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Abstract of the Dissertation

Marginal Deformations of Gauge Theories
and their Dual Description

by

Manuela Kulaxizi

Doctor of Philosophy

in

Physics

Stony Brook University

2007

Holography and its realization in string theory as the AdS/CFT corre-

spondence, offers an equivalence between gauge theories and gravity that

provides a means to explore the otherwise inaccessible large N and strong

coupling region of SU(N) gauge theories. While considerable progress has

been made in this area, a concrete method for specifying the gravita-

tional background dual to a given gauge theory is still lacking. This is

the question addressed in this thesis in the context of exactly marginal

deformations of N = 4 SYM. First, a precise relation between the defor-

mation of the superpotential and transverse space noncommutativity is

established. In particular, the appropriate noncommutativity matrix Θ is
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determined, relying solely on data from the gauge theory lagrangian and

basic notions of the AdS/CFT correspondence. The set (G,Θ) of open

string parameters, with G the metric of the transverse space, is then un-

derstood as a way to encode information pertaining to the moduli space of

the gauge theory. It seems thus natural to expect that it may be possible

to obtain the corresponding gravitational solution by mapping the open

string fields (G,Θ) to the closed string ones (g, B). This hints at a purely

algebraic method for constructing gravity duals to given conformal gauge

theories. The idea is tested within the context of the β–deformed theory

where the dual gravity description is known and then used to construct

the background for the ρ–deformed theory up to third order in the defor-

mation parameter ρ. Discrepancy of the higher order in ρ terms in the

latter case is traced to the nonassociativity of the noncommutative matrix

Θ.
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Chapter 1

Introduction

The principle of holography [1, 2] states that a gravitational theory defined within a

spacetime region can be equivalently described by another non–gravitational theory

living on the boundary of this region. Though an astonishing proposal, holography

has a sound origin in the properties of black holes. Since the work of Bekenstein and

Hawking, it is known that black holes have entropy proportional to the area of their

event horizon: S = 1
2
A. However, it can be reasonably argued [2] that black holes

are objects of maximal entropy, providing a bound for the entropy of any physical

system. This naturally suggests that the number of degrees of freedom should scale

with the area and not with the volume of a given region — as it usually expected for

non–gravity theories — thus leading to the thought that all information pertinent to

a gravitational theory defined in a domain of spacetime could be captured by another

theory residing on the boundary of that same domain.

While the idea of holography as a potential path in further exploring gravity and

perhaps succesfully combining it with quantum mechanics was proposed early on,

its conrete realization became possible only within the context of string theory, in
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what is now known as the AdS/CFT correspondence [3, 4, 5]. String theory offered

a new perspective on the relation between gauge theories and gravity through the

double nature of Dp–branes [6]. Gauge theories emerged naturally as low energy

effective descriptions of the dynamics of Dp–branes, following their definition within

perturbative string theory as hypersurfaces where open strings are confined to end.

At the same time, Dp–branes can be regarded as sources for closed string fields. In

this picture, they are non–perturbative classical solitons of string theory with a low

energy effective description as particular solutions of the supergravity equations of

motion.

In its original formulation, the AdS/CFT correspondence originated from the dual

nature of D3–branes, relatingN = 4 U(N) Super–Yang–Mills in 3+1 dimensions, with

Type IIB closed string theory on AdS5 × S5 with N units of RR–flux.

Consider N parallel, coincident, D3–branes immersed in flat ten–dimensional space,

extended along 3+1 directions. String perturbation theory in such a background

contains both open and closed strings with the former attached to the D3–branes

(therefore describing the excitations of the branes) and the latter being understood

as excitations of empty space. In the limit of low — compared to the string scale 1/ls

— but fixed energy, open and closed strings decouple from each other while being

effectively described through N = 4 U(N) SYM in 3+1 dimensions and free bulk

Type II B supegravity i.e. ten dimensional flat space.

As discussed above, the stack of D3–branes admits an alternative low energy
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Figure 1.1: It is the double nature of D3–branes that lead to the AdS/CFT proposal.

description as a a collection of 3-branes, particular solutions of type II B supergravity:

ds2 = f−1/2

(
−dt2 +

i=3∑

i=1

dx2
i

)
+ f 1/2

(
dr2 + r2dΩ2

5

)

F5 = (1 + ∗) dtdx1dx2dx3df
−1

f = 1 +
R4

r4
, with R4 = 4πgsα

′2N

(1.1)

In this description, the limit of fixed energies corresponds to r
α′ = fixed while α′ → 0

and string theory in this background reduces to two decoupled systems: one of free

supergravity and the other of the “near horizon region” of the original geometry,

namely type II B closed string theory on AdS5 × S5:

ds2 =
r2

R2

(
−dt2 +

i=3∑

i=1

dx2
i

)
+R2 dr2

r2
+R2dΩ2

5

F5 = (1 + ∗) dtdx1dx2dx3d

(
r4

R4

) (1.2)

Since taking the same limit either in terms of open or closed strings, results in two

decoupled systems one of which is common in both descriptions (free supergravity that
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is), it is natural to identify the second system that appears in the two independent

pictures. We are thus lead to the conjecture, that N = 4 U(N) SYM theory in

3+1 dimensions is equivalent to type II B superstring theory on AdS5 × S5. As an

additional confirmation comes the fact that the full symmetry algebra of AdS5 × S5,

being the product of SO(4, 2)×SO(6) coincides with the conformal symmetry of the

SYM theory in 3+1 dimensions along with the SU(4)R R–symmetry group of the

field theory.

In this form, referred to as the strong form of the conjecture, AdS/CFT is of little

practical use since the problem of quantizing string theory on curved spacetimes with

RR—fluxes resists solution 1. Fortunately, there are limiting cases where the proposal

is nontrivial yet tractable. The ’t Hooft limit on the SYM side for instance, where

λ = g2
Y MN is held fixed but N is taken to infinity, N → ∞, corresponds to classical

string theory on AdS5 × S5. An even more useful limit, is the λ → ∞ limit which

corresponds to classical type II B supergravity on AdS5 × S5. It implies that the

strong coupling and large N region of the gauge theory, which is not accessible at

the moment by other means, can be studied through classical supergravity. In this

sense, the AdS/CFT duality provides a practical tool in analysing gauge theories —

an equally significant task though different from the original objective of holography.

Since the date of its birth, AdS/CFT has passed several tests that confirm its

validity although a consistent proof is still lacking. As a result, considerable effort

has been directed into extending its original form, mainly aiming at describing gauge

theories closer to real–life QCD. This naturally includes examples of theories with

less or no supersymmetry and/or broken conformal invariance. Despite however the

interest initiated in the subject and the progress in this direction, a precise method

1For recent progress in this direction see [7].
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for identifying and constructing the supergravity, if not string theory, dual to a given

gauge theory, remains to be proposed. Most of the cases examined in the literature,

depend on the high amount of symmetry and are mainly focused on determining

methods for solving the supergravity equations of motion [8, 9, 10, 11, 12, 13] based

on symmetry requirements. No other direct input from the gauge theory is used.

Thus the question/issue which motivated this work:

Is there a concrete way to use information pertinent to a gauge theory, to construct

its geometric dual configuration?

We will take the point of view that this is indeed possible and systematically

explore ways for doing so. This is however a notoriously difficult question to be

answered in all generality, so we will concentrate on the specific examples of Leigh—

Strassler deformations of N = 4 SYM. These are N = 1 superconformal gauge

theories labelled by two parameters β and ρ, and described by the superpotential:

W = ihTr
[(
eiβΦ1Φ2Φ3 − e−iβΦ1Φ3Φ2

)
+ ρ

(
Φ3

1 + Φ3
2 + Φ3

3

)]
(1.3)

Despite being conformal and superymmetric thus quite dissimilar to QCD, these

theories provide a natural starting point for this study due to the following reasons:

• Since they are continuous deformations of the N = 4 SYM theory preserving

conformal invariance, the setup of the original AdS/CFT proposal is not dra-

matically altered. In particular, we can still hope to describe them by placing

D3–branes in some background continuously connected to flat space and recover

their gravity dual in the near horizon limit.

• In addition, although it would have been natural to expect that their gravity
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Figure 1.2: The problem of finding the dual geometry is twofold.

duals would be known by now, this is actually not the case. In fact, it was

not until fairly recently that definite progress in this direction was made, when

Lunin and Maldacena [14] constructed the dual gravity background of the β–

deformed theory. The gravitational description for the ρ– deformation is still

unknown. This implies that any proposal can be explicitly checked in the former

case before being applied to the latter.

Exactly marginal deformations thus offer a sound testing ground for exploring new

ideas along with the possibility of obtaining new results.

Following the arguments that lead to the Maldacena conjecture, the problem of

finding the gravity dual to a given gauge theory appears to be twofold. One must first

specify the analogue of the flat space geometry into which D3–branes are embedded,

then construct the supergravity description of these branes and take the near horizon

limit. In other words, one has to move vertically and then to the right in Fig. 1.2.

Let us focus on the first part; given a gauge theory arising as a deformation of N = 4

SYM, is there a way to identify the deformed flat space geometry where D3–branes

should be immersed?
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It is helpful to first consider the N = 4 theory and examine how the ten dimen-

sional flat space geometry is encoded in the Lagrangian. The embedding space is

decomposed into a 3+1 dimensional space parallel to the brane worldvolume and a

6 dimensional transverse part. The former is characterized by the flat Minkowski

metric since it is the space where the theory lives. The latter on the other hand,

is characterized by the Káhler metric for the scalars, since they can be identified

with the embedding transverse space coordinates. The potential term for the scalars

provides additional information on the moduli space. Equation (1.4) below,

V =

i=6∑

i=1

[X i, Xj][Xi, Xj] = 0 (1.4)

shows that the transverse space can be parametrized by commutative coordinates.

The embedding space is then represented in the N = 4 SYM Lagrangian through

(Gµν = ηµν ,GIJ = δIJ) where µ, ν = 0, 1, 2, 3 and I, J = 4, ..9.

Now consider deforming the superpotential of the theory. This will obviously have

an impact on the transverse space geometry. The Káhler metric remains unchanged

but the potential for the scalars is modified. It is natural to expect based on (1.4),

that the deformation in the superpotential will manifest itself as a noncommutative

deformation of the transverse space. Making this precise ,i.e., constructing the ap-

propriate noncommutativity parameter ΘIJ to describe the deformation, is however

a quite nontrivial task that will be one of the main goals of this work.

Suppose now, that the matrix ΘIJ encoding the deformation is determined. Then,

the background into which D3–branes are placed will be specified by the following

set of fields (Gµν ,GIJ ,Θ
IJ). Recall however, that spacetime noncommutativity arises

entirely in the context of open strings. It is the way open strings perceive the presence
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of nonvanishing antisymmetric tensor fields in the background [15, 16]. To be precise,

turning on a nontrivial B–field from the viewpoint of closed strings results in making

the space noncommutative from the point of view of the open strings. It is then

natural that any information on the background extracted from the gauge theory, will

be carried over to the set of open string parameters: (Gµν ,GIJ ,Θ
IJ). To determine

the geometry for the purposes of the AdS/CFT however, one needs to specify the

appropriate set of closed and not open string fields. This is not difficult though, once

the latter are known, since there exists a precise map relating the two sets of fields.

The above reasoning suggests that a concrete method for constructing the deformed

flat space geometry indeed exists; it consists into specifying the open string fields

from the gauge theory Lagrangian and mapping them to the corresponding closed

string ones.

Most of this work will actually focus on realizing these ideas in a precise manner

for the exactly marginal deformations of N = 4. We will first construct a noncommu-

tativity matrix to encode the deformation of the transverse space geometry. Having

obtained the set (G,Θ) we will then use the known map relating open and closed

string fields in order to specify the deformed flat space geometry, the set (g, B) that

is. The map in question was constructed for c–number noncommutative but associa-

tive deformations, and we will see that it will be sufficient for the β–deformed theory.

In the case of the ρ–deformation, the noncommutativity parameter will not obey the

Jacobi identity and as a result, the closed string fields will satisfy the supergravity

equations of motion only up to third order in the deformation parameter ρ.

Let us now move on to the main objective, which is to find the gravity dual descrip-

tion of the deformed gauge theory. Is there any way, we can use the parametrization of

its moduli space in terms of open string fields, to attack this problem? Put differently,
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Figure 1.3: Is there a way to deduce the open string parameters for the gauge theory
living on a stack of branes placed in the dual gravity background?

how do we move diagonally in Fig. 1.2?

Unfortunately a concrete setup for studying this problem is not clear to us yet.

Preliminary ideas and a natural conjecture however will lead us into the dual gravity

solution for the ρ–deformed theory up to third order in ρ. The notions that we will

be dealing with in this case, are the N = 4 IR quantum effective action — obtained

by giving a vacuum expectation value to one of the scalars and integrating over the

massive fields, its connection to the Dirac–Born–Infeld (DBI) action describing the

fluctuating degrees of freedom of D–branes and the dual geometry. The main question

here, can be better expressed in Fig. 1.3. Is there a way to move in this diagram from

left to right first and then vertically? What is the reasoning that will help us obtain

the corresponding open string parameters for a stack of D–branes immersed in the

near horizon geometry?

This report is divided into two main parts. In the next chapter, based on [17],

we focus on the β–deformed theory, identify the noncommutativity matrix describing

the deformation and its role in the solution generating transformation employed by
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Lunin and Maldacena. In chapter 2, based on [18], we construct the appropriate

noncommutativity matrix for the case of the ρ–deformation. Following the logic

outlined above, specifying the deformed flat space geometry to third order in the

deformation parameter — as well as the gravity dual background to the same order —

reduces to a simple algebraic procedure. Finally, we present an extensive discussion

on the approach proposed in this note, illuminating difficulties and obscure points

as well as bringing forth interesting directions for future study. These, we hope,

could prove fruitful in completing the program of determining a precise method for

constructing gravity descriptions of given gauge theories.
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Chapter 2

β–deformations and

Noncommutativity

2.1 Introduction

As discussed in the introduction, the Maldacena conjecture [3, 4, 5] relates four–

dimensional theories at strong t’Hooft coupling with weakly coupled gravitational

ones. In [14] Lunin and Maldacena presented a further development in this direction

by constructing the gravity duals of gauge theories deformed in a particular manner

that maintains a global U(1) × U(1) symmetry present in the original undeformed

theory. The prototype of these deformations is a Leigh–Strassler [19] exactly marginal

deformation of N = 4 SYM theory, characterized by a complex parameter β which

preserves N = 1 supersymmetry. The method of Lunin and Maldacena is not however

restricted to conformal field theories. It can be applied to any field theory as long as its

dual gravity background contains a two torus geometrically realizing the global U(1)

symmetries in question. When β ∈ R — usually denoted as γ in the literature — the
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prescription presented in [14] amounts to performing an SL(2,R) transformation on

the complexified Kähler modulus τ of this two torus. The specific element of SL(2,R)

under consideration has only one free parameter which is then identified with the real

deformation parameter γ of the gauge theory. Subsequent work on the subject of

the β–deformed gauge theories has provided further checks of the AdS/CFT corre-

spondence [20, 21, 22, 23, 24, 25] whereas the possibility of an underlying integrable

structure in this context was explored in [26, 27, 28]. Several aspects of these defor-

mations were analysed from the gauge theory viewpoint in [29, 30, 31, 32, 33, 34, 35].

Furthermore, generalizations as well as applications of the solution generating tech-

nique introduced in [14] were considered in [36, 28, 25, 37, 38, 39].

Meanwhile, it became clear [40] that embedding SL(2,R) into the T–duality group

O(2, 2,R) may be a significantly easier way to obtain the deformed backgrounds since

it suffices then to consider the action of the appropriate O(2, 2,R) group element on

the background matrix E = g + B. In this framework, an extraordinary similar-

ity between the proposal of [14] and the method for constructing gravity duals of

noncommutative gauge theories becomes evident 1. From the gauge theory point of

view this analogy is not surprising since the deformation amounts to modifying the

commutator of the matter fields in the Lagrangian or equivalently, their product. A

natural proposal for the product rule was set forth in [14] and subsequently verified

in the dual field theory context in [29, 23].

The central aim of this chapter is to clarify the relation between noncommutativity

and β–deformations. We will consider the deformations in their original context as

marginal deformations of N = 4 SYM and show how to obtain a noncommutativity

matrix Θ describing them. The main point will be to think of the matter fields

1Actually, this connection was already noted in [14].
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in the dual theory as coordinates parametrizing the space transverse to the D3–

brane where the gauge theory lives. Then, reality properties, global symmetries

and marginality will severely constrain the form of the noncommutativity matrix

leaving one possible choice, the one which leads to the correct gravity dual description.

In other words, Θij along with the metric of the transverse space can be thought

of as another way to encode the moduli space of the gauge theory. This suggests

an alternative way in which to investigate deformations of the original AdS/CFT

proposal [3] by determining the open string parameters pertaining to them. Related

ideas will be explored in the next chapter in order to study another Leigh–Strassler

marginal deformation of N = 4 SYM the gravity dual of which is yet unkown.

The plan of this chapter is as follows. In the next section, we review the solution

generating technique proposed in [14] as well as its formulation through T–duality [40].

In section 2.3, we present some basic facts about noncommutative geometry. Then

we describe the methods employed in finding the gravity duals of these theories in a

fashion that makes evident the similarity with the approach of [14]. In particular, it

is shown that the T–duality group elements used in both cases can be identified if the

deformation submatrix referred to as Γ in [40] is interpreted as a noncommutativity

matrix. In section 2.4, we explain how one can determine a suitable noncommutativity

matrix for the β–deformed gauge theory. This construction is purely based on gauge

theory data and basic notions of AdS/CFT. We then show that Θij is precisely the

submatrix Γ appearing in section 1. We conclude with 2.6 after a short discussion on

possible applications of our techniques within the context of gauge/gravity duality.

Extension of our results to noncommutative gauge theories is left to A since it lies

somewhat outside the main scope of this report.
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2.2 The Lunin–Maldacena solution generating tech-

nique.

As it was shown in [19] N = 4 Super Yang Mills admits a complex three parameter

family of exactly marginal deformations 2 preserving N = 1 supersymmetry which is

described by the following superpotential:

W = κεIJKTr
(
[ΦI ,ΦJ ]βΦK

)
+ ρTr

(
3∑

I=1

(ΦI)3

)
(2.1)

Here ΦI are three chiral superfields and [ΦI ,ΦJ ]β ≡ eiβΦIΦJ − e−iβΦJΦI . Together

with the gauge coupling gY M , the complex parameters (κ, β, ρ) constitute the four

couplings of the theory. Conformal invariance imposes one condition on these cou-

plings thus (2.1) describes a three parameter family of deformations. When ρ = 0

the theory is often referred to as the β–deformed gauge theory and preserves an addi-

tional global U(1)×U(1) symmetry (apart from the U(1)R R–symmetry) which acts

on the superfields as follows:

U(1)1 : (Φ1,Φ2,Φ3)→ (Φ1, e
iα1Φ2, e

−iα1Φ3)

U(1)2 : (Φ1,Φ2,Φ3)→ (e−iα2Φ1, e
iα2Φ2,Φ3)

(2.2)

In this thesis we will be mainly considering the β–deformed theory for β ∈ R. It

is then customary to denote the deformation parameter by γ and we will adhere to

this notation in this section. Lunin and Maldacena in [14] succeeded in finding the

gravity dual of this theory by implemeting a generating solution technique which can

be applied to any field theory with U(1)×U(1) global symmetry realized geometrically.

2More on the Leigh–Strassler deformations can be found in chapter 3 and section 3.2.
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Their method essentially consists in performing an SL(2,R) transformation on the

complexified Kähler modulus of the two torus associated with the U(1) symmetries

in question. Suppose for instance that one knows the gravity dual of the undeformed

theory and furthermore that the two global U(1)’s of the parent theory also preserved

by the deformation are indeed realized geometrically. Then the supergravity dual of

the deformed theory is given by the following substitution:

τ = (B12 +
√
g)→ τ

1 + γτ
(2.3)

where τ is the complexified Kähler modulus of the two torus (associated to the U(1)

symmetries of the original solution)with B12 the B–field along the torus and
√
g its

volume. In other words, one considers the theory compactified on the two torus and

subsequently acts on its Kähler modulus with the particular element of SL(2,R)

given by ( a b
c d ) ≡

(
1 0
γ 1

)
with γ the parameter of the theory. This element of SL(2,R)

is chosen because it ensures that the new solution will present no singularities as

long as the original metric is non–singular. An alternative way of thinking about

this solution generating transformation is in terms of applying a series of T–dualities.

More precisely, the method illustrated above is equivalent to doing a T–duality on a

circle, a coordinate transformation and then another T–duality (TsT).

Subsequently it was shown [40] that one can embed the SL(2,R) that acts on the

Kähler modulus into the T–duality group O(2, 2,R) and thus consider the action of

the latter on the background matrix E = g+B. This provides a considerably simpler

way of obtaining the new solutions. For the generic element ( a b
c d ) of SL(2,R) the
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appropriate embedding is the following:

T =




A B

C D


 =




a 0 0 b

0 a −b 0

0 −c d 0

c 0 0 d




(2.4)

It is then easy to see [41] that T transforms the original background matrix E0 as:

E0 → E = (AE0 + B)(CE0 + D)−1 ≡ AE0 + B

CE0 + D
(2.5)

where the 2 × 2 matrices A,B,C,D are defined through (2.4). According to [14] we

should not consider any SL(2,R) element but the precise one with a = d = 1, b = 0

and c = γ. In this case (2.4) reads:

T =




1 0

Γ 1


 with Γ =




0 −γ

γ 0


 (2.6)

where 1 and 0 represent the 2× 2 identity and zero matrices respectively. Following

now the T–duality rules in [41] we can write the NS–NS fields of the new solution in

terms of E0 and Γ as follows:

E =
1

E−1
0 + Γ

e2Φ = det(1 + E0Γ)e2Φ0

(2.7)

The RR-fields of the new background can be obtained in a similar fashion using the

transformation rules of [42, 43, 44, 45, 46]. Nevertheless, it suffices for us to know
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that appropriate rules exist and can be applied.

There are however cases where one needs to slightly modify the method illustrated

above. This happens when non–trivial fibrations mix the isometry diretions of the

two torus with other directions in the metric. It is then necessary to embed SL(2,R)

into O(n + 2, n + 2,R) with n the number of non–trivial coordinate fibrations. A

particular example of this is the AdS5×T1,1 solution of [47]. If we want to apply the

deformation to this background instead of (2.6) we should employ:

T =




1 0

Γ 1


 where Γ =




0 −γ 0

γ 0 0

0 0 0




(2.8)

Furthermore, as it was again pointed out in [40], the appropriate T–duality matrix

one should use for the deformation of AdS5 × S5which gives rise to the gravity dual

of the β–deformed gauge theory is:

T =




1 0

Γ 1


 where now Γ =




0 −γ γ

γ 0 −γ

−γ γ 0




(2.9)

This particular choice of Γ with the necessary embedding of SL(2,R) into O(3, 3,R)

can be understood in this case as the result of performing a change of coordinates

and a T–duality transformation of the form (2.8) followed by another coordinate

transformation [40]. For future reference and as a concrete illustration of the above

we would like to give an explicit construction of the background in this case. What

we have to do is to simply act with (2.9) on the background matrix E0 which in
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this example is none other but the metric of AdS5 × S5. Since we are interested in

obtaining the gravity dual of a conformal gauge theory we expect that only the S5

part of AdS5 × S5 will be affected by the deformation. We can write the metric on

S5 in the following way:

ds2 = R2

(
3∑

i=1

dµ2
i + µ2

idφ
2
i

)
where

3∑

i=1

µ2
i = 1 (2.10)

Note here that we want to deform the geometry along the U(1) isometry directions

of S5, therefore the relevant part of the background matrix is:

E0 = R2




µ2
1 0 0

0 µ2
2 0

0 0 µ2
3




(2.11)

Using now equation (2.7) and its generalization for RR–fields, we find [40]:

ds2 =R2(ds2
AdS5

+ ds2
5), where : ds2

5 =
∑

i

(dµ2
i +Gµ2

i dφ
2
i ) + γ̂Gµ2

1µ
2
2µ

2
3(
∑

i

dφi)
2

G−1 = 1 + γ̂2(
∑

i6=j

µ2
iµ

2
j), γ̂ = R2γ, R4 = 4πeΦ0N

e2ϕ = e2ϕ0G, B = γ̂R2G

(
∑

i6=j

µ2
iµ

2
jdφidφj

)

C2 = −γ(16πN)ω1(
∑

i

dφi), C4 = (16πN)(ω4 +Gω1dφ1dφ2dφ3)

F5 = (16πN)(ωAdS5 +GωS5), ωS5 = dω1dφ1dφ2dφ3, ωAdS5 = dω4

(2.12)

which is precisely the gravity solution given in [14].
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2.3 The gravity duals of noncommutative gauge

theories.

In this section we would like to focus on yet another class of supergravity duals which

can be obtained in manner analogous to the one described earlier. These are the

gravity duals of noncommutative gauge theories 3 and in fact the methodology used

in both cases is almost identical.

Noncommutative — as opposed to ordinary — gauge theories, live in a space of

noncommuting coordinates 4. Such a deformation of space is encoded in what is

referred to as the noncommutativity parameter Θij defined as:

[xi, xj] = iΘij (2.13)

where {xi} is a set of coordinates parametrizing the space and Θij a real antisymmetric

matrix. In general, the easiest way to deal with functions on these spaces is to replace

noncommuting variables with commuting ones by simply defining a new product rule

between them, usually called a star product. The star product will then contain all

the information on the noncommutative structure of the space.

Out of all the possible forms of Θij the case most well understood is by far the

one in which the commutators of (2.13) are c–numbers and therefore the noncommu-

tativity parameter is essentially a constant. In this case, associativity is preserved

3For an introduction to noncommutative geometry see for example [48] and references therein.
4We limit the discussion in this section to Euclidean spaces or to noncommutativity which does

not affect the time–like coordinate.
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and the appropriate star product has the form:

f(x) ∗ g(x) = f(x+ ξ)e
i
2

←−−
∂

∂ξi Θij
−−→

∂

∂ζj g(x+ ζ) = f
(
1 +
←−
∂ iΘ

ij−→∂ j +O(Θ2)
)
g (2.14)

Gravity duals of theories living on noncommutative spaces with constant noncommu-

tativity parameter were first found in [49][50]. The basic technique for constructing

these solutions is to combine diagonal T–dualities, constant shifts of the NS–NS two

form and SO(p, 1) transformations, where p is the number of spatial dimensions. One

first T–dualizes in the directions where one wants to turn on fluxes, shifts the B field

by a constant in these directions and then T–dualizes back. Equivalently, one can

T–dualize along one of the directions of the fluxes, use a boost/rotation between a

non compact and a compact direction and the T–dualize back. Both methods give

the same result. It was later on realized that [51] these solutions can be generated

from the action of the O(p, p,R) T–duality group element

T =




1 0

Θ 1


 (2.15)

on the original undeformed solution where now 0, 1,Θ are p dimensional square ma-

trices with p denoting the number of spatial directions along which noncommutativity

is turned on. Suppose for instance that one wants to describe a gauge theory living

in four dimensional Euclidean space employed with cartesian coordinates xµ where:

[x0, x1] = ib1 and [x2, x3] = ib2. It is then clear that one should consider the em-

bedding of the noncommutativity parameter into the T–duality group O(4, 4,R) as
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follows:

T =




14 04

Θ 14


 with Θ =




0 b1 0 0

−b1 0 0 0

0 0 0 b2

0 0 −b2 0




(2.16)

The original solution to be deformed in this context is again AdS5×S5, however now

Θ lies along the non–compact, AdS5 piece of the geometry. Writting the metric on

AdS5 as:

ds2
AdS = R2u2(dx2

0 + dx2
1 + dx2

2 + dx2
3) +R2du

2

u2
(2.17)

we see that the relevant part of the background matrix E0 in this case is:

E0 = R2u2




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(2.18)

and acting now on E0 with the T–duality matrix T of equation (2.16) we obtain [49]:

ds2
str = u2R2(G1(dx

2
0 + dx2

1) +G2(dx
2
2 + dx2

3)) +
R2

u2
(du2 + u2dΩ2

5)

B = b̂1R
2G1u

4dx0 ∧ dx1 + b̂2R
2G2u

4dx2 ∧ dx3

e2Φ = G1G2e
2Φ0 , G1 =

1

1 + b̂21u
4
, G2 =

1

1 + b̂22u
4

b̂1 = R2b1, b̂2 = R2b2

(2.19)

which is the gravity dual 5 of a noncommutative gauge theory defined in Euclidean

5Note the resemblance between (2.12) and (2.19).
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space with [x0, x1] = ib1 and [x2, x3] = ib2. The Langrangian description of this theory

can be easily derived from the N = 4 SYM Langrangian by replacing the ordinary

product of functions with the Moyal star designated in (2.14).

Although we have so far considered applying this method directly to the near

horizon geometry one can, perhaps even more appropriately, perform it on the p–

brane solutions as well [52, 51, 53, 54]. The near horizon limit that needs to be taken

in this case, requires a relative scaling between the B–field and the metric g which

actually corresponds to the Seiberg–Witten limit proposed in [15].

It should now be evident that the solution generating transform employed by

Lunin and Maldacena in order to find the gravity duals of β–deformed gauge theo-

ries is almost identical to the one used for the same purpose within the context of

noncommutative gauge theories. The only difference is that in the former case it is

the transverse space to the brane, or rather the compact part of the near horizon

geometry that is being deformed. This naturally suggests interpreting the matrix

Γ appearing in equation (2.9) as some kind of noncommutativity parameter. Since

noncommutativity in this case is a property of the transverse space it manifests itself

as a deformation of the matter content of the theory.

Before we proceed to the next section where we will further clarify this point, we

would like to make some final remarks about the applicability of the solution gener-

ating transformations illustrated above. Despite the fact that this method has had

a rather remarkable set of applications so far its utility is unfortunately restricted to

the following conditions. First of all, the directions one wants to introduce fluxes —

or equivalently noncommutativity — should be isometry directions realized geomet-

rically, meaning as shift symmetries of the metric [55]. In addition, the noncommuta-

tivity matrix should have constant entries. Expressed in a more precise manner this
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means that there should exist a coordinate system where the noncommutativity is

reduced to a constant along isometry directions of the metric.

As an example of this, let us consider the Melvin Twist gauge theory. This has

been studied in [54, 56, 57]. The relevant noncommutativity parameter can be written

in cartesian coordinates as 6:

[x2, x3] = ibx1, [x3, x1] = ibx2 and [x1, x2] = 0 (2.20)

but in polar coordinates on the (x1, x2)–plane it becomes:

[ρ, θ] = 0, [ρ, x3] = 0, and [θ, x3] = ib (2.21)

In these coordinates ( ∂
∂θ
, ∂

∂x3
) are indeed Killing vectors of the flat space metric and

therefore the solution generating technique is applicable.

In general it seems reasonable to expect that given a noncommutativity parameter,

the following two conditions should hold for a coordinate system to exist in which Θij

is reduced to a constant matrix:

∂iΘ
ij = 0

Θil∂lΘ
jk + Θkl∂lΘ

ij + Θjl∂lΘ
ki = 0





⇒ T [ijk] = ∂l(Θ
l[iΘjk]) = 0 (2.22)

Although neither have we been able to find a proof of this nor have we come accross

a proof of it in the literature, we find that it is natural to think of the second (as-

sociativity) condition in analogy with the vanishing of the Nijenhus tensor condition

6Here we consider the case of a non compact direction x3 in contrast to the most widely used
case.
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for an almost complex structure 7. We thus understand (2.22) as ensuring that one

can always find a local coordinate system in order to put Θij in a constant form.

Then, the first condition in (2.22) can be read as the possibility of extending the local

coordinates to global ones.8

We would like to conclude this section by stressing once more that (2.22) cannot

be seen as the requirement for the solution generating transformation to work since

there is no way to make sure that the coordinate transformation employed to bring

Θij into a constant form will not spoil the shift symmetries present in the metric.

One example of this is the nongeometric background also referred to as the Q–space

in the literature [58, 59, 60]. The relevant noncommutativity parameter in this case

is:

[x1, x2] = ibx3, [x1, x3] = [x2, x3] = 0 (2.23)

While it is obvious from the discussion above that Θij can be reduced to a constant,

the coordinate transformation that makes this possible is [60]: x1 → y1y3, x2 →

y2, x3 → y3 and in these coordinates the metric looks like:

ds2 = −dt2 + (y1dy3 + y3dy1)
2 + dy2

2 + dy2
3 (2.24)

Indeed it has not been possible to embed this noncommutative deformation of flat

space directly into string theory. It nevertheless naturally emerges when a D3–brane

probe is immersed in the background of smeared NS5–branes.

7It may thus be interesting to formulate generalized complex geometry from the point of view of
open strings.

8This is actually not true for the two–dimensional case, which is particularly simple. For instance,
all noncommutative deformations are also associative ones.
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2.4 β–deformations and noncommutativity

The aim of this section is to establish a precise relation between transverse space

noncommutativity and β–deformations of N = 4 SYM. In general the connection

between marginal deformations and noncommutativity is not new. A study of the

moduli space clearly points into this direction — a thorough analysis can be found in

[61, 62, 63, 64]. The F–term constraints for instance read:

ΦIΦJ = qΦJΦI , Φ
Ī
Φ

J̄
= qΦ

J̄
Φ

Ī
where q = e2iβ and I,J are cyclically ordered.

(2.25)

and ΦI here indicate the first components of the corresponding superfields. These

equations are usually understood to represent the space where the D–branes can move.

For small enough deformations we can interpret the eigenvalues of these matrices

as coordinates parametrizing the transverse space to the worldvolume of the D3–

brane. The eignevalues should however now be thought of as noncommuting numbers

according to equation (2.25). If we denote the coordinates of the moduli space as

(zI , zĪ) with I, Ī = 1, 2, 3 we have that:

zIzJ = qzJzI , zĪzJ̄ = qzJ̄zĪ with I,J cyclically ordered. (2.26)

Later on, it will become clear that a noncommutative interpretation is meaningful

only when β ∈ R. Henceforth we replace β with γ in order to avoid confusion and to

be consistent with existing notations in the literature.

As it was mentioned in the previous section we can identify the prescription of

[14] with the one used within the context of noncommutative gauge theories so long

as matrix Γ appearing in equation (2.9) is the noncommutativity matrix associated
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to the deformation of the transverse space. Therefore, our main objective here is to

construct a noncommutativity matrix, or rather a contravariant antisymmetric tensor

field ΘIJ to describe the deformed space. A natural way to define it is through the

commutation relations implied by (2.26). That is:

[zI , zJ ] = i2eiγ sin γzIzJ [zI , zJ ] = i2eiγ sin γz ĪzJ̄ (2.27)

Clearly such a definition would require a whole different notion of differential geome-

try since the noncommutativity parameter is position dependent and the coordinates

themselves are now nonocommuting objects. We circumvent this by implementing an

alternative procedure. As mentioned in the previous section one can replace noncom-

muting coordinates with commuting ones by defining a star product between them. In

general, constructing an appropriate star product can be an equally formidable task

as dealing with noncommuting variables. In this case however a natural proposal was

set forth in [14]. Specifically, the authors of [14] suggested:

f ∗ g = feiπβ(
←−
Q1
−→
Q2−

←−
Q2
−→
Q2)g (2.28)

where f, g belong to the set of chiral/antichiral multiplets of the theory and Q1,2

are the global U(1) charges associated with these fields (see equation (2.2)). This

proposal was subsequently used [29] in order to rewrite the component Lagrangian

of the β–deformed gauge theory as the N = 4 SYM Lagrangian with the product of

matter fields now replaced by the above star product. This enabled the author of

[29] to show that all the amplitudes in the planar limit of the deformed theory with

β ∈ R are proportional to their N = 4 counterparts. Note that the star here is not
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explicitly written in terms of derivatives acting on the fields (f, g). Knowledge of the

product in this form however will be sufficient for the purposes of this letter.

In what follows we will use equation (2.28) in order to write down a noncommu-

tativity matrix and compare it with (2.9). Then we will discuss ways to derive the

appropriate Θij without prior knowledge of the star product. We therefore define the

noncommutativity parameter through the following relations:

[zI , zJ ]∗ =
(
zI ∗ zJ − zJ ∗ zI

)
= iΘIJ

[zĪ , zJ̄ ]∗ =
(
z Ī ∗ zJ̄ − zJ̄ ∗ z Ī

)
= iΘĪJ̄

[zI , zJ̄ ]∗ =
(
zI ∗ zJ̄ − zJ̄ ∗ zI

)
= iΘIJ̄





⇒
ΘIJ = 2 sin γzIzJ

ΘĪJ̄ = 2 sin γzĪzJ̄

ΘIJ̄ = −2 sin γzIzJ̄

(2.29)

with (I, J) cyclically ordered. Setting a ≡ 2 sin γ and writting this in matrix notation,

we obtain:

Θ = a




0 z1z2 −z1z3 0 −z1z2 z1z3

−z1z2 0 z2z3 z1z2 0 −z2z3

z3z1 −z2z3 0 −z1z3 z2z3 0

0 −z1z2 z1z3 0 z1z2 −z1z3

z1z2 0 −z2z3 −z1z2 0 z2z3

−z3z1 z3z2 0 z1z3 −z2z3 0




(2.30)

Clearly, the result obtained above is not exactly a satisfactory one. Despite the fact

that we managed to describe the deformation of the transverse space in a noncom-

mutative way, the associated noncommutativity matrix Θ is both position dependent

and six dimensional. It does not therefore in any sense resemble to matrix Γ of equa-

tion (2.9). An additional interesting but perhaps perplexing feature of Θ is that it is
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not a purely holomorphic/antiholomorphic matrix as we might have expected from

the F–term constraints. We will return to this point later in this section after we

outline a more general prescription of identifying the appropriate Θij.

Let us however proceed to make a coordinate transformation on (2.30). Since ΘIJ

thus defined is a contravariant tensor we have no trouble doing so. In other words

we know that when changing coordinates from {xi} to {x′i′}, the noncommutativity

parameter transforms as:

Θi′j′ =
∂x′i

′

∂xi

∂x′j
′

∂xj
Θij (2.31)

Here, we chose to rewrite ΘIJ in spherical coordinates (r, α, θ, φ1, φ2, φ3) defined

through:

z1 = r cosαeiφ1 , z2 = r sinα sin θeiφ2 , z3 = r sinα cos θeiφ3

z1 = r cosαe−iφ1 , z2 = r sinα sin θe−iφ2 , z3 = r sinα cos θe−iφ3

(2.32)

Note that in these coordinates we should be careful to define if possible the param-

eter γ of our matrix so as to have Θ ∈ R. Only then can Θ be interpreted as a

noncommutativity parameter in the usual sense. Applying (2.31) to (2.30) we obtain

in matrix notation:

Θ =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −a a

0 0 0 a 0 −a

0 0 0 −a a 0




(2.33)

and we immediately see that we can indeed think of Θ as a noncommutativity matrix
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only when a ∈ R. More importantly, from equation (2.33) it is clear that we can

reduce Θ to the 3 × 3 matrix denoted as Γ in section 2.2. 9. The only difference is

that now the deformation parameter γ of the gauge theory is replaced by a = 2 sin γ.

Recall however, that the Lunin–Maldacena solution (2.12) has small curvature only

when: γR � 1 and R � 1. Then a ' 2γ and the solutions generated by using

either Γ or Θ are basically equivalent. Yet we find it interesting that the periodic-

ity of the parameter γ is manifest in this description. Nonetheless, note that this is

not quite the correct periodicity condition. Our result is periodic when γ → γ + 2π

whereas from (2.25) we expect: γ → γ + π. The reason for this discrepancy lies

in equation (2.29). Indeed, the two ways of defining deformed commutators, one in

terms of commuting variables multiplied with a star product and the other in terms of

noncommuting ones, are only strictly equivalent when the commutation relations are

c–numbers. “Comparing” equations (2.29) and (2.27) in this case we see that there is

a a phase difference between the parameters entering the two definitions. The absence

of this phase in (2.29) is responsible for the discrepancy in periodicity. Nevertheless,

the star product gives a more natural way to think of Θij as a contravariant antisym-

metric tensor thus having well defined transformation properties under a change of

coordinates.

Suppose now that no precise definition of a star product between the superfields of

the theory was known. Would we be able to construct the noncommutativity matrix

and therefore find the gravity dual of the β–deformed gauge theory? A glance at the

9We can actually reduce Θij even further using coordinates: ψ = 1

3

∑3

i=1
φi, σ1 = 1

3
(φ2 + φ3 −

2φ1), σ2 = 1

3
(φ1 + φ3 − 2φ2). In this parametrization ψ denotes the U(1) circle associated with

the R–symmetry of the original background and Θij reads: Θ =
(

0 0 0
0 0 −a
0 a 0

)
. It is then obvious

that the solution generating transformation does not act on the U(1)R therefore preserving N = 1
supersymmetry.
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superpotential of the theory would naturally lead us to define:

ΘIJ = 2 sin γzIzJ and ΘĪJ̄ = 2 sin γzĪzJ̄ (2.34)

and therefore correctly guess the purely holomorphic and purely antiholomorphic

parts of Θij. What about the other parts though? We can actually constrain the

form of ΘIJ̄ by the following requirements:

• Definite Reality Properties.

In order to be able to describe the deformation in noncommutative terms we

should define the parameters appearing in Θij so as to have a matrix with real

entries after going to real coordinates.

• Symmetries.

Since we expect the global symmetries of the Langrangian to be preserved in

the strong coupling limit as well, we should ensure that the noncommutativity

matrix respects those symmetries. This is true as long as [65]:

[zI , zJ ] = iΘIJ(z)
z→z′−−−→ [z′I , z′J ] = iΘIJ(z′) (2.35)

Note that this is precisely analogous to the condition for a certain symmetry

to be an isometry of the metric. Assuming that ΘIJ̄ is quadratic (2.35) implies

that up to a sign there exist only two possibilities: ΘIJ̄ = 0 or ΘIJ̄ = zIzJ̄ .

• Marginality condition.

According to the usual reasoning of AdS/CFT, marginal defromations should be

described by AdS geometries with different compact pieces. This suggests that
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when the noncommutativity parameter is transformed in spherical coordinates,

it should be independent of and have no components along the radial direction

of AdS. In other words, ∂Θaiaj

∂r
= 0 where ai are angular variables parametrizing

the five sphere and Θrai = 0. This last requirement completely determines the

form of ΘIJ̄ to be the one appearing in (2.29).

We see as remarkable as it may seem that there exists a unique noncommutativity

matrix which respects the above conditions. Stated differently, simple gauge theory

data and elementary notions from the AdS/CFT correspondence, made it possible to

fully determine the form of Θij. We thus want to understand this matrix as a way of

encoding the deformation of the transverse space or in other words, the moduli space

of the gauge theory — at least insofar as information relevant to the gauge/gravity

duality in the large N limit is concerned. Indeed given the F–term constraints we seem

to have extracted information coming from the D–terms. We can convince ourselves

of this with the following observation. Recall that the β–deformation of N = 4 SYM

is exactly marginal and that the deformation enters only in the superpotential of the

theory. This means that we wish not to deform the D–terms in the Lagrangian. Note

however that we can write the D–terms of the N = 4 theory as:

Tr[ΦI , Φ̃
I ][ΦJ , Φ̃

J ] = Tr[ΦI ,ΦJ ][Φ̃I , Φ̃J ] + Tr[ΦI , Φ̃
J ][ΦJ , Φ̃

I ] (2.36)

The first term on the right hand side of equation (2.36) is precisely the contribution to

the potential coming from the F–terms. We then deduce that if we wish to retain the

D–terms unaffected by the deformation of the F–term commutator we must induce

an appropriate deformation on the commutator between holomorphic and antiholo-

morphic fields as well. Surprisingly enough, the reasoning outlined above seems to
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have granted us this exact piece of information.

It is now evident that we can identify the Lunin–Maldacena generating solution

technique with the method employed in the case of noncommutative gauge theories

[51]. The noncommutative data in this context are basically given to us from the

gauge theory Lagrangian. This is quite natural since the deformations we are dealing

with are exactly marginal. It is worth pointing out here that combined with the

knowledge of the gravity dual of the parent N = 4 theory, these data made it possible

to find the gravity solution dual to the deformed theory. Unfortunately, this is not

as general a statement as it may seem since the particular method employed was

applicable only because there existed a coordinate system in which ΘIJ was reduced

to a constant and along isometry directions of the metric. In a forthcoming letter [66]

we will nevertheless be able to extract some information on the gravity duals of the

marginally deformed N = 4 theory when the parameter ρ in (2.1) is different than

zero.

2.5 Applications and New Backgrounds

In the previous section we were able to associate a specific noncommutativity matrix

to the β–deformed gauge theory. We found that indeed there exists a coordinate

system for which Θij is position independent and lies along U(1) isometries of the

transverse space metric as well as of the S5. Identifying the solution generating trans-

forms of [14] and [49] was then a straightforward task. This result naturally opens up

two main directions for further study — the first one pertaining to noncommutative

gauge theories and the second to deformations of N = 4 SYM. In what follows we

will try to touch upon several questions arising in the latter case. An extensive dis-
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cussion and applications to noncommutative gauge theories for the interested reader

is presented in A.

2.5.1 Matter–content deformations of N = 4 SYM

A natural question to ask in this context is whether we can now borrow results

pertaining to noncommutative gauge theories in order to explore different kinds of

(super)potential deformations of N = 4 SYM. A few cases where the solution gen-

erating technique was applicable were already mentioned in section 2.3. Consider

for instance the original situation where a constant noncommutativity parameter is

turned on. Here, we would like to translate this deformation to some kind of trans-

verse space noncommutativity. If we parametrize our six dimensional space with

complex coordinates (zI , zĪ), we can write:

[zI , zJ ] = ib, [z Ī , zJ̄ ] = ib, [zI , zJ̄ ] = −ib with I,J cyclically ordered (2.37)

We may then associate these commutation relations to a deformation of the gauge

theory potential V. Since the type of deformations considered in this section may

generically break supersymmetry we prefer to state the deformation in terms of the

potential which of course may when appropriate be promoted to the superpotential.

Identifying the coordinates (zI , zĪ) with the scalar fields of the theory would naturally

lead to10:

VN=4 = Tr[ΦI ,ΦJ ][ΦĪ ,ΦJ̄ ]→ Tr[ΦI ,ΦJ ][ΦĪ ,ΦJ̄ ]∗. (2.38)

10This deformation is only meaningful for gauge groups other than SU(N).
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Here the star product is defined according to (2.37) as: ΦI ∗ ΦJ = ΦIΦJ + ib. In

a similar fashion we could relate the noncommutative deformation of the Melvin

Universe which in complex coordinates looks like 11:

[z1, z2] = −bz1, [z1, z2] = bz1, [z1, z2] = −bz1 [z1, z2] = bz1

with all other commutators vanishing

(2.39)

to a potential deformation of the same form as in (2.38) but with a different star

product as indicated from (2.39).

Yet the true story is not as simple as this. These deformations are not marginal

and the theory will generically flow from some UV point to an IR one. This means

that we cannot solely rely on the data given to us from the Lagrangian of the theory

which we can only take to be a valid description near the UV (small b). Moreover,

the precise arguments that helped us construct the noncommutativity matrix encod-

ing the moduli space in the β–deformed case are not applicable anymore. We do not

therefore have a means of understanding the commutation relations between holomor-

phic and antiholomorphic fields/coordinates despite the fact that we believe such a

cosntruction may be possible in the future. In addition we do not even know whether

a noncommutative description of the transverse space will be valid throughout the

flow 12.

Nevertheless, we could still expect to find the relevant supergravity solutions and

use that as a means of understanding the precise gauge theory duals. Unfortunately

this is again a difficult task to pursue because the solution generating technique

11Here we defined z1 ≡ x1 + ix2 and z2 ≡ x3 + ix4 with xi as appearing in equation (2.20).
12Note however that it is possible to further examine this in certain cases, especially when some

of the fields can be integrated out by considering the theory at appropriate energy scales.
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discussed in this paper in not applicable anymore. The reason for this lies in the

fact that the directions where the noncommutativity parameter is constant are not

isometry directions of the transverse part of the D3–brane geometry. One could

of course apply the T–duality transform on flat space. This would give rise to a

deformed flat space geometry with non–trivial B–field and dilaton turned on, in which

once D3–branes are immersed and the near horizon limit is taken, would result in the

appropriate gravity dual. We think that it will be very interesting to explore this point

further as well as to study the corresponding gauge theories which we schemmatically

described above.

2.6 Discussion

In this chapter, we established a precise relation between noncommutativity and β–

deformations of N = 4 SYM theory. We first identified a specific matrix within the

solution generating transform of [14, 40] which plays the role of noncommutativity

parameter Θij and then showed how it arises from the gauge theory point of view.

Moreover, we explained that it is possible to fully specify Θij by imposing require-

ments on its particular form naturally deduced from the gauge theory and AdS/CFT.

We further argued that Θij thus constructed encompasses all the relevant information

on the moduli space of the gauge theory.

This hints at an alternative path in exploring deformations of the original AdS/CFT

proposal [3] which consists in first specifying the associated open string parameters

and then mapping them to the closed string ones. Here we investigated the former

issue for the particular case of a Leigh–Strassler marginal deformation of the N = 4

SYM theory. The mapping to the closed degrees of freedom in this case was granted
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to us in the form of T–duality transformation rules. In the next chapter, we will com-

bine the basic reasoning set forth in this note with an attempt to address the latter

issue in a situation where U(1) symmetries are absent and the T–duality prescription

is not applicable. Such is the case for the superpotential deformation of equation

(2.1) with ρ 6= 0.
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Chapter 3

Open vs. Closed string parameters

3.1 Introduction

The AdS/CFT correspondence [67, 4, 5] offers an equivalence between gauge theory

and gravity. In its original form, relates superconformal N = 4 SU(N) Super Yang–

Mills to closed string theory on AdS5×S5with N units of RR–flux. While closed strings

on nontrivial backgrounds with RR–fluxes are still in many ways intractable, their

low energy description in terms of supergravity is not. From the gauge theory point

of view, this limit corresponds to large N and strong t’Hooft coupling λ. This makes

the correspondence extremely useful in that it provides a window into understanding

the physics of gauge theories in a region that is otherwise difficult to explore. By now

the original proposal has been greatly extended so as to cover gauge theories with less

amount of supersymmetry and/or a running coupling constant [47, 68, 69, 70, 71, 72].

Despite however the progress made thus far the natural question of how to specify

the gravitational background corresponding to a given gauge theory, is still far from
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being understood 1. In this chapter, we will attempt to give an alternative point of

view on this matter while investigating exactly marginal deformations of the N = 4

theory.

Supersymmetric deformations of the original AdS/CFT proposal have been exten-

sively explored with the main cases of interest being, exactly marginal and relevant

deformations. Whereas it would have been natural to think that the gravity dual

backgrounds of the former would be more accessible than those of the latter it actu-

ally turned out the opposite. In fact the gravity duals of a class of supersymmetric

mass deformations, all along their renormalization group flow, were discovered quite

early on — see for example [73, 74, 75] and references therein — even though in most

cases an analytic solution was provided only for the associated conformal fixed points.

The main reason is that these backgrounds can be analyzed using the truncation to

five–dimensional supergravity, something which is not possible for marginal deforma-

tions of the N = 4 theory. Actualy it was only fairly recently that the authors of

[14] succeeded in constructing the corresponding backgrounds for a subclass of these

latter theories.

Marginal deformations of N = 4 SYM preserve N = 1 supersymmetry and are

mainly described by two parameters, denoted as β and ρ, in addition to the gauge

coupling gY M . In [14] Lunin and Maldacena discovered the geometry dual to the

β–deformed theory i.e. when ρ = 0. In this case, extra U(1) global symmetries are

present which played a significant part in the construction of the new solution. When

ρ 6= 0 however, the theory does not preserve any continuous symmetries other than

the U(1) R–symmetry and the problem has resisted solution thus far. In this note, we

1For an existing approach to related issues see for instance [8, 9, 10, 11, 12, 13] and references
therein.
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construct the supergravity solution dual to the ρ–deformed theory up to third order in

the deformation parameter. We propose a method which — although rudimentary at

this stage — may provide additional means in exploring deformations of the original

AdS/CFT proposal. The main idea, is to encode information from the gauge theory

moduli space into the set of open string parameters (G,Θ) and then map them to the

closed string ones (g, B).

In the previous chapter, we achieved the first step in this direction by establishing

a precise relation between transverse space noncommutativity and β–deformations

of N = 4 SYM. We identified the role of the noncommutativity matrix Θ in the

solution generating technique of Lunin and Maldacena and showed how to explicitly

construct it, relying on gauge theory data and basic notions of AdS/CFT. The result-

ing noncommutativity matrix Θ, along with the flat metric of the transverse space

Gflat, provided an alternative way of encoding the moduli space. They constitute

the open string parameters (G,Θ). Following here the method of [17] we acquire the

corresponding set of open string data for the ρ–deformed gauge theory. In this case,

it turns out that Θ defines a nonassociative, as well as noncommutative, deformation

of the transverse space.

Having obtained the open string parameters, we move on to explore possible map-

pings to the closed string ones. It is natural to expect by T–duality, that the results of

Seiberg and Witten [15] — see also [16] — relating noncommutativity to the presence

of a nonvanishing B–field, will be valid independently of whether the noncommuta-

tive deformation is along or transverse to the D–brane. It follows that the equations

which establish a connection between the open (G,Θ) and closed (g, B) string fields

in that setting, present a potential mapping of the associated parameters in this case

as well. We therefore employ them in the context of the ρ–deformation and determine
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the deformed flat space background into where D–branes are immersed up to third

order in the deformation parameter.

We then consider the effective action of the ρ–deformed gauge theory, obtained

by giving a vacuum expectation value to one of the scalars and integrating out the

massive fields. According to [76, 77, 78, 79, 80, 81], the leading IR large N part

of this action should coincide with the DBI action for a D3–brane immersed in the

dual background. We observe that in the case of the β–deformed gauge theory, the

corresponding DBI action is characterized by the open string data (GAdS5×S5 ,Θ) and

that the associated NS–NS closed string fields (g, B) are part of the exact Lunin–

Maldacena solution. This is not surprising. Indeed, the Lagrangian description of

this theory can be given in terms of the N = 4 Lagrangian with the product of matter

fields replaced by a star product of the Moyal type. Subsequently, all amplitudes in

the planar limit can be shown [29] to be proportional up to a phase to their N = 4

counterparts. Then the open string data (GAdS5×S5,Θ = 0) of the N = 4 SYM theory

are naturally promoted to the set (GAdS5×S5 ,Θ). Can something similar occur for the

ρ–deformation?

Since the noncommutativity parameter now defines a nonassociative deformation,

it is hard to imagine how the planar equivalence with the parent N = 4 theory could

be achieved. Yet nonassociativity is a second–order in ρ effect and it turns out that

up to third order in ρ this is indeed the case. In other words, mapping the open string

fields to the closed ones provides again a supergravity solution to this order — the

gravity dual of the ρ–deformed gauge theory.

The structure of this chapter is the following: In section 2 we review some known

facts about marginal deformations of the N = 4 theory and their gravity duals.

In addition, we explore some special points in the deformation space for which the
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general theory with β 6= 0 and ρ 6= 0 is equivalent to an exactly marginal deformation

with either β̃ = 0 or ρ̃ = 0. In section 3, we employ the method proposed in [17]

in order to determine the relevant noncommutativity matrix for the ρ–deformation.

Having acquired the open string data, we move on to map them to the closed string

fields (g, B). This procedure is illustrated in section 4 where we derive the ρ–deformed

flat space geometry up to third order in the deformation parameter. In section 5 we

proceed with considerations on the DBI action which provide us with the gravity dual

of the ρ–deformed theory to the same order. Finally, section 6, contains an extensive

discussion on the ideas set forth in this note.

3.2 The Leigh Strassler Deformation

Not long after it was realized that N = 4 SU(N) Super Yang Mills theory is finite (see

e.g. [82] for an account), it became clear that it might not be the only four dimensional

theory with that property [83, 84, 85, 86, 87]. It was however almost ten years later,

when Leigh and Strassler undertook a systematic study of marginal deformations of

N = 4 and indeed showed that there exists a whole class of N = 1 supersymmetric

gauge theories satisfying both the requirements for conformal invariance and finiteness

[19]. More precisely, they showed that the N = 4 theory admits a three–complex–

parameter family of marginal deformations which preserve N = 1 supersymmetry

and are described by the following superpotential:

W = ihTr
[(
eiβΦ1Φ2Φ3 − e−iβΦ1Φ3Φ2

)
+ ρ

(
Φ3

1 + Φ3
2 + Φ3

3

)]
(3.1)
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where ΦI with I = 1, 2, 3 are the three chiral superfields of the theory. Together

with the gauge coupling gY M , the complex parameters (h, β, ρ) that appear in the

superpotential constitute the four couplings of the theory.

While it is clear at the classical level that these deformations are marginal — since

all operators of the component Lagrangian have classical mass dimension equal to four

— this is not necessarily true quantum mechanically. Leigh and Strassler realized that

by using the constraints ofN = 1 supersymmetry and the exact NSVZ beta–functions

[88, 89, 90] written in terms of the various anomalous dimensions of the theory, it was

possible to express the conditions for conformal invariance of the quantum theory,

through linearly dependent equations which were therefore likely to have nontrivial

solutions. In this way, they were able to demonstrate that the deformation of (3.1)

is truly marginal at the quantum level, so long as the four couplings of the theory

satisfy a single complex constraint γ(gY M , κ, β, ρ) = 0. In other words, there exists

a three–complex–dimensional surface γ(gY M , κ, β, ρ) = 0 in the space of couplings,

where both beta functions and anomalous dimensions vanish and thus the N = 1

gauge theories mentioned above are indeed conformally invariant. In general, the

function γ is not known beyond two–loops [91, 92, 93, 30, 94] in perturbation theory,

where it reads:

|h|2
[

1

2

(
|q|2 +

1

|q|2
)
− 1

N2

∣∣∣∣q −
1

q

∣∣∣∣
2

+ |ρ|2
(
N2 − 4

2N2

)]
= g2

Y M (3.2)

with q defined as q = eiβ and N the number of colours of the gauge theory.

For the β–deformed gauge theory, i.e., obtained by setting ρ = 0 in the superpo-

tential of equation (3.1), the Leigh–Strassler constraint at two loops can be written
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as:

|h|2
[

1

2

(
|q|2 +

1

|q|2
)
− 1

N2

∣∣∣∣q −
1

q

∣∣∣∣
2
]

= g2
Y M (3.3)

In this case, one immediately notices that when β = βR ∈ R therefore |q| = 1, (3.3)

reduces to:

|h|2
[
1− 1

N2

∣∣∣∣q −
1

q

∣∣∣∣
2
]

= |h|2
(

1− 4

N2
sin2 βR

)
= g2

Y M (3.4)

which in the large N limit yields: |h|2 = g2
Y M . Despite the fact that this result was

obtained from the two–loop expression of the conformal invariance condition, it has

been shown to be true to all orders in perturbation theory in the planar limit [29]

(see also [31, 94]). Actually the author of [29] went even further and showed that

all planar amplitudes in the β = βR ∈ R theory are proportional to their N = 4

counterparts, thus explicitly proving finiteness and conformal invariance. The proof

made use of an existing proposal [14] for an equivalent ”noncommutative” realization

of the theory. For the more general case of complex β = βR + iβI, equation (3.3) in

the planar limit reads:

1

2
|h|2

(
|q|2 +

1

|q|2
)

= |h|2 cosh (2βI) = g2
Y M (3.5)

It is then evident that the coupling constant h receives corrections with respect to

its N = 4 SYM value. Nevertheless, diagrammatic analysis [29] showed that all

planar amplitudes with external gluons are equal to those of the N = 4 theory up

to a five–loop level. To this order and beyond, it is most likely that the planar

equivalence between the parent theory and its deformation will break down. For

(more) recent investigation on β–deformations from the gauge theory point of view
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see [30, 94, 32, 34, 95, 96, 33].

Special points along the deformation occur when β is a root of unity. These points

have been studied early on [97, 61] with a dual interpretation as orbifolds with discrete

torsion. The marginally deformed theories have been further explored in [98, 99, 100],

and several remarkable properties have been demonstrated. In particular it was shown

that as expected, the S–duality of N = 4 extends to their space of vacua, and that,

again for special values of β, there are also new Higgs branches on moduli space.

These are mapped by S–duality to completely new, confining branches which appear

only at the quantum level. Furthermore, at large N the Higgs and confining branches

can be argued to be described by Little String Theory [100]. Finally, the possibility of

an underlying integrable structure for the deformed theories in analogy with N = 4

SYM, was investigated at special values of the deformation parameter in [26, 101]

and for generic β in [27, 28, 102, 103].

3.2.1 Marginal deformations and gauge/gravity duality

A natural place to explore theories that arise as marginal deformations of N = 4

SU(N) SYM is the AdS/CFT correspondence where the strong coupling regime of

the undeformed theory is realized as weakly coupled supergravity on AdS5× S5. Due

to superconformal symmetry, the dual gravitational description of these theories is

expected to be of the form: AdS5 × S̃5 with S̃5 a sphere deformed by the presence

of additional NS–NS and RR fluxes. Indeed in [104], where the dual background

was constructed to second order in the deformation parameters, it was shown that

apart from the already present five–form flux one should also turn on (complexified)

three–form flux G(3) along the S5.
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Essential progress however in this direction was only recently achieved through

the work of Lunin and Maldacena [14]. The authors of [14] succeeded in finding the

exact gravity dual of the β–deformed gauge theory.

In this case, apart from the U(1)R R–symmetry the theory preserves two global

U(1)s, which act on the superfields in the following way:

U(1)1 : (Φ1,Φ2,Φ3)→ (Φ1, e
iα1Φ2, e

−iα1Φ3)

U(1)2 : (Φ1,Φ2,Φ3)→ (e−iα2Φ1, e
iα2Φ2,Φ3)

(3.6)

The main idea underlying the solution generating technique proposed in [14], was

the natural expectation that the two U(1) symmetries preserved by the deformation

would be realized geometrically in the dual gravity solution. For β = βR ∈ R their

prescription amounts to performing an SL(2,R) transformation on the complexified

Kähler modulus τ of the two torus associated with the U(1) symmetries in question.

The specific element of SL(2,R) under consideration is: ( a b
c d ) ≡ ( 1 0

c 1 ). It is chosen so

as to ensure that the new solution will present no singularities as long as the original

one is non–singular and its sole free parameter c is naturally identified with the real

deformation parameter βR of the gauge theory.

Later on, the method of Lunin and Maldacena was reformulated [40] in terms

of the action of a T–duality group element on the background matrix E = g + B

providing a significantly easier way of obtaining the new solutions. In particular, it

was shown [40] that one can embed the SL(2,R) that acts on the Kähler modulus
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into the T–duality group O(3, 3,R) in the following way:

T =




1 0

Γ 1


 where now Γ ≡




0 −βR βR

βR 0 −βR

−βR βR 0




(3.7)

where 1 and 0 represent the 3 × 3 identity and zero matrices respectively. Suppose

then that E0 = g0 + B0 denotes the part of the original supergravity background

along the U(1) isometry directions which are to be deformed. Acting on E0 with the

T–duality group element T of (3.7) one obtains the NS–NS fields of the deformed

solution in terms of E0 and Γ according to:

E =
1

E−1
0 + Γ

e2Φ = e2Φ0 det(1 + E0Γ) ≡ e2Φ0G

(3.8)

The RR-fields of the background can be computed using the T–duality transformation

rules of [42, 43, 44, 45, 46], however the details of this transformation need not concern

us here. As an example, let us consider ten–dimensional flat space parametrized as:

ds2 = −dt2 +

3∑

µ=1

dxµdxµ +

3∑

i=1

(dr2
i + r2

i dϕ
2
i ) (3.9)

In this case E0 will contain the components of the flat metric along the polar angles
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ϕi. Applying equations (3.8) yields:

ds2 = −dt2 +

3∑

µ=1

dxµdxµ +

3∑

i=1

(dr2
i +Gr2

i dϕ
2
i ) + βRGr

2
1r

2
2r

2
3

(
3∑

i=1

dϕi

)2

e2Φ = G, G−1 = 1 + β2
R

(
∑

i6=j

r2
i r

2
j

)
, B = βRG

(
∑

i6=j

r2
i r

2
jdϕidϕj

) (3.10)

This is the deformed flat space geometry where by placing D3–branes at the origin

and taking the near horizon limit, one obtains the gravity dual to the β–deformed

gauge theory. Alternatively, the latter background can be constructed by applying

(3.8) on AdS5 × S5representing the dual gravitational description of the undeformed

parent N = 4 theory:

ds2 =R2(ds2
AdS5

+ ds2
5), where : ds2

5 =
∑

i

(dµ2
i +Gµ2

i dϕ
2
i ) + β̂Gµ2

1µ
2
2µ

2
3(
∑

i

dϕi)
2

e2Φ = e2Φ0G, G−1 = 1 + β̂2(
∑

i6=j

µ2
iµ

2
j), β̂ = R2βR, R4 = 4πeΦ0N

B = β̂R2G

(
∑

i6=j

µ2
iµ

2
jdϕidϕj

)
C2 = −βR(16πN)ω1(

∑

i

dϕi)

F5 = (16πN)(ωAdS5 +GωS5), ωS5 = dω1dϕ1dϕ2dϕ3, ωAdS5 = dω4

(3.11)

Reformulating the Lunin–Maldacena generating solution technique in terms of the

T–dualty group action, made especially transparent its relation to similar methods

employed in the context of noncommutative gauge theories 2. In the previous chap-

ter, we identified the prescriptions used in these cases and particularly showed that

matrix Γ of (3.7) is precisely the noncommutativity matrix Θ associated with the de-

2In fact, evidence relating marginal deformations and noncommutativity was given earlier both
at strong [61] and weak [105, 106] coupling.
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formation of the transverse space. Moreover, we proposed a method for determining

Θ based solely on information from the gauge theory Lagrangian and basic notions

of AdS/CFT. The main idea was to think of the matter fields as coordinates (zI , zĪ)

parametrizing the space transverse to the D3–brane where the gauge theory lives.

Then, reality properties, global symmetries and marginality constrained the form of

Θ to be:

Θβ = a




0 z1z2 −z1z3 0 −z1z2 z1z3

−z1z2 0 z2z3 z1z2 0 −z2z3

z3z1 −z2z3 0 −z1z3 z2z3 0

0 −z1z2 z1z3 0 z1z2 −z1z3

z1z2 0 −z2z3 −z1z2 0 z2z3

−z3z1 z3z2 0 z1z3 −z2z3 0




(3.12)

with a = 2 sin βR. While it may seem that Θβ is dissimilar from matrix Γ of (3.7),

a coordinate transformation from (zI , zĪ) to polar coordinates (ri, ϕi) on R6 reveals

that:

Θβ =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −a a

0 0 0 a 0 −a

0 0 0 −a a 0




(3.13)

thereby proving their identification 3.

For the general case of complex β, to obtain the dual background, one needs to

perform an additional SL(2,R)s transformation on the solution corresponding to βR.

3Note that the Lunin–Maldacena technique is valid for small βR in which case a = 2βR
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By SL(2,R)s we denote here the SL(2,R) symmetry of ten dimensional type IIB

supergravity which acts nontrivially on the compexified scalar and two–form fields of

the theory. Being a symmetry of the equations of motion it can be used to generate

distinct solutions. Subsequent work on the subject of the β–deformed gauge theories

has provided further checks of the AdS/CFT correspondence [20, 21, 22, 23, 24, 25]

whereas generalizations as well as applications of the solution generating technique

introduced in [14] were considered in [36, 28, 25, 37, 38, 39].

3.2.2 Special points along the general Leigh–Strassler defor-

mation

In this article we will be mainly interested in the ρ–deformed gauge theories. In this

case — when ρ 6= 0 — the theory does not preserve additional U(1) symmetries, it is

however invariant under a global discrete symmetry Z3×Z3 acting on the superfields

as:

Z3(1) : (Φ1,Φ2,Φ3)→ (Φ3,Φ1,Φ2)

Z3(2) : (Φ1,Φ2,Φ3)→ (Φ1, e
i2π
3 Φ2, e

−i2π
3 Φ3)

(3.14)

As previously mentioned, the presence of global U(1)s is crucial in the solution gen-

erating technique of Lunin and Maldacena which is therefore not applicable here. In

fact, the exact gravity dual for this case is still unknown. Despite however that the

absence of extra continuous symmetries makes the cases of ρ = 0 and ρ 6= 0 radically

different, there exist special points along the space of couplings where the two theories

are not only similar but actually equivalent.

As first pointed out in [61] — see also [101, 107]— it is possible to start with
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either the set (β, ρ) = (β, 0) or (β, ρ) = (0, ρ), and via a field redefinition reach a

point in the deformation space with (β̃ 6= 0, ρ̃ 6= 0). The final point will obviously

not represent the most general deformation, since the new couplings β̃ and ρ̃ will be

given in terms of the original parameter. In other words, there will exist a function

f(β̃, ρ̃) = 0 relating the two. Furthermore, requiring that the field redefinition be

the result of a unitary transformation imposes a restriction on the original value of

the coupling; be it β or ρ. In particular, suppose that we consider the marginally

deformed theory at the point (β, ρ = 0) and then take:




Φ1

Φ2

Φ3



→




A A A

B ωB ω2B

C ω2C ωC







Φ1

Φ2

Φ3




(3.15)

with ΦI the three chiral superfields and ω = ei2π/3 the third root of unity. Note here

that since the deformation enters only in the superpotential, it suffices to consider

transformations that affect the chiral fields independently from the antichiral ones.

In other words, we do not expect mixing between holomorphic and antiholomorphic

pieces. If we furthermore impose the following conditions on the free parameters

A,B,C: |A| = |B| = |C| = 1√
3

and ABC = ± iλ
3
√

1+2 cos 2β
with λ ∈ C, we find that the

original β–deformed gauge theory is equivalent to the marginally deformed N = 4

SYM theory with coupling constants:

ρ̃ = ± 2 sinβ

3
√

1 + 2 cos 2β
and eieβ = ± 2 cos (β − π

6
)√

1 + 2 cos 2β
(3.16)
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provided that β = βR + iβI satisfies the following equation:

4 cos 2βR cos 2βI + 4 cos2 2βR + 4 cos2 2βI − 3 (1 + 3λ) = 0 (3.17)

Solutions to (3.17) define special regions in the coupling constant space where the

Leigh–Strassler theory with generic β and ρ = 0 is equivalent to a theory with both β̃

and ρ̃ nonvanishing but constrained to satisfy a specific relation dictated from (3.16).

It is worth remarking here that there is no solution of (3.16) and (3.17) for which both

β and β̃ are real. This is particularly interesting, because it is only for the β–deformed

gauge theory with β = βR ∈ R that a precise connection with noncommutativity is

possible. It is natural to wonder whether distinct unitary field redefinitions of a type

similar to (3.15) could take us from different β’s to different β̃ and ρ̃. It is however not

hard to deduce that up to a phase in ρ̃ — which can be reabsorbed in the definition

of the coupling constant h — and a sign in β̃, all such unitary transformations share

the same starting point (3.17) and lead to the same theory (3.16).

In an analogous manner one can find specific values of ρ for which the theory with

β = 0 is equivalent to another one with both couplings β̃ and ρ̃ turned on. Detailed

analysis in this case shows in fact that such a mapping is possible for any original

value of ρ with parameters ρ̃ and β̃ given by:

ρ̃2 = − ρ2

ρ2 + 3
, and sin2 β̃ = −ρ̃2 =

ρ2

ρ2 + 3
(3.18)
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The precise field redefinition through which this is achieved, is of the form of (3.15):




Φ1

Φ2

Φ3



→ 1√

3




1 1 1

1 ω ω2

1 ω2 ω







Φ1

Φ2

Φ3




(3.19)

Note here again that β̃ = β̃R ∈ R if and only if ρ ∈ R which implies that ρ̃ ∈ I. If

one additionaly assumes that β̃R ∈ R� 1 then the deformed theory with β = 0 and

ρ = q1 ∈ R is equivalent to a theory with 2 sin β̃ = ±2 q1√
3

and ρ̃ = ±i q1√
3
∈ I. In

section 3, we will see that this particular point in the deformation space naturally

shows up in the noncommutative description of the moduli space. This will provide

us with a non–trivial check on the consistency of the noncommutative interpretation.

So far we have looked at special points in the space of couplings which can be

studied at the level of the gauge theory lagrangian. There are however a couple of

interesting observations one can additionaly make on the basis of the Leigh–Strassler

constraint as this is given in equation (3.2). Notice first that (3.2) reduces in the

planar limit to:

|h|2
[
1

2

(
|q|2 +

1

|q|2
)

+
1

2
|ρ|2
]

= |h|2
[
cosh (2βI) +

1

2
|ρ|2
]

= g2
Y M (3.20)

This implies that when ρ 6= 0 the coupling constant h at the conformal fixed point

will be different from gY M , in contrast to what happens for β = βR ∈ R. In this sense,

turning on ρ is similar to turning on the imaginary part of β = βI. Yet, there seems

to exist a particular point in the deformation space for which h = gY M continues to
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hold in the large N limit. This occurs when:

cosh (2βI) +
1

2
|ρ|2 = 1⇒ βI =

1

2
arg cosh (1− |ρ|

2

2
) (3.21)

Closer inspection however of (3.21) reveals that it has no possible solutions, assuming

βI ∈ R and |ρ| > 0. This implies that despite appearances, there is no special point

for which h = gY M at two loops in the planar limit. Naturally, one expects that an

analogous equation relating the two couplings, for which h = gY M at large N, may

arise at any order in perturbation theory. What is not clear of course, is whether it

will generically have any solutions or not.

3.3 Marginal deformations and Noncommutativ-

ity

In chapter 2 we showed that for the β–deformed gauge theory it is possible to construct

a noncommutativity matrix Θ encoding in a precise manner information on the moduli

space of the theory. This construction is very simple and is based on fundamental

properties of the gauge theory and AdS/CFT. In what follows we will adopt the

reasoning outlined in the previous chapter, in order to determine a noncommutativity

matrix for the ρ–deformation. We set β = 0 for the time being and later on discuss

how to incorporate β 6= 0.

Our starting point is the F–term constraints:

Φ1Φ2 = Φ2Φ1 + ρΦ2
3, Φ2Φ3 = Φ3Φ2 + ρΦ2

1, Φ3Φ1 = Φ1Φ3 + ρΦ2
2

Φ1Φ2 = Φ2Φ1 − ρΦ2

3, Φ2Φ3 = Φ3Φ2 − ρΦ2

1, Φ3Φ1 = Φ1Φ3 − ρΦ2

2

(3.22)
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from which we read the holomorphic and antiholomorphic parts of Θ interpreting

the eigenvalues of these matrices in the large N limit, as noncommuting coordinates

parametrizing the space transverse to the worldvolume of the D3–brane. More pre-

cisely we have:

[z1, z2] = ρz2
3 , [z2, z3] = ρz2

1 , [z3, z1] = ρz2
2

[z1, z2] = −ρz2
3, [z2, z3] = −ρz2

1, [z3, z1] = −ρz2
2

(3.23)

Following again the steps of chapter 2, we would like to assume that there exists a

star product between some commuting variables zI , zĪ which leads to commutation

relations analogous to (3.23), so that we can write for instance: iΘ12 = [z1, z2]∗ =

z1 ∗ z2 − z2 ∗ z1 = ρz2
3 . This enables us to define a noncommutativity matrix which

although position dependent, its entries are ordinary commuting objects. Then, under

a change of coordinates Θ will transform as a contravariant antisymmetric tensor field.

We therefore write Θ in matrix form as:

Θ =




0 iρz2
3 −iρz2

2

−iρz2
3 0 iρz2

1 ?

iρz2
2 −iρz2

1 0

0 −iρz̄2
3 iρz̄2

2

? iρz̄2
3 0 −iρz̄2

1

−iρz̄2
2 iρz̄2

1 0




(3.24)

It is clear from (3.24) that the F–term constraints determine the (2,0) and (0,2) parts

of Θ. D–terms will in principle specify the (1,1) piecies of the noncommutativity

matrix. However, as demonstrated in section 2.4, there is an alternative indirect
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way of acquiring the information pertaining to D–terms. Recall that for the β–

deformed gauge theory it was possible to fully determine Θ by imposing certain

simple conditions on its form — namely definite reality properties, symmetries and

marginality. If and only if, there exists a choice for the ΘIĪ components of the

noncommutativity matrix and the parameter ρ which respects these requirements,

can we hope to describe the deformation in noncommutative terms 4. We will see in

the following that this is indeed the case here.

Let us first find out what are the possible (1,1) pieces of Θ which respect the

symmetries of the theory. Consider for instance the commutator [z1, z2̄] = iΘ12̄(z, z).

We easily see that: [z1, z2̄]
Z3(2)−−−→ e−

i2π
3 [z1, z2̄]. This constrains Θ12̄ to either vanish

or be a combination of any of the following: z 1̄z3, z3̄z2, z1z2̄. Note that all of the

choices displayed are also invariant under the other discrete symmetry of the theory

Z3(1) as they should. In a similar fashion, one can determine all the other possible

components of ΘIJ̄ . Overall, this yields a plethora of potential noncommutativity

parameters. Transforming however Θ to spherical coordinates 5 and requiring that it

be real, transverse to and independent of the radial direction r, uniquely determines

Θ. To be more precise, there remain two different possibilities for ΘIJ . One of them

is valid for ρ ≡ −q1 ∈ R:

Θ1 = iq1




0 z2
3 −z2

2 0 −z3z̄1+z2z̄3 z2z̄1−z3z̄2

−z2
3 0 z2

1 z̄2z3−z1z̄3 0 −z1z̄2+z3 z̄1

z2
2 −z2

1 0 −z2 z̄3+z1z̄2 z1 z̄3−z2 z̄1 0

0 −z3 z̄2+z1z̄3 z2 z̄3−z1z̄2 0 −z̄2
3 z̄2

2

z3 z̄1−z2z̄3 0 −z1z̄3+z2z̄1 z̄2
3 0 −z̄2

1

−z2z̄1+z3z̄2 z1z̄2−z3z̄1 0 −z̄2
2 z̄2

1 0


 (3.25)

4Note for instance, that this description was not valid for the β–deformed theory when β ∈ I.
5Refer to appendix B for the noncommutativity matrix in different coordinate systems.
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and the other one, for ρ ≡ iq2 with q2 ∈ R:

Θ2 = q2




0 z2
3 −z2

2 0 z3z1+z2z3 −z2z1−z3z2

−z2
3 0 z2

1 −z2z3−z1z3 0 z1z2+z3z1

z2
2 −z2

1 0 z2z3+z1z2 −z1z3−z2z1 0

0 z3z2+z1z3 −z2z3−z1z2 0 z2
3 −z2

2

−z3z1−z2z3 0 z1z3+z2z1 −z2
3 0 z2

1

z2z1+z3z2 −z1z2−z3z1 0 z2
2 −z2

1 0


 (3.26)

Combining the two into Θρ = Θ1 + Θ2 we define a unique noncommutativity matrix

Θ describing the ρ–deformation for general complex ρ = (−q1 + iq2) ∈ C. This

presumably indicates that a noncommutative description of the transverse space is

valid thoughout the whole of the ρ parameter space, contrary to what happens for

the β–deformed gauge theory.

Let us now examine Θ in order to determine its properties. Recall that the

noncommutativity parameter for the β–deformed theory, turned out to be position

independent along isometry directions of the metric. This was crucial for employing

the Lunin–Maldacena generating technique. In this case, we obviously do not expect

Θ to be constant along isometry directions since we know that the ρ–deformed the-

ory does not respect any other global U(1) symmetries except for the R–symmetry.

Indeed, Θ is of a highly nontrivial form even when written in spherical coordinates

(See appendix B). We may however hope to find a coordinate system for which Θ is

position independent, even if not along isometry directions 6. Recall that we already

presented what we believe are the two necessary and sufficient conditions for this to

occur:

∂iΘ
ij = 0

T [ijk] ≡ Θil∂lΘ
jk + Θkl∂lΘ

ij + Θjl∂lΘ
ki = 0





⇒ T [ijk] = ∂l(Θ

l[iΘjk]) = 0 (3.27)

6This is the case for the nongeometric Q–space [58, 59, 60], for instance.
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It is actually easy to see that although the first condition is satisfied by the noncom-

mutativity matrix thus determined, the second one is not. This implies that contrary

to the β–deformation, there doesn’t exist a coordinate system in which Θ can be

put in constant form 7. More importantly however, nonassociativity makes the task

of explicitly constructing an appropriate star product for the scalar fields a rather

non–trivial one. In fact, we have not so far been able to find a star product so as

to rewrite the Lagrangian of the ρ–deformed gauge theory as that of the N = 4 La-

grangian with the usual product between the matter content of the theory replaced

by the star product. We will further address this issue in relation to the applicability

of the method used in this article in section 7.

Finally, note that failure of associativity stems particularly from the (1,1) parts of

the noncommutativity matrix thus naturally challenging our method for determining

them. There exists however what we believe to be a highly non–trivial check that

we have constructed the correct Θ describing the deformation. We saw in the previ-

ous section, that for some special points in the space of couplings of the marginally

deformed theory, one can move from a theory where either β or ρ (but not both) is

turned on, to a theory where both couplings are nonvanishing. The whole analysis

as well as the appropriate field redefinitions which took us from one point to the

other in the deformation space, relied on the holomorphicity of the superpotential.

It would thus appear quite improbable that we would be able to see it happening

in this context. In principle however, one would expect that if the deformation is

indeed described from an open string theory perspective as a noncommutative de-

formation of the transverse space, then at these special points Θ should transform

7Note that this does not of course exclude the possibility of finding a reference frame for which
this is true. Integrability however will be lost.
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under a change of coordinates from Θβ or Θρ to Θ = Θeβ + Θeρ. Moreover, one might

hope that the coordinate transformation which would make this possible would be

the precise analog of the field redefinition applied to the gauge theory. Note however

that in the case of the β–deformation, it is only for β = βR ∈ R that a noncommuta-

tive description — with parameter a = 2 sin βR — is valid. This implies that we can

apply the above consistency check if and only if both the original and final points in

the coupling constant space involve a real parameter βR. A glance at the previous

section will convince us that this indeed occurs: starting with ρ = q1 ∈ R and β = 0

one can reach a point with ρ̃ = iq1√
3
∈ I and ã = 2 sin β̃ = 2q1√

3
∈ R. In fact it is

quite straightforward to check that a coordinate transformation according to (3.19)

leads us from Θρ = −Θ1 to Θ = Θ
ea=

2q1√
3

+ Θ
eρ=

iq1√
3

. Furthermore, it appears that this

case exhausts all possible coordinate changes that relate noncommutativity matrices

corresponding to different parameters of the Leigh–Strassler deformation. We take

this result as evidence that both our prescription for determining the (1,1) parts of

Θ as well as the very interpretation of the deformation in noncommutative terms are

indeed justified.

3.4 The Seiberg–Witten equations and the deformed

flat space solution.

In the previous section, we saw how the deformation of the superpotential affects

the moduli space of the gauge theory at large N. In particular, the six dimensional

flat space with metric GIJ of the N = 4 theory is promoted to a noncommutative

space characterized now by the set GIJ and ΘIJ . Both metric and noncommutativity
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parameter are mainly determined from the Lagrangian of the theory; the former is

read off from the kinetic term of the scalars while the latter from their potential.

Since an SU(N) gauge theory can be realized as the low energy limit of open

strings attached on a stack of D3–branes, the set (Gflat,Θ) describes the geometry of

the transverse space as seen by the open strings in the limit of large N and α′ → 0.

We will thus refer to (Gflat,Θ) as the open string parameters .

On the other hand, any theory of open strings necessarily contains closed strings.

Closed strings however perceive the geometry quite differently from open strings. In

fact, it was shown in [15, 16] that target space noncommutativity from the point

of view of open strings corresponds to turning on a B–field from the viewpoint of

closed strings. The set (g, B), with g the closed string metric, are the closed string

parameters that describe the same geometry. In this context, (g, B) represent the

deformed flat space solution into which D3–branes are immersed 8. Suppose now that

we are given a set of equations relating the two groups of data. Then — provided

that the open string parameters determined in the previous section exactly and fully

describe the deformation — we could specify the closed string fields (g, B) of the

deformed flat space geometry for free, i.e. without having to solve the type IIB

differential equations of motion [108].

Equations relating open and closed string parameters indeed exist in the literature

[109, 110, 16, 15]:

g +B =
1

G−1 + Θ

gs = Gs

√
detG−1

det (G−1 + Θ)
= Gs

√
1

det (1 + ΘG)

(3.28)

8We are obviously interested here in the limit where open and closed strings are decoupled from
each other.
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where Gs, gs denote the corresponding open/closed string couplings 9. They were

however considered in a situation somewhat different from the one discussed in this

article, namely for a flat D–brane embedded in flat background space with a constant

B–field turned on along its worldvolume [16, 15]. It was under these circumstances

that, the presence of the background B–field was shown to deform the algebra of

functions on the worldvolume of the brane into that of a noncommutative Moyal

type of algebra, where Θ is a c–number. While it is natural to ask what happens

in situations where the B–field is not constant, technical difficulties have hindered

progress in this direction. In the order of increasing complexity, two cases can be

considered: the case of a closed dB = 0 though not necessarily constant two–form

field B and the case of nonvanishing NS–NS three form flux H = dB in a curved

background. In [111] the former case was explored and the Moyal deformation of

the algebra of functions on the brane worldvolume, was shown to naturally extend

to the Kontsevich star product deformation [112]. The authors of [113] — see also

[114, 115, 116] — undertook the study of the most general case where H = dB 6= 0.

They considered a special class of closed string backgrounds, called parallelizable, and

expanded the background fields in Taylor series. It was then possible to perturbatively

analyze n–point string amplitudes on the disk and obtain — in a first order expansion

— the appropriate generalization of (3.28). In fact, it turned out that equation (3.28)

is still valid for a weakly varying nonclosed B–field even though the corresponding

algebra of functions is now both noncommutative and nonassociative.

In this letter, we want to apply the above formulas in a situation where the B–field

lies in the transverse space to the D3–brane. Despite the fact that this case has not

9Note that Gs = 1 for the ρ–deformation.
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been explicitly studied in the literature 10 one expects by T–duality that equations

(3.28) should continue to hold. If our reasoning thus far is correct and (3.28) indeed

provide the relation between open and closed string parameters in this setup, the

resulting closed string fields (gs, g, B) will constitute a new supergravity solution, i.e.

the deformed flat space solution where D3–branes embedded.

There exists a natural place where we can test these ideas prior to checking whether

the type IIB field equations for the set (gs, g, B) are satisfied. Recall that both the

gravity dual and the corresponding deformed flat space background are known for the

β–deformed gauge theory [14]. The open string data (Gflat,ΘβR
) describing the β–

deformation were determined in the previous chapter, where the noncommutativity

parameter was found to be constant despite the fact that the associated NS–NS

three form flux was non zero. It is easy to show that applying (3.28) to the open

string parameters (Gflat,ΘβR
) one recovers the deformed flat space geometry found

by Lunin and Maldacena in [14]. This may appear as a surprise unless one observes

the extraordinary similarity between (3.28) and the T–duality transformation rules

of (3.8). In fact, these equations are identical in this case although the interpretation

of the variables involved is essentially different. We will return to this point again in

the following section.

Having tested our ideas in the context of the β–deformation, we proceed to check

whether one can specify the appropriate background for the ρ–deformation as well.

It actually turns out that the closed string data (gs, g, B) determined in the fashion

described above, satisfy the supergravity equations of motion only up to third order in

the deformation parameter ρ. The result is at least perplexing — whereas it doesn’t

10Mainly because a constant B–field in the transverse space can be gauged away leaving no trace
on the geometry.
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completely invalidate our considerations it indicates the presence of some kind of

flow in them. In fact, the discrepancy at higher orders can be traced in a variety of

reasons. Note however that the breakdown of (3.28) in the case of a nonassociative

deformation seems to be the most plausible one, since nonassociativity manifests itself

at second order in the deformation parameter. We postpone further discussion on this

issue until section 6 and close this section by presenting the detailed — though not

particularly illuminating — form of the solution to this order 11.

11See appendix B for the precise definition of the variables x, xi, y, yi which appear here.
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Metric g:

gr1r1 = 1−
(
r2
2

[
(q1x3 − q2y1)

2 + (q1y − q2x2)
2
]
+ r2

3

[
(q1y − q2x3)

2 + (q1x2 − q2y1)
2
])

gr2r2 = 1−
(
r2
1

[
(q1x3 − q2y2)

2 + (q1y − q2x1)
2
]
+ r2

3

[
(q1y − q2x3)

2 + (q1x1 − q2y2)
2
])

gr3r3 = 1−
(
r2
1

[
(q1x2 − q2y3)

2 + (q1y − q2x1)
2
]
+ r2

2

[
(q1y − q2x2)

2 + (q1x1 − q2y3)
2
])

gϕ1ϕ1 = r2
1

[
1−

(
r2
2

[
(q1x1 − q2y3)

2 + (q1y2 − q2x)2
]
+ r2

3

[
(q1y3 − q2x)2 + (q1x1 − q2y2)

2
])]

gϕ2ϕ2 = r2
2

[
1−

(
r2
1

[
(q1x2 − q2y3)

2 + (q1y1 − q2x)2
]
+ r2

3

[
(q1y3 − q2x)2 + (q1x2 − q2y1)

2
])]

gϕ3ϕ3 = r2
3

[
1−

(
r2
1

[
(q1x3 − q2y2)

2 + (q1y1 − q2x)2
]
+ r2

2

[
(q1y2 − q2x)2 + (q1x3 − q2y1)

2
])]

gr1r2 = r1r2 [(q1x3 − q2y1)(q1x3 − q2y2) + (q1y − q2x1)(q1y − q2x2)]

gr1r3 = r1r3 [(q1x2 − q2y1)(q1x2 − q2y3) + (q1y − q2x3)(q1y − q2x1)]

gr1ϕ1 = r1
(
r2
2 [(q1x3 − q2y1)(q2x− q1y2) + (q2x2 − q1y)(q1x1 − q2y3)] +

+ r2
3 [(q2x3 − q1y)(q1x1 − q2y2) + (q1x2 − q2y1)(q2x− q1y3)]

)

gr1ϕ2 = r1r
2
2 [(q2x− q1y1)(−q1x3 + q2y1) + (q2x2 − q1y)(−q1x2 + q2y3)]

gr1ϕ3 = r1r
2
3 [(q2x− q1y1)(−q1x2 + q2y1) + (q2x3 − q1y)(−q1x3 + q2y2)]

gr2r3 = r2r3 [(q1x1 − q2y3)(q1x1 − q2y2) + (q1y − q2x3)(q1y − q2x2)]

gr2ϕ1 = r2r
2
1 [(q2x− q1y2)(−q1x3 + q2y2) + (q2x1 − q1y)(−q1x1 + q2y3)]

gr2ϕ2 = r2
(
r2
1 [(q1x3 − q2y2)(q2x− q1y1) + (q2x1 − q1y)(q1x2 − q2y3)] +

+ r2
3 [(q2x3 − q1y)(q1x2 − q2y1) + (q1x1 − q2y2)(q2x− q1y3)]

)

gr2ϕ3 = r2r
2
3 [(q2x3 − q1y)(−q1x3 + q2y1) + (q2x− q1y2)(−q1x1 + q2y2)]

gr3ϕ1 = r3r
2
1 [(q2x1 − q1y)(−q1x1 + q2y2) + (q2x− q1y3)(−q1x2 + q2y3)]

gr3ϕ2 = r3r
2
2 [(q2x2 − q1y)(−q1x2 + q2y1) + (q2x− q1y3)(−q1x1 + q2y3)]

gr3ϕ3 = r3
(
r2
2 [(q1x3 − q2y1)(q2x2 − q1y) + (q2x− q1y2)(q1x1 − q2y3)] +

+ r2
1 [(q2x1 − q1y)(q1x3 − q2y2) + (q1x2 − q2y3)(q2x− q1y1)]

)

gϕ1ϕ2 = r2
1r

2
2 [(q2x− q1y1)(−q1x+ q2x) + (q2y3 − q1x2)(−q1x1 + q2y3)]

gϕ1ϕ3 = r2
1r

2
3 [(q2x− q1y1)(−q1y3 + q2x) + (q2y2 − q1x3)(−q1x1 + q2y2)]

gϕ2ϕ3 = r2
2r

2
3 [(q2x− q1y2)(−q1y3 + q2x) + (q2y1 − q1x3)(−q1x2 + q2y1)]

(3.29)
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Dilaton:

e2Φ = G

G = 1 + r2
1

[
(q1y − q2x1)

2 + (q1y1 − q2x)2 + (q1x3 − q2y2)
2 + (q1x2 − q2y3)

2
]
+

+ r2
2

[
(q1y − q2x2)

2 + (q1y2 − q2x)2 + (q1x1 − q2y3)
2 + (q1x3 − q2y1)

2
]
+

+ r2
3

[
(q1y − q2x3)

2 + (q1x2 − q2y1)
2 + (q1x1 − q2y2)

2 + (q1y3 − q2x)2
]

(3.30)

B–field:

Br1r2 = r3(q2x3 − q1y) Br2r3 = r1(q2x1 − q1y) Br3r1 = r2(q2x2 − q1y)

Br1ϕ2 = −r2r3(q1x2 − q2y1) Br1ϕ3 = r2r3(q1x3 − q2y1) Br2ϕ1 = r1r3(q1x1 − q2y2)

Br2ϕ3 = −r1r3(q1x3 − q2y2) Br3ϕ1 = −r1r2(q1x1 − q2y3) Br3ϕ2 = r1r2(q1x2 − q2y3)

Bϕ1ϕ2 = r1r2r3(q2x− q1y3) Bϕ2ϕ3 = r1r2r3(q2x− q1y1) Bϕ3ϕ1 = r1r2r3(q2x− q1y2)

(3.31)

3.5 D–branes in deformed AdS5 × S5 and the near

horizon geometry.

In this section we will address the issue of finding the gravity dual of the ρ–deformed

gauge theory. To this end, it is helpful to first consider the β–deformation. As

mentioned in the previous section, the T–duality transformation rules (3.8) with

which the Lunin–Maldacena solution was constructed are identical in form to (3.28).

Recall from section 2, that in order to obtain the dual background in this case one
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must use:

E0 = gAdS5×S5 and Γ = ΘβR
(3.32)

Suppose now that we want to interpret these variables according to (3.28). We would

obviously have to think of gAdS5×S5 as the open string metric GAdS5×S5 whereas of

Γ as ΘβR
. In this sense, (Gs = g2

Y M ,GAdS5×S5 ,ΘβR
) would encode the geometry as

seen at large N by the open strings attached on a D3–brane embedded in the Lunin–

Maldacena (3.11) background.

In other words, consider a stack of N D3–branes in the deformed flat space geom-

etry of (3.10). The near horizon limit of this configuration is the gravity dual of the

Leigh–Strassler marginal deformation with β = βR ∈ R and ρ = 0. A probe D3–brane

propagating near the stack will then be described by the DBI action written either in

terms of the closed (g̃s, g̃, B̃) or of the open (Gs,GAdS5×S5 ,Θβ) string fields. However,

the action of a single D3–brane seperated from a collection of (N-1) other branes can

also be obtained by integrating out the massive open strings stretched between the

probe and the source. Indeed, as expected according to [76, 77, 78, 79, 80, 81], the

DBI action describing the motion of a D3–brane in this background should in the

large N limit coincide with the leading IR part of the quantum effective action of the

β–deformed theory obtained by keeping the U(1) external fields and integrating over

the massive ones.

In this spirit, it does not seem surprising that the appropriate open string data

in this case, are the metric of AdS5 × S5and the noncommutativity parameter ΘβR
.

In fact, the action of the β–deformed gauge theory can be written as that of the

parent N = 4 theory with the product of the matter fields replaced by a star product

associated to ΘβR
. Moreover, as conjectured in [14, 94, 31] and later proven in [29],
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all planar amplitudes are equal to their N = 4 counterparts up to an overall phase

factor. This suggests that the iterative structure of the large N β–deformed gauge

theory amplitudes, when β = βR ∈ R, is identical to that of the N = 4 SYM theory.

It is then not hard to imagine that the quantum effective action mentioned above

will be analogous to that of the undeformed theory with the only difference being

some phase factors coming from the noncommutative deformation of the product.

Subsequently, the open string fields appearing in the DBI form of the effective action

of the N = 4 theory (Gs,G,Θ = 0) will be promoted to (Gs,G,ΘβR
).

It is natural to wonder whether a similar situation could apply to the ρ–deformation

as well. The analysis of section 3 may lead us to think that this is most likely not

the case. Even if we succeeded in writing the action of the theory in question, as

the N = 4 action with a star product between the matter fields, it is difficult to

understand how planar equivalence between the two would be achieved with the de-

formation being both noncommutative and nonassociative. In fact, the proof given in

[29] specifically relied on the associativity of the star product for the β–deformation.

Nevertheless, nonassociativity is a second order effect in ρ and in view of the results

of the previous section, one might hope that a solution to this order could be obtained

in this case, too.

To explicitly check this we can directly use the second order expansion of (3.28):

g = G + GΘGΘG +O(ρ4)

B = −GΘG +O(ρ3)

G−1 = 1 + Tr

[
GΘ− 1

2
GΘGΘ

]
+O(ρ4)

(3.33)

The equations above, provide a relation between the open string parameters of the
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deformed theory and the NS–NS string fields of the dual geometry. Since there is

no obvious way to extract information on the associated RR–fluxes, we resort to the

type IIB equations of motion in order to specify them. Fortunately, assuming no warp

factor and making the usual ansatz for the five form field strength 12:

ds2
10 = ds2

AdS5
+ ds2

S5

F5 = f(ωAdS5 + ωeS5)

(3.34)

allows us to directly solve for the RR three form flux F3:

F3 = −f−1d ?5 e
−2ΦH3

H3 = f−1d ?5 F3 ⇒ d
[
B − f−1 ?5 F3

]
= 0

(3.35)

Note that to this order F3 = f ?5 B which greatly simplifies calculations 13. One can

then indeed show that the type IIB equations are simultaneously satisfied up to third

order in the deformation parameter, for the following set of fields 14:

12We refer the reader to the appendix for the necessary definitions of the parameters involved as
well as the type IIB field equations [108] in five dimensions.

13This is intimately connected to the fact that δS5Ωρ = 0 where Ωρ = GΘG denotes the form on
S5 associated to the bivector Θρ. It is clear from (3.33) that B = −Ω to this order. It is worth
remarking that F3 = f ? B is exact for the β–deformed theory where both dΩβ = 0 and δS5Ωβ = 0
hold.

14We set R = 1 where R the radius of AdS5.
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Dilaton:

e2Φ = e2Φ0G

G−1 = 1 + q2
1

(
y2 + s2

αx
2
1 + (c2α + s2

αc
2
θ)x

2
2 + (c2α + s2

αs
2
θ)x

2
3 + c2αy

2
1 + s2

αs
2
θy

2
2 + s2

αc
2
θy

2
3

)
+

+ 2q1q2
(
xy + (c2α − s2

α)x1y1 −
(
c2θ + s2

θ(c
2
α − s2

α)
)
x2y2 −

(
s2

θ + c2θ(c
2
α − s2

α)
))

+ q2
1

(
x2 + c2αx

2
1 + s2

αs
2
θx

2
2 + s2

αc
2
θx

2
3 + s2

αy
2
1 +

(
c2α + s2

αc
2
θ

)
y2

2 +
(
c2α + s2

αs
2
θ

)
y2

3

)

(3.36)

B–field:

Bαθ = sα (q1y + q2x) Bαϕ1 = 0 Bαϕ2 = sαsθcθ (q1x2 − q2y2)

Bαϕ3 = sαsθcθ (−q1x3 + q2y3) Bθϕ1 = cαs
2
α (q1x1 − q2y1)

Bθϕ2 = −cαs2
αs

2
θ (q1x2 − q2y2) Bθϕ3 = −cαs2

αc
2
θ (q1x3 − q2y3)

Bϕ1ϕ2 = −cαs2
αsθcθ (q1y3 + q2x3) Bϕ2ϕ3 = −cαs2

αsθcθ (q1y1 + q2x1)

Bϕ3ϕ1 = −cαs2
αsθcθ (q1y2 + q2x2)

(3.37)

F3 and F5–form flux:

F3 = ?S5Ω with Ω ≡ GikGjlΘ
kldxi ∧ dxj

F5 = f(ωAdS5 +GωS5)

(3.38)

68



Metric g:

gαα = 1− q2
1

(
c2θx

2
2 + s2

θx
2
3 + y2

)
+ 2q1q2

(
−xy + c2θx2y2 + s2

θx3y3

)
− q2

2

(
x2 + c2θy

2
2 + s2

θy
2
3

)

gθθ = s2
α

[
1− q2

1

(
y2 + s2

αx
2
1 + c2α

(
s2

θx
2
2 + c2θx

2
3

))
− 2q1q2

(
xy − s2

αx1y1 − c2α
(
s2

θx2y2 + c2θx3y3

))
−

−q2
2

(
x2 + s2

αy
2
1 + c2α

(
s2

θy
2
2 + c2θy

2
3

))]

gϕ1ϕ1 = c2α
[
1− s2

α

(
q2
1

(
x2

1 + s2
θy

2
2 + c2θy

2
3

)
+ 2q1q2

(
−x1y1 + s2

θx2y2 + c2θx3y3

)
+

+q2
2

(
y2

1 + s2
θx

2
2 + c2θx

2
3

))]

gϕ2ϕ2 = s2
αs

2
θ

[
1− q2

1

(
x2

2(c
2
α + s2

αc
2
θ) + c2αy

2
1 + s2

αc
2
θy3

)
+

+2q1q2
(
−c2αx1y1 + (c2α + s2

αc
2
θ)x2y2 − s2

αc
2
θx

2
3y

2
3

)
− q2

2

(
c2αx

2
1 + s2

αc
2
θx

2
3 + (c2α + s2

αc
2
θ)y

2
2

)]

gϕ3ϕ3 = s2
αc

2
θ

[
1− q2

1

(
c2αy

2
1 + s2

αs
2
θy

2
2 +

(
c2α + s2

αs
2
θ

)
x2

2

)
+

+2q1q2
(
−c2αx1y1 − s2

αs
2
θx2y2 +

(
c2α + s2

αs
2
θ

)
x3y3

)
− q2

2

(
c2αx

2
1 + s2

αs
2
θx

2
2 +

(
c2α + s2

αs
2
θ

)
y2

3

)]

gαθ = cαsαcθsθ

[
q2
1

(
x2

2 − x2
3

)
+ 2q1q2 (−x2y2 + x3y3) + q2

2

(
y2

2 − y2
3

)]

gαϕ1 = cαsα

[
q2
1

(
x1y + s2

θx3y2c
2
θx2y3

)
+ q1q2 (xx1 − yy1 + x2x3 − y2y3))−

−q2
2

(
xy1 + c2θx3y2 + s2

θx2y3

)]

gαϕ2 = cαsαs
2
θ

[
−q2

1(x2y + x3y1) + q1q2(−xx2 − x1x3 + yy2 + y1y3) + q2
2(xy2 + x1y3)

]

gαϕ3 = cαsαs
2
θ

[
−q2

1(x2y + x3y1) + q1q2(−xx2 − x1x3 + yy2 + y1y3) + q2
2(xy2 + x1y3)

]

gθϕ1 = c2αs
2
αcθsθ(q

2
1 + q2

2)(x3y2 − x2y3)

gθϕ2 = s2
αsθcθ

[
q2
2

(
xy2 + s2

αx3y1 + c2αx1y3

)
− q1q2 (xx2 − yy2 + x1x3 − y1y3)−

−q2
1

(
x1y + c2αx3y1 + s2

αx1y3

)]

gθϕ3 = s2
αsθcθ

[
q2
1

(
x3y + c2αx2y1 + s2

αx1y2

)
+ q1q2 (x1x2 − y1y2 + xx3 − yy3)−

−q2
2

(
xy3 + s2

αx2y1 + c2αx1y2

)]

gϕ1ϕ2 = c2αs
2
αs

2
θ(q

2
1 + q2

2)(x1x2 + y1y2)

gϕ2ϕ3 = c2αs
2
αc

2
θ(q

2
1 + q2

2)(x1x3 + y1y3)

gϕ3ϕ1 = s4
αc

2
θs

2
θ(q

2
1 + q2

2)(x2x3 + y2y3)

(3.39)
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(Gflat,Θ)

(g̃, B̃)(g, B)

DBI

p–brane

(GAdS5×S5,Θ)

Figure 3.1: Open vs Closed string fields: a way to understand deformations of the
original AdS/CFT proposal.

3.6 Discussion

In the previous sections we set forth some new ideas that helped us obtain new gravity

solutions up to third order in the deformation paremeter ρ. Moreover, we observed

that the same method provided the exact supergravity backgrounds related to the

β–deformed gauge theory. We view these results as evidence that supports the basic

ideas of our proposal which can be nicely summarized in Fig. 3.6. In this section we

would like to discuss its obscure points; the ones that possibly underlie its failure to

provide the solution to all orders in the deformation parameter.

The method proposed in this note can be divided into three steps. Let us seper-

ately consider the issues that arise in each one. The starting point consists of deter-

mining the appropriate open string data. In this, we mainly use information from

the gauge theory Lagrangian. Obviously, the fact that the noncommutativity matrix

specified in this case, fails to preserve the property of associativity is quite displeas-
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ing. In particular, it is not at all clear how to define an appropriate star product.

Subsequently, there is no obvious way in which one can rewrite the Lagrangian of the

ρ–deformed theory in terms of the N = 4 SYM Lagrangian with a modified product

between the matter fields. In fact, most of the star products that we attempted to de-

fine produced extra terms in the action, to second and third order in the deformation

parameter ρ. Interestingly enough though, all the additional terms were essentially

of the same form as the ones coming from the β and ρ deformation themselves. We

hope to explore this point further in the future.

A related issue is that of the D–terms. We showed in section 2.4, that we can

rewrite these terms in the N = 4 theory as a sum of the F–terms with a potential

term involving the commutator between holomorphic and antiholomorphic matter

fields:

Tr[ΦI , Φ̃
I ][ΦJ , Φ̃

J ] = Tr[ΦI ,ΦJ ][Φ̃I , Φ̃J ] + Tr[ΦI , Φ̃
J ][ΦJ , Φ̃

I ] (3.40)

It was then clear that should we wish to only deform the F–terms of the potential,

we must appropriately alter the commutator: [ΦI , Φ̃
J ]. For the β–deformed gauge

theory, the (1, 1) pieces of the noncommutativity matrix precisely ensured that the

D–terms remained unaffected by the deformation according to (3.40). The lack of a

star product in the case of the ρ–deformation however, makes it impossible to perform

this consistency check.

The next step of the method proposed herein, consisted in mapping the open string

parameters to the closed string ones. The precise mapping was formulated through

the equations of (3.28) which as discussed in section 5, were derived under particularly

different conditions than the ones considered in this paper. Their validity in this case

is therefore naturally disputable, even more so, in view of the nonassociativity of Θ.
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We believe that this actually constitutes the most plausible reason for the failure of

our proposal to produce the exact supergravity background whereas at the same time

explains why the method works to this order where nonassociativity precisely comes

into play. In fact, it seems that when T ijk of (3.27) is nonvanishing, both Θ and

T = Θ∂Θ are necessary for defining the deformation. A natural generalization of

(3.28) would then relate (G,Θ, T = Θ∂Θ) to (g, B,H = dB) and presumably provide

the deformed flat space solution to all orders in the deformation.

Note that we do not necessarily maintain that it would directly solve the problem

of finding the dual gravity background as well. It may very well be that nonassocia-

tivity spoils the planar equivalence between the N = 4 theory and its deformation.

This would obviously be reflected on the form of the quantum effective action and

therefore of the DBI, making it difficult to determine the relevant open string data

15.

It is also worth remarking that (3.28) provides a relation only between the NS–NS

fields of the open and closed string backgrounds. Information pertaining to the RR–

fields is however essential, especially for determining the dual gravitational solution.

In fact, in section 6 we had to rely on a particular ansatz for the metric and the five

form flux in order to fully specify the background. In this light, it may seem plausible

that a different ansatz — a warp factor in front of the AdS part of the metric, in

particular — could grant us the solution to all orders in the deformation parameter.

The presence of a non–trivial warp factor may actually be related to the deviation

of the coupling constant h in (3.1) from its original gY M value. Indeed, in the case

of the β–deformation, a warp factor is absent from the solution when β ∈ R and

15Actually it is possible to imagine that this can occur independently from the nonassociativity
of the product. Yet it would make it hard to understand why the procedure employed in this article
would give a true solution to any order in the deformation.
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h = gY M , while it is not when βI 6= 0 and the Leigh–Strassler constraint indicates

that h 6= gY M . This fact therefore represents another possible explanation as to why

our method fails to give an exact solution 16.

Finally, we would like to note that throughout this article we considered the Leigh–

Strassler marginal deformation at the point β = 0. It is however natural to think

that quantum corrections will generically generate a β–like term since no obvious

symmetry argument could prohibit it. In this sense it may seem rather significant to

incorporate a nonvanishing β in our discussion. This is actually not difficult to do,

provided that β = βR ∈ R. In this case, we can define Θ = ΘβR
+ Θρ and follow

the method outlined in this note. The result is straightforward but unfortunately

does not give any further insight into the higher order corrections of the background.

The case of generic β ∈ C is more interesting but also more difficult to study. A

noncommutative description of the deformation is not valid in this case and one

relies on the SL(2,R)s symmetry of the supergravity equations of motion in order to

construct the dual solution [14]. Consequently, there is no obvious way to incorporate

a complex β in our method.

The reason that makes the case of complex β worthwhile to explore further, is

that according to the analysis of section 2, there exist some special points in the

deformation space which can take us from a theory of generic β and ρ = 0, to a

marginal deformation where both ρ̃ and β̃ with β̃ ∈ C are non vanishing. Since the

gravity dual in the former case is known, investigating the solution at these points

may provide useful information on how to extend our results to all orders in the

deformation parameters.

16Note that we examined the case of a warp factor of the form Gn with n ∈ R and G of (3.36)
but found no value of n for which the supergravity equations were satisfied to third order in the
deformation parameter.
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Chapter 4

Conclusions and Open Problems

In this work, we studied the Leigh–Strassler marginal deformations of N = 4 SYM.

At first, we focused on the much better understood case of the β–deformed gauge

theory. We established a connection with noncommutativity and explored its role

within the solution generating technique of Lunin and Maldacena. Next, we turned

to the ρ–deformed theory and found gravity solutions corresponding to the associated

flat space deformation and the AdS/CFT dual of the gauge theory, up to third order

in the deformation parameter. We achieved this by using the techniques developed

for the β–deformed theory so as to relate the deformation to a noncommutative

deformation of the transverse space. Having obtained the open string parameters

(G,Θ) encoding the geometry of the moduli space, we determined the corresponding

closed string fields (g, B) with the use of a well–known mapping between the two. The

most remarkable feature of our computation, is its almost purely algebraic nature.

There are various possibilities for future work in the context of exactly marginal

deformations of N = 4. They range from addressing the questions raised in the previ-

ous chapter, to establishing a precise connection with generalized complex geometry
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[117, 118], investigating the role of the SL(2,R) symmetry and relating our results to

previous work on the same subject [104].

Several more issues should however be addressed, if this work is to provide a

general framework for discussing the gravity duals of gauge theories.

A curious feature of our approach for instance, is that supersymmetry does not

play any central role in it. Indeed the whole discussion so far has solely relied on

the commutation relations between the scalar fields of the theory. When however

supersymmetry is preserved, scalars are accompanied by their fermionic superpartners

and it is obvious that similar (anti)commutation relations will be obeyed by the

fermions alone as well as between the scalars and the fermions of the theory. It seems

plausible to us that information pertaining to these (anti)commutation relations is

hidden in the RR sector of the theory [119, 120, 121]. It would therefore be of great

importance to study it in a similar fashion.

A related question, that seems not to have been investigated in the literature,

is the presence of constant RR–flux in AdS5 × S5space and its possible relation to

nonanticommutativity — from the point of view of the gauge theory living on a D3–

brane embedded in AdS5 × S5. Such a relation could possibly uncover the hidden

structure of the IR effective N = 4 SYM Lagrangian and its connection to the DBI.

Another interesting direction for study is the N = 1∗ gauge theory, obtained

by adding mass terms to the N = 4 SYM superpotential. This theory has been

investigated in a number of works [122, 123, 75] where the notion of a noncommutative

transverse space is touched upon yet has not been made precise. A curious question,

is whether the dual description of these theories can be reached by placing D3–branes

in some deformed geometry and taking the near horizon limit. If so, various aspects

of our work could be relevant in this study. Similar considerations could then be
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applicable to orbifold deformations of N = 4 SYM as well as to noncommutative

gauge theories.

In summary, the ideas set forth in this note represent alternative means into

investigating deformations of the AdS/CFT correspondence. Obviously, a number of

issues should be resolved before they can provide a concrete proposal for constructing

new supergravity backgrounds. We do however believe that they open up a path that

leads to a better understanding of gauge/gravity duality, which we hope to further

explore in the future.
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Appendix A

Noncommutative gauge theories

The most direct application of the ideas discussed in chapter 2 is to consider the

Lunin–Maldacena prescription in order to obtain the gravity duals of noncommutative

gauge theories with β–type noncommutativity 1. This simply means that we wish to

think of Θij or rather Γ of (2.9) as a noncommutativity matrix along the worldvolume

of the D3–brane 2. Provided a decoupling limit exists 3, we can use the solution

generating technique reviewed in section 2.2, to either deform the p–brane solution

itself, or the near horizon geometry directly. For reasons of uniformity, we decided

to adhere to the latter prescription in what follows. In four dimensional Euclidean

space, Θij can be written in complex coordinates as:

[zi, zj] =ibzizj, [zi, zj] = ibzizj, [zi, zj] = −ibzizj

for i < j and i,j=1,2

(A.1)

1Similar considerations in the context of the Maldacena–Nunez background appeared in [36, 124].
2Obviously the same procedure can be applied to all branes in a fashion similar to [52, 53, 54].
3One can actually check this by either calculating the graviton absorption cross–section or the

potential that gravitons feel due to the presence of the D–brane [125].
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As we already saw in the previous section transforming to polar coordinates yields a

constant noncommutativity parameter along the two–torus:

[φ1, φ2] = ib, [ρ1, ρ2] = [ρi, φj] = 0 i, j = 1, 2 (A.2)

Constructing a matrix out of these relations is a fairly obvious step which leads us to

matrix Γ appearing in (2.6). We can therefore directly apply the associated T–duality

transform (2.6) on the AdS5×S5geometry. The relevant part of the background matrix

is:

E = u2R2



ρ2

1 0

0 ρ2
2


 (A.3)

and substituting into (2.7) we find:

ds2
str = ds2

gAdS
+ ds2

S5, where ds2
gAdS

= u2R2(dρ2
1 + dρ2

2 +G(ρ2
1dφ

2
1 + ρ2

2dφ
2
2))

B = b̂R2Gρ2
1ρ

2
2u

4dφ1 ∧ dφ2, e2Φ = Ge2Φ0

G =
1

1 + b̂2ρ2
1ρ

2
2u

4
, b̂ = R2b

F3 = −3(4πN)bu3ρ1ρ2dρ1 ∧ dρ2 ∧ du, F5 = 4πN(ωgAdS + ωS5)

(A.4)

with the RR–fields computed using the T–duality rules of [42, 43, 44, 45, 46]. Note

here that the effect of noncommutativity is important for large radial directions but

negligible for small ones. The same behaviour has been observed in the case of the

Melvin Universe [57, 54]. It seems natural therefore to expect that manifestations of

this spatial nonhomogeneity will be similar to those described in [57]. It would be

interesting for this purpose to explore the instanton, monopole and vortex solutions

of the theory. In the Melvin–twist gauge theory the corresponding analysis showed
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[57] that although the length of the magnetic monopole is position dependent, its

mass agrees with the ordinary SYM monopole solution. It is plausible that study

of the β–type noncommutative gauge theory along these lines will lead to analogous

results. In addition, it is important to investigate the stability properties of the above

solution, since the background in question may generically break supersymmetry (see

e.g. [126, 127] for a discussion on this point). We would like now to proceed and

consider the same type of deformation in Lorentzian signature but before doing so,

let us make a few remarks regarding the action of the gauge theory dual to (A.4).

Clearly, knowledge of an appropriate star product is more often than not necessary

in order to specify the action that describes a noncommutative gauge theory. In the

case illustrated above, Θij is position dependent and it is then known that a suitable

product is the one defined by Kontsevich in [128]. Naively one would then think that

the action of the gauge theory is obtained by simply replacing the ordinary product of

functions with the star product. The latter product is however not compatible with

the Leibnitz rule so that one should actually employ what is referred to as the ”frame

formalism” introduced in [129]. Alternatively, one can take advantage of the fact that

Θij is constant in polar coordinates and specify a Moyal–like product of functions. The

precise mapping between this product and the one defined by Kontsevich should then

be found, which would however not be the result of a simple change of coordinates.

This procedure has been carried out explicitly in a number of cases [130, 57, 54] and

we refer the reader to these papers for details.

Let us now move on to consider the β–type deformation on a four–dimensional

spacetime with Lorentzian signature. Performing a wick rotation according to z →

ix+, z → ix− along with b → ib we can write the commutation relations of equation

79



(A.1) as:

[x+, z] = ibx+z, [x−, z] =ibx−z, [x+, z] = ibx+z, [x−, z] = ibx−z

with [z, z] = [x+, x−] = 0

(A.5)

We therefore see that in this case we have to deal with a temporal noncommutativity

parameter. In general, field theories on spaces with time–like noncommutativity

Θ0i 6= 0 are acausal [131, 132] whereas their quantum counterparts are not unitary. A

decoupled field theory limit for D–branes in this case does not exist. It was however

found in [131, 132] that a scaling limit where the closed string sector can be separated

from the open string one is indeed possible. Massive open strings do not decouple

in this limit which thus defines a noncommutative open string theory (NCOS) rather

than a field theory. Several aspects of these NCOS theories are explored in [133, 134,

135, 136, 137, 138].

The precise analysis of which types of noncommutativity lead to unitary theories

and which not, was carried out in [139] along the lines of [140]. There it was shown

that a necessary condition for unitarity is that the following inner product between

external momenta is positive definite:

p � p ≡ −pµΘµσGστΘ
τνpν > 0 (A.6)

where G is the background metric for the open strings and the corresponding field

theory. Let us therefore evaluate this quantity for the β–like noncommutativity under

consideration here. It is easier if we first perform a coordinate transformation to go

from coordinates (t, x1, x2, x3) to (τ, θ, r, φ) defined as: t = τ cosh θ, x1 = τ sinh θ,

x2 = r cosφ and x3 = r sinφ. Here τε(−∞,∞),rε[0,∞) whereas θ can be chosen
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compact or non compact. This transformation will bring the commutation relations

to the form 4:

[θ, φ] = ib and [τ, r] = [r, φ] = [τ, φ] = [τ, θ] = [r, θ] = 0 (A.7)

and substituting into (A.6) we obtain: p�p = b2(p2
θr

2 +p2
φτ

2) which is clearly positive

definite. Can we therefore deduce that the β–type noncommutative deformation

describes a unitary field theory? To be precise, the unitarity requirement of (A.6)

is proven for a position independent noncommutativity parameter turned on in flat

space. In our case, as soon as we go to a reference frame where Θ is constant,

the corresponding spacetime exhibits a time–dependent behaviour. It is therefore

ambiguous what the meaning of unitarity is in this context.

It may be interesting however to address these issues through the dual gravity

description of this theory. Let us therefore apply the T–duality transformation rules

in order to construct this background. Alternatively, we can wick rotate the Euclidean

solution of equation (A.4) according to ρ1 → iτ, φ1 → iθ, b→ ib. Either way we obtain

4These coordinates cover half of R1,3[127].
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5:

ds2
str = ds2

gAdS
+ ds2

S5, where ds2
gAdS

= u2R2(−dτ 2 + dr2 +G(τ 2dθ2 + r2dφ2))

B = b̂R2Gτ 2r2u4dθ ∧ dφ, e2Φ = Ge2Φ0

G =
1

1 + b̂2τ 2r2u4
, b̂ = R2b

F3 = −3(4πN)bu3τrdτ ∧ dr ∧ du, F5 = 4πN(ωgAdS + ωS5)

(A.8)

Note again that equation (A.8) defines a time dependent background dual to a non-

commutative theory which can be thought of as living either in flat space with tem-

poral time–dependent noncommutativity parameter or in a time–dependent back-

ground which is noncommutative only along some of the spatial directions. Similar

time–dependent configurations were explored in [141, 142, 143, 144]. For the case of

compact θ with θ ∼ θ + 2π and rational parameter β, the gravity solution (A.8) cor-

responds to the near horizon geometry of a D3–brane immersed in a time–dependent

background that admits an orbifold description [127, 145, 146]. The latter deforma-

tion of flat space can be recovered from flat space with the same technique [127]:

ds2 = −dτ 2 + dr2 +
τ 2

1 + b2τ 2r2
dθ2 +

r2

1 + b2τ 2r2
dφ2

e2Φ =
1

1 + b2τ 2r2

B = − bτ 2r2

1 + b2τ 2r2
dθ ∧ dφ

(A.9)

The background indicated above presents an interesting time evolution noted in [127].

5Note that wick rotation in these coordinates is different from the usual case. As a result, the
background is well defined and does not seem to indicate the need for another kind of scaling limit.
We therefore expect that indeed this supergravity solution is dual to a field theory.
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In particular, it appears to be periodically changing for the designated choices of θ and

β. At τ = −∞ it is described via the orbifold [R1,1/Z]∆=2π× [C/ZN ] (i.e. orbifold by

the boost ∆ = 2π) which gradually evolves to [R1,1/Z]∆=2π ×C at time τ = 0. Then

the reverse process begins until it reaches the original orbifold description at τ =∞.

In complete analogy, the spacetime of equation (A.8) shows a periodic evolution with

the effects of noncommutativity becoming most important at τ = ±∞ but negligible

at τ = 0 where the geometry tends to AdS5 × S5.

This completes our discussion of noncommutative gauge theories. We have clearly

here only alluded to a number of issues regarding these theories and noncommutative

spacetimes in general. It would certainly be of interest to explore these issues further

in the future.
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Appendix B

The noncommutativity matrix

Here we present the noncommutativity matrix in polar coordinates (ri, ϕi) with i =

1, 2, 3 on R6. We assume that Θρ is given in terms of commuting variables (z, z) and

that we can follow the transformation rules of contravariant tensors when changing

coordinate systems, namely:

Θi′j′ =
∂x′i

′

∂xi

∂x′j
′

∂xj
Θij (B.1)

Rescalling qi of (3.25) and (3.26) as qi → 2qi then yields:

Θρ =




0 −(q2x3−q1y)r3 (q2x2−q1y)r2 0
(q1x2−q2y1)r3

r2

(q1x3−q2y1)r2
r3

(q2x3−q1y)r3 0 −(q2x1−q1y)r1 − (q1x1−q2y2)r3
r1

0
(q1x3−q2y2)r1

r3

−(q2x2−q1y)r2 (q2x1−q1y)r2 0
(q1x1−q2y3)r2

r1
− (q1x2−q2y3)r1

r2
0

0
(q1x1−q2y2)r3

r1
− (q1x1−q2y3)r2

r1
0 − (q2x−q1y3)r3

r1r2

(q2x−q1y2)r2
r1r3

− (q1x2−q2y1)r3
r2

0
(q1x2−q2y3)r1

r2

(q2x−q1y3)r3
r1r2

0 − (q2x−q1y1)r1
r2r3

(q1x3−q2y1)r2
r3

− (q1x3−q2y2)r1
r3

0 − (q2x−q1y2)r2
r1r3

(q2x−q1y1)r1
r2r3

0




(B.2)
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where to keep the expressions compact, we defined variables x, xi and y, yi according

to:

x1 = −C1r1 + C2r2 + C3r3 x2 = C1r1 − C2r2 + C3r3 x3 = C1r1 + C2r2 − C3r3

y1 = −S1r1 + S2r2 + S3r3 y2 = S1r1 − S2r2 + S3r3 y3 = S1r1 + S2r2 − S3r3

x = C1r1 + C2r2 + C3r3 y = S1r1 + S2r2 + S3r3

(B.3)

whereas Si, Ci represent the following triginometric functions:

S1 = sin (ϕ2 + ϕ3 − 2ϕ1), S2 = sin (ϕ3 + ϕ1 − 2ϕ2), S3 = sin (ϕ1 + ϕ2 − 2ϕ3)

C1 = cos (ϕ2 + ϕ3 − 2ϕ1), C2 = cos (ϕ3 + ϕ1 − 2ϕ2), C3 = cos (ϕ1 + ϕ2 − 2ϕ3)

(B.4)

The discrete symmetry Z3(1)×Z3(2) along with the U(1)R are particularly transparent

in this form. Observe first that under Z3(1):

Z3(1) : (x1, x2, x3, y1, y2, y3)→ (x3, x1, x2, y3, y1, y2)

while (x, y)→ (x, y)

(B.5)

Then it is easy to see for example, that Θr1ϕ2
ρ = (q1x2−q2y1)r3

r2
→ Θr3ϕ1

ρ = (q1x1−q2y3)r2

r1
.

The action of Z3(2) is equally simple transforming the polar angles ϕi as:

Z3(2) : (ϕ1, ϕ2, ϕ3)→ (ϕ1, ϕ2 +
2π

3
, ϕ3 −

2π

3
) (B.6)

thus leaving invariant the trigonometric functions Si, Ci which depend on the following

combinations: σi ≡ 1
3
(ϕi+1 + ϕi+2 − 2ϕ1). Morever, note that Θρ is independent of
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ψ = 1
3
(ϕ1 + ϕ2 + ϕ3) therefore respects the U(1)R R–symmetry of the theory.

In a similar manner, one obtains the noncommutativity matrix Θρ in spherical

coordinates denoted as (r, α, θ, ϕ1, ϕ2, ϕ3).

z1 = r cosαeiφ1, z2 = r sinα sin θeiφ2 , z3 = r sinα cos θeiφ3

z1 = r cosαe−iφ1, z2 = r sinα sin θe−iφ2 , z3 = r sinα cos θe−iφ3

(B.7)

where it reads1:

Θρ =




0 − q2x+q1y
sα

0 cθ(−q1x2+q2y2)
sαsθ

sθ(q1x3−q2y3)
sαcθ

q2x+q1y
sα

0 −q1x1+q2y1

cα

cα(q1x2−q2y2)
s2
α

cα(q1x3−q2y3)
s2
α

0 q1x1−q2y1

cα
0 cθ(q2x3+q1y3)

cαcθ
− sθ(q2x2+q1y2)

cαcθ

cθ(q1x2−q2y2)
sαsθ

cα(−q1x2+q2y2)
s2
α

− cθ(q2x3+q1y3)
cαcθ

0 cα(q2x1+q1y1)
s2
αsθcθ

− sθ(q1x3−q2y3)
sαcθ

cα(−q1x3+q2y3)
s2
α

sθ(q2x2+q1y2)
cαcθ

− cα(q2x1+q1y1)
s2
αsθcθ

0




(B.8)

Note that Θρ is now a five–dimensional matrix along the S5 and that variables

x, xi, y, yi appearing in (B.8) are rescaled by 1/r. In other words we have here defined:

x1 = (−cαC1 + sαsθC2 + sαcθC3), x2 = (cαC1 − sαsθC2 + sαcθC3)

x3 = (cαC1 + sαsθC2 − sαcθC3), x = (cαC1 + sαsθC2 + sαcθC3)

y1 = (−cαS1 + sαsθS2 + sαcθS3), y2 = (cαS1 − sαsθS2 + sαcθS3)

y3 = (cαS1 + sαsθS2 − sαcθS3), y = (cαS1 + sαsθS2 + sαcθS3)

(B.9)

It is then clear that Θρ is independent of the radial direction r.

1We use here the following abbreviations: sα = sinα, cα = cosα, sθ = sin θ, cθ = cos θ.
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Appendix C

RR–fields and supergravity

equations of motion

As mentioned previously, although the procedure proposed in this article gives us

the solution for the NS–NS fields of the geometry for free, it does not produce any

information on the RR–ones. We thus have to compute them using the supergravity

equations of motions [108]. We employ the following ansatz 1:

ds2
10 = ds2

AdS5
+ ds2

5

C = 0 F5 = f(ωAdS5 + ωeS5)

(C.1)

where f is the appropriate normalization coefficient for the flux which in this case

reduces to f = 16πN and ωAdS5 , ωeS5 are the volume elements of the corresponding

1Note that the vanishing axion condition can be deduced from the other two in equation (C.1).
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parts of the AdS5 × S̃5 geometry. Then the supergravity field equations reduce to:

D2e−2Φ = −1

6

(
F 2

3 − e−2ΦH2
3

)

F3 = −f−1d ?5 e
−2ΦH3

H3 = f−1d ?5 F3

RMN = −2DMDNΦ− 1

4
gMND

2Φ +
1

2
gMN∂RΦ∂RΦ+

+
1

96
e2ΦFMPQRF

PQR
N +

1

4
(HMPQH

PQ
N + e2ΦFMPQF

PQ
N )− 1

48
gMN(H2

3 + e2ΦF 2
3 )

(C.2)

where M,N represent five dimensional indices on the compact piece of the geometry

whereas ?5 denotes the Hodge star on the same manifold.
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