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     There are two major parts to this thesis, both involving averaged 

quantities in turbulent fluid mixing. In the first part we consider the chaotic 

flow of a Richtmyer-Meshkov instability resulting from a shock passing 

through a density discontinuity. From a Bayesan uncertainty quantification 

framework, we use high-resolution simulations to propose convergence rates 

for the numerical solution and the solution error of this chaotic flow in a 

perturbed circular (2D) geometry. After suitable averaging procedures we 

obtain stable statistics in homogeneous regions for several flow quantities, 

 iii



including the single-phase densities and wave positions. In the second part 

we turn our attention to the problem of validating a general closure by 

Glimm et al. for compressible multi-species, multi-phase flow models. More 

specifically, we discuss a grid-based algorithm we have implemented in the 

hydrodynamics front-tracking code FronTier that collects simulation data 

more accurately. This tool was devised to improve the data analysis of 

averaged quantities in 3D planar Rayleigh-Taylor simulations, a crucial 

component to the validation of the nonlinear interfacial terms that define the 

closures. Our method is conservative in nature as it uses the exact (up to 

modeling assumptions) volume fractions of irregular cells cut by the 

interface. We discuss at length the geometrical formulas used in our 

algorithm.  
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Chapter 1

Introduction

1.1 Acceleration-Driven Mixing

In this work we discuss the following two problems:

1. The uncertainty quantification - through convergence rates - of a chaotic

flow in a perturbed circular (2D) geometry.

2. The grid-based computations of volume fractions and surface areas in

3D grid cells cut by a two-phase interface for the conservative collection

of data in compressible flow problems.

Both of these problems involve acceleration-driven mixing processes which,

in turn, lead to hydrodynamic instabilities (the Richtmyer-Meshkov and Ray-

leigh-Taylor instabilities, respectively) characterized by the formation of well-

defined coherent structures in the outer portions of the mixing layer.

1



1.1.1 Rayleigh-Taylor Instability

This type of instability owes its name to the British physicists Lord

Rayleigh and Sir Geoffrey Taylor. The instability was first discovered by

Rayleigh in the 1880’s in the case of a heavy and a light fluid mixing in a

uniform gravitational field. Taylor later applied this process to all accelerat-

ing fluids in 1950 [37]. As the Rayleigh-Taylor (RT) instability develops, the

perturbations in the initial contact (i.e., the material interface between the

fluids) lead to the formation of bubbles and spikes. In particular, bubbles of

light fluid tend to rise up into the heavier fluid while spikes, or “fingers”, of

heavy fluid tend to move downward into the lighter fluid. Fig. 1.1 shows early

and late times in the development of the instability computed on a 20 x 20 x

80 3D rectangular grid. In the early non-linear regime of the instability, the

growth is typically studied using Layzer’s model [26] which gives a constant

rate of bubble growth using the bubble radius and the gravitational acceler-

ation. However, this model fails for non-planar geometries. A generalization

of this model was provided by Kidder [23] using a self-similar spherical implo-

sion. His work showed that after the early-time linear bubble rise rate (with

constant velocity) of Layzer’s model there is an acceleration of the bubble rise

rate in later times, when the instability has gone fully non-linear.

More recently, George et al. [12–14] conducted a Rayleigh-Taylor simu-

lation using the high-resolution front-tracking code FronTier, which prevents

interfacial mass diffusion, as well as untracked simulations for comparison.

The acceleration rates in the tracked simulations were found to fall within the

range of experiments. Their results show that the lower acceleration rate found

2



Figure 1.1: Early-time Rayleigh-Taylor mixing at time t=6 (left) and late-time
Rayleigh-Taylor mixing at time t=15 (right). The grid is 20 x 20 x 80.

in the untracked simulations, such as simulations based on the total variation

diminishing (TVD) method, is caused, to a large extent, by a reduced buoy-

ancy force due to numerical interfacial mass diffusion. Thus, all values of the

acceleration rate α (theoretical, experimental, and from simulation), which is

defined in the equation

h(t) = αAgt2 (1.1)

for bubble height penetration h, Atwood number A = ρ2+ρ1

ρ2−ρ1
relating the ini-

tial phase pressures, gravitational acceleration g, and time t, are consistent if

the diffusive calculation of α is renormalized to αeff using a time dependent

Atwood number A = A(t) to account for mass diffusion. In this case, Eq. 1.1

is rewritten as

3



h(t) = αeff

∫ t

0

∫ s1

0

2A(s)g ds ds1 (1.2)

See [13] for these latest developments.

We note that the study of Rayleigh-Taylor instabilities is particularly of

interest in the study of supernovae explosions, where the instance of a light

fluid accelerating against a heavy fluid often occurs. Understanding the mixing

rate caused by Rayleigh-Taylor instabilities is also essential to a wide variety of

applications, including the design of inertial confinement fusion (ICF) targets

and nuclear weapons explosions.

1.1.2 Richtmyer-Meshkov Instability

The Richtmyer-Meshkov (RM) instability, which occurs on impulsively-

accelerated, or shock-accelerated, density interfaces is also essential in the

study of supernovae explosions, ICF, and other practical processes. Moreover,

it is a particularly meaningful and convenient test problem for turbulence

studies as experimental measurements of the instability provide benchmarks

for validation and verification of numerical codes modeling turbulent flows.

It was Markstein who first considered in [28] the case of an interface under

impulsive acceleration produced by shock interaction. In 1960, Richtmyer

provided the first rigorous treatment of this particular instability through his

theoretical and numerical analysis [33]. In 1969, Meshkov’s shock-tube work

would provide an experimental basis for Richtmyer’s predictions [29].

As with the Rayleigh-Taylor instability, the initial perturbations at the
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Figure 1.2: Late-time density plots for tin and lucite in a simulation of Richt-
myer-Meshkov mixing for a circular implosion problem. The two figures corre-
spond to two grid levels, one fine (800× 1600, left) and one coarse (200× 400,
right).
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surface of the contact interface between two fluids will grow larger in amplitude

once the shock passes through the interface. Thus, if the initial setup consists

of a multi-mode perturbed sinusoidal interface between two fluids, one heavy

and one light, the perturbations will then grow in amplitude and develop into

crests and troughs. These will tend to grow linearly up to a certain point

(especially for low initial amplitudes and early times) until the instability has

gone into a fully non-linear regime and the mixing layer becomes highly turbu-

lent. At that point, the same formations observed in Rayleigh-Taylor mixing

of light bubbles and heavy spikes will develop with the additional features of

a roll-up, or “mushrooming”, of the bubbles (due to vorticity diffusion effects)

as well as the appearence of smaller-scale structures [4]. Fig. 1.2 shows late-

time density plots of tin and lucite subjected to a strong inward shock and

Richtmyer-Meshkov mixing for two grid levels, one coarse and one fine, in a

circular geometry.

1.2 Direct Numerical Simulations and Compressible Flow

Models

In order to study the numerical errors and the convergence properties

of several averaged quantities that characterize the flow, or for the purposes

of validating proposed closures for systems of fluid dynamic equations, our

research program always starts from a series of high-resolution numerical sim-

ulations. We use direct numerical simulations (DNS) of the microphysical

equations of fluid mixing to extract the data that is subsequently used in our
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analysis [2]. The diversity of approaches and the vast spectrum of models that

have been put forth by the scientific community in the theoretical study of

compressible multi-species, multi-phase fluid mixing is remarkable. Some of

these include phenomenological mixing models, hybrid turbulent mixing mod-

els, multi-fluid interprenetration mixing models and buoyancy drag models

[5]. Our approach for modeling compressible multi-species, multi-phase flow is

based on the single-phase averaging of the microphysical fluid equations (Euler

equations) over an infinite ensemble of flow realizations, as explained in detail

by Glimm et al. in [3, 21]. The following exposition is based on the latest

developments discussed in [3].

The ensemble-averaging process is applied to a microphysical description

of distinct fluids separated by a sharp interface (the DNS description) and

leads to undefined averages of nonlinear quantities in the primitive variables.

These need to be modeled in order to close the system of equations. Assum-

ing homogeneity and the absence of internal length scales within the mixing

zone, a general closure is proposed in the form of integral identities based on

exact interfacial terms. These closures satisfy conservation and boundary con-

straints for the continuity and momentum equations and also allow important

scale-breaking phenomena in the equations of motion, such as mass diffusion

and surface tension. Moreover, they are validated against experimental and

numerical data. The model is valid for acceleration-driven mixing processes,

including Rayleigh-Taylor and Richtmyer-Meshkov mixing. With the trajecto-

ries or velocities of the mixing zone edges as the phenomenological input (and

without adjustable parameters for added mass, buoyancy and drag, which are

7



typically treated phenomenologically), it is capable of describing the coherent

structures dominating the mixing zone (the bubbles and spikes in the outer

layer).

1.2.1 Averaged Microphysical equations

For simplicity, we consider two-phase flow equations. Let the function

Xk be the phase indicator for material k (k = 1, 2). So Xk(t,x) equals 1 if

position x is in fluid k at time t, otherwise it is zero. Let us apply the averaging

process to the microphysical equations. We average the advection law [11] for

the indicator function Xk of the region occupied by the fluid k,

∂Xk

∂t
+ vint · ∇Xk = 0 . (1.3)

Here vint is the microphysical velocity evaluated at the interface (the

velocity component normal to the boundary ∂Xk is continuous so that vint·∇Xk

is well defined).

We also average the microscopic conservation equations (continuity, mo-

mentum and energy equations):

∂ρ

∂t
+ ∇ · ρv = 0 , (1.4)

∂ρv

∂t
+ ∇ · ρvv = −∇p + ρg , (1.5)

∂ρE

∂t
+ ∇ · ρvE = −∇ · pv + ρvg . (1.6)
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As usual, v, ρ, p, and E denote, respectively, the velocity, density, pres-

sure, and total energy with E = e + v2/2 where e is the internal energy.

To account for scale-breaking physics, such as mass diffusion or surface

tension, new terms must be added on the right-hand side of these equations.

See [3] for equations that account for surface tension and transport. For sim-

plicity we assume no mass diffusion across an interface for mixing processes

with immiscible fluids. Additionally, we can assume no surface tension for

mixing with miscible fluids.

Applying the ensemble average to Eqs. (1.3)-(1.6), we typically consider

averaged equations with one dependent space variable (say, in the z-direction

for a planar case) so that the ensemble to be averaged is independent of the

missing variables. The ensemble average then includes an averaging over

the suppressed spacial variables. To allow for statistical ensembles possess-

ing cylindrical or spherical geometry we introduce the geometry indicator s,

where s = 0, 1, 2 corresponds to planar, cylindrical and spherical forms of the

conservation equations. When the equations are averaged in cylindrical or

spherical coordinates, covariant centrifugal forces due to the curvilinearity of

the coordinate systems are introduced into the averaged equations.

Multiphase equations for the phase k are obtained by multiplying Eqs. (1.3)-

(1.6) by Xk and performing an ensemble average. We denote the ensemble

average 〈·〉. The average 〈Xk〉 of the indicator function Xk is denoted βk;

βk(z, t) is then the expected fraction of the horizontal layer at height z that

is occupied by fluid k at time t. The quantities ρk and pk are, respectively,

phase averages of the density ρ and pressure p:
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ρk =
〈Xkρ〉
〈Xk〉 , pk =

〈Xkp〉
〈Xk〉 . (1.7)

The quantities vk and Ek are phase mass-weighted averages of the fluid

z-velocity vz and total energy E:

vk =
〈Xkρvz〉
〈Xkρ〉 , Ek =

〈XkρE〉
〈Xkρ〉 . (1.8)

Applying the ensemble average to Eqs. (1.3)-(1.6), we obtain the one-

dimensional, two-pressure, two-phase flow averaged equations:

∂βk

∂t
+ 〈v · ∇Xk〉 = 0 , (1.9)

∂(βkρk)

∂t
+

1

zs

∂

∂z
(zsβkρkvk) = 0 , (1.10)

∂(βkρkvk)

∂t
+

1

zs

∂

∂z
(zsβkρkv

2
k) +

∂(βkpk)

∂z
=

〈
p
∂Xk

∂z

〉
+ βkρkg , (1.11)

∂(βkρkEk)

∂t
+

1

zs

∂

∂z
[zsβkvk(ρkEk + pk)] = 〈pv · ∇Xk〉 + βkρkvkg , (1.12)

for the volume fraction βk, velocity vk, density ρk, pressure pk, and total energy

Ek of phase k. Here k = 1 = b (bubble) and k = 2 = s (spike) denote the light

and heavy fluids respectively, k′ = 3 − k and g = g(t) > 0 is the gravitational

acceleration.

We add further terms to the right-hand side of these equations when

considering surface tension and transport effects, as shown in [3].
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1.2.2 Closures

Let v∗, p∗k and (pkv)∗ denote the averaged quantities at the interface.

These interfacial terms are given by

v∗ =
〈v · ∇Xk〉
〈n3 · ∇Xk〉 , p∗k =

〈pkn3 · ∇Xk〉
〈n3 · ∇Xk〉 , (pkv)∗ =

〈pkv · ∇Xk〉
〈n3 · ∇Xk〉 , (1.13)

where n3 is the unit normal vector in the preferred direction. Although the

equations (1.13) allow multiple fluids, they only allow a single interface type

(i.e., at most two fluid phases). A generalization [10] of this framework to

multiple phases specifies an interface type for each pair of phases that are in

contact, and leads to a generalization of the system (1.13).

The definitions (1.13) are fundamental to all that follows. They are math-

ematically exact consequences of the averages of Eqs. (1.4)-(1.6) and specify

the quantities (the right hand side of (1.13)) that are to be approximated in a

definition of closure to complete the averaged equations (1.9)-(1.12).

Note that ∇Xk equals the unit normal to the boundary ∂Xk times a

delta function concentrated on ∂Xk. The definitions assume that interface

fluxes weighted by this vector measure are proportional to fluxes through the

z direction only. Also for an interface quantity such as p∗, which may be

discontinuous across the interface (due to surface tension), the notation p∗k

indicates evaluation from the interior Xk side of ∂Xk.

Here we explain the basic ideas of our proposed closures, and their relation

to the closures of Saurel and coworkers [1, 34, 35]. There are three terms to
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define in (1.13), v∗, p∗, (pv)∗, the interface averages of p, v, pv, which we denote

generically as q∗, q = v, p, pv. For the Saurel et al. closed equations, these same

quantities are also required (and have different definitions). Their equations

contain additional terms called relaxation terms.

We assume a closure which represents q∗ as a convex sum of the primitive

variables qk for q = v, p,

q∗ = µq
1q2 + µq

2q1, q = v, p (1.14)

and a related bilinear expression

(pv)∗ = p∗(µpv
1 v2 + µpv

2 v1) + v∗(µpv
1 p2 + µpv

2 p1) − (µpv
1 p2v2 + µpv

2 p1v1) (1.15)

for (pv)∗.

Saurel et al. employ a related but different functional form for their

closure. They also consider a convex sum

q′S∗ = µSq
1 q2 + µSq

2 q1 q = v, p , (1.16)

and then define

vS∗ = v′S∗ + sgn

(
∂β1

∂x

)
p2 − p1

Z1 + Z2

, (1.17)

pS∗ = p′S∗ + sgn

(
∂β1

∂z

)( Z1Z2

Z1 + Z2

)
(v2 − v1) . (1.18)
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Here Zk is the acoustic impedance of fluid k. Also

(pv)S∗ = pS∗vS∗ . (1.19)

The Saurel closures also include relaxation, as an additional term in the

RHS of the associated volume fraction, momentum and energy equations.

These terms (for k = 1) have the form:

µS(p1 − p2) volume fraction source term (1.20)

λS(v2 − v1) momentum source term (1.21)

λSv′S∗(v2 − v1) − µSp′S∗(p1 − p2) energy source term (1.22)

Here

µS =
AI

2(Z1 + Z2)
, λS = µZ1Z2 , (1.23)

where AI is the interfacial area per unit volume.

The convex coefficients µq
k and µSq

k have a fractional linear form, namely

µq
k =

βk

βk + dq
kβk′

, q = v, p, pv (1.24)

µSq
k =

1

1 + dSq
k

, q = v, p (1.25)

The µq
k and µSq

k thus depend on a single parameter dq
k or dSq

k . The form

of the µq
k is suggested by rewriting the exact equations to derive an exact

(unclosed) expression for q∗ and µq
k. See theorems in [3] for these results. The

form (1.24) of µq
k is motivated by these expressions as well and is, moreover,
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required by theoretically required boundary conditions at the edges of the

mixing zone,

q∗ = qk at z = Zk . (1.26)

Our closures satisfy (1.26). A preliminary choice of dq
k, motivated by a homog-

enization of the exact expressions mentioned above, is given in [3]. In all but

one case, the dq
k are insensitive and are arbitrarily set to 1. See Table 1.1.

For the RT case, we assume (−1)kVk = (−1)kŻk ≥ 0 so that the mixing

zone is expanding. The growing mixing zone entrains pure phase fluid into

the mixture, and thus creates mixed fluid volume for both phases. In the

incompressible, non-diffusive RT case, this is seen clearly from the closed form

solution

dv
k(t) =

(
Zk′

Zk

)s ∣∣∣∣Vk′

Vk

∣∣∣∣ . (1.27)

The solution (1.27) is a consequence of the closed form expression obtained for

the solution of the model equations and a simple calculation. See references

of Glimm, Sharp and Saltz [17–19] for details of the derivation. In the planar

case (s = 0), the ratio in (1.27) is a function of the Atwood number A =

(ρ2 − ρ1)/(ρ2 + ρ1), and can be determined exactly on the basis of a theory

[6, 7] which has been validated against experiments. For the data (Atwood

number) considered here, (1.27) has the value 1.5. The final choice of the dq
k

to complete the model definition is specified in Table 1.1.

The hyperbolic character of the resulting model equations is easily de-

rived, but this analysis reveals a missing internal boundary condition at each

edge of the mixing zone. At the edges of the mixing zone, the hyperbolic
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RT RM
dv

1 (1.27) 1.0
dp

1 1.0 1.0
dpv

1 1.0 1.0

Table 1.1: Summary of dq
k parameter choices for RT and RM mixing. All

choices except that for dv
k in the RT case are insensitive.

analysis detects a missing incoming characteristic from the single fluid side.

We supply this missing condition by coupling the model at the mixing zone

edges to the buoyancy drag equation [9],

Z̈k = (−1)kAg − (−1)kCk
ρk′

ρ1 + ρ2

V 2
k

Zk

. (1.28)

Here Ck is a drag coefficient. This analysis is not needed for the present

paper, in which we are analyzing closure terms relative to simulation data,

but it is needed as part of a direct solution of the model equations, as has

been discussed by Glimm et al. [16].

We see that the simple choice (1.27) for dv
k depends on the buoyancy-drag

equations for the mixing zone edge position Zk. This equation has a free drag

parameter which can be set by appeal to a bubble merger model [8], and to a

model to set the ratio of bubble to spike growth rates [7]. This range of issues

have also been discussed for compressible mixing [22]. In fact, our study of

highly compressible RT mixing [12] shows that the self similar scaling law for

RT mixing (and thus the buoyancy drag equation, which allows a self simi-

lar solution) remain valid in the deeply compressible region. To achieve this
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result it is necessary to use time dependent Atwood numbers, reflecting the

differing densities in a stratified highly compressible atmosphere. We consis-

tently predict a strong increase in the mixing rate α with compressibility in

this sense.

The Saurel et al. expressions,

dSv
k = Zk/Zk′ dSp

k = Zk′/Zk , (1.29)

are derived from solutions of approximate (linearized) Riemann problems mod-

eling multiphase flows at the sub-grid level; their closure does not satisfy

(1.26). The Saurel et al. model supplies the missing internal boundary con-

ditions at the edges of the mixing zone by imposition of equal pressures [34]

p1(z = Zk) = p2(z = Zk).

We have two interpretations of the Saurel et al. model. In the first,

which we denote as Saurel-1, AI is regarded as a fitting parameter. The

second interpretation of their model is to take advantage of the fact that AI is

a computed quantity in our data, and to use this time dependent value in the

definition of the model. We denote this model as Saurel-2. AI is plotted as a

function of time in Fig. 1.3, to complete the definition of the Saurel-2 closure.

We note that AI has the dimensions of an inverse length and takes on large

values at early time as the mixing layer tends to its (small) initial amplitude.
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Figure 1.3: The interfacial area AI per unit volume plotted vs. time. This plot
serves to define the parameter AI for the closure Saurel-2. Left: RT, Right:
RM.

1.2.3 Validation and Comparison of Closures

The equations of this compressible, multi-species, multi-phase flow model,

which account for surface tension and transport, were validated against mul-

tiple DNS data sets. For 3D RT mixing, two classes of simulations were used:

an ideal simulation of multi-mode 3D RT mixing with no surface tension, no

mass diffusion, no viscosity (except for numerical viscosity) and no thermal

conductivity, and a simulation similar to the ideal one except for added sur-

face tension, in the form of dimensionless values that spanned the experimental

range of dimensionless surface tensions found for the immiscible fluids (with no

surfactants) in the experiments of Reed [32] and Smeeton-Youngs [36]. For 2D

RM mixing, the data sets obtained in our previous work on uncertainty quan-

tification [39] were used. Another simulation modeled the Banershee-Andrews

air-helium experiments with physical values of mass diffusion dimensionalized

using an initial wave length scale inferred from observation [3].
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In [3] we compare our closure, the two Saurel et al. closures and the RT

or RM DNS simulation data. In comparison to simulation data, we use the

definition

relative error =
1

3

∑
v∗,p∗,(pv)∗

∫ ∫ |DNS − model| dzdt∫ ∫ |DNS|dzdt
(1.30)

for the sum of the relative model errors for v∗, p∗ and (pv)∗. The integration

extends over the mixing zone. In the RT case, we exclude early time, before

the bubbles have had much of a chance to interact, and to which the model is

not supposed to apply, and integrate (i.e., sum) over times from 4 to 10.

Our first main conclusion is the excellent (about 10%) agreement of our

closures with the simulation data.

Our second main conclusion is the comparison of our closure to Saurel et

al. We have previously introduced two distinct interpretations of the Saurel

et al. model. In Fig. 1.4, we show the dependence of the total relative error

on the value assumed for the area AI . The error is minimized for AI = 0 for

both the RT data and the RM data, defining two different Saurel-1 closures for

these two data sets. With that choice, we compare the total relative errors in

our model and the two Saurel models, see Table 1.2. In summary, our model

has errors about one quarter to one half the size of those for the Saurel et

al model. This conclusion addresses the validation of the closure models by

computation of the residuals for the closure terms within the validated direct

numerical simulations.

Our third main conclusion is the high degree of insensitivity of the q∗ to
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Figure 1.4: Comparison of the model error (1.30) for three closures. Of these,
only Saurel-1 depends on the value of AI as a fitting parameter; these plots
serve to locate the best fit value of AI (AI = 0) and thus to define the Saurel-1
closure. Left: RT, Right: RM.

Closure v∗ p∗ (pv)∗ Average
Comparison to RT data

This paper 18% 00% 18% 12%
Saurel-1 43% 02% 42% 30%
Saurel-2 56% 46% 51% 51%

Comparison to RM data
This paper 07% 00% 20% 09%
Saurel-1 13% 04% 22% 13%
Saurel-2 12% 15% 31% 19%

Table 1.2: Model errors based on comparison to simulation data.
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the defining quantities µq
k, for many cases. We consider the condition

|∆q| ≡ |q1 − q2| � |q| ≡ |β1q1 + β2q2| q = v, p . (1.31)

When (1.31) holds, q∗ is effectively independent of the convex coefficients µq
k

and thus of the value of qk, as can be shown. This is the case for all RM data,

q∗ = v∗, p∗, and for p∗ in the RT data. Moreover, (pv)∗ is insensitive to dpv
k

whenever (1.31) holds for q = p, which occurs for both RT and RM data, and

in this case

(pv)∗ ≈ p∗v∗ . (1.32)

For these cases, the agreement of the two models and their agreement with

the simulation data is understandable, but not a stringent test of the models.

The insensitivity allows a simple choice of dq
k, in cases where (1.31) holds. The

only case where (1.31) is invalid is the v∗ case for the RT instability. For the

RT instability, v1 and v2 have generally opposite signs (in the frame stationary

with the fluid contianer), so that |v| is small relative to |∆v|.

Our fourth main conclusion concerns the cases which violate (1.31), and

thus for which the data is a stringent test of the models. This occurs for the

v∗ closure for the RT data. We find that our µv
k and those of Saurel et al. are

significantly different.

The summary results of Table 1.3 can be understood as follows. The

sensitive case for (1.31) occurs for the RT v∗ closure only. In this case, the

computational frame is that of the average interface position. The light fluid

moves away from the direction of g and the heavy fluid moves in the direction
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v∗ p∗ (pv)∗

RT: Closure sensitive to dq
k ((1.31) or (1.32) invalid) yes no no

RT: Closure sensitive to v∗ – – yes
RT: Relaxation important no late time late time
RM: Closure sensitive ((1.31) or (1.32) invalid) no no no
RM: Relaxation important no early time early time

Table 1.3: Summary properties related to the closures q∗. It is remarkable
that the closures depend sensitively on their defining parameter dk only in the
case of the RT data for the v∗ closure.

of g. Thus in most parts of the mixing zone, v1 and v2 has opposite signs, so

that v is nearly zero relative to ∆v, or in other words, ∆v is large. All other

cases are insensitive, so that the closure in these cases is basically independent

of the dq
k. In (1.20), the ∆v contribution to the relaxation terms is larger than

the ∆p contribution, and as ∆v occurs in the p∗ relaxation, the p∗ relaxation

terms are generally significant while the v∗ relaxation terms (proportional to

∆p) are not.

When ∆p is small, which is the case for all simulations considered here,

including those with surface tension, (pv)∗ ≈ p∗v∗ is approximately indepen-

dent of dpv
k , which is thus insensitive to dpv. It is sensitive to v∗.

Our fifth main conclusion is the apparent insensitivity of the closures

and averaged flow quantities to variation of (secondary) physics effects (ideal

vs. surface tension vs. mass diffusion). These secondary mechanisms have a

substantial influence on the growth rates of the mixing zone, i.e. α and the

Zk(t). But once the influence of the edge motions has been scaled out of the

data, the secondary physics appears to play only a small role in the simulation

data, at least at length scales accessible at present levels of mesh refinement.
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1.3 The Front-Tracking Approach

All the fluid mixing simulations we have referred to previously use the

front-tracking software package FronTier. The objective of a front-tracking

hydrodynamic program is to provide a numerical method that can represent

interfaces explicitly as lower-dimensional meshes moving through a volume-

filling grid in addition to keeping track of the initial interface (the surface,

or set of surfaces that separate distinct fluids) throughout the simulation.

Thus, its main characteristic is to follow whatever initial interface is input

by the user in a topologically correct manner. FronTier is a front-tracking

program that achieves this geometrical criterion in sophisticated ways, with

an ability to handle interface bifurcations and restore untangled interfaces at

each time step [15]. In addition to front-tracking algorithms, FronTier uses

high-order numerical schemes to solve the partial differential equations that

describe the flow, including where discontinuities are present in the solution

of these fluid equations (i.e., on wave fronts). Typically, these discontinuities

are boundaries between fluids or shock waves and the program then solves

hyperbolic conservation laws with robust Godunov-type schemes.

In general, there are two approaches to front-tracking. One is grid-free

tracking and the other is grid-based tracking (Fig. 1.5). In grid-free track-

ing, the tracked front is the triangulated interface propagating freely through

a rectangular volume-filling mesh. In grid-based tracking, the front is recon-

structed at each time step using the intersection points of the interface with

all grid cell edges. Grid-based tracking is very robust but inaccurate because

of numerical surface tension, a form of surface smoothing. On the other hand,
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Figure 1.5: Interface reconstruction using grid-free tracking (left) and
grid-based tracking (right). Note the bubble/spike formation typical in ac-
celeration-driven mixing and the frequency of ill-conditioned triangles on the
right figure. Figure courtesy of Glimm et al. [15]

grid-free tracking is more accurate but less robust in resolving interface bifur-

cations. FronTier takes a novel approach; instead of using either algorithm, it

combines the two to preserve the advantages of each: robustness and accuracy.

This hybrid solution is called locally grid-based tracking. The idea is simply to

rely on the more accurate grid-free propagation unless there is a bifurcation. If

a bifurcation occurs, the algorithm switches to a robust grid-based reconstruc-

tion inside a region around the bifurcation. The reconstructed interface inside

this region is then joined to the grid-free interface outside using a construction

resembling grid-based propagation [2].

Another important aspect of the FronTier code is its ability to support

additional surface-based physics, namely surface tension and mass diffusion.

These two phenomena are key in, respectively, the study of immiscible and

miscible simulations. Surface tension forces a pressure jump at the interface

that is proportional to the surface curvature. Thus, when solving for the mid
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state pressure across the front at each dynamic time step - that is, solving a

Riemman problem to connect two states on each side of the front - it suffices to

modify the equation of pressure equilibration according to the pressure jump

to account for the presence of surface tension. To account for physical mass

diffusion, numerical mass diffusion has to be eliminated while a limited amount

of mass diffusion is added back into the calculation on the basis of prescribed

values for the physical mass diffusion constant. The elimination step is done

very effectively by FronTier. [15]
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Chapter 2

Uncertainty Quantification for a Chaotic

Richtmyer-Meshkov Flow

In this section, we explain and summarize the previous work [39]. In

order to quantify the uncertainty associated with a typical chaotic flow prob-

lem, namely the Richtmyer-Meshkov mixing of tin with lucite in a perturbed

circular (2D) geometry, we propose stable statistics and convergence rates for

the numerical solution and the solution error.

2.1 Introduction

When considering physical problems, uncertainty quantification (UQ) is

commonly described as the study of the uncertainties, or errors, associated

with a solution operator that maps input parameters into output parame-

ters. These physical parameters are then modelled as probability distributions,

and the uncertainty is thought to be inherent to the underspecification of the

problem. In general, UQ seeks to understand the relative impact of input
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uncertainty in the creation of errors within the output solution, and tries to

predict or quantify the solution error given the magnitude of the input uncer-

tainty.

For our problem of chaotic Richtmyer-Meshkov mixing, we view UQ as

the problem of understanding and studying the solution errors that arise from

the finite resolution discretizations in the numerical algorithms that are used

to obtain solutions. Simplistically, our problem can then be viewed as the

determination of error bars to be assigned to such algorithms.

Since many simulations, as used in practice, are under-resolved, asymp-

totic analysis of convergence fails for our purposes of studying solution errors.

In addition, since Richtmyer-Meshkov mixing is a hyperbolically dominated

flow with poor theoretical foundation, a posteriori methods, whose aim is to

construct an upper-bound on the solution error, are generally inapplicable. As

a result, we adopt a statistical point of view and examine ensembles of equiv-

alent solutions of coarse and fine grid pairs, assuming that their differences

represent the coarse grid solution errors.

This statistical approach to studying errors is simple and robust, but its

direct application fails for the problem considered here. Chaotic flows, by

definition, exhibit sensitive dependence on initial conditions. Generally they

exhibit dependence not only on the physical parameters which define the flow,

but also on the numerical parameters which define the solution algorithm.

Glimm et al. formulated in [27] a composition law for the errors in the

numerical solution of 1D problems with composite shock interactions. Their

approach consisted of linearly combining the error models of simpler elemen-
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tary wave interactions to formulate a generalized error model for a problem

with complex interactions. They showed that a simple and linear solution

error model would suffice to study a highly non-linear problem.

However, once the shock physics problem is extended to Richtmyer-Mesh-

kov mixing in a circular (2D) perturbed geometry - a problem that gives rise

to a highly chaotic flow - a fundamental difficulty arises with the observed

point-wise divergence of the physical quantities, such as the shock position,

the single-phase densities and the volume fraction.

To resolve this, we frame the problem in terms of convergence rates and

thus seek to find suitable averaging procedures that show a meaningful conver-

gence of the flow quantities. With this use of statistical averages, we effectively

produce a workable UQ theory for chaotic flows.

In assessing convergence properties and convergence orders, we combine

the effects of the mean error, M , and the standard deviation of the error, STD.

Following conventional ideas, we use the metric |M | + 2STD to determine

convergence orders for all quantities. It is well known that the L∞ norms of

the position errors do not converge in shock discontinuities [39]. Therefore, we

consider convergence in the L1 norm only.

In order to investigate the convergence properties of these averaged quan-

tities, we use four different sizes of grid meshes in our simulations, 100 × 200,

200 × 400, 400 × 800 and 800 × 1600. Assuming that the finest grid level

solution corresponds to the exact solution, we can then record three levels of

errors between successive grid sizes.

We call a quantity reproducible if it shows convergence under this mesh
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refinement. After recognizing which quantities are reproducible, we seek to find

suitable averaging procedures that effectively reduce meaningless statistical

noise while remaining sufficiently rich to provide useful information about the

flow.

2.2 Problem Formulation

The simulation setup can be seen in Fig. 1.2. The computational domain

is x, y ∈ [0.25, 0.25]× [−25, 25], in units of cm. Time units are in microseconds

and pressure units are in megabars. With r denoting radial distance, there is a

constant-pressure boundary located at r = 24 and an initial perturbed contact

interface (already highly perturbed in the figure) located at r = 12.5. This

is the material boundary between tin (outside the contact, with ρtin = 7.3

at t = 0) and lucite (inside the contact, with ρlucite = 1.2 at t = 0). Both

tin and lucite are represented by a stiffened gamma law gas with parameters

given approximately by γ = 3.72 and pinf = 0.15 for tin, and γ = 1.85 and

pinf = 0.03 for lucite. These, in turn, define the stiffened gamma law pressure

p+γpinf = (γ−1)ρe. The initial ambient pressure is p = 10−6 and the imposed

pressure at the boundary is p = 0.687. The pressure discontinuity is imposed

to give rise to an inward propagating Mach 2 shock at t = 0, resulting in

Richtmyer-Meshkov mixing.

In the time-frame of the simulation (t goes to 80 µs), the in-going shock

wave passes through the contact interface (at t ≈ 20µs), hits the origin (at

t ≈ 40µs) and produces a reflected shock wave. This outgoing shock wave then

re-shocks the highly perturbed interface (t ≈ 45µs) and eventually reaches the
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outer boundary.

Both the in-going and reflected waves give rise to highly chaotic flow.

Fig. 2.1 shows the trajectories of the primary waves (in-going and outgoing

shocks, mixing zone edges) detected by the wave filter algorithm described in

[39], as well as the mean density contour plots.

The initial configuration of the contact interface perturbed by sine waves

is given as follows:

r(θ) = r0(1 +
∑

n

an sin(nθ)) (2.1)

where θ ∈ [−π/2, π/2], and r0 = 12.5. The sum over n ranges from nmin = 8

to nmax = 16, so that the average number of observed modes in the initial per-

turbation is 12. The coefficients an are chosen as Gaussian random variables,

with M = 0 and STD = 0.2. The observed mean peak to peak amplitude, de-

termined by this STD, is 0.25. The ensemble of initial conditions used in this

study are due to successive calls to the C random number generator erand48()

used to initiate the coefficients.

Finally, the position of the initial contact interface is either offset or not

offset from the origin, with the center of the inner circle located at x = 0,

y = 5 in the case of an offset.

2.3 Homogeneous Region Error Analysis

We use two types of averaging to obtain reproducible quantities. One is

over sectors of the computational domain (spatial averaging) and the other
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Figure 2.1: Primary waves and mean density contour plots averaged over a 45
degree circular arc at the equator of the flow region. The grid is 800 × 1600
and the initial contact is offset relative to the origin. Mixing zone edges are
shown in green; the shock position is shown in red.
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Figure 2.2: 3D contour of the relative mean heavy density error averaged over
a 5 degree arc located at the equator of the flow region. The grid level is 200
and the circular contact discontinuity is not offset relative to the origin.
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is over an ensemble of equivalent simulations. Sometimes a combination is

necessary to obtain suitable statistics and observe convergence. For spacial

averaging, we use a radial averaging tool that calculates the mean and vari-

ance of a given quantity in radial sectors of the computational domain. An-

other important tool that we use is the 2D wave filter, an automated pattern

recognition algorithm which locates shock waves, rarefaction waves, and con-

tact discontinuities in numerical solutions of Euler equations for compressible

fluids. Both these tools are discussed extensively in [39]. The wave filter local-

izes the in-going and out-going shocks as well as the mixed phase zones (see

Fig. 2.1). It also helps in recognizing distinct homogeneous space-time regions

of the flow with a more or less common history: the singly-shocked region,

the doubly-shocked region and the mixed phase zone. All these regions can be

seen in the 3D contour of the relative mean heavy density error (with respect

to the two coarsest grids) shown in Fig. 2.2. The wave filter is crucial once we

recognize that the statistics of each homogeneous region are more adequately

studied independently of each other.

The point values of each fluid type (heavy and light) are not convergent

in the mixing zone because of the lack of interface convergence. The interface

length is non-convergent in this type of chaotic problem as the interface is, in a

fractal sense, nearly a volume rather than a surface. We find that single-phase

densities are reproducible (i.e., convergent and independent of modification of

the ensemble) in homogeneous regions only after a modest amount of spatial

averaging over angular regions (e.g., 5 degree arcs).

One main conclusion regarding the spatial convergence of light and heavy
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densities is that convergence is obtained after angular averaging, excluding

regions within shock waves and at times of wave reflection at the origin. In

this sense, these densities converge in r, t. Also, the light fluid errors are

generally larger in absolute units (g/cc) than the heavy fluid errors. For more

detail on the homogeneous region error analysis, refer to this same section in

[39].

Most of the error statistics are spatially homogeneous (i.e., translation

invariant) within observed accuracy, but for regions enclosing the origin we

find that the light fluid density error statistics have a non-uniform behavior

at the origin at the time when the shock arrives at the origin (t ≈ 40). We

found that this divergence could be fit to a power law in the form cr−0.25.

2.4 Position Errors of Mixing Zone Edges

The mixing zone edges, with its associated position errors, are defined as

the approximate extrema in the mixing zone, within each angular sector. For

the purposes of locating the inner and outer edges of the mixing zone, we utilize

the wave filter and follow previously accepted ideas (notably in the analysis of

Rayleigh-Taylor mixing) to look for the 5% and 95% volume fraction contours

within each 45 degree circular arc.

The location of these contours is, at times, quite a noisy diagnostic for

the edges of the mixing zone. In Chap. 4 we show figures in which the mixing

zone edges occasionally move abruptly as a function of time, even after a fair

amount of averaging (both spatial and over ensembles of equivalent simula-

tions). The complex structures of the error curves in time can be attributed
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Figure 2.3: Mesh convergence of the mixing zone edges position errors, in units
of length (cm). The mixing zone is defined relative to the 45o window at the
equator, and averaged over an ensemble of N = 5 realizations. Non-offset case.
Left: Mixing zone center line. Right: Mixing zone width.

to the interaction of waves with the mixing zone. The interface is shocked at

t ≈ 20 and then reshocked at t ≈ 45. We give the statistics of convergence

averaged over time using an ensemble of N = 5 realizations in Fig. 2.3.

We use two measures to study the mixing zone position. The first is the

center position, or mid-point of the mixing zone, computed as the average

of the two edge positions (i.e., , (max - min)/2). The second is the width

of the mixing zone, computed as the difference in absolute terms of the two

mixing zone edges (i.e., , max - min). The errors in both of these measures

are presented in Fig. 2.3.

With regards to the position errors of the mixing zone, we conclude that

a fair amount of averaging is needed and that, contrary to the single phase

densities, spatial averaging alone does not suffice to show convergence. The

ensemble size of 5 is found to be the minimum value which shows a slow
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Centerline Error Width Error
Grid ∆x Singly Doubly Singly Doubly

Shocked Shocked Shocked Shocked
M STD O M STD O M STD O M STD O

100 1/4 -0.02 0.07 – -0.05 0.11 – 0.26 0.43 – 1.92 0.94 –
200 1/8 -0.01 0.06 0.2 -0.23 0.16 -1.0 0.08 0.17 1.5 0.45 0.72 1.0
400 1/16 -0.01 0.02 1.1 -0.10 0.19 0.2 0.07 0.09 0.8 0.35 0.35 0.9
800* 1/32 -0.01 0.01 0.9 -0.07 0.04 1.8 0.01 0.03 2.0 0.34 0.26 0.3

Table 2.1: Convergence statistics for the errors in the mixing zone edges,
averaged over time values and over an ensemble of size N = 5 (* N = 1), in
units of cm. Edge position defined relative to an angular window θ ∈ [−45o, 0o].
Non-offset case.

convergence in both measures used, namely the centerline and the width. In

general, the centerline of the mixing zone is less convergent than the width,

and for the doubly-shocked region it requires a highly refined mesh for con-

vergence. Analogous data from the other quarters (north pole, south pole and

the other equator region) show similar statistics as those seen in Table 2.1.

Finally, the errors are clearly non-monotone as a function of the mesh spacing,

indicating that for these quantities the mesh refinement is not within a region

of asymptotic convergence.

2.5 Conclusions

An important conclusion of this work is that only a modest amount of

averaging can lead to reproducible quantities, with the notable exception of

the volume fraction (not discussed here), a highly noisy quantity. For most

quantities, averaging over a 45 degree arc (sometimes 40 in the offset cases) was

sufficient in showing convergence within 10% of the fine grid solution value, or

between ∆x and 2∆x for position errors, when using the |M |+ 2STD metric.
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1st Order or Marginal Non Convergent
Near 1st Order or ≈ 1/2 Order

ρh(r, t, ξ) ρh(r, t, ξ) ρh(r, t, ξ)
doubly shocked and mixed phase region
mixed phase regions

ρh(r, t) ρh(r, t)
singly and mixed phase region

doubly shocked regions

ρl(r, t, ξ) ρl(r, t, ξ)
singly shocked and mixed phase and
mixed phase regions doubly shocked regions

ρl(r, t) ρl(r, t)
singly shocked doubly shocked and

mixed phase regions

β(r, t, ξ), β(r, t) β(r, t, ξ)
doubly shocked region

s(t, ξ), s(t)

mz(t, ξ), mz(t) width
mz(t, ξ), mz(t) centerline

Table 2.2: Summary of convergence properties and orders, for the heavy and
light densities ρh and ρl, volume fraction β, shock position s and mixing zone
edges mz. All quantities are averaged over an angular variable, and also over
all variables not explicitly present in the table. The variable ξ is an ensemble
realization variable. The same quantities located in distinct columns indicate
possible qualitatively different convergence behavior for distinct realizations,
or for different angular regions, or as a distinction between offset and non-offset
behavior.

Nevertheless, convergence is slow, often 1/2 order or less, and depends on the

flow history. Also, convergence is not asymptotic in ∆x, or even monotone.

β(r, t, ε), the volume fraction in the doubly shocked region, is an example of a

quantity that is divergent in this metric (without averaging over an ensemble

of equivalent simulations). The arc lenghts of 40o and

For a complete picture of the convergence rates and statistics we found

for all these quantities, see Table 2.2 and [39].
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Chapter 3

Grid-Based Geometrical Computations for

Conservative Data Collection

3.1 Introduction

The validation of the closures in the compressible flow models discussed

in [3] was performed through the analysis of averaged quantities obtained from

the DNS simulation data of 3D large-scale Rayleigh-Taylor simulations. This

data was in turn collected and processed in a conservative manner. What this

means is that at each data collection time step a tracked interface was recon-

structed as a grid-based interface for the sole purposes of data collection. For

each grid cell traversed by the interface (i.e., mixed cell), we then computed

the volumes for each phase and the surface area of the interface separating

these phases. Normalizing the volumes, we devised an algorithm that uses

these fractional volumes in mixed cells to compute the phase cell averages for

state variables associated with each phase. In particular, these phase cell aver-

ages are determined from the in-phase densities, or micro-densities, for mass,
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momentum, and energy, multiplied by the fractional volume fractions to obtain

total phase mass, momentum, and energy. Other variables were constructed

similarly as spatial volume-weighted averages. Here we present in detail the

ideas behind the geometrical formulation for the simplified reconstructed in-

terface and the computation of volume fractions and surface areas in mixed

cells [24]. Our geometrical computations are based on the grid crossings of the

interface with the cell edges and the 2-coloring of the cell corners, where each

color is associated with a distinct phase.

Consider a 3D grid cell divided into two sub-domains. We compute the

volume fraction of each of these domains and the surface area of the interface

which separates them. This problem, as so formulated, is arbitrarily complex,

but we assume a simple form of the two volumes and the surface area. This

simple form is based on an interface reconstruction, which is determined by

the crossings of the interface with the grid cell edges and the 2-coloring of the

corners, where each color represents one of the two domain components. We

derive from geometrical principles the fourteen non-trivial cases that, based on

our assumptions, give topologically distinct configurations for edge crossings.

For each distinct case, we reconstruct the contact interface and discuss our

procedure for computing volumes and surface areas. The construction is not

unique; all possible constructions are obtained.

Finally, we document for the volume fraction and surface area formulas

implemented in the hydrodynamic front tracking code FronTier .

Given a 3D grid cell divided by an interface, our aim is to determine:

1. The volume fractions of the two domains separated by the interface,
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respectively denoted by β1 and β2. Since β1 + β2 = 1, we only compute

the volume fraction β1.

2. The surface area A of the contact interface.

We now state our objective and our assumptions for framing this problem

geometrically.

3.1.1 Objective

Our objective is to implement an accurate statistical routine for the col-

lection of flow quantities in the FronTier package based on the volume and

surface area formulas developed here. Conservative data collection using these

formulas will aid in the data analysis for simulations of turbulent fluid mix-

ing [3]. For the purpose of computing β1 and A we reconstruct a simplified

interface [15] within each cell, following the major steps given below:

1. Compute the crossings of the interface with the cell edges.

2. Determine component values at the cell corners and eliminate inconsis-

tent crossings.

3. Reconstruct a new interface using consistent crossings.

To determine component values at the cell corners and identify incon-

sistent crossings for step 2, the algorithm relies on the crossings computed in

step 1. At the end of step 2, topological inconsistencies due to interface self

intersections have been removed and multiple interface crossings (more than
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one per edge) have been eliminated. We begin with an analysis of step 3, thus

assuming that the interface has already been untangled.

The volumes and surface areas are based on a reconstructed interface

that is determined by the set of crossing points and the domain components

of the cell corners. It does not coincide with the original interface.

3.1.2 Assumptions

A 2-color scheme distinguishes the components of the cell corners. The

corner 2-coloring is then used to locate edges which have crossings with the

interface, namely those linking corners with different colors. Two objects,

the interface perimeter and the interface surface, play a major part in the

reconstruction step.

Consider a cell with n edge crossing points, each one belonging to a

distinct edge.

Definition 3.1 An interface perimeter is a non self-intersecting curve

on the cell surface that is linear on each face, and that crosses the cell edges

exactly at the n given edge crossing points.

Definition 3.2 An interface surface is a non self-intersecting mesh of

triangular surface elements that has as lattice points the n edge crossing points

within the cell, with none of the triangular elements (including their interior

boundaries) lying on the cell surface.

The boundary of an interface surface is an interface perimeter.
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In Section 2 we derive the fourteen non-trivial topologically distinct cor-

ner 2-colorings described in [15] for 3D cells. These cases, the starting point

of our study, are the complete isomorphism invariants relative to the group

of all isometries (distance-preserving transformations) and color inversions of

the 2-colorings of the cell corners. In Section 3 we construct all possible in-

terface perimeters consistent with a given set of edge crossings, and derive the

complete set of triangulations for connected perimeters that may be realized

as boundaries of interface surfaces in the cell. In Section 4 we discuss the pro-

cedure for averaging over the non-unique choices of perimeters and surfaces.

In Section 5 we discuss the implementation of the volume fraction and surface

area formulas in the front tracking code FronTier .

3.2 Corner Two-Colorings

Here we derive the fourteen non-trivial isomorphism classes for corner

2-colorings in 3D cells.

Proposition 3.1 14 non-trivial, non-isomorphic cases give the complete

list of topologically distinct configurations for edge crossings in 3D cells.

Proof The isomorphism group G in question is generated by isometries of

the cell and by color inversion. The proof is in two steps. First we enumerate 14

isomorphism classes of non-trivial corner 2-colorings. Then we determine the

total number of non-equivalent and non-trivial corner 2-colorings according

to Polya’s enumeration formula, following [15, 31, 38], to conclude that the

enumerated list of 14 is complete.
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Let C be the set of 2d possible corner 2-colorings within a cell, where

d is the number of cell corners. For a 3D cell, d = 8, so there is a total of

28 = 256 possible corner 2-colorings. Two corner 2-colorings are isomorphic

if there exists a g ∈ G that maps one corner 2-coloring onto the other. Then

G induces a partition of C into isomorphism classes, the disjoint subsets of C

which group together all 2-colorings that are isomorphic to one another.

We enumerate the following 14 isomorphism classes for corner 2-colorings

according to the number of black corners in the cell (where the case with zero

black corners is discarded as trivial):

1. One black corner.

Two black corners such that:

2. they are connected by an edge.

3. they share a common face but are not connected by an edge.

4. they do not share a common face.

Three black corners such that:

5. they share a common face (i.e., they are pairwise connected by two

edges).

6. two are connected by an edge and the other does not share a common

face with that edge.

7. none of the three are connected by an edge.
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Four black corners such that:

8. they share a common face.

9. they are pairwise connected by three edges and form a broken line whose

successive increments define a right-handed coordinate system.

10. they are pairwise connected by three edges and form a broken line whose

successive increments define a left-handed coordinate system.

11. they are pairwise connected by three edges but do not share a common

face of the cube nor form a broken line.

12. three are pairwise connected by two edges and the other is not connected

to either of those edges.

13. two pairs are each connected by an edge, but they do not share a common

face.

14. none of the four are connected by an edge.

From their description, each of these classes is invariant under G.

In Fig. 3.1 we show the 14 non-isomorphic and non-trivial corner 2-

colorings which follow the list of isomorphism classes given above. We also

give f , the number of faces with opposite black corners and opposite white

corners (i.e., with four edge crossing points), in the 2-colorings for which f > 0.

This number plays a crucial role in the construction of interface perimeters,

the topic of the next section.
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Figure 3.1: 14 topologically distinct, or non-isomorphic, corner 2-colorings in
3D cells. The numbering follows the enumeration of isomorphism classes. For
later use we give f , the number of faces with opposite black corners, in the
corner 2-colorings for which f > 0.
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To complete the proof, we show by abstract methods that the number of

isomorphism classes is 14, so that each case identified above must be a single

isomorphism class, and the list of 14 is a complete list of isomorphism classes.

We follow the derivation in [38] (Example 4, Section 9.4) that applies Polya’s

enumeration formula [31] to the non-equivalent corner 2-colorings of a cube.

First we show that a floating cube has 24 distinct symmetries involving

revolutions about axes passing through the centers of opposite faces, the mid-

points of diagonally opposite edges on opposite faces, and diagonally opposite

corners on opposite faces. These symmetries are the complete set of isometries

I that map a fixed cube onto itself. We have, for each of the three distinct

pairs of opposite faces in the cube, either 90o, 180o, or 270o revolutions that

yield symmetries. With the trivial identity symmetry (the 0o revolution), that

makes a total number of 10 symmetries. For the six distinct pairs of diagonally

opposite edges on opposite faces, only the 180o revolution yields a symmetry.

Thus, the total number of symmetries is increased to 16. Finally, for the four

distinct pairs of diagonally opposite corners on opposite faces, the 120o and

240o revolutions yield symmetries. This brings the total number of symmetries

to 16 + 8 = 24.

Next we determine the pattern inventory for the corner 2-colorings of a

floating cube. The pattern inventory, denoted by PI(c1, c2, ..., cn), is a gener-

ating function that gives the total number of colorings of an unoriented figure

using different possible collection of colors c1, c2, ..., cn . As an instance, the

pattern inventory for the 2-coloring of a cell face using a black and white color

scheme is given by PI(b, w) = 1b4 + 1b3w + 2b2w2 + 1bw3 + 1w4, where the
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term 1b3w, for example, gives the number of non-equivalent colorings of the

face with three black corners and one white corner. The pattern inventory

is determined by summing the cycle structure representations of all the sym-

metries written in terms of the colors c1, c2, ..., cn and dividing this sum by

the number of total symmetries. Thus, we first seek to find the cycle struc-

ture representation of the 24 symmetries we have identified. A symmetry is

naturally characterized by a given permutation πi of the eight corners of the

cube. This permutation can be, in turn, represented as a product of disjoint

cyclic permutations, or cycles. For example, the symmetry that involves a

180o revolution in the case of a cell face with cycling corners a, b, c, d is char-

acterized by the permutation π = (ac)(bd) which permutes corners a and b to

corners c and d. The cycle structure representation of this symmetry is then

given by x2x2 = x2
2, where x2 is the length of each 2-cycle. In general the

cycle structure representation of a symmetry characterized by the permuta-

tion πi is the product of the lengths xi of the disjoint i-cycles that represent

the permutation. Looking at the permutations of the corners resulting from

the revolutions that yield symmetries in our case of a floating cube, we ob-

tain the cycle structure representation for each of the 24 symmetries. The

identity symmetry leaves all corners unchanged and, thus, has cycle structure

representation x1x1x1x1x1x1x1x1 = x8
1. For opposite faces, a 90o or a 270o

revolution permutes all corners belonging to each opposite face so that the

cycle structure representation of these symmetries is x4x4 = x2
4. The 180o rev-

olution permutes only opposite corners on each opposite face and so the cycle

structure representation is x2x2x2x2 = x4
2. Since there are three distinct pairs
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of opposite faces in a cube, the total contribution of opposite-face revolutions

is 6x2
4 + 3x4

2. Now for diagonally opposite edges on opposite faces, the 180o

revolution permutes pairs of distinct corners so that the cycle structure repre-

sentation is x2x2x2x2 = x4
2. Since there are six pairs of distinct opposite edges

in a cube, the total contribution of opposite-edge revolutions is 6x4
2. Finally,

for opposite corners the 120o and 240o revolutions leave both opposite corners

fixed while cyclically permuting the three corners adjacent to them. The cycle

structure representation for these symmetries is then x1x3x3x1 = x2
1x

2
3, and

the total contribution of opposite-corner revolutions is 8x4
2 since there are four

pairs of distinct opposite corners in a cube.

Collecting terms we obtain the generating function that gives the pattern

inventory for the corner 2-colorings of a floating cube. Namely,

PI(x1, x2, x3, x4) =
1

24

(
x8

1 + 6x2
4 + 9x4

2 + 8x2
1x

2
3

)
. (3.1)

For corner 2-colorings of the cube using a black and white scheme we use

the algebraic identity xi = (bi + wi) given in [38]. This then gives the pattern

inventory

PI(b, w) =
1

24

(
(b + w)8 + 6(b4 + w4)2 + 9(b2 + w2)4 + 8(b + w)2(b3 + w3)2

)
.

(3.2)

Expanding Eq. 3.2 we get
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PI(b, w) =
(
b8 + b7w + 3b6w2 + 3b5w3 + 7b4w4 + 3b3w5 + 3b2w6 + bw7 + w8

)
.

(3.3)

In Eq. 3.3 we drop terms that are redundant. Thus, corner 2-colorings

with more than five black corners (bi terms with i > 5) are dropped since these

can be mapped to colorings with less than five corners after a color interchange

(white to black, black to white). In addition, the terms w8 and b8 are dropped

since 3D cells cut by an interface have, by definition, at least two corners with

different domain components (i.e., different colors). This ultimately yields the

number of non-trivial 2-colorings of a floating cube, namely

PI(1, 1) = 1 + 3 + 3 + 7 = 14 . (3.4)

From this result we conclude that the 14 corner 2-colorings shown in

Fig. 3.1 constitute a complete list of non-trivial isomorphism classes for corner

2-colorings in 3D cells. �

3.3 Interface Perimeters

3.3.1 Perimeter Construction

Here we construct all the possible perimeter curves that can be formed

on the surface of the 3D cell, following Definition 3.1, for each isomorphism

class of corner 2-colorings. Our approach is to start from a single cell face and

then proceed to the union of the cell faces.
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Figure 3.2: Non-isomorphic corner 2-colorings for single cell faces. From top
to bottom row, the corner 2-colorings have zero, one, or two black corners.
Edge crossings are shown as small black dots.

Proposition 3.2 There are either zero, two, or four edge crossings on

any cell face.

Proof A cell face is a square with four edges and four corners. A complete

circuit around the square observes an even number of crossings, since the

starting and ending colors are identical. In the case that all corners are of a

single color, there are no crossings. Moreover, there is at most one crossing

per edge, so the maximum number of crossings is 4. We show all possible cases

in Fig. 3.2. �

Proposition 3.3 The interface perimeter on a given cell face is uniquely

determined by the edge crossings for the cases of zero or two edge crossings.

It is two-fold non-unique in the case of four edge crossings.

Proof Faces with two edge crossings have a unique interface perimeter,
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Figure 3.3: Interface perimeters on single cell faces. They are uniquely deter-
mined by the edge crossings for cell faces with two edge crossings (left) and
they are two-fold non-unique for cell faces with four edge crossings (right).
Edge crossings are shown as small black dots.

namely the linear segment connecting the crossings (see Fig. 3.3, left). For

cell faces with four edge crossings, the interface perimeter is, by definition,

the union of two linear segments connecting distinct pairs of edge crossings.

Since these segments are not allowed to intersect, they must join crossings on

adjacent edges. There are exactly two ways to do this (see Fig. 3.3, right). �

To construct interface perimeters on the union of the cell faces, we proceed

by locating all edge crossings in each corner 2-coloring of Fig. 3.1 and then

forming the perimeters on each face. Since the interface perimeter crosses the

cell edges exactly at the edge crossing points, it is formed by selecting one

of the possible perimeters for each single cell face. In general, the interface

perimeter is not connected but is the union of multiple disjoint connected

components.

Proposition 3.4 There are 92 distinct interface perimeters that can be

formed from the fourteen non-isomorphic, non-trivial, configurations of edge

crossings in 3D cells.
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Proof This is the extension in 3D of Proposition 3.3. Non-uniqueness

on a single cell face results in non-uniqueness for the interface perimeter. Ac-

cording to Proposition 3.3, this only occurs in cases where a cell face has four

edge crossings (i.e., opposite black corners and opposite white corners). For a

given corner 2-coloring, the number P of possible interface perimeters is given

by P = 2f , where f is the number of faces with four edge crossings. For f = 0,

P = 1 in cases 1, 2, 4, 5, 8, 9, 10, and 11. The remaining corner 2-colorings

have f = 1 (cases 3 and 6), f = 2 (cases 12 and 13), f = 3 (case 7), and f = 6

(case 14) faces with four edge crossings resulting in, respectively, P = 21 = 2,

P = 22 = 4, P = 23 = 8, and P = 26 = 64 possible distinct perimeter construc-

tions. Summing these possibilities, we have 8(20)+2(21)+2(22)+23 +26 = 92

possible interface perimeters in 3D cells. �

In general, interface perimeters are disconnected and consist of several

connected components. We present in Figs. 3.4, 3.5, and 3.6 the 92 interface

perimeters, organized according to their number of connected components.

Fig. 3.4 shows all the connected perimeters, while Figs. 3.5 and 3.6 show the

disconnected ones. For the non-isomorphic case 14, with f = 6, there is a total

of P = 26 = 64 distinct interface perimeters, including the 48 disconnected

perimeters shown in Fig. 3.6. By counting the distinct interface perimeters

seen in all three figures, we have a total number of 32 + 12 + 48 = 92 possible

perimeter constructions. From Proposition 3.4, we conclude that Figs. 3.4, 3.5,

and 3.6 show all the distinct interface perimeters that can be formed on the

surface of a 3D cell. A disconnected perimeter has at most four connected

components; the “maximal case” occurs when there is an edge crossing on each
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Figure 3.4: 32 distinct connected interface perimeters that can be formed on
the surface of a 3D cell. We group the perimeters according to f , the number
of faces with four edge crossings, and the isomorphism classes of perimeters in
each non-isomorphic case. Note that we have labeled these perimeter classes
and that, in most cases, labels follow the names of polyhedra given by the num-
ber of edge crossings on the perimeter. The numbering of the non-isomorphic
cases follows the enumeration of isomorphism classes for corner 2-colorings.
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Figure 3.5: 12 distinct disconnected interface perimeters that can be formed
on a 3D cell surface, for f = 0, 1, 2, 3. The numbering of the non-isomorphic
cases follows the enumeration of isomorphism classes for corner 2-colorings.
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Figure 3.6: 48 distinct disconnected interface perimeters that can be formed
on a 3D cell surface in the non-isomorphic case with f = 6 (case 14).
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cell edge. As before, we consider isomorphism classes for connected perimeters

relative to the group of isometries and color inversion.

Proposition 3.5 The 32 connected perimeters displayed in Fig. 3.4 are

grouped (by their common labels) into 14 isomorphism classes.

Proof We show that each of the fourteen classes of connected perimeters

depicted in Fig. 3.4 form an isomorphism class. For cases with f = 0, 1, the iso-

morphism classes of perimeters consist of exactly one element distinguished by

an isomorphism class of the corner 2-colorings. In the two cases with f = 2 (12

and 13), the isomorphism is a 180o rotation about the line passing through the

midpoints of the front-left and back-right vertical edges (diagonally opposed

in the cell), followed by a color inversion, for the octagonoid-I perimeter class,

and the same “up-down” rotation about the opposite edges with black corners

for the octagonoid-II perimeter class. For the enneagonoid perimeter class of

case 7, with f = 3, the three symmetries are the 0o, 120o, and 240o rota-

tions about the line passing through the top-right front and the bottom-left

back corners (diagonally opposed corners in the cell). For the duodecagonoid-I

perimeter class of case 14 with f = 6, the four symmetries consist of 0o and

180o rotations about the line passing through the center points of the top and

bottom cell faces, and of 90o and 270o rotations about the same axis followed

by a color inversion. In the same case, the duodecagonoid-II perimeter class

has twelve symmetries given by the same rotations as in the duodecagonoid-II

and the enneagonoid perimeter classes, namely 0o and 180o rotations about

the line passing through the center points of the top and bottom cell faces,
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90o and 270o rotations about the same axis followed by a color inversion, and

0o, 120o, and 240o rotations about the line passing through the top-right front

and the bottom-left back corners (diagonally opposed corners in the cell). For

each rotation about the axis passing through the diagonally opposed corners,

there are four symmetries generated by the rotations about the vertical axis

passing through the top and bottom faces. This brings the total number of

symmetries to 4 × 3 = 12. The two isomorphism classes of perimeters in case

14 have topologically distinct perimeters distinguished by an invariant cyclic

ordering around the perimeter of the edges lying on opposite faces of the cell.

We return to this topological invariant in the next section, where we discuss

the triangulation of connected perimeters, and complete the proof. �

3.3.2 Valid Triangulations of Connected Perimeters

We now turn to valid triangulations of connected perimeters, as these de-

termine the interface surface. We first recall some results on the triangulation

of polygons and then define validity for triangulations of interface perimeters.

Preliminaries on the Triangulation of Polygons

We begin by recalling some elementary definitions [30].

Definition 3.3 A graph isomorphism f is a bijection, or one-to-one

mapping, between the vertices of two graphs G and H (f : V (G) → V (H))

with the property that any two vertices u and v from G are adjacent if and only

if f(u) and f(v) are adjacent in H. If there exists such a mapping between
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two graphs, then they are said to be isomorphic.

Connected perimeters are then clearly graph isomorphic to polygons.

Definition 3.4 Any polygon P can be triangulated by connecting pairs

of non-adjacent vertices with straight lines called diagonals, so that every ver-

tex is the endpoint of at least one diagonal.

This leads to the following result.

Theorem 3.1 If P is a polygon with n sides, then there is a total of n−3

diagonals which will decompose P into n − 2 triangles.

Proof We use a straightforward induction proof taken from O’Rourke

[30]. We start with n = 3 (the trivial case of a triangle). For n ≥ 4, we

partition the polygon P into two sub-polygons P1 and P2 so that P1 ∪P2 = P

and the diagonal d is adjacent to both P1 and P2. These polygons have,

respectively, n1 and n2 vertices. Clearly, we have a vertex count of n1 + n2 =

n+2 since the endpoints of d are counted twice: first in the vertices of P1, then

in the vertices of P2. Applying the induction hypothesis to both sub-polygons

and using the identity n1 + n2 − 2 = n, we get a diagonal count for P of

(n1 − 3) + (n2 − 3) + 1, where the +1 represents the diagonal d and n1 − 3

and n2 − 3 represent, respectively, the diagonals of P1 and P2. We thus have a

total of (n1 − 3) + (n2 − 3) + 1 = (n1 + n2)− 5 = n + 2 − 5 = n− 3 diagonals

in P and (n1 − 2) + (n2 − 2) = n + 2 − 4 = n − 2 triangles. This completes

the proof. �

A natural question that arises from Theorem 3.1 is how to identify the
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number of ways that an n-gon can be divided into n − 2 triangles if different

placements of the n − 3 diagonals are counted separately. This is Euler’s

famous polygon division problem. It is well-known in combinatorics that the

answer to this question is given by a sequence of natural numbers, denoted

by {Cn}, called the Catalan numbers, named after the Belgian mathematician

Eugène Charles Catalan.

Theorem 3.2 The answer to Euler’s polygon division problem is the

Catalan number Cn−2, where the nth term of the sequence {Cn} is given by

Cn =
1

n + 1

⎛
⎜⎝ 2n

n

⎞
⎟⎠ =

(2n)!

(n + 1)!n!
. (3.5)

Proof We do not prove this result, as it is beyond the scope of our

discussion, but we refer the reader to an elegant and succinct geometrical

proof by Lamé [25]. �

The first few Catalan numbers are

{Cn} = {1, 1, 2, 5, 14, 42, 132, ...} , (3.6)

for n = 0, 1, 2, 3, ....

The formula in Eq. 3.5 is derived according to [20] using the recurrence

relation

C0 = 1, Cn+1 =

n∑
i=0

CiCn−i , (3.7)
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for n ≥ 0, that is satisfied by the sequence {Cn}. Then, defining a

generating function of the form

c(x) =

∞∑
n=0

Cnxn , (3.8)

and using Eq. 3.7 we have c(x) = 1 + xc(x)2 and, hence, c(x) = 1−√
1−4x

2x
.

Expanding the square root term as a power series using the identity

√
1 + y = 1 − 2

∞∑
n=1

⎛
⎜⎝ 2n − 2

n − 1

⎞
⎟⎠ (

−1

4
)n yn

n
, (3.9)

and substituting the result for c(x) gives

c(x) =

∞∑
n=0

⎛
⎜⎝ 2n

n

⎞
⎟⎠ xn

n + 1
. (3.10)

Finally, equating coefficients yields Eq. 3.5.

From Eq. 3.7 we can immediately infer the number of distinct triangula-

tions for any polygon, including those that are graph isomorphic to connected

perimeters (the boundaries of interface surfaces in 3D cells).

We are now in a position to complete the proof of proposition 3.4. We

seek to define a topological invariant that distinguishes perimeters in the

duodecagonoid-I isomorphism class from elements in the duodecagonoid-II

isomorphism class. In Fig. 3.7 we have labeled edge crossings belonging to

a common face according to the orientation of that face in the three spacial
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Figure 3.7: Examples of perimeters in the duodecagonoid-I (left) and duodeca-
gonoid-II (right) isomorphism classes of connected perimeters of case 14, with
f = 6.
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directions (NS, EW, or UD). We see from the two duodecagons in Fig. 3.7 that

the relative location of the edges belonging to the three sets of opposite faces

in the cell (e.g., N-S) around the perimeter constitutes a topological invariant.

Furthermore, this invariant is distinct for the two perimeter classes. For ele-

ments in the duodecagonoid-I case, edges on opposite faces are also opposite

in the polygon. So for edge crossings on opposite faces, denoted by f1 and f2,

where f1 = U, E, N and f2 = D, W, S (according to which face they belong to

in the cell), the cyclic representation of their position around the duodecagon is

given by πI = (f1, f1, a, f1, f1, b, f2, f2, c, f2, f2, d), where a, b, c, d denote other

edge crossings. For elements in the duodecagonoid-II case, the correspond-

ing cyclic representation is given by πII = (f1, f1, a, f2, f2, b, f1, f1, c, f2, f2, d)

for one of the three sets of edges on opposite faces, and by πI for the other

two sets of edges on opposite faces. The invariant for the duodecagonoid-I

isomorphism class, which is distinguished by the cyclic representation πI , has

then four symmetries, while the invariant for the duodecagonoid-II isomor-

phism class, which is distinguished by the cyclic representation πI for one set

of edges on opposite faces and by the cyclic representation πII for the other

two sets of edges on opposite faces, then has 3×4 = 12 symmetries. Elements

in both isomorphic classes are shown in Fig. 3.4.

Validity

Many of the connected perimeters that we have constructed previously

cannot be realized as the boundary of a (valid) interface surface according to

our assumptions. The restriction from Definition 3.2, that no diagonal from

61



Figure 3.8: Examples of interface surfaces bounded by valid perimeters be-
longing to isomorphism classes of connected perimeters with T > 0. They are,
from left to right, starting at the top, the corner (case 1), the edge (case 2),
the hexagonoid (case 3), the glider (case 5), the twisteroid (case 6), the plane
(case 8), the twister-I (case 9), the twister-II (case 10), the hexagon (case 11),
and the octagonoid-I (case 12). Note that the perimeter class of case 12 has
two distinct elements. All triangulations are picked arbitrarily.
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a triangulation lie on the cell surface, is in fact a constraint for any case in

which at least one cell face has four edge crossings (i.e., f > 0). For all

cases with f = 0, a connected perimeter P with n edge crossings is, according

to Theorem 3.2, the boundary of Cn−2 distinct interface surfaces, each one

determined by a distinct triangulation of the n-gon. As f increases, the number

of prohibited diagonals increases, and in some cases no such triangulation is

possible. Consider, for example, the connected perimeter shown in case 13

of Fig. 3.4, with f = 2. The octagonoid surface bounded by this perimeter

cannot lie totally in the cell interior. This is an example of an invalid interface

surface, according to Definition 3.2. The connected perimeter P with n edge

crossings is called valid if there is at least one interface surface S having P as

its boundary. The definition will be satisfied if there is a triangulation of the

n-gon for which no diagonals lie on a face (such a triangulation is also called

valid). General (disconnected) perimeters are valid if each of their connected

components are valid.

Let T be the number of valid triangulations for the elements in a given

isomorphism class of connected perimeters. Fig. 3.8 shows examples of inter-

face surfaces bounded by valid connected perimeters belonging to perimeter

classes with T > 0.

Proposition 3.6 The values of T in Fig. 3.9 are correct.

Proof The proof of this proposition is exposed in Chap. 5. �
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Figure 3.9: Valid triangulations for elements in the isomorphism classes of
connected perimeters. In the table, we give for each class f , the number
of faces with four edge crossings on a common face; n, the number of edge
crossings on the perimeter; Cn−2, the Catalan number; and T , the number
of valid triangulations. Only triangulations for perimeter classes with f = 0
were used in our implementation. In these cases, the identity T = Cn−2 holds;
otherwise, T < Cn−2.
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3.4 Computational Procedure

Our computation of volumes and surface areas is based on the configu-

ration of all interface surfaces that may be realized inside the cell. Thus, for

connected perimeters classes with f > 0 we only consider valid triangulations.

A reconstructed interface is determined first by the interface perimeter P ,

and then by the interface surface S it bounds according to a given triangulation

of P = ∂S. For each non-isomorphic case, we wish to compute a volume

fraction and a surface area that takes into account all the valid triangulations

for all the perimeters that can be constructed in that case.

Our procedure is then an averaging over a set of geometrical possibilities.

For cases with a unique interface perimeter (with f = 0) this procedure only

involves an averaging over the distinct interface surfaces and volumes given

by the triangulations of the perimeter. For the remaining cases, an averaging

over distinct interface perimeters is also required.

The surfaces bounded by elements in the hexagonoid, twisteroid, octagonoid-

I, and duodecagonoid-I perimeter classes are not used in the construction of

the areas and volumes. Geometrical constructions (not shown here) seem to

show that the duodecagonoid surfaces are typically or always self-intersecting

inside the 3D cell, effectively violating Definition 3.2. For this reason, and

due to the complexity of these surfaces (which intuitively do not appear to be

physically realistic), such terms have been omitted from the formulas for areas

and volumes presented below. In the hexagonoid, twisteroid, and octagonoid-

I cases, constructions seem to show that the self-intersection of surfaces does

not occur. However, this topological property is not formally proved here. We
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also omit these terms due to their complexity.

If the computational grid spacings in the x, y and z directions are, re-

spectively, ∆x, ∆y, and ∆z, then we divide the fractional cell volume by the

unit cell volume V0 = ∆x∆y∆z to map V1, the volume of domain 1 inside

the grid cell, into a volume fraction β1 = V1

V0
, so that 0 ≤ β1 ≤ 1. We do not

normalize A, as there is no convenient method to do so.

3.4.1 Volume Fractions

For any of the fourteen non-isomorphic cases there is either a unique

interface perimeter or many distinct interface perimeters. Let P denote the

number of interface perimeters that can be formed for a given case and that

are implemented in FronTier (i.e., that exclude hexagonoid, twisteroid and

octagonoid-I components). Moreover, any given interface perimeter consists of

at most four connected components. Let S ∈ {1, 2, 3, 4} denote the number of

connected components of a given interface perimeter. As before, let T denote

the number of valid triangulations for a given connected perimeter. Then

T = Cnj−2 for all connected components considered in our computational

procedure. Finally, let βk
1,i,j, where i = 1, ..., Cnj−2, j = 1, ..., S, and k =

1, ..., P , denote the volume fraction of domain 1 given a fixed triangulation i

of a connected component j, with nj edge crossings, of an interface perimeter k.

We arbitrarily pick domain 1 to be the domain with black corner components.

For a fixed triangulation i of the connected perimeter component j be-

longing to the interface perimeter k, we must compute βk
1,i,j, the volume frac-

tion occupied by domain 1. To do so we recall two basic results from analytic
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geometry.

1. The volume of a parallelepiped spanned by the three vectors a = (a1, a2, a3),

b = (b1, b2, b3), and c = (c1, c2, c3) is given by:

V = |det (a,b, c)| =

∣∣∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎜⎜⎝

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
(3.11)

2. The volume of a tetrahedron (ı.e. a triangular pyramid) with vertices a,

b, c, and d is given by:

V =
1

6
|det (a− b,b− c, c− d)| (3.12)

For each valid triangulation of the interface perimeter there is a set of

tetrahedra that decompose the space occupied by domain 1 inside the cell.

Thus, given the set of crossings and the black corners in the corner 2-coloring,

we can compute βk
1,i,j using Eq. 3.12. For the hexagon case, we use Eq. 3.11

in addition to Eq. 3.12. To do so, the crossings and the corners are treated as

vectors in 3D Cartesian space.

Fig. 3.10 illustrates, for a given triangulation of the glider perimeter in

case 5, how the space occupied by domain 1 is defined by the interface surface

and can be decomposed into five tetrahedra. We arbitrarily pick this particular

triangulation to demonstrate our procedure.

To compute V1, the total volume of the space occupied by domain 1

in Fig. 3.10, we compute the sum of five tetrahedron volumes. These five
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Figure 3.10: Decomposition of the space occupied by domain 1 into five tetra-
hedra in one of five possible triangulations in the glider case (case 5). The
crossings are the vertices pi, where i = 1, .., 5. The black corners are labeled
A, B and C.
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tetrahedra have vertices selected from the five edge crossings on the interface

perimeter, labeled pi, where i = 1, .., 5, and the three black corners in the

corner 2-coloring of the cell labeled A, B and C. They all share the corner

vertex C.

The vertices of the five tetrahedra T5, i = 1, .., 5, are given below.

1. p1, p3, p4, and C for T1.

2. p1, p4, p5, and C for T2.

3. p1, p2, p5, and C for T3.

4. p2, A, B, and C for T4.

5. p2, p5, A, and C for T5.

We use Eq. 3.12 to calculate the five tetrahedron volumes V1,i, i = 1, .., 5,

so that V1 =
∑5

i=1 V1,i.

In the hexagon case, the space occupied by domain 1 in the cell is com-

posed of tetrahedra and half a parallelepiped. In this instance we also use

Eq. 3.11 to compute the volume of the half parallelepiped.

3.4.2 Surface Areas

As with the volume fraction β1, we now define the interface surface area

A using similar notation.

Let Ak
i,j, where again i = 1, ..., Cnj−2, j = 1, ..., S, and k = 1, ..., P , denote

the surface area of the interface surface bounded by a connected component j,
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with nj edge crossings, of an interface perimeter k, given a fixed triangulation i.

To compute Ak
i,j we use the 3D coordinates of the edge crossings in a Cartesian

space and apply the following result.

The area of a triangle with vertices a, b, and c embedded in 3D space is

given by:

A =
1

2
‖(b− a) × (c − a)‖ (3.13)

The glider interface surface consists of three triangular elements, as a

result of Theorem 3.1. In Fig. 3.10, we follow the triangulation that was

arbitrarily chosen (where vertex p1 has degree equal to four) and use the

coordinates of the pi crossings, i = 1, .., 5, to calculate the surface area Ak
i,j of

the interface surface. This is given as the sum of three triangular areas:

A =
1

2
‖(p2 − p1) × (p5 − p1)‖ +

1

2
‖(p5 − p1) × (p4 − p1)‖

+
1

2
‖(p4 − p1) × (p3 − p1)‖ (3.14)

3.4.3 Formulas

Given a corner 2-coloring and an interface perimeter, let n denote the to-

tal number of edge crossings. Then n =
∑S

j=1 nj . We use A[comp] to denote the

area Ak
i,j of the surface bounded by the given connected perimeter component

with fixed triangulation i (e.g., Aplane, Ahexagon). Similarly we use β[comp] to

denote the volume fraction of domain 1 βk
1,i,j for the given triangulation of the
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perimeter component. These quantities are computed using Eq. 3.12, Eq. 3.11

and Eq. 3.13. We assume that the volumes of domain 1 have been normalized.

From Figs. 3.4, 3.5, and 3.6 we arrive at Table 3.1, which gives the number

of triangulations (Ti, i = 1, .., S) for the connected perimeter components j,

where j = 1, ..., S, with ni, i = 1, .., S, edge crossings in all the valid interface

perimeters in 3D cells.

We use Table 3.1, to give formulas for the surface area A and volume

fraction β1 of domain 1 in each of the fourteen non-isomorphic cases. Note

that Table 3.1 lists all theoretically valid interface perimeters, and that in our

computational procedure we exclude all terms with hexagonoid, twisteroid,

octagonoid-I or duodecagonoid-I surfaces.

For the seven non-isomorphic cases 1, 2, 5, 8, 9, 10, and 11, where P =

S = 1, the formulas are simply given by:

A =
1

Cn[comp]−2

Cn[comp]−2∑
i=1

A[comp],i , (3.15)

and

β =
1

Cn[comp]−2

Cn[comp]−2∑
i=1

β[comp],i , (3.16)

where the connected perimeter component corresponds to either a corner, an

edge, a glider, a plane, a hexagon, a twister-I, or a twister-II, and Cn[comp]−2

is the number of triangulations of that connected component. Note that T =

Cn[comp]−2 in all these cases.
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Case n S n1 T1 n2 T2 n3 T3 n4 T4

Corner 3 1 3 1
Edge/Plane 4 1 4 2

Glider 5 1 5 5
Hexagon/Twister-I 6 1 6 14

Twister-II/
Hexagonoid 6 1 6 4
Twisteroid 7 1 7 22

Two Corners-I/Two Corners-II 6 2 3 1 3 1
Three Corners 9 3 3 1 3 1 3 1

Four Corners (i)-(ii) 12 4 3 1 3 1 3 1 3 1
Hexagon 9 2 6 14 3 1
+ Corner
Hexagon 12 3 6 14 3 1 3 1

+ Two Corners (i)-(iv)
Hexagonoid 9 2 6 4 3 1

+ Corner (i)-(iii)
Hexagonoid 12 3 6 4 3 1 3 1

+ Two Corners (i)-(xii)
Glider 8 2 5 5 3 1

+ Corner (i)-(ii)
Two Edges (i)-(ii) 8 2 4 2 4 2

Edge 7 2 4 2 3 1
+ Corner

Two Hexagonoids (i)-(vi) 12 2 6 4 6 4
Octagonoid-I (i)-(ii) 8 1 8 6

Table 3.1: Properties of all the valid interface perimeters in 3D cells. Lower
roman letters indicate the number of distinct interface perimeters with similar
connected components. Note that there are two distinct interface perimeters
with two corners, one corresponding to the non-isomorphic case 3, and the
other corresponding to the non-isomorphic case 4. Also note that all perime-
ters with hexagonoid, twisteroid and octagonoid-I components (in bold) were
excluded in our implementation.
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For the seven remaining cases 3, 4, 6, 7, 12, 13, and 14, the formulas are

presented below.

1. Case 4 Two Corners-I

A =
2∑

j=1

Acorner,j , (3.17)

β =
2∑

j=1

βcorner,j . (3.18)

2. Case 13 Two Edges (i)-(ii)

A =
1

2

2∑
k=1

2∑
j=1

(
1

2

2∑
i=1

Ak
edge,i,j

)
, (3.19)

β =
1

2

(
1 +

2∑
j=1

1

2

2∑
i=1

(
β1

edge,i,j − β2
edge,i,j

))
. (3.20)

3. Case 6 Edge and Corner

A =
1

2

2∑
i=1

Aedge,i + Acorner , (3.21)

β =
1

2

2∑
i=1

βedge,i + βcorner . (3.22)

4. Case 12 Glider and Corner (i)-(ii)
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A =
1

2

2∑
k=1

(
1

5

5∑
i=1

Ak
glider,i + Ak

corner

)
, (3.23)

β =
1

2

(
1 +

1

5

5∑
i=1

(
β1

glider,i − β2
glider,i

)
+ β1

corner − β2
corner

)
. (3.24)

5. Case 3 Two Corners-II

A =
2∑

j=1

Acorner,j , (3.25)

β =

2∑
j=1

βcorner,j . (3.26)

6. Case 7 Three Corners + Hexagon and Corner

A =
1

2

(
3∑

j=1

A1
corner,j +

1

14

14∑
i=1

A2
hexagon,i + A2

corner

)
(3.27)

β =
1

2

(
3∑

j=1

β1
corner,j +

1

14

14∑
i=1

β2
hexagon,i − β2

corner

)
(3.28)

7. Case 14 Four Corners (i)-(ii) + Hexagon and Two Corners (i)-(iv)

A =
1

6

(
2∑

k=1

4∑
j=1

Ak
corner,j +

6∑
k=3

(
1

14

14∑
i=1

Ak
hexagon,i +

2∑
j=1

Ak
corner,j

))
,

(3.29)
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β =
1

6

(
1 +

4∑
j=1

(
β1

corner,j − β2
corner,j

))

+
1

6

5∑
k=3

(
1 − 1

14

14∑
i=1

(
βk

hexagon,i + βk
corner,1 − βk

corner,2

))

+
1

6

(
1

14

14∑
i=1

β6
hexagon,i − β6

corner,1 + β6
corner,2

)
. (3.30)

Note that for those cases where we average over more than one interface

perimeter, our formulas are consistent with the domain components so that

no such case where a black domain component is added to a white domain

component can occur.

3.5 Implementation in FronTier

In grid-based front-tracking, the contact interface is reconstructed for

each cell cut by a fluid interface. In the front tracking package FronTier ,

there is a two-component block file that identifies from the components of

the cell corners (the corner 2-coloring) which of the fourteen non-isomorphic

cases occurs in each cell. This file can be found in the location: Fron-

Tier/src/intfc/iblkc2.c. For each case, there is a corresponding local void

function called blk case k comp2 bis(), where k = 1, .., 14, which computes the

surface area of the reconstructed interface and the volume fraction of domain

1, arbitrarily picked as the one with black corner components.

Inside each case we use volume and area functions designed to
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compute these quantities for each of the connected interface perimeters (e.g.,

area glider(), volume hexagon()). The arguments to these functions are the

interface crossings with the cell edges and the black corners in the corner 2-

coloring of the cell. Below we present the standard model used in writing these

functions and explain how to use them.

3.5.1 Standard Model

The standard model of Fig. 3.11 provides, for each non-isomorphic case,

a fixed and standard configuration of the interface with respect to both the

2-coloring of the cell corners and the ordering of the crossings relative to the

cell corners. This model, which is set up in the code FronTier by specific

rotation functions, eliminates ambiguities associated with looking at the same

case from different frames of reference (through rotations and distinct crossing

positions). We follow it consistently to design volume and area functions in

each case.

In order to fix the relative position of the crossings with respect to the

cell corners, we adopt the lexicographic corner ordering shown in Fig. 3.12.

At the start of each of the main functions blk case k comp2 bis(), where k =

1, .., 14, we define the cell corners according to this prescribed ordering. This

specification completes the reference frame needed to write the volume and

area functions. In effect, the three degrees of freedom provided by the 2-

coloring of cell corners, the orientation of the i, j, and k axes and the ordering

of the crossings relative to the black corners are now all fixed.
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Figure 3.11: Standard model for the fourteen cases implemented in FronTier :
1) Plane, 2) Edge, 3) Corner, 4) Glider, 5) Hexagon, 6) Two corners-I, 7)
Twister-I, 8) Edge and corner, 9) Two corners-II, 10) Twister-II, 11) Two
edges, 12) Three corners, 13) Glider and corner, 14) Four corners.
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Figure 3.12: Location of the cell corners used in the standard model.

78



3.5.2 Area and Volume Functions

The area and volume functions are all local float functions that return,

respectively, interface surface areas and light volume fractions for each case.

Seven sets of functions describe each of the connected perimeter components,

including the two topologically distinct twister perimeters. The labeling of

these functions is straightforward. For instance, area edge() is the area func-

tion that returns the interface surface area for an edge element and vol-

ume twister1() is the volume function that returns the volume fraction for

the twister-I element, as depicted in Fig. 3.11.

The arguments for the area functions are the crossings in the i, j, k

directions. Since a 3D cell has twelve edges, with three sets of four edges

parallel to each of the axes, we need to specify for each crossing the edge

on which it is found. To do so we associate a boolean ordered pair to each

crossing that conforms to the standard model and gives the location of the

edge with respect to the other two directions. Thus, the location of the i, j

and k crossings are provided by the ordered boolean pairs (ij, ik), (ji, jk) and

(ki, kj). Each element of the pair has a value of 0 or 1 which, in accordance to

the standard model, give the location of the edge with respect to the two other

directions. For instance, if (ij, ik) = (0, 1) is given as the pair associated with

an i crossing, then this crossing must occur on the upper front edge, where

j = 0 and k = 1. Similarly, if (ki, kj) = (0, 1) is a k crossing, then it must

occur on the left-back edge, where i = 0 and j = 1.

For cases with multiple crossings in the same direction, we add numbers

at the end of the pairs. In the edge case, for instance, we have two j crossings
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which are identified by the pairs (ji1, jk1) and (ji2, jk2).

Below we present the input arguments needed for each area function.

1. float area corner(BLK CRX*, ij, ik, ji, jk, ki, kj);

• boolean[2](ij, ik): crossing in the i direction.

• boolean[2](ji, jk): crossing in the j direction.

• boolean[2](ki, kj): crossing in the k direction.

2. float area edge(BLK CRX*, ij1, ik1, ij2, ik2, ji1, jk1, ji2, jk2);

• boolean[2](ij1, ik1): first crossing in the i direction.

• boolean[2](ij2, ik2): second crossing in the i direction.

• boolean[2](ji1, jk1): first crossing in the j direction.

• boolean[2](ji2, jk2): second crossing in the j direction.

3. float area plane(BLK CRX*, ij1, ik1, ij2, ik2, ij3, ik3, ij4, ik4);

• boolean[2](ij1, ik1): first crossing in the i direction.

• boolean[2](ij2, ik2): second crossing in the i direction.

• boolean[2](ij3, ik3): third crossing in the i direction.

• boolean[2](ij4, ik4): fourth crossing in the i direction.

4. float area glider(BLK CRX*, ij1, ik1, ij2, ik2, ij3, ik3, ji, jk, ki, kj);

• boolean[2](ij1, ik1): first crossing in the i direction.

• boolean[2](ij2, ik2): second crossing in the i direction.
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• boolean[2](ji3, jk3): third crossing in the i direction.

• boolean[2](ji, jk): crossing in the j direction.

• boolean[2](ki, kj): crossing in the k direction.

5. float area hexagon(BLK CRX*, ij1, ik1, ij2, ik2, ji1, jk1, ji2, jk2, ki1,

kj1, ki2, kj2);

• boolean[2](ij1, ik1): first crossing in the i direction.

• boolean[2](ij2, ik2): second crossing in the i direction.

• boolean[2](ji1, jk1): first crossing in the j direction.

• boolean[2](ji2, jk2): second crossing in the j direction.

• boolean[2](ki1, kj1): first crossing in the k direction.

• boolean[2](ki2, kj2): second crossing in the k direction.

6. float area twister1(BLK CRX*, ij1, ik1, ij2, ik2, ji1, jk1, ji2, jk2, ki1,

kj1, ki2, kj2);

• boolean[2](ij1, ik1): first crossing in the i direction.

• boolean[2](ij2, ik2): second crossing in the i direction.

• boolean[2](ji1, jk1): first crossing in the j direction.

• boolean[2](ji2, jk2): second crossing in the j direction.

• boolean[2](ki1, kj1): first crossing in the k direction.

• boolean[2](ki2, kj2): second crossing in the k direction.
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7. float area twister2(BLK CRX*, ij1, ik1, ij2, ik2, ji1, jk1, ji2, jk2, ki1,

kj1, ki2, kj2);

• boolean[2](ij1, ik1): first crossing in the i direction.

• boolean[2](ij2, ik2): second crossing in the i direction.

• boolean[2](ji1, jk1): first crossing in the j direction.

• boolean[2](ji2, jk2): second crossing in the j direction.

• boolean[2](ki1, kj1): first crossing in the k direction.

• boolean[2](ki2, kj2): second crossing in the k direction.

BLK CRX* is a structure that contains information about the crossings.

The arguments for the volume functions are the same as those of the

area functions (i.e., crossings in the i, j, k directions), with the addition of

the black corners in the corner 2-colorings. We specify below the black corner

input for these functions in accordance with Fig. 3.12.

1. float volume corner(BLK CRX*, ... , crn8);

2. float volume edge(BLK CRX*, ... , crn8, crn7);

3. float volume plane(BLK CRX*, ... , crn7, crn8, crn5, crn6);

4. float volume glider(BLK CRX*, ... , crn6, crn8, crn7);

5. float volume hexagon(BLK CRX*, ... , crn6, crn7, crn4, crn8);

6. float volume twister1(BLK CRX*, ... , crn5, crn6, crn8, crn4);

7. float volume twister2(BLK CRX*, ... , crn5, crn7, crn8, crn4);
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Chapter 4

Appendix I - Figures and Tables for Mixing

Zone Edge Errors

The following are figures and tables showing convergence orders and

statistics for the position errors of the mixing zone edges. These are anal-

ogous to Fig. 2.3 and Table 2.1 shown in Chap. 2. We consider 45o angular

windows at the north and south pole regions for the non-offset cases, and 40o

angular windows at the north pole, south pole and equator regions for the

offset cases. We average over an ensemble of N = 5 realizations.

Centerline Error Width Error
Grid ∆x Singly Doubly Singly Doubly

Shocked Shocked Shocked Shocked
M STD O M STD O M STD O M STD O

100 1/4 -0.01 0.05 – 0.04 0.26 – 0.22 0.42 – 1.85 0.77 –
200 1/8 -0.01 0.06 -0.1 -0.18 0.12 0.4 0.06 0.16 1.5 0.29 0.46 1.5
400 1/16 -0.01 0.02 1.1 -0.04 0.18 0.1 0.06 0.08 0.7 0.28 0.24 0.7

Table 4.1: Convergence statistics for the errors in the mixing zone edges,
averaged over time values and over an ensemble of size N = 5, in units of
cm. Edge position defined relative to the angular window θ ∈ [45o, 90o] at the
north pole. Non-offset case.
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Figure 4.1: Mesh convergence of the mixing zone edges position errors, in
units of length (cm). The mixing zone is defined relative to the 45o window
θ ∈ [45o, 90o] at the north pole, and averaged over an ensemble of N = 5
realizations. Non-offset case. Left: Mixing zone center line. Right: Mixing
zone width.
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Figure 4.2: Mesh convergence of the mixing zone edges position errors, in
units of length (cm). The mixing zone is defined relative to the 45o window
θ ∈ [−90o,−45o] at the south pole, and averaged over an ensemble of N = 5
realizations. Non-offset case. Left: Mixing zone center line. Right: Mixing
zone width.
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Centerline Error Width Error
Grid ∆x Singly Doubly Singly Doubly

Shocked Shocked Shocked Shocked
M STD O M STD O M STD O M STD O

100 1/4 -0.02 0.06 – 0.11 0.18 – 0.19 0.39 – 1.66 0.83 –
200 1/8 -0.01 0.06 0.2 -0.21 0.15 -0.2 0.06 0.15 1.4 0.39 0.55 1.2
400 1/16 -0.01 0.02 1.1 -0.06 0.18 0.3 0.06 0.08 0.6 0.39 0.37 0.4

Table 4.2: Convergence statistics for the errors in the mixing zone edges,
averaged over time values and over an ensemble of size N = 5, in units of cm.
Edge position defined relative to the angular window θ ∈ [−90o,−45o] at the
south pole. Non-offset case.
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Figure 4.3: Mesh convergence of the mixing zone edges position errors, in
units of length (cm). The mixing zone is defined relative to the 40o window
θ ∈ [50o, 90o] at the north pole, and averaged over an ensemble of N = 5
realizations. Offset case. Left: Mixing zone center line. Right: Mixing zone
width.
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Centerline Error Width Error
Grid ∆x Singly Doubly Singly Doubly

Shocked Shocked Shocked Shocked
M STD O M STD O M STD O M STD O

100 1/4 0.02 0.06 – 0.00 0.16 – 0.27 0.43 – 1.78 1.04 –
200 1/8 -0.04 0.07 -0.2 -0.14 0.18 -0.6 0.07 0.26 0.9 0.44 0.94 0.7
400 1/16 -0.03 0.04 0.6 -0.02 0.09 1.2 0.09 0.10 1.1 0.37 0.24 1.5

Table 4.3: Convergence statistics for the errors in the mixing zone edges,
averaged over time values and over an ensemble of size N = 5, in units of
cm. Edge position defined relative to the angular window θ ∈ [50o, 90o] at the
north pole. Offset case.
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Figure 4.4: Mesh convergence of the mixing zone edges position errors, in
units of length (cm). The mixing zone is defined relative to the 40o window
θ ∈ [−20o, 20o] at the equator, and averaged over an ensemble of N = 5
realizations. Offset case. Left: Mixing zone center line. Right: Mixing zone
width.

86



Centerline Error Width Error
Grid ∆x Singly Doubly Singly Doubly

Shocked Shocked Shocked Shocked
M STD O M STD O M STD O M STD O

100 1/4 -0.02 0.06 – 0.17 0.22 – 0.06 0.22 – 1.01 0.36 –
200 1/8 0.02 0.06 0.0 -0.16 0.34 -0.4 -0.01 0.13 0.9 0.12 0.49 0.7
400 1/16 -0.01 0.02 2.0 -0.11 0.19 0.8 0.02 0.05 1.2 0.30 0.35 0.1

Table 4.4: Convergence statistics for the errors in the mixing zone edges,
averaged over time values and over an ensemble of size N = 5, in units of cm.
Edge position defined relative to the angular window θ ∈ [−20o, 20o] at the
equator. Offset case.

time

m
z

ce
nt

er
po

si
tio

n
er

ro
r

0 20 40 60 80
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

100 vs. 200
200 vs. 400
400 vs. 800

time

m
z

w
id

th
er

ro
r

0 20 40 60 80
-0.5

0

0.5

1

1.5

2

100 vs. 200
200 vs. 400
400 vs. 800

Figure 4.5: Mesh convergence of the mixing zone edges position errors, in
units of length (cm). The mixing zone is defined relative to the 40o window
θ ∈ [−90o,−50o] at the south pole, and averaged over an ensemble of N = 5
realizations. Offset case. Left: Mixing zone center line. Right: Mixing zone
width.
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Centerline Error Width Error
Grid ∆x Singly Doubly Singly Doubly

Shocked Shocked Shocked Shocked
M STD O M STD O M STD O M STD O

100 1/4 0.00 0.03 – 0.05 0.10 – -0.03 0.14 – 1.19 0.44 –
200 1/8 0.01 0.02 0.1 -0.32 0.17 -1.4 -0.06 0.14 -0.1 0.23 0.29 1.3
400 1/16 0.00 0.01 1.1 -0.16 0.20 0.2 0.01 0.06 1.4 0.42 0.32 -0.4

Table 4.5: Convergence statistics for the errors in the mixing zone edges,
averaged over time values and over an ensemble of size N = 5, in units of cm.
Edge position defined relative to the angular window θ ∈ [−90o,−50o] at the
south pole. Offset case.
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Chapter 5

Appendix II - Proof of Proposition 3.6

Here we prove Proposition 3.6 of Chap. 3, which states that the values of T

in Fig. 3.9 are correct. We do so by deriving the number of valid triangulations

for all isomorphism classes of connected interface perimeters.

The unique elements in the seven classes with f = 0 only admit valid

triangulations since they are distinguished by isomorphism classes of corner

2-colorings that have no faces with four edge crossings. As a result, the el-

ements in these classes can never fail to satisfy the validity condition and,

from Theorem 3.2, must satisfy the identity T = Cn−2. For perimeter classes

with f > 0, we proceed by proving some important results (Propositions 5.1

through 5.7) about the valid triangulations of polygons that are isomorphic

to elements in each connected perimeter class. From these propositions we

infer the values of T in each class (Corollaries 5.1 through 5.7). In the course

of these derivations, we give intermediary results in the form of Lemmas 5.1

through 5.5.

When f > 0 there is a constraint on each face with four edge crossings
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Figure 5.1: Examples of valid triangulations for elements in the hexagonoid
(left), twisteroid (middle) and octagonoid-I (right) isomorphism classes of con-
nected perimeters (cases 3, 6, and 12). For the left and middle figures, f = 1,
and for the right figure, f = 2. Edge crossings belonging to a common face
are labeled according to the orientation of that face, namely U, D, E, W, N,
and S. Validity is then guaranteed if no edges on a common face are linked
by diagonals. This is the case in all three figures: in the left, there are no SS
diagonals; in the middle, there are no EE diagonals; in the right, there are
neither WW nor SS diagonals.
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Figure 5.2: Illustration of Lemma 5.1. P is a polygon with the property that
two of its adjacent edges give the sequence of vertices (X, Y, X).

that restricts the number of valid triangulations. For these cases, we neces-

sarily have the inequality T < Cn−2. Turning to the perimeter classes in cases

3, 6 and 12, with f = 1, 2, we first observe from Fig. 5.1 that at least one

hexagonoid (left), twisteroid (middle), and octagonoid-I (right) triangulation

is valid (i.e., it does not include a diagonal linking edges on a common face)

and, hence, that T > 0. The valid triangulations in Fig. 5.1 are picked arbi-

trarily. We label the edge crossings belonging to a common face according to

the orientation of that face, namely U, D, E, W, N, and S (Up-Down, East-

West, and North-South). In Corollaries 5.1, 5.2, and 5.3, we determine the

value of T in these three cases, which obey the strict inequality 0 < T < Cn−2.

From Definition 3.2, we allow no diagonal from a triangulation to lie on

the cell surface (such a diagonal, which connects vertices on a common face of

the cell, is called invalid). Moreover, this restriction also gives the following

fundamental result.
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Lemma 5.1 Consider a polygon P , such as the one shown in Fig. 5.2,

which has two adjacent edges XY sharing the vertex Y , where

X, Y ∈ {N, S, E, W, U, D}. Then a valid triangulation of P must include a

diagonal starting at the vertex Y .

Proof Consider a triangulation of P that does not include a diagonal

starting at the vertex Y (i.e., with Y as an endpoint). Then, this triangulation

must include the diagonal XX connecting the two X vertices adjacent to Y ,

or fail to be complete. Since this diagonal is invalid, we conclude that a valid

triangulation of P must include a diagonal starting at the vertex Y . �

Our approach in constructing a valid triangulation for a given n-gon P is

incremental: at each stage of the construction we insert a new diagonal. From

Theorem 3.1, we then have that such a construction consists of n − 3 distinct

stages. Our initial strategy is to identify any two adjacent edges of P which

give a sequence of vertices (X, Y, X), where X, Y ∈ {N, S, E, W, U, D}, and

apply Lemma 5.1 to force the choice of the first diagonal (assuming there is

at least one such sequence). In general, we look at all the valid choices for the

first diagonal starting at the vertex Y . For each choice, we then move to the

insertion of diagonal 2. Once again, we identify another arbitrary sequence of

vertices (X, Y, X), if any, where X, Y ∈ {N, S, E, W, U, D}, in the (n− 1)-gon

resulting from the insertion of diagonal 1, and look at all possible valid choices

for diagonal 2. To complete the valid triangulation of P , we proceed in this

manner with the remaining diagonals. If no sequence of vertices (X, Y, X) is

found at some stage in the construction, we resort to a broader strategy and
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partition all possible choices of valid diagonals into isomorphism classes, where

the isomorphism invariant is given by the cyclic ordering of vertices around

the polygon that results from the diagonal insertion. This invariant does not

differentiate between the two possible directions of the cycle (clockwise or

counter-clockwise) and allows the inversion of vertices so that, for instance,

the pentagons XY XY Y and XXY XY are identical invariants. To identify

these isomorphism classes of diagonals, we inspect all possible choices of valid

diagonals through a systematic procedure, which involves placing diagonals

linking vertices separated by one vertex, then placing diagonals linking vertices

separated by two vertices, and so on until all choices of valid diagonals are

exhausted. Note that, in some cases, there is a symmetry axis in the polygon

that reduces the number of valid choices.

Proposition 5.1 A valid triangulation of the hexagon Y XXZXX, where

X, Y, Z ∈ {N, S, E, W, U, D}, must include the diagonal Y Z.

Proof In Fig. 5.3 we show that no valid triangulation of the hexagon

Y XXZXX, where X, Y, Z ∈ {N, S, E, W, U, D}, which excludes the diagonal

Y Z, can be constructed, as this is equivalent to proving the proposition. We

arbitrarily start the triangulation at vertex Y , which is adjacent to two X

vertices, and proceed by adding only valid diagonals. Then, according to

Lemma 5.1, we can force the first diagonal to start at vertex Y . We see that

there are two isomorphic choices for the first diagonal, namely any of the two

possible diagonals XY shown on the left of Fig. 5.3. These two diagonals

follow the symmetry about the axis passing through Y and Z. We pick one
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Figure 5.3: Illustration of Proposition 5.1 showing that no valid triangulation
of the hexagon Y XXZXX, which excludes the diagonal Y Z, can be con-
structed. We show the two valid isomorphic choices for the first diagonal (left)
and the only valid choice for diagonal 2 (right) resulting from applying Lemma
5.1 at vertex Y . The solid line on the left is our arbitrary choice for diagonal
1, and the dotted line is the other isomorphic choice. These two diagonals
follow the symmetry about the axis passing through Y and Z.

of these diagonals (the solid line) and move to the insertion of diagonal 2.

Once again, we apply Lemma 5.1 at the vertex Y , since it is still adjacent

to two X vertices. Then, the only choice for diagonal 2 is the other diagonal

XY . At this stage, only one diagonal needs to be inserted to complete the

triangulation of the hexagon Y XXZXX. Since the diagonal Y Z is excluded

by hypothesis, we are left with only one choice for diagonal 3, namely the

invalid diagonal XX joining the two X vertices adjacent to Z. Therefore, we

conclude that no valid triangulation of Y XXZXX can be constructed if we

exclude the diagonal Y Z. �

Corollary 5.1 T = 4 in the hexagonoid isomorphism class of connected

perimeters.
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Proof Perimeters in the hexagonoid class are hexagons since they have

n = 6 edge crossings. Looking at the left hexagon in Fig. 5.1, we see that it is

in the form Y XXZXX of the hexagon in Proposition 5.1, with X = S. This

implies that a valid triangulation for a perimeter in the hexagonoid class (case

3 with f = 1), such as the one depicted on the left of Fig. 5.1, includes the

diagonal joining the two vertices that do not belong to a common cell face (the

heavy line in the left hexagon of Fig. 5.1). There are exactly 22 = 4 distinct

triangulations resulting from the inclusion of diagonal Y Z as a first diagonal,

namely the two possible ones for each of the two quadrilaterals on either side

of Y Z. As a result, the number of valid triangulations in the hexagonoid

perimeter class is T = 4. �

We follow a similar argument to derive the value of T in the twisteroid

case.

Proposition 5.2 A valid triangulation of the heptagon V XXY ZXX,

where X, Y, Z, V ∈ {N, S, E, W, U, D}, must include either the diagonal V Y

or the diagonal V Z.

Proof In Fig. 5.4, we show that no valid triangulation of the heptagon

V XXY ZXX, where X, Y, Z ∈ {N, S, E, W, U, D}, which excludes the two

diagonals V Y and V Z, can be constructed, as this is equivalent to proving

the proposition. We arbitrarily start the triangulation at vertex V , which is

adjacent to two X vertices, and proceed by adding only valid diagonals. Then,

according to Lemma 5.1, we can force the first diagonal to start at vertex V .

We see that there are two isomorphic choices for the first diagonal, namely

95



Figure 5.4: Illustration of Proposition 5.2 showing that no valid triangulation
of the heptagon V XXY ZXX, which excludes the two diagonals V Y and V Z,
can be constructed. We show the two valid isomorphic choices for the first
diagonal (left) and the only valid choice for diagonal 2 (right) resulting from
applying Lemma 5.1 at vertex V . The solid line on the left is our arbitrary
choice for diagonal 1, and the dotted line is the other isomorphic choice. These
two diagonals follow the symmetry about the line passing through V and the
mid-point of edge EZ.
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any of the two possible diagonals V X shown on the left of Fig. 5.4. These two

diagonals follow the symmetry about the axis passing through V and the mid-

point of edge EZ, which separates two identical triplets of vertices (A, X, X),

where A ∈ {Y, Z}, according to the vertex inversion Y ↔ Z. We pick one

of these diagonals (the solid line) and move to the insertion of diagonal 2.

Once again, we apply Lemma 5.1 at vertex V , since it is still adjacent to

two X vertices. Then, the only choice for diagonal 2 is the other diagonal

V X. At this stage, two more diagonals need to be inserted to complete the

triangulation of the heptagon V XXY ZXX. Since the two diagonals V Y and

V Z are excluded by hypothesis, we are left with only one choice for diagonal

3, namely the invalid diagonal XX joining the two X vertices adjacent to

the Y and Z vertices. Therefore, we conclude that no valid triangulation of

V XXY ZXX can be constructed if we exclude the two diagonals V Y and V Z.

�

Corollary 5.2 T = 16 in the twisteroid isomorphism class of connected

perimeters.

Proof Perimeters in the twisteroid class are heptagons since they have

n = 7 edge crossings. Looking at the middle heptagon in Fig. 5.1, we see that

it is in the form V XXY ZXX of the heptagon in Proposition 5.2, with X = E.

This implies that a valid triangulation for a perimeter in the twisteroid class

(case 6 with f = 1), such as the one depicted in the middle of Fig. 5.1, includes

one of the two diagonals joining non-adjacent vertices that do not belong to

a common cell face (e.g., the heavy line in the middle heptagon of Fig. 5.1).

97



There are exactly 16 (not counting repetitions) distinct triangulations resulting

from the inclusion of either V Y or V Z as a first diagonal. In effect, for each

diagonal there are 10 possible triangulations, namely those resulting from the

two possibilities for the quadrilateral on one side of the diagonal and the five

possibilities for the pentagon on the other side of the diagonal. Since there

are two diagonals, the total number of triangulations is then 20. However,

discarding repetitions reduces the number of distinct possibilities to 16. As a

result, the number of valid triangulations in the twisteroid perimeter class is

T = 16. �

Proposition 5.3 A valid triangulation of the octagon XXZY Y X(XY )Y ,

where X, Y, Z ∈ {N, S, E, W, U, D}, must include the two diagonals ZY and

ZX, whose endpoints X and Y are adjacent to the vertex (XY ).

Proof In Fig. 5.5 we construct valid triangulations of the octagon

XXZY Y X(XY )Y , where X, Y, Z ∈ {N, S, E, W, U, D}, and show that any of

these must include the two diagonals ZY and ZX, whose endpoints X and Y

are adjacent to the vertex (XY ). We proceed by inserting only valid diagonals

at each stage in the construction. At all stages in the construction, we discard

trivial cases which already include both of these diagonals. We arbitrarily start

the triangulation at the vertex X (the top vertex in Fig. 5.5), which is adja-

cent to two Y vertices. Then, according to Lemma 5.1, we can force the first

diagonal to start at this vertex X. We see that there are three non-isomorphic

choices for the first diagonal, all shown as cases a, b, and c in Fig. 5.5. In case

c, the insertion of the diagonal XZ leads to the hexagon XXY XXZ on the
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Figure 5.5: Illustration of Proposition 5.3 showing that any valid triangulation
of the octagon XXZY Y X(XY )Y must include the two diagonals ZY and
ZX, whose endpoints X and Y are adjacent to the vertex (XY ). Cases a, b,
and c depict the three valid non-isomorphic choices for the first diagonal.
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left, so that, according to Proposition 5.1, the only choice for diagonal 2 (i.e.,

the first diagonal in the triangulation of the hexagon) is the diagonal Y Z.

Thus, the two diagonals in the Proposition must be included. For cases b and

c, the choices for the remaining diagonals 2, 3, 4, and 5 are shown in Fig. 5.5.

These result from applying Lemma 5.1 at either the top vertex X again, or at

the vertex Y adjacent to vertex (XY ). Note that in one of the two subcases

of b, our choices for diagonal 3 results from the two possible triangulations

of the quadrilateral XY Y Z on the right. In all of these cases, we eventually

arrive at a valid triangulation that includes the two diagonals ZY and ZX,

whose endpoints X and Y are adjacent to the vertex (XY ). This proves the

proposition. �

Corollary 5.3 T = 8 in the octagonoid-I isomorphism class of connected

perimeters.

Proof Perimeters in the octagonoid-I perimeter class are hexagons since

they have n = 8 edge crossings. By inspection, we see that the hexagon on

the right of Fig. 5.1 is in the form of the hexagon in Proposition 5.3, with

X = S and Y = W . Let f1 and f2 denote the two faces of the cell that have 4

edge crossings. This implies that a valid triangulation for a perimeter in the

hexagonoid-I class (case 12 with f = 2), such as the one depicted in the right

of Fig. 5.1, includes the two diagonals joining the unique vertex that does not

belong to f1 or f2 with the two vertices adjacent to the unique vertex that

belongs to both f1 and f2 (the two heavy lines in the right octagon of Fig. 5.1).

There are exactly 23 = 8 distinct triangulations resulting from the inclusion of
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Figure 5.6: Illustration of Lemmas 5.2 (left) and 5.3 (right). For the hexagon
of Lemma 5.3 (right), we show the only valid choice for the first diagonal,
which results from applying Lemma 5.1 at the Y vertex adjacent to the two
X vertices. This leads to the pentagon of Lemma 5.2 (left).

both ZY and ZX (where X and Y are adjacent to (XY )) as first and second

diagonals, namely those resulting from the two possible triangulations in each

of the three distinct quadrilaterals on either side of the diagonals. As a result,

the number of valid triangulations in the octagonoid-I perimeter class is T = 8.

�

We now show some intermediary results (Lemmas 5.2 through 5.5) which

are used in the subsequent derivations of T values. For three of the next four

perimeter classes in cases 13, 7, and 14, with f = 2, 3, 6, we find that T = 0.

Any triangulation for these cases necessarily violates the validity condition of

Definition 3.2 due to the high number of constraints.

Lemma 5.2 The pentagon XY Y XY , where X, Y ∈ {N, S, E, W, U, D},
has no valid triangulations.
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Proof The pentagon XY Y XY is depicted on the left of Fig. 5.6. From

Lemma 5.1, we have that a valid triangulation of XY Y XY must include a

diagonal starting at the Y vertex adjacent to both X vertices. Since there are

no such diagonals which are valid (both possible choices are the two diagonals

Y Y ), we conclude that the pentagon XY Y XY has no valid triangulations. �

Lemma 5.3 The hexagon XXY Y XY , where X, Y ∈ {N, S, E, W, U, D},
has no valid triangulations.

Proof The hexagon XXY Y XY is depicted on the right of Fig. 5.6.

Starting at the Y vertex adjacent to the two X vertices (the left vertex Y in

Fig. 5.6), we are forced, as a result of lemma 5.1, to insert the diagonal XY

shown in Fig. 5.6 as the first valid diagonal. At this stage we are left with

the pentagon XY XY Y . From Lemma 5.2, we conclude that the hexagon

XXY Y XY has no valid triangulations. �

Lemma 5.4 The heptagon XXY Y Z(XY )Z, where

X, Y, Z ∈ {N, S, E, W, U, D}, has no valid triangulations.

Proof The heptagon XXY Y Z(XY )Z is depicted on the left of Fig. 5.7.

From Lemma 5.1, we have that a valid triangulation of XXY Y Z(XY ) must

include a diagonal starting at the (XY ) vertex, which is adjacent to two Z

vertices. Since there are no such diagonals which are valid (the four possible

choices are diagonals AA, where A ∈ {X, Y }), we conclude that the heptagon

XXY Y Z(XY )Z has no valid triangulations. �

Lemma 5.5 The octagon XXY Y ZZ(XY )Z, where
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Figure 5.7: Illustration of Lemmas 5.4 (left) and 5.5 (right). For the octagon
of Lemma 5.5 (right), we show the only valid choice for the first diagonal,
which results from applying Lemma 5.1 at the (XY ) vertex. This leads to the
heptagon of Lemma 5.4 (left).

X, Y, Z ∈ {N, S, E, W, U, D}, has no valid triangulations.

Proof The octagon XXY Y ZZ(XY )Z is depicted on the right of Fig. 5.7.

From Lemma 5.1, we have that a valid triangulation of XXY Y ZZ(XY )Z

must include a diagonal starting at the (XY ) vertex, which is adjacent to

two Z vertices. There is only one valid choice for this diagonal, namely the

diagonal (XY )Z depicted in Fig. 5.7. The insertion of this diagonal results in

the heptagon XXY Y Z(XY )Z and so, according to Lemma 5.4, we conclude

that the octagon XXY Y ZZ(XY )Z has no valid triangulations. �

Proposition 5.4 The octagon XXY Y XXY Y , where

X, Y ∈ {N, S, E, W, U, D}, has no valid triangulations.

Proof In Fig. 5.8 we show that no valid triangulation of the octagon

XXY Y XXY Y can be constructed. We depict all the possible valid choices
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Figure 5.8: Illustration of Proposition 5.4 showing that no valid triangulation
of the octagon XXY Y XXY Y can be constructed. We show all the possible
valid choices for the first diagonal, which are partitioned into two diagonal
classes (a, b). Dotted lines show isomorphic choices of diagonals. Note from
the many isomorphic choices of diagonals, in both classes, the high number of
symmetry axes in this case.

for the first diagonal, which belong to one of two isomorphism classes of di-

agonals. Any pick from the eight isomorphic choices of diagonals in the first

diagonal class (case a in Fig. 5.8) leads to the heptagon AABBAAB, where

A, B ∈ {X, Y }. From Proposition 5.2, we conclude that the only choice for the

second diagonal is an invalid one (either XX or Y Y ) so that no valid triangu-

lation can be constructed from this class. Any pick from the four isomorphic

choices in the second diagonal class (case b in Fig. 5.8) leads to the hexagon

XXY Y XY . From Lemma 5.3, we conclude that no valid triangulation can

be constructed from this class. Therefore, the octagon XXY Y XXY Y has no

valid triangulations. �

Corollary 5.4 T = 0 in the octagonoid-II isomorphism class of connected

perimeters.
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Figure 5.9: Examples of perimeters in the octagonoid-II (left) and enneagonoid
(right) isomorphism classes of connected perimeters of cases 13 (f = 2) and 7
(f = 3). All elements in these two perimeter classes are invalid.
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Figure 5.10: Illustration of Proposition 5.5 showing that the enneagon XXYY-
ZZ(XY)ZZ has no valid triangulations. We depict the two valid isomorphic
choices for the first diagonal resulting from applying Lemma 5.1 at the (XY )
vertex.

Proof Perimeters in the octagonoid-II perimeter class are octagons since

they have n = 8 edge crossings. By inspection, we see that the octagon on the

left of Fig. 5.9 is in the form XXY Y XXY Y of the octagon in Proposition 5.4,

with X = D and Y = U . This implies that a perimeter in the octagonoid-II

class (case 13 with f = 2), such as the one depicted on the left of Fig. 5.9, has

no valid triangulations and is necessarily invalid. As a result, T = 0 in the

octagonoid-II perimeter class. �

Proposition 5.5 The enneagon XXY Y ZZ(XY )ZZ, where

X, Y, Z ∈ {N, S, E, W, U, D}, has no valid triangulations.

Proof The enneagon XXY Y ZZ(XY )ZZ is depicted in Fig. 5.10. We

can apply Lemma 5.1 at the (XY ) vertex since it is adjacent to two Z vertices.

We then have two isomorphic valid choices for the first diagonal, namely any

of the two possible (XY )Z diagonals shown in Fig. 5.10. Any of these choices
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leads to the octagon (Y Y XXZZ(XY )Z). From Lemma 5.5, we conclude that

the enneagon XXY Y ZZ(XY )ZZ has no valid triangulations. �

Corollary 5.5 T = 0 in the enneagonoid isomorphism class of connected

perimeters.

Proof Perimeters in the enneagonoid perimeter class are enneagons since

they have n = 9 edge crossings. By inspection, we see that the enneagon

on the right of Fig. 5.9 is in the form XXY Y ZZ(XY )ZZ of the enneagon

in Proposition 5.5, with X = S, Y = E, and Z = U . This implies that

a perimeter in the enneagonoid class (case 7 with f = 3), such as the one

depicted on the right of Fig. 5.9, has no valid triangulations and is necessarily

invalid. As a result, T = 0 in the enneagonoid perimeter class. �

Proposition 5.6 The duodecagon (XP)PY(YP)(PR)(YR)(YQ)(QR)(XR)-

(XQ)QX, where X, Y, P, Q, R ∈ {N, S, E, W, U, D}, has no valid triangula-

tions.

Proof The duodecagon (XP)PY(YP)(PR)(YR)(YQ)(QR)(XR)(XQ)QX

is depicted in Fig. 5.11. We apply Lemma 5.1 to vertex (YQ), since it is ad-

jacent to two R vertices, and follow the symmetry about the axis passing

through vertices (Y Q) and (XP ), which separates quintuplets of vertices ac-

cording to the vertex inversions X ↔ P and Q ↔ Y . This reduces the number

of valid non-isomorphic choices for the first diagonal to 3 (cases a, b, and c

in Fig. 5.11). Case a has two isomorphic diagonals. We arbitrarily pick the

diagonal (Y Q)P , which leads to the hexagon Y Y PPY P on the right. From

Lemma 5.3, we conclude that no triangulation from this class can be valid.

107



Figure 5.11: Illustration of Proposition 5.6 showing that the duodecagon (XP)-
PY(YP)(PR)(YR)(YQ)(QR)(XR)(XQ)QX has no valid triangulations. Cases
a, b, and c depict the three non-isomorphic valid choices for the first diagonal.
We also show the only valid possibility for diagonal 2 in case b. Solid lines
depict the arbitrary choices of diagonals, while dotted lines depict other iso-
morphic choices. Note that isomorphic diagonals follow the symmetry about
the axis passing through vertices (Y Q) and (XP ), which separates quintuplets
of vertices according to the vertex inversions X ↔ P and Q ↔ Y .
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The only valid choice in case c leads to the heptagon Y Y PPY PP on the

right. From Proposition 5.2, we infer that the next choice of diagonal must

be an invalid one, namely a diagonal (Y Y . We therefore conclude that any

triangulation from this class is invalid. Case b has two isomorphic diago-

nals. We arbitrarily pick the diagonal (Y Q)(PR), which forces the choice of

diagonal 2 ((Y Q)(XR) in Fig. 5.11). At this stage we see that any choice

for diagonal 3 is an invalid one. We therefore conclude that any triangula-

tion from this class is necessarily invalid. As a result, we conclude that the

duodecagon (XP )PY (Y P )(PR)(Y R)(Y Q)(QR)(XR)(XQ)QX has no valid

triangulations. �

Corollary 5.6 T = 0 in the duodecagonoid-I isomorphism class of con-

nected perimeters.

Proof Perimeters in the duodecagonoid-I perimeter class are duodecagons

since they have n = 12 edge crossings. By inspection, we see that the

duodecagon (SD)SU(SU)(SE)(UE)(UN)(NE)(DE)(DN)ND on the left of

Fig. 3.7 is in the form (XP )PY (Y P )(PR)(Y R)(Y Q)(QR)(XR)(XQ)QX of

the duodecagon in Proposition 5.6, with X = D, Y = U , P = S, Q = N , and

R = E. This implies that a perimeter in the duodecagonoid-I class (case 14

with f = 6), such as the one depicted on the left of Fig. 3.7, has no valid trian-

gulations and is necessarily invalid. As a result, T = 0 in the duodecagonoid-I

perimeter class. �

Proposition 5.7 A valid triangulation of the duodecagon

(XP )(XR)(QR)(Y Q)(Y Z)(ZQ)(XQ)(XZ)(ZP )(Y P )(Y R)(PR), where
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Figure 5.12: Illustration of Proposition 5.7 showing that no valid triangu-
lation of the duodecagon (XP)(XR)(QR)(YQ)(YZ)(ZQ)(XQ)(XZ)(ZP)(YP)-
(YR)(PR) can be constructed if the diagonal (PR)(ZQ), the triangle (YR)-
(XP)(ZQ), and the triangle (YZ)(XQ)(PR) are all excluded. The four vertices
in boxes have adjacent vertices on a common cell face. We show the five valid
isomorphism classes (cases a through e) for the first diagonal, and the valid iso-
morphism classes for the second diagonal, all resulting from applying Lemma
5.1 at boxed vertices. Dotted lines depict isomorphic choices of diagonals with
respect to the two symmetries about the axis passing through vertices (ZQ)
and (PR) separating two quintuplets of vertices according to the vertex in-
versions X ↔ Y , P ↔ R, and Z ↔ Q, and about the axis passing through
vertices (ZP ) and (QR) separating quintuplets of vertices according to the
vertex inversions X ↔ Y , Z ↔ P , and Q ↔ R.
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X, Y, Z, P, Q, R ∈ {N, S, E, W, U, D}, must include either the diagonal

(PR)(ZQ), the triangle (YR)(XP)(ZQ), or the triangle (YZ)(XQ)(PR).

Proof In Fig. 5.12 we show that no valid triangulation of the duodecagon

(XP )(XR)(QR)(Y Q)(Y Z)(ZQ)(XQ)(XZ)(ZP )(Y P )(Y R)(PR), where

X, Y, Z, P, Q, R ∈ {N, S, E, W, U, D}, can be constructed if the diagonal

(PR)(ZQ), the triangle (YR)(XP)(ZQ), and the triangle (YZ)(XQ)(PR) are

all excluded, as this is equivalent to proving the proposition. As usual, we

proceed by inserting only valid diagonals. First, note that there are two sym-

metries for the duodecagon (before the insertion of diagonal 1) given by, first,

the axis passing through the vertices (ZQ) and (PR) separating two quin-

tuplets of vertices according to the vertex inversions X ↔ Y , P ↔ R, and

Z ↔ Q, and, second, the axis passing through the vertices (ZP ) and (QR)

separating quintuplets of vertices according to the vertex inversions X ↔ Y ,

Z ↔ P , and Q ↔ R. We use these two symmetries to discard isomorphic

cases and to show in Fig. 5.12 isomorphic choices of diagonals (dotted lines).

Only cases c and d preserve one of the two symmetries after the insertion of

diagonal 1. We depict in boxes the four vertices which have adjacent vertices

on a common cell face. From Lemma 5.1, we can then force the first diagonal

to start at any of these vertices. We arbitrarily pick the vertex (XQ) for diag-

onal 1. The resulting valid choices are shown in cases a through e in Fig. 5.12.

We also show the isomorphism classes for diagonal 2 only if they are distinct

and non-isomorphic to previous cases. Again, we apply Lemma 5.1. at either

one of the four boxed vertices to obtain these diagonal classes. We see that in

case a, there is only one choice for diagonal 2, while for cases b and d there
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are two choices for diagonal 2. Cases c and e have, respectively, five and four

choices for diagonal 2. these are all depicted in Fig. 5.12. At this stage in the

construction, it is not difficult to see after careful study in each case that no

triangulation can be constructed if we exclude either the diagonal (PR)(ZQ),

the triangle (Y R)(XP )(ZQ), or the triangle (Y Z)(XQ)(PR). �

Corollary 5.7 T = 294 in the duodecagonoid-II isomorphism class of

connected perimeters.

Proof Perimeters in the duodecagonoid-II perimeter class are duodeca-

gons since they have n = 12 edge crossings. By inspection, we see that the

duodecagon (SD)(ED)(NE)(NU)(WU)(WN)(DN)(DW)(SW)(SU)(UE)(SE)

on the right of Fig. 3.7 is in the form (XP)(XR)(QR)(YQ)(YZ)(ZQ)(XQ)-

(XZ)(ZP)(YP)(YR)(PR) of the duodecagon in Proposition 5.7, with X = D,

Y = U , Z = W , P = S, Q = N , and R = E. This implies that a valid tri-

angulation for a perimeter in the duodecagonoid-II class (case 14 with f = 6)

follows Proposition 5.7. In Fig. 5.13 we illustrate the three cases resulting

from the inclusion of either (PR)(ZQ) as the first diagonal (a), or triangles

(Y R)(XP )(ZQ) (b) and (Y Z)(XQ)(PR) (c) as the first three diagonals. In

all three cases, we force the first diagonal to start at the vertex (Y R) and only

depict the possible triangulations on the left side of the diagonal or triangle

that is included, since there is a symmetry about the axis passing through

vertices (PR) and (ZQ) separating two quintuplets of vertices according to

the vertex inversions X ↔ Y , P ↔ R, and Z ↔ Q. We use boxes to show the

four vertices from which a diagonal must start, according to Lemma 5.1, and
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Figure 5.13: Illustration of Corollary 5.7. We show that there are T = 294
valid triangulations for duodecagons in the duodecagonoid-II perimeter class
resulting from the inclusion of either the diagonal (PR)(ZQ) (a), the triangle
(YR)(XP)(ZQ) (b), or the triangle (YZ)(XQ)(PR) (c). We depict in boxes
the four vertices from which a diagonal must start, according to Lemma 5.1,
and with heavy lines the diagonal or triangle that has been included. We only
show the possible triangulations on the left side of the diagonal or triangle that
is included, since there is a symmetry about the axis passing through vertices
(PR) and (ZQ) separating two quintuplets of vertices according to the vertex
inversions X ↔ Y , P ↔ R, and Z ↔ Q. In all three cases, we force the first
diagonal on the left to start at the vertex (Y R).
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heavy lines to show the diagonal or triangle that has been included.

When the diagonal (PR)(ZQ) is included (case a in Fig. 5.13, there are

three cases: the first case, which includes the diagonal (Y R)(XQ), results in

5×2 triangulations corresponding to both the pentagon and the quadrilateral

on the left and right of (Y R)(XQ); the second case, which includes the diag-

onal (Y R)(XZ), results in 2 triangulations from the quadrilateral on the left

of (Y R)(XZ) since (PR)(XZ) and (PR)(XQ) have to be included as well;

the third case, which includes the diagonal (Y R)(ZQ), results in 2 triangu-

lations from the quadrilateral on the left of (Y P )(XQ) since (ZQ)(Y P ) and

(Y P )(XQ) have to be also included. Note that the cases which include the

diagonals (Y R)(ZP ) and (XQ)(ZP ) lead to cases b and c and are, thus, not

treated separately. From the inclusion of (PR)(ZQ) as the first diagonal, we

thus have a total number of ((5 × 2) + 2 + 2)2 = 142 = 196 valid triangula-

tions. The squaring operation accounts for the triangulations on the right of

(PR)(ZQ) and is a result of the symmetry we have identified above.

When the triangle (Y R)(XP )(ZQ) is included (case b in Fig. 5.13), there

are two cases: the first includes the diagonal (Y R)(XQ) and results in 5

triangulations from the pentagon on the left of (Y R)(XQ), while the sec-

ond includes the diagonal (Y R)(XZ) and results in 2 triangulations from the

quadrilateral on the left of (Y R)(XZ) since diagonal (XZ)(PR) must also be

included. Therefore, the inclusion of triangle (Y R)(XP )(ZQ) as the first three

diagonals results in a total number of (5 + 2)2 = 72 = 49 valid triangulations.

When the triangle (Y Z)(XQ)(PR) is included (case c in Fig. 5.13), there

are also a total number of (5 + 2)2 = 72 = 49 valid triangulations. In effect,
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cases b and c are isomorphic and follow a second symmetry about the axis

passing through vertices (ZP ) and (QR) separating two quintuplets of vertices

according to the vertex inversions X ↔ Y , Z ↔ P , and Q ↔ R.

As a result of these three cases, we have a total number of 196 + 2(49) =

294 distinct valid triangulations resulting from the inclusion of either (PR)(ZQ)

as the first diagonal, or triangles (Y R)(XP )(ZQ) and (Y Z)(XQ)(PR) as the

first three diagonals. This proves our claim that T = 294 in the duodecagonoid-

II isomorphism class of connected perimeters. �

This concludes the proof of Proposition 3.6. �
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