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Abstract of the Dissertation

Statistical mechanics of hard spheres and the two dimensional Ising lattice

by

Ivar Lyberg

Doctor of Philosophy

n

Mathematics

Stony Brook University

2007

In this dissertation the fourth virial coefficient of a fluid of hard spheres in
dimensions 5, 7, 9, and 11 is calculated. Furthermore, the complete star of n points
in dimension 2 is reduced to an n — 2-fold integral. Finally, the row and diagonal
correlation functions of the two dimensional Ising lattice are computed as form

factor expansions.
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I. INTRODUCTION

This thesis treats the hard sphere model and the two dimensional Ising lattice.
Thermodynamical properties will be calculated exactly. The pressure P of a fluid of
hard disks will be calculated in terms of the density exactly as a power series.

The two dimensional Ising model is the most completely studied exactly solvable
model. One of the unresolved problems is the calculation of the correlation function
(o00omn). Here (ogooon) and (ogoonn) will be calculated exactly as series.

The two topics will be treated separately. Sections IT A, IIB and II C have been
published in Journal of Statistical Physics [1], and chapter III has been published in
Journal of Physics A [2].

A. Hard spheres

We consider the low density expansion of a fluid of N D-dimensional hard spheres.
The position of the ith particle is r; € R”, and the distance between two points is
rij := |r; — r;]. The pair potential ¢(r;;) is

oo ifr; <o

¢(rij) = (1)

0 if?”ij>0',

where ¢ is some distance. The Hamiltonian is
N

Hy = Z o(rij) + i (2)

— — 2m’
1<i<j<N =1
Let {U;}32, be a sequence of bounded subsets of R” such that U; C Uy and
U2, Uj = RP, and let {N;}52; C N be another sequence. {U;}52, and {N;}32, are

chosen so that N,/|U;| = p, where the density p is independent of j and |U,| is the
measure of U;. The limit j — oo is called the thermodynamic limit. In order for
relevant quantities to exist in this limit it is necessary that lim; .. |0U;|/|U;| = 0,
where QU; is the boundary of Uj.

In the thermodynamic limit, the pressure P of a fluid of hard spheres in D dimen-

sions has a power series representation

P o0
=t B (3)
n=2
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Penrose and Lebowitz [3] have shown that the right hand side of (3) has a radius of

convergence RP) with a lower bound
max w(2e™" —1) = ———. (4)

There are several systematic ways to formalise the calculation of the virial coeffi-
cients BY”). One of these methods is the Mayer expansion [4], [5]. In this expansion

a function called the Mayer f function is defined:
f(ri) = e oM 1, (5)
Since ¢ is given by (1), it follows that

—1 if Tij S o
fij = f(ry) =

0 ifry >o0.

The virial coefficients are given by [5]

1 n
B — _ fim H/ dPr;V, 1 (re,...,1,) (7)
i=1"Uj

T e n 4 1 n!|U;|

where V1 is the collection of labelled biconnected Mayer diagrams with n points.

Each bond of these diagrams represents a function f(r;;) in the integrand of (7).

Explicitly
1 1
32 = —5 . f(T’lg)dDrg = _577 (8)
1 D.. D 1
B3y = — f(ri2) f(r13) f(rag)d7red"rs = =2 /A, )
3 RD JRD 3
and
1 3 3
Bi=-:X--[1- < L

From now on, we will usually disregard the superscript D and write B,,, and we will
let 0 = 1.
If the hard sphere potential (1) is considered, By and Bj can easily be explicitly

evaluated. The second virial coefficient in three dimensions was first computed by



TABLE I: The second and third virial coefficients

D|By Bs/ B% decimal expansion
2 |7/2 4/3 —\/3/7 0.78200...

3|2n/3  |5/8 0.625

4 |\x%/4  |4/3—(3/2)V3/m 0.50634...

5 |472/15 |53/27 0.41406...

6 |73/12 |4/3 —(9/5)V3/m 0.34094...

7 |873/105(289/210 0.28222...

8 |7t/48 |4/3 — (279/140)v/3/7]0.23461...

van der Waals [6] and the third was calculated independently by Boltzmann [7] and
Jager [8]. The second virial coefficient in dimension D is given by the function

D/2

By=——""—
2T oar(D/2+1)

(11)

and the third virial coefficient in dimension D is given by [43]

By AT(14 D/2) /”/3 b
== dep. 12
B rer((1+D)2) ), Y (12)

Table I shows the values of the second and third virial coefficients in dimensions two
to eight.

The history of the computation of Bf’) dates back to the end of the nineteenth
century [9]. Van der Waals [6] formulated a sum of integrals which he thought would
give B;. However, there was one integral which he could not evaluate (This was
the one which is today called the complete star of four points, written [<] in (10)).
Van Laar evaluated this integral and published his result in 1899 [10]. Boltzmann
contested van der Waals’ formulation of the problem; today we would say that his
version of (10) had the wrong coefficients. Using the correct virial series expansion

(10), Boltzmann published the correct result in the same year [11]. His result was

B, 2707 219 /2 4131 arccos(1/3)
e . = 0.28694950598.... . 13
B3 4480 %807 T R0 T (13)

This result was confirmed in 1952 by Nijboer and van Hove [12] using what is called

the two center formalism [13]. The two center formalism is a formalism different from
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(7), and is useful mainly for the hard sphere potential. It will be presented in detail
in chapter II.

The calculation of Bf) was done by Rowlinson in 1964 [14] (using the Mayer
formalism (7)) and independently by Hemmer in 1965 [15]. Their result was

By 93
——2——— 1—— 2231 14
B3 5T 0 0.53223180... (14)

Clisby and McCoy [16] calculated BLED) for D = 4, 6, 8, 10 and 12, using the

Mayer formalism. Their results are shown in table II.

TABLE II: Exact values of the fourth virial coefficient in low even dimensions

D |B,/B3 decimal expansion
273 | 8321

4 |2 ZNB 821 0.15184606235...
813 | 38848 1

6 |2 — 813 4 38845 1 0.03336314...

8 |2 — ZBLLYS | 17605024 1| _() 00255768...

2673 /3 | 49048616 1
102 — 555> + Teasoes -z | —0-01096248...

2
2187 v/3 | 11565604768 1
12|12 — 550 = T 337702365 =2 —0.010670281...

The virial coefficient BED) in odd dimensions has previously been computed by
Monte Carlo methods by Ree and Hoover [17] and Clisby and McCoy [18]. These
numerical results gave the first demonstration that the hard sphere virial coefficients
can be negative. The question of negativity of hard sphere virial coefficients is of
great theoretical importance, and in dimensions D < 4 Monte Carlo investigations
have thus far seen only positive B,(LD) for n < 10.

The study of virial coefficients in higher dimensions is important. There is a change
of sign of BiD) at D ~ 7.7 [18], and this has important implications. If B oscillates
in sign with some period for large n, then the first singularity will occur off the real
axis.

One reason to seek exact values of the virial coefficients is that approximate values
may require more computer power than is available. For instance, no one has so far
been able to calculate sufficiently many virial coefficients to produce the expected

phase transition at some critical density. It may be that the radius of convergence



of the power series (3) is less than the density of the phase transition, in which case
nothing can be learned about the phase transition by calculating a finite number of
virial coefficients. Even if the radius were greater than the critical density, it seems
unlikely that a sufficient number of virial coefficients will be calculated in the near

future. See, for instance, Clisby and McCoy [18].

1. Summary of results

In this thesis, in chapter II, we calculate the exact values of BiD) for D=5,79
and 11. The results are shown in table III. It is seen that the results agree with

previous numerical calculations [19] [20] [18].

TABLE III: Exact and numerical values of the fourth virial coefficient in low odd dimensions

D |B4/B3 decimal expansion
25315393 |, 3888425 v/2 _ 67183425 arccos (1/3)
5 |39300768 T 16400384 7 — 32800768 p 0.07597248028...

0.075972512(4) [19]
0.07592(6) [20]

0.075978(4) [18]

299189248759 | 159966456685 v2 292026667005 arccos (1/3)
7 | 390596061184 T 135894091776 7 96865353728 P 0.00986494662...

0.009873(3) [18]

2886207717678787 |, 2698457589952103 v/2 _ 8656066770083523 arccos (1/3) |
9 | 5251372811001856 T 5703432027504640 7 2281372811001856 P 0.00858079817...

—0.008575(3) [18]

11 17357449486516274011 + 16554115383300832799 /2
11932824186709344256 29832060466773360640

_ 52251492946866520923 arccos (1/3) _
11032824186709344256 = 0.01133719858...

—0.011333(3) [18]

The calculation of coefficients of order higher than four can be reduced to a problem
in computational algebraic geometry. We will consider only the complete star. The
complete star of n points is the graph of n points where each point is is directly

connected with every other point. In section II E we will define a function x,(r) such



that x,(1) is equivalent to the complete star of n points. It will be shown that

-1 n(n—-1)/2 1-7r/2 7’/2—1—23)2
Xn+2(r) = %H / deH / ds;

i=1

Z H (1 + 1[Sk+sz< 1—(0kzk—0121)2}> <15)

oe{-1,1}(n=1)n/2 1<k<I<n

where

lifreA
1a(x) := (16)
0ifx ¢ A.

The following conjecture is proposed.
Conjecture 1 In even dimensions, the normalized nth virial coefficient B,, /By "

can be written as

By,
By~

a;(V3/m)’, (17)

Mw

<
Il
o

where the coefficients a; are rational numbers.

This is known to be true for the second, third and fourth virial coefficients. It is
shown in section II that the nth virial coefficient in two dimensions may be written
as an n — 2 dimensional integral over a region bounded by certain algebraic varieties.

These integrals have not yet been evaluated.

B. The two dimensional Ising lattice

We consider a rectangular spin lattice with M x N lattice points, where each lattice
point (4, j) has two possible spin states (0;; = £1). The interaction energy between
two neighboring spins sites (4,j) and (¢ + 1,7) is —FEj0,j0,41,;, and the interaction
energy between two neighboring spins sites (i, ) and (¢, j + 1) is —FE50,j0; ;41 where
E; = K;kT (k is Boltzmann’s constant, 7" is the temperature and K; and K, are
positive constants). We impose toroidal boundary conditions, so that (i, N') = (¢,0)
and (M, j) = (0,7). Thus the total interaction energy is

M-1N-1
Epm, n(o) =— Z Z(Elgij0i+1,j + F504j05 j41)- (18)

i=0 j=0



The partition function is

Zm, n =Y exp—En, n(0)/kT. (19)
The Gibbs free energy per site is defined to be
kT
=———logZ . 20
Im N WV 08 Zm N (20)
We define
fi= m fawe (21)

The correlation function (og oo n) M, v is defined to be
1

7 Z 00,00Mm,N €Xp —Ep, ar(0) /KT, (22)
MN

(e

<00,0<7M,N>M,N =
and the correlation function (oo oo n) is defined to be

<UO,00M,N> = lim <O-0,OO-M,N>M, N (23)

M, N—oo
We will consider only the special cases M =0 and M = N.

The correlation functions (oo oo, n) of the two dimensional Ising model with hor-
izontal (vertical) interaction energies F; (F5) can be written in many different ways
which appear to be different but which in fact are equal. They were first expressed
as determinants by Kaufman and Onsager [21]. Later Montroll, Potts and Ward [22]
demonstrated that if an arbitrary path is drawn on the lattice connecting the point
(0,0) with the point (M, N) then the correlation can be expressed as a determinant
whose size in general is twice the length of the path. The correlations (o o0 n) and
(0000N,n) can both be expressed as N x N Toeplitz determinants [21]-[23], and ex-
pressions of (0o ooy n) as determinants of size M and M + 1 for M > N were given
by Yamada [24], [25]. Furthermore the correlations (oo oo n) for all finite M, N
were expressed as determinants of Fredholm operators by Cheng and Wu [26].

The representations of the correlations as finite size determinants gives an efficient
evaluation when the separation is small but to investigate the large separation be-

havior alternative representations are needed. The first such result is the limiting

behavior for T' < T,

Soo = lim <O'000'0N> = lim <0'000'NN>
N—oo N—o0

1/4

= {1 — (sinh 2B, /KT sinh 2B, /kT) 2} """ | (24)
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which is most easily computed [22] by the use of Szegd’s theorem [27],[28].

The first large separation expansion for both 17" < T, and T > T, beyond the limit-
ing value (24) was given in 1966 by Wu [29] for (coooon) by applying a Wiener-Hopf
procedure to the N x N Toeplitz determinant representation. Shortly thereafter
Cheng and Wu [26] obtained the leading term of the large separation behavior of
(o00omn) by applying a Wiener-Hopf procedure to the Fredholm determinant repre-
sentation. This derivation is formally valid only for M # 0, and even though it is
expected that the result of [26] with M formally set equal to zero should agree with
the result of [29], there is no analytic derivation in the literature that for T' < T,
the two results are in fact equal (even though the equality has been verified to large
orders in the low temperature expansion.)

The expansions of [29] and [26] may be considered as the first terms in a systematic
expansion of the correlations. The expansion technique of [26] which starts from the
Fredholm determinant representation was carried out to all orders by Wu, McCoy,
Tracy and Barouch [30] in 1976. It was found that the correlations can be written in

the following exponential form

(0000MN) poq, = Soo €XP Z F]EZ(,) for T < T, (25)
n=1
and as .
<O’000’MN T>T. = oo Z G 2m+1) exp Z F\E?V) for T > TC (26)
n=1
where
S = {1 — (sinh 2E, /kT sinh 2, /kT)?}/*. (27)

In [30] the expressions for F' Jg)N, F Jg)N and GE\J/;,)N are given as 2j fold multiple dimen-
sional integrals.
The exponentials in (25) and (26) may be expanded to give what is called a form

factor expansion

(CooomN)T<T, = OOZ Jff]ﬁ,) for T < T, (28)
and .
(00O MN)T>T, = Z 2"+1) for T >T.. (29)

oo



The first few terms in this expansion were given in [30]. In the scaling limit N —
oo, T — T, with N|T' — T,| fixed the full expansion was given by Nappi [31]. For
fixed N and T < T, the full expansion (28) was given by Palmer and Tracy [32]. Both
of the cases T < T, and T' > T, were treated by Nickel [33]-[34]. An independent
expansion was given by Yamada [35], and this is shown in [34] to agree with the
results from the expansion of the exponential forms of [30].

The results for the exponential representation of the correlations [30] were obtained
by extending to all orders the interative expansion of the Fredholm determinant rep-
resentation [26]. However, as noted above, the result of [26] for F’ ]S)N when specialized
to M = 0 “looks different” from the corresponding result for (ogo0g y) obtained in
[29]. Moreover the leading order large N behavior of (g ooy n) is obtained [36] from
the results for of [29] for (0000 n) and this result looks very different from the result
of [30]. Therefore it must be the case that if the Wiener-Hopf procedure of Wu [29],
which starts from the N x N Toeplitz determinant representation of (o oo ) and
(0000N.N), is iterated to all orders we will obtain a representation of (ogo0g ) and
(0000nN,n) which is different from that of ref. [30].

In subsection I B1 we summarize the results of our calculations. In section 111 B
we calculate the exponential representation of the correlation functions (ogyoon) and
(ogoonn) for T < T,. In section IIIC we calculate the exponential representations
for T' > T.. In section IIID we calculate the form factor expansions of (oggogy) and
(ocooony) for T < T, and section IITE we calculate the form factor expansions for
T > T., We conclude in sec. IITF with a brief discussion of our results.

In chapter III we calculate the correlation functions (ogooon) and (ogoonny) as

series

D)=y P T <T,

Dy =
D\ =3 YT > T

(30)

The functions f ](\?”) are called form factors, and are 2n dimensional integrals.



1. Summary of Results

We let Dy stand for Sy = (ogooon) or Cn = (0000nn). Then

D) for T <T,
Dy=<¢ % (31)
D\ for T >T,

The representation of these correlations as an N x N Toeplitz determinant is [36]

DN = det AN (32)
where
Qo a_1 ... Qi—_N
a ag ... Go_
Ay = ‘1 .0 ‘ 2. N (33)
aN—1 aAnN—92 ... Qg
and
! ()27 d (34)
ay, = — z)z z,
27 |z|=1 ?

where the path of integration is counterclockwise. The function p(z) is

o(z) = ((1 —az)(1 —a2z—1))1/2_ (35)

(1 —apz71)(1 — agz)

For the diagonal correlation function Cy
oy =0 and ay = (sinh 2K, sinh 2K5)~* (36)
where K; = E;/kT. For the row correlation function Sy
a; = e 2 tanh K7 and ay = e 22 coth K. (37)

We will prove in Sec. IIIB that the correlation function DEV_) has an exponential

expansion
D) = Swexpy FJ (38)
n=1

10



where

Sm:[u(a@u—aay“ (30)

1-— ozlozg)Q
which for both the diagonal (36) and row (37) correlation function specializes to (24).
The function F' ](\,2 ") is given by

e N
A= HOHA e —sz

fip@k Pl ) Qe )25 ) (10)

=
where 2,41 = 21 and the functions P(z) and Q(z) are

P(2) = (1 - a3)/(1 — ) (a1)
and

Q) = (1 - a12)/(1 - a2 = 1/P(:), (12)

This agrees with the result given in ref. [37] for the diagonal correlation function
o)
N -

In Sec. ITIID we prove that D ) has the form factor expansion
n=0

where f](\(,)) =1 and

n 1 o

zi|=1—¢

II H (1= zom120m) > [ (zapm1 = 2241)(22p — 229)* (44)
=1 m=1 1<p<g<n
This agrees with the result given in ref. [37] for the diagonal correlation function
o).
For T' > T, we consider a new function ¢(z) such that

(1—an2)(1— az'2) ))1/2

-z ) (1 —ay 271

ﬂdzw@ﬂz(( (45)

11



which we write in factored form as

Pz) = P(x)7' Q" (46)

with
P(z) = (1 = ar2)(1 = a3 '2)) /2 (47)

and
Qz) = (1 - a12)(1 — a3'2))"? = 1/P(2). (48)

P(z) and Q(z) are analytic and non-zero for |z| < 1.

We prove in Sec. IIIC that the correlation function DE\}L) has an exponential

expansion
L83 T e SRR (19)
m=0 n=1
where
~ 1/4
Soo = [(1 - 041)<1 — 0y )(1 — o0y )2} (50)

which for both the diagonal (36) and row (37) correlations specializes to (27) and
where F ](\,2 ") is defined as in (40), but with P and @ replaced by P and @ Thus we
find from (40) that F J(\,Qn) is

B _ f B
N 2n e—>OH i=1—c 1 — ZjZj+1
HP(Z%)P(Z2_k1)Q<Z2k—1)Q(Z2_k1—1)' (51)
k=1
The function GS\%HH) is given by
1 2n+1 1 2n 1
G+ _ i % dz, 2N
N (2mi )2+l 0 H =1—c s 2129041 kl_[ 1 — 2k2p41
n+1 N n
HP Z1-1) Z2l 1 H (22m) Z2m) (52)

m=1
Equations (51) and (52) agree with the results given in ref. [37]. Note that for the

diagonal correlation function C](V+) = (ogoonyn) (36) implies that
F@ =F0™, (53)

12



In Sec. IITE we prove that Dg\;r) has the form factor expansion

Dy = - OOZ (2n+1) (54)

where
2n+1 n+1 R
f](\?nﬂ) = _n'(n+ 1) (2m)2n 1 Ho H j{ i edz, HP(Z%—l)P(Zzz Dzt
no R ntl n
;[162(22’” Qlzan ZQmIqu_[l 1 — 29y 1224)
(ZQj—l - Z2k—1)2 H (Z2r - 225)2- (55)
1<j<k<n+1 1<r<s<n

Equation (55) agrees with result given in ref. [37] for the diagonal correlation function
.

The proofs of these results are not restricted to the Ising case where the generating
function is given by (35) but with a suitable replacement for the factors S, and Sec
are valid in more general cases, for example the XY model in a magnetic field [38]-
[40]. The results (38)-(44) for T' < T, are valid for any generating function ¢(z)
where log ¢(z) is analytic and periodic on |z| = 1 and P(z) = 1/Q(z) The results
(49)-(55) for T > T, are similarly valid for any generating function for which log z¢(z)
is analytic and periodic on the unit circle |z| = 1 and P(z) = 1/Q(z).

13



II. HARD SPHERES
A. Introduction

In this chapter we will prove the results (15) and table III. In section II B we review
the relation between the two center formalism and the Mayer formalism. In section
ITC we prove the result presented in table III. In sections IID and ITE we use the
two center formalism to evaluate the complete star of 37(22 in terms of ndimensional

integrals. We conclude in section II F with a discussion.

The partition function may be written as

N, N;
1 J J
N, = —— v / d’pu / d"r; exp —Hy, /kT (56)
N;hors g RP 111 Ui

where h is Planck’s constant. After Gaussian integration (56) becomes

N.
1 - 1
ZN, = d? —— i 57
5= w1 @ ew =g 3 ot )

1§’i<k§N]’

where A := h/(2rmkT)"/2. With the definition (5), (57) becomes

N.

1 J
Ny = ——— d? L+ fir). 58
= L1 @ 1 05 5%)

1<i<k<N;

A lengthy calculation [5] shows that the virial coefficients BP are given by (7). The

integral in (12) for the virial coefficient BéD) may be evaluated easily. Let m be any
positive integer, and let u be any positive number. According to reference [41], p.

159

2mm! 2m

= (2m — 1)(2m — 3)...2m — 2k + 1) in®" =ty
> 2(m —1)(m—2)(m—k) } v

u
_ 2m — 1)!! cos U .
/ sin?” z dx = ( ) U — x ¢ sin?™ oy 4+
0

k=1
and
/u sin2m L 1 dp — 2"ml =GO Gy +
0 2m+1)2m -1 2m+1
m—1
2k+1m(m — 1)(m — ]{?) 2 2k—2
in“" e .(60
T om—)Em—3).Cm—2k—1) " u}< )

14



The calculation of the fourth virial coefficient is more involved. The method used
by Rowlinson [14] and Clisby and McCoy [16] was to calculate the volume of the

intersection of three balls

vp(riz, 113, T23) = — f(T14)f(7"24)f(7’34)dDr4 (61)
RD

as an intermediate step. It follows from (61) that

= - /RD /RD RD F(r13) f(r23) f (raa)vp (r1a, 713, 723)d”r1dProd rs (62)

Rowlinson had previously calculated vs(ria, 713, 723) [42], but no one has so far cal-
culated the three dimensional complete star using (62). The reason is that there are

elliptic integrals in the odd dimensional case that cancel in the even dimensional case.

B. The two center formalism

The two center formalism was invented by de Boer in 1949 [13]. This formalism
is equivalent [5] to the Mayer formalism, and in the case of hard spheres it especially
useful since it allows the reduction of the dimension of the integral by D. The inven-
tion of this formalism is what inspired Nijboer and van Hove to confirm Boltzmann’s
result for B{”) in 1952 [12].

According to the Mayer formalism, BiD) is given by (10). If the pair potential is
given by (1), then (and only then) the Mayer diagrams of B, can be written according

to the two center formalism as

5 = 4B (1)
7= —35 (5000 +20700))
0= —3B000), (63)
and thus
B = B (3100 + 5 M)+ 2000 + D). (64

Here the circles indicate points that are not integrated over, and the number 1 indi-

cates that the distance between these two points is 1. We shall use the same notation

15



as Nijboer and van Hove [12]. Thus we define

X(ri2) = [,
(91(r12))? = IX,
U(rz) = /]
p(riz) == []. (65)

The functions g;(r12), ¢(r12) and ¥ (r12) are easily calculated for any D. The calcula-
tion of these diagrams in three dimensions is described in the paper by Nijboer and
van Hove [12]. It is easy to do the same calculation in higher odd dimensions, but
we shall omit this since the lower order Mayer diagrams in B, are already known in

terms of hypergeometric functions. Luban and Baram [43] showed that

1 2P" (D4 1)[(D/2+1)P 1 —-D+1 D+3 D+3
B3 1 T(3D/2+ 1[((D+3)/2)]2*° (5’1’ 2 2 7 2 ’1) (66)
and
51 =2 DND/E [ dy g ) (67)
where
wl) = [ do LRI (o). (68)

If D is odd, then according to reference [41], p. 1071
1 —-D+1 D+3 D+3
By ( +1 D+ + ;1) _

27 2 T2 2
& 2k — 1)!! —1)..n—k+1
— 2 (n+k+1)(n+k)..(n+2)
where D = 2n + 1 and (—=1)!! = (=1)° = 1. Joslin [44] found that
-V V 1 20 .
9 (y) = F(l/+1/2 T(1/2) anrcsm (y/2) dp cos™ (¢/2) if y <2 (70)

0 if y > 2.
Thus, if y < 2, n is a positive integer and D = 2n + 1, then

2~ D/2y /2= o 1 2'nl y)2
Fin+1)I'(1/2) \2n+12n -1  2n+1

+z P _‘35.?:(5;’:’52_1><1—<y/2>2>”"1}) ™

Thus using (69) and (70), the expressions in (66) and (67) can be explicitly computed

gD/z(y) =

{(1 —(y/2")" +

in odd dimensions. Clearly both of these are rational numbers in odd dimensions.
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C. Integration of the complete star

We aim to obtain a general expression for x(1). The only dimensions lower than
12 for which the exact result has not been published before are D =5, 7, 9, 11. We
shall calculate x in dimensions D = 2n+1. When n is an integer, D is an odd integer.
However, n need not be an integer. If n is a half integer, then the calculation below
is still valid and gives By in even dimensions. If n is some other positive real number,
then the calculation below may be used to obtain B, in continous dimensions. We

will use the convention

12 2 1. (72)
According to (65)
x(r12) = / f(r13) f(ria) f(ro3) f (raq) f (r3a)dPrsd"ry (73)
R? JRD
We define
F(h) = f(Tij)€2ﬂ-ih.(ri7rj)dDI'i (74)

RD
where h = |h|. It can be shown that [43]

F(R) =~ Toya(2rh) (75)

where J, is a Bessel function of order v. We define
Gliri) = [ f(na)f(rag)m i ielgPe, (76)
Clearly
Xri) = [ PG ri) i W

In D dimensions, we write r = (21, %9, ...,2p_1,2) = (X,2) and h = (h,, h,). r; and
ro are placed on the z axis in such a way that r; +ry = 0. From now on, r15 will be

written as r. We first simplify G(h,r). According to (76)

Glh,r) =2 /0 " iz cos(2m2h.) /{ 2% F([g?+ (241 /2)/2)e2mhex (78)

r | z=constant}
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where x = |x|. The integral over the hyperplane {r | z = constant} in (78) has the
same form as the integral in (74) if D is replaced by 2n. It therefore follows from (75)
that

o pl-r/2

G(h,?”) = _ﬁ .

dz cos (2mh,2)[1—(r/242))"2 T, (2mha[1— (r /242)%]Y?) (79)
where h, = |h,|. (77) can be rewritten as

)= [ [ @n rwicm P 80

Since F'(h) and G(h,r) are spherically symmetric in the hyperplane {h | h, =
constant}, (80) can be simplified as

V() = ooy / " dn. / " dhy B2 UR(R)[G (b, )P (s1)

where Qy,_; = |S?"| = 27" /T'(n). It follows from (75), (79) and (81) that

_ 81"

1—r/2 1—r/2
21 = (r > 21n/2 S — (r o 21n/2
o [ a2 [ a2

/ ) dhxhiJn (27[1 — (r/2 + 2)2Y2h,) J, (271 — (/2 + 2')*])?R,,)

& 1
/ . G e o ({2 + )2 cos (2mh.2) cos (2nh)  (82)

x(r) =

[e.9]

We rewrite cos (2wh.z) cos (2h.z") as
1
cos (2wh,z) cos (2mh.2") = §{COS (27h. (2 + 2)) + cos (27h. (2 — 2))} (83)
According to reference [41], p. 772

o 1
/ dhz—( W Ipsa (2m(h2 + h2)Y?) cos (2mh. (2 £ 2'))

_ %[1 (2 PR, (2mhg [l — (= 4 2)2) (84)

xT

Thus x(r) can be reduced to a three dimensional integral. So

4™

1—7/2 1-r/2
)= s /0 d=(a(r/2, 2)/2m)" /0 42 (a(r/2, 2)/2m)"

/0 N dhx#Jn(a(r/Z, ha)du(a(r/2, 2 )h)

{(a(z,2"))2m)" T (a(z, 2" ) he) + (a(z, —2") /270)" T (a(z, —2")he)} (85)
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where

a(z,2') = 2my/1— (2 + 2)2 (86)

Now we have to evaluate the integral I given by

I = /OOO J"(Q(T/Q’Z)x>‘]"(a<r/2’Zl)fE)Jn(@(Z,Z')x)xjﬂdx (s7)

We integrate by parts and use the recursion relations for Bessel functions

2v
JV_I(Z) + Jl,+1(2) = ?JV(Z) (88)
and
d
Jy—1(2) = Jusa1(z) = QEJV(Z) (89)
Then
1 /
I = om (a(r/2, Z)Ia(r/Q,z);a(r/Z,z’)70c(z,2’) +a(r/2,z )IO&(T’/ZZ’);OC(T’/ZZ)704(272') +
+CY(Z, Z/)[a(z,z’);a(r/2,z),a(r/2,z’)) (90)
where
1
Ing~ = i EJnJrl(Ozx)Jn(ﬁx)Jn(fyx)dx (91)

and Ig.,~ and I, g are defined as cyclic permutations of the same integral. We use
the formula of Sonine and Dougall [45] to calculate I,.3.. It says that for any positive

constants a, b and ¢

/ h Ju(at)J, (bt)J, (ct)t'Hdt

B (be)r2-rtt
ol (p—v)I(v +1/2

Aa;b,c
T(1/2) / (a® — b* — ¢® + 2bccos ) L sin® o dp(92)
0

where
0 if a? < (b—¢)?
Aupe = § arccos % if (b—c)?<a®><(b+c)? (93)
T if (b+¢)? < a?
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Thus

27"a(r /2, 2" a(z, 2" )"
a(r/2, )" T (n+ 1/2)T'(1/2)

Aa(r/2,2)50(r/2,2"),a(z,2) )
sin”" ¢ dep. (94)
0

We have thus reduced x(r) to a two dimensional integral:

Ioa(r/2,z);a(r/?,z’),a(z,z’) =

o1 2n
“al(n+ 12T (n)0(1/2)

N -

x(r) =

a(r/2,2);a(r/2,2),a(z,2

dga sin®"

a(z,2);a(r/2,2),a(r/2,2")

dosin® ¢

[
/ R / T a2, 2) 2 a2, ) 2
[

1—r/2 1- r/2
42 / i / a(r/2, ) /272 (a2, — ') J27) 2
a(r/2,2);a(r/2,2"),a(z,—2'
/ dgosm ©
1-7/2 1- 7"/2
/ dz/ a(r/2,2)/2n)* (alr/2, 2') /27)*"

a(z,—2);a(r/2,2),a(r/2,2") . 9
/ dp sin“" ¢ (95)
0

(The integral over ¢ may be evaluated using (59).) We need to determine which
values of z and 2’ correspond to which functional form of A,y .. We will use the fact

that for all z, 2’ for which 0 < z,2/ <1 —1r/2

a(r/2,2)? < (a(r/2,2) + a(z, 2))? (96)

and
a(z,2') > (a(r/2,2) — a(r/2,2))? (97)

Since 2/ < 1—1/2 < r/2, the first inequality is obvious. The second inequality follows

from the first inequality. Since «a(z,—z") > a(z,2’) for all z and 2/, a(z, 2) could be
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replaced by a(z, —2') in (96) and (97). It follows from (93), (96) and (97) that

Aoa(r/2,z);a(r/?,z’),a(z,z’) -
0 if a(r/2,2)? < (a(r/2,2") — a(z,2'))?

arccos O‘(T/2’Z;)j(t%z)zg(i_;)(r/Q’z)2 if (a(r/2,2') —a(z,2)? < a(r/2, z)?

(98)

and

Aa(z,z’);a(r/2,z),a(r/2,z’) =

a(r/2,2)24a(r/2,7)2—a(z,2")? .
arceos SATHIRSEE i 0(2,2)? < (alr/2,2) +alr/2:2)) o

T if (a(r/2,2')+a(r/2,2))* < a(z,2')?

We need to translate the equation a(r/2,2)* = (a(r/2,z') — a(z,2'))? into an
equation involving z and 2’. This can be done by using the definition of o and

expanding both sides. In this way it can be shown that

A 0 if 2/ > a.(z) (100)
a(r/?,z);a(’r‘/2,z’),a(z,z’) = ! N2 _
arccos a(r/z’zzf(tfz(zz’é;; Zgr/2,z)2 if 2/ < a,(2)
and
P if 2/ > a.(2)
Aa(z,z’);a(r/2,z),a(r/2,z’) = (101)

a(r/2,2)?4a(r/2,2")2—a(z,2')?
20(r/2,2z)a(r/2,2")

arccos if 2/ < a.(z)

where 2’ = a,(z) is the positive root of the equation
3—1? =42 — 4z — 427 202 + ArP2 + 82 + 8r22? —2r2=0.  (102)
When r = 1 this equation can be factorized as
(1-22)(1-2")1+2+2)=0. (103)

Hence 2’ is undetermined whenever z = 1/2 in this case.

It can be shown in the same way that

0 if 2/ > b.(2)

a(r/2,z’)2+a(z,—z/)2—a(r/2,z)2 . ’
arccos Salr /2.2 )a () if 2/ < b.(2)

Aa(r/Q,z);a(r/2,z’),a(z,fz’) = (104)
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1-r2 |

alz)

b.(z)

1-r/2 7z

FIG. 1: The functions a, and b,. a,(2) = by(z) =0 when 2z = —% + 212 — 3r2.

>

Z

12 ()

b](Z)

1/2 z

FIG. 2: The functions a; and by (here r = 1). bi(2) = = + Z + %\/%(1 —22)(3 + 22).

bi(z) = 0 when z = 1.

and
Aa(z—)ia(r/2,2),0(r/2,2") = " ) e "2 i "> b (2) (105)
arccos 2/ 2’2&3% ?az(g 7 j/()z’fz) if 2/ < b.(2)
where 2z’ = b,.(z) is the positive root of the equation
oz + 22 — 4z — 34422+ 427 4012 =0 (106)

Since (102) and (106) are both symmetric in z and 2/, we could equally well write
their solutions as z = a(z’) and z = b(2’) instead. a,(z) and b.(z) for r > 1 are shown

in figure 1.

22



So

B 27r2n
x(r) = - nI'(n+1/2)T (1/2)

( /1 r/2 dz /ar z) alr)2,2)/2m) " (a(z, 2) /27)*"

arCCOS(ya<,r/2,z)7a(r/27z/),a(z,z )

dyp sin® ¢

|
- L [ " 4 a2, 2) 2w a2, )2

arccos (ya(z’z/)YQ(T/Q’Z)’Q(T/Q’Z/)) 9
dp sin™" ¢

[e=]

+ 2/1 " dz /W a(r/2,2)/2m)* (a(z, —2') [2m)*"

arccos (ya(r/2 2);a(r/2,2"),a(z,—2 )) 2
dp sin”™"

o

1- r/2
e [T [ a2 e, )

/arccos(ya<z —2')a(r/2,2),a r/2,z’))

dyp sin® ¢

1-r/2
U / 42 (a(r/2,2) /201 (a(r 2, ) 22

/ do sin? Qp> (107)

where y,.5, = W?T:_QZ As r tends to 1, it follows from (103) that a,.(z) takes the

value 1/2 for all z, as shown in figure 2. In the special case r = 1 the integral simplifies
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to

27r2n

nl(n + 1/2)T(n)0(1/2) ©
1/2 1/2
( 2/0 dZ/O dz(a(1/2,7)/2m)" (a(z, 2') /27)""

x(1) = -

arccos (Yo (1/2,2)a(1/2,2"),a(z,2'))

dyo sin® ¢

|
o " / " a(1/2,2) /2 a(1/2, ) /2w

arccos ya(z 2);0(1/2,2),00(1/2, z’)) 9
dp sin“" ¢

o

b1(z
+ 2/ dZ/ a(1/2,2)/2m) " (a(z, —2') /2m)*"
arccos (Yo(1/2,2)i0(1/2,2'),a(z,— )

dy sin®™ ¢

_l_

/ bi(2)
e

0 dz /(a(l/Q,Z)/Q’]T)2n(a<1/2’Z/)/QW)%L

arccos ya(z —2");0(1/2,2),a(1/2, z’)) 9
dp sin™ ¢

1/2 1/2
d / o(1/2, 2)/2m)2 (a(1/2, ) /27)2"

b1(2)

/Odgo sin? go). (108)

After integration by parts, this gives integrals of the type

e 09
where p and ¢ are polynomials. Using Maple it was thus possible to calculate x(1)
for D = 5, 7, 9, 11. We may now obtain [<] from (63). Since [ ] and [/] can
be obtained from (66) and (67), we have found B;. We use the more compact Ree
Hoover f formalism [46] to present the results. In this formalism By consists of only

two diagrams instead of three. Here we define a function f by the equation

f(ri) = f(riy) = 1. (110)
Thus it follows from (6) that fi; = 0 precisely when f;; = —1. Hence the Mayer

complete star has no Ree Hoover bonds, and we write
D =X (111)
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We indicate a Ree Hoover bond by a broken line. The equation
fiafos = 1+ fua+ foz + frafos (112)
is thus written symbolically as
=] 1+ 21+ X, (113)

where on the left hand side of (113) only the Ree Hoover bonds are shown. The
diagram @ | is called the Ree Hoover ring, since it consists of a ring of four Mayer

bonds and two Ree Hoover bonds. It follows from (10), (111) and (113) that
3
— i 114
-3 (114)

The final answer is given in tables III, IV and V. For the sake of completeness, we
include the diagrams of Bf). The numerical values of references [18] and [20] agree

with the exact result.

TABLE IV: Exact and numerical [18] values of the Ree Hoover complete star

D % decimal expansion

3 |- 21942 dlslarccos(1/3) 0.31672598803...
0.31673(2)

5 |_ 163547 _ 3888425 V2 | 67183425 arccos(1/3) 0.11520591833...

T 128128 © 8200192 7 ' 16400384«
0.115211(3)

283003297 159966456685 v/2 | 292926667005 arccos (1/3)
7 141892608 217947045888 «© | 48432676864 7 0.04492254969...

0.044927(2)

88041062201 _ 2698457589952103 2 | 8656066770083523 arccos (1/3)
9 |~ 31810986496 — 2851716013752320 = T 1140686405500928 P 0.01828214224...

0.018286(1)

_ 66555106087399  16554115383300832799 /2
22760055898112 14916030233386680320 m

52251492946866520923 arccos (1/3)
+ 5966412093354672128 - 0.00766164876...

1

—_

0.0076638(8)

25



TABLE V: Exact and numerical [18] values of the Ree Hoover ring

D —% decimal expansion
2
4131 657 /2 _ 12393 arccos (1/3)
3 1480 + 2240 7 4480  © —0.02977648205...
—0.029781(8)
67183425 | 116652752 _ 201550275 arccos (1/3)
5 32800768 | 16400384 7 32800768 ™ —0.03923343804...
—0.039233(3)
292926667005 | 159966456685 v/2 _ 878780001015 arccos (1/3)
7 06865353728 | 145298030592 7 06865353728 ™ —0.03505760307...
—0.035055(3)
8656066770083523 | 8095372769856309 v/2 _ 25968200310250569 arccos (1/3)
9 2281372811001856 | 5703432027504640 = 2281372811001856 ™ —0.02686294042...
—0.026861(3)
11| 22251492946866520923 | 49662346149902498397 V2
11932824186709344256 ' 29832060466773360640
156754478840599562769 arccos (1/3)
~ 11932824186709344256 - —0.01899884734...
—0.018997(3)

D. Theory for the general complete star

We will show that it is possible to construct the complete star of any number of
points from some functions F' and G. To construct x,.o(r12) requires n copies of
Gand 1+2+ ..+ (n—1) = (n— 1)n/2 copies of F. We consider n + 2 points
ry, Iy, ry,..., r,. We write

7”27:12 = |f‘1 —f'2| (115)

Let
¢:{(,j)[1<i<n, 1<j<n;i<j}—{i|1<i<n(n—1)/2} (116)
be a bijection, and let
A [1<i<n, 1<j<n}—{i] —nn-1)/2<i<n(n-1)/2} (117)
be an extension of ¢ so that for all (4, 5)
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Of course ¢ is not a bijection. We consider r = (x, 2) € R? and h = (h,, h.) € R”*
where R”” is the dual space of R”?. RP” will usually be written as R”. We use the
notation r(; ;) :=r; —r; and r_; := —r;. In particular r;; = 0 and ry = 0.
Let
Tz = Fij- (119)

We define the complete star of n + 2 points

n n (
Xnta(r) == H/ d"r; Hfijféj
i=1 Y RP j=1

We proceed by giving some examples. We begin by considering n = 0. This is trivial.

n—1)n/2

Jo—1(k)- (120)
k=1

The integral that needs to be calculated is x»(r). Clearly

xa(r) = fia- (121)
In particular,
xo(1) = 1. (122)
We next consider the case n = 1. In this case the integral is
) = [ fufndn (123)
RD
This integral can be easily evaluated. In particular, when D = 2,

Xs(r) = //12 V1—a?dz (124)

and thus

x3(1) = g - g. (125)

Our final and only nontrivial examples are n = 2 and n = 3. It follows from (120)

that
valr) = / dPr, / Py fir for fiofinfo 10 (126)
RD RD
Following (116), ¢~*(1) can only be (1,2). Thus
alr) = / &Pr, / dPrs iy forfrofonfio (127)
RPD RD

When n = 3, ¢ may be chosen so that ¢(1,2) =1, ¢(1,3) = 2 and ¢(2,3) = 3. Thus
X5(r) = / dDI‘l/ dDI“z/ d"rs fiyfor fiafoo fisfaz frafrs fos. (128)
RD RD RD
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Lemma 1

(n—1)n/2
n = dh;
Xn+2(T) H /RD*
n ' n 1 ~ ~
H/ d"r; fi;fs; exp 2mi Zhw(j,k) (1 = 5 (T +12))
=1

(n— "/2
/ dPr} fun exp —2mihy - (v) — 1)) (129)
RD

We illustrate the lemma by two examples. For n =2, ¢ : {(1,2)} — {1}, and the
right hand side of (129) is

/D dDhl/D dDI'l /D dDr2 Ji1f31 f12f50 exp 2mihy - (r1 - r2)
RD* R R
/RD dPr! fiinexp —2mihy - (v — 1))

/ dDrl/ dPr, fiifo1 fiofaofro
RPD RD
o) (130)

In (130) we used the fact that for an integrable function f continous at 0

/ f(x)expi2rh - x d”x d”h = f(0). (131)
RP JRD

From now on, we will assume that the integral f_oooo exp 2mikx dk exists and equals
the Dirac distribution §(z). 6(x) has the property that for any function f continous
at 0

| s f) do = f0) (132)

o0

Forn =3, ¢:{(1,2), (1,3), (2,3)} — {1,2,3} and it is easily seen that

1
exp 27rz22h¢(]k — —(1"1 +13)) =

7=1 k=1
exp 27Tl<h1 . I'(z)fl(l) + h2 . I'¢71(2) + h3 . I'¢71(3)). (133)

The general proof is similar to the examples.

Proof of Lemma 1 By changing the order of integration, it is seen that the right
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hand side of (129) equals

H/RD dPr; fif3
i=1

(n—1)n/2

(n—1)n/2

D_./
/D d r] fj/j/l
. R
J=1

n—1)n/2

(
/RD d’h,, H exp 2mihy - (r] — )+ ry-10)

k=1 =1
n (n—1)n/2 (n—1)n/2
= I, @ IL [ 0% f T1 ot xiem)
i=1 YRP j=1 JR? k=1
n n (n_l)n/Q
= H/ dDr1 Hfijfij f¢_1(k)
i—1 /RP j=1 k=1
=t Xn+2(r) (134)

E. Calculation of x,(r) for D =2

Here we will only consider two dimensional hard spheres (in other words, hard
disks). This is not very restrictive since a calculation in two dimensions can easily be
extended to a calculation in any even dimension. It seems that a calculation in odd
dimensions greater than one would be more difficult.

From now on, we let D = 2, and we use coordinates r = (z, z). It follows from

(74), (75) and (76) that G can be written as

1—r/2 9
Gh,r) = / dz;h;l o8 2h,z sin 2mha\/1 — (2 4 1/2)2
0

1-r/2 1—(r/2+2)?
= 4/ dz cos 27rhzz/ dk cos2mh,k (135)
0 0

From (129) it follows that

(n—=1)n/2 n n (n—1)n/2
vt~ TL [ ndT6 (Y] T
-1 JR¥ k=1 \j=1

=1

In particular

xa(r) = /R PG (g, 1) G (~hy, ) ()

and

o (r) = / d2h1/ d2h2/ hyG (hy + h, 1) G (—hy + hy, )
R2* R2* R2*
G (=hy —hg, ) F(hy) F(hs) F(h3). (136)
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From now on, we let D = 2. In light of (75), (135) and (136) it is seen that

(n—1)n/2 1-r/2 r/2+zl)2

Xn+2(7") _ ( (n 1) n/24n H /2 th H/ dZ] H/ Ky
R *
H COS 27T( Z h¢(p,q),z> Zp COS 277( Z hgo(p,q),:v) ky
p=1 q=1 q=1

(n—1)n/2

1 1/2
Ji (27 (hyn o + B . (137)
7]1,;[1 (hm,z2 + hm,x2)1/2 1 < ( ) )

In particular

1—r/2 1-r/2 \/1-(r/2+21)? 1—(r/2+22)2
Xa(r) = —16/ d2h1/ dZ1/ dzg/ dk‘l/ dks
R2* 0 0 0

0
cos 2mhy 21 cos (—2mhy ,22) cos 2mhy . ky cos (—2mhy . k2)

1 2 2\1/2
(hl,z2 + h1,x2)1/2 & (27T <h1’z thie ) ) (138)

1—r/2 1-r/2 1—r/2
= —064 / d2h1/ d2h2/ d2h3/ le/ ng/ ng
R2* R2* R2*

/\/ (r/2421)2 \/w/ —(r/2+22)2 /\/ —(r/2+22)2

0 0 0
cos 27 (hy , + ha )21 cos 2m(—hy , + h3 .) 20 cOs 2m(—ha,, — h3 .)23

and

dkl dk?Q dkS

cos 27 (hy x + ho i) k1 cos 2 (—hy ; + ho ;) ko cos 2 (—hgy — hg 4 )ks

1 2 2\1/2
(hLzQ N h17x2)1/2 J1 <27T (hLz +hy ) )

1

(h2722 + h27x2)
1

(h3722 + h3,ac2)

172 Jl <27T (h2722 + hg’mz)lﬂ)

o (27 (hs.* + hs.?)" 2) . (139)

We would like to rewrite the product [[7_, cos2m(3 7 hy(pg).z)2p in a form that
allows us to integrate (137) with respect to h, := (hiz, oz, ..., A(n—1)n/2,2). From now
on, we will only use the triple (7, j, p) with the meaning ¢(7, j) = p. We will sometimes
use the notation (i, jy, p) = (i,7, ¢(1,7)).

Lemma 2 Let 0 = (01, ..., 0(n_1)n/2) € {—1, 1}(*~Y"/2_ Then the following equal-
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ity holds under integration:

H cos 271'(2 h(ig),2) % =
i=1 j=1
1 (n—1)n/2
S/ Z H cos 2mhy, . (2, — 0}, 2;,)- (140)

Ue{il’l}(nfl)n/Q p=1

When n = 2, (140) says that

(cos2mhy . (21 — 22) + cos2mhy (21 + 22)) . (141)

N | —

cos 2mhy .21 cos (—2mhy L 29) =
We now illustrate (140) when n = 3. In this case, the left hand side of (140) is
cos 27 (hy » + ha )21 cos 2m(—hy , + h3 )20 cos 2m(—ha,, — h3 . )23 (142)
The even part of (142) is

cos hy .z cos hy .21 cos hy , 25 cOS g, 29 cOS hg .23 cos hg .23 +

sin hy .21 sin he .21 sin by 429 Sin g 29 sin hy , 23 sin hg . 23. (143)

Since cosacos3 = (cos(a— ) + cos(a+ (3))/2 and sinasinf = (cos(a — ) —
cos (o + 3))/2, (143) can be rewritten as

1
g(cos hy (21 — 22) + cos hy (21 + 22))(cos ha (21 — 23) + cos ha (21 + 23))
(COS thZ(ZQ — 23) ~+ cos h3,z<22 + 23)) +

1

g(cos hy (21 — z2) — cos hy (21 + 22))(cos hg . (21 — 23) — cos ha (21 + 23))

(coshs (22 — z3) — cos hs (22 + 23)). (144)
Of course (144) equals (under integration)

1

2 ( cos 2mhy (21 — 29) cos 2mhy (21 — 23) cos 2mhs (22 — 23)
+cos2mhy (21 — 22) o8 2mhs . (21 — 23) cos 2mhs . (29 + 23)
+cos2mhy (21 — 22) cos 2mha (21 + 23) cos 2mhs , (22 — 23)

+cos 2mhy (21 — 22) cos 2mhg (21 + 23) cos 2mhs (22 + zg)) (145)
(145) is the right hand side of (140) when n = 3. The general form clearly follows.
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We wish to integrate (140) with respect to h. := (hiz, hozy ooy Rn—1)n/2,2)-

It is evident from (140) that h, ;) . will appear with a prefactor (z; —o;2;). Stated
differently, h,, . will appear with a prefactor (z4-1(,), — 04-1(p)226-1(p)2)-

We use the formula ([41], p. 772)
/ (22 + b)) V20 (a(2® + 0*)V?) cos ca dx

o0

267 'b tsinb(a® — )2 if0<c<a
— (146)
0 it0<a<e.

It follows from (137), (140) and (146) that

1-7/2
Noia(r) = (—1)(n=Dn/2gn H / dhsz/ dsz/ Sk
H oS 27?(2 o (t,m)e) S
I=1 m=1

1 (n—1)n/2 11
9(n—1)n/2 . 1§L1W2 }_[1 7ThpxSmQWhM\/l (21, — 05,25,)% (147)
Using the formula
nar :/ cosxt dt (148)
x 0

(147) can be rewritten as

(n—1)n/2 r/2+zk

1-r/2
Xn+2(r) = ( (n=1) n/24n H / dhz X H/ dZ] H/ Sk
H coS QW(Z P (tm) ) St
=1

(n—1)n/2

le TipZip) 2
1T / dt, cos2mhyat, (149)

CTE{ 1 1}(n 1)n/2 p=1
When n = 2, this is
00 1-r/2 1-r/2 A/ 1—(r/2+21)2 \/1=(r/2422)2
X4(T) = —16/ dth/ dzl/ dZQ/ d81/ dss
—00 0 0 0

0
cos 2mhy 451 cO8 2T — hy 459

1 (zzl—a“zjl
Z / dty cos2mhy 4ty (150)

oe{-1,1}
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Since in this case z;, — 0j,2;, = 21 — 029, this is

1— 7"/2 1-7/2 \/1—(r/2+421)2 1—(r/2+22)2
X4 T == —16/ dh1$/ / dZQ/ d81/ d82
0 0

cos 2mhy ;81 cos (—2mhy ;:S2)
1—(21—22)2 1—(Z1+Z2)2
[
0

) dty cos2mhy 4. (151)
0

After simplification of the product cos 2mhy ;51 cos 2mhy ;59 cos 2mhy 41y, this becomes

00 1—r/2 1-r/2 1—(r/2+21)2 1—(r/2422)2
xa(r) = —4/ dhm/ dzl/ dZQ/ dSl/ dss
—00 0 0 0

0
1—(21—22)2 \/ 1—(21+22)2
/ +f i
0 0

(cos2mhy 4 (s1 — s2 — t1) + cos 2mhy 4 (s1 — s2 + 1) +

€08 2mhy 4 (51 + S2 — t1) 4+ cos 2mhy 4 (51 + S92 + t1)). (152)

We may integrate over h; , to get

1—r/2 1-7/2 1—(r/2+21)2 A/ 1—(r/2+422)2
xa(r) = —4/ dzl/ dZQ/ dsl/ dssy
0 0 0

0
17(21722) 17(214»22)2
/ + [ i,
0 0

(5(81 — SS9 — tl) + 5(81 — So + tl) + (5(81 + 89 — tl) + (5(81 + 8o + tl)) (153)

2

which becomes

1—r/2 1-7/2 \ 1=(r/2421)2 1—(r/2+22)2
xa(r) = —4/ dzl/ dZQ/ d31/ dss
0 0 0

0

(1[0<81*82<\/17(21*22)2] + 1[O<32731< 1—(z1—22)2]
+1[0<s1+s2< 1—(21—22)2] + 1[0<—s1—82< 1—(21—22)2]
+

1[0<51—52<\/ 1—(2z1+22)?] * 1[0<82—S1< 1—(z1+22)?]
ocoirnay/TGrre?) T 1[0<781782<\/17(z1+zg)2])' (154)

It is clear that

—0. (155)

1[0<751732< 1—(z1—22)2] - 1[0<751752< 1—(z1+22)?]
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Since 1/2 < r/2 < /3/2 and thus 7/2 < 1 — r/2, and since |s; — s
max {\/1 — (r/2+ 21)2,1/1 — (/2 + 22)%}, it is clear that

1[0<51—52< 1—(21—22)2] + 1[0<32—s1<\/1—(z1—z2)2]
- 1[0<s1732< 1—(z1+22)?] + 1[0<82*81<\/17(21+22)2]

~ 1L (156)
Therefore
1—r/2 1-7/2 \/ 1=(r/2421)2 1—(r/2+22)2
xa(r) = —4/ dzl/ dzg/ d51/ dss
0 0 0 0
<2 + 1[0<51+52< 1—(21—22)2] _l_ 1[0<81+82<\/1—(Z1+Z2)2])' (157)

Clearly this is

1-r/2 1-r/2
X4 (T) = —4 / le / dZQ
0 0

1 1
(4045 - 5(0& + 6 - ’7)21[a+ﬁ<’y] - _(a + 6 - 6>21[a+ﬁ<5})7 (158)

2

where o = /1 — (r/2+ )2, = /1= (r/2+2)2, v = /1— (21 — 2)? and
d = \/1—(2z1+22)% x4(1) can easﬂy be calculated by integration by parts. The

equalities
0Blermtony = 50y = 07 = sy o) (159)

and

2arcsin (z — b,(2)) + arcsin (r/2 + b.(z)) = arcsin (/2 + 2) (160)

are useful.
We now consider the case n = 3. ¢ may be chosen so that (iy,j;) = (1,2),

(ig,jg) = (1,3) and (ig,jg) = (2,3) In this way, (149) is

1-— r/2 1-r/2 1-r/2
/ dhlm/ dhgm/ dhgx/ / ng/ ng
0

v/ 1=(r/2421)2 v/ 1=(r/2+422)2 —(r/2+23)2
/ dSl / dSQ / ng
0 0 0

cos 27 (hy o + hay)$1 €08 2m(—hy 4 + h3 4 )S2 o8 2w (—hay — h3 .)S3

21 0'22’2)2 1—(21—0'323) 2
S
0 0

1—(22—0’323)
dtg/ dts
oe{-1,1)3 0

cos 2mhy 4t1 cos 2mhg yto cos2mhs ,ts. (161)

2

34



Using the representations é(z) = [ cos2rkz dk and 0 = [_sin2rkz dk, (161)

can be written as

00 00 ) 1-r/2 1—r/2 1-r/2
X5(7) = —64/ dhl,x/ th,x/ dh3,x/ dzl/ d22/ dzs
—00 —00 —00 0 0 0

\/1—(r/2+421)2 1—(r/2+22)2 1—(r/2+23)2
/ dSl / d$2 / ng
0 0

0

—(0121—0222) 2 v/ 1—(o121—0323)2 1—(o222—0323)2
> / dt / dt, /
0 0

UGZS

dts

0

COS 27Th17$t1 COS 27Th27xt2 COS 27Th37xt3
cos 2mhy 451 €08 2hy 459 cOs 2Thy 453

cos 2mhg ;51 €oS 2mhg ;59 cOS 2mhg 4 S3. (162)

After simplification of the product cos2mhy ;$1 cos2mhy ;8o cos2mhy 41, (162) be-

comes

1-r/2 1-7/2 1-r/2
X5(7“) = / dhlx/ dhgx/ dhgx/ le/ de/ ng

\1—(r/2+421)2 \/1—=(r/2+22)2 —(r/2+23)2
/ / d82 / d83
0

0

dSl
0

dty dts

0'12’1 0'222 2 1—(0’121—0’32’3)2
3 / dt, / ”
0

o€Z3

/\ / 1—(0’222—0’323)2

0 0

(cos 27mhy 2 (81 — S2 — 1) + €08 2mhy 4 (s1 — So + t1) +
08 2mhy 5 (81 + S2 — t1) + cos 2mhy 4(s1 + s2 4+ 11))
(cos 2mhy »(S1 — S3 — t2) + €08 2mhy 4 (51 — S5+ t2) +
cos 2mha 4 (s1 4 s3 — t2) + €08 2hy 4 (51 + 53 + t2))
(cos 27mhs 4 (s2 — S3 — t3) + cos 2mhg » (s — 53+ t3) +

COS 27Th37$(82 + 83 — tg) ~+ cos 27Th37x(82 + S3 + tg)) . (163)
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After integration with respect to h,, (163) becomes

1-r/2 1-7/2 1—r/2
Xs5(r) = —/ dzl/ dZQ/ dzs
0 0 0

\ 1=(r/2421)2 1—(r/2+22)? 1—(r/2+23)?
/ dSl / d82 / ng
0 0

0

\/1—(o121—0222)2 \/1—(0121—0323)2 1—(o222—0323)2
> / dt / dt, / dts
sz 0 0 0

(5(81 — S9 — tl) + 5(81 — S9 + tl) + 5(81 + 89 — tl) + (5(81 + 89 + tl))
(5(51 — 83 — tg) -+ 5(51 — 83 -+ t2) -+ 5(51 + S3 — t2) + (5(81 —+ S3 + tg))

(5(82 — 83 — tg) + 5(82 — 83 + t3) + 5(82 + S3 — tg) + 5(82 + S3 + t3)).
Clearly

1-7/2 1-r/2 1-r/2
o) = = [ s [ s [ s
0 0 0

/\/1—(7“/2—&—,z1)2 /\/1—(7‘/2—1—7;2)2

0 0

dSl d82

/\ /1—(r/2+423)2
ng

0
Z (1 + 1[sl+32< 1—(01z1—0222)2}) (1 + 1[s1+33< 1—(01z1—0323)2})

UGZ%

(1 Ly e T onr)

(164)

(165)

We now consider the general case. We will show that (149) becomes (15). Following

Lemma 2, (149) can be rewritten as

(n=Dn/2 o S Ty R PN u ey yusy
) = e T a0 as ]
=1 /o j=170 k=170

1 n(n—1)/2
D2 Z H cos 2mhg 2 (si, — 75,55,)

TE{—I,I}(”_I)"/2 qg=1

(v Dn/2 i
> by con
oe{-1,1}(n—1)n/2  p=1 0

Consider the product

(n—1)n/2
H CoS 27Thp,x(5ip - ijSjp) 08 2mhyy a1t
p=1

36

dSk

(166)

(167)



The product (167) can be rewritten as
(n—1)n/2

(cos 2mhy, o (i, — Tj,55, — tp) + cos 2mhy, o (s, — 7,55, + 1p)). (168)

[\Dlr—l

p=1

The integral over h, of (168) is

(n— 1)n/21
5 Szp — TjpSip —tp) +5(8ip — T5p55p +tp)) (169)
p=1
Therefore (166) becomes
1-7/2 r/2+zk)2
Xa(r) = (1) H ([ H / "

on(n—1) Z Z

7-6{_171}(7171)71/2 Ue{_171}(n71)n/2
(n—=1)n/2

1
n < [0<si, —Tip 8ip <o/ 1= (2ip—0jp 2, )?]
p=

T o em ) (170)

Executing the sum over 7, (170) becomes

j / dSk

n 1-r/2
Xoalr) = ()0 e T [ s
j=1"0

1

= DY

oe{-1,1}(n=1)n/2
(n—1)n/2

1 1
H ( (0<sip =55, <A/1=(2ip—0j,25,)?] + [0<sip+sj,<
p=1

Locmsiy sy /TG o) T L0ty TG (171)

After simplification, (171) becomes

3 9 1-r/2 r/2+zk)2
RS =) 1 ANE0 1 A

(n—1)n/2

2 At Yyt (172)

oe{-1,1}(n=1n/2  p=1

1- (Zip —OjipZip )2]

Thus (15) holds.
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TABLE VI: Contributions to the fifth virial coefficient in three dimensions [47], [48]

diagram |exact value

4 | _ 40949
E5/ B2 10752

4] 68419
E6a/Bs | 56zs0

E63/B3| $2

4| 34133
ETa/B; | — 17550

4| 18583 | 33291 +/3
EW/B 5376 T 9800 =

ETy/ B3 |~ 5

E8a/ B3 |unknown

4| 35731 | 14583392 33291 /3 | 683559 arccos (1/3)
E83/B;|— 6720 T 627200 = 9800 = T 35840 T

FE9/Bj |unknown
F10/ B3 |[unknown

F. Discussion

Table III shows exact and numerical values of the fourth virial coefficient in di-
mensions 5, 7, 9 and 11. Typically the relative error of the numerical value is of
order 1074, Recently Clisby and McCoy [18] calculated higher order coefficients using
Monte Carlo methods. It is seen that the relative error increases with the order of
the coefficient, which is one of the reasons why it is desirable to find analytic values.
Table VI shows the known exact values of diagrams of the fifth virial coefficient in 3
dimensions. The diagrams E7( and E8[ have the same coefficient, so there is so far
no total contribution of v/3/7. We make the following conjecture:

Conjecture 2 In any dimension, the hard sphere potential (1) allows the analytic
computation of every virial coefficient B,,.

No one has so far been able to prove this conjecture. However, since the com-
plete star in odd dimensions can be written in a way similar to equation (15) for 2
dimensions, this conjecture seems plausible.

(15) gives strong support to conjecture 1. One part of x,1o(r) is

1-r/2

(—1)n—1n/2y nQ(n 1n/2H/ dz] \/1— (r/2 4+ z1,)?,

38



Following (125), (173) is

(_ 1)(n—1)n/2
2(n+1)n/2

(r/3 = V3/4)",

and this number clearly contains all numbers predicted by conjecture 1.
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III. THE CORRELATION FUNCTION OF THE TWO DIMENSIONAL
ISING LATTICE

A. Introduction

In this chapter, we calculate the correlation functions (o goo ) and (ogoon ) as
form factor expansions. In section III B, we calculate the exponential expansion of
Dy for T < T, and in section III C we do the same for T" > T,. In section III D, we
use the result from section III B to calculate Dy as a form factor expansion, and in
section IITE we use the result from section III C for the same purpose. We conclude

in section IITF with a discussion.

B. The exponential expansion for T' < T,

In this section, we will use the theory of Wiener-Hopf sum equations to prove that

the functions F' ](\,2 ") which appear in equation (38) are given by (40).

When T' < T, then a; < as < 1. In this case we write ¢ in a factored form as
p(z) = P(2)7' Q""" (173)

where the functions P(z) and Q(z) are given by (41) and (42).
When T' < T, then a; < ay < 1 and therefore P(z) and Q(z) are analytic and

non-zero for |z| < 1. Furthermore the index of ¢ is
Indp = log (™) —log p(1) = 0 (174)
It follows from (174) that we may use Szegd’s theorem to find

lim DY) = S (175)

N—oo

with Sy given by (39) which reduces to (24) for both the diagonal and the row

correlation functions. Therefore we may write

D) = 8. [[ pS/D5, (176)

n=N
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1. Computation of the ratio D /DNJrl

The ratio D / D 1 is given by

Dy /Dy = a5 (177)
where xV) = (29, 21, ..., ) satisfies

Ay x™) =dW™ (178)
and dEN) = §;0. We indicate that the vector x™ has N + 1 entries by writing xéN).

We will calculate x(()N) by iterating the procedure given by Wu in section 3 of

reference [29].

Lemma 1 There are functions qﬁ%m such that

QUSSP (179)
n—1
where
n+1
(2n) _ dz; z;
ON Eqol_[fm e % 2122n
n 2n—1 1
B -1 P P -1 _— 180
g@(z% 1)Q(251_1) P(221) P(25,) E 1— 21214 (180)

Proof Let h(£) be a function defined on the unit circle [£| = 1, and let h(€) have

the Laurent expansion

= i " (181)

From this we define -
&)+ = i ha&", [h(E)]- = _Z ha&",  and Z ha€". (182)
From equations (182) it follows that
[A(E]- = [A(E)]]- (183)



Equations (182) have the integral representations

_ 1 , h(&)
M) = 5 lim ]45 e (184)
_ 1 , h(E)
Ry T et (185)
and
;o 1 h(¢)
G =
R S ;W)
2w 511_1% /Q|{§'1+e &« £ =& (186)
We define
N-1
Xy(€) =D alMer (187)
n=0

It has been proven by Wu [29] that the ratio (177) is given by
2 = Xn(0) (188)

where Xy () is a function determined by equations (2.19a)-(2.20b) of reference [29]
(with Y(£) = 1). These equations are

Xn(€) = PO {IQE N+ + [QETUNEEN L} (2.19), (189)
Vv(€) = —(QE™))H{RE - +[QEHUNEEY]-}  (2:20a),  (190)

Xn(ENEY = QO {IPENEN + [PE VNN ) (2.19b),  (191)
and
Un(E) ==(PE ) H{PENHEN -+ [PEHVNEENZT  (2:20p).  (192)

For our purposes we use equations (42), (183) and the equality [Q(¢71)]. = 1 to
rewrite equations (189), (190) and (192) as

Xn(€) = P {1+ [QEUN(EEN 1}, (193)
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V(™) = =P {[QEN]- +[QETUNEEY]-}, (194)

and
Un(§) = —Q() {[P(E)E ], + [PEOVN(EENL } (195)
We define VJ\(,l)(f_l) by replacing Uy (€) by 0 in equation (194). Thus
V(e = -PEhRE]- (196)

We note from equation (42) that Q(0) = 1. Thus, because Q(£7!) is analytic for

€| > 1, we have

[RED]-=Q(E) - Q0)=Q(™) — 1. (197)
Therefore it follows from equations (42) and (197) that
—PERE - =PE ) -1, (198)

and thus equation (196) becomes
WEh =P -1 (199)

We define U](Vl)(é‘) by replacing Vy(£7!) in (195) V(1 (€71) as given by equation (199).
Thus we find

Uy (6) = ~QEIPEHPEE, (200)
It follows from equation (193) that X](\})(ﬁ ) is given by

- [@(5*)@(5)[P<5—1>P<£>€‘NJ’+5N]+}

I
3
~
S~—
—N=
—_
|
=

glN
d !
2 €| =14e ‘ =€
Qe PEeHPEE ) o

Letting € = 0 in equation (201), and using P(0) = 1, and writing X{"(0) = 1 + ¢
we obtain

1

O =5 P dEQENREIPE P!
e Jigl=1

— ol dg QR g

270 =0 Jigy -1

1 -N
f& Hed% P& PG (202)

43



Thus, if we set
okt = Zoki1, ok = 2y (203)

we obtain ¢§3) as given by equation (180).
We now calculate ngfz) (€71 by using equation (200) in equation (194):

v =-peh{iQE -+ e U ©e}
— —PEQE M-
+PE[QEHROEPEPEOEN] (204)

Next, we calculate U ](\,2 ) (&) by using equation (204) in equation (195):

UR(E) =—(PO) PO + PEOVR(EEN, )
= —QOIPOPE ™,
QO [ POPEENQOQEEPEOPE ]| - (205)

We will now calculate X](Vz)(f) from (193) and (205) as

XPE) =POQ+[QEHUL N
= P(€) - P(O[Q(EMQOPE)P(EEN, €N,

~P(©) QRO [POPE

O G e AN (206)

Letting £ = 0 in equation (206), we obtain X](\?)(O) =1+ ¢§3) + gb%):

& = d Qe [PE PO

270 Jyg—

[Q(€1)Q(§)£N[P(€1)P(€)§N]’+]:|/+£N1

S S T dé, N Q(ETHQ(&)

(2m2)* =0 Jig, 1=

§ o de 6N PG PE)
|€2|=1+¢ 52 gl

7I{£ =1 ds ! 3 Q& Q&)

&6

74 d&s —— NPT P(&). (207)
al=14e S &3
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Using the change of variables (203) we obtain an equation agreeing with equation
(180).

In general, we iteratively define (from equation 194)

Ve = —Peh {[QE ) T REHUP©E . (209)

It then follows from equation (195) that
U - U O = —Qe |PorE e [eeae et
[P(&)P(»s—l>£—N[@<5>Q<5—1>£N...]_];}_} . (209)

+

where there are 2n — 1 brackets. It now follows from equations (188) and and (193)
that ¢'c" i

o = —2% ) QO™ {P(é)P(é‘%‘N QOQE e

!/

PPN e | e

Jr
where there are 2k — 1 brackets. By use of (203), one obtains equation (180). This

ends the proof of the lemma.

2. Ezponentiation

To complete the proof of the exponential form (38) we need to use (176), (177)
and (179) to compute F ](\,2 ™) as given in (40). We begin by defining a function

~ (2n) n+1 N
P d= ]
N 27T n(2m)2 HOH}{A 1—e “ 1 - Z]Z]-‘rl
n 2n
HQ(22171)62(Zil—l)P(Zzl)P(Zizl) (1 - H2k> (211)
1=1 k=1
(We define F’ ](\? ) = 0). Clearly
Z (2n) (212)
k=N



Let (bﬁm be given by equation (180) when n > 1 and let ¢§3) = 1. We define the

functions
o) = 3 o @213)
n=0
and
F(\) = i FEIAm (214)
n=0

Clearly ¢(0) =1 and F(0) = 0. We would like to show that
60 = exp F(N) (215)
It follows as a special case of (215) with A = 1 that
Xn(0) = expy By, (216)
k=1
and hence it follows from equations (176) and (212) that

Cn = Ssexp f: i FP = 5 expi f: FP = 5 expi FE(217)
k=N n=1 n=1 k=N n=1

This proves equation (40). It remains to show that equation (215) holds. Since
»(0) =1 and F(0) = 0, equation (215) is equivalent to the equation

¢'(A) = F'(\) exp F()) (218)

It follows from equations (213), (214) and (218) that equation (215) is equivalent to

the following equation:

Lemma 2

non" =D U, (219)

=1

Proof It follows from (180) that the left hand side of (219) is

-1 n+1 2n 1
ngbg\z[”) = —n( ) lim 7{ dz; le +
|zi|=1—€

(2m)%" =0 Zon21

n 2n—1 1
[T P(22) P23 Q(22j-1)Q(23;" 1) . : (220)
=1 ol - FRFR+L



and the right hand side is

Z ZF](VQI)¢§3n72l)
=1

N
WITf el
e—>0 1 — Z]Z]+1

|zi|=1—¢

1
ne1 ] 2 2n—1

k=1 m=2[42

(1)) .

2"_21l 49 #m is such that it equals 1 when [ = n — 1. Note that

where the product []
the product H ;=1 is symmetric both in even and in odd variables separately. Hence

1 — [, 2 can be rewritten (under integration) as

1—ﬁzk (1 — 2129,) <1+n231[1_[ ) (222)

k=1 q=1 r=2
Next, note that the factor (1 — z329) (1 — 29129141) (1 — 29,21) an _2l+2 2z, does not
involve any of the variables {z}25}. Hence the product 1 —[]:-, 2 can be rewritten
as
20 -1 2q+1
1=J]z=(1—z122) (1+Z 11 zr>. (223)
k=1 —
Then the relevant factor of the integrand of the right hand side of equation (221)

becomes

(1 — 29,21) {Z(l — Z9122141) (1 + i zr> 1:[ Zm — (1 + i H zr> }

3
|

=1 qg=1 r=2 m=2[+2 qg=1 r=2
n—1 -1 2q+1 2n—1 2n—1
=1 q=1 r=2 m=2l+2 m=2l
n—1 2q+1
(51)) s
qg=1 r=2

After expansion of the first summand the right hand side of (224) becomes

(1—22n21){z 1:[ zm_ZH’ZT—<1+ZH’Z">} (225)

=1 m=2[+2 =1 r=2 q=1 r=2
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under integration. After summation (225) becomes

2n—1

—n(1 — 29,21) H Zr (226)

r=2
which completes the proof. The proof of lemma 2 concludes the proof of equation

(40).

C. The exponential expansion for T > T,

In this section, we will prove that the functions £ and G&"" in (49) are given
by (51) and (52). We will follow the procedure of section 2 of Wu [29]. When T > T,
then a; < 1 < ay and »(z) has index 0. We define

1
b, = — 5(z)z"""Vdz = a,_ 227
3w P dz = (227)

We further define

b[) b,1 b,N

by by ... bi_n
Bya=| (228)
bN bN—l bO
and
ﬁN—l—l = det BN+1 (229)

We note that if we remove the first row and the last column from D ~v+1 and use (227)

we obtain Dy as defined by (32). Therefore we may write

w DY - NN A
Dy’ = ==—Dns1 = (=1)"2y D1, (230)

DN+1

where the ratio Dﬁ) / ENH is given as

N ()N (231)

and xN) = (29,21, ..., ) satisfies
By x™V) =ad®) (232)
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and dEN) = 8. We indicate that the vector x¥) has N + 1 entries by writing xg\],v).

Since @(z) has index 0, it follows from Szegd’s theorem that

~

lim (—1)VDy = 5 (233)

N—oo

N

where S, is given by (50). Thus, exactly as for T' < T,

= B
(=DM Dyyy = Sy H Sy (234)
n=N+1 Dn+1
Furthermore the ratio lA)n / lA)nH and the product
0 l’jn
I = (235)
n=N+1 Dyia

may be treated exactly as in the case T' < T, if we replace P and ) by P and @
Thus we find

(~1)"* Dyvyr = Swcexp Y FE, (236)
n=1
and hence we have
DY) = ~Gal exp 3 D, 297)
n=1

where we note that when a; = 0, equation (53) holds.

It remains to calculate x%v). We will find xE\J,V) by iterating the procedure of section

2 of Wu [29]. We define

N
Xn(€) = =Mer, (238)
n=0
and thus
ry = lim X (€7)e" (239)

~

where Xy (&) is again defined by (189) to (192) with P(£) and Q(€) replaced by P(§)

and @(5) For convenience we rewrite (190), replacing & with 7! as
V(e = =P {[QE)), + QUMMM ]
= P(§) = 1= PEIQOUN(E NEN,. (240)
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To obtain the first approximation xg\l,v)(l) we replace Uy (§) by 0 in (240), and write

V(&) = P - 1. (241)

We use this in (191) to give
XPE e = QO)[P(E PN, (242)
(N)(1)

Thus, letting £ approach 0 and using (242) we obtain the first approximation xy ",

which we denote as Gg\l,):

1 ~ =
GV =W = — ¢ PP(&)EN e (243)
2T Jigi=1

We now compute the second approximation by using (241) in (192) to obtain

UP(EY) = —Qe M [P(eHP(€)eN]-. (244)

| PPN [@(51>@<5>5N[13<51>J3<s>5N]];L}.<246>

Letting £ = 0 in (246), we see that

200 =V 4+ a¥, (247)
where
GY =~ lim dz 2V P(2)P(:7) 7{ gz 2 0(2)0(zY)
(2mi)3 =0 |21]=1 22| =1—c 1— 2129

Continuing in the same way we may find

n

IE\][V)(QnJrl) _ Z Gﬁk+1)’ (249)
k=0

20



and thus
D’ =-5, Z G exp Z P (250)

where F ) is defined in (51), G(Q"H) is defined in (52) and S, is defined by (50).
If we note that the G is the negative of the G (an+1)
have proven (6) of [37] with van+ given by (34) of [37].

(@n+1) ) of [37) and set ay = 0 we

D. The form factor expansion for 7' < T,

We have showed in section III B that the correlation function Dg\,_) can be written
in an exponential form given by (38) and (40). In this section we will show that Dg\,_)
can be written as a form factor expansion given by equations (43) and (6).

We wish to rewrite (38) as a form factor expansion and use an argument similar
to that made by Nappi [31] to find the functions f](\?"). To do this, we denote by a
partition 7 of the number n a set of pairs m = {(n;, ml)}fg) such that n; # n; if i # j
and

v(m)

Znimi =n. (251)
i=1
We define P(n) to be the set of all such partitions. For instance, the partitions of the

number 3 are

1-3, v=1
1-142-1, v=2 .

Thus the exponential of (38) may be expanded, and we find

e =y H ( 2’“’) , (253)

reP(n) i=1 ml

where the sum is over the set of partitions P(n) of the number n. Thus fNQ”) is the

ol



sum of all 2n dimensional integrals in (38). Explicitly

(2n) _ 7{ dz; z Qz; Q25 P2<Pz’-1;
N ne—>OH oil=1c % o ( 2j 1) ( 2]—1) ( 2]) ( 27 )1 — 29172
) H e o
7P (n) k=1 k
mg Ng
1
1111 — . (254)
p=1 g=1 Skt 2men,+2(p—1)ne+20 352 2mens +2(p—1)nk+ (207, k1)

where

2+ 1 ifg<n
2 Sepl =1 = (255)
1 if ¢ = ny.
We see that a partition 7 divides the integrand into ZZ(Q my, loops, and that there

are my, loops of length ny. As an illustration,

1 6 3
ool A o A Q) P P

(6) _

N
1 1 1
1— 21201 — 23241 — 2524
1 1 1 1 1 1 1 1
<_§1—z2211—z4z31—z6z5 _51—22231—z4z51—26z1
+l ! ! L > (256)
21 — 20211 — 2425 1 — 2623

The first term in the bracket of the right hand side of (256) comes from m; = {(1,3)},
the second from 7y = {(3,1)} and the third from 75 = {(1,1), (2,1)}. We would like
to show that

W= n!(2m)2n e—)oHﬂ{l =1- Edzz zNHQ<Z2j—1)Q(Zil—l)P(ZQj>P(Z?_jl)

! Z sign(o H (257)

1— 22j—1%2; = P 22k R0 (2k— 1)
where S, is the group of permutations of the n elements {2i — 1} ;. For instance,
S3 = {(1)(3)(5), (13)(5), (15)(3), (35)(1), (135), (153)} (258)

where the loop (abc) means the permutation a — b — ¢ — a. We say that two

permutations o, and o9 in S,, are equivalent if for every loop in oy there is one and

o2



only one loop of equal length in 05. Then o7 and o9 will also have the same signature.
We write the equivalence class of an element ¢ as [0]. We denote by E,, the set of

equivalence classes of S,,. As an example, we have

Es = {[(1)3)(5)], [(13)(5)], [(135)]} (259)

We will show that there is a bijection between P(n) and E,. It is clear that |P(3)| =
|E3| = 3. We will now prove the general case.

We will now calculate |[o]|, the number of elements of the equivalence class of a
permutation o. We consider some o € S,, and construct [o] as follows. We choose
freely from n elements, and divide them into )., m; loops such that there are m;
loops with n; elements, without distinguishing between loops with the same number

of elements. There are

n!

T (rdyomd 200
ways of doing this. There are (n; — 1)! ways of ordering a loop of n; elements. Hence,
the there are

L s (261)
j=1\1%° A i=1"% M

ways of choosing the elements. The signature of any element of the equivalence class

[o] corresponding to 7 is
v(m)
sign(o) = (=1)" [J(=1)™. (262)

k=1
If we identify every equivalence class with one of its representatives, then it follows

from (254) that

o = lmHﬂ{ i dz; zzNHQ(Z2j—1)Q(ZZ‘_jl—l)P<Z2j>P(ZQ_J'I)

l(2m) n!(27)2n =0

;, > sien(o) [0 1] ! —. (263)

§ . - . -
" = Whmnj’{ dzi 2 [ Q(2-1)Qz31) P2;) P(25;)
j=1

i=1 7 zil=1—¢

(Z sign (o) H ! )) : (264)

1= ZopZo(2k—1

23



Finally we note that the factor of the integrand of (264)

Z sign(o H (265)

1 — 292
0es, el 2k~o(2k—1)

is zero if for any ¢ # j, z9; = 295 Or 29;_1 = 29;_1. Therefore

n 1 n n
Z sign( H AnHH 1_Z2k 1221)

1 — 2ok20(2k-1)

ocESH k=11=1
IT (ap-1 = 220-1)(22p — 224).  (266)
1<p<q<n
By letting 25, = 25,1 = 0 we find that
A, =A,_1. (267)

Since A; = 1, it follows that A, = 1 for all n. Hence we obtain the desired result

(44).

E. The form factor expansion for 7" > T,

Above T, D](\?L) has a form factor expansion given by (54), where

1(\?71+1 Z G(2k+1 J?J(\?Zl 2k) (268)
k=0
and j/’\(]\?n) is given by (257) but with P and @ replaced by P and Q. GS?,"H) is given
by (52). Hence it follows from (257), (268) and (52) that
2n+1 n+1

=l-e¢ =1

€—>0

H@<22m>©<z2m> H !

Zon+1 el 11— 22p—122p

1 1

(n - k’)! Zon—2k+1

k=0
> sign(o) ﬁ . f[ L 0
oES,_k q=1 1 22(1—120(2(1) s=n—k+1 11— 295%2s5+1

o4



As an example,

3
£ = hmH]{ dz; 2Nt HP(Zzz—l)P(ZEzl_J
|zi|=1—¢ =1

5 50

2 11 1

nH1 (22m) Z2m)z5 1— 21291 — 2324
1 1 1
2 25 1— 21291 — 2324 11— Z1241 — 2923
1 1 1 1
—— + — . (270)
z3 1 — Z1%k2 1— 245 Z1 1— 2923 1— Z4R5

Let (zg ... ngk)) =(1,..,n—kn—k+2, ...n+1). It follows by symmetry that (269)

can be rewritten as

X 2n+1 n+l
o2n+1 ¢ . P P(z;
R i Il e PPty
—e =1
n N - 1 n ]_ ~ 1
Q(22m)Q (23 =)’
771;[1 (22m) Q2 )n +1 ;< ) Zon—2r+1 E 1- Z2i) 1%
i - ( Z Slgn ﬁ 1 . (271)
n! — Fon-2k+1 S5 L=z, i —1%6(2i0)

2

f](é’) = llmH]{ dz; lNHHP Zo1-1) Zzz 1 H (22m) ZQm)
|zi|=1—€ =1

5 €0 i
1 1 1 1 1 1 1 >

Z5 1-— 2129 1-— 2324 z3 1-— 2129 1-— Z4R5 1 1-— 2923 1-— Z4R5

11 1 1 1 1
52_ (1—21221—2324 1—2’12’41—2’22’3)
11 1 1 1 1
_573_ (1—21221—2425 1—21241—2225>
+1l< 1 L — L L )} (272)
220 \1— 29231 — 2425 1 — 23241 — 2925

Since all permutations of the even elements are present in the sum » _,, symmetry al-

lows the permutation of all even elements in the sum )" . But the sum > (> o
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may be rewritten as the sum ) of permutations of the odd elements. Therefore

UESn+1

2n+1 n+1

1 = gt IL w2 TIPe0PE T QG
=1—¢ =1

2
1 1 =
_ i 273
n!(n+1)! Z sign(0) H 1 — Zp(2g-1 22q> (273)

Z,
TESma1 o(2n+1) a=1

—_

An argument similar to the one given in section III D shows that

n n+1 n
E sign(o H H
1—=z z z 1— 29,12
0ESnt1 o(2n+1) q:l o(2¢—1) 2q i=1 2j— 1]{::1 2j—122k
H (z2-1 — 22m1) [ (220 — 220)- (274)
1<l<m<n+1 1<p<q<n

Thus f( ") is given by (55) as desired.

F. Discussion

The exponential and the form factor representations derived in this paper for
(00,000,n) and (og 0N, n) are considerably simpler that the corresponding representa-
tions which may be found in [30]-[34]. The representations of this paper must of course
be equal to the corresponding results of [30]-[34] but as mentioned in the introduction
even the equality of the form of F ) found by Wu [29] with the form found by Cheng
and Wu [26] has not been directly demonstrated in the literature. The form factor
representations for (g ooy y) proven here are in close correspondence with formulas
given by Jimbo and Miwa [49] in their proof of the Painlevé VI representation of the
diagonal Ising correlations. The connection which the form factor representations of
this paper have with the PVI equation of [49] have been extensively investigated in
[37]. However, the representations of this paper are valid also for (o000 n) and, as
noted in the introduction, for much more general case which suggests that there are

generalizations of [49] which have not yet been uncovered. In particular the relation

o6



of (09000 ) to isomonodromic deformation theory remains to be investigated.
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