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Abstract of the Dissertation

Energetics and Kinetics of Epitaxial Nanostructure Formations on
Topographically Patterned Substrates in Three Dimensions

by

Noah D. Machtay

Doctor of Philosophy

in

Mechanical Engineering

(Solid Mechanics)

Stony Brook University

2009

The formation and stabilization of strained epitaxial systems of islands on
areally constrained substrates is a point of increasing interest for the promise it offers
to the advancement of electronic and optical-electrical device technology. While
current fabrication methods are available to readily produce micron-scale devices,
as size is reduced fabrication becomes increasingly difficult. A possible solution is to
use relatively large scale areal constraints, such as topographical substrate features,
which can be formed via conventional techniques such as lithography, masking, and
ion etching, to guide the formation of smaller structures. While the growth of
nanoscale structures on larger scale patterned substrates has been investigated by
numerous researchers, there has yet to be a complete explanation for why, where,
and how these structures form. The goal of this investigation is to contribute to the
understanding of the energetic and kinetic mechanisms governing the formation of
self-assembled nanoscale structures grown epitaxially on topographically patterned
substrates. Such insight is essential for the development of effective and low-cost
nanoscale fabrication techniques. The current research investigates the energetic and
kinetic mechanisms that guide the positioning of strained epitaxial islands in three
dimensions. Continuum level models are used wherein the free energy of the system
consists of surface energy and strain energy. The goal is to identify conditions that
can lead to the formation of multiple island systems, and determine the influence of
such factors as substrate shape, lattice mismatch, surface energy, and the amount of
material deposited. The full three dimensional kinetic evolution of the film surface
through the process of surface diffusion is also simulated to determine island shapes.
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1 Introduction

If an engineer wishes to build a macroscale device such as a car, the tools

required to accomplish that goal are available and well understood. Some machine

tools, a couple of wrenches, and some screwdrivers are all that may be required. If

the engineer then wishes to build something on a smaller scale, such as a microchip,

he is presented with a problem. Macroscale tools can no longer be used because of

the limitations of spacial resolution. That is to say, a screwdriver cannot be used

to build a microchip, because the flaws on the end of the screwdriver are larger

than the features that need to be produced on the chip in order for it to function

as designed. Fortunately, additional tools such as lithography and ion-etching exist

and are well understood, allowing engineerings to produce things like microchips

and similar scale devices. The question then arises as to how a device on an even

smaller scale might be produced when the resolution limits of the tools available are

again challenged? The answer to that question under current consideration is the

use of larger scale patterned substrates to influence the spontaneous self-assembly

of nanostructures in lattice-mismatched epitaxial systems.

Even when existing fabrication techniques are available, the cost associated

with a reduction in scale can be prohibitive, making their deployment impractical.

In such cases, a manufacturing process which takes advantage of self-assembly will

again offer a solution, as the elimination of the need to directly interact with the

system on the smaller length scale offers the potential for a great reduction in cost.

To continue along this line of thought for an additional step, when there are

fabrication techniques available for producing a small scale device which are both

practical and economical, the principles governing self-assembly must still be con-

sidered. Improperly designed devices which ignore the tendencies of materials to

reorganize themselves at small scales could run into serious reliability issues if insta-

bilities arise which essentially drive the system towards spontaneous self-disassembly.

It may be possible to create a device with a particular functional configuration, but

if it ends up having a natural inclination towards rearranging itself into a non-
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functioning configuration then premature failures can become likely. Considering

the mechanisms under current investigation can allow designers to properly address

this issue and create more reliable devices.

There are then three compelling reasons to consider the mechanisms gov-

erning self-assembly in nanoscale systems. There is the potential for developing

manufacturing techniques which will allow for the production of devices on length

scales that are otherwise unachievable. There is also the promise of reduced cost

over other competing manufacturing techniques. Finally, there is the necessity for

all small length scale device designs to consider these principles so as to avoid device

reliability issues arising from instabilities driving self-disassebly.

Spontaneous self-assembly of nanostructures in lattice-mismatched epitax-

ial systems has been a problem of long-standing interest for fabricating advanced

electronic and optical devices. The idea is to deposit a material onto a substrate

surface and allow inherent physical processes to control formation of the deposited

material into nanostructures, such as mounds, lines, or other simple units that are

the building-blocks of a particular device. The spontaneous formation of nanostruc-

tures in these systems is a well-known phenomenon that occurs during deposition,

however the challenge is to produce units of a particular size that are organized

in a predefined configuration. For example a device might require mounds of uni-

form size arranged in a regular two-dimensional array or in one-dimensional lines

or line patterns. A method under current investigation for guiding the organiza-

tion of epitaxial nanostructures is growth on topographically patterned substrates,

wherein relatively large substrate features, formed for example by lithography and

ion-etching, act as templates for positioning smaller nanoscale structures.

Epitaxy is the growth of a material using the crystallographic structure of

another material as a template. In a system where one material is deposited epitax-

ially on another, the deposited material is essentially grown on the substrate as a

continuation of the substrate crystal structure. In cases where the lattice spacing of

the two materials is different, a mismatch strain results, which drives the formation

of island structures and other features. When this effect is coupled with the presence
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and positioning of patterns on the substrate surface, the formation and evolution of

structures at particular preferred sites within that system offers a possible mecha-

nism by which controlled formations can be designed on a small scale which would

otherwise be unachievable.

1.1 General Selective Area Epitaxy

Particular focus has been on the Stranski-Krastanov mode of epitaxial growth due

to its application in important semiconductor systems, such as SiGe on Si. In

this growth mode, islands of deposited material form atop an initial wetting layer

that covers the substrate. These islands can act as quantum dots, and if properly

arranged, configurations of islands may serve as the building blocks for devices

with exceptional characteristics. While the mechanics of island formation is well

understood [8, 9], work continues towards a technology to guide islands to self-

organize into regular patterns. One possible method for achieving self-organization

of nanoscale structures is selective area epitaxy.

In selective area epitaxy, deposited film material is isolated to certain areas

of the substrate. The areal constraint can be achieved either through use of a

patterned deposition mask [10–12], or a nanostencil applied directly to the substrate

surface [13]. With both of these techniques only a specific area of the substrate is

exposed to deposition, and surface mass transport is generally constrained to occur

within those areas. Another technique that effectively limits growth to a confined

area is the deposition of material on a topographically patterned substrate. A feature

such as a raised mesa [2,3] or an etched pit [14] can have properties similar to that

of selective area epitaxy due to a significant activation barrier preventing diffusion

of material past the perimeters of such features.

Epitaxial growth on a confined area has been shown to be fundamentally dif-

ferent from growth on large unpatterned substrates. While it is interesting that the

number of islands that form can apparently be controlled by varying the size of the

growth area [2,11,14] (smaller areas support fewer islands) this alone would not be
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terribly helpful. More importantly, the multiple island configurations that arise are

often regularly arranged and exhibit uniform size and shape [2,3,14], offering great

promise for device designs that require arrays of regularly spaced and sized quantum

dots. The persistence of multiple island configurations indicates that growth on a

patterned substrate (as on a topographical feature or through a deposition mask)

provides a strong resistance to island coarsening, which is not observed in growth

on unpatterned substrates. Resistance to coarsening and the corresponding ability

to achieve regular and predictable arrays of islands is critical for the advancement of

this technology, however a complete understanding of the mechanisms which govern

these trends has not yet been established.

1.2 Experimental Literature

Experimental research into the self organization of nanostructures, and the mecha-

nisms that can be used to guide and control the formation of those morphological

features has been extensive. Xie et al. [15] produced arrays of islands by separating

film depositions with substrate spacer layers. It was determined that the strain

field induced by the buried islands provided a driving force for increased island

organization in subsequent layers. Ozkand and Nix [16] found that annealing of

thin films of sub-critical thickness with respect to the formation of dislocations re-

sulted in strain relaxation by means of surface roughening. Initially, grooves formed

along preferential crystallographic planes, and subsequently formed islands when

exposed to annealing conditions for longer periods of time. Tang et al. [17] reported

the formation of SiGe quantum dots by applying a coating of porous silica to a

Si substrate and then using of the pores in the silica as preferred sites for mate-

rial agglomeration during subsequent film deposition by molecular beam epitaxy

or chemical vapor deposition. The resulting arrays of buried quantum dots were

found to have improved light emission properties. Floro et al. [18] observed the

dynamic formation of self-organized strained epitaxial islands during growth and

deposition by molecular beam epitaxy of SiGe onto Si(001) in real time using a
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spectroscopic light scattering technique. The formation of arrays of “hut clusters”

was observed. Initially high degrees of order in the island arrays is credited to the

reduction in island-island repulsion forces, while a subsequent drop in the degree of

order is blamed on island coalescence and coarsening. Gao et al. [19] worked with

high temperature laser ablation deposition to form epitaxial thin film systems with

relatively low lattice mismatch between a Y2O3 : Eu film and a LaAlO3 substrate,

and transmission electron microscopy (TEM) was used to find pores in the film.

Luo et al. [20–22] determined that a compliant substrate will allow an epilayer sys-

tem to relax part of its misfit strain, thereby reducing the occurrence of dislocation

flaws while also relieving a driving force for film roughening and coarsening. The

use of a buffer layer to achieve similar compliant properties at the film interface

was also considered and was found to reduce the effective lattice mismatch, again

reducing the driving force for dislocation formation and morphological instabilities.

Liao et al. [23] investigated the effect of annealing on the morphology of quantum

dots in sequentially layered film/substrate systems where the buried film layers act

as a template, by means of the strain field they induce in the subsequent layers,

for island formation. It was found that annealing conditions offered a significant

degree of control over the formation of system microstructures, with annealed sam-

ples showing greater island aspect ratio and more uniform composition. Leon et

al. [24] used dislocations as a mechanism by which control over the morphological

development of a film surface can be controlled. Quantum dots were found to nu-

cleate and grow preferentially in the trenches formed by misfit dislocations during

annealing. Teichert [25] found that substrate miscut angle (i.e. the deviation from

the prescribed crystallographic plane on the surface of the substrate), film thickness,

and super-lattice formations can be used to achieve large area arrays of relatively

uniform nanostructures in the form of both surface waves or ripples as well as is-

lands. Tan et al. [26] studied the effect of partial amorphization of the substrate

surface and observed that increased amorphization led to film surfaces that were

smoother, showed less epitaxial registry with the substrate, and allowed greater

oxygen penetration than systems with mono-crystalline substrates.
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1.2.1 Patterned Substrates

Experiments have demonstrated that patterned substrates offer some control

over the sites where islands (mounds) tend to form. Mui et al. [1] found that InAs

deposited on GaAs ridges by Molecular Beam Epitaxy (MBE) forms extremely small

islands 40nm in diameter and 12nm in height along the ridge. On a substrate with

a valley shaped groove, it was found that islands formed either on the floor of the

valley or on the side walls. Wang et al. [27] investigated control of quantum dot

formation, size, and positioning in Ge films on Si substrates by means of raised

elongated substrate mesas. Islands were found to form along the crest of a mesa

stripe with a high degree of uniformity, which is credited to the elastic interaction

between the islands and the substrate.

Kitajima et al. [2] investigated self-assembly ofGe islands on patterned silicon

substrates. The motivation for their work was the precise alignment and position of

material which is required for the integration of nanostructures in semiconductor de-

vices. The silicon substrate was first coated with a layer of polymethyl-metacrylate

(PMMA), and patterns in this coating were created using a 20keV electron beam.

The spacing of features on the substrate surface was limited to 120nm due to the

resolution limits of the apparatus. The unmasked areas of the substrate surface were

then etched to a depth of 20nm by exposure to chlorine plasma, and the remaining

PMMA mask was removed. Material was deposited via molecular beam epitaxy. In

an attempt to determine the mechanisms of island formation and positioning, the

experiment was repeated with square mesa dimensions of 700nm, 500nm, 300nm,

and 140nm.

For large mesas Kitajima et al. [2] found that nucleation occurred at the

mesa edges and corners, and also at random locations across the top of the substrate

mesa. For smaller mesas, the edge and corner locations were found to be preferred

nucleation sites over other interior locations. For yet smaller mesas, only a single

island was found to form on the mesa top, either centered on the mesa, or offset

to one side. It is speculated that the preference of the mesa edges and corners for
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certain systems is due to the lateral deformability of those locations and the reduced

constraint of the substrate which allows for a reduction in strain relative to other

potential nucleation sites. It is further noted by Kitajima et al. that the mesa tops

maintain lower strain levels, and surface diffusion is expected to favor the relocation

of deposited material from more constrained locations within the substrate topology

to the mesa top.

Jin et al. [3, 28–30] formed stripe patterns on a Si substrate using selective

gas-source molecular beam epitaxy. Ge was then deposited on the patterned sub-

strate by Knudsen cell source molecular beam epitaxy. It was found that regular

arrays of islands form along the ridges of stripes. Island formations on square sub-

strate mesas were also investigated [3, 29, 31, 32]. Deposited islands were found to

form preferentially at the four mesa corner locations. With further deposition a fifth

island was found to form at the mesa center. A possible mechanism for the forma-

tion of this central island is offered by Jin et al. as the result of island strain field

interaction which in turn alters the energy distribution on the mesa top, resulting

in a shift in the relative favorability of sites within the substrate topology.

Lee et al. [33] investigated the use of circular substrate mesas with a diameter

of less than 100nm in an attempt to produce smaller quantum dot structures. They

suggest that a reduction in strain energy in the system at this size scale allows for the

growth of Ge dots with increasing aspect ratios. Flat substrate samples were coated

with PMMA, which was then selectively removed by lithography. Subsequently,

the exposed substrate surfaces were plasma etched and the remaining PMMA mask

was removed to achieve a desired substrate topology. Ge islands were then formed

on the substrate via ultra high vacuum molecular epitaxy. Lee et al. report the

formation of islands around the perimeter of the circular mesas, consistent with the

observations of Jin et al. and Kitajima et al.. They add that for mesa structures with

diameters of about 65nm, island base dimensions can be reduced to about 10nm. It

is important to note, however, that these conclusions are made from the observation

of arrays of similar mesa structures. Various island configurations were observed on

mesas of similar size. While it can be generally noted that islands favor the mesa
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edges and occasionally form in central locations, without more careful controls it

is difficult to draw any more specific conclusions regarding island placement from

these results.

These experiments demonstrate that a relatively large scale topography can

guide the organization of smaller scale features, however they offer limited insight to

the mechanisms that govern this spontaneous organization. Conventional wisdom

is that islands will tend to form at sites of low free energy, as islands near the edge

of a mesa tend to be most favorable because the relatively high compliance at the

boundary can act to relax misfit strain and thereby reduce the strain energy of the

system. However recent experiments by Zhong et al. [4, 34] suggest that Ge islands

grown on a Si substrate patterned with lateral stripes in the 〈110〉 direction do not

form as predicted by energetics alone. Substrate stripes were formed via holographic

lithography and reactive ion etching with a period of less that 1µm. The effects of

variations in sidewall geometry were considered for different cases. The edges of the

top terrace locations of the stripe substrate structures are identified as energetically

favorable sites for islands to form. Their experiment shows that islands do not form

at these predicted locations, preferring instead to form on the stripe sidewalls and

trenches. It is proposed by Zhong et al. that kinetic considerations govern the

nucleation and formation of deposited islands, accounting for the experimentally

observed variation from energetically predicted results.

1.3 Theoretical Literature

To explain the experimental results discussed above, it is first useful to

review the case of islands on a flat substrate, as similar mechanisms guide island

positioning on patterned substrates. For islands of a given volume, strain energy is

lower for a high aspect ratio island than a low aspect ratio island. This is because

a higher aspect ratio is more effective at relaxing mismatch strain in the island and

thereby acts to decrease the total strain energy of the system. At the same time,

surface area and therefore surface energy increases as an island increases in aspect
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ratio. Strain energy and surface energy compete to determine the equilibrium shape

of an island.

Tersoff has done extensive investigation [35–39] into the growth of epitaxial

structures. layered growth was considered, and found to stabilize for a sufficient

number of layers due to a reduction in strain energy [35]. The effect of stress on

the morphological evolution of a surface was then considered, and identified as a

driving mechanism for roughening in heteroepitaxial systems [36]. The contention

was made that contiuum-theory based models should be appropriate for simulations

which separate energy into surface, bulk, and other components, particularly for

simple geometries [37]. Misfit stress was found to influence the growth of heteroepi-

taxial systems, resulting in the self-assembly of quantum dots, quantum wires, and

quantum wells [38]. The importance of kinetics on the formation and morphology

of strained heteroepitaxial layers was also asserted [39].

Jonsdottir and Freund [40] associated the occurrence of equilibrium surface

roughness or waviness in epitaxially grown films with the formation of defects along

the film-substrate interface. These non-uniformities in the strain field result in a

chemical potential gradient along the surface of the film, which drives the surface

diffusion of film material as the system attempts to reach equilibrium. As a result,

the final configuration exhibits a rough or wavy surface. An analytic expression

for the final surface shape was found by enforcing uniform chemical potential as

the condition for equilibrium. That equation was solved numerically, and surface

roughness was determined for a range of system parameters. The surface roughening

was found to vary from just a small percent of the nominal film thickness, up to a

significant portion of the nominal film thickness.

Shchukin et al. [41] looked at three dimensional pyramid and elongated prism

shaped islands on a lattice-mismatched substrate. The elastic interaction between

islands was considered for systems with high areal density, with the dipole-dipole

elastic repulsion between islands being the primary contributing factor. The energy

per unit area of the systems was determined as a function of surface coverage for one

dimensional arrays of elongated prisms, two dimensional arrays of square pyramids,
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two dimensional “checkerboard” distributions of square pyramid islands, and two

dimensional hexagonally distributed square pyramids. It was concluded that when

particular conditions are met periodic arrays of equally sized islands will be stable.

Criteria for stability of a square lattice of strained islands were offered in relation

to the material and configurational parameters of the system.

Johnson and Freund [9] investigated the formation of an epitaxially mis-

matched island on a flat substrate and calculated minimum energy morphologies

versus volume of deposited material using a finite element model. An isolated is-

land on a large substrate was considered under plane strain conditions. Islands were

modelled as portions of a semicircular arc described by the cross-sectional area of

the deposit and the aspect ratio of the island. The total energy of the system was

taken to consist of surface energy and strain energy, which results from the lattice

mismatch between the island and substrate. It is noted that multiple islands on

the flat substrate will have a tendency to repel each other as the competing strain

fields induced by each island would interact at close proximity. It is also noted that

larger islands are expected to favor higher aspect ratios while smaller islands favor

lower aspect ratios. This results from the reduction in strain energy associated with

islands of increasing aspect ratio in which material is further removed from the con-

straint of the substrate, and the competing increase in surface energy that follows

that change in morphology. Larger islands were found to take greater advantage of

this strain energy reduction, while smaller islands were better able to lower their

system energy by taking advantage of the lower surface energy of a flatter shape.

Using similar energetic assumptions and arbitrary shapes expressed by Fourier

series, Kukta and Freund [8] investigated the formation of film morphologies on an

unbounded half-space. The film surface was modelled as a periodic function along

the interface axis with some system dependant wavelength, and the elastic field was

found by solving a boundary integral equation. The formation of island structures

was found to be favorable, despite the tendency of surface energy to drive the for-

mation of a uniform flat film, for cases where the mismatch between the deposit and

substrate materials are sufficiently large. In addition, the coalescence of two islands
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into a single larger island was found to be energetically favorable. However there is

evidence that elastic interactions between islands might impede the kinetic process

of coalescence [42,43].

Suo and Zhang [44] investigated stability in epitaxial films induced by long-

range forces. While the competition between surface free energy and strain energy

is often regarded as the driving force behind the evolution of thin film morphologies,

this paper suggests that more distant forces can exert an influence in competition

with those accepted driving forces. Attractive and repulsive long-range interactions

are considered. In particular, van-der Waals dispersive forces and quantum con-

finement and charge transfer in metallic films are offered as physical example of

long-range forces. It is concluded that such forces within a system can stabilize a

thin film against stress driven evolution.

Chiu [45] presented a theoretical simulation on the evolution of a Stranski-

Krastanov system through the process of annealing. Strain energy, surface free en-

ergy anisotropy, and film/substrate interaction energy were included in the model.

Both surface energy anisotropy and film/substrate interaction energy were found

to influence the formation of arrays of islands which were stable against coars-

ening. The explanation was offered that both the surface energy anisotropy and

the film/substrate interaction energy act to suppress the relaxation of strain en-

ergy which, left unopposed, would favor coarsening. Strain energy relaxation would

drive the system to increase the size of an island, and to increase the aspect ratio

of the island, in both cases relieving strain by further removing material from the

elastic constraint of the substrate. The competing surface energy and interfacial

interaction energy would conversely drive the system in the opposite direction, with

surface energy favoring flatter islands, and film/substrate interaction energy favor-

ing smaller islands. Combined, these two factors serve as a check against unfettered

strain driven system ripening, and result in a stable array of islands.

Ortiz et al. [46] offered a continuum model for the growth of thin films us-

ing a series expansion technique and considering deposition and film/substrate in-

terfacial energy. The physical processes represented in the model include surface
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diffusion, evaporation-condensation, and forced material migration driven by the

film/substrate interfacial energy. Flat films below a certain critical thickness were

predicted to be stable as a result of the interface energy term. Above this critical

thickness, film coarsening is predicted to occur, and is presented in the context of

a mechanism facilitating the nucleation of islands within the system. For greater

film thicknesses, system trends favoring the formation of particular morphological

features are identified. Evaporation-condensation diffusion favors the accumulation

of material on portions of the film surface which are relatively flat, and the migra-

tion of material away from locations on the film surface which are relatively steep.

The balance between those effects will drive the system towards a particular favored

slope angle.

Zhang [47–49] investigated the formation, evolution, and stability of epitax-

ially strained thin films. A three dimensional continuum model considering strain

energy, surface energy, and surface anisotropy was first used to model the forma-

tion of epitaxially strained islands, and the formation of regular arrays of islands

was observed for certain system configurations and annealing conditions [47]. The

effect of surface energy anisotropy on coarsening, ripening, and the strength of ob-

served self-organization was then studied, and it was found that small changes to

the anisotropic nature of the system could have significant effects on those proper-

ties [48]. The stability and dominant growth mode of a biaxially strained thin film

was then analyzed using first order perturbation analysis, and a transition between

the formation of islands and the formation of wires was reported, with dependen-

cies on the Poisson’s ratio of the system and the relative values of the principle

stresses [49].

Floro et al. [42] observed island coarsening in epitaxial systems using light

scattering spectrography. Molecular beam epitaxy was used, and the deposits

formed as pyramidal “hut clusters”. The island spacing and areal density were

measured with respect to time during deposition and subsequent annealing. Island

coarsening of “hut cluster” morphologies was found to proceed in a manner incon-

sistent with the common view of Ostwald ripening. This inconsistency is credited to
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the effects of elastic interactions between islands, and by incorporating these effects

into a model, it was found that calculations could be brought into better agreement

with experimental observations, depending on the island size. Coarsening with de-

position was considered using a numerically solved standard mean field analysis

approach, however the results of that investigation were not able to satisfactorily

reproduce the experimental findings, indicating that the effects of deposition alone

cannot fully explain system coarsening. The mean field analysis was then modified

to include elastic interactions using results obtained from finite element calcula-

tions. The addition of elastic interactions into the model produced mathematical

solutions that were in good agreement with experimental results, showing that the

combined effects of deposition and elastic interactions influence the nature of system

coarsening.

F. Liu et al. [5] investigated self-assembly and coarsening of two dimensional

islands. The effect of strain driven island-island interaction on island size and posi-

tion was considered for systems with only mass transport based coarsening, as well as

systems with combined mass transport and island migration. The analytic solution

is complemented with computational simulation. At each step in the simulation,

the chemical potential of each island is determined, including a component resulting

from the island-island interaction, and island size and position evolve in response.

A periodic boundary condition was employed. In the case of fixed islands, a power

law relationship between island size and the number of islands occupying a given

area was identified. When island migration was also considered, it was determined

that island-island interaction is expected to control island motion (via island edge

diffusion), resulting in regular arrays of islands with uniform size and spacing. First,

an initial distribution of islands was developed, random in both size and position.

The final converged distributions of island for the cases where only mass transport

was considered, and when both mass transport and island translation were consid-

ered were then determined. It is noted that the island-island interaction favors the

formation of relatively uniform distributions of islands, both in terms of island size

as well as spacing.

13



The self-assembly of both strained and unstrained three dimensional islands

was considered by F. Liu [50]. The island-island edge interactions are modeled as a

dipole and incorporated into a Volmer-Weber growth simulation. The most favorable

configuration for a single unstrained island on a sparsely populated surface (i.e.

no island-island interaction) was first determined. Coarsening of these unstrained

islands during later growth stages, governed by chemical potential gradients, was

then simulated. This analysis was conducted both for dilute systems (no inter-island

interaction) and dense systems (significant inter-island interaction). The effect of

island-island interactions on the growth and stability of strained islands was then

determined by numerical evaluation, and it was determined that those interactions

served to stabilize the islands against coarsening.

P. Liu et al. [51–56] have looked into the growth of islands and arrays of

heteroepitaxial islands. First, a three dimensional continuum based simulation was

used to model the growth of quantum dot superlattices using a layering technique in

which subsequent thin film deposits trend towards an ordered morphology as a result

of the influence of the elastic interaction with the previously deposited system [51].

The stress distribution in a strained epitaxial island was then analyzed using a com-

bined atomistic and continuum model utilizing molecular dynamics for the island

and adjacent substrate, and finite element method for the remaining system. From

that work it was suggested that a nonlinear elasticity assumption could be used to

reconcile the relationship between the strain level in the system and the resulting

surface roughness [52]. The effect of elastic anisotropy on the formation of heteroepi-

taxial islands was considered and it was determined that increased anisotropy favors

more pronounced island self-assembly and alignment, with island spacing depending

strongly on the smallest wavelength surface instability in the anisotropic film [53,55].

The role of growth rate in the formation of heteroepitaxial islands was investigated

as part of a three dimensional simulation and was found to have a strong effect on

the coarsening kinetics of the system, with densely spaced smaller islands forming

for high growth rates and more sparsely arranged larger islands forming for slower

growth rates [54]. A three dimensional simulation including both surface energy and
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elastic anisotropy was used to model the self-assembly of islands and it was found

that increased surface energy anisotropy resulted in increased faceting of islands,

and increased resistance to shape transition [56].

Eggleston and Voorhees [6] analyzed the use of a patterned substrate to

induce a morphological instability in a deposited film. It was found that if a lattice

mismatch exists between the film and substrate, the instability can propagate along

the surface of the system in the form of a traveling wave, which results in large

regions of highly ordered nanocrystals in the vicinity of the substrate feature. It was

shown that substrate topology can result in the formation of a regular distribution of

nanostructures. A film thickness of zero (i.e. no film material has been deposited, so

the substrate is bare) was first considered. It was then shown that for increasing film

thickness the local effect of the morphological instability caused by the mesa is the

formation of islands centered around the feature. With further film deposition the

instability begins to propagate out from the mesa, and finally the instability is shown

to have propagated to produce highly ordered structures over approximately three

to four times more of the substrate surface than was occupied by the topographical

pattern. While this analysis does offer a method for producing large areas of ordered

structures, it relies on the deposition of a film with thickness greatly in excess of the

pattern applied to the substrate. As a result, the substrate feature would seem to

have to be small in terms of height compared to the dimension of the final structures,

and at least comparable in terms of the surface dimension. This could apply a

lower limit to the spacial resolution that can be achieved with a technique based on

this mechanism. An interesting question that arises is whether the morphological

instability which is utilized here could be better understood and characterized in the

earlier stages of deposition where the nominal film thickness is lesser, and therefore

the dimensions of the resulting structures could be further reduced.

Chiu et al. [7] conducted a numerical simulation using a continuum model for

a Stranski-Krastanov film-substrate system. Evolution of the system is driven by an

elastic mismatch between the film and substrate, as well as film-substrate interfacial

energy, and surface free energy. The use of patterns on the film surface were consid-
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ered as possible mechanisms for controlling morphological evolution. Film thickness

was restricted such that surface undulation was suppressed while still allowing for

island nucleation. It was found that the introduction of film surface patterns will

influence the formation of nanostructures within the system. As the size of the

pattern is increased, the system switches from arrays of relatively uniform islands

to regular rim structures. The presence of a disproportionate pattern dimension,

such as a long side on a rectangle, can act to favor line or rim formation over island

formation. It is important to be clear that the patterning used by Chiu et al. is

being made on the film surface as opposed to the substrate surface.

Chiu [57] also employed an energy analysis and accompanying numerical

simulation to look at the resistance of Stranski-Krastanov islands to coarsening.

Evolution by surface diffusion was considered, and results suggest that stability

against coarsening can arise as a result of film-substrate interaction and mismatch

strain. This stability can allow for the growth of regular arrays of islands, the

size and spacing of which can be controlled via the length scale of the system, as

well as the introduction of patterns to the film surface as mentioned previously.

The film-substrate interfacial energy was modeled within the continuum framework

as a particular form of surface energy where the analogous for the surface energy

density varies with the thickness of the film at any given point. This same method

is employed in the current investigation, as discussed later. Chiu et al. [58,59] went

on to investigate the use of an exterior electrical field to induce patterning in a film

surface.

Work by Kukta and Kouris [43] simulates the chemical potential driven ki-

netic processes of deposition and diffusion. The film and substrate surfaces are

modelled as truncated Fourier series expansions, with a wetting layer maintained

across the surface of the substrate. While this work deals with patterned substrates

in particular, it sheds light on issues of island morphology and coalescence on flat

substrates. The system morphology was found to be dependant on the relative rates

of deposition and surface diffusion with relatively slow deposition resulting in en-

ergetically favorable configurations while rapid deposition can result in metastable
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system states. Metastabilities were found to occur as islands became locked into

apparently energetically unfavorable positions due to an energy barrier along an

otherwise admissible pathway. Island coalescence was found to be be favorable in

general. Large islands in close proximity were found to be metastable against ripen-

ing, while increased separation or a reduction in island size removed this barrier,

suggesting that that island metastability against coarsening is caused by elastic

interactions.

Pang and Huang [60] looked at the dynamics of film surface evolution and in

particular stress and interfacial energy driven effects. The stress field of the system

was evaluated using a second order approximation and the interface was modeled

by a nonlinear wetting potential which were solved numerically using a spectral

method. Instabilities in the stress governed thick film (where the substrate is remote

from the film surface) system were identified which result in the formation of two

dimensional crack or three dimensional pits in the film surface. These effects were

found to be suppressed by the interfacial effects in systems with relatively thin films.

Subsequent coarsening and stabilization in these systems was reported, suggesting

that a combination of stress field and interface effects can provide a mechanism for

the formation of self-assembled islands or quantum dots. The substrate considered

was either flat, or remote from the film surface.

Recent work by Pandey and Kukta [61] investigated the role of anisotropy on

the formation and positioning of monolayer islands. Island repulsion and directional

preference were identified, and it was concluded that moderate levels of anisotropy

provided the greatest degree of self-organization amongst islands. Several theoret-

ical and computational investigations have been done very recently to understand

the mechanisms by which islands self-organize on patterned substrates [43, 62–65].

All of these investigations focus on substrate topography as the driving force for

organization.

17



1.4 Summary of the Previous Investigation

The previous investigation [62, 66] considered island formation atop square

mesa structures to determine if observed organized configurations [2, 3, 33] were

likely energetic or kinetic in origin. Free energies were calculated to assess the rel-

ative favorability of different morphologies. For analytical convenience, the system

was treated in two dimensions (plane strain) where a morphology was characterized

by the number of islands atop the mesa, island positions, and the shape of individ-

ual islands. Island shapes were restricted to circular arcs and were characterized

by volume and height-to-width aspect ratio, similar to the work of Johnson and

Freund [9] for islands on a flat substrate. The specific question was whether islands

were most likely to form (a) at the edges of the mesa, (b) in the center, or (c) as

a combination with islands at the both the edges and at the center. Kitajima et

al. [2] found that each of these configurations can occur depending on the diameter

of the mesa and Jin et al. [3] found that either (a) or (c) can occur depending on

the amount of material deposited. Free energies of the different configurations with

a given volume of deposited material were compared to find the configuration of

minimum free energy and determine if it changes as mesa width is decreased or as

the amount of material deposited is increased.

The analysis was based on the assumption that the system free energy con-

sists of surface free energy and strain energy, which arises from a lattice mismatch

between the island and substrate materials. The island-substrate interface is com-

mensurate and free of defects; in such cases interfacial energy is typically small

compared to other energy contributions and was therefore considered negligible.

The same assumptions were used in previous two dimensional analyses of island

formation on a flat substrate [8, 9, 67,68].

The nature of the competition between strain energy and surface energy

implies how substrate patterning might affect island morphology. For example,

consider two configurations; (a) two small islands at the edge of a mesa versus (b) one

large island at the center of the mesa as shown in Figure 1. A need to minimize strain
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a)                                                    b)

Figure 1: Two competing island formations: a) two small islands at the edge of a
mesa (b) one large island at the center of the mesa. An increase in strain energy
would favor configuration (a), as islands at the edges would be more effective in
relaxing mismatch strain, whereas an increase in surface energy would favor config-
uration (b), as surface energy is reduced when two islands merge to form a larger
island.

energy would favor configuration (a), as islands at the edges would be more effective

in relaxing mismatch strain—the mesa edges are more compliant than the centers.

On the other hand, a need to minimize surface energy would favor configuration

(b), as surface energy is reduced when two islands merge to form a larger island.

Consequently, in cases where mismatch strain is large, multiple islands clustered at

the mesa edge are expected to be favored, while in cases where surface energy is large

a single large island is expected to be favored. This transition was observed in the

previous investigation. However, more interesting a second transition was observed

such that as mismatch strain is increased or as surface energy is decreased the

favored configuration transitions from a single island (b) to two islands (a) and back

to a single island (b). Similar transitions were found to occur with decreasing mesa

size and with an increasing amount of island material deposited on the substrate.

These observation were consistent with published experiments [2, 3]

Additional analysis was conducted to identify possible paths for island coars-

ening based on the premise that an uncoarsened morphology formed during nucle-

ation of the system will become unstable as deposit volume increases. If a system

under such a condition is to coalesce into a coarsened energetically favorable config-

uration, the activation energy of the transformation must not be prohibitively high.

If an energetically feasible path is not available, then the island configuration can
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remain trapped in a high energy state. Such metastability could explain a system’s

resistance to coarsening even as continued deposition makes such persistence of state

increasingly unfavorable. The condition for one island to grow at the expense of,

or by the consumption of another island is for the chemical potential of the donor

island to be higher than that of the recipient island. The chemical potentials of

islands in multi-island configurations were compared to determine the feasibility of

formation for the single centered island from a system with both edge and centered

islands, and for the asymmetric single island from a system with islands at both

mesa edges. These systems were selected in order to help understand barriers that

may exist which can prevent the transformation of expected nucleation states into

otherwise favorable final configurations.

These energetic mechanisms provided a great deal of insight into the behav-

ior of epitaxial systems, but they failed to form a complete model for the formation

of epitaxially grown nanostructures. Morphologies observed by experimental re-

searchers [2, 3, 33] often have configurations which are apparently not low energy

states. Often the coarsening of multiple small islands into a single larger island

lowers free energy, even though experimental results have shown that uncoarsened

states can persist, and energetic models may fail to identify a process barrier. Two

dimensional kinetic modeling was applied to identify auxiliary or complimentary con-

trol mechanisms which may also influence the development and form of nanostruc-

tures towards an otherwise unfavorable state. Of special concern was the possibility

of kinetic metastability through deposition barriers or surface diffusion barriers,

and conditions where the evolution of the system is sufficiently slow that energet-

ically unstable configurations might persist past an annealing period. To provide

some insight into these mechanisms, the kinetic processes of deposition and evolu-

tion through surface diffusion were simulated. Results lent to the understanding of

metastable and slowly evolving configurations, and provided insight for appropriate

expansion of concept for future investigation. The kinetic model applied for that

analysis was developed by Kukta and Kouris [43].
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1.5 Scope of the Current Investigation

The current investigation expands on the previously developed understand-

ing of island formation mechanisms using both an energetic and a kinetic model for

three dimensional island formation.

The energetic investigation is an extension of previous work [69] that provided

some basic insight into the role of the areal constraint. The current investigation

addresses a wider range of possible island configurations and presents equilibrium

and metastable configurational phase diagrams that suggest probable states as a

function of system parameters. Parameters include that epitaxial system in question,

the size of the growth window, and the amount of material deposited. By addressing

a wide range of configurations, it is possible to make qualitative comparisons with

experimentally observed system configurations from literature [2, 3].

The relative favorability of different deposit material distribution morpholo-

gies on areally constrained substrate surfaces was determined. The energetic analysis

was used to determine the optimal number of islands for a given set of system pa-

rameters. Island shapes were approximated using physically reasonable geometry

as described later. This was done while granting the concession that these island

shapes may not represent the exact stable configuration for islands on a substrate

surface. While island shapes might change if the system could be relaxed, the gen-

eral trends which are identified (such as the preferred numbers of islands for a given

case) will provide a guideline to understand the mechanisms governing the formation

of such systems. Due to computational limitation, this problem was not addressed

by kinetic simulation.

For the kinetic simulation, the film and substrate surfaces were modeled as

truncated two dimensional Fourier expansions. The competing film evolution driv-

ing forces of strain energy, surface free energy, and the film/substrate interfacial

energy were considered. System free energy was evaluated using a 2nd order ap-

proximation, and film surface evolution was calculated spectrally. Using this method

unconstrained island shapes were determined. Equilibrium island shapes for a film
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on a flat substrate were determined by kinetic evolution for varying system parame-

ters for cases with high areal density. Next, the equilibrium island shapes for a film

on a flat substrate were determined by kinetic evolution for varying system param-

eters for cases with lower areal density as an approximation for isolated islands.
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2 The Effects of Areal Constraint

2.1 Areal Constraint Model

There are three essential elements to the mechanics of island formation in Stranski-

Krastanov systems. The first is the strain energy associated with a lattice mismatch

between the deposited material and the substrate. The strain energy of an island

configuration is generally lower than an equivalent flat film configuration, and hence

strain energy drives island formation. Surface energy (assumed isotropic), on the

other hand, is minimum for the flat film configuration and therefore competes with

the driving force for island formation. For an island of a given volume the relative

magnitude of surface energy to strain energy determines the height to width aspect

ratio of the island. High strain energy and low surface energy leads to a high aspect

ratio, while low strain energy and high surface energy leads to a low aspect ratio.

During Stranski-Krastanov growth, the first few monolayers of deposited material

form a wetting layer on the substrate and hence a third ingredient is needed to inhibit

island formation during the early stages of growth. This is typically introduced in

the form of a wetting layer potential that penalizes roughness formation at locations

where film thickness is small [8, 65, 70, 71]. In terms of energy, the wetting layer

potential is characterized by an additional film surface energy that depends on

the local thickness of the film. The additional energy becomes large as thickness

approaches zero and decays monotonically with increasing thickness.

The wetting layer is taken to be of uniform thickness H. For simplicity an

island is considered to be axisymmetric with its shape characterized by its radial

size R and aspect ratio a = h(0)/R such that the height of the island above the

wetting layer is given by

h(r) =
aR

4

(
1− r2

R2

)[
4 + (4 + π2)

r2

R2

]
cos2

( πr
2R

)
(2.1)

where r is the radial position. The height function h(r) is chosen such that the

island meets the wetting layer with zero slope, as typical of islands with isotropic

surface energy [8]. Furthermore, in order to limit the parameter space, curvatures

23



at r = 0 and r = R are taken to vanish. According to (2.1), the volume of an island

is given by

VI = 1.18344aR3 (2.2)

The strain energy is calculated semi-analytically under the assumption of

isotropic linear elasticity where the island, wetting layer, and substrate are assumed

to have the same elastic constants. The substrate is taken to be a half-space. It

is noted that while islands are constrained to form on a finite area determined

by an open window in a mask, the mask is assumed to have negligible stiffness

and can therefore be neglected in the elastic boundary value problem. The film

surface is traction-free and, relative to the substrate, the film material supports a

homogeneous transformation strain ε0, which accounts for the lattice mismatch. An

approximation is made for small values of aspect ratio. A first order approximation

is found to miss necessary features and therefore a second order approximation is

obtained following the method outlined elsewhere [43,72]. In the case of no wetting

layer (H = 0) the total strain energy of a single island system is

UI = VIMε20

[
1− 1.67425(1 + ν)a

+
3.04705(1 + ν)(0.87879− ν)(2.01847 + ν)

1− ν
a2

]
(2.3)

where M = 2G(1 + ν)/(1 − ν) is the film modulus, ν is Poisson’s ratio, and G

is the shear modulus. In (2.3), the first term in square brackets is due solely to

the mismatch strain, while the second and third terms are respectively the first

and second order corrections of the energy associated with the island geometry.

The raised nature of an island allows for relaxation of a portion of the mismatch

strain thereby reducing the strain energy of the island relative to an equivalent flat

film. Note the first order correction (second term) is negative definite for values of

−1 < ν ≤ 1
2
, while the second order correction (third term) is positive definite. This

indicates that the driving force for an island to increase in aspect ratio decreases

with increasing aspect ratio, which is missed by the first order approximation.
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The addition of a wetting layer of thickness H over area A of the substrate

adds strain energy

Uw = AHMε20 (2.4)

to the system. In order to limit the parameter space of this investigation, the

energies associated with the wetting layer boundary, where it meets the mask, are

omitted. A typical wetting layer is only a few monolayers in thickness. Hence

the boundary should be treated as an atomic scale step rather than a continuum

level boundary [72, 73]. Energies associated with the boundary include the partial

relaxation of mismatch strain near the boundary and a step edge excess energy. Both

of these energies require additional constitutive parameters, and to avoid obfuscating

the basic result with additional parameters, it is assumed that these energies offset

each other; in other words, it is assumed that the energy reduction due to strain

relaxation equals the increase associated with step edge excess energy. Detailed

consideration for these energies may have significant effect, depending on the specific

material system, and should be addressed in future work.

Surface energy per unit area of the film surface is taken to be a constant γ.

In the case of a flat film of area A, the total film surface energy is

Γ0 = γA (2.5)

Introduction of an island adds surface energy

ΓI = 3.07842a2R2γ (2.6)

which is an approximation for small values of a, consistent with (2.3). This energy

is positive definite and therefore acts as a penalty against the formation of islands.

One should note that it represents the first order effect of island shape, similar to

the second term in (2.3); both scale as a2, considering that VI in (2.3) scales with

a. The second order correction to (2.6) vanishes.

The wetting layer potential energy acts to modify the surface energy such that

the penalty against island formation is increased for relatively thin films, where the
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notion of “thin” is defined by a material length parameter l. The potential energy

for a flat film of area A and thickness H is given by

Γw0 = γwAe
−H/l (2.7)

where γw is an energy per unit area. This term effectively increases surface energy

by the amount of γW for H = 0 and decays as H becomes large compared to l. An

island adds energy

ΓwI = −γwπR2e−H/l +

∫
SI

γwe
−(H+h)/l dS (2.8)

to the total wetting layer potential energy, where SI denotes the surface of the island.

Equation (2.8) replaces the energy associated with the island’s footprint (first term)

by that of the island’s surface (second term). Maintaining the current second order

approximation in aspect ratio, (2.8) can be written as

ΓwI = γwπR
2e−H/lf(a, aR/l) (2.9)

where

f(a, aR/l) =
1

R2

∫ R

0

e−h(r)/l
[
2 + h′(r)2

]
r dr − 1 (2.10)

is a dimensionless function of dimensionless variables a and aR/l. It is noted that

the exponential in (2.10) is not approximated because the exponent −h(r)/l scales

as aR/l and the ratio l/R may be similar to or even smaller than a.

The total free energy of a system with n islands is given by

F = n(UI + ΓI + ΓwI) + Uw + Γ0 + Γw0 + Un
II (2.11)

where Un
II is added to account for the elastic interaction energy between islands. A

general semi-analytical result for the second-order approximation of Un
II is difficult

to obtain. Therefore, the system will be considered without the effects of the in-

teraction energy. The previous investigation [69] addressed a specific case including

the interaction energy and showed that while the effects are of interest, they do not

wash out the results found when neglecting the interaction energy term.
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2.2 Areal Constraint Analysis

In the case of an unbounded deposition area (A→∞), the model described in the

previous section predicts that a single island configuration is always lower in free

energy than an equivalent system with more than one island. The current under-

standing is that additional physics, such as faceting, is needed to stabilize a multiple

island configuration [41,70]. However, it is demonstrated here that constraining de-

position to a finite area will also stabilize a multiple number of islands.

For square windows of area A, minimum energy configurations are calculated

for a given volume of deposited material. Expanding on the previous work, cases

with two-islands, three-islands, four-islands, five-islands, six-islands, seven-islands,

eight-islands, and nine-islands were considered so as to provide deeper insight into

the possible correlation between areal constraint and observed system configurations.

For each case the islands within a particular configuration are assumed to have the

same size and shape. In the two-island case, the islands are located at opposite

corners of the square growth window. For the three-island case the islands are in a

triangular formation within the square growth window. In the four-island case the

islands are located at the corners of the square window. For the five-island case there

is one island at each corner of the growth window, and a fifth island at the center of

the growth window. The six-island case consists of an island at each corner and two

islands in the center. The seven and eight-island cases consist of three islands lining

two opposite edges of the growth wind with either one or two additional islands in

the interior region, repsectively. The nine-island configuration consists of a three by

three square array of islands within the growth window. These configurations are

shown in Figure (2). The total volume of material deposited in the window is given

by

VT = nVI + AH = AH0 (2.12)

where n is the number of islands, VI is the volume of an island (2.2), and H is the

wetting layer thickness. It is convenient to represent the deposited volume in terms
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Figure 2: Geometric configurations under consideration with just a wetting layer
(W), a single island (1), two islands (2), three islands (3), four islands (4), five
islands (5), six islands (6), seven islands (7), eight islands (8), and nine islands (9).
The prime state of each island configuration (1’,2’,3’,4’,5’,6’,7’,8’,9’) indicates that
the islands within the respective system are of the maximum size allowed by the
areal constraint of the growth window.
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of the nominal film thickness H0 which is the thickness of a flat film of the same

volume.

For a given area A and nominal thickness H0, the configuration is defined by

the number of islands (1-5), the aspect ratio a and footprint radius R of the island(s),

and the wetting layer thickness H. In addition to these geometric variables, the

system is characterized by the material constants ε0, M , ν, γ, γw and l. The

parameter space is reduced considerably by rewriting energy in the dimensionless

form

F̄ =
F
γL2

e

= F̄(H̄, R̄, n; Ā, H̄0, l̄, γ̄w, ν) (2.13)

where

Le =
γ

Mε20
(2.14)

is the epitaxial length scale. The dimensionless energy is a function of the dimen-

sionless configuration variables H̄ = H/Le, R̄ = R/Le, and n and a function of

the dimensionless system constants Ā = A/L2
e, H̄0 = H0/Le, l̄ = l/Le, γ̄w = γw/γ,

and ν. Certain physical constraints must be imposed on the configurations. Firstly,

the wetting layer thickness is bounded by 0 ≤ H̄ ≤ 1 which excludes a negative

thickness and provides that no more than the entire volume is contained in the

wetting layer, thereby avoiding any unreasonable physical paradoxes. Addition-

ally the island footprint radius must be non-negative and is also limited such that

the island(s) fit completely within the growth window; therefore 0 ≤ R̄ ≤ mnĀ
1/2

where mn = 1/2 for n = 1 (one island), mn = 1 −
√

2/2 for n = 2 (two islands),

mn = 2/(4 +
√

2 +
√

6) for n = 3 (three islands), mn = 1/4 for n = 4 (four islands),

mn = 1/(2
√

2 + 2) for n = 5 (five islands), mn = (3 +
√

7)−1 for n = 6 (six islands),

mn = 1/(2 +
√

2 +
√

6) for n = 7 (seven islands), mn = 1/(2 +
√

2 +
√

6) for n = 8

(eight islands), mn = 1/6 for n = 9 (nine islands).
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Figure 3: Plot of minimum energy configuration as a function of window size and
nominal film thickness for the case ν = 0.3, l̄ = 0.1, and γ̄w = 0.5. The elastic
interaction energy between islands is neglected.

2.3 Areal Constraint Results and Discussion

The calculated minimum energy state amongst the zero, one, two, three, four, five,

six, seven, eight, and nine-island configurations is plotted in Figure (3) versus nom-

inal film thickness H̄0 = H0/Le and window size Ā1/2 = (A/L2
e)

1/2. A typical value

for Poisson’s ratio of ν = 0.3 is used, and the wetting constants of l̄ = l/Le = 0.1

and γ̄w = γw/γ = 0.5 are chosen and retained throughout the investigation to main-

tain consistency with the previous analysis [69]. It is noted that these constants

were selected somewhat arbitrarily, and while they might be determined empirically

based on relevant features of the results, the expected order of magnitude values

are sufficient for the current investigation. Similar features are observed for a wide

range of values of l̄ and γ̄w.

Figure (3) can be interpreted as the evolution of the minimum energy con-

figuration as a given material system is deposited; for a given area, one follows the

diagram upward towards a increasing amount of deposit meterial. The initial deposi-

tion forms a wetting layer with no islands, as is typical of Stranski-Krastanov growth,

and provided the window size is large enough, greater than about (A/L2
e)

1/2 = 2.4,

a critical thickness is reached where islands first become energetically favorable.

Over a wide range of window sizes, the critical thickness is fairly uniform ranging
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between H0/Le = 0.32 and 0.36. Wetting parameters were not refined to provide

physically reasonable results, however it is instructive to provide a physical esti-

mate of this thickness. Taking film modulus M = 180 GPa, surface energy density

γ = 1J/m2, and mismatch strain ε0 = 4%, which are reasonable values for Ge and

Si or similar semiconductor material systems, the epitaxial length scale is calcu-

lated as Le = 3.5 nm. This implies a critical thickness for islanding in the range of

H0 = 1.12 nm to 1.26 nm which corresponds to a few monolayers of growth. The

thickness can be adjusted to match experimental values by altering the parameters

l and γw. It is noted that the model adopts a continuum viewpoint of the wetting

layer thickness, whereas it would be more physically accurate to admit only dis-

crete thicknesses as integer multiples of a monolayer thickness. Further work along

these lines should certainly be pursued, however the continuum assumption is not

so severe. On the length scale of this model, there is in fact a continuous reservoir

for material in the form of adsorbed atoms (adatoms) atop the wetting layer. In

order to alter this model to admit only discrete wetting layer thicknesses, it would

likely prove necessary to include an adatom phase to account for an incomplete

monolayer. In this context, the current model simply adopts the same constitutive

behavior for the wetting layer and adatom phases. A more general model could be

built to differentiate the two phases, however that is left for future work.

While two, three, six, seven, and eight-island configurations were considered

in the calculation of Figure (3), they do not occur as minimum energy states. The

possibility of these occurring as metastable states is addressed later. It is found that

each of the one, four, five, and nine-island configurations occur as minimum energy

states. Up to a point, configurations with a greater number of islands are favored at

larger window sizes, but for very large windows a single island becomes favored. This

implies that windows of modest size provide some resistance to coarsening. Without

the areal constraint, it is well known that this model of Stranski-Krastanov growth

suggests that a single large island is of lower energy than multiple small islands of the

same total volume (e.g. [8]). This behavior is observed in Figure (3) in the case of a

sufficiently large window size. It is also noted that window size is not the only fac-
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tor that affects coarsening; the ratio of nominal film thickness to window size plays

an important role. For instance, at a windows size of (A/L2
e)

1/2 = 100 coarsening

occurs below a nominal film thickness of H0/Le ≈ 0.6, but for (A/L2
e)

1/2 = 60 coars-

ening occurs below H0/Le ≈ 0.45. For window sizes less than about (A/L2
e)

1/2 = 40,

greater nominal film thickness promotes coarsening. For example, consider a win-

dows size of (A/L2
e)

1/2 ≈ 45. As the nominal film thickness is increased from zero

Figure (3) indicates that up until approximately H0/Le = 0.36 all of the material

will form in a wetting layer with no island formation (W ). As the nominal film

thickness is increased further, configuration (9) will become favorable. With further

deposition the footprint of the nine islands increases in size until they touch (9′).

With additional material deposition the system coarsens to configuration (5′) and

then (4), followed by the four impinging islands (4′). Finally, at high nominal film

thicknesses the system will favor the coalescence of all islands into a single island

(1).

Jin et al. [3] investigated island formation on square mesas with mesa dimen-

sions in the 1µm to 1.2µm range and found that for smaller mesa dimensions four

islands located at the mesa corners were observed (4), while for the slightly larger

mesa size a fifth island at the mesa center was also observed (5 of 5′). Referring to

Figure (3) this same trend is observed with the formation of a fifth island in the

center of the growth window being favored as the window size increases. Kitajima

et al. [2] investigated self-assembly of Ge islands on patterned silicon substrates by

depositing material on raised square substrate mesas via molecular beam epitaxy.

The experiment was repeated with square mesa dimensions of 500nm, 300nm, and

140nm. For the 500nm case a four island configuration was observed with one island

at each corner of the mesa (configuration 4). For the 140nm case only a single island

on the mesa top was observed (1 or 1′). A strong correlation is found between the

experimentally reported results and the trends predicted by Figure (3). For exam-

ple, fixing the nominal film thickness at H0/Le = 0.6 and considering increasing

window sizes from (A/L2
e)

1/2 ≈ 30 to 100 the configuration changes from a single

island (1) to four (4′). With further increase in window size the four islands no

32



longer impinge (4). This is followed by the five impinging islands (5′). For very

large growth window dimensions the system transitions back to the single island

case (1), which is consistent with the unbounded case.

It is important to note that the system will not necessarily reach its minimum

energy state, as there are likely many metastable states that might be reached during

the growth process. Furthermore, transitions between two states during deposition

might not occur as indicated by Figure (3). For a transition to occur, there must

be a kinetically admissible pathway that follows the restrictions set by the mode

of mass transport, in this case either surface diffusion or condensation-evaporation.

Unless there is an energetically favorable pathway, a given state may persist to a

much larger nominal thickness than predicted by Figure (3). For example consider a

slow rate of deposition on a window of size (A/L2
e)

1/2 = 100. Initially a wetting layer

forms followed by a single island atop the wetting layer, as predicted by equilibrium.

After a certain amount of growth, Figure (3) suggests the system will transform

into a nine island configuration. However, this process most likely occurs with a

large activation barrier. Determination of the activation barrier is a subject of

future work, but it is sufficient to note that while island ripening and coalescence is

commonly observed, the separation of a single island into two or more islands has not

been observed either computationally or experimentally to the authors’ knowledge.

At high rates of deposition, multiple islands tend to nucleate followed by ripening or

coalescence [4, 43]. Hence to achieve the the nine island configuration on a window

size of (A/L2
e)

1/2 = 100, it is likely best to deposit material fairly quickly until the

nominal thickness reaches an amount where that state is favored. Once deposition is

stopped, ripening will occur. While it is possible that a metastable state will arise,

it is more likely that the multiple island configuration will occur through ripening

of many unstable islands than by the dissociation of a single island. Similarly,

one might achieve a metastable state by depositing to a certain nominal thickness,

annealing, and depositing additional material. For example with a window size of

(A/L2
e)

1/2 = 15, one might grow to a thickness of H0/Le ≈ 0.4 where a four island

configuration is favored. After establishing this configuration with a sufficiently long
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annealing step, one might resume deposition to a thickness where a single island is

favored. Provided the activation barrier is large enough, the four island configuration

could remain as a metastable state.

Given that metastable configurations are likely to occur and might even be

desired to achieve arrangements of technological interest, it is useful to consider

configurations that represent local energy minima. As the process of an island dis-

sociating into two or more islands likely occurs with a large activation barrier, it

is assumed that a small number of islands is always metastable relative to a larger

number of islands. For example a system with two islands might spontaneously

ripen into a single island, but it is less likely to transform into three of more is-

lands. Accordingly, metastable configuration phase diagrams are constructed by

considering only (a) zero and one island, (b) zero, one, and two islands, (c) zero

through three islands, (d) zero through four islands, (e) zero through five islands,

(f) zero through six islands, (g) zero through seven islands, and (h) zero through

eight islands . Each of these cases is plotted in Figure (4).

While the cases of two and three islands do not appear as global energy

minima, it is found that they may occur as configurations that resist coarsening. To

understand the sequence of plots in Figure (4), consider the point (A/L2
e)

1/2 = 35

and H0/Le = 0.5 shown by the dots in Figure (4a) through Figure (4d) (the phase

region occupied by the dot does not change as metastable configurations of more

than four islands are included). The minimum energy configuration is (4′) in Figure

(4d), which is also the case in Figure (3). This is the global minimum (considering a

maximum of nine islands). In Figure (4c), configuration (3′) is the minimum energy

configuration. It has a lower free energy than a zero, one, or two island configuration,

but higher energy than the (4′) configuration. In Figure (4b), configuration (2) is

the minimum energy configuration. While this configuration will not coarsen into

a single island, the (3′) and (4′) configuration are more stable. Finally, the (1)

configuration is the minimum energy state in Figure (4a), but the (2), (3′) and (4′)

configurations are progressively more stable.

It is likely that certain configurations observed by Kitajima et al. [2] repre-
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Figure 4: Minimum energy configuration when considering a) zero and one island,
b) zero, one, and two islands, c) zero through three islands, d) zero through four
islands, e) zero through five islands, f) zero through six islands, g) zero through
seven islands, and h) zero through eight islands. These represent states that are
stable with respect to coarsening. The dot in plots a) to d) corresponds to the point
where (A/L2

e)
1/2 = 35 and H0/Le = 0.5.
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sented such metastable states. For example for growth on a mesa of size 300nm,

they observed a configuration of three tightly spaced islands in a triangular forma-

tion. The closely spaced three-island configuration corresponds to state (3′). While

a direct correlation with Figure (4) is not possible because no attempt has been

made to refine modeling constants, it was found that for a wide range of cases, the

three island configuration never occurred as a global minimum. Typically a four

island configuration is more stable as in Figure (4).
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3 Arbitrary Island Morphology Kinetic Model

While the areal constraint analysis provides an excellent first step towards

understanding the mechanisms governing nanoscale structure self assembly in epi-

taxial systems, it does have some important limitations. Chief among them is the

reliance on a regular and strictly defined island profile. It is therefore of interest to

obtain a better sense of favorable island shapes and morphologies using a kinetic

simulation.

The model being considered for this portion of the investigation uses a second

order approximation for the strain energy and surface free energy solutions needed to

evaluate chemical potential across the film surface. The film and substrate surfaces

are modeled using two dimensional truncated Fourier expansions, and the evolution

of the film surface is carried out spectrally. This allows for a great deal of variation in

island and substrate morphology, limited only by the resolution constraints brought

about by the available computational resources. A two dimensional Fast Fourier

Transform (2D-FFT) is used to switch between spacial coordinates and spectral

coordinates. The evolution of the film is driven by the chemical potential profile

such that material migrates from areas of high chemical potential to areas of lower

chemical potential via a kinematically admissible pathway. That is to say, material

cannot pass through areas of higher chemical potential in order to reach locations

with a lower ultimate chemical potential. This model is therefore more closely

analogous to a surface diffusion process than an evaporation-condensation process.

The film/substrate interfacial energy is also considered and incorporated into the

chemical potential calculation to ensure that the model respects the nature of that

boundary, namely that the film surface cannot reasonably pass through the substrate

surface. The complete and explicitly detailed derivation of the mathematical model

developed here is shown in Appendix A. The system being considered is shown in

Figure (5).
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Figure 5: The system being considered.

The film surface profile can be expressed as the Fourier series

zf (x, y) =
N∑

p,q=−N

apqe
2πi(p x

λx
+q y

λy
)

(3.1)

and the substrate surface profile can be expressed as the Fourier series

zs(x, y) =
N∑

p,q=−N

bpqe
2πi(p x

λx
+q y

λy
)

(3.2)

where N is order of the Fourier series representations, and apq and bpq are

the Fourier coefficients for the film and substrate, respectively. The values of these

coefficients are required to be small, with the exception of the a00 and b00 terms

which express the nominal film thickness.

3.1 Elastic Strain Energy

The elastic strain energy caused by the mismatch between the atomic lattice

spacing of the film and substrate materials must be evaluated as part of the chemical

potential of each location on the film surface. This elastic strain energy will drive
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the film material to locations within the system that have lower elastic constraint

between the film and the substrate. An example of this type of location could either

be an less constrained substrate feature such as the edge of a raised mesa as shown

for two dimensions as part of the earlier work [62]. The film material could also form

a raised island structure in order to escape the constraint of the substrate vertically.

The film surface is traction free, with

σijn
f
j = 0 (3.3)

and the tractions on the substrate surface are induced by the difference be-

tween the stress fields of the film and substrate. This difference can be expressed

as

[[σij]]n
s
j = (σfij − σsij)nsj = 0 (3.4)

where the bracketed term denotes the field resulting from the difference be-

tween the film and substrate fields. The combined strain field can also be written

as

[[εij]](δjk − nsjnsk) = ε0ik (3.5)

where (δjk−nsjnsk) is the projection onto the substrate surface, and ε0ik is the

mismatch strain that results from the discontinuity in strain at the substrate/film

interface.

The goal is to find an expression for the energy, U , as a function of the

Fourier coefficients of the film and substrate, U(apq, bpq), as an approximation for

small slopes. This implies

apqp

λx
∼ apqq

λy
∼ bpqp

λx
∼ bpqq

λy
∼ α (3.6)

where α is small, with the exception of

a00, b00 ∼ O(1) (3.7)
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Figure 6: The elastic field superposition.

which is not small. b00 can be taken to be zero, while a00 controls the nominal

film thickness.

A first order approximation would follow as

u ≈ u+O(α)2, U ≈ U +O(α)3. (3.8)

For this investigation, a second order approximation is desired, with the

displacement and energy terms governed respectively by

u ≈ u+O(α)3, U ≈ U +O(α)4 (3.9)

where α is small. The elastic field can be represented by a superposition of a

known field induced by mismatch between the film and substrate, and an unknown

field due to certain applied forces, as shown in Figure (6), and as expressed by

The elastic field can be represented by a superposition of a known field in-

duced by mismatch between the film and substrate, and an unknown field due to

certain applied forces, as shown in Figure (6), and as expressed by
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σfij = σ0
ij + σf∗ij (3.10)

and

σsij = σs∗ij . (3.11)

On the film surface

σf∗ij n
f
j = −σ0

ijn
f
j (3.12)

while on the substrate surface

[[σ∗ij]]n
s
j = (σf∗ij − σs∗ij )nsj = −σ0

ijn
s
j (3.13)

with a strain field expressed as

[[ε∗ij]](δjk − nsjnsk) = 0 (3.14)

and a displacement continuity constraint,

[[u∗i ]] = 0 (3.15)

or

(u∗i )
+ = (u∗i )

− (3.16)

The total strain energy of the system can be expressed as
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Utot =
1

2

∫
Vf

(σ0
ij + σ∗ij)(ε

0
ij + ε∗ij) dV +

1

2

∫
Vs

σ∗ijε
∗
ij dV

=
1

2

∫
Vf

σ0
ijε

0
ij dV +

∫
Vf

σ0
ijε
∗
ij dV +

1

2

∫
Vf

σ∗ijε
∗
ij dV +

1

2

∫
Vs

σ∗ijε
∗
ij dV

= w0Vf +

∫
Vf

(σ0
iju
∗
i ),j dV +

1

2

∫
Vf

(σ∗iju
∗
i ),j dV +

1

2

∫
Vs

(σ∗iju
∗
i ),j dV

= w0Vf +

∫
sf

(σ0
ijn

f
j u
∗
i +

1

2
σ∗ijn

f
j u
∗
i ) dA

+

∫
ss

(−σ0
ijn

s
ju
∗
i −

1

2
σf∗ij n

s
ju
∗
i +

1

2
σs∗ij n

s
ju
∗
i ) dA. (3.17)

Substituting Equations (A.12) and (A.13) into Equation (A.17) yields

Utot = w0Vf +
1

2

∫
sf

σ0
ijn

f
j u
∗
i dA−

1

2

∫
ss

σ0
ijn

s
ju
∗
i dA. (3.18)

For this solution, the displacement field u∗i , periodic in x and y, is needed.

Papkovitch-Neuber potentials will be utilized.

From the linearly elastic stress-displacment relationship

σij = λuk,kδij + µ(ui,j + uj,i) (3.19)

and equilibrium condition

σij,j = 0 (3.20)

the constraint

(λ+ µ)ui,ij + µuj,ii = 0 (3.21)

can be determined. Applying the Papkovitch-Neuber potentials yields

ui = φi −
1

4(1− ν)
(φ0 + x− jφj),i. (3.22)

Working through the solution for the potential functions, shown in Appendix

B, it is found that

42



φf0 =
∞∑

p,q=−∞
(p,q) 6=(0,0)

{
A0pqe

2πz

r
p2
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+ q2

λy +B0pqe
−2πz
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p2

λx
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λy

+

i
4
A1pqe

2πz
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p2
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+ q2

λy λxλ
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(
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+
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√
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+
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λy λ2
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λx
+ q2

λy

)
π
(
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yp

2 + λ2
xq

2
)

+

−i
4
B2pqλ

2
xλyq
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1 + 4πz
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λx
+ q2

λy

)
e

2πz

r
p2

λx
+ q2

λy π
(
λ2
yp

2 + λ2
xq

2
)

− x

(
A1pqe

2πz

r
p2

λx
+ q2

λy +B1pqe
−2πz

r
p2

λx
+ q2

λy

)

− y

(
A2pqe

2πz

r
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λx
+ q2

λy +B2pqe
−2πz

r
p2

λx
+ q2

λy
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e

2πi
“
p x
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+q y
λy

”
, (3.23)

φfx =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A1pqe

2πz

r
p2

λx
+ q2

λy +B1pqe
−2πz

r
p2

λx
+ q2

λy

}
e

2πi
“
p x
λx

+q y
λy

”
, (3.24)

φfy =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A2pqe

2πz

r
p2

λx
+ q2

λy +B2pqe
−2πz

r
p2

λx
+ q2

λy

}
e

2πi
“
p x
λx

+q y
λy

”
, (3.25)

φfz =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A3pqe

2πz

r
p2

λx
+ q2

λy +B3pqe
−2πz

r
p2

λx
+ q2

λy

}
e

2πi
“
p x
λx

+q y
λy

”
, (3.26)
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φs0 =
∞∑

p,q=−∞
(p,q) 6=(0,0)
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C0pqe

2πz
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+
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λx
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(
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λy − yC2pqe
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+ q2

λy

}
e

2πi
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p x
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λy

”
, (3.27)

φsx =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
C1pqe

2πz

r
p2

λx
+ q2

λy

}
e

2πi
“
p x
λx

+q y
λy

”
, (3.28)

φsy =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
C2pqe

2πz

r
p2

λx
+ q2

λy

}
e

2πi
“
p x
λx

+q y
λy

”
, (3.29)

and

φsz =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
C3pqe

2πz

r
p2

λx
+ q2

λy

}
e

2πi
“
p x
λx

+q y
λy

”
. (3.30)

The expressions for all coefficients are provided in Appendix C.

Therefore, solving for the total strain energy of the system given in Equation

(A.18) yields
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Utot =

√
λxλy

3
πσ2

0 (1− 2ν)2

µ (1− ν)
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ā00

2π (1 + ν)

−
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e2ā00π
√
R2+S2

)(
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e2ā00π
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ā(p,q) −
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e2ā00π
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)(
2
√
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− (1− ν) (PS −QR)2

(P 2 +Q2) (R2 + S2)

)
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e2ā00π
√
R2+S2

)
−

√
P 2 +Q2

(
ā(−r,−s)ā(r−p,s−q) −

b̄(−r,−s)b̄(r−p,s−q)

e2ā00π
√
P 2+Q2

))}
(3.31)

where P = p
√
λy/λx, Q = q

√
λx/λy, R = r

√
λy/λx, and S = s

√
λx/λy.

Normalizing the total strain energy yields

Ūtot = Utot
µ (1− ν)√

λxλy
3
πσ2

0 (1− 2ν)2
. (3.32)

where µ is the relevant elastic modulus of the system, ν is Poisson’s ratio, σ0

is the epitaxial mismatch in the system, and λx and λy are the wavelengths of the

periodic cell prior to normalization. The elastic properties of the film and substrate

are taken to be the same. From the normalized total strain energy of the system

defined as a function of the film surface Fourier coefficients, Utot = Utot (apq), the

change in energy with respect to time can be expressed as

dŪtot
dt

=

∫ 1

0

∫ 1

0

χ̄
dz̄f
dt

dx̄ dȳ. (3.33)

where

χ̄ =
M (1− ν)

πσ2
0 (1− 2ν)2χ =

∞∑
m,n=−∞

X̄mne
2πi(mx̄+nȳ) (3.34)

is the normalized chemical potential with complex Fourier coefficients X̄ (p, q).

Taking the function Ūtot given in Equation (A.103),
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dŪtot
dt

=
∞∑

m,n=−∞

dŪtot
dāmn

dāmn
dt

=
∞∑

m,n=−∞

dāmn
dt

∫ 1

0

∫ 1

0

{
χ̄e2πi(mx̄+nȳ)

}
dx̄ dȳ

=
∞∑

m,n=−∞

X̄(−m,−n)
dāmn
dt

. (3.35)

where

ām,n =
am,n√
λxλy

. (3.36)

Therefore

X̄(−m,−n) =
dŪtot

dā(m,n)
. (3.37)

Since the chemical potential is real, as are the film and substrate surfaces,

X̄(m,n) = X̄R(m,n) + iX̄I(m,n) (3.38)

X̄I(−m,n) = −X̄I(m,−n)
X̄I(−m,−n) = −X̄I(m,n)
X̄R(−m,n) = X̄R(m,−n)
X̄R(−m,−n) = X̄R(m,n)

X̄I(0, 0) = 0.

(3.39)

From Ūtot = Ūtot(āpq) = Ūtot(āR(p, q), āI(p, q)) and the inverse Fourier trans-

form and the relations found in Equations (3.39),

dŪtot
dāR(p, q)

=

∫ 1

0

∫ 1

0

χ̄(x, y) cos 2πi(px̄+ qȳ) dx̄ dȳ =
X̄R(p, q) + X̄R(−p,−q)

2
(3.40)

and

dŪtot
dāI(p, q)

=

∫ 1

0

∫ 1

0

−χ̄(x, y) sin 2πi(px̄+ qȳ) dx̄ dȳ =
X̄I(p, q)− X̄I(−p,−q)

2
.

(3.41)
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From Equations (3.39), (3.40), and (3.41) it is concluded that

X̄R(p, q) =
dŪtot

dāR(p, q)
(3.42)

and

X̄I(p, q) =
dŪtot

dāI(p, q)
. (3.43)

3.2 Surface Free Energy

There is an energy associated with the formation of any free surface in a system.

This surface free energy will drive a system towards the configuration that has the

lowest possible surface area. In the case of a freely suspended system, this would

be the configuration with the lowest surface to volume ratio; namely a sphere. In

the case of a film that is constrained to a substrate, the configuration with the

lowest surface area is that of a flat film. This differs from the freely suspended

case in that the bottom side of the film interfaces with the upper surface of the

substrate, eliminating the surface free energy of those two surfaces (and introducing

an interfacial energy in their place, as discussed later).

The contribution of the surface energy to the chemical potential must also be

considered. In the interest of simplicity, the case where the surface energy density,

γ, is constant and isotropic is considered. The normalized surface free energy can

then be expressed as

γS =
µ(1− ν)γ√

λxλyπσ2
0(1− 2ν)2

(
1 + 2π2

∞∑
p,q=−∞

[
āR(−p,−q)āR(p, q)

−āI(−p,−q)āI(p, q)
](λy
λx
p2 +

λx
λy
q2
))
. (3.44)

The derivatives of the normalized surface energy with respect to the real and

imaginary surface Fourier coefficients can then be evaluated,
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γS

dāR(m,n)
=

4µ(1− ν)γπ√
λxλyσ2

0(1− 2ν)2

(λy
λx
m2 +

λx
λy
n2
)
āR(−m,−n) (3.45)

and

γS

dāI(m,n)
=

−4µ(1− ν)γπ√
λxλyσ2

0(1− 2ν)2

(λy
λx
m2 +

λx
λy
n2
)
āI(−m,−n). (3.46)

It is further noted that the mismatch stress, σ0, can be expressed in terms of

more readily useful mismatch strain, ε0, as per the constitutive relation

σ0 =
µ(1− ν)

(1− 2ν)2
ε0. (3.47)

Equations (3.45) and (3.46) can then be expressed in terms of the mismatch

strain,

γS

dāR(m,n)
=

4(1− 2ν)2γπ√
λxλyµ(1− ν)ε20

(λy
λx
m2 +

λx
λy
n2
)
āR(−m,−n) (3.48)

and

γS

dāI(m,n)
=

4(1− 2ν)2γπ√
λxλyµ(1− ν)ε20

(λy
λx
m2 +

λx
λy
n2
)
āI(−m,−n). (3.49)

3.3 Combined Elastic Strain and Surface Free Energy

Having determined the form of the elastic strain energy and surface free energy of

the film/substrate system, it is next necessary to combine the two to find the total

chemical potential which will drive the evolution of the film. It is the competition

between these two energies that can result in the formation of stable island con-

figurations. While the strain energy would favor a system with film material as

completely removed from the substrate as possible, the high aspect ratio of such

configurations would result in large increases in free surface area which would be

opposed by the surface free energy. It is only when these two energies come into
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balance that equilibrium will be achieved and system evolution will stabilize. It is

really very Zen.

The form of the chemical potential coefficients can then be expanded to

include the surface free energy:

X̄R(p, q) =
dŪtot

dāR(p, q)
+

γS

dāR(p, q)
(3.50)

and

X̄I(p, q) =
dŪtot

dāI(p, q)
+

γS

dāI(p, q)
. (3.51)

This can in turn be expanded to

X̄R(p, q) =
dŪtot

dāR(p, q)
+ L̄∗

(λy
λx
m2 +

λx
λy
n2
)
āR(−m,−n) (3.52)

and

X̄I(p, q) =
dŪtot

dāI(p, q)
+ L̄∗

(λy
λx
m2 +

λx
λy
n2
)
āI(−m,−n) (3.53)

where

L̄∗ =
4(1− 2ν)2γπ√
λxλyµ(1− ν)ε20

. (3.54)

The normalized characteristic length, L̄∗, specifies the balance point between

surface free energy and elastic strain energy. For example, a higher value of L̄∗ could

imply that either the surface energy density, γ, has increased, or else the mismatch

strain, ε0, has been reduced, in either case leading to an increased influence of

surface free energy over elastic strain energy. Inversely, a decrease in L̄∗ could imply

a drop in surface energy density, or an increase in mismatch strain, in both cases

resulting in an increased importance of elastic strain energy over surface free energy.

By comparing the behavior and response of a system to a range of L̄∗ values, the

relative effects of surface free energy and elastic strain energy can be evaluated and

analyzed.
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Figure 7: An orthogonal system on the film surface.

To determine the relationship between chemical potential and surface ve-

locity, an orthogonal system on the film surface (S1, S2) is selected, including the

normal to the film surface (n̂), as shown in Figure (7).

The directions S1 and S2 are selected such that

S1 = S1(x, zf ) (3.55)

and

S2 = S2(y, zf ). (3.56)

From the Pythagorean theorem

dS1

dx
=

√(dzf
dx

)2

+
(dx
dx

)2

=

√(dzf
dx

)2

+ 1 (3.57)

and similarly

dS2

dy
=

√(dzf
dy

)2

+
(dy
dy

)2

=

√(dzf
dy

)2

+ 1. (3.58)
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The film surface is defined by zf = zf (x, y), therefore the normal to the film

surface is

n̂ =
∇zf
|∇zf |

=

(
dzf
dx
,
dzf
dy
, 1
)

√(
dzf
dx

)2

+
(
dzf
dy

)2

+ 1

(3.59)

The film surface velocity in the normal direction is given by

vn = Ms∇2
sχ

= Ms

{
∂2χ

∂x2

(
1(dzf

dx

)2
+ 1

)
+
∂2χ

∂y2

(
1(dzf

dy

)2
+ 1

)}
(3.60)

where Ms is the surface mobility coefficient.

The component of the surface velocity in the vertical direction is

vz = Ms

{
∂2χ

∂x2
+
∂2χ

∂y2

}
+O(α)3. (3.61)

Conducting the same normalization procedure as used previously yields

dz̄f
dt̄

=

(
λy
λx

d2χ̄

dx̄2
+
λx
λy

d2χ̄

dȳ2

)
(3.62)

where

t̄ =
t

τ
. (3.63)

and the time normalization factor is

τ =
(1− 2ν)2(λxλy)

3
2

Msµ(1− ν)πε20
. (3.64)

The required second derivative terms appearing in Equation (3.62) can be

evaluated as
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d2χ̄

dx̄2
= 2

NN∑
m=1

4M2π2
(
X̄I(m, 0) sin 2Mπx̄− X̄R(m, 0) cos 2Mπx̄

)
+ 2

NN∑
m,n=1

4M2π2
(
X̄I(m,−n) sin 2π(Mx̄−Nȳ) + X̄I(m,n) sin 2π(Mx̄+Nȳ)

−X̄R(m,−n) cos 2π(Mx̄−Nȳ)− X̄R(m,n) cos 2π(Mx̄+Nȳ)
)

(3.65)

and

d2χ̄

dȳ2
= 2

NN∑
n=1

4N2π2
(
X̄I(0, n) sin 2Nπȳ − X̄R(0, n) cos 2Nπȳ

)
+ 2

NN∑
m,n=1

4N2π2
(
X̄I(m,−n) sin 2π(Mx̄−Nȳ) + X̄I(m,n) sin 2π(Mx̄+Nȳ)

−X̄R(m,−n) cos 2π(Mx̄−Nȳ)− X̄R(m,n) cos 2π(Mx̄+Nȳ)
)
. (3.66)

Substituting Equations (3.65) and (3.66) into Equation (3.62) yields

dz̄f
dt̄

=

(
λy
λx

d2χ̄

dx̄2
+
λx
λy

d2χ̄

dȳ2

)
= 2

NN∑
m=1

4
λy
λx
M2π2

(
X̄I(m, 0) sin 2Mπx̄− X̄R(m, 0) cos 2Mπx̄

)
+ 2

NN∑
n=1

4
λx
λy
N2π2

(
X̄I(0, n) sin 2

λx
λy
Nπȳ − X̄R(0, n) cos 2Nπȳ

)
+ 2

NN∑
m,n=1

4(λ2
yM

2 + λ2
xN

2)π2

λxλy

{
− X̄R(m,−n) cos 2π(Mx̄−Nȳ)

−X̄R(m,n) cos 2π(Mx̄+Nȳ)

+X̄I(m,−n) sin 2π(Mx̄−Nȳ)

+X̄I(m,n) sin 2π(Mx̄+Nȳ)
}
. (3.67)

The vertical velocity of the film surface can also be evaluated as the time

derivative of the Fourier expansion given in Equation (3.1)
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dz̄f
dt̄

=
āR(0, 0)

dt̄

+ 2
NN∑
n=1

[
āR(0, n)

dt̄
cos 2nπȳ − āI(0, n)

dt̄
sin 2nπȳ

]

+ 2
NN∑
m=1

[
āR(m, 0)

dt̄
cos 2mπx̄− āI(m, 0)

dt̄
sin 2mπx̄

]

+ 2
NN∑
m,n=1

{ āR(m,−n)

dt̄
cos 2π(Mx̄−Nȳ)

+
āR(m,n)

dt̄
cos 2π(Mx̄+Nȳ)

− āI(m,−n)

dt̄
sin 2π(Mx̄−Nȳ)

− āI(m,n)

dt̄
sin 2π(Mx̄+Nȳ)

}
. (3.68)

By comparing the terms in Equations (3.67) and (3.68) it is determined that

āR(m,n)

dt̄
= −

4(λ2
yM

2 + λ2
xN

2)π2

λxλy
X̄R(m,n) (3.69)

and

āI(m,n)

dt̄
= −

4(λ2
yM

2 + λ2
xN

2)π2

λxλy
X̄I(m,n). (3.70)

The evolution of the film can then be conducted spectrally using the results

in Equations (3.69) and (3.70) along with a desired time stepping routine.

3.4 Film/Substrate Interfacial Interaction Energy

In order to insure that the film evolution responds appropriately to the substrate

surface, and a wetting layer typical for SK growth is maintained, a film/substrate

interface interaction contribution to the chemical potential is also considered. The

model employed to account for this effect was reported previously [7, 57–59]. The

energy density of the film and substrate interface is first taken as
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g(zf ) =
g0l

p

(zf − zs + l)p
(3.71)

where g0 and l are material properties. The exponent term p varies depending

on the interaction mechanism being considered [7, 57–59].

The contribution of this interaction energy to the chemical potential is

χ̄int = Ωnz
∂g(zf )

∂zf
=

−Ωg0l√(
dzf
dx

)2

+
(
dzf
dy

)2

+ 1
(
zf − zs + l

)2
(3.72)

Where Ω is the atomic volume, g0 is the atomic density of the interface, and

l is the relevant length scale factor. Equation (3.72) can be expressed in terms of

the normalized surface profiles as

χ̄int =
−Ωg0l̄√(

λy
λx

dz̄f
dx̄

)2

+ λx
λy

(
dz̄f
dȳ

)2

+ 1
(
z̄f − z̄s + l̄

)2√
λxλy

(3.73)

where

l̄ =
l√
λxλy

. (3.74)

The contribution of the interface to the chemical potential can then be in-

corporated into the evolution process, noting that due to the inverse dependence on

the film thickness, the term will only be significantly expressed for instances where

the film has become very thin.
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4 Kinetic Island Evolution

The first step in this investigation is to begin to form an understanding of kinetic

island evolution, beginning with flat substrate systems. Cases of both high and

lower areal density are considered, and the resulting island shapes are analyzed

in the context of established and expected phenomena to provide a starting point

for further energetic analysis. The high areal density case represents systems of

islands which are closely spaced on the substrate surface, while the lower areal

density case represents more sparsely spaced islands. In the course of executing

these simulations it was determined that kinetic simulations with a higher degree of

refinement would not be computationally feasible, and what was originally planned

as a kinetic evolution analysis of islands on patterned substrates was modified to an

energetic analysis in recognition of this limitation.

For the simulations of high areal density kinetic island evolution on a flat

substrate, a film with a nominal normalized thickness of 0.10 is applied to a unit

periodic cell (i.e. normalized dimensions of 1.0x1.0) with an initial sinusoidal per-

turbation. It was found that initially flat films resisted evolution, even in cases

where island evolution would be expected, because the mathematical flatness of the

film resulted in a null chemical potential gradient across the surface. Relying on

computational tolerances in the numerical values to start the evolution of the film

was not effective, as the numerical accuracy was too high to create a large enough

potential difference for the process to begin. Figure (8) shows a typical initially

perturbed film evolving into an island, in this case for a normalized characteristic

length of L̄∗ = 0.35. Figure (8a) shows the initially sinusoid perturbation of the film

surface. In Figure (8b) the lower portions of the film are unfavorable due to higher

elastic constraint from the substrate, and so this material migrates towards the more

raised section resulting in an initial flattening of the overall profile. In Figure (8c)

material begins to move inward, raising the center of the film and starting to form an

island. Figure (8d) shows the continuation of island initialization, with additional

material accumulating in the center of the structure. In Figure (8e) vertical island
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growth slows as increased surface energy from the raised shape begins to balance

the strain energy reduction associated with removing additional material from the

elastic constraint of the substrate. The final stable island configuration is achieved

when strain energy and surface free energy come into equilibrium, resulting in the

cessation of the kinetic evolution, as shown in Figure (8f).

In the interest of expediency, for the case of the low areal density kinetic

island evolution study, a previously established island shape from the high areal

density kinetic evolution was scaled down and placed on the substrate with a more

highly refined resolution, and then allowed to relax kinetically. This shortcut al-

lowed the more sparse system to reach its equilibrium state more quickly, which

was necessary because of the increased computational intensity brought about by

the refined resolution. The refinement of the resolution for this part of the analysis

was necessary to capture the desired details of island shape since the island was

proportionally smaller compared to the unit cell on which it sits. After observing

the required processing time for these simulations, it was determined that the fur-

ther refinement in resolution of the kinetic simulation that would be required for

more highly detailed investigations, such as the location of islands on a patterned

substrate and the inclusion of multiple sparsely spaced islands, would not be fea-

sible due to the computational requirements. The energetic comparison of systems

with differing island configurations and arrangements will be substituted instead,

allowing critical questions of morphological favorability to be answered while still

constraining the analysis to a slightly reasonable timescale for execution.

4.1 High Areal Density Island Evolution

High areal density islands on a flat substrate are interesting in their own right, as

such regular arrays of quantum dots have compelling uses in both electronic and op-

tical applications. It was found that the simulation developed for this investigation

effectively models the formation of such quantum dot arrays, and that varying sys-

tem parameters can be used to control the shape of the islands in the arrays. Note
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a) 

c) 

e) 

b) 

d) 

f) 

Figure 8: A typical initially perturbed film evolving into an island for normalized
characteristic length L̄∗ = 0.35. a) Initial film surface b) Initial evolution of material
away from highly constrained areas c) Island formation begins d) Island formation
continues e) Island formation slows as surface and strain energy begin to balance f)
The final stable island shape is reached when surface free energy and strain energy
are in equilibrium.
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that for all images show, the boundary conditions for each system cell are periodic,

and hence the single island shown is repeated indefinitely along the plane of a infinite

substrate/film system, making up the regular array of structures. Figure (9) shows

the progression of island shapes with varying normalized characteristic length from

L̄∗ = 0.35 to L̄∗ = 0.50. It is observed that as the normalized characteristic length

increases the island becomes flatter. This is expected, as the increase in surface

energy density/reduction in mismatch strain would result in a more pronounced en-

ergetic benefit for a reduction in free surface area, whereas higher mismatch strain

and lower surface energy density would be expected to favor the removal of material

from the constraint of the substrate in the form of higher islands, as is observed.

The trend of increasing normalized free energy with increasing normalized

characteristic length is shown in Figure (10). It is important to note that, in order

to eliminate troublesome roundoff errors, the normalized characteristic lengths re-

ported do not include the energy of the flat film (the constant portion of the Fourier

expansion representation of the solution). This was done to eliminate the possibil-

ity of the small incremental changes in energy between iterations being lost in the

round off of the much larger constant term. This explains why the values reported

are negative; the island configurations of the film have lower free energy than the flat

film, which makes eminent good sense as they could not otherwise be energetically

admissible as viable morphological configurations.

Figure (11) shows the trend of normalized free energy versus island aspect

ratio. The aspect ratio of an island describes the relationship between the width at

its base and its maximum height. While this metric does not describe the overall

shape of the islands, it does provide an overview of the general island shape.

For a more direct understanding of how system parameters effect island

shape, Figure (12) plots aspect ratio versus normalized characteristic length. Re-

calling Equation (3.54), it is clear that an increase in the normalized characteristic

length can be interpreted as either an increase in surface energy density or a de-

crease in lattice mismatch strain, while a decrease in normalized characteristic length

can correspond to a decrease in surface energy density or an increase in lattice mis-
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a)

b)

c)

d)

Figure 9: High areal density island shapes. The progression shows the change in
island shapes with increasing normalized characteristic length, which corresponds
to increasing surface energy density, or decreasing mismatch strain. It is noted that
as the normalized characteristic length increases from a) L̄∗ = 0.35, to b) L̄∗ = 0.40,
to c) L̄∗ = 0.45, and then to d) L̄∗ = 0.50, the island becomes flatter. This is as
expected, as the increase in surface energy density/reduction in mismatch strain
would result in a more pronounced energetic benefit for a reduction in free surface
area, whereas higher mismatch strain and lower surface energy density would be
expected to favor the removal of material from the constraint of the substrate in the
form of higher islands, as observed.
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Figure 10: High areal density island normalized free Energy Ū versus normalized
characteristic length L̄∗.
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Figure 11: High areal density island normalized free Energy Ū versus aspect ratio
α.
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match strain. This means that higher normalized characteristic lengths are expected

to result in a greater significance of surface energy over strain energy, while lower

characteristic lengths are expected to result in a greater significance of strain en-

ergy over surface energy. Figure (12) shows that this is indeed the case. As the

normalized characteristic length increases, the island’s aspect ratio decreases, or the

island becomes flatter, which is consistent with a system where surface energy plays

a more prevalent role since the flatter island has a lower surface area than a higher

aspect ratio island. If the normalized characteristic length is decreased, the aspect

ratio of the island increases, which is consistent with a system where strain energy

is more prevalent, since the more raised island morphology allows more material to

escape the elastic constraint of the substrate.

Of additional interest is the relationship between the minimum film thickness

and the normalized characteristic length, shown in Figure (13). This is tied back

to the tendency of higher strain energy to favor taller islands while higher surface

energy density favors flatter islands. As islands become flatter, there is a greater

amount of material that is distributed over the substrate surface rather than accu-

mulating in the localized mass of the island, which results in greater minimum film

thicknesses for high normalized characteristic lengths. As the normalized charac-

teristic length continues to increase, representing further dominance of surface free

energy over strain energy, the general trend is that the minimum film thickness will

increase as more and more material remains distributed over the film. Figure (14)

shows the ratio of minimum to maximum film thickness versus normalized charac-

teristic length which clearly illustrates the monotonic tendency of minimum film

thickness to increase relative to maximum film thickness with increasing L̄∗. To-

gether these figures support the understood phenomena of surface energy dominated

systems favoring flatter island shapes, and also show that, to a degree, this tendency

towards flatter films results in not just a change to flatter island shapes, but also

the deallocation of material from the island configuration back towards that of the

uniformly distributed film.

When L̄∗ was increased further, the island shape collapsed and the initial
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Figure 12: High areal density island aspect ratio α versus normalized characteristic
length L̄∗.
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Figure 13: High areal density minimum film thickness versus normalized character-
istic length L̄∗.
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Figure 14: High areal density ratio of minimum to maximum film thickness versus
normalized characteristic length L̄∗.
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perturbation to the film evolved into a perfectly flat and uniformly distributed film.

This occurred because the critical value of the normalized characteristic length had

been exceeded, resulting in a characteristic wavelength for the system that exceeded

the unit size of the periodic cell, thereby suppressing island growth. The character-

istic wavelength is the wavelength at which a particular system will grow preferen-

tially [43].

4.2 Low Areal Density Island Evolution

While high areal density epitaxial island formations offer significant promise as elec-

tronic and optical quantum dot arrays, the formation of low areal density island

configurations is also of interest for the understanding of discrete island characteris-

tics which can be gained. Closely spaced islands have a self energy associated with

the geometry and system properties of the island, and an island-island interaction

energy with each and every one of its neighboring islands (out through the infinite

space of periodically repeating islands in the case of the particular model used here).

Without some form of reference to the island self energy, it can be difficult to discern

between those two energies, and it is thus desirable to find the energy of a single

island alone on the infinite substrate, or in a more numerically reasonable sense, far

enough away from any other islands such that the island-island interaction will be

negligible.

In order to consider this analysis, it is necessary to increase the periodic

cell size of the system so that the repeated patterns will be sufficiently spaced

so as to rule out island-island interaction energy. Ideally, a convergence analysis

should be conducted to determine the distance at which only the island self energy

remains. Due to computational constraints, this will not be possible. However, the

periodic cell size can be doubled (four times the area) with only slightly unreasonable

computational requirements. Further increase of the cell size will not be possible

due to excessive time that such simulations would require. It will therefore be

necessary to look at these lower areal density island evolutions as approximations
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for the isolated island case, bearing in mind that this assumption will only be able

to indicate trends rather than specific values. It is important to note that the nature

of the Fourier series representation of the film and substrate surfaces requires that

the cell size scale with powers of two, which is a requirement of the Fast Fourier

Transform used to go between spectral and spacial coordinates.

As discussed previously, to maximize the efficiency of this more computa-

tionally demanding simulation, an island shape from the high areal density analysis

was scaled appropriately and placed onto the larger periodic cell, and then allowed

to relax kinetically such that it sought out its equilibrium morphology. By starting

off with a raised island shape for the film, the initial stages of the simulation where

the film has only a slight perturbation is omitted, thereby avoiding a portion of

the calculation which would evolve very slowly due to very low chemical potential

gradients.

Figure (15) shows the progression of island shapes with varying normal-

ized characteristic length from L̄∗ = 0.14 to L̄∗ = 0.20125. It is observed that

as the normalized characteristic length increases the island becomes flatter. This

is expected, as with the high areal density case, as the increase in surface energy

density/reduction in mismatch strain would result in a more pronounced energetic

benefit for a reduction in free surface area, whereas higher mismatch strain and

lower surface energy density would be expected to favor the removal of material

from the constraint of the substrate in the form of higher islands, as is observed.

The general trends seen for the high areal density case and shown in Figure (10)

through Figure (14) are also seen for the low areal density analysis. The trend of

increasing normalized free energy with increasing normalized characteristic length is

shown in Figure (16). Figure (17) shows the trend of normalized free energy versus

island aspect ratio. Figure (18) plots aspect ratio versus normalized characteristic

length. Figure (19) show the relationship between the minimum film thickness and

the normalized characteristic length. Figure (20) shows the ratio of minimum to

maximum film thickness versus normalized characteristic length.
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a) b)

c) d)

e) f)

g) h)

Figure 15: Low areal density island shapes. The progression shows the change in
island shapes with increasing normalized characteristic length, which corresponds to
increasing surface energy density, or decreasing mismatch strain. It is noted that as
the normalized characteristic length increases from a) L̄∗ = 0.14, to b) L̄∗ = 0.14875,
to c) L̄∗ = 0.1575, d) L̄∗ = 0.16625, to e) L̄∗ = 0.175, to f) L̄∗ = 0.18375, g)
L̄∗ = 0.1925,and then to h) L̄∗ = 0.20125, the island becomes flatter. This is as
expected, as the increase in surface energy density/reduction in mismatch strain
would result in a more pronounced energetic benefit for a reduction in free surface
area, whereas higher mismatch strain and lower surface energy density would be
expected to favor the removal of material from the constraint of the substrate in the
form of higher islands, as observed.

68



L
o

w
 A

re
a
l 
D

e
n

si
ty

 
N

o
rm

a
li
ze

d
 F

re
e
 E

n
e
rg

y
 V

s.
 N

o
rm

a
li
ze

d
 C

h
a
ra

ct
e
ri

st
ic

 L
e
n

g
th

-3
.5
0
E
-0
4

-3
.0
0
E
-0
4

-2
.5
0
E
-0
4

-2
.0
0
E
-0
4

-1
.5
0
E
-0
4

-1
.0
0
E
-0
4

-5
.0
0
E
-0
5

0
.0
0
E
+
0
0 0
.1
3

0
.1
4

0
.1
5

0
.1
6

0
.1
7

0
.1
8

0
.1
9

0
.2

0
.2
1

N
o

rm
a
li

ze
d

 C
h

a
ra

ct
e
ri

st
ic

 L
e
n

g
th

Normalized Free Energy

Figure 16: Low areal density island normalized free Energy Ū versus normalized
characteristic length L̄∗.

69



L
o

w
 A

re
a
l 
D

e
n

si
ty

 
N

o
rm

a
li
ze

d
 F

re
e
 E

n
e
rg

y
 V

s.
 I

sl
a
n

d
 A

sp
e
ct

 R
a
ti

o

-3
.5
0
E
-0
4

-3
.0
0
E
-0
4

-2
.5
0
E
-0
4

-2
.0
0
E
-0
4

-1
.5
0
E
-0
4

-1
.0
0
E
-0
4

-5
.0
0
E
-0
5

0
.0
0
E
+
0
0 0
.0
5

0
.1

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

Is
la

n
d

 A
sp

e
ct

 R
a
ti

o

Normalized Free Energy

Figure 17: Low areal density island normalized free Energy Ū versus aspect ratio α.
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Figure 18: Low areal density island aspect ratio α versus normalized characteristic
length L̄∗.
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Figure 19: Low areal density minimum film thickness versus normalized character-
istic length L̄∗.
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Figure 20: Low areal density ratio of minimum to maximum film thickness versus
normalized characteristic length L̄∗.
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5 Conclusions

Having established the functionality and limitations of the kinetic model developed

for this investigation, it was clear that a large scale kinetic simulation of island

evolution on a patterned substrate system would not be computationally feasible.

To gain insight into the behavior of islands on a patterned substrate, an energetic

analysis was conducted in which the free energies of different configurations of is-

lands (that is to say, systems with similar deposit volumes distributed in different

arrangements and numbers of islands) were compared to determine the relative fa-

vorability between considered cases. The influence of the wetting layer thickness

was also considered. While this was a more limited approach compared to a full

kinetic evolution simulation, it was computationally reasonable, and still provided

valuable understanding regarding the formation of epitaxial nanostructures grown

on areally constrained substrate surfaces.

A model based on simple energetic arguments suggests a rather rich behavior

of Stranski-Krastanov systems constrained to grow on a finite area of a substrate.

Accounting only for strain energy, isotropic surface energy, and a wetting layer

potential energy, it is found that the effect of an areal constraint on film growth

can cause a configuration with multiple islands to be energetically favored over that

of a single large island. Comparisons are made to experimental observations of

multiple island formations under fixed-area epitaxial growth condition, and while it

has been hypothesized that the nature of these multiple island configurations can

be attributed to elastic interaction between the islands and the relative compliance

of different locations within the substrate system, the current investigation suggests

that the effects of the areal constraint (such as that represented by a raised substrate

topology) alone can explain the stability of multiple island configurations.

Several extensions to this work are warranted. Firstly the analysis of the

global minima considered a maximum of nine islands. A larger number of islands

could be considered in order to form a more complete equilibrium phase diagram.

Nevertheless, the diagram of Figure (3) does indicate configurations that resist coars-
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ening. Additionally, the effect of island-island elastic interaction energy was consid-

ered only for a limited case and omitted from the large scale analysis and including

this effect will modify the structure of the phase diagram. This will be fully ad-

dressed in future work by utilizing results found using the arbitrary island morphol-

ogy model. Finally, kinetics is expected to play an important role in determining

the configuration resulting from deposition, as metastable configurations are likely

to arise. To evaluate the stability of these configurations the activation barrier for

transformation to a lower energy state must be calculated.

Based on the kinetic simulation of island evolution for both high and lower

areal density systems, it is concluded that the model and its application in the

simulation software developed produces results which are consistent with previously

observed and understood phenomena. System parameters trending towards lower

elastic mismatch between the film and substrate or greater surface energy density

result in islands with lower aspect ratios, with an ultimate tendency towards a flat

film as the trend continues. System parameters trending towards greater mismatch

between the film and substrate or lower surface energy density result in islands with

higher aspect ratios. These results are both as expected, as higher elastic mismatch

would favor the removal of material from the elastic constraint of the substrate,

while greater surface energy density would favor the elimination of free surface area,

with a flat film offering the lowest possible surface area.

Plans for future work include the application of the kinetic model to produce

more physically representative quasi-analytic energy expressions which can then be

reincorporated into the areal constraint model. Reevaluation using these expressions

is expected to provide further insight into the specific nature of the effect of island

shape and morphology on system arrangements and configurations. This should

also include the determination of a reasonable expression for the island-island strain

field interaction energy which is currently absent from the areal constraint model.

As discussed, it is expected that this island-island interaction energy term will play

an important and interesting role in determining the relative favorability of multiple

island configurations. These topics are left for future investigations.
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Appendices

A Complete Mathematical Model Derivation

The system being considered is shown in Figure (5).

The film surface profile can be expressed as the Fourier series

zf (x, y) =
∞∑

p,q=−∞

apqe
2πi(p x

λx
+q y

λy
)

(A.1)

and the substrate surface profile can be expressed as the Fourier series

zs(x, y) =
∞∑

p,q=−∞

bpqe
2πi(p x

λx
+q y

λy
)

(A.2)

where apq and bpq are the Fourier coefficients for the film and substrate,

respectively.

A.1 Elastic Strain Energy

The film surface is traction free, with

σijn
f
j = 0 (A.3)

and the tractions on the substrate surface are induced by the difference be-

tween the stress fields of the film and substrate. This difference can be expressed

as

[[σij]]n
s
j = (σfij − σsij)nsj = 0 (A.4)

Where the bracketed term denotes the field resulting from the difference

between the film and substrate fields. The combined strain field can also be written

as

[[εij]](δjk − nsjnsk) = ε0ik (A.5)
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where (δjk−nsjnsk) is the projection onto the substrate surface, and ε0ik is the

mismatch strain that results from the discontinuity in strain at the substrate/film

interface.

The goal is to find an expression for the energy, U , as a function of the

Fourier coefficients of the film and substrate, U(apq, bpq), as an approximation for

small slopes. This implies

apqp

λx
∼ apqq

λy
∼ bpqp

λx
∼ bpqq

λy
∼ α (A.6)

where α is small, with the exception of

a00, b00 ∼ O(1) (A.7)

which is not small. b00 can be taken to be zero, while a00 controls the nominal

film thickness.

A first order approximation would follow as

u ≈ u+O(α)2, U ≈ U +O(α)3. (A.8)

For this investigation, a second order approximation is desired, as governed

by

u ≈ u+O(α)3, U ≈ U +O(α)4. (A.9)

The elastic field can be represented by a superposition of a known field in-

duced by mismatch between the film and substrate, and an unknown field due to

certain applied forces, as shown in Figure (6), and as expressed by

σfij = σ0
ij + σf∗ij (A.10)

and

σsij = σs∗ij . (A.11)
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On the film surface

σf∗ij n
f
j = −σ0

ijn
f
j (A.12)

while on the substrate surface

[[σ∗ij]]n
s
j = (σf∗ij − σs∗ij )nsj = −σ0

ijn
s
j (A.13)

with a strain field expressed as

[[ε∗ij]](δjk − nsjnsk) = 0 (A.14)

and a displacement continuity constraint,

[[u∗i ]] = 0 (A.15)

or

(u∗i )
+ = (u∗i )

− (A.16)

The total strain energy of the system can be expressed as

Utot =
1

2

∫
Vf

(σ0
ij + σ∗ij)(ε

0
ij + ε∗ij) dV +

1

2

∫
Vs

σ∗ijε
∗
ij dV

=
1

2

∫
Vf

σ0
ijε

0
ij dV +

∫
Vf

σ0
ijε
∗
ij dV +

1

2

∫
Vf

σ∗ijε
∗
ij dV +

1

2

∫
Vs

σ∗ijε
∗
ij dV

= w0Vf +

∫
Vf

(σ0
iju
∗
i ),j dV +

1

2

∫
Vf

(σ∗iju
∗
i ),j dV +

1

2

∫
Vs

(σ∗iju
∗
i ),j dV

= w0Vf +

∫
sf

(σ0
ijn

f
j u
∗
i +

1

2
σ∗ijn

f
j u
∗
i ) dA

+

∫
ss

(−σ0
ijn

s
ju
∗
i −

1

2
σf∗ij n

s
ju
∗
i +

1

2
σs∗ij n

s
ju
∗
i ) dA. (A.17)

Substituting Equations (A.12) and (A.13) into Equation (A.17) yields

Utot = w0Vf +
1

2

∫
sf

σ0
ijn

f
j u
∗
i dA−

1

2

∫
ss

σ0
ijn

s
ju
∗
i dA. (A.18)
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For this solution, the displacement field u∗i , periodic in x and y, is needed.

Papkovitch-Neuber potentials will be utilized.

From the linearly elastic stress-displacment relationship

σij = λuk,kδij + µ(ui,j + uj,i) (A.19)

and equilibrium condition

σij,j = 0 (A.20)

the constraint

(λ+ µ)ui,ij + µuj,ii = 0 (A.21)

can be determined. Applying the Papkovitch-Neuber potentials yields

ui = φi −
1

4(1− ν)
(φ0 + x− jφj),i (A.22)

where

φ0,ii = φj,ii = 0 (A.23)

which guarantees that the equilibrium condition, as given in Equation (A.20),

is met. Since u∗i is periodic it is assumed that φ∗0 +φ∗i is also periodic. This periodic

potential is truncated to just φ∗i , where i = 0, 1, 2, 3, which can be expressed as

φ∗k =
∞∑

p,q=−∞

Fkpq(z)e
2πi(p x

λx
+q y

λy
)
. (A.24)

Applying the condition set in Equation (B.185) to Equation (B.186) requires

that

F
′′

kpq(z)− (
4p2π2

λ2
x

+
4q2π2

λ2
y

)Fkpq(z) = 0 (A.25)

and solving the ODE for Fkpq(z) yields
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Fkpq(z) = Akpqe
2πz

r
p2

λx
+ q2

λy +Bkpqe
−2πz

r
p2

λx
+ q2

λy . (A.26)

Periodicity requires that

ux = φ1 −
1

4(1− ν)
(φ0 + xφ1 + yφ2 + zφ3),x, (A.27)

uy = φ2 −
1

4(1− ν)
(φ0 + xφ1 + yφ2 + zφ3),y, and (A.28)

uz = φ3 −
1

4(1− ν)
(φ0 + xφ1 + yφ2 + zφ3),z (A.29)

are periodic in x and y.

Starting with the potential function

φi = [Bi1(z) + xBi2(z) + yBi3(z)]e
2πi(p x

λx
+q y

λy
)

(A.30)

restrictions on Bij(z) are determined such that ui and σij are periodic in x

and y. This requires that

φ0 = [B1(z)− xB2(z)− yB3(z)]e
2πi(p x

λx
+q y

λy
)
, (A.31)

φx = B2(z)e
2πi(p x

λx
+q y

λy
)
, (A.32)

φy = B3(z)e
2πi(p x

λx
+q y

λy
)
, and (A.33)

φz = B4(z)e
2πi(p x

λx
+q y

λy
)
. (A.34)

The displacement equations can then be written as

ux = − 1

4(1− ν)
(φ0 + zφz),x, (A.35)
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uy = − 1

4(1− ν)
(φ0 + zφz),y, and (A.36)

uz = φz −
1

4(1− ν)
(φ0 + zφz),z. (A.37)

The potential function

φk =
∞∑

p,q=−∞

Fkpq(z)e
2πi(p x

λx
+q y

λy
)

(A.38)

can be determined for the film to be

φfk =
∞∑

p,q=−∞

F f
kpq(z)e

2πi(p x
λx

+q y
λy

)
(A.39)

and for the substrate to be

φsk =
∞∑

p,q=−∞

F s
kpq(z)e

2πi(p x
λx

+q y
λy

)
(A.40)

where the film coefficients F f
kpq(z) are requires to satisfy

F f
kpq(z) = Afkpqe

2πz

r
p2

λx
+ q2

λy +Bf
kpqe

−2πz

r
p2

λx
+ q2

λy (A.41)

and the substrate coefficients F s
kpq(z) are required to satisfy

F s
kpq(z) = Askpqe

2πz

r
p2

λx
+ q2

λy (A.42)

as similarly derived in Equation (B.188). It is noted that F s
kpq(z) decays as

z approaches negative infinity (z → −∞).

Afkpq, B
f
kpq, and Askpq are needed, therefore the relations

σfijn
f
j = −σ0

ijn
f
j (A.43)

on the film surface, and

[[σij]]n
s
j = −σ0

ijn
s
j (A.44)
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and

[[ui]] = ufi − usi = 0 (A.45)

on the substrate surface are utilized.

Terms in square brackets denote fields that are composed of the field induced

by the substrate subtracted from the field induced by the film.

Enforcing Equation (B.207) on the substrate surface, given by

z =
∞∑

p,q=−∞

bpqe
2πi(p x

λx
+q y

λy
)
, (A.46)

with b00 = 0 and bpq ∼ α and restricting that expression to order α3 yields

ufx − usx = − 1

4(1− ν)
(φf0 + zφfz ),x −−

1

4(1− ν)
(φs0 + zφsz),x = 0 (A.47)

therefore

φf0,x + zφfz,x − φs0,x − zφsz,x = 0 (A.48)

on the substrate surface.

Using the potential function

φf,sk,x =
∞∑

p,q=−∞

F f,s
kpq(z)

2πip

λx
e

2πi(p x
λx

+q y
λy

)
(A.49)

and substituting Equation (B.210) into Equation (B.209) yields

∞∑
p,q=−∞

[F f
0pq(z) + zF f

3pq(z)− F s
0pq(z)− zF s

3pq(z)]
2πip

λx
e

2πi(p x
λx

+q y
λy

)
= 0 (A.50)

on the substrate surface.

The term in brackets in Equation (B.211) must then be expanded to O(α)3.

It is noted that, for b00 = 0
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z =
∞∑

m,n=−∞

bmne
2πi(m x

λx
+n y

λy
) ∼ α (A.51)

and

Afkpq ∼ Bf
kpq ∼ Askpq ∼ α (A.52)

with the exception of Afk00 and Ask00. Terms proportional to α must vanish

as α→ 0 (slope→ 0). Therefore

F f
k00 = Afk00 ∼ O(1), and (A.53)

F s
k00 = Ask00 ∼ O(1). (A.54)

On the substrate surface

F f
kpq(z) = Afkpq(1 + 2πz

√
p2

λ2
x

+
q2

λ2
y

) +Bf
kpq(1− 2πz

√
p2

λ2
x

+
q2

λ2
y

) +O(α)3

= Afkpq +Bf
kpq + 2πz

√
p2

λ2
x

+
q2

λ2
y

(Afkpq −B
f
kpq) +O(α)3 (A.55)

F s
kpq(z) = Askpq(1 + 2πz

√
p2

λ2
x

+
q2

λ2
y

) +O(α)3 (A.56)

Substituting Equations (B.216) and (B.217) into Equation (B.211) yields

∞∑
p,q=−∞

[(Af0pq − As0pq)(1 + 2πz

√
p2

λ2
x

+
q2

λ2
y

) +Bf
0pq(1− 2πz

√
p2

λ2
x

+
q2

λ2
y

)

+(Af3pq − As3pq)z +Bf
3pqz]

2πip

λx
e

2πi(p x
λx

+q y
λy

)
+O(α)3 = 0 (A.57)

therefore

∞∑
p,q=−∞

[(Af0pq − As0pq +Bf
0pq) + [2π

√
p2

λ2
x

+
q2

λ2
y

(Af0pq − As0pq −B
f
0pq)

+(Af3pq − As3pq +Bf
3pq)]z]

2πip

λx
e

2πi(p x
λx

+q y
λy

)
+O(α)3 = 0. (A.58)
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Substituting Equation (B.212) into Equation (B.219) yields

∞∑
p,q=−∞

[(Af0pq − As0pq +Bf
0pq)]

2πip

λx
e

2πi(p x
λx

+q y
λy

)

∞∑
p,q=−∞

∞∑
m,n=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

(Af0pq − As0pq −B
f
0pq)

+(Af3pq − As3pq +Bf
3pq)]bmn

2πip

λx
e

2πi((p+m) x
λx

+(q+n) y
λy

)
= O(α)3 (A.59)

Note that

∫ λx

0

∫ λy

0

e
−2πi(r x

λx
+(s y

λy
)
dy dx =

{
λxλy, if r = s = 0;

0, otherwise.
(A.60)

Because of the orthogonality condition, Equation (B.221), p+m− r = 0 and

q + n − s = 0. Therefore, m = r − p and n = s − q. Applying orthogonality to

Equation (B.220) produces

(Af0rs − As0rs +Bf
0rs)r +

∞∑
p,q=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

(Af0pq − As0pq −B
f
0pq)

+(Af3pq − As3pq +Bf
3pq)]pbr−p,s−q. (A.61)

From the [[uy]] = 0 condition on the substrate surface, it can be similarly

determined that

(Af0rs − As0rs +Bf
0rs)s+

∞∑
p,q=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

(Af0pq − As0pq −B
f
0pq)

+(Af3pq − As3pq +Bf
3pq)]qbr−p,s−q. (A.62)

From the [[uz]] = 0 condition on the substrate surface, it can be determined

that
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∞∑
p,q=−∞

[k(Af3pq − As3pq +Bf
3pq) + 2π

√
p2

λ2
x

+
q2

λ2
y

(−Af0pq + As0pq +Bf
0pq)]e

2πi((p) x
λx

+(q) y
λy

)

+
∞∑

p,q=−∞

∞∑
m,n=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

k(Af3pq − As3pq −B
f
3pq)

+2π

√
p2

λ2
x

+
q2

λ2
y

(−Af0pq + As0pq −B
f
0pq)

+(−Af3pq + As3pq +Bf
3pq)]bmne

2πi((p+m) x
λx

+(q+n) y
λy

)
= 0 (A.63)

where k = 3− 4ν. Applying orthogonality to Equation (B.224) yields

[k(Af3rs − As3rs +Bf
3rs) + 2π

√
r2

λ2
x

+
s2

λ2
y

(−Af0rs + As0rs +Bf
0rs)]

+
∞∑

p,q=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

k(Af3pq − As3pq −B
f
3pq)

+2π

√
p2

λ2
x

+
q2

λ2
y

(−Af0pq + As0pq −B
f
0pq)

+(−Af3pq + As3pq +Bf
3pq)]br−p,s−q = 0. (A.64)

Equation (B.222) shows that

Af0rs − As0rs +Bf
0rs = O(α)2 (A.65)

and therefore

Af0rs − As0rs = −Bf
0rs +O(α)2. (A.66)

In turn, Equation (B.225) shows that

k(Af3rs − As3rs +Bf
3rs) + 2π

√
r2

λ2
x

+
s2

λ2
y

(−Af0rs + As0rs +Bf
0rs) = O(α)2. (A.67)

Also, from Equation (B.227),
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−Af0rs + As0rs +Bf
0rs = 2Bf

0rs +O(α)2 (A.68)

which, when substituted into Equation (B.228), yields

k(Af3rs − As3rs +Bf
3rs) = −4πBf

0rs

√
r2

λ2
x

+
s2

λ2
y

+O(α)2. (A.69)

Combining these results with Equation (B.222) yields

(Af0rs − As0rs +Bf
0rs)r +

∞∑
p,q=−∞

[−4πBf
0pq

√
p2

λ2
x

+
q2

λ2
y

−4π

k
Bf

0pq

√
p2

λ2
x

+
q2

λ2
y

]pbr−p,s−q (A.70)

which simplifies to

(Af0rs − As0rs +Bf
0rs)r = 4π(1− 1

k
)

∞∑
p,q=−∞

p

√
p2

λ2
x

+
q2

λ2
y

Bf
0pqbr−p,s−q

Working through the solution for the potential functions, it is found that
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φf0 =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A0pqe

2πz

r
p2

λx
+ q2

λy +B0pqe
−2πz

r
p2

λx
+ q2

λy

+

i
4
A1pqe

2πz

r
p2

λx
+ q2

λy λxλ
2
yp(−1 + 4πz

√
p2

λx
+ q2

λy
)

π(λ2
yp

2 + λ2
xq

2)

+

−i
4
B1pqλxλ

2
yp(1 + 4πz

√
p2

λx
+ q2

λy
)

e
2πz

r
p2

λx
+ q2

λy π(λ2
yp

2 + λ2
xq

2)

+

i
4
A2pqe

2πz

r
p2

λx
+ q2

λy λ2
xλyq(−1 + 4πz

√
p2

λx
+ q2

λy
)

π(λ2
yp

2 + λ2
xq

2)

+

−i
4
B2pqλ

2
xλyq(1 + 4πz

√
p2

λx
+ q2

λy
)

e
2πz

r
p2

λx
+ q2

λy π(λ2
yp

2 + λ2
xq

2)

− x(A1pqe
2πz

r
p2

λx
+ q2

λy +B1pqe
−2πz

r
p2

λx
+ q2

λy )

− y(A2pqe
2πz

r
p2

λx
+ q2

λy +B2pqe
−2πz

r
p2

λx
+ q2

λy )
}
e

2πi(p x
λx

+q y
λy

)
, (A.71)

φfx =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A1pqe

2πz

r
p2

λx
+ q2

λy +B1pqe
−2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
, (A.72)

φfy =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A2pqe

2πz

r
p2

λx
+ q2

λy +B2pqe
−2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
, (A.73)

φfz =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
A3pqe

2πz

r
p2

λx
+ q2

λy +B3pqe
−2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
, (A.74)
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φs0 =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
C0pqe

2πz

r
p2

λx
+ q2

λy

+

i
4
C1pqe

2πz

r
p2

λx
+ q2

λy λxλ
2
yp(−1 + 4πz

√
p2

λx
+ q2

λy
)

π(λ2
yp

2 + λ2
xq

2)

+

i
4
C2pqe

2πz

r
p2

λx
+ q2

λy λ2
xλyq(−1 + 4πz

√
p2

λx
+ q2

λy
)

π(λ2
yp

2 + λ2
xq

2)

− xC1pqe
2πz

r
p2

λx
+ q2

λy − yC2pqe
2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
, (A.75)

φsx =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
C1pqe

2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
, (A.76)

φsy =
∞∑

p,q=−∞
(p,q) 6=(0,0)

{
C2pqe

2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
, (A.77)

and

φsz =
∞∑

p,q=−∞
(p,q)6=(0,0)

{
C3pqe

2πz

r
p2

λx
+ q2

λy

}
e

2πi(p x
λx

+q y
λy

)
(A.78)

where

A0rs =
1

4e4a00π
√
R2+S2Mπ

√
R2 + S2

{
((−1 +K)(brs(K − 4a00π

√
R2 + S2)

+ arse
2a00π

√
R2+S2

)(−1−K + 4a00π
√
R2 + S2))σ0}

+
i
8
(8a00(1 +K)π(R2 + S2)−

√
R2 + S2(1 + 32a2

00π(R2 + S2)))(RS1 + SS2)

e4a00π
√
R2+S2(1 +K)π(R2 + S2)

3
2

+
(−16a2

00π
2 + −1+K2

R2+S2 )S3

16e4a00π
√
R2+S2Mπ2

+
−i
16

(−1− 2K +K2 − 4a00(1 +K)π
√
R2 + S2(RS4 + SS5)

e2a00π
√
R2+S2Mπ2(R2 + S2)

3
2

− (1 +K)((−1 +K)
√
R2 + S2 − 4a00π(R2 + S2))S6

16e2a00π
√
R2+S2Mπ2(R2 + S2)

3
2

, (A.79)
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A1rs =
−S1

2e4a00π
√
R2+S2(1 +K)

+
−S4

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (A.80)

A2rs =
−S2

2e4a00π
√
R2+S2(1 +K)

+
−S5

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (A.81)

A3rs =
(brs − arse2a00π

√
R2+S2

)(−1 +K)σ0

e4a00π
√
R2+S2M

+
i
2
(−1 + 8a00π

√
R2 + S2)(RS1 + SS2)

e4a00π
√
R2+S2(1 +K)

√
R2 + S2

+
(k + 4a00π

√
R2 + S2)S3

4e4a00π
√
R2+S2Mπ

√
R2 + S2

+
−i
2

(−1 +K)(RS4 + SS5)

e2a00π
√
R2+S2Mπ(R2 + S2)

− (1 +K)S6

4e2a00π
√
R2+S2Mπ

√
R2 + S2

, (A.82)

B0rs =
brs(−1 +K)σ0

4Mπ
√
R2 + S2

, (A.83)

B1rs = −(2R2 + S2)S1 +RSS2)

2(1 +K)(R2 + S2)
, (A.84)

B2rs = −RSS1 + (R2 + 2S2)S2)

2(1 +K)(R2 + S2)
, (A.85)

B3rs =
S3

4Mπ
√
R2 + S2

, (A.86)
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C0rs =
(−ars + brse

2a00π
√
R2+S2

)(−1 +K)σ0

4e2a00π
√
R2+S2Mπ

√
R2 + S2

+
(−brs + arse

2a00π
√
R2+S2

)(−1 +K)(−K + 4a00π
√
R2 + S2)σ0

4e4a00π
√
R2+S2Mπ

√
R2 + S2

+
i
8
(RS1 + SS2)

e4a00π
√
R2+S2(1 +K)π(R2 + S2)

3
2

{
8a00(1 +K)π(R2 + S2)

+
√
R2 + S2(−1 + e4a00π

√
R2+S2 − 32a2

00π
2(R2 + S2))}

+
(−1 +K2 − 16a2

00π
2(R2 + S2))S3

16e4a00π
√
R2+S2Mπ2(R2 + S2)

+
−i
16

(−1− 2K +K2 − 4a00(1 +K)π
√
R2 + S2)(RS4 + SS5)

e2a00π
√
R2+S2Mπ2(R2 + S2)

3
2

− (1 +K)((−1 +K)
√
R2 + S2 − 4a00π(R2 + S2))S6

16e2a00π
√
R2+S2Mπ2(R2 + S2)

3
2

, (A.87)

C1rs =
(1− e−4a00π

√
R2+S2

)S1

2 + 2K
− S4

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (A.88)

C2rs =
(1− e−4a00π

√
R2+S2

)S2

2 + 2K
− S5

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (A.89)

C3rs =
(brs − arse2a00π

√
R2+S2

)(−1 +K)σ0

e4a00π
√
R2+S2M

+
i
2
(−1 + e4a00π

√
R2+S2

+ 8a00π
√
R2 + S2)(RS1 + SS2)

e4a00π
√
R2+S2(1 +K)

√
R2 + S2

+
(e4a00π

√
R2+S2

+ k + 4a00π
√
R2 + S2)S3

4e4a00π
√
R2+S2Mπ

√
R2 + S2

+
−i
2

(−1 +K)(RS4 + SS5)

e2a00π
√
R2+S2Mπ(R2 + S2)

− (1 +K)S6

4e2a00π
√
R2+S2Mπ

√
R2 + S2

, (A.90)

S1 =
∞∑

p,q=−∞

2ibpq(−1 +K)Pπσ0

M
br−p,s−q, (A.91)

S2 =
∞∑

p,q=−∞

2ibpq(−1 +K)Qπσ0

M
br−p,s−q, (A.92)
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S3 =
∞∑

p,q=−∞

8bpq(−1 +K)π2(PR +QS)σ0

1 +K
br−p,s−q, (A.93)

S4 =
−4i(bpq − apqe2a00π

√
P 2+Q2

)(−1 +K)π2

e2a00π
√
P 2+Q2

(1 +K)
√
P 2 +Q2

{
4P 2R

−(−3 +K)Q2R + (1 +K)PQS}σ0ar−p,s−q, (A.94)

S5 =
4i(bpq − apqe2a00π

√
P 2+Q2

)(−1 +K)π2

e2a00π
√
P 2+Q2

(1 +K)
√
P 2 +Q2

{
− (1 +K)PQR (A.95)

+(−3 +K)P 2S − 4Q2S}σ0ar−p,s−q, (A.96)

and

S6 =
∞∑

p,q=−∞

8apq(−1 +K)π2(PR +QS)σ0

1 +K
ar−p,s−q, (A.97)

with

P = p
√
λy/λx, (A.98)

Q = q
√
λx/λy, (A.99)

R = r
√
λy/λx, (A.100)

and

S = s
√
λx/λy. (A.101)

Therefore, solving for the total strain energy of the system given in Equation

(A.18) yields
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Utot =

√
λxλy

3
πσ2

0(1− 2ν)2

M(1− ν)

{
ā00

2π(1 + ν)

−
∞∑

r,s=−∞
(r,s)6=(0,0)

√
R2 + S2(ā−r,−s −

b̄−r,−s

e2ā00π
√
R2+S2

)(ār,s −
b̄r,s

e2ā00π
√
R2+S2

)

+ 2π
∞∑

r,s=−∞
(r,s)6=(0,0)

∞∑
p,q=−∞

(p,q)6=(0,0) 6=(r,s)

√
P 2 +Q2(āp,q −

b̄p,q

e2ā00π
√
P 2+Q2

)(2
√
R2 + S2(1

− (1− ν)(PS −QR)2

(P 2 +Q2)(R2 + S2))
)ār−p,s−q(ā−r,−s −

b̄−r,−s

e2ā00π
√
R2+S2

)

−
√
P 2 +Q2(ā−r,−sār−p,s−q −

b̄−r,−sb̄r−p,s−q

e2ā00π
√
P 2+Q2

))

}
(A.102)

and normalizing the total strain energy yields

Ūtot = Utot
M(1− ν)√

λxλy
3
πσ2

0(1− 2ν)2

=
ā00

2π(1 + ν)

−
∞∑

r,s=−∞
(r,s)6=(0,0)

√
R2 + S2(ā−r,−s −

b̄−r,−s

e2ā00π
√
R2+S2

)(ār,s −
b̄r,s

e2ā00π
√
R2+S2

)

+ 2π
∞∑

r,s=−∞
(r,s)6=(0,0)

∞∑
p,q=−∞

(p,q)6=(0,0) 6=(r,s)

√
P 2 +Q2(āp,q −

b̄p,q

e2ā00π
√
P 2+Q2

)(2
√
R2 + S2(1

− (1− ν)(PS −QR)2

(P 2 +Q2)(R2 + S2))
)ār−p,s−q(ā−r,−s −

b̄−r,−s

e2ā00π
√
R2+S2

)

−
√
P 2 +Q2(ā−r,−sār−p,s−q −

b̄−r,−sb̄r−p,s−q

e2ā00π
√
P 2+Q2

)) (A.103)

where

ām,n =
am,n√
λxλy

(A.104)

and

b̄m,n =
bm,n√
λxλy

. (A.105)

100



The film surface is defined by the complex Fourier series as

zf (x, y) =
∞∑

m,n=−∞

amne
2πi(m x

λx
+n y

λy
) ∼ α (A.106)

where

apq =

∫ λy

0

∫ λx

0

zf (x, y)e
−2πi(p x

λx
+q y

λy
)
dx dy. (A.107)

Setting

x̄ =
x

λx
, (A.108)

ȳ =
y

λy
, (A.109)

z̄f =
zf√
λxλy

, (A.110)

and

z̄s =
zs√
λxλy

, (A.111)

Equation (A.106) can be normalized to give

z̄f (x, y) =
∞∑

m,n=−∞

āmne
2πi(mx̄+nȳ) (A.112)

where

āpq =

∫ 1

0

∫ 1

0

z̄f (x, y)e−2πi(px̄+qȳ) dx̄ dȳ. (A.113)

The complex coefficients can be expanded as

ā(m,n) = āR(m,n) + iāI(m,n) (A.114)

and
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b̄(m,n) = b̄R(m,n) + ib̄I(m,n). (A.115)

The normalized complex Fourier series representation of the film surface can

then be written as

z̄f (x, y) =
∞∑

m,n=−∞

(āR(m,n) + iāI(m,n))e2πi(mx̄+nȳ) (A.116)

and solving for the imaginary component of Equation (A.116) yields

IM [z̄f (x, y)] = āI(0, 0)

+
NN∑
n=1

[(āI(0,−n) + āI(0, n)) cos 2nπȳ + (−āR(0,−n) + āR(0, n)) sin 2nπȳ]

+
NN∑
m=1

[(āI(−m, 0) + āI(m, 0)) cos 2mπx̄+ (−āR(−m, 0) + āR(m, 0)) sin 2mπx̄]

+
NN∑
m,n=1

{
(āI(−m,−n) + āI(−m,n) + āI(m,−n) + āI(m,n))

cos 2mπx̄ cos 2nπȳ

+(−āR(−m,−n)− āR(−m,n) + āR(m,−n) + āR(m,n))

sin 2mπx̄ cos 2nπȳ

+(−āR(−m,−n) + āR(−m,n)− āR(m,−n) + āR(m,n))

cos 2mπx̄ sin 2nπȳ

+(−āI(−m,−n) + āI(−m,n) + āI(m,−n)− āI(m,n))

sin 2mπx̄ sin 2nπȳ
}

(A.117)

where NN is the number of terms in the Fourier expansion.

Recognizing that the film surface is real, and setting Equation (A.117) equal

to zero, a required relationship between the Fourier coefficients can be established;
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āI(−m,n) = −āI(m,−n)
āI(−m,−n) = −āI(m,n)
āR(−m,n) = āR(m,−n)
āR(−m,−n) = āR(m,n)

āI(0, 0) = 0.

(A.118)

The substrate surface is also real, therefore it can be similarly found that

b̄I(−m,n) = −b̄I(m,−n)
b̄I(−m,−n) = −b̄I(m,n)
b̄R(−m,n) = b̄R(m,−n)
b̄R(−m,−n) = b̄R(m,n)

b̄I(0, 0) = 0.

(A.119)

Recall also the b̄R(0, 0) = 0 was chosen.

Taking advantage of the relationships given in Equations (A.118) and (A.119)

the real part of the normalized film surface expression can be written as

RE[z̄f ] = āR(0, 0)

+ 2
NN∑
n=1

[āR(0, n) cos 2nπȳ − āI(0, n) sin 2nπȳ]

+ 2
NN∑
m=1

[āR(m, 0) cos 2mπx̄− āI(m, 0) sin 2mπx̄]

+ 2
NN∑
m,n=1

{
(āR(m,−n) + āR(m,n)) cos 2mπx̄ cos 2nπȳ

−(āI(m,−n) + āI(m,n)) sin 2mπx̄ cos 2nπȳ

+(āI(m,−n)− āI(m,n)) cos 2mπx̄ sin 2nπȳ

+(āR(m,−n)− āR(m,n)) sin 2mπx̄ sin 2nπȳ
}
. (A.120)

Since the imaginary part of the normalized film surface, z̄f , is zero, the real

designation can be dropped from Equation (A.120). Therefore

z̄f = RE[z̄f ]. (A.121)

With the total strain energy of the system defined as a function of the film

surface Fourier coefficients, Utot = Utot(apq), the change in energy with respect to
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time can be expressed as

dUtot
dt

=

∫ λy

0

∫ λx

0

χ
dzf
dt

dx dy (A.122)

where χ is chemical potential. Following the same normalization as before,

√
λxλy

3
πσ2

0(1− 2ν)2

M(1− ν)

dŪtot
dt

=
√
λxλy

3
∫ 1

0

∫ 1

0

χ
dz̄f
dt

dx̄ dȳ (A.123)

therefore

dŪtot
dt

=
M(1− ν)

πσ2
0(1− 2ν)2

∫ 1

0

∫ 1

0

χ
dz̄f
dt

dx̄ dȳ. (A.124)

Now, let

χ̄ =
M(1− ν)

πσ2
0(1− 2ν)2

χ (A.125)

therefore

dŪtot
dt

=

∫ 1

0

∫ 1

0

χ̄
dz̄f
dt

dx̄ dȳ. (A.126)

Taking the function Ūtot = Ūtot(āpq) given in Equation (A.103),

dŪtot
dt

=
∞∑

m,n=−∞

dŪtot
dāmn

dāmn
dt

=

∫ 1

0

∫ 1

0

{
χ̄

∞∑
m,n=−∞

dāmn
dt

e2πi(mx̄+nȳ)
}
dx̄ dȳ

=
∞∑

m,n=−∞

∫ 1

0

∫ 1

0

{
χ̄e2πi(mx̄+nȳ)dāmn

dt

}
dx̄ dȳ. (A.127)

The normalized chemical potential can be written as

χ̄(x, y) =
∞∑

m,n=−∞

X̄mne
2πi(mx̄+nȳ) (A.128)

where

104



X̄(p, q) =

∫ 1

0

∫ 1

0

χ̄(x, y)e−2πi(px̄+qȳ) dx̄ dȳ (A.129)

and therefore

X̄(−p,−q) =

∫ 1

0

∫ 1

0

χ̄(x, y)e2πi(px̄+qȳ) dx̄ dȳ. (A.130)

Substituting Equation (A.130) into Equation (A.131) yields

dŪtot
dt

=
∞∑

m,n=−∞

dŪtot
dāmn

dāmn
dt

=
∞∑

m,n=−∞

dāmn
dt

∫ 1

0

∫ 1

0

{
χ̄e2πi(mx̄+nȳ)

}
dx̄ dȳ

=
∞∑

m,n=−∞

X̄(−m,−n)
dāmn
dt

. (A.131)

Therefore

X̄(−m,−n) =
dŪtot

dā(m,n)
(A.132)

therefore the complex Fourier coefficients of the nondimensional chemical

potential and those of the film surface are related through the total nondimensional

strain energy by

X̄(m,n) =
dŪtot

dā(−m,−n)
. (A.133)

Since the chemical potential is real, as with the film and substrate surfaces,

X̄(m,n) = X̄R(m,n) + iX̄I(m,n) (A.134)

X̄I(−m,n) = −X̄I(m,−n)
X̄I(−m,−n) = −X̄I(m,n)
X̄R(−m,n) = X̄R(m,−n)
X̄R(−m,−n) = X̄R(m,n)

X̄I(0, 0) = 0.

(A.135)
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The real portion of the chemical potential can then be simplified to

RE[χ̄] = X̄R(0, 0)

+ 2
NN∑
n=1

[
X̄R(0, n) cos 2nπȳ − X̄I(0, n) sin 2nπȳ

]
+ 2

NN∑
m=1

[
X̄R(m, 0) cos 2mπx̄− X̄I(m, 0) sin 2mπx̄

]
+ 2

NN∑
m,n=1

{
(X̄R(m,−n) + X̄R(m,n)) cos 2mπx̄ cos 2nπȳ

−(X̄I(m,−n) + X̄I(m,n)) sin 2mπx̄ cos 2nπȳ

+(X̄I(m,−n)− X̄I(m,n)) cos 2mπx̄ sin 2nπȳ

+(X̄R(m,−n)− X̄R(m,n)) sin 2mπx̄ sin 2nπȳ
}
. (A.136)

From the inverse Fourier transform and the relations found in Equations

(A.135),

∫ 1

0

∫ 1

0

χ̄(x, y) cos 2πi(px̄+ qȳ) dx̄ dȳ =
X̄R(p, q) + X̄R(−p,−q)

2
(A.137)

and

∫ 1

0

∫ 1

0

−χ̄(x, y) sin 2πi(px̄+ qȳ) dx̄ dȳ =
X̄I(p, q)− X̄I(−p,−q)

2
. (A.138)

From Ūtot = Ūtot(āpq) = Ūtot(āR(p, q), āI(p, q)),
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dŪtot
dt

=
∞∑

m,n=−∞

{ dŪtot
dāR(m,n)

dāR(m,n)

dt
+

dŪtot
dāI(m,n)

dāI(m,n)

dt

}
=

∫ 1

0

∫ 1

0

χ̄
dz̄f
dt

dx̄ dȳ

=

∫ 1

0

∫ 1

0

χ̄

∞∑
m,n=−∞

{ dz̄f
dāR(m,n)

dāR(m,n)

dt
+

dz̄f
dāI(m,n)

dāI(m,n)

dt

}
dx̄ dȳ

=
∞∑

m,n=−∞

∫ 1

0

∫ 1

0

χ̄
{ dz̄f
dāR(m,n)

dāR(m,n)

dt
+

dz̄f
dāI(m,n)

dāI(m,n)

dt

}
dx̄ dȳ

=
∞∑

m,n=−∞

∫ 1

0

∫ 1

0

χ̄
{

cos 2πi(mx̄+ nȳ)
dāR(m,n)

dt

− sin 2πi(mx̄+ nȳ)
dāI(m,n)

dt

}
dx̄ dȳ

=
∞∑

m,n=−∞

∫ 1

0

∫ 1

0

χ̄
{

cos 2πi(mx̄+ nȳ)
dāR(m,n)

dt

}
dx̄ dȳ

+
∞∑

m,n=−∞

∫ 1

0

∫ 1

0

−χ̄
{

sin 2πi(mx̄+ nȳ)
dāI(m,n)

dt

}
dx̄ dȳ (A.139)

(A.140)

therefore

dŪtot
dāR(p, q)

=

∫ 1

0

∫ 1

0

χ̄(x, y) cos 2πi(px̄+ qȳ) dx̄ dȳ =
X̄R(p, q) + X̄R(−p,−q)

2
(A.141)

and

dŪtot
dāI(p, q)

=

∫ 1

0

∫ 1

0

−χ̄(x, y) sin 2πi(px̄+ qȳ) dx̄ dȳ =
X̄I(p, q)− X̄I(−p,−q)

2
.

(A.142)

From Equations (A.135), (A.141), and (A.142) it is concluded that

X̄R(p, q) =
dŪtot

dāR(p, q)
(A.143)

and
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X̄I(p, q) =
dŪtot

dāI(p, q)
. (A.144)

A.2 Surface Free Energy

The contribution of the surface energy to the chemical potential must also be con-

sidered. The area of the film surface, S, is given by

S =

∫ λy

0

∫ λx

0

√(dzf
dx

)2

+
(dzf
dy

)2

+ 1 dx dy

= λxλy

∫ 1

0

∫ 1

0

√
λy
λx

(dz̄f
dx̄

)2

+
λx
λy

(dz̄f
dȳ

)2

+ 1 dx̄ dȳ. (A.145)

The integrand can be simplified by dropping the higher order terms, as per

√
λy
λx

(dz̄f
dx̄

)2

+
λx
λy

(dz̄f
dȳ

)2

+ 1 =
1

2

λy
λx

(dz̄f
dx̄

)2

+
1

2

λx
λy

(dz̄f
dȳ

)2

+ 1 +O(α)3 (A.146)

where the higher order terms are not considered. Also, from the Fourier

expansion of z̄f it can be shown that

(dz̄f
dx̄

)2

=
∞∑

m,n=−∞

∞∑
p,q=−∞

(−4π2)mpā(m,n)ā(p, q)e2πi((m+p)x̄+(n+q)ȳ) (A.147)

and

(dz̄f
dȳ

)2

=
∞∑

m,n=−∞

∞∑
p,q=−∞

(−4π2)nqā(m,n)ā(p, q)e2πi((m+p)x̄+(n+q)ȳ). (A.148)

The surface area can then be expressed as
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S = λxλy

∫ 1

0

∫ 1

0

{
1

2

λy
λx

(dz̄f
dx̄

)2

+
1

2

λx
λy

(dz̄f
dȳ

)2

+ 1

}
dx̄ dȳ

= λxλy

(
1− 2π2

∫ 1

0

∫ 1

0

{ ∞∑
m,n=−∞

∞∑
p,q=−∞

[
ā(m,n)ā(p, q)

e2πi((m+p)x̄+(n+q)ȳ)
(λy
λx
mp+

λx
λy
nq
)]}

dx̄dȳ

)
. (A.149)

Applying orthogonality to Equation (A.149) yields

S = λxλy

(
1 + 2π2

∞∑
p,q=−∞

[
ā(−p,−q)ā(p, q)

(λy
λx
p2 +

λx
λy
q2
)])

. (A.150)

In the interest of simplicity, the case where the surface energy density, γ, is

constant and isotropic is considered. The surface free energy can then be expressed

as

γS = γλxλy

(
1 + 2π2

∞∑
p,q=−∞

[
ā(−p,−q)ā(p, q)

(λy
λx
p2 +

λx
λy
q2
)])

. (A.151)

and conducting the energy normalization as before,

γS =
µ(1− ν)γ√

λxλyπσ2
0(1− 2ν)2

(
1 + 2π2

∞∑
p,q=−∞

[
ā(−p,−q)ā(p, q)

(λy
λx
p2 +

λx
λy
q2
)])

.

(A.152)

Expanding the complex Fourier coefficients and recognizing that the surface

is real, it can be determined that

γS =
µ(1− ν)γ√

λxλyπσ2
0(1− 2ν)2

(
1 + 2π2

∞∑
p,q=−∞

[
āR(−p,−q)āR(p, q)

−āI(−p,−q)āI(p, q)
](λy
λx
p2 +

λx
λy
q2
))
. (A.153)

The derivatives of the normalized surface energy with respect to the real and

imaginary surface Fourier coefficients can then be evaluated,

109



γS

dāR(m,n)
=

4µ(1− ν)γπ√
λxλyσ2

0(1− 2ν)2

(λy
λx
m2 +

λx
λy
n2
)
āR(−m,−n) (A.154)

and

γS

dāI(m,n)
=

−4µ(1− ν)γπ√
λxλyσ2

0(1− 2ν)2

(λy
λx
m2 +

λx
λy
n2
)
āI(−m,−n). (A.155)

It is further noted that the mismatch stress, σ0, can be expressed in terms of

more readily useful mismatch strain, ε0 as per the constitutive relation

σ0 =
µ(1− ν)

(1− 2ν)2
ε0. (A.156)

Equations (A.154) and (A.155) can then be expressed in terms of the mis-

match strain,

γS

dāR(m,n)
=

4(1− 2ν)2γπ√
λxλyµ(1− ν)ε20

(λy
λx
m2 +

λx
λy
n2
)
āR(−m,−n) (A.157)

and

γS

dāI(m,n)
=

4(1− 2ν)2γπ√
λxλyµ(1− ν)ε20

(λy
λx
m2 +

λx
λy
n2
)
āI(−m,−n). (A.158)

A.3 Combined Elastic Strain and Surface Free Energy

The form of the chemical potential coefficients can then be expanded to include the

surface free energy:

X̄R(p, q) =
dŪtot

dāR(p, q)
+

γS

dāR(p, q)
(A.159)

and

X̄I(p, q) =
dŪtot

dāI(p, q)
+

γS

dāI(p, q)
. (A.160)
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This can in turn be expanded to

X̄R(p, q) =
dŪtot

dāR(p, q)
+ L̄∗

(λy
λx
m2 +

λx
λy
n2
)
āR(−m,−n) (A.161)

and

X̄I(p, q) =
dŪtot

dāI(p, q)
+ L̄∗

(λy
λx
m2 +

λx
λy
n2
)
āI(−m,−n) (A.162)

where

L̄∗ =
4(1− 2ν)2γπ√
λxλyµ(1− ν)ε20

. (A.163)

The normalized characteristic length, L̄∗, specifies the balance point between

surface free energy and elastic strain energy. For example, a higher value of L̄∗ could

imply that either the surface energy density, γ, has increased, or else the mismatch

strain, ε0 has been reduced, in either case leading to an increased influence of surface

free energy over elastic strain energy. Inversely, a decrease in L̄∗ could imply a drop

in surface energy density, or an increase in mismatch strain, in both cases resulting

in an increased importance of elastic strain energy over surface free energy. By

comparing the behavior and response of a system to a range of L̄∗ values, the

relative effects of surface free energy and elastic strain energy can be evaluated and

analyzed.

To determine the relationship between chemical potential and surface veloc-

ity, first select an orthogonal system on the film surface (S1, S2), and including the

normal to the film surface (n̂), as shown in Figure (7).

The directions S1 and S2 are selected such that

S1 = S1(x, zf ) (A.164)

and

S2 = S2(y, zf ). (A.165)
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From the Pythagorean theorem

dS1

dx
=

√(dzf
dx

)2

+
(dx
dx

)2

=

√(dzf
dx

)2

+ 1 (A.166)

and similarly

dS2

dy
=

√(dzf
dy

)2

+
(dy
dy

)2

=

√(dzf
dy

)2

+ 1 (A.167)

The film surface is defined by zf = zf (x, y), therefore the normal to the film

surface is

n̂ =
∇zf
|∇zf |

=

(
dzf
dx
,
dzf
dy
, 1
)

√(
dzf
dx

)2

+
(
dzf
dy

)2

+ 1

(A.168)

Consider some function f on the surface of the film. The surface laplacian is

given by

∇2
sf =

∂2f

∂S2
1

+
∂2f

∂S2
2

=
∂

∂S1

(∂f
∂x

∂x

∂S1

)
+

∂

∂S2

(∂f
∂y

∂y

∂S2

)
=

∂

∂x

(∂f
∂x

∂x

∂S1

) ∂x
∂S1

+
∂

∂y

(∂f
∂y

∂y

∂S2

) ∂y
∂S2

=
∂2f

∂x2

( ∂x
∂S1

)2

+
∂f

∂x

∂2x

∂x∂S1

∂x

∂S1

+
∂2f

∂y2

( ∂y
∂S2

)2

+
∂f

∂y

∂2y

∂y∂S2

∂y

∂S2

=
∂2f

∂x2

(
1(dzf

dx

)2
+ 1

)
+
∂2f

∂y2

(
1(dzf

dy

)2
+ 1

)
(A.169)

The film surface velocity in the normal direction is given by

vn = Ms∇2
sχ

= Ms

{
∂2χ

∂x2

(
1(dzf

dx

)2
+ 1

)
+
∂2χ

∂y2

(
1(dzf

dy

)2
+ 1

)}
(A.170)

where Ms is the surface mobility coefficient.

The component of the surface velocity in the vertical direction is
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vz =
dzf
dt

= vnn̂ · k̂

=

Ms

{
∂2χ
∂x2

(
1(

dzf
dx

)2

+1

)
+ ∂2χ

∂y2

(
1(

dzf
dy

)2

+1

)}
√(

dzf
dx

)2

+
(
dzf
dy

)2

+ 1

=
Ms

{
∂2χ
∂x2

((dzf
dy

)2
+ 1
)

+ ∂2χ
∂y2

((dzf
dx

)2
+ 1
)}

((dzf
dx

)2
+ 1
)((dzf

dy

)2
+ 1
)√(dzf

dx

)2

+
(
dzf
dy

)2

+ 1

= Ms

{
∂2χ

∂x2
+
∂2χ

∂y2

}
+O(α)3 (A.171)

as z,x, z,y, χ,xx, χ,yy ∼ α.

Conducting the same normalization procedure as used previously yields

dz̄f
dt̄

=

(
λy
λx

d2χ̄

dx̄2
+
λx
λy

d2χ̄

dȳ2

)
(A.172)

where

t̄ =
t

τ
. (A.173)

and the time normalization factor is

τ =
(1− 2ν)2(λxλy)

3
2

Msµ(1− ν)πε20
. (A.174)

From the form of the normalized chemical potential given in Equation (A.136)

the required second derivative terms appearing in Equation (A.172) can be evaluated

as

d2χ̄

dx̄2
= 2

NN∑
m=1

4M2π2
(
X̄I(m, 0) sin 2Mπx̄− X̄R(m, 0) cos 2Mπx̄

)
+ 2

NN∑
m,n=1

4M2π2
(
X̄I(m,−n) sin 2π(Mx̄−Nȳ) + X̄I(m,n) sin 2π(Mx̄+Nȳ)

−X̄R(m,−n) cos 2π(Mx̄−Nȳ)− X̄R(m,n) cos 2π(Mx̄+Nȳ)
)

(A.175)

113



and

d2χ̄

dȳ2
= 2

NN∑
n=1

4N2π2
(
X̄I(0, n) sin 2Nπȳ − X̄R(0, n) cos 2Nπȳ

)
+ 2

NN∑
m,n=1

4N2π2
(
X̄I(m,−n) sin 2π(Mx̄−Nȳ) + X̄I(m,n) sin 2π(Mx̄+Nȳ)

−X̄R(m,−n) cos 2π(Mx̄−Nȳ)− X̄R(m,n) cos 2π(Mx̄+Nȳ)
)
. (A.176)

Substituting Equations (A.175) and (A.176) into Equation (A.172) yields

dz̄f
dt̄

=

(
λy
λx

d2χ̄

dx̄2
+
λx
λy

d2χ̄

dȳ2

)
= 2

NN∑
m=1

4
λy
λx
M2π2

(
X̄I(m, 0) sin 2Mπx̄− X̄R(m, 0) cos 2Mπx̄

)
+ 2

NN∑
n=1

4
λx
λy
N2π2

(
X̄I(0, n) sin 2

λx
λy
Nπȳ − X̄R(0, n) cos 2Nπȳ

)
+ 2

NN∑
m,n=1

4(λ2
yM

2 + λ2
xN

2)π2

λxλy

{
− X̄R(m,−n) cos 2π(Mx̄−Nȳ)

−X̄R(m,n) cos 2π(Mx̄+Nȳ)

+X̄I(m,−n) sin 2π(Mx̄−Nȳ)

+X̄I(m,n) sin 2π(Mx̄+Nȳ)
}
. (A.177)

The vertical velocity of the film surface can also be evaluated as the time

derivative of the Fourier expansion given in Equation (A.120)
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dz̄f
dt̄

=
āR(0, 0)

dt̄

+ 2
NN∑
n=1

[
āR(0, n)

dt̄
cos 2nπȳ − āI(0, n)

dt̄
sin 2nπȳ

]

+ 2
NN∑
m=1

[
āR(m, 0)

dt̄
cos 2mπx̄− āI(m, 0)

dt̄
sin 2mπx̄

]

+ 2
NN∑
m,n=1

{ āR(m,−n)

dt̄
cos 2π(Mx̄−Nȳ)

+
āR(m,n)

dt̄
cos 2π(Mx̄+Nȳ)

− āI(m,−n)

dt̄
sin 2π(Mx̄−Nȳ)

− āI(m,n)

dt̄
sin 2π(Mx̄+Nȳ)

}
.(A.178)

By comparing the terms in Equations (A.177) and (A.178) it is determined

that

āR(m,n)

dt̄
= −

4(λ2
yM

2 + λ2
xN

2)π2

λxλy
X̄R(m,n) (A.179)

and

āI(m,n)

dt̄
= −

4(λ2
yM

2 + λ2
xN

2)π2

λxλy
X̄I(m,n). (A.180)

The evolution of the film can then be conducted spectrally using the results

in Equations (A.179) and (A.180) along with a desired time stepping routine.

A.4 Film/Substrate Interfacial Interaction Energy

In order to insure that the film evolution responds appropriately to the substrate

surface, and a wetting layer typical for SK growth is maintained, a film/substrate

interface interaction contribution to the chemical potential is also considered. The

model employed to account for this effect was used previously [7,57–59]. The energy

density of the film and substrate interface is first taken as
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g(zf ) =
g0l

p

(zf − zs + l)p
(A.181)

where g0 and l are material properties. The exponent term p varies depending

on the interaction mechanism being considered [7, 57–59].

The contribution of this interaction energy to the chemical potential is

χ̄int = Ωnz
∂g(zf )

∂zf
=

−Ωg0l√(
dzf
dx

)2

+
(
dzf
dy

)2

+ 1
(
zf − zs + l

)2
(A.182)

Where Ω is the atomic volume, g0 is the atomic density of the interface, and

l is the relevant length scale factor. Equation (A.182) can be expressed in terms of

the normalized surface profiles as

χ̄int =
−Ωg0l̄√(

λy
λx

dz̄f
dx̄

)2

+ λx
λy

(
dz̄f
dȳ

)2

+ 1
(
z̄f − z̄s + l̄

)2√
λxλy

(A.183)

where

l̄ =
l√
λxλy

. (A.184)

The contribution of the interface to the chemical potential can then be in-

corporated into the evolution process, noting that due to the inverse dependence on

the film thickness, the term will only be significantly expressed for instances where

the film has become very thin.
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B Potential Function Derivation

The Papkovitch-Neuber potentials are required to satisfy the condition

φ0,ii = φj,ii = 0 (B.185)

which guarantees that the equilibrium condition, as given in Equation (A.20),

is met. Since u∗i is periodic it is assumed that φ∗0 +φ∗i is also periodic. This periodic

potential is truncated to just φ∗i , where i = 0, 1, 2, 3, which can be expressed as

φ∗k =
∞∑

p,q=−∞

Fkpq (z) e
2πi
“
p x
λx

+q y
λy

”
. (B.186)

Applying the condition set in Equation (B.185) to Equation (B.186) requires

that

F
′′

kpq (z)−
(

4p2π2

λ2
x

+
4q2π2

λ2
y

)
Fkpq (z) = 0 (B.187)

and solving the ODE for Fkpq(z) yields

Fkpq (z) = Akpqe
2πz

r
p2

λx
+ q2

λy +Bkpqe
−2πz

r
p2

λx
+ q2

λy . (B.188)

Periodicity requires that

ux = φ1 −
1

4 (1− ν)
(φ0 + xφ1 + yφ2 + zφ3),x , (B.189)

uy = φ2 −
1

4 (1− ν)
(φ0 + xφ1 + yφ2 + zφ3),y , and (B.190)

uz = φ3 −
1

4 (1− ν)
(φ0 + xφ1 + yφ2 + zφ3),z (B.191)

are periodic in x and y.

Starting with the potential function

φi = [Bi1 (z) + xBi2 (z) + yBi3 (z)]e
2πi
“
p x
λx

+q y
λy

”
(B.192)
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restrictions on Bij (z) are determined such that ui and σij are periodic in x

and y. This requires that

φ0 = [B1 (z)− xB2 (z)− yB3 (z)]e
2πi
“
p x
λx

+q y
λy

”
, (B.193)

φx = B2 (z) e
2πi
“
p x
λx

+q y
λy

”
, (B.194)

φy = B3 (z) e
2πi
“
p x
λx

+q y
λy

”
, and (B.195)

φz = B4 (z) e
2πi
“
p x
λx

+q y
λy

”
. (B.196)

The displacement equations can then be written as

ux = − 1

4 (1− ν)
(φ0 + zφz),x , (B.197)

uy = − 1

4 (1− ν)
(φ0 + zφz),y , and (B.198)

uz = φz −
1

4 (1− ν)
(φ0 + zφz),z . (B.199)

The potential function

φk =
∞∑

p,q=−∞

Fkpq (z) e
2πi
“
p x
λx

+q y
λy

”
(B.200)

can be determined for the film to be

φfk =
∞∑

p,q=−∞

F f
kpq (z) e

2πi
“
p x
λx

+q y
λy

”
(B.201)

and for the substrate to be

φsk =
∞∑

p,q=−∞

F s
kpq (z) e

2πi
“
p x
λx

+q y
λy

”
(B.202)
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where the film coefficients F f
kpq (z) are requires to satisfy

F f
kpq (z) = Afkpqe

2πz

r
p2

λx
+ q2

λy +Bf
kpqe

−2πz

r
p2

λx
+ q2

λy (B.203)

and the substrate coefficients F s
kpq (z) are required to satisfy

F s
kpq (z) = Askpqe

2πz

r
p2

λx
+ q2

λy (B.204)

as similarly derived in Equation (B.188). It is noted that F s
kpq(z) decays as

z approaches negative infinity (z → −∞).

Afkpq, B
f
kpq, and Askpq are needed, therefore the relations

σfijn
f
j = −σ0

ijn
f
j (B.205)

on the film surface, and

[[σij]]n
s
j = −σ0

ijn
s
j (B.206)

and

[[ui]] = ufi − usi = 0 (B.207)

on the substrate surface are utilized.

Terms in square brackets denote fields that are composed of the field induced

by the substrate subtracted from the field induced by the film.

Enforcing Equation (B.207) on the substrate surface with b00 = 0 and bpq ∼ α

and restricting that expression to order α3 yields

ufx − usx = − 1

4 (1− ν)

(
φf0 + zφfz

)
,x
−− 1

4 (1− ν)
(φs0 + zφsz),x = 0 (B.208)

therefore

φf0,x + zφfz,x − φs0,x − zφsz,x = 0 (B.209)
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on the substrate surface.

Using the potential function

φf,sk,x =
∞∑

p,q=−∞

F f,s
kpq (z)

2πip

λx
e

2πi
“
p x
λx

+q y
λy

”
(B.210)

and substituting Equation (B.210) into Equation (B.209) yields

∞∑
p,q=−∞

[F f
0pq (z) + zF f

3pq (z)− F s
0pq (z)− zF s

3pq (z)]
2πip

λx
e

2πi
“
p x
λx

+q y
λy

”
= 0 (B.211)

on the substrate surface.

The term in brackets in Equation (B.211) must then be expanded to O(α)3.

It is noted that, for b00 = 0

z =
∞∑

m,n=−∞

bmne
2πi
“
m x
λx

+n y
λy

”
∼ α (B.212)

and

Afkpq ∼ Bf
kpq ∼ Askpq ∼ α (B.213)

with the exception of Afk00 and Ask00. Terms proportional to α must vanish

as α→ 0 (slope→ 0). Therefore

F f
k00 = Afk00 ∼ O (1) , and (B.214)

F s
k00 = Ask00 ∼ O (1) . (B.215)

On the substrate surface

F f
kpq (z) = Afkpq

(
1 + 2πz

√
p2

λ2
x

+
q2

λ2
y

)
+Bf

kpq

(
1− 2πz

√
p2

λ2
x

+
q2

λ2
y

)
+O (α)3

= Afkpq +Bf
kpq + 2πz

√
p2

λ2
x

+
q2

λ2
y

(
Afkpq −B

f
kpq

)
+O (α)3 (B.216)
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F s
kpq (z) = Askpq

(
1 + 2πz

√
p2

λ2
x

+
q2

λ2
y

)
+O (α)3 (B.217)

Substituting Equations (B.216) and (B.217) into Equation (B.211) yields

∞∑
p,q=−∞

[
(
Af0pq − As0pq

)(
1 + 2πz

√
p2

λ2
x

+
q2

λ2
y

)
+Bf

0pq

(
1− 2πz

√
p2

λ2
x

+
q2

λ2
y

)

+
(
Af3pq − As3pq

)
z +Bf

3pqz]
2πip

λx
e

2πi
“
p x
λx

+q y
λy

”
+O (α)3 = 0 (B.218)

therefore

∞∑
p,q=−∞

[
(
Af0pq − As0pq +Bf

0pq

)
+ [2π

√
p2

λ2
x

+
q2

λ2
y

(
Af0pq − As0pq −B

f
0pq

)
+
(
Af3pq − As3pq +Bf

3pq

)
]z]

2πip

λx
e

2πi
“
p x
λx

+q y
λy

”
+O (α)3 = 0. (B.219)

Substituting Equation (B.212) into Equation (B.219) yields

∞∑
p,q=−∞

[
(
Af0pq − As0pq +Bf

0pq

)
]
2πip

λx
e

2πi
“
p x
λx

+q y
λy

”

∞∑
p,q=−∞

∞∑
m,n=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

(
Af0pq − As0pq −B

f
0pq

)
+
(
Af3pq − As3pq +Bf

3pq

)
]bmn

2πip

λx
e

2πi
“

(p+m) x
λx

+(q+n) y
λy

”
= O (α)3 (B.220)

Note that

∫ λx

0

∫ λy

0

e
−2πi

“
r x
λx

+s y
λy

”
dy dx =

{
λxλy, if r = s = 0;

0, otherwise.
(B.221)

Because of the orthogonality condition, Equation (B.221), p+m− r = 0 and

q + n − s = 0. Therefore, m = r − p and n = s − q. Applying orthogonality to

Equation (B.220) produces
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(
Af0rs − As0rs +Bf

0rs

)
r +

∞∑
p,q=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

(
Af0pq − As0pq −B

f
0pq

)
+
(
Af3pq − As3pq +Bf

3pq

)
]pbr−p,s−q. (B.222)

From the [[uy]] = 0 condition on the substrate surface, it can be similarly

determined that

(
Af0rs − As0rs +Bf

0rs

)
s+

∞∑
p,q=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

(
Af0pq − As0pq −B

f
0pq

)
+
(
Af3pq − As3pq +Bf

3pq

)
]qbr−p,s−q. (B.223)

From the [[uz]] = 0 condition on the substrate surface, it can be determined

that

∞∑
p,q=−∞

[k
(
Af3pq − As3pq +Bf

3pq

)
+ 2π

√
p2

λ2
x

+
q2

λ2
y

(
−Af0pq + As0pq +Bf

0pq

)
]e

2πi
“

(p) x
λx

+(q) y
λy

”

+
∞∑

p,q=−∞

∞∑
m,n=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

k
(
Af3pq − As3pq −B

f
3pq

)
+2π

√
p2

λ2
x

+
q2

λ2
y

(
−Af0pq + As0pq −B

f
0pq

)
+
(
−Af3pq + As3pq +Bf

3pq

)
]bmne

2πi
“

(p+m) x
λx

+(q+n) y
λy

”
= 0 (B.224)

where k = 3− 4ν. Applying orthogonality to Equation (B.224) yields

[k
(
Af3rs − As3rs +Bf

3rs

)
+ 2π

√
r2

λ2
x

+
s2

λ2
y

(
−Af0rs + As0rs +Bf

0rs

)
]

+
∞∑

p,q=−∞

[2π

√
p2

λ2
x

+
q2

λ2
y

k
(
Af3pq − As3pq −B

f
3pq

)
+2π

√
p2

λ2
x

+
q2

λ2
y

(
−Af0pq + As0pq −B

f
0pq

)
+
(
−Af3pq + As3pq +Bf

3pq

)
]br−p,s−q = 0. (B.225)
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Equation (B.222) shows that

Af0rs − As0rs +Bf
0rs = O (α)2 (B.226)

and therefore

Af0rs − As0rs = −Bf
0rs +O (α)2 . (B.227)

In turn, Equation (B.225) shows that

k
(
Af3rs − As3rs +Bf

3rs

)
+ 2π

√
r2

λ2
x

+
s2

λ2
y

(
−Af0rs + As0rs +Bf

0rs

)
= O (α)2 . (B.228)

Also, from Equation (B.227),

−Af0rs + As0rs +Bf
0rs = 2Bf

0rs +O (α)2 (B.229)

which, when substituted into Equation (B.228), yields

k
(
Af3rs − As3rs +Bf

3rs

)
= −4πBf

0rs

√
r2

λ2
x

+
s2

λ2
y

+O (α)2 . (B.230)

Combining these results with Equation (B.222) yields

(
Af0rs − As0rs +Bf

0rs

)
r +

∞∑
p,q=−∞

[−4πBf
0pq

√
p2

λ2
x

+
q2

λ2
y

−4π

k
Bf

0pq

√
p2

λ2
x

+
q2

λ2
y

]pbr−p,s−q (B.231)

which simplifies to

(
Af0rs − As0rs +Bf

0rs

)
r = 4π

(
1− 1

k

) ∞∑
p,q=−∞

p

√
p2

λ2
x

+
q2

λ2
y

Bf
0pqbr−p,s−q
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C Potential Function Coefficients

A0rs =
1

4e4a00π
√
R2+S2Mπ

√
R2 + S2

{(
(K − 1)

(
brs

(
K − 4a00π

√
R2 + S2

)
+ arse

2a00π
√
R2+S2

)(
−1−K + 4a00π

√
R2 + S2

))
σ0}

+
i
8

(
8a00 (1 +K)π (R2 + S2)−

√
R2 + S2 (1 + 32a2

00π (R2 + S2))
)

(RS1 + SS2)

e4a00π
√
R2+S2 (1 +K) π (R2 + S2)

3
2

+

(
−16a2

00π
2 + −1+K2

R2+S2

)
S3

16e4a00π
√
R2+S2Mπ2

+
−i
16

(
−1− 2K +K2 − 4a00 (1 +K) π

√
R2 + S2 (RS4 + SS5)

)
e2a00π

√
R2+S2Mπ2 (R2 + S2)

3
2

−
(1 +K)

(
(K − 1)

√
R2 + S2 − 4a00π (R2 + S2)

)
S6

16e2a00π
√
R2+S2Mπ2 (R2 + S2)

3
2

, (C.1)

A1rs =
−S1

2e4a00π
√
R2+S2 (1 +K)

+
−S4

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (C.2)

A2rs =
−S2

2e4a00π
√
R2+S2 (1 +K)

+
−S5

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (C.3)

A3rs =

(
brs − arse2a00π

√
R2+S2

)
(K − 1)σ0

e4a00π
√
R2+S2M

+
i
2

(
−1 + 8a00π

√
R2 + S2

)
(RS1 + SS2)

e4a00π
√
R2+S2 (1 +K)

√
R2 + S2

+

(
k + 4a00π

√
R2 + S2

)
S3

4e4a00π
√
R2+S2Mπ

√
R2 + S2

+
−i
2

(K − 1) (RS4 + SS5)

e2a00π
√
R2+S2Mπ (R2 + S2)

− (1 +K)S6

4e2a00π
√
R2+S2Mπ

√
R2 + S2

, (C.4)

B0rs =
brs (K − 1)σ0

4Mπ
√
R2 + S2

, (C.5)

B1rs = −(2R2 + S2)S1 +RSS2

2 (1 +K) (R2 + S2)
, (C.6)

B2rs = −RSS1 + (R2 + 2S2)S2

2 (1 +K) (R2 + S2)
, (C.7)

124



B3rs =
S3

4Mπ
√
R2 + S2

, (C.8)

C0rs =

(
−ars + brse

2a00π
√
R2+S2

)
(K − 1)σ0

4e2a00π
√
R2+S2Mπ

√
R2 + S2

+

(
−brs + arse

2a00π
√
R2+S2

)
(K − 1)

(
−K + 4a00π

√
R2 + S2

)
σ0

4e4a00π
√
R2+S2Mπ

√
R2 + S2

+
i
8

(RS1 + SS2)

e4a00π
√
R2+S2 (1 +K) π (R2 + S2)

3
2

{
8a00 (1 +K) π

(
R2 + S2

)
+
√
R2 + S2

(
−1 + e4a00π

√
R2+S2 − 32a2

00π
2
(
R2 + S2

))
}

+
(−1 +K2 − 16a2

00π
2 (R2 + S2))S3

16e4a00π
√
R2+S2Mπ2 (R2 + S2)

+
−i
16

(
−1− 2K +K2 − 4a00 (1 +K) π

√
R2 + S2

)
(RS4 + SS5)

e2a00π
√
R2+S2Mπ2 (R2 + S2)

3
2

−
(1 +K)

(
(K − 1)

√
R2 + S2 − 4a00π (R2 + S2)

)
S6

16e2a00π
√
R2+S2Mπ2 (R2 + S2)

3
2

, (C.9)

C1rs =

(
1− e−4a00π

√
R2+S2

)
S1

2 + 2K
− S4

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (C.10)

C2rs =

(
1− e−4a00π

√
R2+S2

)
S2

2 + 2K
− S5

2e2a00π
√
R2+S2Mπ

√
R2 + S2

, (C.11)

C3rs =

(
brs − arse2a00π

√
R2+S2

)
(K − 1)σ0

e4a00π
√
R2+S2M

+

i
2

(
−1 + e4a00π

√
R2+S2

+ 8a00π
√
R2 + S2

)
(RS1 + SS2)

e4a00π
√
R2+S2 (1 +K)

√
R2 + S2

+

(
e4a00π

√
R2+S2

+ k + 4a00π
√
R2 + S2

)
S3

4e4a00π
√
R2+S2Mπ

√
R2 + S2

+
−i
2

(K − 1) (RS4 + SS5)

e2a00π
√
R2+S2Mπ (R2 + S2)

− (1 +K)S6

4e2a00π
√
R2+S2Mπ

√
R2 + S2

, (C.12)
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S1 =
∞∑

p,q=−∞

2ibpq (K − 1)Pπσ0

M
br−p,s−q, (C.13)

S2 =
∞∑

p,q=−∞

2ibpq (K − 1)Qπσ0

M
br−p,s−q, (C.14)

S3 =
∞∑

p,q=−∞

8bpq (K − 1) π2 (PR +QS)σ0

1 +K
br−p,s−q, (C.15)

S4 =
−4i

(
bpq − apqe2a00π

√
P 2+Q2

)
(K − 1)π2

e2a00π
√
P 2+Q2

(1 +K)
√
P 2 +Q2

{
4P 2R

− (−3 +K)Q2R + (1 +K)PQS}σ0ar−p,s−q, (C.16)

S5 =
4i
(
bpq − apqe2a00π

√
P 2+Q2

)
(K − 1)π2

e2a00π
√
P 2+Q2

(1 +K)
√
P 2 +Q2

{
− (1 +K)PQR (C.17)

+ (−3 +K)P 2S − 4Q2S}σ0ar−p,s−q, (C.18)

and

S6 =
∞∑

p,q=−∞

8apq (K − 1) π2 (PR +QS)σ0

1 +K
ar−p,s−q, (C.19)
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