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Abstract of the Dissertation 
The impact of genotype misclassification errors on the power to detect a 

 genetic association and gene-environment interaction  

with Cox proportional hazards modeling 

by  

Lin Tung 

Doctor of Philosophy  

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2007 

Genetic model parameters determine the power and sample size required to detect a 
genetic association and gene-environment interaction with Cox proportional hazards 
modeling in cohort genetic studies. Detecting a genetic indirect association is largely 
dependent on the difference in the allele frequencies between the underlying functional 
variant and the marker locus. Similar to case-control genetic association studies, the 
increase in sample size to detect a genetic indirect association is approximately 1/r2, 
where the linkage disequilibrium parameter r2 is the square of the correlation between 
alleles in coupling at the disease and marker locus. Detecting a gene-environment 
interaction for dominant and recessive modes of inheritance for a direct association study 
is feasible for common disease allele frequencies (pd > 0.10) and moderate effect sizes.  

The impact of each genotyping misclassification error upon the increase in sample 
size required to maintain constant Type I and II error rates can be calculated 
mathematically through a first-order linear Taylor series expansion. We find that, 
consistent with previous genotyping errors research in case-control genetic association 
studies, any misclassification of the more common homozygote is the most deleterious in 
terms of increase in sample size (or equivalently loss of power) to detect a genetic 
indirect association. The total required sample size to detect a genetic indirect association 
in the presence of genotyping errors may be partitioned into the sample size required for 
a direct association study, the increase in sample size due to an indirect association study, 
and the increase in sample size due to genotyping errors. For high r2 (typically r2 > 0.95) 
and approximately equal allele frequencies, the increase in sample size due to genotyping 
error rates as low as 2% is larger than the increase in sample size due to an indirect 
association study. In the detection of a gene-environment interaction, any 
misclassification of a subject without the at-risk genotype as having the at-risk genotype 
is the most deleterious. Such errors require an indefinitely large increase in required 
sample size as the SNP minor allele frequency approaches 0.  
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Chapter 1 – Background 
 

Survival analysis is a common statistical technique used to detect genetic 
associations and gene-environment ( EG× ) interactions in prospective genetic cohort 
studies. The Cox proportional hazards (PH) model is the most widely-used survival 
analysis regression model in a proportional hazards setting. This model is of particular 
importance when studying the relationship between genetic and environmental factors on 
disease risk and progression. Among the most influential genetic association findings 
using Cox PH modeling are an association between P-glycoprotein expression and 
survival in a sample of adolescent cancer patients with neuroblastoma (Chan, et al. 1991), 
an association between E-cadherin expression and survival in a sample of prostate cancer 
patients (Umbas, et al. 1994), and an association between the chemokine reception 5 
(CKR5) genotype and HIV-1 disease progression (Dean, et al. 1996). Example EG×  
interaction findings using this model are an association between the cytochrome-p450ia1 
(CY1A1) genotype and smoking status on lung cancer survival length (Goto, et al. 1996), 
an association between apolipoprotein E gene (APOE) epsilon 4 carriers and smoking 
status on cardiovascular disease risk (Talmud, et al. 2005), and a moderation of the 
alcohol dehydrogenase 1C (ADH1C) genotype on the relationship between alcohol 
consumption and coronary heart disease (Younis, et al. 2005).  

EG×  interaction studies characterize the interplay between genetic and 
environmental effects. Understanding the relationship between genes and environment 
with respect to disease risk and progression enables improvement in the estimation of 
genetic and environmental main effects by consideration of their joint interaction, insight 
into the genetic and environmental effects on biological pathways pertinent to disease, 
and facilitates the design of new treatments customized for individuals based on their 
genotypes (Hunter 2005). Among the most prominent EG×  interaction findings are a 
moderation of the influence of stressful live events on depression by a functional 
polymorphism in the promoter region of the serotonin transporter gene (5-HTT) (Caspi, 
et al. 2003), an association between polymorphisms in the N-acetyltransferase (NAT) 
genes with red meat consumption on colorectal cancer risk (Chen, et al. 1998), and an 
association between APOE epsilon 4 carriers and estrogen usage on cognitive decline 
among a cohort Medicare-eligible women (Yaffe, et al. 2000).  
 Ottman (1996) summarizes the current definitions and study designs of EG×  
interaction for genetic epidemiology. The genetic factor (G) is a broadly defined high-
risk genotype, such as an autosomal gene or a polygenic model. Similarly, the 
environmental factor (E) is broadly defined to include an expansive range of 
environmental risks, such as an exposure (physically, chemically, or biologically), a 
behavior pattern, or a life event. Assuming dichotomous independent and dependent 
variables, the  interaction may be estimated as an odds ratio (OR) or relative risk 
(RR) of disease risk and may be additive or multiplicative, depending on the scale of 
measurement. The null hypothesis for an additive 

EG×

EG×  interaction is 
 or 1−+=× EGEG OROROR 1−+=× EGEG RRRRRR  depending on the study design. The 

null hypothesis for a multiplicative EG×  interaction is EGEG OROROR ×=×  or 
 depending on the study design. Ottman (1996) further describes 

differing models of  interaction upon disease risk. The models include a direct 
EGEG RRRRRR ×=×

EG×
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effect of genotype on disease risk exacerbated by the environment (Model I), a direct 
effect of the environment on disease risk exacerbated by the genotype (Model II), a direct 
effect of  interaction on disease risk but no individual effects of genotype or 
environment (Model III), and a direct effect of both genotype and environment in 
addition to their interaction upon disease risk (Model IV).   

EG×

 Power and sample size calculations are critical in the design of  interaction 
studies. Luan et al. (2001) provide sample size calculations corresponding to a Model II 

 interaction for a continuous dependent variable and environmental covariate, in 
the context of simple linear regression where the 

EG×

EG×
EG×  interaction estimate is the ratio of 

the slopes dependent on the genotypes. Hwang et al. (1994) provide sample size 
calculations corresponding to a Model II EG×  interaction for binary genetic and 
environmental factors in a case-control setting.  Foppa and Spiegelman (1997) provide 
sample size calculations corresponding to a Model IV EG×  interaction for a binary 
genetic factor and polytomous environmental factor in a case-control setting, using 
multivariate logistic regression. García-Closas and Lubin (1999) show that the formulas 
provided by both Hwang et al. (1994) and Foppa and Spiegelman (1997) underestimate 
the minimum sample size necessary for a given power for large EG×  interaction effect 
sizes. García-Closas and Lubin (1999) suggest a power and sample size approach 
described by Lubin and Gail (1990). Goldstein et al. (1997) perform power and sample 
size calculations using the Lubin and Gail (1990) approach for detecting  
interactions of complex diseases using case-control designs. Goldstein et al. (1997) 
suggest that in light of the unreasonably large sample size necessary to detect a 

EG×

EG×  
interaction for uncommon genes or environmental factors in a standard case-control 
design, researchers should consider more efficient alternative study designs.  

Although power and sample size calculations have been extensive in genetic 
association and  interaction studies with respect to cross-sectional statistical 
methods (e.g., chi-square tests of independence, simple linear regression, and logistic 
regression), there has not been much design research in the context of survival analysis. It 
is natural to extend the current study designs to survival analysis as the time to survival 
event is a critical biostatistical quantity that may be genetically associated. This research 
examines design considerations to detect genetic associations and  interactions 
(Models III and IV) explicitly in the survival analysis context. The log-rank test statistic 
will be used to detect a genetic association, as it is equivalent to the score test statistic for 
a Cox proportional hazards model with binary covariates (Hosmer and Lemeshow 1999). 
Cox PH modeling will be used to detect a Model III and IV 

EG×

EG×

EG×  interaction. These 
study designs require the sample size to consist of a representative sample of the 
population, unlike the popular case-control or partial case-control collection designs.  

Schoenfeld (1983) was the first to derive a sample size formula for a Cox 
proportional hazards model with a binary covariate. The sample size formula was based 
on the asymptotic distribution of the score test statistic, which as noted previously, is 
equivalent to the log-rank test statistic in a proportional hazards setting. Lakatos (1988) 
derived a sample size formula under pragmatic complex trial conditions to allow for non-
proportional hazards, loss to follow up, non-compliance and drop-in. Hsieh and Lavori 
(2000) extend upon the Schoenfeld sample size formula to derive a sample size formula 
for a Cox proportional hazards model with a non-binary covariate. Their sample size 
formula allows for a multivariate Cox model where the correlation between additional 
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covariates and the non-binary covariate of interest is accounted for in a variance inflation 
factor. This variance inflation factor is then multiplied by the required sample size for the 
Cox model with a single non-binary covariate.  

Although there has been a lot of research devoted to sample size formulas to 
compare the survival distributions between two groups, there has been relatively little 
research devoted to the sample size formula derivation to compare more than two groups. 
Ahnn and Anderson (1995) extend the Schoenfeld sample size formula and derive a 
sample size formula that compares three or more groups of equal proportion using the 
log-rank test. This formula assumes proportional hazards and a uniform censoring 
distribution across groups. Ahnn and Anderson (1998) extend the Lakatos sample size 
formula to compare three or more groups of equal allocations. Halabi and Singh (2004) 
extend upon the Ahnn and Anderson (1995) sample size formula to allow for unequal 
allocation of groups. This formula also assumes proportional hazards and identical 
censoring distributions across groups.  
 Misclassification errors are present in the majority of data sets and can affect the 
validity of a study.  It is well documented that environmental misclassification errors are 
a primary source of bias in epidemiological studies (Rothman 1998). A genotype 
misclassification error occurs when an observed genotype does not correspond to the true 
genotype. Genotyping errors are result from interactions between DNA molecules, low 
quality or quantity of DNA, biochemical anomalies, and human error (Pompanon, et al. 
2005). Genotyping error rates can be estimated with genotyping replication using an 
implicit reference genotype (Rice and Holmans 2003), testing for deviation from Hardy-
Weinberg Equilibrium (HWE) (Hosking, et al. 2004), or through non-Mendelian errors in 
a case-parent design (Douglas, et al. 2002; Geller and Ziegler 2002; Gordon, et al. 1999). 
Studies have reported genotyping error rates ranging from 0.2% to 15%.  It is common 
for laboratories to report genotyping error rates between 0.5% and 1% (Pompanon, et al. 
2005). Lincoln and Lander (1992), Douglas et al. (2002) and Sobel et al. (2002) 
summarize the integration of genotyping misclassification errors in statistical genetics 
and describe several realistic empirical error models. 
 There has been considerable research on the impact of genotyping errors in case-
control genetic association studies (Ahn, et al. 2007; Gordon and Finch 2005; Gordon, et 
al. 2002; Kang, et al. 2004a; Kang, et al. 2004b). It has been shown that genotyping 
misclassification errors lead to biased estimates and a decrease in power in genetic 
association studies (Gordon and Finch 2005). The impact of each individual SNP 
genotyping error type for the chi-square test of independence and the linear trend test was 
examined in Kang et al. (2004b) and Ahn et al. (2007), respectively. They determined 
which SNP genotyping misclassification error was most deleterious in terms of increase 
in required sample size.  

Many advocate a double-sampling procedure to provide information regarding 
genotyping error rates and incorporate this information in the calculation of asymptotic 
power (Gordon, et al. 2004; Ji, et al. 2005; Tintle, et al. 2007). Double-sampling 
procedures resample a random subset of the data with a gold standard measurement (e.g., 
a perfect classification method). Test statistics incorporating information from double 
sampling procedures have been derived for association studies (e.g. Barral, et al. 2005; 
Gordon, et al. 2004; Rice and Holmans 2003).  
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Misclassification errors in EG×  interaction studies may lead to an increase in the 
required sample size and an attenuation of the EG×  interaction estimate. García-Closas 
et al. (1999) show that differential misclassification of a dichotomous environmental 
factor with respect to the disease biases the multiplicative interaction effect toward the 
null value in case-control studies when the genotype and environmental factors are 
independent for the controls and the environmental misclassification is non-differential 
with respect to the genotype. Non-differential misclassification occurs when the rate of 
misclassification is the same for all subjects. Differential misclassification occurs when 
the rate of misclassification differs between subjects conditional on some other 
information (e.g., case or control). García-Closas et al. (1999) also show that 
misclassification of genotype or environmental risk factors may substantially increase the 
sample size necessary for case-control studies, particular for small effect sizes. Deitz et 
al. (2004) illustrate the impact of genotyping misclassification errors upon sample size in 
an  interaction study of the NAT2 gene, smoking, and bladder cancer. They 
compare the genotyping errors of NAT2 of a 3-single nucleotide polymorphism (SNP) 
genotyping assay with a more precise 11-SNP assay, concluding that the 11-SNP assay 
substantially decreases the sample size necessary with consequent decrease in the cost of 
the study. Wong et al. (2003) extend the 

EG×

EG×  interaction sample size calculations of 
Luan et al. (2001) for continuous traits to calculate the increase in sample size necessary 
in the presence of genetic and environmental non-differential measurement errors. They 
consider the same simple linear regression model for a continuous dependent variable and 
environmental covariate, in which the EG×  interaction estimate is the ratio of slopes 
dependent on the genotype. They show that the increase in sample size necessary due to 
both genetic and environmental errors can be substantial, suggesting that studies should 
invest in better measurement, if possible, rather than increasing the sample size to handle 
the errors.  Wong et al. (2004) provide a method to estimate the EG×  interaction in the 
presence of genetic and environmental non-differential measurement errors for a 
continuous dependent and environmental variable. They adjust the crude  
interaction estimate in their simple linear regression model using a correction factor 
obtained through a validation study.     

EG×

This research assesses the practicality in terms of sample size to detect a genetic 
association and  interaction with survival analysis techniques. The impact of each 
genotyping error upon power and sample size is quantified mathematically to determine 
those genetic error rates that are most deleterious. Results are confirmed through 
simulation studies. Chapter 2 details the method in which these research questions will be 
answered for the various models. Chapter 3 considers direct and indirect genetic 
association studies using the log-rank test statistic. Chapters 4 and 5 consider the 

EG×

EG×  
interaction only model (Model III) and full EG×  interaction model (Model IV), 
respectively, for direct association studies. Chapters 4 and 5 consider dominant and 
recessive patterns of inheritance.  
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Chapter 2 – Methods 
 

This chapter begins with the notation that will be used in the subsequent chapters. 
Assume that there exists survival analysis genetic data for a di-allelic disease locus with a 
high-risk allele d and a low-risk allele +. Furthermore, assume that there is survival 
genetic data for a di-allelic SNP marker locus with a less common allele A that is in 
coupling with the high-risk allele d and a more common allele B.  

 
Survival model parameters 

=iG  genotype indicator function.  Given a direct association study,  represents the 
disease genotype i covariate, where i = 1 for the d+ genotype and i = 2 for the dd 
genotype (genotype ++ is the reference genotype). Given an indirect association study, 

 represents the SNP marker genotype i covariate, where i = 1 for the AB genotype and 
i = 2 for the AA genotype (genotype BB is the reference genotype).  

iG

iG

For the  interaction only model and full model (Chapters 4 and 5), G is an indicator 
function such that  1 if the subject has the at-risk disease genotype (dd or d+ for 
dominant models, dd for recessive models where d is the disease allele and + is the wild-
type allele); 0 otherwise.   

EG×
=G

=G
=E environment covariate. Let E be transformed into a Z-scale metric such that E is 

assumed to be normally distributed with mean 0 and variance 1.  
Furthermore, G and E  are assumed to be independent. 

=×EGi gene-environment interaction covariate. The EG×  interaction only model and 
the full model (Chapters 4 and 5, respectively) consider direct association studies. That is, 
the functional variant is directly observed.  
=t  a continuous random variable indicating the subject’s survival time. It is assumed to 

be exponentially distributed.  

=)(tλ  hazard function of survival time t. The hazard function is defined to be 
)(1

)(
tF

tf
−

, 

where is the probability density function of t and is the cumulative density 
function of t. Conceptually, the hazard function is the instantaneous probability of the 
survival event, given that the subject has survived to time t. Examples of survival events 
are disease onset, disease relapse, disease progression, disease remission and death. For 
the purposes of this work, the survival event is defined to be disease onset. The hazard 
function of an exponentially distributed random variable with mean

)(tf )(tF

ξ  is ξ/1 . That is, the 
hazard function does not depend on t for exponential distributions.   

)(0 tλ  = baseline hazard function. This is the hazard function for those subjects with all 
covariates equal to 0. 

=Λ )(t  cumulative hazard function of survival time t. The cumulative hazard function is 

defined to be . ∫
t

dtt
0

)(λ

=η censoring proportion, the proportion of subjects who did not experience the survival 
event. It is assumed that the censoring proportions across differing genotype groups are 
identical.  
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Genetic model parameters in the context of survival analysis 
Frequency parameters: 

=Ap SNP marker A allele frequency; 
2
1

≤Ap  

=dp disease locus d allele frequency 
=0π  frequency of ++ genotype =  2

dp
=1π  frequency of d+ genotype = ( )dd pp −12  

=2π  frequency of dd genotype = ( )21 dp−  
Hardy-Weinberg equilibrium (HWE) is assumed at the disease locus.  
Disequilibrium parameters: 
=ρ coefficient of maximal disequilibrium [ ]10 ≤≤ ρ   

( ) ( )[ ]( ) ( ) ( )[ ]AAdddAdA ppppppppR −−−−= 11/1,1min 22
max  

22
maxRr ×= ρ   

( ) ( )ddAA pppprD −−= 112 , disequilibrium (non-standardized) 
Survival penetrances and genotypic relative risks: 
( ) =tf0 ( =++ )=Λ G|t0  Pr(survival event occurring in the time interval [  | genotype 

++ at disease locus) 
]

) ]

)

t,0

( ) =tf1 ( =+=Λ dG|t1  Pr(survival event occurring in the time interval [  | genotype 
d+ at disease locus) 

t,0

( ) =tf2 ( ==Λ ddG|t2  Pr(survival event occurring in the time interval [  | genotype 
dd at disease locus). These functions will be referred to as survival penetrances as they 
are analogous to the conventional penetrance functions. 

]t,0

( ) ( ) 01011 f/ftf/tfr ==  
( ) ( ) 02022 f/ftf/tfr == . These are analogous to the genotypic relative risks (GRR) 

(Schaid and Sommer 1993). They are independent with respect to time, given an 
exponentially distributed failure time. 
Survival prevalence: 
( ) =tϕ  Pr(survival event occurring in the time interval [ ]t,0 ) and is analogous to 

prevalence. Hardy-Weinberg equilibrium (HWE) is assumed at the disease locus so that 
( ) =tϕ ( ) ( ) ( )tfptfpptfp dddd 2

2
10

2 )1(2)1( +−+− . The censoring proportion may be 
calculated from the survival prevalence as ( )tϕη −=1 . 
Haplotype frequencies: 
The haplotype frequencies of disease allele i and marker allele j are functions of 

 and D. Specifically, 
ijh

Ad pp ,

( ) Dpph AdA −−=+ 1  
( )( ) Dpph AdB +−−=+ 11  

Dpph AddA +=  
( ) Dpph AddB −−= 1  
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Conditional survival probabilities for marker genotypes: 
( ) =tP1 Pr(marker genotype AA| survival event occurring in the time interval [ ) = ]t,0

( ) ( ) ( )( ) ( ){ }2
2

10
2 21 fhfhhfht dAdAAA ++⎥⎦

⎤
⎢⎣
⎡

++ϕ  

( ) =tP2 Pr(marker genotype AB| survival event occurring in the time interval [ ) = ]t,0

( ) ( )( ) ( ) ( )( ){ }210
2 fhhfhhhhfhht dBdABdAdBABA +++⎥⎦

⎤
⎢⎣
⎡

++++ϕ  

( ) =tP3 Pr(marker genotype BB| survival event occurring in the time interval [ ) = ]t,0

( ) ( ) ( )( ) ( ){ }2
2

10
2 21 fhfhhfht dBdBBB ++⎥⎦

⎤
⎢⎣
⎡

++ϕ  

 
Genotyping error parameters 
Disease genotype error parameters (Chapters 4 and 5): 

The genotyping misclassification errors are assumed to be independent and 
identically distributed (i.i.d) with respect to the survival event. The six parameter disease 
genotyping error model is displayed in Table 2.1. The error parameters are defined as 

Pr(observed genotype j | true genotype i) where =ije }2,1,0{, ∈ji , 0 = ++ genotype,  1 = 
d+ genotype , and 2 = dd genotype.   

Table 2.1: Disease locus error parameters   ije

True genotype  Observed genotype 
 dd* d+* ++* 

dd 20211 ee −−  21e  20e  

d+ 
12e  10121 ee −−  10e  

++ 02e  01e  01021 ee −−  

The ijth cell denotes the conditional probability of observing the jth genotype conditional 
on the ith true genotype, where 0 = genotype ++, 1 = genotype d+, and 2 = genotype dd.  
 
SNP marker genotyping error parameters (Chapter 3): 
The SNP genotyping misclassification errors are assumed to be assumed to be non-
differential. The SNP error parameters are defined as =ijε Pr(observed marker genotype j 
| true marker genotype i) where { }3,2,1, ∈ji  with 1 = AA genotype, 2 = AB genotype and 
3 = BB genotype.   

Table 2.2: SNP marker locus error parameters ijε  

True genotype  Observed genotype 
 AA* AB* BB* 

AA 31211 εε −−  12ε  13ε  

AB 
21ε  32121 εε −− 23ε  

BB 31ε  32ε  23131 εε −−  

The ijth cell denotes the conditional probability of observing the jth genotype conditional 
on the ith true genotype, where 1 = genotype AA, 2 = genotype AB, and 3 = genotype BB.  
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Percent increase in minimum sample size requirements necessary (%MSSN) 
To differentiate between the coefficients of the percent increase in the minimum sample 
size necessary (%MSSN) for the three Cox models presented in the subsequent chapters, 
the following notation will be used: 
 
Genetic association model (Chapter 3) – Let  denote %MSSN associated with a 1% 
increase in the SNP error parameter 

ijC

ijε  as defined by Kang et al. (2004a). The sum of 
marker %MSSN coefficients is defined as 323123211312 CCCCCC +++++ . The 
misclassification of one homozygote to another homozygote may be rare in practice 
(Miller, et al. 2002); however, these misclassifications are included for theoretical 
completeness.  
 
Model III  interaction (Chapter 4) – Let  denote the %MSSN associated with a 
1% increase in the disease locus error parameter  for the interaction only model.  

EG× ijD

ije
The sum of the disease %MSSN coefficients for this model is defined as 

.   212012100201 DDDDDD +++++
 
Model IV  interaction (Chapter 5) – Let  denote the %MSSN associated with a 
1% increase in the disease locus error parameter  for the full model. The sum of 
disease %MSSN coefficients for this model is defined as 

EG× ijF

ije

212012100201 FFFFFF +++++ .   
 
Gene only model (Chapter 3) 
 
Log-rank test statistic and sample size formula 

The log-rank test statistic is used to compare the survival curves between three or 
more groups. Let K denote the total number of groups and mt...tt <<< 21  be the m rank 
ordered distinct survival times. Let denote the number of survival events belonging to 
group k (k = 1,2,…K) at survival time  and  denote the number of at-risk subjects 
belonging to group k (k = 1,2,…K) at survival time . Furthermore, let  and  denote 
the total number of survival events across all k groups and the number of at-risk subjects 
across all k groups at time . The log-rank test statistic formula is  
where  is a score vector of length 

kid

it kin

it id in

it ( ) ( ) ( )000 1Ψ′Ψ −I
( )0Ψ 1−k  whose elements are defined as 

( ) ∑
=

⎟
⎠
⎞⎜

⎝
⎛ −=Ψ

m

i i

ki
kik n

nd
1

0  for group k = 2,3…K, and ( )0I  is a ( ) ( )11 −×− kk  information 

matrix whose elements are defined as ( ) ∑
=

⎟
⎠
⎞⎜

⎝
⎛ −=

m

i i

li
kl

i

kl
kl n

n
n
nI

1
0 δ  for group k,l = 2,3…K 

where 1=klδ  if and lk = 0=klδ  if lk ≠ (Lawless 1982). This test statistic is 
asymptotically distributed as  under the null hypothesis that the survival curves 
between groups are equivalent.   

2
1−kχ

We consider the following log-rank model to detect a genetic association: 
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 ( )jjjjjjjj GGexp)t()G,G|t( 2211021 ββλλ +=  
where j = D or I for direct association and indirect association study respectively. A 
functional polymorphism in lieu of the disease locus is observed in indirect association 
studies. The direct association model is a special case of the indirect association model 
when there is perfect disequilibrium ( 12 =r ). The direct association model compares the 
survival distributions between differing disease locus genotypes, and the indirect 
association model compares the survival distributions between differing SNP marker 
genotypes. The baseline hazard, )t(D0λ , is the risk of those subjects with disease 
genotype ++ for the direct association model, and )t(I0λ  is the risk of those subjects with 
marker genotype BB for the indirect association model. The model coefficients ijβ  
represent the log hazard ratio for genotype i. The hazard ratio is analogous to relative risk 
and is the ratio of hazard functions between subjects with differing genotypes (Hosmer 
and Lemeshow 1999). For example, the hazard ratio between subjects with marker 

genotype AB and genotype BB is ( ) ( I
I

II

II exp
)t(

exp)t(
)G,G|t(
)G,G|t(

1
0

10

21

21

00
01 β

λ
)βλ

λ
λ

==
==
== .   

We use the Halabi and Singh (2004) sample size formula for the log-rank test 
statistic with unequal allocations. The null and alternative hypotheses are 

,:H jjj 0210 == ββ  011 ≠jj :H β  or 02 ≠β . This sample size formula is applicable to 
genetic association studies where it is common for there to be an unequal proportion 
between groups with differing genotypes. The sample size formula is given by: 

( )

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−

Θ
= −=

j

j

j

j
jj

j

j
jj

j

j
jj

,,
j

loglogloglog

N

0

2

0

1
21

2

0

2
22

2

0

1
11

2
12

2111 λ
λ

λ
λππλ

λππλ
λππη

βαυ  

where j = D or I for direct association and indirect association models respectively,  is 
the noncentrality parameter for a noncentral chi-square distribution with a given level of 
significance

2Θ

α , power β−1 , and degrees of freedom 2=υ . The SAS routine CNONCT  
can be used to calculate ; for example  and 

. The overall censoring proportion is 

2Θ 88132
200102 ..,., ==== βαυΘ

65202
0500102 ..,., ==== βαυΘ η . The genotype frequencies 

j1π  and j2π  denote the expected proportion of subjects allocated to genotypes dd and d+ 
for a direct association model and genotypes AB and AA for an indirect association 
model. The corresponding hazard ratios of these genotype groups with respect to their 
baseline genotype group are denoted as jj / 01 λλ  and jj / 02 λλ . The total required sample 
size necessary with these given design parameters is .  jN
 
Gene-environment interaction only model (Chapter 4) 
 
Cox proportional hazards (PH) model and sample size formula 

The gene-environment ( EG× ) interaction is modeled for a direct association 
study using the following Cox PH model: [ ])EG(exp)t()EG|t( ××=× γλλ 0 . The 
model coefficientγ  represents the log hazard ratio for a one unit change in . The EG×
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hazard ratio is interpreted in the same manner as in log-rank model. For example, given a 
dominant MOI, the hazard ratio between subjects with the at-risk genotype, dd or d+, and 
subjects without the at-risk genotype, ++, is 

( )
( )

( ) ( )EG(exp
)t(

)EG(exp)t(
)EG|t(

)EdorddG|t(
××=

××
=

×++=

×+=
γ

λ
γλ

λ
)λ

0

0 .  The log hazard 

ratio between subjects with the disease genotype and without the disease genotype is 
)( EG××γ  for both dominant and recessive mode of inheritance (MOI).    

 To investigate the required sample size to detect a EG×  interaction using Cox 
PH modeling, the Hsieh and Lavori (2000) sample size formula for a Cox PH model with 
nonbinary covariates is used. The sample size formula states that the total required 
sample size, N, for a given level of significance α  and power β−1  is:    

( )
( ) ∆−

+
=

×

−−
22

2
11

1 log
zz

N
EGση

βα      

where  with  being the inverse of the standard normal cumulative 
distribution (for example, 

( )uzu
1−Φ= 1−Φ

842.080.0 =z , 645.195.0 =z  and 326.299.0 =z ), 
, ( )EGvarEG ×=×

2σ η  = censoring rate, and γ=∆log is the log hazard ratio associated 
with a one-unit change in .   EG ×

Let τ  denote the at-risk genotype frequency so that  for a 
dominant MOI and  for a recessive MOI. Then 

( ddd ppp −+= 122τ )
2
dp=τ ( ) τσ =×=× EGvarDEG

2 . Let ∆  
denote the hazard ratio for the EG ×  interaction and be defined as the product of the 
genotypic relative risks (GRR) and a one unit change in E. That is, for a dominant MOI, 

( )( )11 −+×+++=×=∆ E),dordd(GRR)EG(HRD
( ) ( )
( ) ( )tf

tftf

012

1122

ππ
ππ

+
+

= . 

For a recessive MOI, 

( )( )11 −+×+++=×=∆ E)ord,dd(GRR)EG(HRR
( )( )

( ) ( ) 1100

102

ππ
ππ
tftf

tf
+
+

= . 

Then  for a dominant MOI and ( ) ( )trtrD 21 ==∆ ( )trR 2=∆  for a recessive MOI.  
 
Full model (Chapter 5) 
 
Cox proportional hazards (PH) model and sample size formula 

The full model contains genetic and environmental main effects and their 
interaction: [ ]GEEGexp)t()E,G|t( 3210 γγγλλ ++=  for a direct association study. The 
model coefficients are interpreted in a manner similar to previous sections. 
 To investigate the required sample size to detect a EG×  interaction for a model 
that includes genetic and environmental main effects, the Hsieh and Lavori (2000) 
sample size formula for a Cox PH model with nonbinary covariates and variance inflation 
factor (VIF) can be used. The VIF approximates the ratio between the variance of the 
regression coefficient of interest in a model without other covariates and a model with 
correlated covariates. The sample size formula states that the total required sample size, 
N, for a given level of significance α  and power β−1  is:    
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where ( )211 E,GEGR/VIF •×−=  and  is the amount of variance explained by 
regressing  on covariates G and E. We may calculate  using the known 
bivariate correlations between the three variables (G, E, and 

2
E,GEGR •×

EG× 2
E,GEGR •×

EG× ) as 

2

22
2

1
2

E,G

E,GE,EGG,EGE,EGG,EG
E,GEG r

rrrrr
R

−
−+

= ××××
•×  (Healey 1993). All other parameters, including 

the  hazard ratio were defined in the previous section. EG×
Both sample size formulas (Hsieh and Lavori 2000; Halabi and Singh 2004) 

assume the censoring distributions among all subjects and groups to be identical and the 
hazard ratios to be independent with respect to time (proportional hazards assumption). 
Futhermore, the sample size formula assumes the alternative hypothesis to be in close 
proximity to the null hypothesis.  

 
Increase in required sample size 
 
Indirect association study 
 We assess the increase in required sample size to maintain a constant specified 
power for a fixed level of significance due to an indirect association study. We define j1π  
and j2π  to be the expected genotype frequency such that =D1π Pr(d+) =  and ( )dd pp −12

=D2π Pr(dd) =  for a direct association study and 2
dp =I1π Pr(AA) and =I2π Pr(AB) for 

an indirect association study. Furthermore, we define the hazard ratios to be 

1
0

1

0

1 r
f
f

D

D ==
λ
λ  and 2

0

2

0

2 r
f
f

D

D ==
λ
λ  for a direct association study and 

( ) ( )
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)AAPr(
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0
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λ
λ  and 
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)BBPr(
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)BBPr(
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)ABPr(
ttP

I

I

03
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03
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0

2 == ϕ

ϕ

λ
λ  

for an indirect association study. Note that the hazard ratios for the indirect association 
study are functions of the conditional probabilities ( ( ) ( )tP,tP ii 10 ), which are in turn 
functions of the survival penetrances and haplotype frequencies. Thus, we are able to 
compute the indirect association study design parameters from  ,r,r,p,p Ad 21 ( )tϕ  and 
ρ . There is an attenuation in the hazard ratios for an indirect association study unless 
there is perfect disequilibrium (e.g., 12 =r ). With these parameters, we calculate the 
required sample size for a direct association study ( ), the required sample size for its 
affiliated indirect association study ( ), and the increase in required size due to an 

indirect association study (

DN

IN

D

I
N

N ). We fix the Type I and Type II error rates so that the 

noncentrality parameter  remains constant. We also assume the censoring 
distributions to be identical in the direct association and indirect association models. Thus 

2Θ
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the increase in required sample size is independent of the specified level of significance, 
power and censoring proportion. 
 
Increase in required sample size due to genotyping misclassification errors 

The increase in sample size to maintain a target level of significance and power 
due to genotyping misclassification error is examined similarly to Kang et al. (2004b). 
The marker genetic model parameters are calculated in the presence of error using the 
law of total probability (see Kang, et al. 2004b for details). The parameters in the 
presence of error are denoted with asterisks.  For example, Pr(AA*) denotes the 
probability of observing genotype AA in the presence of errors. The total required sample 
size in the presence of error is thus: 
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It is assumed that the noncentrality parameter and censoring proportion remain constant. 
Thus the increase in required sample size due to SNP genotyping misclassification error 
for log-rank model is:  
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This formula is denoted as ( )ε~HS  to represent the increase in sample size due to 
genotyping errors using the Halabi and Singh (2004) sample size formula. Note that 

( )ε~HS  is not a function of the target level of significance, power, and censoring 
proportion. 

Similarly, the required sample size in the presence of errors for a given level of 
significance α  and power β−1  for the EG×  only model and full model is:  
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where the VIF (i.e., ( )211 E,GEGR/ •×− )  is equal to 1 for the EG×  only model (Chapter 4) 
and is greater than 1 for the full model (Chapter 5). It is also assumed that the censoring 
pattern remain unchanged in the presence of errors. The minimum increase in required 
sample size to maintain a constant level of significance and power is thus the ratio of the 
required sample size with errors over the required sample size without errors:   
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This formula is denoted as ( )e~HL  to represent the increase in sample size due to 
genotyping errors using the Hsieh and Lavori (2000) sample size formula. 
 
Linear Taylor series approximation of the increase in required sample size  

To quantify mathematically which genotyping misclassification errors are most 
deleterious with respect to power and sample size, the %MSSN coefficients are derived 
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from a first-order Taylor series expansion about 0 with respect to the error parameters 
( ijε  for the log-rank model and  for the Cox model). For example, for the log-rank 

model, 
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0=ijε for all . To calculate the first-order Taylor series about the error 
parameters  for the Cox model, simply replace the 
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, which is intuitive but may be easily shown mathematically. The marker 

%MSSN coefficients are defined as 
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for design evaluation purposes, where ( )ε~T  denotes the Taylor series approximation to 
( )ε~HS .  

 Similarly, the disease %MSSN coefficients are defined as 
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 for the EG×  interaction only 

model (Model III) and the full EG×  interaction model (Model IV) respectively. Thus the 
increase in required sample size for the Cox PH model can be approximated as 
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Models III and IV respectively, where 

EG×

( )e~S  denotes the Taylor series approximation to 
( )e~HL . All %MSSN coefficients are independent with respect to the specified level of 

significance and power and censoring rate as it is assumed that these parameters remain 
constant in the presence of error. 
 
Adequacy of Taylor series 

The adequacy of the Taylor approximation is evaluated through its relative error 
with respect to ( )ε~HS  for the log-rank model and ( )e~HL  for the Cox models. The 
relative error is defined as ( ) ( ) ( ) ( )εεεε ~HS/~HS~T~R −=  for the log-rank model and 

( ) )e~(HL/)e~(HL)e~(Se~R −=  for the Cox models. The relative error is computed for 
the design parameters specified in the next section. A uniform error model is considered 
in which the six genotyping misclassification errors are equal (e.g., 

323123211312 εεεεεεε ======  for marker genotyping errors and 
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212013100201 eeeeeee ======  for disease genotyping errors). Uniform error rates 
ranging from 0.5% to 5% are considered. 

 
Design parameters considered 

The following range of design parameters is considered in evaluating the %MSSN 
coefficients and increase in sample size: 
Indirect association study (Chapter 3): 

5.00 ≤< dp  
500 .pA ≤< , δ±= dA pp  where 100 .≤≤δ  

180 ≤≤ ρ.  

225.1
0

1 ≤≤ λ
λ  

225.1
0

2 ≤≤ λ
λ  (Note that 

0

2

0

1
λ

λ
λ

λ ≤ by design and for dominant models, 
0

2

0

1
λ

λ
λ

λ =  

and for recessive models, 11
0

2

0

1 >= λ
λ

λ
λ , ) 

0500 .ij ≤< ε  
Direct association study (Chapters 4 and 5): 

700 .pd ≤<  
21 ≤∆<  

0500 .eij ≤<  
The upper and lower bounds are calculated for all of the %MSSN coefficients for these 
design settings and situations that lead to an indefinitely large %MSSN coefficient are 
identified.  
 
Simulation study 

A simulation study is performed to confirm that the sample sizes (N) for the log-
rank model and the Cox models yield the specified power and that the increases in 
required sample size (N*) due to genotyping misclassification error maintains a constant 
power. Exponential failure times with a uniform censoring distribution are simulated in 
R-2.4.0, with each power simulation consisting of 10,000 replications. The following 
high and low design parameter settings are considered for the simulation study in which 
the specified level of significance is 1% and the specified power is 80%: 
Indirect association study (Chapter 3): 

3020 .,.pd =  
3020 .,.pA =  

180 ,.=ρ   
75.1,25.11 =r  

2,5.12 =r   
η  = 0.10, 0.30 

0100050 .,.=ε  where 323123211312 εεεεεεε ======   
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Direct association study (Chapters 4 and 5), dominant MOI: 
 403020 .,.,.pd =

002751501251 .,.,.,.=∆  
η  = 0.10, 0.30 

0100050 .,.e =  where 212013100201 eeeeeee ======   
We determine whether the simulated powers were significantly different from the 

expected power using the test statistic 
100001

200001

/)power(power

)/(powerpower
z

ectedexpectedexp

ectedexpsimulated

−

−−
= , 

where  approximates a standard normal distribution for large samples (Fleiss, et al. 
2003). A Bonferroni adjusted significance level is used to account for the multiple design 
settings. Regression analyses are performed to determine whether the increase in sample 
size maintains a constant simulated power.  

z
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Chapter 3 – Genetic Association Results 
 
Impact on required sample size due to an indirect association study 

It is possible to detect a genetic association with a survival event for an indirect 
association study with common allele frequencies ( Ad p.,p. ≤≤ 1010 ) , a high coefficient 
of maximal disequilibrium ρ  and moderate hazard ratios. Consistent with the design of 
any experiment, required sample size is dependent upon the specified level of 
significance, power, and effect size(s). Figures 3.1a and 3.1b display the required sample 
size for an indirect association study as a function of the disease allele frequency  and 
coefficient of maximal disequilibrium 

dp
ρ for powers of 80% and 95% respectively given 

a 1% level of significance. Table 3.1 tabulates the required sample size for Figures 3.1a 
and 3.1b. The design settings in both figures and tabulation are , censoring 
rate of 30%, and genotypic relative risks of  

05.0+= dA pp
5.11 =r  and 22 =r . These design parameters 

require a total sample size no greater than 3000 for a specified power of 80% and no 
greater than 4200 for a specified power of 95%. Furthermore, when , the 
total required sample size is less than 700 for a 80% target power and less than 1000 for a 
95% target power. The tabulations show that for common allele frequencies 
( ), designing a study with 95% power does not require unrealistic 
sample sizes. However, as the disease allele frequency  approaches its lower bound of 
0, the expected genotype group proportion of the less common SNP marker genotype 
(genotype AA) becomes extremely small, thus causing the sample size to increase 
drastically in order to detect any effect in this genotype group. Also, there is a slight 
increase in sample size as the coefficient of maximal disequilibrium 

5020 .p. d ≤≤

Ad p.,p. ≤≤ 1010

dp

ρ  moves away from 
1. The required sample size may be calculated for any design setting from the Halabi and 
Singh (2004) sample size formula (see Methods). 

The increase in required sample size to detect a genetic association with an 
indirect association study is dependent on the difference in allele frequencies 

Ad pp −=δ  and the coefficient of maximal disequilibrium ρ . An indirect association 
study leads to an attenuation of effect size (in the hazard ratios) leading to an increase in 
sample size, unless there is perfect disequilibrium. The increase in required sample size 
due to an indirect association study is not dependent on the specified level of 
significance, power and censoring rate. Figures 3.2a and 3.2b show the percent increase 
in required sample size due to an indirect association study as a function of the absolute 
difference in allele frequencies (δ ) with design parameters 90.=ρ  and genotypic 
relative risks of  and 2511 .r = 7512 .r = . Figure 3.2a considers  and Figure 3.2b 
considers .  Figure 3.2a shows that for 

Ad pp >

Ad pp < 150.pd = , there is a nonlinear percent 
increase in required sample size due to δ  when . The percent increases in 
required sample size as a function of 

Ad pp >
δ  is linear in all other scenarios. There is less of an 

impact of δ  upon the increase in required sample size as the disease allele frequency 
increases. For example, if 15.0=dp  and 10.0=Ap , the percent increase in required 
sample size is 75% whereas if 35.0=dp  and 30.0=Ap , the percent increase in required 
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sample size is 40%. There is an infinite percent increase in required sample size as the 
 due to an indirect association study. Thus, when designing an indirect association 

study in the context of survival analysis, it is critical that the marker allele frequency be 
close to the disease allele frequency, especially for small disease allele frequencies. These 
results are consistent with Zondervan and Cardon (2004), who found that the required 
sample size for an indirect association study is highly dependent on the interplay between 
the disease and minor SNP marker allele frequencies.  

0↓dp

The increase in sample size due to an indirect association study for a case-control 
genetic association study is approximately equal to , where 21 r/ 2r  is the squared 
correlation coefficient between the SNP marker locus and disease locus (Pritchard and 
Przeworski 2001). This is also valid for genetic association studies within the framework 
of survival analysis. The increase in sample size due to an indirect association study 

 using the log-rank test statistic is approximately equal to . This finding is 
robust to effect sizes, as shown in Table 3.2. The estimated correlation between  
and  across all design parameters specified in Methods is 0.978 with a 95% 
confidence interval (0.975, 980) indicating that there is strong agreement between 

 and .  

( DI N/N ) 21 r/

DI N/N
21 r/

DI N/N 21 r/
 

Impact on required sample size due to genotyping misclassification errors 
 We approximate the increase on required sample size due to genotyping 
misclassification errors through a first-order linear Taylor series approximation, denoted 
as ( )ε~T . The relative error of the approximation ( )ε~T  with respect to the actual increase 
in required sample size ( )ε~HS  for a uniform error model in which εε =ij  

 is on average 3.7% (median 2.5%) for common allele frequencies 
( ) for error rates up to 5%. The linear Taylor series approximation 

},,{ji 321∈≠∀

Ad p.,p. ≤≤ 1010
( )ε~T  may only serve as a lower bound to the increase in required sample ( )ε~HS  as the 

allele frequencies approach their lower bounds of 0 as there is a nonlinear and boundless 
increase in required sample size for these scenarios. When the error rates are less than 
2%, the relative error is on average 0.9% (median 0.5%) for common allele frequencies 
( ). Figure 3.3 displays the distribution of the relative error for 
genotyping misclassification rates of 0.5% - 2% in increments of 0.5% for and 
0.35 and 

Ad p.,p. ≤≤ 1010
250.pd =

δ+= dA pp  such that 100.≤δ  for all design settings specified in Methods. 
Since the relative error is sufficiently small, ( )ε~T  may be used for design evaluation 
purposes.  

Table 3.3 summarizes the minimal and maximal impact on the increase in sample 
size to maintain a constant power of each SNP genotyping misclassification error for the 
design parameters considered. The %MSSN coefficients  are functions of the SNP 
marker genotype frequencies and conditional survival probabilities for marker genotypes 
(see Appendix 1 for explicit formulas). They are not dependent on the specified 
significance level, power, and censoring rate. All genotyping misclassification errors 
have finite bounds with respect to their %MSSN coefficients except for any 

ijC
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misclassification of the more common homozygote (  and ). When  and 
 and the allele frequencies are 0.5 (

31C 32C 2511 .r =
22 =r 50.pp Ad == ) with perfect disequilibrium 

( 12 =r ), a misclassification of the less common homozygote to a heterozygote ( ) 
reaches its upper coefficient bound of 1. With the same settings, a misclassification of the 
heterozygote to the more common homozygote ( ) and a misclassification of the more 
common homozygote to the heterozygote ( ) reach their lower coefficient bounds of 
0.5 and 0.2 respectively. When 

12C

23C

32C
221 == rr  and there is perfect disequilibrium ( 12 =r ) for 

allele frequencies of 0.5 ( 50.pp Ad == ), the misclassification of the heterozygote to the 
more common homozygote ( ) reaches its maximal coefficient bound of 4.5 while the 
misclassification of the more common homozygote to the less common homozygote 
( ) reaches its minimum coefficient bound of 1.1. A misclassification of the less 
common homozygote to the more common homozygote ( ) obtains its upper bound of 
3 when the allele frequencies are 0.5 with perfect disequilibrium and  and 

23C

31C

13C
511 .r = 22 =r . 

As  and  with 0↓dp 0↓Ap 80.=ρ  and 22 =r , a misclassification of the heterozygote 
as the less common homozygote ( ) reaches its lower coefficient bound of 0 when 

 and upper coefficient bound of 2 when 
21C

21 =r 2511 .r = . As , any misclassification 
of the less common homozygote (  and ) reaches its lower coefficient bound of 0. 
However, this causes an indefinite increase in the coefficients associated with any 
misclassification of the more common homozygote (  and ).  

0↓Ap

12C 13C

31C 32C
Consistent with previous genotyping misclassification research (Ahn, et al. 2007; 

Kang, et al. 2004a; Kang, et al. 2004b), there is noTable limiting behavior in the %MSSN 
coefficients as the minor SNP allele approaches 0. As noted previously, the %MSSN 
coefficients corresponding to a misclassification of the less common homozygote (  
and ) and a misclassification of the heterozygote to the less common homozygote 
( ) have a lower bound of 0 as . The %MSSN coefficients associated with any 
misclassification of the more common homozygote (  and )  increase without 
bound as . As a result, the sum %MSSN increases indefinitely as the minor SNP 
allele approaches 0. Furthermore, the %MSSN coefficient associated with a 
misclassification of the more common homozygote to the less common homozygote 
( ) is the largest coefficient in every possible design and increases at a faster rate for 
recessive modes of inheritance (e.g., when there is a large difference between the hazard 
ratios). This result is robust across differing study designs and is consistent with previous 
genotyping misclassification research in a case-control setting (Kang, et al. 2004a; Kang, 
et al. 2004b). This consistent finding emphasizes the need to correctly genotype the more 
common homozygote. Failure to do so may lead to deleterious loss in power or increase 
in required sample size.  

12C

13C

21C 0↓Ap

31C 32C
0↓Ap

31C

 
Simulation study results  

Figure 3.4 shows the results of the indirect genetic association simulation study. 
The horizontal axis represents the simulated power with a sample size of N, the required 
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sample size for an indirect association study with perfect genotyping classification. The 
vertical axis represents the simulated power with a sample size of N*, the required 
sample size for an indirect association study in the presence of SNP genotyping 
misclassification error rates of 0.5% and 1%. The solid line represents a perfect 
correspondence between the simulated power with sample sizes of N and N*. The scatter 
plot of the simulated powers with sample sizes N and N* falls nicely around the solid 
line.  

The Halabi and Singh (2004) sample size formula yielded slightly higher 
simulated powers than specified power. Our simulation study considered minor SNP 
allele frequencies of 0.2 and 0.3 causing the proportion of the reference genotype group 
(genotype BB) to be at least half of the sample. This yielded higher simulated powers 
than specified power, consistent with the simulation study performed by Halabi and 
Singh (2004). Furthermore, designs with a high censoring rate of 30% yielded a 
simulated power that was 5% higher on average than expected.  

A linear regression model was fit regressing the simulated power using sample 
size N* on the simulated power using sample size N. This model yields an intercept 
estimate of 0.048 with a standard error of 0.029, which differs nonsignificantly from 
zero, and a slope estimate of 0.94 with a standard error of 0.035. The estimated 
standardized beta-coefficient of the slope (e.g., the Pearson correlation estimate between 
the simulated powers with sample sizes N and N*) is 0.95 with a 95% confidence interval 
(CI) of (0.928, 0.971). The intercept estimate differed nonsignificantly from 0 and the 
correlation estimate was near 1 indicating that the increase in required sample size due to 
genotyping errors maintains a constant simulated power. We conclude that the simulation 
study confirms the accuracy of the sample size formulas and the increase in sample size 
due to genotyping errors maintains a constant power for a fixed level of significance.  
 One of the critical assumptions of the Halabi and Singh (2004) sample size 
formula is that the alternative hypothesis be close to the null hypothesis. Thus their 
sample size formula is only appropriate for small effect sizes ( ). For larger effect 
sizes, it is highly recommended that one perform simulations to determine the required 
sample size for a given design setting. The Halabi and Singh (2004) sample size formula 
yields sample sizes which tend to underestimate the specified power for larger effect 
sizes. It is difficult to run simulations with small sample sizes, as there may not be 
enough events per covariate for the test statistic to converge.   

221 ≤r,r

 
Comparison of  and   DI N/N I

*
I N/N

We may partition the total required sample size for an indirect association study 

in the presence of genotyping misclassification errors as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

I

*
I

D

I
D

*
I N

N
N
NNN  where  

is the required sample size for a direct association study,  is the impact upon 
required sample size due to an indirect association study and  is the impact upon 
required sample size due to genotyping misclassification errors. Table 3.4 displays 
example design settings and the impact upon sample size due to an indirect association 
study and genotyping misclassification errors. For genotyping error rates less than 2%, 

 is always greater than or equal to  unless the allele frequencies are equal 

DN

DI N/N

I
*
I N/N

DI N/N I
*
I N/N
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( ) andAd pp = ρ  is high (generally 900.>ρ ). For genotyping error rates between 2% 
and 5%,  is greater than  when I

*
I N/N DI N/N Ad pp = , otherwise  is 

consistently greater than . As the allele frequencies approach 0,  and 
 increase indefinitely with  greater than  except when 

DI N/N

I
*
I N/N DI N/N

I
*
I N/N DI N/N I

*
I N/N Ad pp = . 

As the difference between allele frequencies increases, the difference between  
and increases substantially as well. Table 3.4 shows that in situations in which 

, there is at least a 20% difference between increase in sample size due to an 
indirect association study and the increase in sample size due to genotyping errors. 
Furthermore, when , the increase in sample size due to an indirect association 
study and genotyping errors are similar, with the increase in sample size due to 
genotyping errors slightly larger than the increase in sample size due to an indirect 
association study.  

DI N/N

I
*
I N/N

Ad pp ≠

Ad pp =

We find that in most situations, unless the marker allele frequency is 
approximately equal to the disease gene frequency and the coefficient of maximal 
disequilibrium is high, the percent increase in sample size due to an indirect association 
study outweighs the percent increase in sample size due to genotyping misclassification 
error. There are also scenarios in which  is quite large (for example for small allele 
frequencies and/or small effect sizes) and any additional increase in sample size due to 
genotyping errors may make the design unfeasible. When the SNP marker locus and 
disease locus are in perfect disequilibrium, then 

IN

1=DI N/N  and the total required 
sample size in the presence of genotyping errors is solely contingent upon the required 
sample size for a direct association study and the increase in required sample size due to 
genotyping misclassification errors. Gordon et al. (2003) found that there is an interaction 
between genotyping misclassification errors and disequilibrium upon the required sample 
size for a case-control genetic association study. Specifically, they found that the impact 
upon required sample size due to genotyping misclassification errors is higher for low 
levels of LD and lower for high levels of LD. We find the same result here – the total 
required sample size for an indirect association study in the presence of genotyping 
misclassification errors is contingent on the size of the LD parameter and the genotyping 
misclassification error rate.  
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Table 3.1: Tabulation of sample size for an indirect genetic association study 

IN  Model parameters IN  Model parameters 
80% 

power 
95% 

power dp  Ap  ρ  80% 
power 

95% 
power dp  Ap  ρ  

2821 4197 0.05 0.10 0.80  517 769 0.30 0.35 0.80 
2696 4010 0.05 0.10 0.84  492 732 0.30 0.35 0.84 
2581 3840 0.05 0.10 0.88  469 698 0.30 0.35 0.88 
2477 3685 0.05 0.10 0.92  449 667 0.30 0.35 0.92 
2381 3542 0.05 0.10 0.96  430 639 0.30 0.35 0.96 
1235 1838 0.10 0.15 0.80  491 730 0.35 0.40 0.80 
1180 1756 0.10 0.15 0.84  466 694 0.35 0.40 0.84 
1130 1681 0.10 0.15 0.88  445 661 0.35 0.40 0.88 
1084 1613 0.10 0.15 0.92  425 632 0.35 0.40 0.92 
1042 1550 0.10 0.15 0.96  406 604 0.35 0.40 0.96 
830 1235 0.15 0.20 0.80  480 715 0.40 0.45 0.80 
793 1179 0.15 0.20 0.84  456 679 0.40 0.45 0.84 
758 1128 0.15 0.20 0.88  435 647 0.40 0.45 0.88 
727 1081 0.15 0.20 0.92  415 617 0.40 0.45 0.92 
698 1039 0.15 0.20 0.96  396 590 0.40 0.45 0.96 
657 977 0.20 0.25 0.80  483 719 0.45 0.50 0.80 
626 932 0.20 0.25 0.84  459 683 0.45 0.50 0.84 
599 891 0.20 0.25 0.88  437 649 0.45 0.50 0.88 
573 853 0.20 0.25 0.92  416 619 0.45 0.50 0.92 
550 818 0.20 0.25 0.96  398 591 0.45 0.50 0.96 
567 843 0.25 0.30 0.80  415 617 0.50 0.50 0.80 
540 803 0.25 0.30 0.84  394 585 0.50 0.50 0.84 
516 767 0.25 0.30 0.88  374 557 0.50 0.50 0.88 
493 734 0.25 0.30 0.92  357 530 0.50 0.50 0.92 
473 703 0.25 0.30 0.96  340 506 0.50 0.50 0.96 

 
This tabulates the required sample size for an indirect association study for specified 
powers of 80% and 95% with the following design parameters: 1% significance level, 
30% censoring rate, and  and 511 .r = 22 =r .  
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Table 3.2: Relationship between  and DI N/N 2r  for a genetic association study 
 

dp  Ap  1r  2r  ρ  2r  21 r/  DI N/N
0.20 0.25 1.25 1.50 0.85 0.64 1.569 1.505 
0.20 0.25 1.25 1.50 0.90 0.68 1.482 1.423 
0.20 0.25 1.25 1.50 0.95 0.71 1.404 1.350 
0.30 0.35 1.25 1.50 0.85 0.68 1.478 1.441 
0.30 0.35 1.25 1.50 0.90 0.72 1.396 1.361 
0.30 0.35 1.25 1.50 0.95 0.76 1.323 1.290 
0.40 0.45 1.25 1.50 0.85 0.69 1.444 1.422 
0.40 0.45 1.25 1.50 0.90 0.73 1.364 1.342 
0.40 0.45 1.25 1.50 0.95 0.77 1.292 1.270 
0.20 0.25 1.50 1.75 0.85 0.64 1.569 1.499 
0.20 0.25 1.50 1.75 0.90 0.68 1.482 1.414 
0.20 0.25 1.50 1.75 0.95 0.71 1.404 1.338 
0.30 0.35 1.50 1.75 0.85 0.68 1.478 1.464 
0.30 0.35 1.50 1.75 0.90 0.72 1.396 1.376 
0.30 0.35 1.50 1.75 0.95 0.76 1.323 1.297 
0.40 0.45 1.50 1.75 0.85 0.69 1.444 1.468 
0.40 0.45 1.50 1.75 0.90 0.73 1.364 1.375 
0.40 0.45 1.50 1.75 0.95 0.77 1.292 1.292 
0.20 0.20 1.25 2.00 0.85 0.85 1.177 1.154 
0.20 0.20 1.25 2.00 0.90 0.90 1.111 1.097 
0.20 0.20 1.25 2.00 0.95 0.95 1.053 1.046 
0.30 0.30 1.25 2.00 0.85 0.85 1.177 1.158 
0.30 0.30 1.25 2.00 0.90 0.90 1.111 1.100 
0.30 0.30 1.25 2.00 0.95 0.95 1.053 1.047 
0.40 0.40 1.25 2.00 0.85 0.85 1.177 1.164 
0.40 0.40 1.25 2.00 0.90 0.90 1.111 1.103 
0.40 0.40 1.25 2.00 0.95 0.95 1.053 1.049 
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Table 3.3: Bounds of %MSSN coefficients (genetic association model) 
 

%MSSN coefficients Bounds Design Setting 
  dp  Ap  ρ  

1r  2r  

12C  Misclassification of AA Lower 0  0↓     

 genotype as AB Upper 1 0.5 0.5 1 1.25 2 

13C a Misclassification of AA Lower 0  0↓     

 genotype as BB Upper 3 0.5 0.5 1 1.5 2 

21C  Misclassification of AB Lower 0 0↓  0↓  0.8 2 2 

 genotype as AA Upper 2 0↓  0↓  0.8 1.25 2 

23C  Misclassification of AB Lower 0.5 0.5 0.5 1 1.25 2 

 genotype as BB Upper 4.5 0.5 0.5 1 2 2 

31C a Misclassification of BB Lower 1.1 0.5 0.5 1 2 2 

 genotype as AA Upper ∞  0↓     

32C  Misclassification of BB Lower 0.2 0.5 0.5 1 1.25 2 

 genotype as AB Upper ∞  0↓     
a We note that a misclassification of one homozygote to another homozygote has a small 
probability of occurring in practice as reported by Miller et al. (2002). However, the 
limits of these %MSSN coefficients are included for completeness.  
 
This table displays the upper and lower bounds for each %MSSN coefficient, and the 
respective design parameters for where these bounds occur. When a design setting is 
missing, it may take any value in its range. For example,  has an infinite upper bound 
for any setting in which . 

32C
0↓dp
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Table 3.4: Example design settings (genetic association model) 
 

Ad pp ≠  

dp  Ap  ρ  
1r  2r    ε  DN  DI N/N  I

*
I N/N  

0.15 0.20 0.85 1.50 2.00 0.01 515 1.5246 1.0863 
0.15 0.20 0.85 1.50 2.00 0.02 515 1.5246 1.1755 
0.15 0.20 0.90 1.50 2.00 0.01 515 1.4439 1.0856 
0.15 0.20 0.90 1.50 2.00 0.02 515 1.4439 1.1742 
0.20 0.15 0.85 1.50 2.00 0.01 422 1.7130 1.0957 
0.20 0.15 0.85 1.50 2.00 0.02 422 1.7130 1.1901 
0.20 0.15 0.90 1.50 2.00 0.01 422 1.6248 1.0947 
0.20 0.15 0.90 1.50 2.00 0.02 422 1.6248 1.1884 
0.15 0.10 0.85 1.75 1.75 0.01 316 2.0465 1.0820 
0.15 0.10 0.85 1.75 1.75 0.02 316 2.0465 1.1617 
0.15 0.10 0.90 1.75 1.75 0.01 316 1.9400 1.0807 
0.15 0.10 0.90 1.75 1.75 0.02 316 1.9400 1.1595 
0.20 0.25 0.85 1.75 1.75 0.01 275 1.5121 1.0637 
0.20 0.25 0.85 1.75 1.75 0.02 275 1.5121 1.1320 
0.20 0.25 0.90 1.75 1.75 0.01 275 1.4203 1.0632 
0.20 0.25 0.90 1.75 1.75 0.02 275 1.4203 1.1310 

Ad pp =  

dp  Ap  ρ  
1r  2r    ε  DN  DI N/N  I

*
I N/N  

0.15 0.15 0.90 1.50 2.00 0.01 515 1.1017 1.0911 
0.15 0.15 0.90 1.50 2.00 0.02 515 1.1017 1.1821 
0.15 0.15 0.95 1.50 2.00 0.01 515 1.0483 1.0902 
0.15 0.15 0.95 1.50 2.00 0.02 515 1.0483 1.1804 
0.20 0.20 0.90 1.50 2.00 0.01 422 1.1051 1.0794 
0.20 0.20 0.90 1.50 2.00 0.02 422 1.1051 1.1626 
0.20 0.20 0.95 1.50 2.00 0.01 422 1.0498 1.0787 
0.20 0.20 0.95 1.50 2.00 0.02 422 1.0498 1.1613 
0.15 0.15 0.90 1.75 1.75 0.01 316 1.1109 1.0661 
0.15 0.15 0.90 1.75 1.75 0.02 316 1.1109 1.1342 
0.15 0.15 0.95 1.75 1.75 0.01 316 1.0526 1.0652 
0.15 0.15 0.95 1.75 1.75 0.02 316 1.0526 1.1326 
0.20 0.20 0.90 1.75 1.75 0.01 275 1.1201 1.0611 
0.20 0.20 0.90 1.75 1.75 0.02 275 1.1201 1.1260 
0.20 0.20 0.95 1.75 1.75 0.01 275 1.0569 1.0605 
0.20 0.20 0.95 1.75 1.75 0.02 275 1.0569 1.1248 

 
 
This table shows example design settings and their impact upon sample size due to an 
indirect association study ( ) and genotyping misclassification errors ( ) 
given a 1% significance level, 80% power, and 30% censoring rate. 

DI N/N I
*
I N/N
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Figure 3.1a: Required sample size for 80% power 
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Figure 3.1b: Required sample size for 95% power 
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These graphs displays the required sample size for an indirect association study for 
specified powers of 80% and 95% with the following design parameters: 1% significance 
level, , 30% censoring rate, and 05.0+= dA pp 5.11 =r  and 22 =r . 

  25



 
Figure 3.2a: % increase due to an indirect association study,  

Ad pp >  
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Figure 3.2b: % increase due to an indirect association study, 
 Ad pp <  
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The design parameters are 90.=ρ  and genotypic relative risks of  and 2511 .r = 7512 .r = . 
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Figure 3.3: Distribution of relative error ( )ε~R  for genotyping error rates 0.5% to 2% 
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These boxplots display the distributions of the relative error ( ) =ε~R  
( ) ( ) ( )εεε ~HS/~HS~T − for genotyping error rates 0.5%, 1.0%, 1.5% and 2.0% with =dp  

0.25 and 0.35 and δ+= dA pp  such that 100.≤δ  for all design settings specified in 
Methods (Chapter 2).  
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Figure 3.4: Simulation results (genetic association model) 

 
The horizontal axis represents the simulated power with a sample size of N, the required 
sample size for an indirect association study without genotyping misclassification errors.  
The vertical axis represents the simulated power with a sample size of N*, the required 
sample size for an indirect association study in the presence of genotyping error rates of 
0.5% and 1%. The solid line represents a perfect correlation between the simulated 
powers of sample sizes N and N*.   
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Chapter 4 – G × E Interaction Only Model Results 
 

It is feasible to detect a Model III EG×  interaction with Cox PH modeling for 
direct association studies. As in the design of any experiment, the total required sample 
size is contingent upon the target level of significance, power, and effect size. When 
designing studies that utilize survival analysis techniques such as the Cox PH model, 
there is an added layer of complexity created by the specification of the censoring rate. 
Example design settings and their respective required sample sizes to detect a Model III 

 interaction are displayed in Table 4.1. The table shows required sample sizes for 
target powers of 80% and 95%, given a 1% level of significance. Small disease allele 
frequencies and small effect sizes (e.g., hazard ratios) require large sample sizes. There is 
an interactive effect between  and the hazard ratio (

EG×

dp ∆ ) such that substantially larger 
sample sizes are required when  and dp ∆  are both small. The required sample size for a 
dominant MOI is considerably less than the required sample size for a recessive MOI, as 
to be expected. This is because the expected at-risk genotype frequency for a dominant 
MOI is  greater than the expected at-risk genotype frequency for a recessive 
MOI. These genotype frequencies explain the drastic differences in required sample size 
for the two patterns of inheritance. Recessive models with small disease allele 
frequencies require large sample sizes regardless of effect size, due to the expected 
proportion of subjects with the at-risk genotype.  

( dd pp −12 )

The relative error ( )e~R  of the Taylor approximation ( )e~S  is small enough so that 
( )e~S  can be used for design evaluation. The increase in required sample size due to 

genotyping misclassification errors is independent with respect to the specified level of 
significance, power and censoring proportion. Moreover, ( )e~S  is a first-order expansion 
and therefore approximates a linear increase in sample size due to genotyping errors. 
However, there is a nonlinear increase when  for a dominant MOI and when 

 for a recessive MOI. Under these circumstances, 
50.pd >

0↓dp ( )e~S  provides a lower bound 
for ( )e~HL .  

Tables 4.2a and 4.2b display the ( )e~R  and the design requirements for a dominant 
and recessive MOI, respectively. Table 4.2a considers 7.0=dp  and  assuming a 
uniform error model in which 

6.1=∆
eeij =  }2,1,0{∈≠∀ ji  and shows that for genotyping error 

rates less than 2%, the ( )e~R  for a dominant MOI is less than 7% for these design 
settings. The ( )e~R  for a dominant MOI increases as the disease allele frequency 
approaches 0.7 so that Table 4.2a displays the worst case scenario. Table 4.2b considers 

 = 0.2 and  assuming a uniform error model and shows that for genotyping 
error rates less than 2%, the 

dp 6.1=∆
( )e~R  for a recessive MOI is less than 2.5% for these design 

settings. The ( )e~R  for a recessive MOI obtains its upper bound of 22.3% as .  0↓dp
 Figures 4.1a and 4.1b graph ( )e~HL  and ( )e~S  as functions of 

 for a dominant and recessive MOI, respectively. The parameter 
specifications are and 

eeij = }2,1,0{∈≠∀ ji
20.pd = 61.=∆  for both models. As noted previously, ( )e~HL  and 
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( )e~S  are not functions of the specified level of significance, power and censoring 
proportion. Figures 4.1a and 4.1b document visually that the relative error of the Taylor 
approximation is small enough that it can be used for design evaluation. For a dominant 
MOI (Figure 4.1a), ( ) %.e~R 170<  when %e 1≤  and ( ) %.e~R 680<  when . For a 
recessive MOI (Figure 4.1b), 

%e 2≤
( ) %.e~R 740<  when %e 1≤  and ( ) %.e~R 422<  when 

.  %e 2≤
The %MSSN coefficients  are strictly functions of the disease genotype 

frequencies 
ijD

iπ  where  for genotypes ++, d+ and dd respectively and genotypic 
relative risks  and . They are not functions of the specified level of significance, 
power and censoring proportion. The %MSSN coefficients  are explicitly stated in 
Appendix 2.   

2,1,0=i
( )tr1 ( )tr2

ijD

 A %MSSN coefficient will equal zero when the corresponding genotyping 
misclassification error does not affect the genotype covariate G.  For example, given a 
dominant MOI,  since a misclassification of the d+ genotype to the dd 
genotype or vice versa yields the same result of the subject having the at-risk genotype 
(G = 1). Similarly, given a recessive MOI, 

02112 == DD

01001 == DD  since a misclassification of the 
d+ genotype to the ++ genotype or vice versa yields the same result of the subject not 
having the at-risk disease genotype (G = 0).   
 It can be seen from the explicit formulas for the %MSSN coefficients stated in 
Appendix 2 that for a dominant MOI, the coefficient associated with the misclassification 
of the ++ genotype to the dd genotype and the coefficient associated with the 
misclassification of the ++ genotype to the d+ genotype are equivalent ( ). Thus, 
the %MSSN coefficient of any misclassification of a subject without the at-risk genotype 
has the same impact on the increase in required sample size to maintain a constant power 
and level of significance given a dominant MOI. The reverse is true for recessive models. 
For a recessive MOI, the coefficient associated with the misclassification of the dd 
genotype to the ++ genotype and the coefficient associated with the misclassification of 
the dd genotype to the d+ genotype are equivalent (

0102 DD =

2120 DD = ). Thus, the %MSSN 
coefficient of any misclassification of a subject with the at-risk genotype has the same 
impact on the increase in required sample size to maintain a constant power and level of 
significance given a recessive MOI.  

Figures 4.2a and 4.2b show the interaction between  and ∆  upon the sum of 
%MSSN coefficients for a dominant and recessive MOI, respectively. These Figures 
show that small disease allele frequencies and hazard ratios yield a large sum of %MSSN 
coefficients for both MOI. There are several distinct patterns of %MSSN coefficients 
between the differing patterns of inheritance. Given a dominant MOI, an interaction 
between larger disease allele frequencies and hazard ratios lead to a high sum of %MSSN 
coefficients. Furthermore, there is a nonlinear increase in the sum of the %MSSN 
coefficients for > 0.5 (see Figure 4.2a). This does not hold for a recessive MOI. Small 
disease allele frequencies yield a large sum of %MSSN coefficients for a recessive MOI. 
There is a slight interaction between  and 

dp

dp

dp ∆  for a recessive MOI so that smaller 
disease allele frequencies and hazard ratios lead to a high sum of %MSSN coefficients. 
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As , the sum of %MSSN coefficients for a recessive MOI is substantially larger 
than the sum of %MSSN coefficients for a dominant MOI. As  increases ( ), 
the sum of %MSSN coefficients for a recessive MOI is substantially less than the sum of 
%MSSN coefficients for a dominant MOI. However, the sum of the %MSSN coefficients 
as given a recessive MOI is greater than the sum of the %MSSN coefficients as 

 increases above 0.5 given a dominant MOI.  

0↓dp

dp 50.pd >

0↓dp

dp
Table 4.3 specifies the upper and lower bounds of each %MSSN coefficient  

and their respective design parameters. As noted earlier, the %MSSSN coefficients are 
independent with respect to the specified level of significance, power and censoring 
proportions so that the coefficients may be calculated from , 

ijD

dp ( )tr1  and . Given a 
dominant MOI, the coefficients associated with the misclassification of the d+ genotype 
and the dd genotype to the ++ genotype (  and ) obtain their respective upper 
bounds of 14 and 16.3 when 

( )tr2

20D 10D
70.pd =  and ( ) ( ) 221 == trtr . Also for a dominant MOI, the 

coefficients associated with the misclassification of the ++ genotype to the d+ genotype 
and dd genotype (  and ) obtain their lower bounds of 0 when . Given a 
recessive MOI, the coefficients associated with the misclassification of the dd genotype 
to the ++ genotype and d+ genotype (  and ) obtain their respective upper bounds 
of 3 when and 

01D 02D 70.pd =

20D 21D
70.pd = ( ) ( ) 21 21 == tr,tr . With the same design settings for recessive 

models, the coefficients associated with the misclassification of the ++ genotype or d+ 
genotype to the dd genotype (  and ) reach their respective lower bounds of 3.5 
and 2.5. Also for a recessive MOI, the lower bound of the %MSSN coefficients 
associated with any misclassification of the ++ genotype (  and ) is approximately 
equal to upper lower of the %MSSN coefficients associated with any misclassification of 
the dd genotype (  and ).  

02D 12D

02D 12D

20D 21D
Consistent with Chapter 3 results, there is noTable behavior as . Given a 

dominant MOI, the coefficients associated with the misclassification of the d+ genotype 
and the dd genotype to the ++ genotype (  and ) reach their lower bounds of 1 and 
0, respectively, as . Similarly, given a recessive MOI, the coefficients of the 
misclassification of the dd genotype to the ++ genotype and the d+ genotype (  and 

) attain their lower bounds of 1 as . The %MSSN coefficients of any 
misclassification of a subject without an at-risk genotype to a subject with an at-risk 
genotype (  and  for a dominant MOI;  and  for a recessive MOI) increase 
without bound as . Although this is true in both patterns of inheritance, the 
coefficients increase at a significantly faster rate for a recessive MOI. Although  and 

 increase indefinitely as for a dominant MOI, the impact upon increase in 
required sample size due to genotyping misclassification errors is also deleterious for 

 as noted previously. The coefficient for a recessive model corresponding to the 

0↓dp

10D 20D
0↓dp

20D

21D 0↓dp

01D 02D 02D 12D
0↓dp

01D

02D 0↓dp

50.pd >
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misclassification of the ++ genotype to the dd genotype ( ) is the largest coefficient 
under all design settings and increases at the fastest rate as .  

02D
0↓dp

 
Simulation study results 

Figure 4.3 displays the results from the Model III EG×  interaction simulation 
study. As in Chapter 3, the horizontal axis represents the simulated power with a sample 
size of N, the required sample size with perfect genotyping classification and the vertical 
axis represents the simulated power with a sample size of N*, the required sample size in 
the presence of genotyping misclassification errors. The solid line represents a perfect 
concordance between the simulated powers of sample sizes N and N*. The scatter plot of 
simulated powers with sample sizes N and N* are close to the solid line. A regression 
analysis of the simulated power of sample size N* on the simulated power of sample size 
N yields an intercept estimate of 0.07 with a standard error of 0.038, which differs 
nonsignificantly from zero, and a slope estimate of 0.912 with a standard error of 0.050. 
The estimated standardized beta-coefficient of the slope (e.g. the estimated Pearson 
correlation coefficient) is 0.936 with a 95% confidence interval of (0.890, 0.964). The 
intercept estimate did not differ significantly from zero and the estimated correlation 
between the simulated powers is near 1, indicating that the increase in sample size due to 
genotyping errors maintains a constant power.  

Similar to the Halabi and Singh (2004) sample size formula, one of the critical 
assumptions of the Hsieh and Lavori (2000) sample size formula is that the alternative 
hypothesis be near the null hypothesis (e.g. small effect size). Designs with hazard ratios 
greater than 1.5 yield simulated powers significantly less than the specified power. These 
correspond to powers less than 75% in Figure 4.3. As the hazard ratio increases, the 
simulated power decreases thereby substantially underestimating the specified power. 
When using this design formula, simulations are highly recommended to ensure that the 
sample size yields adequate power.   
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Table 4.1: Example design settings (G × E interaction only model)  
 

Model parameters N  given a dominant MOI  N given a recessive MOI  
dp  ∆  80% power 95% power 80% power 95% power 

0.10 1.20 2642 4029 50192 76558 
0.20 1.20 1394 2127 12548 19140 
0.30 1.20 984 1501 5577 8507 
0.40 1.20 784 1196 3137 4785 
0.50 1.20 669 1021 2008 3062 
0.10 1.40 776 1183 14737 22479 
0.20 1.40 409 624 3684 5620 
0.30 1.40 289 441 1637 2498 
0.40 1.40 230 351 921 1405 
0.50 1.40 197 300 590 899 
0.10 1.60 398 606 7553 11520 
0.20 1.60 210 320 1888 2880 
0.30 1.60 148 226 839 1280 
0.40 1.60 118 180 472 720 
0.50 1.60 101 154 302 461 
0.10 1.80 254 388 4829 7366 
0.20 1.80 134 205 1207 1842 
0.30 1.80 95 144 537 818 
0.40 1.80 76 115 302 460 
0.50 1.80 64 98 193 295 
0.10 2.00 183 279 3473 5297 
0.20 2.00 97 147 868 1324 
0.30 2.00 68 104 386 589 
0.40 2.00 54 83 217 331 
0.50 2.00 46 71 139 212 

This table shows example design settings and their respective required sample sizes for a 
specified significance level of 1% and a censoring rate of 30%.  
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Table 4.2a: Relative error for dominant MOI with  = 0.7 and  dp 6.1=∆

 Taylor series approximation Hsieh and Lavori Formula  
ijε  MSSN N* MSSN D* ( )e~R  

0.005 1.1347 89 1.1410 89 0.0055 
0.01 1.2693 99 1.2951 100 0.0199 

0.015 1.4040 109 1.4635 113 0.0407 
0.02 1.5387 119 1.6471 127 0.0658 

0.025 1.6733 130 1.8470 143 0.0940 
0.03 1.8080 140 2.0646 160 0.1243 

0.035 1.9427 150 2.3011 177 0.1558 
0.04 2.0773 160 2.5581 197 0.1879 

0.045 2.2120 171 2.8371 219 0.2203 
0.05 2.3467 181 3.1400 243 0.2527 

  

Table 4.2b: Relative error for recessive MOI with  = 0.2 and  dp 6.1=∆
 Taylor series approximation Hsieh and Lavori formula  

ijε  MSSN D* MSSN D* ( )e~R  
0.005 1.0826 1083 1.0845 1084 0.0018 
0.01 1.1651 1166 1.1732 1173 0.0069 

0.015 1.2477 1247 1.2660 1266 0.0145 
0.02 1.3302 1330 1.3632 1363 0.0242 

0.025 1.4128 1413 1.4652 1466 0.0358 
0.03 1.4953 1496 1.5720 1570 0.0488 

0.035 1.5779 1577 1.6841 1684 0.0631 
0.04 1.6604 1660 1.8018 1801 0.0785 

0.045 1.7430 1743 1.9254 1926 0.0948 
0.05 1.8255 1826 2.0554 2056 0.1119 

 
These graphs display the relative error ( ) )e~(HL/)e~(HL)e~(Se~R −=  for differing 
modes of inheritance assuming a uniform error model eeij = }2,1,0{∈≠∀ ji . 
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Table 4.3: Bounds of %MSSN coefficients (G × E interaction only model) 

Dominant MOI Bounds dp  ( ) ( )trtr 21 =  
Lower 1 ↓ 0  

10D  Misclassification of the 
d+ genotype  ++ genotype Upper 14 0.7 2 

Lower 0 ↓ 0  
20D  Misclassification of the 

dd genotype  ++ genotype Upper 16.3 0.7 2 
Lower 0 0.7  

01D  Misclassification of the 
++ genotype  d+ genotype Upper ∞ ↓ 0  

Lower 0 0.7  
02D  Misclassification of the 

++ genotype  dd genotype Upper ∞ ↓ 0  
 

Recessive MOI Bounds dp  ( ) ( )tr,tr 21 1=
Lower 1 ↓ 0  

20D  Misclassification of the 
dd genotype  ++ genotype Upper 3 0.7 2 

Lower 1 ↓ 0  
21D  Misclassification of the 

dd genotype  d+ genotype Upper 3 0.7 2 
Lower 3.5 0.7 2 

02D  Misclassification of the 
++ genotype  dd genotype Upper ∞ ↓ 0  

Lower 2.5 0.7 2 
12D  Misclassification of the 

d+ genotype  dd genotype Upper ∞ ↓ 0  
 
Note that  for dominant models and 02112 == DD 01001 == DD  for recessive models. 
Recall that the %MSSN coefficients are not functions of the target level of significance, 
power and censoring proportion. 
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Figure 4.1a: Taylor series approximation for dominant MOI 
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Figure 4.1b: Taylor series approximation for recessive MOI 
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These graphs display ( )e~HL  and ( )e~S  as functions of eeij = }2,1,0{∈≠∀ ji  given 
20.pd =  and 61.=∆ . 

 
 

 



 

Figure 4.2a: Sum of %MSSN coefficients for dominant MOI 
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Figure 4.2b: Sum of %MSSN coefficients for recessive MOI 
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Figure 4.3: Simulation results (G × E interaction only model) 

 

The horizontal axis represents the simulated power with a sample size of N, the required 
sample size with perfect genotyping classification and the vertical axis represents the 
simulated power with a sample size of N*, the required sample size in the presence of 
genotyping misclassification errors. The solid line represents a perfect concordance 
between the simulated powers of sample size N and N*.  
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Chapter 5 – Full G × E Interaction Model Results 
 
 This chapter addresses the design considerations in detecting a  interaction 
when genetic and environmental marginal effects are included in the model (Model IV or 
full model) given a direct association study. The required sample size to detect a Model 
IV  interaction is equal to the required sample size to detect a Model III 

EG×

EG× EG×  
interaction multiplied by a variance inflation factor (VIF) (Hsieh and Lavori 2000, for 
details refer to Chapter 2). Thus, for a fixed sample size, one has more power to detect a 

 interaction through the interaction only model (Model III) than the full model 
(Model IV). However, the full model is more commonly used as researchers often are 
interested in estimating genetic and environmental marginal effects, in addition to their 
interaction. It is still feasible to detect a 

EG×

EG×  interaction in the full model but this 
design requires a larger sample size as indicated by the VIF in Table 5.1. The VIF is 
dependent upon genotype frequency and is thus larger for dominant models, since the 
expected at-risk genotype frequency for a dominant MOI is ( )dd pp −12  greater than the 
expected at-risk genotype frequency for a recessive MOI (as noted in Chapter 4). This 
design exhibits the same characteristics as the interaction only model; namely, recessive 
models usually require a substantially greater sample size, and small disease allele 
frequencies and hazard ratios yield unreasonably large sample sizes.  
 The distribution of the relative error ( )e~R  for a dominant and recessive MOI is 
displayed in Figure 5.1. The ( )e~R  is less than 1.6% for dominant models and less than 
36.9% for recessive models. The distribution of ( )e~R  given a recessive MOI is highly 
right skewed and has many outliers corresponding to designs with small disease allele 
frequencies. The mean and median ( )e~R  for a recessive MOI are 2.2% and 0.36% 
respectively. The distribution of the relative error for a dominant MOI exhibits a normal 
distribution, with a mean of 0.32% and standard deviation of 0.27% (median 0.23%).  
 The increase in required sample size due to genotyping errors ( )e~HL   is 
approximated with the Taylor series approximation ( )e~S . The discrepancy between 

( )e~HL  and ( )e~S  for a design setting of 20.pd =  and 61.=∆  is portrayed in Figure 5.2 
given a dominant and recessive MOI. The ( )e~R  is less than 1.0% for a dominant MOI 
(Figure 5.2a) and less than 2.9% for a recessive MOI (Figure 5.2b).  Thus, the ( )e~R  
indicates that ( )e~S  is an adequate approximation of  ( )e~HL  and can be used for design 
evaluation purposes. 
 The %MSSN coefficients ( ) for the full model are strictly functions of , 

 and  similar to the interaction only model (see Appendix 3 for explicit 
formulas). Note that 

ijF dp
( )tr1 ( )tr2

02112 == FF  for a dominant MOI and 01001 == FF  for a recessive 
MOI (for details, see Chapter 4). Also similar to the %MSSN coefficients for the 
interaction only model,  for a dominant MOI and 0102 FF = 2120 FF =  for a recessive MOI. 
 Figures 5.3a and 5.3b display the effects of  and dp ∆  upon the sum of %MSSN 
coefficients for a dominant and recessive MOI respectively. These graphs demonstrate 
similar behavior as the sum of the %MSSN coefficients in the interaction only model. 
There remains a pronounced interaction between larger hazard ratios and disease allele 
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frequencies for a dominant MOI and a significant increase in the sum of the %MSSN 
coefficients as  for a recessive MOI. As exhibited by the clear quadratic form of 
the %MSSN coefficients given a dominant MOI (Figure 5.3a), the sum of the %MSSN 
coefficients increases more dramatically as  for the full model than the sum of the 
%MSSN coefficients for the interaction only model (see Figure 4.2a). Similar to the 
interaction only model, the sum of the %MSSN coefficients are substantially greater for a 
recessive MOI as , indicating that genotyping misclassification errors in these 
instances cause deleterious impacts on power and sample size.  

0↓dp

0↓dp

0↓dp

 Table 5.2 specifies the upper and lower bounds of each %MSSN coefficient  
and their respective design parameters. As expected, the %MSSN coefficients  obtain 
their upper and lower bounds at the same design settings as in Model III. Given a 
dominant MOI, the coefficients associated with the misclassifications of the d+ and dd 
genotype to the ++ genotype (  and ) attain their upper bounds of 10 and 11 
respectively when  and 

ijF

ijF

10F 20F
70.pd = 2=∆ . With the same design settings and given a 

recessive MOI, the coefficients associated with any misclassification of the dd genotype 
to the ++ or d+ genotype (  and ) attain their upper bounds of 3 and the coefficients 
associated with misclassifications of the ++ and d+ genotype to the dd genotype (  and 

)  achieve their lower bounds of 0.25 and 1 respectively. For a dominant MOI when 
, the %MSSN coefficient associated with any misclassification of the ++ 

genotype (  and ) obtains its lower bound of 0. As  for a dominant MOI, the 
coefficients associated with misclassifications of the d+ genotype and dd genotype to the 
++ genotype (  and ) achieve their respective lower bounds of 1 and 0. Similarly, 
as  for a recessive MOI, the coefficients associated with any misclassification of 
the dd genotype (  and ) attain their lower bounds of 0. Any misclassification of a 
subject without the at-risk genotype results in an indefinite increase in their associated 
%MSSN coefficient (  and  for a dominant MOI;  and  for a recessive MOI) 
as . Furthermore, these misclassifications are more deleterious for recessive MOI 
than dominant MOI. The misclassification of the ++ genotype to the dd genotype ( ) 
for a recessive MOI is the largest coefficient in every design setting.  

20F 21F

02F

12F
70.pd =

02F 01F 0↓dp

10F 20F
0↓dp

20F 21F

02F 01F 02F 12F
0↓dp

02F

 
 
Simulation study results 

Figure 5.4 compares the simulated powers between the sample sizes calculated for 
the  interaction only model (Model III) and the full EG× EG×  interaction model 
(Model IV) from the Hsieh and Lavori (2000) sample size formula for a specified power 
of 80%. The solid line again represents a perfect correspondence between these simulated 
powers with differing  interaction models. The average Model III simulated power 
was 0.746 (standard deviation (SD) = 0.059) and the average Model IV simulated power 
was 0.663 (SD = 0.054).  For 

EG×

EG×  hazard ratios of 1.25, the mean ± SD simulated 
powers for Model III and Model IV were 0.815 ± 0.0193 and 0.735 ± 0.0161, 
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respectively.  For  hazard ratios of 1.50, the mean ± SD simulated powers for 
Model III and Model IV were 0.773 ± 0.0285 and 0.666 ± 0.0200, respectively.  For 

 hazard ratios of 1.75, the mean ± SD simulated powers for Model III and Model 
IV were 0.727 ± 0.0200 and 0.662 ± 0.0216, respectively. For 

EG×

EG×
EG×  hazard ratios of 

2.00, the mean ± SD simulated powers for Model III and Model IV were 0.671 ± 0.0309 
and 0.591 ± 0.0159, respectively. The Model IV simulated power was on average 0.083 
(SD = 0.036) less than the Model III simulated power, differing significantly from the 
Model III simulated power (paired t = 15.933, df = 47, p < 0.0001). 

The VIF significantly underestimated the increase in sample size necessary to 
maintain a constant power given the inclusion of correlated covariates in the model. The 
simulated power is highly dependent upon the size of the hazard ratio, with larger hazard 
ratios yielding less power. The sample size for Model III significantly underestimates the 
specified power for hazard ratios ≥ 1.75 and additionally, the VIF significantly 
underestimates the increase in sample size for Model IV. Thus, the sample size for Model 
IV significantly underestimates the specified power for all hazard ratios considered. It is 
imperative that researchers perform simulations to confirm that their sample size yields 
sufficient power.   

Figure 5.5 displays results of the full EG×  interaction model genotyping 
misclassification errors simulation study. As noted previously, the Hsieh and Lavori 
(2000) sample size formula significantly underestimates the target power of 80% in all 
design settings. However, this Figure shows that the increase in sample size due to 
genotyping misclassification errors maintains a constant power even in situations where 
the simulated power notably underestimates the specified power. The solid line represents 
a line with a slope of 1 and an intercept of 0. Regressing the simulated power with sample 
size N* on the simulated power with sample size N yields a significant (p < 0.001) 
intercept estimate of 0.132 with a standard error of 0.0365, and a slope estimate of  0.801 
with a standard error of  0.0548. The estimated standardized beta-coefficient of the slope 
(e.g. the Pearson correlation coefficient between these simulated powers) is 0.907 with a 
95% CI of (0.839-0.947). This strong correlation can be seen by the proximity of the 
points to the solid line for both genotyping error rates of 0.5% and 1%. The intercept 
estimate of the linear regression model suggests that the simulated powers with sample 
size N* are slightly higher than the simulated powers with sample size N, suggesting that 
the increase in sample size due to genotyping errors is somewhat conservative.     
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Table 5.1: Example design settings (Full G × E interaction model) 
 

Design Dominant MOI Recessive MOI 

dp  ∆  VIF N 
80% power 

N 
95% power VIF N 

80% power 
N 

95% power 
0.1 1.2 1.2346 3261 4975 1.0101 50699 77332 
0.2 1.2 1.5625 2179 3323 1.0417 13071 19937 
0.3 1.2 2.0408 2009 3064 1.0989 6128 9348 
0.4 1.2 2.7778 2179 3323 1.1905 3735 5696 
0.5 1.2 4.0000 2677 4083 1.3333 2677 4083 
0.1 1.4 1.2346 958 1461 1.0101 14886 22706 
0.2 1.4 1.5625 640 976 1.0417 3838 5854 
0.3 1.4 2.0408 590 900 1.0989 1799 2745 
0.4 1.4 2.7778 640 976 1.1905 1097 1673 
0.5 1.4 4.0000 786 1199 1.3333 786 1199 
0.1 1.6 1.2346 491 749 1.0101 7629 11637 
0.2 1.6 1.5625 328 500 1.0417 1967 3000 
0.3 1.6 2.0408 302 461 1.0989 922 1407 
0.4 1.6 2.7778 328 500 1.1905 562 857 
0.5 1.6 4.0000 403 614 1.3333 403 614 
0.1 1.8 1.2346 314 479 1.0101 4878 7440 
0.2 1.8 1.5625 210 320 1.0417 1258 1918 
0.3 1.8 2.0408 193 295 1.0989 590 899 
0.4 1.8 2.7778 210 320 1.1905 359 548 
0.5 1.8 4.0000 258 393 1.3333 258 393 
0.1 2.0 1.2346 226 344 1.0101 3508 5350 
0.2 2.0 1.5625 151 230 1.0417 904 1379 
0.3 2.0 2.0408 139 212 1.0989 424 647 
0.4 2.0 2.7778 151 230 1.1905 258 394 
0.5 2.0 4.0000 185 283 1.3333 185 283 

This table displays example design settings and their respective required sample sizes for 
a specified significance level of 1% and a censoring rate of 30%.
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Table 5.2: Bounds of %MSSN coefficients (Full G × E interaction model) 

Dominant MOI Bounds dp  ( ) ( )trtr 21 =  
Lower 1 ↓0  

10F  Misclassification of the 
d+ genotype  ++ genotype Upper 10 0.7 2 

Lower 0 ↓0  
20F  Misclassification of the 

dd genotype  ++ genotype Upper 11 0.7 2 
Lower 0 0.7  

01F  Misclassification of the 
++ genotype  d+ genotype Upper ∞ ↓0  

Lower 0 0.7  
02F  Misclassification of the 

++ genotype  dd genotype Upper ∞ ↓0  
 

Recessive MOI Bounds dp  ( ) ( )tr,tr 21 1=
Lower 1 ↓0  

20F  Misclassification of the 
dd genotype  ++ genotype Upper 3 0.7 2 

Lower 1 ↓0  
21F  Misclassification of the 

dd genotype  d+ genotype Upper 3 0.7 2 
Lower 0.25 0.7 2 

02F  Misclassification of the 
++ genotype  dd genotype Upper ∞ ↓0  

Lower 1 0.7 2 
12F  Misclassification of the 

d+ genotype  dd genotype Upper ∞ ↓0  
 
The coefficients  for a dominant MOI and 02112 == FF 01001 == FF  for a recessive MOI.  
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Figure 5.1a: Relative error for dominant MOI 
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Figure 5.1b: Relative error for recessive MOI 
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Figure 5.2a: Taylor series approximation for dominant MOI 
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Figure 5.2b: Taylor series approximation for recessive MOI 
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These graphs display ( )e~HL  and ( )e~S  as functions of eeij = }2,1,0{∈≠∀ ji  given 
20.pd =  and 61.=∆ . 
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Figure 5.3a: Sum of %MSSN coefficients for dominant MOI 
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Figure 5.3b: Sum of %MSSN coefficients for recessive MOI 
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Figure 5.4: Simulated powers of the full interaction model versus the interaction only 
model 

 
 
The horizontal axis represents the simulated power with the required sample size for the 

 interaction only model (Model III) and the vertical axis represents the simulated 
power with the sample size required for the full 

EG×
EG×  interaction model (Model IV) with 

the solid line representing a perfect concordance between the two simulated powers.  
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Figure 5.5: Simulation results (Full G × E interaction model) 

 
 
 
Similar to Figure 4.3, the horizontal axis represents the simulated power with a sample 
size of N, the required sample size with perfect genotyping classification and the vertical 
axis represents the simulated power with a sample size of N*, the required sample size in 
the presence of genotyping misclassification errors. The solid line represents a perfect 
concordance between the simulated powers of sample size N and N*.  
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Chapter 6 – Discussion and Conclusion 

 Gene-environment interactions will be of considerable importance in future 
scientific research. Significant findings will greatly impact disease treatment, disease 
prevention techniques and methods, policy making, dietary guidelines, to name a few as 
we begin to understand the integration of nature and nurture. It is important that statistical 
methods consider genotyping misclassification errors, as these errors can have 
detrimental effects on power and sample size. This research shows that non-differential 
genotyping errors bias the estimates towards the null and thus increase the required 
sample size to maintain a constant power similar to previous misclassification research 
(García-Closas, et al. 1999). 
 One limitation of Chapters 4 and 5 is that it did not consider indirect association 
studies which allow researchers to examine the polymorphism acting as a surrogate for 
the causal locus with respect to disease status (Cordell and Clayton 2005). The EG×  
interaction was modeled in these chapters with a single model coefficient for a dominant 
or recessive MOI. There lacks an appropriate sample size formula for a model in which 
the  interaction models > 2 genotypes with more than one coefficient. A simulation 
study can be performed to investigate the impact of genotyping errors for a two parameter 
indirect association  interaction model. 

EG×

EG×
One of the limitations of designing a genetic cohort study to investigate the 

possibilities of  interactions is the large representative sample size. Partial-
collection study designs have been suggested to increase the efficiency in detecting a 

 interaction for cross-sectional studies. Partial-collection 

EG×

EG× EG×  interaction studies 
include case-parent trio designs, matched case-control designs, case-sibling(s) designs, 
and case-only designs (Andrieu, et al. 2005; Gauderman 2002b; Schaid 1999; Umbach 
and Weinberg 1997; Yang, et al. 1997). Although these partial-collection designs can be 
more efficient, they are limited by their assumption of genotype and environment 
independence and are only applicable to multiplicative scales.  Despite the limitations of 
the partial-collection designs, their efficiency makes them an attractive alternative for 
researchers interested in  interactions (Lui, et al. 2004). However, longitudinal 
studies are imperative to understanding the influence of genetic and environmental 
effects upon disease progression and therefore it would be extremely useful to extend the 
partial-collection designs to survival analysis or other longitudinal methods.  

EG×

 The sample size formulas considered for this research (Halabi and Singh 2004; 
Hsieh and Lavori 2000) assume the alternative hypothesis be near the null hypothesis 
(e.g. small effect size). The sample size formulas underestimate the specified power for 
larger hazard ratios (> 2 for the Halabi and Singh formula and > 1.75 for the Hsieh and 
Lavori formula). Moreover, the required sample size for the full  interaction model 
(Model IV) according to the Hsieh and Lavori formula (2000) is significantly less than 
the specified power, even for small effect sizes. This is due to the sample size increase 
underestimate of the VIF, which yields a (simulated) power on average 0.083 less than 
the Model III simulated power. Researchers should perform simulations especially for the 
full  interaction model to ensure that their sample size yields sufficient power to 
detect the hypothesized effect.  

EG×

EG×

Chapter 3 illustrated the robustness of the LD parameter 2r  in the survival 
analysis framework. The increase in sample size due to an indirect association study 
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( DI N/N )  using the log-rank test statistic is approximately equal to , similar to 
case-control genetic association studies. It can be conjectured that the increase in sample 
size due to an indirect association study is approximately equal to  for more 
complex Cox PH models as well.  

21 r/

21 r/

 This work found that for an indirect association, the misclassification of the more 
common homozygote to the less common homozygote has the most deleterious impact 
upon the power of the study than all other SNP genotyping errors. Furthermore, the 
%MSSN coefficient associated with any misclassification of the more common 
homozygote increases without bound as the minor SNP allele frequency goes to 0. This 
finding is consistent with genetic association cross-sectional studies utilizing the chi-
square test statistic and linear trend test (Kang, et al. 2004a; Ahn, et al. 2007). This work 
also found that that for direct association studies, the %MSSN coefficient associated with 
any misclassification of a subject without the at-risk genotype to an at-risk genotype 
increase indefinitely as the disease allele frequency approaches 0. These results find that 
a misclassification of the most common genotype has the worst impact on power and 
sample size as it contaminates the other genotypes whose frequencies are smaller.  

Future work should consider the impact of differential genotyping 
misclassification errors and the impact of environmental measurement (or 
misclassification) error in the detection of a EG×  interaction using survival analysis 
techniques. The environmental covariate if often derived from the respondent’s self-repot 
which is subject to further bias (e.g. recall bias, telescoping bias). It would be informative 
to model gene expression and environment as time-varying covariates and examine the 
impact of errors in these scenarios. There is no doubt that understanding  
interactions will be an important tool therefore it is imperative that well-designed studies 
have sufficient power that adjusts for potential biases created by misclassification errors.  

EG×
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Appendix 1 
 
Formulas for %MSSN coefficients for the log-rank model 

The %MSSN coefficients, , are functions of the conditional survival 
probabilities for marker genotypes in the context of survival analysis 
(  – see Methods for details) and SNP marker genotype frequencies. 
Let 

ijC

)t(P),t(P),t(P 030201

ABAA ,ππ  and BBπ  denote the SNP marker genotype frequencies for genotypes AA, AB 
and BB respectively. Also, let 1∆  denote the hazard ratio between subjects with 
genotypes AA and BB and let 2∆  denote the hazard ratio between subjects with genotypes 
AB and BB. These hazard ratios are functions of the conditional survival probabilities for 
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Appendix 2 
 
Formulas for %MSSN Coefficients for the EG×  interaction only model (Model III) 

The %MSSN coefficients  are strictly functions of the genotype frequencies ijD

iπ  where  for genotypes ++, d+ and dd respectively and genotyping relative risks 
 and . They are not functions of the specified level of significance, power and 

censoring rate.    
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The explicit %MSSN coefficients for a recessive MOI are: 
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01001 == DD
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Appendix 3 
 
Formulas for %MSSN Coefficients for the full EG×  interaction model (Model IV) 

The %MSSN coefficients  are strictly functions of the genotype frequencies ijF iπ  
where  for genotypes ++, d+ and dd respectively and genotyping relative risks 

 and . They are not functions of the specified level of significance, power and 
censoring rate.    
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The explicit %MSSN coefficients for a dominant MOI are: 
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The explicit %MSSN coefficients for a recessive MOI are: 
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