2O bounded into OM, lithogenic minerals and excess Al during the measurement of 

total mass in MedFlux study are approximately 29%, 27%, and 23% by weight, 

respectively.  

We know that biogeochemical properties of sinking particles change dramatically 

in the twilight zone (Wakeham et al., 1997). For example, sinking particles from the 

surface ocean are fresh and are made of large biopolymers, in which water can be 
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encapsulated inside the polymer networks. However, these particles maybe degraded 

extensively, becoming more amorphous (Liu et al., unpublished results), so that water can 

be more easily dissipated during the drying. Inorganic minerals might also change with 

depth. For example, biominerals like CaCO3 and opal tend to dissolved with depth.  How 

the change of minerals in the sinking particles affect particle affinity for water is not yet 

clear.   

 

5. Conclusions and implications 

 

 The mass of sinking particles calculated by summing up the major chemical 

components (OM, opal, CaCO3, and lithogenic minerals) is generally different from the 

measured mass, by about -0.20 – 0.20 in open ocean samples. This mass deficit is 

systematically positive for particles mostly collected from shallow water (<800 m) in the 

Mediterranean Sea and Ross Sea. However, mass deficits at the other sites, at depths 

deeper than 800 m, are close to zero. We hypothesize that water bound in OM, which is 

an important content in particles of shallow water, may partly explain mass deficits. 

Ballast minerals may also be important in trapping water in surface particles. Analytical 

errors on samples with lower mass can only contribute to mass deficit in a random way. 

Our results here also address a concern about the definition of mass.  

Operationally, mass is obtained when the sample weight reaches a constant value in an 

oven at 60 °C. How much associated water remains on the particle are unknown, and may 

depend on the particle types or composition. Unfortunately, it is very difficult to quantify 

the water left in the particle samples after being oven-dried. How to define the mass, 
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whether the bound water should be included, and the mechanisms leading to the mass 

deficit, are questions for future investigations. 
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    depth   OM  CaCO3 opal lithogenic minerals Al hydroxide mass deficit 
  time or site (m) n mean mean mean mean mean mean median range 

MedFlux 2003-P1 TS 238 11 0.22 0.18 0.14 0.06 0.05 0.34 0.36 0.16-0.46 
  TS 771 11 0.2 0.27 0.1 0.05 0.04 0.34 0.29 0.11-0.57 
  SV1 238 8 0.21 0.3 0.09 0.08 0.07 0.26 0.27 0.11-0.38 
  SV2 238 8 0.18 0.22 0.17 0.03 0.03 0.37 0.33 0.28-0.54 
 2003-P2 TS 117 9 0.5 0.73 0.11 0.06 0.02 -0.42 -0.47  -1.04-0.06 
  TS 1918 10 0.2 0.27 0.06 0.1 0.07 0.3 0.34 0.16-0.40 
  SV1/2 117 11 0.55 0.34 0.02 0.04 0.01 0.04 0.27  -1.49-0.59 
 2005 TS 313 11 0.12 0.31 0.21 0.24 0.14 0.02 0.11  -0.95-0.19 
  TS 924 11 0.1 0.24 0.09 0.26 0.13 0.2 0.22  -0.18-0.39 
  SV1 313 10 0.22 0.08 0.05 0.22 0.1 0.33 0.34 0.08-0.44 
  SV2 313 11 0.12 0.15 0.2 0.17 0.13 0.22 0.2 0.09-0.44 
  SV1 524 11 0.09 0.14 0.2 0.24 0.17 0.17 0.16 0.08-0.27 
  SV2 524 11 0.09 0.17 0.07 0.28 0.13 0.26 0.28 0.09-0.36 
  SV1 1918 11 0.07 0.23 0.12 0.24 0.13 0.21 0.19 0.03-0.40 
    SV2 1918 11 0.07 0.36 0.11 0.29 0.12 0.05 0.09  -0.69-0.36 

Ross Sea  M6 200 13 0.29 0.38 0.27 0.0001 0 0.06 0.01  -0.02-0.45 
  460 11 0.14 0.33 0.46 0.01 0 0.06 0.04  -0.08-0.28 
 M7a 465 21 0.31 0.16 0.33 0.004 0 0.2 0.2  -0.01-0.41 
 M7b 206 14 0.44 0.22 0.31 0.005 0 0.03 0.03  -0.10-0.24 
    481 17 0.25 0.18 0.35 0.01 0 0.21 0.15  0.01-0.44 

ASPS 2NE 903 21 0.22 0.5 0.19 0.11 0 -0.01 0  -0.15-0.06 
  1974 21 0.18 0.46 0.24 0.12 0 0.01 0.01  -0.15-0.15 
  3141 21 0.14 0.52 0.26 0.13 0 -0.05 -0.05  -0.12-0.01 
 3NE 858 12 0.21 0.51 0.15 0.08 0.0006 0.07 0.07  0.01-0.11 
  1857 20 0.17 0.48 0.21 0.09 0.0005 0.05 0.05  0.02-0.08 
  2871 18 0.14 0.49 0.22 0.11 0.0001 0.05 0.05  0.01-0.08 
 4NE 821 21 0.2 0.52 0.15 0.05 0 0.09 0.07  0.02-0.24 
  2229 21 0.14 0.5 0.25 0.07 0 0.04 0.03  0.01-0.08 
  3478 21 0.12 0.49 0.25 0.09 0 0.04 0.03  0.01-0.11 
 2SW 924 12 0.15 0.52 0.19 0.15 0 -0.01 0  -0.03-0.02 
  1996 12 0.13 0.53 0.18 0.16 0 0 0  -0.04-0.03 
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  3159 12 0.11 0.49 0.2 0.17 0 0.04 -0.02  -0.27-0.77 
 3SW 888 13 0.16 0.54 0.21 0.11 0 -0.01 -0.01  -0.06-0.03 
  1882 18 0.15 0.5 0.26 0.12 0 -0.03 -0.03  -0.10-0.01 
  2991 19 0.13 0.5 0.22 0.13 0 0.02 0.01  -0.02-0.09 
 4SW 807 9 0.18 0.54 0.15 0.1 0 0.04 0.04  0.00-0.08 
  2215 20 0.14 0.55 0.2 0.09 0 0.02 0.01  -0.02-0.09 
  3489 21 0.12 0.54 0.2 0.1 0 0.03 0.02  -0.01-0.13 
 5 800 9 0.18 0.63 0.13 0.07 0.0001 0 0  -0.02-0.01 
  2363 21 0.13 0.62 0.14 0.11 0 0 -0.01  -0.03-0.14 
    3915 21 0.13 0.59 0.15 0.14 0 -0.01 -0.01  -0.04-0.03 

EqPac 12S 1292 21 0.13 0.73 0.11 0.003 0 0.03 0.04  -0.14-0.10 
  3594 21 0.08 0.78 0.17 0.008 0 -0.03 -0.02  -0.17-0.06 
 5S 2099 21 0.1 0.67 0.24 0.003 0 -0.01 -0.01  -0.06-0.05 
  2209 21 0.1 0.69 0.3 0.003 0.0002 -0.09 -0.09  -0.19-0.09 
  2316 21 0.1 0.66 0.25 0.003 0.0002 0 0.01  -0.39-0.42 
 Equator 880 21 0.12 0.71 0.2 0.002 0.001 -0.04 -0.06  -0.19-0.18 
  2284 21 0.1 0.74 0.28 0.004 0.001 -0.12 -0.04  -0.90-0.05 
  3618 21 0.1 0.67 0.32 0.003 0.001 -0.09 -0.08  -0.17-0.01 
 5N 1200 21 0.19 0.59 0.24 0.006 0 -0.03 -0.03  -0.07-0.04 
  2100 21 0.13 0.66 0.24 0.005 0.0003 -0.04 -0.04  -0.06-0.02 
  3800 14 0.13 0.65 0.26 0.008 0 -0.05 -0.05  -0.06-0.04 
 9N 2150 18 0.15 0.62 0.27 0.02 0 -0.06 -0.05  -0.13-0.01 
    2250 20 0.15 0.59 0.29 0.01 0.0003 -0.04 -0.05  -0.06-0.01 

NABE 34N 1070 3 0.27 0.48 0.22 0.2 - -0.16 -0.14  -0.28- -0.05 
  1248 12 0.1 0.7 0.1 0.08 - 0.01 0.01  -0.05-0.09 
  2067 13 0.1 0.64 0.15 0.15 - -0.04 -0.04  -0.16-0.03 
  1894 13 0.1 0.62 0.11 0.1 - 0.08 0.05  -0.02-0.24 
  4565 10 0.08 0.63 0.14 0.19 - -0.03 -0.03  -0.10-0.10 
  4391 13 0.09 0.6 0.11 0.15 - 0.05 0.01  -0.05-0.27 
 48N 1018 12 0.21 0.54 0.22 0.04 - -0.02 -0.02  -0.12-0.04 
  1202 13 0.14 0.59 0.19 0.05 - 0.03 0.02  -0.01-0.08 
  2018 13 0.11 0.57 0.28 0.05 - -0.01 0  -0.11-0.05 
  2200 3 0.13 0.59 0.2 0.06 - 0.01 0.02  0.01-0.02 
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  3718 11 0.09 0.6 0.28 0.07 - -0.03 -0.03  -0.09-0.02 
    3749 13 0.08 0.61 0.21 0.1 - 0 -0.01  -0.03-0.09 

AESOPS M1 986 18 0.13 0.71 0.1 0.03 - 0.03 0.02  -0.03-0.15 
-noRS  1981 3 0.30 0.47 0.14 0.03 - 0.06 -0.03  -0.07-0.28 

 M2 982 16 0.14 0.42 0.44 0.01 - -0.01 0  -0.10-0.05 
  4224 19 0.07 0.46 0.45 0.04 - -0.02 -0.02  -0.06-0.01 
 M3 1003 13 0.11 0.24 0.01 0.003 - 0.03 0.03  -0.08-0.21 
  1103 8 0.06 0.26 0.68 0.004 - 0 -0.01  -0.12-0.16 
 M4 1031 13 0.08 0.10 0.82 0.001 - 0 0.02  -0.20-0.05 
  2026 9 0.05 0.11 0.81 0.002 - 0.02 0.03  -0.03-0.06 
 M5 937 13 0.18 0.04 0.76 0.001 - 0.02 0.01  -0.16-0.18 
  1033 11 0.18 0.08 0.71 0.002 - 0.02 0.02  -0.12-0.13 
  1842 11 0.15 0.09 0.79 0.01 - -0.04 0.01  -0.35-0.08 
    2311 10 0.16 0.16 0.67 0.01 - 0.01 0.02  -0.05-0.08 

 
 
Table 4.1 Averages of OM, CaCO3, opal, lithogenic minerals, and excess Al hydroxide at different open ocean sites, with the medians, 
means, and ranges for mass deficit. Mass deficit is calculated using Eq. 4.2 for both MedFlux and US JGOFS samples.  
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  mass deficit value 

  number of samples median 25% 75% min max 
MedFlux 155 0.241 0.115 0.328 -1.488 0.590 
Ross Sea 76 0.075 0.019 0.235 -0.102 0.446 

ASPS 363 0.011 -0.013 0.043 -0.267 0.773 
EqPac 262 -0.036 -0.064 -0.011 -0.901 0.416 
NABE 129 -0.006 -0.031 0.024 -0.281 0.274 

AESOPS-noRS 144 0.007 -0.025 0.037 -0.346 0.245 
 
 
Table 4.2 Box plot, including the medians, 25% and 75% quantiles, minima and maxima,of mass deficits for each of the 6 studies 
(MedFlux, Ross Sea, ASPS, EqPac, NABE, and AESOPS-noRS).  
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      OC IC BioSi LithoAl XsAl 

literature parameters n* r-square* 2.199 8.33 2.4-3.22 11.9-12.15 3 
MedFlux 78* 0.82 3.1�0.3 9.9�1.4 3.3�0.6 16.4�2.4 3.9�1.4 
Ross Sea 39* 0.85 2.5�� 8.6�0.7 3.0�0.2 0.2�130 214�645 

ASPS 182* 0.89 2.4�0.1 8.3�0.1 2.9�0.1 11.3�0.6 88�55 
EqPac 132* 0.93 2.3�0.1 8.2�0.1 2.5�0.1 4.2�5.8 1.1�21 
NABE 66* 0.89 2.3�0.2 8.5�0.2 2.7�0.1 10.2�0.9 - 

AESOPS-noRS 73* 0.92 2.2�0.1 8.4�0.1 2.8�0.03 10.1�3.1 - 
* n is the number of samples between 25% and 75% quartiles that were used for multiple regression   
* r-square is based on the estimated OC with the observed OC, assuming IC, BioSi, LithoAl, and XsAl are the independent variables 

 
 
Table 4.3 Samples that have mass deficit in their box width (the 25% to 75% intervals) were used for multiple regressions to obtain 
the parameters of major compositions. The parameters or ranges listed on the first row are from the literature. Parameter estimates 
(with their 95% confidence intervals) from the multiple linear regressions are also listed in Table 4.3. The r-square is given based on 
the estimated OC with the observed OC assuming IC, biogenic Si, lithogenic Al, and excess Al are the independent variables in the 
linear regression. Those estimated parameters that are beyond ±20% of literature parameters or their averages are shown in bold in this 
table. No parameter value is assigned to excess Al in NABE and AESOPS-noRS because all Al was assumed to be lithogenic. Since 
Al is very low in samples from the Ross Sea (~ 0.03%) and EqPac (~ 0.06%), and there is almost no excess Al in ASPS, the 5 black 
boldface parameters without highlight would not be expected to have a large effect on the calculation of total mass.  The 3 parameters 
highlighted in gray, all from MedFlux, are all substantially larger than values from the literature. 



(a) 
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(b) 
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(c) 

 
 
Figure 4.1 Ternary plot of particles composition based on organic matter (OM/Mmeas; see 
Eq. 4.1 in text), ballast minerals (sum of opal, CaCO3, lithogenic minerals, and excess Al 
hydrate, all divided by Mmeas) and mass deficit for (a) MedFlux time-series sediment trap 
samples; (b) MedFlux settling velocity mode sediment trap samples; and (c) samples 
collected by time-series sediment traps from different JGOFS studies (ASPS, EqPac, 
NABE, AESOPS-noRS, and  the Ross Sea). Those samples with compositions relative 
percentage out of the range 0~100% are located out of the triangle. Negative mass deficit 
means the sum of OM and ballast minerals is greater than the measured total mass. 

 128



-1.5

-1

-0.5

0

0.5

1

0 1000 2000 3000 4000 5000

depth (m)

m
as

s 
de

fic
it

MedFlux
ASPS
EqPac
NABE
AESOPS-noRS
Ross Sea

 
 
 
Figure 4.2 Distributions of mass deficits with the information of sampling depths for all 
samples.  
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Figure 4.3 Box plots of mass deficit (including median, 25% and 75% quartiles, 
minimum, and maximum) for sinking particles collected by sediment traps from different 
open oceans (MedFlux, ASPS, EqPac, NABE, AESOPS-noRS, and the Ross Sea). Mass 
deficits in MedFlux and Ross Sea are significantly positive, whereas the mass deficits in 
other open oceans are not.  
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Figure 4.4 Sensitivity test of MD in six cases in MedFlux by changing parameters for the 
calculation of major components. Case 1: (Al/Ti)litho=15.4; lithogenics=11.9*Allitho; 
opal=SiO2.H2O; Case 2: (Al/Ti)litho=18.5; lithogenics=11.9*Allitho; opal=SiO2.H2O; Case 
3: (Al/Ti)litho=18.5; lithogenics=12.15*Allitho; opal=SiO2.H2O; Case 4: (Al/Ti)litho=15.4; 
lithogenics=12.15*Allitho; opal=SiO2.H2O; Case 5: (Al/Ti)litho=15.4; 
lithogenics=11.9*Allitho; opal=SiO2.1.5H2O; Case 6: (Al/Ti)litho=15.4; 
lithogenics=11.9*Allitho; opal=SiO2.0.4H2O. 
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Figure 4.5 A comparison of MD by changing parameters for the calculation of opal for 
both MedFlux and JGOFS. Opal changes from (a) SiO2.1.5H2O to (b) SiO2.0.4H2O. 

 132



0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

depth (m)

m
ea

su
re

d 
m

as
s 

(m
g)

MedFlux
ASPS
EqPac
NABE
AESOPS-noRS
Ross Sea

 
 
 
Figure 4.6 Measured masses plotted against depth sampling depth for all samples.  
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(c) 
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Figure 4.7 The distribution of mass deficits and the measured masses for sinking particles 
collected for (a) all of the studies; and for (b) MedFlux; (c) AESOPS-noRS and Ross Sea; 
(d) EqPac and NABE; and (e) ASPS.  In MedFlux, the measured total mass is based on a 
20% or 30% subsample. For the JGOFS samples, those splits were 30% (ASPS, EqPac, 
NABE, and AESOPS-noRS) and 20% (Ross Sea), respectively. Mass deficits were 
usually seen in smaller size samples.  As measured total mass increases, the range of 
mass deficits become smaller; mass deficits approach zero, except MedFlux and Ross Sea 
samples, where mass deficits are slightly positive. 
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Figure 4.8 The MD and their analytical errors in MedFlux, where the analytical error for 
C is ±2%, for biogenic Si is high as 50%, and for Al is about 20%. 
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Figure 4.9 Data from all studies were divided into 6 groups based on their collection 
depth (see text for details). Box plots for (a) mass deficits, and (b) measured masses are 
shown for each group. 
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Figure 4.10 Regressions of mass deficit (MD) on (a) OC, (b) IC, (c) biogenic silica 
(BioSi), (d) lithogenic Al (LithoAl), and (e) excess Al (XsAl). Separate regression lines 
are drawn separately for (i) MedFlux and the Ross Sea, and (ii) for all of the other JGOFS 
datasets. Most samples of TS 117m in MedFlux 2003 P2 were outliers from the rest of 
MedFlux study, and were excluded in the regressions. 
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CHAPTER FIVE: Conclusions and future directions 

 

 

 

1. Conclusions 

 

Sinking particle is a key pathway connecting surface to the deep ocean, and plays 

an important role in global cycles of elements such as carbon.  This thesis focused on the 

vertical dynamics of sinking particles, and their chemical compositions and degradation 

trajectories, using statistical approaches on the data from the MedFlux and US JGOFS 

projects.  Overall, three key aspects of sinking particles were investigated: How fast do 

sinking particles sink? How to find out the degradation trajectories of sinking particles 

using PCA? And how to balance the mass of sinking particles between the direct 

measurement and the sum-up of individual components? Here I summarize the major 

findings. 

I developed a new “benchmark” method to estimate the settling velocity based on 

fitting time-series sediment trap data into Fourier series.  This method is based on the 

field collecting data rather than any laboratory observations.  In addition, it has more 

advantages than any former benchmark methods, which relied more on direct observation 

of trap data  (i.e., Honjo and Manganini, 1993; Berelson, 2002)  In this protocol, first, the 

offset between cups of upper and lower traps could be any real numbers that are not 

restricted to integer multiples of cup rotation time.  Second, the estimation of SVs for 

upper and lower pairs of traps at one site could proceed simultaneously.  Furthermore, 
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this study shows that the accurate estimation of settling velocity depends upon the type of 

tracers and the resolution of data. The use of elemental ratios (OC/Al, OC/BioSi, OC/IC, 

etc.) gives less consistent settling velocities among the tracers than using single elements; 

the low resolution data are not sufficient for our method to pick out the benchmark 

pattern.  The results, with the use of single element by high resolution data, show that the 

settling velocity for sinking particles at the DYFAMED and other US JGOFS study sites 

is 205 m/d by average.  This value is on the upper end compared to well accepted records 

50 – 200 m/d (Siegel and Deuser, 1997; Waniek et al., 2000).  Moreover, I did not find 

significant difference on the estimation of settling velocity among total mass and 

different single tracer (i.e., OC, IC, BioSi, or Al).  Comparing the settling velocity from 

sediment traps of three different depths, sinking particles do not seem to sink faster with 

depth in the open ocean, as claimed by Berelson (2002).   

The principles of PCA and how it is applies to organic geochemical datasets, 

especially those of sinking particles, are described and discussed.  From several organic 

compositional datasets, the comparison of 3D and 2D PCA plots on the chemical 

composition data of sinking particles shows that using any one dimensional principal 

component (PC) as the degradation index is oversimplified; a 3D PCA plot offers more 

information than a 2D PCA plot on the degradation trajectory for sinking particles. 

However, a 2D PCA plot works as well as a 3D plot if the first two PCs have explained 

more than approximately 60% of the variance and the third eigenvalue is not comparative 

to the second one.  Thus, this study sets up a criterion on how to use PCA more 

efficiently for the data mining.     
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Dauwe et al. (1998; 1999) first applied PCA on compositional data of amino acids 

in organic matter subjected to different degree of degradation.  Their PC1 explained the 

most variance of the data and was defined as the degradation index (DI) since 

degradation might be the major reason for the variance.  This works well for samples 

having very different diagenetic histories.  However, for samples with relatively similar 

diagenetic status, site scores along PC1 often do not solely represent the DI, as sources or 

diagenetic pathways may also be included.  For example, Ingalls et al. (2003) found that 

PC1 also includes the source information of organic matter in sinking particles samples 

from the Southern Ocean.  In this study, we showed that the coordination can be re-

orientated so that the new axis can be lined up to the direction that mostly represents the 

degradation index.  This technique is useful to sort out the information we need, 

especially when dealing with a complicated dataset.   

The third major finding of this thesis is that the sum of major chemical 

compositions (OM, CaCO3, opal, lithogenic minerals, and excess Al hydrate) is 

significantly less than the measured total mass in sediment traps in the Mediterranean and 

Ross Seas, where sinking particles were collected at depths less than 800 m.  This mass 

deficit, however, not found in deeper (> 800 m) traps from other US JGOFS studies.  It 

should be noted that the sample size in IRS sediment traps (usually less than 100 mg in 

each cup) is one or two orders of magnitude lower relative to the cone-shape traps, so that 

the analytical errors could be relatively larger.  But these errors could not explain the 

mass deficit in a systematic way.  The multiple regression results suggest that there might 

be water bound with or remaining in organic molecules and ballast minerals, especially 

for samples collected from shallow sediment traps.  Wakeham et al (1997) pointed out 
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that there is a dramatic difference on biogeochemical properties as particles sink through 

the twilight zone. This suggests that the bound water might be very different for sinking 

particles with depth.  This part of water was not counted in total mass when summing up 

the individual components, but was in the measured total mass.  The mechanism of how 

the water bounded with OM and ballast minerals is still not clear.  

 

2. Future work 

 

 Understanding the biogeochemistry of sinking particles is an important but 

challenging topic in the field of marine chemistry.  Based on this thesis, I use the 

perspective of mathematics to suggest several future directions. 

  Estimation of settling velocity of sinking particles is a key if we are to model the 

biological pump.  Obviously, the “in-situ” estimation based field-observation is more 

reliable due to the minimum sample handling and indeed represent in-situ settling 

compared to any laboratory measurements.  The results by our developed “benchmark” 

method suggest that the cups in the sediment traps should be designed to open within 5 

days in order to get more accurate estimation on settling velocity considering the SV is 

about 200 m/d on average and the traps are deployed 1000 m apart.  To get more 

distributions of SVs in the open ocean in future, more field collections of sinking 

particles are suggested at different open oceans, and at every 1000 m in depth.  

 PCA is a powerful tool for analyzing a large-size dataset, and its potential in the 

field of marine geochemistry has only begun to be explored.  For example, we mostly 

rely on the semi-quantitative property of PCA to visualize the degradation trajectories, 
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but rarely quantify the similarity or differences among samples.  The distance between 

samples on a 3D plot could be studied in the future to represent the similarity index, 

which is useful for grouping samples. In addition, the current method for the 

determination of the degradation direction in a 3D PCA is very subjective and case 

dependent. For example, amino acids serine, glutamic acid, threonine, and aspartic acid 

are usually biomarkers of relatively fresh organic matter. To simplify problem, we only 

used the coordinate of serine for the determination of degradation direction in one of the 

case studies in Chapter 3.  How to use a mathematical method for finding the degradation 

index, which combines most of the biomarker information, is a challenge for the future.  

 In this thesis, I hypothesized that the water bound with OM and ballast minerals is 

different in the sinking particles collected between shallow and deep water, and this 

difference could be used to explain the mass deficit in the Mediterranean Sea and Ross 

Sea.   Sinking particles should be further collected in shallow waters from other open 

oceans sites other than the Mediterranean and Ross Seas to test and confirm this result.  If 

this phenomenon is universal, in addition to solving the issue of mass deficit, it may also 

provide mechanistic insight on how sinking particles undergo diagenetic change from 

surface to ocean interior.  For example, the bound water in OM and/or ballast minerals 

may be important in preserving organic matter in surface water, and organic matter is 

degraded efficiently after the bound water is lost.  To evaluate the bound water, we could 

change the sample pretreatment procedure by introducing chemical or physical reactions, 

to see whether that will affect the measurement of total mass.  We can also use modern 

microscopic techniques such as atom force microscopy to trace the fate of the bound 

water during a decomposition experiment.  Nevertheless, this study suggests that a clear 
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definition of mass of an oceanic sample is needed. In other words, whether the bound 

water should be included in the “true mass” or not?  Or at least, we should advocate a 

standard protocol for sample pretreatment procedure in the future.  
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Appendix A: Mechanics of principal components analysis (PCA) 
  
 
 
 This appendix contains a self-contained explanation of the mechanics of PCA. All 
that is assumed is that the readers know how to multiply matrices, and have some basic 
feeling for sample means and variances. 
 
A1.1. Data matrices 
 

Consider a set of data records , nj XXXX ,,,, 21 LL nj L,1= , where each record 
is written as a row vector with m elements, each of which represents a measurement 
(variable) in the record: 
 

];......[ 1112111 mk xxxxX =  
];......[ 2222212 mk xxxxX =  

     …        (A.1) 
];......[ 21 jmjkjjj xxxxX =  

       … 
   Xn = [xn1 xn2 ... xnk ... xnm ]. 
 
The total data set can be written as a column vector of these data records which, by 
expanding each row vector, becomes the data matrix X: 
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 .    (A.2) 

Alternately, the data set can be written as a column vector of row vectors , each 
of which is a list of the values of variable k (

kx
mk L,1= ) in all data records: 

 

  ,    (A.3) [ T
nkjkkk

nk

jk

k

k

k xxxx

x

x

x
x

x LL

M

M
21

2

1

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= ]

 

 157



where T is the transpose operation that transforms a column vector into a row vector or 
vice versa. The data matrix can therefore also be written: 
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A1.2. Summary statistics 
 
 Recall that the sample mean of a set of measurements of variable k is given by 
 

 x k = x jk
j=1

n
∑  ,        (A.5) 

 
The variance of a random variable is a measure of dispersion among samples; it is 
defined as the average squared distance of sample values from the sample mean: 
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The covariance between two variables k and l, which is a measure of how much two 
variables change together across data records, is given by 
 

 ))((
1

1),cov(
1

l

n

j
jlkjklk xxxx

n
xx −−

−
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=

 .    (A.7) 

 
If the two variables tend to vary together, in the sense that l tends to be greater than its 
mean when k is greater than its mean, then the covariance between them will be positive; 
otherwise, it will be negative. A variance is a special case of covariance when the two 
variables are identical.  
 Finally, variances and covariances can be combined to give a correlation 
coefficient r: 
 

 rkl =
cov(xk,xl )

var(xk ) ⋅ var(xl )
.       (A.8) 

 
Dividing by the square root of the variances “normalizes” the covariances, yielding 
“correlations” that are all numbers between -1 and 1, which, like covariances, are 
measures of the relationship between two variables. A correlation coefficient of 0 means 
these two variables are independent and uncorrelated. 
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A.1.3. Standardizing the data and the correlation matrix 
 

The statistics are of key importance in PCA and, since PCA is usually written in 
terms of matrices, understanding how to express variances, covariances, and correlation 
coefficients in vector notation makes PCA easier to understand.  

Data sets used in PCA need to be standardized before being used because the 
magnitudes, and even the units, of variables might be very different; standardization 
makes all variables dimensionless and scales each variable to some measure of its 
variation. (For further explanation, see section 2.2.1). A particularly useful way to 
standardize data is to subtract the mean of each variable (Eq. A.5) and divide by its 
standard deviation σ k = var(xk )  (Eq. A.6): 

 

k

kjk
jk

xx
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σ
−

=            .                                  (A.9) 

 
In Eq. (A.9) each raw data element  is standardized into ; the original 

data matrix 
jkx jka

mn× X is thereby transformed into a standardized dataset : A
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                  (A.10) 
 

A remarkable statistical property of standardizing using Eq. (A.9) is that in the 
resulting dataset , the correlation coefficient between two variables is the same as their 
covariance: 

A

 
rkl = cov(ak ,al ) .                                                           (A.11) 

 
 A vector is often defined as a geometric objective that has both magnitude and 
direction. The are all column vectors of dimensionkaaa L,, 21 1×n ; their transposes (Eq. 
A.3) are all vectors of dimension 1× n . Multiplying a 1× n  matrix by a  matrix 
yields a 1  matrix, the determinant (det) of which is a scalar whose value is that of the 
single element in the 1  matrix. Using these facts, variances and covariances of the 
columns of dataset A (i.e., Eqs. A.3 & A.4) can also be written as 

1×n
×1

×1

 

var(ak ) =
1

n −1
det[ak

T ak ]  ,                                                  (A.12) 

 
and 
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cov(ak,al ) =
1

n −1
det[ak

T al ] =
1

n −1
det[al

T ak ].                                    (A.13) 

 
 

For the data matrix  ( ), the covariance matrix (= correlation matrix if the original 
data matrix X  has been standardized using Eq. A.9) is a matrix of size , where each 
element represents the covariance between two corresponding columns (the row and 
column number of that element):  

A mn ×
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           (A.14) 
 
The correlation matrix is the basic entity upon which a PCA works. 
 
A1.4. What PCA does 
 
 Each sample jX , as shown in A1.1, is a m-dimensional vector, where m  is the 
number of measurements. could simply be seen as a vector in a m-dimensional basis,  
each measurement represent one of the axis for this basis, and all of the axes are 
perpendicular to each other. This basis could be generated as an identical matrix 
with all diagonal elements 1 and all the others 0: 
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Each sample could be seen as a linear combination of the measurements with their unit 
length of basis vectors: 
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Principal component analysis (PCA) is to find an idea basis to express data so that the 
variances are maximized on the new axes.  

A dot product of two vectors u and , is a linear combination of their components: v
 

nnvuvuvuvu +++= L2211, .            (A.15) 
 

A subset   of matrixV is called orthonomal if and only if  v1,v2,L,vk,Lvm{ } 1, =ii vv  

and 0=jv,iv when ji ≠ . In particular, if V is orthonormal, any two vectors in V are 
independent and uncorrelated, and each vector in V has unit length. So this orthonomal 
matrix is a basis for a space.  
 In a 2-dimentional sample dataset, i.e. Fig. 3.1a, the idea basis has  and as 
axes as these two axes show the maximum variances among data. PCA is to re-express 
these data points in the new basis. In this example, the new basis is 
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expressed as [  in the new basis. PCA is to first find out the new basis for these data 
points, and then re-express these data points in the new basis. 
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 Remember each sample could be seen as a linear combination of the 
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and find the result is the same as the re-expressed data point in the new basis. So do the 
other samples in Fig. 3.1a. The new basis matrix is therefore the rotation of transforming 
old data into the new basis. 
 In the m-dimensional measurements, with an assumption that the re-expressed 
data set (Y ) by PCA is a linear combination of the new basis (V ), there is  
 

AVY =                                                                                                (A.16) 
 

where  is the original dataset which has been standardized. V is not only the basis 
matrix for the new basis, but also the rotation for transforming into 

A
A Y . PCA is 
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simplified as finding the new basis for the dataset so that maximum variances among 
dataset are along with axes. 
 
A1.5. How to find the new basis 
 
 In the following Eq, represent each of the samples with all 
measurements,  are the column vectors for the new basisV .  Geometrically, 

 is the rotation which transforms the dataset 
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=                                                       (A.18) 

 
The covariance  is a square symmetric matrix ()(YCov mm× ), the diagonal terms 

of  are the variance of particular measurement, and the off-diagonal terms of 
 are the covariance between two measurements. To make the variance for the 

vectors maximized, the optimized  should be diagonal with all of off-diagonal 
terms are zero.  Therefore, PCA is to find an orthonormal matrixV  to make  a 
diagonal matrix.  
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Notice that  is the covariance of )(ACov A , and is a symmetric matrix with size 

.  There are always two matrixes U  and  for a symmetric matrix,  is an 
orthonomal and  is diagonal matrix, and they satisfy the following Eq: 

mm× D U
D

 
UDUACov =)( ,                                                    (A.20) 

 
where  is called the eigenvalue and U  the eigenvector of . D )(ACov
 

UDUUACovU ')(' = .                                                (A.21) 
 

Since eigenvectors  is orthonomal, the dot product of any two columns is zero, and the 
dot product of one particular column with itself is one.  is proved to be an identity 
matrix: 

U
UU '
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IUU ='  
 

DUDUUACovU == ')('                                                   (A.22) 
 

After a comparison between Eqs. A.19 and A.22, it follows that U  and  are the 
solutions for V  and . To diagonalize , therefore, is simply to find 
eigenvectorsV  for . 

D
)(YCov

)(ACov
)(ACov

The performing of PCA for an original dataset X could be simplified as:  (1) 
standardize dataset X  into A ; (2) find the eigenvector V  for ; (3) calculate the 
re-expressed dataset (principal component) by

)(ACov
AVY = . Several properties are 

summarized for this PCA eigenvector-eigenvalue calculation: (1) The eigenvectors 
contain m solutions: .  It is an orthonormal matrix, i.e. any two columns 

are vertical to each other and, all columns ( ) have magnitude 1; (2) The re-
expressed dataset 

V mvvv ,,,1 Lv, 32

mvv ,,2 Lv ,1

Y  is orthogonal, with any two columns uncorrelated to each other; (3) 
The diagonal elements of  are eigenvalues, the exact amounts of the variance 
accounted for by corresponding vectors in the new dataset 

)Y(Cov
Y .  

 
A1.6. what are site scores and loadings in the new basis 
 

Site scores (Y ) are the positions of the samples in the new space, i.e., the re-
expressed dataset, and are calculated by AVY = . A  is the standardized dataset, V is the 
matrix for the new basis. Site scores are also called the principal components of PCA.  

 Loadings (V ) are the orthonomal basis for the re-expressed data. The values of 
loadings are in the matrix of eigenvector. For example, the loadings of each variable on 
the first PC are shown by the first eigenvector (the first column in the matrix V ). 
Loadings give correlations of the re-expressed dataset (Y ) with the original data ( A ). 
The loadings on the first column of eigenvector give the correlations of the first PC with 
all of the variables in the original data A , i.e., all of the column vectors in A . The higher 
loading a variable has along the first PC, the more correlated the first PC is with on 
that specific variable. 

A
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Appendix B: How to find a single direction instead of using any PC  
that representing a specific character well among dataset in a 3D PCA 

result? 
 
 

 
In a PCA, each single PC is a linear combination of all the variables, and the first 

PC (PC1), as the most important one among PC’s, explains the maximum variance of the 
data.  This, however, does not necessarily mean that PC1 or any other single PC could 
represent a specific geochemical process that is expected.  For example, during sample 
degradation, the mole percentages of amino acids (BALA, GABA) usually become more 
abundant while those of the fresh ones (SER, GLU, ASP, GLY, THR, et al.) decrease. 
Samples might be more distinct by their sources instead of degradation, and these amino 
acids that mostly represent degradation information did not show maximum loadings 
along PC1.  As discussed in text part, the degradation trajectories of OM are not even a 
simple straight line in a 3D coordination. In this appendix, we are trying to find an 
approximate single direction that largely differentiates samples by their degradation 
character. The finding of the approximate degradation direction is useful for a straight 
visualizing the degradation status among samples. There must be some angle between 
PC1 and degradation direction defined by the degradation biomarker, GABA and BALA 
in a 3D coordinate.  Here we introduce a new axis by rotating the PC1, so that the 
representative amino acids would have highest correlation with the new degradation 
direction (i.e., these amino acids have highest projections on the degradation index) 
(Yunker et al., 1995).  
 The first three PCs are remained in the 3D figure for discussion.  PC1, PC2, and 
PC3 are along with axes x, y, and z, respectively.  As shown in Fig. B.1a, the degradation 
direction for amino acids is approximately from SER to GABA, which is obviously not 
aligned along PC1. Assume the projection of SER-GABA direction on x-y geometric 
plane surface has a clockwise angle α with x axis; the projection of SER-GABA direction 
on x-z geometric plane surface has a clockwise angle β with x axis. We now change the 
orientation of axes by first z axis anti-clockwise rotating an angle α (alpha), so that SER-
GABA are right on x-z geometric plane surface; and then by y axis anti-clockwise 
rotating an angle β, so that SER-GABA are right aligned along the new x axis and their 
loadings on it are maximized (Fig. B.1b). The new loading for samples, [ ] , is 
calculated by the product of old loading

''' zyx
[ ]zyx , and a matrix representing rotating: 
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''' zyxzyx           (B.1) 

 
Here, x, y and z are single matrix for PC1, PC2, and PC3, respectively.  The angle α 
and β in this study are calculated by the loadings of SER and GABA in un-rotated 
3D PCA.  The projection of each sample on the new x axis is its degradation index.  
The advantage of rotation after PCA is that, samples are well separated through x 
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 165

axis, which is explained only by degradation character.  This is very useful if a 
specific index of either degradation or source needs to be quantified. 
 Fig. B.1a also shows that PC1, PC2 and PC3 account for 46%, 23% and 18% of 
the variance. Since it is an orthogonal rotation, the rotated result in Fig. B.1b still 
explains 87% of the variance in total, but will reallocate them in the new axes (40% for x 
axis, 27% for y axis, and 20% for z axis).  
 For finding the approximate single degradation direction, we could use the middle 
loading of BALA and GABA for degradation product.  We also could consider ASP, 
GLU, GLY, THR, et al. as fresh phytoplankton biomarkers, which would obviously 
increase the complexity of loading degradation direction.  
 
 



(a-1) 
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(a-2) 
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(b-1) 

 

 168



 169

(b-2) 

 
  
 
Figure B.1 A comparison on (a) the 3D plots (with two view angles, a-1 & a-2) of the first 3 principal components for amino acids 
dataset of time series sediment trap samples in March to May 2003, DYFAMED site Mediterranean Sea with (b) the one that has been 
rotated (with two view angles, b-1 & b-2) so that amino acids SER and GABA have biggest correlations with the new first axis, and 
are loading along that axis. 



Appendix C: 3D PCA plot with the first three PCs 
 
 

 
% PCA 
% standardize data: demean and divided by standard deviation  
[n,m]=size(X); 
X=X-ones(n,1)*mean(X); 
X=X./(ones(n,1)*std(X,1)); 
 
% find covariance for standardized data 
c=cov(X); 
 
% ftn svd to find eigenvector and eigenvalue for covariance c 
[v,d,vt]=svd(c); 
 
% Y is site core 
Y=X*v; 
D=diag(d)/sum(diag(d)); 
 
figure(1) 
num=[1:1:n]’; 
label=num2str(num); 
plot3(Y(:,1),Y(:,2),Y(:,3),'ro','MarkerSize',6,'MarkerFaceColor','r'); 
text(Y(:,1)+0.005,Y(:,2),Y(:,3),label,'FontSize', 
16,'FontWeight','demi','FontAngle','italic'); 
xlabel('PC1');ylabel('PC2'); 
hold on; 
 
% v is loading 
Plot3(v(:,1),v(:,2),v(:,3);'+'); 
num=[1:1:m]’; 
label=num2str(num); 
text(v(:,1)+0.003,v(:,2),v(:,3),label); 
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Appendix D: The rotation of 3D PCA plot 
 
 

 
[n,m]=size(X); 
 
% standardize data: demean and divided by standard deviation  
X=X-ones(n,1)*mean(X); 
X=X./(ones(n,1)*std(X,1)); 
 
% find covariance for standardized data 
c=cov(X); 
 
% ftn svd to find eigenvector and eigenvalue for covariance c 
 [v,d,vt]=svd(c); 
 
Y=X*v; 
D=diag(d)/sum(diag(d)); 
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% first z axis anti-clockwise rotating an angle α (alpha), then by y axis anti-clockwise  
% rotating an angle β 
vv=[v(:,1)  v(:,2) v(:,3)]*T12*T13; 
YY=[Y(:,1)  Y(:,2)  Y(:,3)]*T12*T13; 
 
figure(1) 
num=[1:1:n]’; 
label=num2str(num); 
plot3(YY(:,1),YY(:,2),YY(:,3),'ro','MarkerSize',6,'MarkerFaceColor','r'); 
text(YY(:,1)+0.005,YY(:,2),YY(:,3),label,'FontSize', 
16,'FontWeight','demi','FontAngle','italic'); hold on; 
 
% vv is loading on new axes; YY is site score on new axes 
Plot3(vv(:,1),vv(:,2),vv(:,3),'+'); 
text(vv(:,1)+0.003,vv(:,2),vv(:,3),label); 
var(YY)/sum(diag(d)) 
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Appendix E. Abbreviation table, cited from Goutx et al., (2007) 
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