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Abstract of the Dissertation

Statistical mechanics of hard spheres and the two dimensional Ising lattice

by

Ivar Lyberg

Doctor of Philosophy

in

Mathematics

Stony Brook University

2007

In this dissertation the fourth virial coefficient of a fluid of hard spheres in

dimensions 5, 7, 9, and 11 is calculated. Furthermore, the complete star of n points

in dimension 2 is reduced to an n − 2-fold integral. Finally, the row and diagonal

correlation functions of the two dimensional Ising lattice are computed as form

factor expansions.
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I. INTRODUCTION

This thesis treats the hard sphere model and the two dimensional Ising lattice.

Thermodynamical properties will be calculated exactly. The pressure P of a fluid of

hard disks will be calculated in terms of the density exactly as a power series.

The two dimensional Ising model is the most completely studied exactly solvable

model. One of the unresolved problems is the calculation of the correlation function

〈σ00σMN〉. Here 〈σ00σ0N〉 and 〈σ00σNN〉 will be calculated exactly as series.

The two topics will be treated separately. Sections II A, II B and II C have been

published in Journal of Statistical Physics [1], and chapter III has been published in

Journal of Physics A [2].

A. Hard spheres

We consider the low density expansion of a fluid of N D-dimensional hard spheres.

The position of the ith particle is ri ∈ RD, and the distance between two points is

rij := |ri − rj|. The pair potential φ(rij) is

φ(rij) =





∞ if rij ≤ σ

0 if rij > σ,
(1)

where σ is some distance. The Hamiltonian is

HN =
∑

1≤i<j≤N

φ(rij) +
N∑

i=1

p2
i

2m
. (2)

Let {Uj}∞j=1 be a sequence of bounded subsets of RD such that Uj ⊂ Uj+1 and
⋃∞

j=1 Uj = RD, and let {Nj}∞j=1 ⊂ N be another sequence. {Uj}∞j=1 and {Nj}∞j=1 are

chosen so that Nj/|Uj| = ρ, where the density ρ is independent of j and |Uj| is the

measure of Uj. The limit j → ∞ is called the thermodynamic limit. In order for

relevant quantities to exist in this limit it is necessary that limj→∞ |∂Uj|/|Uj| = 0,

where ∂Uj is the boundary of Uj.

In the thermodynamic limit, the pressure P of a fluid of hard spheres in D dimen-

sions has a power series representation

P

kT
= ρ +

∞∑

n=2

B(D)
n ρn. (3)
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Penrose and Lebowitz [3] have shown that the right hand side of (3) has a radius of

convergence R(D) with a lower bound

R(D) ≥ 1

B(D)
2

max
0≤w≤1

w(2e−w − 1) =
0.1446...

B(D)
2

. (4)

There are several systematic ways to formalise the calculation of the virial coeffi-

cients B(D)
n . One of these methods is the Mayer expansion [4], [5]. In this expansion

a function called the Mayer f function is defined:

f(rij) := e−φ(rij)/kT − 1. (5)

Since φ is given by (1), it follows that

fij := f(rij) =





−1 if rij ≤ σ

0 if rij > σ.
(6)

The virial coefficients are given by [5]

B(D)
n+1 = − lim

j→∞

n

n + 1

1

n!|Uj|

n∏

i=1

∫

Uj

dDriVn+1(r1, ..., rn) (7)

where Vn+1 is the collection of labelled biconnected Mayer diagrams with n points.

Each bond of these diagrams represents a function f(rij) in the integrand of (7).

Explicitly

B2 = −1

2

∫

RD

f(r12)d
Dr2 = −1

2
, (8)

B3 = −1

3

∫

RD

∫

RD

f(r12)f(r13)f(r23)d
Dr2d

Dr3 = −1

3
, (9)

and

B4 = −1

8
− 3

4
− 3

8
. (10)

From now on, we will usually disregard the superscript D and write Bn, and we will

let σ = 1.

If the hard sphere potential (1) is considered, B2 and B3 can easily be explicitly

evaluated. The second virial coefficient in three dimensions was first computed by
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TABLE I: The second and third virial coefficients

D B2 B3/B2
2 decimal expansion

2 π/2 4/3 −
√

3/π 0.78200...

3 2π/3 5/8 0.625

4 π2/4 4/3 − (3/2)
√

3/π 0.50634...

5 4π2/15 53/27 0.41406...

6 π3/12 4/3 − (9/5)
√

3/π 0.34094...

7 8π3/105 289/210 0.28222...

8 π4/48 4/3 − (279/140)
√

3/π 0.23461...

van der Waals [6] and the third was calculated independently by Boltzmann [7] and

Jäger [8]. The second virial coefficient in dimension D is given by the function

B2 =
πD/2

2Γ(D/2 + 1)
, (11)

and the third virial coefficient in dimension D is given by [43]

B3

B2
2

=
4Γ(1 + D/2)

π1/2Γ((1 + D)/2)

∫ π/3

0

sinD ϕ dϕ. (12)

Table I shows the values of the second and third virial coefficients in dimensions two

to eight.

The history of the computation of B(3)
4 dates back to the end of the nineteenth

century [9]. Van der Waals [6] formulated a sum of integrals which he thought would

give B4. However, there was one integral which he could not evaluate (This was

the one which is today called the complete star of four points, written in (10)).

Van Laar evaluated this integral and published his result in 1899 [10]. Boltzmann

contested van der Waals’ formulation of the problem; today we would say that his

version of (10) had the wrong coefficients. Using the correct virial series expansion

(10), Boltzmann published the correct result in the same year [11]. His result was

B4

B3
2

=
2707

4480
+

219

2240

√
2

π
− 4131

4480

arccos(1/3)

π
= 0.28694950598... . (13)

This result was confirmed in 1952 by Nijboer and van Hove [12] using what is called

the two center formalism [13]. The two center formalism is a formalism different from
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(7), and is useful mainly for the hard sphere potential. It will be presented in detail

in chapter II.

The calculation of B(2)
4 was done by Rowlinson in 1964 [14] (using the Mayer

formalism (7)) and independently by Hemmer in 1965 [15]. Their result was

B4

B3
2

= 2 − 9

2

√
3

π
+ 10

1

π2
= 0.53223180... . (14)

Clisby and McCoy [16] calculated B(D)
4 for D = 4, 6, 8, 10 and 12, using the

Mayer formalism. Their results are shown in table II.

TABLE II: Exact values of the fourth virial coefficient in low even dimensions

D B4/B3
2 decimal expansion

4 2 − 27
4

√
3

π + 832
45

1
π2 0.15184606235...

6 2 − 81
10

√
3

π + 38848
1575

1
π2 0.03336314...

8 2 − 2511
280

√
3

π + 17605024
606375

1
π2 −0.00255768...

10 2 − 2673
280

√
3

π + 49048616
1528065

1
π2 −0.01096248...

12 2 − 2187
220

√
3

π + 11565604768
337702365

1
π2 −0.010670281...

The virial coefficient B(D)
4 in odd dimensions has previously been computed by

Monte Carlo methods by Ree and Hoover [17] and Clisby and McCoy [18]. These

numerical results gave the first demonstration that the hard sphere virial coefficients

can be negative. The question of negativity of hard sphere virial coefficients is of

great theoretical importance, and in dimensions D ≤ 4 Monte Carlo investigations

have thus far seen only positive B(D)
n for n ≤ 10.

The study of virial coefficients in higher dimensions is important. There is a change

of sign of B(D)
4 at D ≈ 7.7 [18], and this has important implications. If B(D)

n oscillates

in sign with some period for large n, then the first singularity will occur off the real

axis.

One reason to seek exact values of the virial coefficients is that approximate values

may require more computer power than is available. For instance, no one has so far

been able to calculate sufficiently many virial coefficients to produce the expected

phase transition at some critical density. It may be that the radius of convergence
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of the power series (3) is less than the density of the phase transition, in which case

nothing can be learned about the phase transition by calculating a finite number of

virial coefficients. Even if the radius were greater than the critical density, it seems

unlikely that a sufficient number of virial coefficients will be calculated in the near

future. See, for instance, Clisby and McCoy [18].

1. Summary of results

In this thesis, in chapter II, we calculate the exact values of B(D)
4 for D = 5, 7, 9

and 11. The results are shown in table III. It is seen that the results agree with

previous numerical calculations [19] [20] [18].

TABLE III: Exact and numerical values of the fourth virial coefficient in low odd dimensions

D B4/B3
2 decimal expansion

5 25315393
32800768 + 3888425

16400384

√
2

π − 67183425
32800768

arccos (1/3)
π 0.07597248028...

0.075972512(4) [19]

0.07592(6) [20]

0.075978(4) [18]

7 299189248759
290596061184 + 159966456685

435894091776

√
2

π − 292926667005
96865353728

arccos (1/3)
π 0.00986494662...

0.009873(3) [18]

9 2886207717678787
2281372811001856 + 2698457589952103

5703432027504640

√
2

π − 8656066770083523
2281372811001856

arccos (1/3)
π −0.00858079817...

−0.008575(3) [18]

11 17357449486516274011
11932824186709344256 + 16554115383300832799

29832060466773360640

√
2

π

−52251492946866520923
11932824186709344256

arccos (1/3)
π −0.01133719858...

−0.011333(3) [18]

The calculation of coefficients of order higher than four can be reduced to a problem

in computational algebraic geometry. We will consider only the complete star. The

complete star of n points is the graph of n points where each point is is directly

connected with every other point. In section II E we will define a function χn(r) such
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that χn(1) is equivalent to the complete star of n points. It will be shown that

χn+2(r) =
(−1)n(n−1)/2

2n(n−3)

n∏

i=1

∫ 1−r/2

0

dzi

n∏

j=1

∫ √
1−(r/2+zj)2

0

dsj

∑

σ∈{−1,1}(n−1)n/2

∏

1≤k<l≤n

(
1 + 1

[sk+sl<
√

1−(σkzk−σlzl)2]

)
(15)

where

1A(x) :=





1 if x ∈ A

0 if x /∈ A.
(16)

The following conjecture is proposed.

Conjecture 1 In even dimensions, the normalized nth virial coefficient Bn/Bn−1
2

can be written as

Bn

Bn−1
2

=
n−2∑

j=0

aj(
√

3/π)j, (17)

where the coefficients aj are rational numbers.

This is known to be true for the second, third and fourth virial coefficients. It is

shown in section II that the nth virial coefficient in two dimensions may be written

as an n− 2 dimensional integral over a region bounded by certain algebraic varieties.

These integrals have not yet been evaluated.

B. The two dimensional Ising lattice

We consider a rectangular spin lattice with M×N lattice points, where each lattice

point (i, j) has two possible spin states (σij = ±1). The interaction energy between

two neighboring spins sites (i, j) and (i + 1, j) is −E1σijσi+1,j, and the interaction

energy between two neighboring spins sites (i, j) and (i, j + 1) is −E2σijσi,j+1 where

Ej = KjkT (k is Boltzmann’s constant, T is the temperature and K1 and K2 are

positive constants). We impose toroidal boundary conditions, so that (i,N ) ≡ (i, 0)

and (M, j) ≡ (0, j). Thus the total interaction energy is

EM, N (σ) = −
M−1∑

i=0

N−1∑

j=0

(E1σijσi+1,j + E2σijσi,j+1). (18)
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The partition function is

ZM, N =
∑

σ

exp−EM, N (σ)/kT . (19)

The Gibbs free energy per site is defined to be

fM, N := − kT

MN log ZM, N . (20)

We define

f := lim
M, N→∞

fM, N . (21)

The correlation function 〈σ0,0σM,N〉M, N is defined to be

〈σ0,0σM,N〉M,N :=
1

ZM,N

∑

σ

σ0,0σM,N exp−EM, N (σ)/kT , (22)

and the correlation function 〈σ0,0σM,N〉 is defined to be

〈σ0,0σM,N〉 := lim
M, N→∞

〈σ0,0σM,N〉M, N . (23)

We will consider only the special cases M = 0 and M = N .

The correlation functions 〈σ0,0σM,N〉 of the two dimensional Ising model with hor-

izontal (vertical) interaction energies E1 (E2) can be written in many different ways

which appear to be different but which in fact are equal. They were first expressed

as determinants by Kaufman and Onsager [21]. Later Montroll, Potts and Ward [22]

demonstrated that if an arbitrary path is drawn on the lattice connecting the point

(0, 0) with the point (M,N) then the correlation can be expressed as a determinant

whose size in general is twice the length of the path. The correlations 〈σ0,0σ0,N〉 and

〈σ0,0σN,N〉 can both be expressed as N × N Toeplitz determinants [21]–[23], and ex-

pressions of 〈σ0,0σM,N〉 as determinants of size M and M + 1 for M ≥ N were given

by Yamada [24], [25]. Furthermore the correlations 〈σ0,0σM,N〉 for all finite M, N

were expressed as determinants of Fredholm operators by Cheng and Wu [26].

The representations of the correlations as finite size determinants gives an efficient

evaluation when the separation is small but to investigate the large separation be-

havior alternative representations are needed. The first such result is the limiting

behavior for T < Tc

S∞ = lim
N→∞

〈σ00σ0N〉 = lim
N→∞

〈σ00σNN〉

=
{
1 − (sinh 2E1/kT sinh 2E2/kT )−2

}1/4
, (24)
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which is most easily computed [22] by the use of Szegö’s theorem [27],[28].

The first large separation expansion for both T < Tc and T > Tc beyond the limit-

ing value (24) was given in 1966 by Wu [29] for 〈σ00σ0N〉 by applying a Wiener-Hopf

procedure to the N × N Toeplitz determinant representation. Shortly thereafter

Cheng and Wu [26] obtained the leading term of the large separation behavior of

〈σ00σMN〉 by applying a Wiener-Hopf procedure to the Fredholm determinant repre-

sentation. This derivation is formally valid only for M .= 0, and even though it is

expected that the result of [26] with M formally set equal to zero should agree with

the result of [29], there is no analytic derivation in the literature that for T < Tc

the two results are in fact equal (even though the equality has been verified to large

orders in the low temperature expansion.)

The expansions of [29] and [26] may be considered as the first terms in a systematic

expansion of the correlations. The expansion technique of [26] which starts from the

Fredholm determinant representation was carried out to all orders by Wu, McCoy,

Tracy and Barouch [30] in 1976. It was found that the correlations can be written in

the following exponential form

〈σ00σMN〉T<Tc
= S∞ exp

∞∑

n=1

F (2n)
MN for T < Tc (25)

and as

〈σ00σMN〉T>Tc = Ŝ∞

∞∑

m=0

G(2m+1)
MN exp

∞∑

n=1

F̂ (2n)
MN for T > Tc (26)

where

Ŝ∞ =
{
1 − (sinh 2E1/kT sinh 2E2/kT )2

}1/4
. (27)

In [30] the expressions for F (j)
MN , F̂ (j)

MN and G(j)
MN are given as 2j fold multiple dimen-

sional integrals.

The exponentials in (25) and (26) may be expanded to give what is called a form

factor expansion

〈σ00σMN〉T<Tc = S∞

∞∑

n=0

f (2n)
MN for T < Tc (28)

and

〈σ00σMN〉T>Tc = Ŝ∞

∞∑

n=0

f (2n+1)
MN for T > Tc. (29)
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The first few terms in this expansion were given in [30]. In the scaling limit N →

∞, T → Tc with N |T − Tc| fixed the full expansion was given by Nappi [31]. For

fixed N and T < Tc the full expansion (28) was given by Palmer and Tracy [32]. Both

of the cases T < Tc and T > Tc were treated by Nickel [33]-[34]. An independent

expansion was given by Yamada [35], and this is shown in [34] to agree with the

results from the expansion of the exponential forms of [30].

The results for the exponential representation of the correlations [30] were obtained

by extending to all orders the interative expansion of the Fredholm determinant rep-

resentation [26]. However, as noted above, the result of [26] for F (2)
M,N when specialized

to M = 0 “looks different” from the corresponding result for 〈σ0,0σ0,N〉 obtained in

[29]. Moreover the leading order large N behavior of 〈σ0,0σN,N〉 is obtained [36] from

the results for of [29] for 〈σ0,0σ0,N〉 and this result looks very different from the result

of [30]. Therefore it must be the case that if the Wiener-Hopf procedure of Wu [29],

which starts from the N × N Toeplitz determinant representation of 〈σ0,0σ0,N〉 and

〈σ0,0σN,N〉, is iterated to all orders we will obtain a representation of 〈σ0,0σ0,N〉 and

〈σ0,0σN,N〉 which is different from that of ref. [30].

In subsection I B 1 we summarize the results of our calculations. In section III B

we calculate the exponential representation of the correlation functions 〈σ00σ0N〉 and

〈σ00σNN〉 for T < Tc. In section III C we calculate the exponential representations

for T > Tc. In section III D we calculate the form factor expansions of 〈σ00σ0N〉 and

〈σ00σNN〉 for T < Tc and section III E we calculate the form factor expansions for

T > Tc, We conclude in sec. III F with a brief discussion of our results.

In chapter III we calculate the correlation functions 〈σ00σ0N〉 and 〈σ00σNN〉 as

series

DN =





D(−)

N =
∑∞

n=0 f (2n)
N if T < Tc

D(+)
N =

∑∞
n=0 f (2n+1)

N if T > Tc.
(30)

The functions f (2n)
N are called form factors, and are 2n dimensional integrals.
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1. Summary of Results

We let DN stand for SN = 〈σ00σ0N〉 or CN = 〈σ00σNN〉. Then

DN =





D(−)

N for T < Tc

D(+)
N for T > Tc

(31)

The representation of these correlations as an N × N Toeplitz determinant is [36]

DN = detAN (32)

where

AN =





a0 a−1 . . . a1−N

a1 a0 . . . a2−N

...
...

. . .
...

aN−1 aN−2 . . . a0




(33)

and

an =
1

2πi

∮

|z|=1

ϕ(z)z−n−1 dz, (34)

where the path of integration is counterclockwise. The function ϕ(z) is

ϕ(z) =

(
(1 − α1z)(1 − α2z−1)

(1 − α1z−1)(1 − α2z)

)1/2

. (35)

For the diagonal correlation function CN

α1 = 0 and α2 = (sinh 2K1 sinh 2K2)
−1 (36)

where Kj = Ej/kT. For the row correlation function SN

α1 = e−2K2 tanhK1 and α2 = e−2K2 cothK1. (37)

We will prove in Sec. III B that the correlation function D(−)
N has an exponential

expansion

D(−)
N = S∞ exp

∞∑

n=1

F (2n)
N (38)
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where

S∞ =

[
(1 − α2

1)(1 − α2
2)

(1 − α1α2)2

]1/4

(39)

which for both the diagonal (36) and row (37) correlation function specializes to (24).

The function F (2n)
N is given by

F (2n)
N =

(−1)n+1

n(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi

2n∏

j=1

zN
j

1 − zjzj+1

n∏

k=1

P (z2k)P (z−1
2k )Q(z2k−1)Q(z−1

2k−1) (40)

where z2n+1 = z1 and the functions P (z) and Q(z) are

P (z) = ((1 − α2z)/(1 − α1z))1/2 (41)

and

Q(z) = ((1 − α1z)/(1 − α2z))1/2 = 1/P (z). (42)

This agrees with the result given in ref. [37] for the diagonal correlation function

C(−)
N .

In Sec. III D we prove that D(−)
N has the form factor expansion

D(−)
N = S∞

∞∑

n=0

f (2n)
N (43)

where f (0)
N = 1 and

f (2n)
N =

1

(n!)2(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN
i

n∏

k=1

P (z2k)P (z−1
2k )Q(z2k−1)Q(z−1

2k−1)

n∏

l=1

n∏

m=1

(1 − z2l−1z2m)−2
∏

1≤p<q≤n

(z2p−1 − z2q−1)
2(z2p − z2q)

2. (44)

This agrees with the result given in ref. [37] for the diagonal correlation function

C(−)
N .

For T > Tc, we consider a new function ϕ̂(z) such that

ϕ̂(z) = ϕ(z)z =

(
(1 − α1z)(1 − α−1

2 z)

(1 − α1z−1)(1 − α−1
2 z−1)

)1/2

(45)
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which we write in factored form as

ϕ̂(z) = P̂ (z)−1Q̂(z−1)−1 (46)

with

P̂ (z) = ((1 − α1z)(1 − α−1
2 z))−1/2 (47)

and

Q̂(z) = ((1 − α1z)(1 − α−1
2 z))1/2 = 1/P̂ (z). (48)

P̂ (z) and Q̂(z) are analytic and non-zero for |z| < 1.

We prove in Sec. III C that the correlation function D(+)
N has an exponential

expansion

D(+)
N = −Ŝ∞

∞∑

m=0

G(2m+1)
N exp

∞∑

n=1

F̂ (2n)
N+1 (49)

where

Ŝ∞ =
[
(1 − α2

1)(1 − α−2
2 )(1 − α1α

−1
2 )2

]1/4
(50)

which for both the diagonal (36) and row (37) correlations specializes to (27) and

where F̂ (2n)
N is defined as in (40), but with P and Q replaced by P̂ and Q̂. Thus we

find from (40) that F̂ (2n)
N is

F̂ (2n)
N =

(−1)n+1

n(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi

2n∏

j=1

zN
j

1 − zjzj+1

n∏

k=1

P̂ (z2k)P̂ (z−1
2k )Q̂(z2k−1)Q̂(z−1

2k−1). (51)

The function G(2n+1)
N is given by

G(2n+1)
N =

1

(2πi)2n+1
lim
ε→0

2n+1∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

1

z1z2n+1

2n∏

k=1

1

1 − zkzk+1

n+1∏

l=1

P̂ (z2l−1)P̂ (z−1
2l−1)

n∏

m=1

Q̂(z2m)Q̂(z−1
2m). (52)

Equations (51) and (52) agree with the results given in ref. [37]. Note that for the

diagonal correlation function C(+)
N = 〈σ00σNN〉 (36) implies that

F̂ (2n)
N = F (2n)

N . (53)
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In Sec. III E we prove that D(+)
N has the form factor expansion

D(+)
N = −Ŝ∞

∞∑

n=0

f (2n+1)
N (54)

where

f (2n+1)
N = − i

n!(n + 1)!(2π)2n+1
lim
ε→0

2n+1∏

i=1

∮

|zi|=1−ε

dzi zN
i

n+1∏

l=1

P̂ (z2l−1)P̂ (z−1
2l−1)z

−1
2l−1

n∏

m=1

Q̂(z2m)Q̂(z−1
2m)z2m

n+1∏

p=1

n∏

q=1

1

(1 − z2p−1z2q)2

∏

1≤j<k≤n+1

(z2j−1 − z2k−1)
2

∏

1≤r<s≤n

(z2r − z2s)
2. (55)

Equation (55) agrees with result given in ref. [37] for the diagonal correlation function

C(+)
N .

The proofs of these results are not restricted to the Ising case where the generating

function is given by (35) but with a suitable replacement for the factors S∞ and Ŝ∞

are valid in more general cases, for example the XY model in a magnetic field [38]-

[40]. The results (38)-(44) for T < Tc are valid for any generating function ϕ(z)

where logϕ(z) is analytic and periodic on |z| = 1 and P (z) = 1/Q(z) The results

(49)-(55) for T > Tc are similarly valid for any generating function for which log zϕ(z)

is analytic and periodic on the unit circle |z| = 1 and P̂ (z) = 1/Q̂(z).
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II. HARD SPHERES

A. Introduction

In this chapter we will prove the results (15) and table III. In section II B we review

the relation between the two center formalism and the Mayer formalism. In section

II C we prove the result presented in table III. In sections II D and II E we use the

two center formalism to evaluate the complete star of B(2)
n+2 in terms of ndimensional

integrals. We conclude in section II F with a discussion.

The partition function may be written as

ZNj =
1

Nj!hDNj

Nj∏

k=1

∫

RD

dDpk

Nj∏

l=1

∫

Uj

dDrl exp−HNj/kT (56)

where h is Planck’s constant. After Gaussian integration (56) becomes

ZNj =
1

Nj !λDNj

Nj∏

l=1

∫

Uj

dDrl exp− 1

kT

∑

1≤i<k≤Nj

φ(rik) (57)

where λ := h/(2πmkT )1/2. With the definition (5), (57) becomes

ZNj =
1

Nj !λDNj

Nj∏

l=1

∫

Uj

dDrl

∏

1≤i<k≤Nj

(1 + fik). (58)

A lengthy calculation [5] shows that the virial coefficients B(D)
n are given by (7). The

integral in (12) for the virial coefficient B(D)
3 may be evaluated easily. Let m be any

positive integer, and let u be any positive number. According to reference [41], p.

159
∫ u

0

sin2m x dx =
(2m − 1)!!

2mm!
u − cos u

2m
×

{
sin2m−1 u +

+
m−1∑

k=1

(2m − 1)(2m − 3)...(2m − 2k + 1)

2k(m − 1)(m − 2)...(m − k)
sin2m−2k−1 u

}
(59)

and
∫ u

0

sin2m+1 x dx =
2mm!

(2m + 1)(2m − 1)!!
− cosu

2m + 1

{
sin2m u +

+
m−1∑

k=0

2k+1m(m − 1)...(m − k)

(2m − 1)(2m − 3)...(2m − 2k − 1)
sin2m−2k−2 u

}
.(60)
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The calculation of the fourth virial coefficient is more involved. The method used

by Rowlinson [14] and Clisby and McCoy [16] was to calculate the volume of the

intersection of three balls

vD(r12, r13, r23) = −
∫

RD

f(r14)f(r24)f(r34)d
Dr4 (61)

as an intermediate step. It follows from (61) that

= −
∫

RD

∫

RD

∫

RD

f(r13)f(r23)f(r24)vD(r12, r13, r23)d
Dr1d

Dr2d
Dr3 (62)

Rowlinson had previously calculated v3(r12, r13, r23) [42], but no one has so far cal-

culated the three dimensional complete star using (62). The reason is that there are

elliptic integrals in the odd dimensional case that cancel in the even dimensional case.

B. The two center formalism

The two center formalism was invented by de Boer in 1949 [13]. This formalism

is equivalent [5] to the Mayer formalism, and in the case of hard spheres it especially

useful since it allows the reduction of the dimension of the integral by D. The inven-

tion of this formalism is what inspired Nijboer and van Hove to confirm Boltzmann’s

result for B(D)
4 in 1952 [12].

According to the Mayer formalism, B(D)
4 is given by (10). If the pair potential is

given by (1), then (and only then) the Mayer diagrams of B4 can be written according

to the two center formalism as

= −4B2 (1)

= −4

3
B2

(
1

2
(1) + 2 (1)

)

= −8

3
B2 (1), (63)

and thus

B4 = B2

(
1

2
(1) +

1

2
(1) + 2 (1) + (1)

)
. (64)

Here the circles indicate points that are not integrated over, and the number 1 indi-

cates that the distance between these two points is 1. We shall use the same notation
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as Nijboer and van Hove [12]. Thus we define

χ(r12) := ,

(g1(r12))
2 := ,

ψ(r12) := ,

ϕ(r12) := . (65)

The functions g1(r12), ϕ(r12) and ψ(r12) are easily calculated for any D. The calcula-

tion of these diagrams in three dimensions is described in the paper by Nijboer and

van Hove [12]. It is easy to do the same calculation in higher odd dimensions, but

we shall omit this since the lower order Mayer diagrams in B4 are already known in

terms of hypergeometric functions. Luban and Baram [43] showed that

B3
2

=
2D+4

π

Γ(D + 1)[Γ(D/2 + 1)]3

Γ(3D/2 + 1)[Γ((D + 3)/2)]2
3F2

(
1

2
, 1,

−D + 1

2
;
D + 3

2
,
D + 3

2
; 1

)
(66)

and

B3
2

= −2D+1D3[Γ(D/2)]2
∫ 1

0

dy y[gD/2(y)]2, (67)

where

gν(y) =

∫ ∞

0

dx x−ν [Jν(x)]2Jν−1(xy). (68)

If D is odd, then according to reference [41], p. 1071

3F2

(
1

2
, 1,

−D + 1

2
;
D + 3

2
,
D + 3

2
; 1

)
=

=
n∑

k=0

(−1)k (2k − 1)!!

2k

n(n − 1)...(n − k + 1)

[(n + k + 1)(n + k)...(n + 2)]2
(69)

where D = 2n + 1 and (−1)!! = (−1)0 = 1. Joslin [44] found that

gν(y) =






2−νyν−1

Γ(ν+1/2)Γ(1/2)

∫ π

2 arcsin (y/2) dϕ cos2ν (ϕ/2) if y < 2

0 if y ≥ 2.
(70)

Thus, if y < 2, n is a positive integer and D = 2n + 1, then

gD/2(y) =
2−D/2yD/2−1

Γ(n + 1)Γ(1/2)
2

(
1

2n + 1

2nn!

(2n − 1)!!
− y/2

2n + 1

{
(1 − (y/2)2)n +

+
n−1∑

k=0

2k+1n(n − 1)...(n − k)

(2n − 1)(2n − 3)...(2n − 2k − 1)
(1 − (y/2)2)n−k−1

})
. (71)

Thus using (69) and (70), the expressions in (66) and (67) can be explicitly computed

in odd dimensions. Clearly both of these are rational numbers in odd dimensions.
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C. Integration of the complete star

We aim to obtain a general expression for χ(1). The only dimensions lower than

12 for which the exact result has not been published before are D = 5, 7, 9, 11. We

shall calculate χ in dimensions D = 2n+1. When n is an integer, D is an odd integer.

However, n need not be an integer. If n is a half integer, then the calculation below

is still valid and gives B4 in even dimensions. If n is some other positive real number,

then the calculation below may be used to obtain B4 in continous dimensions. We

will use the convention

r12 ≥ 1. (72)

According to (65)

χ(r12) =

∫

RD

∫

RD

f(r13)f(r14)f(r23)f(r24)f(r34)d
Dr3d

Dr4 (73)

We define

F (h) =

∫

RD

f(rij)e
2πih·(ri−rj)dDri (74)

where h = |h|. It can be shown that [43]

F (h) = − 1

hD/2
JD/2(2πh) (75)

where Jν is a Bessel function of order ν. We define

G(h, r12) =

∫

RD

f(r13)f(r23)e
2πih·[r3− 1

2 (r1+r2)]dDr3. (76)

Clearly

χ(r12) =

∫

RD

F (h)[G(h, r12)]
2dDh (77)

In D dimensions, we write r = (x1, x2, ..., xD−1, z) = (x, z) and h = (hx, hz). r1 and

r2 are placed on the z axis in such a way that r1 + r2 = 0. From now on, r12 will be

written as r. We first simplify G(h, r). According to (76)

G(h, r) = 2

∫ ∞

0

dz cos(2πzhz)

∫

{r | z=constant}
d2nx f([x2 +(z +r/2)2]1/2)e2πihx·x (78)
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where x = |x|. The integral over the hyperplane {r | z = constant} in (78) has the

same form as the integral in (74) if D is replaced by 2n. It therefore follows from (75)

that

G(h, r) = − 2

hn
x

∫ 1−r/2

0

dz cos (2πhzz)[1−(r/2+z)2]n/2Jn(2πhx[1−(r/2+z)2]1/2) (79)

where hx = |hx|. (77) can be rewritten as

χ(r) =

∫ ∞

−∞
dhz

∫

R2n

d2nhx F (h)[G(h, r)]2 (80)

Since F (h) and G(h, r) are spherically symmetric in the hyperplane {h | hz =

constant}, (80) can be simplified as

χ(r) = Ω2n−1

∫ ∞

−∞
dhz

∫ ∞

0

dhx h2n−1
x F (h)[G(h, r)]2 (81)

where Ω2n−1 = |S2n−1| = 2πn/Γ(n). It follows from (75), (79) and (81) that

χ(r) = − 8πn

Γ(n)

∫ 1−r/2

0

dz[1 − (r/2 + z)2]n/2

∫ 1−r/2

0

dz′[1 − (r/2 + z′)2]n/2

∫ ∞

0

dhx
1

hx
Jn

(
2π[1 − (r/2 + z)2]1/2hx

)
Jn

(
2π[1 − (r/2 + z′)2]1/2hx

)

∫ ∞

−∞
dhz

1

(h2
x + h2

z)
D/4

JD/2

(
2π(h2

x + h2
z)

1/2
)
cos (2πhzz) cos (2πhzz

′) (82)

We rewrite cos (2πhzz) cos (2πhzz′) as

cos (2πhzz) cos (2πhzz
′) =

1

2
{cos (2πhz(z + z′)) + cos (2πhz(z − z′))} (83)

According to reference [41], p. 772

∫ ∞

−∞
dhz

1

(h2
x + h2

z)
D/4

JD/2

(
2π(h2

x + h2
z)

1/2
)
cos (2πhz(z ± z′))

=
1

hn
x

[1 − (z ± z′)2]n/2Jn

(
2πhx[1 − (z ± z′)2]1/2

)
(84)

Thus χ(r) can be reduced to a three dimensional integral. So

χ(r) = − 4πn

Γ(n)

∫ 1−r/2

0

dz(α(r/2, z)/2π)n

∫ 1−r/2

0

dz′(α(r/2, z′)/2π)n

∫ ∞

0

dhx
1

hx
n+1Jn(α(r/2, z)hx)Jn(α(r/2, z′)hx)

{(α(z, z′)/2π)nJn(α(z, z′)hx) + (α(z,−z′)/2π)nJn(α(z,−z′)hx)} (85)
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where

α(z, z′) = 2π
√

1 − (z + z′)2. (86)

Now we have to evaluate the integral I given by

I =

∫ ∞

0

Jn(α(r/2, z)x)Jn(α(r/2, z′)x)Jn(α(z, z′)x)
1

xn+1
dx (87)

We integrate by parts and use the recursion relations for Bessel functions

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z) (88)

and

Jν−1(z) − Jν+1(z) = 2
d

dz
Jν(z) (89)

Then

I =
1

2n
(α(r/2, z)Iα(r/2,z);α(r/2,z′),α(z,z′) + α(r/2, z′)Iα(r/2,z′);α(r/2,z),α(z,z′) +

+α(z, z′)Iα(z,z′);α(r/2,z),α(r/2,z′)) (90)

where

Iα;β,γ =

∫ ∞

0

1

xn
Jn+1(αx)Jn(βx)Jn(γx)dx (91)

and Iβ;α,γ and Iγ;α,β are defined as cyclic permutations of the same integral. We use

the formula of Sonine and Dougall [45] to calculate Iα;β,γ . It says that for any positive

constants a, b and c

∫ ∞

0

Jµ(at)Jν(bt)Jν(ct)t
1−µdt

=
(bc)ν2−µ+1

aµΓ(µ − ν)Γ(ν + 1/2)Γ(1/2)

∫ Aa;b,c

0

(a2 − b2 − c2 + 2bc cosϕ)µ−ν−1 sin2ν ϕ dϕ(92)

where

Aa;b,c =






0 if a2 < (b − c)2

arccos b2+c2−a2

2bc if (b − c)2 < a2 < (b + c)2

π if (b + c)2 < a2

(93)
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Thus

Iα(r/2,z);α(r/2,z′),α(z,z′) =
2−nα(r/2, z′)nα(z, z′)n

α(r/2, z)n+1Γ(n + 1/2)Γ(1/2)
∫ Aα(r/2,z);α(r/2,z′),α(z,z′)

0

sin2n ϕ dϕ. (94)

We have thus reduced χ(r) to a two dimensional integral:

χ(r) = − 2π2n

nΓ(n + 1/2)Γ(n)Γ(1/2)
×

×
(

2

∫ 1−r/2

0

dz

∫ 1−r/2

0

dz′(α(r/2, z′)/2π)2n(α(z, z′)/2π)2n

∫ Aα(r/2,z);α(r/2,z′),α(z,z′)

0

dϕ sin2n ϕ

+

∫ 1−r/2

0

dz

∫ 1−r/2

0

dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

∫ Aα(z,z′);α(r/2,z),α(r/2,z′)

0

dϕ sin2n ϕ

+ 2

∫ 1−r/2

0

dz

∫ 1−r/2

0

dz′(α(r/2, z′)/2π)2n(α(z,−z′)/2π)2n

∫ Aα(r/2,z);α(r/2,z′),α(z,−z′)

0

dϕ sin2n ϕ

+

∫ 1−r/2

0

dz

∫ 1−r/2

0

dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

∫ Aα(z,−z′);α(r/2,z),α(r/2,z′)

0

dϕ sin2n ϕ

)
(95)

(The integral over ϕ may be evaluated using (59).) We need to determine which

values of z and z′ correspond to which functional form of Aa;b,c. We will use the fact

that for all z, z′ for which 0 ≤ z, z′ ≤ 1 − r/2

α(r/2, z)2 ≤ (α(r/2, z′) + α(z, z′))2 (96)

and

α(z, z′)2 ≥ (α(r/2, z) − α(r/2, z′))2 (97)

Since z′ ≤ 1−r/2 ≤ r/2, the first inequality is obvious. The second inequality follows

from the first inequality. Since α(z,−z′) ≥ α(z, z′) for all z and z′, α(z, z′) could be
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replaced by α(z,−z′) in (96) and (97). It follows from (93), (96) and (97) that

Aα(r/2,z);α(r/2,z′),α(z,z′) =



0 if α(r/2, z)2 < (α(r/2, z′) − α(z, z′))2

arccos α(r/2,z′)2+α(z,z′)2−α(r/2,z)2

2α(r/2,z)α(z,z′) if (α(r/2, z′) − α(z, z′))2 < α(r/2, z)2
(98)

and

Aα(z,z′);α(r/2,z),α(r/2,z′) =



arccos α(r/2,z)2+α(r/2,z′)2−α(z,z′)2

2α(r/2,z)α(r/2,z′) if α(z, z′)2 < (α(r/2, z′) + α(r/2, z))2

π if (α(r/2, z′) + α(r/2, z))2 < α(z, z′)2
(99)

We need to translate the equation α(r/2, z)2 = (α(r/2, z′) − α(z, z′))2 into an

equation involving z and z′. This can be done by using the definition of α and

expanding both sides. In this way it can be shown that

Aα(r/2,z);α(r/2,z′),α(z,z′) =





0 if z′ > ar(z)

arccos α(r/2,z′)2+α(z,z′)2−α(r/2,z)2

2α(r/2,z′)α(z,z′) if z′ < ar(z)
(100)

and

Aα(z,z′);α(r/2,z),α(r/2,z′) =





π if z′ > ar(z)

arccos α(r/2,z)2+α(r/2,z′)2−α(z,z′)2

2α(r/2,z)α(r/2,z′) if z′ < ar(z)
(101)

where z′ = ar(z) is the positive root of the equation

3 − r2 − 4z2 − 4zz′ − 4z′2 − 2rz′ + 4r2zz′ + 8rz2z′ + 8rzz′2 − 2rz = 0. (102)

When r = 1 this equation can be factorized as

(1 − 2z)(1 − 2z′)(1 + z + z′) = 0. (103)

Hence z′ is undetermined whenever z = 1/2 in this case.

It can be shown in the same way that

Aα(r/2,z);α(r/2,z′),α(z,−z′) =





0 if z′ > br(z)

arccos α(r/2,z′)2+α(z,−z′)2−α(r/2,z)2

2α(r/2,z′)α(z,−z′) if z′ < br(z)
(104)
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z’

z

1!r/2

b (z)

a (z)  r
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1!r/2

FIG. 1: The functions ar and br. ar(z) = br(z) = 0 when z = − r
4 + 1

4

√
12 − 3r2.

z’

z1/2

1/2
a  (z)

b  (z)1

1

FIG. 2: The functions a1 and b1 (here r = 1). b1(z) = −1
4 + z

2 + 3
4

√
1
3(1 − 2z)(3 + 2z).

b1(z) = 0 when z = 1
2 .

and

Aα(z,−z′);α(r/2,z),α(r/2,z′) =





π if z′ > br(z)

arccos α(r/2,z)2+α(r/2,z′)2−α(z,−z′)2

2α(r/2,z)α(r/2,z′) if z′ < br(z)
(105)

where z′ = br(z) is the positive root of the equation

2rz + 2rz′ − 4zz′ − 3 + 4z2 + 4z′2 + r2 = 0 (106)

Since (102) and (106) are both symmetric in z and z′, we could equally well write

their solutions as z = a(z′) and z = b(z′) instead. ar(z) and br(z) for r > 1 are shown

in figure 1.
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So

χ(r) = − 2π2n

nΓ(n + 1/2)Γ(n)Γ(1/2)
×

×
(

2

∫ 1−r/2

0

dz

∫ ar(z)

0

dz′(α(r/2, z′)/2π)2n(α(z, z′)/2π)2n

∫ arccos (yα(r/2,z);α(r/2,z′),α(z,z′))

0

dϕ sin2n ϕ

+

∫ 1−r/2

0

dz

∫ ar(z)

0

dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

∫ arccos (yα(z,z′);α(r/2,z),α(r/2,z′))

0

dϕ sin2n ϕ

+ 2

∫ 1−r/2

0

dz

∫ br(z)

0

dz′(α(r/2, z′)/2π)2n(α(z,−z′)/2π)2n

∫ arccos (yα(r/2,z);α(r/2,z′),α(z,−z′))

0

dϕ sin2n ϕ

+

∫ 1−r/2

0

dz

∫ br(z)

0

dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

∫ arccos (yα(z,−z′);α(r/2,z),α(r/2,z′))

0

dϕ sin2n ϕ

+

∫ 1−r/2

0

dz

∫ 1/2

br(z)

dz′(α(r/2, z)/2π)2n(α(r/2, z′)/2π)2n

∫ π

0

dϕ sin2n ϕ

)
(107)

where yα;β,γ = β2+γ2−α2

2βγ . As r tends to 1, it follows from (103) that ar(z) takes the

value 1/2 for all z, as shown in figure 2. In the special case r = 1 the integral simplifies
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to

χ(1) = − 2π2n

nΓ(n + 1/2)Γ(n)Γ(1/2)
×

×
(

2

∫ 1/2

0

dz

∫ 1/2

0

dz′(α(1/2, z′)/2π)2n(α(z, z′)/2π)2n

∫ arccos (yα(1/2,z);α(1/2,z′),α(z,z′))

0

dϕ sin2n ϕ

+

∫ 1/2

0

dz

∫ 1/2

0

dz′(α(1/2, z)/2π)2n(α(1/2, z′)/2π)2n

∫ arccos (yα(z,z′);α(1/2,z),α(1/2,z′))

0

dϕ sin2n ϕ

+ 2

∫ 1/2

0

dz

∫ b1(z)

0

dz′(α(1/2, z′)/2π)2n(α(z,−z′)/2π)2n

∫ arccos (yα(1/2,z);α(1/2,z′),α(z,−z′))

0

dϕ sin2n ϕ

+

∫ 1/2

0

dz

∫ b1(z)

0

dz′(α(1/2, z)/2π)2n(α(1/2, z′)/2π)2n

∫ arccos (yα(z,−z′);α(1/2,z),α(1/2,z′))

0

dϕ sin2n ϕ

+

∫ 1/2

0

dz

∫ 1/2

b1(z)

dz′(α(1/2, z)/2π)2n(α(1/2, z′)/2π)2n

∫ π

0

dϕ sin2n ϕ

)
. (108)

After integration by parts, this gives integrals of the type
∫

p(x)

q(x)
√

a + bx + cx2
dx, (109)

where p and q are polynomials. Using Maple it was thus possible to calculate χ(1)

for D = 5, 7, 9, 11. We may now obtain from (63). Since and can

be obtained from (66) and (67), we have found B4. We use the more compact Ree

Hoover f̃ formalism [46] to present the results. In this formalism B4 consists of only

two diagrams instead of three. Here we define a function f̃ by the equation

f̃(rij) − f(rij) = 1. (110)

Thus it follows from (6) that f̃ij = 0 precisely when fij = −1. Hence the Mayer

complete star has no Ree Hoover bonds, and we write

∅ = . (111)
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We indicate a Ree Hoover bond by a broken line. The equation

f̃14f̃23 = 1 + f14 + f23 + f14f23 (112)

is thus written symbolically as

= + 2 + , (113)

where on the left hand side of (113) only the Ree Hoover bonds are shown. The

diagram is called the Ree Hoover ring, since it consists of a ring of four Mayer

bonds and two Ree Hoover bonds. It follows from (10), (111) and (113) that

B4 =
1

4
∅ − 3

8
. (114)

The final answer is given in tables III, IV and V. For the sake of completeness, we

include the diagrams of B(3)
4 . The numerical values of references [18] and [20] agree

with the exact result.

TABLE IV: Exact and numerical [18] values of the Ree Hoover complete star

D ∅
4B3

2
decimal expansion

3 − 89
280 − 219

1120

√
2

π + 4131
2240

arccos (1/3)
π 0.31672598803...

0.31673(2)

5 −163547
128128 − 3888425

8200192

√
2

π + 67183425
16400384

arccos (1/3)
π 0.11520591833...

0.115211(3)

7 −283003297
141892608 − 159966456685

217947045888

√
2

π + 292926667005
48432676864

arccos (1/3)
π 0.04492254969...

0.044927(2)

9 −88041062201
34810986496 − 2698457589952103

2851716013752320

√
2

π + 8656066770083523
1140686405500928

arccos (1/3)
π 0.01828214224...

0.018286(1)

11 −66555106087399
22760055898112 − 16554115383300832799

14916030233386680320

√
2

π

+52251492946866520923
5966412093354672128

arccos (1/3)
π 0.00766164876...

0.0076638(8)
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TABLE V: Exact and numerical [18] values of the Ree Hoover ring

D −3

8B3
2

decimal expansion

3 4131
4480 + 657

2240

√
2

π − 12393
4480

arccos (1/3)
π −0.02977648205...

−0.029781(8)

5 67183425
32800768 + 11665275

16400384

√
2

π − 201550275
32800768

arccos (1/3)
π −0.03923343804...

−0.039233(3)

7 292926667005
96865353728 + 159966456685

145298030592

√
2

π − 878780001015
96865353728

arccos (1/3)
π −0.03505760307...

−0.035055(3)

9 8656066770083523
2281372811001856 + 8095372769856309

5703432027504640

√
2

π − 25968200310250569
2281372811001856

arccos (1/3)
π −0.02686294042...

−0.026861(3)

11 52251492946866520923
11932824186709344256 + 49662346149902498397

29832060466773360640

√
2

π

−156754478840599562769
11932824186709344256

arccos (1/3)
π −0.01899884734...

−0.018997(3)

D. Theory for the general complete star

We will show that it is possible to construct the complete star of any number of

points from some functions F and G. To construct χn+2(r12) requires n copies of

G and 1 + 2 + ... + (n − 1) = (n − 1)n/2 copies of F . We consider n + 2 points

r̃1, r̃2, r1, ..., rn. We write

r = r̃12 := |r̃1 − r̃2|. (115)

Let

φ : {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n; i < j} → {i | 1 ≤ i ≤ n(n − 1)/2} (116)

be a bijection, and let

ϕ : {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n} → {i | − n(n − 1)/2 ≤ i ≤ n(n − 1)/2} (117)

be an extension of φ so that for all (i, j)

ϕ(i, j) = −ϕ(j, i). (118)
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Of course ϕ is not a bijection. We consider r = (x, z) ∈ RD and h = (hx, hz) ∈ RD)

where RD)
is the dual space of RD. RD)

will usually be written as RD. We use the

notation r(i,j) := ri − rj and r−k := −rk. In particular r(i,i) = 0 and r0 = 0.

Let

f(i,j) := fij. (119)

We define the complete star of n + 2 points

χn+2(r) :=
n∏

i=1

∫

RD

dDri

n∏

j=1

f1̃jf2̃j

(n−1)n/2∏

k=1

fφ−1(k). (120)

We proceed by giving some examples. We begin by considering n = 0. This is trivial.

The integral that needs to be calculated is χ2(r). Clearly

χ2(r) = f1̃2̃. (121)

In particular,

χ2(1) = −1. (122)

We next consider the case n = 1. In this case the integral is

χ3(r) =

∫

RD

f1̃1f2̃1d
Dr1. (123)

This integral can be easily evaluated. In particular, when D = 2,

χ3(r) =

∫ 1

r/2

√
1 − x2 dx (124)

and thus

χ3(1) =
π

3
−

√
3

4
. (125)

Our final and only nontrivial examples are n = 2 and n = 3. It follows from (120)

that

χ4(r) =

∫

RD

dDr1

∫

RD

dDr2 f1̃1f2̃1f1̃2f2̃2fφ−1(1). (126)

Following (116), φ−1(1) can only be (1, 2). Thus

χ4(r) =

∫

RD

dDr1

∫

RD

dDr2 f1̃1f2̃1f1̃2f2̃2f12. (127)

When n = 3, φ may be chosen so that φ(1, 2) = 1, φ(1, 3) = 2 and φ(2, 3) = 3. Thus

χ5(r) =

∫

RD

dDr1

∫

RD

dDr2

∫

RD

dDr3 f1̃1f2̃1f1̃2f2̃2f1̃3f2̃3f12f13f23. (128)
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Lemma 1

χn+2(r) =

(n−1)n/2∏

i=1

∫

RD#
dDhi

n∏

j=1

∫

RD

dDrj f1̃jf2̃j exp 2πi
n∑

k=1

hϕ(j,k) · (rj −
1

2
(r̃1 + r̃2))

(n−1)n/2∏

l=1

∫

RD

dDr′l fl′l′′ exp−2πihl · (r′l − r′′l ) (129)

We illustrate the lemma by two examples. For n = 2, φ : {(1, 2)} → {1}, and the

right hand side of (129) is

∫

RD#
dDh1

∫

RD

dDr1

∫

RD

dDr2 f1̃1f2̃1f1̃2f2̃2 exp 2πih1 · (r1 − r2)
∫

RD

dDr′1 f1′1′′ exp−2πih1 · (r′1 − r′′1)

=

∫

RD

dDr1

∫

RD

dDr2 f1̃1f2̃1f1̃2f2̃2f12

=: χ4(r12). (130)

In (130) we used the fact that for an integrable function f continous at 0

∫

RD

∫

RD

f(x) exp i2πh · x dDx dDh = f(0). (131)

From now on, we will assume that the integral
∫∞
−∞ exp 2πikx dk exists and equals

the Dirac distribution δ(x). δ(x) has the property that for any function f continous

at 0 ∫ ∞

−∞
δ(x)f(x) dx = f(0). (132)

For n = 3, φ : {(1, 2), (1, 3), (2, 3)} → {1, 2, 3} and it is easily seen that

exp 2πi
n∑

j=1

n∑

k=1

hϕ(j,k) · (rj −
1

2
(r̃1 + r̃2)) =

exp 2πi(h1 · rφ−1(1) + h2 · rφ−1(2) + h3 · rφ−1(3)). (133)

The general proof is similar to the examples.

Proof of Lemma 1 By changing the order of integration, it is seen that the right
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hand side of (129) equals

n∏

i=1

∫

RD

dDri f1̃if2̃i

(n−1)n/2∏

j=1

∫

RD

dDr′j fj′j′′

(n−1)n/2∏

k=1

∫

RD

dDhk

(n−1)n/2∏

l=1

exp 2πihl · (r′′l − r′l + rφ−1(l))

=
n∏

i=1

∫

RD

dDri f1̃if2̃i

(n−1)n/2∏

j=1

∫

RD

dDr′j fj′j′′

(n−1)n/2∏

k=1

δ(r′′k − r′k + rφ−1(k))

=
n∏

i=1

∫

RD

dDr1

n∏

j=1

f1̃jf2̃j

(n−1)n/2∏

k=1

fφ−1(k)

=: χn+2(r) (134)

E. Calculation of χn(r) for D = 2

Here we will only consider two dimensional hard spheres (in other words, hard

disks). This is not very restrictive since a calculation in two dimensions can easily be

extended to a calculation in any even dimension. It seems that a calculation in odd

dimensions greater than one would be more difficult.

From now on, we let D = 2, and we use coordinates r = (x, z). It follows from

(74), (75) and (76) that G can be written as

G(h, r) =

∫ 1−r/2

0

dz
2

π
h−1

x cos 2πhzz sin 2πhx

√
1 − (z + r/2)2

= 4

∫ 1−r/2

0

dz cos 2πhzz

∫ √
1−(r/2+z)2

0

dk cos 2πhxk (135)

From (129) it follows that

χn+2(r) =

(n−1)n/2∏

i=1

∫

R2#
d2hi

n∏

k=1

G

(
n∑

j=1

hϕ(k,j), r

)
(n−1)n/2∏

l=1

F (hl)

In particular

χ4(r) =

∫

R2#
d2h1G (h1, r) G (−h1, r) F (h1)

and

χ5(r) =

∫

R2#
d2h1

∫

R2#
d2h2

∫

R2#
d2h3G (h1 + h2, r) G (−h1 + h3, r)

G (−h2 − h3, r) F (h1)F (h2)F (h3). (136)
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From now on, we let D = 2. In light of (75), (135) and (136) it is seen that

χn+2(r) = (−1)(n−1)n/24n

(n−1)n/2∏

i=1

∫

R2#
d2hi

n∏

j=1

∫ 1−r/2

0

dzj

n∏

l=1

∫ √
1−(r/2+zl)2

0

dkl

n∏

p=1

cos 2π
( n∑

q=1

hϕ(p,q),z

)
zp cos 2π

( n∑

q=1

hϕ(p,q),x

)
kp

(n−1)n/2∏

m=1

1
(
hm,z

2 + hm,x
2
)1/2

J1

(
2π

(
hm,z

2 + hm,x
2
)1/2

)
. (137)

In particular

χ4(r) = −16

∫

R2#
d2h1

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

dk1

∫ √
1−(r/2+z2)2

0

dk2

cos 2πh1,zz1 cos (−2πh1,zz2) cos 2πh1,xk1 cos (−2πh1,xk2)
1

(
h1,z

2 + h1,x
2
)1/2

J1

(
2π

(
h1,z

2 + h1,x
2
)1/2

)
(138)

and

χ5(r) = −64

∫

R2#
d2h1

∫

R2#
d2h2

∫

R2#
d2h3

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ 1−r/2

0

dz3

∫ √
1−(r/2+z1)2

0

dk1

∫ √
1−(r/2+z2)2

0

dk2

∫ √
1−(r/2+z2)2

0

dk3

cos 2π(h1,z + h2,z)z1 cos 2π(−h1,z + h3,z)z2 cos 2π(−h2,z − h3,z)z3

cos 2π(h1,x + h2,x)k1 cos 2π(−h1,x + h2,x)k2 cos 2π(−h2,x − h3,x)k3

1
(
h1,z

2 + h1,x
2
)1/2

J1

(
2π

(
h1,z

2 + h1,x
2
)1/2

)

1
(
h2,z

2 + h2,x
2
)1/2

J1

(
2π

(
h2,z

2 + h2,x
2
)1/2

)

1
(
h3,z

2 + h3,x
2
)1/2

J1

(
2π

(
h3,z

2 + h3,x
2
)1/2

)
. (139)

We would like to rewrite the product
∏n

p=1 cos 2π(
∑n

q=1 hϕ(p,q),z)zp in a form that

allows us to integrate (137) with respect to hz := (h1,z, h2,z, ..., h(n−1)n/2,z). From now

on, we will only use the triple (i, j, p) with the meaning φ(i, j) = p. We will sometimes

use the notation (ip, jp, p) = (i, j, φ(i, j)).

Lemma 2 Let σ = (σ1, ..., σ(n−1)n/2) ∈ {−1, 1}(n−1)n/2. Then the following equal-

30



ity holds under integration:

n∏

i=1

cos 2π(
n∑

j=1

hϕ(i,j),z)zi ≡

1

2(n−1)n/2

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

cos 2πhp,z(zip − σjpzjp). (140)

When n = 2, (140) says that

cos 2πh1,zz1 cos (−2πh1,zz2) ≡
1

2
(cos 2πh1,z(z1 − z2) + cos 2πh1,z(z1 + z2)) . (141)

We now illustrate (140) when n = 3. In this case, the left hand side of (140) is

cos 2π(h1,z + h2,z)z1 cos 2π(−h1,z + h3,z)z2 cos 2π(−h2,z − h3,z)z3 (142)

The even part of (142) is

cos h1,zz1 cos h2,zz1 cosh1,zz2 cosh3,zz2 cosh2,zz3 cos h3,zz3 +

sinh1,zz1 sinh2,zz1 sin h1,zz2 sin h3,zz2 sin h2,zz3 sin h3,zz3. (143)

Since cosα cosβ = (cos (α− β) + cos (α + β))/2 and sinα sin β = (cos (α− β) −

cos (α + β))/2, (143) can be rewritten as

1

8
(cosh1,z(z1 − z2) + cos h1,z(z1 + z2))(cosh2,z(z1 − z3) + cosh2,z(z1 + z3))

(cosh3,z(z2 − z3) + cosh3,z(z2 + z3)) +
1

8
(cosh1,z(z1 − z2) − cos h1,z(z1 + z2))(cosh2,z(z1 − z3) − cos h2,z(z1 + z3))

(cosh3,z(z2 − z3) − cosh3,z(z2 + z3)). (144)

Of course (144) equals (under integration)

1

4

(
cos 2πh1,z(z1 − z2) cos 2πh2,z(z1 − z3) cos 2πh3,z(z2 − z3)

+ cos 2πh1,z(z1 − z2) cos 2πh2,z(z1 − z3) cos 2πh3,z(z2 + z3)

+ cos 2πh1,z(z1 − z2) cos 2πh2,z(z1 + z3) cos 2πh3,z(z2 − z3)

+ cos 2πh1,z(z1 − z2) cos 2πh2,z(z1 + z3) cos 2πh3,z(z2 + z3)
)
. (145)

(145) is the right hand side of (140) when n = 3. The general form clearly follows.
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We wish to integrate (140) with respect to hz := (h1,z, h2,z, ..., h(n−1)n/2,z).

It is evident from (140) that hϕ(i,j),z will appear with a prefactor (zi−σjzj). Stated

differently, hp,z will appear with a prefactor (zφ−1(p)1 − σφ−1(p)2zφ−1(p)2).

We use the formula ([41], p. 772)
∫ ∞

−∞
(x2 + b2)−1/2J1(a(x2 + b2)1/2) cos cx dx

=





2a−1b−1 sin b(a2 − c2)1/2 if 0 < c < a

0 if 0 < a < c.
(146)

It follows from (137), (140) and (146) that

χn+2(r) = (−1)(n−1)n/24n

(n−1)n/2∏

i=1

∫ ∞

−∞
dhi,x

n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

∫ √
1−(r/2+zk)2

0

dsk

n∏

l=1

cos 2π(
n∑

m=1

hϕ(l,m),x)sl

1

2(n−1)n/2

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

1

π

1

hp,x
sin 2πhp,x

√
1 − (zip − σjpzjp)2. (147)

Using the formula
sin ax

x
=

∫ a

0

cosxt dt (148)

(147) can be rewritten as

χn+2(r) = (−1)(n−1)n/24n

(n−1)n/2∏

i=1

∫ ∞

−∞
dhi,x

n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

∫ √
1−(r/2+zk)2

0

dsk

n∏

l=1

cos 2π(
n∑

m=1

hϕ(l,m),x)sl

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

∫ √
1−(zip−σjpzjp)2

0

dtp cos 2πhp,xtp (149)

When n = 2, this is

χ4(r) = −16

∫ ∞

−∞
dh1,x

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

cos 2πh1,xs1 cos 2π − h1,xs2

∑

σ∈{−1,1}

∫ √
1−(zi1−σj1zj1)2

0

dt1 cos 2πh1,xt1 (150)

32



Since in this case zi1 − σj1zj1 = z1 − σz2, this is

χ4(r) = −16

∫ ∞

−∞
dh1,x

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

cos 2πh1,xs1 cos (−2πh1,xs2)(∫ √
1−(z1−z2)2

0

+

∫ √
1−(z1+z2)2

0

)
dt1 cos 2πh1,xt1. (151)

After simplification of the product cos 2πh1,xs1 cos 2πh1,xs2 cos 2πh1,xt1, this becomes

χ4(r) = −4

∫ ∞

−∞
dh1,x

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

(∫ √
1−(z1−z2)2

0

+

∫ √
1−(z1+z2)2

0

)
dt1

(cos 2πh1,x(s1 − s2 − t1) + cos 2πh1,x(s1 − s2 + t1) +

cos 2πh1,x(s1 + s2 − t1) + cos 2πh1,x(s1 + s2 + t1)). (152)

We may integrate over h1,x to get

χ4(r) = −4

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

(∫ √
1−(z1−z2)2

0

+

∫ √
1−(z1+z2)2

0

)
dt1

(δ(s1 − s2 − t1) + δ(s1 − s2 + t1) + δ(s1 + s2 − t1) + δ(s1 + s2 + t1)). (153)

which becomes

χ4(r) = −4

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

(
1

[0<s1−s2<
√

1−(z1−z2)2]
+ 1

[0<s2−s1<
√

1−(z1−z2)2]

+1
[0<s1+s2<

√
1−(z1−z2)2]

+ 1
[0<−s1−s2<

√
1−(z1−z2)2]

+1
[0<s1−s2<

√
1−(z1+z2)2]

+ 1
[0<s2−s1<

√
1−(z1+z2)2]

+1
[0<s1+s2<

√
1−(z1+z2)2]

+ 1
[0<−s1−s2<

√
1−(z1+z2)2]

)
. (154)

It is clear that

1
[0<−s1−s2<

√
1−(z1−z2)2]

= 1
[0<−s1−s2<

√
1−(z1+z2)2]

= 0. (155)
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Since 1/2 ≤ r/2 ≤
√

3/2 and thus r/2 ≤ 1 − r/2, and since |s1 − s2| ≤

max {
√

1 − (r/2 + z1)2,
√

1 − (r/2 + z2)2}, it is clear that

1
[0<s1−s2<

√
1−(z1−z2)2]

+ 1
[0<s2−s1<

√
1−(z1−z2)2]

= 1
[0<s1−s2<

√
1−(z1+z2)2]

+ 1
[0<s2−s1<

√
1−(z1+z2)2]

= 1. (156)

Therefore

χ4(r) = −4

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

(2 + 1
[0<s1+s2<

√
1−(z1−z2)2]

+ 1
[0<s1+s2<

√
1−(z1+z2)2]

). (157)

Clearly this is

χ4(r) = −4

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

(4αβ − 1

2
(α + β − γ)21[α+β<γ] −

1

2
(α + β − δ)21[α+β<δ]), (158)

where α :=
√

1 − (r/2 + z1)2, β :=
√

1 − (r/2 + z2)2, γ :=
√

1 − (z1 − z2)2 and

δ :=
√

1 − (z1 + z2)2. χ4(1) can easily be calculated by integration by parts. The

equalities

αβ|z2=br(z1) =
1

2
(γ2|z2=br(z1) − α2 − β2|z2=br(z1)) (159)

and

2 arcsin (z − br(z)) + arcsin (r/2 + br(z)) = arcsin (r/2 + z) (160)

are useful.

We now consider the case n = 3. φ may be chosen so that (i1, j1) = (1, 2),

(i2, j2) = (1, 3) and (i3, j3) = (2, 3). In this way, (149) is

χ5(r) =

∫ ∞

−∞
dh1,x

∫ ∞

−∞
dh2,x

∫ ∞

−∞
dh3,x

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ 1−r/2

0

dz3

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

∫ √
1−(r/2+z3)2

0

ds3

cos 2π(h1,x + h2,x)s1 cos 2π(−h1,x + h3,x)s2 cos 2π(−h2,x − h3,x)s3

∑

σ∈{−1,1}3

∫ √
1−(z1−σ2z2)2

0

dt1

∫ √
1−(z1−σ3z3)2

0

dt2

∫ √
1−(z2−σ3z3)2

0

dt3

cos 2πh1,xt1 cos 2πh2,xt2 cos 2πh3,xt3. (161)
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Using the representations δ(x) =
∫∞
−∞ cos 2πkx dk and 0 =

∫∞
−∞ sin 2πkx dk, (161)

can be written as

χ5(r) = −64

∫ ∞

−∞
dh1,x

∫ ∞

−∞
dh2,x

∫ ∞

−∞
dh3,x

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ 1−r/2

0

dz3

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

∫ √
1−(r/2+z3)2

0

ds3

∑

σ∈Z3
2

∫ √
1−(σ1z1−σ2z2)2

0

dt1

∫ √
1−(σ1z1−σ3z3)2

0

dt2

∫ √
1−(σ2z2−σ3z3)2

0

dt3

cos 2πh1,xt1 cos 2πh2,xt2 cos 2πh3,xt3

cos 2πh1,xs1 cos 2πh1,xs2 cos 2πh2,xs3

cos 2πh2,xs1 cos 2πh3,xs2 cos 2πh3,xs3. (162)

After simplification of the product cos 2πh1,xs1 cos 2πh1,xs2 cos 2πh1,xt1, (162) be-

comes

χ5(r) = −
∫ ∞

−∞
dh1,x

∫ ∞

−∞
dh2,x

∫ ∞

−∞
dh3,x

∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ 1−r/2

0

dz3

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

∫ √
1−(r/2+z3)2

0

ds3

∑

σ∈Z3
2

∫ √
1−(σ1z1−σ2z2)2

0

dt1

∫ √
1−(σ1z1−σ3z3)2

0

dt2

∫ √
1−(σ2z2−σ3z3)2

0

dt3

(
cos 2πh1,x(s1 − s2 − t1) + cos 2πh1,x(s1 − s2 + t1) +

cos 2πh1,x(s1 + s2 − t1) + cos 2πh1,x(s1 + s2 + t1)
)

(
cos 2πh2,x(s1 − s3 − t2) + cos 2πh2,x(s1 − s3 + t2) +

cos 2πh2,x(s1 + s3 − t2) + cos 2πh2,x(s1 + s3 + t2)
)

(
cos 2πh3,x(s2 − s3 − t3) + cos 2πh3,x(s2 − s3 + t3) +

cos 2πh3,x(s2 + s3 − t3) + cos 2πh3,x(s2 + s3 + t3)
)
. (163)
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After integration with respect to hx, (163) becomes

χ5(r) = −
∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ 1−r/2

0

dz3

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

∫ √
1−(r/2+z3)2

0

ds3

∑

σ∈Z3
2

∫ √
1−(σ1z1−σ2z2)2

0

dt1

∫ √
1−(σ1z1−σ3z3)2

0

dt2

∫ √
1−(σ2z2−σ3z3)2

0

dt3

(
δ(s1 − s2 − t1) + δ(s1 − s2 + t1) + δ(s1 + s2 − t1) + δ(s1 + s2 + t1)

)

(
δ(s1 − s3 − t2) + δ(s1 − s3 + t2) + δ(s1 + s3 − t2) + δ(s1 + s3 + t2)

)

(
δ(s2 − s3 − t3) + δ(s2 − s3 + t3) + δ(s2 + s3 − t3) + δ(s2 + s3 + t3)

)
. (164)

Clearly

χ5(r) = −
∫ 1−r/2

0

dz1

∫ 1−r/2

0

dz2

∫ 1−r/2

0

dz3

∫ √
1−(r/2+z1)2

0

ds1

∫ √
1−(r/2+z2)2

0

ds2

∫ √
1−(r/2+z3)2

0

ds3

∑

σ∈Z3
2

(
1 + 1

[s1+s2<
√

1−(σ1z1−σ2z2)2]

)(
1 + 1

[s1+s3<
√

1−(σ1z1−σ3z3)2]

)

(
1 + 1

[s2+s3<
√

1−(σ2z2−σ3z3)2]

)
. (165)

We now consider the general case. We will show that (149) becomes (15). Following

Lemma 2, (149) can be rewritten as

χn+2(r) = (−1)(n−1)n/24n

(n−1)n/2∏

i=1

∫ ∞

−∞
dhi,x

n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

∫ √
1−(r/2+zk)2

0

dsk

1

2n(n−1)/2

∑

τ∈{−1,1}(n−1)n/2

n(n−1)/2∏

q=1

cos 2πhq,x(siq − τjqsjq)

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

∫ √
1−(zip−σjpzjp)2

0

dtp cos 2πhp,xtp. (166)

Consider the product

(n−1)n/2∏

p=1

cos 2πhp,x(sip − τjpsjp) cos 2πhp,xtp. (167)
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The product (167) can be rewritten as

(n−1)n/2∏

p=1

1

2
(cos 2πhp,x(sip − τjpsjp − tp) + cos 2πhp,x(sip − τjpsjp + tp)). (168)

The integral over hx of (168) is

(n−1)n/2∏

p=1

1

2
(δ(sip − τjpsjp − tp) + δ(sip − τjpsjp + tp)). (169)

Therefore (166) becomes

χn+2(r) = (−1)(n−1)n/24n
n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

∫ √
1−(r/2+zk)2

0

dsk

1

2n(n−1)

∑

τ∈{−1,1}(n−1)n/2

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

(
1[0<sip−τjpsjp<

√
1−(zip−σjpzjp )2] +

1[0<−sip+τjpsjp<
√

1−(zip−σjpzjp )2]

)
. (170)

Executing the sum over τ , (170) becomes

χn+2(r) = (−1)(n−1)n/24n
n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

∫ √
1−(r/2+zk)2

0

dsk

1

2n(n−1)

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

(1[0<sip−sjp<
√

1−(zip−σjpzjp)2] + 1[0<sip+sjp<
√

1−(zip−σjpzjp )2] +

1[0<−sip+sjp<
√

1−(zip−σjpzjp )2] + 1[0<−sip−sjp<
√

1−(zip−σjpzjp)2]). (171)

After simplification, (171) becomes

χn+2(r) = (−1)(n−1)n/24n 1

2(n−1)n

n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

∫ √
1−(r/2+zk)2

0

dsk

∑

σ∈{−1,1}(n−1)n/2

(n−1)n/2∏

p=1

(1 + 1[sip+sjp<
√

1−(zip−σjpzjp)2]). (172)

Thus (15) holds.
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TABLE VI: Contributions to the fifth virial coefficient in three dimensions [47], [48]

diagram exact value

E5/B4
2 −40949

10752

E6α/B4
2

68419
26880

E6β/B4
2

82
35

E7α/B4
2 −34133

17920

E7β/B4
2 −18583

5376 + 33291
9800

√
3

π

E7γ/B4
2 −73491

35840

E8α/B4
2 unknown

E8β/B4
2 −35731

6720 + 1458339
627200

√
2

π − 33291
9800

√
3

π + 683559
35840

arccos (1/3)
π

E9/B4
2 unknown

E10/B4
2 unknown

F. Discussion

Table III shows exact and numerical values of the fourth virial coefficient in di-

mensions 5, 7, 9 and 11. Typically the relative error of the numerical value is of

order 10−4. Recently Clisby and McCoy [18] calculated higher order coefficients using

Monte Carlo methods. It is seen that the relative error increases with the order of

the coefficient, which is one of the reasons why it is desirable to find analytic values.

Table VI shows the known exact values of diagrams of the fifth virial coefficient in 3

dimensions. The diagrams E7β and E8β have the same coefficient, so there is so far

no total contribution of
√

3/π. We make the following conjecture:

Conjecture 2 In any dimension, the hard sphere potential (1) allows the analytic

computation of every virial coefficient Bn.

No one has so far been able to prove this conjecture. However, since the com-

plete star in odd dimensions can be written in a way similar to equation (15) for 2

dimensions, this conjecture seems plausible.

(15) gives strong support to conjecture 1. One part of χn+2(r) is

(−1)(n−1)n/24n 1

2(n−1)n/2

n∏

j=1

∫ 1−r/2

0

dzj

n∏

k=1

√
1 − (r/2 + zk)2,
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Following (125), (173) is

(−1)(n−1)n/2

2(n+1)n/2
(π/3 −

√
3/4)n,

and this number clearly contains all numbers predicted by conjecture 1.
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III. THE CORRELATION FUNCTION OF THE TWO DIMENSIONAL

ISING LATTICE

A. Introduction

In this chapter, we calculate the correlation functions 〈σ0,0σ0,N〉 and 〈σ0,0σN,N〉 as

form factor expansions. In section III B, we calculate the exponential expansion of

DN for T < Tc, and in section III C we do the same for T > Tc. In section III D, we

use the result from section III B to calculate DN as a form factor expansion, and in

section III E we use the result from section III C for the same purpose. We conclude

in section III F with a discussion.

B. The exponential expansion for T < Tc

In this section, we will use the theory of Wiener-Hopf sum equations to prove that

the functions F (2n)
N which appear in equation (38) are given by (40).

When T < Tc, then α1 < α2 < 1. In this case we write ϕ in a factored form as

ϕ(z) = P (z)−1Q(z−1)−1 (173)

where the functions P (z) and Q(z) are given by (41) and (42).

When T < Tc, then α1 < α2 < 1 and therefore P (z) and Q(z) are analytic and

non-zero for |z| < 1. Furthermore the index of ϕ is

Indϕ = logϕ(e2πi) − logϕ(1) = 0 (174)

It follows from (174) that we may use Szegö’s theorem to find

lim
N→∞

D(−)
N = S∞ (175)

with S∞ given by (39) which reduces to (24) for both the diagonal and the row

correlation functions. Therefore we may write

D(−)
N = S∞

∞∏

n=N

D(−)
n /D(−)

n+1 (176)
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1. Computation of the ratio D(−)
N /D(−)

N+1

The ratio D(−)
N /D(−)

N+1 is given by

D(−)
N /D(−)

N+1 = x(N)
0 (177)

where x(N) = (x0, x1, ..., xN ) satisfies

AN+1x
(N) = d(N) (178)

and d(N)
i = δi0. We indicate that the vector x(N) has N + 1 entries by writing x(N)

0 .

We will calculate x(N)
0 by iterating the procedure given by Wu in section 3 of

reference [29].

Lemma 1 There are functions φ(2n)
N such that

x(N)
0 = 1 +

∞∑

n=1

φ(2n)
N (179)

where

φ(2n)
N =

(−1)n+1

(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

1

z1z2n

n∏

k=1

Q(z2k−1)Q(z−1
2k−1)P (z2k)P (z−1

2k )
2n−1∏

l=1

1

1 − zlzl+1
. (180)

Proof Let h(ξ) be a function defined on the unit circle |ξ| = 1, and let h(ξ) have

the Laurent expansion

h(ξ) =
∞∑

n=−∞
hnξ

n. (181)

From this we define

[h(ξ)]+ =
∞∑

n=0

hnξ
n, [h(ξ)]− =

−1∑

n=−∞
hnξ

n, and [h(ξ)]′+ =
∞∑

n=1

hnξ
n. (182)

From equations (182) it follows that

[h(ξ−1)]− = [h(ξ)]′+. (183)
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Equations (182) have the integral representations

[h(ξ)]+ =
1

2πi
lim
ε→0

∮

|ξ′|=1+ε

dξ′
h(ξ′)

ξ′ − ξ
, (184)

[h(ξ)]− =
1

2πi
lim
ε→0

∮

|ξ′|=1−ε

dξ′
h(ξ′)

ξ − ξ′
, (185)

and

[h(ξ)]′+ = [h(ξ)]+ − 1

2πi

∮

|ξ|=1

dξ
h(ξ)

ξ

=
1

2πi
ξ lim

ε→0

∮

|ξ′|=1+ε

dξ′
h(ξ′)

ξ′(ξ′ − ξ)
. (186)

We define

XN (ξ) =
N−1∑

n=0

x(N)
n ξn (187)

It has been proven by Wu [29] that the ratio (177) is given by

x(N)
0 = XN (0) (188)

where XN(ξ) is a function determined by equations (2.19a)-(2.20b) of reference [29]

(with Y (ξ) = 1). These equations are

XN(ξ) = P (ξ)
{
[Q(ξ−1)]+ + [Q(ξ−1)UN(ξ)ξN ]+

}
(2.19a), (189)

VN(ξ−1) = −(Q(ξ−1))−1
{
[Q(ξ−1)]− + [Q(ξ−1)UN(ξ)ξN ]−

}
(2.20a), (190)

XN(ξ−1)ξN = Q(ξ)
{
[P (ξ−1)ξN ]+ + [P (ξ−1)VN(ξ)ξN ]+

}
(2.19b), (191)

and

UN(ξ−1) = −(P (ξ−1))−1
{
[P (ξ−1)ξN ]− + [P (ξ−1)VN(ξ)ξN ]−

}
(2.20b). (192)

For our purposes we use equations (42), (183) and the equality [Q(ξ−1)]+ = 1 to

rewrite equations (189), (190) and (192) as

XN(ξ) = P (ξ)
{
1 + [Q(ξ−1)UN(ξ)ξN ]+

}
, (193)
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VN(ξ−1) = −P (ξ−1)
{
[Q(ξ−1)]− + [Q(ξ−1)UN(ξ)ξN ]−

}
, (194)

and

UN(ξ) = −Q(ξ)
{
[P (ξ)ξ−N ]′+ + [P (ξ)VN(ξ−1)ξ−N ]′+

}
(195)

We define V (1)
N (ξ−1) by replacing UN(ξ) by 0 in equation (194). Thus

V (1)
N (ξ−1) = −P (ξ−1)[Q(ξ−1)]−. (196)

We note from equation (42) that Q(0) = 1. Thus, because Q(ξ−1) is analytic for

|ξ| > 1, we have

[Q(ξ−1)]− = Q(ξ−1) − Q(0) = Q(ξ−1) − 1. (197)

Therefore it follows from equations (42) and (197) that

−P (ξ−1)[Q(ξ−1)]− = P (ξ−1) − 1, (198)

and thus equation (196) becomes

V (1)
N (ξ−1) = P (ξ−1) − 1. (199)

We define U (1)
N (ξ) by replacing VN(ξ−1) in (195) V (1)

N (ξ−1) as given by equation (199).

Thus we find

U (1)
N (ξ) = −Q(ξ)[P (ξ−1)P (ξ)ξ−N ]′+ (200)

It follows from equation (193) that X(1)
N (ξ) is given by

X(1)
N (ξ) = P (ξ)

{
1 −

[
Q(ξ−1)Q(ξ)[P (ξ−1)P (ξ)ξ−N ]′+ξ

N
]
+

}

= P (ξ)

{
1 − 1

2πi
lim
ε→0

∮

|ξ′|=1+ε

dξ′
ξ′N

ξ′ − ξ

Q(ξ′−1)Q(ξ′)[P (ξ′−1)P (ξ′)ξ′−N ]′+

}
. (201)

Letting ξ = 0 in equation (201), and using P (0) = 1, and writing X(1)
N (0) = 1 + φ(2)

N

we obtain

φ(2)
N = − 1

2πi

∮

|ξ|=1

dξ Q(ξ−1)Q(ξ)[P (ξ−1)P (ξ)ξ−N ]′+ξ
N−1

= − 1

2πi
lim
ε→0

∮

|ξ1|=1

dξ1 Q(ξ−1
1 )Q(ξ1)

1

2πi
ξN
1

∮

|ξ2|=1+ε

dξ2
1

ξ2

1

ξ2 − ξ1
P (ξ−1

2 )P (ξ2)ξ
−N
2 . (202)
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Thus, if we set

ξ2k+1 = z2k+1, ξ2k = z−1
2k (203)

we obtain φ(2)
N as given by equation (180).

We now calculate V (2)
N (ξ−1) by using equation (200) in equation (194):

V (2)
N (ξ−1) = −P (ξ−1)

{
[Q(ξ−1)]− + [Q(ξ−1)U (1)

N (ξ)ξN ]
}

= −P (ξ−1)[Q(ξ−1)]−

+P (ξ−1)
[
Q(ξ−1)Q(ξ)ξN [P (ξ−1)P (ξ)ξ−N ]′+

]
−. (204)

Next, we calculate U (2)
N (ξ) by using equation (204) in equation (195):

U (2)
N (ξ) = −(P (ξ))−1

{
[P (ξ)ξ−N ]′+ + [P (ξ)V (2)

N (ξ−1)ξ−N ]′+

}

= −Q(ξ)[P (ξ)P (ξ−1)ξ−N ]′+

−Q(ξ)
[
P (ξ)P (ξ−1)ξ−N

[
Q(ξ)Q(ξ−1)ξN [P (ξ)P (ξ−1)ξ−N ]′+

]
−

]′
+
. (205)

We will now calculate X(2)
N (ξ) from (193) and (205) as

X(2)
N (ξ) = P (ξ){1 + [Q(ξ−1)U (2)

N (ξ)ξN ]+}

= P (ξ) − P (ξ)
[
Q(ξ−1)Q(ξ)[P (ξ)P (ξ−1)ξ−N ]′+ξ

N
]
+

−P (ξ)

[
Q(ξ−1)Q(ξ)ξN

[
P (ξ)P (ξ−1)ξ−N

[
Q(ξ)Q(ξ−1)ξN [P (ξ)P (ξ−1)ξ−N ]′+

]
−

]′
+

]

+

. (206)

Letting ξ = 0 in equation (206), we obtain X(2)
N (0) = 1 + φ(2)

N + φ(4)
N :

φ(4)
N = − 1

2πi

∮

|ξ|=1

dξ Q(ξ−1)Q(ξ)
[
P (ξ−1)P (ξ)ξ−N

[
Q(ξ−1)Q(ξ)ξN [P (ξ−1)P (ξ)ξ−N ]′+

]
−

]′
+
ξN−1

= − 1

(2πi)4
lim
ε→0

∮

|ξ1|=1

dξ1 ξ
N
1 Q(ξ−1

1 )Q(ξ1)

∮

|ξ2|=1+ε

dξ2
1

ξ2 − ξ1
ξ−N−1
2 P (ξ−1

2 )P (ξ2)

∮

|ξ3|=1

dξ3
1

ξ3 − ξ2
ξN+1
3 Q(ξ−1

3 )Q(ξ3)

∮

|ξ4|=1+ε

dξ4
1

ξ4 − ξ3
ξ−N−1
4 P (ξ−1

4 )P (ξ4). (207)
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Using the change of variables (203) we obtain an equation agreeing with equation

(180).

In general, we iteratively define (from equation 194)

V (n+1)
N (ξ−1) = −P (ξ−1)

{
[Q(ξ−1)]− + [Q(ξ−1)U (n)

N (ξ)ξN ]−
}

. (208)

It then follows from equation (195) that

U (n)
N (ξ) − U (n−1)

N (ξ) = −Q(ξ−1)

[
P (ξ)P (ξ−1)ξ−N

[
Q(ξ)Q(ξ−1)ξN

[
P (ξ)P (ξ−1)ξ−N [Q(ξ)Q(ξ−1)ξN ...]−

]′
+

]

−

]′

+

, (209)

where there are 2n − 1 brackets. It now follows from equations (188) and and (193)

that φ(2k)
N is

φ(2k)
N = − 1

2πi

∮

|ξ|=1

dξ ξN−1Q(ξ)Q(ξ−1)

[
P (ξ)P (ξ−1)ξ−N

[
Q(ξ)Q(ξ−1)ξN

[
P (ξ)P (ξ−1)ξ−N [Q(ξ)Q(ξ−1)ξN ...]−

]′
+

]

−

]′

+

, (210)

where there are 2k − 1 brackets. By use of (203), one obtains equation (180). This

ends the proof of the lemma.

2. Exponentiation

To complete the proof of the exponential form (38) we need to use (176), (177)

and (179) to compute F (2n)
N as given in (40). We begin by defining a function

F̃ (2n)
N =

(−1)n+1

n(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi

2n∏

j=1

zN
j

1 − zjzj+1

n∏

l=1

Q(z2l−1)Q(z−1
2l−1)P (z2l)P (z−1

2l )

(
1 −

2n∏

k=1

zk

)
(211)

(We define F̃ (0)
N = 0). Clearly

F (2n)
N =

∞∑

k=N

F̃ (2n)
k . (212)
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Let φ(2n)
N be given by equation (180) when n ≥ 1 and let φ(0)

N = 1. We define the

functions

φ(λ) =
∞∑

n=0

φ(2n)
N λn (213)

and

F̃ (λ) =
∞∑

n=0

F̃ (2n)
N λn. (214)

Clearly φ(0) = 1 and F (0) = 0. We would like to show that

φ(λ) = exp F̃ (λ) (215)

It follows as a special case of (215) with λ = 1 that

XN(0) = exp
∞∑

k=1

F̃ (2k)
N , (216)

and hence it follows from equations (176) and (212) that

CN = S∞ exp
∞∑

k=N

∞∑

n=1

F̃ (2n)
k = S∞ exp

∞∑

n=1

∞∑

k=N

F̃ (2n)
k = S∞ exp

∞∑

n=1

F (2n)
N (217)

This proves equation (40). It remains to show that equation (215) holds. Since

φ(0) = 1 and F (0) = 0, equation (215) is equivalent to the equation

φ′(λ) = F̃ ′(λ) exp F̃ (λ) (218)

It follows from equations (213), (214) and (218) that equation (215) is equivalent to

the following equation:

Lemma 2

nφ(2n)
N =

n∑

l=1

lF̃ (2l)
N φ(2n−2l)

N . (219)

Proof It follows from (180) that the left hand side of (219) is

nφ(2n)
N =

n(−1)n+1

(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

1

z2nz1

n∏

j=1

P (z2j)P (z−1
2j )Q(z2j−1)Q(z−1

2j−1)
2n−1∏

k=1

1

1 − zkzk+1
, (220)
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and the right hand side is

n∑

l=1

lF̃ (2l)
N φ(2n−2l)

N =
(−1)n

(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi

2n∏

j=1

zN
j

1 − zjzj+1

n∏

q=1

P (z2q)P (z−1
2q )Q(z2q−1)Q(z−1

2q−1)

{
n−1∑

l=1

1

1 − z1z2l

(
1 −

2l∏

k=1

zk

)
(1 − z2lz2l+1)(1 − z2nz1)

2n−1∏

m=2l+2

zm

−
(

1 −
2n∏

k=1

zk

)}
, (221)

where the product
∏2n−1

m=2l+2 zm is such that it equals 1 when l = n − 1. Note that

the product
∏2n

j=1 is symmetric both in even and in odd variables separately. Hence

1 −
∏2n

k=1 zk can be rewritten (under integration) as

1 −
2n∏

k=1

zk ≡ (1 − z1z2n)

(
1 +

n−1∑

q=1

2q+1∏

r=2

zr

)
. (222)

Next, note that the factor (1 − z1z2l)−1(1 − z2lz2l+1)(1 − z2nz1)
∏2n−1

m=2l+2 zm does not

involve any of the variables {zi}2l−1
i=2 . Hence the product 1−

∏2l
k=1 zk can be rewritten

as

1 −
2l∏

k=1

zk ≡ (1 − z1z2l)

(
1 +

l−1∑

q=1

2q+1∏

r=2

zr

)
. (223)

Then the relevant factor of the integrand of the right hand side of equation (221)

becomes

(1 − z2nz1)

{
n−1∑

l=1

(1 − z2lz2l+1)

(
1 +

l−1∑

q=1

2q+1∏

r=2

zr

)
2n−1∏

m=2l+2

zm −
(

1 +
n−1∑

q=1

2q+1∏

r=2

zr

)}

= (1 − z2nz1)

{
n−1∑

l=1

(
1 +

l−1∑

q=1

2q+1∏

r=2

zr

)(
2n−1∏

m=2l+2

zm −
2n−1∏

m=2l

zm

)

−
(

1 +
n−1∑

q=1

2q+1∏

r=2

zr

)}
. (224)

After expansion of the first summand the right hand side of (224) becomes

(1 − z2nz1)

{
n−1∑

l=1

2n−1∏

m=2l+2

zm −
n−1∑

l=1

2n−1∏

r=2

zr −
(

1 +
n−1∑

q=1

2q+1∏

r=2

zr

)}
(225)
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under integration. After summation (225) becomes

−n(1 − z2nz1)
2n−1∏

r=2

zr, (226)

which completes the proof. The proof of lemma 2 concludes the proof of equation

(40).

C. The exponential expansion for T > Tc

In this section, we will prove that the functions F̂ (2n)
N and G(2n+1)

N in (49) are given

by (51) and (52). We will follow the procedure of section 2 of Wu [29]. When T > Tc,

then α1 < 1 < α2 and ϕ̂(z) has index 0. We define

bn =
1

2πi

∮

|z|=1

ϕ̂(z)z−n−1 dz = an−1 (227)

We further define

BN+1 =





b0 b−1 . . . b−N

b1 b0 . . . b1−N

...
...

. . .
...

bN bN−1 . . . b0




(228)

and

D̂N+1 = detBN+1 (229)

We note that if we remove the first row and the last column from D̂N+1 and use (227)

we obtain DN as defined by (32). Therefore we may write

D(+)
N =

D(+)
N

D̂N+1

D̂N+1 = (−1)Nx(N)
N D̂N+1, (230)

where the ratio D(+)
N /D̂N+1 is given as

D(+)
N

D̂N+1

= (−1)Nx(N)
N (231)

and x(N) = (x0, x1, ..., xN ) satisfies

BN+1x
(N) = d(N) (232)
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and d(N)
i = δi0. We indicate that the vector x(N) has N + 1 entries by writing x(N)

N .

Since ϕ̂(z) has index 0, it follows from Szegö’s theorem that

lim
N→∞

(−1)ND̂N = Ŝ∞ (233)

where Ŝ∞ is given by (50). Thus, exactly as for T < Tc,

(−1)N+1D̂N+1 = Ŝ∞

∞∏

n=N+1

D̂n

D̂n+1

. (234)

Furthermore the ratio D̂n/D̂n+1 and the product

∞∏

n=N+1

D̂n

D̂n+1

(235)

may be treated exactly as in the case T < Tc if we replace P and Q by P̂ and Q̂.

Thus we find

(−1)N+1D̂N+1 = Ŝ∞ exp
∞∑

n=1

F̂ (2n)
N+1, (236)

and hence we have

D(+)
N = −Ŝ∞x(N)

N exp
∞∑

n=1

F̂ (2n)
N+1, (237)

where we note that when α1 = 0, equation (53) holds.

It remains to calculate x(N)
N . We will find x(N)

N by iterating the procedure of section

2 of Wu [29]. We define

XN (ξ) =
N∑

n=0

x(N)
n ξn, (238)

and thus

x(N)
N = lim

ξ→0
XN(ξ−1)ξN (239)

where XN (ξ) is again defined by (189) to (192) with P (ξ) and Q(ξ) replaced by P̂ (ξ)

and Q̂(ξ). For convenience we rewrite (190), replacing ξ with ξ−1 as

VN(ξ) = −P̂ (ξ)
{

[Q̂(ξ)]′+ + [Q̂(ξ)UN(ξ−1)ξ−N ]′+

}

= P̂ (ξ) − 1 − P̂ (ξ)[Q̂(ξ)UN(ξ−1)ξ−N ]′+. (240)
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To obtain the first approximation x(N)(1)
N we replace UN(ξ) by 0 in (240), and write

V (1)
N (ξ) = P̂ (ξ) − 1. (241)

We use this in (191) to give

X(1)
N (ξ−1)ξN = Q̂(ξ)[P̂ (ξ−1)P̂ (ξ)ξN ]+. (242)

Thus, letting ξ approach 0 and using (242) we obtain the first approximation x(N)(1)
N ,

which we denote as G(1)
N :

G(1)
N = x(N)(1)

N =
1

2πi

∮

|ξ|=1

P̂ (ξ−1)P̂ (ξ)ξN−1dξ. (243)

We now compute the second approximation by using (241) in (192) to obtain

U (2)
N (ξ−1) = −Q̂(ξ−1)[P̂ (ξ−1)P̂ (ξ)ξN ]−. (244)

We use (244) in (240) to find

V (2)
N (ξ) = P̂ (ξ) − 1 + P̂ (ξ)

[
Q̂(ξ)Q̂(ξ−1)ξ−N [P̂ (ξ−1)P̂ (ξ)ξN ]−

]′
+
. (245)

Using this in (191) we obtain

X(2)
N (ξ−1)ξN = Q̂(ξ)

{
[P̂ (ξ−1)P̂ (ξ)ξN ]+

+
[
P̂ (ξ−1)P̂ (ξ)ξN

[
Q̂(ξ−1)Q̂(ξ)ξ−N [P̂ (ξ−1)P̂ (ξ)ξN ]−

]′
+

]

+

}
.(246)

Letting ξ = 0 in (246), we see that

x(N)(3)
N = G(1)

N + G(3)
N , (247)

where

G(3)
N =

1

(2πi)3
lim
ε→0

∮

|z1|=1

dz1 zN
1 P̂ (z1)P̂ (z−1

1 )

∮

|z2|=1−ε

dz2
zN+1
2

1 − z1z2
Q̂(z2)Q̂(z−1

2 )

∮

|z3|=1

dz3
zN
3

1 − z2z3
P̂ (z3)P̂ (z−1

3 ). (248)

Continuing in the same way we may find

x(N)(2n+1)
N =

n∑

k=0

G(2k+1)
N , (249)
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and thus

D(+)
N = −Ŝ∞

∞∑

n=0

G(2n+1)
N exp

∞∑

m=1

F̂ (2m)
N+1 (250)

where F̂ (2n)
N is defined in (51), G(2n+1)

N is defined in (52) and Ŝ∞ is defined by (50).

If we note that the G(2n+1)
N is the negative of the G(2n+1)

N of [37] and set α1 = 0 we

have proven (6) of [37] with G(2n+1)
N given by (34) of [37].

D. The form factor expansion for T < Tc

We have showed in section III B that the correlation function D(−)
N can be written

in an exponential form given by (38) and (40). In this section we will show that D(−)
N

can be written as a form factor expansion given by equations (43) and (6).

We wish to rewrite (38) as a form factor expansion and use an argument similar

to that made by Nappi [31] to find the functions f (2n)
N . To do this, we denote by a

partition π of the number n a set of pairs π = {(ni,mi)}ν(π)
i=1 such that ni .= nj if i .= j

and

ν(π)∑

i=1

nimi = n. (251)

We define P(n) to be the set of all such partitions. For instance, the partitions of the

number 3 are

3 =






1 · 3, ν = 1

3 · 1, ν = 1

1 · 1 + 2 · 1, ν = 2 .

(252)

Thus the exponential of (38) may be expanded, and we find

f (2n)
N =

∑

π∈P(n)

ν(π)∏

i=1

1

mi!

(
F (2ni)

N

)mi

, (253)

where the sum is over the set of partitions P(n) of the number n. Thus f (2n)
N is the
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sum of all 2n dimensional integrals in (38). Explicitly

f (2n)
N =

(−1)n

(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN
i

n∏

j=1

Q(z2j−1)Q(z−1
2j−1)P (z2j)P (z−1

2j )
1

1 − z2j−1z2j

∑

π∈P(n)

ν(π)∏

k=1

(−1)mk
1

mk!n
mk
k

mk∏

p=1

nk∏

q=1

1

1 − zPk−1
r=1 2mrnr+2(p−1)nk+2qzPk−1

r=1 2mrnr+2(p−1)nk+(2q⊕π,k1)

(254)

where

2q ⊕π,k 1 =





2q + 1 if q < nk

1 if q = nk.
(255)

We see that a partition π divides the integrand into
∑ν(π)

k=1 mk loops, and that there

are mk loops of length nk. As an illustration,

f (6)
N = − 1

(2π)6
lim
ε→0

6∏

i=1

∮

|zi|=1−ε

dzi zN
i

3∏

j=1

Q(z2j−1)Q(z−1
2j−1)P (z2j)P (z−1

2j )

1

1 − z1z2

1

1 − z3z4

1

1 − z5z6(
− 1

3!

1

1 − z2z1

1

1 − z4z3

1

1 − z6z5
− 1

3

1

1 − z2z3

1

1 − z4z5

1

1 − z6z1

+
1

2

1

1 − z2z1

1

1 − z4z5

1

1 − z6z3

)
(256)

The first term in the bracket of the right hand side of (256) comes from π1 = {(1, 3)},

the second from π2 = {(3, 1)} and the third from π3 = {(1, 1), (2, 1)}. We would like

to show that

f (2n)
N =

1

n!(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN
i

n∏

j=1

Q(z2j−1)Q(z−1
2j−1)P (z2j)P (z−1

2j )

1

1 − z2j−1z2j

∑

σ∈Sn

sign(σ)
n∏

k=1

1

1 − z2kzσ(2k−1)
, (257)

where Sn is the group of permutations of the n elements {2i − 1}n
i=1. For instance,

S3 = {(1)(3)(5), (13)(5), (15)(3), (35)(1), (135), (153)} (258)

where the loop (abc) means the permutation a → b → c → a. We say that two

permutations σ1 and σ2 in Sn are equivalent if for every loop in σ1 there is one and
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only one loop of equal length in σ2. Then σ1 and σ2 will also have the same signature.

We write the equivalence class of an element σ as [σ]. We denote by En the set of

equivalence classes of Sn. As an example, we have

E3 = {[(1)(3)(5)], [(13)(5)], [(135)]} (259)

We will show that there is a bijection between P(n) and En. It is clear that |P(3)| =

|E3| = 3. We will now prove the general case.

We will now calculate |[σ]|, the number of elements of the equivalence class of a

permutation σ. We consider some σ ∈ Sn, and construct [σ] as follows. We choose

freely from n elements, and divide them into
∑ν

i=1 mi loops such that there are mi

loops with ni elements, without distinguishing between loops with the same number

of elements. There are

n!∏ν
i=1(ni!)mimi!

(260)

ways of doing this. There are (ni − 1)! ways of ordering a loop of ni elements. Hence,

the there are

|[σ]| =
n!

∏ν
i=1((ni − 1)!)mi

∏ν
j=1(nj !)mjmj!

=
n!∏ν

i=1 nmi
i mi!

(261)

ways of choosing the elements. The signature of any element of the equivalence class

[σ] corresponding to π is

sign(σ) = (−1)n

ν(π)∏

k=1

(−1)mk . (262)

If we identify every equivalence class with one of its representatives, then it follows

from (254) that

f (2n)
N =

1

n!(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN
i

n∏

j=1

Q(z2j−1)Q(z−1
2j−1)P (z2j)P (z−1

2j )

1

1 − z2j−1z2j

∑

σ∈En

sign(σ) |[σ]|
n∏

k=1

1

1 − z2kzσ(2k−1)
. (263)

Now (257) follows. By symmetry of the odd variables, (257) can be rewritten as

f (2n)
N =

1

(n!)2(2π)2n
lim
ε→0

2n∏

i=1

∮

|zi|=1−ε

dzi zN
i

n∏

j=1

Q(z2j−1)Q(z−1
2j−1)P (z2j)P (z−1

2j )

(
∑

σ∈Sn

sign(σ)
n∏

k=1

1

1 − z2kzσ(2k−1)

)2

. (264)
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Finally we note that the factor of the integrand of (264)

∑

σ∈Sn

sign(σ)
n∏

k=1

1

1 − z2kzσ(2k−1)
(265)

is zero if for any i .= j, z2i = z2j or z2i−1 = z2j−1. Therefore

∑

σ∈Sn

sign(σ)
n∏

k=1

1

1 − z2kzσ(2k−1)
= An

n∏

k=1

n∏

l=1

1

(1 − z2k−1z2l)
∏

1≤p<q≤n

(z2p−1 − z2q−1)(z2p − z2q). (266)

By letting z2n = z2n−1 = 0 we find that

An = An−1. (267)

Since A1 = 1, it follows that An = 1 for all n. Hence we obtain the desired result

(44).

E. The form factor expansion for T > Tc

Above Tc, D(+)
N has a form factor expansion given by (54), where

f (2n+1)
N =

n∑

k=0

G(2k+1)
N f̂ (2n−2k)

N+1 (268)

and f̂ (2n)
N is given by (257) but with P and Q replaced by P̂ and Q̂. G(2n+1)

N is given

by (52). Hence it follows from (257), (268) and (52) that

f (2n+1)
N = − i

(2π)2n+1
lim
ε→0

2n+1∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

n+1∏

l=1

P̂ (z2l−1)P̂ (z−1
2l−1)

n∏

m=1

Q̂(z2m)Q̂(z−1
2m)

1

z2n+1

n∏

p=1

1

1 − z2p−1z2p

n∑

k=0

(−1)k 1

(n − k)!

1

z2n−2k+1

∑

σ∈Sn−k

sign(σ)
n−k∏

q=1

1

1 − z2q−1zσ(2q)

n∏

s=n−k+1

1

1 − z2sz2s+1
. (269)
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As an example,

f (5)
N = − i

(2π)5
lim
ε→0

5∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

3∏

l=1

P̂ (z2l−1)P̂ (z−1
2l−1)

2∏

m=1

Q̂(z2m)Q̂(z−1
2m)

1

z5

1

1 − z1z2

1

1 − z3z4
(

1

2

1

z5

(
1

1 − z1z2

1

1 − z3z4
− 1

1 − z1z4

1

1 − z2z3

)

− 1

z3

1

1 − z1z2

1

1 − z4z5
+

1

z1

1

1 − z2z3

1

1 − z4z5

)
. (270)

Let (i(k)
1 , ..., i(k)

n ) = (1, ..., n−k, n−k+2, ..., n+1). It follows by symmetry that (269)

can be rewritten as

f (2n+1)
N = − i

(2π)2n+1
lim
ε→0

2n+1∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

n+1∏

l=1

P̂ (z2l−1)P̂ (z−1
2l−1)

n∏

m=1

Q̂(z2m)Q̂(z−1
2m)

1

n + 1

n∑

r=0

(−1)r 1

z2n−2r+1

n∏

p=1

1

1 − z
2i

(r)
p −1

z
2i

(r)
p

1

n!

n∑

k=0

(−1)k 1

z2n−2k+1

∑

σ∈Sn

sign(σ)
n∏

q=1

1

1 − z
2i

(k)
q −1

z
σ(2i

(k)
q )

. (271)

In particular

f (5)
N = − i

(2π)5
lim
ε→0

5∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

3∏

l=1

P̂ (z2l−1)P̂ (z−1
2l−1)

2∏

m=1

Q̂(z2m)Q̂(z−1
2m)

1

3

(
1

z5

1

1 − z1z2

1

1 − z3z4
− 1

z3

1

1 − z1z2

1

1 − z4z5
+

1

z1

1

1 − z2z3

1

1 − z4z5

)

{
1

2

1

z5

(
1

1 − z1z2

1

1 − z3z4
− 1

1 − z1z4

1

1 − z2z3

)

−1

2

1

z3

(
1

1 − z1z2

1

1 − z4z5
− 1

1 − z1z4

1

1 − z2z5

)

+
1

2

1

z1

(
1

1 − z2z3

1

1 − z4z5
− 1

1 − z3z4

1

1 − z2z5

)}
. (272)

Since all permutations of the even elements are present in the sum
∑n

k=0, symmetry al-

lows the permutation of all even elements in the sum
∑n

r=0. But the sum
∑n

k=0

∑
σ∈Sn
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may be rewritten as the sum
∑

σ∈Sn+1
of permutations of the odd elements. Therefore

f (2n+1)
N = − i

(2π)2n+1
lim
ε→0

2n+1∏

i=1

∮

|zi|=1−ε

dzi zN+1
i

n+1∏

l=1

P̂ (zl)P̂ (z−1
l )

n∏

m=1

Q̂(zm)Q̂(z−1
m )

1

n!(n + 1)!




∑

σ∈Sn+1

sign(σ)
1

zσ(2n+1)

n∏

q=1

1

1 − zσ(2q−1)z2q




2

. (273)

An argument similar to the one given in section III D shows that

∑

σ∈Sn+1

sign(σ)
1

zσ(2n+1)

n∏

q=1

1

1 − zσ(2q−1)z2q
=

n+1∏

j=1

1

z2j−1

n∏

k=1

1

1 − z2j−1z2k

∏

1≤l<m≤n+1

(z2l−1 − z2m−1)
∏

1≤p<q≤n

(z2p − z2q). (274)

Thus f (2n+1)
N is given by (55) as desired.

F. Discussion

The exponential and the form factor representations derived in this paper for

〈σ0,0σ0,N〉 and 〈σ0,0σN,N〉 are considerably simpler that the corresponding representa-

tions which may be found in [30]-[34]. The representations of this paper must of course

be equal to the corresponding results of [30]-[34] but as mentioned in the introduction

even the equality of the form of F (2)
N found by Wu [29] with the form found by Cheng

and Wu [26] has not been directly demonstrated in the literature. The form factor

representations for 〈σ0,0σN,N〉 proven here are in close correspondence with formulas

given by Jimbo and Miwa [49] in their proof of the Painlevé VI representation of the

diagonal Ising correlations. The connection which the form factor representations of

this paper have with the PVI equation of [49] have been extensively investigated in

[37]. However, the representations of this paper are valid also for 〈σ0,0σ0,N〉 and, as

noted in the introduction, for much more general case which suggests that there are

generalizations of [49] which have not yet been uncovered. In particular the relation
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of 〈σ0,0σ0,N〉 to isomonodromic deformation theory remains to be investigated.
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[27] G. Szegö, Commun. Seminair, Math. Univ. Lund, suppl. dédié à Marcel Riesz, 228
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