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Abstract of the Dissertation

High Scalable Implementation of SPME using Parallel

Spherical Cutoff 3D FFT on the 6D Torus QCDOC

Supercomputer

by

Bin Fang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2007

In order to model complex heterogeneous biophysical systems with non-trivial charge

distributions such as globular proteins in water, it is important to evaluate the long

range forces present in these systems accurately and efficiently. The Smooth Particle

Mesh Ewald summation technique (SPME) is commonly employed to determine the

long range part of electrostatic energy in large scale molecular simulations. While the

SPME technique does not give rise to a performance bottleneck in a single processor

or scalar computation, current implementations of SPME on massively parallel su-

percomputers become problematic at large processor numbers, limiting the time and

length scales that can be reached. Here, two accomplishments have been made in

this dissertation to give rise to both improved accuracy and efficiency on massively

parallel computing platforms. First of all, a well designed parallel framework of 3D
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complex-to-complex FFT and 3D real-to-complex FFT for the novel QCDOC super-

computer with its 6D-torus architecture is given. The efficiency of this framework

was tested on up to 4096 processors. Secondly, a new modification of the SPME tech-

nique is exploited, which was inspired by the non-linear growth of the approximation

error of Euler Exponential Spline interpolation function. This fine grained parallel

implementation of SPME has been embedded into MDoC package. Numerical tests

of package performance on up to 1024-processor QCDOC supercomputer residing at

Brookhaven National Lab are presented for two systems of interest, β-hairpin solvated

in explicit water, a system which consists of 1112 water molecules and a 20 residue

protein for a total of 3579 atoms, and HIV-1 protease solvated in explicit water, a

system which consists of 8793 water molecules and a 198 residue protein for a total

of 29508 atoms.
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14(c) Efficiency of SPME.ĝc = 38 . . . . . . . . . . . . . . . . . . . . 65

15 Parallel Efficiency (CPU time) of three components in SPME.System
β-hairpin. (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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6 Accuracy of SPME. System β-hairpin, ĝc = 20 . . . . . . . . . . . 52
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1 Introduction

It has recently become possible to determine the genome of an entire species in a rea-

sonable time frame [77, 52]. Using this information, it is turn possible to determine

the primary sequence of the proteome of an organism. It then remains by synergistic

theoretical and experimental research to determine the structure and function of a

large diverse set of proteins comprising the proteome, thereby, yielding important

insights into the atomic details that underlie biophysical processes such as photosyn-

thesis, respiration, and DNA replication.

One important theoretical tool in biophysical research is atomistic molecular dy-

namics (MD) simulation. Classical MD simulation were carried out in the hope of

understanding the properties of assemblies of molecules in terms of their structures

and the microscopic interactions between them. This serves as a complement to con-

ventional experiments, enabling us to learn something new, something that is not easy

or even cannot be found out through conventional experiments [18, 47, 48, 61, 70].

Of course, experiments play an essential role in validating the simulation methodol-

ogy: comparisons of simulation and experimental data serve to test the accuracy of

the calculated results and to provide criteria for improving the methodology. Com-

puter simulations act as a bridge between microscopic length and time scales and the

macroscopic world of the laboratory. Unfortunately, due to the intrinsic computation-

intensive property of computer simulation, at present, atomistic simulation’s impact

has been limited by the mismatch between the length times and time scales that

the method can currently access and those needed for success. As a direct result,

most details of the macroscopic world still cannot be revealed. In order to improve

the ability of MD simulation to accurately describe proteins requires synergistic ad-

vances in methods [8, 29, 67, 46, 42, 74, 59], computer architectures [12, 10, 39] and
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fine grained parallel software [65, 64, 41]. Indeed, this route is yielding promising

results [35, 15, 65].

In classical molecular dynamics, which is an N-body problem, the evolution of

a group of interacting particles is determined through numerical integration of the

equations of motion. At each time step, forces on particles are computed; and the

equations of motion are integrated to update the velocities and positions of the parti-

cles. The force computation herein is based on an empirical potential function or force

field [15, 20, 56]. A typical empirical-potential-function usually consists of bonded

interactions and non-bonded interactions. The former usually include the bond po-

tentials, the angle potentials and the torsion potentials; the latter include Lennard-

Jones interaction and electrostatic potential energy. The first four are short-ranged

interactions, while the last one is a long-ranged interaction.

The computation of the long ranged interactions is well recognized to be the most

challenging task in computer MD simulations. Intuitively, the interaction between

each particle and everyone else could be directly computed, which means a double

loop over all the particles is necessary. However, this naive method would cause a

complexity of O(N2), which is prohibitive in MD simulation, while the other four

short ranged potentials scale linearly when a cutoff is employed. (N herein is the

number of charged particles in the simulation box.) Because models of proteins

have components with large partial charges, unlike the short ranged potentials, the

long ranged electrostatic potential cannot be approximated simply by cutting off

force interactions between pairs of particles further apart than some cut-off distance.

This statement has been empirically proved valid in the simulation of DNA, when

truncation was used on long-range electrostatic interactions [60].

The most commonly used technique for handling these long range interactions
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is the Ewald summation method[30]. The idea of it is to split the very slowly (not

even unconditionally) converging sum over the electrostatic potential into two sums

which converge exponentially fast. Still, this method suffers from two deficits: First,

it is computationally demanding, since one part of the problem is solved in reciprocal

space, thereby Fourier transformations being needed. Second, the algorithm scales like

N2 or at best N3/2, if cutoffs are optimized with respect to the splitting parameter [62].

Several methods have been proposed to tackle the first problem, e.g., tabulation of

the complete Ewald potential [71] or the use of polynomial approximations [5, 62].

Regardless of the difficulty of a computational overhead which might strongly increase

with the desired accuracy, all these techniques do not solve the second problem: the

unfavorable scaling with particle numbers.

The essential idea is not to avoid the Fourier transforms but to modify the algo-

rithm in such a way that the Fast Fourier transformation (FFT), with complexity of

order N log N , could be employed in the reciprocal-space part. In the mean while,

cutoff could be employed in the real-space part, with linear complexity. Because of

the intrinsic discrete property of FFT, there raises another problem on how to dis-

cretize the continuous potential and how to minimize the discretization errors. At

present there exist several mesh-based techniques for the Ewald summation method,

the original Particle-Particle-Particle-Mesh Ewald (P3ME) method of Hockney and

Eastwood [46], the Particle Mesh Ewald (PME) method of Darden et al. [22], and

Smooth Particle Mesh Ewald (SPME) method first proposed by Essmann et al. [29].

In this dissertation, SPME is the one we are going to investigate and implement on

parallel platforms.

At present, in order to improve the accuracy and efficiency of the treatment of long

range forces in biophysical MD simulations, several synergistic approaches involving
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methods developments, parallel software developments and the use of the state-of-

the-art supercomputer architectures have been employed. For instance, NAMD [64]

is an MD application that can exhibit high parallel performance on several differ-

ent computer architectures. The highlight of NAMD is that the package combines

force and spatial decompositions together and utilizes processor virtualization to solve

load imbalance problems. Another example is Blue Matter [41], designed specifically

for use on the BlueGene/L supercomputer, which has 3D torus communication net-

work [39]. The novel architecture of BlueGene/L, especially the hardware-embedded

global broadcast routing and the fast nearest neighbor communication ability, pro-

vides MD application an appropriate platform for obtaining high parallel performance.

Inspired by NAMD and Blue Matter, our group intend to design and implement an-

other fine grained MD application, MDoC, specifically for use on the QCDOC su-

percomputer which has a 6D torus communicational architecture. The framework of

MDoC was designed and implemented by P.Rissland [69], and the multi-time step-

ping integral method was modified and embedded into the package by G.W.Han [43].

In this dissertation, a modification of the SPME method is introduced into MDoC

package that reduces both the computation and communication associated with the

parallel 3D-FFT even at small grid spacing.

In order to achieve a high scalability, the most challenging task of every parallel

implementation of mesh-based Ewald sum methods is the communication optimiza-

tion in 3D-FFT calculation, especially on thousands-of-node parallel platforms. This

is all because 3D FFT is a global-scope computation and on parallel platforms, the

most time-consuming global communication is unavoidable. People who ignore the

importance of the communication optimization of 3D-FFT can definitely not achieve

high scalability. In the third section of this dissertation, we will present a fine-grained

parallel 3D-FFT framework which takes full advantage of the 24 off-node links of each
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processor on QCDOC. The framework is designed with the capability of embedding

any existing sequential FFT package, for instance FFTW[4], so that it can provide

more flexibility. Not only the complex-to-complex 3D-FFTs, but also the real-to-

complex 3D-FFTs are supported by this framework.

More optimization has been done when 3D-FFT acts as a bridge to connect the

real-space interactions and the reciprocal-space interactions in SPME. It is not diffi-

cult to notice that the approximation error, which is produced when Euler exponential

spline is employed to approximate the Fourier components of the charge density, does

not vary uniformly with the reciprocal-space vector, but greatly increases as the vec-

tor approaches the edge of the simulation box (in reciprocal space). This means that

given a big enough reciprocal-space lattice, it is simply not useful to include inaccurate

high Fourier coefficients in the reciprocal space summation. Indeed, it can be shown

to be computationally inefficient to do so [68], especially when communication is dom-

inant in parallel 3D-FFT calculation. In our modified SPME, the spherical cutoff is

implemented in 3D FFT itself, thereby reducing both the Flops of the scalar imple-

mentation and communication volume of the parallel implementation. The details of

the theoretical analysis and the implementation will be introduced in Section 5. The

accuracy analyses shown in Section 6 represent that, given a fixed spherical cutoff,

our modified SPME with cutoff 3D-FFT can provide an approximation to the Ewald

sum within desired accuracy. In the meantime, the efficiency analyses show that with

the help of the spherical cutoff, 3D-FFT has no longer been the dominantly time-

consuming part in SPME. Moreover, when moderate-sized lattices are being used,

charge assignment and force interpolation become the bottleneck of SPME on the

parallel platforms less than thousands of processors. Some schemes are also proposed

at the end of Section 6 for future improvement.
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The dissertation is organized as follows: In Section 2, the functional form of

present generation Molecular Dynamics is reviewed, in conjunction, with several

common methods to handle the long ranged electrostatic potential, among which

the Smooth Particle Mesh Ewald method is discussed in detail with attention paid to

improve the method scalar accuracy and efficiency. Intramolecular force terms and

Lennard-Jones type forces are not of interest, here [66]. A brief description of the QC-

DOC architecture is then given in Section 3. The implementation details of parallel

framework for 3D-FFT on QCDOC are presented in Section 4, followed by the effi-

ciency analysis and the numerical results. SPME implementation, given in Section 5

is based on this framework, in addition, we added in a spherical cutoff in 3D-FFT

itself. Results are presented in Section 6 for two protein/water systems, β-hairpin in

streptococcal protein G and HIV-1 protease. Finally we make our conclusions and

propose the future work in Section 7.
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2 Long-range forces in Molecular Dynamics

In this section, the main task is to theoretically explain the underlying reason why

spherical cutoff 3D-FFT could be introduced into SPME algorithm, followed by the

implementation details in scalar computing platforms and the prediction of Flop

reduction. Before this explanation, basic Molecular Dynamics simulation knowledge

will be reviewed, including force fields, periodic boundary conditions and popular

methods to compute long-range forces.

2.1 Review of Molecular Dynamics

Classical molecular dynamics solves Hamilton’s equation of motion for a set of (gen-

eralized) coordinates qi and momenta pi which are given by

ṗi = −∂H

∂qi

q̇i =
∂H

∂pi

H ({pi,qi}) =
∑

i

|pi|2
2mi

+ φ ({qi})

where mi is the mass of the ith particle and φ represents the potential energy of

the whole system. In many cases the potential energy is conservative and Cartesian

coordinates ri and velocity vi are usually used; Newton’s equation of motion mir̈i =

Fi(R) is exploited, where R is the union of the position vectors of all particles in the

system and Fi, for conservative force fields, is a function of the positions only,

Fi = − ∂

∂ri

φ(R)
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The trajectories of the interacting particles are calculated through the approx-

imate solution of the Hamiltonian equations of motion base on empirical potential

function or force field. Current generation force fields such as harmm [56] and Am-

ber [15, 20], take the form

φtotal = φinter + φintra ,

φintra = φbonds + φangles + φdihedral , (1)

φinter = φCoulomb + φvdw,rep . (2)

The three terms in Equation 1 describe the stretching, bending, and torsional

bonded interactions,

φbonds =
∑

bonds i

kbond
i (li − l0i)

2 ,

φangles =
∑

angles i

kangle
i (θi − θ0i)

2 ,

φdihedral =
∑

dihedral i

kdihedral
i (1 + cos(niωi − γi)) ,

where bonds count each covalent bond in the system, bends are the angles between

each pair of covalent bonds sharing a single atom at the vertex, and dihedral describes

atom pairs separated by exactly three covalent bonds with the central bond subject

to the torsion angle ω.

The final two terms in Equation. 2 describes interactions between nonbonded atom
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pairs,

φvdw,rep =
∑

i

∑
j>i

[
Aij

|rij|12 −
Bij

|rij|6
]

, (3)

φCoulomb =
∑

i

∑
j>i

qiqj

4πε0|rij| , (4)

which correspond to the van der Waal’s forces (approximated by a Lennard-Jones

6-12 potential) and electrostatic interactions, respectively.

Figure 1: Geometry of single chain molecule.

This figure illustrates the bond length l23, bend angle θ234 and torsion
angle ω1234 (adapted from [7]).

All the parameters kbond
i , θ0i, etc., in the above interaction functions are de-

termined through a combination of empirical techniques and quantum mechanical

calculations. The force field is then tested for fidelity in reproducing the structural,

dynamic, and thermodynamic properties of small molecules that have been well-

characterized experimentally, as well as for fidelity in reproducing bulk properties.

MDoC [69] is able to use the parameterizations from AMBER [15, 20] force field
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specifications.

Assuming the force Fn = F(rn) is already computed with the given force field,

MDoC uses the Verlet method [36] for NVE ensemble simulations. The “velocity-

Verlet” method obtains the position and velocity at the next time step (rn+1,vn+1)

from the current one (rn,vn) in the following way:

“half-kick I” vn+1/2 = vn + M−1Fn ·∆t/2 ,

“drift” rn+1 = rn + vn+1/2∆t ,

“force compute” Fn+1 = F(rn+1) ,

“half-kick II” vn+1 = vn+1/2 + M−1Fn+1 ·∆t/2 .

where M is the mass of this particle. For a fixed time period, the method exhibits a

error proportional to ∆t2. For the detail of the implementation of “velocity-Verlet”

on QCDOC, please refer to P.Rissland’s doctorate dissertation [69].

2.2 Long-range forces and Ewald summation

In a complete MD simulation package, every detail mentioned in the previous sub-

section needed to be taken care of. (For the details of MDoC package, please refer to

P.Rissland’s doctorate dissertation [69] for intramolecular potential calculation and

“velocity-Verlet” integration method, and G.W.Han’s doctorate dissertation [43] for

multiple-time-step integration methodology.) However, in this dissertation, only long-

range potential and forces are of interest, because this is the biggest challenge in every

MD simulation, especially on parallel platforms [40, 41, 65, 69].

Numerically, to avoid surface effects at the boundary of the simulated systems,

10



periodic boundary conditions are often used in MD simulation. Dropping the pref-

actor 1/4πε0, the two parts of the intermolecular potential (Equation. 4 and 3) are

usually given by

φCoul
inter(R,

↔
h) =

1

2

∑

Ŝ

′∑
ij

[
qiqj

| rij +
↔
hŜ|

]
(5)

φV dw,Rep
inter (R,

↔
h) =

1

2

∑

Ŝ

′∑
ij

[
Aij

| rij +
↔
hŜ|12

− Bij

| rij +
↔
hŜ|6

]

where rij is the nonbonded interatomic distance vector, Aij and Bij are the Lennard-

Jones parameters (short range repulsion and Van der Waals interactions, respec-

tively), and the qi’s are the charges on the particles. The sum over replicas, Ŝ =

{l, m, n}, indicates that periodic boundary conditions have been employed, the prime

restricts the sum to i 6= j when Ŝ = 0. The columns of the matrix,
↔
h, contain the

Cartesian components of the three vectors, {a,b, c} which describe the parallelepided

bounding the system. The volume is given by V = a×b · c = det
↔
h in the usual way.

(For a cubic cell of side, L,
↔
h is diagonal and V = L3.)

Periodic boundary conditions [8] are designed to treat systems at finite concen-

tration with a minimum of finite size effects. It is not appropriate to employ this

method to treat systems at infinite dilution. Therefore, it is important to note that

NMR and ESR experiments of biomolecular systems are performed at fairly substan-

tial concentration (millimolar) not at infinite dilution. In addition, extensive tests on

small model systems have revealed that artifacts due to periodic images are small,

particularly, in water solution, a medium with a high dielectric constant. Thus, the

technique becomes a small approximation. Briefly, errors are dominated by spurious

correlations. That is, the periodic images precisely mirror the molecules in the central

cell, rather than taking on “independent” conformations. For instance, a two dimen-
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sional version of such a periodic-boundary-condition system is shown in Figure 2.

The central cell is labeled O, with all its replicas labeled A,B,C,... All the particle

images, e.g. 1A, 1B,... mirror the position, the movement of their original copy, e.g.

particle 1.

Figure 2: Demo of Periodic Boundary Condition.

A two-dimensional periodic system which represents the minimum im-
age convention and cutoff scheme. The central box contains five par-
ticles; the dashed box constructed with particle 5 at its center also
contains five particles. The dashed circle represents a potential cutoff
(adapted from [73])

The electrostatic and Van der Waals forces under periodic boundary conditions

are assumed to be summed over all replicas. Therefore, a force evaluation seems to

scale like N2 or greater. Fortunately, well-defined methodology exists that reduces
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the computational burden to N log N . Here, the commonly used Ewald and Smooth

Particle Mesh Ewald summation techniques for the evaluation of the electrostatic

energy are examined, in conjunction, with a spherical truncation of the VanderWaals

or Lennard-Jones interaction.

First, since the Lennard-Johns potential is short range in nature (decaying fast

than 1/r3), these terms can be treated using either a sharp or smooth spherical cutoff

function within the first or nearest image approximation,

φV dw,Rep
inter (R,

↔
h) =

1

2

′∑
ij

χ(| rij +
↔
hŜ

(near)
ij |, rc)


 Aij

| rij +
↔
hŜ

(near)
ij |12

− Bij

| rij +
↔
hŜ

(near)
ij |6


 .

This reduces the scaling of the calculation to order N at fixed cutoff, rc. In the

first or nearest image approximation, the components of the integer vector, Ŝ
(near)
ij ,

are selected such that the distance, |rij +
↔
hŜ

(near)
ij |, achieves its minimum value. For

instance, in Figure 2, none of the particles or particle images, except of 3O, 1A, 4A

and 2G, have non-zero influence on particle 5 after applying spherical cutoff function.

A discussion of issues related to the use of switching functions, χ(r, rc), in MD simu-

lations, and mean field corrections to the truncated form of the potential energy are

given in Appendix A in [32].

Unfortunately, the Coulomb interaction cannot be treated accurately using spheri-

cal truncation, since the infinite summation of charge-charge interactions for a charge-

neutral system in Equation 5 is conditionally convergent, meaning that the result

of the summation depends on the order in which it is taken. One solution sug-

gested by Ewald [30], which is considered more reliable than a spherical truncation

scheme [33, 54], involves rewriting the Coulomb energy using the identity, 1/r =
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[erf(αewdr) + erfc(αewdr)]/r,

φ(Coul)(R,
↔
h) = φ

(Coul)
dir + φ(Coul)

rec + φ
(Coul)
self + φ

(Coul)
surface , (6)

where

φ
(Coul)
dir (R,

↔
h) =

1

2

∑

Ŝ

′∑
ij

qiqj
erfc(αewd| rij +

↔
hŜ|)

| rij +
↔
hŜ|

, (7)

φ(Coul)
rec (R,

↔
h) =

1

2

∑

Ŝ

∑
ij

qiqj
erf(αewd| rij +

↔
hŜ|)

| rij +
↔
hŜ|

, (8)

φ
(Coul)
self (R,

↔
h) = −αewd

π1/2

∑
i

q2
i , (9)

φ
(Coul)
surface(R,

↔
h) =

2π

(2εs + 1)V

∣∣∣∣∣
∑

i

qiri

∣∣∣∣∣

2

. (10)

The Ewald summation in Equation 6 contains four terms: direct sum φ
(Coul)
dir ,

reciprocal sum φ
(Coul)
rec , self-energy φ

(Coul)
self and surface energy φ

(Coul)
surface. The self-energy

term is a trivial constant, while the surface term is usually neglected by assuming the

“tin-foil” boundary condition εs = ∞, which partly due to the dielectric constant of

water (εs ≈ 80) being much larger than 1. The direct sum term, which involves the

complementary error function, erfc(x) = 2√
π

∫∞
x

exp(−t2)dt, is short range and can

be treated using a spherical cutoff as above. The reciprocal sum term (long range

term) can be evaluated in reciprocal space as described in Appendix B. Introducing

the Fourier components of the charge density,

n̄(g) =
∑

k

qk exp(−ig · rk),
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and a spherical cutoff in real space, the potential energy becomes

φ(Coul)(R,
↔
h) =

1

2V

∑

ĝ 6=0

[|n̄(g)|2W (g)
]− αewd

π1/2

∑
i

q2
i

+
1

2

′∑
ij

qiqjχ(| rij +
↔
hŜ

(near)
ij |, rc)

erfc(αewd| rij +
↔
hŜ

(near)
ij |)

| rij +
↔
hŜ

(near)
ij |

(11)

W (g) =

[
4π

g2

]
exp

(
− g2

4α2
ewd

)
, (12)

where

g = 2πĝ
↔
h
−1

.

Note, a spherical cutoff in reciprocal space, gc, can be employed to truncate the sum

over the (integer) reciprocal lattice vectors, ĝ = {l,m, n}. This is reasonable since

the corresponding convergence function, exp[−g2/(4α2
ewd)], decays rapidly at large

argument. The functional form of real space convergence function, erfc(αewdr), and its

reciprocal space counterpart, indicate that the scaled cutoffs, (gc/αewd) and (rcαewd),

are of interest. Thus, once rc is selected, αewd and gc are, effectively, determined for a

fixed truncation error. (In a cubic box, it is useful to define ĝc = gcL/(2π)). A more

detailed discussion of reciprocal space cutoff effects on Ewald methods can be found

elsewhere.

The Ewald method scales poorly with increasing number of atoms, N , at constant

density (ρ = N/V ). At fixed real space and reciprocal space cutoffs, {rc, gc} obtained

by taking αewd constant, the computational cost of the reciprocal space part of the

calculations scales like N2. Similarly, at fixed number of reciprocal space vectors, ĝ

obtained by taking αewdV
−1/3 to be constant, the computational cost of the real space

part scales like N2. Therefore, by judiciously adjusting the real space and reciprocal
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space cutoff values (i.e. αewd), the Ewald method can be made to scale as N3/2.

2.3 Mesh based Ewald summation

As we mentioned, the scalability of regular Ewald summation is poor with increas-

ing number of atoms. The computation of order N2 or even N3/2 is prohibitive

for heterogenous macromolecular systems. To make Ewald summation practical in

actual simulation, several mesh based Ewald summation methods have been inves-

tigated, including Smooth Particle Mesh Ewald (SPME) [29], Particle Mesh Ewald

(PME) [22, 63] and Particle-Particle-Particle Mesh Ewald (P3ME) [46]. All these

methods employ an interpolation scheme to generate an approximation to the atomic

charge density that can be calculated in O(N log N) at constant cutoff, {rc, gc}, using

a three dimensional real-to-complex fast Fourier transform (3D-FFT). They share a

similar formula,

φ
(Coul)
tot (R,

↔
h) =

1

2V

∑

ĝ

[|n̄(Interp)(g, n, LFFT)|2W (Kern)(g)
]− αewd

π1/2

∑
i

q2
i

+
1

2

′∑
ij

χ(| rij +
↔
hŜ

(near)
ij |, rc)qiqj

erfc(αewd| rij +
↔
hŜ

(near)
ij |)

| rij +
↔
hŜ

(near)
ij |

. (13)

The differences between different methods are n̄(Interp)(g, n, LFFT), caused by different

interpolation schemes, and W (Kern)(g). Briefly speaking, SPME employs Euler expo-

nential spline interpolation [72, 19] to generate n̄(Euler)(g, n, LFFT) and uses the same

W (g) as in Equation 12. PME employs Lagrangian polynomial interpolation [51] to

generate n̄(Lagrange)(g, n, LFFT) and uses the same W (g) as SPME. P3ME employs the

same interpolation scheme as PME, however uses different W (Kern)(g), intending to

make mesh calculation to be as close as possible to the original continuum problem.
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In this dissertation, we focus on SPME and its implementation, so the derivative of

the SPME formula is given in Appendix B in detail. Brief introductions of PME and

P3ME are given in Appendix D.

In SPME, the approximation is generated by simply substituting the SPME ex-

pression for the Fourier components of the charge density, n̄(Euler)(g, n, LFFT) into the

potential energy to yield,

φ
(Coul)
tot (R,

↔
h) =

1

2V

∑

ĝ

[|n̄(Euler)(g, n, LFFT)|2W (g)
]− αewd

π1/2

∑
i

q2
i

+
1

2

′∑
ij

χ(| rij +
↔
hŜ

(near)
ij |, rc)qiqj

erfc(αewd| rij +
↔
hŜ

(near)
ij |)

| rij +
↔
hŜ

(near)
ij |

. (14)

The same W (g) is employed as Equation 12 and spherical truncation of reciprocal

and real spaces is used. The required 3D-FFT is real to complex which saves a factor

of 2x in scalar and 2x in communication cost in parallel. It is, therefore, clear that

SPME simply approximates the reciprocal space part of the Ewald sum at cutoff ĝc.

As discussed in Appendix C, the error in the Euler exponential spline approxima-

tion to the charge density does not vary uniformly with ĝ but greatly increases as

2ĝ approaches LFFT (e.g. scaling as [2ĝ/ÃLFFT]n). It is, therefore, necessary to select

LFFT > 2ĝc as it is simply not useful to include inaccurate high Fourier coefficients in

the reciprocal space sum. Indeed, it can be shown to be computationally inefficient

to do so [68].

In our new procedure, a spherical cutoff in reciprocal space of the SPME approx-

imated reciprocal space part of the Ewald sum is introduced. The EES interpolation

order, n, and the 3D-FFT size, LFFT are then tuned to match the error of the directly

computed, spherically truncated, reciprocal space part of the Ewald sum relative to
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the directly computed, reciprocal space contribution of the Ewald sum evaluated at

very large cutoff. That is, a direct evaluation of the reciprocal space part of the Ewald

summation yields the exact result at the cutoff of interest. For example, it would not

be sensible to tune the SPME parameters to match the results of truncated direct

Ewald sum more closely then the results of the truncated direct Ewald sum, itself,

match the exact result (.e.g the reciprocal space sum evaluated directly at very large

cutoff). Of course, introducing the spherical cutoff and paying careful attention to

accuracy critera would not, alone, increase the efficiency of the method. The spher-

ical cutoff must be implemented within the 3D-FFT reducing both the Flops of the

scalar computation and communication of the parallel implementation following the

standard procedure used in plane-wave based DFT electronic structure codes [38, 75].

In this dissertation, we focus on the implementation and efficiency of modified SPME

method on parallel computing platform, so before the implementation details are

presented, some brief introductions of our parallel platform, QCDOC, will be made

next.
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3 QCDOC: A low power, large scale parallel su-

percomputer

QCDOC (Quantum Chromodynamics on a Chip)[12, 11] is a massively parallel su-

percomputer developed by a group of researchers at Columbia University, the RIKEN

BNL Research Center (RBRC), IBM’s Watson Research Laboratory, and the UKQCD

collaboration. It utilizes the latest low-power micro-electronic architectural concepts

including system-on-chip design. The use of system-on-chip technology has enabled

the designers of QCDOC to create a massively parallel supercomputer that can be

air cooled, cheaply. In detail, the QCDOC processing component consists of a single

ASIC (application specific integrated circuit) and a standard DDR RAM module.

Larger machines can be built by connecting many of the smaller processing compo-

nents together. The QCDOC ASIC contains a PowerPC 440 running at the low clock

speed 500MHz as its processing core, a 1Gflop 64-bit floating point unit(FPU), and

4MB of embedded DRAM, with a peak bandwidth of 8Gbyte per second transfer rate

to the processor controlled by DMA for direct access to the embedded memory. The

primary goal of the compute node is to run a small set of floating-point intensive

scientific applications extremely efficiently at low power with low cooling cost.

In terms of parallel structure, QCDOC is a six dimensional torus platform. The

highspeed serial communication between nearest neighbors has a bandwidth of 500

Mbits/s per link when it runs at 500MHz. The communication between the links is

managed by the SCU (serial communication unit) in the ASIC. There are a total of

24 off-node links, 2 for each direction along each dimension, leading to a total off chip

bandwidth of 12Gbit per second. QCDOC has implemented its own operating system

called QOS to handle nearest neighbor communication calls, and global operations,
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which is done via the pass through hardware.

Figure 3: An overview of the QCDOC ASIC design.

With the ordinary inexpensive computing nodes, and the unique interconnection,

QCDOC can deliver a price/performance of less than $1 per sustained Mflops. Orig-

inally, QCDOC was specifically designed and optimized to perform Quantum Chro-

modynamics (QCD) simulations which model the behavior of matter on sub-nuclear

length scales. However, the versatility of the QCDOC hardware allows applications

such as MD Simulation [23] to be ported and run at high efficiency. It will, of course,

be interesting to see if the 6D-torus communication architecture can be efficiently

employed to treat long range electrostatic interactions via SPME.
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Figure 4: QCDOC daughter board and mother board.

A 2-node daughter board is shown on the left picture, with two QC-
DOC ASICs and two 128Mbyte DDR SDRAMs. The central con-
nector carries 40 differential pairs making up the off-daughter board
6-dimensional serial communications network. A single mother board
is shown on the right picture. Two rows of 16 daughter boards with
two nodes each provide a total of 64 nodes.
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4 3D FFT and its parallel implementation on

QCDOC–6D torus supercomputer

No matter which mesh based Ewald summation is being employed, 3D FFT is a

common tool acting the transferring between real space and reciprocal space in order

to decrease the computational order to N log N . Moreover, not only for handling long-

range forces in MD simulation, but also for many other physical, chemical, engineering

research fields, 3D FFT acts as a very popular and useful tool. In this dissertation,

we designed a parallel framework for both complex-to-complex 3D FFT and real-to-

complex 3D FFT for common use and a specific spherical cutoff real-to-complex 3D

FFT to treat long-range forces in SPME. In this section, the basic FFT knowledge

would be reviewed briefly, followed by the implementation detail and the evaluation

of efficiency of the 3D complex-to-complex FFT framework on QCDOC. In order to

retain the completeness of the description of SPME parallel implementation, we defer

the description of the spherical cutoff 3D FFT to the next section.

4.1 Basic 3D FFT

Let f(x, y, z) be a complex/real function taking integer-triplet argument, i.e. x =

0, ..., Nx − 1, y = 0, ..., Ny − 1, z = 0, ..., Nz − 1. We define its 3D FFT f̄(gx, gy, gz)
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as,

f̄(gx, gy, gz) =
Nx−1∑
x=0

Ny−1∑
y=0

Nz−1∑
z=0

f(x, y, z)W xgx

Nx
W

ygy

Ny
W zgz

Nz
,

gx = 0, ..., Nx − 1,

gy = 0, ..., Ny − 1,

gz = 0, ..., Nz − 1,

where WNα = exp(−2πi
Nα

), Nα ∈ Z and α = x, y, z.

It consists of a series of three 1D-FFTs. First of all, one FFT is to transform

along z-axis for all x, y to obtain f̂(x, y, gz), i.e.

f̂(x, y, gz) =
Nz−1∑
z=0

f(x, y, z)W zgz

Nz
,

x = 0, ..., Nx − 1,

y = 0, ..., Ny − 1,

gz = 0, ..., Nz − 1,

Secondly, one FFT is to transform along y-axis for all x, gz to obtain f̌(x, gy, gz), i.e.

f̌(x, gy, gz) =

Ny−1∑
y=0

f̂(x, y, gz)W
ygy

Ny
,

x = 0, ..., Nx − 1,

gy = 0, ..., Ny − 1,

gz = 0, ..., Nz − 1,
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At last, one FFT is to transform along x-axis for all gy, gz to obtain f̄(gx, gy, gz), i.e.

f̄(gx, gy, gz) =
Nx−1∑
x=0

f̌(x, gy, gz)W
xgx

Nx
,

gx = 0, ..., Nx − 1,

gy = 0, ..., Ny − 1,

gz = 0, ..., Nz − 1,

Note that according to the symmetry of the transform equation, it doesn’t matter

in which order three dimensions of 1D FFTs are calculated. We can implement it in

any order.

4.2 Parallel implementation on QCDOC

The topology of QCDOC network is a truncated 6D torus that can be expressed as

px×2×py×2×pz×2, where pi = 2ci represents the number of nodes in each of the three

regular dimensions and ci can be any positive integer. The other three dimensions

are truncated, with two nodes in each of them. Along each regular dimension, there

is a bidirectional link between each pair of nearest neighbors; while along each trun-

cated dimension, there are two bidirectional links connecting the two nearest nodes,

which can do the data communication independently and simultaneously. Technically,

we manipulate QCDOC as if every processor were directly connected to 12 nearest

neighboring processors with bidirectional communication channels. Let Px = px × 2,

Py = py × 2 and Pz = pz × 2, i.e. Pi is the number of nodes in two-dimensional

mesh consisting of one regular dimension and one truncated dimension. In the paral-

lel framework implementations, we adopted a volume decomposition method for the
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FFT lattice. Without loss of generality, we assume the original function is of size

N = Nx ×Ny ×Nz.

Initially, a node with coordinate (a, b, c, d, e, f), where

a = 0, ..., px − 1,

c = 0, ..., py − 1,

e = 0, ..., pz − 1,

b, d, f = 0, 1 ,

stores a sub-block of data with the size of nx × ny × nz, which is defined as

fi,j,k , f ((i− 1)nx : inx, (j − 1)ny :jny, (k − 1)nz :knz) (15)

i = b · px + a,

j = d · py + c,

k = f · pz + e,

where nα = dNα/Pαe with α = x, y, z. In the implementation, there are some con-

straints on the sizes of the data block:

nx · ny = α× Pz,

nx · nz = β × Py,

ny · nz = γ × Px,

where α, β and γ are integers.

As mentioned in the previous subsection, the 3D FFT is computed dimension by
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dimension. First of all, along the z axis, we compute Nx×Ny independent 1D FFTs

of size Nz each. Before the actual 1D transform, we rearrange the scattered data

along the z axis so that each of the Nx × Ny 1D FFTs is stored locally. To do this,

an all-to-all personalized broadcast along the z axis must be performed. Serial FFT

computations are carried out using any sequential FFT package, e.g. FFTW [4] in

each node independently, followed by the same communication as above to transfer

the data back to the original distribution described by Equation 15. Thus, we have

completed the FFT computation along one dimension and obtained the intermediate

function f̂ . Next, along the y axis, Nz × Nx independent 1D FFTs with the size of

Ny each are performed to obtain f̌ . Finally, the similar operations can be performed

along x axis to obtain f̄ . All of these consist of the same three steps—forward

transpose (FT), sequential computation (SC), and backward transpose (BT), among

which communication is needed for the transposes.

In the implementation, the most straightforward scheme is to link the three steps

as shown in Part A of Figure 5, resulting in utilization of communication channels

in only two out of six dimensions concurrently. There are at least two improvements

that can be made to increase the efficiency.

Since the forward transpose along one axis and the backward transpose along the

next axis are applied within different 2D torus plane, we can combine them to reduce

the communication as shown in Part B of Figure 5. That is, the backward transpose

along the z logical axis can be done on the ab torus plane simultaneously with, and

independently upon, its succeeding forward transpose along the y logical axis done on

the cd torus plane, exploiting the independent bidirectional communication channels

in four dimensions concurrently. The same manipulation is applied to the backward

transpose along the y axis and its succeeding forward transpose along the x axis. In
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this way, instead of six, we actually count only four times of communication, which has

already been taken into consideration in the model subscribed in the next subsection.

Furthermore, within each one of the three dimensional FFT computations, instead

of doing all local FFTs sequentially with the communication channels idle, followed

by an intensive communication with all CPUs idle, we chop the local data into pieces

by means of giving another input parameter, indicating how big the chop is. By

doing this, the sequential 1D FFT computation on one piece is performed, while

the next piece is being transferred simultaneously. This communication-computation

overlapping, shown in Part C of Figure 5, takes the advantage of the unblocking

communication scheme of QMP[3]. Some remarks here are necessary. First, the

parameter we choose to indicate the size of the chopped data is dependent upon the

hardware, including the speed of the CPU, the communication latency and the channel

bandwidth. In this dissertation, all the efficiencies of both 3D complex-to-complex

FFT and spherical-cutoff real-to-complex FFT shown in the following sections, are

obtained on QCDOC by choosing optimal parameters empirically. Second, in Part

C of Figure 5, we only depict the communication part, which is the bottleneck in

parallel 3D FFT calculation, with shaded areas representing the time mostly spent

on unavoidable memory access and a little on sequential 1D FFT computation which

has not been overlapped. Most of the sequential computation time (shaded area)

appearing in Part A and B has been overlapped with communication.

4.3 Parallel Performance Analysis

In this subsection, both the theoretical model and the actual parallel performance

are presented, in conjunction with the analysis of their deviation. At last, the simple
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Figure 5: 3D FFT communication and computation scheme

This image shows different steps in 3D FFT calculation. Both of the
communicational steps, forward transpose (FT) and backward trans-
pose (BT), are shown in yellow; the sequential computation part(SC)
is shaded.

comparison of the scalability with Volumetric 3D FFT on BlueGene/L will be shown.

4.3.1 The Model

QCDOC off-node network’s store-and-forward routing determines our communica-

tional model:

tcomm = ts + (mtw + th)l,
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where ts is the start-up time, tw the per-word transferring time, th the per-hop time,

m the number of words transferred and l the number of hops [50]. The fact that QMP

supports non-blocking communication allows us the convenience of building commu-

nication handlers before actual data transfer, justifying negligence of start-up time.

Moreover, because the off-node memory-to-memory transfer time (latency) between

nearest neighbors is around 0.6µs, the total per-hop time in the FFT implementation

is so small that it also can be ignored. Additionally, we may assume the actual link

transferring speed is approximately 90% of its theoretical peak value. With these

assumptions, we simplify the communication model as tcomm = mtw × l/0.9 .

Because parallel 3D FFT is communication-intensive, we only take into considera-

tion the communicational time in the model. However, for the computational part, we

may adopt the idealized bound given by IBM [27]: although the theoretical computa-

tional order of 1D FFT on a problem of size N is 5N log2 N , data dependencies force

a fused multiply-add (FMA) machine to use eight cycles when a fused multiply-add

is issued every cycle, resulting in a more accurate bound of 8N log2 N clock cycles.

4.3.2 Evaluation of Efficiency and Performance Analysis

We have benchmarked our parallel FFT algorithm on three QCDOC prototypes. The

first, with fewer than 16 nodes running at 360MHz, resides at Columbia University;

the second, with up to 64 nodes running at 420MHz, resides at Brookhaven National

Laboratory (BNL); the third, up to 4096 nodes running at 400MHz, also resides at

BNL. Among all three prototypes, the 4-node and 8-node systems are configured

as two-dimensional tori, while the 16-node and 32-node systems are configured as

four-dimensional tori. All others are configured as truncated six-dimensional tori.

29



Our implementation is based on QMP message-passing interface and FFTW 3.1

library as sequential 1D FFT solver, embedded into the parallel framework. The

efficiencies are measured in terms of CPU time, collected from the experiments of

varying node numbers, with fixed problem sizes—strong scaling experiments.

Figure 6 shows the speedup of three complex-to-complex 3D FFTs for different

problem sizes: 323, 643 and 1283.
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Figure 6: Speedup of complex-to-complex 3D FFT on QCDOC

This image represents speedup of three complex-to-complex 3D FFTs
run on 4096-node QCDOC machine. The FFT grid sizes are set to be
323, 643 and 1283, respectively. On 4096 node machine, the speedup
can obtain 895x for 1283 3D FFT.

Figure 7 shows the actual CPU time compared with the model. In the 323 case, all

original data can fit into the fast EDRAM, the sequential performance on one node is

much better than 643 and 1283 cases, for which the data have to be stored in slower

DDR memory. So we notice that the deviation of the experimental performance from

30



the model, for the 323 case, is smaller than the other two cases. The performance

for larger systems deviates from the model due to memory hierarchy effect, i.e., data

prefetching from the two types of memory at different speeds. Also, the store-and-

forward routing makes intra-memory data transferring inevitable. The existence of

the non-overlapped parts, e.g. memory access and sequential computation, as shown

in Part C of Figure 5, causes additional deviation from the model. Table 1 lists the

time attributed to each of these two parts and the modeled communicational time

for a complex-to-complex 3D FFT problem with the size of 1283, on 64 and 512-node

QCDOC platforms.

Table 1: The deviation of the 3D FFT Parallel Performance from the Model

The modeled communicational time, the measured non-overlapped se-
quential FFT computational time and memory hierarchy time are pre-
sented, for 3D FFT with the size of 1283 run on 64 and 512-node QC-
DOC platforms, in addition to their actual CPU times. ∆, is the ratio
of the hardware and software overheads (the difference between the
actual CPU time and the accumulation of the other three terms) to
the actual CPU time. All the numbers are in the unit of 10−3 seconds.

Tmodel Tnon−overlapped FFT Tmemory hierachy Tactual performance ∆
64 nodes 41.6 7.2 15.9 69.0 4.3/69.0
512 nodes 6.4 0.6 2.2 12.2 3.0/12.2

For asymptotic analysis of scalability, the bandwidth-only model is inadequate

because of the increasing hardware and software overheads for larger systems. For

example, with more than 512 nodes, the software and hardware overheads in com-

munication become significant and prevent the running-performance from increasing,

as evident in Table 1. On the other hand, for 64-node system, the CPU time for the

non-overlapped memory access and sequential FFT computation is more significant

in the actual performance than it is on the 512-node system. The software and hard-

ware overheads for the 512-node system can no longer be neglected. Even with the
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increased overhead, our algorithm can scale well up to 4096 nodes for FFT grid size

1283, as shown in Figure 7.
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Figure 7: Parallel Performance of complex-to-complex 3D FFT on QCDOC

The actual performance vs. theoretical model, measured in terms of
the actual CPU time, is shown here. Three sets of 3D-FFT problems
are tested: 323, 643 and 1283.

4.3.3 Comparison with Volumetric 3D FFT on BlueGene/L

Eleftheriou et al. [27] presented the volumetric complex-to-complex 3D FFT method

and its performance on BlueGene/L [6]. Here, we compare the performance obtained

on QCDOC with that on BlueGene/L. The performance on QCDOC is obtained from

BNL’s 512-node system running at 400MHz, while the performance on BlueGene/L

is quoted from [27].
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Table 2 lists hardware differences between QCDOC and BlueGene/L, which are

essentially relative to the performance of parallel 3D-FFT calculation. Figure 8 rep-

resents the comparison of the actual performances of our scheme on QCDOC, and

Eleftheriou et al.’s on BlueGene/L, in solving 3D FFTs of size 323, 643 and 1283. The

efficiency deviation is within the factor of hardware difference, according to Table 2.

For bigger machines of more than 1,000 nodes, the better scalability of our scheme

on QCDOC is apparent.

Table 2: Hardware differences between QCDOC and BlueGene/L

This table lists some hardware parameters that differ in QCDOC and
in BlueGene/L. Unless the differences are taken into consideration,
the performance comparison of the parallel scheme does not make any
sense at all.

QCDOC Blue Gene/L

Dimensionality
6-dimensional torus 3-dimensional torus
px×2×py×2×pz×2 bx × by × bz

Processor Clock Speed 400MHz 700MHz
Bandwidth per Link 1 bit/clockcycle 2 bits/clockcycle
Message Passing Interface QMP MPI, Active packet
Communication routing Store-and-Forward routing Cut-Through routing
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Figure 8: The comparison of Parallel 3D FFT Performance: QCDOC vs. BlueGene/L

The performance comparison between our scheme implemented on
QCDOC and Eleftheriou et al.’s Volumetric 3D FFT on BlueGene/L,
in solving complex-to-comple 3D FFTs with the sizes of 323, 643 and
1283.
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5 Parallel SPME

At the beginning of this section, let us review the general steps of SPME. According

to Equation 14 given in Section 2, SPME contains five steps:

(1◦) Charge assignment. Calculate the mesh based charge density using Euler Ex-

ponential Spline function and obtain n(Euler)(
↔
hŜ, n, LFFT)

(2◦) Calculate the finite Fourier transform n̄(Euler)(g, n, LFFT) of the mesh based

charge density.

(3◦) Multiply n̄(Euler)(g, n, LFFT) with precomputed kernel function W (g), then the

potential energy could be obtained according to Equation 14.

(4◦) Apply an inverse finite Fourier transform to this product to end up with the

finite convolution of mesh based charge density function.

(5◦) Force interpolation: The analytic differentiation of the potential energy is made

to get long-range forces. Back interpolation is needed.

Here in SPME, a complex-to-complex 3D FFT package is neither suitable nor

efficient, since all the interpolated charges are real numbers. Moreover, as we men-

tioned in Section. 2, summing up the higher order Fourier coefficients is useless and

inefficient according to the interpolated error which scales as [2ĝ/ÃLFFT]n. However,

relying on the basic implementation ideas and parallelism techniques we introduced

in the previous section, we expanded the functionality of our parallel framework in

two aspects; one is to support spherical cutoff real-to-complex 3D FFT calculation,

the other is to loose the size constraint so that it can support any size of FFT grid,
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retaining the load balancing. With this package expansion, we paved the way for the

implementation of parallel SPME.

In this section, the way the spherical cutoff in Fourier transform will be presented,

followed by the decomposition scheme in SPME and the details of the interpolation

process.

5.1 Spherical Cutoff 3D FFT

In SPME, because of the non-linearly scaling interpolation error, only the non-

zero Fourier-coefficient sphere, with the radius ĝc in a cube of edge LFFT, is of

our interest, where LFFT > 2ĝc. This gives us an opportunity to reduce floating

point operations in sequential platforms and the amount of data to broadcast in

parallel platforms. As shown in Figure 9, the first set of 1D-FFTs, f(x, y, z) →
f̂(gx, y, z) (same notation as Section. 4.1), requires L3

FFT log LFFT Flops, but the sec-

ond set, f̂(gx, y, z) → f̌(gx, gy, z), requires only 2ĝcL
2
FFT log LFFT Flops; while the

third set, f̌(gx, gy, z) → f̄(gx, gy, gz), is further reduced to πĝ2
cLFFT log LFFT. Fig-

ure 9 and the above description is for complex-to-complex 3D FFT. In the case of

real-to-complex 3D FFT, a half more could be reduced, which will be shown shortly.

Pseudocode is also provided here with an explanation of real-to-complex 3D-FFTs.

On the QCDOC parallel platform, we still exploited the volume decomposition

scheme, presented by Figure 10. The blue arrows in Part A show the data blocks

originally assigned to the processors. We can formulate the decomposition using the

same expression as Equation 15, except that all the elements are real numbers (mesh-

based charge density), instead of complex numbers. To calculate the first set along

z axis, i.e. f(x, y, z) → f̂(x, y, gz), all-to-all personalized broadcasts must be done
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Figure 9: Spherical Cutoff complex-to-complex 3D FFT.

With spherical cutoff ĝc and FFT grid size L3
FFT, complex-to-complex

3D FFT calculation procedure has been shown in this figure. The
cutoffs are presented in pink.

among the processors along the same vertical line on Figure 10, i.e. having the same

coordinates on dimension c, d, e, f . The amount of data being transferred is L3
FFT (real

numbers). After the first set of 1D-FFTs, a cutoff can be made in the z dimension,

which is shown in pink in the figure. The reason why the spherical cutoff is ĝc rather

than 2ĝc is that the conjugate-symmetric property of the real-to-complex FFT can be

employed. In order to retain its load balancing after the cutoff, data within the pink

cuboid, with the total data amount being equal to ĝcL
2
FFT (complex numbers), has to

be re-distributed to each processor during back transpose, as shown by brown arrows

in Part A. Herein, the re-distribution cannot be absolutely even, however, we made it

as even as possible in such way that the maximum difference along z axis is no bigger

than one. To calculate the second set along y axis, i.e. f̂(x, y, gz) → f̌(x, gy, gz), the

broadcasts are needed to be done among the processors having the same coordinates

on dimension a, b, e, f . After the second set of calculations, the cutoff could be made

in the y dimension as shown in pink in Part B Figure 10. Right now the rest is half a

cylinder. We re-distributed again along y axis as shown by brown arrows in Part B,

37



Pseudocode 1 Real-to-complex 3D FFT with a spherical cutoff.

We assume for simplicity that the cell is a cubic. Note, gx ≥ 0 but gy and gz take on
positive and negative values.

for all y do
for all x do

Real to complex 1D-FFT f(x, y, z) −→ f̂(x, y, gz); gz ≥ 0
Unpack gz in range 0 ≤ gz ≤ gc

end for
end for

for all x do
for all gz such that 0 ≤ gz ≤ gc do

Complex-to-Complex 1D-FFT f̂(x, y, gz) −→ f̌(x, gy, gz)
Unpack ±gy in range 0 ≤ [g2

y + g2
z ]

1/2 ≤ gc

end for
end for

for all gz such that 0 ≤ gz ≤ gc do
for all ±gy such that 0 ≤ [g2

y + g2
z ]

1/2 ≤ gc do

Complex-to-Complex 1D-FFT f̌(x, gy, gz) −→ f̄(gx, gy, gz)
Unpack ±gx in range 0 ≤ [g2

x + g2
y + g2

z ]
1/2 ≤ gc

end for
end for

with the total data amount being equal to 1
2
πĝ2

cLFFT. To calculate the third set of

1D-FFTs, i.e. f̌(x, gy, gz) → f̄(gx, gy, gz), the broadcasts are needed to be done among

the processors having the same coordinates on dimension a, b, c, d. After the third

set of calculations, the final cutoff is made, which is half a ball in the half cylinder.

There is no need to do re-distribution any more, since after the multiplication with

W (g), inverse 3D FFT are going to be processed. Hence, we save twice the amount of

data being communicated. The inverse 3D FFT has similar procedure as the forward

3D FFT. The only difference is that instead of cutting the edges off, inverse 3D FFT

needs to concatenate some zero-value edges to recover the original cube.

Similar implementation techniques, including full utilization of different channels
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and computation-communication overlap, which we mentioned in Section. 4.2, have

been used in SPME. These reduce the total data amount (in the unit of complex

number) being transferred to be equal to

2

(
1

2
L3

FFT + ĝcL
2
FFT +

1

2
πĝ2

cLFFT

)
,

where the first constant factor 2 indicates the similar communication process for both

forward 3D FFT and inverse 3D FFT. Compared to the original 3D FFT without a

spherical cutoff, the corresponding amount of data is reduced by a factor of 3/(1 +

L̄FFT + 0.25πL̄2
FFT) where L̄FFT = 2ĝc/LFFT < 1.

Note, although Figure 10 pictured QCDOC as a 3-dimensional torus, we should

keep in mind that it is actually a 6-dimensional torus, which means all communica-

tions along one dimensional rings in Figure 10 are actually within two dimensional

tori.
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Figure 10: The parallel implementation of real-to-complex 3D FFT on QCDOC

This figure presents the procedure to solve spherical cutoff real-to-
complex 3D FFT, with the cutoff radius ĝc and the FFT grid size
LFFT. The parallel platform is a 64 node QCDOC machine, wired as
a 2× 2× 2× 2× 2× 2 6D torus, although it has been pictured as a 3D
torus. Some of the coordinates of the processors have been shown in
the figure. The dotted-line arrows show the data decomposition and
re-distribution after each time of cutoff.
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5.2 Charge Assignment and Force Interpolation

In this subsection, the basic interpolation algorithm of charge assignment and force

interpolation is presented, followed by its implementation in our parallel SPME pack-

age on QCDOC.

5.2.1 Basic Algorithm

To discretize the continuous charge density function and hence to approximate recip-

rocal potential energies φ
(Coul)
rec , the interpolation phrases employ Euler exponential

spline:

exp

(
2πiĝp

L

)
= dn(ĝ, L)

∞∑

ŝ=−∞
Mn(p− ŝ) exp

(
2πiĝŝ

L

)
+O

(
2|ĝ|
L

)n

(16)

dn(ĝ, L) =
exp (2πi(n− 1)/L)[∑n−2

j=0 Mn(j + 1) exp (2πiĝj/L)
]

where ŝ is an integer, p is a real number, n is the spline order assumed to be even

and the Mn(p) are the Cardinal B -splines, with the properties described below.

For any real number p , let M2(p) denote the linear hat function given by M2(p) =

1 − |p − 1| for 0 6 p 6 2 and M2(p) = 0 for p < 0 or p > 2. For n greater than 2,

define Mn(p) by the recursion

Mn(p) =

[
p

n− 1

]
Mn−1(p) +

[
n− p

n− 1

]
Mn−1(p− 1) (17)

One of the many convenient properties of Cardinal B -splines is that they can be easily
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differentiated analytically. For n > 2

dMn(p)

dp
= Mn−1(p)−Mn−1(p− 1) (18)

From Equation 17 one can see that Mn(p) has finite support, being zero outside the

interval 0 6 p 6 n, which means the interpolation can be calculated locally. From

Equation 18 it is clear that Mn(p) is n − 2 times continuously differentiable, which

turns possible to obtain reciprocal forces and stress tensors through the analytical

differentiation of the approximated reciprocal energy. More details are given in Ap-

pendix C.

In our implementation, to avoid redundant computation, given the interpolation

order n, the explicit form of Cardinal B -splines, Mn(p), is pre-calculated, rather than

using the recursion-form definition, Equation. 17. Since the Cardinal B -spline, Mn(p),

could be represented as the summation of a basis of a polynomial space πn, i.e.

ρn
l (x) :=

(
n

l

)
(1− x)n−lxl, 0 6 k 6 n,

the following algorithm can provide us an explicit function form of Mn(p) [19].
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Algorithm 2 Cardinal B -spline B -net algorithm

Let n > 2 be any integer and set

Mn| [k−1,k)(p) =
n−1∑

l=0

an−1
l (k)ρn−1

l (p− k + 1) ,

k = 1, ..., n. Also set

an−1
j (0) = 0 and an−1

j (n + 1) = 0, j = 0, ..., n− 1 , (19)

and consider the initial conditions

a1
0(1) = 0, a1

1(1) = 1 = a1
0(2), a1

1(2) = 0 . (20)

Compute bn−1
j (k) and an

l (k) below by using Equation. 19 and 20 for n = 2, and then
repeat the same process by using Equation. 19 and the previous result for n = 3, 4, ...;
where

bn−1
j (k) := an−1

j (k)− an−1
j (k − 1),

for j = 0, ..., n− 1 and k = 1, ..., n + 1;

an
l (k) = an

n(k − 1) +
1

n

l−1∑
j=0

bn−1
j (k),

for l = 0, ..., n, and k = 1, ..., n + 1.

Figure. 11 illustrates the scheme of the assignment of the charges, sitting anywhere

in real space, to the nodes of a uniform grid (under periodic boundary condition).

The force interpolation is the same but inverse process of charge assignment. Note,

unlike Lagrangian polynomial interpolation, this scheme is not symmetric, because of

the uneven property of Mn. However this shift has no effect on the numerical results,

because it is undone in the force interpolation (back-interpolation).
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q

Figure 11: 2D demonstration of charge assignment/force interpolation.

This figure shows two dimensional charge assignment scheme, with
Euler Exponential Spline function, Equation 16, being used. The force
interpolation is similar but inverse process. Note, periodic boundary
condition is employed here.

5.2.2 Parallel Implementation

Herein, the way how we implement charge assignment and force interpolation on

QCDOC will be introduced. Briefly speaking, we adopt logical volume decomposition

for charged particles. Figure 12 demonstrates this idea and how we meshed the charge

density. We assume that a system of interest is solvated in a simulation box with

the size of 40 × 40Å2 and a 16-processor QCDOC partition is employed, mapped

as 2 × 2 × 2 × 2 × 1 × 1. LFFT and n are set to be 18 × 18 and 4, respectively.

For FFT grid, we volume-decompose them as evenly as possible, as we mentioned

before; for instance, processor 6 is assigned 5 × 5 lattice points, which are the small
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black dots in the light green area (labeled Volume 1). For the real charged particles,

we actually keep a copy of every particle in each of the processors, in such a way

that all particles residing in a “Bin” bounded in red, are stored in one hash data

structure, which can provide quick search ability. In this figure, “Bin” size has been

fixed at 5 × 5Å2. Every time step, the lists within each processor will be updated

when integration is being done. (The optimized hardware-embedded global broadcast

design on QCDOC [10, 3] makes it practical.) Under this decomposition scheme,

since the lattice points are equally distant, 3D FFT calculation could be considered

evenly. The CPU time comparison shown in the next section verifies it. However, load

imbalance is unavoidable in the processes of charge assignment and force interpolation,

which we will explain shortly.

In charge assignment and force interpolation processes, two volumes are pre-

determined, marginal volume (volume 2 in light yellow) and volume 3 in light pink,

which are shown in Figure 12. Marginal volume is the volume that contains all the

charged particles having partial/full influence, in respect of interpolation, on the FFT

grid points stored in processor 6. Volume 3 is the union of “Bins” that contain all

of these particles. So instead of checking the particles in the whole system, processor

6 only needs to check the coordinates of the particles within several “Bins” (covered

in light pink); moreover, only the particles within volume 2 need to do interpola-

tion calculation. Note depending on the position of the particles, not all of these

interpolations need n3 Flops calculation.
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Figure 12: 2D demonstration of decomposition scheme in SPME on QCDOC.

Two dimensional simulation box 40 × 40Å2 was volume decomposed
into 16 processors. Each processor stores FFT grid points belonging
to its own assigned area, e.g. light green area (volume 1) for processor
6, and a set of copies of all the particles, ordered in unit of “Bins”
(hashes physically). Marginal volume (volume 2 in light yellow) and
volume 3 (in light pink) are also shown.

With this implementation, we instinctively expect two things to happen. First of

all, the difference of the density in different domains will definitely cause load imbal-

ance. How severe the load imbalance is depends on the system under investigation.

From the two systems we present in this document, load imbalance usually becomes

more severe when more processors being used. This makes sense–if a domain closes

to the center of a dense area, the smaller this domain is, the more dense it would
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be; on the other hand, if a domain is away from the center, the smaller this domain

is, the less dense it would be. Secondly, it is easy to see that given a fixed B-spline

order, the bigger the number of grid point is, the smaller the processor’s marginal

volume is, and the less the computation needs; on the other hand, given a fixed size of

grid-point lattice, the bigger the B-spline order is, the larger the marginal volume is,

and the more the computation needs. The experiments presented in the next section

will verify these suppositions.
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6 Evaluation of Accuracy and Efficiency of

Ewald/SPME treatment of the Intermolecular

Forces

In section 2, a set of methods designed to evaluate intermolecular forces have been

presented. The reciprocal space part of the Ewald sum was assumed to be evaluated

either directly (MDoC support of the direct Ewald summation [69]) or via Smooth

Particle Mesh Ewald method on a spherically cutoff reciprocal space, whose imple-

mentation details have been presented in the previous sections. In this section, the

accuracy (truncation error) and efficiency (cpu time) of these techniques is tested on

two protein/water systems described below. The parallel platform is the QCDOC

supercomputer.

6.1 Model Systems: Preparation

In order to test the accuracy and the efficiency of the parallel SPME methodology

described in this dissertation, two systems were examined. One is the first β-hairpin in

streptococcal protein G (PDB identification label,“1PGB”), 20 residues, solvated by

1112 waters, with the total number of atoms being 3579. The other is HIV-1 Protease

(PDB identification label, 1G6L), 198 residues, solvated by 8793 waters, with the total

number of atoms being 29508. Initial structures were first minimized using AMBER 7

followed by MD runs. The simulation boxes are V = 40.2×31.8×42.2Å3 for β-hairpin

and V = 69.5×64.7×83.3Å3 for HIV-1 respectively.

In detail, for both of the systems, a real space cutoff of rc = 10Å was employed and
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5× 5× 5Å3 “Bin” size is fixed. (“Bin”s closer to the boundaries maybe smaller than

5 × 5 × 5Å3.) The Ewald convergence parameter was taken to be αewd = 0.346Å−1

which yields erfc(αewdrc)≈10−6. In reciprocal space the cutoff, ĝc = 1.18αewdLmax =

18 (in Equation 12, let exp(−g2/4α2
ewd)≈10−6, with g = 2πĝ

↔
h
−1

), was employed in

the β-hairpin system while the cutoff, ĝc = 32, was employed in the HIV-1 system.

6.2 Accuracy Analysis

The accuracy of the reciprocal space part of the standard Ewald energy evaluated

by direct summation is given as a function of reciprocal space cutoff in Table 3 and

Table 4 for the case, αewdrc = 3.46. Clearly, if the reciprocal space cutoff are in the

range, ĝc ≥ αewdL = 18 for β-hairpin, ĝc ≥ αewdL = 32 for HIV-1, then both the

energy and forces are determined to high accuracy. For instance, for β-hairpin, 10

cal/mol divided over 3,500 atoms is a rather small error in the energy; and so is 123

cal/mol divided over 30,000 atoms for HIV-1.
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Table 3: Accuracy of Standard Ewald summation. System β-hairpin

Evaluation of the accuracy of standard Ewald summation as a func-
tion of maximum reciprocal lattice vector. A calculation using
ĝc = 30 is used to define the “exact answer” (E=2.7269e+5 cal/mol).
The quantities, ∆E = E(ĝc) − E(30) and Frms = [

∑
k |Fk(ĝc) −

Fk(30)|2/F
(tot)
mag ]1/2, are used to assess the error. Here, F

(tot)
mag =∑

k |F(tot)
k |2 where F(tot)

k is the total intermolecular force on the kth

particle, not just the reciprocal space part.

ĝc ∆E(cal/mol) Frms

12 -4439 2.50e-03
15 -328 1.27e-04
18 -10 2.75e-06
20 0 1.15e-07

Table 4: Accuracy of Standard Ewald summation. System HIV-1

Evaluation of the accuracy of standard Ewald summation as a function
of maximum reciprocal lattice vector. A calculation using ĝc = 48 is
used to define the “exact answer” (E=3.9639e+6 cal/mol). The other
quantities mean the same as Table 3.

ĝc ∆E(cal/mol) Frms

18 -226492 8.00e-03
24 -28513 6.81e-04
28 -4447 8.54e-05
30 -1421 2.43e-05
34 -123 1.76e-06
38 -6 7.84e-07
40 -2 1.30e-08
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The accuracy of SPME is given as a function of grid points, LFFT and Euler

exponential spline interpolation order, n in Table 5 and Table 6 for β-hairpin system,

with ĝc being fixed at 18 and 20 respectively; Table 7, Table 8 and Table 9 for HIV-1

system, with ĝc being fixed at 30, 34 and 38 respectively. (The error ε is set to be

greater than 10−6, when ĝc = 30.) Acceptable levels of accuracy (within twice the

energy difference between the approximated Ewald summation and the exact Ewald

summation)are indicated with a star (*). SPME accuracy is ultimately limited by the

reciprocal space cutoff, ĝc, given a sufficiently high interpolation level and/or a large

number of grid points (small grid spacing). SPME should be optimized to produce

errors of the same order as the Ewald summation at the same finite ĝc. In addition, ĝc

should not be used to determine the grid spacing via LFFT ≡ 2ĝc as discussed above

and in Appendix C. It is simply a parameter to optimize at fixed αewd and ĝc.

Theoretically, given ĝc, there are two ways to decrease the approximation error,

either by increasing LFFT with fixed n, or by increasing n with fixed LFFT. For

instance, in β-hairpin simulation with ĝc = 18, the parameter sets {LFFT = 56, n = 6}
and {LFFT = 128, n = 4} produce similar errors; in the HIV-1 simulation with ĝc = 30,

the parameter sets, {LFFT = 64, n = 8}, {LFFT = 72, n = 6} and {LFFT = 128, n =

4}, all generate similar errors. However, the use of n = 4 is rarely a reasonable choice

in practice because it yields low computational efficiency. (We will come back to this

point in the next subsection.) Moreover, the use of such a small interpolation order

becomes more problematic as the reciprocal cutoff is increased. For instance, setting

ĝc = 38 in the HIV-1 system, the desired error tolerance cannot be achieved even

with very large FFT size, LFFT = 256, and furthermore the sets’ low computational

efficiency would obviates its use in a parallel simulation (see Table 13). n = 6 or 8 is

suggested to be used in practical simulation in parallel simulation.
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Table 5: Accuracy of SPME. System β-hairpin, ĝc = 18

Evaluation of the accuracy of SPME as a function of interpolation
order and grid spacing. The reciprocal space cutoff is fixed at ĝc = 18.
Energies and forces are reported relative to the Ewald summation at
the same cutoff and relative to the “exact results” (Ewald summation
at ĝc = 30).

LFFT n ∆Eex(c/m) ∆Erel(c/m) F ex
rms F rel

rms

40 6 -105.9 -96.0 1.45e-04 1.45e-04
40∗ 8 -25.8 -15.9 2.14e-05 2.09e-05
56∗ 6 -16.9 -7.2 1.81e-05 1.77e-05
56∗ 8 -10.1 -0.4 1.24e-05 1.19e-05
64∗ 6 -12.7 -3.0 1.35e-05 1.30e-05
64∗ 8 -9.9 -0.2 1.24e-05 1.19e-05
96 4 -31.2 -21.3 7.02e-05 7.00e-05

128∗ 4 -17.1 -7.4 2.77e-05 2.75e-05

Table 6: Accuracy of SPME. System β-hairpin, ĝc = 20

Evaluation of the accuracy of SPME as a function of interpolation
order and grid spacing. The reciprocal space cutoff is fixed at ĝc = 20.
Energies and forces are reported relative to the Ewald summation at
the same cutoff and relative to the “exact results” (Ewald summation
at ĝc = 30).

LFFT n ∆Eex(c/m) ∆Erel(c/m) F ex
rms F rel

rms

56 6 -7.8 -7.2 1.77e-05 1.26e-05
56∗ 8 -0.8 -0.4 1.19e-05 5.69e-07
56∗ 10 -0.4 -0.1 1.18e-05 3.86e-08
64 6 -3.4 -3.0 1.30e-05 5.20e-06
64∗ 8 -0.6 -0.2 1.19e-05 1.63e-07
72∗ 6 -1.8 -1.2 1.22e-05 2.65e-06
72∗ 8 -0.4 -0.1 1.19e-05 6.00e-08
128 4 -7.8 -7.4 2.95e-05 2.75e-05

52



Table 7: Accuracy of SPME. System HIV-1, ĝc = 30

Evaluation of the accuracy of SPME as a function of interpolation
order and grid spacing. The reciprocal space cutoff is fixed at ĝc = 30.
Energies and forces are reported relative to the Ewald summation at
the same cutoff and relative to the “exact results” (Ewald summation
at ĝc = 48).

LFFT n ∆Eex(c/m) ∆Erel(c/m) F ex
rms F rel

rms

64 4 -22756 -21337 2.00E-03 2.00E-03
64 6 -4807 -3386 2.35E-04 2.33E-04
64∗ 8 -2361 -942 5.96E-05 5.32E-05
72 4 -9223 -7802 1.20E-03 1.20E-03
72∗ 6 -2836 -1415 9.95E-05 9.49E-05
72∗ 8 -1679 -260 3.01E-05 1.55E-05
80 4 -9223 -7802 7.43E-04 7.42E-04
80∗ 6 -1985 -566 5.15E-05 4.40E-05
80∗ 8 -1492 -72 2.67E-05 8.55E-06
96∗ 6 -1574 -153 2.92E-05 1.39E-05
128∗ 4 -2482 -1063 1.04E-04 9.98E-05
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Table 8: Accuracy of SPME. System HIV-1, ĝc = 34

Evaluation of the accuracy of SPME as a function of interpolation
order and grid spacing. The reciprocal space cutoff is fixed at ĝc = 34.
Energies and forces are reported relative to the Ewald summation at
the same cutoff and relative to the “exact results” (Ewald summation
at ĝc = 48).

LFFT n ∆Eex(c/m) ∆Erel(c/m) F ex
rms F rel

rms

72 4 -14481 -14358 1.20E-03 1.20E-03
72 6 -1659 -1536 9.59E-05 9.57E-05
72 8 -447 -326 1.64E-05 1.61E-05
80 4 -8096 -7973 7.43E-04 7.43E-04
80 6 -743 -620 4.46E-05 4.44E-05
80∗ 8 -215 -91 9.04E-06 8.66E-06
96 4 -3996 -3875 3.33E-04 3.33E-04
96∗ 6 -288 -165 1.43E-05 1.40E-05
96∗ 8 -135 -12 7.50E-06 7.12E-06
160 4 -556 -435 4.79E-05 4.78E-05
256∗ 4 -179 -56 1.26E-05 1.23E-05
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Table 9: Accuracy of SPME. System HIV-1, ĝc = 38

Evaluation of the accuracy of SPME as a function of interpolation
order and grid spacing. The reciprocal space cutoff is fixed at ĝc = 38.
Energies and forces are reported relative to the Ewald summation at
the same cutoff and relative to the “exact results” (Ewald summation
at ĝc = 48).

LFFT n ∆Eex(c/m) ∆Erel(c/m) F ex
rms F rel

rms

80 6 -638 -632 4.46E-05 4.45E-05
80 8 -103 -97 9.04E-06 9.03E-06
80 10 -30 -24 7.52E-06 7.50E-06
90 6 -286 -280 2.02E-05 2.02E-05
90 8 -34 -26 7.61E-06 7.60E-06
96 6 -173 -167 1.43E-05 1.43E-05
96∗ 8 -20 -14 7.50E-06 7.49E-06
128∗ 6 -28 -22 7.69E-06 7.68E-06
128∗ 8 -6 0 7.43E-06 7.42E-06
160 4 -441 -435 4.78E-05 4.78E-05
256 4 -62 -56 1.23E-05 1.23E-05
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6.3 Efficiency Analysis

The efficiency of SPME is not only dependent on grid points and interpolation order,

but also dependent on the number of processors. Table 10 and Table 11 show the

parallel efficiency(CPU time) of SPME to compute long-range forces in the β-hairpin

system with ĝc = 18 and ĝc = 20, respectively; Table 12, Table 13 and Table 14 show

the parallel efficiency(CPU time) of SPME to compute long-range forces in the HIV-1

system with ĝc = 30, ĝc = 34 and ĝc = 38, respectively. Briefly, on the massively

parallel system, our spherical cutoff parallel 3D FFT framework can really give an

efficient and scalable solution to solve the long-range potential energy, when attention

is paid in choosing a proper parameter set.

Table 10: Parallel Efficiency of SPME. System β-hairpin, ĝc = 18

Parallel efficiency(CPU time) of SPME as a function of interpolation
order and grid points. The reciprocal space cutoff is fixed at ĝc = 18.
The efficiency is measured by total CPU time (in seconds) for 100
steps on different QCDOC partitions, ranged from 16 node to 512
nodes, running at 400MHz. The most efficient options are shown in
bold font.

LFFT n 16 nodes 64 nodes 128 nodes 256 nodes 512 nodes
40 6 9.5 3.3 2.2 1.4 1.0
40∗ 8 19.0 6.3 4.5 2.7 2.0
56∗ 6 9.0 2.9 2.0 1.3 0.9
56∗ 8 17.5 5.9 3.7 2.2 1.5
64∗ 6 8.6 2.7 1.7 1.2 0.8
64∗ 8 15.8 5.4 3.5 2.1 1.4
96 4 10.1 2.9 1.8 1.2 0.8

128∗ 4 15.4 4.2 2.6 1.6 1.0
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Table 11: Parallel Efficiency of SPME. System β-hairpin, ĝc = 20

Parallel efficiency(CPU time) of SPME as a function of interpolation
order and grid points. The reciprocal space cutoff is fixed at ĝc = 20.
The efficiency is measured by total CPU time (in seconds) for 100
steps on different QCDOC partitions, ranged from 16 node to 512
nodes, running at 400MHz. The most efficient options are shown in
bold font.

LFFT n 16 nodes 64 nodes 128 nodes 256 nodes 512 nodes
56 6 9.5 3.1 2.0 1.4 1.0
56∗ 8 17.3 5.8 3.7 2.4 1.6
56∗ 10 31.8 11.4 7.0 4.1 2.8
64 6 9.1 2.8 1.9 1.3 0.9
64∗ 8 16.3 5.6 3.8 2.4 1.6
72∗ 6 10.5 3.4 2.1 1.4 0.9
72∗ 8 17.4 5.8 3.6 2.3 1.5
128 4 16.0 4.5 2.8 1.7 1.1
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Table 12: Parallel Efficiency of SPME. System HIV-1, ĝc = 30

Parallel efficiency(CPU time) of SPME as a function of interpolation
order and grid points. The reciprocal space cutoff is fixed at ĝc = 30.
The efficiency is measured by total CPU time (in seconds) for 100
steps on different QCDOC partitions, ranged from 16 node to 512
nodes, running at 400MHz. The most efficient options are shown in
bold font.

LFFT n 16 nodes 64 nodes 128 nodes 256 nodes 512 nodes
64 4 23.0 6.9 4.3 2.6 1.6
64 6 47.2 14.1 8.9 5.4 3.4
64∗ 8 103.7 31.1 18.9 11.4 7.0
72 4 25.6 7.2 4.3 2.6 1.7
72∗ 6 48.5 14.6 8.9 5.4 3.4
72∗ 8 98.4 29.9 19.6 11.4 7.0
80 4 26.9 7.6 4.6 2.7 1.7
80∗ 6 51.0 14.6 8.9 5.4 3.2
80∗ 8 98.1 29.9 18.4 10.8 6.4
96∗ 6 48.7 14.0 8.9 5.2 3.0
128∗ 4 33.6 9.2 5.6 3.3 2.0
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Table 13: Parallel Efficiency of SPME. System HIV-1, ĝc = 34

Parallel efficiency(CPU time) of SPME as a function of interpolation
order and grid points. The reciprocal space cutoff is fixed at ĝc = 34.
The efficiency is measured by total CPU time (in seconds) for 100
steps on different QCDOC partitions, ranged from 16 node to 1024
nodes, running at 400MHz. The most efficient options are shown in
bold font.

LFFT n 16 nodes 64 nodes 128 nodes 256 nodes 512 nodes 1024 nodes
72 4 25.5 7.5 4.6 2.7 1.6 1.0
72 6 49.1 15.1 9.8 5.6 3.3 2.2
72 8 101.4 31.0 19.7 11.0 6.9 4.7
80 4 26.8 7.9 4.7 2.8 1.7 1.1
80 6 51.7 14.8 9.0 5.3 3.3 2.2
80∗ 8 99.4 28.9 18.8 11.1 6.4 4.3
96 4 28.6 8.2 4.9 2.9 1.8 1.2
96∗ 6 51.8 14.9 9.0 5.3 3.2 2.2
96∗ 8 94.9 28.3 17.7 10.5 6.1 4.0
160 4 54.3 14.8 8.3 4.5 2.5 1.5
256∗ 4 — 38.8 20.0 9.9 5.1 3.0

59



Table 14: Parallel Efficiency of SPME. System HIV-1, ĝc = 38

Parallel efficiency(CPU time) of SPME as a function of interpolation
order and grid points. The reciprocal space cutoff is fixed at ĝc = 38.
The efficiency is measured by total CPU time (in seconds) for 100
steps on different QCDOC partitions, ranged from 16 node to 1024
nodes, running at 400MHz. The most efficient options are shown in
bold font.

LFFT n 16 nodes 64 nodes 128 nodes 256 nodes 512 nodes 1024 nodes
80 6 51.5 15.2 9.3 5.6 3.3 2.3
80 8 102.1 29.8 19.2 11.0 6.5 4.5
80 10 180.5 55.5 34.4 21.2 11.8 8.2
90 6 52.3 16.4 9.7 5.5 3.2 2.0
90 8 100.3 31.2 17.8 10.7 6.4 4.0
96 6 51.0 15.0 9.5 5.5 3.2 2.2
96∗ 8 97.9 28.9 18.6 10.9 6.4 3.9
128∗ 6 56.2 16.4 9.2 5.3 3.2 2.1
128∗ 8 95.5 28.6 17.0 9.8 5.8 3.5
160 4 56.4 15.3 8.2 4.6 2.5 1.7
256 4 — 39.9 20.3 10.3 5.3 3.1
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Figures 13 and 14 show the parallel efficiency (CPU time) of SPME computations

for the two water/protein systems computed using a series of reciprocal space cutoffs

and SPME parameters sets within the error tolerence. From the two figures, it is

easy to see that decreasing the interpolation order n and increasing the FFT grid

size LFFT leads to higher efficiency. However, this trend is only followed if LFFT is

of at least moderate size (from 64 to 128). As mentioned in the previous subsection,

there are two ways to reach the desired approximation error–either by increasing

LFFT or by increasing n. Thus, if one would like to decrease n to attain higher

efficiency, than a larger LFFT must be selected to compensate. This strategy will

generally work well but, of course, will fail if pushed too far. For instance, as shown

in Figure. 14(b), although it is possible to compensate for the accuracy lost by taking

the interpolation order as small as n = 4 by increasing the number of 3D-FFT lattice

points to LFFT = 256, the 3D-FFT calculation becomes the dominant phase yielding

less attractive scaling/efficiency than using a more moderate number of lattice points

with a larger interpolation order, e.g. {LFFT = 96, n = 6}. Again, the optimal set

of SPME parameters for a given processor number will depend on system size and

composition as well as the machine architecture and the parallel implementation.

An intriguing observation that can be gleaned from Figure 13 and 14 is that at

fixed interpolation order, the computational efficiency has no significant decrease as

LFFT increases (in a moderate-size range). This would certainly not be the case in

scalar platforms as more scalar work is required. On parallel platforms, however,

the larger LFFT is taken, the smaller the processor’s marginal volume and the better

the load balance will be, as discussed in Section. 5. Thus, by increasing the grid

size (i.e. decreasing the grid space), the amount of the computational work saved

from charge assignment and force interpolation processes is nearly the same as the

increased amount of the communicational cost required by the spherically truncated
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3D-FFT.

It is, of course, possible to alleviate the interpolation phase bottleneck by improv-

ing the decomposition. Instead of using one particle “Bin” size optimized for the

real space force evaluation, a second finer volume decomposition, “FineBin”, can be

introduced. In this way, the high density regions could be spread out over the more

processors and low density regions could be “clumped together” over fewer proces-

sors. However, given the difficulty of implementing complex communication patterns

using QMP [10], the only message passing interface currently supported by QCDOC,

this strategy will be investigated as part of future work.
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Figure 13: Parallel Efficiency (CPU time) of SPME. System β-hairpin.

The first β-hairpin of Strptococcal Protein G protein/water system (3579 atoms in total)
was tested. (a) and (b) are for different spherical cutoff ĝc, 18 and 20, respectively. The
figures only plot the options which produce desired approximation errors. The options
which produce the best efficiencies are high lighted.
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Figure 14: Parallel Efficiency (CPU time) of SPME. System HIV-1. (cont.)
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Figure 14: Parallel Efficiency (CPU time) of SPME. System HIV-1.

HIV-1 Protease protein/water system (29508 atoms in total) was
tested. (a), (b) and (c) are for different spherical cutoff ĝc, 30, 34
and 38, respectively. The figures only plot the options which produce
desired approximation errors. The options which produce the best
efficiencies are high lighted.
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In order to summarize the discussion, the computational cost of each of the SPME

phases is shown in Figure. 15 and Figure. 16 for each of the computer experiments

performed. It is clear that the spherically cutoff 3D-FFT is not the bottleneck in

electrostatic computation on large parallel machines. It can be seen that the 3D-

FFT does not scale as well as the interpolation phase, which may lead to the 3D-

FFT computation becoming the bottleneck on yet larger supercomputers. Finally,

Figure. 17 presents the parallel efficiency of the best results found in the study. For

the HIV-1 water system with 30K atoms, a parallel speedup of 440x was generated on

1024 processors using the new framework, a result limited by the parallel efficiency

of the charge interpolation phase.
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Figure 15: Parallel Efficiency (CPU time) of three components in SPME.System
β-hairpin. (cont.)
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Figure 15: Parallel Efficiency (CPU time) of three components in SPME. System
β-hairpin.

The first β-hairpin of Strptococcal Protein G protein/water system
(3579 atoms in total) was tested. (a) and (b) are for different spherical
cutoff ĝc, 18 and 20, respectively. Three components–charge assign-
ment(ChA), 3D FFT(FFT) and force interpolation(FrI)–are plotted.
Two options are shown for each subplot, including the most efficient
set (high lighted) and another acceptable set. The median number
across different processors for both charge assignment and force in-
terpolation are plotted, and the load imbalance for 3D FFT could be
ignored.
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Figure 16: Parallel Efficiency (CPU time) of three components in SPME. System
HIV-1. (cont.)
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Figure 16: Parallel Efficiency (CPU time) of three components in SPME. System
HIV-1.

HIV-1 Protease protein/water system (29508 atoms in total) was
tested. (a) and (b) are for different spherical cutoff ĝc, 30 and
34, respectively. Three components–charge assignment(ChA), 3D
FFT(FFT) and force interpolation(FrI)–are plotted. Two options are
shown for each subplot, including the most efficient set (high lighted)
and another acceptable set. The median number across different pro-
cessors for both charge assignment and force interpolation are plotted,
and the load imbalance for 3D FFT could be ignored.
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Figure 17: Parallel Efficiency (speedup) of SPME.

The speedup of five most efficient options in the β-hairpin and the
HIV-1 system simulations are shown. The parameter triplet is in the
form of {ĝc, LFFT, n}. The best speedup in 1024 node machine is 440x.
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6.4 Relationship to previous work by others

NAMD [65, 64] is an MD application that exhibits high parallel performance on sev-

eral computer architectures. NAMD benefits greatly from its novel message-driven

execution model, charm++ [49]. The package combines force and spatial decomposi-

tions together and utilizes processor virtualization to solve load imbalance problems.

NAMD employs the PME method to evaluate the long-range part of the Ewald sum.

Since NAMD makes use of the Multiple Time Step integration methods, the recipro-

cal space part of the Ewald sum only has to be computed every few small time steps.

Thus, NAMD scales to thousands of processors although the PME implementation

is only parallelized over a hundred processors. The greatest speedup attained by

NAMD on 1024-processor Lemieux cluster at PSC was 540x in benchmark simulation

of ApoA1 (92K atoms), when PME was calculated every time step [65]. Given the

data presented here, it is clear that our MD parallel framework, MDoC with embed-

ded parallel SPME, can also reach this level of parallel efficiency for a whole MD time

step.

Blue Matter [41] is an MD application designed for use on the BlueGene/L super-

computer with its 3D torus communication network [39]. BlueMatter takes advan-

tage of BlueGene/L’s novel architectural features, including the hardware-embedded

global broadcast routing capability, and the fast nearest neighbour communication.

The package uses a spatial decomposition to compute the long-range part of the Ewald

summation via P3ME. The scalability of the major components of an MD time-step

for 43K atom system under BlueMatter have been presented in the literature[41].

Although CPU times were not given explicitly, BlueMatter seems to spend approx-

imately 0.006-0.007s/step in the P3ME computation per interation on a 1024 node

BlueGene/L partition. The results presented here for the HIV-1 system with 30K
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atoms, independent of reciprocal cutoff, are comparable when the slower clock speed

of QCDOC is taken into account.

In general, the inefficiency and inflexibility of the decomposition employed herein

to treat the charge interpolation phase of SPME method is the bottleneck to achieving

better scaling than existing frameworks. It is expected that the improvements to our

framework described above and others will alleviate this difficulty.
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7 Summary and Future work

In order for the potential of atomistic molecular dynamics to impact biophysics to

be unlocked, the time and length scales which the method probes must be increased.

An important way to increase the speed, accuracy and computational efficiency of

atomistic molecular dynamics is to perform coupled research into new algorithms,

software development and computer architectures. In this way, methods, software

and architecture can be adjusted to yield the best possible results.

7.1 Summary and Contributions

In this dissertation, two contributions have been accomplished to improve the accu-

racy and computational efficiency of atomistic molecular dynamics. First of all, a

fine grained parallel 3D-FFT framework has been designed specifically for QCDOC,

a 6D-torus network architecture. The highlight of this framework are its competi-

tive scalability and flexibility. With the full exploit of 24 off-node links provided by

QCDOC’s novel design, the QMP-based implementation shows a speedup of 895x on

4096 nodes for complex-to-complex 3D FFTs of size 128× 128× 128. Moreover, any

existing sequential 1D-FFT package could be easily embedded into the framework.

This provides it more flexibility. With these two properties, the parallel 3D-FFT

framework could be regarded as a toolbox for daily use, which can provide high scal-

ability and flexibility. This has already been beyond our initial purpose, which is

to design a scalable real-to-complex 3D-FFT algorithm specifically for SPME in MD

simulation.

Secondly, the accuracy and efficiency of the long range force evaluation in large

73



heterogeneous biophysical systems, a known bottleneck to high scaling on modern

massively parallel architectures, has been studied. On both scalar and parallel ma-

chines with less than 1000 processors, the SPME method is more efficient than the

Ewald technique[29, 67, 46]. This is due to the fact that the SPME method has a

lower scaling with particle number. Nonetheless, the use of a spherical cutoff in re-

ciprocal space, paying careful attention to accuracy in tuning the interpolation order

and the FFT grid spacing, and on the base of our highly scalable 3D-FFT framework,

introducing a parallel implementation that respects/exploits the spherical truncation

is found to yield large gains in efficiency and accuracy both in scalar and in parallel.

Accuracy is improved by eliminating inaccurate high Fourier components generated

by the Euler exponential spline interpolation. Efficiency is improved by implementing

a spherically truncated 3D-FFT which reduces the computational overhead required.

On parallel machines, the spherical truncation reduces the data volume required to

parallelize the 3D-FFTs such that the 3D-FFT is no longer the dominant part of

SPME computation on less than 1000 processors. These conclusions were validated

by studies of two realistic protein/water systems consisting of 3579 and 29508 atoms,

respectively, on up to 1024 processors of the massively parallel QCDOC with its novel

6-D torus network architecture.

7.2 Future work

Future work will involve a number of important and exciting projects.

(1◦) We can expand the functionality of our parallel spherical cutoff 3D FFT to let

it support different cutoff radius ĝc along different dimensions, if the simulation

box is not a regular cube. Through this way, the efficiency of SPME would be
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increased, with the accuracy retained.

(2◦) The efficiency analyses show that for SPME alone, there is still much time

occupied by off-node data communication, while the processors are keeping idle.

It definitely does make sense to overlap the short-range forces computation with

SPME communication. This is essential for the scalability of the whole MDoC

package.

(3◦) As we discussed in Section 6, more finer volume decomposition can be intro-

duced to eliminate the load imbalance in charge interpolation and force inter-

polation.

(4◦) Like other mature MD simulation packages [41, 64], it will be worthy to try

to combine SPME with multi-timing step integration method together. Multi-

timing Step for Ewald summation has been studied by G.W.Han [43].

(5◦) Refine the parallel 3D-FFT framework, scaling to 10,000 processors and examine

larger protein/water systems.
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Appendix A

Consider the real space part of the total potential energy function

φ(real)(R,
↔
h) =

1

2

∑

ˆ̂
S

′∑
ij

ϕij(|rij +
↔
hŜ|)χγ(|rij +

↔
hŜ|, rc) =

∑
i>j

ϕij(rij)χγ(rij, rc).

expressed as a pairwise additive sum over particles, (ij) and images (S). A switching

function has been introduced explicitly in order to reduce the computation of the

sum to order N operations. The sum is thus restricted to nearest or first image

particle separations (see above). Two commonly employed switching functions are

a smooth switch, χλ(r, rc), and a hard/sharp switch, χh(r, rc). The force using a

smooth switching function is taken to be

−∇kφ
(real)(R,

↔
h) = −

∑

i6=k

rki

rki

[
dϕki(rki)

drki

χλ(rki, rc) + ϕki(rki)
dχλ(rki, rc)

drki

]

while under a hard/sharp cutoff, the force is approximated by

−∇kφ
(real)(R,

↔
h) = −

∑

i6=k

rki

rki

[
dϕki(rki)

drki

χh(rki, rc)

]
.

The error induced by use of either type switching function can be handled effectively

using first order thermodynamic perturbation theory provided the pair potential goes

to zero more quickly than 1/r3. Coulombic interactions, for example, should be

treated using Ewald methods in periodic systems. The Ewald method introduces a

long range reciprocal space piece to the potential energy and the effective real space

potential falls off as erfc(αr)/r. Dispersion is typically treated using a cutoff. Recip-

rocal sums could be employed to compute the dispersion interaction but unlike the

Coulomb interaction, the coefficients are not guaranteed to obey separable combining
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rules, Cij = CiCj.)

The corrections to the potential energy and the pressure using the smooth switch-

ing function will be considered first. Assuming for simplicity one particle type and N

particles, in 3 spatial dimensions, the correction to the total potential energy becomes

∆φ(real)(V, rc, λ) =

[
ρN

2

] [∫ rc

rc−λ

dr

∫
dΩr2ϕ(r) [1− χλ(r, rc)] g(r)

+

∫ ∞

rc

dr

∫
dΩr2ϕ(r)g(r)

]

where ρ is the density and g(r) is the radial distribution function. The correction can

be applied exactly on a configuration by configuration basis, provided the factor of N

is replaced by a sum over all atoms and the instantaneous particle dependent radial

distribution function is employed, g(r) = g
(inst)
k (r, Ω,R). Approximating the radial

distribution function by unity beyond rc − λ, g(r) = g
(inst)
k (r, Ω,R) = 1, reduces the

correction to a constant, in general,

∆φ(real)(V, rc, λ) = 2πρN

[∫ rc

rc−λ

drr2ϕ(r) [1− χλ(r, rc)] +

∫ ∞

rc

drr2ϕ(r)

]

Within this approximation, the long range correction to the pressure can be shown

to be

V ∆P (real) =

[
2πρN

3

] [∫ rc

rc−λ

drr3ϕ(r)
dχλ(r, rc)

dr
−

∫ rc

rc−λ

drr3dϕ(r)

dr
(1− χλ(r, rc))

−
∫ ∞

rc

drr3dϕ(r)

dr

]

= ∆φ(real)(V, rc, λ).

where an integration by parts has been performed and it has been assumed that the

switching function has a continuous first derivative. The long range correction to the
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pressure and the potential are thermodynamically consistent,

V ∆P (real) = −V
∂∆φ(real)(V, rc, λ)

∂V
,

if the cutoff, rc and the healing length, λ, are taken independent of the volume and

ρ is expressed as N/V . Finally, if we take

χλ(r, rc) = 1 + r̃2(2r̃ − 3)

r̃ =
(r − rc + λ)

λ

on the range rc − λ < r < rc and ϕ(r) = −C/r6 then

∆φ(real)(V, rc, λ) = −
[
2CπρN

λ3

] [
1

sc

+
1

sc − 1
+ 2 ln

(
sc − 1

sc

)]

where sc = rc/λ.

The corrections to the average potential energy and the pressure under the sharp

switching function are different,

∆φ(real)(V, rc) = 2πρN

[∫ ∞

rc

drr2ϕ(r)

]

and

V ∆P (real) = 2πρN

[
1

3
ϕ(rc)r

3
c +

∫ ∞

rc

drr2ϕ(r)

]
6= ∆φ(real)(V, rc).

The two corrections are thermodynamically consistent,

V ∆P (real) = −V
∂∆φ(real)(V, rc)

∂V
,
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if the cutoff, rc, is taken to be volume dependent, rc = V 1/3sc and ρ is expressed as

N/V . Therefore, if a sharp switching function is used in a constant pressure simula-

tion, then the cutoff must be allowed to fluctuate in time, rc(t) = rc(0)[V (t)/V (0)]1/3.
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Appendix B

In this appendix, the reciprocal space form of the average potential energy for an

infinitely replicated periodic system is derived. The starting point is the real space

expression for the average potential energy

〈φ〉 =
1

2

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′n(r)n(r′)
∑

Ŝ

φ(r− r′ +
↔
hŜ)

where the sum over the periodic replicas of the primary domain has been introduced

(i.e. Ŝ). (If the charge density is comprised of point particles, n(r) =
∑

i qiδ(r− ri),

then the form given in the text is recovered.) The Poisson Summation Formula states

∑

Ŝ

F (
↔
hŜ) =

[
1

det
↔
h

] ∑

ĝ

G(ĝ
↔
h
−1

)

G(ĝ
↔
h
−1

) =

∫

allspace

drF (r) exp(−i2πĝ
↔
h
−1

r)

where the integral is over all space. Poisson Summation can be directly applied to

yield

〈φ〉 =
1

2V

∑

ĝ′′

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′n(r)n(r′)φ̃(g′′) exp(ig′′ · (r− r′))

〈φ〉 =
1

2V 3

∑

ĝ,ĝ′,ĝ′′
n̄(g)n̄(g′)φ̃(g′′)

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′ exp(ig · r) exp(ig′ · r′) exp(ig′′ · (r− r′))

〈φ〉 =
1

2V

∑

ĝ

n̄(g)n̄(−g)φ̃(−g) =
1

2V

∑

ĝ

|n̄(g)|2φ̃(−g)

where φ̃(g) is the Fourier Transform of φ(r) evaluated at the reciprocal lattice vector

g = 2πĝ
↔
h
−1

. Note, that the n̄(g) are the Fourier components of the charge density;

they are determined by integration over the finite volume defined by the simulation
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cell,
↔
h.

Care must be taken at the point g = 0 if the potential function is long range

(decays as 1/rn, n ≤ 3)

φ̃(0) =
1

2V
|n̄(0)|2φ̃(short)(0) +

1

2V
|n̄(0)|2 lim

g→0
φ̃(long)(g).

Here the potential has been divided into a purely long and purely short range part.

The long range part of the g = 0 term can be written in the prelimit form

φ̃(0,long) =
1

2V
lim
ξ→∞

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′n(r)n(r′)
∫

D(
↔
h̃ (ξ))

dr′′φ(long)(r′′ + r− r′)

which follows from the Poisson Summation formula. The domain, D(
↔
h̃(ξ)), is as-

sumed to scaled by the parameter ξ which will be taken to infinity, later. Changing

to scaled coordinates yields

φ̃(0,long) =
1

2V
lim
ξ→∞

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′n(r)n(r′)ξ3

∫

D(
↔
h̃ )

dr̃ φ(long)

(
ξ

[
r̃ +

(r− r′)
ξ

])

This form can be Taylor expanded and the limiting properties examined.

If φ(long)(r) = 1/|r| then

φ̃(0,coul) =
1

2V
lim
ξ→∞

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′n(r)n(r′)

×
∫

D(
↔
h̃ )

dr̃

{
ξ2

|r̃| −
ξr̃ · (r− r′)

|r̃|3 +
1

2
(r− r′)

[
∇∇

(
1

|r̃|
)]

(r− r′)
}

φ̃(0,coul) =
1

2V
|n̄(0)|2γ +

1

2
· 1

2V

∫

D(
↔
h )

dr

∫

D(
↔
h )

dr′n(r)n(r′)[(r− r′)
↔
T(r− r′)]
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where

γ ∝
∫

D(
↔
h̃ )

dr̃
1

|r̃|
↔
T =

∫

D(
↔
h̃ )

dr̃

[
∇∇

(
1

|r̃|
)]

The constant parameter, γ, is called the infinite background. It does not contribute for

neutral charge densities (n̄(0) = 0) and cancels in energy differences between systems

with the same total charge. In contrast, energy differences between systems with

the different total charge are ill-defined, although, an appropriately chosen reference

system can sometimes be constructed to remedy the situation. The depolarization

tensor,
↔
T, depends on the boundary condition at infinity, D(

↔
h̃) and vanishes if the

system is assumed to be surrounded by a conductor.
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Appendix C

Consider a real function, f(r) = f ∗(r) with Fourier components,

f̄(g) =

∫

D(
↔
h )

dr exp[−ig · r]f(r)

= V

∫ 1

0

dsa

∫ 1

0

dsb

∫ 1

0

dsce
−2πiĝasae−2πiĝbsbe−2πiĝcscf(

↔
hs),

where r =
↔
hs, g = 2π

↔
h
−1

ĝ, V = det
↔
h and the labels a, b, c represent the three

directions defining the parallelepiped bounding the system. In order to accurately

approximate the f̄(g) on a finite g space, −Lβ/2 < ĝβ < Lβ/2, it useful to employ

the Euler exponential spline

exp

(
2πiĝp

L

)
= dn(ĝ, L)

∞∑

ŝ=−∞
Mn(p− ŝ) exp

(
2πiĝŝ

L

)
+O

(
2|ĝ|
L

)n

dn(ĝ, L) =
exp (2πi(n− 1)/L)[∑n−2

j=0 Mn(j + 1) exp (2πiĝj/L)
]

where ŝ is an integer, p is a real number, n is the spline order assumed to be even

and the Mn(p) are the Cardinal B splines

M2(p) = 1− |p− 1|

Mn(p) =

[
p

n− 1

]
Mn−1(p) +

[
n− p

n− 1

]
Mn−1(p− 1)

Mn(p) 6= 0 0 ≤ p ≤ n

dMn(p)

dp
= Mn−1(p)−Mn−1(p− 1)
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Inserting the Euler exponential spline into the first equation yields a well defined

approximation to f̄(g),

f̄ (Euler)(g,L, n) = [V d∗n(ĝa, La)d
∗
n(ĝb, Lb)d

∗
n(ĝc, Lc)]

×
La−1∑

ŝa=0

Lb−1∑

ŝb=0

Lc−1∑

ŝc=0

e−2πiĝaŝa/Lae−2πiĝbŝb/Lbe−2πiĝcŝc/Lcf (conv)(
↔
hs)

= [V d∗n(ĝa, La)d
∗
n(ĝb, Lb)d

∗
n(ĝc, Lc)]× FFT[f (conv)(

↔
hs);L]

where

f (conv)(
↔
hs) =

∫ 1

0

ds′a

∫ 1

0

ds′b

∫ 1

0

ds′c
∑

ka

∑

kb

∑

kc

f(
↔
hs′)

×Mn([s′a − ka]La − ŝa)Mn([s′b − kb]Lb − ŝb)Mn([s′c − kc]Lc − ŝc).

and sβ = ŝβ/Lβ.

Thus, accurate approximations to the Fourier components of f(r), f̄ (Euler)(g,L, n),

on the finite range, −Lβ/2 < ĝβ < Lβ/2 can be evaluated using a real-to-complex

3D-FFT of size La × Lb × Lc in order L3 log L provided the function, f (conv)(
↔
hs),

defined on the discrete real space, can be constructed in a computationally efficient

manner. If Lβ > m + 1 then each point in the continuous space, {s′a, s′b, s′c} with

r′ =
↔
hs′ , is mapped to n3 unique points on the discrete real space grid, {ŝa, ŝb, ŝc}

with r̂ =
↔
hŝ, due to the finite support of the Mn(p) indicating that a computationally

efficient methods to generate f (conv)(
↔
hs) can be designed for many problems of inter-

est. Finally, the error in the Euler spline interpolation does not vary uniformly with

ĝ but rather increases as |ĝ|n. It is, therefore, important to choose Lβ > 2ĝ
(max)
β

where ĝ
(max)
β is the largest desired lattice vector in the β direction ( e.g. otherwise,

Fourier coefficients with very large error will be used in the desired application).
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In the text, the Fourier components of a charge density consisting of N point

particles is of interest, n(r) =
∑N

j=1 qjδ(r − rj). Substitution into the expression for

convolution function yields

n(conv)(
↔
hs) = V −1

N∑
j=1

∑

ka

∑

kb

∑

kc

qjMn([sa,j − ka]La − ŝa)

×Mn([sb,j − kb]Lb − ŝb)Mn([sc,j − kc]Lc − ŝc).

where sj =
↔
h
−1

rj is the scaled position of point particle, j. The computational

cost to the evaluate the convoluted density function is n3N because each particle

position is mapped to n3 discrete grid points. Thus, the Fourier components of the

charge density on the desired finite range can be generated in order N log N , limited

by the scaling of 3D-FFTs. Again, the number of particles is assumed to increase

at constant density N = ρV and in order to keep the grid spacing in the FFTs

constant, the size of the FFTs must scale as particle number to the one-third power,

Lβ ∝ N1/3, such that L3 log L ∼ N log N . Methods of reducing the cost of the 3D-

FFTs are discussed in the text and Appendix D. Last, since the Cardinal B splines

possess n − 1 continuous derivatives, forces derived from potential energy functions

that depend on Euler spline based Fourier components, n̄(Euler)(g,L, n), will, also,

possess n− 1 continuous derivatives (i.e. with respect to particle position).
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Appendix D

PME

To accurately approximate the same f̄(g) on a finite g space, PME method employs

the Lagrangian polynomial interpolation, instead of Euler exponential spline

exp

(
2πiĝp

L

)
=

∞∑

ŝ=−∞
Wn,ŝ(p) exp

(
2πiĝŝ

L

)
≡ P(p)

where ŝ is an integer, p is a real number, n is the order of the Lagrangian polynomial.

Wn,ŝ(x), ŝ ∈ Ω1(p, n), are the Lagrangian polynomials uniquely defined by

Wn,ŝ(x) = 1; ŝ ∈ Ω1(p, n), x = ŝ;

Wn,ŝ(x) = 0; ŝ, x ∈ Ω1(p, n), x 6= ŝ;

Wn,ŝ(x) ≡ 0; ŝ /∈ Ω1(p, n), x ∈ R.

where Ω1(p, n) be defined as the subset of the integers in one dimensional range

[0, L]1, containing the n+1 integer numbers which are closest to p (periodic boundary

conditions are used).

Inserting the Lagrangian polynomial into the equation of f̄(g) yields a well defined

approximation,

f̄ (Lagrange)(g,L, n) = V ×
La−1∑

ŝa=0

Lb−1∑

ŝb=0

Lc−1∑

ŝc=0

e−2πiĝaŝa/Lae−2πiĝbŝb/Lbe−2πiĝcŝc/Lcf (conv)(
↔
hs)

= V × FFT[f (conv)(
↔
hs);L]
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where

f (conv)(
↔
hs) =

∫ 1

0

ds′a

∫ 1

0

ds′b

∫ 1

0

ds′c
∑

ka

∑

kb

∑

kc

f(
↔
hs′)

×Wn,ŝa+kaLa(s
′
aLa)Wn,ŝb+kbLb

(s′bLb)Wn,ŝc+kcLc(s
′
cLc).

and sβ = ŝβ/Lβ.

Note, PME uses even function Wn,ŝ(p) as the interpolation scheme, so the n + 1

interpolation points are the closest ones to p. However Mn(p− ŝ) is not even function,

so in SPME the original system is represented by a shifted mesh system, which is

from a practical point of view irrelevant, because this shift is undone in the back-

interpolation (if accomplished with the same assignment function).

P3ME

Hockney and Eastwood [46] employ the same charge assignment scheme as PME.

However, they use different Kernel function (influence function) W (Kern)(g) to make

the final result of the mesh calculation to be as close as possible to the original

continuum problem.

They first make the statement “as close as possible” more quantitative in such a

way that making Q as small as possible, where Q represents the sum of the differences

between the mesh-calculated forces and the true forces in terms of the 2nd norm.

Q , 1

Vc

∫

Vc

dr1

∫

V

dr [F(r; r1)−R(r)]2 .

where Vc is the volume of one mesh cell, V is the volume of the simulation box.
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Since the discretization error Q can be regarded as a functional of W , the optimal

kernel function Wopt can be obtained by setting the functional derivative of Q with

respect to W to zero, i.e.,

δQ

δW
|W=Wopt = 0.

From this idea, Hockney and Eastwood were able to derive the following expression

for Wopt:

Wopt(g) =
D̃(g) ·∑m∈Z3 Ũ2

(
g + 2π

h
m

)
R̃

(
g + 2π

h
m

)

|D̃(g)|2
[∑

m∈Z3 Ũ2
(
g + 2π

h
m

)]2

Here we assume each mesh cell is a cube with the length of each side equal to h. D̃(g)

is the Fourier transform of the employed differentiation operator, Ũ(g) is the Fourier

transform of the charge assignment function divided by the volume of one mesh cell

and R̃(g) is the Fourier transform of the true reference force.
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