

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Analysis of Task Mapping for Parallel

Supercomputers

A Dissertation Presented

by

Janet Laura Braunstein

to

The Graduate School

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

August 2007

Stony Brook University

The Graduate School

Janet Laura Braunstein

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Yuefan Deng
Advisor

Department of Applied Mathematics and Statistics

Brent Lindquist
Chairperson

Department of Applied Mathematics and Statistics

Alan Tucker
Member

Department of Applied Mathematics and Statistics

James Davenport
Outside Member

Brookhaven National Laboratory
Computational Science Center

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Analysis of Task Mapping for Parallel
Supercomputers

by

Janet Laura Braunstein

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2007

This thesis concentrates on mapping applications to parallel computers

with complex network architectures. The common practice of assigning tasks

to processors without regard to the communication pattern of the problem

or the network topology of the machine is an inefficient one. This approach

has not caused any serious performance degradation for systems with small

numbers of processors connected by simple, usually all-connected, networks.

However, near-optimal performance for most general applications and architec-

tures cannot be achieved without the incorporation of a sound mathematical

model which represents the problem and the machine and predicts the relative

runtimes for various mappings.

iii

Many models have been developed, each appropriate under some cir-

cumstances. Few, however, deliver decent performance for selected scientific

computing applications on a variety of architectures. We analyze the perfor-

mance of several models on an assortment of problems on four computers with

different network topologies. We attempt to improve upon models currently

in use by developing methodologies to incorporate factors that are recognized

as significant yet often ignored or poorly represented.

The two major problems studied in this thesis are integral components

of many common applications: matrix multiplication and the fast Fourier

transform. Each has been implemented on a Beowulf cluster, a distributed

symmetric multiprocessing system, and two cellular architectures of differing

topology. Our results reveal the great dependence of the performance of an

application on the mapping model.

In addition to illustrating the significance of task mapping, we also ad-

dress the difficulty that determining an efficient model can be a time-consuming

operation. Our work seeks to remedy this problem by proposing guidelines for

choosing an optimal method of task assignment, based on the applications

and the architectures of the networks to be utilized. The goal is to use these

guidelines as the foundation for a much more desirable programming paradigm:

automatic parallelization.

iv

Table of Contents

List of Figures . vii

List of Tables . x

1 Introduction . 1

2 The Task Mapping Problem 5

2.1 Mapping Models . 9

2.1.1 Communication-only models 12

2.1.2 Comprehensive models 18

2.2 Solution Methods . 22

2.2.1 Exact approaches . 22

2.2.2 Heuristic approaches 23

3 Review of Supercomputers . 26

3.1 Existing supercomputers . 26

3.1.1 Beowulf systems: Galaxy 27

3.1.2 Distributed SMP systems: IBM pSeries 655 28

3.1.3 Cellular architectures: Blue Gene/L and QCDOC . . . 29

v

3.2 Possibilities for the future . 34

4 Case Studies . 36

4.1 Our models . 39

4.2 Matrix multiplication . 43

4.2.1 Implementation history 43

4.2.2 Matrix multiplication on Galaxy 50

4.2.3 Matrix multiplication on IBM pSeries 655 57

4.2.4 Matrix multiplication on Blue Gene/L 60

4.2.5 Matrix multiplication on QCDOC 62

4.3 Arbitrary demand matrices: theoretical and experimental results 73

4.3.1 Nearest-neighbor communication 74

4.3.2 Assorted applications 75

4.4 Summary of case studies . 81

5 Automatic Parallelization: Thoughts and Practices 85

5.1 Semi-automatic parallelization 86

6 Summary and Conclusions . 87

6.1 Characterizing architectures 89

6.2 Characterizing applications . 90

6.3 Future work . 92

Bibliography . 95

vi

List of Figures

1.1 Mapping-implementation combinations 3

4.1 All-gather example . 37

4.2 Demand and supply matrices for comparison of models 41

4.3 Theoretical supply matrix for IBM pSeries 655 59

4.4 Theoretical supply matrix for QCDOC 64

4.5 QCDOC processor arrangement 68

4.6 QCDOC communication links in the first three dimensions . . . 68

4.7 QCDOC communication links in the last three dimensions . . . 69

4.8 All QCDOC communication links 70

vii

List of Tables

4.1 Objective function values for 1D block decomposition on Galaxy 51

4.2 Galaxy, N=1024, P = 16, 1D block decomposition 52

4.3 Galaxy, N=1024, P = 32, 1D block decomposition 52

4.4 Galaxy, N=2048, P = 16, 1D block decomposition 52

4.5 Galaxy, N=2048, P = 32, 1D block decomposition 53

4.6 Galaxy, N=3072, P = 16, 1D block decomposition 53

4.7 Galaxy, N=3072, P = 32, 1D block decomposition 54

4.8 Galaxy, N=4096, P = 16, 1D block decomposition 54

4.9 Galaxy, N=4096, P = 32, 1D block decomposition 55

4.10 Objective function values for 2D block decomposition on Galaxy 55

4.11 Galaxy, N=1024, P = 16, 2D block decomposition 56

4.12 Galaxy, N=2048, P = 16, 2D block decomposition 56

4.13 Galaxy, N=3072, P = 16, 2D block decomposition 56

4.14 Galaxy, N=4096, P = 16, 2D block decomposition 57

4.15 Objective function values for 1D block decomposition on pSeries

655 . 58

4.16 pSeries, N=1024, P = 16, 1D block decomposition 60

4.17 pSeries, N=2048, P = 16, 1D block decomposition 60

viii

4.18 pSeries, N=3072, P = 16, 1D block decomposition 61

4.19 pSeries, N=4096, P = 16, 1D block decomposition 61

4.20 Objective function values for 2D block decomposition on pSeries

655 . 62

4.21 pSeries, N=1024, P = 16, 2D block decomposition 62

4.22 pSeries, N=2048, P = 16, 2D block decomposition 63

4.23 pSeries, N=3072, P = 16, 2D block decomposition 63

4.24 pSeries, N=4096, P = 16, 2D block decomposition 65

4.25 BG/L partition dimensions . 65

4.26 Comparison of runtimes on three network setups 71

4.27 Larger QCDOC partition dimensions 73

4.28 QCDOC, P=64, 2D block decomposition 73

4.29 Galaxy, P=16, JGL009 . 76

4.30 Galaxy, P=16, JGL011 . 76

4.31 Galaxy, P=16, RGG010 . 77

4.32 Galaxy, P=24, CAN24 . 78

4.33 Galaxy, P=24, LAP25 . 78

4.34 Galaxy, P=24, IBM32 . 78

4.35 Galaxy, P=32, BCSPWR01 . 79

4.36 Galaxy, P=32, CAN24 . 79

4.37 Galaxy, P=32, LAP25 . 80

4.38 Galaxy, P=32, IBM32 . 80

4.39 Galaxy, P=64, BCSPWR02 . 81

4.40 Galaxy, P=64, CAN61 . 81

ix

4.41 Galaxy, P=64, CAN62 . 82

4.42 Galaxy, P=64, DWT59 . 82

4.43 Galaxy, P=64, CURTIS54 . 83

4.44 Galaxy, P=64, WILL57 . 83

4.45 pSeries, P=16, JGL009 . 83

4.46 pSeries, P=16, JGL011 . 83

4.47 pSeries, P=16, RGG010 . 83

4.48 pSeries, P=24, CAN24 . 83

4.49 pSeries, P=24, LAP25 . 84

4.50 pSeries, P=24, IBM32 . 84

4.51 pSeries, P=32, BCSPWR01 . 84

4.52 pSeries, P=32, CAN24 . 84

4.53 pSeries, P=32, LAP25 . 84

4.54 pSeries, P=32, IBM32 . 84

x

Chapter 1

Introduction

Before a parallel program can be created, there are several important

decisions to make. First, the corresponding sequential program must be de-

composed into individual tasks that can be assigned to a network of processors.

This is called task partitioning. Second, once the partitions are established,

the tasks must be assigned to processors. This is referred to as task mapping.

Finally, task scheduling, where applicable, decides the order in which the tasks

should be executed. All three of these problems are related and are known to

be NP-complete. The present thesis work focuses on task mapping.

Many researchers in the area of parallel computing turned their attention

to task mapping throughout the decade ending in 1995, while the next several

years saw a decline in study of the subject. Recently, interest has returned,

and task mapping is now becoming a major component for achieving better

efficiency in parallel computing. The goal is to design algorithms and the

related software for task assignment for general problems on any massively

parallel system with thousands or more processors. This challenging endeavor

1

of automatic parallelization is a long-term goal; in the meantime, smaller

projects have been undertaken. Some involve determining an efficient model

for a specific application on a specific topology; others focus on a particular

application on general topologies or general applications on a particular topol-

ogy [11, 24, 28, 37, 46, 47, 55, 62]. Some emphasize the objective function [47]

while others emphasize the heuristic [8–10, 15, 24, 28, 40, 49, 60, 65–67]. Some

use real applications to test their ideas; others do not [9, 37, 47]. Some use

simulators only rather than real parallel machines [22, 24, 55]. Some only look

at theoretical objective function values for applications rather than experi-

mental results [60]. A move toward automatic parallelization has been made

by examining these specific instances as a group and setting forth strategies

based on the patterns found and other observations made.

Both assignment and coding can be done manually or automatically. Fig-

ure 1 illustrates the four subsequent types of mapping-implementation com-

binations. The most primitive combination is manual mapping and manual

implementation (MMMI), which involves examining the problem and the ma-

chine architecture and making an educated mapping decision without the aid

of any tools. Subsequently, a parallel program is written by hand; the com-

munication portion is manipulated to take advantage of the mapping. This

method relies solely on human experience and does not solicit any type of au-

tomation. Optimality may not be achieved in many cases, particularly those

involving complex applications or architectures. We choose not to examine

manual mapping and automatic implementation (MMAI). Manual assignment

is unscientific and often leads to poor performance; automatic programming

2

relies more heavily on the tools of computer science than those of mathemat-

ics. In automatic mapping and automatic implementation (AMAI), the most

advanced of the four, we can envision a database consisting of a large col-

lection of possible models. Given network configuration, the application, and

possibly the problem size (as done in [36]), the best model will be chosen and

applied, producing efficient code. The focus of this thesis work is automatic

mapping and manual implementation (AMMI). In this case, a model is used

to determine the best mapping. Given the mapping, parallel code is written

by hand.

Implementation

Mapping

MMMI MMAI

AMMI AMAI

Manual Automatic

Manual

Automatic

Figure 1.1: The four types of mapping-implementation combinations

The dissertation is organized as follows. The focus of Chapter 2 is on

the definition of the task mapping problem and a related literature search.

We describe the platforms on which our ideas are tested in Chapter 3. We

introduce our new work and results obtained in Chapter 4. We discuss the

future of task mapping in Chapter 5. Finally, in Chapter 6, we summarize the

dissertation and draw general conclusions from the body of architectures and

3

applications studied in Chapter 4.

4

Chapter 2

The Task Mapping Problem

The task mapping problem deals with the assignment of tasks to proces-

sors, subject to a set of constraints, in such a way that a given objective func-

tion, usually attempting to represent the time for completing an application on

the given platform, is optimized. The tasks are the sequential sub-problems

into which the application has been decomposed; some can be executed in

parallel. The processors are the individual computing elements of a parallel

system. The constraints may describe such conditions as maximum number of

tasks to be mapped to a processor. The objective function quantifies the map-

ping and measures factors such as cost of inter-processor communication and

computational load balance. It should be designed with an implementation

strategy already in mind. Finding an efficient mapping leads to minimization

of time to solution, or total execution time. Because the general task map-

ping problem is NP-complete, the standard approach is to employ heuristics

to obtain solutions in a shorter time than total optimality would require.

Graphs can express information about applications and architectures

5

that will be relevant to the parallelization process. An application can be

represented by a task interaction graph (TIG). This is an undirected graph

GD = (VD, ED) where the set of vertices VD represents the tasks and the set of

edges ED represents the necessary communications among tasks. More specifi-

cally, each edge (i, j) ∈ ED represents necessary communication between tasks

i and j at the completion of the computation step by the processors associated

with tasks i and j. Each edge has an associated weight w(i, j), denoting the

amount of communication necessary. The TIG assumes that all tasks may be

executed simultaneously and independently. Weights may also be associated

with the vertices, denoting computation cost.

We can also describe the computer architecture itself by a processor com-

munication graph (PCG). In this graph GS = (VS, ES), VS is the set of proces-

sors, and the weight of each edge (i, j) ∈ ES denotes the cost of communication

between processors i and j. Edges defined as such exist only between directly-

connected processors.

The mapping problem translates into finding a function f : VD → VS

which maps each task to a single processor such that a chosen objective func-

tion is optimized. This problem is known to be NP-complete.

For the purposes of this work, we view the graphs described above as

matrices to express information about applications and architectures that will

be relevant to the parallelization process. We define two matrices to aid in

explaining the application and architecture, i.e., the supply matrix and demand

matrix. We assume n number of tasks and p number of processors, and further

assume that the tasks have been numbered 0, 1, 2, . . . , n−1 and the processors

6

have been numbered 0, 1, 2, . . . , p− 1.

Definition 2.0.1 The supply matrix is a p× p structure in which each entry

(i, j) represents the cost of communication from processor i to processor j.

Definition 2.0.2 The demand matrix is an n × n structure in which each

entry (i, j) represents the amount of communication necessary from task i to

task j.

We may also refer to the supply matrix as the machine matrix because

it is dependent on the properties of the computer architecture, particularly

the network architecture. We may refer to the demand matrix as the appli-

cation matrix because it characterizes the communication properties of the

application and underlying solution algorithms.

A supply matrix can easily be obtained from a PCG by running an all-

pairs shortest path algorithm. We lose some information in moving from graph

to matrix representation. We no longer know how processors are connected;

we simply know how far apart they are. We contend that the negative effect

of this loss of information is negligible, however. With the point-to-point

communication ability afforded by MPI, the programmer does not need to be

concerned with the exact path a message will take. Storage requirements for

a matrix are smaller than those for a graph, and algorithms may be run more

quickly on matrices.

For a given computer, we can define at least two types of supply ma-

trices, theoretical and experimental. The theoretical supply matrix is based

solely on the description of the network architecture. The simple version of

7

cost of communication can be defined as the number of hops between the pro-

cessors. For machines with a 3D or 6D torus architecture like Blue Gene/L

and QCDOC, described in Chapter 3, we may also want to study the effect

of using a weighted form of the hop count, depending on the number of torus

dimensions used in the shortest path from processor i to processor j, or using

the Euclidean distance between processors (see equation 6.3)[11]. The cost of

communication in the experimental supply matrix is defined to be the experi-

mental time to send from one processor to another. The experimental matrix

is obtained by running tests to determine the actual cost of sending data from

one processor to another.

In the demand matrix, we define the amount of communication necessary

as the number of message sends. We may refine the model by incorporating

message size in future work. Although we create our demand matrices by hand

because of our small number of tasks, we assume that these matrices can be

easily created [11, 51] in any instance through the use of MPI tracing and pro-

filing tools. These tools, such as Vampir, from Pallas, and Jumpshot, part of

an MPICH distribution, return detailed information regarding the communi-

cation pattern of an application. For a given task, it can be determined which

other tasks it communicates with, as well as the volume of data communicated.

The trend toward more complicated and irregular, for example, nonuni-

form memory access, supercomputer architectures has brought about growing

recognition of task mapping as a powerful tool for increasing efficiency. In a

cyclic fashion, advancements made in the field of task assignment may also

lead to new network designs to further increase the speed of applications.

8

2.1 Mapping Models

We define the input to a task mapping problem to be the set of factors

which are fixed before the execution of the task mapping procedure. The

input consists mainly of the characteristics of the applications to be processed

in parallel and those of the computer networks utilized. Inputs can vary in

the following areas:

• upper-level architecture of system (homogeneous or heterogeneous)

• network characteristics, particularly the topology (linear array, tree, ring,

mesh, hypercube, torus, etc.)

• communication patterns of application

• computation requirements of application

We define the model to be the chosen representation of the proposed solution

method for the given input. It can be comprised of a number of components,

including the following:

• representations (graphs or matrices)

• objective function (minimizing cost of communication and/or computa-

tion)

• desired quality of solution (optimal or quasi-optimal) or stopping condi-

tion

• optimization method (simulated annealing, genetic algorithm, etc.)

9

The input and model combine to form an instance of the task mapping prob-

lem.

Because the objective function quantitatively differentiates mappings from

each other, it is the basis upon which assignments are ordered in terms of their

efficiency. For this reason, it is the focal point of the model. If it is designed

correctly, mappings that produce the same objective function value should be

equally efficient. Time to solution is a function of computation and communi-

cation costs; we therefore seek to achieve both computational load balance and

minimal inter-processor communication cost [15] when the objective function

is optimized. Computation costs can be determined with a fairly high degree

of accuracy because they depend mainly on the speed of each processor. Com-

munication costs cannot be expressed as easily because they are affected by

many runtime factors, outlined below.

The time taken to communicate a message of size n bytes from one loca-

tion to another may be viewed as

tc = l +
n

b
, (2.1)

where l represents latency, in seconds, and b represents bandwidth, in bytes

per second. Latency measures the speed of the network, or the time it takes

for a packet to cross a network connection from sender to receiver. It is the

time interval between the instant at which an instruction control unit initiates

a call for data transmission and the instant at which the actual transfer of data

begins. Latency is related to the hardware characteristics of the system and

the layers of software that are involved in initiating the task of packing and

10

transmitting the data. Bandwidth measures the capacity of the network, or the

amount of data that can be transmitted across a network connection in a fixed

amount of time. It is the data transfer rate. Neither latency nor bandwidth is

constant for different pairs of messengers on a given architecture; rather, both

are dependent on the relative locations of the sender and receiver, the avail-

ability of buffers, and contention for communication links [11]. The relative

importance of latency and bandwidth varies with communication types. For

fine-grained applications, which are characterized by many small messages,

latency is more significant. In the case of course-grained algorithms involving

fewer larger messages, bandwidth is more significant.

Some models choose an objective function that measures communication

cost as the sum of all costs induced by the mapping. However, this does not

take into consideration the fact that some communication can occur simultane-

ously, i.e., parallel message passing. In other cases, computation and commu-

nication costs are summed for each processor, and the objective is to minimize

the maximal cost over all processors. Although this method is suitable for ap-

plications in which all processors should be in the same type of phase at any

given time, it is inappropriate in cases where certain tasks must be completed

before others are started. Network congestion can also affect communication

time in ways that are not fully predictable. For some machines, the exact route

a message will follow from one processor to another is not known prior to exe-

cution of the program. The paths that two messages plan to take may not be

edge-disjoint. Because of the difficulty in accurately incorporating these and

other factors into the model, some aspects of the actual messaging costs are

11

often unaccounted for. Care must be taken to produce an objective function

that reliably ensures mapping efficiency.

We examine existing models with the goal of selecting and applying as-

pects of several of them to our models. We attempt to improve upon them by

making the theoretically best mapping determined by the objective function

more consistent with the experimentally best mapping.

2.1.1 Communication-only models

Although total execution time generally reflects a combination of compu-

tation time and communication time, mapping models do not necessarily have

to include both of these factors. When homogeneous collections of processors

and applications that have been partitioned into tasks of equal computational

weight are involved, removing computation time from the model may result in

increased manageability with negligible effect on quality of solution obtained.

Even cases that do not meet the criteria above but are highly communication-

intensive may be good candidates for communication-only models.

Task mapping models have evolved greatly since their introduction. In

his classic 1981 model, Bokhari [12] proposed the objective of maximizing

the number of pairs of communicating tasks placed on pairs of directly-linked

processors on the network. All tasks are assumed to be computationally equiv-

alent, and there is to be a 1-to-1 mapping of tasks to processors. The cost of

communication for all pairs of directly-connected processors is also assumed to

be equal. When viewed from a graph perspective, Bokhari’s objective corre-

sponds to assigning TIG vertices to PCG vertices in such a way as to maximize

12

the number of TIG edges whose endpoints map to PCG vertices connected by

edges of minimal weight.

Bokhari’s model begins with an initial random mapping. From there, an

exhaustive hill-climbing heuristic is applied; a check of all possible pairwise

interchanges of task-processor combinations is made, and the one that most

favorably affects the cost function is selected. This process is repeated until

the top of the hill (the mapping for which there are no beneficial interchanges)

is reached. The cost of this mapping is recorded, and a random jump is made

to a new mapping for which the process is repeated. At the top of each hill, a

comparison is made to the best result obtained thus far, replacing it if better.

Results were obtained for applications of up to 49 tasks.

A shortcoming of this model is that it creates a black-and-white distinc-

tion rather than a continuous one. The objective function gives a mapping

one credit for each time it places communicating tasks on directly-connected

processors. Such a function fails to distinguish between placing communicat-

ing tasks on processors two hops away and many more away. In both cases,

zero credits are added. With today’s growing trend toward massively parallel

supercomputers, this is likely to be a costly oversight, ultimately resulting in

the failure of the model.

Several subsequent models have attempted to build on Bokhari’s idea but

avoid the weakness of his objective function by adopting a quadratic assign-

ment problem (QAP) formulation from the field of operations research. Given

a set P of facilities and a set L of locations, the standard QAP attempts to

find a mapping f : P → L that minimizes the objective function

13

∑
p1,p2∈P

w(p1, p2) · d(f(p1), f(p2)), (2.2)

where w(p1, p2) is the amount of supplies that must be transported between

facilities p1 and p2, and d(f(p1), f(p2)) is the distance between the location to

which facility p1 is mapped and the location to which facility p2 is mapped.

The traveling salesman problem is a constrained instance of the QAP.

Three recent models [8, 11, 55] adopt this QAP objective function with

the goal of minimizing latency and link contention and therefore total com-

munication time. Link contention is not explicitly addressed in the objective

function, but the belief is that the optimization process will produce a map-

ping that results in collision reduction. The objective function encourages

small values for inter-processor distance for communicating tasks. This means

that we can expect the optimization process to result in a mapping for which

message path length in general is relatively short. In turn, there are fewer

potential possibilities for two messages attempting to use the same communi-

cation link. The names given to the metrics are different for the three models,

but all measure the same quantity.

In 2001, Moh et al. [55] built on Bokhari’s idea of attempting to map

communicating tasks to nearest-neighbor processors. Studying special cases

of switch-based networks of irregular topology, they defined the quantity to be

minimized as weighted cardinality, |fm|, which is expressed as

∑

(x,y)∈Ev

Fv(x, y) · Fp(fm(x), fm(y)), (2.3)

14

where x and y are tasks and fm(x) and fm(y) are the processor identifiers to

which they are assigned. Fv(x, y) is the amount of communication required

between x and y, and Fp(fm(x), fm(y)) is the communication cost between the

processors to which x and y are mapped. The product of these two quantities

is calculated for each edge of the TIG.

Results were given for virtual 2D mesh applications on networks whose

switches were interconnected in an arbitrary fashion. The assignments pro-

duced by two heuristics, O(n log n) switch-based mapping and O(n2 log2 n)

binary mapping, were compared to those obtained by random mapping; up to

20% improvement over the random mapping was claimed for a 16× 16 mesh.

In 2005, a nearly-identical objective function was proposed by IBM’s

Gyan Bhanot et al. [11]. This instance differs from the one above in machine

topology and optimization method. Rather than analyzing irregular topolo-

gies, the IBM group chose to examine processors linked by a torus network.

Like the instance above, however, communication costs vary significantly be-

tween different pairs of processors. For such networks, the difference in run-

time between an efficient mapping and a poor one increases as the number of

processors increases.

Computational load is assumed to be equal among all processors. In

communication traffic matrix C, each entry C(i, j) represents the amount of

data communicated from domain i to domain j. In machine matrix H, each

entry H(i, j) represents the cost per unit of data to be sent between processor

i and processor j, assumed to be the smallest number of hops on the BG/L

torus between the two domains. Based on the ideas above, it was determined

15

that the cost function for free energy, a term widely used in physics, should be

F =
∑
i,j

C(i, j)H(i, j), (2.4)

for all i, j such that domains i and j are mapped to processors i and j, re-

spectively. The rationale is that minimizing such a function should minimize

latency and link contention and thus communication time. A heuristic map-

ping of domains to processors was made, based on the H matrix, to provide an

intelligent starting point. Simulated annealing was then applied to minimize

the cost function.

On two applications on the Blue Gene/L, SAGE, an adaptive grid Eule-

rian hydrodynamics application, and UMT2000, an unstructured mesh photon

transport problem, significant improvements were made in free energy over the

default MPI rank order mapping. A shortcoming of this model is that achiev-

ing the lowest free energy does not necessarily correspond to achieving the

minimum communication time in all cases, resulting from the relative sim-

plicity of the cost function. Nonetheless, based on the ideas for mapping set

forth by the model, IBM developed the Task Layout Optimizer for Blue Gene

[46]. This software solution attempts to find the best mapping of MPI tasks

to the Blue Gene/L processors, based solely on the communication matrix

representing traffic between MPI tasks.

In 2006, Agarwal et al. [8] focused on decreasing link contention on torus

and grid networks. They chose ‘hop-bytes,’ or the total size of inter-processor

communication in bytes weighted by hop distance between the respective

16

end-processors, as the metric for measuring the quality of a mapping. To

minimize the objective function value, they employed a heuristic which, at

each iteration, selects a task and a processor to which to map it based on a

function that estimates for each pair of unallocated tasks and available pro-

cessors the cost of placing the task on the processor in the next cycle. The

task most critically in need of being placed in the next cycle is mapped to

the processor for which the cost is lowest. For a 2D Jacobi-like benchmark,

simulation results showed a reduction in hop-bytes and experimental results

on Blue Gene/L showed a reduction in runtime. Simulation results were also

provided for a molecular dynamics application.

The belief that TIG’s are not descriptive enough for many problems led

Dixit-Radiya and Panda to employ task precedence graphs (TPG’s) [24]. They

argued that TIG’s capture volume of communication between tasks but ig-

nore temporal information completely. They incorporated link contention and

total traffic volume into their model for a small number of processors; the

directed graph representation allows their model to identify communication

steps that conflict temporally and spatially. The authors solved the problem

with their min-max-contention heuristic, a strategy involving repeated pair-

wise exchanges of processors to minimize the maximum link contention. It is

asserted that this heuristic may be applied to problems with both regular and

irregular communication patterns and to any distributed-memory machine fol-

lowing shortest-path message routing. The authors suggested adapting their

work for k-ary n-cubes, such as rings, hypercubes, and tori, with non-minimal

adaptive routing.

17

Nicol’s 1996 work with Mao [56] focused on problems exhibiting certain

communication patterns. It is a more generalized version of earlier work which

dealt with problems with a rectilinear topology; it looks into problems that

can be represented with k-ary n-cube work and communication patterns and

equal computation costs among all processors. The authors sought to find

an assignment of tasks to processors yielding the smallest bottleneck for the

specific graphs mentioned above. Bottleneck is measured as the maximal com-

munication cost induced by the mapping among all processors. A processor’s

cost is generally measured as the sum of its computation and communication

costs, but since computation costs are assumed to be equal for all processors

in this model, the term ‘bottleneck’ here refers solely to communication costs.

2.1.2 Comprehensive models

Stone’s classic 1977 work [63] is one of the earliest instances of task map-

ping literature. His original model is based on a two-processor heterogeneous

system. Each task has a computation cost, and each message has a commu-

nication cost. The total cost of a mapping is the sum of all computation and

communication costs. For p = 2, Stone showed that the problem could be

reduced to a commodity flow problem and solved by the Ford-Fulkerson max-

imum flow algorithm in polynomial time. A graph was constructed with a

source node corresponding to the first processor and a sink node correspond-

ing to the second. Each task was represented by a node connected to both

the source and sink; edge capacities represented the cost of executing the task

on the first processor and second processor, respectively. The minimum cut

18

corresponding to the maximum flow for this graph gives the optimal task map-

ping. Stone’s model was extended to larger values of p, for which the problem

was shown to be NP-complete.

The major shortcoming of Stone’s model is that it is sequential. There

is a linear ordering imposed on the tasks, so only one task may be executed

at a time, on a single processor. This means that the sum of all computation

and communication costs will be consistent with total time to solution, but

the model will be useless for homogeneous collections of processors. In the

case of a network of processors of identical computing power, it will always be

optimal to assign all tasks to a single processor. Any other mapping would

force unnecessary communication costs.

Bultan and Aykanat proposed a new mapping heuristic based on mean

field annealing in their 1992 work [15]. They sought to minimize an objective

function composed of two terms, the first representing communication and the

second computation. This function is

H(s) =
1

2

N∑
i=1

∑

j 6=i

K∑
p=1

∑

q 6=p

eijsipsjqdpq +
r

2

N∑
i=1

∑

j 6=i

K∑
p=1

sijsjpwiwj, (2.5)

where eij represents the amount of communication between tasks i and j, and

sab represents the expected value of spin (a, b), quantifying the probability of

mapping task a to processor b. The distance between processors p and q is

represented by dpq, wa is the computational cost associated with task a, and r

is a parameter introduced to balance the two objectives of the cost function.

19

It was shown that, on average, this heuristic slightly under-performs simu-

lated annealing in communication cost, load imbalance, and overall solution

quality, but drastically outperforms it in time to solution for the task map-

ping problem. No real applications were tested; rather, mean field annealing

and simulated annealing were applied to various hypothetical cases using the

objective function above. The problems consisted of TIG’s with either 200 or

400 vertices of random weight and degree, and edges of random weight. The

topologies chosen were 3-, 4-, and 5-dimensional hypercubes and 4 × 4 and

4× 8 meshes.

Another comprehensive model was formulated in 1993 by Talbi and Muntean

[66]. Both communication cost and load imbalance are taken into considera-

tion; their relative weights can be adjusted through the parameter w in the

cost function

F = C + wV. (2.6)

C is identical to the full argument in (2.3) or (2.4) and is the communication

cost; V is the variance of the loads of the different processors. Both of these

components should be minimized.

Talbi and Muntean chose several benchmark problems and applied three

main heuristics to find the best mappings: genetic algorithms, hill-climbing,

and simulated annealing. They compared these heuristics, as well as a hybrid

heuristic, on the basis of quality of solution and runtime. Each was found to

have its advantages and disadvantages. Tabu search is suggested as another

heuristic to adopt in future work.

20

In 2004, Salcedo-Sanz et al. proposed a comprehensive model for a hetero-

geneous system of processors of varying speeds [60]. They assumed knowledge

of the maximum resources available for each processor to avoid overloading.

They set forth the objective function

f(X) = α1

M∑
j=1

tej + α2

N∑
i=1

M∑
j=1

N∑
p=1

M∑
q=1

q 6=j

kijpqxijxpq (2.7)

subject to

N∑
i=1

wixij ≤ rj, j = 1, 2, . . . , M ,

where α1 and α2 are adjustable parameters controlling the importance of each

term in the cost function and α1 + α2 = 1. The variable M represents the

number of processors, and N is the number of tasks. The total amount of time

needed by processor j to finish its tasks is represented by

tej =
∑

i:xij=1

ti
vj

, (2.8)

where vj is the speed of processor j relative to the speed of the slowest processor

in the system. Each kijpq represents the communication cost between task i

executing in processor j and task p executing in processor q. If task i has been

assigned to processor j, xij = 1; otherwise, xij = 0. The goal is to minimize

the objective function. The constraint ensures that the resource limit for each

processor is not exceeded.

Salcedo-Sanz et al. tested different heuristics for arriving at an efficient so-

lution; they include Hopfield neural networks (NN), genetic algorithms (GA),

21

simulated annealing (SA), and hybrid NN/GA and NN/SA.

It may be observed that, in general, the objective functions of the com-

prehensive models are more detailed than those of the communication-only

models. These more comprehensive models are consequently more difficult to

manipulate and thus are often avoided. Whether this has a major impact on

the effectiveness of the model depends on the problem and network topology

at hand.

2.2 Solution Methods

After an objective function has been decided upon, a solution to the

mapping problem for the given application and architecture is generally ob-

tained by applying a heuristic. Exact algorithms are rarely employed due to

their time complexity. Heuristics can often find near-optimal or even optimal

mappings in only a fraction of the time.

2.2.1 Exact approaches

Exact approaches are not as commonly implemented, due to the long

running time that they usually incur. Examples of algorithms which are used

to obtain optimal solutions, rather than possibly suboptimal solutions as with

the heuristic approaches, are branch and bound, dynamic programming, and

weak homomorphism [65]. Since we want to extend our work to applications

of a large size on thousands of processors, exact methods such as these are

useless.

22

A possibility for making exact approaches feasible is to examine special

instances of the mapping problem [57]. Adding assumptions of various types

constrains the model, making it solvable in polynomial time.

2.2.2 Heuristic approaches

The heuristic approaches, many of which originate from the natural sci-

ences, are all less time-consuming, but none guarantees an optimal solution.

Simulated annealing (SA), first proposed by Kirkpatrick et al. in 1983 [44],

is a popular approach. Annealing is a process in which a substance is heated

and then cooled slowly in order to lead it to reach its lowest energy state for

the strongest structure [60]. SA adopts a similar strategy, but for numerical

simulations. After an initial mapping is chosen, a neighboring mapping is

selected before a cost comparison is made for determining whether the current

mapping should be kept or replaced by the new one. If the new mapping

translates into an improvement in cost, it is accepted. If it does not, it may

still be accepted, but with a probability depending on the cost difference and

the value of the ‘temperature’ variable, named after its counterpart in the true

physical annealing process. Early in the algorithm the temperature is high,

which allows relatively high probability of acceptance of the new mapping,

even if it may appear farther away from the optimal state. As the simulation

proceeds and equilibrium is reached at a given temperature, however, the

temperature is reduced, making it less likely that a costlier new mapping will

be accepted. The temperature changing scheme is called the ‘cooling schedule.’

Because it sometimes selects uphill, or more expensive, mappings, SA allows

23

an efficient locating of a global extremum among suboptimal local extrema.

It is widely used in applications such as the traveling salesman problem and

the design of integrated circuits [58]. Disadvantages of SA are the sensitivity

of its results to cooling schedule [54] and its relative slowness due to use of

arbitrary pairwise exchanges [10]. However, it can easily be parallelized [11]

to achieve speedup. An appropriate definition of neighborhood must also be

determined.

The genetic algorithm (GA) is a stochastic search technique introduced

by Holland in 1975 to imitate the biological evolution of a species [41]. As

applied to task assignment, the individuals of a population represent possi-

ble mappings. Genetic operators are applied on the individuals. The steps

involved in parallel GA are the following: generate a population of random

individuals, assign a fitness value to each individual, and then repeat a cycle

of select, reproduce, and replace a decided number of times. The term ‘select’

refers to making a list of pairs of individuals likely to mate, ‘reproduce’ refers

to applying genetic operators (such as crossover and mutation) to the pairs,

and ‘replace’ refers to swapping the worst individuals with better new ones,

creating a new population [65]. Because the select phase is not purely deter-

ministic, slight differences in fitness do not necessarily have a major impact

on the survival of an individual. Mutation is a way to avoid stagnation. Just

as natural evolution is inherently parallel, so is this approach [5].

Tabu search (TS) [38], developed in the 1970s, looks into successive

neighborhoods to identify favorable moves, unlike simulated annealing which

only looks one step ahead at a time. In addition, while SA only refers to

24

temperature, TS uses multiple factors to determine whether or not to move to

a new mapping. It records recent moves in order to keep track of areas of the

solution space that have already been visited; it encourages new mappings to

be explored by forbidding or heavily penalizing revisiting a mapping. This is

where it obtains its name.

Neural networks (NN) are based on the interactions of neurons in the

cerebral cortex [40]. They organize themselves such that stimuli from neigh-

boring spots on the skin excite neighboring neurons, leading to short signal

paths. As applied to task mapping, neurons become vertices and connections

between neurons become edges. After each cycle of neuron updates, a check

is done for convergence of the network. Convergence occurs when no neurons

have changed their states during a cycle [60]. Kohonen networks are special

types of neural networks often applied to task mapping [40].

Hybrid combinations of two or more of the heuristics described above,

such as genetic simulated annealing (GA and SA) and mean field annealing

(NN and SA), have also been developed [5, 15, 33, 37, 50, 60].

All of the heuristics above begin with an initial mapping in which all

tasks have been mapped to processors and seek to improve upon it. Some

other heuristics create a mapping one task at a time [10] so that only a partial

mapping exists until the final iteration.

25

Chapter 3

Review of Supercomputers

The efficient assignment of tasks to processors depends greatly on the

computing power of the processors as individuals and, more importantly, on

the way in which these processors are linked together by their network. For this

reason, we must fully understand the architecture, particularly the network,

of any machine we plan to utilize.

3.1 Existing supercomputers

There are many different types of supercomputers, some of which we

examine to allow sufficient understanding for experimentally testing our hy-

potheses. Our review highlights the aspects of the hardware relevant to build-

ing appropriate objective functions for our mapping of tasks. Processor clock

speed, FPU (floating point unit) capabilities, size of memory, and processor-

to-memory bandwidth affect single-processor computation time. The com-

munication network topology and inter-processor latency and bandwidth af-

fect communication time. All of these factors together, along with mapping,

26

determine time to solution.

3.1.1 Beowulf systems: Galaxy

In 1994, the Beowulf Project was started at the Goddard Space Flight

Center in Greenbelt, Maryland, under the sponsorship of NASA [53]. The

goal of the venture was to design a commodity-based cluster system to serve

as a cost-effective alternative to mainframes. The Beowulf clusters that exist

today consist of any number of computers, possibly of several different types,

connected through a switch network. Because of their ability to be built

from commercial off-the-shelf components, Beowulf clusters provide low-cost

solutions to parallel programming needs [53]. The downside to a Beowulf

system is its relatively slow IPC (inter-processor communication) network with

high latency, at 10 to 100 microseconds, and narrow bandwidth, at 1 to 10

Gbits/s.

Galaxy, housed in the Applied Mathematics Department at the State

University of New York at Stony Brook, is the Beowulf system used for this

work [1]. Galaxy utilizes a three-switch architecture and is composed of five

types of nodes with different speeds. This heterogeneity is not common. All

nodes of a given type reside on the same switch. Each node contains two

processors; which processor gets assigned which piece of the problem or which

processor communicates with which other processor is not inconsequential in

terms of time to solution, and different mappings can produce significantly

different runtimes due to the speed difference between intra-node and inter-

node communication time.

27

There are two types of Galaxy nodes used for this work. Each node of

the first type (a1533) has two AMD Athlon XP 1800+ processors, running at

1.5 GHz, with a 128 KB L1 cache and a 256 KB L2 cache; additionally, each

node has 1 GB of RAM. Each node of the second type (p3200) holds two Intel

Xeon processors, running at 3.2 GHz. ADD MEMORY INFO HERE TO BE

COMPLETE

3.1.2 Distributed SMP systems: IBM pSeries 655

Distributed SMP (symmetric multiprocessing) systems are designed to

house 2 or more (for example, 512) processors on a single node. Several levels

of cache are utilized; some memory is distributed and some is shared among

various of processors, resulting in a very well-defined, non-uniform memory

access platform.

The distributed SMP system utilized for this thesis work is an IBM

pSeries 655 supercomputer awarded to Stony Brook University in 2005 through

IBM’s SUR (Shared University Research) Program. The basic computing com-

ponent of the pSeries system is the Power4 chip. A single chip contains two

independent processors, each having its own 32 KB L1 data cache. A 1.5 MB

L2 cache is shared by the two processors. Up to four Power4 chips can be

joined to form a multi-chip module (MCM) of as many as eight processors.

Four such eight-processor modules can then be linked to form a 32-way sys-

tem. Stony Brook’s pSeries machine, housed at BNL, consists of four modules,

each containing eight processors running at 1.66 GHz, making a speed of up

to 6.64 Gflops per processor possible. Each node of eight processors shares a

28

128 MB L3 cache, in addition to 8 GB of shared local RAM. The connection

method between processors within a node is bus-based; the connection method

among nodes is switch-based [14]. The communication distance between any

pair of processors on the same node is equal, with low-latency, high-bandwidth

connections. Higher latency is found when processors on different nodes com-

municate, because of the switch involved.

3.1.3 Cellular architectures: Blue Gene/L and QCDOC

The cellular architecture style of design resulted from the need for faster

access to memory by individual processors and scalability after massive system

expansion [48]. Consequently, all cells can search their own memories for

data, rather than having a central controller deciding which ones should do

it. The focus is on quickly accessing, searching, and moving data. In order

to reap the full benefits of cellular architectures, the systems should consist

of tens of thousands of processors. Each cell is either a single chip or several

cores, and communication cost is reduced by linking a cell to only its nearest

neighbors, or those cells physically closest to it. Latency is commonly as low

as .1 microseconds, and bandwidth as high as 200 Gbits/s. In addition, if a

cell fails, data can be rerouted to avoid the dead-link problem [48]. Processors

in these systems are often described as “slow but cool.” The goal is to achieve

decent processor speed with low power consumption. Blue Gene/L (BG/L)

and QCDOC are the cellular architectures utilized for this work.

The main communication network of BG/L is a three-dimensional (3D)

nearest-neighbor torus network. Employing IBM’s system-on-a-chip technology,

29

each BG/L node consists of a single ASIC containing two embedded 700 MHz

IBM PowerPC 440 processors (each with an attached 128-bit FPU operating

at 2.8 Gflops), 4 MB of shared EDRAM, a controller for an external 512 MB

shared DDR SDRAM, and a controller for each of the three communications

networks. Each processor has a 32 KB instruction cache and a 32 KB data

cache. In summary, BG/L is a power-efficient solution designed for simulation

of physical phenomena, real-time data processing, and offline data analysis

[29].

Compute nodes on BG/L are logically arranged into a 3D lattice, and

the torus network connects nearest neighbors in the lattice. Because of the

wraparound nature of the torus, this means that every node is linked directly to

six neighboring nodes [29]. BG/L allows point-to-point routing [52]. Each node

supports six two-way communication links, one for each of the two directions

in all three dimensions. Total bandwidth per node is 2.1 GB/s. Latency is

approximately 100 ns [29].

BG/L has an additional network for global communication, a global tree.

The torus is the primary communications network, handling both point-to-

point messaging and many global or collective operations. The tree is used

solely for those collective communications for which the torus network is inef-

ficient. BG/L also has a double floating point unit, enabling BG/L to perform

two fused multiply-adds per cycle. In terms of memory, BG/L’s bandwidth

from EDRAM to CPU is 22 GB/s [52].

BG/L nodes may operate in one of two modes: communication coproces-

sor mode or virtual node mode [29]. Communication coprocessor node is the

30

default; one processor runs the main thread of the compute process while the

other handles primarily communication. In virtual node mode, node resources

are split evenly between the two processors, and each acts as a separate entity

running its own process.

We gratefully acknowledge use of a 1024-node BG/L system operated by

the Argonne Leadership Computing Facility at Argonne National Laboratory

(ANL) in Argonne, IL. Access to 32- (4 × 4 × 2) and 64-node (8 × 4 × 2)

partitions can be obtained without assistance; access to 128- (8× 4× 4), 256-

(8 × 4 × 8), 512- (8 × 8 × 8), and 1024-node (8 × 8 × 16) configurations can

be obtained by request. Each node consists of two PowerPC 440 processors

running at 700MHz. Each has links to its six nearest neighbors; the bandwidth

of each link is approximately 150 MB/s. Currently, up to 64 nodes have been

used. Only communication coprocessor mode has been used thus far. This

was the original choice of mode because it enabled the notion of hop count to

be used for all processor pairs.

As their name suggests, QCDOC (quantum chromodynamics on a chip)

supercomputers were designed to model quantum chromodynamics problems.

These problems deal with the theory of the strong nuclear force and are usually

modeled as 4D or possibly 5D lattices [32]. QCDOC is a multiple-instruction,

multiple-data (MIMD) machine with distributed memory. Work began on

designing the QCDOC ASIC (application specific integrated circuit) in 1999.

The ASIC contains an embedded 500 MHz IBM PowerPC 440 processor with

an attached 64-bit FPU operating at 1 Gflops, 4 MB of embedded dynamic

random access memory (EDRAM), a controller for external double-data-rate

31

synchronous DRAM (128 MB DDR SDRAM), and a serial communications

unit (SCU) controlling the transmission of data to and from each of a node’s

12 neighbors. The EDRAM bandwidth is approximately three times as large

as that of the DDR SDRAM (8 GB/s versus 2.6 GB/s) [30, 31]. Each processor

has a 32 KB instruction cache and a 32 KB data cache. QCDOC incorporates

all of the features of its predecessor, QCDSP, and more, on a single chip, using

IBM’s system-on-a-chip (SoC) technology. QCDOC boasts low latency and

low power consumption [19, 30, 32, 43].

The main QCDOC communication network, and the one relevant to this

work, is the truncated 6-dimensional (6D) nearest-neighbor torus network.

Three of the dimensions of the 6D torus are closed on a motherboard and

therefore are of maximum size two, and the others are open to off-board com-

munication and can be of any size [23]. In addition, the machine can be

remapped to form partitions of a lower dimension. Machines which support

MPI allow a similar process; however, with MPI, the remapping occurs at

runtime [32]. The QCDOC nearest-neighbor serial communications unit has

an approximate latency of 600 ns for a 64-bit send/receive. Each node’s SCU

controls 24 off-node simultaneous bit-serial communication links (one for send

and one for receive in each of the directions in each of the six dimensions).

Total nearest-neighbor bandwidth is 1.3 GB/s at 500 MHz, utilizing simulta-

neous sends and receives. For normal data transfers, the “three in the air”

protocol applies [31]. This refers to three 64-bit data words being sent before

an acknowledgement is given.

While the other architectures examined utilize MPI, QCDOC utilizes

32

QMP for message passing between processors. QMP is a message passing

library developed by the LQCD (lattice quantum chromodynamics) research

community. It was designed with LQCD applications in mind, so its strong

point is fast nearest-neighbor communication [3]. Global operations are im-

plemented using the store-and-forward method with a predetermined path,

unlike the adaptive cut-through routing of Blue Gene/L. The implementation

of QMP on QCDOC does not contain non-nearest neighbor communications.

In addition, the upper limit on message size is 1.5 MB.

There are two QCDOC machines available for use for this project, one at

Brookhaven National Laboratory (BNL) in Upton, NY, and one at Columbia

University in New York, NY. Access to 1-, 2-, 4-, 8-, and 16-node partitions

at Columbia and access to a 64-node (2× 2× 2× 2× 2× 2) network at BNL

can be obtained without assistance; access to larger configurations of the form

2 × 2 × 2 × K × M × N can be obtained by request. Currently, up to 64

processors have been used. Potentially, up to 8,192 can be used.

As seen above, there are both similarities and differences between the Blue

Gene/L (BG/L) and QCDOC supercomputers. Both machines are massively

parallel cellular architectures, scaling up to tens of thousands of nodes. Their

main communication networks are nearest-neighbor torus networks employing

IBM’s system-on-a-chip technology. However, these tori differ in dimension-

ality. While QCDOC supports only nearest-neighbor communication, BG/L

allows point-to-point routing [52]. BG/L has an additional network for global

communication, a global tree. It also has a double floating point unit, as op-

posed to QCDOC’s single floating point unit. In terms of memory, BG/L’s

33

bandwidth from EDRAM to CPU is almost three times as large as QCDOC’s

[52]. For these reasons, it is interesting to examine both of these types of

cellular architectures as individual machines.

3.2 Possibilities for the future

In addition to examining existing supercomputer architectures, a goal

for the future is to consider new network topologies that have not been im-

plemented yet, ones much more complex and difficult to visualize than the

QCDOC or BG/L tori. For example, we can imagine an architecture whose

base level is a 4 × 4 × 4 structure, where each of the 64 vertices is actually

another 4×4×4 structure, each of whose vertices is another 4×4×4 structure.

Ultimately, in this case, we have 64×64×64 nodes. The intuitive notion is that

of a tree or some other hierarchical structure. Such architecture may be proven

to be more efficient than tori in the future, for a class of applications in ser-

vices necessitating complicated communication patterns rather than scientific

applications with more regular patterns. It may be found that relationships

between the two different structures exist, however, and techniques that work

on one may be applicable in some way to the other, with modifications. This

is a type of isomorphism. Proper mathematical representation and analysis of

the properties of such architecture is new and challenging.

Work by Suri and Mendelson [64] has been done to propose future archi-

tectures based on communication patterns of applications.

When constructing a new supercomputer, there are many balanced archi-

tectural aspects to consider. One is how to best connect the nodes topologically

34

at high bandwidth and low latency. Conclusions about task assignment drawn

from this thesis will aid in the efficient design of such machines.

35

Chapter 4

Case Studies

The task mapping scheme depends highly on the architectures or appli-

cations. In a star network consisting of a homogeneous collection of processors

with equal network distance, all load-balanced mappings are equally efficient.

The same holds true for simple problems in which each task must communicate

in an identical way with every other task.

Such simple instances described above are rare in actual applications.

Even in a case where only all-gather communication is involved, all load-

balanced mappings are not equally efficient. Although all processors need to

receive information from all other processors, all processors’ communication

demands cannot be viewed as isomorphic because the communication occurs

in steps, and some tasks never communicate directly with some other tasks.

Figure 4.1 provides an illustration of this idea. In almost all cases, we can find

significant improvement in runtime between implementations based on smart

mappings and those not.

In order to demonstrate the significance of task mapping, we compare

36

32

10

1 1

1

1

Figure 4.1: Processor arrangement and network distance for all-gather example

timing results achieved with implementations of various mappings. Among

the possibilities for comparison to the automatic mapping determined by a

given model are the following:

ROMap (the rank order mapping) is obtained by mapping task i to the pro-

cessor of rank i. This type of mapping is used often in practice because

it is the default that occurs when no effort is made to assign tasks to

processors efficiently. For cases in which MPI is used for message pass-

ing, the MPI_Comm_rank routine assigns a rank, or ID, to each processor.

Similarly, for cases in which QMP is used, QMP_get_node_number makes

the assignment.

MMap (a manual mapping) is a human’s best attempt at a good mapping

using pencil and paper. Manual mapping is also common.

RMap (a random mapping) is obtained by randomly assigning tasks to pro-

cessors. When we present results, times for RMap represent the average

of 100 random maps. We would ideally like to give the true expected

value of a random map.

37

IPMap (an intentionally poor mapping) is a human’s best attempt at a poor

mapping using pencil and paper. It is always possible to make an ex-

tremely inefficient mapping by creating great load imbalance in using

the processors and network resources. For applications for which load

balance is easy to achieve, however, IPMap has been chosen to be a

load-balanced mapping with high inter-processor communication costs.

Of the assignments above, the automatic mapping determined by the

given model should correspond to the shortest runtime. If this is not the

case, we can conclude that the model at hand is flawed. The runtimes for the

implementations based on MMap and ROMap should be the next best, but

should still be significantly longer than those for the mapping determined by

the given model. In the average case, RMap should correspond to the second-

longest runtime. Finally, IPMap should have the highest runtime. These last

two are not normally used in practice; they are used in our work as worst-

case mappings to compare to our best-case mapping determined by the given

model.

We examine the consistency of the best mapping determined by our model

with the experimentally best mapping. All mappings are implemented man-

ually. The timing results obtained can be compared to results produced by

alternative mappings.

38

4.1 Our models

Following the work of [8, 10, 11, 24, 47, 55, 62], we study applications for

which load balance is naturally achieved on a homogeneous system. Many

decomposition methods for many applications may lend themselves naturally

to perfect load balance. With this balanced computing load, our mapping

model only needs to take into account the communication portion of the cost

without having to include computation. Additionally, our primary goal is

ordering the mappings in terms of runtimes, so we can avoid the additional

cost required in incorporating computation into the model.

We assume that the number of tasks is equal to, or an integer multiple of,

the number of processors [11, 24]. The first model we test is a communication-

only model similar to those in [8, 11, 55]. The machine is represented by its

supply matrix, S. The matrix multiplication application is represented by its

demand matrix, D. We let P be the set of processors and T be the set of

tasks. The mapping is a function f : T → P . The objective function adopts a

QAP form. The goal is to minimize the cost of the mapping

C =
∑

ti,tj∈T

S(f(ti), f(tj))D(ti, tj). (4.1)

In terms of the communication, we prove in 4.2.5 that it is possible to

make a mapping for which we can guarantee that collision is avoided for ma-

trix multiplication on QCDOC; we have not found such a mapping for all

applications on all four machines. Therefore, failing to incorporate link con-

tention into the model may decrease its value in some cases. Because it greatly

39

complicates the model, and consequently lengthens the solution process, how-

ever, we choose to ignore it in this initial case. In addition, past research

which has taken link contention into consideration has usually incorporated

it through the steps of a heuristic algorithm to optimize the mapping, rather

than through additional terms in the objective function itself [24, 67]. We

should also be aware that link contention does not necessarily translate into

an increase in runtime [24]. Messages attempting to use the same link are not

always the source of a bottleneck.

We look at a second model similar to the first except for a slight modifi-

cation in objective function. Rather than the network distance between pro-

cessors, we use the square of the distance. When choosing a metric like hop

distance to quantify the supply matrix, we assume that communication time

varies directly as the number of hops between processors. This may lead to

inaccuracy because it ignores the possible additional time for traversing inter-

mediate nodes and does not consider the fact that increased distance between

processors may make collision more likely. This rationalizes the relevance of

examining this modification.

It may not be intuitively obvious that using such a metric rather than

the distance can change the ordering of the mappings. In Figure 4.2 we use a

simple example of 4×4 supply and demand matrices to illustrate the rationale.

If we map tasks to processors using ROMap, or tasks (0, 1, 2, 3) to processors

(0, 1, 2, 3), respectively, the objective function value using distance is 1(2) +

1(2) + 1(2) + 1(2), or 8. If we map tasks (0, 1, 2, 3) to processors (1, 0, 3, 2),

respectively, the objective function value is 1(1)+1(4)+1(1)+1(1), or 7. The

40

0 2 2 1

1 0 2 4

1 1 0 2

1 1 1 0

0 1 1 0

0 0 1 0

0 0 0 1

0 0 0 0

Demand Supply

Figure 4.2: Demand and supply matrices for comparing objective functions

second map produces a better objective function value. If we look at distance

squared, however, ROMap gives a value of 1(4) + 1(4) + 1(4) + 1(4), or 16,

and the second map gives a value of 1(1) + 1(16) + 1(1) + 1(1), or 19. ROMap

produces a better objective function value in the distance squared case. It is

interesting to note that neither of these mappings is optimal with respect to

objective function value for either objective function, however. The optimal

mapping is the same for both objective functions: assigning tasks (0, 1, 2, 3)

to processors (3, 2, 1, 0), repsectively, gives the optimal value, 4 in both cases.

Although we examine this as a change in objective function, we note

that it is equivalent to squaring all entries in the supply matrix and using the

objective function from the first model. In our analysis, we choose to square

the entries in the supply matrix rather than square the term in the objective

function for the added value of reducing the computational time required to

optimize the mapping.

Other related modifications are obvious at this point. The term repre-

senting volume of communication in the objective function may be squared,

and the distance term left as is. This is equivalent to squaring all entries in the

demand matrix. This may be appropriate if the number of sends is not an ac-

curate representation of the volume of communication between tasks. Along

41

the same lines, the entire objective function argument from our first model

may be squared, representing a squaring of all entries in both the supply and

demand matrices. It is worth noting that multiplying the objective function

by a constant value cannot change the ordering of mappings, so we do not

study this modification.

After selecting an objective function, the next step is to obtain a solution

in the form of an efficient mapping. Because there are n! possible mappings,

where n is the number of tasks, we should not examine all possibilities to

guarantee an optimal solution, even for a relatively small number of tasks. In-

stead, we consider heuristics to apply to minimize the cost function. Following

closely related work [11], we have chosen simulated annealing. Although this

heuristic is slower than most, it can easily be parallelized to reduce runtime.

In addition, we assume that most applications will run repeatedly after an ef-

ficient mapping is discovered, so the expected gain in solution quality is worth

the expected increase in heuristic runtime. This completes the theoretical ar-

gument. Then the mapping is implemented manually, and timing results are

obtained and compared to results produced by alternate mappings. A conflict

in the theoretical and experimental data suggests flaws in the model. The

most likely cause of discrepancy between the theoretical and the experimental

would be an objective function which did not adequately measure time to so-

lution, either because it was too simple or did not correctly merge the factors

it utilized. We have applied this process to Galaxy, the IBM pSeries 655, and

BG/L. The process differs slightly for QCDOC due to its lack of non-nearest

neighbor communication.

42

We then go through a similar process for subsequent applications. We

first complete the MMMI phase and then incorporate models into the project

to move on to the AMMI phase. With each completed application, we have

more insight into task mapping as a whole. We can then move away from

the specific and make statements which can be more widely applied about the

validity of the model and even the entire approach.

4.2 Matrix multiplication

Matrix multiplication is a common problem in many scientific and en-

gineering applications, especially linear algebra applications such as inverting

matrices, solving systems of linear equations, and finding determinants [59].

Serial matrix multiplication is simple, as it requires only a few lines of code.

Implementing it on a parallel machine, however, brings up many debatable

points. Matrix multiplication is computation-intensive [36], so we cannot ex-

pect to find a drastic difference in overall runtime between a good mapping

and a bad one for a given parallel algorithm. However, since there is still com-

munication involved, improvement is significant when a mapping determined

by an appropriate model is applied. We address applications which benefit

immensely from intelligent task mapping later in this chapter.

4.2.1 Implementation history

Standard sequential multiplication of two n× n matrices requires O(n3)

multiplications. In 1969, Strassen produced an algorithm requiring only O(nlog2 7),

43

or approximately O(n2.807), multiplications. Coppersmith and Winograd re-

duced the exponent further to approximately 2.376 in 1987. Popular belief is

that the theoretically best algorithm can be completed in essentially O(n2),

the lower bound [59]. Cohn, Kleinberg, Szegedy, and Umans take a group

theoretic approach in their 2005 work [21] and set forth two conjectures; if

either is shown to be correct, the exponent will be proven to be 2. Theoretical

advances do not necessarily translate into improvements in runtime, however.

These discoveries are often impractical to implement because they may apply

only to specific cases or their methods may be extremely intricate. In addition,

the constant terms in front may be so large that these methods only become

faster for unrealistically large matrix sizes.

In an effort to decrease the actual runtime of serial matrix multiplica-

tion, as well as other sequential routines from the BLAS (basic linear algebra

subprograms) library, an optimization package called ATLAS (automatically

tuned linear algebra software) was created [13, 69, 70]. Among other things, it

improves upon the BLAS routine GEMM (general matrix multiply).

Our focus, however, is not on determining the best serial matrix multi-

plication method or even the best parallel method. Instead, we wish to find

an efficient mapping of tasks to processors for a given parallel method. We

adopt the standard sequential multiplication method for the serial portion of

our code. A better serial method will lead to a decrease in runtime for all

mappings, but the relative efficiency of the various mappings will not change.

When we discuss parallel matrix multiplication, we must mention data

decomposition as well as the algorithms themselves. In block distribution,

44

data elements are divided into blocks of consecutive elements which are then

allocated, in order, to consecutive processors. For convenience, the size of the

blocks is chosen so that the elements do not wrap around the processor array.

In cyclic distribution, the first element is allocated to the first processor, the

second to the second processor, etc. If there are more elements than processors,

the distribution wraps around the processor array until all elements have been

allocated. Cyclic distribution is often useful for spreading the computational

load evenly over processors. In block cyclic distribution, blocks of consecutive

elements are allocated cyclically to processors.

In many programs employing one-dimensional block decomposition, the

A matrix is blocked by row and the B matrix by column. A block of A,

consisting of n
p

rows of length n, and a block of B, consisting of n
p

columns

of length n, are distributed to the same processor. Throughout the course

of the algorithm, each processor retains its block of B. At each iteration,

all processors simultaneously perform serial matrix multiplication; then each

processor passes its block of A to the processor above it. There are many

implementations, and the one we have chosen is known to be inferior to Fox’s

method, which is based on a two-dimensional decomposition. We will compare

the experimental differences in runtime between the two methods.

Two classic parallel algorithms, both based on two-dimensional block

decomposition of the A and B matrices, are Cannon’s 1969 systolic algorithm

[16] and Fox’s 1987 broadcast-multiply-roll algorithm [34]. Both require a

square number of processors, p = q2, and involve decomposition of the matrices

into q × q grids. The A and B matrices are blocked by both row and column.

45

Each processor begins with an n√
p
× n√

p
block of A and an n√

p
× n√

p
block of B.

Cannon’s algorithm is systolic because of the regular pattern of sending

data between directly-connected processors only. Each processor, at each step,

performs serial matrix multiplication and then passes its block of A to its

neighbor to the left in the row and its block of B to its neighbor above in the

column. This is repeated until each processor has seen all blocks of A and B

necessary to obtain a block of the result matrix C.

In Fox’s broadcast-multiply-roll algorithm, the broadcast step pertains to

the A matrix. One block in each row is broadcast to the processors to which

the other blocks in the row have been mapped. In the multiply step, each

processor performs serial matrix multiplication: the block of A just received

is multiplied by the currently-stored block of B. The roll step pertains to

the B matrix. Each processor sends its block of B to the processor above it.

This is the main implementation we have chosen. It was chosen over Cannon’s

algorithm largely because the six-dimensional network nature of the QCDOC

supercomputer allows for a fast broadcast.

In recent years, researchers have attempted to address the shortcomings

of these algorithms. Both PUMMA [18] and BiMMeR [42] were based on

variants of Fox’s broadcast-multiply-roll method. The key contribution of

these packages was their universality; they allowed matrix multiplication to be

performed for general 2D processor grids, rather than for square grids alone.

The published results for both packages were obtained from runs on an Intel

Touchstone Delta [18, 42].

The main difference between PUMMA and BiMMeR was their choice

46

of data distribution. PUMMA (parallel universal matrix multiplication algo-

rithm) was implemented by Choi, Dongarra, and Walker in 1994, using a 2D

block cyclic data distribution. BiMMeR was implemented by Huss-Lederman,

Jacobson, Tsao, and Zhang in the same year, using a virtual 2D torus wrap

data layout. These differences in data distribution led to algorithmic differ-

ences.

In their 1994 paper, Agarwal et al. set forth the new broadcast-broadcast

approach [7]. A similar approach was attempted independently by van de

Geijn and Watts, leading to the implementation of SUMMA (scalable uni-

versal matrix multiplication algorithm) [68]. The contributions of these two

groups were simpler algorithms yielding better performance and requiring less

space, using improved overlapping of computation and communication. The

published results were obtained from runs on the Intel Paragon mesh system.

Grayson et al. used SUMMA on an Intel Paragon system in 1996 to obtain a

high performance parallel implementation of Strassen’s algorithm [35].

Agarwal et al. presented an approach using a 3D data distribution that

required less communication than its 2D counterpart in their 1995 paper [6].

They addressed the previously unstudied case of minimizing communication

for matrices of arbitrary shape, and they implemented their code on IBM

POWERparallel SP2 multistage network systems.

In 1998, Choi built on SUMMA and created DIMMA (distribution-independent

matrix multiplication algorithm) for block cyclic data distribution [17]. His

two contributions were adding a modified pipelined communication scheme to

overlap computation and communication more efficiently and finding a way to

47

maintain the maximum performance of the sequential BLAS matrix multipli-

cation routine, DGEMM (double-precision general matrix multiply), even for

extremely small or large block sizes. Implementation was on the Intel Paragon.

This work is relevant because it provides information about fast imple-

mentations of matrix multiplication. However, the focus of the literature dis-

cussed above is not on task mapping; rather, it is on effective task decom-

position and optimizing code from a computer hardware structure approach.

Smart memory access and efficient use of cache are looked to as the means by

which performance can be improved. When task assignment is mentioned in

these works, there is usually a natural mapping of sub-matrices to processors,

so models and comparisons of the solutions they give are not discussed.

Krishnan and Nieplocha’s 2004 work on matrix multiplication on clusters

and shared memory systems [45] puts more emphasis on task assignment. The

authors’ approach on these types of machines is to avoid message passing;

instead, they make explicit use of shared memory and remote memory access

(RMA) communication. They tested their approach, SRUMMA (shared and

remote-memory based universal matrix multiplication algorithm), on IBM SP

and Linux-Myrinet clusters, as well as SGI Altix and Cray XI shared memory

systems. The growing trend to improve cost-effectiveness by using symmetric

multiprocessing (SMP) nodes as building blocks of parallel systems is cited

as the main reason for this new direction of research. Because of their use

of different strategies for communication depending on whether data is in the

shared memory domain of two processors or in an unshared memory domain,

task mapping comes into play.

48

We have implemented variations of matrix multiplication programs uti-

lizing both one-dimensional and two-dimensional block decompositions on

Galaxy, SUR, BG/L, and QCDOC, using the two algorithms described above.

The programming language used is C++. QMP has been employed for mes-

sage passing on QCDOC, while MPI has been used on the other three systems.

We describe the row headings of the tables in the following matrix mul-

tiplication subsections:

• Objective Function Value: This is the model’s objective function value

for a given mapping.

• Normalized Obj. Fc’n Val. The normalized objective function value is

the given objective function value divided by the best objective function

value. Using this measure, we can view relative improvement more easily.

• Experimental Comm. Time: The experimental communication time is

the time the actual application code spends in communication.

• Normalized ECT: The normalized experimental communication time is

given with respect to the experimental communication time for the best

mapping.

• Experimental Total Time: This is the total runtime for the application

code.

• Normalized ETT: The normalized experimental total time is given with

respect to the experimental total time for the best mapping.

49

We describe the column headings of the tables in the following matrix

multiplication subsections:

• Best: This is the best mapping, as determined by simulated annealing

on the model’s objective function.

• ROMap: This is the rank-order mapping, which is the default mapping

in most cases.

• Alternate: This is a mapping chosen by hand to be inefficient.

4.2.2 Matrix multiplication on Galaxy

The theoretical supply matrix for Galaxy consists of ones for pairs of

processors on the same node and some constant β > 1 for pairs of processors

on different nodes. β > 1 is the same for all inter-node pairs because of the

switch nature of the network.

In the experimental supply matrix for Galaxy, the entries are

ci,j =

1, if i and j are on the same node;

2.76, otherwise (different nodes).

The 2.76 represents 1.26
.456

; the conversion is made to give intra-node communi-

cation a unit cost.

For both the 1D and 2D decompositions, our simulated annealing heuris-

tic finds the optimal mappings.

50

1D block decomposition: For matrix multiplication using the 1D block

decomposition, we order our tasks from 0 to n from top block to bottom

block in the matrix multiplication matrix. The optimal mapping is to assign

the first two tasks to two processors on the same node, the next two tasks

to two processors on another node, etc. This is clearly optimal because all

communications are of equal magnitude and this mapping achieves the max-

imum possible number of intra-node communications. For our chosen task

numbering, this is also the default, or rank-order, mapping. The alternate

(intentionally poor) mapping chosen is to avoid assigning consecutive tasks,

i.e., those requiring more pairwise communications than others, to processors

on the same node. In this case, there is no use of intra-node communication;

only inter-node communication occurs.

Mapping Objective Function Value

Optimal p
2
(p− 1) (2.76 + 1)

Alternate p (p− 1) (2.76)

Table 4.1: Objective function values for 1D block decomposition on Galaxy

We give the general form of the objective function values for all even

p ≥ 4 for the optimal and alternate mappings in Table 4.1. For the optimal

mapping, half of the processors send to another processor on the same node

and half send to another processor on a different node at each iteration. There

are p− 1 iterations, so we have

(
p
2
(1) + p

2
(2.76)

)
(p− 1)

51

This simplifies to the expression in the table. The amount of data sent

in each communication is the same for all messages.

For the alternate mapping, each of the p processors sends at each of the

p− 1 iterations to another processor on a different node; this leads directly to

the expression in the table.

Best ROMap Alternate
Objective Function Value 451.2 451.2 662.4

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 0.0913 0.0913 0.163

Normalized ECT 1.00 1.00 1.79
Experimental Total Time 0.887 0.887 0.934

Normalized ETT 1.00 1.00 1.05

Table 4.2: Galaxy, N=1024, P = 16, 1D block decomposition

Best ROMap Alternate
Objective Function Value 1864.96 1864.96 2737.92

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 0.233 0.233 0.347

Normalized ECT 1.00 1.00 1.49
Experimental Total Time 0.649 0.649 0.712

Normalized ETT 1.00 1.00 1.10

Table 4.3: Galaxy, N=1024, P = 32, 1D block decomposition

Best ROMap Alternate
Objective Function Value 451.2 451.2 662.4

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 0.388 0.388 0.616

Normalized ECT 1.00 1.00 1.59
Experimental Total Time 5.99 5.99 6.13

Normalized ETT 1.00 1.00 1.02

Table 4.4: Galaxy, N=2048, P = 16, 1D block decomposition

52

Best ROMap Alternate
Objective Function Value 1864.96 1864.96 2737.92

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 0.549 0.549 0.794

Normalized ECT 1.00 1.00 1.45
Experimental Total Time 3.36 3.36 3.59

Normalized ETT 1.00 1.00 1.07

Table 4.5: Galaxy, N=2048, P = 32, 1D block decomposition

Best ROMap Alternate
Objective Function Value 451.2 451.2 662.4

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 0.834 0.834 1.40

Normalized ECT 1.00 1.00 1.68
Experimental Total Time 19.83 19.83 20.32

Normalized ETT 1.00 1.00 1.02

Table 4.6: Galaxy, N=3072, P = 16, 1D block decomposition

Objective function value does not depend on problem size, and normal-

ized objective function value does not depend on problem size or number of

processors. If we make this choice, we should verify that experimental results

follow the same trend.

For a given problem size, we see a decrease between the two mappings

in all cases with respect to relative difference in experimental communication

time. However, we see an increase in all cases with respect to relative difference

in experimental total time. Since we want to minimize time to solution, we

are more concerned with experimental total time, so this discovery does not

present a problem.

2D block decomposition: For matrix multiplication using the 2D block

decomposition, we order our tasks from 0 to n as we traverse the matrix

53

Best ROMap Alternate
Objective Function Value 1864.96 1864.96 2737.92

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 1.01 1.01 1.60

Normalized ECT 1.00 1.00 1.58
Experimental Total Time 10.42 10.42 10.94

Normalized ETT 1.00 1.00 1.05

Table 4.7: Galaxy, N=3072, P = 32, 1D block decomposition

Best ROMap Alternate
Objective Function Value 451.2 451.2 662.4

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 1.44 1.44 2.48

Normalized ECT 1.00 1.00 1.72
Experimental Total Time 46.66 46.66 47.63

Normalized ETT 1.00 1.00 1.02

Table 4.8: Galaxy, N=4096, P = 16, 1D block decomposition

multiplication matrix from top left block to bottom right block, traversing

each row from left to right. The optimal mapping is to assign pairs of verti-

cally adjacent tasks (vertically adjacent sub-matrices) to pairs of processors on

the same node. The alternate (worst-case) mapping chosen is to assign tasks

to processors in a way such that no adjacent sub-matrices are mapped to pro-

cessors on the same node. In this case, there is no intra-node communication;

only inter-node communication occurs. The default mapping falls between the

optimal and worst-case mappings.

We give the general form of the objective function values for the default,

optimal, and alternate mappings for all square p ≥ 4 in Table 4.10. For the

default mapping, each processor broadcasts to one processor on the same node

and
√

p− 2 processors on other nodes. At each iteration, each processor rolls

54

Best ROMap Alternate
Objective Function Value 1864.96 1864.96 2737.92

Normalized Obj. Fc’n Val. 1.00 1.00 1.47
Experimental Comm. Time 1.58 1.58 2.66

Normalized ECT 1.00 1.00 1.68
Experimental Total Time 24.11 24.11 25.16

Normalized ETT 1.00 1.00 1.04

Table 4.9: Galaxy, N=4096, P = 32, 1D block decomposition

Mapping Objective Function Value

Default p
(
1× 1 +

(√
p− 2

)
2.76 +

(√
p− 1

)
2.76

)

Optimal (p 6= 4) p
(√

p− 1
)
2.76 + p

2

(√
p− 1

)
2.76 + p

2

(√
p− 1

)
1

Optimal (p = 4) p
(√

p− 1
)
2.76 + p

(√
p− 1

)
1

Alternate 2p
(√

p− 1
)
2.76

Table 4.10: Objective function values for 2D block decomposition on Galaxy

its block up to a processor on a different node. There are
√

p − 1 iterations,

so we have

p
(
1 (1) + 2.76

(√
p− 2

)
+ 2.76

(√
p− 1

)
)(
√

p− 1
)
.

This simplifies to the expression in the table.

For the optimal mapping, each processor broadcasts to
√

p−1 processors

on other nodes. At each iteration, half of the processors roll their blocks up to

processors on different nodes but half roll them up to a processor on the same

node. For p 6= 4 this gives us

p
(√

p− 1
)
(2.76) + p

2

(√
p− 1

)
(2.76) + p

2

(√
p− 1

)
(1).

55

For the alternate mapping, each processor sends only to processors on

different nodes. For each processor, there are
√

p−1 such sends for the iteration

in which the processor broadcasts. Each processor also rolls its block up in

each of the
√

p− 1 iterations, so we have

p
((√

p− 1
)
2.76 +

(√
p− 1

)
2.76

)
.

This simplifies to the expression in table 4.10.

Best ROMap Alternate
Objective Function Value 222.72 236.8 264.96

Normalized Obj. Fc’n Val. 1.00 1.06 1.19
Experimental Comm. Time 0.0552 0.0736 0.0785

Normalized ECT 1.00 1.33 1.42

Table 4.11: Galaxy, N=1024, P = 16, 2D block decomposition

Best ROMap Alternate
Objective Function Value 222.72 236.8 264.96

Normalized Obj. Fc’n Val. 1.00 1.06 1.19
Experimental Comm. Time 0.197 0.254 0.282

Normalized ECT 1.00 1.29 1.43

Table 4.12: Galaxy, N=2048, P = 16, 2D block decomposition

Best ROMap Alternate
Objective Function Value 222.72 236.8 264.96

Normalized Obj. Fc’n Val. 1.00 1.06 1.19
Experimental Comm. Time 0.436 0.547 0.642

Normalized ECT 1.00 1.25 1.47

Table 4.13: Galaxy, N=3072, P = 16, 2D block decomposition

Although the decreases in overall runtime may not appear high, we must

keep in mind that matrix multiplication is a computation-intensive application.

56

Best ROMap Alternate
Objective Function Value 222.72 236.8 264.96

Normalized Obj. Fc’n Val. 1.00 1.06 1.19
Experimental Comm. Time 0.766 0.991 1.14

Normalized ECT 1.00 1.29 1.49

Table 4.14: Galaxy, N=4096, P = 16, 2D block decomposition

Changing the mapping affects only communication time here because we have

already achieved perfect load balance. When looking at communication time

only, we consistently see significant improvement.

Even when using processors of the same type, which are on the same

switch, all processors cannot be considered to be equidistant in network space.

There are two processors per node, and communication between these two

processors on the same node is usually faster than inter-node communication.

For this reason, we see a difference in runtime between optimal mappings and

alternate mappings.

4.2.3 Matrix multiplication on IBM pSeries 655

In the theoretical supply matrix for the 32-processor pSeries machine,

there are 8× 8 blocks of ones along the diagonal, representing communication

between processors on the same node. All other elements are represented by

some constant β > 1. This is because communication cost is theoretically the

same between any pair of processors not on the same node, and it is more

expensive than intra-node communication. β > 1 is the same for all inter-

node pairs because of the switch nature of the network. The pSeries machine

adds an interesting aspect that does not have to be taken into consideration

57

for a machine like the 26 QCDOC. Because there is a bus-based connection

between processors on a node and at most one communication per given time

step may be performed on the bus, we now find possible contention for links

in the matrix multiplication problem. The theoretical supply matrix for the

32-processor pSeries machine is displayed in Figure 4.3.

In the experimental supply matrix for the pSeries machine, the entries

are

ci,j =

1, if i and j are on the same node;

14.88, otherwise (different nodes).

The 14.88 represents 2.50
.168

; the conversion is made to give intra-node communi-

cation a unit cost.

1D block decomposition: Refer to tables 4.15 to 4.19.

Mapping Objective Function Value

Optimal 7p
8

(1) (p− 1) + p
8
(14.88) (p− 1) = p

8
(p− 1) (14.88 + 7)

Alternate p (p− 1) (14.88)

Table 4.15: Objective function values for 1D block decomposition on pSeries
655

As with Galaxy, the rank order mapping is also the best mapping.

2D block decomposition: Refer to tables 4.20 to 4.24.

Again, the rank order mapping is also the best mapping. The rank order

mapping for 2D block decomposition on Galaxy was not the best mapping.

58

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

1 1 1 1 1 1 1 1 β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β β β β β β β β β β β β β β β β 1 1 1 1 1 1 1 1 β β β β β β β β

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

β 1 1 1 1 1 1 1 1

Figure 4.3: The theoretical supply matrix for IBM pSeries 655

59

Best ROMap Alternate
Objective Function Value 656.4 656.4 3571.2

Normalized Obj. Fc’n Val. 1.00 1.00 5.44
Experimental Comm. Time 0.0594 0.0594 0.512

Normalized ECT 1.00 1.00 8.62
Experimental Total Time 1.64 1.64 1.87

Normalized ETT 1.00 1.00 1.14

Table 4.16: pSeries, N=1024, P = 16, 1D block decomposition

Best ROMap Alternate
Objective Function Value 656.4 656.4 3571.2

Normalized Obj. Fc’n Val. 1.00 1.00 5.44
Experimental Comm. Time 0.213 0.213 1.48

Normalized ECT 1.00 1.00 6.95
Experimental Total Time 2.91 12.91 13.55

Normalized ETT 1.00 1.00 1.05

Table 4.17: pSeries, N=2048, P = 16, 1D block decomposition

This is due to the fact that Galaxy has two processors per node and the pSeries

machine has eight.

4.2.4 Matrix multiplication on Blue Gene/L

For Galaxy and the pSeries machine, it is not possible to assign numerical

values to all entries in the theoretical supply matrix based on the description

of the machine. Both involve dual-processor nodes and switches; the notion of

hop count becomes meaningless. We consequently determined the relative cost

of intra-node versus inter-node communication and used the corresponding

experimental supply matrix in our analysis. Hop count has meaning and is

easy to determine for BG/L and QCDOC, however. Several sizes of BG/L

machines at ANL can be studied. The node dimensions of these 3D partitions

60

Best ROMap Alternate
Objective Function Value 656.4 656.4 3571.2

Normalized Obj. Fc’n Val. 1.00 1.00 5.44
Experimental Comm. Time 0.451 0.451 3.63

Normalized ECT 1.00 1.00 8.05
Experimental Total Time 49.80 49.80 51.77

Normalized ETT 1.00 1.00 1.04

Table 4.18: pSeries, N=3072, P = 16, 1D block decomposition

Best ROMap Alternate
Objective Function Value 656.4 656.4 3571.2

Normalized Obj. Fc’n Val. 1.00 1.00 5.44
Experimental Comm. Time 0.807 0.807 6.78

Normalized ECT 1.00 1.00 8.40
Experimental Total Time 102.77 102.77 106.03

Normalized ETT 1.00 1.00 1.03

Table 4.19: pSeries, N=4096, P = 16, 1D block decomposition

are given in 4.25. Although the machine is commonly described as a 3D torus,

it is actually a 3D mesh for partition sizes below 512 [20]. 512 nodes comprise

a midplane, and at this point all physical torus connections can be used.

Each processor can be specified in the machine file by its node coordi-

nates in the X, Y, and Z dimensions, with an additional number representing

processor number if running in virtual node mode.

For the 32-processor machine, intelligent task mapping only has a slight

impact on runtime. This can be attributed to advanced routing techniques.

The maximum hop distance between any two nodes in this machines is 7.

When we use larger machines, the impact of intelligent task mapping becomes

greater.

61

Mapping Objective Function Value

Optimal p
(√

p− 1
)
(1) + p

2

(√
p− 1

)
(14.88) + p

2

(√
p− 1

)
(1)

Alternate 16(2× 14.88 + 1 + 3× 14.88)

Table 4.20: Objective function values for 2D block decomposition on pSeries
655

Best ROMap Alternate
Objective Function Value 429.12 429.12 1206.4

Normalized Obj. Fc’n Val. 1.00 1.00 2.81
Experimental Comm. Time 0.0451 0.0451 0.144

Normalized ECT 1.00 1.00 3.19
Experimental Total Time 1.36 1.36 2.23

Normalized ETT 1.00 1.00 1.64

Table 4.21: pSeries, N=1024, P = 16, 2D block decomposition

4.2.5 Matrix multiplication on QCDOC

In the 64-processor QCDOC machine, the maximum distance between

any two processors is six. This 64-processor QCDOC architecture can also be

described as a six-dimensional hypercube.

The theoretical supply matrix for the 2× 2× 2× 2× 2× 2 QCDOC ma-

chine is shown in Figure 2. Each entry (i, j) represents the distance between

processors i and j on the QCDOC torus. When discussing the machine, each

processor can be identified by its coordinates in each of the six dimensions.

Two processors are directly connected if they differ by one in a single coordi-

nate only. Since each dimension is of size two in the 64-processor configura-

tion, each processor has one neighbor per dimension. The pairs of processors

farthest from each other are those whose coordinates differ by one in all six

62

Best ROMap Alternate
Objective Function Value 429.12 429.12 1206.4

Normalized Obj. Fc’n Val. 1.00 1.00 2.81
Experimental Comm. Time 0.156 0.156 0.562

Normalized ECT 1.00 1.00 3.60
Experimental Total Time 10.68 10.68 15.98

Normalized ETT 1.00 1.00 1.50

Table 4.22: pSeries, N=2048, P = 16, 2D block decomposition

Best ROMap Alternate
Objective Function Value 429.12 429.12 1206.4

Normalized Obj. Fc’n Val. 1.00 1.00 2.81
Experimental Comm. Time 0.349 0.349 1.34

Normalized ECT 1.00 1.00 3.84
Experimental Total Time 35.80 35.80 58.02

Normalized ETT 1.00 1.00 1.62

Table 4.23: pSeries, N=3072, P = 16, 2D block decomposition

dimensions. Consequently, the maximum distance between any two proces-

sors is six. This 64-processor QCDOC architecture may also be described as

a six-dimensional hypercube.

Matrix multiplication was implemented on the QCDOC machines at both

Columbia and BNL, again using the two basic algorithms described earlier

for 1D and 2D block decompositions. The largest Columbia machine readily

available consists of 16 processors, while the BNL machine consists of 64.

Although they have the same number of processors, a 6D 64-processor (2 ×
2× 2× 2× 2× 2) machine differs significantly from its 2D (8× 8) counterpart.

In the first case each processor has six neighbors, but in the second each has

only four. However, a 6D 16-processor (2 × 2 × 2 × 2 × 1 × 1) machine does

not differ from its 2D (4 × 4) counterpart. In both cases each processor has

63

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

1 0 2 1 2 1 3 2 2 1 3 2 3 2 4 3 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 3 2 4 3 4 3 5 4 4 3 5 4 5 4 6 5

1 2 0 1 2 3 1 2 2 3 1 2 3 4 2 3 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 3 4 2 3 4 5 3 4 4 5 3 4 5 6 4 5

2 1 1 0 3 2 2 1 3 2 2 1 4 3 3 2 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 4 3 3 2 5 4 4 3 5 4 4 3 6 5 5 4

1 2 2 3 0 1 1 2 2 3 3 4 1 2 2 3 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 3 4 4 5 2 3 3 4 4 5 5 6 3 4 4 5

2 1 3 2 1 0 2 1 3 2 4 3 2 1 3 2 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 4 3 5 4 3 2 4 3 5 4 6 5 4 3 5 4

2 3 1 2 1 2 0 1 3 4 2 3 2 3 1 2 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 4 5 3 4 3 4 2 3 5 6 4 5 4 5 3 4

3 2 2 1 2 1 1 0 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 6 5 5 4 5 4 4 3

1 2 2 3 2 3 3 4 0 1 1 2 1 2 2 3 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 3 4 4 5 4 5 5 6 2 3 3 4 3 4 4 5

2 1 3 2 3 2 4 3 1 0 2 1 2 1 3 2 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 4 3 5 4 5 4 6 5 3 2 4 3 4 3 5 4

2 3 1 2 3 4 2 3 1 2 0 1 2 3 1 2 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 4 5 3 4 5 6 4 5 3 4 2 3 4 5 3 4

3 2 2 1 4 3 3 2 2 1 1 0 3 2 2 1 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 5 4 4 3 6 5 5 4 4 3 3 2 5 4 4 3

2 3 3 4 1 2 2 3 1 2 2 3 0 1 1 2 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 4 5 5 6 3 4 4 5 3 4 4 5 2 3 3 4

3 2 4 3 2 1 3 2 2 1 3 2 1 0 2 1 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 5 4 6 5 4 3 5 4 4 3 5 4 3 2 4 3

3 4 2 3 2 3 1 2 2 3 1 2 1 2 0 1 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 5 6 4 5 4 5 3 4 4 5 3 4 3 4 2 3

4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5

2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 1 0 2 1 2 1 3 2 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 4 3 5 4 5 4 6 5 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4

2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 1 2 0 1 2 3 1 2 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 4 5 3 4 5 6 4 5 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4

3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 2 1 1 0 3 2 2 1 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 5 4 4 3 6 5 5 4 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3

2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 1 2 2 3 0 1 1 2 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 4 5 5 6 3 4 4 5 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4

3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 2 1 3 2 1 0 2 1 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 5 4 6 5 4 3 5 4 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3

3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 2 3 1 2 1 2 0 1 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 5 6 4 5 4 5 3 4 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3

4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 3 2 2 1 2 1 1 0 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 6 5 5 4 5 4 4 3 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2

2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 0 1 1 2 1 2 2 3 3 4 4 5 4 5 5 6 2 3 3 4 3 4 4 5 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4

3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 2 1 3 2 3 2 4 3 1 0 2 1 2 1 3 2 4 3 5 4 5 4 6 5 3 2 4 3 4 3 5 4 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3

3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 2 3 1 2 3 4 2 3 1 2 0 1 2 3 1 2 4 5 3 4 5 6 4 5 3 4 2 3 4 5 3 4 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3

4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 3 2 2 1 4 3 3 2 2 1 1 0 3 2 2 1 5 4 4 3 6 5 5 4 4 3 3 2 5 4 4 3 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2

3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 2 3 3 4 1 2 2 3 1 2 2 3 0 1 1 2 4 5 5 6 3 4 4 5 3 4 4 5 2 3 3 4 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3

4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 3 2 4 3 2 1 3 2 2 1 3 2 1 0 2 1 5 4 6 5 4 3 5 4 4 3 5 4 3 2 4 3 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2

4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 3 4 2 3 2 3 1 2 2 3 1 2 1 2 0 1 5 6 4 5 4 5 3 4 4 5 3 4 3 4 2 3 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2

5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5

2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 3 2 4 3 4 3 5 4 4 3 5 4 5 4 6 5 1 0 2 1 2 1 3 2 2 1 3 2 3 2 4 3 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4

2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 3 4 2 3 4 5 3 4 4 5 3 4 5 6 4 5 1 2 0 1 2 3 1 2 2 3 1 2 3 4 2 3 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4

3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 4 3 3 2 5 4 4 3 5 4 4 3 6 5 5 4 2 1 1 0 3 2 2 1 3 2 2 1 4 3 3 2 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3

2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 3 4 4 5 2 3 3 4 4 5 5 6 3 4 4 5 1 2 2 3 0 1 1 2 2 3 3 4 1 2 2 3 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4

3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 4 3 5 4 3 2 4 3 5 4 6 5 4 3 5 4 2 1 3 2 1 0 2 1 3 2 4 3 2 1 3 2 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3

3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 4 5 3 4 3 4 2 3 5 6 4 5 4 5 3 4 2 3 1 2 1 2 0 1 3 4 2 3 2 3 1 2 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3

4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 6 5 5 4 5 4 4 3 3 2 2 1 2 1 1 0 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2

2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 3 4 4 5 4 5 5 6 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 0 1 1 2 1 2 2 3 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4

3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 4 3 5 4 5 4 6 5 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 1 0 2 1 2 1 3 2 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3

3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 4 5 3 4 5 6 4 5 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 1 2 0 1 2 3 1 2 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3

4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 5 4 4 3 6 5 5 4 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 2 1 1 0 3 2 2 1 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2

3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 4 5 5 6 3 4 4 5 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 1 2 2 3 0 1 1 2 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3

4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 5 4 6 5 4 3 5 4 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 2 1 3 2 1 0 2 1 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2

4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 5 6 4 5 4 5 3 4 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 2 3 1 2 1 2 0 1 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2

5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

3 2 4 3 4 3 5 4 4 3 5 4 5 4 6 5 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 1 0 2 1 2 1 3 2 2 1 3 2 3 2 4 3

3 4 2 3 4 5 3 4 4 5 3 4 5 6 4 5 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 1 2 0 1 2 3 1 2 2 3 1 2 3 4 2 3

4 3 3 2 5 4 4 3 5 4 4 3 6 5 5 4 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 2 1 1 0 3 2 2 1 3 2 2 1 4 3 3 2

3 4 4 5 2 3 3 4 4 5 5 6 3 4 4 5 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 1 2 2 3 0 1 1 2 2 3 3 4 1 2 2 3

4 3 5 4 3 2 4 3 5 4 6 5 4 3 5 4 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 2 1 3 2 1 0 2 1 3 2 4 3 2 1 3 2

4 5 3 4 3 4 2 3 5 6 4 5 4 5 3 4 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 2 3 1 2 1 2 0 1 3 4 2 3 2 3 1 2

5 4 4 3 4 3 3 2 6 5 5 4 5 4 4 3 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 3 2 2 1 2 1 1 0 4 3 3 2 3 2 2 1

3 4 4 5 4 5 5 6 2 3 3 4 3 4 4 5 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 0 1 1 2 1 2 2 3

4 3 5 4 5 4 6 5 3 2 4 3 4 3 5 4 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 3 2 4 3 4 3 5 4 2 1 3 2 3 2 4 3 2 1 3 2 3 2 4 3 1 0 2 1 2 1 3 2

4 5 3 4 5 6 4 5 3 4 2 3 4 5 3 4 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 3 4 2 3 4 5 3 4 2 3 1 2 3 4 2 3 2 3 1 2 3 4 2 3 1 2 0 1 2 3 1 2

5 4 4 3 6 5 5 4 4 3 3 2 5 4 4 3 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 4 3 3 2 5 4 4 3 3 2 2 1 4 3 3 2 3 2 2 1 4 3 3 2 2 1 1 0 3 2 2 1

4 5 5 6 3 4 4 5 3 4 4 5 2 3 3 4 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 3 4 4 5 2 3 3 4 2 3 3 4 1 2 2 3 2 3 3 4 1 2 2 3 1 2 2 3 0 1 1 2

5 4 6 5 4 3 5 4 4 3 5 4 3 2 4 3 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 4 3 5 4 3 2 4 3 3 2 4 3 2 1 3 2 3 2 4 3 2 1 3 2 2 1 3 2 1 0 2 1

5 6 4 5 4 5 3 4 4 5 3 4 3 4 2 3 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 4 5 3 4 3 4 2 3 3 4 2 3 2 3 1 2 3 4 2 3 2 3 1 2 2 3 1 2 1 2 0 1

6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0

Figure 4.4: The theoretical supply matrix for QCDOC

64

Best ROMap Alternate
Objective Function Value 429.12 429.12 1206.4

Normalized Obj. Fc’n Val. 1.00 1.00 2.81
Experimental Comm. Time 0.607 0.607 2.29

Normalized ECT 1.00 1.00 3.77
Experimental Total Time 84.70 84.70 124.69

Normalized ETT 1.00 1.00 1.47

Table 4.24: pSeries, N=4096, P = 16, 2D block decomposition

Nodes X Y Z
32 4 4 2
64 8 4 2
128 8 4 4
256 8 4 8
512 8 8 8
1024 8 8 16

Table 4.25: BG/L partition dimensions

four neighbors, and the topologies are identical. For these reasons, we focus on

the BNL machine for this application because its larger size allows the unique

properties of the QCDOC architecture to be exhibited more fully.

Matrix multiplication was first implemented on QCDOC at BNL using

the algorithm for a 1D block decomposition described earlier. The A matrix

was partitioned into 64 blocks of rows, and the B matrix into 64 blocks of

columns. Although six dimensions are available, only one is necessary in order

to implement this method of multiplication optimally because of the simple

communication pattern. Therefore, the partition was remapped to create a

64× 1× 1× 1× 1× 1 ring of processors.

Next, matrix multiplication using the broadcast-multiply-roll (BMR) method

for a 2D block decomposition was implemented on the 64-processor machine

65

at BNL. The application matrices A and B were partitioned into 8 × 8 grids

of sub-matrices. Because of the 2D block partition of the application, it is

clear that a 2D architecture will produce significantly better results than a 1D

(ring) architecture. It should be even more advantageous to utilize the full 6D

structure. Timing results were first collected for the simpler case of the 2D

8×8×1×1×1×1 structure. Although this layout does not take full advantage

of the capabilities of the machine, it is easier to envision and possible to make

an optimal mapping for by sight. Each of the blocks in the 8×8 decomposition

of the matrices can logically be mapped to its corresponding processor in the

8× 8 machine matrix.

QMP does not include an appropriate broadcast call; the only available

broadcast function is one for the case in which the processor with rank 0

sends data to all other processors. Since our program involves only broadcasts

within the rows, we were forced to write our own broadcast by hand. In the

first program on the 8 × 8 structure, broadcast across a row is started by

the root and passed from one processor to the next, so only one processor is

sending data during each time step. Using this method, the broadcast takes

seven steps. In the second program, one processor (the root) sends data during

the first time step, and two processors send data simultaneously in each of the

next steps until all processors have received the sub-matrix. In this way, the

number of time intervals it takes for all processors to receive the matrix is

reduced from seven to four. This is also the best we can hope to achieve

for the 8 × 8 configuration. The farthest processor from the broadcasting

processor is four hops away, and each processor is only linked directly to two

66

other members of its row, so once it has received and sent once it cannot send

again.

By reconfiguring the machine, however, we had eliminated the possibility

of using 1
3

of the communication links. Each processor had only four nearest

neighbors out of a potential six, meaning that only 128 links could be utilized;

the full 26 machine has 192.

After finding the six nearest neighbors of each processor by viewing the

processor numbers in terms of their binary representations, a new way of vi-

sualizing the 6D network, naturally conducive to matrix multiplication, was

discovered. Even though the topology was now that of a 6D torus, the base for

the network could still be drawn as an 8×8 grid; this pointed to a clear mapping

of blocks to processors. After taking care to create the proper arrangement

of processors and adding in four links per processor (to the processors imme-

diately above, below, left, and right), the remaining 64 links were drawn in

symmetrically, with four in each row and four in each column. The arrange-

ment of processors is depicted in Figure 4.5 (with each processor identified by

the rank assigned to it by the QMP_get_node_number call). Suppose r is the

processor rank. Note that br/8c produces the same result for all processors in

a row and r mod 8 produces the same result for all processors in a column.

There are 32 communication links in each of the 6 dimensions, yielding a

total of 192 links. Using the top row of processors as an example, the links in

the first 3 dimensions connect processors in the same row as shown in Figure

4.6 (with the same connection pattern in each row). Similarly, the links in

dimensions 3, 4, and 5 connect processors in the same column as shown in

67

0 4 6 2 3 7 5 1
8 12 14 10 11 15 13 9
24 28 30 26 27 31 29 25
16 20 22 18 19 23 21 17
48 52 54 50 51 55 53 49
56 60 62 58 59 63 61 57
40 44 46 42 43 47 45 41
32 36 38 34 35 39 37 33

Figure 4.5: 26 QCDOC processor arrangement

000000 000100 000110 000010 000011 000111 000101 000001

000000 000100 000110 000010 000011 000111 000101 000001

000000 000100 000110 000010 000011 000111 000101 000001

Dimension 0

Dimension 1

Dimension 2

Figure 4.6: QCDOC communication links in the first three dimensions

Figure 4.7 (with the same connection pattern in each column). When all 192

links are drawn in, we have a new way of visually representing the 6D network,

well-suited to studying matrix multiplication and other 2D applications, as

depicted in Figure 4.8.

The figure points to a way to improve our code. When performing the

broadcast of the A sub-matrix within each row using the 2D 8 × 8 grid, the

lower bound on the number of time intervals it takes for all processors to

receive the sub-matrix is four. When the full 26 grid is used, however, each

row has an additional four links, each one connecting two processors that are

three hops apart in the 8 × 8 grid. This enables all processors in a row to

receive the A sub-matrix after only three (log2

√
64) time intervals, because

68

000000

001000

011000

010000

110000

111000

101000

100000

000000

001000

011000

010000

110000

111000

101000

100000

000000

001000

011000

010000

110000

111000

101000

100000

000000

001000

011000

010000

110000

111000

101000

100000

000000

001000

011000

010000

110000

111000

101000

100000

000000

001000

011000

010000

110000

111000

101000

100000

Dimension 3 Dimension 4 Dimension 5

Figure 4.7: QCDOC communication links in the last three dimensions

processors can send more than once after receiving. The first send occurs along

the new link out of the broadcasting processor. At this point, two processors

have the data. Each sends to its neighbor in the direction away from the link

it received on. Now, four processors have the data. The difference at this

point is that each of these four processors still has a link to send on during

the next time interval, allowing the remaining four processors to receive the

data. (In the 8 × 8 setup, only the two processors that received during the

previous time interval still had links to send on.) We cannot possibly improve

upon this because there are still processors three hops away from each other

in each row; therefore, the mapping is optimal.

We compare runtimes for the matrix multiplication code using the op-

timal mapping on the three network setups described above. Although this

does not deal with task mapping directly, it is an important issue to examine.

69

000000 000100

001000 001100

000110 000010

001110 001010

011000 011100

010000 010100

011110 011010

010110 010010

000011 000111

001011 001111

000101 000001

001101 001001

011101 011001

010101 010001

110101 110001

111101 111001

011011 011111

010011 010111

110011 110111

111011 111111

110110 110010

111110 111010

110000 110100

111000 111100

101000 101100

100000 100100

101110 101010

100110 100010

101011 101111

100011 100111

101101 101001

100101 100001

Communication Links

Dimension 0 Dimension 3

Dimension 1 Dimension 4

Dimension 2 Dimension 5

Figure 4.8: The full 26 QCDOC processor layout and communication links

70

block1 block2

Size Time (s) Time (s) Improvement
over block1

1024 0.105 0.065 38%
2048 0.400 0.244 39%
3072 0.894 0.545 39%

block3

Size Time (s) Improvement
over block1

Improvement
over block2

1024 0.049 53% 25%
2048 0.181 55% 26%
3072 0.399 55% 27%

Table 4.26: Comparison of runtimes on three network setups

Our findings illustrate the significance of the connection method in a network

of processors. Adding more wires to a network clearly increases its cost, but

we show that it also enables problems to be solved more quickly. In future

work it may be interesting to look at this tradeoff between cost and runtime

improvement. We summarize our results in Table 4.26.

QCDOC differs significantly from the other three machines we examine

in that it does not support non-nearest neighbor communication. When we

wish to send a message from one processor to another, the exact message path

must be specified in the code. On the other three machines, only the sending

and receiving processors must make function calls in the code. MPI handles

the path the message takes. With QCDOC, however, the programmer must

decide upon a path before execution, and each intermediate processor along

the path must make the appropriate function call(s). The complexity of the

code, therefore, increases as the mapping quality decreases. For this reason,

71

comparing runtimes for various mappings becomes extremely inefficient. Until

automatic parallelization becomes feasible, we choose to compare only theo-

retical results for QCDOC. We assert that task mapping is important for this

machine, but code should only be written for the mapping determined to be

best. If our model produces positive experimental results for the other three

machines, we assume that it will be similarly beneficial for QCDOC.

Because we have already proven an optimal mapping for QCDOC, the

conclusion of our study of this problem on this supercomputer is slightly dif-

ferent from what the standard procedure will be in future work. In terms of

the cost equation, the mapping we describe has a cost C = 1216. Since we

have proven that this is the optimal mapping, we want to observe whether

the objective function above also gives 1216 as its best cost. We begin with

an initial mapping of task i to processor i, for i = 0, 1, . . . , 63. The cost of

this mapping is 1552. We then apply simulated annealing to minimize the

objective function value. The current simulated annealing method finds a cost

of 1216 after approximately 10 seconds. Even after running it substantially

longer, this is the lowest cost achieved. However, for different runs, different

mappings are associated with this cost.

We would like to examine larger, less symmetric, QCDOC architectures

of the form 2× 2× 2×K ×M ×N in order to demonstrate the necessity of

a model for matrix multiplication. We plan to obtain theoretical results for

partitions consisting of 512 (K = M = N = 4), 1024 (K = M = 4, N = 8),

2048 (K = M = 4, N = 16), and 4096 (K = M = N = 8) processors.

Contention for links in the 64-processor machine is not an issue, so we can

72

P K M N
64 2×2×2× 2 × 2 × 2

512 2×2×2× 4 × 4 × 4
1024 2×2×2× 4 × 4 × 8
2048 2×2×2× 4 × 4 × 16
4096 2×2×2× 8 × 8 × 8

Table 4.27: Larger QCDOC partition dimensions

avoid it in a model for this smaller architecture; for a larger, less symmetric

machine, however, it may come into play.

Best ROMap Alternate
Objective Function Value 1216.00 1552.00 3052.00

Normalized Obj. Fc’n Val. 1.00 1.28 2.51

Table 4.28: QCDOC, P=64, 2D block decomposition

4.3 Arbitrary demand matrices: theoretical and exper-

imental results

We look to related work [8, 11, 27, 55] to find communication patterns

common to large classes of applications. Constructing random demand matri-

ces will lead to interesting theoretical results. However, because our primary

goal is to contribute to task mapping knowledge for real applications, we cur-

rently focus on demand matrices comparable to ones we would expect to find

in a wide variety of actual problems. We will address random demand matrices

in future work.

73

4.3.1 Nearest-neighbor communication

For many parallel applications, the demand matrix is sparse [11]. Tasks

communicate mostly with nearby tasks. For this reason, it is important to test

our models on this type of communication pattern.

In 2D nearest-neighbor communication, each task must send messages to

its four neighbors in a 2D grid. Related work [8, 55] has recognized this as a

pattern common to many applications, including Jacobi-like applications.

In 3D nearest-neighbor communication, each task must send messages to

its six neighbors in a 3D mesh. Related work [11] has recognized this as a

pattern common to many applications.

There are also variants of these nearest-neighbor communication pat-

terns, in which each task sends full-sized messages to its nearest neighbors

and smaller messages to its next-nearest neighbors in the same direction [11],

or each task sends some number of messages to its nearest neighbors and some

fraction of that number of messages to random tasks farther away [55], for

both 2D [55] and 3D problems [11].

Our initial plan was to mimic this work for 2D and 3D meshes and tori.

After further thought, however, the decision was made to modify this plan.

Many applications in the Harwell-Boeing test collection of matrices [25, 26]

exhibit various forms of nearest-neighbor or next-nearest neighbor communi-

cation. Studying nearest-neighbor communication in real applications provides

more than simply interesting theoretical results. In addition, we choose not to

focus on 3D applications because one of the four machines we study, BG/L,

is 3D in nature. There should be a natural mapping of 3D applications to

74

this architecture, so intelligent task mapping should not be as necessary for

efficiency.

4.3.2 Assorted applications

We use matrices in the Harwell-Boeing test collection [25, 26] to serve as

example demand matrices with a wide variety of communication patterns.

In the applications discussed previously, each processor communicates in

the same way with its nearest and next-nearest neighbors. Not all real prob-

lems exhibit this characteristic. For this reason, we choose to examine some

applications from the collection with more irregular communication patterns,

as well as some with regular communication patterns.

We test the following 13 applications from the collection:

• Power network patterns (BCSPWR01 and BCSPWR02)

• Finite element structures problems in aircraft design (CAN24, CAN61,

and CAN62)

• Small, simple problems (JGL009, JGL011, and RGG010)

• Structural engineering (DWT59)

• Laplace finite element applications (LAP25)

• IBM conference advertisement (IBM32)

• Biochemical ordinary differential equations (CURTIS54)

• Jacobian of emitter-follower-current switch circuit (WILL57)

75

In some cases the demand matrices were modified slightly to accommo-

date machine size. Not all applications were tested on all sizes of all architec-

tures, as doing so would require significant modifications and would destroy

the true character of the demand matrix.

All row and column headings are the same as those for matrix multipli-

cation except for one. The column heading ‘Alternate’ has been replaced with

‘Worst.’ This difference is due to the way in which this mapping is obtained.

For matrix multiplication, a poor mapping was chosen by hand. For the follow-

ing applications, however, we let simulated annealing find the largest, or worst,

objective function value it can. This is in contrast to finding the smallest, or

best, objective function value.

Galaxy

We examine JGL009, JGL011, and RGG010 for 16 processors.

Best ROMap Worst
Objective Function Value 101.84 107.12 115.92

Normalized Obj. Fc’n Val. 1.00 1.05 1.14
Experimental Comm. Time 0.852 0.938 1.03

Normalized ECT 1.00 1.10 1.21

Table 4.29: Galaxy, P=16, JGL009

Best ROMap Worst
Objective Function Value 166.32 169.84 178.64

Normalized Obj. Fc’n Val. 1.00 1.02 1.07
Experimental Comm. Time 1.25 1.27 1.35

Normalized ECT 1.00 1.02 1.08

Table 4.30: Galaxy, P=16, JGL011

76

Mapping the tasks in rank order is near-optimal for JGL011 on 16 pro-

cessors. The objective function value for the rank order mapping for is not

as good as the value for the best mapping found by the model, but it is very

close to it. In the mapping determined by the model, only 3 of the 16 tasks

are not mapped to processors with corresponding rank.

Note, in Table 4.30, that the normalized experimental times are almost

identical to the normalized objective function values for this instance.

Best ROMap Worst
Objective Function Value 164.56 168.08 178.64

Normalized Obj. Fc’n Val. 1.00 1.02 1.09
Experimental Comm. Time 1.29 1.31 1.38

Normalized ECT 1.00 1.02 1.07

Table 4.31: Galaxy, P=16, RGG010

For RGG010 on 16 processors we have a situation similar to that observed

in Table 4.30 for JGL011. We can see in Table 4.31 that the relative theoretical

values predict the relative experimental values very well.

We also observe only a small difference between the best and worst map-

pings for the three applications above. This can be mainly attributed to the

fact that the demand matrices for these applications are fairly dense and the

communication volume is identical for all communicating pairs of processors.

61.7%, 62.8%, and 76% of the demand matrix entries are nonzero, for the three

applications, respectively.

We examine CAN24, LAP25, and IBM32 for 24 processors.

Although our task mapping model predicts some improvement in runtime

for CAN24 on 24 processors, the experiments show that it does not have a

77

Best ROMap Worst
Objective Function Value 163.80 179.64 184.92

Normalized Obj. Fc’n Val. 1.00 1.10 1.13
Experimental Comm. Time 0.852 0.857 0.868

Normalized ECT 1.00 1.01 1.02

Table 4.32: Galaxy, P=24, CAN24

significant impact (see Table 4.32.

Best ROMap Worst
Objective Function Value 320.04 340.16 374.60

Normalized Obj. Fc’n Val. 1.00 1.06 1.17
Experimental Comm. Time 1.57 1.86 2.00

Normalized ECT 1.00 1.18 1.27

Table 4.33: Galaxy, P=24, LAP25

We see in Table 4.33 that the experimental improvement was greater than

the theoretical improvement in both cases for LAP25 on 24 processors.

Best ROMap Worst
Objective Function Value 141.64 176.84 192.20

Normalized Obj. Fc’n Val. 1.00 1.25 1.39
Experimental Comm. Time 0.973 1.05 1.11

Normalized ECT 1.00 1.08 1.14

Table 4.34: Galaxy, P=24, IBM32

We see the opposite in Table 4.34 for IBM32. The theoretical improve-

ment was greater than the experimental improvement.

We examine the differences in these two applications to determine a rea-

son for the difference in theoretical and experimental results. LAP25 has

a more regular communication pattern and more nonzero matrix entries than

IBM32. LAP25 tasks also communicate mostly with closely neighboring tasks,

78

while IBM32 tasks do not. The difference that affects our observation the most,

however, is the symmetry in LAP25 that does not exist in IBM32.

Because LAP25 is symmetric, if the processor to which task i is assigned

sends to the processor to which task j is assigned, communication also occurs

in the other direction. On a machine like Galaxy, the only differentiating factor

for network distance is whether two processors are on the same or different

nodes. With a machine like Galaxy, if one communication is made intra-nodal,

another one will is also guaranteed to be intra-nodal.

The other factors above also affect the observation. CAN24 is also sym-

metric, but it has a more irregular communication pattern.

We examine BCSPWR01, CAN24, LAP25, and IBM32 for 32 processors.

Best ROMap Worst
Objective Function Value 67.92 80.24 104.88

Normalized Obj. Fc’n Val. 1.00 1.18 1.54
Experimental Comm. Time 0.493 0.547 0.579

Normalized ECT 1.00 1.11 1.17

Table 4.35: Galaxy, P=32, BCSPWR01

Best ROMap Worst
Objective Function Value 163.80 179.64 184.92

Normalized Obj. Fc’n Val. 1.00 1.10 1.13
Experimental Comm. Time 0.965 0.993 1.03

Normalized ECT 1.00 1.03 1.07

Table 4.36: Galaxy, P=32, CAN24

We examine BCSPWR02, CAN61, CAN62, DWT59, CURTIS54, and

WILL57 for 64 processors.

On 64 processors, BCSPWR02 is the application with the most significant

79

Best ROMap Worst
Objective Function Value 355.20 362.24 397.44

Normalized Obj. Fc’n Val. 1.00 1.02 1.12
Experimental Comm. Time 1.61 1.66 1.74

Normalized ECT 1.00 1.03 1.08

Table 4.37: Galaxy, P=32, LAP25

Best ROMap Worst
Objective Function Value 224.24 252.40 259.44

Normalized Obj. Fc’n Val. 1.00 1.13 1.16
Experimental Comm. Time 1.11 1.14 1.25

Normalized ECT 1.00 1.03 1.13

Table 4.38: Galaxy, P=32, IBM32

difference among mappings, as seen in Table 4.39. BCSPWR01 displays the

most significant difference for 32 processors, as seen in Table 4.35.

As a whole, we do not observe dramatic differences among the various

mappings for Galaxy. This can be attributed to the relative homogeneity of

the machine. Nonzero entries in the supply matrix take on one of only two

nonzero values, and these two values are not drastically different.

IBM pSeries 655

We examine JGL009, JGL011, and RGG010 for 16 processors.

We observe that the difference among mappings is much greater in all

cases for the pSeries machine than for Galaxy. This can be attributed to the

greater difference between intra-node and inter-node communication time on

the pSeries.

We examine CAN24, LAP25, and IBM32 for 24 processors.

We examine BCSPWR01, CAN24, LAP25, and IBM32 for 32 processors.

80

Best ROMap Worst
Objective Function Value 39.36 53.44 55.20

Normalized Obj. Fc’n Val. 1.00 1.36 1.40

Table 4.39: Galaxy, P=64, BCSPWR02

Best ROMap Worst
Objective Function Value 631.68 656.32 684.48

Normalized Obj. Fc’n Val. 1.00 1.04 1.08

Table 4.40: Galaxy, P=64, CAN61

As with Galaxy, the power network application shows the most significant

difference among mappings, as seen in Table 4.51.

4.4 Summary of case studies

The results above provide us with many insights into task mapping as a

whole. All experimental values given are the average runtimes over hundreds

of runs. Galaxy and the pSeries machine exhibit more variance in runtime be-

cause other users are sometimes simultaneously accessing the same partitions

or connections. BG/L and QCDOC exhibit less variance among runs.

As seen above, when communication occurs among a large percentage of

processor pairs, and this communication does not vary significantly in volume,

we do not observe a significant improvement when using a mapping determined

by the model instead of an arbitrary one.

We should also highlight the similarities and differences between Galaxy

and the pSeries 655. For both machines, each node contains two processors.

Additionally, nonzero entries in the supply matrices take on only one of two

values. The significance of task mapping is not the same on both machines,

81

Best ROMap Worst
Objective Function Value 164.24 187.12 215.28

Normalized Obj. Fc’n Val. 1.00 1.14 1.31

Table 4.41: Galaxy, P=64, CAN62

Best ROMap Worst
Objective Function Value 236.00 250.08 287.04

Normalized Obj. Fc’n Val. 1.00 1.06 1.22

Table 4.42: Galaxy, P=64, DWT59

however. More improvement can be made through mapping on the pSeries.

A difference that brings about this inconsistency is the fact that inter-node

communication for the pSeries machine is very expensive in comparison to

intra-node communication.

Through QCDOC, we learn that task mapping analysis is difficult for

machines for which non-nearest neighbor communication has not been imple-

mented. It is easy to compare theoretical runtimes for different mappings, but

it is inefficient to implement code for these mappings. Because non-nearest

neighbor communication is not supported, we cannot simply use an alternative

machine file. Current code must be modified drastically. Task mapping is still

useful if we only wish to determine the best mapping and implement it. A

better mapping leads to fewer lines of code because communications are more

efficient; message path lengths are shorter.

General observations are discussed further in Chapter 6.

82

Best ROMap Worst
Objective Function Value 559.08 592.52 654.12

Normalized Obj. Fc’n Val. 1.00 1.06 1.17

Table 4.43: Galaxy, P=64, CURTIS54

Best ROMap Worst
Objective Function Value 521.44 544.32 618.24

Normalized Obj. Fc’n Val. 1.00 1.04 1.19

Table 4.44: Galaxy, P=64, WILL57

Best ROMap Worst
Objective Function Value 139.16 208.56 416.76

Normalized Obj. Fc’n Val. 1.00 1.50 2.99
Experimental Comm. Time 0.422 0.640 1.05

Normalized ECT 1.00 1.52 2.49

Table 4.45: pSeries, P=16, JGL009

Best ROMap Worst
Objective Function Value 371.36 537.92 635.08

Normalized Obj. Fc’n Val. 1.00 1.45 1.71
Experimental Comm. Time 0.979 1.06 1.38

Normalized ECT 1.00 1.08 1.41

Table 4.46: pSeries, P=16, JGL011

Best ROMap Worst
Objective Function Value 315.84 413.00 607.32

Normalized Obj. Fc’n Val. 1.00 1.31 1.92
Experimental Comm. Time 0.728 0.967 1.27

Normalized ECT 1.00 1.33 1.74

Table 4.47: pSeries, P=16, RGG010

Best ROMap Worst
Objective Function Value 344.6 747.12 899.80

Normalized Obj. Fc’n Val. 1.00 2.17 2.61

Table 4.48: pSeries, P=24, CAN24

83

Best ROMap Worst
Objective Function Value 636.68 954.92 1760.96

Normalized Obj. Fc’n Val. 1.00 1.50 2.77

Table 4.49: pSeries, P=24, LAP25

Best ROMap Worst
Objective Function Value 336.72 683.72 975.20

Normalized Obj. Fc’n Val. 1.00 2.03 2.90

Table 4.50: pSeries, P=24, IBM32

Best ROMap Worst
Objective Function Value 65.76 232.32 565.44

Normalized Obj. Fc’n Val. 1.00 3.53 8.60

Table 4.51: pSeries, P=32, BCSPWR01

Best ROMap Worst
Objective Function Value 344.60 747.12 941.44

Normalized Obj. Fc’n Val. 1.00 2.17 2.73

Table 4.52: pSeries, P=32, CAN24

Best ROMap Worst
Objective Function Value 810.24 1060.08 2031.68

Normalized Obj. Fc’n Val. 1.00 1.31 2.51

Table 4.53: pSeries, P=32, LAP25

Best ROMap Worst
Objective Function Value 690.84 1037.84 1329.32

Normalized Obj. Fc’n Val. 1.00 1.50 1.92

Table 4.54: pSeries, P=32, IBM32

84

Chapter 5

Automatic Parallelization: Thoughts and

Practices

As stated earlier, the goal for the future is automatic parallelization, or

the conversion of sequential code to parallel code by a compiler. In practice

today, this translation is normally done by hand.

Automatic parallelization methods used today have many imperfections.

They often lose their efficiency quickly when the number of processors extends

beyond a relatively small number. Because of a desire for fast compilation,

accuracy is sometimes lost [2].

Researchers at the University of Tennessee are attempting to make ad-

vances in this area with their SANS (Self-Adapting Numerical Software) sys-

tems [13]. One of the key facets of this proposed software is its optimized

communication library, which will optimize MPI operations based on proper-

ties such as network topology and message size.

85

5.1 Semi-automatic parallelization

As its name suggests, semi-automatic parallelization is a combination of

manual and automatic parallelization. A semi-automatic parallelization tool

takes sequential code and a parameterized description of the machine architec-

ture as input. Its output consists of both comments in the original program

indicating places where parallelization may be possible and new suggested

parallel code taking advantage of those possibilities. Additional information

is provided, enabling the user to understand what is being suggested in order

to further improve the parallel code. The parallel code produced by the tool

alone is almost certainly suboptimal, but allowing active human participation

in the parallelization process leads to favorable possibilities for improvement.

Many attempts at semi-automatic parallelization have been made over

the years. The PARTITA system was designed in 1994 to aid in the paral-

lelization of FORTRAN programs [39]. Parallel Software Products Inc. has

been working on a similar toolkit for over 15 years, with its most recent prod-

uct, ParaWise 2.4, being released in 2004 [2]. ParaWise boasts of a friendly,

yet detailed, user interface that significantly aids in producing efficient code.

Software packages such as these two propose to be cost-effective solutions to

parallelizing applications.

86

Chapter 6

Summary and Conclusions

Because task mapping is an application- and machine-specific problem,

the standard approach in previous work has been to examine a particular

problem on a single parallel computer. Although surveys giving descriptions

of multiple instances have been compiled, they have been summaries of dis-

tinct findings rather than efforts to draw more general conclusions. Difficulties

are encountered when deciding to test a new application on the same machine

or to run the same application on a new machine. A model which was found

to produce an optimal mapping for one type of input may be extremely poor

for another because of differences in the topology of the networks or the com-

munication pattern of the problem [10]. Our work seeks to patch together a

collection of specific problems so that we have a sizeable enough picture of

task mapping that we can step back and examine the field in a more general

way. As we become familiar with even more applications on more machines,

we can compare patterns of supply and demand matrices and identify char-

acteristics by which to classify them. We can similarly examine patterns in

87

objective functions. By analyzing which models work best for which types

of problems and supercomputers, we can move toward our ultimate objective

of automatic parallelization. We will also be producing nontrivial results for

specific instances as we approach this final goal.

Our work is the first to perform a detailed theoretical and experimental

analysis on four physical machines of such varying architectures. In addition,

we have studied a wide variety of application types on these computers. For

this reason, we believe that we are in a position to make educated statements

about task mapping in general.

This is also the first study to address task mapping on an actual 6D

architecture. Previous work has only simulated such a network [24].

Another advantage of our work over other previous work is our use of

actual rather than simulated parallel systems. When simulating networks,

many assumptions regarding aspects such as link transfer time and node delay

[24] are made. These assumptions may be proved false when an attempt is

made to implement the mapping strategy on an actual system.

Based on our work with matrix multiplication and the applications from

the Harwell-Boeing collection, we currently have a small piece of the puzzle

in our hands. There is essentially no limit to the number of applications that

can be studied. Even the number of types of supercomputers that can be

utilized may be thought of as limitless, because new designs can lead to the

construction of new machines [64]. We certainly do not make the claim that we

can study all possible combinations. We are confident, however, that we will

be able to set forth general guidelines based on the conclusions that we draw

88

from the specific instances that we do study. These, in turn, can be applied

to the occurrences that we have not examined after some characterizations

describing them have been made.

Although most of our experimental results are on relatively small numbers

of processors, we are confident that we will have similar success with massively

parallel machines. Most previous work has also considered systems of 64 [24]

or fewer processors. When massively parallel supercomputers are studied,

the typical procedure is to focus on no more than a few applications on one

machine. Results have proven the continued importance of task mapping for

such larger machines.

6.1 Characterizing architectures

There are a number of factors by which architectures can be characterized,

including the following:

• type (Beowulf, SMP, cellular, etc.)

• number of distinct values in supply matrix

• diameter [8]

• average inter-processor distance [8]

• number of processors [10]

• number of communication links [10]

• average number of links per processor [10]

89

• variance in computing capabilities

The number of distinct values in the supply matrix can affect the sig-

nificance of task mapping. Supply matrices for machines like Galaxy and the

pSeries 655 have only two distinct nonzero values. The supply matrix for QC-

DOC has six distinct nonzero entries. In general, more distinct values lead to

more improvement through task mapping. However, the difference between

these values is also a factor. If a machine has many different inter-node dis-

tances, but they are all very close in value, the order in which the tasks are

mapped is almost inconsequential.

Whether or not all processors have equal computing capabilities is also

a characteristic by which architectures can be differentiated. It should af-

fect relevance of task mapping. However, because we have not yet studied

heterogeneous architectures, we cannot discuss its effect here.

6.2 Characterizing applications

We can similarly characterize applications. We can consider aspects such

as the following:

• number of times the application will be run

• total number of messages [47]

• number of sources [47]

• number of destinations [47]

90

• distribution of message size [47]

• distribution of pairwise number of sends

• type of communication (one/some/all to one/some/all)

• density of demand matrix

• symmetry of demand matrix

• communication-to-computation ratio [22, 24]

The number of times the application will be run should affect the choice

of heuristic. If the application is to be run only once, using a heuristic with

greater time complexity may not be efficient. If it is to be run many times,

however, the benefit of such a heuristic may outweigh the time cost.

All communications may be viewed as coming from one, some, or all pro-

cessors and going to one, some, or all processors. There are general MPI send

calls associated with each of the nine possible combinations. In an application

like matrix multiplication using the broadcast-multiply-roll method, the broad-

cast step involves
√

n one-to-some communications and the roll step involves

n one-to-one communications. Profiling tools can produce this information.

We observe in 4.3.2 that the density or sparsity of a demand matrix can

affect the significance of intelligent task mapping. We can express this quantity

as

density =
number of pairs (i, j) for which ti communicates to tj

t2
. (6.1)

91

This is the same as the fraction of nonzero entries in the demand matrix.

If this quantity is large, it may be a contributing factor to the decision

that the time spent to determine a mapping from a model is too costly for the

expected improvement in runtime.

The communication-to-computation ratio may also affect the decision on

whether to implement a task mapping model. However, since we have only

studied applications for which perfect load balance is easily achievable, we

cannot draw conclusions in this area at present.

6.3 Future work

Although much has been discovered, we are still left with many promising

avenues to pursue. Because of the great number of applications, objective

functions, heuristics, problem sizes, methods of creating supply and demand

matrices, and even parallel computers themselves, we are unable to examine

every possible combination in this work. In some cases, we have made certain

assumptions to narrow our focus. We will explore what happens when we

remove some of them. In other cases, we have moved on to a new problem

before thoroughly exhausting all ideas about the current problem in order to

gain a better perspective on task mapping as a whole. We can revisit these

problems.

Thus far, we have assumed that the code for the applications we study will

be run many times so the time to solution for finding a mapping is negligible

in comparison to the sum of runtimes for all runs of the code. For large

problems whose code will only be run once, however, some methods of task

92

mapping may be relatively costly with respect to time. For this reason, we will

consider time to solution for finding a mapping in addition to time to solution

for the application itself [24]. We may wish to look at the ratios of these two

times. This will involve a thorough analysis of computational complexity of

the various mapping strategies.

Along the same lines, we will consider ideas presented in [24] and con-

struct a new heuristic algorithm to use in place of simulated annealing to

optimize a given objective function. When using a demand matrix to repre-

sent an application, it is easy to identify tasks that communicate heavily and

those that do not. A simple comparison can be made by summing the entries

for each row in the matrix. We may want to develop a heuristic that focuses

mainly on where heavily-communicating tasks get mapped and spends less

computational time considering lightly-communicating tasks. This strategy

could result in a decrease in the time taken to find an efficient mapping, which

would be especially significant for large applications and large architectures.

We will also examine alternative metrics for cost of communication in the

supply matrix. Bhanot et al. [11] propose, but never evaluate, two distance

metrics as alternatives to the hop count for BG/L. The first is

d(a, b) =
3

D
h(a, b), (6.2)

where D is the number of torus dimensions used in the shortest path from a

to b. The second is the Euclidean distance between processors,

d(a, b) =
√

(ax − bx)2 + (ay − by)2 + (az − bz)2. (6.3)

93

We will study the effect of using these metrics on BG/L and QCDOC

and compare the results to those obtained using the hop count. We will also

examine use of the virtual node mode for BG/L.

Additionally, we plan to study more matrices from the Harwell-Boeing

collection, incorporate message size into the demand matrix, and examine

heterogeneous systems with processors of differing computational power.

Other possibilities for study are problems that have been decomposed

into a larger number of tasks than there are processors. In these cases we will

consider load balancing. We may also drop the assumption that there is no

ordering on the tasks. In this case we will look at task precedence graphs.

Thus far we have only studied static mapping; we may also consider dynamic

mapping.

This work need not be restricted to the ideas of scientific computing; it

may also reach out to business computing. An example of previous success

can be found in Songnian Zhou’s Platform Computing, a company employing

grid computing software technology, in particular LSF (Load Sharing Facil-

ity) software, to increase the business performance of over 1,700 organizations

worldwide [4]. The abstract for a patent of Sheets et al. for a “method and

system for providing dynamic hosted service management across disparate ac-

counts/sites” [61] also contains promising implications for task mapping. By

examining both scientific and business applications, we give ourselves a wide

variety of areas in which to make advances.

94

Bibliography

[1] Galaxy, 2004. Department of Applied Mathematics and Statistics, Stony
Brook University, http://galaxy.ams.sunysb.edu.

[2] Parawise: The computer aided parallelization toolkit, 2004. Parallel Soft-
ware Products Inc., http://www.parallelsp.com/parawise.htm.

[3] Lattice QCD message passing (QMP), 2005. The Lattice Web: A
Resource for the International Lattice Gauge Theory Community,
http://www.lqcd.org/QMP.

[4] Platform Computing - Accelerating Intelligence - Grid Computing, 2005.
Platform Computing, http://www.platform.com.

[5] M. Affenzeller and R. Mayrhofer. Generic heuristics for combinatorial
optimization problems. In Proceedings of 9th International Conference
on Operational Research (KOI), pages 83–92, 2002.

[6] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A
three-dimensional approach to parallel matrix multiplication. IBM Jour-
nal of Research and Development, 39(5):575–582, 1995.

[7] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high-performance
matrix-multiplication algorithm on a distributed-memory parallel com-
puter, using overlapped communication. IBM Journal of Research and
Development, 38:673–681, 1994.

[8] T. Agarwal, A. Sharma, and L. V. Kalé. Topology-aware task mapping for
reducing communication contention on large parallel machines. In Pro-
ceedings of IEEE International Parallel and Distributed Processing Sym-
posium, April 2006.

[9] J. Aguilar and E. Gelenbe. Task assignment and transaction clustering
heuristics for distributed systems. Information Sciences, 97(1/2):199–
219, 1997.

95

[10] T. Baba, Y. Iwamoto, and T. Yoshinaga. A network-topology indepen-
dent task allocation strategy for parallel computers. In Supercomputing
’90: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing,
pages 878–887, Washington, DC, 1990. IEEE Computer Society.

[11] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and
R. Walkup. Optimizing task layout on the Blue Gene/L supercomputer.
IBM Journal of Research and Development, 49(2/3):489–500, 2005.

[12] S. H. Bokhari. On the mapping problem. IEEE Transactions on Com-
puters, C-30(3):207–214, 1981.

[13] G. Bosilca. Self adapting numerical software SANS effort. Submitted to
IBM Journal of Research and Development, 2005.

[14] D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd. Fault-tolerant
design of the IBM pSeries 690 system using POWER4 processor technol-
ogy. IBM Journal of Research and Development, 46(1):77–86, 2002.

[15] T. Bultan and C. Aykanat. A new mapping heuristic based on mean field
annealing. Journal of Parallel and Distributed Computing, 16(4):292–305,
1992.

[16] L. Cannon. A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University, 1969.

[17] J. Choi. A new parallel matrix multiplication algorithm on distributed-
memory concurrent computers. Concurrency: Practice and Experience,
10(8):655–670, 1998.

[18] J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA: parallel univer-
sal matrix multiplication algorithms on distributed memory concurrent
computers. Concurrency: Practice and Experience, 6(7):543–570, 1994.

[19] N. H. Christ. QCDOC project hardware status, 2004. 2004 Brookhaven
National Laboratory All-Hands Meeting, http://www.bnl.gov/lqcd/

comp/qcdoc bkgnd.asp.

[20] S. Coghlan. Introduction to BG/L: Argonne leadership computing facil-
ity, February 2007.

96

[21] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic al-
gorithms for matrix multiplication. In Proceedings of 46th Annual Sym-
posium on Foundations of Computer Science, pages 379–388, Pittsburgh,
PA, 2005.

[22] J. B. Collins. An approach to scheduling task graphs with contention in
communication. 2001.

[23] Y. Deng, J. Glimm, and J. W. Davenport. Global communication schemes
on QCDOC. Submitted to IEEE Transactions on Parallel and Distributed
Computing, 2003.

[24] V. A. Dixit-Radiya and D. K. Panda. Task assignment on distributed-
memory systems with adaptive wormhole routing. In Proceedings of Sym-
posium on Parallel and Distributed Processing, pages 674–681, 1993.

[25] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems.
ACM Transactions on Mathematical Software, 15(1):1–14, 1989.

[26] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I). Technical Report RAL 92-
086, Chilton, Oxon, England, 1992.

[27] M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward, and R. S.
Germain. Scalable framework for 3D FFTs on the Blue Gene/L super-
computer: Implementation and early performance measurements. IBM
Journal of Research and Development, 49(2/3):457–464, 2005.

[28] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a
hypercube by recursive mincut bipartitioning. Journal of Parallel and
Distributed Computing, 10(1):35–44, 1990.

[29] A. Gara et al. Overview of the Blue Gene/L system architecture. IBM
Journal of Research and Development, 49(2/3):195–212, 2005.

[30] P. A. Boyle et al. Status of the QCDOC project. Nuclear Physics Pro-
ceedings Supplements, 106:177–183, 2002.

[31] P. A. Boyle et al. QCDOC: a 10 teraflops computer for tightly-coupled
calculations. In SC ’04: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing. IEEE Computer Society, 2004.

[32] P. A. Boyle et al. Overview of the QCDSP and QCDOC computers. IBM
Journal of Research and Development, 49(2/3):351–365, 2005.

97

[33] B. Fox. Integrating and accelerating Tabu search, simulated annealing
and genetic algorithms. Annals of Operations Research, 41:47–67, 1993.

[34] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hypercube I: matrix
multiplication. Parallel Computing, 3:17–31, 1987.

[35] B. Grayson, A. P. Shah, and R. A. van de Geijn. A high performance
parallel Strassen implementation. Parallel Processing Letters, 6(1):3–12,
1996.

[36] A. Gupta and V. Kumar. Scalability of parallel algorithms for matrix
multiplication. In Proceeedings of 1993 International Conference on Par-
allel Processing, volume III, pages 115–123. CRC Press, 1993.

[37] I. Haritaoglu and C. Aykanat. An efficient mapping heuristic for mesh-
connected parallel architectures based on mean field annealing. Lecture
Notes in Computer Science, 854:820–831, 1994.

[38] W. E. Hart. Tabu search, 1997. Sandia National Laboratories, http://
www.cs.sandia.gov/opt/survey/ts.html.

[39] L. Hascoet. PARTITA parallelization and code generation. EUREKA
Project 933 EUROTOPS, 1994.

[40] H.-U. Heiss and M. Dormanns. Mapping tasks to processors with the aid
of Kohonen networks. In Proceedings of High Performance Computing
Conference ’94, pages 133–143, Singapore, 1994.

[41] J. H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[42] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang. Matrix
multiplication on the Intel Touchstone Delta. Concurrency: Practice and
Experience, 6(7):571–594, 1994.

[43] J. Khoriaty. Kernel performance on QCDOC. Master’s thesis, The Uni-
versity of Edinburgh, 2005.

[44] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[45] M. Krishnan and J. Nieplocha. SRUMMA: A matrix multiplication algo-
rithm suitable for clusters. In Proceedings of 18th International Parallel
and Distributed Processing Symposium, 2004.

98

[46] A. Kumar. Task layout optimizer for Blue Gene, 2005. IBM, http://
www.alphaworks.ibm.com/tech/bglmap.

[47] S.-Y. Lee. Effects of communication characteristics on task mapping qual-
ity on a 2-d mesh with wormhole routing, 2000.

[48] E. J. Lerner. Cellular architecture builds next generation supercom-
puters, 2001. IBM, http://www.research.ibm.com/thinkresearch/

pages/2001/20010611 cellular.shtml.

[49] T.-Y. Liang, C.-K. Shieh, and W. Zhu. Task mapping on distributed
shared memory systems using hopfield neural network. In Proceedings of
Communication Networks and Distributed Systems Modeling and Simula-
tion Conference, pages 37–43, 1997.

[50] M. Lin and L. T. Yang. Hybrid genetic algorithms for scheduling partially
ordered tasks in a multi-processor environment. In Proceedings of Sixth
International Conference on Real-Time Computing Systems and Applica-
tions, page 382, 1999.

[51] X. Martorell. Blue Gene/L performance tools. IBM Journal of Research
and Development, 49(2/3):407–424, 2005.

[52] C. W. McCurdy. Creating science-driven computer ar-
chitecture, 2002. Lawrence Berkeley National Laboratory,
http://www.nersc.gov/news/reports/ArchDevProposal.5.01.pdf.

[53] P. Merkey. Beowulf history, 2004. http://www.beowulf.org/

overview/history.html.

[54] M. Miki, T. Hiroyasu, T. Yoshida, and T. Fushimi. Parallel simulated
annealing with adaptive temperature determined by genetic algorithm.
In Proceedings of the 2002 IEEE International Conference on Systems,
Man, and Cybernetics, 2002.

[55] S. Moh, C. Yu, H. Y. Youn, B. Lee, and D. Han. Mapping strategies
for switch-based cluster systems of irregular topology. In Proceedings of
ICPADS, pages 733–740, 2001.

[56] D. M. Nicol and W. Mao. On bottleneck partitioning of k-ary n-cubes.
Parallel Processing Letters, 6:389–399, 1996.

99

[57] M. G. Norman and P. Thanisch. Models of machines and computation
for mapping in multicomputers. ACM Computing Surveys, 25(3):263–302,
1993.

[58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C. Cambridge University Press, Cambridge, MA,
2nd edition, 1992.

[59] S. Robinson. Toward an optimal algorithm for matrix multiplication.
SIAM News (Newsjournal of the Society for Industrial and Applied Math-
ematics), 38(9):1,3, 2005.

[60] S. Salcedo-Sanz, Y. Xu, and X. Yao. Hybrid meta-heuristics algorithms
for task assignment in heterogeneous computing systems. Computers &
Operations Research, 33(2006):820–835, 2004.

[61] K. B. Sheets, P. S. Smith, S. J. Engel, Y. Deng, J. Guistozzi, and A. Ko-
robka. Method and system for providing dynamic hosted service manage-
ment across disparate accounts/sites, November 2000.

[62] B. Smith and B. Bode. Performance effects of node mappings on the IBM
BlueGene/L machine. In Proceedings of Euro-Par 2005, pages 1005–1013,
2005.

[63] H. Stone. Multiprocessor scheduling with the aid of network flow algo-
rithms. IEEE Transactions on Software Engineering, SE-3:85–93, 1977.

[64] N. Suri and A. Mendelson. Design of a parallel interconnect based on
communication pattern considerations. Journal of Parallel Algorithms
and Architectures, 16(4):243–271, 2001.

[65] E-G. Talbi and T. Muntean. A new approach for the mapping problem:
A parallel genetic algorithm. In Proceedings of 2nd Symposium on High
Performance Computing, pages 71–82, 1991.

[66] E.-G. Talbi and T. Muntean. General heuristics for the mapping problem.
In Proceedings of World Transputer Congress, pages 1229–1241, 1993.

[67] K. Taura and A. Chien. A heuristic algorithm for mapping communicat-
ing tasks on heterogeneous resources. In HCW ’00: Proceedings of the 9th
Heterogeneous Computing Workshop, pages 102–115, Washington, DC,
2000. IEEE Computer Society.

100

[68] R. A. van de Geign and J. Watts. SUMMA: scalable universal matrix mul-
tiplication algorithm. Concurrency: Practice and Experience, 9(4):255–
274, 1997.

[69] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of Supercomputing ’98, 1998.

[70] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing,
27(1-2):3–35, 2001.

101

