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Abstract of the Dissertation

Studies in Perturbative QCD

by

Sahap Mert Aybat

Doctor of Philosophy

in

Physics

Stony Brook University

2007

Quantum Chromodynamics (QCD) is the fundamental theory

of strong interactions. One of the reasons why QCD has been very

successful is the factorization properties of high energy QCD pro-

cesses. In quantum field theories, factorization is the separation

of short and long distance effects. In the first part of this thesis,

we will first develop a systematic understanding of the long dis-

tance effects in QCD, and then review the proof of factorization

for semi-inclusive hadronic scattering cross sections. We will also

discuss how we use this result to make cross section predictions in

perturbative QCD.

Cross sections for (semi-)inclusive processes get large logarith-

mic corrections in perturbative QCD, associated with certain kine-
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matic regions in phase space. It is useful to resum these large cor-

rections to all orders in perturbation theory. In the second part of

this thesis we will study the resummation of these large corrections

for partonic scattering amplitudes. The main result of this thesis

will be the computation of the two-loop soft anomalous dimension

matrix, which is needed for the resummation of next-to-next-to

leading logarithmic corrections.
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Chapter 1

Prologue: QCD as a Theory of Strong

Interactions

1.1 A brief history of QCD

Throughout the history of humankind, one of the very important ques-

tions whe have always asked is “what is the matter made out of and how

does it interact with other matter?” Our quest for answering this question

goes back to as early as around 450 BC when Democritus in ancient Greece

proposed that the matter is made out of the “indivisible” or the “uncuttable”

atoms. Even today, particle physicists continue this quest for a better under-

standing of the fundamental properties of the nature and probably this search

will continue as long as the humankind exists.

Our latest understanding of what the matter is made out of is summarized

by the Standard Model (SM) of particle physics, and according to the SM,

the matter that we can see directly is made out of leptons and quarks. We

understand the interactions of these fundamental particles and therefore the
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interactions of matter in terms of four different forces. The first one is the

gravitational force. Ironically, even though gravity is the interaction we have

observed and known about for the longest time, it is the one that gives today’s

theoretical physicists the most headache. It is one of the aims of string theory

to describe gravity in the world of sub-atomic particles. Classically, however,

our understanding goes back to the seventeenth century, when Newton for the

first time gave a mathematical description of gravity and its determination

of the orbits of planets. Today we believe that the most accurate classical

description is due to Einstein, through his theory of general relativity of 1915.

The second force in our list is electromagnetism. The classical theory of

electromagnetism was developed during the 19th century and the complete

mathematical description was given by J. C. Maxwell. It describes the mo-

tion of charged particles in the presence of electric and magnetic fields and

how these fields are generated by charges and currents. The relativistic quan-

tum field theory of electromagnetism, which we call quantum electrodynamics

(QED) was developed much later in 1940’s by Richard Feynman, Freeman

Dyson, Julian Schwinger, and Sin-Itiro Tomonaga, and for which Feynman,

Schwinger and Tomonaga were awarded with the 1965 Nobel Prize in physics.

The last two forces in our list of fundamental interactions are the weak

and strong nuclear forces. Soon after the discovery of the neutron in 1932, it

was shown that it decays in about 15 minutes when it is outside the nucleus.

This decay mode, also known as the β-decay, which is given by n→ p+ + e− +

ν̄e, is due to the weak interactions. The strong nuclear force, or the strong

interactions, are the ones that are responsible for the binding of the quarks
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inside the nucleons and the binding of nucleons inside the nucleus.

Developments in high energy acclerators and the discovery of the pion and

other mesons in the fifties prompted the studies of the structure of nucleons.

The application of quantum mechanics to fields, which resulted in quantum

field theory in the late twenties worked very well for the treatment of elec-

trodynamics. For the case of the weak interactions, an effective theory with

four-fermion “Fermi” interactions was quite successful at tree level [1, 2]. This

theory, however, is not renormalizable and therefore had only limited predic-

tive power. In the absence of renormalization, it was also not known whether

one could describe the strong interactions by a consistent quantum field theory

[3].

Until the mid sixties, attempts of explaining the strong interactions with a

quantum field theory failed. As a result, people tried out different approaches.

Among these were “S-matrix theories” [3, 4]. The main idea was to describe

the particle states in terms of the analytic properties of the S-matrix which

were measured in scattering experiments, instead of in terms of local fields

which are not directly measurable in general. Along this path the Regge

pole theory was developed by Regge in 1959 [5, 6]. Even though a large

amount of experimental data can still be understood best in such theories, the

drawback was that the fundamental principles included in these theories were

not adequate to be truly predictive.

Apart from the lack of a complete fundamental theory to explain strong

dynamics, there was another chaos in the particle physics community due to

the discovery of a large number of hadrons. One of the triumphs of the early
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sixties was the discovery of what we know today as an approximate symmetry

of the hadrons, flavor SU(3), by Gell-Mann and Y. Neeman [7]. This discovery

resolved the chaos, by explaining the baryon spectrum, and eventually led to

the concept of quarks as the constituents of hadrons, through the constituent

quark model [8].

Around the same time, the idea of color was developed by Greenberg in

1964 [9] and Han and Naumbu in 1965 [10]. This new quantum number for

the quarks was introduced to resolve problems in the quark model with Fermi

statistics for the spin 1/2 quarks, especially after the discovery of ∆++ which

was composed of three up quarks with parallel spins. This new idea also

suggested the existance of a local nonbelian gauge theory, a type of theory

which was developed originally by Yang and Mills [11] many years before but

which was not popular in the meantime.

A very important period in this brief history is the late sixties, when

deep inelastic scattering (DIS) experiments were started at SLAC. One of the

results of these experiments was the observation that the proton has a charged

substructure which is much smaller than itself.

Probably the most striking result of these early DIS experiments was that

the structure functions F (x,Q2) were approximately independent of the scale

Q2. This is called scaling [12, 13, 14]. One of the very crucial observations

was that the parton model developed by Feynman in 1969 [15] and Bjorken

and Paschos in 1969 [16], could reproduce this important result of the DIS

experiments. The parton model not only explained scaling but also identified

partons as quarks with spin-1/2 through the Callan-Gross relation [17] for the
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structure functions in the parton model. The quantum field-theoretical justifi-

cation of the parton model is highly nontrivial and requires an asymptotically

free theory, in other words a theory whose coupling decreases as the distance

scale decreases.

In the early seventies much happened in favor of field theory. t’Hooft and

Veltman prooved the renormalizablity of the spontaneously broken Higgs mod-

els and unbroken Yang-Mills theories for which they were awarded with the

1999 Nobel Prize in physics [18, 19, 20]. With this, nonabelian gauge theories

started becoming popular. Along with renormalizability, one of the most cru-

cial properties of such theories is that they can be asymptotically free, which

was indeed signalled in the DIS experiments. A new tool, operator product

expansion, was developed by Wilson [21] which was used for the analysis of

DIS. Renormalization group started to become popular once again. It started

to become clear that a nonabelian gauge theory was actually consistent with

what was known at that time.

1.2 Quantum Chromodynamics

Today we believe that the fundamental theory of strong interactions is

given by quantum chromodynamics (QCD), which is a nonabelian gauge the-

ory with the gauge symmetry group SU(3). It is described by the following
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Lagrange density

L = −1

2
tr (FµνF

µν) +
∑

f

q̄f,i(i∂/δij + igsA/
a(T (F )

a )ij −Mfδij)qf,j

− 1

2ξ
(∂µ A

a,µ)2 + ∂µ ba(∂
µδab + gs fabdA

µ
b ) cd . (1.1)

Here the quark fields qf,i with flavor f (f = 1, · · · , nf ), color i (i = 1, · · · , N)

and mass Mf are given by Dirac spinors in the fundamental representation of

SU(N) (with N=3 for QCD) where q̄f,i = q†f,iγ
0. The Aaµ (a = 1, · · · , N2 − 1)

are the Lie algebra-valued gluon vector fields in the adjoint representation of

SU(N). The T
(F )
a are the generators of the group SU(N) in the N -dimensional

defining representation, which obey the commutation relation

[

T (F )
a , T

(F )
b

]

= i fabc T
(F )
c , (1.2)

where the fabc are the totally antisymmetric structure functions. The non-

abelian Lie algebra-valued field strengths Fµν ≡ F a
µν T

(F )
a are given by

Fµν = ∂µAν − ∂νAµ + i gs [Aµ, Aν] . (1.3)

Note that we have written the QCD Lagrange density in a covariant gauge with

an arbitrary gauge parameter ξ. In this gauge the gluon propagator Gµν,ab is

given by

Gµν,ab(k, ξ) =
δab

k2

[

−gµν + (1 − ξ)
kµkν

k2

]

. (1.4)

Later on we will often choose ξ = 1, also known as the Feynman gauge.

Another useful gauge choice is the axial gauge with the gauge fixing function

n·A = 0 where n is a fixed vector. For this physical gauge the gluon propagator
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is given by

Gµν,ab(k, n, ξ) =
δab

k2

[

−gµν +
nµkν + kµnν

n · k − n2

(

1 + ξ
k2

n2

)

kµkν

(n · k)2

]

. (1.5)

Finally in Eq. (1.1), ba and ca are the anti-ghost and the ghost fields, whose

Lagrange density can be obtained by the Fadeev-Popov procedure of Ref. [22].

The diagramatic Feynman rules for perturbative QCD are obtained from

the Lagrange density given in Eq. (1.1) following the standard techniques in

quantum field theory given in Ref. [23]. These rules can be found in the same

reference.

Now that we have discussed a brief history of QCD and written down

the QCD Lagrange density, we will focus on some of the very important prop-

erties of the theory: confinement, asymptotic freedom and infrared safety.

Confinement in QCD is the phenomenon that color charged quarks or gluons

do not exist in isolation, as asymptotic states. The confined quarks always

form particle-antiparticle pairs, mesons, or triplets to form baryons that are

color neutral. There is no proof in perturbative QCD (the regime in QCD

where the rules of perturbation theory are applicable) which shows, from first

principles, that QCD is a confining theory, although the asymptotic freedom

of the coupling suggests that might be the case. However, we know that the

reason is due to the nonabelian nature of the theory. Confinement must be

understood within the nonperturbative regime of QCD. Numerical methods of

lattice QCD, which were developed by Wilson, 1974 [24]; Kogut and Susskind,

1975 [25]; Creutz, 1983 [26], are examples of studies in nonperturbative QCD.

Asymptotic freedom is the property that the running coupling of QCD
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decreases as the length scales over which it is measured decreases and like-

wise increases as the length scale increases. Gross, Politzer and Wilczek were

awarded with the 2004 Nobel Prize in physics for their discovery of asymptotic

freedom in the theory of strong interactions [27, 28, 29]. We can understand

why QCD is an aymptotically free theory with the following physical picture.

One can calculate the dielectric constant of a medium, ε, in terms of the mag-

netic permeability, µ, by using µ ε = 1, in units where the speed of light c is

one. In classical electrodynamics, magnetic fields arise from electric currents,

and due to Lenz’s law, when there is an external magnetic field the response

of a system is to generate electric currents such that the magnetic field is

decreased. Therefore classically all media have µ < 1 and with the above

relation ε > 1, which corresponds to electric screening. However in QCD, glu-

ons also carry color charge, and behave like color magnetic dipoles, alligning

themselves along an external field and therefore increasing its magnitude so

that µ > 1. This is the anti-screening of gluons for the QCD vacuum. We can

understand the asymptotic freedom of QCD because the anti-screening of the

gluons overcomes the screening of quarks as long as there are not too many

quarks.

Due to the renormalization properties of a quantum field theory, the

strength of the coupling depends on (runs with) the renormalization scale.

This running is described by the relation

∂

∂ lnµ
g(µ)|g0 ≡ β(g(µ)) , (1.6)

where µ is the renormalization scale, and where the bare coupling g0 is held



9

fixed in the derivative. The beta function β(g) of QCD is determined to one

loop from the renormalization constant of the coupling, Zg, by

∂

∂ lnµ
g(µ) =

∂

∂ lnµ
(Zg g0)

= −g
[

β0
αs
4π

+ β1

(αs
4π

)2

+ · · ·
]

=
∂

∂ lnµ

[

g0 − ln(µ2/M2)

(

g3
0

8π2

(

11N

3
− 2nf

3

))

+ · · ·
]

= − g3

16π2

(

11

3
N − 2

3
nf

)

+ · · · , (1.7)

where M2 is a UV cutoff. With this one loop beta function we can solve

Eq. (1.7) easily with the famous result

g2(µ) =
g2(µ0)

1 + β1
g2(µ0)
16π2 ln(µ2/µ2

0)

≡ 16π2

β1 ln(µ2/Λ2
QCD)

, (1.8)

where we have defined

ΛQCD ≡ µ0e
−8π2/2β1g2(µ0) . (1.9)

From Eq. (1.7) for QCD, β1 is given by

β1 = 11 − 2

3
nf . (1.10)

We can see from Eq. (1.8) that as the momentum scale decreases, or as the

corresponding distance scale increases, the perturbative coupling grows. As

we have observed above, this is just what we need to justify in field theory the

parton model.

Finally we would like to talk about the idea of infrared safety. In QCD,

quantities that are dominated by the short distance behaviour of the theory
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are called infrared (IR) safe quantities [30]. These quantities cannot depend

on light quark or gluon masses, and should be free of infrared divergences due

to long distance behaviour of the theory. They can therefore be calculated

with the methods of perturbation theory. The infrared divergences will be the

subject matter of the next chapter where we will define what they are and

from what regions in the momentum space they originate.

In QCD, a physical quantity σ(Q2/µ2, αs(µ
2), m2/µ2), where Q is a large

invariant such that Q >> Λ, m is the light quark or gluon masses and µ is the

renormalization scale, is IR safe if in the large µ limit it behaves as

lim
µ→∞

σ

(

Q2

µ2
, αs(µ

2),
m2(µ2)

µ2

)

= σ̂

(

Q2

µ2
, αs(µ

2)

)

+ O
((

m2

µ2

)a)

, a > 0 .

(1.11)

In words, σ should have a finite limit as m/µ→ 0 with Q/µ fixed. It is in the

essence of perturbative QCD to identify such infrared quantities and seperate

them from long distance-dependent, infrared divergent quantities. This kind

of separation of long and short distance dynamics for a physical quantity is

called factorization and it will be the subject matter of Chapter 3 of this thesis.

For an inclusive hadronic scattering, A+B → X, we will show that many

cross sections have such a factorization. For such a cross section σAB→X , we

may write

σAB→X =
∑

a,b

∫ 1

0

dxa
xa

dxb
xb

fa/A(xa, µ) σ̂ab(xa, xb, µ)fb/B(xb, µ) + corrections ,

(1.12)

with corrections that vanish as energy scale Q → ∞. The fs are the parton

distribution functions for partons in hadrons. These give the distribution of
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partons in hadrons with momentum fractions xa,b. Parton distribution func-

tions are universal, in other words process independent, and they are obtained

from experiment. σ̂ is a partonic cross section which is perturbatively calcu-

lable.

We will study the formal proof for the factorization of inclusive hadron-

hadron scattering cross-sections in great detail in the following chapters.

1.3 Outline of the thesis

Factorization in quantum field theory (QFT) is the separation of long

and short distance dynamics. QCD gains its predictive power as the theory

of strong interactions through factorization. It is the purpose of this thesis to

review the proof of factorization for semi-inclusive hadronic cross sections and

to show how we use this result to make cross section predictions in perturbative

QCD.

In order to separate the long and short distance effects, we first need

to understand the origin of long distance enhancements. We will call these

enhancements IR divergences. In Chapter 2 of this thesis we will focus on the

IR singularities originating from individual Feynman diagrams that contribute

to cross sections. It will be our goal to find a systematic way of identifying the

regions in momentum space that contribute to IR enhancements for hadronic

processes. We will start with a discussion of the analytic structure of Feynman

integrals which will lead us to the idea of pinch singular surfaces. It is these

surfaces in the parameter space that contribute to the IR singularities. By
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considering the pinch singular surfaces we will find a set of infrared power

counting rules for gauge theories which will enable us to identify the leading

regions in momentum space which give the dominant contribution to the long

distance enhancements.

After identifying the leading regions in momentum space, in Chapter 3 we

will demonstrate the proof of factorization of the long distance dynamics due

to these leading regions and the short distance effects. The proof has three

main steps. Final state cancellations, factorization of collinear gluons from

the hard part and the factorization and cancellation of soft gluons. We will

explain each of these steps in considerable detail. We will see that unitarity

and gauge invariance will play crucial roles in each of these steps. At the end of

Chapter 3 will will have the full factorized form of the semi-inclusive hadronic

scattering cross section. As we will see, it is written as a convolution of parton

distribution functions and a hard scattering function. We will discuss how we

obtain the parton distribution functions from experiment and how we calculate

the hard scattering function in perturbation theory.

In the last chapter, Chapter 4, of this thesis we will concentrate on par-

tonic 2 → n scattering amplitudes. As we will see, partonic scattering am-

plitudes are crucial for the calculation of the hard scattering functions. Due

to the factorization of Chapter 3, it is guarranteed that the virtual and real

corrections to the cross section cancel. However, in certain regions of phase

space this cancellation is not complete, and due to this incomplete cancella-

tion there are often large logarithmic contributions to the cross section. As we

will discuss in great detail, one can sum these large logarithmic corrections to
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all orders in perturbation theory. This procedure is referred to as resumma-

tion. For hadronic scattering processes, resummation of large logarithms, or

in the case of partonic scattering amplitudes, resummation of poles requires

an anomalous dimension matrix, called soft anomalous dimension. The main

goal of this thesis is to compute this matrix at two loop level and this we will

explain in Chapter 4.
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Chapter 2

Pinch Surfaces and Infrared Power Counting

The main idea for the factorization of QCD cross sections, as briefly dis-

cussed in Chapter 1, is to separate the perturbative short distance effects from

the nonperturbative long distance dynamics. In order to achieve that goal,

however one needs to understand the long distance (therefore low energy, or

‘Infrared”) behaviour for the QCD cross sections. One way to proceed is to

study the analytic structure of Feynman diagrams, which will lead us to a set of

infrared power counting rules. By means of the infrared power counting rules

we will be able to identify the regions in momentum space, for the diagrams

that contribute to the cross section, that enhance the infrared behaviour of

the cross section. We will start our discussion with the study of the analytic

structure of Feynman integrals.
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2.1 Analytic Structure of Feynman Integrals:

Infrared Divergences

We can write an arbitrary Feynman diagram G({pi}) with external lines

carrying momenta {pi} and an arbitrary number of loops with loop momenta

{qj} using Feynman parametrization as

G({pi}) =

P
∏

lines k

∫ 1

0

dαk δ(
∑

k

αk − 1)
∏

loops l

∫

dnqlD(αk, ql, pi)
−P N(αk, ql, pi) ,

(2.1)

where

D(αk, ql, pi) =
∑

j

αj
[

l2j (q, p) −m2
j

]

+ iε . (2.2)

N(α, q, p) is the product of all the overall factors in the numerator, which in-

clude color factors, symmetry factors, powers of αs and so on. We would like

to find out the singularities of G({pi}) that are associated with the infrared di-

vergences. The integrand of G({pi}) is singular at the zeros of the denominator

D(α, q, p). However, finding the zeros of D is not enough. G({pi}) is defined

in terms of contour integrals in complex space over the loop momenta q and

the Feynman parameters α, and the whole integrand is an analytic function

of the external momenta and the integration parameters. Therefore one can,

assuming that the integrals can always be done one at a time while keeping

the rest of the integration parameters fixed, deform the contour of integra-

tion away from the zeros of D, provided that the deformed contours do not

cross any other singularities. Such a contour deformation to avoid the poles

is, however, not possible under two circumstances.
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1. If one of the poles coincides with one of the end points of the Feynman

parameter integrals, one cannot use contour deformation to avoid that

pole, since the end points of these integrals are fixed. We call these types

of singularities end point singularities.

2. If two or more poles coincide at a point on either side of the contour,

then one cannot deform the contour away from one of the poles without

crossing the other singularity. We will call this type of singularities pinch

singularities.

We see that in order to find the singularities of G({pi}) we not only look for

the zeros of D but also look for the ones that are pinched. Since D is quadratic

in the loop momenta ql, these two conditions can be written as

D(αk, ql, pi)|ζ=ζ0 = 0 ,

∂

∂qµl
D(αk, ql, pi)|ζ=ζ0 = 0 , (2.3)

where ζ ∈ {αk, ql} are elements of the set of points in the parameter space

for the integrals, and ζ0 ∈ ζ are points for which D is zero. Using Eq. (2.2)

we see that the first line of Eq. (2.3) is satisfied when for each line either its

Feynman parameter vanishes, i.e. αj = 0 or it is on-shell, i.e. lj(k, p)
2 = m2

j .

The second line in Eq. (2.3) is satisfied when the derivative of D vanishes at

D = 0. These two conditions were put into an explicit form by Landau and

are summarized as the Landau equations [31]

either αj = 0 , ∀j or lj(q, p)
2 = m2

j ,

and
∑

lines j

εjm αj l
µ
j (q, p) = 0 , (2.4)
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where εkm is +1 (−1) if the loop momentum qm is flowing in the same (oppo-

site) direction as the line momentum lj.

For an arbitrary Feynman diagram G({pi}), using Eq. (2.4) we know that

in order to get an infrared singularity one of the necessary conditions is to have

on-shell lines, or vanishing Feynman parameters for lines that are off-shell.

For a diagram with an arbitrary number of off-shell lines, we now construct

another diagram where every off-shell line with αi = 0 is reduced to a point.

We refer to such diagrams as reduced diagrams. The Landau equations, given

in Eq. (2.4), describe a very useful physical picture for these reduced diagrams

as we see by the following reasoning, due originally to Coleman and Norton

[32].

In configuration space we can think of each on-shell line as propagating

freely between two vertices that have a space-time separation given by

∆xµi ≡ αi l
µ
i (p, q) , (2.5)

where we have interpreted each Feynman parameter αi as the ratio of the

Lorentz invariant time of propagation to the energy of the particle1:

αi = ∆x0
i /l

0
i . (2.6)

Then we have

∆xµi = ∆x0
i β

µ
i , (2.7)

1Note that the Feynman parameters as we have introduced originally do not have

any dimensions, which is not the case here. However, one can always rescale them

with a dimensionfull constant so that they have the appropriate dimensions.
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p1

p2

k

(a)

p1

p1 + k

(b)

v1

v2

Figure 2.1: a) The scalar massless triangle diagram. b) CO region correspond-

ing to Eq. (2.14)

with

βµi =

(

1,
~li
l0i

)

, (2.8)

the four-velocity of a particle with momentum lµi . Now let’s define

∆xab ≡ xa − xb , (2.9)

where we have labelled each vertex of the loop as x1, x2, · · · , xn with space-

time separation between each vertex ∆x12,∆x23, · · · ,∆xn1. Notice that by

definition ∆xab have translational invariance. Given these identifications the

requirement in the second line of Eq. (2.4) is identical to

∆x12 + ∆x23 + · · ·+ ∆xn1 = 0 , ∀ loops , (2.10)

which corresponds to a physical picture in which on-shell particles with mo-

menta li propagate freely between vertices in a loop of n lines.

Now let’s see how we can apply our considerations so far to a simple con-

crete example. We will consider the scalar massless one-loop triangle diagram
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in Fig. 2.1 a. The one-loop momentum space Feynman integral in dimensional

regularization with n = 4 − 2ε dimensions is proportional to

Iscalar
∆ ∝

∫

dnk

(2π)n
1

k2 + iε

1

(p1 − k)2 + iε

1

(p2 + k)2 + iε

= 2

∫ 1

0

dα1 dα2 dα3 δ(1 − α1 − α2 − α3)

∫

dnk

(2π)n
1

D3(p1, p2, k, αi)
,

(2.11)

with

D(p1, p2, k, αi) = α1k
2 + α2(p1 − k)2 + α3(p2 + k)2 + iε . (2.12)

In order to find the pinched singular points for this diagram, we apply the

Landau equations, Eq. (2.4) to the denominator given in Eq. (2.12). We find

D(p1, p2, k, αi) = 0 ,

α1k
µ − α2(p1 − k)µ + α3(p2 + k)µ = 0 . (2.13)

There are three non-trivial solutions to the system of equations. They are

given by

k = ρ p1 , α1ρ = α2(1 − ρ) ,

α3 = 0 , (2.14)

k = −ρ′ p2 , α1ρ
′ = α2(1 − ρ′) ,

α2 = 0 , (2.15)

k = 0 , α2 = α3 = 0 , (2.16)
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where ρ and ρ′ are positive real numbers,

0 < ρ < 1

0 < ρ′ < 1 . (2.17)

The momentum space regions corresponding to the solutions given in Eqs. (2.14)

and (2.15) are called collinear regions (CO) since for both cases the loop mo-

mentum k is proportional to one of the external momenta. The region of

momentum space where the loop momentum is vanishingly small, which cor-

responds to the solution given in Eq. (2.16) is called the soft region (IR). The

physical picture corresponding to the collinear region given in Eq. (2.14) is

illustrated in Fig. 2.1 b. At vertex v1, two on-shell lines are created and they

propagate freely to vertex v2, where they combine to give the external line.

With further simple analysis one can show that the lightlike four-velocities

of the propagating lines βk and βp1+k are equal. One can draw an analogous

physical picture for the collinear region corresponding to Eq. (2.15).

2.2 Pinch Surfaces

In the previous section we have seen that for an arbitrary Feynman dia-

gram, in order to have IR/CO enhancements, the denominator for the Feyn-

man integral given in Eq. (2.2) has to satisfy the Landau equations, Eq. (2.4)

at points ζ0 ∈ {q, α} for which D vanishes. The set of points ζ0 = {q0, α0}

form surfaces in the (q, α) space. Each such surface that produces an IR/CO

singularity is called a pinch surface. Each pinch surface has a corresponding
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reduced diagram. A pinch surface is a multidimensional subspace in the (q, α)

space. One can parametrize a pinch surface and its complementary space by a

set of intrinsic parameters {xi} and a set of normal variables {yi}, respectively

[33].

Our aim is to write the integrals in G({pi}) near the pinch surfaces such

that every denominator is a homogeneous function of the normal variables

that vanish there. This is referred to as the homogeneous integral [33]. The

homogeneous integral in the above set of variables is of the form

J ∼
∫

C

n
∏

i=1

dyi y
−ai

i

∫ m
∏

j=1

dxj I({x}, Y ) , (2.18)

where the contour C passes through the point {yi} = 0 and Y represents

various ratios formed by y’s. In order to put a bound on the integrals we write

the normal variables in terms of a scaling variable λ, for example by inserting

∫

0

dλ δ



λ−

√

√

√

√

n
∑

i=1

y2
i



 = 1 (2.19)

in Eq. (2.18) and then changing variables to y′i = yi λ. For vanishing λ the

power counting estimate of J in Eq. (2.18) can be written as

J ∼
∫

0

dλ λp−1 , (2.20)

where

p = n−
n
∑

i=1

ai . (2.21)

For p ≤ 0 the integral J is divergent, and we say that J is logarithmically

divergent for p = 0.
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C

J2

J1

S

H1
H2q

p1

p2

Figure 2.2: A generic reduced cut vacuum polarization graph. The dashed

lines represent scalar and/or vector lines.

2.3 Infrared Power Counting

In this section we will review the infrared power counting rules derived

in Ref. [33] considering cut vacuum polarization diagrams in Fig. 2.2. A cut

diagram is constructed by linking amplitudes, M1, with complex conjugate

amplitudes, M∗
2 , such that the on-shell final states are cut by a single vertical

line leaving M1 to the left and M2 to the right of the cut [23]. Our discussion

below treats the cut diagrams that contribute to the cross sections in e+e−

annihilation or Z0 decay. The more general cases of lepton-hadron and hadron-

hadron scatterings are in Refs. [34, 33] and below.

The physical picture that leads to the reduced cut diagram of Fig. 2.2 is

quite straighforward. Two jets labelled by J1 and J2 are formed after the decay

of the vector boson, each with momenta pj. The only possible interactions
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between the jets is via soft particles with zero momentum. There cannot

be any exchange of finite momentum particles because once the two jets are

formed at the hard vertex H, they travel away from each other with the

speed of light and therefore can never meet again. All off-shell, short distance

contributions are in the hard subdiagrams H1 and H2.

We are now ready to specify the set of normal variables for the pinch

surfaces of Fig. 2.2. For the case of cut vacuum polarization diagrams we

choose 2

1. All four components kµ for the internal loop momentum in subdiagram

S and for loops that connect S to the jets. We take all kµi ∼ λ.

2. The invariant mass l2 and the product l · p for each loop momentum l

in the jet with total momentum pj. Here l2 ∼ l · p ∼ λ while lT ∼ λ1/2.

Also the total invariant mass for each jet, p2
j ∼ λ.

Having identified the normal variables, we can start our discussion of

the power counting. First we consider theories without vector particles. We

construct the homogeneous integral by keeping terms with the lowest power of

normal variables in both numerator and denominator. With the above choice

of normal variables, denominators of soft lines will be quadratic in the normal

variables whereas the denominators of jet lines will be linear.

Now consider an arbitrary reduced cut vacuum polarization diagram, as

in Fig. 2.2 with J finite-momentum jet and S zero-momentum soft lines, L(s)

2For a detailed discussion of this choice of normal variables see Ref. [33].
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soft loops and L(j) internal jet loops and K jets. Then the power p of Eq. (2.21)

is given by

p =
(

4L(s) + 2L(j) +K
)

− (2S + J) +N (j) +N (s) , (2.22)

where N (j) is due to the numerator factors from jet lines and vertices and

N (s) is due to the numerators of soft lines and vertices. K corresponds to the

variables p2
j with j = 1 · · ·K. One can rewrite 4L(s) − 2S +N (s)as

4L(s) − 2S +N (s) = 4 − b− 3

2
f − 2b− f + 4(b+ f − 1) , (2.23)

where b and f are the number of soft boson and fermion lines attached to the

jets. On right hand side of the above equation, the terms 4 − b − 3
2
f are due

to the dimension of the soft subdiagram S, without external lines; the terms

−2b − f are due to the dimension of all the soft lines that connect S to the

jets; and finally the terms 4(b+f−1) are due to the dimension of the b+f−1

independent soft loops that connect S to the jets. Substituting Eq. (2.23) into

Eq. (2.22) we get

p =
(

2L(j) +K − J +N (j)
)

+ b +
3

2
f . (2.24)

Writing N (j)

N (j) =
K
∑

i=1

n
(j)
i , (2.25)

as a sum over contributions from individual jets, we can rewrite p further as

p =

K
∑

i=1

(

2l
(j)
i + n

(j)
i − ji + 1

)

+ b+
3

2
f . (2.26)

Next we relate the number of lines and vertices in each jet by

2 ji =
∑

α≥3

αχi,α +
∑

β≥2

βyi,β + γi + δi , (2.27)
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and by the Euler’s identity

li = ji − νi + 1 . (2.28)

Eq. (2.27) simply counts the number of ends of the lines in jet i, 2 ji. In

Eq. (2.27), χi,α is the number of soft vertices in jet i with α jet lines and no

soft lines attached, yi,β is the number of soft vertices (vertices which connect

zero momentum lines) with one or more soft lines, in addition to β jet lines,

and γi and δi are the number of lines of jet i attached to the hard vertices H1

and H2 respectively. Finally νi is the total number of vertices in the ith jet.

This quantity can be written in the above notation as

νi =
∑

α

χi,α +
∑

β

yi,β + 2 , (2.29)

where the 2 accounts for the hard vertices H1 and H2. Combining Eqs. (2.27)-

(2.29) one finds an expression for the contribution of each jet to the power p

of Eq. (2.21),

2l
(j)
i +n

(j)
i − ji +1 =

1

2

∑

α≥3

(α− 4)χi,α +
1

2

∑

β≥2

(β− 4)yi,β +
1

2
(γi+ δi− 2)+n

(j)
i .

(2.30)

We next turn our attention to the numerator term n
(j)
i .

We can put a lower bound on the numerator factors n
(j)
i by observing

the following. Consider first Yukawa-like theories, with only scalar bosons.

In such theories numerator momenta only arise from fermion propagators in

combinations like

(p/+ k/)(a1 + a2γ5)p/ = (a1 − a2γ5)(p/+ k/)p/ , (2.31)
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where k is the momentum for a spin zero particle that couples to the fermions,

and a1 and a2 are constants describing the scalar and pseudo-scalar couplings

of the scalar bosons.

By simple, direct calculation one can see that (p/ + k/)p/ vanishes at least

as fast as the transverse components of (p + k) and p. This gives a factor of

λ1/2. Then in physical gauges we have, for zi the number of vertices at which

scalar or collinear bosons attach to jet fermions,

n
(j)
i ≥ 1

2
χi,3 +

1

2
zi . (2.32)

Substituting Eq. (2.30) and Eq. (2.32) into Eq. (2.26) we find

p ≥
K
∑

i=1

[

1

2

∑

α≥4

(α− 4)χi,α +
1

2

∑

β≥4

(β − 4)yi,β +
1

2
(γi + δi − 2)

]

+
K
∑

i=1

(

−1

2
yi,3 +

1

2
zi − yi,2

)

+ b+
3

2
f . (2.33)

On the other hand

1

2
(b + f) ≥ 1

2

K
∑

i−1

(yi,3 + yi,2) ,

1

2
f ≥ 1

2

K
∑

i=1

(yi,2 − zi) , (2.34)

so that

p ≥
K
∑

i=1

[

1

2

∑

α≥4

(α− 4)χi,α +
1

2

∑

β≥4

(β − 4)yi,β + γi + δi − 2

]

+
1

2
(b + f) .

(2.35)

We will postpone the discussion of the implications of Eq. (2.40) until the

next section. For now, we recall that γi ≥ 1 and δi ≥ 1 are the number
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of jet lines attached to the hard vertices, so that p is positive semi-definite.

This consideration will play a central role in identifying the leading regions

of momentum space. However, before that we still need to discuss the more

interesting case of theories with vector particles.

For the case of gauge theories, in the numerator, instead of terms of the

form given in Eq. (2.31), jet vertices that couple fermions to vectors give

combinations of the form

(p/ + k/)γµp/ = −γµ(p/+ k/) p/+ 2(p+ k)µp/ . (2.36)

As before, the first term contributes a factor of λ1/2 when p and k are jet mo-

menta. The second term, however, is unsuppressed at the pinch surface when

it is contracted with terms in the hard part H or when k is soft. When k is

a jet momentum, however, it corresponds to an unphysical scalar polarization

for the vector line. Similar considerations apply to three gluon vertices cou-

pling jet lines. When both p and k are jet momenta these contributions also

vanish as fast as λ1/2. We can see this by contracting kµ with an axial gauge

propagator

kµ

(

−gµν +
nµkν

n · k +
kµnν

n · k − n2 kµkν

(n · k)2

)

1

k2
=

nν

n · k − n2 kν

(n · k)2
≤ λ1/2 .

(2.37)

However, they are unsuppressed if k is a soft line or kµ is contracted with

momenta in H.

We know that contributions from unphysical degrees of freedom cancel

in a sum of gauge invariant sets of diagrams via Ward identities, although,
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in covariant gauges these contributions are present for individual diagrams. 3

Because of this, we can effectively drop terms with longitudinal polarizations

and the remaining terms will still give a factor of λ1/2. On the other hand,

when line k is soft at the pinch surface, there is no suppression, in contrast to

the case of soft scalars.

In summary, for the case of gauge theories in physical gauges we can

modify Eq. (2.32) as

n
(j)
i ≥ 1

2
χi,3 +

1

2
z

(0)
i , (2.38)

where z
(0)
i is the number of soft scalar lines emitted at three point vertices by

jet lines. Using this relation and same kind of reasoning as before we end up

with the following bound on p

p ≥ 1

2

K
∑

i=1

[

∑

α≥4

(α− 4)χi,α +
∑

β≥4

(β − 4)yi,β + γi + δi − 2

]

+
1

2

K
∑

i=1

[

b
(0)
i +

(

b
(1)
i − z

(1)
i

)]

+
1

2
f , (2.39)

where b(0) and b(1) are the soft scalar and vector lines. z
(1)
i is the number of

soft vector lines emitted at three point vertices by the jet lines.

2.4 Leading Regions

In the previous section we have seen that if there are no vector particles

with soft momenta attaching the jet lines then we get the following bound on

3This actually leads to power divergences in general but we shall elaborate on

this in the next section.
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p:

p ≥
K
∑

i=1

[

1

2

∑

α≥4

(α− 4)χi,α +
1

2

∑

β≥4

(β − 4)yi,β + γi + δi − 2

]

+
1

2
(b + f) .

(2.40)

The first very important observation, already made following Eq. (2.40), is

that p ≥ 0. Therefore the divergences associated to the pinch surface in

question are at worst logarithmic when p = 0, and there are no divergences at

all for p > 0. Furthermore Eq. (2.40) supplies us with a set of very restrictive

necessary conditions for the logarithmic divergences. These conditions are

b = f = 0 ,

γi = δi = 1 ,

χi,α = 0 , α > 4 . (2.41)

In words, the reduced diagram of a divergent point can have no soft lines, each

jet must constitute a self energy and no soft vertex may be of higher order

than 4. Note that yi,β = 0 (i.e. no jet vertices that couple to soft lines) is

implied by the first line of the above equation. Such a pinch singular surface

is described in Fig. 2.3.

From the previous section, the bound on p for gauge theories is given by

p ≥ 1

2

K
∑

i=1

[

∑

α≥4

(α− 4)χi,α +
∑

β≥4

(β − 4)yi,β + γi + δi − 2

]

+
1

2

K
∑

i=1

[

b
(0)
i +

(

b
(1)
i − z

(1)
i

)]

+
1

2
f . (2.42)

The analogous necessary conditions for logarithmic divergences can be written
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Figure 2.3: Leading pinch singular surface for a cut vacuum polarization graph

for theories with no vector particles.

as

b
(1)
i = z

(1)
i ,

b
(0)
i = f = 0 ,

γi = δi = 1 ,

χi,α = yi,β = 0 , α > 4 . (2.43)

We see that for the case of theories with vector particles, the reduced diagram

of a divergent pinch surface may have soft lines, provided that only vector lines

attach to jet lines, and then only at three point vertices. Also soft fermion

and scalar loops must not connect directly to finite energy lines, although both

may appear inside the soft subdiagram, S.

As we have pointed out, these considerations apply when we use physical

gauges. However, one can instead use covariant gauges, like the Feynman
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gauge. In this case, for gauge theories we modify Eq. (2.32) as

n
(j)
i ≥ 1

2
χi,3 +

1

2
z

(0)
i − 1

2
(γi − 1) − 1

2
(δi − 1) , (2.44)

where γi and δi are maximum number of scalar polarized jet lines attached

to hard scattering vertices in Feynman gauge. In this case the bound on p of

Eq. (2.42) is modified as

p ≥ 1

2

K
∑

i=1

[

∑

α≥4

(α− 4)χi,α +
∑

β≥4

(β − 4)yi,β

]

+
1

2

K
∑

i=1

[

b
(0)
i +

(

b
(1)
i − z

(1)
i

)]

+
1

2
f , (2.45)

which now implies that there is no restriction on the number of scalar polarized

jet lines attaching the hard vertices.

2.5 Extensions to hadron-hadron scattering

In the following chapter we are going to rely on the above considerations

to discuss factorization for high energy QCD cross sections. We will mainly be

considering the Drell Yan process where a parton from hadron A and another

parton from hadron B annihiliate to produce a virtual photon (or the neutral

electroweak boson Z0), which then decays into a lepton pair with momentum

Q and an unknown final state X. Before doing that, however, we would like

to first apply Eq. (2.43) to the case of the Drell Yan process to identify the

leading pinch singular surfaces diagramatically [35, 34, 36, 37, 38]. Fig. 2.4

shows some examples of these surfaces. In the center of mass frame for the

incoming hadrons, we assume that hadron A moves in +z direction and hadron



32

B in −z direction. We assume that a sum over final states has been carried

out. Then a leading pinch singular surface, the momentum k of an internal

line can be

1. vanishing in all four components, kµ = 0 which is denoted by S for soft

in figures;

2. collinear to the A-jet, therefore with large plus momentum component,

k+;

3. collinear to the B-jet, therefore with large minus momentum component,

k−;

4. none of the above which is denoted by H for hard in figures. These lines

are off-shell by an amount Q2 after the sum over final states.

One of the leading pinch singular surfaces is such that all quark lines are parts

of the A and B jets right up to the hard annihilation vertices and all the gluon

lines are soft (i.e. with vanishing momenta in all components). Such a pinch

singular surface is shown in Fig. 2.4a. Another leading pinch singular surface

is shown in Fig. 2.4b where one of the gluons is interpreted as a constituent

of hadron B, and therefore a part of the B-jet, and a soft gluon connects the

two jets. Fig. 2.4c shows a pinch singular surface where a collinear gluon from

the B-jet enters the hard part taking the quark line to which it attaches to

off-shell. This pinch singular surface is leading only in a covariant gauge, and

such a singularity is not present in physical gauges since the gluon is scalar

polarized at the pinch surface. Finally, in Fig. 2.4d a leading pinch singular
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surface is shown where all the gluon lines are off-shell by an amount Q2, and

therefore belong to the hard part. Notice we do not consider jets at wide

angles in the figures separately from H. We will return to this point in the

next chapter when we discuss the final state cancellations.
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Figure 2.4: Examples of leading pinch singular surfaces for the same cut dia-

gram that contributes to Drell-Yan cross section
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Chapter 3

Factorization for QCD Cross Sections

Factorization is the separation of long distance from the short distance

effects order by order in perturbation theory. As we discussed in Chapter 1,

QCD is an asymptotically free theory of strong interactions, and for this reason

short distance effects in QCD (corresponding to high energies) are perturba-

tively calculable. For a scattering process, in order to achieve this goal one

needs to understand the regions in momentum space that contribute to the

long distance dynamics, and this we have done in the previous chapter. The

predictive power of perturbative QCD comes from the fact that the long dis-

tance behaviours of the scattering processes in QCD are universal. Therefore,

once factored out and determined by experiment, these long distance pieces

can be used to make cross section predictions for other processses. The case

of simgle-particle inclusive cross sections in e+e− annilihilation was studied

and factorization for these proceses were shown in Refs. [36, 39]. For Deep

Inelastic Scattering (DIS), factorization was first discussed to all orders in

perturbation theory in Refs. [35, 34, 36, 37, 38, 40]. The analysis has been
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extended to hadron-hadron scattering in Refs. [41, 42]. In this chapter, fol-

lowing Refs. [41, 42], we will consider the following hadron-hadron scattering,

and present the arguments for factorization:

hA(pA) + hB(pB) → l l̄(Qµ) +X , (3.1)

where hadron A with momentum pA scatters off hadron B with momentum

pB to give a lepton pair and an unknown final state X. The factorized form

of the differential cross section for this process is given by

dσAB→ll̄+X

dQ2 dy
=
∑

a,b

∫ 1

0

dξA
ξA

dξB
ξB

fa/A(ξA, Q
2)Hab(xA/ξA, xB/ξB, Q

2)fb/B(ξB, Q
2) ,

(3.2)

where

y =
1

2
ln(Q+/Q−) , xA = ey

√

Q2/s , xB = e−y
√

Q2/s . (3.3)

The sum is over a, b, the parton types, and the f(ξ, Q) are parton distribution

functions, which describe the long distance behaviour of the cross section.

They are not perturbatively calculable and therefore must be obtained from

experiment. They give the distribution of partons inside the hadron with

momentum fraction ξ. Hab is the perturbative hard-scattering function, which

we calculate to a specific order in perturbation theory. It describes the short

distance dynamics. As one can see from Eq. (3.2), the differential cross section

for this process is given by a convolution of functions that describe different

dynamics.

As we have stated above, one of the key properties of a factorized cross

section as in Eq. (3.2) is that the parton distribution functions fs are process
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independent. This requires that the two partons entering the hard scattering

are not correlated in momentum, spin or color. As we shall see in the following

sections, the essence of the proofs for factorization is to show that this is indeed

the case. The argument in the case of color is particularly subtle. In order

to motivate this, let’s consider the following physical picture for a Drell-Yan

process in the center of mass (c.m.) frame of the two hadrons that approach

each other with large momenta in ±z directions. Each hadron is composed of a

finite number of partons that are confined in a region of space with transverse

size L ∼ 1 fm and a Lorentz-contracted longitudinal size (m/P )L with P the

hadron’s momentum.

In the Drell-Yan process, two partons, one from each hadron, annihilate

at a hard interaction vertex to form a virtual photon of momentum Q, where

Q2 is large (Q2 >> ΛQCD). First of all we would like to observe that in

the leading contribution, only one parton from each hadron takes part in this

hard interaction. To verify this note that the hard interaction takes place in

a region of space with transverse area of dimension on the order of 1/Q. The

probability for a second parton to be in this area is (interaction area)/(cross

sectional area of hadron) ∼ 1/(L2Q2) which is suppressed for large Q.

Now consider the exchange of soft gluons with momenta q << Q. Naively,

if these gluons have momentum components as small as qµ ∼ 1/L, then these

fields can extend to a distance on the order of L ahead of the colliding hadrons

therefore giving them enough time, on the order of L/c before the hard inter-

action, to interact with the parton of the other hadron. This would spoil the

factorization of Eq. (3.2), because it would mean that the colors of the partons
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taking part in the hard interaction could become correlated.

It has been argued in Ref. [43] that classically such color correlations

do not arise. One can easily verify that the vector potential corresponding

to a point charge as in the case of the Drell Yan process is actually a pure

gauge. Even a vector potential that is a pure gauge does have an effect on

a charged particle in the gauge theory. A phase e
∫

Aµdx
µ is acquired by a

particle moving through potential Aµ from infinity to the interaction point.

This phase, however, does not depend on the path, but only on the endpoints

if Aµ is a pure gauge. In the following sections, we will see that by the use of

gauge invariance, the effects of initial state interactions via soft gluons factor,

and the phase mentioned above can be included in the definition of the parton

distribution functions.

Having discussed this heuristic argument for factorization as in Eq. (3.2),

we will continue with the demonstration of the proof of factorization following

Refs. [41, 42]. The proof has three main steps:

1. cancellation of final state interactions using time ordered perturbation

theory,

2. factorization of collinear gluons from the hard part H,

3. soft gluon factorization and cancellation.
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Figure 3.1: A general leading pinch singular surface for the Drell Yan process.
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3.1 Cancellation of final state interactions

Consider the general leading region for a cut diagram G that contributes

to the cross section for the Drell Yan process , shown in Fig. 3.1. In this

section we will show that , as claimed above, all final-state interactions cancel

in the fully inclusive cross section. This justifies the identification of the most

general reduced diagrams for the Drell-Yan prodess, as discussed in Section

2.5 above.

Let Eα be the set of all states for a given time order α. Let E
(α)
Q ⊂

Eα denote the set of states that include the Drell-Yan pair for that order.

Time ordered perturbation is a systematic method to integrate all energy loop

integrals. In time ordered perturbation theory we can write G as

G =

∫

∏

loops
i

d3li
(2π)3

∏

lines
j

1

2|kj|
N(l)

∑

time
orderings α

∑

states
ξ of Eα

Q

{







∏

states
η<ξ

(
√
s− eη + iε)−1







×δ(
√
s− eξ)







∏

states
η>ξ

(
√
s− eη − iε)−1







}

, (3.4)

where eη is the on-shell energy of the state η

eη =
∑

lines

i∈η

|ki| , (3.5)

and the factors in the numerator are denoted by N(l). States η < (>) ξ means

the states η that are before (after) the state ξ in the time ordering α. Note that

we will be able to make a clear distinction between the initial state and final

state interactions in such a time ordered expression for both the amplitude and
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the complex conjugate amplitude, due to the fact that the hard interaction

takes place in a very short time of order ∼ 1/Q.

Now consider the interactions that take place after the electromagnetic

hard interaction vertex shown in Fig. 3.1. We will call these interactions final

state interactions. Suppose there are m final state interactions, then for the

m+1 final states we can write down a factor F , which has only the final states

for each time ordering in Eq. (3.4) as1

Fm =

m+1
∑

final states
ξ=1

[

ξ−1
∏

η=1

(
√
s− eη + iε)−1

]

δ(
√
s− eξ)

[

m+1
∏

η=ξ+1

(
√
s− eη − iε)−1

]

.

(3.6)

To the delta function in this expression we now apply the distribution identity

(x + iε)−1 − (x− iε)−1 = −2πiδ(x) , (3.7)

and find

Fm =
1

−2πi

[

m+1
∏

η=1

(
√
s− eη + iε)−1 −

m+1
∏

η=1

(
√
s− eη − iε)−1

]

. (3.8)

We now insert Eq. (3.8) into Eq. (3.4). We are going to argue that in Eq. (3.4)

one can always find an integration variable whose contour of integration is not

pinched and can be deformed to a distance of order Q. Then if m ≥ 1, that is

if there are any soft final state interactions, F is going to be suppressed.

As shown in Ref. [41] such an integration variable is the lepton pair energy

Q0. Noting that all initial state denominators are independent of Q0, we can

1As before the m final states are a subset of the total set of states Eα that include

the Drell-Yan final state pair.
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write the jth denominator of F as

Dj = dj −Q0 + iε , (3.9)

with dj independent of Q0. We can deform the Q0 integration contour for

F of Eq. (3.8) up to a distance ∆Q ∼ Q since for each of the terms in that

equation all the poles for Q0 are only on one side of the real axis. In this case

the integration measure will get a factor of ∆Q and the integrand will get a

factor of 1/(∆Q)m+1 resulting in a net suppression of 1/(∆Q)m. This is true

whenever the integrand has at least two denominators. If both of the terms

in F have only one denominator, that is for m = 0, in other words if there are

no final state interactions, then the contour integral results in F = 1.

In summary, we see that after summing over all final states, which cor-

responds to the ξ sum in Eq. (3.6), the final state factor F that is a part of

Eq. (3.4) can be replaced by a Kroneker delta: δm0. The only final state inter-

actions that remain are therefore those that are part of the hard scattering.

As a result of this final state cancellation, we can ignore those leading pinch

sigularities which have soft gluons with momenta q <<
√
s that connect the

incoming jets to the hard scattering part after the electromagnetic hard scat-

tering vertex. This is because we have seen that after the sum over final states

one can always find a suitable integration variable whose contour deforma-

tion results in the suppression of the singularities due to the above mentioned

contributions. After the cancellation of final states, the most general leading

pinch singular surface for the Drell Yan process is shown in Fig. 3.2. Final state

interactions still affect the cross section but because they involve no leading
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pinch singular surfaces, they can be computed in perturbation theory.

Before we continue with the factorization of collinear gluons, we would

like to make one remark about the final state cancellation. As we will see, for

the soft gluon factorization the following approximations will be crucial

2 pA · q ≈ 2p+
A q

− ,

2 pB · q ≈ 2p−B q
+ , (3.10)

where pA and pB are the momenta for the incoming A and B jets and q is

the momentum of a soft gluon that couples to the jets. This approximation

corresponds to the momentum space region where the transverse component

of the soft gluon momentum is negligibly small. The region where the approx-

imation given in Eq. (3.10) for the soft gluon momenta does not hold is called

the Glauber region in Ref. [44]. Whenever the approximation in Eq. (3.10)

holds, the soft gluon attaching the jets is insensitive to the transverse structure

of the jets. Conversely, when Eq. (3.10) does not hold, the gluons probe the

jet sub-structure. Therefore the Glauber regions potentially are a threat for

the factorization. However, as we will discuss shortly with an explicit exam-

ple, cancellation of final state interactions ensures that the Glauber regions

either cancel all together or can be avoided by proper contour deformations

[45, 46, 47, 48].

Let’s look at the q− integrals for the gluon correction diagrams in Fig. 3.3.

For later use also, we define an active line as a line which attaches to the hard

part and a spectator line as one which does not. We consider the region where

the gluon attaching the active and spectator quark lines is soft, i.e. q+ << P+
A .
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Figure 3.2: A general leading pinch singular surface for the Drell Yan process

after final state cancellation.
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Figure 3.3: Gluon correction graphs where gluons attach to an active quark

and a spectator quark in (a) and (b) respectively.

At the pinch surface l+ = (1 − xA)P+
A , 0 < xA < 1. Up to common factors,

the Feynman integrals can be written as

Ia ≈
∫

1

2q+q− − q2
T + iε

1

2xAP
+
A (k−A + q−) − ρ2 + iε

φa(q
−) dq− ,

Ib ≈
∫

1

2q+q− − q2
T + iε

1

2xAP
+
A (k−A + q−) − ρ2 + iε

× 1

2(1 − xA)P+
A (l− − q−) − ρ2 + iε

φb(q
−) dq− , (3.11)

where ρ2 = (kA,T + qT )2, and, where φa and φb are slowly varying functions

of q−. Let us take qT ∼ M , M << Q any fixed momentum scale, and P+
A ∼

Q >> q+. We first study the case when

|q−| < M , |P+
A q

−| >> M2 ∼ ρ2 . (3.12)

In the center of mass frame of the incoming hadron A, the polarization vector

that couples the gluon to the A-jet lies to a very good approximation in the

minus direction, which can be understood with the power counting discussion

of the previous chapter. In the region given by Eq. (3.12), the momentum
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of this gluon also satisfies |q−| ∼ M >> M2/P+
A . Therefore we see that the

polarization vector for the gluon is to a very good approximation proportional

to its four momentum. This means that the gluon attaching to the incoming A-

jet for this momentum region is a scalar-polarized and therefore an unphysical

gluon. We will see that for those diagrams where unphysical gluons attach

the jets, we can use the Ward identities that result from gauge invariance for

simplifications. We shall see that using Ward identities, all scalar-polarized

gluons factor from the A-jet.

Now let us consider the momentum space region where Eq. (3.12) does

not hold. In particular this may happen when

|q−| ∼M2/P+
A . (3.13)

This region of momentum space is called the Glauber region [44], as we have

briefly introduced before. The first thing to notice is that when Eq. (3.13)

holds, both q− and qT must be taken into account in the A-jet. The leading

polarization remains in the minus direction, however, the gluon is no longer

effectively scalar-polarized. In this region, we can also no longer apply gauge

invariance to simplify the contributions. We can see that the Glauber region,

by using power counting methods of Chapter 2, contributes to both Ia and

Ib of Eq. (3.11). Therefore one may very naturally ask if the Glauber regions

spoil factorization. The short answer is no. Here we will briefly motivate why

this is so, using the example given in Fig. 3.3. A more rigorous argument may

be found in Refs. [41, 49] .

To illustrate the basic arguments for factorization, we analyze the pole
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(b)(a)

C

C

q q

2

1 1

2

3
final state pole

Figure 3.4: Poles for the diagrams in Fig. 3.3a. and b. in the q− plane.

structures of the integrals Ia and Ib in the complex q− plane. The poles for Ia

are

q−1 =
q2
T

2q+
− iε

2q+
,

q−2 = −k−A +
ρ2

2xA P
+
A

− iε

2xA P
+
A

. (3.14)

The poles for Ib are

q−1 =
q2
T

2q+
− iε

2q+
,

q−2 = −k−A +
ρ2

2xA P
+
A

− iε

2xA P
+
A

,

q−3 = l− − ρ2

2(1 − xA)P+
A

+
iε

2(1 − xA)P+
A

. (3.15)

For −P+
A < q+ < 0, these poles in the q− plane are shown in Fig. 3.4. One

needs to observe that q−1 and q−2 for both Ia and Ib are separated by O(M)

but q−2 and q−3 for Ib are separated by O(M 2/P+
A ).

We see that for the diagram in Fig. 3.3a the q− contour is not pinched

because the q−1 and q−2 poles are separated by O(M). Therefore we can deform

the q− contour away from the second pole in Fig. 3.4a as far as is necessary to
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get out of the Glauber region of momentum space. This contour deformation

is illustrated in Fig. 3.4a. However, this is not the case for the diagram in

Fig. 3.3b where the soft gluon attaches to a spectator line. We can see from

Fig. 3.4b that the q− contour is pinched in between the second and the third

poles in this figure which are both at the scale M 2/P+
A . However as noted on

the figure also, the third pole that pinches the q− contour is a final state pole.

As we have discussed earlier in this section, when we sum over all the possible

final states of the same diagram, shown in Fig. 3.3b, this pole simply cancels.

After this cancellation, the q− contour is no longer pinched and can therefore

be deformed away from the Glauber region. We see that, even though we can

not use the gauge invariance arguments for the diagrams in the Glauber region,

cancellation of final state poles saves the day for factorization. We would like

to note that this example fairly easily generalizes to diagrams of higher order

and such a generalization is discussed in Ref. [41].

3.2 Factorization for collinear lines

In the previous section we have seen that final state interactions cancel

once we sum over the relevant final states of a given cut diagram. After

this cancellation we are left with the leading pinch singular surfaces shown in

Fig. 3.2. Also we have seen that the Glauber regions of momentum space where

the transverse momenta of the soft gluons attaching the jets become important

are taken care of by the same final state cancellation. In this section we will

briefly discuss how the collinear gluons attaching the hard part in the covariant
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Figure 3.5: Diagramatic representation of the Ward identity for the longitu-

dinally polarized gluons attaching the hard part.

Feynman gauge factor from the hard scattering. We will make use of the power

counting rules we have derived earlier in Chapter 2.

We begin by defining projections of gluon momenta,

k̂µ = (k+, 0, 0T ) ,

k̃µ = (0, k−, 0T ) , (3.16)

and light-like vectors in the plus and minus directions,

uµ =
1√
2
(0, 1, 0T ) ,

vµ =
1√
2
(1, 0, 0T ) . (3.17)

For the scalar polarized gluon propagators that attach the hard part we now
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make the following collinear approximations [47]

gαβH
β ≈ uα k̂βH

β

u · k̂ − iε
, (3.18)

if kµ is collinear to the A-jet and

gαβH
β ≈ vα k̃βH

β

v · k̃ − iε
, (3.19)

if kµ is collinear to the B-jet. With the above approximations, the application

of nonabelian Ward identities of Refs. [50, 51] is trivial and the result is given

in Fig. 3.5. The double lines represent eikonal lines which are given by an

eikonal line operator

Φ[fi]
vi

(σ′, σ) = P exp

[

−ig
∫ σ′

σ

dλ vi · A[fi](λvi)

]

, (3.20)

where vµi is the four velocity for the eikonal line. P denotes path ordering.

This is the same phase factor mentioned in the introduction of this chapter.

The nonabelian Ward identities and the Feynman rules for eikonal lines are

discussed in Appendix A, and a more complete proof is given in Refs. [41, 52].

The physical interpretation of the collinear longitudinally polarized gluons

attaching the eikonal lines is that they can not resolve any structure of the hard

part H, only that it involves large momenta moving in the opposite direction.

This is why H is equivalent to an eikonal line moving in the opposite direction

for a collinear unphysical gluon.

3.3 Soft gluon factorization and cancellation

In the previous sections we have discussed how final state interactions

cancel after the sums over the cuts for individual cut diagrams are performed,
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Figure 3.6: A general leading pinch singular surface for the Drell Yan process

after final state cancellation and collinear gluon factorization.
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and how the collinear gluons that attach the hard part factorize using gauge

invariance. In this section we are going to show how soft gluons factorize and

cancel.

3.3.1 Soft gluon factorization

We begin start our discussion by summarizing the results of the previous

sections by writing down the expression for an arbitrary graph G that con-

tributes to the Drell Yan cross section. The contribution from any leading

pinch singular surface S can be written as

GS =
∑

C

∫

dk+
A

2π

dk−B
2π

∏

l

∫

d4ql
(2π)4

∏

j

∫

d4q̄j
(2π)4

J
(C)
A (k+

A , q
α
l ){µ1 ...µn}

×S(C)(qαl , q̄
β
j ){µ1...ν1... }H

(C)(k+
a , k

−
B) J

(C)
B (k−B , q̄

β
j )

{ν1...νm} , (3.21)

which is represented in Fig. 3.6. The sum over C runs over possible cuts for the

particular diagram. ql and q̄j are the momenta of soft gluons that attach to the

A- and B-jets, respectively, as described in the figure. Notice that to represent

a physical picture k+
A = xAQ, 0 < xA < 1, and k−B = xB Q, 0 < xB < 1.

Eq. (3.21) has the same form as Eq. (3.2) except for the effects of soft gluons.

Thus we must show that soft gluons that connect the jets cancel.

We now rewrite the sum over the cuts C in Eq. (3.21) as

GS =

∫

dk+
A

2π

∏

l

∫

d4ql
(2π)4

∑

V

∑

CA∈VA

×J (CA)
A (k+

A , q
α
l ){µ1...µn}

∑

CR∈VR

R(CR)(k+
A , q

α
l ){µ1...µn} , (3.22)
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where

R(CR)(k+
A , q

α
l ){µ1...µn} =

∫

dk−B
2π

∏

j

∫

d4q̄j
(2π)4

S(CR)(qαl , q̄
β
j ){µ1...ν1...}

×H (CR)(k+
A , k

−
B) J

(CR)
B (k−B , q̄

β
j )

{ν1...νm} . (3.23)

Here we have reorganized the sum over cuts such that we first consider the

vertices where soft gluons attach to JA. V represents possible choices for which

of these vertices are to the left or to the right of C. VA and VR represents the

set of vertices in JA and R respectively, consistent with the choice V . First,

we sum over the choices of V and then we sum over different cuts of JA and R

seperately. Finally, we have represented everything that is not the A-jet as R.

We will study this expression using lightcone-ordered perturbation theory

for the A-jet. We begin with the following approximation on Eq. (3.22). Since

the A-jet consists of lines with large plus momentum components we will

neglect the plus components of the soft gluon momenta ql compared to the

plus momentum components flowing on the lines of the A-jet. Also for the

same reason that A-jet mostly consists of lines with large plus momenta, the

contributions to the sums over the vector indices µi can be approximated by

the values µi = +. With these approximations, we can rewrite the factor J
(C)
A

in Eq. (3.22) as

J
(C)
A (k+

A , q
α
l ){µ1 ...µn} ≈ J

(C)
A (k+

A , q̂
α
l ){+···+} vµ1 · · · vµn , (3.24)

where

q̂α = (0, q−l ,ql,T) , (3.25)
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and where vµ is the light-like vector in the plus (A) direction defined above in

Eq. (3.17). With these approximations, since we can neglect q+
l in the A-jet,

we can take the factor J
(C)
A outside the q+

l integrals and we can write

GS =

∫

dk+
A

2π

∏

l

∫

dq−l dql

(2π)3

∑

V

∑

CA∈VA

J
(CA)
A (k+

A , q̂
α
l ){+···+}

×
∏

l

∫

dq+
l

2π

∑

CR∈VR

R(CR)(k+
A , q

α
l ){+···+} . (3.26)

We next construct x+-ordered perturbation theory for the A-jet by eval-

uating the internal k− integrals of J
(CA)
A , keeping the plus and transverse com-

ponents fixed [53, 54]. This will enable us to write down the explicit q−l

dependence of JA. After the evaluation of k− integrals in JA in the spirit of

Refs. [53, 54] one can write it as a sum over the x+-orderings T of its vertices

as given in Ref. [42]

J
(CA)
A =

∑

T

I ′T (qαl )∗ ⊗ F
(CA)
T (qαl ) ⊗ IT (qαl ) , (3.27)

where IT and I ′ ∗T represent the initial state interactions to the left and to

the right of the cut and FT represents the final state interactions in JA. The

hard scattering takes place at x+ = 0 and initial and final states are defined

relative to the hard scattering. The convolution ⊗ is in the internal A-jet loop

momenta integrations. Fig. 3.7 represents a generic x+-ordering for JA.

In much the same was as for time-ordered perturbation theory, Eq. (3.4),
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q−1 q−2 q−3 q−4

q−1 k−

A q−2 q−3 k−

A −

∑
q−j q−4

Figure 3.7: A diagram that illustrates the x+-ordered perturbation theory for

JA with the flow of minus momenta. q’s flow in along soft gluons and out

along the collinear lines.

one can write these initial and final state factors as

IT (qαl ) =
∏

states ξ
ξ<H







∑

vertices l

l<ξ

(q−l + iε) −
∑

lines j
j∈ξ

k2
j

2k+
j







−1

,

I ′T (qαl )∗ =
∏

states ξ

H′<ξ






−
∑

vertices l

ξ<l

(q−l + iε) −
∑

lines j
j∈ξ

k2
j

2k+
j







−1

, (3.28)
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where the signs of the q−l ’s correspond to the flow of momenta in Fig. 3.7.

F
(CA)
T (qαl ) =

∫ ∞

−∞

dk−A
2π

∏

states ξ

C<ξ<H′






−k−A +

∑

vertices l

l<ξ

(q−l − iε) −
∑

lines j
j∈ξ

k2
j

2k+
j







−1

×2πδ






−k−A +

∑

vertices l

l<C

q−l −
∑

lines j

j∈C

k2
j

2k+
j







×
∏

states ξ
H<ξ<C






−k−A +

∑

vertices l

l<ξ

(q−l + iε) −
∑

lines j
j∈ξ

k2
j

2k+
j







−1

, (3.29)

where k−A is the minus momentum that leaves the A-jet at hard vertex H and

k−A−∑ q−l is the minus momentum that flows back into the jet at hard vertex

H ′. Each term k2
j/2k

+
j is the on-shell minus momentum of line j, by analogy to

the ei = |~ki| in Eq.(3.4) and Eq. (3.5). Substituting Eq. (3.27) into Eq. (3.26)

one gets

GS =

∫

dk+
A

2π

∏

l

∫

dq−l dql

(2π)3

∑

V

∑

CA∈VA

∑

T

I ′T (qαl )∗ ⊗ F
(CA)
T (qαl ) ⊗ IT (qαl )

×
∏

l

∫

dq+
l

2π

∑

CR∈VR

R(CR)(k+
A , q

α
l ) (3.30)

where we have suppressed the indices. We now turn our attention to the sum

∑

CR
R(CR).

3.3.2 Light-cone perturbation theory for R̄

Before we return to the analysis of the A-jet, we would like to prove a

very important intermediate result which we will explicitly use in the following
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Figure 3.8: Two different cuts of the same x−-ordered graph.

steps of the analysis. We would like to prove that the quantity

R̄(k+
A , q̂

α
l ;V ) =

∏

l

∫

dq+
l

2π

∑

CR∈VR

R(CR)(k+
A , q

α
l ) (3.31)

is actually independent of V , which we defined to be the choice of which of

the soft gluons attach the A-jet to the left of the cut C and which to the right.

For this proof we need the x−- ordered perturbation theory for R̄ which is

derived by performing all the internal plus loop integrals, while keeping the

minus and transverse components fixed. Just as in the x+-ordered light-cone

perturbation theory for the A-jet, the result can be written as a sum over

light-cone ordered perturbation theory diagrams [53, 54]

R̄(k+
A , q̂

α
l ;V ) =

∑

CR∈VR

∑

T

I
(R) ′

T (qαl )∗ ⊗ F
(CR)
T (qαl ) ⊗ I

(R)
T (qαl ) , (3.32)

A typical light cone ordered cut diagram is shown in Fig. 3.8, in which the

vertices are ordered from left to right. At each vertex transverse and minus mo-
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menta are conserved, and only those orderings in which minus momenta flows

from right to left in the entire diagram contribute. The latter requirement

limits the number of light cone ordered diagrams, and is a major simplifica-

tion of this method. (The same result applies to plus momenta in the A-jet

expression Eq. (3.26).)

For the analysis of infrared divergences, each of the factors in Eq. (3.32)

can be considered to be a product of denominators, where each denominator

represens one of the intermediate states specified by the ordering T . The de-

nominator for state ξ is the “plus momentum deficit” of that state, by analogy

to the “energy deficit” of states in time-ordered perturbation theory and the

“minus-momentum deficit” of Eqs.(3.28)-(3.29): the difference between the

plus momentum that has flowed into (or out of) the diagram to the left of the

state and the sum of the on-shell plus momenta for the particles of that state.

When the net plus momentum that has flowed into the diagram to the left of

a given state matches the sum of on-shell plus momenta of the lines in that

state, the denominator vanishes, and the state is referred to as on-shell.

All the factors described above correspond to any field theory, involving

only scalars or full QCD. Choosing the Feynman gauge in QCD, however, all

factors associated with particle spin appear as multiplicative polynomials in

external and loop momenta. Although numerator factors play a crucial role in

determining the strength of infrared singularities [33, 34], they do not directly

enter the arguments given below. Ignoring for simplicity these numerator

factors associated with particle spin, we can represent the sum individual
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factors of Eq. (3.32) as

I
(R)
T (kαl ) =

∏

states ξ
ξ<H






−
∑

lines j
j∈ξ

k2
j

2k−j
+ iε







−1

,

I
(R) ′∗
T (kαl ) =

∏

states ξ

H′<ξ






−
∑

lines j
j∈ξ

k2
j

2k−j
− iε







−1

, (3.33)

F
(CR)
T (qαl ) =

∫ ∞

−∞

dk+
B

2π

∏

states ξ

C<ξ<H′






k+
B −

∑

lines j

j∈ξ

k2
j

2k−J
− iε







−1

× 2πδ






k+
B −

∑

lines j
j∈C

k2
j

2k−j







∏

states ξ
H<ξ<C






k+
B −

∑

lines j
j∈ξ

k2
j

2k−j
+ iε







−1

.

(3.34)

Referring to Fig. 3.8 as an example, we can now see why it is nontrivial

that R̄ is independent of how the external lines of R(CR) are attached to the

A-jet. Consider, for example, the line labelled k1, which is emitted from a

vertex in the amplitude and is absorbed on a line in the A-jet in Fig. 3.8. The

figure shows two possible cuts of the same graph, corresponding to different

choices of V . Although each cut crosses JA and R in a different way, and

corresponds to a different final state, we will show that after the integration

over k+
1 the values of R for both cuts are the same if k+

1 is neglected in JA. As

we have discussed above the approximation where we neglect k+
1 in the A-jet

is a good one.

Now for different choices V of soft connections to the A-jet the possible

cuts CR and possible time orderings T are different. Given two different choices
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V , however, for each time ordering for the first value there is a time ordering

for the second value that has exactly the same initial state factors I
(R)
T and

I
(R)
T

′∗. Therefore, the V dependence in R̄ is only in the final state factor F .

We are going to show that all such dependence cancels.

We now sum over the set of final state functions F
(CR)
T for some fixed

ordering, T . Let us suppose there are m ≥ 1 final states in this sum. Referring

to Eq. (3.34), we can represent the sum as

m
∑

C=1

F
(CR)
T (qαl ) =

m
∑

C=1

∫ ∞

−∞

dk+
B

2π

{

m
∏

i=C+1

1

k+
B −Di − iε

× 2πδ(k+
B −DC)

×
C−1
∏

i=1

1

k+
B −Di + iε

}

, (3.35)

where Ds represents the sum of on-shell plus momenta of state s. We next

follow a familiar procedure, just as we have done while showing the cancellation

of final state interactions, and apply to each mass-shell delta function in this

expression the distribution identity of Eq. (3.7), 2πδ(x) = i/(x+iε)−i/(x−iε).

As in Eq.(3.8) above, all except two of the resulting terms cancel pairwise,

m
∑

C=1

{

m
∏

i=C+1

1

k+
B −Di − iε

2πδ(k+
B −DC)

C−1
∏

i=1

1

k+
B −Di + iε

}

= i

m
∏

i=1

1

k+
B −Di + iε

− i

m
∏

i=1

1

k+
B −Di + iε

. (3.36)

Using this unitarity identity in (3.35), we perform the integral over k+
B , and

find
m
∑

C=1

F
(C)
T (qαl ) = δm1 , (3.37)

which follows readily from Cauchy’s theorem. When there are no final state

interactions, then the integral (2π)−1
∫

dk+
B gives a factor of i. However if there
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are final state interactions so that m > 1, then the integral over k+
B of each

term in Eq. (3.36) gives zero. Therefore the final state interactions cancel once

we sum over the final state cuts, replacing F by unity. In particular, after the

sum over cuts, the remnant final state factor is independent of V .

Since we have argued that all the V dependence of R̄ of Eq. (3.32) is in

the final state interactions F , which cancel after the sum over all possible cuts

of R that are consistent with the choice V , we can write R̄ as

R̄(k+
A , q̂

α
l ;V ) =

∑

CR∈VR

∑

T

I
(R) ′

T (qαl )∗ ⊗ I
(R)
T (qαl )

≡ R̄(k+
A , q̂

α
l ) , (3.38)

where in the second line we have dropped the dependence on V . The sum over

final states is then given entirely by light-cone ordered diagrams for which all

interactions are initial state.

In summary, we have just shown that for an arbitrary cut diagram, the

piece of the diagram that is not a part of the A-jet, which we labelled as R,

is independent of the way soft gluons attach the A-jet. Having accomplished

this, we are now ready to write GS, the contribution from an arbitrary pinched

singular surface of Eq. (3.30), as

GS =

∫

dk+
A

2π

∏

l

∫

dq−l dql

(2π)3

{

∑

V

∑

CA∈VA

∑

T

I ′T (qαl )∗ ⊗ F
(CA)
T (qαl ) ⊗ IT (qαl )

}

×R̄(k+
A , q̂

α
l ) , (3.39)

where R̄ is given by Eq. (3.38) and is independent of the sum over V . This

will enable us to sum JA over all of its cuts CA freely. Using exactly the same
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reasoning as before, we can now apply the unitarity identity of Eq. (3.7) to

the final state factor of Eq. (3.29) in JA to find

∑

CA

J
(CA)
A =

∑

CA

∑

T

I ′T (qαl ) ⊗ IT (qαl ) . (3.40)

3.3.3 Factorization and cancellation of soft gluons

All these manupilations were absolutely crucial because now from Eq. (3.28)

we see that the initial state factors in JA therefore
∑

CA
JA has no poles in the

upper half q−l plane and therefore is not pinched. This allows us to deform the

q−l contours into the upper half plane until we encounter poles from R̄ which

are at |q−l | ∼ |ql|. It was proved in Ref. [42] that on the deformed contour we

can neglect the transverse components of the soft gluon momenta ql, and once

this is done we can pull the q−l contours back to the real axis. These contour

deformations are discussed in Ref. [42] in great detail.

The result up to corrections suppressed by a power of Q is

GS =

∫

dk+
A

2π

∏

l

∫

dq−l
2π

{

∑

V

∑

CA∈VA

J
(CA)
A (k+

A , q̃
α
l )

}

∏

l

∫

dql
(2π)2

R̄(k+
A , q̂

α
l ) ,

(3.41)

where JA depends now on q̃αl , which consists of only the minus components of

ql such that

q̃αl = q−l u
α , (3.42)

with u defined earlier in Eq. (3.17). In other words, we have shown that we can

ignore the transverse momentum components of the soft gluons attaching the

A-jet in JA. This is a generalization of the Grammer-Yennie approximation for
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soft photons in QED of Ref. [55]. The physical interpretation is that the soft

gluons that attach to the A-jet actually can not resolve the structure of the

jet in the minus or transverse directions. We therefore expect that the effects

of all soft gluons will be summarized by phase factors analogous to Eq. (3.20).

For the simplicity of the notation we have been ignoring the contracted

vector indices on JA and R, which are explicit in Eq. (3.22). We have argued

before that the leading contribution comes from the µi = + components. We

can rewrite the + components of JA as

J
(CA)
A (k+

A , q̃
α
l ){+···+} = J

(CA)
A (k+

A , q̃
α
l ){µ1···µn}

n
∏

i=1

q̃i,µi

v · qi − iε
, (3.43)

where we have simply multiplied and divided JA by a factor of q−i for each

gluon. This can be done as long as there are no poles in the rest of the integrand

at q−i = 0, or if there are such poles then the iε prescription for JA must be

the same as the iε prescription we used above for the ratio q−/(q− − iε) = 1.

Here we have chosen a final state iε prescription, namely we have the factor

q−

q−−iε
. This is because we only consider cases where the initial states, states

before the hard interaction at xµ = 0, are color singlets and therefore do not

interact with the soft gluons. It is only those states that are after the hard

interaction, in other words the final states that interact with these soft gluons

therefore the iε prescription in JA is a final state iε prescription.

At this point the factorization of soft gluons is a matter of direct appli-

cation of the nonabelian Ward identities of Appendix A. The result can be

written as

J
(CA)
A (k+

A , q̃
α
l )

{+}
ab = J

(CA)
A (k+

A)a′b′ E
{+}
a′a (vµ, q̃αL)E

{+}∗
b′b (vµ, q̃αR) , (3.44)
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Figure 3.9: Graphical representation of Eq. (3.44) where soft lines are factored

from the A-jet via nonabelian Ward identities.

where we have written the color indices explicitly and q̃L and q̃R attach the

A-jet to the left and to the right of the cut. This equation is represented by

Fig. 3.9 where E and E∗ represents the two eikonal lines in the vµ direction on

the two sides of the cut. We can also see that the jet function JA is diagonal

in color space after the soft gluon factorization.

The same procedure for the B-jet results in a similar expression where

the soft gluons factor from JB. We can now apply our results to an arbitrary
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leading pinch singular surface S to write down the contribution as

GS =
∑

C

∫

dk+
A

2π

∫

dk−B
2π

1

3
Trcolor J

(C)
A (k+

A)S
(C)
c′cd′dH

(C)
c′cd′d(k

+
A , k

−
B)

×1

3
Trcolor J

(C)
B (k−B) , (3.45)

where we have defined the soft function S as

S
(C)
c′cd′d =

∫

∏

l

d4ql
(2π)4

∏

j

d4q̄j
(2π)4

S(C)(qαl , q̄
β
j )E

(+)
ac′ (ql,L)E

(+)
ac (ql,R)

×E(−)
bd′ (q̄j,L)E

(−)
bd (q̄j,R) . (3.46)

In this form the soft part, the hard part and the jets are completely fac-

tored and therefore each can seperately be summed over their individual cuts.

Diagramatically the fully factorized form of the contribution of an arbitrary

leading pinch singular surface S for the Drell Yan cross section is given by

Fig. 3.10.

In the context of e+e− annihilation it was shown in Ref. [56] that Sc′cd′d =

δc′cδd′d, which is the zeroth order contribution. The cancellation of soft gluons

is due to the sum over final states and integration over loop energies. It is

analogous to the cancellation of final state interactions due to unitarity. The

same arguments can be applied to the soft function of the Drell Yan cross

section to show that the higher order corrections cancel at leading order [41].

The final result for the leading contribution to GS then can be written as

GS =

∫

dk+
A

2π

dk−B
2π

JA,soft(k
+
A) JB,soft(k

−
B)H(k+

A, k
−
B) . (3.47)
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Figure 3.10: Graphical representation of Eq. (3.45) where the soft function,

the hard function and the jet functions are fully factorized.
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When Eq. (3.47) is summed over all graphs and over all leading pinch

singular surfaces, one finds that the differential cross section takes the desired

form of Eq. (3.2) [41]

dσAB→ll̄+X

dQ2 dy
=
∑

a,b

∫ 1

0

dξA
ξA

dξB
ξB

fa/A(ξA, Q
2)Hab(xA/ξA, xB/ξB, Q

2)fb/B(ξB, Q
2) .

(3.48)

The standard choice of parton distribution functions for quarks in hadrons,

defined as the expectation value of certain operators in a hadronic state is

given by [57]

fq/h(ξ, µ
2) =

1

4

∑

σ

∫ ∞

∞

dy−

2π
e−i ξ p

+y−〈h(p, σ)|q̄(0=, y−, 0T )n · γ q(0)|h(p, σ)〉 ,

(3.49)

where nµ is a light-like vector in the opposite direction to the incoming hadron

with momentum p and spin σ. After one shows that the IR divergences cancel

and the set of pinched singular surfaces reduces to a smaller set, what needs to

be done for seperating outH in Eq. (3.2) is to define a set of nested subtractions

in the spirit of Refs. [56, 58]. However, this analysis is outside the scope of

this thesis.

3.4 Parton distribution functions and cross sec-

tion predictions

So far we have discussed the steps of the proof of factorization for in-

clusive hadron-hadron scattering processes. The full factorized form of the
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differential cross section is given in Eq. (3.2). As we have pointed out before,

the parton distribution functions in this equation are universal, in other words

process independent. This property of the parton distributions gives QCD its

predictive power. Once determined by experiment, the same parton distribu-

tion functions can be used to predict cross sections for different processes and

then these predictions can be tested by experiment. In this section, we will

discuss how we determine the parton distribution functions by experiment and

how we use this information to make cross section predictions in perturbative

QCD. This discussion will also serve as a motivation for the study of 2 → n

partonic scattering amplitudes, which will be the main focus of the rest of this

thesis.

Since the parton distribution functions are universal, we can use any pro-

cess to determine them. We will use the DIS of an electron off a hadron.

Tha hadronic tensor of the inclusive DIS is written in terms of two structure

functions F1 and F2. One can write these structure functions in the following

factorized forms [23]

F
(h)
2 (x,Q2) =

∑

partons a

∫ 1

x

dξ C
(a)
2

(

x

ξ
,
Q2

µ2
, αs(µ

2)

)

fa/h(ξ, µ
2) ,

F
(h)
1 (x,Q2) =

∑

partons a

∫ 1

x

dξ

ξ
C

(a)
1

(

x

ξ
,
Q2

µ2
, αs(µ

2)

)

fa/h(ξ, µ
2) , (3.50)

where fa/h is the parton distribution function for parton a in hadron h with

momentum fraction ξ. C
(h)
i are the infrared safe coefficient functions for the full

hadronic process. The first goal is to determine these coefficient functions in

a given factorization scheme. We will explain what we mean by factorization

scheme shortly. The strategy is as follows : first we consider the partonic
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process. A similar factorization is valid for the partonic structure functions

in terms of parton distribution functions for partons in partons and the same

coefficient functions. We compare the perturbative expressions for the partonic

structure functions and the parton-in-parton distribution functions to obtain

the coefficient functions.

The one-loop parton-in-parton distribution functions using MS renormal-

ization prescription are given by [23]

f
(1)
a/f (ξ, ε) =

αs
2π

(−1

ε
+ γE − ln(4π)

)

P
(1)
a/f (ξ) , (3.51)

where P
(1)
a/f is referred to as the one loop “evolution kernel”. Since these dis-

tribution functions are computed using the MS renormalization prescription,

they are reffered to as MS distributions. However, other choices of distribution

functions can be defined by the following convolution

f
(D)
a/h (ξ, µ2) =

∫ 1

ξ

dη

η
Dab

(

ξ/η, αs(µ
2)
)

fMS
b/h (η, µ2) , (3.52)

where D is any IR safe distribution. This is refferred to as the factorization

scheme. One particularly interesting choice of D is such that it is equal to

the full DIS coefficient function C2, which is referred to as the DIS scheme.

Having obtained the coefficient functions of Eq. (3.50), one can perform a

DIS experiment to determine the second structure function F2. Using this

experimental result one can then extract out the parton distribution functions

from Eq. (3.50).

The hard scattering function Hab of Eq. (3.2) is calculable order-by-order

in perturbation theory. The strategy to compute this function perturbatively
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is as follows: we first consider the partonic process a b → ll̄ + X. The next

very nontrivial step is to assume factorization for the differential cross section

for this partonic process as follows

dσa b→ll̄+X

dQ2 dy
=
∑

i,j

∫ 1

0

dξA
ξA

dξB
ξB

fi/a(ξA, Q
2)Hij(xA/ξA, xB/ξB, Q

2)fj/b(ξB, Q
2) ,

(3.53)

where the parton distributions are for partons in partons and the hard scatter-

ing function is the same as the one for the full hadronic process. Even though

such a factorization for partonic processes was considered in Ref. [59] we be-

lieve that a rigorous proof in the same spirit as we have presented following

Refs. [41, 42] is still missing. A crucial drawback of the proof in Refs. [41, 42]

is the explicit assumption that the incoming states are color neutral, therefore

a generalization to incoming colored states is needed.

Once factorization of Eq. (3.53) is assumed, one can compute the partonic

cross section and the parton in parton distribution functions order-by-order

in perturbation theory and find the only unknowns, the hard scattering func-

tions, Hab, from that equation. Since the hard scattering function is the same

for the partonic and the full hadronic cross sections, one can now use the uni-

versal parton distribution functions and the process dependent hard scattering

function to make cross section predictions in perturbative QCD.

For the construction of the partonic cross section at a desired order in

perturbation theory, one needs the 2 → n partonic scattering amplitudes.

Therefore we will study the virtual corrections to the 2 → n partonic scattering

amplitudes for the rest of this thesis. We will see that these virtual corrections
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have in general infrared divergences which are given in terms of poles in powers

of 1/ε. Therefore the virtual corrections to the cross sections in general have

such poles. However, it is guarranteed by the factorization theorems that these

poles due to virtual corrections cancel against the poles due to real corrections

to the partonic cross section we are computing at an arbitrary fixed order in

perturbation theory.

However, this cancellation is often incomplete at certain kinematic bound-

aries of the phase space. In such situations, there are large logarithmic cor-

rections to the cross section and it is very useful to resum these logarithmic

corrections to all orders in perturbation theory to show the convergence of

the perturbation expansion. In the case of hadronic collisions, in order to

perform this resummation one needs a matrix of soft anomalous dimensions.

As we shall see in the next chapter, this matrix is obtained by considering

the vacuum expectation value of products of Wilson lines for each external

parton. It will be the main objective of the rest of this thesis to calculate this

matrix at two-loop level, which will eventually lead us to the resummation of

next-to-next-to leading poles for the 2 → n partonic scattering amplitudes.
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Chapter 4

Resummation and Anomalous Dimensions for

Resummed Amplitudes

The description of partonic hard scattering in quantum chromodynamics

(QCD) is central to the analysis of final states at hadronic colliders. The

calculation of cross sections for such processes requires a combination of virtual

and real radiative corrections, organized according to underlying factorization

theorems. This is the case for higher-order calculations to next- or next-

to-next-to-leading order in αs (NLO, NNLO, . . . ). It holds as well as for

resummed cross sections, in which selected corrections associated with soft and

collinear gluon radiation are organized, at leading, next-to-leading or next-to-

next-to-leading logarithms (LL, NLL, NNLL, . . . ) to all orders in αs.

In both fixed-order and resummed calculations the coherence properties of

soft gluon radiation play an essential role. An anomalous dimension matrix for

inclusive wide-angle soft gluon radiation was introduced in Refs. [60, 61], and

computed to leading order for quark and gluon scattering processes in Ref. [62].

The one-loop matrix of soft anomalous dimensions has been applied to the
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NLL threshold resummation of jet cross sections [63, 64] and of distributions

of event-shape variables [65, 66] that are “global” in the sense of Ref. [67]. At

two loops, the same matrix, combined with resummed form factors, was shown

in Ref. [68] to control the single infrared poles of dimensionally-regularized

partonic scattering amplitudes in ε = 2 − D/2. In this paper we will show

how to compute this matrix directly at two loops, from a relatively limited

set of diagrams in the eikonal approximation, using Wilson lines, giving as an

explicit example quark-antiquark scattering.

The full analysis given below applies to any 2 → n partonic amplitude

in dimensional regularization. The two-loop soft anomalous dimension ma-

trix allows the exponentiation of next-to-next-to-leading infrared poles, which

appear in the combination αns (1/ε)
n−1 in the exponent, a level equivalent to

next-to-next-to-leading logarithms. The resulting resummed amplitudes can

be expanded out to the two-loop order, and the poles in ε can be compared to

explicit two-loop scattering amplitudes, for example the basic 2 → 2 scattering

processes [69, 70, 71, 72, 73, 74, 75, 76]. Those poles were expressed in terms

of the color-space notation [77, 78] and the organization of two-loop singular

terms presented in Ref. [79]. (Related work at one loop was performed in

Refs. [80, 81].) We will verify that the expansion of the resummed amplitudes

to two loops matches precisely the full infrared pole structure of the known

two-loop scattering amplitudes, including the single poles in ε. Remarkably,

we will find, as reported in Ref. [82], that the two-loop anomalous dimension

matrix is related to the one-loop matrix by a constant, the same constant, K,

appearing in the DGLAP splitting kernel, that relates the one and two-loop
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anomalous dimensions for the Sudakov form factor. (The analogous matrix

appears in the electroweak Sudakov corrections to four-fermion scattering, and

has been extracted at two loops from the QCD four-quark scattering ampli-

tude in Ref. [83].) The simplicity of this result will facilitate the development

of practical resummed cross sections with color exchange at NNLL.

This paper is organized as follows. The next section reviews the collinear

and infrared factorization of exclusive amplitudes. In that section, we provide

a new explicit scale-setting choice for the soft function, which is necessary to

define the scales of logarithms in the relevant anomalous dimensions. The

third section describes the expansion of the jet functions to two loops. Here

we describe a new “minimal” reorganization of the factorized amplitude, to

facilitate the comparison to fixed-order calculations. In the fourth section, we

describe in detail the one- and two-loop calculations necessary to determine

the soft anomalous dimension matrix, for the specific case of quark-antiquark

scattering. Here, we will employ the eikonal approximation, and the scale-

setting choice for the soft function from Sec. 2. We show that diagrams at-

taching gluons to three different eikonal lines either vanish, or represent the

exponentiation of the one-loop soft matrix. We close Sec. 4 by generalizing

these calculations to arbitrary flavors for incoming partons and arbitrary fla-

vors and numbers of outgoing partons. To do so, we present the color-mixing

anomalous dimension matrix in the color-space notation of Ref. [77, 79]. Fi-

nally, in Sec. 5 we employ this notation, along with results of Sec. 4 for the

soft anomalous dimensions and known two-loop elastic form factors for quarks

and gluons, to give the explicit form of the two-loop single pole terms in ε,



75

for arbitrary 2 → n partonic processes in QCD. We show that these pole

terms agree with the single-pole “H(2)” terms found in NNLO 2 → 2 calcu-

lations [69, 75, 76, 84, 85] whose poles have been organized according to the

formalism of Ref. [79]. Our results also agree with the proposal of Ref. [86]

for the single poles for the case of 2 → n gluon processes, which was based

on the consistency of collinear factorization of amplitudes. We provide an

appendix with explicit forms of Sudakov anomalous dimensions, and two ap-

pendices illustrating calculations of soft anomalous dimensions using eikonal

methods. The final appendix details the computation of a particular commu-

tator of color-space matrices, which is needed to compare our results with the

explicit NNLO calculations.

4.1 Factorized amplitudes in dimensional reg-

ularization

Our considerations apply to 2 → n scattering processes, denoted as “ f ”,

f : f1(p1, r1) + f2(p2, r2) → f3(p3, r3) + f4(p4, r4) + · · · + fn+2(pn+2, rn+2) .

(4.1)

The labels fi refer to the flavor of the participating partons, each of momenta

{pi} and color {ri}. The amplitude for this process, M[f], is a color tensor

with indices associated with the external partons {ri} = {r1, r2, . . . }. It is con-

venient to express these amplitudes in a basis of C independent color tensors,
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(cI){ri}, so that [62, 79]

M[f]
{ri}

(

βj,
Q2

µ2
, αs(µ

2), ε

)

=

C
∑

L=1

M[f]
L

(

βj,
Q2

µ2
, αs(µ

2), ε

)

(cL){ri}

= |Mf〉 , (4.2)

where the ket may be thought of as a vector M[f]
L with C elements in the space

of color tensors cI . We will analyze these amplitudes at fixed momenta pi for

the participating partons, which we represent as

pi = Qβi , β2
i = 0 , (4.3)

where the βi are four-velocities, and whereQ is an overall momentum scale. For

the purposes of this analysis, and to compare with existing NNLO calculations,

we take all of the partons massless, as indicated. To be specific, we may take

β1 · β2 = 1 for the incoming partons in Eq. (4.1), which implies Q2 = s/2, but

this is not necessary.

In dimensional regularization (D = 4 − 2ε), on-shell amplitudes may be

factorized into jet, soft and hard functions, which describe the dynamics of par-

tons collinear with the external lines, soft exchanges between those partons,

and the short-distance scattering process, respectively. This factorization fol-

lows from the general space-time structure of long-distance contributions to

elastic processes [87]. A formal proof for the case n = 2 in QCD (quark-quark

scattering) was presented long ago [60].

The general form of the factorized amplitude is

M[f]
L

(

βi,
Q2

µ2
, αs(µ

2), ε

)

= J [f]

(

Q′2

µ2
, αs(µ

2), ε

)

S
[f]
LI

(

βi,
Q′2

µ2
,
Q′2

Q2
, αs(µ

2), ε

)

× H
[f]
I

(

βi,
Q2

µ2
,
Q′2

Q2
, αs(µ

2)

)

, (4.4)
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where µ is the renormalization scale. J [f] is the product of jet functions for

each of the external partons, as above denoted collectively by [f], S [f] is the

soft function, and H [f] is the short-distance function. For example, when the

process is 1 + 2 → 3 + 4, the product of jet functions is

J [f]

(

Q′2

µ2
, αs(µ

2), ε

)

≡
∏

i=1,2,3,4

J [i]

(

Q′2

µ2
, αs(µ

2), ε

)

. (4.5)

Construction of the soft and jet functions requires the specification of at

least one independent momentum scale, Q′, which plays the role of a factor-

ization scale. Such a scale, distinct from Q and µ, may be useful when one or

more invariants obey strong ordering. Here, however, we shall consider “fixed-

angle” scattering configurations, in which the parameter Q sets the scale for all

invariants, up to numbers of order unity. With this in mind, we will simplify

Eq. (4.4) somewhat, and pick Q′ = µ, that is, equal factorization and renor-

malization scales. Both the soft and jet functions then depend on αs(µ
2) only,

and we will suppress their Q′2 dependence, now expressing the same amplitude

as

M[f]
L

(

βi,
Q2

µ2
, αs(µ

2), ε

)

= J [f]
(

αs(µ
2), ε

)

S
[f]
LI

(

βi,
Q2

µ2
, αs(µ

2), ε

)

× H
[f]
I

(

βi,
Q2

µ2
, αs(µ

2)

)

, (4.6)

that is, we suppress dependence on those variables that are set to unity by our

choice of scales.

Clearly, any jet-soft-hard factorization of the sort described above is

unique only up to finite factors in the various functions. There is an addi-

tional ambiguity between the jet and soft functions at the level of a single
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infrared pole per loop in dimensional regularization. In the remainder of this

section, we will provide specific definitions for the jet and soft functions that

will enable us to define and resum them unambiguously, and which will be

useful in our calculations below. We begin with the jet functions.

4.1.1 The jet functions and the Sudakov form factor

The factorization (4.4) holds for any exclusive amplitude, including the

elastic, or Sudakov, form factor. A very natural definition of the jet functions

is, therefore, the square root of the form factor [68]. Here, we will choose

the case of the elastic scattering form factor with a color-singlet source, and

spacelike momentum transfer. Reverting to the general case of jet momentum

scale Q′2, not necessarily equal to the renormalization scale, this is

J [i]

(

Q′2

µ2
, αs(µ

2), ε

)

= J [̄i]

(

Q′2

µ2
, αs(µ

2), ε

)

=

[

M[i→i]

(

Q′2

µ2
, αs(µ

2), ε

)]
1
2

.

(4.7)

Below, we shall take µ as the MS renormalization scale, µ2 = µ2
0 exp[−ε(γE −

ln(4π))]. With this choice, we may rely on the explicit form of the quark

spacelike electromagnetic Sudakov form factor in D = 4 − 2ε dimensions. A

similar definition may be given for gluon jets in terms of matrix elements

of conserved, singlet operators. In either case, the all-orders expression for

the (square root of the) resummed form factor, organizing all pole terms,

and implicitly specifying all finite terms of the jet defined as in Eq. (4.7),



79

is [88, 89, 90, 91]

J [i]

(

Q′2

µ2
, αs(µ

2), ε

)

= exp

{

1

4

∫ Q′2

0

dξ2

ξ2

[

K[i](αs(µ
2), ε)

+G [i]

(

−1, ᾱs

(

µ2

ξ2
, αs(µ

2), ε

)

, ε

)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ

[i]
K

(

ᾱs

(

µ2

µ̃2
, αs(µ

2), ε

))

] }

, (4.8)

where we use a notation for the running coupling that emphasizes its re-

expansion in terms of the coupling at fixed scale µ. For our purposes below,

we shall need only the “leading” form of the running coupling,

ᾱs

(

µ2

µ̃2
, αs(µ

2), ε

)

= αs(µ
2)

(

µ2

µ̃2

)ε ∞
∑

n=0

[

β0

4πε

((

µ2

µ̃2

)ε

− 1

)

αs(µ
2)

]n

,

(4.9)

with the one-loop coefficient

β0 =
11

3
CA − 4

3
TFnF . (4.10)

In the expression for the jet functions above, the choice Q′2 = µ2 can be im-

posed trivially. The functions K[i], G [i] and γ
[i]
K are anomalous dimensions that

can be determined by comparison to fixed-order calculations of the Sudakov

form factors for quarks and gluons. These form factors are now known in

QCD up to three loops [92, 93, 94, 95, 96, 97, 98]. Notice that the coupling

in the argument of K[i] is fixed at µ, so that the integral of this term alone is

not well-defined at ξ2 = 0 even for D 6= 4. This apparent divergence, how-

ever, is cancelled by contributions from the upper limit of the µ̃2 integral of

the anomalous dimension γ
[i]
K , and relates the latter to K[i] order-by-order in



80

perturbation theory. We will provide explicit expansions for these functions

in Appendix B.

4.1.2 The soft function

We will broadly follow Ref. [62] in the definition of the soft function for

partonic amplitudes, although we will modify certain details in the construc-

tion. The fundamental observation of Ref. [62] is that the soft function, de-

scribing color exchange between the jets, is independent of collinear dynamics,

and may be constructed from an eikonal amplitude, that is, the vacuum expec-

tation of products of ordered exponentials. For each external parton of flavor

fi, we introduce a nonabelian path-ordered phase operator,

Φ[fi]
vi

(σ′, σ) = P exp

[

−ig
∫ σ′

σ

dλ vi · A[fi](λvi)

]

, (4.11)

where vµi ∼ βµi is a four-velocity. For specific calculations at two loops, it will

be useful to choose these velocities to be slightly timelike,

0 < v2
i � 1 . (4.12)

The “opposite moving” velocity v̄µi projects out the large component of vµi . The

gauge field A[fi] is a matrix in the representation of parton i. In the construc-

tion of the soft function, we will eventually take all v2
i → 0, or equivalently,

vµi → βµi . In perturbation theory, the operators Φ
[fi]
vi (∞, 0) and Φ

[fi]
vi (0,−∞)

respectively generate outgoing and incoming eikonal lines in the vi-directions.

The eikonal sources couple to gluons at vertices in the color representation
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of parton i. An essential feature of these diagrams is that they are invariant

under rescalings of the velocities, vi → σvi.

We are now ready to construct eikonal multi-point amplitudes from prod-

ucts of ordered exponentials, tied together by the same color tensors, cL that

appear in the expansion of the partonic amplitudes, Eq. (4.4). For the 2 → 2

case, 1 + 2 → 3 + 4, this gives

W
[f]
I {rk} = (cL){rk}W

[f]
LI

(

vi·vj√
v2i v

2
j

)

=
∑

{di}

〈0|Φ[f4]
v4 (∞, 0)r4,d4 Φ[f3]

v3 (∞, 0)r3,d3

× (cI)d4d3,d2d1 Φ[f1]
v1 (0,−∞)d1,r1Φ

[f2]
v2 (0,−∞)d2,r2 |0〉 .

(4.13)

Such a product is gauge invariant. The eikonal amplitude, or web function,

W depends in general on both the invariants vi · vj and the invariant lengths

v2
i . The basic observation of Ref. [62] is that all potentially collinear divergent

ratios factorize from dependence on wide-angle radiation for eikonal as well as

partonic amplitudes. We can use this factorization to isolate the soft function

systematically, using only calculations in the eikonal approximation.

Because of the factorization of collinear singularities, such dependence

is universal, depending only on the number and flavors of the external jets.

In particular, as observed above, form factors, with two external lines and

trivial color flow, generate the same collinear dependence. Thus, all collinear

dependence cancels in the ratio of our four-point eikonal amplitude WI and

the product of two eikonal form factors, just as in the ratio of the four-point

partonic amplitudes to the corresponding form factors. We shall define SLI by

this ratio. Notice that information on color flow is not affected at all by the
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eikonal jet functions, which like partonic jets, are diagonal in color. Thus, we

define

S
[f]
LI

(

βi · βj
u0

)

= lim
v2→0

W
[f]
LI

(vi·vj

v2

)

∏

i∈f

[

W (i→i)
(

u0

v2

)]1/2
, (4.14)

where as above the velocities βi are the lightlike limits of the vi. The denom-

inators are eikonal versions of the elastic form factors, defined with incoming

velocities vi and outgoing v̄i, where v2
i = v̄2

i = v2 and vi · v̄i = u0, with u0 a

constant of order unity, independent of i, namely

W (i→i)
(u0

v2

)

= 〈0|Φ[fi]
v̄i

(∞, 0) Φ[fi]
vi

(0,−∞) |0〉 . (4.15)

This form factor generates the square of the collinear poles associated with

the eikonal jet of flavor i in WLI , and hence the soft function (4.14) is free of

collinear divergences. We may thus take the lightlike limit for the velocities

to define the soft function in the ratio.

Equation (4.14) allows us to compute the soft function, once we determine

how to choose the variable u0, so that we may match the eikonal calculation

to the partonic amplitude. We can determine the correct choice as follows.

We first re-express Eq. (4.6) for the partonic amplitude, converting it into

an expression for the soft function as a ratio analogous to Eq. (4.14),

S
[f]
LI

(

βi,
Q2

µ2
, αs(µ

2), ε

)

H
[f]
I

(

βi,
Q2

µ2
, αs(µ

2)

)

=
M[f]

L

(

βi,
Q2

µ2 , αs(µ
2), ε

)

J [f] (αs(µ2), ε)
.

(4.16)

This simple result enables us to set the scale u0 in the definition of the eikonal

form factors of Eq. (4.14). In Eq. (4.16), S can depend on the velocities only
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through the ratios βi ·βjQ2/µ2. When S is calculated in this way from the ratio

of partonic quantities, Q sets the scale of all momenta in the amplitude, and

µ, the factorization scale in Eq. (4.6), may be reinterpreted as the momentum

transfer in the form factors that define the jet functions. When calculated

from the eikonal ratio, on the other hand, S depends only on the variables

βi ·βj/u0. To match the soft function computed in eikonal approximation with

the partonic amplitude, we need only require

βi · βj
u0

=
Q2βi · βj

µ2
→ u0 =

µ2

Q2
. (4.17)

This relation will be used in our explicit calculations later. We are now ready

to provide an all-orders expression for the soft function, analogous to Eq. (4.8)

for the jet functions.

4.1.3 Resumming the soft function

We will use the MS scheme for renormalization throughout. Before renor-

malization, all of the purely eikonal amplitudes discussed in the previous sub-

section give (only) scaleless integrals in perturbation theory. Such integrals

vanish identically in dimensional regularization. In fact, these functions are

only nontrivial because of renormalization, with every infrared pole result-

ing from the subtraction of a corresponding ultraviolet pole. This is the case

whether or not W is collinear-regulated by introducing masses for its eikonal

phases.

Thus, for both the web function W and the soft function S, we have
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(suppressing indices)

W
[f]
bare = 1 = ZWf

(αs(µ), ε)W [f]
ren ,

S
[f]
bare = 1 = ZSf

(αs(µ), ε)S [f]
ren , (4.18)

and similarly for the eikonal form factors in the ratio (4.14). Both S and W

are therefore defined entirely by their anomalous dimension matrices,

(ΓA)IJ =
(

Z−1
A

)

IK

d (ZA)KJ
d lnµ

=
(

Z−1
A

)

IK
β(g, ε)

∂ (ZA)KJ
∂g

, (4.19)

which are given in any minimal scheme by the residues Z
(k)
A,1, with A = Wf or

Sf , of single ultraviolet poles in 1/ε, at kth order in the expansion

ZA = 1 +

∞
∑

k=1

(αs
π

)k

Z
(k)
A (ε) =

∞
∑

k=1

(αs
π

)k
k
∑

n=1

Z
(k)
A,n

(

1

ε

)n

. (4.20)

Then, for example, from the one-loop bare integrals we find the one-loop

anomalous dimension from the residues of the one-loop single ultraviolet poles,

Γ
(1)
A = −2Z

(1)
A,1 , (4.21)

where Γ
(n)
A is the nth order coefficient of (αs/π)n in ΓA. Similarly, to order

O(α∈
∫ ), after one-loop renormalization we find the two-loop anomalous dimen-

sions from the two-loop single poles,

Γ
(2)
A = −4Z

(2)
A,1 . (4.22)

From the definition of S, Eq. (4.14), the soft anomalous dimension matrix

is found from the matrix for the corresponding eikonal amplitude by simply
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subtracting the anomalous dimensions for the eikonal jets. We denote the

latter by Γ
[i]
2 (u0/v

2, αs), and write

ΓSf ,IJ

(

βi · βj
u0

, αs

)

= lim
v2→0

[

ΓWf ,IJ

(

vi · vj
v2

, αs

)

− δIJ
∑

i∈f

Γ
[i]
2

(

u0

v2
, αs

)

]

.

(4.23)

In ΓSf
, all sensitivity to collinear dynamics, and therefore to the choice of v2,

is cancelled, and the coefficients depend only on the invariants βi · βj.

The matrix renormalization group equation for the eikonal amplitude S
[f]
IK

is then
(

µ
∂

∂µ
+ β(g, ε)

∂

∂g

)

S
[f]
IK = − ΓSf ,IJ

(

βi · βjQ2

µ2
, αs

)

S
[f]
JK , (4.24)

from which we can solve directly for S as a path-ordered exponential,

Sf

(

βi · βj
u0

, αs(µ
2), ε

)

= P exp

[

− 1

2

∫ µ2

0

dµ̃2

µ̃2

×ΓSf

(

βi · βj
u0

, ᾱs

(

µ2

µ̃2
, αs(µ

2), ε

))

]

,

(4.25)

where boldface (with a subscript for flavor flow) indicates a matrix. In sum-

mary, the matrix of anomalous dimensions, and hence the soft matrix itself,

can be computed order-by-order purely from eikonal diagrams.

4.2 The jet functions to two loops

In this section, we expand the jet functions in the factorized ampli-

tude (4.6) to fixed (second) order in αs, in a form that is convenient for

comparison to explicit partonic calculations.
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To determine the jet anomalous dimensions, as well as to use the re-

summed forms of the jet and soft functions with fixed-order calculations, we

re-expand the running coupling in terms of a coupling at fixed scale. It is im-

portant to do so consistently in dimensional regularization, using the explicit

form for the running coupling, Eq. (4.9). It will also be convenient to use

Eq. (4.8) as a starting-point to isolate the truly universal pole terms in the

logarithm of the jet function, separating them from the finite terms. To this

end, we introduce the notation

ln J [i](αs(µ
2), ε) =

∞
∑

n=1

(

αs(µ
2)

π

)n n+1
∑

m=1

E
[i] (n)
m (ε)

εm
+

∞
∑

n=1

(

αs(µ
2)

π

)n

e[i] (n)(ε)

= E [i](αs(µ
2), ε) + e[i](αs(µ

2), ε) , (4.26)

in terms of the coupling αs(µ
2) at fixed scale µ. As in Eq. (4.6), we set the

jet factorization scale Q′ = µ. The pure pole terms in Eq. (4.26) have been

expanded at each order as

E [i] (n)(ε) ≡
n+1
∑

m=1

E
[i] (n)
m (ε)

εm
, (4.27)

while the functions e[i] (n)(ε) absorb all terms that remain finite for ε = 0,

order-by-order in αs. The coefficients E
[i] (n)
m and the functions e[i] (n)(ε) are

determined, of course, by the expansions of the functions γK, K and G, which

depend in general on the definition (4.7) of the jet. This separation, however,

eliminates the remaining arbitrariness in choosing the form factor by defining

a “minimal” jet, consisting of the exponential of pole terms only,

J [i](αs(µ
2), ε) ≡ exp

[

E [i](αs, ε)
]

. (4.28)
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In this notation, we rewrite our basic factorization, Eq. (4.6), in “minimal”

form as

M[f]
L

(

βi,
Q2

µ2
, αs(µ

2), ε

)

=
∏

i∈f

J [i]
(

αs(µ
2), ε

)

S
[f]
LI

(

βi · βjQ2

µ2
, αs(µ

2), ε

)

× H[f]
I

(

βi,
Q2

µ2
, αs(µ

2)

)

, (4.29)

where we have absorbed the (color-diagonal) finite factors into the perturbative

definition of the short-distance function

H[f]
I

(

βi,
Q2

µ2
, αs(µ

2), ε

)

= exp

[

∑

i∈f

e[i]
(

αs(µ
2), ε

)

]

H
[f]
I

(

βi,
Q2

µ2
, αs(µ

2)

)

.

(4.30)

We will also find it useful to write this expression in the color state notation

of Eq. (4.2), as

|Mf〉 =
∏

i∈f

J [i]
(

αs(µ
2), ε

)

Sf

(

βi · βjQ2

µ2
, αs(µ

2), ε

)

|Hf〉 , (4.31)

where again the matrix structure of the soft function is denoted by boldface

and where we treat H[f]
I in the notation of Eq. (4.2).

Before this refactorization, the logarithm of the full jet function J [i] at

two loops is given by

ln J [i](αs(µ
2), ε) =

1

4

{

−
(αs
π

)

(

1

2ε2
γ

[i] (1)
K +

1

ε
G [i] (1)(ε)

)

+
(αs
π

)2
[

β0

8

1

ε2

(

3

4ε
γ

[i] (1)
K + G [i] (1)(ε)

)

− 1

2

(

γ
[i] (2)
K

4ε2
+

G [i] (2)(ε)

ε

)]

+ . . .

}

.

(4.32)
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To determine the coefficients E
[i] (n)
m in the minimal two-loop jet function, we

only need to expand the functions G [i] (n)(ε),

G [i] (n)(ε) = G [i] (n)
0 + εG [i] (n)′(0) + . . . . (4.33)

Explicit forms for these anomalous dimensions can be found in Appendix B.

In terms of these quantities, we readily find that the full single-pole terms in

the logarithm of the jet function are given at one and two loops by

E
[i] (1)
2 = −1

8
γ

[i] (1)
K ,

E
[i] (1)
1 = −G [i] (1)

0

4
,

E
[i] (2)
3 =

3β0

128
γ

[i] (1)
K ,

E
[i] (2)
2 =

β0

32
G [i] (1)

0 − 1

32
γ

[i] (2)
K ,

E
[i] (2)
1 = −G [i] (2)

0

8
+
β0 G [i] (1)′(0)

32
,

E
[q] (2)
1 = − 3

8
C2
F

[

1

16
− 1

2
ζ(2) + ζ(3)

]

− 1

16
CACF

[

961

216
+

11

4
ζ(2)− 13

2
ζ(3)

]

+
1

16
CFTFnF

[

65

54
+ ζ(2)

]

,

E
[g] (2)
1 =

1

32
C2
A

[

−346

27
+

11

6
ζ2 + ζ3

]

+
1

16
CATFnF

[

64

27
− ζ2

3

]

+
1

16
CFTFnF ,

(4.34)

where for E
[i] (2)
1 we give the explicit expressions for the quark and gluon cases.

Notice that the full single pole term includes a contribution from the running

of the finite term at one loop, which appears as an O(ε) contribution in G [i] (1).
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Figure 4.1: One-loop diagrams that contribute to Γ
(1)
Sf

4.3 Eikonal amplitudes at one and two loops

We begin this section with a calculation of the soft anomalous dimension

matrix for quark-antiquark elastic scattering at one and two loops, in terms

of a specific color basis [62], and then discuss the representation of the matrix

in the color generator notation of [77, 79]. We will see that the basic result of

our calculation, the proportionality of the one- and two-loop matrices, applies

to a much wider class of processes.

4.3.1 2 → 2 eikonal diagrams at one loop

Here we will present the calculation for one loop corrections toW , Eq. (4.13),

for quark-antiquark scattering, and by using Eq. (4.21) we will derive the corre-

sponding one-loop soft anomalous dimension matrix. Representative one-loop

diagrams are shown in Fig. 4.1. One can write the amplitude for any diagram

D as

MD = FD × CD,I , (4.35)

where FD is the corresponding Feynman integral in dimensional regularization

and CD,I is the color tensor. We will refer to FD as the velocity factor below,

because it absorbs all dependence on kinematic variables. To uniquely define
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the normalizations of the velocity factors, and hence the color tensors, we

define them to equal the corresponding integrals for the scattering of eikonal

lines that couple to the exchanged gluons via color-independent “abelian”

vertices. In particular, we absorb into the velocity factors the (−1) associated

with a gluon coupled to an eikonal line in the anti-quark representation. Note

that this separation of color and velocity factors is possible even if the eikonal

lines are in the adjoint representation. This method will facilitate our eventual

comparison to results expressed in the formalism of Ref. [79].

Consider the left-hand diagram in Fig. 4.1, which we will call a “t-channel

diagram”, referring to the pair of eikonal lines to which the gluon is connected.

We will follow Refs. [99, 100], and express the velocity factor as an integral in

configuration space. For an arbitrary one-gluon correction to a phase operator

of the form of Eq. (4.13), such a correction is given by

Ft = (igµε)2

∫

Ci

dxµ

∫

Cj

dyνD
µν(x− y), (4.36)

where integration is performed over the positions of gluons on the paths of the

Wilson lines, Ci and Cj. For the lines in Eq. (4.13) these paths are specified by

Ci = vi β, Cj = vj α, (4.37)

where α and β run from −∞ to 0 (0 to ∞) for an incoming (outgoing) path. For

the t-channel diagram shown in Fig. 4.1(a), for example, where t = (p1−p3)
2 =

(p2 − p4)
2, we may have {i, j} = {1, 3} or {2, 4}.

In Feynman gauge the coordinate-space gluon propagator, in dimensional
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regularization with D = 4 − 2ε, is given by [100]

Dµν(x) = gµνD(x)

= gµν
Γ(1 − ε)

4π2−ε

1

(x2 − iε)1−ε
. (4.38)

Using this expression in Eq. (4.36), we have

Ft = (igµε)2

∫ ∞

0

dα

∫ 0

−∞

dβ vµi Dµν(vjα− viβ)vνj

= (igµε)2(vi · vj)
Γ(1 − ε)

4π2−ε

∫ ∞

0

dα

∫ ∞

0

dβ
1

[(vjα + viβ)2 − iε]1−ε
.

(4.39)

As observed above, all such integrals vanish in dimensional regularization,

since they are scaleless. The contribution of each such velocity-dependent

integral is given by its counterterm, equal to its infrared pole and hence to

the negative of its ultraviolet (UV) pole. Of course, Ft may be evaluated as a

momentum-space integral with equivalent results.

In order to isolate the (single) UV pole in Eq. (4.39), we apply an infrared

cut-off for the integral by introducing a small parameter λ with units of mass.

This can be effected simply by inserting θ(1/λ− α) in Eq. (4.39). The α and

β integrals are then easily related to a single integral in terms of z = α
(α+β)

(see Eq. (C.3) in Appendix C). We find

Ft = −
(αs
π

)

(

πµ2

λ2

)ε

Γ(1 − ε)
1

2ε

∫ 1

0

dz
vi · vj

([vjz + vi(1 − z)]2)1−ε . (4.40)

The single UV pole term in this expression is given by [99, 100]

F s.p.
t (vi, vj) = −

(αs
π

) 1

2ε
γij coth γij , (4.41)
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where

cosh γij ≡
vi · vj
√

v2
i v

2
j

. (4.42)

Because there is only a single, overall infrared divergence in Ft, any such cut-off

will give the same ultraviolet pole.

In the high-energy limit (γij � 1), we have

F s.p.
t (vi, vj) = −

(αs
π

) 1

2ε
γij . (4.43)

For {i, j} = {1, 3} and {i, j} = {2, 4} the answers are identical, in this 2 → 2

process. In the high-energy limit we define

γ13 = γ24 = T , γ14 = γ23 = U , γ12 = γ34 = S , (4.44)

where

T = ln

(

2v1 · v3

v2

)

= ln

(

2v2 · v4

v2

)

,

U = ln

(

2v1 · v4

v2

)

= ln

(

2v2 · v3

v2

)

,

S = ln

(−2v1 · v2

v2

)

= ln

(−2v3 · v4

v2

)

, (4.45)

with v2
i ≡ v2 for all i. The velocity factors for u- and s-channel diagrams are

found by taking into account the extra minus sign associated with coupling to

an eikonal line in the antiquark representation, as well as that from crossing

substitutions, which change the sign of coth γij from unity to −1 in the high-

energy limit,

Fu(vi, vj) = − Ft(vi, vj) ,

Fs(vi, vj) = Ft(vi,−vj) . (4.46)
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c2 ≡

1 3

2 4

1

2

3

4

c1 ≡

Figure 4.2: Color basis {c1, c2} for four-quark process

Here, {i, j} = {1, 4} and {2, 3} for the u-channel diagrams, and {i, j} = {1, 2}

and {3, 4} for the s-channel diagrams. The function Fs has the same overall

sign as Ft because it differs both by an antiquark connection and by crossing,

while Fu has the opposite sign.

In summary, the single poles for the velocity factors for the diagrams in

Fig. 4.1 are given by

F s.p.
t = −

(αs
π

) 1

2ε
T ,

F s.p.
u =

(αs
π

) 1

2ε
U ,

F s.p.
s = −

(αs
π

) 1

2ε
S . (4.47)

To construct the counterterms, of course, we must also compute the corre-

sponding color tensors for each diagram.

We will use C
[a]
i to denote the color tensor for the t-channel diagram in

Fig. 4.1, with color tensor ci, i = 1, 2 at short distances. For the latter we

choose the basis tensors shown in Fig. 4.2. The coefficients of the color tensors

absorb all overall factors not included in the velocity factors of Eq. (4.47).

One can calculate these color tensors from the basic identity for the gen-
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erators of SU(Nc),

∑

a

(T a)r2r1 (T a)r3r4 =
1

2
δr2r4δr3r1 −

1

2Nc

δr2r1δr3r4 . (4.48)

In the color basis given in Fig. 4.2, the color tensors of the t-channel diagrams

are given by

C
[t]
1 = − 1

2Nc
c1 +

1

2
c2 ,

C
[t]
2 =

N2
c − 1

2Nc
c2 = CF c2 . (4.49)

We will employ a similar notation below for other one-loop and for two-loop

diagrams. Color tensors for the u and s channel diagrams are computed in a

similar way with the results

C
[u]
1 = − 1

2Nc

c1 +
1

2
c2 ,

C
[u]
2 =

1

2
c1 −

1

2Nc

c2 , (4.50)

and

C
[s]
1 = CF c1 ,

C
[s]
2 =

1

2
c1 −

1

2Nc
c2 . (4.51)

We summarize these relations in matrix form by

C
[a]
I =

∑

J=1,2

cJ d
[a]
JI , (4.52)

where the matrix element d
[a]
JI specifies the mixing from color tensor cI to tensor

cJ by the exchange of a gluon in channel a = t, u, s. An important identity

that we will use below is

d
[t]
JI + d

[s]
JI − d

[u]
JI = CF δJI , (4.53)



95

which we easily verify from the relations above. Note that this equality holds

in an arbitrary representation. 1

The contribution of each diagram to the matrix counterterm Z
(1)
Wf

is now

found by the product of the corresponding color factor times the pole part of

the velocity factors,

(

Z
(1)
Wf

)

JI
= 2

∑

a=s,t,u

d
[a]
JI

F s.p.
a

αs/π
, (4.54)

in terms of the single-pole terms of Eq. (4.47) and the color factors read off

from Eqs. (4.49)–(4.51). Given the counterterm matrix, we can evaluate Γ
(1)
Wf

by using Eq. (4.21) with the result

Γ
(1)
Wf

=



























1
Nc

(U − T ) + 2CF S (S − U)

(T − U) 1
Nc

(U − S) + 2CF T



























. (4.55)

Exactly the same calculation gives Γ
[i]
2 , the anomalous dimension for the eikonal

jet function, defined as the square root of the eikonal singlet form factor,

Eq. (4.15). In Eq. (4.43), we simply let cosh γij → u0/v
2 = µ2/(Q2v2) (using

Eq. (4.17)), in the limit v2 → 0. The one-loop result for parton i is then given

by

Γ
[i] (1)
2

(u0

v2

)

=
1

2
Ci ln

(

µ2

Q2v2

)

, (4.56)

1Equation (4.53) is equivalent in this case to the well-known identity
∑

iTi = 0

in the color generator notation that we will review below.
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with Ci = CF for quarks and CA for gluons. By using this expression and the

definition for ΓSf
, Eq. (4.23), we find

Γ
(1)
Sf

=



























1
Nc

(U − T ) + 2CF S (S − U)

(T − U) 1
Nc

(U − S) + 2CF T



























, (4.57)

where

T ≡ ln

(−t
µ2

)

, U ≡ ln

(−u
µ2

)

, S ≡ ln

(−s
µ2

)

. (4.58)

After performing the subtraction of the jet functions, we set vi → βi, and then

use Eqs. (4.3) and (4.17) to recast the result in terms of the usual Mandelstam

variables, t, u and s. We notice that, as anticipated, all collinear logarithms,

and hence sensitivity to our choice of collinear regulation, are absent in the

soft anomalous dimension matrix, Γ
(1)
Sf

.

4.3.2 2 → 2 eikonal diagrams at two loops

Figure 4.3 shows the classes of topologically inequivalent diagrams that

contribute to Γ
(2)
Sf

, when combined with their one-loop counterterm diagrams.

One obtains the full set from all different combinations of external legs with

these topologies. It is easy to see that the number of graphs for each inequiv-

alent set is Na = 6, Nb = 6, Nc = 6, Nd = 12, Ne = 12, Nf = 12, Ng = 4,

Nh = 24 and Ni = 3, which in total gives 85 two-loop diagrams. As in the
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Figure 4.3: Two-loop diagrams that contribute to Γ
(2)
Wf

one-loop case, we find anomalous dimensions from the combinations of velocity

factors and color tensors.

Consider first diagram (i), which is the only two-loop topology involving

all four eikonal lines. Diagram (i) does not have a surviving single UV pole

when we add its one-loop counterterms.

Regarding the remaining cases, we consider first those diagrams involving

two eikonal lines only, which we refer to as “2E” diagrams. Next, we will show

that diagram (g) vanishes, which we consider a very important result. Finally,

we will calculate all the contributions from the surviving “3E” diagram type

(h). In this case, we will find that the diagrams, although non-vanishing,
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reduce to the product of one-loop diagrams, and thus do not contribute to the

two-loop anomalous dimensions.

The 2E diagrams and Γ
(2)
i

In the 2E diagrams, (a), (b), (c), (d), (e) and (f), the gluons connect to

only two of the four eikonal lines in W . These same diagrams also contribute

to the two-loop cusp anomalous dimension, Γ
[i] (2)
2 , and their single UV poles

are well known [100]. We review their velocity factors here, because they are

needed for the two-loop anomalous dimension matrix. Additional details are

given in Appendix D.

The color factors of the 2E diagrams are proportional to the color-mixing

matrix elements for single t-channel gluon exchange, d
[t]
JI, defined in Eq. (4.52).

This is manifestly the case for the individual diagrams (c), (d), (e) and (f).

For the sum of diagrams (a) and (b), it relies on the result [99, 100] that

the single-pole terms in the velocity factors of these two diagrams are the

negatives of each other. The net color factor for the (a) and (b) single poles is

then proportional to the commutator of two generators, which allows it to be

expressed in terms of the one-loop color factor, as CA d
[t]
JI. We can thus present

the contributions of all the 2E diagrams in terms of the d
[a]
JI , with a = s, t, u.

In terms of the factors d
[t]
JI , the two-loop counterterms2 for the diagrams

2These results, of course, require that we combine these diagrams with the cor-

responding one-loop counterterms for their divergent subdiagrams. Notice that di-

agram (b) in Fig. 4.3 does not have a one-loop counterterm since it does not have a

divergent subdiagram.
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(a), (b), (c) and (f) in the high-energy limit are, analogously to the one-loop

velocity factors, Eq. (4.47),

(

Z
(a+b)
Wf

)

JI
= −

(αs
π

)2

d
[t]
JI

CA
2

1

2ε

[

T 3

6
+
ζ(2)

2
T − ζ(3)

2

]

,

(

Z
(c)
Wf

)

JI
= −

(αs
π

)2

d
[t]
JI

1

2

1

2ε

(

31

36
CA − 5

9
TFnF

)

T , (4.59)

and

(

Z
(f)
Wf

)

JI
= −

(αs
π

)2

d
[t]
JI

CA
2

1

4ε

{

[

−T
3

6
+ (1 − ζ(2))T

]

+

[

T 2

2
− T + ζ(2)

]

}

, (4.60)

with T the logarithm of 2v1 · v3/v
2, as in Eq. (4.45). In Eq. (4.60), the second

term in square brackets gives the result of those numerator terms that are

proportional to v2
3 before the integration. (See Appendix D.) The entire T -

dependence of these terms cancels against the contributions from diagrams

(d) and (e), which are also proportional to v2
3 before integration and are given

individually by

(

Z
(d)
Wf

)

JI
= −

(αs
π

)2

d
[t]
JI CF

1

4ε

[

−T
2

2
+ T − ζ(2)

2

]

,

(

Z
(e)
Wf

)

JI
=

(αs
π

)2

d
[t]
JI

(

CF − CA
2

)

1

4ε

[

−T
2

2
+ T − ζ(2)

2

]

. (4.61)

The combined t-channel contribution from the six diagrams (a), (b), (c),

(d), (e) and (f) to the soft anomalous dimension matrix is found by adding
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Eqs. (4.59)–(4.61)3,

(

Z
[t]
Wf

)

JI
≡ 2

(

Z
(a+b)
Wf

+ Z
(c)
Wf

+ 2
[

Z
(d)
Wf

+ Z
(e)
Wf

+ Z
(f)
Wf

])

JI

= − 1

2ε

(αs
π

)2

d
[t]
JI

{

[

CA

(

67

36
− ζ(2)

2

)

− 5

9
TFnF

]

ln

(

2v1 · v3

v2

)

+
CA
2

(ζ(2) − ζ(3))

}

=
(αs
π

)2

d
[t]
JI

{

K

2

F s.p.
t

(αs/π)
− CA

4ε
(ζ(2) − ζ(3))

}

, (4.62)

where the second line recalls a standard notation [101] for the quantity K,

K ≡ CA

(

67

18
− ζ(2)

)

− 10

9
TFnF . (4.63)

The result (4.62) includes a factor of two for the other t-channel exchange,

between lines 2 and 4.

Analogous considerations, of course, apply to diagrams with pairs of s- and

u-channel 2E diagrams. Together with the t-channel diagrams, they contribute

to the two-loop anomalous dimension matrix for W according to Eq. (4.22),

Γ
(2E)
Wf

(2) =
K

2

∑

i=s,t,u

d
[i]
JI

( −2εF s.p.
i

(αs/π)

)

+ δJI CACi (ζ(2) − ζ(3))

=
K

2
Γ

(1)
Wf

+ δJI CACi (ζ(2) − ζ(3)) , (4.64)

where we have used the identity (4.53), and where Γ
(1)
Wf

is the same one-loop

anomalous dimension given in Eq. (4.55).

3Note that one needs to multiply Eqs. (4.60) and (4.61) by 2 because for these

diagrams there are two ways of attaching the gluons to the eikonal lines.
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In a precisely similar manner we find for the two-loop form factor (cusp)

anomalous dimension for partonic representation i,

Γ
[i] (2)
2

(u0

v2

)

=
Ci
4

[

K ln

(

µ2

Q2v2

)

+ CA (ζ(2) − ζ(3))

]

. (4.65)

As at one loop, we combine Eqs. (4.64) and (4.65) in Eq. (4.23), in order

to find the contribution of the 2E diagrams to the two-loop soft anomalous

dimensions for scattering.

It is now clear that the two-loop soft anomalous dimension matrix inherits

from the 2E diagrams a factor of K times the one-loop anomalous dimension

matrix. The result is,

Γ
(2E)
Sf

(2) =
K

2
Γ

(1)
Sf
, (4.66)

with Γ
(1)
Sf

the same one-loop anomalous dimension given in Eq. (4.57). All

velocity-independent terms in the Z
(2E)
Wf

that are not in Γ
(1)
Sf

cancel in Eq. (4.23)

against the corresponding finite terms from the eikonal form factors in the two-

loop soft anomalous dimension, along with all collinear-singular dependence.

This is important, because the constant terms depend in general on the eikonal

approximation and our choice of collinear regularization. At the same time, we

have now used all the collinear-singular dependence in the Sudakov anomalous

dimensions, Eq. (4.65), to cancel the ln v2-dependence of the 2E diagrams of

W . The 3E diagrams, represented by (g) and (h) in Fig. 4.3, have no remaining

subtractions. The combination of these classes of diagrams must therefore be

free of collinear singularities at the two-loop level.
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Vanishing of three-gluon diagram with three eikonal lines

Now let’s show that diagram (g) in Fig. 4.3 vanishes. Up to overall factors

which play no role, the velocity Feynman integral for a generic three-gluon

diagram can be written as

F (vA, vB, vC) =

∫

dDk1d
Dk2

1

vB · k1 + iε

1

vA · k2 + iε

1

vC · (k1 + k2) + iε

× 1

k2
1 + iε

1

k2
2 + iε

1

(k1 + k2)2 + iε
×
[

vA · vB vC · (k1 − k2)

+vA · vC vB · (k1 + 2k2) + vB · vC vA · (−2k1 − k2)

]

,

(4.67)

where the term in square brackets is the three-gluon vertex momentum factor.

Here vA, vB and vC are three different eikonal velocities. We take lightlike

v2
A = v2

B = 0. We can then expand any momentum pµ as

pµ =
vµA

vA · vB
vB · p +

vµB
vA · vB

vA · p + pµT , (4.68)

with pµT the transverse components, satisfying vA · pT = vB · pT = 0.

For use in the integral we introduce the variables:

ξi =
vA · vC
vA · vB

vB · ki , ηi =
vB · vC
vA · vB

vA · ki . (4.69)

We introduce these variables into the integral by using vA and vB to define

light-cone coordinates,

dk+
i dk

−
i =

1

vA · vB
d(vB · ki) d(vA · ki)

=
vA · vB

(vA · vC)(vB · vC)
dξidηi , (4.70)
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so that

k2
i = 2

(vA · ki)(vB · ki)
vA · vB

− k2
i,T = 2

vA · vB
(vA · vC)(vB · vC)

ξiηi − k2
i,T . (4.71)

When we change variables in F to the ξ’s and η’s, we find

F (vA, vB, vC) =
vA · vB

(vA · vC)(vB · vC)

∫ 2
∏

i=1

dξi dηi d
D−2ki,T

× 1

2 vA·vB

(vA·vC)(vB ·vC)
ξiηi − k2

i,T + iε

× 1

2 vA·vB

(vA·vC)(vB ·vC)
(ξ1 + ξ2)(η1 + η2) − (k1,T + k2,T )2 + iε

× 1

ξ1 + iε

1

η2 + iε

1

ξ1 + ξ2 + η1 + η2 − vC,T · (k1 + k2)T + iε

×
[

ξ1 − ξ2 + η1 − η2 − vC,T · (k1 − k2)T + ξ1 + 2ξ2 − 2η1 − η2

]

= 0 . (4.72)

The integral vanishes because the numerator is antisymmetric under ξ1 ↔ η2,

ξ2 ↔ η1 and k1,T ↔ k2,T , while the product of the denominators is symmetric.

Notice that group factors play no part in this argument. This result is therefore

very general and applies to any 2 → n process with lightlike velocities.

Exponentiation of the remaining 3E diagrams

The only remaining class of diagrams is illustrated by diagram (h) in

Fig. 4.3. Along with its companions found by permuting the eikonal lines,

we can refer to these as “3E” diagrams, since they are the only nonvanishing

diagrams with gluons connected to three eikonal lines. There are 24 such 3E

diagrams, 8 of them with s and t channel gluon exchanges, 8 of them with s
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Figure 4.4: a-c) Pairs of 3E diagrams.

and u channel gluons, and finally 8 of them with t and u channel gluons. They

come in pairs as shown in Fig. 4.4.

We now show that the analysis of the previous subsection regarding the

three-gluon diagrams leads to a very interesting result for the remaining 3E

diagrams as well. In this case, the diagrams do not vanish, but reduce to

products of one-loop diagrams4. They therefore provide no contribution to

the two-loop anomalous dimension matrix.

Each such 3E diagram contains one eikonal line with two gluons attached

to it, which we label as vC . The two lines having one gluon attached are

labelled vA and vB. We will consider a pair of 3E diagrams that are related

simply by exchanging the order in which the two gluons attach to vC , as in

Fig. 4.4(a) for example. The two diagrams have differing color and momentum

4The reduction of a different class of multi-loop eikonal diagrams, namely the 2E

diagrams of ladder type, to powers of one-loop diagrams, was previously observed

in Ref. [102] to hold to all loop orders.
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structures, but we can rewrite their sum as the sum of one term with symmetric

color and momentum integrals, plus a second term with antisymmetric color

and momentum integrals. In the spirit of the discussion above, we suppress

the color matrices held in common and write

Fab(vA, vB, vC) ≡ F (sym)
ab (vA, vB, vC) + F (antisym)

ab (vA, vB, vC) , (4.73)

where the subscripts a and b refer to the color generators on the vC-eikonal,

contracted with generators on the vA or vB line, respectively. Consider first

the antisymmetric term, which is given by

F (antisym)
ab (vA, vB, vC) =

1

2
(Tb Ta − Ta Tb)

×
∫

dDk1d
Dk2

1

vB · k1 + iε

1

vA · k2 + iε

1

k2
1 + iε

1

k2
2 + iε

× 1

vC · (k1 + k2) + iε

[

1

vC · k1 + iε
− 1

vC · k2 + iε

]

.

(4.74)

(In the color-generator notation described in section 4.3.4 below, the color

operator associated with this antisymmetric term takes the form [TB ·TC , TC ·

TA].) The same change of variables, Eq. (4.69), leads to an expression that is

again manifestly antisymmetric under the relabelling ξ1,2 ↔ η2,1, k1,T ↔ k2,T ,

F (antisym)
ab (vA, vB, vC) =

1

2
(Tb Ta − Ta Tb)

× 1

(vA · vC)(vB · vC)

∫ 2
∏

i=1

dξi dηi d
D−2ki,T

1

2 vA·vB

(vA·vC)(vB ·vC)
ξiηi − k2

i,T + iε

× 1

ξ1 + iε

1

η2 + iε

1

ξ1 + η1 − vC,T · k1,T + iε

1

ξ2 + η2 − vC,T · k2,T + iε

× ξ2 − ξ1 + η2 − η1 − vC,T · (k2 − k1)T
ξ1 + ξ2 + η1 + η2 − vC,T · (k1 + k2)T + iε

= 0 . (4.75)
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The entire color-antisymmetric part of the infrared region thus vanishes when-

ever the eikonal approximation is valid, and the cancellation is exact for the

eikonal amplitudes we consider here.

Turning to the symmetric term, we need only use the eikonal identity

1/[x(x + y)] + 1/[y(x + y)] = 1/(xy) to rewrite it as the product of the two

lowest-order single-gluon exchange diagrams,

F (sym)
ab (vA, vB, vC) =

1

2
(Tb Ta + Ta Tb)

×
∫

dDk1
1

vB · k1 + iε

1

vC · k1 + iε

1

k2
1 + iε

×
∫

dDk2
1

vA · k2 + iε

1

vC · k2 + iε

1

k2
2 + iε

. (4.76)

(In the color-generator notation described in section 4.3.4, the color operator

associated with this symmetric term takes the form {TB ·TC , TC ·TA}.) These

diagrams have the correct color and kinematic structure to represent the two-

loop terms in the exponentiation of the color matrix of one-loop infrared poles.

They are precisely cancelled in the two-loop soft function by the corresponding

products of one-loop counterterms.

We conclude that the entire two-loop anomalous dimension is due to the

2E diagrams and is given by Eq. (4.66), in which we may remove the super-

script (2E), to obtain

Γ
(2)
Sf

=
K

2
Γ

(1)
Sf
. (4.77)

We have thus determined that the two-loop anomalous dimension color-mixing

matrix is related to the one-loop matrix by the same factor that relates the
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one- and two-loop Sudakov anomalous dimensions, A(αs). Evidently, the next-

to-next-to-leading poles in amplitudes with color exchange are generated by

the same exponentiation of “webs” as for the elastic form factor [103, 104,

105, 106, 107]. Additionally, we note that in the “bremsstrahlung” or CMW

scheme [108], this contribution, along with the corresponding term in the cusp

anomalous dimension, is absorbed into a redefinition of the strong coupling,

which effectively boosts the strength of parton showering.

4.3.3 Expansion of the soft function

To relate the soft anomalous dimension to fixed-order calculations, we

expand the resummed soft function, given as a path-ordered exponential in

Eq. (4.25), to order O(α∈
∫ ). The result is

Sf

(

Q2

µ2
= 1, αs(Q

2), ε

)

= 1 +
1

2ε

(αs
π

)

Γ
(1)
Sf

+
1

8ε2

(αs
π

)2 (

Γ
(1)
Sf

)2

− β0

16ε2

(αs
π

)2

Γ
(1)
Sf

+
1

4ε

(αs
π

)2

Γ
(2)
Sf

= 1 +
1

2ε

(αs
π

)

Γ
(1)
Sf

+
1

8ε2

(αs
π

)2 (

Γ
(1)
Sf

)2

− β0

16ε2

(αs
π

)2

Γ
(1)
Sf

+
1

8ε

(αs
π

)2

K Γ
(1)
Sf
,

(4.78)

where in the second equality we have used Eq. (4.77) for the two-loop anoma-

lous dimension matrix. Combining this result with the second-order minimal

jet function, Eq. (4.32), in the formula for the factorized amplitude, Eq. (4.29),

we will derive a result to compare directly with the pole structure of explicit

two-loop calculations.
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4.3.4 Iterative color-matrix form

Given the one- and two-loop anomalous dimension soft matrices (4.57)

and (4.77), and the expansion of the quark jet function, as in Eq. (4.32),

we can use the factorized amplitude, Eq. (4.29), to calculate all infrared and

collinear poles at order α2
s for quark-antiquark scattering. The result will be

a set of coefficients of the specific basis tensors in color space that we have

chosen, Fig. 4.2. In this basis, we can perform threshold resummation for jet

and other cross sections.

To compare to explicit calculations at the two-loop level, however, and

to generalize to higher numbers of external partons, it is convenient to make

contact with a somewhat different notation, in which the color interactions of

soft gluons is represented by a color matrix Ta
i for the insertion of a gluon on

external line i, with Ta
i a generator in the color representation of that parton i,

whose color-matrix (rather than generator) indices are summed against those

of the lower-order amplitude that is “dressed” by this soft gluon. In the

notation of Eq. (4.2) above for the color content of an amplitude, the action

of the generators may be made explicit as the action of a vector, with indices

in the adjoint representation; for example for i = 1,

[

Ta
1 |Mf〉

]

d1,r2...
≡ M[f]

L

(

βj,
Q2

µ2
, αs(µ

2), ε

)

δi (T
a)d1r1 (cL){r1,r2...} , (4.79)

where δi = ±1 absorbs minus signs associated with antiparticles and crossing.

In the convention of Ref. [79], δi = 1 when i is an eikonal line representing an

outgoing quark or gluon, or incoming antiquark; δi = −1 for an incoming quark

or gluon, or outgoing antiquark. Defined in this way, the vector color generator
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matrices obey the fundamental relation
∑

i Ti = 0, which is an expression of

gauge invariance. The Tis are conventionally normalized to Ti ·Ti = Ci, with

i = q, g.

A gluon exchanged between two parton lines i and j produces the product

Ti ·Tj, which acts on an amplitude in a fashion precisely similar to Eq. (4.79).

This notation allows for a convenient iterative expression for color exchange

due to soft gluon exchange, without requiring an explicit choice for the color

basis.

The color-space notation above may be applied to the computation of the

soft function as well as to the amplitude itself. Consider the soft function at

a single loop, determined by the one-loop soft anomalous dimension. As we

have seen, the latter is built up from the contributions of soft gluon exchanges

between pairs of eikonal lines. From each exchange, the contribution to the

anomalous dimension is found from Eq. (4.21), where the one-loop single-pole

term in ZSf
equals the one-loop UV pole term computed from the correspond-

ing diagram.

Each diagrammatic contribution, then, is proportional to a product Ti ·Tj

acting on the lower-order amplitude, multiplied by the result of the eikonal

integral. Referring to Fig. 4.1, the relevant single-pole coefficients are given

in Eq. (4.47). The action of Γ
(1)
Sf

on the color tensor is the sum of all such

terms, with a subtraction for the jet anomalous dimensions; this subtraction

is proportional to the identity matrix in color space, as in Eq. (4.23). This
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gives

Γ
(1)
Sf

(

sij
µ2

)

|Mf〉 =

[

1

2

∑

i∈f

∑

j 6=i∈f

(δiTi · δjTj)

(−2ε F s.p.
sij

(αs/π)

)

−
∑

i∈f

Γ
[i] (1)
2

(u0

v2

)

]

|Mf〉

=

[

− 1

2

∑

i∈f

∑

j 6=i

Ti · Tj ln

(−sij
Q2v2

)

− 1

2

∑

i∈f

Ci ln

(

µ2

Q2v2

)

]

|Mf〉

=
1

2

∑

i∈f

∑

j 6=i

Ti · Tj ln

(

µ2

−sij

)

|Mf〉 , (4.80)

where sij = (pi + pj)
2, with all momenta defined to flow into (or out of) the

amplitude. For the four-parton case above, s12 = s, s13 = t, and so forth. The

overall 1/2 compensates for double counting in the sum. To derive the final

result, we have used the explicit forms of the δis described above, as well as

the identities
∑

i Ti = 0 and Ti · Ti = Ci (in the quark-scattering case, all

Ci = CF ). In this notation the color identities enforce the cancellation of the

collinear-sensitive ln(1/v2) terms.

Identical considerations apply to the two-loop case. The nonvanishing

anomalous dimension matrix is again a sum of diagrammatic contributions,

corresponding to gluon exchange processes involving two eikonal lines only.

As we have seen, these contributions have the same color-generator structure,

Ti · Tj, found at one loop. The 3E diagrams have a more complicated color

structure, but they do not contribute to the two-loop soft anomalous dimension

matrix.
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To be more specific, we saw that diagram (h) in Fig. 4.3 can be organized

into antisymmetric and symmetric color structures, which can be represented

as commutators and anti-commutators of one-loop color structures, of the form

[Ti ·Tj , Tj ·Tk] and {Ti ·Tj , Tj ·Tk}. Note that the antisymmetric quantity

can be written as,

[Ti · Tj ,Tj ·Tk] = Ta
i [Ta

j ,T
b
j]T

b
k = −i f abc Ta

i T
b
jT

c
k . (4.81)

As the final form shows, it is totally antisymmetric under permutations of the

three eikonal lines. This is also the form of the color factor for the other type

of 3E diagram, the three-gluon diagram (g) in Fig. 4.3.

As emphasized above, the velocity factors multiplying both commutator

and anti-commutator structures vanish. (In the case of the anti-commutator,

the vanishing occurs after adding the one-loop counterterms.) Nevertheless, we

display the commutator in Eq. (4.81), because it has occurred in the literature

before. We will encounter such terms below in our analysis of explicit two-loop

calculations, and show how they are consistent with the specific solution for

the soft anomalous dimension, Eq. (4.78), in which this combination of color

generators does not appear.

4.3.5 Generalizations

The analysis given above applies far beyond the 2 → 2 quark-antiquark

scattering amplitude. When the soft anomalous dimension is expressed in

terms of color generators, as in Eq. (4.80) at one loop, and using this equation

and Eq. (4.77) to do so at two loops, the result is slightly less explicit than,
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say, Eq. (4.57), but it is much more general. When we generalize from quark

and antiquark to gluon lines, and when we add more partons in the final state,

the only change in our considerations above is to change the color generators

Ti, and sum over more variables i and j. The eikonal momentum integrals

that give rise to the coefficients of the generators are the same for any choice

of parton pairs or triplets.

In these terms, the two-loop results organized in Eqs. (4.80) and (4.77) are

not limited to quark-antiquark scattering, but apply to the scattering of any

flavor combination. Furthermore, these relations are by no means limited to

2 → 2 scattering, and apply to any 2 → n process, as in multi-jet production.

These results, therefore, are a step toward threshold and related resummations

in hadronic scattering [62, 65] at the level of next-to-next-to-leading logarithm.

At present, however, for the purposes of resummation we must still rely

upon the explicit form of the matrix as in Eq. (4.25) to generate the amplitude

at arbitrary orders. Anticipating further applications, it will be useful to

investigate flexible choices of color basis, perhaps based on the trace notation

described, for example, in Ref. [109] (this point was noted in Ref. [65]). We

reserve these considerations for future work.

4.4 Single poles at NNLO

In this section, we combine the expansions of the jet and soft functions

in the “minimal” factorized amplitude, Eqs. (4.29) and (4.31), and give an

explicit expression for infrared poles to two loops, including single poles. We
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go on to compare these “postdictions” of the two-loop single pole terms to

the results of explicit calculations, and verify that they agree. Traditionally,

these results have been presented in a form proposed some time before by

Catani [79], and we will briefly review this formalism and relate it to the

two-loop expansion of our resummed expressions.

4.4.1 Two-loop poles from the factorized amplitude

Here, as above, we adopt the notation f(αs) =
∑

n(αs/π)nf (n). In this

notation, we can express the Born and one-loop amplitudes for process f in

terms of the factorized jet, soft and hard functions of Eq. (4.31) as

∣

∣

∣
M(0)

f

〉

=
∣

∣

∣
H(0)

f

〉

(4.82)

∣

∣

∣
M(1)

f

〉

=

(

∑

i∈f

E [i](1) + S
(1)
f

)

∣

∣

∣
M(0)

f

〉

+
∣

∣

∣
H(1)

f

〉

=

(

−1

4

∑

i∈f

(

1

2ε2
γ

[i](1)
K +

1

ε
G [i](1)

0

)

+
1

2ε
Γ

(1)
Sf

)

∣

∣

∣
M(0)

f

〉

+
∣

∣

∣
H(1)

f

〉

,

(4.83)

where for the jet functions we have used the minimal form (4.28). In the second

equality for |M(1)
f 〉, we have used explicit expressions for the jet functions and

the soft matrix, the latter from Eq. (4.78). Using these results, we find for the

two-loop amplitude

∣

∣

∣
M(2)

f

〉

=





1

2

(

∑

i∈f

E [i](1) + S
(1)
f

)2

+
∑

i∈f

E [i](2) + S
(2)
f − 1

2

(

S
(1)
f

)2





∣

∣

∣
M(0)

f

〉

+

(

∑

i∈f

E [i](1) + S
(1)
f

)

∣

∣

∣
H(1)

f

〉

+
∣

∣

∣
H(2)

f

〉

. (4.84)
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Now both the E [i](n) and the S
(n)
f are given by sums of pure poles in ε. As

a result, their squares and products all begin at 1/ε2. At two loops, then,

the single-pole terms that multiply the Born amplitude |M(0)
f 〉 in Eq. (4.84)

are given entirely by the single poles in E [i](2) and S
(2)
f . From Eq. (4.28) for

the jets, and Eq. (4.78) for the soft matrix, these poles are found from the

coefficients of the soft and jet anomalous dimensions,

∣

∣

∣
M(2)

f

〉

=

[

1

2

(

∑

i∈f

E [i](1) +
1

2ε
Γ

(1)
Sf

)2

+
∑

i∈f

3
∑

j=2

E
[i](2)
j − β0

16ε2
Γ

(1)
Sf

]

∣

∣

∣
M(0)

f

〉

+

[

∑

i∈f

E
[i](2)
1 +

1

4ε
Γ

(2)
Sf

]

∣

∣

∣
M(0)

f

〉

+

(

∑

i∈f

E [i](1) +
1

2ε
Γ

(1)
Sf

)

∣

∣

∣
H(1)

f

〉

+
∣

∣

∣
H(2)

f

〉

, (4.85)

where we have separated the double- and higher-order pole terms from single-

pole terms that multiply the Born amplitude, followed by single poles times

the one-loop hard scattering, and finally the two-loop hard scattering.

From Eq. (4.34), the two-loop single-pole terms that multiply the Born

amplitude |M(0)
f 〉 in Eq. (4.85) are given by

[

∑

i∈f

E
[i](2)
1 +

1

4ε
Γ

(2)
Sf

]

∣

∣

∣
M(0)

f

〉

=
1

ε

[

− G [i](2)
0

8

+
β0 G [i](1)′(0)

32
+
K

8
Γ

(1)
Sf

]

∣

∣

∣
M(0)

f

〉

,

(4.86)

where we recall the notation of Eq. (4.33) for the coefficients G [i](n)(ε). Given

that the one- and two-loop G [i](n) have been known for a long time, and that

we have just calculated the two-loop soft anomalous dimension matrix, this
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expression provides an explicit form for the intrinsic two-loop single poles in

dimensionally regulated amplitudes.

Note that a redefinition of S
(1)
f to include a non-pole term would both

change the definition of |H(1)
f 〉 at one loop in Eq. (4.83), and introduce single-

pole terms into the (E [i](1) + S
(1)
f )2 contribution to the two-loop expression

Eq. (4.84). As we shall see below, the Born-times-single-pole terms remain

invariant under this shift only if the shift commutes with the Γ
(1)
Sf

. We therefore

need all of the expansion (4.85), in order to make contact with the results of

explicit two-loop calculations at the single-pole level.

4.4.2 One- and two-loop amplitudes in Catani’s nota-

tion

To compare to existing calculations, we now review the notation of Ref. [79],

in which they are normally presented. We first observe that in this nota-

tion, amplitudes are organized in powers of (αs/2π), rather than (αs/π). We

will distinguish this trivial difference below by a prime in the color states, as

|M′
f
(n)〉 = 2n|Mf

(n)〉.

In this formalism, the single- and double-pole structure of one-loop ampli-

tudes is expressed in terms of the color generator operators introduced above,

I
(1)
f (ε) =

1

2

e−εψ(1)

Γ(1 − ε)

∑

i∈f

∑

j 6=i

(Ti ·Tj)

[

1

ε2
+

γi
T2
i

1

ε

] (

µ2

−sij

)ε

, (4.87)

with ψ(1) = −γE the logarithmic derivative of the Gamma function. Here

γg = β0/2 and T2
g = CA for gluons (i = g), and γi/T

2
i = 3/2 for i = q
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or q̄. The poles of the one-loop amplitude in color-state notation are then

represented as

∣

∣M′
f
(1)
〉

= I
(1)
f (ε)

∣

∣M′
f
(0)
〉

+
∣

∣M′
f
(1)fin

〉

. (4.88)

The explicit relation to the resummation formalism at one loop is found

by expanding I
(1)
f in powers of ε,

I
(1)
f

∣

∣M′
f
(0)
〉

=

[

2
∑

i∈f

E [i](1)(ε) +
1

ε
Γ

(1)
Sf

+
ζ(2)

4

∑

i∈f

T2
i

+
1

2

∑

j 6=i

(Ti · Tj)

(

1

2
ln2

(

µ2

−sij

)

+
γi
T2
i

ln

(

µ2

−sij

))

+ O(ε)

]

∣

∣M′
f
(0)
〉

≡
[

2
∑

i∈f

E [i](1)(ε) +
1

ε
Γ

(1)
Sf

+ I
(1)fin
f

]

∣

∣M′
f
(0)
〉

. (4.89)

Taking into account the overall factor of two from the expansion in αs/2π, the

pole terms in Eq. (4.88) are thus identical to those in Eq. (4.83). The matrix

I
(1)
f generates as well explicit µ-dependent finite contributions contained in

I
(1)fin
f , which in the “minimal” factorization are absorbed into the one-loop

hard function |Hf〉. The one-loop infrared finite amplitudes are related by

∣

∣H′
f
(1)
〉

=
∣

∣M′
f
(1)fin

〉

+ I
(1)fin
f

∣

∣M′
f
(0)
〉

. (4.90)

This is an example of a finite shift of the sort mentioned above, which redefines

the finite function at one loop.

At two loops, Ref. [79] predicted the fourth- through second order poles

in terms of the generators I
(1)
f , and absorbed the then-unknown single pole
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contributions in terms of a color operator H
(2)
f ,

I
(2)
f (ε) = −1

2
I
(1)
f (ε)

(

I
(1)
f (ε) +

β0

ε

)

+
eεψ(1)Γ(1 − 2ε)

Γ(1 − ε)

(

β0

2ε
+K

)

I
(1)
f (2ε) + H

(2)
f (ε) . (4.91)

The two-loop amplitude is then organized as

∣

∣M′
f
(2)
〉

= I
(2)
f (ε)

∣

∣M′
f
(0)
〉

+ I
(1)
f (ε)

∣

∣M′
f
(1)
〉

+
∣

∣M′
f
(2)fin

〉

. (4.92)

In the intervening years, the color generators H
(2)
f have been determined

by matching to the single-pole structure of explicit two-loop QCD scatter-

ing amplitude calculations, for example gg → gg, qq̄ → gg, qq̄ → qq̄, and

e+e− → qq̄g [69, 70, 71, 75, 76, 84, 85, 86]. Here we follow Ref. [86] and write

H
(2)
f (ε) =

1

4ε

{

∑

i∈f

H
(2)
i + Ĥ

(2)
f

}

+ O(ε) , (4.93)

where we split the single-pole factor into a color-diagonal term, which can

be represented as a sum of constants H
(2)
i for each external parton i, and a

matrix Ĥ
(2)
f that includes all color mixing. This matrix can be written as

[69, 70, 71, 75, 76, 84, 85, 86]

Ĥ
(2)
f = i

∑

(i,j,k)

fa1a2a3 Ta1
i Ta2

j Ta3
k ln

(−sij
−sjk

)

ln

(−sjk
−ski

)

ln

(−ski
−sij

)

, (4.94)

where the sum is over distinguishable but unordered triplets of external lines

(i, j, k). We note the similarity to the color structure from the 3E diagrams,

Eq. (4.81). We emphasize that this form has been obtained directly only for

processes with at most four partonic legs. In Ref. [86] it was also shown to be

consistent with the proper collinear behavior of the 2 → n gluon amplitudes.
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It is these expressions that we will compare to the two-loop expansion of

the factorized amplitude, Eqs. (4.85) and (4.86). Rather than provide explicit

expressions at this point for the constants H
(2)
i from [86], we will derive below

expressions relating the constants H
(2)
i to the jet anomalous dimensions (in

MS scheme). Here we will find useful an identity found in Ref. [110]. The

matrix Ĥ
(2)
f in Eq. (4.94) will emerge from our results for the two-loop soft

anomalous dimension matrix, plus the effects of a one-loop finite color-mixing

term. We now turn to this exercise.

4.4.3 H(2) from the anomalous dimensions

Inserting the definition of I
(2)
f , Eq. (4.91), into Eq. (4.92) and expanding

to the accuracy of ε0, we readily find

∣

∣M′
f
(2)
〉

=
1

2

(

I
(1)
f (ε)

)2 ∣
∣M′

f
(0)
〉

+

[

β0

2ε

(

I
(1)
f (2ε) − I

(1)
f (ε)

)

+

(

K +
3εζ(2)

4
β0

)

I
(1)
f (2ε)

+H
(2)
f (ε) + O(ε0)

]

∣

∣M′
f
(0)
〉

+ I
(1)
f (ε)

∣

∣M′
f
(1)fin

〉

+
∣

∣M′
f
(2)fin

〉

. (4.95)

We will relate this expression to the single-pole result from the factorized

amplitude, Eqs. (4.85) and (4.86).

The single-pole terms in Eq. (4.95) that multiply the Born amplitude

come from two sources: the (I
(1)
f )2 operator on the first line, and the terms

in the square brackets on the second line, which also include finite corrections

indicated by +O(ε0).



119

To make contact with the expansion of the resummed amplitude, Eq. (4.85),

we first separate the poles in each of the I
(1)
f terms, according to Eq. (4.89),

∣

∣M′
f
(2)
〉

=

[

1

2

(

2
∑

i∈f

E [i](1)(ε) +
1

ε
Γ

(1)
Sf

)2

+2

(

∑

i∈f

E [i](1)(ε)

)

I
(1)fin
f

]

∣

∣M′
f
(0)
〉

+
1

2

[

(

I
(1)fin
f

1

ε
Γ

(1)
Sf

+
1

ε
Γ

(1)
Sf

I
(1)fin
f

)

+
(

I
(1)fin
f

)2
]

∣

∣M′
f
(0)
〉

+

[

β0

2ε

(

2
∑

i∈f

E [i](1)(2ε) − 2
∑

i∈f

E [i](1)(ε) − 1

2ε
Γ

(1)
Sf

)

+
3ζ(2)β0

8ε

∑

i∈f

E
[i](1)
2 + K

(

2
∑

i∈f

E [i](1)(2ε) +
1

2ε
Γ

(1)
Sf

)

+H
(2)
f (ε) + I

(2)fin
f

]

∣

∣M′
f
(0)
〉

+

[

2
∑

i∈f

E [i](1)(ε) +
1

ε
Γ

(1)
Sf

+ I
(1)fin
f

]

∣

∣M′
f
(1)fin

〉

+
∣

∣M′
f
(2)fin

〉

,

(4.96)

where in I
(2)fin
f we isolate the finite terms from I

(2)
f that multiply the Born

amplitude. Comparison with Eq. (4.85) requires further that we commute

the soft anomalous dimension matrices with poles to the left of the finite

amplitudes, and that we also re-express |M′(1)fin〉 in terms of |H′(1)〉 using

Eq. (4.90). The first step, in particular, leads to an additional commutator
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contribution at the level of the single poles times the Born amplitude,

∣

∣M′
f
(2)
〉

=
1

2

(

2
∑

i∈f

E [i](1)(ε) +
1

ε
Γ

(1)
Sf

)2
∣

∣M′
f
(0)
〉

+

[

β0

2ε

(

2
∑

i∈f

E [i](1)(2ε) − 2
∑

i∈f

E [i](1)(ε) − 1

2ε
Γ

(1)
Sf

)

+K
∑

i∈f

E
[i](1)
2

2ε2

]

∣

∣M′
f
(0)
〉

+

[

3ζ(2)β0

8ε

∑

i∈f

E
[i](1)
2 +K

(

∑

i∈f

E
[i](1)
1

ε
+

1

2ε
Γ

(1)
Sf

)

+
1

2ε

[

I
(1)fin
f , Γ

(1)
Sf

]

+ H
(2)
f (ε)

]

∣

∣M′
f
(0)
〉

+

[

2
∑

i∈f

E [i](1)(ε) +
1

ε
Γ

(1)
Sf

]

∣

∣H′
f
(1)
〉

+
∣

∣H′
f
(2)
〉

. (4.97)

Here we have organized the expression just as in Eq. (4.85), starting with the

square of one-loop pole terms, two-loop second- and third-order poles, and

then first-order poles, all times the Born amplitude, followed by poles times

the one-loop hard amplitude and the finally the two-loop hard part,

∣

∣H′(2)
〉

≡
(

I
(2)fin
f − 1

2

(

I
(1)fin
f

)2
)

∣

∣M′
f
(0)
〉

+ I
(1)fin
f

∣

∣H′
f
(1)
〉

+
∣

∣M′
f
(2)fin

〉

.(4.98)

We are now ready to compare this expression to the two-loop single pole terms

of Eq. (4.86). Higher-order poles can easily be checked in a similar manner [68].

Consider first the matrix parts of Eqs. (4.86) and (4.97). Recalling the

factor of 4 associated with changing from the coefficient of (αs/π)2 to (αs/2π)2,

we see that the K Γ
(1)
Sf

term is identical in the two expressions. Consistency

then requires the remarkable result that the commutator of I
(1)fin
f in Eq. (4.89)

with the one-loop soft anomalous dimension in Eq. (4.80) precisely cancel the
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two-loop Ĥ
(2)
f function as defined in Eq. (4.94),

[

I
(1)fin
f , Γ

(1)
Sf

]

= − 1

2
Ĥ

(2)
f . (4.99)

In fact, a compact calculation, given in Appendix E, shows that Eq. (4.99)

indeed holds for the explicit matrix Ĥ
(2)
f given in Eq. (4.94), for arbitrary

2 → 2 processes, and also for 2 → n processes where all particles are identical.

For those processes with five or more partons for which the quantities γi/T
2
i

are not all identical, the commutator is more complicated, as can be seen by

inspecting Eq. (4.89), and as discussed in Appendix E. Because we know the

anomalous dimension matrix for all these processes, however, Eq. (4.99) can

be turned around and taken as a definition of the corresponding matrices Ĥ
(2)
f .

Recently, the soft anomalous dimension matrix Γ
(2)
Sf

for 2 → 2 processes was

computed [83] by making use of just this connection to Ĥ
(2)
f , along with the

explicit results for Ĥ
(2)
f for quark-quark scattering [69].

The remaining, color-diagonal, single-pole terms in Eq. (4.97) are found

using the values of the one-loop quantities E [i](1) given in Eq. (4.34), and

the form of H
(2)
f in given in Eq. (4.93). Then the single-poles times Born

amplitudes of Eq. (4.97) are given by

∣

∣M′
f
(2)
〉

single pole×Born
=

1

ε

∑

i∈f

[

H
(2)
i

4
− 3ζ(2)β0

32
Ci −

K G [i] (1)
0

4

]

∣

∣M′
f
(0)
〉

+
K

2ε
Γ

(1)
Sf

∣

∣M′
f
(0)
〉

,

(4.100)

where we have suppressed dependence that contributes only at the level ε0.

The comparison of Eq. (4.100) with the expansion from the resummed ampli-
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tude, Eq. (4.86), is now trivial. We simply appeal to the striking identity noted

explicitly by Ravindran, Smith and van Neerven [110], which in our notation

is written as

H
(2)
i

4
− 3ζ(2)β0

32
Ci −

K G [i] (1)
0

4
= 4E

[i] (2)
1 , (4.101)

where E
[i] (2)
1 is given in Eq. (4.34). In Ref. [110] this expression was observed

to imply a close relationship between the H
(2)
i constants and the form factors.

We now see that, aside from color mixing, all the single-pole terms are identical

to those in the form factors. Indeed, the precise terms relating the H
(2)
i to the

single-pole residues of the elastic form factor are present simply to cancel a

set of “extra” single-pole terms generated from the expansion of I
(1)
f in the

two-loop amplitude. As in the case of the color-mixing anomalous dimensions,

we can also consider Eq. (4.101) as a definition of the constants H
(2)
i .

In summary, we have shown that the full single-pole structure of the two-

loop amplitudes can be reconstructed from the same anomalous dimensions

that determine the next-to-next-to-leading poles of the factorized jet and soft

functions at all orders in pertubation theory. This relation, and the explicit

forms of the anomalous dimensions, hold for partonic scattering amplitudes

with arbitrary numbers of external lines.

4.5 Conclusions

We have extended the factorization and resummation formalisms for ex-

clusive amplitudes in QCD to next-to-next-to-leading poles in these ampli-
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tudes. The same anomalous dimension matrices, calculated here directly for

the first time at two loops, control a variety of resummed cross sections at

NNLL. These calculations generalize the determination of the Sudakov anoma-

lous dimensions to nontrivial color mixing.

We verified the formalism and anomalous dimensions by showing that

they allow us to reproduce the very nontrivial color and momentum structure

of single infrared poles at next-to-next-to-leading order for 2 → 2 processes in

the literature.

The calculation of the NNLO soft anomalous dimensions opens the door to

threshold resummation at next-to-next-to-leading logarithm for multijet cross

sections [63, 65, 66]. Perhaps our most striking result is the discovery that

the two-loop soft anomalous dimension matrix is obtained from the one-loop

matrix simply by multiplying by Kαs/(2π), where K is the constant given in

Eq. (4.63). This is exactly the same property obeyed by the scalar Sudakov

or “cusp” anomalous dimension. Aside from its intrinsic interest, this relation

will make possible next-to-next-to-leading logarithmic resummation formulas

in a closed form, since it will be possible to diagonalize the two-loop anomalous

dimension matrix independently of the running of the coupling [103, 104, 105,

106, 107, 108], using the same color eigenvectors found at one loop [63, 65, 66,

111, 112, 113, 114].

Our analysis applies not only to 2 → n processes relevant to hadronic

colliders. In addition, it applies to the inelastic scattering of a parton by a

color-singlet source, as in deep-inelastic scattering, and to the creation of arbi-

trary numbers of partons from a color-singlet source in leptonic annihilation.
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It will clearly also be of interest to extend this analysis to massive external

lines.
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Appendix A

Nonabelian Ward Identity and Eikonal

Feynman Rules

In order to show the factorization of nonphysical gluons from both the

hard part and from the A- and B-jets we have used the following Ward identity

[50, 51]

〈M |κ ∂µ Aµ,a(x)|N〉 = 0 , (A.1)

where Aµ,a(x) is the nonabelian gauge field carrying color a and M and N

are physical states. This Ward identity is the simple statement that the sum

of all possible attachments of a longitudinally polarized gluon to a physical

observable vanishes. Eq. (A.1) is diagramatically represented by Fig. A.1a.

where if we bring the right hand side of the figure to the left we would have

all possible attachments of the unphysical gluon to the hard function denoted

by the blob in the figure.

Fig A.1b. is the eikonal identity for a longitudinally polarized gluon at-
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Figure A.1: a) Diagramatic representation of the Ward identity of Eq. (A.1).

b) Eikonal identity for a longitudinally polarized gluon attaching a fermion

line. Double line represents a Wilson line. c) Repeated application of the

eikonal identity of Fig. b) to Fig. a)
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taching a fermion line, which can be written as

ū(p) gs T
a γµ

1

p/+ k/
kµ = ū(p) gs T

a p/+ k/ − p/

p/+ k/
= ū(p) gs T

a

= −ū(p) gs T a
βµkµ
−β · k ,

(A.2)

where k is the momentum for the longitudinally polarized gluon and p is the

external momentum. In the first line of the equation after the second equal

sign we have used the Dirac’s equation for a fermion, ū(p)(p/ − m) = 0, and

in the second line we have multiplied and divided the expression by the factor

β ·k where βµ is the four velocity for the fermion. As we see below in Eq. (A.3)

this is nothing but the eikonal propagator which is represented by the double

line in Fig. A.1b. The eikonal line is given by the path ordered exponential

given by Eq. (3.20) which can be expanded as

Φ
(f)
β (0, η) ≡ Pexp

[

i gs

∫ η

0

dξβ · A(f)(ξ βµ)

]

= 1 + P
∞
∑

m=1

m
∏

i=1

∫

dnki

(2π)n
gs β · A(f)(kµi )

1

β ·
∑i

j=1 kj + iε
,(A.3)

using
∫ ∞

−∞

dx ei k x θ(x) =
i

k + iε
. (A.4)

The eikonal Feynman rules are obtained by the expansion given in Eq. (A.3)

and are shown in Fig. A.2.

The nonabelian diagramatic Ward identity shown in Fig. A.1c. is then

nothing but repeated application of the eikonal identity of Fig. A.1b. to

Fig. A.1a.
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a b

q

b a

q

µ, c

µ, c

a b

q

µ, c

= (−igs)(T
c
F )ba(+vµ) × i

−v·q+iε

= (−igs)(T
c
F )ba(−vµ) × i

−v·q+iε

= (−gs)(f
bac)(+vµ) × i

−v·q+iε

Figure A.2: Eikonal feynman rules.
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Appendix B

Anomalous dimensions

In this appendix, we provide the low-order anomalous dimensions entering

the jet function, as defined in Eqs. (4.7) and (4.32). We give the nth-order

coefficients γ
[i] (n)
K , K[i] (n) and G [i] (n) in an expansion in powers of αs(µ

2)/π,

γ
[i] (1)
K = 2Ci ,

γ
[i] (2)
K = CiK = Ci

[

CA

(

67

18
− ζ(2)

)

− 10

9
TFnF

]

,

K[i] (1) =
1

2ε
γ

[i] (1)
K ,

K[i] (2) =
1

4ε
γ

[i] (2)
K − β0

16ε2
γ

[i] (1)
K ,

G [q] (1) =
3

2
CF + ε

CF
2

(8 − ζ(2)) + O(ε2) ,

G [q] (2)
0 = 3C2

F

[

1

16
− 1

2
ζ(2) + ζ(3)

]

+
1

4
CACF

[

2545

108
+

11

3
ζ(2) − 13ζ(3)

]

−CFTFnF

[

209

108
+

1

3
ζ(2)

]

,

G [g] (1) =
β0

2
− ε

CA
2
ζ(2) + O(ε2) ,

G [g] (2)
0 = C2

A

[

10

27
− 11

12
ζ(2) − 1

4
ζ(3)

]

+ CATFnF

[

13

27
+

1

3
ζ(2)

]

+
1

2
CFTFnF

+
β1

4
, (B.1)
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where Cq = CF , Cg = CA, and

β1 =
34

3
C2
A − 4CFTFnF − 20

3
CATFnF . (B.2)

The results for G [i] (n) were obtained from Ref. [97], which also contains results

through three loops. We shift the gluonic expressions by terms proportional to

β-function coefficients, which take into account the effects of the renormalizing

the operator Ga
µνG

a µν, as explained in Ref. [110]. Because we only quote

results through two-loop order, some of the results for G [i] (n) could also have

been extracted from the two-loop quark electromagnetic form factor [92] and

from the gg → Higgs boson amplitude [96].
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Appendix C

One-loop velocity factors

C.1 Basic integrals

Consider the one-loop t-channel diagram shown in Fig. 4.1(a). The ve-

locity factor is given by

Ft = (igµε)2 (v1 · v3)

∫ ∞

0

dα

∫ ∞

0

dβ D(v3α + v1β)

= (igµε)2 1

4π2−ε
Γ(1 − ε) (v1 · v3)

∫ ∞

0

dα

∫ ∞

0

dβ
1

[(v3α + v1β)2]1−ε
.

(C.1)

We will use the following change of variables

α+ β ≡ η , α ≡ z η , (C.2)
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with Jacobian η. For IR regularization we impose α < 1
λ

⇐⇒ η < 1
λz

. 1 Also

note that 0 < z < 1. In terms of the new variables we have

Ft = (igµε)2 1

4π2−ε
Γ(1 − ε) (v1 · v3)

∫ 1

0

dz

∫ 1
λz

0

dη η2ε−1

× 1

[(v3 z + v1 (1 − z))2]1−ε

= (igµε)2 1

4π2−ε
Γ(1 − ε) (v1 · v3)

1

2ε

1

λ2ε

∫ ∞

0

dz′
1

[(v3 + v1 z′))2]1−ε
,

(C.3)

with z′ ≡ 1
z
− 1. From the expansion of the above expression, the single-pole

term and the finite part of the one-loop diagram are given by

Ft = −
(αs
π

)

(v1 · v3)

{

1

2ε
I1(v1, v3) +

1

2
Im(v1, v3)

+
1

2

[

ln

(

µ2

λ2

)

+ ln(π eγe)

]

I1(v1, v3)

}

,

(C.4)

where we have defined the following integrals

I1(v1, v3) ≡
∫ 1

0

dz
1

(v3 z + v1 z̄)2
=

∫ ∞

0

dz′
1

(v3 + v1 z′)2
,

Im(v1, v3) ≡
∫ ∞

0

dz′
ln(v3 + v1 z

′)2

(v3 + v1 z′)2
, (C.5)

with z̄ ≡ 1 − z.

1For these one-loop diagrams there is one overall IR divergence since all the

collinear singularities factorize. Therefore it is sufficient to restrict only one of the

gluon attachments.
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C.2 Evaluation of I1 and Im

We are evaluating eikonal diagrams derived from external Wilson lines.

By looking at the usual momentum-space expressions for the amplitudes one

can easily see that all these diagrams are scale independent in the eikonal

velocities vi. With this property in mind we can simplify the evaluations of

the integrals by choosing v2
i = 1 without loss of generality.

In order to evaluate I1(v1, v3) we use the following change of variable [99]

e2ψ ≡
√

v2
3z +

√

v2
1 z̄e

γ13

√

v2
3z +

√

v2
1 z̄e

−γ13
, (C.6)

which gives

dψ

dz
= −1

2

√

v2
1v

2
3(e

γ13 − e−γ13)

(v3 z + v1 z̄)2
. (C.7)

From this change of variable it is very easy to see that

∫ γ13

0

dψ =
√

v2
1v

2
3 sinh γ13

∫ 1

0

dz
1

(v3 z + v1 z̄)2
. (C.8)

Therefore we get

I1(v1, v3) =
1

√

v2
1v

2
3 sinh γ13

γ13 . (C.9)

Note that

I1(v1,−v3) =
1

√

v2
1v

2
3 sinh γ13

(iπ − γ13) , (C.10)

by analytic continuation.
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With v2
i = 1, Im can be written as

Im(v1, v3) =

∫ ∞

0

dy
1

(y + e−γ13)(y + eγ13)
ln
[

(y + e−γ13)(y + eγ13)
]

=
1

2 sinh γ13

∫ ∞

0

dy

{

ln [(y + e−γ13)(y + eγ13)]

y + e−γ13

− ln [(y + e−γ13)(y + eγ13)]

y + eγ13

}

=
1

2 sinh γ13

∫ ∞

0

dy

{

ln(y + e−γ13)

y + e−γ13
+

ln(y + eγ13)

y + e−γ13

− ln(y + e−γ13)

y + eγ13
− ln(y + eγ13)

y + eγ13

}

. (C.11)

It is easy to verify that the first and last terms in the right-hand side of the

final expression cancel, for example by changing variables to u = y + e−γ13 in

the first term and u = y + eγ13 in the last. This leaves us with

Im(v1, v3) =
1

2 sinh γ13

∫ ∞

0

dy

{

ln(y + eγ13)

y + e−γ13
− ln(y + e−γ13)

y + eγ13

}

. (C.12)

In the high-energy limit γ � 1, where eγ � e−γ , one easily finds

Im(v1, v3) =
1

2 sinh γ13

[

−Li2(−e2γ13) + Li2(1) + O(e−γ∞3)
]

=
1

sinh γ13

[

π2

6
+ γ2

13 + O(e−γ∞3)

]

. (C.13)

Following the same steps one also gets

Im(v1,−v3) = − 1

sinh γ13

[

π2

6
+ γ2

13 + O(e−γ∞3)

]

. (C.14)
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Appendix D

Velocity factors for 2E diagrams

We begin our analysis of the 2E diagrams with the diagram that has a

three-gluon vertex, Fig. 4.3(f). We follow Refs. [115, 116, 99] and write the

three-gluon vertex as

Vµνρ(k, l,−k − l) = V̄µνρ(k, l) +Dµνρ(k, l) , (D.1)

where

V̄µνρ(k, l) = (2l + k)µgνρ + 2kρgµν − 2kνgµρ ,

Dµνρ(k, l) = −lνgµρ − (k + l)ρgµν , (D.2)

and where k and l are the loop momenta. Indices ν and ρ attach to the v3 line.

The diagram resulting from V̄µνρ is proportional to v2
3 before integration. We

also note that the contributions of diagrams of Fig. 4.3(d) and Fig. 4.3(e) are

entirely proportional to v2
3 before integration, since a single gluon propagator

attaches twice to the same eikonal line. These v2
3 contributions turn out to

cancel each other in the high-energy limit. We give the result for the V̄µνρ

contribution below.
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The contribution resulting from theDµνρ piece for the diagram of Fig. 4.3(f)

is given by,

W2E,3g−D(v1, v3) = −(gµε)4 d
[t]
JI

CA
2

∫

dDk

(2π)D
dDl

(2π)D
1

k2

1

l2
1

(k + l)2

×
[

2 v3 · v1

(v1 · k)(v3 · k)
+

v3 · v1

(v1 · k)(v3 · l)

]

,

(D.3)

where we have suppressed factors of iε in the denominators. One can evaluate

the above expression in either momentum or configuration space. We will not

review the derivation of the following result [99],

W s.p.
2E,3g−D =

(αs
π

)2

d
[t]
JI

CA
2

{

γ13 coth γ13

(

− 1

4ε
+

1

16ε
ζ(2)

)

+
1

8ε
I2(γ13)

}

,

(D.4)

where

I2(γ13) ≡ sinh 2γ13

∫ γ13

0

dψ
ψ cothψ

sinh2 γ13 − sinh2 ψ
ln

(

sinh γ13

sinhψ

)

. (D.5)

We analyze I2 in order to get the high-energy behavior of this amplitude. We

start by writing I2 as

I2 = Icth−1 + I1 , (D.6)

where

Icth−1 =

∫ γ13

0

dψ

[

sinh 2γ13

sinh2 γ13 − sinh2 ψ
ln

(

sinh γ13

sinhψ

)]

× ψ (cothψ − 1)

= 2

∫ γ13

0

dψ

[

sinh 2γ13

sinh2 γ13 − sinh2 ψ
ln

(

sinh γ13

sinhψ

)]

× ψ
e−2ψ

1 − e−2ψ
,

(D.7)
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and where

I1 =

∫ γ13

0

dψ

[

sinh 2γ13

sinh2 γ13 − sinh2 ψ
ln

(

sinh γ13

sinhψ

)]

ψ . (D.8)

Note that Icth−1 is exponentially suppressed in ψ when ψ ∼ γ13. However, for

small ψ the factor sinh 2γ13
sinh2 γ13−sinh2 ψ

= 2 + O(e−γ∞3). Therefore we can rewrite

Icth−1 as

Icth−1 =

∫ ∞

0

dψ

[

2 ln

(

2 sinh γ13

2 sinhψ

)]

ψ (cothψ − 1) + O(e−γ∞3)

= 2

[

γ13

∫ ∞

0

dψ ψ (cothψ − 1)

−
∫ ∞

0

dψ ψ2(cothψ − 1)

−
∫ ∞

0

dψ ψ ln(1 − e−2ψ) (cothψ − 1)

]

≡ 2(k1γ13 + k2 + k3) . (D.9)

We evaluate k1, k2 and k3 separately, starting with

k1 =

∫ ∞

0

dψ ψ (cothψ − 1)

= 2

∫ ∞

0

dψ ψ
e−2ψ

1 − e−2ψ

= 2

∞
∑

n=0

∫ ∞

0

dψ ψ e−2(n+1)ψ

=
1

2
ζ(2) . (D.10)

We evaluate k2 and k3 by using the same expansion with answers

k2 = −
∫ ∞

0

dψ ψ2(cothψ − 1)

= −1

2
ζ(3) , (D.11)
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and finally

k3 = −
∫ ∞

0

dψ ψ ln(1 − e−2ψ) (cothψ − 1)

=
1

2
ζ(3) . (D.12)

Combining these results one finds

Icth−1 = ζ(2)γ13 . (D.13)

Now let’s look at the remaining integral in Eq. (D.6), I1. After some

trivial algebra one can rewrite I1 as

I1 = k4 + k5 , (D.14)

where

k4 = 2

∫ γ13

0

dψ ψ(γ13 − ψ)
1

(1 − e−(γ13−ψ))(1 + e−(γ13−ψ))
+ O(e−∈γ∞3)

= 2γ13

∫ γ13

0

dλ λ

∞
∑

n=0

e−2nλ − 2

∫ γ13

0

dλ λ2
∞
∑

n=0

e−2nλ + O(e−∈γ∞3) ,

(D.15)

with λ ≡ γ13 − ψ, from which

k4 = 2

[

γ3
13

6
+ γ13

ζ(2)

4
− ζ(3)

4

]

. (D.16)

Finally k5 is given by

k5 = −2

∫ ∞

0

dψ ψ ln(1 − e−2ψ)

=
ζ(3)

2
, (D.17)
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by using same kind of manipulations. Combining the above results one finds

I1 =
γ3

13

3
+
ζ(2)

2
γ13 . (D.18)

Using Eqs. (D.13) and (D.18), one finds for the asymptotic behavior of I2

I2(v1, v3) =
γ3

13

3
+

3ζ(2)

2
γ13 + O(e−γ∞3) . (D.19)

By using this result in the expression for the single-pole term, W s.p.
2E,3g−D, we

find

W s.p.
2E,3g−D =

(αs
π

)2

d
[t]
JI CA

1

2

{

− 1

4ε
γ13 +

1

16ε

[

2

3
γ3

13 + 4ζ(2)γ13

]

}

+O(e−γ∞3)

= −
(αs
π

)2

d
[t]
JI

CA
2

1

4ε

[

−γ
3
13

6
+ (1 − ζ(2))γ13

]

+ O(e−γ∞3) .

(D.20)

The contribution of the V̄µνρ piece to the diagram in Fig. 4.3(f) is given by [99]

W s.p.

2E,3g−V̄
= −

(αs
π

)2

d
[t]
JI

CA
2

1

4ε

[

−γ13 +
ζ(2)

4
+

1

2
I3(γ13) + O(e−γ∞3)

]

,

(D.21)

where

I3(γ13) ≡ sinh(2γ13)

∫ γ13

0

dψ
1

sinh2 γ13 − sinh2 ψ
ln

(

sinh γ13

sinhψ

)

. (D.22)

One can analyze the high-energy asymptotics of I3 in a similar way as above,

with the result

I3(γ13) = γ2
13 +

3ζ(2)

2
+ O

(

e−γ∞3

)

. (D.23)
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Combining Eqs. (D.20), (D.21) and (D.23), and letting γ13 = T , we find

W s.p.
2E,3g = −

(αs
π

)2

d
[t]
JI

CA
2

1

4ε

{

[

−T
3

6
+ (1 − ζ(2))T

]

+

[

T 2

2
− T + ζ(2)

]

}

+ O
(

e−γ∞3

)

,

(D.24)

which is the result given in Eq. (4.60).

The amplitudes for diagrams (d) and (e) of Fig. 4.3 are given in Ref. [100]

and the high-energy asymptotics is obtained with a similar analysis. The

results are given in Eq. (4.61). As mentioned above, these contributions cancel

the V̄µνρ contribution from diagram (f), which is enclosed by the second set

of brackets in Eq. (D.24).

Finally, let us look at the crossed-ladder diagram in Fig. 4.3(b). The

velocity factor in configuration space is given by

FCL,t(v1, v3) = (igµε)4 (v1 · v3)
2

∫ ∞

0

dα1

∫ α1

0

dα2

∫ ∞

0

dβ1

∫ β1

0

dβ2

×D(v1α1 + v3β2)D(v1α2 + v3β1) . (D.25)

It is not difficult to show that the single-pole part of the crossed-ladder velocity

factor is precisely the negative of that for the uncrossed-ladder diagram in

Fig. 4.3(a). Therefore in the combination of the two diagrams the single-

pole part of Eq. (D.25) is multiplied by the difference of the respective color

factors. Although the individual color factors are not proportional to the one-

loop factor d
[t]
JI, their difference evaluates to d

[t]
JICA/2. The following result for
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the combination of diagrams (a) and (b) can also be found in Ref. [99],1

W s.p.
CL+L,t = −

(αs
π

)2

d
[t]
JI

CA
2

1

2ε
coth2 γ13 I3(v1, v3) , (D.26)

where we define

I3(v1, v3) ≡
∫ γ13

0

dψ ψ (γ13 − ψ) cothψ . (D.27)

One can investigate the asymptotic behavior of I3 in a way similar to that

presented for the 3-gluon vertex diagram in Fig. 4.3(f). One obtains the

result

I3(v1, v3) =
γ3

13

6
+
ζ(2)

2
γ13 −

ζ(3)

2
+ O(e−γ∞3) . (D.28)

By using the above relation in Eq. (D.26) we find

W s.p.
CL+L,t = −

(αs
π

)2

d
[t]
JI

CA
2

1

2ε

(

γ3
13

6
+
ζ(2)

2
γ13 −

ζ(3)

2

)

+O(e−γ∞3) . (D.29)

Letting γ13 = T , this is the result given in Eq. (4.59), along with the result for

diagram (c) [99].

1Needless to say we can evaluate the integrals in momentum space and get the

same result.
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Appendix E

The commutator of I
(1)fin
f and Γ

(1)
Sf

The task of this appendix is to evaluate the commutator
[

I
(1)fin
f , Γ

(1)
Sf

]

appearing on the left-hand side of Eq. (4.99). Note that the pole parts of I
(1)
f

can be identified with Γ
(1)
Sf

, via Eq. (4.89). Writing out the O(ε0) parts of I
(1)fin
f

with nontrivial color structure, the commutator of the finite and pole parts of

I
(1)
f becomes,

[

I
(1)fin
f , Γ

(1)
Sf

]

=

1

4

[

∑

k

∑

l 6=k

(Tk · Tl)

(

1

2
ln2

(

µ2

−skl

)

+
γk
T2
k

ln

(

µ2

−skl

))

,
∑

i

∑

j 6=i

(Ti · Tj) ln

(

µ2

−sij

)

]

= C3,f + C2,f , (E.1)

where in the second equality we introduce notation to separate the terms with

three logarithms (C3,f) from those with two (C2,f).

In the case where all external lines are gluons, or all are quarks and/or

antiquarks, all the ratios γk/T
2
k in the left-hand side of the commutator are
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equal. This term is then proportional to Γ
(1)
Sf

, and C2,f vanishes. This argument

does not apply, of course, to mixed processes, such as qq̄ → gg. For the

latter case, however, and for any other 2 → 2 process, we may use the color

conservation identity
∑

k Tk = 0 and the simplicity of the kinematics to show

that C2,f vanishes. The argument is simple, and may be given for the case qq̄ →

gg without loss of generality. In this case, we may take k = 1, 2 in Eq. (E.1) to

correspond to the incoming quark and antiquark, and we consider just these

terms in the double-logarithmic part of the commutator in Eq. (E.1). We focus

first on the terms with prefactor γq/T
2
q = 3/2. (The same argument applies

to the remaining terms, with prefactor γg/T
2
g.) These terms are proportional

to
[

2
∑

k=1

∑

l 6=k

Tk ·Tl ln

(

µ2

−skl

)

,

4
∑

i=1

∑

j 6=i

Ti · Tj ln

(

µ2

−sij

)

]

. (E.2)

This commutator would vanish if the sum over index k were extended to k = 3

and 4. But this can by done by observing that
∑

k Tk = 0 implies that, for

example,

T1 · T2 = T3 · T4 +
1

2

(

T 2
3 + T 2

4 − T 2
1 − T 2

2

)

, (E.3)

where the squared terms commute with all combinations of generators. At

the same time, we have s12 = s34. As a result, in the left-hand term of the

commutator (E.2), we may make the replacement

T1 · T2 ln

(

µ2

−s12

)

→ T3 · T4 ln

(

µ2

−s34

)

. (E.4)

Analogous reasoning for each of the terms in the sum over k and l in Eq. (E.2)

shows that for 2 → 2 scattering the sum of the missing terms with k =
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3, 4 is identical in the commutator to the sum from k = 1, 2. Inserting the

missing terms, at the price of an overall factor of 1/2, the two entries of the

commutator become identical and it vanishes. This argument, of course, is

heavily dependent on the specifics of 2 → 2 scattering. We know of no general

argument that would eliminate all double-logarithmic terms in the commutator

in 2 → n processes; indeed such terms are generically present.

We now consider the triple-logarithmic terms in Eq. (E.1),

C3,f =
1

8

[

∑

k

∑

l 6=k

Tk · Tl ,
∑

i

∑

j 6=i

Ti · Tj

]

bkl aij

=
1

2

∑

i6=j 6=k

[

Tk · Tj , Tj · Ti

]

bkj aij

=
1

2

∑

i6=j 6=k

i fa1a2a3 Ta1
k Ta3

j Ta2
i bkj aij , (E.5)

where in the first equality we have introduced the notation bkl = ln2(µ2/(−skl)) =

blk and aij = ln(µ2/(−sij)) = aji. In the second equality in Eq. (E.5) we have

identified the nonvanishing terms in the commutator, for which one and only

one pair of generators is matched between the two entries of the commutator.

Because the scalar products are symmetric, there are four ways in which this

matching may occur, for fixed indices i 6= j 6= k. Finally, the third equality

shows the result of performing the commutator explicitly for the generators on

the j line. This form is reminiscent of the color structure of Ĥ
(2)
f , Eq. (4.94),

although the triple-logarithmic momentum factors are different, and depend

on the renormalization scale, µ.

To make contact between Eq. (E.5) and the explicit expression (4.94) for

Ĥ
(2)
f , we convert the sum of unequal choices of i, j and k into a sum over
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distinguishable triplets, denoted (i, j, k). For each such choice, there are six

permutations of the indices i, j and k in the final expression of Eq. (E.5).

These can be thought of as three cyclic permutations, which leave the struc-

ture constants the same, but change the momentum factors, and three more

(exchanges of i and k for fixed j, plus cyclic permutations), which change the

sign of the structure constants, and change the kinematic factors.

Following this path, we define

c[kj,ji] ≡ bkj aji − bij ajk (E.6)

and rewrite C3,f as

C3,f =
1

2

∑

(i,j,k)

i fa1a2a3 Ta1
k Ta3

j Ta2
i

[

c[kj,ji] + c[ik,kj] + c[ji,ik]

]

. (E.7)

A straightforward calculation shows that all of the µ-dependence cancels in

this expression. Relabelling the indices, and using the antisymmetry of the

structure constants, we derive

C3,f = − i

2

∑

(i,j,k)

fa1a2a3 Ta1
i Ta2

j Ta3
k ln

(−sij
−sjk

)

ln

(−sjk
−ski

)

ln

(−ski
−sij

)

= − 1

2
Ĥ

(2)
f , (E.8)

which establishes the result of Eq. (4.99). We emphasize that, unlike our

demonstration that C2,f vanishes, this result holds for an arbitrary 2 → n

process.
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