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Abstract of the Dissertation

Studies in gauge/string dualities
by

Diego Trancanelli

Doctor of Philosophy

in

Physics

Stony Brook University

2007

Dualities are among the most powerful tools in theoretical physics and,

particularly, in string theory. The ones relating gauge field theories and

theories of strings, the gauge/string dualities, are specially important and

constitute the focus of this dissertation. We consider several topics in the

context of two such dualities, the AdS/CFT correspondence and twistor

string theory.

In the part about the AdS/CFT correspondence we start by studying

the thermodynamics of type IIB superstrings on the maximally super-

symmetric plane wave background, computing in particular the Hagedorn

temperature of non-interacting strings and analyzing the limits of small

and large background Ramond-Ramond flux.
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We then consider a half-BPS supergravity solution whose moduli space

can be mapped to the phase space of a gas of free fermions in a harmonic

potential at finite temperature. We can match the ADM mass of the

geometry with the thermal energy of the fermions and propose a way to

also match the entropies in the two pictures.

The last chapter of this part is dedicated to the study of supersymmetric

Wilson loops. We first introduce a large new family of loop operators

preserving various amounts of supersymmetry, from two to sixteen super-

charges. We then study a novel description of higher rank loops in terms

of electrically charged D-branes. In particular, we compute correlation

functions between such loops and chiral primary operators of N = 4 su-

per Yang-Mills theory and present the D-brane solutions corresponding to

some examples of quarter-BPS loop operators.

In the part about twistor string theory we first extend the conjectured

equivalence between perturbative N = 4 super Yang-Mills and the topo-

logical B-model on CP
3|4 to N = 1 and N = 2 superconformal quiver

gauge theories. This is achieved by orbifolding the fermionic directions

of the supertwistor space. We also consider some explicit quivers and

compute several scattering amplitudes.

Finally, we check the localization properties of some gravity amplitudes in

twistor space and propose an extension of the twistor inspired MHV de-

composition of Feynamn diagrams to the computation of tree level gravi-

ton scattering.
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Chapter 1

Overview

The notion of duality, i.e. the equivalence between two systems with different de-

scriptions but same underlying physics, pervades our current understanding of string

theory.

One of the first and probably most important discoveries of a duality in physics

dates back to Dirac’s observation that the Maxwell equations in the vacuum are

invariant under the exchange of the electric and magnetic fields. To preserve this

symmetry in the presence of sources, Dirac was led to define the concept of magnetic

monopole. The magnetic charge m of the monopole, in order to produce a consistent

theory at the quantum level, had to be quantized in units of the inverse of the electric

charge e

m =
2πk

e
, k ∈ Z .

Assuming that m and e are not both of order 1, exchanging electric and magnetic

monopoles can then be regarded as the prototypical example of weak/strong coupling

duality, or, in more modern language, of S-duality.
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Under S-duality a theory with coupling constant g is mapped to a possibly dif-

ferent theory with coupling constant 1/g. One might then be able to extract infor-

mation about non-perturbative aspects of one theory by studying the weak coupling

expansion of its S-dual.

Differently from S-duality, T-duality (and the closely related mirror symmetry) is

perturbative in nature and acts on the geometric moduli of the background space,

exchanging, for example, the compactification radius R of strings compactified on a

circle with the inverse radius 1/R.

As was realized during the so-called “second superstring revolution” in the mid

nineties, the five superstring theories in ten dimensions are in fact connected by

an intricate web of dualities and might just be different limits of a unique eleven-

dimensional theory called M-theory. For example, type I superstrings and SO(32)

heterotic strings are a notable example of theories linked by S-duality. Two other

theories, which will take the lion’s share of this dissertation, namely type IIB super-

strings and N = 4 super Yang-Mills in four dimensions, exhibit selfduality properties

under S-duality. On the other hand, T-duality relates the two type II theories, type

IIA and type IIB, and the two heterotic theories, SO(32) and E8 × E8. Finally,

type IIA and E8×E8 heterotic strings become eleven-dimensional at strong coupling,

giving rise to M-theory.

A crucial ingredient in the development of this picture was the discovery of D-

branes, topological defects which admit a dual interpretation as non-perturbative

solitonic solutions of supergravity and as hypersurfaces in flat space where open fun-

damental strings can end.

The importance of D-branes in modern string theory is central and in great part

motivated by the fact that they allow for the introduction of non-abelian gauge sym-
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metry. In fact, Yang-Mills theories arise as the low energy limit of the dynamics of

multiple coincident branes and quantum fields as the massless modes of the open

strings living on the branes’ world-volumes.

In virtue of the dual interpretation mentioned above, D-branes have also been

essential in the construction of dualities between non-gravitational field theories and

theories of strings, the gauge/string dualities which are the subject of this dissertation.

Many of these dualities represent a powerful tool to explore regions of the moduli

space of gauge theories which are not directly accessible by ordinary field theoretical

techniques as, for example, the perturbative expansion in small parameters.

The most notable example in this class is given by the Anti de Sitter/Conformal

Field Theory (AdS/CFT) correspondence discovered by J. Maldacena in 1997. This

is one of the major breakthroughs in string theory in the last decade and the first

explicit realization of the holographic principle: the idea that string theory, which is a

theory of quantum gravity, has a dual description as a quantum field theory living on

the boundary of the background space. According to the original and most studied

form of this correspondence, maximally supersymmetric Yang-Mills theory in four

dimensions, which is a conformal field theory, is conjectured to be the exact dual of

type IIB superstrings living on the ten-dimensional space AdS5 × S5.

What makes this duality so interesting is the fact that a non-trivial, strongly

coupled limit of the gauge theory is mapped onto a solvable limit of the string theory.

In fact, it turns out that, when one takes the limit of large number of colors N and

large ’t Hooft coupling g2
YMN in the gauge theory, the corresponding string theory

is well approximated by classical supergravity. This gives therefore a powerful tool

to study strongly coupled systems where perturbative methods are not applicable.

Of course N = 4 super Yang-Mills is a highly supersymmetric and conformal theory
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which differs in many aspects from real world gauge theories such as QCD. The

ultimate hope is however that the AdS/CFT correspondence may provide us with

the tools and the insight necessary to understand strong interactions and find the

string theory dual of QCD.

The fact that the AdS/CFT correspondence is a weak/strong coupling duality

makes it interesting, but, at the same time, also difficult to prove (or disprove) because

reliable computational techniques on the two sides of the duality do not have an

overlapping domain of validity. It is therefore important to test this correspondence

wherever possible and in this dissertation we discuss some of these tests.

The AdS/CFT correspondence has been extended to include theories will reduced

supersymmetry, non-conformal theories, gauge theory duals of M-theory, and has also

found some exciting phenomenological applications, as, for instance, the study of the

strongly coupled plasma of quarks and gluons which is formed in heavy ion collisions

in the RHIC experiment at BNL and will also be studied at CERN, once the LHC is

turned on.

The second gauge/string duality studied in this dissertation is the conjectured

equivalence, proposed by E. Witten in 2003, between perturbative N = 4 super Yang-

Mills and the D-instanton expansion of a particular version of topological string the-

ory, the B-model on the supertwistor space CP
3|4. This represents an interesting

counterpart to the AdS/CFT correspondence, for it relates two weakly coupled theo-

ries. This twistor string, besides being a remarkable mathematical construction which

is compelling in its own right, has also shed new light on previously known results in

non-supersymmetric field theories and inspired very effective ways to reorganize the

expansion in Feynman diagrams, allowing to compute numerous new scattering am-

plitudes, both at tree level and at higher orders, which are of crucial phenomenological
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importance, for example for the analysis of multi-jet production at LHC.

The AdS/CFT correspondence and twistor string theory are by no means the

only interesting cases of fruitful interplay between gauge and string theory. There are

many other important dualities relating gauge theories to string theories and M-theory

which we do not discuss in this dissertation. For instance, the abundant observational

evidence in cosmology that our universe has a small and positive cosmological constant

naturally suggests to consider the analogue of the AdS/CFT correspondence for de

Sitter spaces, the dS/CFT correspondence. Unfortunately this program, albeit its

phenomenological relevance, is far less studied and understood than its AdS/CFT

cousin, mainly because theories in de Sitter space cannot be supersymmetric and

therefore are difficult to deal with.

A second example is the string inspired Dijkgraaf-Vafa conjecture that non per-

turbative quantities of a supersymmetric gauge theory, such as the glueball superpo-

tential, may be computed from a simple matrix model with potential equal to the

tree level superpotential of the gauge theory.

Finally, we mention the Matrix theory interpretation of M-theory in flat space,

where, after compactifying on a torus some of the eleven flat directions, M-theory is

described in terms of a quantum field theory.

In what follows we describe the content and organization of the present work.

Organization of the dissertation

This dissertation consists of three parts. In chapters 2 and 3 of this first part we

present introductory accounts to the AdS/CFT correspondence and twistor string

theory. The original material, published in [1]-[7], is contained in parts II and III.
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The focus in part II is on the AdS/CFT correspondence. We start in chapter 4 by

studying the thermodynamics of type IIB superstrings on the plane wave background,

a maximally supersymmetric background obtained as a Penrose limit of AdS5 × S5

[1]. In particular, we compute the partition function, whose modular properties are

analyzed in detail, and the Hagedorn temperature for a gas of non-interacting strings.

We show that the latter is a non-trivial function of the background Ramond-Ramond

flux and of the string scale and we carefully investigate the limits of small and large

flux. We also study the string thermodynamics in geometries that arise in D1-D5

systems such as AdS3 × S3 × T 4 backgrounds in the presence of NS-NS and R-R

3-forms.

Chapter 5 is based on [2]. There we consider solutions of type IIB supergravity

which preserve half of the supersymmetries of the background. These geometries

correspond to half-BPS chiral primary operators of N = 4 super Yang-Mills and have

a dual description in terms of non-interacting fermions in a harmonic potential. We

investigate how turning on a temperature for these fermions affects the corresponding

supergravity background and compare, in both limits of low and high temperature, the

ADM mass of this solution with the thermal excitation energy of the dual fermions,

finding agreement. We also argue how the solution develops a naked singularity,

which should be resolved once α′ string corrections are taken into account. These

corrections are expected to give rise to a finite area horizon, allowing for a rigorous

analysis of the entropy of the system and a comparison with the entropy of the dual

fermions. In the limit of high temperature we find that the supergravity background

resembles the metric of a dilute gas of D3-branes associated to the Coulomb branch

of the conformal field theory.

The last chapter of part II, chapter 6, is dedicated to supersymmetric Wilson
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loops [3]-[5]. The study of these observables represents one of the main tests of the

AdS/CFT correspondence, because for these operators one can resum the pertur-

bative expansion of super Yang-Mills theory and extrapolate the results to strong

coupling, thus providing a check of the corresponding string theory computation in

the supergravity limit.

In section 6.1 we introduce a new large class of loop operators with non-trivial

expectation value and preserving various amounts of supersymmetry, from two to

sixteen supercharges. In this construction the scalar coupling is determined by the

shape of the loop, which can be an arbitrary curve on a 3-sphere. Some previously

known loops, notably the half-BPS circle, belong to this class, but we point out many

more special cases not known before. We also remark that this class of loops might

be related to a topologically twisted version of N = 4 super Yang-Mills.

Sections 6.2 and 6.3 deal with the so-called “giant Wilson loops”. According to

the AdS/CFT dictionary, Wilson loop operators act as sources of fundamental strings

extending in the bulk of AdS5×S5 and landing on the boundary along the loop. The

expectation value of Wilson loops is then given by the minimal area swept by these

strings. This description is appropriate for particles in the fundamental representation

of the gauge group. For higher representations one needs to replace the strings with

D3 and D5-branes for, respectively, the symmetric and antisymmetric representation.

These branes pinch off at the boundary landing on the Wilson loop and carry an

electric charge. The brane computation captures all the non-planar corrections to

the string result at leading order in α′.

In section 6.2 we consider the expansion of a higher rank circular Wilson loop in a

series of local operators and compute its correlation function with the chiral primaries

of N = 4 super Yang-Mills. We perform the computation both in the bulk picture,
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where the D-branes exchange light supergravity modes with the local operator on the

boundary, and in the theory on the boundary. A peculiar feature of circular Wilson

loops is the fact that the quantum field theory computation reduces to a matrix

model computation. We find perfect agreement between the results coming from the

D-branes and the matrix model.

In section 6.3 we study two examples of quarter-BPS loops where it is possible

to find solutions for the D3-branes starting from first-order equations derived from

the supersymmetry conditions. The first example is a straight half-BPS Wilson line

with the insertion of two local half-BPS chiral primary operators. The second one is

a circular loop which couples to three of the six scalars of the N = 4 multiplet and

whose expectation value is captured by a matrix model.

In part III we present two studies on twistor string theory. In chapter 7, inspired

by the AdS/CFT correspondence, we extend the twistor construction to theories

with reduced supersymmetry [6]. This is done by considering orbifolds of the SU(4)

R-symmetry group of N = 4 super Yang-Mills, or, equivalently, of the fermionic

directions of the supertwistor space CP
3|4. The resulting gauge theories are N = 1

and N = 2 superconformal quiver theories. We test this construction by computing

several scattering amplitudes for these theories and find agreement with the field

theoretical expectations.

Yang-Mills scattering amplitudes in twistor space are localized on holomorphic

curves, whose degree and genus is determined by the helicities of the scattering parti-

cles and by the number of loops. In chapter 8 we explore the possibility of extending

the twistor construction to ordinary (non-conformal) gravity [7] and prove that local-

ization properties also hold for the so-called “googly” graviton amplitudes, which are

the simplest non-maximally helicity violating amplitudes. We also show, using the
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KLT relations between closed and open string vertex operators, that for a particular

subset of amplitudes one has factorization in terms of MHV vertices, but that novel

ingredients are needed to reproduce generic amplitudes.

Note We have not included in this dissertation the work contained in [8], for it is

not directly relevant to the topic of gauge/string dualities. There we found instan-

tonic solutions to N = 1/2 super Yang-Mills theory with matter fields. This theory

arises when one deforms the usual N = 1 superspace by considering a non-vanishing

anticommutator for the fermionic coordinates, {θα, θβ} = Cαβ. The motivation for

introducing this deformation stems from string theory, in particular from superstrings

propagating in a selfdual graviphoton background.
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Chapter 2

The AdS/CFT correspondence

2.1 Introduction

It is an old and important idea in particle physics that gauge theories might have

dual descriptions as string theories [9]. It was in fact observed by ’t Hooft in 1974

[10] that one can reorganize the perturbative expansion of a SU(N) gauge theory in

a way that is very reminiscent of the string theory genus expansion, with the gauge

theory Feynman diagrams seen as string world-sheets.

This is seen by using the double line notation where one associates oriented lines to

color indices: fundamental and anti-fundamental indices are then represented by lines

with opposite orientations, whereas adjoint indices are represented by a double line.

Let’s consider first a theory with only adjoint fields and with the coupling constant

pulled in front of the action in an overall g−2 factor. A generic diagram will then

scale as

(g2)P−VNL ≡ λP−VNL−P+V , (2.1)
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where P is the number of propagators, V the number of vertices, and L the number

of closed loops. We have also introduced the ’t Hooft coupling

λ ≡ g2N . (2.2)

This diagram can be drawn on a simplicial Riemann surface of Euler number χ =

V − P + L = 2 − 2h, with h being the genus of the surface.1 Eq. (2.1) can then be

rewritten as λP−VN2−2h and the perturbative expansion of the partition function as

a double sum

logZ =

∞
∑

h=0

N2−2h

∞
∑

n=0

c(h)
n λn , (2.3)

where c
(h)
n depends on the Feynman diagrams at genus h. In the planar or ’t Hooft

limit of large N with fixed λ, the graphs that can be drawn an a sphere without

crossing lines, the so-called planar graphs, clearly dominate. Adding fundamental

matter means adding propagators with a single line and is therefore equivalent to

introducing boundaries on the Riemann surface, so that χ = 2−2h− b. In the planar

limit these graphs are always suppressed with respect to the adjoint graphs of equal

genus.

The first sum in the expansion (2.3) resembles the string genus expansion where

loop diagrams are suppressed by a factor g2h−2
s with respect to tree level diagrams,

with gs and h being now the string coupling and the genus of the world-sheet. The

second sum on the other hand could be seen as the equivalent of an α′ expansion.

One is then led to regard the gauge theory graphs in the large N limit as defining the

1The surface associated to an SU(N) gauge group is oriented. Other groups as SO(N) and
Sp(N) would give rise to unoriented surfaces, for their adjoint representations are products of two
fundamental ones, rather than a fundamental and an anti-fundamental.
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world-sheet of some string with coupling

gs =
1

N
, (2.4)

so that this string is weakly coupled in the planar limit. Fundamental matter should

correspond to an open string sector of the theory.

The ultimate application of this idea would be clearly to find the ’t Hooft string

dual to SU(3) QCD. This has proved to be an extremely complicated problem which

is still unresolved.

The first explicit realization of ’t Hooft idea took place in 1997 when J. Maldacena

[11] proposed that2

four-dimensional SU(N) Yang-Mills theory with maximal N = 4 supersymmetry is

exactly dual to type IIB superstring on the AdS5 × S5 background with N units of

Ramond-Ramond flux.

This represents also an example of holographic duality, where a theory of quantum

gravity finds a dual description as a quantum field theory living on the boundary of

the space.

Before motivating and discussing in more detail this conjecture, we present next

the main ingredients of the AdS/CFT correspondence, namely N = 4 super Yang-

Mills and some basic aspects of the AdS5 space. A motivation based on matching

global symmetries on the two sides of the duality will then become obvious. We shall

then give a more direct argument based on the study of the near horizon geometry

of D3-branes.

2This proposal has then been refined and clarified in [12]-[14]. By now there are numerous
excellent reviews on this subject, see for example [14]-[18].
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2.1.1 N = 4 super Yang-Mills theory

We start by reviewing some basic facts about SU(N) N = 4 super Yang-Mills in

four dimensions (see also, for example, [17]). This can be obtained by dimensionally

reducing ten-dimensional N = 1 super Yang-Mills on a T 6 (thus preserving all the 16

supercharges of the original theory). The theory has only one multiplet, the gauge

multiplet, composed by a gauge field Aµ (with µ = 0, . . . , 3), four Weyl fermions ψAα

(with A = 1, . . . , 4 and α = 1, 2), and six real scalars ΦI . All these fields are adjoint

under the gauge group SU(N). There is also a global SU(4) ≃ SO(6) R-symmetry

under which the gauge field is a singlet, while the fermions and scalars transform

respectively in the 4 and 6 representations.

The action (in Euclidean signature) reads

S =
1

g2
YM

∫

d4xTr

(

1

2
FµνF

µν +
g2
YMϑ

8π2
FµνF̃

µν +DµΦ
IDµΦI + iΨ̄ΓµDµΨ

−1

2

[

ΦI ,ΦJ
] [

ΦI ,ΦJ
]

+ iΨ̄ΓI
[

ΦI ,Ψ
]

)

, (2.5)

where we have expressed the four Weyl fermions in terms of a single Majorana-Weyl

spinor Ψ in ten dimensions, and Γµ and ΓI are ten-dimensional 16×16 Dirac matrices.

Here gYM is the Yang-Mills coupling constant and we have allowed for a ϑ angle, which

is relevant for non-trivial instantonic backgrounds.

This action is classically scale invariant since all terms in the Lagrangian have

dimension 4. It is actually also conformal invariant, i.e. it is invariant under the

SO(4, 2) ≃ SU(2, 2) group formed by Poincaré, dilatations and special conformal

transformations. This group combined with the 16 Poincaré supercharges inherited

from ten-dimensional N = 1 SYM forms the larger (global and continuous) super-
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conformal group SU(2, 2|4). This supergroup has, in addition to the 16 Poincaré

supercharges QA
α and Q̄Aα̇, also 16 superconformal charges SAα and S̄Aα̇ stemming

from the fact that the Poincaré supersymmetries and the special conformal transfor-

mations do not commute. The doubling of the number of supercharges is a typical

feature of conformal theories.

The superconformal invariance persists also at the quantum level and the theory

is UV finite (this does not prevent in any case wavefunction renormalization).3 As

a consequence the coupling constant gYM is actually a non-running parameter which

can be fixed to the desired value. Then N = 4 SYM is a unique theory defined only

by the value of gYM and the rank of the gauge group N .

2.1.2 Anti de Sitter space

The AdS5 space is a 5-dimensional space with constant negative curvature which can

be expressed in terms of 6 embedding coordinates Xi (with i = −1, 0, . . . , 4) as a

hyperboloid in R4,2

−X2
−1 −X2

0 +

4
∑

k=1

X2
k = −R2 , (2.6)

3The 1-loop β function turns out to be proportional to the factor [19]

11

6
T (adj) − 1

3

∑

A

T (rA) − 1

6

∑

I

T (rI) ,

where T (r) is the Dynkin index of the representation r, and the indices A and I denote, respectively,
Weyl fermions and complex scalars. Since all fields of the N = 4 gauge multiplet are in the adjoint
one has

β ∝ T (adj)

(

11

6
− 4

3
− 3

6

)

= 0 .

The vanishing of the β function can be checked to hold also at two [20] and three loop level [21],
and there are general arguments for all orders [22]-[24].
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where R is the radius of the space. From this expression is clear that the isometry

group of AdS5 is SO(4, 2). Rewriting the embedding coordinates as

X−1 +X4 =
R

z
, Xµ =

R

z
xµ , µ = 0, . . . , 3 , (2.7)

the metric induced on the hypersurface (2.6) becomes

ds2 =
R2

z2

(

dz2 + d~x 2
)

. (2.8)

This is called Poincaré patch metric and z ∈ [0,∞) is called the radial coordinate of

AdS5. The boundary at spatial infinity is at z = 0 in these coordinates.

On the other hand, parameterizing the hypersurface as

X−1 = R cosh ρ cos t , X0 = R cosh ρ sin t , Xk = R sinh ρΩk , (2.9)

with
∑4

k=1 Ω2
k = 1, yields the global coordinates metric

ds2 = R2
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
)

, (2.10)

where t ∈ (−∞,∞) is the global time of AdS5.
4

The Penrose diagram of AdS5 is best understood from eq. (2.10) by taking out a

factor of cosh2 ρ and defining dx = dρ/ cosh ρ [14]. One obtains a solid cylinder with

boundary given by S3 × R, where R is the time direction.5 Light rays propagating

4Strictly speaking, defining t on an infinite line gives the universal covering of AdS5. The hyper-
boloid is in fact already covered one time by taking t ∈ [0, 2π), but in this way one would violate
causality, having closed timelike curves for ρ→ 0.

5The R factor results from decompactifying the S1 parameterized by t, as explained in the
previous footnote.
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in this cylinder can reach the boundary and bounce back in finite time, whereas

massive particles moving along geodesics cannot. Further, the global metric (2.10) is

defined over the whole space, the Poincaré metric (2.8) on the other hand covers only

a “wedge” of the Penrose diagram contained between two horizons at z = ∞ and the

boundary at z = 0.

2.1.3 The statement of the AdS/CFT correspondence

A first heuristic motivation for the AdS/CFT correspondence is based on the analysis

of global symmetries. We have seen that N = 4 SYM in the conformal phase has

superconformal group SU(2, 2|4) with bosonic subgroup SO(4, 2) × SO(6). This is

precisely the isometry group of AdS5×S5. The SO(4, 2) isometry of AdS5 acts in fact

as the four-dimensional conformal group on the boundary, where N = 4 SYM lives,

and the SO(6) isometry of the sphere can be identified with the R-symmetry group.

Moreover, AdS5 × S5 is a maximally supersymmetric background which realizes as

symmetries of the vacuum all the 32 supersymmetries of type IIB strings. These can

then be related to the 32 supercharges of the gauge theory. Finally, both N = 4 SYM

and type IIB strings exhibit a discrete Montonen-Olive SL(2,Z) duality.6

A more direct motivation for the conjecture comes from studying systems of D-

branes. These can be either regarded as hyperplanes where open strings end or,

alternatively, as solitonic solutions of the supergravity equations of motion. The low

energy limits in the two pictures should then produce two related theories.

Consider first type IIB strings in flat ten-dimensional Minkowski space and a

6For the gauge theory, this duality acts on the complex coupling constant τ ≡ ϑ/2π + 4πi/g2
Y M

as a modular transformation. In the string theory it acts on the axion-dilaton field τ ≡ C0 + ie−ϕ

and is the remnant of the SL(2,R) duality of type IIB supergravity, which is broken after taking
into account stringy and quantum effects.
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stack on N D3-branes. The branes act as boundary conditions for open strings, whose

endpoints are confined to the branes’ world-volumes, and as sources for closed strings,

which can leave and cross the branes. Further, they carry N units of the self-dual

5-form charge and break half of the space-time supersymmetries. This description is

valid when the effective loop expansion parameter gsN is small.7 For energies lower

than the string scale 1/ls, one can integrate out massive states leaving a type IIB

supergravity multiplet coming from the closed string sector and an N = 4 gauge

multiplet from the open strings [25]. The total low energy effective action for these

fields is

S = Sbrane + Sbulk + Sint , (2.11)

where Sbrane is four-dimensional N = 4 super Yang-Mills with gauge group U(N),8

Sbulk is ten-dimensional type IIB supergravity and we have interaction terms between

the two theories. Moreover, both Sbrane and Sbulk contain higher derivative correc-

tions. Taking now the ls =
√
α′ → 0 limit one can show that the interaction terms,

being proportional to the coupling constant κ ∝ α′ 2gs,
9 vanish, as well as the higher

derivative terms. In this limit also the bulk action simplifies, becoming quadratic so

that the closed strings in the bulk are free. This can be roughly seen by expanding

the Hilbert-Einstein contribution in the bulk action in terms of the metric g = η+κh

[14]

Sbulk =
1

2κ2

∫

d10x
√
gR + . . . ∼

∫

d10x
[

(∂h)2 + κ(∂h)2h+ . . .
]

+ . . . . (2.12)

7The string coupling gs gets dressed by a factor N coming from the Chan-Paton factor of the
string endpoint on the brane.

8The U(1) factor can be shown to decouple so that one is eventually left with SU(N).
9This relation is dictated by dimensional reasons, having 8πGN = κ2 dimensions of (mass)−8

and being ls =
√
α′ the only scale in the string theory.
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One is thus left in the low energy limit with two decoupled theories, N = 4 SYM on

the branes and free gravity in the bulk. Notice that the open string degrees of freedom

remain interacting when α′ → 0 since the gauge theory coupling is g2
YM = 4πgs.

10

One can regard this system of branes in an alternative way, that, oppositely to

the previous picture, is valid when gsN ≫ 1. A D3-brane can in fact be also seen

as a black 3-brane, i.e. a solitonic solution of type IIB supergravity with mass and

Ramond-Ramond charge related by a BPS condition. The solution for the metric in

the string frame turns out to be

ds2 = H−1/2
3
∑

µ,ν=0

ηµνdx
µdxν +H1/2

6
∑

I=1

(

dyI
)2
, (2.13)

where H is a harmonic function in the yI coordinates. Assuming spherical symmetry

one can write

H = 1 +
R4

r4
, (2.14)

where r is the radial coordinate in the transverse directions
∑

I

(

dyI
)2

= dr2 +r2dΩ2
5,

and

R4 ≡ 4πgsNα
′ 2 (2.15)

is the “charge” of the brane.11 For r ≫ R we recover ten-dimensional Minkowski

space, while the region r < R is usually called throat. Moreover, the solution for the

10This follows from comparing the Yang-Mills action (2.5) with the D3-brane DBI action.
11It is easy to understand the result (2.15) from dimensional arguments. In fact R4 is proportional

to the Newton constant GN , which scales as g2
s l

8
s , and to N TD3 which is the equivalent of mass in

higher dimensions. The brane tension goes as g−1
s l−4

s (and not as g−2
s l−4

s because it is solitonic).
Putting everything together one finds the behavior in eq. (2.15).
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selfdual 5-form is

F5 = (1 + ⋆) dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1 . (2.16)

The dilaton is constant eϕ = gs, so is the axion C0. The NS-NS 2-form B2 and the

R-R 2-form C2 are zero for a D3-brane.

Consider now the change of variable z ≡ R2/r and the near horizon limit z → ∞.

The metric (2.13) becomes

ds2 =
R2

z2

(

dz2 +

3
∑

µ,ν=0

ηµνdx
µdxν

)

+R2dΩ2
5 , (2.17)

which is the product geometry AdS5 × S5. Notice that both AdS5 and S5 have the

same radius, so that the total scalar curvature of the metric (2.17) vanishes. One

very important feature of this background, as already mentioned at the beginning of

this section, is that it is maximally supersymmetric: after the near horizon limit we

restore the 16 supercharges broken by the brane.

If, besides taking the near horizon limit, we also take the low energy limit α′ →

0, the string dynamics in the throat and the one in the asymptotic flat space get

decoupled. In fact, closed strings in the flat space have in this limit very large wave-

lengths and do not see the throat, whereas strings in the throat do not have enough

energy to climb out of it. Then one again ends up with two decoupled systems given

by type IIB strings in AdS5 × S5 and, again, free gravity in flat space.

Having obtained ten-dimensional free gravity both in the hyperplane picture and

in the solitonic solution picture of the D-brane, we are led to identify the two other

theories which resulted from the decoupling limit: four-dimensional N = 4 SYM and
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type IIB strings on AdS5 × S5. In particular, the relations between the parameters

of the two theories are

g2
YM = 4πgs , R = (4πgsN)1/4

√
α′ = λ1/4

√
α′ , (2.18)

and the rank of the gauge group N corresponds to the 5-form flux threading the

S5. With the identifications above the two theories are conjectured to be exactly

equivalent at the full quantum level.

Special limits

The AdS/CFT duality gives useful information in limits where either the Yang-Mills

or the string theory can be analyzed quantitatively. Because of difficulties in quantiz-

ing strings in background Ramond-Ramond fields, quantitative results for the string

theory on AdS5 × S5 are only known in some limits. The first one to be explored is

the supergravity limit where IIB string theory coincides with classical type IIB super-

gravity. The next section 2.2 of this introduction and chapter 4 will be dedicated to

a second limit, called the plane wave limit.

The supergravity limit is obtained by first taking the classical limit gs → 0, holding

R constant. This projects onto tree level string theory. Then one takes the limit of

large string tension, or large curvature. This is done by putting the effective string

tension R2/α′ =
√

4πgsN → ∞. This isolates the lowest energy modes of the string,

which are the supergravity fields on the AdS5 × S5 background.

On the Yang-Mills side, the first of these limits corresponds to taking g2
YM → 0

and N → ∞, while holding the ’t Hooft coupling λ fixed. This is the ’t Hooft large

N (or planar) limit of the gauge theory discussed before. Then, the second limit,
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R2/α′ → ∞, is equivalent to taking λ→ ∞. This gives the strongly coupled limit of

the planar gauge theory.

The gs loop expansion at the classical string level corresponds to N−k correc-

tions to planar results in the gauge theory, while the α′ expansion at the classical

supergravity level corresponds to λ−k/2 corrections to the strong coupling results.

It is this fact, that a solvable limit of string theory is mapped onto a non-trivial

limit of gauge theory which makes the AdS/CFT duality so interesting. At the

same time, this has limited the checks of the conjecture to objects such as two and

three point functions of chiral primary operators [26], which do not depend on the

coupling constant and thus trivially extrapolate between weak and strong coupling,

some anomalies [27][28], where dependence on the coupling constant is trivial, and

also to the computations of expectation values of certain Wilson loops [29][30] and

correlators of Wilson loops with chiral primary operators [31], which we will discuss

in detail later.

2.1.4 Matching the spectra

We now illustrate the relation between the spectra of N = 4 SYM and type IIB

strings on AdS5 × S5. We will see that every operator on the gauge theory side can

be put in a one-to-one correspondence with a state in the bulk.

Gauge theory operators

Since N = 4 SYM is a conformal theory where asymptotic states are not defined, with

the term spectrum one indicates the collection of all local, gauge invariant operators
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O(x) that are polynomial in the fields of the theory.12 These operators are organized

in infinite dimensional families which are the irreducible unitary representations of

the SU(2, 2|4) superalgebra and are labeled by the quantum numbers of the bosonic

subgroup SO(3, 1) × SO(1, 1) × SU(4)R of the superconformal group [32][33]. The

labels for the Lorentz group are a pair of integer or half-integer numbers (s+, s−), the

conformal dimension ∆ is the label of SO(1, 1)13 and the Dynkin numbers [r1, r2, r3]

the labels of the R-symmetry group (see also [17]).

The conformal dimension ∆ is the eigenvalue of the dilatation operator and can

be read off from two-point functions

〈O(x)O(0)〉 ∼ 1

x2∆
. (2.19)

In general ∆ depends on the ’t Hooft coupling, i.e. ∆ = ∆0 + γ(λ), where ∆0 is the

classical (or engineering) dimension and γ is called the anomalous dimension.

We present now some of the commonly used nomenclature. Conformal primary

operators are the operators annihilated by the generators Kµ of special conformal

transformations and, similarly, superconformal primary operators are annihilated by

the conformal supercharges SAα .14 These are the operators with lowest dimension in a

given representation and can be used to obtain superconformal descendants by acting

on them with the supercharges QA
α . One can show that only symmetrized products

of the scalar fields ΦI can appear in superconformal primaries.15 Chiral primary

12The gauge invariance condition is respected by taking traces over the gauge group and consid-
ering field strengths and covariant derivatives rather than the gauge fields. The dependence on the
fields must be polynomial in order for the operators to have definite dimensions.

13∆ has to be non-negative in unitary representations.
14Every superconformal primary is also a conformal primary, but the converse is not true in

general.
15This is easy to see by analyzing the transformation properties of the N = 4 fields under Poincaré
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operators (CPO) are the subset of superconformal primaries which are annihilated by

some combination of Q’s. These operators are in shortened or BPS representations

and are of central importance because are protected from quantum corrections and

do not renormalize. Then for chiral primaries ∆ = ∆0 at any order. A generic 1/2

BPS single-trace CPO with conformal dimension ∆ preserves 8 Q’s and 8 S’s and

can be expressed as

O∆(x) = CI1···I∆Tr(ΦI1 . . .ΦI∆) , (2.20)

where CI1···I∆ is a SO(6) symmetric traceless tensor. One can also consider multi-

trace generalizations and operators preserving less supersymmetry, such as 1/4 and

1/8 BPS operators.16 Using the complex basis X ≡ Φ1 + iΦ2, Y = Φ3 + iΦ4, and

Z = Φ5 + iΦ6, eq. (2.20) becomes, for instance, O∆ = N∆TrZ∆, where N∆ is a

normalization factor, and multi-trace operators are given by O{∆i,ni} ∼
∏

i

[

TrZ∆i
]ni.

The 1/2 BPS chiral primaries O∆ are in the [0,∆, 0] (with ∆ ≥ 2) representation of

SU(4)R.

Bulk modes

In the supergravity limit, it is thought that all operators in the Yang-Mills theory

that are not protected by supersymmetry get infinitely large conformal dimensions

and decouple from the spectrum. The protected operators are just those required to

match the classical field degrees of freedom of IIB supergravity linearized about the

supercharges. Schematically

{Q,ψ} = F + [Φ,Φ] , {Q, ψ̄} = DΦ , [Q,Φ] = ψ , [Q,F ] = Dψ .

Then the only fields that are not Q-exact are the ΦI . Moreover they have to enter in a symmetrized
combination because the commutator between two ΦI appears in the first transformation above.

16We remark though that 1/4 BPS operators have at least two traces and 1/8 BPS have three.
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AdS5 × S5 background [13].

This spectrum has been worked out in [34]. It is organized in multiplets of

SU(2, 2|4) and it turns out that chiral primary operators correspond to the super-

gravity Kaluza-Klein modes after the reduction on the S5

ϕ(x, y) =
∞
∑

∆=0

ϕ∆(x) Y∆(y) , (2.21)

where ϕ is a generic supergravity field, x are the coordinates on AdS5 and Y∆(y) are a

basis of spherical harmonics on S5. The supergravity fields receive mass contributions

after the compactification on S5, for example, the scalar modes have

m2 = ∆(∆ − 4) , ∆ ≥ 2 . (2.22)

Single-trace operators correspond to single-particle states in the bulk, whereas pro-

ducts of operators are either multi-particle states or bound states (if all operators are

evaluated at the same point). For the complete dictionary between SYM descendants

and supergravity fields see table 7 of [17]. We will come back to this point in much

more detail in section 6.2.

Matrix model description of half-BPS operators

Here we briefly discuss how the dynamics of the half-BPS sector of N = 4 SYM may

be described in terms of a gauged matrix quantum mechanics model [35].17 This

description will be the focus of chapter 5.

17For earlier work see [36][37].
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We start by considering the action for the complex scalar field Z on S3 × R

S[Z(x)] =
1

2

∫

dΩ3 dtTr
(

|DµZ|2 − |Z|2
)

, (2.23)

where DµZ = ∂µZ + [Aµ, Z] and the mass term comes from the conformal coupling

to the curvature of the S3, which is taken to have unit radius. Since we are interested

in reducing the action (2.23) to R, we decompose Z in its KK modes on the sphere

Z(x) =
∞
∑

l=0

(l+1)2
∑

m=1

Z l,m(t) Y l,m
(0) (~x) , (2.24)

where Y l,m
(0) (~x) are the scalar spherical harmonics on S3. Their mass is given by

∆ = l+1 (with l = 0, 1, . . .). The only mode respecting the BPS condition ∆ = J = 1

is then the s-wave of Z.

If one repeats this analysis also for the gauge field, one finds that only the s-wave

of the temporal component At is contained in the BPS sector, whereas the spatial

components have spherical harmonics with ∆ = l + 2 and are therefore expected to

receive large anomalous dimensions and decouple. The field At is non-propagating

and plays the role of a Lagrange multiplier enforcing Gauss law. After the reduction

one has a matrix model in one dimension

S[Z(t)] =
1

2

∫

dtTr
(

|DtZ|2 − |Z|2
)

. (2.25)

Gauge fixing At = 018 and going to the eigenvalue basis {zi} (with i = 1, . . . , N), the

18The effect of the gauge field does not disappear though, for one needs to require gauge invariance
of the spectrum of states of the theory.
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classical Hamiltonian of the system reads

H =
1

2

N
∑

i=1

(

|żi|2 + |zi|2
)

. (2.26)

Notice that this is a model of complex matrices, different from the usual Hermitian

matrix quantum mechanics. It can be nonetheless argued that the creation operators

for Z† decouple in the half-BPS sector and one is only left with the creation operators

for Z, effectively reducing the complex model to a Hermitian one [35]. Going to the

eigenvalue basis introduces a Van der Monde determinant in the path integral and the

eigenvalues behave as fermions in a harmonic potential [38]. For large N the eigen-

value distribution can be thought of as a distribution of incompressible “droplets” in

the phase space of the fermions, with the ground state being a circle with radius of

order N .

2.2 The plane wave limit of AdS/CFT

The AdS/CFT correspondence has been mostly studied in its “weakest” formulation

of strong coupling, large curvature limit. The reason behind this is that to go beyond

this limit one would need to solve the string theory side of the conjecture, which is

difficult to deal with because of two main complications:

• the curved space AdS5 × S5, where the strings live, gives rise to a world-sheet

σ-model which is non-linear and therefore hard to integrate;

• the background R-R flux cannot be incorporated in the spinning string formal-

ism, so that one has to use Green-Schwarz superstrings, which are notoriously

complicated to quantize in a covariant way.
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It is then interesting to look for special limits where one can handle these problems,

and extract information beyond the supergravity approximation. One important

example of such limits is a maximally supersymmetric background called the plane

wave background.19 It can be obtained as a Penrose limit of AdS5×S5 [39]-[43], and is

such that the non-linear σ-model defined on it simplifies drastically and can actually

be solved [44][45]. In [46] Berenstein, Maldacena, and Nastase (BMN) took the

analogous limit in Yang-Mills theory, and proposed that a certain class of operators

with large quantum numbers might be the gauge theory dual of the string spectrum

on the plane wave. In this section we review this plane wave/BMN duality,20 which

will also be the central focus of chapter 4, where the string thermodynamics in this

background will be studied.

2.2.1 The Penrose limit

The Penrose limit21 is found by blowing up the neighborhood of a null geodesic of a

given space-time. Every geometry admits such a limit, and, moreover, if this geometry

is a solution of Einstein equations, then also the resulting plane wave is guaranteed

to be a solution. One of the most important feature of the Penrose limit is that

it never breaks any supersymmetry, so that the plane wave limit of a maximally

supersymmetric background as AdS5 × S5 is still maximally supersymmetric.22

The Penrose limit of AdS5 × S5 can be obtained starting from the expression for

19This background admits 32 supercharges. In 10 dimensions the only maximally supersymmetric
spaces are flat space, AdS5 × S5, and the plane wave that we shall discuss in the following. Note
that type IIA supergravity does not allow non-flat maximally supersymmetric solutions.

20A clear and detailed account of this topic can be found in [47].
21In supergravity contexts it is also sometimes called Penrose-Gueven limit.
22In some cases one might even enhance the amount of supersymmetry. For example, one of the

possible Penrose limits of the orbifold AdS5 × S5/Zk, the so called discrete light-cone quantization
(DLCQ), doubles the number of preserved supercharges from 16 to 32. In the case of the conifold
AdS5 × T 1,1 the enhancement is from 8 to 32 supercharges.
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the metric in global coordinates23

ds2 = R2
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + cos2 θ dφ2 + dθ2 + sin2 θ dΩ̃2

3

)

, (2.27)

and rescaling the coordinates as

r = R sinh ρ , y = R sin θ , x+ =
t

f
, x− = fR2(φ− t) , (2.28)

where f is an arbitrary parameter introduced for dimensional reasons. Taking now

the limit R → ∞, while keeping r, y, and x± fixed, blows up a neighborhood of a null

geodesic along the circumference parameterized by φ, with ρ = θ = 0. This yields

the plane-wave metric24

ds2 = 2dx+dx− − f 2

8
∑

I=1

x2
I dx

+dx+ +

8
∑

I=1

dxIdxI . (2.30)

Half of the xI comes from the AdS5 directions r2 =
∑4

I=1 x
2
I , and the remaining half

from the S5 directions y2 =
∑8

I=5 x
2
I , however after the Penrose limit they become

indistinguishable. Note that the limit f → 0 gives ten dimensional Minkowski space.

23For other space, such as AdS4,7 × S7,4, orbifolds, and AdS5 × T 1,1 see [47].
24This is a very special example of pp-wave. A generic pp-wave is given by

ds2 = 2dx+dx− + F (x+, xI)dx+dx+ +

8
∑

I=1

dxIdxI , (2.29)

and is called plane wave if F (x+, xI) =
∑

IJ fIJ(x+)xIxJ . The metric (2.30) is sometimes called
homogeneous plane wave, since it has fIJ(x+) constant and proportional to δIJ . The pp-wave metric
(2.29) admits a covariantly constant null Killing vector field and consequently does not receive α′

corrections [48]. For the plane wave metric this vector field is also globally defined.
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Under the Penrose limit the selfdual R-R 5-form reduces to the constant expression

F+1234 = F+5678 = 2f . (2.31)

The dilaton eφ = gs is also constant.25 Note that the metric (2.30) has an SO(8)

isometry which is broken down to SO(4)×SO(4) by the 5-form. There is an extra Z2

symmetry exchanging these two SO(4) factors, and two non-compact U(1) isometries

corresponding to translational invariance along x+ and x−. Less manifest are 16 extra

symmetries generated by Killing vectors obeying a pair of 4 dimensional Heisenberg

algebras. These Killing vectors generate translations along the 8 transverse directions

xI accompanied by shifts in x−, in such a way that the metric and 5-form remain

invariant. Then the total bosonic symmetries are given by [h(4) × SO(4) × U(1)]2 ×

Z2 [47]. As already anticipated this background has also 32 Killing spinors. All

these bosonic and fermionic generators form the supergroup [PSU(2|2) × U(1)]2×Z2,

which is a Penrose contraction of the original superconformal group PSU(2, 2|4) of

AdS5 × S5.

Like the supergravity limit, eq. (2.30) is obtained from AdS5 × S5 when the

curvature is weak and the effective string tension is large, that is R2/α′ → ∞. How-

ever, this limit is taken asymmetrically, in a reference frame which has large angular

momentum J ∼ R2/α′ on S5. In this way, the limit retains a particular subset of

the the higher level string excitations. Those excitations are described by quantizing

the string on the background (2.30) (2.31). This background has the advantage that

non-interacting string theory can be quantized explicitly in the light-cone gauge and

the energy spectrum can be obtained [44][45], as we discuss next.

25In the eqs. (2.30) and (2.31), throughout this review, and in chapter 4 we shall use the notation
of [45]. In particular, x± = 1√

2

(

x9 ± x0
)

.
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2.2.2 The plane wave σ-model

The light-cone gauge fixing for the Green-Schwarz type IIB superstring consists in

using the conformal symmetry to set
√
g gab = ηab, and then in imposing

x+ = p+τ , γ̄+θI = 0 , (2.32)

to fix, respectively, the residual diffeomorphism invariance and the κ-symmetry. Here

γ̄+ is a 16 × 16 Dirac matrix coming from the off-diagonal parts of the 32 × 32

matrix Γ+ in ten dimensions, and θI (with I = 1, 2) represent two ten-dimensional

Majorana-Weil spinors with the same chirality. After gauge fixing one is then left with

16 physical fermions describing on-shell space-time fermionic modes, and both θ1 and

θ2 are in the same SO(8) spinor representation, for example the 8s. In the light-cone

gauge the string σ-model on the plane wave (2.30) (2.31) becomes quadratic [44][45]

L =
1

2

(

∂+x
I∂−x

I −m2x2
I

)

+ i
(

θ1γ̄−∂+θ
2γ̄−∂−θ

2 − 2mθ1γ̄−Πθ2
)

, (2.33)

where ∂± = ∂0 ± ∂1, and Π is the product of four γ matrices.26 The fields xI and θI

are then free and massive with mass m = fp+, the mass term for the fermions coming

from the coupling to the R-R flux of the background (2.31). In the limit m → 0 one

recovers flat space. The Klein-Gordon equations of motion for xI and θI read

(∂+∂− +m2)xI = 0 , ∂+θ
1 −mΠθ2 = 0 , ∂−θ

2 −mΠθ1 = 0 , (2.34)

26For more details about this notation see appendix A of [45].
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and can be easily solved expanding in Fourier modes the fields and imposing appro-

priate boundary conditions along the world-sheet σ direction. The action (2.33) can

then be canonically quantized in terms of the set of bosonic and fermionic creation

and annihilation operators

[āI0, a
J
0 ] = δIJ , [āIIm , a

J J
n ] = δmnδ

IJ δIJ ,

{θ̄α0 , θβ0} = 1
4
(γ+)αβ , {η̄Iαm , ηJ βn } = 1

2
(γ+)αβδmnδ

IJ , (2.35)

with m,n ∈ Z+, and α, β = 1, . . . , 16 are spinor SO(8) indices. The light-cone

Hamiltonian is given by the momentum conjugate to the light-cone time x+ and

reads

H ≡ −p−

= f
(

aI0ā
I
0 + 2θ̄0γ̄

−Πθ0 + 4
)

+
1

α′p+

∑

I=1,2

∞
∑

m=1

ωm
(

aIIm ā
II
m + ηImγ̄

−η̄Im
)

,(2.36)

where the frequencies are ωm =
√

m2 + (α′p+f)2. The zero point energy exactly

cancels out between the bosonic and the fermionic contributions, as expected from

supersymmetry, and no regularization is required.

The vacuum |0〉 carries momentum p+ and is defined as the state such that

āI0|0〉 = 0 , āIIn |0〉 = 0 , θ̄α0 |0〉 = 0 , η̄Iαn |0〉 = 0 , (2.37)

and a generic vector in the Fock space is obtained by acting on |0〉 with aI0, a
II
n , θα0 ,

and ηIαn (the indices I = 1, 2 have the meaning of left and right sector). This can be
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restricted to the physical space by imposing on the states the level matching condition

N1|Ψphys〉 = N2|Ψphys〉 , NI =

∞
∑

n=1

n
(

aIIn ā
II
n + ηIn γ̄

−η̄In
)

. (2.38)

Consider first the non-zero modes. A generic single-string state is given by a1I
n a

2J
n |0〉

and η1α
n η

2β
n |0〉 for bosonic modes, and by a1I

n η
2α
n |0〉 and a2I

n η
1α
n |0〉 for fermionic modes.

Recalling the isometry group of the plane wave background and in order to make

contact later with the corresponding gauge theory operators, it is useful to decompose

the SO(8) vector and spinor indices in SO(4) × SO(4) representations [45]. For

example, if I = (i, a) then a1i
n a

2j
n |0〉 decomposes as (4, 1) ⊗ (4, 1) = (1, 1) ⊕ (9, 1) ⊕

(6+, 1)⊕ (6−, 1). Similarly a1a
n a

2b
n |0〉 decomposes as (1, 4)⊗ (1, 4) = (1, 1)⊕ (1, 9)⊕

(1, 6+) ⊕ (1, 6−). Both a1i
n a

2a
n |0〉 and a1a

n a
2i
n |0〉 give (4, 1) ⊗ (1, 4) = (4, 4). The total

number of states in this sector is then 64. This sector is not the same as the NS-

NS sector of flat space since it contains combinations of the metric and the selfdual

5-form.

As for the zero-modes, notice that they are not constrained by the level matching

condition and give rise in the low energy limit to a decoupled sector of the string

spectrum which corresponds to supergravity modes on the plane wave background.

For example, the modes coming from aI0a
J
0 |0〉 in the SO(4) × SO(4) decomposition

mentioned above form (1, 1)⊕ (9, 1)⊕ (1, 1)⊕ (1, 9)⊕ (4, 4), for a total of 36 states.

2.2.3 The gauge theory dual

The natural question to ask at this point is which is, if any, the gauge theory that is

the holographic dual of the string living on the plane wave. Berenstein, Maldacena,

and Nastase proposed in [46] a limit in N = 4 super Yang-Mills which is conjectured

33



to the be analog of the Penrose limit.

To motivate the BMN proposal recall that the Penrose limit consists of blowing-up

a geodesic along a combination of the azimuth φ of the S5 and the global time t of

AdS5, see eq. (2.28). According to the AdS/CFT dictionary translations along t and

rotations along φ correspond on the gauge theory side to the actions of the dilatation

operator ∆ and of a U(1) generator in the SO(6) R-symmetry group, which rotates

two of the six scalars of the gauge multiplet and can be called J

i
∂

∂t
↔ ∆ , i

∂

∂φ
↔ J . (2.39)

One is then suggested to consider operators of N = 4 SYM with conformal dimension

∆ ∼
√
N and R-charge J ∼

√
N , such that the momenta of the corresponding string

state, identified by27

p− ≡ f√
2
(∆ − J) , p+ ≡ 1√

2fR2
(∆ + J) , (2.40)

remain finite as N → ∞ and J → ∞ with the ratio J2/N kept fixed in the limit.

These operators with large R-charge J but finite anomalous dimension ∆ − J are

called BMN operators. They are in general non-BPS, but remain close to being BPS

in the large N limit. For this reason they are sometimes said to be “near BPS”.

27In string theory these are defined by p± = p∓ = 1
2πα′

∫

dσ∂τx
± and have a simple form only

in the light-cone gauge. In the gauge theory they are defined by the re-scaling of p± = 1√
2
(∆ ∓ J)

needed to get the plane-wave limit.
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Eigenstates of ∆ and J and BMN operators

Recalling that p− is the string Hamiltonian, the identification (2.40) implies then the

equivalence between the string spectrum discussed in the previous section and the

spectrum of the operator ∆ − J . This equivalence between the two spectra is best

seen if one expresses the N = 4 multiplet in representations of the [SO(4) × U(1)]2

subgroup of SO(4, 2)×SO(6). Recall that this is the isometry group of the plane wave

(modulo the Heisenberg groups). On the gauge theory side it originates from the fact

that eigenstates of ∆ and J selects, respectively, a U(1)∆ subgroup of SO(4, 2) and

a U(1)J subgroup of SO(6)R, breaking both SO(4, 2) and SO(6)R to SO(4) × U(1)

factors.

If J is taken to be the generator of rotations in the Φ5 and Φ6 plane and Z ≡

Φ5 + iΦ6, then the U(1)J charge of Z is 1 and the charge of Z† is −1. The remaining

four scalars Φi have J = 0, as the covariant derivative (gauge fields are trivial under R-

symmetry). Half of the spinors have J = 1/2 and the other half have J = −1/2.28 On

the other hand, the engineering dimension (namely the dimensions of the operators

in the free theory) for all the scalars and the covariant derivative is ∆0 = 1, while

for the fermions is ∆0 = 3/2. Considering for brevity only the bosonic fields one has

then

[∆0−J ](Z) = 0 , [∆0−J ](Z†) = 2 , [∆0−J ](Φi) = 1 , [∆0−J ](Dµ) = 1 .

(2.41)

Both Z and Z† are singlets of SO(4) × SO(4) (where the first group comes from

SO(4, 2) and the second one comes from SO(6)R), whereas Φi and Dµ are in the

(1, 4) and (4, 1) representations, respectively.

28We call with the same symbol, J , both the operator and the eigenvalue, ditto for ∆.
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BMN operators are completely specified in terms of their ∆0 − J charge, their

SO(4)× SO(4) representation, and the number of traces [47]. The simplest example

of BMN operators is represented by single-trace chiral primaries O(x) = NJTrZJ(x).

These operators have ∆0 = J and are clearly singlets of SO(4) × SO(4). They can

be identified with the single-string vacuum |0〉 defined in eq. (2.37)

OJ(0) ↔ |0〉 . (2.42)

The chiral-primary operators have protected conformal dimensions being 1/2 BPS.

Then they are eigenstates of the full dilatation operator ∆ and have ∆ − J = 0

exactly. The same is true for multi-trace operators, which, according to the BMN

dictionary, should correspond to the multi-string vacuum.29

At the next level there are operators built out of Z’s and one impurity, namely

a field with ∆0 − J = 1. One example is OJ
i (x) = NJ,iTr ΦiZJ . In total there are 8

bosonic (corresponding to the insertions of the 4 Φi and the 4 Dµ) and 8 fermionic

single-trace operators at this level. These are all descendants of chiral primaries and

are therefore also exact eigenstates of ∆ − J = 1. On the string theory side they

correspond to aI0|0〉 and θα0 |0〉. One can similarly go on and consider operators with

two or more impurities and match them to the appropriate string states. For more

details see [47].

The plane-wave limit of the Yang-Mills theory has two parameters, gYM and the

ratio J2/N which must be held fixed as N → ∞. Combinations of them which appear

29More precisely, if, for example, OrOs(x) = Nr,sTrZr(x)TrZs(x) (with r + s = J), then the
total momentum p+ of the double-string vacuum is split between the two strings as rp+ and sp+.
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naturally in the Yang-Mills perturbation theory are

λ′ =
g2
YMN

J2
, (2.43)

and

g2 =
J2

N
. (2.44)

It was shown in [49][50] that λ′ governs the loop expansion in Yang-Mills theory and

it also fixes the distance scale in string theory. Also, the constant g2 is the effective

string coupling in that it governs the loop expansion in string theory. It plays the

same role in Yang-Mills theory where it weights Feynman graphs by the genus of

the two dimensional surface on which they can be drawn without crossing lines. In

light-cone quantization it is natural to consider states which have a fixed light-cone

momentum p+. In this case, we can easily see hat g2 is related to string loops by

using the second equation in (2.40) to trade the Yang-Mills parameters for the pair

gs and p+, the light-cone momentum of the string,

λ′ =
2

(fα′p+)2 , (2.45)

g2 = g2
YM

(fα′p+)
2

2
= 2πgs

(

fα′p+
)2
. (2.46)

The free string theory is obtained by putting 4πgs = g2
YM → 0 in conjunction with

the large N limit, with the combination (fα′p+) non-zero and fixed. This is just

the limit where λ′ is held constant and g2 is set to zero. In this limit, all quantities

depend on the parameters gYM and N only through the the combination g2
YMN = λ,

the ’t Hooft coupling. This means that free strings are described by the planar limit
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of Yang-Mills theory.

It has been checked explicitly that the spectrum of free strings is found in the

conformal dimensions ∆ of certain Yang-Mills operators computed from planar Feyn-

man diagrams [46][51]-[53]. One-loop corrections to the string mass spectrum have

similarly been related to computations on the gauge theory side [54]-[65].

2.3 Wilson loops in the AdS/CFT correspondence

A Wilson loop is a non-local gauge invariant operator whose expectation value gives

the phase factor associated to a charged and heavy external particle moving along a

contour C

W (C) = TrP exp

(

i

∮

C
Aµdx

µ

)

, (2.47)

where P means that the integral has to be path-ordered and the trace is over the

representation, usually taken as the fundamental, of the external particle.30 These

operators are extremely interesting because play the role of order parameters and can

therefore be used to study the confining/deconfining phases of a given theory.31 In

fact, it turns out that the potential V (L) between two probe charges at a distance

L is given by the expectation value of the rectangular Wilson loop defined by two

parallel lines of length T and spatial separation L

lim
T→∞

〈W 〉 = e−T V (L) . (2.48)

30In mathematical terms this is the trace of the holonomy of the gauge connection A after parallel
transport along the curve C. Notice also that we are probing an adjoint theory with fundamental
objects, see Witten’s lecture on Wilson lines in [66].

31For finite temperature the natural order parameter is a generalization of eq. (2.47), the Polyakov
loop, where the contour is the compactified time direction in Euclidean signature S1

β, and the period
β is identified with the inverse of the temperature.
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A confining phase exhibits a linear potential between the two charges, V (L) ∝ L.

The exponent in eq. (2.48) goes then like the area of the loop, a behavior referred

to as area law. A non-confining phase on the other hand, like a Higgs phase where

electric charges condense and V (L) is constant, presents a perimeter law behavior.

For a conformal theory the potential is Coulombic, as we shall see in the following.32

2.3.1 Wilson loops in N = 4 super Yang-Mills

We extend now the gauge theory definition (2.47) to N = 4 super Yang-Mills theory.

As briefly mentioned above, the data which characterize a Wilson loop are the contour

C along which one integrates the gauge connection and the representation R of the

gauge group. In a supersymmetric context it is natural to define C in the superloop

space parameterized by {xµ(τ), yI(τ), ξαA(τ)}, where xµ and yI are bosonic directions

which couple to the gauge field Aµ and the six scalars ΦI of the N = 4 gauge

multiplet, while ξαA are fermionic directions associated to the spinors ψAα . Gauge

invariance requires the loop in the four xµ directions to be closed, yI and ξαA on the

other hand may be arbitrary. One can actually suppress the fermionic directions,

since a loop operator containing the ψAα is a supersymmetry descendant of a loop not

containing them. Then a N = 4 supersymmetric Wilson loop is naturally defined (in

Euclidean signature)33 as

WR(C) =
1

dimRTrR P exp

∮

C
dτ
[

iAµ(τ)ẋ
µ + ΦI(τ)ẏI

]

. (2.49)

32Wilson loops have numerous other applications, also at the interface between physics and math-
ematics. For example, Wilson loops in Chern-Simons theory have been proven in [67] to compute
knot invariants, such as the Jones polynomials.

33In Minkowski signature the i multiplying Aµ goes in front of the integral. Notice also that the
exponent is not a pure phase.
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The irreducible representations R of SU(N) can be expressed in terms of Young

diagrams. For the moment we take R = �, the fundamental representation, but later

on in section 2.3.3 we shall consider more general cases, which will be in fact one of

the focuses of chapter 6.

Supersymmetry

Let us now study the invariance properties of the loop (2.49) under the Poincaré and

conformal supersymmetry transformations of the gauge and scalar fields

δQAµ = Ψ̄Γµǫ0 , δQ ΦI = Ψ̄ΓIǫ0 ,

δS Aµ = Ψ̄Γµx
νΓνǫ1 , δS ΦI = Ψ̄ΓIxνΓνǫ1 . (2.50)

Here Ψ is the ten-dimensional spinor appearing in the action (2.5) and the transforma-

tion parameters ǫ0,1 are two ten-dimensional 16-components Majorana-Weyl fermions

of opposite chirality. Focussing for the moment on the Poincaré supercharges one

finds that δQW (C) = 0 implies [68]

(

iΓµẋµ + ΓI ẏI
)

ǫ0 = 0 . (2.51)

For a fixed τ this equation has eight independent solutions if
(

iΓµẋµ + ΓI ẏI
)

squares

to zero. This happens, recalling that the matrices Γµ and ΓI anticommute, if

ẋ2 − ẏ2 = 0 . (2.52)
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This is solved for ẏI(τ) = |ẋ|ΘI(τ), where ΘI is a unit vector on R
6.34 Then the

Wilson loop (2.49) becomes (choosing, as already mentioned, R = �)

W (C) =
1

N
TrP exp

∮

C
dτ
[

iAµ(τ)ẋ
µ + |ẋ|ΦI(τ)ΘI(τ)

]

. (2.53)

Notice though that this solution, because of the dependence of ΘI on τ , makes the

Wilson loop (2.49) only locally supersymmetric. In order to have a globally super-

symmetric loop one needs to require that the same Killing spinor be preserved at each

point. Taking the unit vector ΘI constant implies that the loop must be a straight

line, ẍµ = 0, say along the time direction.35 One can then always use the SO(6) sym-

metry to rotate ΘI in such a way that the loop will only couple to one scalar. Other

ways of constructing non-trivial solutions to eq. (2.52) will the subject of section 6.1.

There ΘI will not be constant but will depend on the shape of loop in a non-trivial

way, and the loop will in general couple to more than one scalar.

A similar computation can be carried over for the superconformal charges and

one sees that the straight line Wilson loop preserves separately 8 Poincaré and 8

superconformal charges and is therefore 1/2 BPS.

The symmetry of the straight line loop is the Osp(4∗|4) subgroup of SU(2, 2|4).

Switching for a moment to Minkowski signature, it is easy to understand the origin of

the bosonic subgroup. The conformal group SO(4, 2) ≃ SU(2, 2) is broken down by

the loop to SO(1, 2)×SO(3) ≃ SU(1, 1)×SU(2) ≃ SO(4∗). The first factor consists

of the three generators P , ∆, and K of the conformal group along the preferred

34In Minkowski signature eq. (2.52) reads ẋ2 + ẏ2 = 0, and one could also consider another non-
trivial solution given by light-like loops ẋ2 = 0 with ẏI = 0 for every I. These loops are effectively
non-supersymmetric because they do not couple to the N = 4 scalars. Light-like Wilson loops with
cusps find vast applications in the computations of anomalous dimension of twist operators [69]-[72].

35The line has to be infinitely long for gauge invariance.
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direction defined by the loop, while the second one is the group of rotations around

the line. The R-symmetry group SO(6) ≃ SU(4) is broken by a specific choice of ΘI

to SO(5) ≃ Sp(4).

Next we briefly review the perturbative expansion of the loop (2.53) and introduce

a second 1/2 BPS loop, the circular loop [29].

The circular loop in perturbation theory

Expanding the exponent in eq. (2.53) to second order and setting ΘI = const., we

find that the combined gauge and scalar propagators, defining x(i) ≡ x(τi), read36

〈(

iAaµẋ
µ
(1) + |ẋ(1)|ΘIΦa

I

)(

iAbρẋ
ρ
(2) + |ẋ(2)|ΘJΦb

J

)〉

=
g2δab

4π2

|ẋ(1)||ẋ(2)| − ẋ(1) · ẋ(2)

|x(1) − x(2)|2
.

(2.54)

For the infinite straight line it is obvious that this expression vanishes. Then one

anticipates the expectation value of this loop to be 1, and we will in fact recover this

result from the dual description in the bulk.

The straight line considered so far is not the only 1/2 BPS loop operator. A cir-

cular Wilson loop can be obtained from it by performing a conformal transformation,

more precisely an inversion around the origin

xµ → xµ

x2
. (2.55)

36This expression is obtained in the Feynman gauge where, up to the index structure, the gauge

and scalar propagator in configuration space are equal and given by g2

4π2

1
x2 .

Inserting the propagator (2.54) in a smooth loop, one expects a priori a linear divergence when
the two legs of the propagator approach each other. It was shown in [73] that, at any order in
perturbation theory, this divergence in fact cancels between gauge and scalar fields provided that
eq. (2.52) is satisfied. If the loop has cusps or self-intersections then an additional logarithmic
divergence arises.
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The resulting loop still preserves half of the supercharges, but a different combination

than before, with Poincaré and superconformal charges mixed together [74]. The

symmetry group is still Osp(4|4∗), although realized in a less transparent way (see

section 6.1).

One could think that the expectation value of the circular loop should also be

trivial, but it turns out that this is not true [29], because of a conformal anomaly

coming from mapping the point at infinity to the origin [30]. This can be understood

considering that the transformation (2.55) is not a symmetry of R4, but only of S4.

Taking the explicit parametrization for the circle xµ = (cos τ, sin τ, 0, 0) , one can

readily see that the propagator (2.54) reduces to a constant

〈(

iAaµẋ
µ
(1) + |ẋ(1)|ΘIΦa

I

)(

iAbρẋ
ρ
(2) + |ẋ(2)|ΘJΦb

J

)〉

=
g2δab

8π2
. (2.56)

It is then possible to sum the infinite class of Feynman diagrams without internal

vertices, the so-called ladder or rainbow diagrams, and find a result valid for any

value of the ’t Hooft coupling λ. It is in fact believed that graphs with internal

vertices cancel at any order in perturbation theory and one is then left only with free

propagators [29]. This conjecture has been checked at order λ2, where the graph with

one internal 3-vertex cancels against the 1-loop self-energy correction of eq. (2.54).

Explicit computations at higher orders have not yet been performed, but a formal,

albeit incomplete, proof of the conjecture based on the conformal anomaly mentioned

above has been presented in [30].37

37The argument goes roughly as follows. Starting from the straight line and performing an in-
version the gauge propagator gets modified by a total derivative, which is equivalent to a gauge
transformation. This transformation is singular at the origin, and computing the contribution from
the singularity one can show that it is given by a matrix model. This is shown to hold at any order
in perturbation theory.
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The Gaussian matrix model

The fact that the propagator (2.54) loses the coordinate dependence for the circular

loop suggests that it might be possible to map the problem of summing the ladder

diagrams of the circle to a 0-dimensional matrix model [29]. Further, since interacting

graphs are conjectured to cancel in the perturbative expansion we also expect this

matrix model to be quadratic. This model is also taken to be Hermitian and is defined

in terms of its partition function

Z =

∫

[dM ] exp

(

−2N

λ
TrM2

)

. (2.57)

The expectation value of the circular Wilson loop is then given by [29][30]

〈W 〉 =

〈

1

N
Tr eM

〉

=
1

Z

∫

[dM ] exp

(

−2N

λ
TrM2

)

1

N
Tr eM . (2.58)

This expression is valid, up to instanton corrections [74], to all orders of 1/N and λ.

Using classical methods in random matrix theory [38] one finds

〈W 〉 =
2

πλ

∫

√
λ

−
√
λ

dx
√
λ− x2 ex =

2√
λ
I1

(√
λ
)

, (2.59)

where the square root under the integral is the Wigner semi-circle distribution, and

I1 is a modified Bessel function.38 This expression is valid for any value of λ. In

particular we can compute the strong coupling limit of eq. (2.59), which is the

38This expression is obtained with a saddle point approximation in the planar limit of infinite N .
It is also possible to solve the matrix model exactly, leaving N finite and thus including non-planar
corrections, by using (Hermite) orthogonal polynomials [30]. The result turns out to be

〈W 〉 =
1

N
exp

(

λ

8N

)

L1
N−1

(

− λ

8N

)

,
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interesting limit for a comparison with the string theory computation. For λ → ∞

one has

〈W 〉 ≃
√

2

π

e
√
λ

λ3/4
. (2.60)

This expression does not depend on the radius of the circle, as requested by conformal

invariance, but only on the dimensionless parameter λ. In the asymptotic expansion

of the Bessel function also appears another, subleading contribution which we did not

include in the formula above and goes as ie−
√
λ. This term is associated to instantonic

correction and will be discussed in more detail in section 6.3.

2.3.2 Bulk description as minimal surfaces

Equipped with the strong coupling result (2.60) for the circular loop, we present

now the dual, bulk description of Wilson loops as sources of fundamental strings in

AdS5 × S5.

It was proposed in [75][76] that a Wilson loop in the fundamental representation

of the gauge group should be associated to a string extending on the bulk of AdS5×S5

and landing on the boundary along the contour of the loop. Then the expectation

value of the loop operator is given by the (regularized) area of the minimal surface

swept by the string. Here we motivate this proposal and discuss it in detail.39

As explained above, the Wilson loop gives the phase factor of an external probe

in some representation of the gauge group that, so far, we have taken to be the

where L1
N−1 is a Laguerre polynomial. Expanding this expression for large N yields

2√
λ
I1

(√
λ
)

+
λ

48N2
I2

(√
λ
)

+
λ2

1280N4
I4

(√
λ
)

+ . . . .

39A nice review can be found in [77].
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fundamental one. In N = 4 super Yang-Mills there are no “quarks”, but a funda-

mental particle can be mimicked in the following way. Consider a stack of N + 1

D3-branes and then move one of them far away from the remaining N . There will

be a very long string stretching in-between, which can be interpreted as a very heavy

“W-boson”. The endpoints of this string are the external non-dynamical sources that

we call quarks. After taking the decoupling limit discussed in section 2.1.3, the string

extends in the bulk of AdS5 and lands on the loop on the boundary.

At the gauge theory level this consists in giving a large expectation value to one

scalar and in breaking the gauge group U(N + 1) → U(N) × U(1). The resulting

off-diagonal bosons are in the fundamental of U(N). The amplitude for one of these

W-bosons with mass m to go around a loop C of length l(C) is given (in the limit of

large m) by

A ≃ e−ml(C)〈W (C)〉 . (2.61)

According to the proposal in [75][76], this amplitude should be equal to the world-

sheet area of the string associated to the contour C

A =

∫

[dXµ][dY I ][dhab] exp
(

−
√
λS[X, Y, h]

)

, (2.62)

where one must impose the following boundary values on the fields: Xµ|C = xµ, the

coordinates parameterizing the loop, and Y I |C = yI , see eq. (2.49). Considering

the limit of large λ the integral can be evaluated on the saddle point, where string

fluctuations are suppressed and the action is the (minimal) area of the classical surface

lim
λ→∞

A = e−
√
λArea(C) . (2.63)
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Then

〈W (C)〉 ≃ exp
[

−
(√

λArea(C) −ml(C)
)]

. (2.64)

The worldsheet area, being the string infinitely long, is formally infinite but is regu-

larized subtracting the term ml(C) A detailed discussion of this issue can be found

in [73].

The classical surface has always the minimal area for a given set of boundary

conditions and the counterterm ml(C) is always larger than the minimal area. Then

the renormalized area is always negative. As a consequence, the generic behavior for

a Wilson loop at strong coupling is

〈W (C)〉 ≃ eα
√
λ , (2.65)

where α is a non-negative constant.

We illustrate this in three important cases.

Infinite straight line

The simplest example where one can start testing this prescription is the infinite

straight line, whose expectation value is expected to vanish.

To describe this system we use the Poincaré metric with cartesian coordinates on

the boundary (the radius of AdS5 is set equal to 1)

ds2
AdS =

1

z2

(

dz2 +

4
∑

i=1

dx2
i

)

. (2.66)

Then we can take the loop along the x1 direction, with x2 = x3 = x4 = 0 and sitting

at a fixed point ΘI on the S5. It is convenient to choose a static gauge where the
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world-sheet coordinates are taken to be {z, x1}. The Nambu-Goto action for the

fundamental string stretching in the interior of AdS5 and landing along the loop is

SNG =
1

2πα′

∫

dz dx1

√

det γ

=
1

2πα′

∫ ∞

z0

dz

∫ X1

0

dx1
1

z2
=
X1

√
λ

2πz0
, (2.67)

where γab = Gµν∂ax
µ∂bx

ν is the induced world-sheet metric, X1 is the length of the

loop (which is eventually sent to infinity), and z0 is a cut-off introduced to regularize

the action.

As explained in [73], it is necessary to add an appropriate boundary term for the

transverse scalar z. In fact it turns out that one needs to Legendre transform the

action in such a way that it depends on pz, the conjugate momentum of z, rather

than on z itself

Sbdy = −
∫

∂M

z pz = −
∫

∂M

z
∂LNG
δz′

, (2.68)

where the derivative of LNG with respect to z′ is computed considering a non-static

gauge where the world-sheet coordinates are {z̃, x1}, with z = z(z̃), and finally setting

z = z̃. One has then

Sbdy = −
∫ X1

0

dx1

√
λ

2πz

∣

∣

∣

z=z0
= −X1

√
λ

2πz0
, (2.69)

which exactly cancels eq. (2.67), giving 〈W (line)〉 = 0.
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Circular loop

The computation for the circle is very similar to the straight line case and we do not

report it here. One finds again a divergent expression for the Nambu-Goto action

SNG =
√
λ

(

1

z0
− 1

)

. (2.70)

The first term is cancelled by the boundary condition for the scalar field and one is

left with the second term, so that

〈W (circle)〉 = e
√
λ . (2.71)

This exactly reproduces the leading behavior of the strong coupling result (2.60)

obtained from the matrix model on the boundary.

A more precise match with eq. (2.60) comes from considering the zero modes

arising when gauge fixing the integral over the metrics. These give a factor of λ1/4

for each zero mode integrated in the path integral. The number of zero-modes turns

out to be three times the Euler character of the world-sheet, which has the topology

of a disk and therefore χ = −1 [78]. This account for the factor λ−3/4 in eq. (2.60).

Other corrections come from considering string fluctuations around the classical

surface [78]. They go in powers of λ−1/2 and correspond to an α′ expansion of the

world-sheet σ-model.
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Quark–antiquark potential

As last example we present the result for the potential between a static quark–

antiquark pair [75][76].40 This potential is given by the expectation value of two

antiparallel straight lines along the Euclidean time, representing the positions on the

boundary of the quark q and the antiquark q̄. The length T of these lines is taken to

be much larger than their spatial separation L. Both q and q̄ sit at the same fixed

point on the 5-sphere.41

One finds that, after subtracting the contribution coming from the infinite mass of

the string connecting q and q̄, the regularized world-sheet area yields a non-confining

Coulomb potential [76]

S = − 4π2
√
λ

Γ (1/4)4 L
. (2.72)

Notice that this potential scales as
√
λ, differently from the weak coupling result which

scales as λ. The inversely proportional dependence on L is dictated by conformal

invariance: L is in fact the only scale in the setup, and 1/L is the only way to achieve

dimensions of energy. Any other dependence on the distance between q and q̄ would

require a second scale which cannot appear because of conformal invariance.

One way one could have anticipated this result is by thinking in terms of the warp

factor of the AdS5 metric 1/z2 [18]. Increasing the distance between q and q̄ pushes

the string into regions of greater z and therefore smaller 1/z2, decreasing the value

of the proper renormalized area of the world-sheet.

40As already explained above, with the word “quark” one indicates in this context the endpoints
of a long fundamental string connecting the stack on N D3-branes with the one D3-brane sitting far
away from the others.

41This is a non-BPS configuration, where the Coulomb force between the two charges and the
gradient of the transverse scalar field are both attractive and therefore generate a non-vanishing
potential [75]. The configuration with q and q̄ at antipodal point of S5 is on the other hand BPS
and does not give rise to a potential, because of a cancellation between two opposite forces.
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2.3.3 Giant Wilson loops

So far we have always considered Wilson loops containing traces over the fundamental

representation of the gauge group. We now move on to presenting the bulk description

of higher rank loops, i.e. loops in representations other than the fundamental.42 These

loops will be the subject of sections 6.2 and 6.3.

The first guess for a bulk description of higher rank loops, coincident loops, or

multiply wrapped loops would be to consider a set of coincident fundamental strings

all landing along the loops on the boundary [79]. This approach presents serious

technical difficulties arising from the fact that the string world-sheets develop conical

singularities and branch cuts, whose locations need to be integrated over.

A more effective way to describe such loops has been first proposed in [80],43

where it was suggested that a multiply wrapped loop might be associated to a D3-

brane extending in the bulk and pinching off at the boundary landing on the loop.

This proposal is based on merging two ideas: the first one is to generalize to the

AdS5 × S5 background the picture first put forward by Callan and Maldacena [83],

that a fundamental string ending on a D3-brane in flat space can be described in

terms of a curved D3-brane with a localized spike carrying a unit of electric flux, and

the second one is the idea, known as Emparan-Myers polarization effect [84][85], that

coincident strings can polarize into a single D-brane.

42We illustrate the explicit meaning of the symbol TrR in the case of a Young diagram with two
boxes. There are two such diagrams: the symmetric and the antisymmetric . The traces over
these two representations are given by

Tr M : M i
jM

j
i → 1

2

(

M i
jM

j
i +M j

jM
i
i

)

=
1

2

(

TrM2 + (TrM)2
)

,

Tr M : M i
jM

j
i → 1

2

(

M i
jM

j
i −M j

jM
i
i

)

=
1

2

(

TrM2 − (TrM)
2
)

.

43See also [81][82].
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This brane picture has the advantage of automatically encoding the interactions

between the coincident strings and yields all non-planar contributions to the expec-

tation value of the higher rank Wilson loop [80].44

If we indicate with k the rank of the loop, the number of coincident loops or the

number of windings, the D-brane must have k units of fundamental string charge

dissolved in its world-volume. Further, it must preserve the supersymmetries and the

SO(1, 2)× SO(3) × SO(5) isometry group of the gauge theory operator.

It turns out that there are two kinds of branes with these characteristics: an

electrically charged D3-brane with AdS2 × S2 world-volume and charge k, and a

D5-brane with AdS2 × S4 world-volume and, again, charge k. Both the D3 and

D5-brane are 1/2 BPS and both have an AdS2 factor which can be associated to

the fundamental string world-sheet. The difference between them is that the D3 is

completely contained in AdS5, whereas the S4 factor of the D5 is inside S5.45

The holographic dictionary that has been established in [80][81][88] connects the

D3-branes to Wilson loops in the rank k symmetric representation46 and the D5-

branes to the rank k antisymmetric one.47

This brane picture is very reminiscent of the giant/dual giant graviton picture for

chiral primary operators [91]-[93]. A giant graviton is a D3-brane wrapping an S3 ⊂

S5, whereas a dual giant graviton wraps an S3 ⊂ AdS5. Both describe excitations

44For ’t Hooft loops see [80] and for applications to finite temperature see [86].
45As a consequence, as long the D5-brane preserves an SO(5) group, its volume is always propor-

tional, independently on the shape of the loop on the boundary, to the area of the string world-sheet,
the constant of proportionality being an universal factor [87].

46In the limit of N → ∞ and λ→ ∞ it turns out that the symmetric Wilson loop coincides with
the multiply wound one [89][90].

47By checking the brane results against matrix model computations, the connection between the
D3-brane and the multiply wound loop and between the D5-brane and the antisymmetric loop was
first seen in [80] and [81], respectively (see also [89][90]). A more formal proof of this dictionary was
later given in [88], by using defect conformal field theory arguments.
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with large angular momentum J ∼ N . Inspired by this analogy, one can call the

D3-brane dual giant Wilson loop and the D5 giant Wilson loop. The role of J is

played in this context by the charge k.

The brane probe approximation discussed so far is valid when k ∼ N and breaks

down if k ≫ N . In that regime the brane backreacts on the geometry and the

AdS5 × S5 space is deformed into the supergravity solutions studied in [94][95].48

In section 6.2 we will make explicit use of the solutions for the D3 and D5-branes

associated to higher rank loops. We therefore review them in detail in the following.

The D3-brane

We start with the D3-brane found in [80] and consider a circular Wilson loop of

radius a placed on the boundary of AdS5. The metric on AdS5 can be written in

polar coordinates as

ds2
AdS =

1

z2

(

dz2 + dr2
1 + r2

1dψ
2 + dr2

2 + r2
2dφ

2
)

. (2.73)

The position of the loop is defined by r1 = a and z = r2 = 0. As explained above,

we look for a D3-brane which pinches off on this circle as z → 0 and preserves a

SO(1, 2)× SO(3) × SO(5) isometry.

The bulk action includes a DBI part and a Wess-Zumino term, which captures

the coupling of the background Ramond-Ramond field to the brane

SD3 = TD3

∫

√

det(γ + 2πα′F ) − TD3

∫

P [C(4)] , (2.74)

48This is, again, very similar to what happens for giant gravitons when J ∼ N2. The resulting
geometry in this case is the LLM “bubbling AdS” space which will be the focus of chapter 5.
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where TD3 = N
2π2 is the tension of the brane, γ is the induced metric, F the electro-

magnetic field strenght, and P [C(4)] is the pull-back of the 4-form

C(4) =
r1r2
z4

dr1 ∧ dψ ∧ dr2 ∧ dφ (2.75)

to the brane worldvolume. It turns out to be more convenient to use a new set of

coordinates obtained by transforming {z, r1, r2} into

z =
a sin η

cosh ρ− sinh ρ cos θ
, r1 =

a cos η

cosh ρ− sinh ρ cos θ
, r2 =

a sinh ρ sin θ

cosh ρ− sinh ρ cos θ
.

(2.76)

In this coordinate system the metric on AdS5 reads

ds2
AdS =

1

sin2 η

(

dη2 + cos2 η dψ2 + dρ2 + sinh2 ρ (dθ2 + sin2 θ dφ2)
)

, (2.77)

where ρ ∈ [0,∞), θ ∈ [0, π], and η ∈ [0, π/2]. The Wilson loop is located at η = ρ = 0.

One can pick a static gauge in which the worldvolume coordinates of the brane are

identified with {ψ , ρ , θ , φ} and the brane sits at a fixed point of the S5 determined

by the constant unit vector ΘI ∈ R6. The remaining coordinate can be seen as a

scalar field, η = η(ρ). Because of the symmetries of the problem the electromagnetic

field has only one component, Fψρ(ρ). In this coordinates the DBI action in eq. (2.74)

reads

SDBI = 2N

∫

dρdθ
sin θ sinh2 ρ

sin4 η

√

cos2 η(1 + η′2) + (2πα′)2 sin4 ηF 2
ψρ , (2.78)
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while the Wess-Zumino term is

SWZ = −2N

∫

dρdθ
cos η sin θ sinh2 ρ

sin4 η

(

cos η + η′ sin η
sinh ρ− cosh ρ cos θ

cosh ρ− sinh ρ cos θ

)

.(2.79)

The solution to the equations of motion reads [80]

sin η =
1

κ
sinh ρ , Fψρ =

ikλ

8πN sinh2 ρ
, κ =

k
√
λ

4N
. (2.80)

From this solution one can see that k is not constrained for the D3-brane. In fact k

determines the position of an AdS2 × S2 foliation of AdS5 which is a non-compact

space. This has to be contrasted with the D5-brane case where we shall find a bound

on k.

The bulk action has to be complemented with boundary terms for the worldvolume

scalar η and for the electric field Fψρ. These terms do not change the solution but

alter the final value of the on-shell action which reads

SD3 = SDBI + SWZ + Sbdy = −2N(κ
√

1 + κ2 + sinh−1 κ). (2.81)

The expectation value of a Wilson loop in the rank k symmetric representation is

then

〈WSk〉 = exp
[

2N
(

κ
√

1 + κ2 + sinh−1 κ
)]

. (2.82)

For small κ this expression reproduces the result of k fundamental strings

〈WSk〉 ≃ ek
√
λ. (2.83)
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The D5-brane

We now move on to reviewing the D5 solution found in [81], albeit in a different

system of coordinates. We find convenient to take the AdS5 × S5 metric as

ds2 = cosh2u(dζ2 + sinh2ζdψ2) + du2 + sinh2u(dϑ2 + sin2ϑdφ2) +

+ dθ2 + sin2θdΩ2
4 , (2.84)

where we have written the AdS5 factor as an AdS2 ×S2 fibration. These coordinates

are related to the usual Poincare patch by

r1 =
a cosh u sinh ζ

cosh u cosh ζ − cosϑ sinh u
, r2 =

a sinh u sinϑ

cosh u cosh ζ − cosϑ sinh u

z =
a

cosh u cosh ζ − cos ϑ sinh u
, (2.85)

where, as before, a denotes the radius of the Wilson loop. In these coordinates the

Wilson loop is at ζ → ∞, u = 0 and it is parametrized by ψ. The selfdual 4-form

potential can be taken to be

C(4) = 4

(

u

8
− 1

32
sinh 4u

)

dH2 ∧ dΩ2 −
(

3

2
θ − sin 2θ +

1

8
sin 4θ

)

dΩ4 , (2.86)

where dH2 denotes the volume element of the AdS2 part of the metric.

Since we want to construct a D5-brane with AdS2 ×S4 worldvolume, it is natural

to take a static gauge in which ζ, ψ and the coordinates of the S4 ⊂ S5 are the world-

volume coordinates. Furthermore we can take the following ansatz which preserves
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the SO(1, 2)× SO(3) × SO(5) symmetry of the Wilson loop

u = 0 , θ = const. , (2.87)

and only the Fψζ component of the worldvolume gauge field is turned on. With this

ansatz the DBI and Wess-Zumino parts of the D5 action reduce to

SDBI = TD5

∫

d6σ
√

det(γab + 2πα′Fab)

=
2N

3π

√
λ

∫

dζ sinh ζ sin4 θ

√

1 +
4π2

λ

F 2
ψζ

sinh2 ζ
, (2.88)

and

SWZ = −2πα′i TD5

∫

F ∧ P [C(4)]

=
4iN

3

∫

dζ Fψζ

(

3

2
θ − sin 2θ +

1

8
sin 4θ

)

, (2.89)

where we have used TD5 = N
√
λ/8π4 and vol(Ω4) = 8π2/3. The equation of motion

for the electric field states that the conjugate momentum is a constant equal to the

number of fundamental string charge k dissolved in the D5-brane

Π ≡ −i
2π

δL
δFψζ

=
2N

3π

E sin4 θ√
1 − E2

+
2N

3π

(

3

2
θ − sin 2θ +

1

8
sin 4θ

)

= k , (2.90)

where for convenience we have defined E = −2πi√
λ

Fψζ
sinh ζ

. This equation allows to deter-

mine the angle θ at which the D5 sits as a function of k

θk − sin θk cos θk = π
k

N
, (2.91)
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while the electric field is given by E = cos θk. One can check that with this ansatz

the equation of motion for u is also satisfied.

Notice that eq. (2.91) puts a bound on k, which has to be less than N . k in this

case determines the location of the brane on S5, which is a compact space. Another

way to understand this bound is by recalling that a Young diagram of SU(N) can

have at most N boxes in every columns, otherwise gives a trivial representation.

All this is again very similar to the bound J ≤ N found for the momentum of a

giant graviton.49

Adding the appropriate boundary terms for the electric field and the worldvolume

scalars (see [81][87] for details) the on-shell action for the D5-brane becomes

SD5 = SDBI + SWZ + Sbdy = −2N

3π

√
λ sin3 θk , (2.92)

so the expectation value of the Wilson loop in the rank k antisymmetric representation

is given by

〈WAk〉 = exp

(

2N

3π

√
λ sin3 θk

)

. (2.93)

As previously noted in the literature, this result is consistent with the duality between

the rank k and rank N−k antisymmetric representations: indeed, it can be seen from

eq. (2.91) that under k → N −k the angle θk goes into π− θk. It can also be checked

that in the limit k/N → 0, in which the S4 factor shrink to zero size, eq. (2.93)

coincides with the action of k fundamental strings, as for small k/N eq. (2.91) gives

θ3
k ∼ 3πk/2N , so that 〈WAk〉 ≃ exp k

√
λ.

49This phenomenon is known as stringy exclusion principle [91].
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Chapter 3

Twistor string theory

3.1 Introduction

In 2003 Witten [96] proposed an interesting counterpart to the string description

of strongly coupled N = 4 super Yang-Mills discussed in the previous chapter. He

discovered in fact a remarkable connection between weakly coupled N = 4 super Yang-

Mills theory and a particular version of topological string theory, the B-model on the

twistor space CP
3|4. More precisely, he pointed out that perturbative amplitudes of

the gauge theory can be interpreted as a D-instanton expansion in the topological

theory.

The interest in this twistor construction was mainly motivated by the possibility

of developing very efficient computational techniques which allow to reorganize in a

clever way the perturbative expansion of scattering amplitudes. In fact, after stripping

out the color information, tree level Yang-Mills theory is effectively supersymmetric

and therefore this proposal provides a new, suggestive approach to the study of Yang-

Mills amplitudes. In particular some seemingly accidental properties of scattering
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amplitudes, like the holomorphicity of the renowned MHV Parke-Taylor formula for

the scattering of gluons, receive a new elegant interpretation in terms of localization

over certain subloci of the string target space CP
3|4.

In this chapter we describe the basics of twistor string theory. We start with

a discussion of localization properties of scattering amplitudes in twistor space and

then present the corresponding string theory interpretation. Finally, we conclude with

illustrating the twistor inspired CSW formalism for computing scattering amplitudes.1

3.2 Scattering amplitudes in twistor space

3.2.1 The spinor-helicity formalism

The complexified Lorentz group in four dimension, with signature (+ − −−), can

be locally decomposed as SO(3, 1)C ≃ SL(2)C × SL(2)C, and its finite-dimensional

representations are labeled by a pair of integer or half-integer numbers, (p, q). We

indicate with λa (with a = 1, 2) a negative helicity spinor transforming as
(

1
2
, 0
)

, and

with λ̃ȧ (with ȧ = 1, 2) a positive helicity spinor transforming as
(

0, 1
2

)

. Both λ and

λ̃ are defined to be Grassmann-even objects, and because of this “twisted statistics”

are called twistors. The undotted spinor indices are lowered and raised with the

antisymmetric tensor ǫab and its inverse ǫab (obeying ǫabǫbc = δac and with ǫ12 = +1 )

λa = ǫabλb , λa = ǫabλ
b , (3.1)

1Nice reviews of these topics, from which we heavily draw, can be found in
[97][98]. See also Witten’s lectures at PiTP 2004, which are available online at
http://www.admin.ias.edu/pitp/2004/schedule.html.
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and, similarly, the dotted indices are lowered and raised with ǫȧḃ and ǫȧḃ. Given two

spinors of the same chirality, λ and λ′ or λ̃ and λ̃′, we can define antisymmetric inner

products

〈λ, λ′〉 ≡ ǫabλ
aλ′b , [λ̃, λ̃′] ≡ ǫȧḃλ̃

ȧλ̃′ḃ , (3.2)

such that 〈λ, λ′〉 = −〈λ′, λ〉 and 〈λ, λ〉 = 0. Likewise for the opposite chirality spinors

[λ̃, λ̃′] = −[λ̃′, λ̃] and [λ̃, λ̃] = 0.

The vector representation of SO(3, 1)C is the
(

1
2
, 1

2

)

=
(

1
2
, 0
)

⊗
(

0, 1
2

)

and one can

thus represent a momentum vector pµ (with µ = 0, . . . , 3) in terms of a bi-spinor paȧ

paȧ = σµaȧ pµ = p0 + ~σ · ~p , (3.3)

with ~σ being the 2 × 2 Pauli matrices. From this identification follows that

pµ p
µ = det(paȧ) = p2

0 − ~p 2 , (3.4)

and therefore pµ is light-like if and only if paȧ has rank strictly less than 2. A generic

rank 2 bi-spinor can be written as paȧ = λaλ̃ȧ + µaµ̃ȧ, whereas rank 1 bi-spinors are

those that can be written in terms of a single pair of spinors λa and λ̃ȧ
2

paȧ = λaλ̃ȧ . (3.5)

2In Lorentzian signature (+ − −−) momentum is real, so that paȧ is hermitian. This implies
that λ̃ = ±λ̄, where the ± signs are for future pointing and past pointing null vectors respectively,
and therefore λ and λ̃ are not independent. In (+ + −−) signature the Lorentz group, without
any complexification, decomposes as SO(2, 2) ≃ SL(2,R) × SL(2,R), whose spinor representations
are real, so that λ and λ̃ are now real and independent. In Euclidean signature (+ + ++) one
has SO(4) ≃ SU(2) × SU(2) with pseudoreal spinors. Hence a light-like vector cannot be real in
Euclidean signature, but must be complex with λ and λ̃ complex and independent.
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The spinors λ and λ̃ appearing in this formula have a simple physical meaning, being

the wavefunctions of massless particles of helicity −1
2

and +1
2

respectively. To see

this, one can just write the Dirac equation for a particle of, say, helicity −1
2

0 = σµaȧ∂µψ
a(x) =

∂

∂xaȧ
ψa(x) . (3.6)

If ψa(x) = waeixaȧp
aȧ

, one gets ipaȧw
a = 0 and, using (3.5), λaw

a = 0, which implies

wa = const. λa.

It is useful to note that if p and p′ are two light-like vectors given by paȧ = λaλ̃ȧ

and p′aȧ = λ′aλ̃
′
ȧ, their scalar product can be expressed as

2 p · p′ = 〈λ, λ′〉[λ̃, λ̃′] . (3.7)

The relation (3.5) between a rank 1 bi-spinor and a pair of twistors is clearly not

one-to-one, since given a light-like paȧ the spinors λa and λ̃ȧ are uniquely determined

only modulo the scaling

{λ, λ̃} → {uλ, u−1λ̃} , u ∈ C
∗ . (3.8)

This means that there is no natural way to determine λ as a function of p.3

The wavefunction of massless particles of helicity h = ±1 can be also expressed

in terms of twistors. Such particles are usually described by a momentum pµ and

a polarization vector εµ obeying the transversality constraint εµ p
µ = 0 and subject

to the gauge transformation εµ → εµ + t pµ, with t an arbitrary constant. Given a

3The precise statement is actually even stronger, not being possible to even pick a continuous way
to determine λ as a function of p. This is due to a topological obstruction, namely the non-triviality
of the Hopf line bundle formed by the possible λ’s over the S2 of directions of the light-like p.
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momentum paȧ = λaλ̃ȧ, it is possible to define such polarization vectors as

ε+
aȧ =

µaλ̃ȧ
〈µ, λ〉 , ε−aȧ =

λaµ̃ȧ

[λ̃, µ̃]
, (3.9)

where the labels + and − refer clearly to the helicity of the vectors, and µ, µ̃ are arbi-

trary twistors which are only requested to not be proportional to λ and λ̃ respectively.

It is clear that these definitions satisfy paȧ ε
±,aȧ = 0 and it is also possible to show

that ε± are independent of the choice of µ and µ̃ up to a gauge transformation.4 To

rigorously show that (3.9) describe particles with helicities ±1 one must prove that

the corresponding field strengths Faȧbḃ = ǫabf̃ȧḃ + ǫȧḃfab are anti-selfdual (for h = 1)

or selfdual (for h = −1). Substituting, for example, Aaȧ = ε+
aȧ e

ixcċ p
cċ
, one finds

Faȧbḃ = ǫabλ̃ȧλ̃ḃ e
ixcċ p

cċ
which is indeed an anti-selfdual form. A similar computation

can be carried over for ε−.

This construction suggests that it should be possible to express the scattering

amplitudes of n massless particles in four dimensions in terms of the twistors and

helicities associated to each particle

A(n) = A(n)(λ1, λ̃1, h1; . . . ;λn, λ̃n, hn) , (3.11)

rather than in terms of their momenta and wavefunctions, as the usual textbook

prescription instructs us to do.5 This formalism is called spinor-helicity formalism,

4Considering for example the case h = +1, one observes that µ lives on a two dimensional space
and therefore its generic variation must be of the form δµ = αµ+ βλ, for some α and β. Under this
variation one has

ε+aȧ → ε+aȧ +
β

(1 + α)〈λ, µ〉paȧ , (3.10)

which is exactly a gauge transformation of ε+aȧ.
5It is possible to show that taking the modulus square of A(n) (which is the physical quantity

necessary to compute cross-sections), one obtains expressions that only depend on the momenta and
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and has the advantages of unifying the description of particles of different spin and

of simplifying considerably the expressions for the amplitudes, as will be discussed

presently [99][100].6 In labeling the helicities all particles are taken to be outgoing.

An amplitude with incoming as well as outgoing particles is obtained via crossing

symmetry, that relates an incoming particle of given helicity to an outgoing particle

of opposite helicity.

A scattering amplitude formulated in terms of twistors and helicities satisfy a

homogeneity equation for each external particle (i = 1, . . . , n)

(

λai
∂

∂λai
− λ̃ȧi

∂

∂λ̃ȧi

)

A(n) = −2hiA
(n) , (3.12)

which follows from the scaling properties of the wavefunctions under (3.8). Consid-

ering, for example, an amplitude with external gluons one can easily see from the

definitions of the polarization vectors in eq. (3.9) that ε+ scales as λ−2 and ε− scales

as λ2, that is they scale with a power of −2h. This can be proved to hold also for

particle of different helicity.

3.2.2 Tree level gluon amplitudes

We discuss now a particularly interesting class of amplitudes which will be the main

focus of the rest of this introduction: tree level scatterings of gluons in Yang-Mills the-

ory.7 These amplitudes are of phenomenological relevance, since multijet production

no longer on the twistors, as required by Lorentz invariance. For example, a structure like 〈λ1, λ2〉
gets squared to |〈λ1, λ2〉|2 = 〈λ1, λ2〉[λ̃1, λ̃2] = 2p1 · p2.

6For a review see also [101].
7Notice that, if gluons are the only external particles in the process, these amplitudes are effec-

tively identical to tree level gluon amplitudes in N = 4 super Yang-Mills. This observation will be
crucial in the following.
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at LHC will be dominated by them.

Consider pure Yang-Mills theory with gauge group U(N) and recall that tree

level diagrams are planar and generate only single-trace interactions [10]. The gauge

bosons are attached to the index loop in a definite cyclic order, say 1, 2, . . . , n, and the

corresponding amplitude contains a color trace factor equal to G = Tr T 1T 2 . . . T n.

It is sufficient to compute one amplitude with a given cyclic order, and then sum over

all possible permutations of external gluons to achieve Bose symmetry

A(n) = ign−2(2π)4δ4

(

n
∑

i=1

λiaλ̃
i
ȧ

)

GM(n)(λ1, λ̃1, h1; . . . ;λn, λ̃n, hn) + permutations ,

(3.13)

where M(n) indicates a color stripped and cyclic ordered amplitude, g is the coupling

constant of the theory, and we have included a delta function to enforce conservation

of momentum.

Amplitudes with all and all but one gluons with the same helicity vanish identically

[99]. To see this recall that a gluon 3-vertex carries a power of momentum, whereas

a gluon 4-vertex does not. Then, schematically, the structure of an amplitude with n

external gluons, m 4-vertices (with m ≤ n/2 − 1), and (n−m) 3-vertices is

(ε · ε)m+1(k · ε)n−2(m+1)

(k · k)n−m−3
, (3.14)

where the numerator contains the momenta and polarization vectors contracted in

the vertices, and the denominator comes from the propagators. If hi = +1 for all

i = 1, . . . , n, then the numerator always contains contractions of combinations of

ε+, i
aȧ =

µaλ̃iȧ
〈µ,λi〉 which vanish because 〈µ, µ〉 = 0, and similarly if all helicities are negative.

If all but one of the helicities are equal, say h1 = −1 and hi = +1 for i = 2, . . . , n,
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one can always pick a gauge such that µa = λ1
a, then all contractions are again zero.

The first non-vanishing amplitudes are thus the ones with n− 2 gluons of one he-

licity and 2 gluons with opposite helicity. They are called maximally helicity violating

(MHV) amplitudes. The explicit expression for MHV amplitudes in the spinor-helicity

formalism is remarkably simple [102][103].8 If one takes all gluons to have positive

helicity except the i-th and j-th ones, the color stripped amplitude reads

M(n)(1+, . . . , i−, . . . , j−, . . . , n+) =
〈λi, λj〉4

∏n
k=1〈λk, λk+1〉

. (3.15)

This amplitude is said to be holomorphic, because it only depends on λ and not on

λ̃ (see footnote 2). It has the correct homogeneity properties in each variable: it is

homogeneous of degree −2 in λk for positive helicity gluons, and of degree +2 in λi

and λj , as required by the condition (3.12). The anti-holomorphic amplitude with all

but two gluons of negative helicity is obtained from (3.15) replacing 〈 , 〉 → [ , ] and

untilded twistors with tilded ones.

There is a profound reason behind the holomorphicity of eq. (3.15), and this will

become manifest after transforming the amplitude to twistor space, as we discuss

next.

3.2.3 Fourier transform to twistor space

Tree level amplitudes of external gluons as eq. (3.15) are invariant under conformal

transformations. It is therefore interesting to write down the SO(4, 2) generators

in terms of the twistors λ and λ̃. One finds that the conformal generators in this

8The same amplitudes written in the standard way in terms of momenta and polarization vectors
are extremely complicated, even for n = 5.
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language have a rather exotic representation, and is suggested to rewrite the helicity

amplitudes in a new set of variables, the twistor space coordinates, where the action

of the conformal group is linearly realized.

The Lorentz generators in terms of λ and λ̃ are given by

Jab =
i

2

(

λa
∂

∂λb
+ λb

∂

∂λa

)

, J̃ȧḃ =
i

2

(

λ̃ȧ
∂

∂λ̃ḃ
+ λ̃ḃ

∂

∂λ̃ȧ

)

, (3.16)

whereas translations are generated by

Paȧ = λaλ̃ȧ , (3.17)

which is a multiplicative operator. Also unusual is the second order form of the

generator of special conformal transformations9

Kaȧ =
∂2

∂λa∂λ̃ȧ
, (3.18)

and the inhomogeneous form of the dilatation operator10

D =
i

2

(

λa
∂

∂λa
+ λ̃ȧ

∂

∂λ̃ȧ
+ 2

)

. (3.19)

It is possible to show that these generators indeed annihilate the MHV amplitude

(3.15) multiplied by the delta function of momentum conservation.11

9This is determined by the commutation relations [D,P ] = iP and D,K = −iK, so P has
dimension +1 and K scales opposite to P . From eq. (3.17) it is natural to take λ and λ̃ to both
have dimension 1

2 , and therefore K is guessed be a second order derivative in λ and λ̃.
10The value of the constant in the dilatation operator is found by requiring closure of the algebra

[Kaȧ, P
bḃ] = −i

(

δb
aJ̃

ḃ
ȧ + δḃ

ȧJ
b
a + δḃ

ȧδ
b
aD
)

.
11Let’s consider for example the dilatation operator. The numerator of the amplitude has the

delta function with dimension D = −4 and the factor 〈λi, λj〉4 with D = +4, so that D commutes
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It is possible to recast the expressions (3.16)-(3.19) in a more standard form by

transforming (λa, λ̃ȧ) to the twistor space coordinates (λa, µȧ) with

λ̃ȧ → i
∂

∂µȧ
,

∂

∂λ̃ȧ
→ iµȧ . (3.20)

This choice of transforming λ̃ rather than λ clearly breaks the symmetry between pos-

itive and negative helicities. This means that amplitudes with m positive and (n−m)

negative helicities have different descriptions in twistor space from amplitudes with m

negative and (n−m) positive helicities, whereas in the spinor-helicity formalism they

would simply be related by complex conjugation. In some instances such amplitudes

are also called with different names: for example, if M(n)(−,−,+, . . . ,+) is an MHV

amplitude, one calls googly the “dual” amplitude M(n)(+,+,−, . . . ,−).

In terms of the twistor space coordinates, the conformal generators become all

homogeneous and first order

Jab = i
2

(

λa
∂
∂λb

+ λb
∂
∂λa

)

, J̃ȧḃ = i
2

(

µȧ
∂

∂µḃ
+ µḃ

∂
∂µȧ

)

,

Paȧ = iλa
∂
∂µȧ

, Kaȧ = iµȧ
∂
∂λ̃a

, D = i
2

(

λa ∂
∂λa

− µȧ ∂
∂µȧ

+ 2
)

. (3.21)

This is a linear realization of the conformal group in Minkowski space SO(4, 2) ≃

SU(2, 2). The group SU(2, 2), or its complexification SL(4,C), has an obvious 4

dimensional representation, which is generated by 15 traceless 4 × 4 matrices corre-

sponding to the 15 operators in the formula above, and which acts on the coordinates

ZI = (λa, µȧ) (with I = 1, . . . , 4) spanning the twistor space T = C4 [104].12

with the numerator. The denominator has, for each particle, a Dk = −2 coming from the second
power of λk which is cancelled by the constant in the definition (3.19).

12In (+ +−−) signature the conformal group is SO(3, 3) ≃ SL(4,R), the coordinates ZI are real
and T = R

4. In Euclidean signature the conformal group is SO(5, 1) ≃ SU∗(4), the non-compact
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The homogeneity condition (3.12) reads in these coordinates

(

λai
∂

∂λai
+ µȧi

∂

∂µȧi

)

Ã(n) = −(2hi + 2)Ã(n) , (3.22)

where Ã(n) is the amplitude expressed in terms of ZI . This conditions implies that

scattering amplitudes in twistor space are homogeneous functions of the coordinates

ZI
i of degree −2hi − 2. Notice that λ and µ transform in the same way under (3.8),

so that we are allowed to identify two sets of ZI that differ by a rescaling ZI → uZI ,

with u ∈ C∗, and throw away the point ZI = 0. It is then natural to consider λ and

µ as living in the projectivization of the twistor space PT, namely CP
3 in Lorentzian

signature or RP
3 in (++−−) signature.13 The ZI are called homogeneous coordinates.

On PT there is a natural volume form Ω = ǫIJKLZ
IdZJdZKdZL of degree four. The

projectivization of the space T → PT is the analog of quotienting by the gauge group

the original theory expressed in terms of polarization vectors.

The concrete way to enforce the transformation (3.20) at the level of the scattering

amplitudes is to perform a Fourier transform. This is best understood if one Wick

rotates first from the (+ − −−) to the (+ + −−) signature, where λ̃ is real (see the

discussion in the footnote 2).14 Then one has for a generic function f(λ̃)

f̃(µ) =

∫

d2λ̃

(2π)2
ei[µ,λ̃]f(λ̃) , (3.23)

version of SU(4), and the twistor space is again a copy of C
4.

13The space CP
N is the N -dimensional complex space spanned by N + 1 complex coordinates

ZI , not all zero, subject to the identification {ZI} ≃ {uZI}, with u ∈ C
∗. For N = 1 it is just

the ordinary 2-sphere. The real projective space RP
3 is a 3-sphere with antipodal points identified,

S3/Z2.
14This is allowed when one considers only tree level amplitudes.
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and for a scattering amplitude

Ã(n)(λi, µi, hi) =

∫ n
∏

k=1

d2λ̃k
(2π)2

ei[µk ,λ̃k]A(n)(λi, λ̃i, hi) . (3.24)

In Lorentzian signature, where λ̃ is complex, the integrals in eqs. (3.23) and (3.24)

can be sometimes interpreted as contour integrals, if a suitable contour exists. The

rigorous approach to defining the twistor transform in this case relies on the more

formal methods of sheaf cohomology [105].

More details on the geometry of twistor space and on the twistor transform can

be found in [106]-[108]. For a more introductory account of these topics see chapter

33 of [109].

3.2.4 Localization of amplitudes in twistor space

After performing the Fourier transform (3.24), the n external gluons of a scattering

amplitude, defined by λi and λ̃i, are mapped to n points Pi in the projective twistor

space. The homogeneous coordinates of these points are ZI
i = (λia, λ̃

i
ȧ). From an

empirical study of some simple cases, it turns out that these are very special sets of

points. The claim is that if the Pi are randomly distributed, then the corresponding

amplitude will vanish. In order to have a non-zero amplitude the Pi must be localized

on specific subloci of the space. These subloci are algebraic curves in PT.15 The

conjecture put forward in [96] is that the degree d and genus g of these curves are

15We work mostly in the (+ + −−) signature, where the transform (3.24) has a more natural
interpretation and the scattering amplitudes are ordinary functions. Then an algebraic curve Σ on
RP

3 is defined as the zero set of a collection of polynomial equations with real coefficients in the
real homogeneous coordinates ZI . The simplest type of algebraic curve are complete intersections,
defined as the zero set of two homogeneous polynomials F (ZI) = 0 and G(ZI) = 0. If the degrees
of F and G are d1 and d2, then the degree of the curve is d = d1 d2. More general cases, as for
example the twisted cubic, are defined in terms of more than two polynomials [110].
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given by

d = q − 1 + l , g ≤ l , (3.25)

where q is the number of external gluons with negative helicity, and l is the number

of loops in the amplitude.

The easiest example to study are the MHV amplitudes (3.15) (considering only

one cyclic ordering and neglecting the color factor G)

A(n)(i−, j−) = ign−2(2π)4δ4

(

n
∑

k=1

λkaλ̃
k
ȧ

)

〈λi, λj〉4
∏n

k=1〈λk, λk+1〉
. (3.26)

Rewriting the delta function in integral form

(2π)4δ4

(

n
∑

k=1

λkaλ̃
k
ȧ

)

=

∫

d4x eixaȧ
Pn
k=1 λ

a
kλ̃
ȧ
k , (3.27)

it is easy to perform the Fourier transform

∫ n
∏

k=1

d2λ̃k
(2π)2

ei[µk ,λ̃k]
∫

d4x eixaȧ
Pn
k=1 λ

a
kλ̃
ȧ
k

〈λi, λj〉4
∏n

k=1〈λk, λk+1〉
, (3.28)

and obtain [111]

Ã(n)(i−, j−) = ign−2

∫

d4x
n
∏

k=1

δ2 (µk, ȧ + xaȧλ
a
k)

〈λi, λj〉4
∏n

k=1〈λk, λk+1〉
. (3.29)

This result depends crucially on (3.15) being holomorphic, so that the integrals on

the λ̃k only act on the exponential factors giving a product of delta functions.

The last formula is interpreted by saying that, for a given modulus xaȧ, the MHV

amplitude (3.15) localizes in twistor space on the locus given by the zero set of the
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argument of the delta function

µȧ + xaȧλ
a = 0 , ȧ = 1, 2 . (3.30)

These equations represent a complete intersection of two linear polynomials, the total

degree of the curve being d = 1 and the genus g = (d−1)(d−2)
2

being zero. This curve

represents a straight line in RP
3 along which the n points Pi are localized, and the

integral in x is an integral over the moduli space of all such lines. This is consistent

with the conjecture (3.25), since for a tree level MHV amplitude one has q = 2

and l = 0. In the complex case the conditions (3.30) would just give CP
1 (take,

for example, xaȧ = 0, then one has a curve spanned by (λ1, λ2) which are just the

homogeneous coordinates on CP
1). This is an example of holomorphic curve in CP

3,

whose area, computed with the volume form Ω introduce above, is equal to 2πd. In

this case d = 1 and therefore this is a curve with minimal area among all non-trivial

holomorphic curves, and it is associated to the minimal non-vanishing Yang-Mills

amplitudes, the MHV amplitudes.

Assuming that eq. (3.25) is true, one can also understand from a different per-

spective why amplitudes with all and all but one gluons of the same helicity vanish:

if q = 0 and l = 0 one would obtain a curve of degree d = −1, which does not exist,

whereas for q = 1 and l = 0 one would obtain a point. The gluons would then be

all coincident in twistor space, meaning λi = λj and pi · pj = 0 for all i and j. For

n ≥ 4 this would not allow the definition of non-trivial kinematic invariants, implying

a vanishing amplitude.
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Googly amplitudes A tree level googly amplitude (with, for example, n = 5 and

q = 3) would give a degree 2 curve in twistor space. In this case, being the amplitude

anti-holomorphic rather than holomorphic as in eq. (3.15), it is difficult to perform

the Fourier transform (3.28).16 It is anyway possible to bypass doing the Fourier

transform, observing that the expected configuration of 5 points in RP
3 should be

given by the complete intersection

4
∑

I=1

aIZ
I = 0 ,

4
∑

I,J=1

bIJZ
IZJ = 0 , aI , bIJ ∈ R . (3.31)

This defines the most generic curve with d = d1d2 = 2 and g = (d−1)(d−2)
2

= 0.

Assuming, without loss of generality, a4 6= 0 this reduces to the equation for a conic

section in RP
2 17

3
∑

I,J=1

cIJZ
IZJ = 0 , cIJ ∈ R . (3.32)

To verify the conjecture in this case is then sufficient to prove that the 5 points are

contained i) in a common RP
2 and ii) in a common conic section of this space. The

condition ii) is trivial since it is always possible to choose the 6 coefficients cIJ = cJI

such that the 5 equations
∑3

I,J=1 cIJZ
I
i Z

J
i = 0 (with i = 1, . . . , 5) are satisfied. To

verify i) one observes that, given 4 pointsQσ ∈ RP
3 with coordinates ZI

σ (σ = 1, . . . , 4)

they are contained in a common RP
2 if and only if the ZI

σ are linearly dependent,

that is if and only if K ≡ detZI
σ = ǫIJKLZ

I
1Z

J
2 Z

K
3 Z

L
4 = 0. On has then to prove that

Kijkl(λ, µ) Ã(5) = 0 , (3.33)

16This computation would of corse be exactly as in (3.28) in the “dual” twistor space obtained by
transforming (λ, λ̃) → (µ̃, λ̃).

17That this represents a conic section can be easily seen in the affine coordinates x = Z2/Z1 and
y = Z3/Z1 defined in the patch where Z1 6= 0. In this coordinates eq. (3.32) becomes a quadratic
equation in R2.
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where Kijkl(λ, µ) indicates the operator K specialized to any 4 of the 5 points Pi

associated to the external gluons. Formally transforming back to momentum space

ZI = (λa,−i∂/∂λ̃ȧ) this condition becomes a differential equation

Kijkl

(

λ,−i ∂
∂λ̃

)

A(5) =
1

4

∑

σ1,...,σ4

ǫσ1···σ4〈λσ1 , λσ2〉ǫȧḃ
∂2

∂λ̃ȧσ3
∂λ̃ḃσ4

A(5) = 0 . (3.34)

This can be explicitly verified to hold (for details see [96]). We will later apply this

same trick in proving localization for a googly gravity amplitude with 5 external

gravitons.

3.2.5 Supersymmetric extension

So far supersymmetry has not played any role, since we have only considered tree

level amplitudes with external gluons. Before introducing the string interpretation

of the localization of amplitudes in twistor space, it is however necessary to extend

the previous discussion to particles carrying supersymmetric quantum numbers. In

particular we will be interested in N = 4 super Yang-Mills theory.

In addition to the commuting spinors λa and λ̃ȧ, one describes each external

particle by a spinless Grassmann-odd variable ηA, with A = 1, . . . , 4, of dimension zero

and transforming in the 4 of the R-symmetry group SU(4)R. The helicity operator

is then

h = 1 − 1

2

4
∑

A=1

ηA
∂

∂ηA
. (3.35)

This operator counts how many η are present in an amplitude, and a term of k-th

order in ηi for some i describes a process in which the i-th particle has helicity 1−k/2.

Amplitudes in the supersymmetric case depend also on the η variable of each
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particle

A(n) = A(n)(λ1, λ̃1, η1, h1; . . . ;λn, λ̃n, ηn, hn) , (3.36)

and obey the homogeneity condition

(

λai
∂

∂λai
− λ̃ȧi

∂

∂λ̃ȧi
− ηAi

∂

∂ηAi
+ 2

)

A(n) = 0 . (3.37)

The (15) R-symmetry and the (32) fermionic generators of the superconformal group

PSU(2, 2|4) of N = 4 super Yang-Mills read in terms of λ, λ̃, and η

RA
B = ηA

∂
∂ηB

− 1
4
δABηC

∂
∂ηC

,

λ̃ȧ ∂
∂ηA

, ηA
∂
∂λ̃ȧ

, λaηA ,
∂2

∂λa∂ηA
, (3.38)

and are linearized by the transformation (3.20) along with

ηA → i
∂

∂ψA
,

∂

∂ηA
→ iψA . (3.39)

The twistor space is now a supermanifold spanned by the four bosonic coordinates ZI

and their four fermionic counterparts ψA. This space is therefore C4|4 or, depending

on the signature, R4|4.

The homogeneity condition for the amplitudes becomes

(

ZI
i

∂

∂ZI
i

+ ψAi
∂

∂ψAi

)

Ã(n)(Zi;ψi) = 0 , (3.40)

suggesting a natural projectivization of the space to CP
3|4 or RP

3|4. This means that

ZI and ψA are subject to the identification {ZI , ψA} ≃ {uZI , uψA}, with u ∈ C∗,
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and provide a linear realization of PSU(4|4) on CP
3|4.18 The volume form is now

Ω0 = dZ1dZ2dZ3dZ4dψ1dψ2dψ3dψ4.

The super MHV amplitudes in the spinor-helicity formalism are given by (sup-

pressing again the color factor G and considering only one ordering of the external

legs)

A(n) = ign−2(2π)4δ4

(

n
∑

i=1

λiaλ̃
i
ȧ

)

δ8

(

n
∑

j=1

λjbη
j
A

)

n
∏

k=1

1

〈λk, λk+1〉
, (3.41)

and, after the super Fourier transform to twistor space, become

Ã(n) = ign−2

∫

d4x d8θ

n
∏

i=1

δ2 (µi, ȧ + xaȧλ
a
i ) δ

4
(

ψAi + θAa λ
a
i

)

n
∏

k=1

1

〈λk, λk+1〉
, (3.42)

where θAa are fermionic moduli associated to ηA. The interpretation of this result is

very similar to the bosonic case. Now the amplitudes are localized on the sublocus

of the supertwistor space defined by the equations

µȧ + xaȧλ
a = 0 , ψA + θAa λ

a = 0 . (3.43)

3.3 The B-model on CP
3|4 and the twistor string

We now move on to illustrating the string theory interpretation of these result, as

proposed in [96].19

18Recall that this is the N = 4 superconformal group. In chapter 10 we will use this observation
to orbifold the twistor string, and reduce the amount of supersymmetry of the twistor construction.

19Interesting alternatives to Witten’s construction have been put forward in [112] starting from

conventional open strings propagating in CP
3|4, in [113], where a mirror symmetric A-model version

is considered, and in [114], where ADHM twistors are introduced. Conformal supergravity has also
been studied in this approach in [115][116].
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We start by motivating the appearance of one of the main ingredients of the

proposal, namely the twistor space CP
3|4. We have seen above that this supermanifold

arises naturally as the space parameterized by the coordinates ZI and ψA, with I, A =

1, . . . , 4. There are other features of this space that are crucial in the following

construction and that in large part depend on the fact that the number of fermionic

dimension is exactly 4. Most importantly, a CP
3|M is Calabi-Yau if and only if M = 4.

This can be seen20 by considering CP
3|M as the sublocus of C4|M defined by

(

4
∑

I=1

∣

∣ZI
∣

∣

2
+

M
∑

A=1

∣

∣ψA
∣

∣

2
= r

)

/

U(1) (3.44)

where r is a positive constant playing the role of a Kähler class and U(1) is a phase

transformation acting as {ZI , ψA} → eiα{ZI , ψA}. The holomorphic measure on

C
4|M , Ω0 = dZ1 · · · dZ4dψ1 · · · dψM , is invariant under this U(1) only if it contains

the same number of bosonic and fermionic coordinates,21 so thatM = 4. The measure

Ω0 descends to a globally defined holomorphic (3, 0|4)-form on CP
3|4

Ω =
1

(4!)2
ǫIJKLǫABCDZ

IdZJdZKdZLdψAdψBdψCdψD , (3.45)

which is also SU(2, 2|4) invariant, hinting at a possible relation with N = 4 SYM.22

This ensures that the space is indeed Calabi-Yau and allows for the definition of a

topological B-twist of an N = (2, 2) world-sheet σ-model in the fields ZI and ψA with

CP
3|4 as target [117].

20An alternative way to prove this is of course by checking the Ricci flatness of the super Fubini-
Study metric.

21Recall that if a Grassmann-odd field ψ transforms as ψ → e1αψ, then dψ → e−iαdψ. This can
be understood, for example, from the definition of Grassmann-odd integration,

∫

dψ ψ = 1.
22This can be seen as another reason why N = 4 SYM is special: only for N = 4, i.e. for M = 4

in the notation above, there exists a topological B-model with a twistor target space.
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Aiming at a connection with a Yang-Mills theory, we are interested in the open

string sector of this B-model [118]. This sector is defined by a BRST invariant bound-

ary condition which is given by a stack of N D5-branes. These are almost space-filling

branes placed at ψ̄Ā = 0.23 We will see that the selfdual part of N = 4 SYM with

gauge group U(N) will be reproduced by the world-volume action of these branes.

The world-volume action is a holomorphic super Chern-Simons theory [118]

S =

∫

D5

Ω ∧ Tr

(

A ∧ ∂̄A +
2

3
A ∧A ∧A

)

, (3.46)

where A = AĪdZ̄
Ī is an antiholomorphic (0, 1)-form24 with values in the adjoint

representation of U(N) and Ω is the volume form (3.45), so that the integrand is a

(3, 3)-form which we can integrate over the target space. The superfield expansion of

this holomorphic connection A reads

A(z, z̄, ψ) = A(z, z̄) + ψAχA(z, z̄) +
1

2!
ψAψBφAB(z, z̄)

+
1

3!
ǫABCDψ

AψBψCχ̃D(z, z̄) +
1

4!
ǫABCDψ

AψBψCψDG(z, z̄) .

(3.47)

It turns out that the components of A are charged under the symmetry

Σ : ZI → ZI , ψA → eiβψA (3.48)

as Σ(A, χ, φ, χ̃, G) = (0,−1,−2,−3,−4). This is an anomalous symmetry since it

23This almost space-filling requirement is dictated by the connection with the N = 4 gauge
multiplet, as will become clear presently. Moreover, on a more formal level, locating the brane at
ψ̄Ā = 0 also bypasses some problems related to the definition of differential forms on supermanifolds.

24In general the expansion of A could contain a piece AĀdψ̄
Ā, but this drops out here because of

the almost space-filling condition.
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does not leave Ω invariant. It originates from the fact that the full R-symmetry

group in twistor space is not SU(4)R but U(4)R. This discrepancy between the R-

symmetry groups of CP
3|4 and N = 4 SYM causes the holomorphic Chern-Simons

action (3.46) to only reproduce the selfdual part of the Yang-Mills action. To see this

one can integrate out the fermionic coordinates to get

S =

∫

CP
3

Ω′ ∧ Tr

[

G ∧ (∂̄A+ A ∧ A) + χ̃A ∧ D̄χA

+
1

4
ǫABCDφAB ∧ D̄φCD +

1

2
ǫABCDχA ∧ χB ∧ φCD

]

, (3.49)

where Ω′ is the bosonic reduction of Ω. After performing a Penrose transform [104],

the twistor space fields with charge Σ are mapped into space-time fields of helicity

h = 1 − Σ/2, and eq. (3.47) almost25 yields the field content of the N = 4 vector

multiplet. In particular, A corresponds to an anti-selfdual gauge field of helicity +1,

χA to a positive chirality spinor, ψAB to six real scalars, χ̃A to a negative chirality

spinor, and G to a selfdual 2-form of helicity −1. Then the action (3.49) reproduces

the selfdual truncation of the N = 4 SYM action [119]

S =

∫

d4xTr

[

1

2
GabFab + χ̃AaDaȧχ

ȧ
A

+
1

8
ǫABCDφABDaȧD

aȧφCD +
1

4
ǫABCDψABχ

ȧ
AχDȧ

]

. (3.50)

This action has charge Σ = −4. The full N = 4 SYM action has also a term with

Σ = −8, which can be introduced in this construction by considering non-perturbative

instanton corrections.

25The differences are that A is anti-selfdual and G is a 2-form.
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3.3.1 The D-instanton expansion

The instanton corrections needed to reproduce the anti-seldual completion of the

action (3.49) come from Euclidean D1-branes wrapping holomorphic curves C0 in

CP
3|4. The moduli characterizing these instantons are a U(1) gauge field defined on

the D1-brane world-volume and the position of C0 inside CP
3|4. To reproduce tree

level amplitudes one just needs D1-branes wrapping genus zero curves, as seen from

eq. (3.25). For these curves the U(1) field does not play any relevant role, and one

just needs to integrate the effective action of the instantons over the position of C0,

namely over the moduli space of holomorphic curves in twistor space.

Here we only consider the simplest case of genus g = 0 and degree d = 1.26 We

recall that the explicit map is

µȧ + xaȧλ
a = 0 , ψA + θAa λ

a = 0 . (3.51)

Here the coordinates of CP
3 are decomposed as ZI = (λa, µȧ) and xaȧ, θ

A
a are the

moduli of the embedding. In [96] the D1-instanton is initially placed at ψA = 0 and

the dependence on the fermionic coordinates is then restored through an integration

over the moduli space.

Tree level gauge theory scattering amplitudes are computed by considering the

effective action for the D1-D5 strings

ID1−D5 =

∫

D1

dz βD̄α , (3.52)

where α and β are fermions which carry respectively fundamental and anti-fundamental

26This is, as already mentioned, the case of tree level scattering amplitudes. Amplitudes with l
loops receive contributions also from curves of genus g ≤ l according to the conjecture (3.25).
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gauge group indices. They correspond to strings stretching from the D1 to the D5-

brane and viceversa. The covariant derivative is D̄ = ∂̄ + A. The action (3.52)

contains the interaction term

∆ID1−D5 =

∫

D1

Tr JA =

∫

D1

JabAb
a , (3.53)

where Jab = αaβb. Scattering amplitudes are obtained by taking correlation functions

of the currents J ’s in the background of the superfield A and integrating them over

the moduli space of a D1-instanton of appropriate degree. This degree is determined

by the sum over the Σ symmetry (3.48) charges of the n external states

d = −1

4

n
∑

i=1

Σi − 1 . (3.54)

In the particular case of external gluons, this corresponds to d = q−1, where q is the

number of negative helicity gluons. Explicitly, when d = 1 one has for the n-point

scattering amplitude

A(n) =

∫

d8θ w1 . . . wn〈Ja11 . . . Jann〉 , (3.55)

where the wi are the wave functions of the external states and are given essentially

by the coefficient of that state in the superfield expansion. Explicit amplitudes com-

putations making use of this prescription can be found in [96][120].

The coupling constant

We now discuss the issue of how the coupling constant may arise in the theory. From

a four-dimensional field theoretical point of view, the completion of the selfdual Yang-
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Mills action ISD =
∫

d4xTr (GF ) is given by

IYM =

∫

d4xTr

(

GF − g2
YM

2
G2

)

. (3.56)

Therefore, in the topological B-model one expects the coupling constant to originate

from the D1-instanton expansion. This is rather surprising since now the YM per-

turbative coupling seems to come from non-perturbative sectors of the theory. One

natural way to introduce a free parameter in the amplitude (3.55) is to weigh it by

a factor (e−ID1)d, where ID1 is the action for a D1-instanton of degree d = 1. This

has been already remarked in [96]. Another way to achieve this is to consider the

coupling of the D1 to the closed sector of the B-model. This was first realized in [115]

where a new field b, a (1,1) form in twistor space, was introduced. It has a minimal

coupling to the D1 world-volume

Ib =

∫

D1

bIJ̄ dZ
I ∧ dZ̄ J̄ . (3.57)

This field is not present in the perturbative analysis of the B-model. The necessity of

it was also recently rediscussed in [121] as a non-perturbative correction to Kodaira-

Spencer theory [122]. For a D1 sitting at (x, θ) in the moduli space the coupling

(3.57) directly defines the conformal supergravity superfield W(x, θ) =
∫

D1(x,θ)
b. The

lowest component can be interpreted as a dilaton ϕ. As a consequence of the coupling

(3.57), in a vacuum with expectation value 〈ϕ〉 = c, an amplitude will be weighted

by a factor (e−c)d. This is reminiscent of ordinary string theory where the coupling

constant comes from the dilaton expectation value.

In summary, we assume the contribution of the D1-instanton to an amplitude to
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be equal to (g2)d, where g2 might come from e−ID1 or e−c.

To get the standard normalization of the scattering amplitudes, one also needs to

rescale each component of the superfield A by a factor g1+ 1
2
Σ, where Σ is the charge

under the symmetry (3.48). For instance, A goes to gA, χ to
√
gχ, and so on. In the

end, the overall coupling constant in a tree-level n-point amplitude is

(

n
∏

i=1

g1+ 1
2
Σi

)

(g2)−
1
4

P

i Σi−1 = gn−2 . (3.58)

3.4 MHV decomposition of amplitudes

A priori one would expect a tree level Yang-Mills amplitude with q negative helicity

gluons to receive contributions not only from d = q − 1 genus zero curves but also

from all possible decompositions in disconnected curves Ci of degree di such that

∑

i di = q − 1.

An explicit calculation of the connected contribution to all googly amplitudes

M(n)(+,+,−, . . . ,−) was performed in [120] by integrating over the moduli space

of connected curves with genus zero and degree 2. Surprisingly the result correctly

reproduces the previously known amplitudes without the need to include any discon-

nected configuration. On the other hand, Cachazo, Svrček, and Witten considered in

[123] the limit of totally disconnected configurations, that is q− 1 curves of degree 1,

and, quite amazingly, this is also enough to reproduce all the googly amplitudes [124]

and likely all the tree level Yang-Mills amplitudes.

It was later on proved in [125] that in fact the connected and disconnected pre-

scriptions are equivalent, and one can in principle use either one of them to compute

scattering amplitudes. It is nonetheless drastically more convenient to use the dis-
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connected (or CSW) prescription.27 This formalism has been successfully extended in

recent years to a variety of amplitude computations, both at tree level28 and loops.29

One attempt to extend it to graviton amplitudes will be the focus of chapter 8 of this

dissertation [7].30

The basic idea of the CSW formalism is that an interaction point in Minkowski

space is mapped in twistor space to a line [104], i.e. a linearly embedded copy of

CP
1, and so is an MHV amplitude, as is explained above. Then one is suggested to

identify local vertices in Feynman diagrams with MHV amplitudes. In order to do

so one needs to suitably extend off-shell some of the external legs of the amplitude,

which can be interpreted as propagators. Arbitrary graph can thus be decomposed in

MHV vertices connected, according to the CSW prescription, by scalar propagators

1/k2.

The off-shell continuation to momenta p2 6= 0 is defined in the following way.

Recalling that MHV amplitudes in Yang-Mills theory are holomorphic, only an “off-

shell” λa needs to be defined. We can extract λa from an on-shell momentum paȧ =

λaλ̃ȧ by picking an arbitrary anti-holomorphic spinor ηȧ and contracting it with paȧ.

This gives λa up to a normalization factor which scales out in amplitudes which are

27An explicit example of the power of this method has been given in [123], where a considerably
simpler form of M(n)(−,−,−,+, . . . ,+), previously computed in [126], was obtained.

28The CSW method has been further refined and developed in [127]-[135], and has been applied
to tree level amplitudes containing scalars and fundamental fermions [98][136]-[138], Higgs bosons
[139], electro-weak currents [140], and massive particles [141].

29The literature in this case is very vast. Some of the early papers dealing with the MHV decom-
position of loop amplitudes are [142]-[147].

30Further work in this direction can be found in [148]-[151].
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homogeneous in λa
31

λpa =
paȧη

ȧ

[λ̃p, η]
, (3.59)

where the label p indicates that this is an off-shell spinor associated to a momentum

paȧ.

The concrete algorithm for decomposing a tree level amplitude with v vertices is

to draw all possible tree graphs of v vertices and v − 1 propagators, assign opposite

helicities to the two ends of all internal lines, and distribute the external gluons among

the vertices while preserving cyclic ordering. One is then instructed to keep only the

MHV graphs, which are the ones whose vertices have precisely two negative helicity

gluons emanating from them.

Example The simplest example to consider is the vanishing four gluon amplitude

M(4)(+,−,−,−) [123]. This receives contributions from the two diagrams in fig. 3.1.

The first graph gives (recall the expression (3.15) for MHV amplitudes)

〈λ2, λp〉4
〈λ1, λ2〉〈λ2, λp〉〈λp, λ1〉

1

p2

〈λ3, λ4〉4
〈λ3, λ4〉〈λ4, λp〉〈λp, λ3〉 , (3.60)

where λpa = paȧη
ȧ is the off-shell spinor associated to the momentum of the internal

line p = p1 + p2 = −p3 − p4. The contribution of the second graph is obtained from

the equation above exchanging particles 2 and 4

〈λq, λ4〉4
〈λ1, λq〉〈λq, λ4〉〈λ4, λ1〉

1

q2

〈λ2, λ3〉4
〈λ2, λ3〉〈λ3, λq〉〈λq, λ2〉 . (3.61)

31This is a fortunate fact since the anti-holomorphic spinor λ̃ȧ in the denominator is undefined.
We will come back to this point in chapter 9, while discussing a possible MHV decomposition of
gravity amplitudes, which, differently from Yang-Mills theory, are generically not holomorphic.
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Figure 3.1: The two MHV graphs contributing to the vanishing four gluon amplitude
M(4)(1+, 2−, 3−, 4−). Notice that internal lines have opposite helicities at their two
endpoints, and only MHV vertices are used to build the diagrams.

Defining φi ≡ λȧi ηȧ (the normalization factor of the definition (3.59) scales out and

we neglect it), the sum of the two graphs is

− φ4
1

φ1φ2φ3φ4

(〈λ3, λ4〉
[λ̃2, λ̃1]

− 〈λ3, λ2〉
[λ̃4, λ̃1]

)

, (3.62)

which is zero because of conservation of momentum.
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Part II

Studies on

the AdS/CFT correspondence
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Chapter 4

String thermodynamics in a plane

wave background

4.1 Introduction

Understanding the finite temperature states of string theory is essential for many of

its potential applications, particularly the study of black holes and early universe

cosmology. One of the fascinating features exhibited by string theories is their Hage-

dorn behavior, that is the exponential growth of their densities of states with energy

[152]. For their thermodynamics this leads to either a limiting, Hagedorn temperature

beyond which an ensemble of strings cannot be heated or perhaps a phase transition

to a state which is better described by degrees of freedom other than strings [153].

The existence of a Hagedorn temperature is well-established for all consistent

non-interacting string theories on Minkowski space.1 Recently, it has been noted

1The computation of this temperature for both the bosonic string and the superstring in flat
space is reviewed in appendix A.
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that the non-interacting type IIB superstring can be solved explicitly on a maximally

supersymmetric plane-wave background [44][45]. This gives a background other than

flat space where some of the ideas of string theory can be tested.

In this chapter we shall examine the thermodynamic states of string theory in the

plane-wave background and give a derivation of the corresponding Hagedorn tempe-

rature.2 In particular, we show that the Hagedorn temperature is a monotonically

increasing function of the parameter |f |
√
α′ where f is the Ramond-Ramond flux. In

the following, we also clarify some of the issues related to the Hagedorn temperature

in the limits of small and large f , and provide some comments on the interpretation

of the Hagedorn behavior in the limit of Yang-Mills theory which is dual to the string

theory.

4.2 Hagedorn and AdS/CFT

The string partition function in the canonical ensemble is the trace of the Boltzmann

distribution

Z(β, f) ≡ e−βF (β,f) = Tr
(

e−βp
0
)

, (4.1)

where F (β, f) is the Helmholtz free energy. Here the trace is over all physical multi-

string states. The rest frame energy is given by p0 = 1√
2
(p+ − p−).

Note that, we could, as was done in [155], introduce a separate parameter for p+

and p− and study the theory with two parameters

Z̃(a, b, f) = Tr
(

e−ap
++bp−

)

. (4.2)

2For related work see also [154]-[158].
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However, there is a symmetry of the theory which rescales p+ → p+/Λ, p− → p−Λ,

and f → fΛ, implying that Z̃(a, b, f) is equal to Z̃(
√
ab,

√
ab, f

√

a/b). Thus, by

computing Z(β, f) = Z̃(β/
√

2, β/
√

2, f) we can deduce Z̃(a, b, f) by identifying β =
√

2ab and replacing f → f
√

a/b.

For the free string theory, we can compute the Helmholtz free energy in eq. (4.1)

exactly. This should then coincide with the free energy of Yang-Mills theory obtained

from eq. (4.1) by taking a trace over Yang-Mills states with the momenta identified

in eq. (2.40) and where the ’t Hooft large N limit is taken.

In perturbation theory, the free energy would therefore be found as the sum of all

orders in planar connected vacuum Feynman diagrams. However, at each order, these

diagrams are proportional to N2 and therefore diverge in the large N limit. On the

other hand, the string theory free energy which we compute is not of order N2, instead

it is of order one. The reason for this discrepancy is that perturbation theory describes

the deconfined phase of the gauge theory where the number of physical degrees of

freedom is indeed of order N2, and is only valid if the temperature is greater than

the deconfinement transition temperature. That is not the regime described by free

strings which rather exist only in the confined phase, found at temperatures below

the deconfinement transition and where the number of degrees of freedom is not of

order N2 at large N , but is of order the number of color singlet operators which, at

a given energy, is roughly constant with N . In fact, it is reasonable to identify the

Hagedorn temperature, at which a description of the theory by free strings ceases to

be meaningful, as the deconfinement transition temperature [159].

At this point, as clarification, we should note that this conformally invariant Yang-

Mills theory when it is quantized on R3 × R1 does not have a confining phase. It is

always in a conformally invariant deconfined phase with a Coulomb-like force law

90



for gauge theory interactions. However, the correct dual of the superstring is Yang-

Mills theory with radial quantization, that is, it should be quantized on the space

S3 × R1 which can be obtianed from R3 × R1 by a conformal transformation. It is

the energy on the space S3 × R1 which is dual to the string energy and is in fact

given by the conformal dimension ∆ of operators of Yang-Mills theory on the original

space R3 ×R1. From this point of view, the discreteness of the spectrum of ∆ comes

from the fact that S3 has finite volume. Further, when ∆ is used as the Hamiltonian,

the finite temperature Yang-Mills theory lives on the space S3 × S1 where the time

direction is Euclidean and has been periodically identified, X0 ∼ X0 + β, with the

appropriate antiperiodic boundary condition for fermions.

Even on this space, since the volume is finite, one does not expect a confinement-

deconfinement phase transition when N is finite. This transition could only occur

at infinite N . However, it is just the infinite N limit that must be taken to obtain

strings on the plane-wave background. In this limit, the Yang-Mills theory could have

a phase transition corresponding to confinement-deconfinement as the temperature is

varied. An order parameter for such a phase transition is the Polyakov loop [160][161]

〈

TrPei
H

S1 A
〉

,

which, in this adjoint gauge theory, transforms under a certain discrete large gauge

symmetry related to confinement. There are many examples of gauge theories where

this order parameter can be explicitly seen to characterize confinement [162]-[165].

For example, the one-dimensional non-Abelian coulomb gas studied in [166][167] has

a deconfiment transition only at infinite N , corresponding to a re-arrangement of the

distribution of eigenvalues of the unitary matrix Pei
H

S1 A, analogous to that which is
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well known to occur at large N in unitary matrix models [168]. If, as is suggested in

[159], the deconfinement and Hagedorn behaviors can be identified, the existence of

a Hagedorn temperature in the string theory dual is a confirmation of the existence

of a deconfinement transition in the Yang-Mills theory, at least in the planar limit

which is dual to free strings.

We shall indeed find that, in the limit where the string coupling gs is put to

zero, there is a Hagedorn temperature for all finite values of the parameter f of the

background, implying that the planar Yang-Mills theory indeed has a confinement-

deconfinement phase transition. The string theory analysis gives the value of the

transition temperature for the gauge theory.

It is interesting to contrast the situation of the plane-wave background to that in

AdS/CFT before the plane wave limit is taken. In the latter case, the Hagedorn spec-

trum for the operator ∆ appears in Yang-Mills theory as the exponentially increasing

multiplicity of an infinite tower of operators which are gauge invariant traces of lo-

cal products of the fields. When N is infinite, products of all sizes are independent

operators. When the ’t Hooft coupling λ is small and ∆ of these operators deviates

little from the tree level values, the number of operators with a given value of ∆ can

be counted [169], and it indeed grows exponentially with increasing ∆, producing a

Hagedorn spectrum for Yang-Mills theory quantized on S3 ×R1. Thus, we would ex-

pect large N Yang-Mills theory to have a Hagedorn temperature if λ is small enough.

When λ gets large, the anomalous dimensions of operators get large and they begin

to decouple from the low-lying spectrum.

At very large λ the dynamics is that of classical supergravity, perhaps with stringy

corrections which are suppressed by factors of 1/
√
λ. It is known that supergravity

with an asymptotically AdS geometry has a Hawking-Page phase transition [170]
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between an AdS black hole state, which can be interpreted as the deconfined phase,

and one which is AdS space with periodic euclidean time, which can be interpreted

as the confined phase. Indeed, the fact that the free energy of the black hole is

of order N2, whereas in the periodic AdS space it is of order one is in line with

this interpretation [13][171]. One could then speculate that the Hagedorn behavior

which is seen in weakly coupled planar Yang-Mills theory evolves to the Hawking-

Page transition of supergravity with periodic Euclidean time as λ goes from zero

to infinity, and further that this corresponds to the deconfinement phase transition.

It is also clear that the temperature where the Hawking-Page transition occurs is

proportional to the radius of curvature of the AdS space, TH ∼ R/α′ ∼ λ1/4 and it

actually becomes large as λ→ ∞, as we expect.

In contrast, the partition function of the limit of Yang-Mills theory which corre-

sponds to the plane wave background would be the trace over states of the exponential

of the operator

Z = Tr exp

(

−β
2

α′
(∆ + J)

2βf
√
λ

− βf
∆ − J

2

)

. (4.3)

We see that the parameters indeed appear naturally in the combinations β2/α′ and

βf .

4.2.1 Large f

In the limit where f is large for fixed β and λ, the states which dominate the partition

sum are those with ∆ = J . They are just the single and multi-trace chiral primary

operators, Tr (ZJ
1 )Tr (ZJ

2 )...Tr (ZJ
k ), whose conformal dimensions ∆ =

∑

Ji = J are

protected by supersymmetry. They correspond to single and multi-string states where

the string is in its lowest state, the string state which is described by the supersym-
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metric vacuum of the worldsheet sigma model.

To find the partition functions, we can think of the number of times J1 appears

in the product of traces as the occupation number nJ1 , the number of strings which

are in the state with quantum number J1. J1 can have both integers and half integers

values. The contribution of this state to total J is J1nJ1 . We enforce Bose statistics

by summing over all occupation numbers of all states, to get the partition function

and the free energy

Z = e−βF =
∞
∏

J=1/2,1,3/2...

∞
∑

nJ=0

exp

(

− βnJJ

α′f
√
λ

)

=
∞
∏

J=1/2,1,3/2...

1

1 − e
− βJ

α′f
√
λ

,

F =
1

β

∞
∑

J=1/2,1,3/2...

ln
(

1 − e
− βJ

α′f
√
λ

)

= − 1

β

∞
∑

p=1

∞
∑

n=1

1

n
e
− nβp

2α′f
√
λ

= − 1

β

∞
∑

n=1

1

n

1

e
nβ

2α′f
√
λ − 1

= − 1

β

∞
∑

n=1

2α′f
√
λ

βn2
= −π

2α′f
√
λ

3β2
, (4.4)

where p = 2J , and in the last step we have taken the large f limit. We will see that

this coincides with the large f limit of the string partition function which we will find

in the following section. To do this, we need to identify the infinite length of the X−

direction. We can do this by examining the quantization of P+. J and ∆ can be

integers and, for fermions, half-integers, but in all cases the sum ∆ + J are integers.

Consequently, P+ should be of the form
√

2π · integer/L. From this we identify the

infinite length in the X9 direction as L = 2πα′f
√
λ. Then the large f limit in eq.

(4.4) is

F → − πL

6β2
.
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String interactions

One could speculate about what happens when string interactions are switched on. In

the asymptotically AdS space, which is dual to Yang-Mills theory with finite J , string

interactions are restored by relaxing the large N limit. This produce a cutoff of order

N2 on the number of independent traces of local operators, and therefore it should cut

off the Hagedorn behavior – at least the counting of independent operators in weakly

coupled Yang-Mills theory no longer produces a Hagedorn spectrum. Commensurate

with this, we do not expect a deconfinement phase transition in Yang-Mills theory in

the finite volume of S3 ×S1 if N is finite. This makes the prediction that interacting

strings do not have a finite temperature phase transition on an asymptotically AdS

space.

On the other hand, to obtain the plane-wave background, we should always take

the limit N → ∞. This would suggest that we always have a Hagedorn spectrum

of traces of local operators, the main question being whether their quantum number

∆ − J remains finite when both coupling constants, λ′ and g2, are non-zero. It is

known that when ∆ − J depends on g2, it is shifted by a small amount when g2

is small [55][57]. Thus, we can speculate that, as long as g2 is small enough, the

Hagedorn behavior indeed persists when string interactions are present.

4.2.2 Other issues

In the Yang-Mills partition function which is eq. (4.1) with the momenta (2.40), we

should take R/
√
α′ → ∞ while holding the temperature β/

√
α′ fixed. The states

which contribute in the trace are those which have finite ∆ − J . On the other hand,

∆ + J , and therefore both ∆ and J , get arbitrarily large as R/
√
α′ → ∞. One
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might question whether this limit is sensible. In the usual limit, p+ and p− are held

constant when N is taken to infinity. Here, instead, the temperature is held constant

and it is not a priori clear that holding the temperature constant and finite actually

samples the states of the Yang-Mills theory which coincide with the string states. It

would be interesting to find a way to check this directly. Unfortunately, the standard

perturbative computation using path integrals is only valid in the deconfined phase

which occurs at high temperatures, where the confined states that we find in string

theory would be difficult to detect.

An important issue is the possible existence of zero modes of p+. Any protected

operator for which J2/N → 0 as N → ∞ are zero modes of p+. Some of these are

just at the p+ = 0 edge of the continuum spectrum and are included in our analysis.

These are the operators Tr (ZJ) where J is not taken to infinity fast enough as N is

taken to infinity. There are also other operators, such as the protected operators in

the dilaton supermultiplet which have finite non-zero ∆−J , and for which ∆+J are

finite in the limit as N → ∞, so that p+ = 0. These could be considered as discrete

zero modes of p+, which seem to have no analog in the light-cone string spectrum.

This would seem to be a mismatch between the string and Yang-Mills spectra.

There has recently been some discussion on the Hagedorn behavior of pp-wave

strings [154][155], and also in discrete light cone quantization [156]. It is well known

that when string theories are placed in a background electric NS B field or in a

metric, the Hagedorn temperature depends on the parameters of the background

[172][173][174]. Here we shall find that also the R-R flux (2.31) felt by a string in

the pp-wave metric modifies the Hagedorn temperature. We shall also clarify some

of the issues related to the small and large f limit of the Hagedorn temperature,

providing results that, even if in qualitative agreement with those of [154][155], differ
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quantitatively. We shall then study the thermodynamic behavior of strings in geome-

tries that arise in D1-D5 systems as AdS3 × S3 × T 4 with NS-NS and R-R 3-form

backgrounds [175][46][156]. It would be intersting to rederive our results by means of

a path integral procedure and then generalize them to higher genera [176].

4.3 Superstring free energy

The free energy of a gas of non-interacting superstrings is given by summing the free

energies of free particles over all of the particle species in the string spectrum.3 Each

boson in the spectrum contributes

Fb =
1

β
Tr ln

(

1 − e−βp
0
)

= −
∞
∑

n=1

1

nβ
Tr e

− nβ√
2
(p+−p−)

, (4.5)

where p0 and p± are the energy and light-cone momenta of the particle. Similarly,

each fermion contributes

Ff = − 1

β
Tr ln

(

1 + e−βp
0
)

=
∞
∑

n=1

(−1)n

nβ
Tr e

− nβ√
2
(p+−p−)

. (4.6)

We emphasize that the trace in each case is over the spectrum of single particle

states, rather than multi-particle states. The total free energy is given by summing

(4.5) and (4.6) over the particles which appear in the string spectrum. Because of

supersymmetry, most of the string spectrum has paired fermionic and bosonic states,

3For a derivation of this formula see [177].
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so that we can take the average of the two expressions

Fsusy = −
∞
∑

n=1

1 − (−1)n

2nβ
Tr e

− nβ√
2
(p+−p−)

. (4.7)

However, there is one set of states in the spectrum which will turn out not to have

a superpartner, they are the lowest energy excitations which are bosons and have

vanishing light-cone Hamiltonian p− and arbitrary p+. To take these bosons into

account, eq. (4.7) must be amended to read

F = −
∞
∑

n=1,odd

1

nβ
Tr (p−<0) e

− nβ√
2
(p+−p−) −

∞
∑

n=1

1

nβ
Tr (p−=0) e

− nβ√
2
(p+−p−)

. (4.8)

Summing these operators over the spectrum of the operators p− and p+, which are

found in light-cone quantization of the string, should yield the free energy. The last

term is easily evaluated by noting that the measure for the trace over p+ is L√
2π

∫∞
0
dp+,

where L is the (infinite) length of the 9-th dimension. We combine the odd integer

sum in the last term with the first term. This removes the constraint on the spectrum

in that term. Then,

F = −
∞
∑

n=1,odd

1

nβ
Tr e

− nβ√
2
(p+−p−) − L

πβ2

∞
∑

n=2,even

1

n2

= −
∞
∑

n=1,odd

1

nβ
Tr e

− nβ√
2
(p+−p−) − Lπ

24β2
. (4.9)

To proceed, we must examine the string spectrum.

The Green-Schwarz type IIB superstring can be quantized in the light-cone gauge,

as reviewed in chapter 2. We recall here the explicit form of the light-cone Hamiltonian
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(2.36), which is

H ≡ −p−

= f
(

aI0ā
I
0 + 2θ̄0γ̄

−Πθ0 + 4
)

+
1

α′p+

∑

I=1,2

∞
∑

m=1

√

m2 + (α′p+f)2
(

aIIm ā
II
m + ηImγ̄

−η̄Im
)

= f
(

NB
0 +NF

0 + 4
)

+
1

α′p+

2
∑

I=1

∞
∑

m=1

√

m2 + (α′p+f)2
(

NB
Im +NF

Im
)

. (4.10)

The level matching condition N1 = N2 also has to be enforced by introducing an

integration over the Lagrange multiplier τ1. Explicitly eq. (4.9) reads

F = −
∞
∑

n=1,odd

L

4π2α′

∫ ∞

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1

8
∏

I=1

∞
∑

NB,I
0 =0

4
∑

nR,nL=0

∞
∑

NB,I
1,2m=0

8
∑

NF
1,2m=0

×

×
[

e2πiτ1
P∞
m=1m(NB,I

1m +NF
1m−NB,I

2m −NF
2m)e

− n2β2

4πα′τ2 e
−nβfN

B,I
0√
2

(

4

nR

)(

4

nL

)

e
−nβf√

2
(−nR+nL+4)

(

8

NF
1m

)(

8

NF
2m

)

e−
P∞
m=1Rm(NB,I

1m +NF
1m+NB,I

2m +NF
2m)
]

− Lπ

24β2
,

(4.11)

where L is the length of the longitudinal direction, NF
0 = −nR + nL, and

Rm = 2πτ2
√

m2 + µ2 , τ2 =
nβ

2
√

2πα′p+
, µ = α′p+f =

nβf

2
√

2πτ2
. (4.12)

Due to the anticommutation relations of the creation/annihilation fermion operators,

the degeneracy of a state with nR,L fermions is given by the binomial coefficient
(

4

nR,L

)

. Analogously the occupation number NF
Im for the fermion non-zero modes,

which have eight independent components, runs from 0 to 8 and the degeneracy is
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given by the binomial coefficient

(

8

NF
Im

)

. Summing over the zero-modes, the free

energy can be written as

F = −
∞
∑

n=1,odd

L

4π2α′

∫ ∞

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1

[

e
− n2β2

4πα′τ2

(

1 − e
−nβf√

2

)−8

×

× e
− 4nβf√

2

(

1 + e
−nβf√

2

)4 (

1 + e
nβf√

2

)4
∣

∣

∣

∣

G

(

τ1, τ2,
nβf√
22πτ2

)∣

∣

∣

∣

2 ]

− Lπ

24β2
,(4.13)

where G is given by

G(τ1, τ2, µ) =

8
∏

I=1

∞
∑

NB,I
1m =0

8
∑

NF
1m=0

(

8

NF
1m

)

e2πiτ1
P∞
m=1m(NB,I

1m +NF
1m)e−

P∞
m=1 Rm(NB,I

1m +NF
1m) .

(4.14)

Performing the sums over the occupation numbers the generating function becomes

G(τ1, τ2, µ) =

∞
∏

m=1

(

1 + e−2πτ2
√
m2+µ2+2πiτ1m

1 − e−2πτ2
√
m2+µ2+2πiτ1m

)8

, (4.15)

so that the free energy reads

F = −
∞
∑

n=1,odd

L

4π2α′

∫ ∞

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1e
− n2β2

4πα′τ2

∞
∏

m=−∞

(

1 + e−2πτ2
√
m2+µ2+2πiτ1m

1 − e−2πτ2
√
m2+µ2+2πiτ1m

)8

− Lπ

24β2
.

(4.16)

This equation is not in agreement with eq. (3.3) of [154], because it differs by the

contribution of the zero light-cone energy mode. The limit f → ∞ of eq. (4.16) can

be easily computed since G(τ1, τ2, µ) → 1 in this limit so that F becomes

F = − πL

6β2
, (4.17)
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which coincides with the free energy of the dual gauge theory computed above in

this limit, see eq. (4.4). Note that this is the free energy density of a gas of massless

particles in two dimensions. Indeed, the lowest energy states of the string are massless

chiral bosons which propagate down the two spacetime dimensional axis of the pp-

wave space made of the X+ and X− directions. Furthermore they are chiral, in that

their spectrum is composed entirely of left-moving particles. The spectrum of these

particles is protected by supersymmetry, so we expect that this limit of the partition

function is not corrected by string interactions.

We shall now extract information directly from eq. (4.16) instead of turning to

the path integral approach as in [154]. To compute the Hagedorn temperature we

need to estimate the asymptotic behavior of the product in eq. (4.16). This will be

crudely estimated in this section. A more precise estimate will be obtained in the next

section by using its modular transformations properties [178]. Consider the function

defined by

Z(τ1, τ2, µ) ≡
∞
∏

m=−∞

(

1 + e−2πτ2
√
m2+µ2+2πiτ1m

1 − e−2πτ2
√
m2+µ2+2πiτ1m

)

. (4.18)

This diverges only when τ1, τ2, and βf vanish, let us then consider these limits by

taking first τ1 = 0, and then τ2 → 0. For τ1 = 0 it reads

Z(0, τ2, µ) = exp

{ ∞
∑

m=−∞
ln

(

1 + e−2πτ2
√
m2+µ2

1 − e−2πτ2
√
m2+µ2

)}

= exp

{

−
∞
∑

m=−∞

∞
∑

p=1

[

(−1)p

p
− 1

p

]

e−2πτ2p
√
m2+µ2

}

. (4.19)

Using the integral identity [179]

e−2
√
ab 1

2

√

π

a
=

∫ ∞

0

e−at
2− b

t2 dt , (a, b > 0) (4.20)
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one can write

Z = exp

{

+2

∞
∑

m=−∞

∞
∑

podd=1

1

p

2√
π

∫ ∞

0

e−t
2−π2τ22p

2m2

t2
−n2β2f2p2

8t2 dt

}

. (4.21)

In the limit of interest τ2 → 0, the sum over m may be approximated by an integral
∑

m ≃
∫∞
−∞ dm. The integration over m is Gaussian and can be readily performed.

The leading behavior in the τ2 → 0 limit then is

Z ≃ exp

{

nβf√
2πτ2

∞
∑

p=1

[1 − (−1)p]

p
K1

(

nβfp√
2

)

}

, (4.22)

where K1 is the modified Bessel function. Using the series expansion of the Bessel

function it is easy to see that the leading term of eq. (4.22) in the limit βf → 0

reproduces the expected flat space behavior. A more precise derivation of this result

will be obtained in the next section.

4.4 Modular properties of Z

Consider the function defined by

Za,b(τ1, τ2, x) ≡
∞
∏

m=−∞

(

1 − e−2πτ2
√
x2+(m+b)2+2πiτ1(m+b)+2πia

)

. (4.23)

The partition function (4.18) is given by the ratio

Z

(

τ1, τ2,
nβf

2π
√

2τ2

)

=
Z 1

2
,0

(

τ1, τ2,
nβf

2π
√

2τ2

)

Z0,0

(

τ1, τ2,
nβf

2π
√

2τ2

) . (4.24)
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It will turn out to be useful to define

∆b(x) ≡ − 1

2π2

∞
∑

p=1

cos(2πbp)

∫ ∞

0

ds e−p
2s−π2x2

s = −x
π

∞
∑

p=1

cos(2πbp)

p
K1 (2πxp) .

(4.25)

The quantity ∆b(x) corresponds to the zero-energy (Casimir energy) of a 2D com-

plex scalar boson φ of mass m with the twisted boundary condition φ(τ, σ + π) =

e2πibφ(τ, σ). In the massless limit this zero energy correctly reproduces the familiar

value

lim
x→0

∆b(x) =
1

24
− 1

8
(2b− 1)2. (4.26)

Following the appendix A of [178] it is not difficult to derive the modular property of

eq. (4.23)

lnZa,b(τ1, τ2, x) = lnZ−b,a

(

− τ1
|τ |2 ,

τ2
|τ |2 ,

x

|τ |

)

−2πτ2∆b(x)+2π
τ2
|τ |2 ∆a

(

x

|τ |

)

. (4.27)

As a consequence, the transformation properties of eq. (4.18) are

lnZ

(

τ1, τ2,
nβf√
22πτ2

)

= lnZ0, 1
2

(

− τ1
|τ |2 ,

τ2
|τ |2 ,

nβf |τ |
2π

√
2τ2

)

−

− lnZ0,0

(

− τ1
|τ |2 ,

τ2
|τ |2 ,

nβf |τ |
2π

√
2τ2

)

+ 2π
τ2
|τ |2

[

∆ 1
2

(

nβf |τ |
2π

√
2τ2

)

− ∆0

(

nβf |τ |
2π

√
2τ2

)]

.

(4.28)

From the definition of the Casimir energy (4.25) the last two terms in the equation

above read

nβf√
2π|τ |

∞
∑

p=1

[1 − (−1)p]

p
K1

(

nβfp|τ |√
2τ2

)

. (4.29)
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In the limit τ1 → 0 and τ2 → 0 the first two terms in eq. (4.28) behave smoothly

whereas the second two give precisely the behavior found in eq. (4.22).

4.5 The Hagedorn temperature

The asymptotic value of the free energy (4.13) then is

F ∼
∞
∑

n=1

(−1)n − 1

8π2α′ L

∫ ∞

0

dτ2
τ 2
2

e
− n2β2

4πα′τ2 exp

{

8nβf√
2πτ2

∞
∑

p=1

[1 − (−1)p]

p
K1

(

nβfp√
2

)

}

.

(4.30)

The biggest value of β for which this expression diverges in the τ2 → 0 limit is

obtained by taking the n = 1 mode. When the exponent in the integrand of eq.

(4.30) vanishes, F starts to diverge so that the Hagedorn temperature is defined by

the equation

β2
H

4πα′ =
8βHf√

2π

∞
∑

p=1

[1 − (−1)p]

p
K1

(

βHfp√
2

)

. (4.31)

Taking the derivative with respect to f one gets

∂βH
∂f

= −
8α′|f |βH

∑∞
p=1 [1 − (−1)p]K0

(

βHfp√
2

)

1 + 8α′f 2
∑∞

p=1 [1 − (−1)p]K0

(

βHfp√
2

) . (4.32)

The r.h.s. of this equation is always negative thus βH is a decreasing function of

|f |
√
α′ and consequently TH is an increasing function of |f |

√
α′.

We shall now study the behavior of eq. (4.31) in the small and large f limit. For

small f it is necessary to rewrite it as a power series in βf and then solve for β. This

will be rigorously done in the next section and it will allow us to derive the correct

result for the Hagedorn temperature at small f . For large f the behavior of eq. (4.31)
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is much easier to extract, and it should reproduce the dual gauge theory behavior.

4.5.1 Expansion for small f

To rewrite eq. (4.31) as a series expansion in f , we shall use the Mellin transform

procedure. The series

Sb(x) =
∞
∑

p=1

1

p
K1 (xp) (4.33)

can in fact be rewritten as a power series in x by means of a Mellin transformation.

The Mellin transform of Sb(x) reads

M(s) =

∫ ∞

0

dx xs−1Sb(x) =

∞
∑

p=1

∫ ∞

0

dx

∫ ∞

0

dt

4t2
xs e−t−

x2p2

4t . (4.34)

Changing the integration variable x to y = x2p2/(4t), M(s) becomes

M(s) =

∞
∑

p=1

∫ ∞

0

dy

8

(

2

p

)s+1

y(s−1)/2e−y
∫ ∞

0

dt

t2
t(s+1)/2e−t . (4.35)

The Mellin transform M(s) exists provided the integrals over y and t are bounded

for some s > k with k > 0. In our case the integrals can be done for s > 1 and M(s)

is

M(s) = 2s−2Γ

(

s− 1

2

)

Γ

(

s+ 1

2

)

ζ(s+ 1) . (4.36)

The inversion of the Mellin transform gives back the function Sb(x) and is accom-

plished by means of the inversion integral

Sb(x) =
1

2πi

∫ C+i∞

C−i∞
dsM(s)x−s , (4.37)
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where C > k = 1. The integral is well defined and to compute it we must close the

contour and use the residue theorem. For this purpose it is convenient to change the

argument of ζ(s+ 1) in the integrand as [179]

ζ(s+ 1) = πs+1/2 Γ
(

− s
2

)

Γ
(

s+1
2

)ζ(−s) . (4.38)

Therefore

Sb(x) =
1

2πi

∫ C+i∞

C−i∞
ds

(

2π

x

)s √
π

4
Γ
(

−s
2

)

Γ

(

s− 1

2

)

ζ(−s) . (4.39)

The contour can now be closed on the left so that the poles are at s = 1, 0,−1, 1 −

2k, . . . for k = 2, 3, . . . The residues can be easily computed and the result is

Sb(x) =
π2

6x
− π

2
+
x

8

(

1 − 2γ + 2 ln
4π

x

)

+

∞
∑

k=2

(−1)k

k!

( x

2π

)2k−1
√
π

2
Γ

(

k − 1

2

)

ζ(2k − 1) , (4.40)

where γ is the Euler constant. Analogously one can rewrite the series

Sf (x) =
∞
∑

p=1

(−1)p

p
K1 (xp) (4.41)

as

Sf (x) = − π2

12x
+
x

8

(

1 − 2γ + 2 ln
π

x

)

+
∞
∑

k=2

(−1)k

k!
(22k−1 − 1)

( x

2π

)2k−1
√
π

2
Γ

(

k − 1

2

)

ζ(2k − 1) . (4.42)
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The series appearing in the formula for the Hagedorn temperature (4.31) can then be

rewritten as

Sb(x) − Sf(x) =

∞
∑

p=1

1 − (−1)p

p
K1 (xp)

=
π2

4x
− π

2
+
x

2
ln 2 −

∞
∑

k=2

(−1)k

k!
(22k−1 − 2)

( x

2π

)2k−1
√
π

2
Γ

(

k − 1

2

)

ζ(2k − 1) .

(4.43)

In appendix B we present an alternative derivation of this result.

Using these results for the series difference in eq. (4.31) one can derive the follow-

ing formula for the Hagedorn temperature in the limit of small f

β2
H

4πα′ = 2π−4βHf√
2

+
2β2

Hf
2 ln 2

π
−

∞
∑

k=2

(−1)k(22k − 4)4
√
π

k!

(

βHf

2π
√

2

)2k

Γ(k−1

2
)ζ(2k−1) .

(4.44)

Keeping only the two leading terms in the expansion of eq. (4.44) we get

β2
H(1 − 8α′f 2 ln 2) = 8π2α′ − 16πα′βHf√

2
(4.45)

The Hagedorn temperature then is

TH =
1

2π
√

2α′

(

1 + 2
√
α′f + 2(1 − 2 ln 2)α′f 2

)

. (4.46)

As in [154] the Hagedorn temperature increases for small values of f 2α′ but the second

term differs from the one derived in [154] by a factor of 4π
√

2.

In the flat space limit f → 0 we recover the well known superstring Hagedorn
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temperature

TH =
1

βH
=

1

2π
√

2α′
. (4.47)

4.5.2 The large f limit

Let us now consider the large f behavior of eq. (4.31). It is particularly interesting

to examine this limit because it is in this limit pp-wave that type IIB string theory is

supposed to be dual to a subsector of a particular Yang-Mills theory [46]. For large

value of f , the most relevant contribution to the series of the modified Bessel function

K1 is given by taking p = 1 in eq. (4.31). For large value of its argument the Bessel

function in fact can be approximated by

K1

(

βHfp√
2

)

∼
√

π√
2βHfp

exp

(

−βHfp√
2

)

, (4.48)

so that terms with higher values of p are exponentially suppressed. The eq. (4.31)

for the Hagedorn temperature then becomes

β2
H

4πα′ = 8

√

βHf
√

2

π
exp

(

−βHf√
2

)

→ 0 , f → ∞ . (4.49)

The rapid vanishing of the Bessel function in the large f limit implies that the Hage-

dorn temperature increases with f and for very large f is pushed toward infinity. This

means that in this regime there is no Hagedorn transition at any finite temperature

but instead the Hagedorn temperature is a limiting temperature. This is expected

since the large f limit should indeed reproduce the gauge theory behavior.
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4.6 AdS3×S3 in NS-NS and R-R 3-form backgrounds

The limit that gives the metric (2.30) in the AdS5 × S5 geometry can be taken also

in other geometries. As a particular case one can consider the AdS3 × S3 geometry

[180][175][46]. In this case the radii of AdS3 and S3 are the same and the computation

is identical to the one we did above for AdS5 ×S5. It is interesting to consider a situ-

ation with a mixture of NS-NS and R-R 3-form field strengths. The six dimensional

plane-wave metric is

ds2 = 2dx+dx− − f 2~y2dx+dx+ + d~y2 (4.50)

and the 3-form is given by

FNS
+12 = FNS

+34 = C1f cosα , FR
+12 = FR

+34 = C2f sinα , (4.51)

where ~y parametrizes a point on T 4, and α is a fixed parameter which allows us

to interpolate between the purely NS-NS background α = 0 and the purely R-R

background α = π/2. C1 and C2 are constants depending on the string coupling

and the normalization of the NS-NS and R-R field strenghts. In addition to the six

coordinates in eq. (4.50) we have four additional directions which we can take to be

T 4.

The light-cone Hamiltonian is

H =

∞
∑

n=−∞
Nn

√

f 2sinα2 +

(

f cosα +
n

α′p+

)2

+ 2
LT

4

0 + L̄T
4

0

α′p+
, (4.52)

where the first term takes into account the massive bosons and fermions, and the

109



second term takes into account the massless ones.

The computation of the free energy is similar to the one we performed in the

previous section for the AdS5 × S5 geometry. It reads

F = −25
∞
∑

nodd

L

8π2α′

∫ ∞

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1

(

1

4π2α′τ2

)2

e
− n2β2

4πα′τ2

∞
∏

m=1

∣

∣

∣

∣

1 + e2πiτm

1 − e2πiτm

∣

∣

∣

∣

8

×

×
∞
∏

m=−∞























1 + exp

[

−2πτ2

√

(

nfβ sinα

2
√

2πτ2

)2

+
(

m+ nβf cosα

2
√

2πτ2

)2

+ 2πiτ1m

]

1 − exp

[

−2πτ2

√

(

nfβ sinα

2
√

2πτ2

)2

+
(

m+ nβf cosα

2
√

2πτ2

)2

+ 2πiτ1m

]























4

.

(4.53)

Here, because of the fermion zero modes, the ground state is degenerate and the free

energy can be computed using Fsusy defined in eq. (4.7).

The modular properties of the partition function in eq. (4.53) can be derived as

done above. Consider

Z(τ1, τ2, x) =

∞
∏

m=−∞

(

1 + e−2πτ2
√
x2+(m+b)2+2πiτ1(m+b)+2πia

1 − e−2πτ2
√
x2+(m+b)2+2πiτ1(m+b)+2πia

)

|θ4(0, 2τ)|−2 . (4.54)

In our case a = 0, b = nβf cosα

2
√

2πτ2
, and x = nβf sinα

2
√

2πτ2
. Eq. (4.54) can be rewritten in terms

of the definition (4.23) as

Z(τ1, τ2, x) =
Z 1

2
,b(τ1, τ2, x)

Z0,b(τ1, τ2, x)
|θ4(0, 2τ)|−2 . (4.55)

From the modular property of Za,b(τ1, τ2, x), eq. (4.27), it follows that

lnZ
(

τ1, τ2,
nβf sinα√

22πτ2

)

= lnZ−b, 1
2

(

− τ1
|τ |2 ,

τ2
|τ |2 ,

nβf sinα|τ |
2π

√
2τ2

)

− lnZ−b,0

(

− τ1
|τ |2 ,

τ2
|τ |2 ,

nβ sinαf |τ |
2π

√
2τ2

)

110



+2π τ2
|τ |2

[

∆ 1
2

(

nβf sinα|τ |
2π

√
2τ2

)

− ∆0

(

nβf sinα|τ |
2π

√
2τ2

)]

− 2 ln
∣

∣θ2(0,− 1
2τ

)
∣

∣+ ln 2|τ | . (4.56)

The first two terms in eq. (4.56) behave smoothly in the τ1 → 0, τ2 → 0 limit.

Moreover
∣

∣

∣

∣

θ2(0,−
1

2τ
)

∣

∣

∣

∣

→ exp

(

− πτ2
4|τ |2

)

.

Consequently, taking into account the definition of the Casimir energies, for the Hage-

dorn temperature we get

β2
H

4πα′ =
4βHf sinα√

2π

∞
∑

p=1

[1 − (−1)p]

p
K1

(

pβHf sinα√
2

)

+ π . (4.57)

It is interesting to note that this equation depends on the angle α only through f sinα,

the R-R field strength.

Keeping only the two leading terms in the expansion for small f of eq. (4.57), we

get the Hagedorn temperature

TH =
1

2π
√

2α′

(

1 +
√
α′f sinα + (1 − 2 ln 2)α′f 2 sin2 α

)

. (4.58)

In the case of purely NS-NS background, corresponding to α = 0, we recover the well

known superstring Hagedorn temperature for the flat background.
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Chapter 5

Half BPS geometries and free

fermions

5.1 Introduction

According to the AdS/CFT correspondence, deformations of AdS geometries should

map to states in the dual CFT living at the boundary of AdS. Recently a concrete

realization of this map has been found for the important sector of 1/2 BPS operators

of N = 4 super Yang-Mills. These operators, as reviewed in chapter 2, have conformal

dimension ∆ equal to the U(1)R charge and form a decoupled sector of N = 4 super

Yang-Mills which can be efficiently described by a gauged quantum mechanics matrix

model with harmonic oscillator potential. The matrix model is well known to be

completely integrable. The main reason behind integrability is that, in the eigenvalue

basis, the eigenvalues behave as fermions in a harmonic potential. In the semiclassical

limit the 1/2 BPS states can be depicted as droplets of fermions in a two-dimensional

phase space. One expects then the following AdS/CFT dictionary. Small ripples
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above the Fermi sea correspond to graviton excitations of AdS5 × S5. Small holes

below the Fermi energy correspond to giant gravitons, while small droplets of fermions

outside the Fermi sea map to dual giant gravitons.1

Remarkably this whole picture has found an impressive confirmation through the

explicit construction of the full moduli space of 1/2 BPS IIB supergravity solutions

discovered by Lin, Lunin and Maldacena (LLM) [184].2 The phase space distri-

bution of the matrix model eigenvalues is in one-to-one correspondence with IIB

supergravity backgrounds which preserve half of the supersymmetry. Moreover the

two-dimensional phase space of the fermions has an interesting physical embedding in

the space-time geometry. At the quantum level the incompressibility of the droplets in

phase space (due to Fermi-Dirac statistics) corresponds in the dual supergravity side

to the requirement that the Ramond-Ramond five-form flux is quantized. The whole

family of half-BPS geometries can be constructed in terms of an auxiliary function

z which also determines the fermion distribution. The regularity of the supergravity

background amounts to requiring a suitable boundary condition on the auxiliary func-

tion. The AdS “bubbling geometries” are therefore in general smooth supergravity

backgrounds.

The fermions discussed so far are characterized by having a step-function distri-

bution in the two-dimensional phase space. They can be seen therefore as fermions

at zero “temperature”. It is then natural to investigate how turning on the tempe-

rature affects the supergravity solution. The fermion at non-zero temperature are

described by a Fermi-Dirac distribution. The corresponding AdS “bubbling” solu-

1All this is very reminiscent of both old and recent works on c = 1 string theory and its matrix
model reinterpretation [181][182] (for a recent review see [183]).

2For related work see [185]-[195]. An attempt to achieve a similar description for the 1/4 BPS
case can be found in [196].
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tion has been first obtained in [197] and further studied in [198] where it was given

the name of hyperstar. This supergravity background can be thought of as resulting

from a coarse graining process of smooth 1/2 BPS geometries. The fermion distri-

bution of the hyperstar fails to satisfy the boundary conditions necessary to obtain

a smooth gravity solution. Quite generally when the smoothness condition is not

satisfied naked singularities occur [199][200]. One expects that α′ string corrections

will modify the geometry in proximity of the singularity and that a horizon will be

generated [201][202]. This class of singular supergravity solution can therefore be

regarded as incipient black holes.3

The duality between fermion distributions and supergravity solutions at zero tem-

perature suggests that the thermodynamic properties of the fermion gas at finite

temperature should agree with the corresponding quantities in the supergravity side.

In particular, one expects agreement between the thermal excitation energy of the

fermions and the ADM mass of the supergravity solution. We will check that this is

indeed the case in the two opposite regimes of low and high temperature.

As we have already remarked, the hyperstar geometry is singular. The singularity

is resolved quantum mechanically through the appearance of a finite area horizon.

One can then use the Bekenstein-Hawking formula to compute the associated en-

tropy. By placing a stretched horizon in the hyperstar geometry we propose a way to

match the supergravity entropy with the thermal entropy of the fermions in the low

temperature regime, up to a numerical factor.

Similarly we investigate the opposite regime of high temperature. In this limit

the Fermi-Dirac distribution reduces to the classical Boltzmann distribution. We find

3An example of singular LLM solution is the superstar [203], which has been investigated from
this point of view in [204][205].
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that in this regime the metric is reminiscent of the so called dilute gas limit of LLM

configurations associated to the Coulomb branch of super Yang-Mills.

5.2 Review of the LLM construction

In this section we briefly review the LLM construction [184] of 1/2 BPS IIB super-

gravity backgrounds. These solutions correspond, in the dual gauge theory, to states

satisfying the BPS condition ∆ = J , where ∆ is the corresponding conformal dimen-

sion and J is a particular U(1) charge of the SO(6) R-symmetry group of N = 4

super Yang-Mills. By selecting one generator of this SO(6) we obtain a theory with

SO(4)× SO(4)× R bosonic symmetry. In the dual supergravity description we look

therefore for solutions with this isometry group. Assuming that the axion and dila-

ton are constant and that only the selfdual five-form field strength is turned on, the

Ansatz for the background is

ds2 = gµνdx
µdxν + eH+GdΩ2

3 + eH−GdΩ̃2
3 ,

F(5) = Fµνdx
µ ∧ dxν ∧ dΩ3 + F̃µνdx

µ ∧ dxν ∧ dΩ̃3 , (5.1)

where the Greek indices µ, ν run over 0, . . . , 3. The two three-spheres S3 and S̃3 in

the metric make the SO(4)× SO(4) isometries manifest. The additional R isometry

corresponds to the Hamiltonian ∆ − J .

For a background to be 1/2 BPS there should exist a solution to the Killing spinor

equation. Analyzing this equation, LLM were able to prove that the generic 1/2 BPS
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IIB supergravity background takes the form

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃2
3 , (5.2)

h−2 = 2y coshG , z =
1

2
tanhG , (5.3)

y∂yVi = ǫij∂jz , y(∂iVj − ∂jVi) = ǫij∂yz (5.4)

F = dBt ∧ (dt+ V ) +BtdV + dB̂ ,

F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d ˆ̃B , (5.5)

Bt = −1

4
y2e2G , B̃t = −1

4
y2e−2G , (5.6)

dB̂ = −1

4
y3 ∗3 d

(

z + 1
2

y2

)

, d ˆ̃B = −1

4
y3 ∗3 d

(

z − 1
2

y2

)

, (5.7)

where i = 1, 2, and ⋆3 is the Hodge dual operator for the flat three-dimensional space

parameterized by x1, x2, and y. Remarkably, the solution is completely specified in

terms of a single auxiliary function z(x1, x2, y) which satisfies the linear differential

equation

∂i∂iz + y∂y

(

∂yz

y

)

= 0 . (5.8)

It is important to note that at y = 0 the product of the radii of the two privileged

three-spheres is zero. Therefore, to avoid singular geometries, the auxiliary function z

must satisfy a suitable boundary condition. This smoothness condition turns out to be

z = ±1/2 on the boundary plane y = 0. In the limit z → 1/2 the S̃3 sphere shrinks to

zero while the other three-sphere remains finite. The reverse statement applies when

z → −1/2. It is conventional to assign black and white colors respectively to the

z = −1/2 and z = 1/2 points in the (x1, x2) plane. If D denotes a black region in this
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plane, the energy of the associated supergravity solution has the simple expression

∆ = J =

∫

D

d2x

2π~

1

2

(x2
1 + x2

2)

~
− 1

2

(
∫

D

d2x

2πh

)2

. (5.9)

The R2 plane has then a natural interpretation as the phase space of one-dimensional

fermions in a harmonic potential. This nicely matches the matrix model description

in the dual CFT side [35]. It emerges a beautiful picture of the moduli space of 1/2

BPS geometries of IIB supergravity in terms of configurations of droplets of fermions

on the (x1, x2) plane. Note that the fundamental equation (5.8) has the symmetry

z → −z which simply exchanges the S3 and S̃3 in the solution. In a field theory

description of the fermions, this symmetry amounts to a particle-hole duality.

The quantization condition on the total area A of the droplets is related to the

five-form flux N as follows

A
2π~

= N , (5.10)

with ~ = 2πl4p. The flux N coincides with the number of fermions. The simplest

configuration in phase space is a black circular droplet of radius R0 =
√

2~N and the

associated geometry is AdS5×S5 with N units of the five-form flux. This background

has ∆ = J = 0 and corresponds to the fermion ground state. The boundary of

the droplet can be thought of as the Fermi level of the fermions. The S5 of the

background is obtained by fibering the S̃3 sphere on a two-dimensional surface Σ2 in

the (x1, x2, y) space which encircles the droplet. One can easily obtain configurations

with an arbitrary number of S5’s by adding other droplets. If we deform the circular

droplet to configurations with different shapes but same area, we obtain backgrounds

with AdS5 × S5 asymptotics.

The fundamental equation (5.8) can be rewritten as a Laplace equation for the
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quantity Φ = z/y2 in a six-dimensional space with spherical symmetry in four of

the coordinates. The coordinate y corresponds to the radial direction in the four-

dimensional subspace. This observation reduces the task of finding the full solution

z(x1, x2, y) of eq. (5.8) to a well known initial-value problem. Once the boundary

condition z(x1, x2, 0) on the y = 0 plane is specified, the solution is

z(x1, x2, y) =
y2

π

∫

R2

z(x′1, x
′
2, 0)dx′1dx

′
2

[(x − x′)2 + y2]2
. (5.11)

We can similarly get

Vi(x1, x2, y) =
ǫij
π

∫

R2

z(x′1, x
′
2, 0)(xj − x′j)dx

′
1dx

′
2

[(x − x′)2 + y2]2
. (5.12)

Since we are going to consider only droplet configurations with radial symmetry,

it will be convenient to rewrite the above formulas in polar coordinates (x1, x2) →

(R, φ). It is easy to see that in this case VR = V1 cosφ + V2 sinφ = 0. Defining

V ≡ Vφ = R(−V1 sin φ + V2 cosφ) the differential equations relating z and V (5.4)

read

y ∂y V = −R∂R z ,
1

R
∂R V =

1

y
∂y z . (5.13)

Rewriting eq. (5.11) and eq. (5.12) in polar coordinates yields

z(R, y) = −
∫

z(R′, 0)
∂

∂R′ z0(R, y;R
′)dR′ , (5.14)

V (R, y) =

∫

z(R′, 0)gV (R, y;R′)dR′ , (5.15)
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where

z0(R, y;R
′) =

R2 −R′2 + y2

2 [(R2 +R′2 + y2)2 − 4R2R′2]1/2
, (5.16)

gV (R, y;R′) =
−2R2R′(R2 −R′2 + y2)

[(R2 +R′2 + y2)2 − 4R2R′2]3/2
. (5.17)

We remark that z0 is the LLM function corresponding to a circular droplet. Indeed

in this case z(R′, 0) = 1/2 sign(R′ − R0) and using eq. (5.14) one obtains z(R, y) =

z0(R, y;R0). As previously anticipated such a configuration gives rise to the AdS5×S5

solution. In fact performing the following change of coordinates [184]

y = R0 sinh ρ sin θ , R = R0 cosh ρ cos θ , φ = φ̃+ t , (5.18)

one recovers the AdS5 × S5 metric in standard global form

ds2 = R0

(

− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ̃2

3

)

. (5.19)

A variation of the method described so far can be similarly applied to obtain 1/2

BPS M-theory backgrounds with AdS4,7 × S7,4 asymptotics [184]. In this case the

geometry is in one-to-one correspondence with solutions of a three-dimensional Toda

equation, which plays the same role as eq. (5.8).

5.3 1D fermions in the harmonic well

In this section we review the basics of the thermodynamics of one-dimensional fermions

in a harmonic potential. In what follows, we will consistently adopt units in which
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~ = kB = 1. We consider a gas of N non-interacting fermions with hamiltonian

H(p, q) =
1

2
(p2 + q2) (5.20)

in thermodynamic equilibrium at a given temperature T . For large N , we adopt the

semi-classical approximation in which the energy is taken to be a continuous variable.

The probability distribution as a function of the energy H(p, q) = ǫ is given by the

Fermi-Dirac distribution:

nFD(ǫ) =
1

e(ǫ−µ)/T + 1
, (5.21)

where µ is the Fermi energy. This is determined by the normalization condition

∫ ∞

0

dǫ

e(ǫ−µ)/T + 1
= N , (5.22)

which gives

µ = T ln(eN/T − 1) . (5.23)

We will first consider the limit of very small temperature T , or more precisely N/T ≫

1. In this limit, the Fermi level becomes

µ = N + O(Te−N/T ) , (5.24)
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and the total energy of the Fermi gas is given by

E =

∫ ∞

0

ǫ dǫ

e(ǫ−µ)/T + 1
, (5.25)

which for small T can be evaluated by means of the Sommerfeld expansion [206]

I =

∫ ∞

0

f(ǫ)dǫ

e(ǫ−µ)/T + 1
=

∫ µ

0

f(ǫ)dǫ+
π2

6
T 2f ′(µ) +

7π4

360
T 4f ′′′(µ) + O(T 6) . (5.26)

This gives

E ≃ N2

2
+
π2

6
T 2 . (5.27)

The first term is clearly the ground state energy of the N fermions, so we expect the

dual gravity solution to have a mass (and angular momentum) difference of ∆ = π2

6
T 2

with respect to the AdS5 × S5 background. It is worth noting that in eq. (5.27) we

only neglect exponentially suppressed terms. In fact, since f(ǫ) = ǫ, there are no

power series corrections to the energy beyond T 2. This is a specific feature of the 1D

harmonic oscillator, and we will recover it in the energy4 and angular momentum of

the hyperstar in the low T limit.

To evaluate the entropy of the fermion gas, it is convenient to first obtain the free

energy F of the system. This is computed from the partition function Z, which in

the continuous limit we are considering reads

Z = exp

[

−Nµ
T

+

∫ ∞

0

dǫ ln(1 + e−(ǫ−µ)/T )

]

. (5.28)

4Modulo a subtlety involving T 4 terms to be discussed later.
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One can verify that this expression for the partition function is correct by checking

that the relation E = − ∂
∂β

lnZ (where β = 1/T ) is satisfied. Using the definition

F = −T lnZ one obtains the free energy

F = Nµ − T

∫ ∞

0

dǫ ln(1 + e−(ǫ−µ)/T ) = Nµ−
∫ ∞

0

dǫ
ǫ

e(ǫ−µ)/T + 1
= Nµ −E.(5.29)

The entropy is then given by the relation F = E − TS from which we get

S =
2E −Nµ

T
. (5.30)

For small T , using eq. (5.24) and eq. (5.27) one gets

S ≃ π2

3
T , (5.31)

where again only exponetially small terms are neglected.

We now consider the opposite limit of very high temperature N/T ≪ 1. In this

limit, the Fermi distribution clearly reduces to the Boltzmann density

nFD(ǫ) → nB(ǫ) = Nβ e−βǫ (5.32)

where β = 1/T . The total energy in this approximation is E = NT . The entropy

can be obtained from eq. (5.30) (which is valid for any temperature) using the large

T approximation µ ≃ T lnN/T , and reads

S ≃ N lnT + 2N −N lnN. (5.33)
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5.4 The hyperstar: low temperature regime

We now introduce the 1/2 BPS geometry dual to the Fermi-Dirac gas described in

the previous section [197]. This solution was named hyperstar in [198].

A given z(R, 0) corresponds to a fermion density n(R) in the phase space via the

relation

z(R, 0) =
1

2
− n(R) . (5.34)

For example, the AdS5 × S5 solution is associated to the step function density n0 =

ϑ(R − R0), which can be viewed as the zero temperature limit of the Fermi-Dirac

distribution (5.21). One can turn on the temperature on the fermion side by replacing

n0 with nFD(R) and construct the corresponding supergravity background by using

eqs. (5.14), (5.15) and (5.34). It is important to remark that the temperature we

are turning on is the temperature in the “auxiliary” description of the free fermion

gas. It is not a temperature of the supergravity solution or of the dual gauge theory.

Indeed, we remain in the supersymmetric 1/2 BPS sector. It would be interesting

to understand better what corresponds to this temperature on the gravity and gauge

theory side. For the time being, we regard T just as a deformation parameter of the

AdS5 × S5 background.

For low temperatures, the solution is a small perturbation of the circular droplet.

In fact in this limit the fermion configuration in the (x1, x2) looks like a black disk

with the boundary slightly “blurred”, as shown in fig. 5.1. In the low temperature
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Figure 5.1: Droplet configuration in the low temperature limit. The greyscale ring
around the Fermi level corresponds to a singular region of the spacetime.

limit the expressions (5.14) and (5.15) can be obtained analytically as follows [197]

zTFD(R, y) =
1

2
+

∫ ∞

0

nFD(R′)
∂

∂R′ z0(R, y;R
′)dR′

= z0(R, y;R0) +
π2

6
T 2

[

∂2

∂ǫ2
z0(R, y;R0 =

√
2ǫ)

]

ǫ=
R2

0
2

+ O(T 4) ,

(5.35)

and

V T
FD(R, y) = −

∫ ∞

0

nFD(R′)gV (R, y;R′)dR′

= V0(R, y;R0) −
π2

6
T 2

[

∂

∂ǫ

(

gV (R, y;R0 =
√

2ǫ)√
2ǫ

)]

ǫ=
R2

0
2

+ O(T 4) ,

(5.36)
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where we have used the Sommerfeld expansion (5.26) and where

V0(R, y;R0) =
1

2

(

R2 +R2
0 + y2

[(R2 +R2
0 + y2)2 − 4R2R2

0]
1/2

− 1

)

(5.37)

corresponds to the AdS5 × S5 background. In these expressions R0 =
√

2N is the

radius of the droplet in the phase space at T = 0, and N is the number of fermions.

It is easy to check that eqs. (5.35) and (5.36) satisfy the differential equations (5.13).

5.4.1 ADM form of the metric

In order to compute the mass and the angular momentum associated to the hyperstar,

it is convenient to perform the following change of coordinates

R = L2

(

1 +
r2

L2

)1/2

cos θ , y = L r sin θ , φ = φ̃+
t

L
, (5.38)

and we also rescale t→ L t to have conventional units. Here (t , r , Ω3) parameterize

the asymptotic AdS5 (in global coordinates), whereas (θ , φ̃ , Ω̃3) span the asymptotic

S5. Of course, L is the radius of both the AdS5 and the S5. It is related to the radius

R0 used by [184] via R0 = L2. In this system of coordinates the metric can be

rewritten in ADM form as

ds2 = −N 2dt2 + gθθ

(

dr2

r2 + L2
+ dθ2

)

+ gφ̃φ̃

(

dφ̃+ N φ̃dt
)2

+ gΩ3Ω3 dΩ
2
3 + gΩ̃3Ω̃3

dΩ̃2
3 ,

(5.39)

where N is the lapse function and N φ̃ is the shift vector.
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Introducing the expansion parameter

γ ≡ 2π2T 2

3L8
=
π2T 2

6N2
, (5.40)

and using the explicit expressions for zTFD and V T
FD

zTFD(R, y) =
R2 − R2

0 + y2

2 [(R2 +R2
0 + y2)2 − 4R2R2

0]
1/2

+

+
2R4

0y
2
(

(R2
0 + y2)2 +R2(R2

0 − y2) − 2R4
)

[(R2 +R2
0 + y2)2 − 4R2R2

0]
5/2

γ + O(γ2) ,

V T
FD(R, y) =

1

2

(

R2 +R2
0 + y2

[(R2 +R2
0 + y2)2 − 4R2R2

0]
1/2

− 1

)

+

+
2R4

0R
2
(

(R2 −R2
0)

2 − y2(R2 +R2
0 + 2y2)

)

[(R2 +R2
0 + y2)2 − 4R2R2

0]
5/2

γ + O(γ2) , (5.41)

one obtains, upon implementing eq. (5.38), the components of the metric, which we

present here up to O(γ2) terms5

N 2 =

(

1 +
r2

L2

)

[

1 − γL2F1(r, θ)
]

,

N φ̃ = γ
2L(r2 + L2)(r2 + L2 cos2 θ)

(r2 + L2 sin2 θ)3
,

gφ̃φ̃ = L2 cos2 θ
[

1 + γL2F1(r, θ)
]

,

gθθ = L2

[

1 + γL2 r
2 − L2 sin2 θ

r2 + L2 sin2 θ
F2(r, θ)

]

,

5We notice that our expression for gφ̃φ̃ differs from the one reported in [197].
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gΩ3Ω3 = r2
[

1 − γL2F2(r, θ)
]

,

gΩ̃3Ω̃3
= L2 sin2 θ

[

1 + γL2F2(r, θ)
]

, (5.42)

where

F1(r, θ) =
(3 cos2 θ − 1)r4 + 3L2 cos4 θ r2 + L4(2 cos4 θ + sin2 θ)

(r2 + L2 sin2 θ)3
,

F2(r, θ) = F1(r, θ) − 2
sin2 θ r2 + L4

(r2 + L2 sin2 θ)3
. (5.43)

A general property of LLM distributions with compact support is that the corre-

sponding geometries are asymptotically AdS5 × S5. One can check that this remains

true for the metric (5.42). This is consistent with the fact that the droplet of fig. 5.1

is effectively confined in a finite region of the phase space. From the expressions in

eq. (5.43), we also notice that the Sommerfeld expansion seems no longer reliable in

a region around the point r = θ = 0. The appearance of eventual singularities will

be discussed in the following section.

5.4.2 Singularities of the metric

The study of singularities for LLM geometries was undertaken in [198]-[200]. There

it was shown that all singularities appearing in the LLM supergravity solutions are

naked and fall into two classes, namely timelike and null. While the former are

considered highly pathological due to the presence of closed timelike curves, the latter

are not. In fact, for 1/2 BPS geometries with null singularity, the underlying fermion

density function n(R) always takes values in the region n(R) ∈ [0, 1]. This is the case
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both for the hyperstar and the superstar solutions.

To verify the presence of a singularity in the geometry, one should find a curva-

ture invariant which diverges. The first non-trivial invariant to consider is R2
MN =

RMNR
MN , (M,N = 0, . . . , 9), since the Ricci scalar R vanishes. Indeed, as a result

of the Weyl invariance of the classical theory, the trace of the matter stress-tensor is

identically zero. In order to check the consistency of the metric (5.42) we explicitly

verified that this is the case.

There are two ways to perform the computation of R2
MN . The direct approach

involves the explicit form of the metric, while the indirect one makes use of the field

equations of type IIB supergravity. In this case, the knowledge of the five form field

strength F(5) will suffice

RMN =
1

5!

(

5

2
F P1P2P3P4
M FNP1P2P3P4 −

1

4
gMNF

2

)

. (5.44)

Suppose now we use the approximate solution for the metric, whose explicit form was

given in the previous section, eq. (5.42). A lengthy calculation gives

R2
MN =

160

L4
+ γ

P6(r, cos θ)

L2(r2 + L2 sin2 θ)4
+ O(γ2) . (5.45)

In this γ expansion, the first term corresponds to AdS5 × S5 and is, of course, finite.

The linear term in γ is, however, potentially divergent. Here P6(r, cos θ) is a sixth

order polynomial in both r and cos θ and goes to zero as (r2 + L2 sin2 θ) when r → 0

and θ → 0. The square of the Ricci tensor is therefore divergent when r = 0 and

θ = 0. It is interesting to note here that this is exactly the singular behavior one sees

in Kerr black holes. Due to their angular momentum, the collapsing region is not a
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point but a zero-thickness ring. The Kretschmann invariant K ∼ RMNRSR
MNRS , for

instance, for a Kerr black hole with mass M and angular momentum J = Ma, is

K = M2 Q6(r, cos θ)

(r2 + a2 cos2 θ)6
, (5.46)

where Q6(r, cos θ) also indicates a sixth order polynomial having the same behavior

as P6(r, cos θ) in the vicinity of r = 0 and θ = 0. This is suggestive of the existence

of an event horizon in the hyperstar geometry which may manifest itself through

α′-corrections to the supergravity solution.

This is not however the result one would have anticipated. From the form of the

metric in LLM coordinates, it is quite natural to expect a singularity at y = 0. Using

eq. (5.38), we can see that this corresponds to r = 0 or θ = 0 in asymptotic AdS5×S5

coordinates. On the other hand, the singular region appearing in eq. (5.45) is mapped

to (R = L, y = 0), which is just the Fermi surface of the fermions. We expect the

singularity to be at least smeared over an extended region around the Fermi energy,

since there the fermion density is less than one, see fig. 5.1.

What is therefore the true singular region of the hyperstar? We can try to address

this question in a quite general fashion valid for all LLM geometries. We simply need

to know the behavior of the functions z(R, y) and V (R, y) in proximity of y = 0. We

can distinguish two different cases depending on whether z0(R, 0) = limy→0 z(R, y) is

independent of the radial coordinate R or not. In what follows we will focus on the

latter, since this is the case of the hyperstar.

We would like to find z(R, y) and V (R, y) in terms of an expansion in y or functions

of y, such that the differential equations (5.13) will be order by order satisfied. It
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turns out that the appropriate Ansatz is the following

z(R, y) = z0(R, 0) + f1(R) y2 ln y + . . . ,

V (R, y) = V0(R, 0) + g1(R) ln y + . . . . (5.47)

The functions fi(R) and gi(R) are determined to each order from the same dif-

ferential equation (5.13). For the case that concerns us here we have f1(R) =

− 1
2R
∂R(R∂Rz0(R, 0)), V0(R, 0) = −1

2
R∂Rz0, and g1(R) = −R∂Rz0. It is now easy

to find the complete solution for the metric and the five-form field strength in this

region and subsequently calculate R2
MN , using either of the methods indicated above.

We find

R2
MN =

h1(z0(R, 0))

y2
+ h2(z0(R, 0), f1(R)) ln y + . . . , (5.48)

where h1(z0(R, 0)) and h2(z0(R, 0), f1(R)) are non-zero functions of the variables indi-

cated. Indeed we see that the leading term is divergent at y = 0, as expected. We must

therefore conclude that this is the singular region of the hyperstar, and that we cannot

rely on the Sommerfeld expansion (5.26) for calculations in the small y region. This

will be important later for computing the entropy through the Bekenstein-Hawking

formula.

5.4.3 Fluxes and topology

To check the consistency of the hyperstar solution, we can verify that the flux of

the five form F(5) remains equal to N , independently from the temperature T of

the fermion gas. From general considerations this has to be expected, since the

temperature can be viewed as a tunable continuous parameter and as such it cannot
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modify the flux which is a topological constraint. At zero temperature, i.e. for the

AdS5 × S5 solution, using the explicit expressions for the field strength in the LLM

solution and the change of coordinates eq. (5.38) one obtains

F
(0)
(5) =

r3

L
dt ∧ dr ∧ dΩ3 + 2N sin3 θ cos θ dθ ∧ dφ̃ ∧ dΩ̃3 . (5.49)

The flux is computed by integrating F
(0)

(5)θφ̃Ω̃3
over the S5, and including the appro-

priate normalization is equal to N . To check that temperature perturbations do not

alter the flux, one has to verify that corrections to F
(0)

(5)θφ̃Ω̃3
vanish when integrated

over the five sphere. Up to second order in the temperature, these take the form

F
(1)

(5)θφ̃Ω̃3
= γ sin3 θ cos θ

L6 p6(r, cos θ)

(r2 + L2 sin2 θ)4
,

F
(2)

(5)θφ̃Ω̃3
= γ2 sin3 θ cos θ

L10 p10(r, cos θ)

(r2 + L2 sin2 θ)8
, (5.50)

where p6 and p10 are polynomials of degree 6 and 10 respectively. Although the explicit

formulas look rather involved, the integration over θ can be carried out exactly at

arbitrary r and indeed yields

∫ π/2

0

dθ F
(1)

(5)θφ̃Ω̃3
=

∫ π/2

0

dθ F
(2)

(5)θφ̃Ω̃3
= 0 . (5.51)

5.4.4 ADM mass of the hyperstar

In this section we present a systematic derivation of the ADM mass of the hyperstar

solution. The natural expectation is that this mass should coincide with the thermal

energy of the auxiliary fermion gas system.
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The Einstein-Hilbert action in a d-dimensional spacetime is

Sgrav =
1

16πGd

∫

M
ddx

√−g (R− 2Λ) − 1

8πGd

∮

∂M
dd−1x

√−γΘ , (5.52)

where we included the Gibbons-Hawking boundary term and γµν is the metric on the

(d − 1)-dimensional timelike boundary. Following [207], the quasi-local stress-tensor

can be computed by the variation of the gravitational action with respect to the

boundary metric

T µν =
2√−γ

δSgrav
δγµν

. (5.53)

Using eq. (5.52) this is

T µν =
1

8πGd
(Θµν − Θγµν) . (5.54)

In the previous expression we have introduced the extrinsic curvature of the (d− 1)-

dimensional timelike boundary embedded in M

Θµν = −1

2
∇(µ

(g)n̂
ν) , (5.55)

and we denoted the corresponding trace by Θ. The covariant derivative is taken with

respect to the metric gµν of the full spacetime and n̂ν is the unit normal to the bound-

ary. The stress-tensor (5.53) generically diverges as we approach the boundary ∂M

when the spacetime is asymptotically AdS. In the context of the AdS/CFT corre-

spondence we can view the gravitational quasi-local stress-tensor as the expectation

value of the stress-tensor in the associated conformal field theory. The divergences

get then a natural interpretation as standard ultraviolet divergences in quantum field

theory [208]. We can regularize the theory by adding suitable counterterms to the
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original stress-tensor

T µν =
1

8πGd

(

Θµν − Θγµν +
2√−γ

δSct
δγµν

)

. (5.56)

The counterterms are consistently constructed using only the boundary metric γµν

and its covariant derivatives and are (almost) uniquely determined by requiring a

cancellation of the divergences and general covariance (for a review see [209]). The

boundary metric γµν can be written in the ADM form

γµνdx
µdxν = −N 2

Σdt
2 + σab(dx

a + N a
Σdt)(dx

b + N b
Σdt) , (5.57)

where Σ is a surface of constant t inside ∂M. Conserved charges are obtained by

integrating T µν over a spacelike hypersurface at infinity. A finite expression for the

mass is obtained substituting the regularized stress-energy tensor in the following

formula

M =

∫

Σ

dd−2x
√
σNΣu

µTµνu
ν , (5.58)

where uµ is the timelike unit normal to Σ. For instance, the application of this method

to the five-dimensional AdS-Schwarzschild black hole

ds2 = −
[

r2

L2
+ 1 −

(r0
r

)2
]

dt2 +
dr2

[

r2

L2 + 1 −
(

r0
r

)2
] + r2(dθ2 + sin2 θdφ2 + cos2 θdψ2) ,

(5.59)

yields [208]

M =
3πl2

32G5

+
3πr2

0

8G5

. (5.60)

The first term, which is present also when the black hole disappears, corresponds to
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the Casimir energy of the vacuum in the dual CFT.

It would be nice to have a similar counterterm method directly in a ten-dimensional

setting. Unfortunately, extending the program of holographic renormalization to ten-

dimensional metrics with AdS5 × S5 asymptotics seems problematic [210]. We are

therefore forced to use alternative approaches. In the first one, we will determine the

relevant components of the stress-tensor relative to some reference geometry following

[211]. The second approach is the so called background subtraction method [212]. In

both cases one has to carefully match the asymptotic geometry of the supergravity

solution with that of a reference background. Neither of the methods can reproduce

the Casimir energy of the associated CFT. However this will not be a problem in our

case since we are interested in computing the energy difference between the 1/2 BPS

supergravity solution and the AdS5 × S5 ground state.

We now proceed to compute the mass of the hyperstar (5.42) as a series expansion

in the small parameter γ ≡ π2T 2

6N2 . This mass should agree with the energy of the free

fermion gas, eq. (5.27). We will first consider the leading order in γ and comment on

γ2 orders in a later section.

First approach

Following [211], we obtain the stress-tensor associated with the metric (5.42) relative

to the AdS5 × S5 background metric g0
µν . We need to require that the difference

between the two metrics falls off suitably fast for large radius. Explicitly we want

that

grr − g0
rr = o(1/r6) , gra − g0

ra = o(1/r5) , (5.61)
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where o(1/rn) means that these differences go to zero more rapidly than 1/rn and

the index a runs over all the coordinates except r. To satisfy such requirement we

implement an appropriate change of coordinates (r, θ) → (r̃, θ̃), which we presently

discuss. The effect of using these new coordinates is to make the leading asymptotic

perturbations of the metric all in components parallel to the boundary directions.

Then the line element becomes

ds2 = g0
µνdx

µdxν +
T̂ab
r̃2
dxadxb + . . . , (5.62)

from which one can read off the stress-tensor up to a multiplicative constant depending

only on the space-time dimensions.

The first step is therefore to find a coordinate system such that the metric satisfies

eq. (5.61). We consider the Ansatz

r = r̃ +
f1

r̃
+
f2

r̃3
, cos θ = cos θ̃ +

f3

r̃2
+
f4

r̃4
, (5.63)

where the fi = fi(θ̃) (i = 1, . . . , 4) are functions to be determined in order to adjust

the asymptotics of the metric.

In terms of the new variables r̃ and θ̃, the gr̃r̃ component of the metric has an

expansion for large r̃ which differs from the background reference metric g0
r̃r̃ = (1 +

r̃/L2)−1 by terms containing the fi. The 1/r̃4 term can be eliminated by tuning

f1 = 1
4
(3 cos θ̃2 − 1)L2γ, and similarly the 1/r̃6 with an appropriate choice of f2.

The first constraint in eq. (5.61) is then satisfied. Analogously, f3 and f4 are fixed

by requiring the vanishing of the 1/r̃3 and 1/r̃5 terms in gr̃θ̃, which appears after

changing variables according to eq. (5.63). Once the fi are fixed, one can verify that
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the other components of the metric coincide with g0
µν up to orders O (r̃−2). The only

disagreement is found in gtt and gΩ3Ω3 , which contain a term at order O (r̃0)

γ(3 cos2 θ̃ − 1) , (5.64)

which, nonetheless, vanishes upon integration over the S5 (including the appropriate

measure). We notice that the same factor already appeared at leading order in the

asymptotic expansion of the metric perturbation, see eq. (5.43).

From eq. (5.62) and the explicit expression for

gtt = −N 2 + gφ̃φ̃

(

N φ̃
)2

(5.65)

one can read off the time-time component of the stress-tensor

T̂tt =

(

gtt(r̃, θ̃) + 1 +
r̃2

L2

)

r̃2

=
γ

8

(

4(3 cos2 θ̃ − 1)r̃2 + L2
(

11 − 39 cos2 θ̃ + 60 cos4 θ̃
)

)

+ O
(

1

r̃2

)

.(5.66)

This expression has to be integrated at the spacelike boundary in order to give the

mass

M =
4

16πG10

∫

µ̂ T̂tt

=
4

16πG10

L5(2π)(2π2)2

∫ π/2

0

dθ cos θ sin3 θ T̂tt , (5.67)

where G10 = π4L8

2N2 and µ̂ = r̃−3
√

gφ̃φ̃ gθθ g
3
ΩΩ g

3
Ω̃Ω̃

is the integration measure. The final
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result for the mass is

M =
L7

4
γ =

π2

6L
T 2 , (5.68)

which agrees with the thermal excitation energy of the N fermions above the ground

state, eq. (5.27). The extra L in the denominator comes from the rescaling of

the time variable already discussed. It is important to remark that in obtaining

these expressions we have consistently worked at order γ. We will comment on the

significance of higher order terms in a later section.

The superstar

As a further check of the validity of the procedure just discussed, we also apply it to

the so-called superstar, a family of asymptotically AdS5 ×S5 backgrounds discovered

in [203] and further studied from the LLM perspective in [204][199][205] [198]. The

extremal 1/2 BPS superstar metric is governed by two parameters, the flux N of the

5-form through the S5 and one of the three angular momenta on the S5, J3, which

coincides with the energy ∆ because of the BPS condition. Explicitly the metric can

be written as [199]

ds2 = − 1

G

(

cos2 θ +
r2

L2
G2

)

dt2 +
L2H

G
sin2 θdφ2 + 2

L

G
sin2 θdtdφ+

+G

(

dr2

f
+ r2dΩ2

3

)

+ L2Gdθ2 +
L2

G
cos2 θdΩ̃2

3 , (5.69)
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with

f = 1 +H
r2

L2
, G =

√

sin2 θ +H cos2 θ , H = 1 +
2L2∆

N2r2
≡ 1 +

Q

r2
.

(5.70)

Also in this example we want to satisfy the fall off conditions (5.61). By choosing an

appropriate coordinate system as in eq. (5.63) it is easy to see that

T̂tt =
Q

4L2

(

2 − 3 cos2 θ̃
)2
r̃2+

+
Q

64L2

(

(6 − 36 cos2 θ̃)L2 − (4 + 15 cos2 θ̃ − 24 cos4 θ̃)Q
)

+ O
(

1

r̃

)

.(5.71)

The expression for the mass is then

M =
4

16πG10

∫

µ̂ T̂tt =
4

16πG10
L5π5Q =

∆

L
, (5.72)

which, up to the L coming from the rescaling of the time, is exactly the energy of

the geometry. Note that we have again neglected contributions quadratic in Q in the

stress-tensor (5.71).

Second approach: Background subtraction

We now discuss the second approach [212] for computing the mass of the hyperstar.

In the background subtraction prescription the ADM mass is obtained by integrating

the quasi-local energy N (K−K0) over the (d−2)-dimensional spacelike hypersurface
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Σ at radial infinity

M =
1

8πG10

∫

Σ

µN (K −K0). (5.73)

To obtain M one needs Kµν , the extrinsic curvature of Σ embedded in a constant

time hypersurface

Kµν = −1

2
∇(µ

(h)r̂
ν) . (5.74)

Now the covariant derivative is calculated with respect to the metric hµν of the con-

stant time hypersurface, and r̂ν = g
−1/2
rr δνr . In eq. (5.73) K and K0 are the traces of

the extrinsic curvature of the spacetime and of the reference background respectively,

and µ is the measure on Σ.

In this case we also need to carefully tune the components of the boundary metric

with those of the AdS5 × S5 background by performing an asymptotic coordinate

transformation as in the Ansatz (5.63). Let us first consider the extremal superstar

solution in its five-dimensional reduction to understand which fall-off requirements

we need to impose. The mass of this solution was first obtained in [213]. The line

element reads

ds2 = −H2/3fdt2 +H1/3
(

f−1dr2 + r2dΩ2
3

)

, (5.75)

where H and f are defined as in eq. (5.70). The parameter Q appearing in eq. (5.70)

is the five-dimensional electric charge and corresponds to the angular momentum J

in the ten-dimensional uplifting of the superstar solution (5.69), see also [214]. We
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perform the following change of variable on the solution

r̃2 = r2H1/3 , (5.76)

which asymptotically amounts to

r = r̃ − Q

6r̃
. (5.77)

A posteriori one can verify that additional higher order terms in eq. (5.77) do not

modify the final answer for the mass. After this transformation, the difference be-

tween the components of the boundary metric gΩ3Ω3 and the global AdS5 background

becomes of order O(r̃−4). An explicit calculation of the extrinsic curvature yields

K = − 3

L
− 3L

2r̃2
+

(

3L3

8
− Q2

3L
+ LQ

)

1

r̃4
+ O

(

1

r̃6

)

. (5.78)

To obtain a finite mass, we need to subtract the extrinsic curvature of AdS5

K0 = − 3

L

(

1 +
L2

r̃2

)1/2

. (5.79)

Using

M =
1

8πG5

∫

µN (K −K0) (5.80)

with G5 = π/4,6 we obtain the well known result

M = Q . (5.81)

6In this example we use the units of [213].
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One can easily verify that if we had not implemented the transformation (5.77) we

would have gotten

K = − 3

L
− 3L

2r̃2
+

(

3L3

8
− Q2

3L
+

3LQ

2

)

1

r̃4
+ O

(

1

r̃6

)

, (5.82)

and correspondingly the incorrect result M = 3
2
Q. As in the ten-dimensional example

(5.69), we have again neglected a term proportional to Q2.

We now proceed similarly with the hyperstar solution using f1, f2 to fix the asymp-

totic behavior of gΩ3Ω3 and analogously f3, f4 to fix gΩ̃3Ω̃3
.7 Having four parameters at

our disposal we require that δgΩ3Ω3 and δgΩ̃3Ω̃3
are of order O (r̃−4). With this choice

we obtain δgθθ = O(r̃−2), while for the other component of the boundary metric gφ̃φ̃

we have δgφ̃φ̃ = γL4(−1 + 3 cos(θ̃)) which integrates to zero on the S5. After having

implemented this coordinate transformation, we can compute the extrinsic curvature

to linear order in γ obtaining

K = − 3

L
− L

2r̃2

(

3 − 7
(

3 cos2 θ̃ − 1
)

γ
)

+

+
L3

8r̃4

(

3 + 4
(

28 − 159 cos2 θ̃ + 174 cos4 θ̃
)

γ
)

+ O
(

1

r̃5

)

. (5.83)

Subtracting the extrinsic curvature contribution of the background

K0 = − 3

L

(

1 +
L2

r̃2

)1/2

= − 3

L
− 3L

2r̃2
+

3L3

8r̃4
+ O

(

1

r̃5

)

, (5.84)

7We could have also chosen to use the parameters fi to fix the other components gφφ ,gθθ of the
boundary metric. This ambiguity alters only the quadratic contribution to the mass which, as will
be discussed, is not physical.
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and using the ADM mass formula, eq. (5.73), we obtain

M =
L7

4
γ =

π2

6L
T 2 , (5.85)

which is again the expected result.

Contributions to the mass of order γ2

It remains to discuss the relevance of the quadratic terms in γ that we have so far

consistently neglected. According to the discussion following eq. (5.27), we would

not expect contributions to the mass at orders higher than γ ∼ T 2. We now check

whether this is the case. Using the expressions at order γ2 ∼ T 4 for zTFD and V T
FD

z
T (2)
FD (R, y) = γ2 84R8

0 y
2

5 [(R2 +R2
0 + y2)2 − 4R2R2

0]
9/2

·

·
(

(R2
0 + y2)4 +R2(R2

0 − 11y2)(R2
0 + y2)2+

+3R4(3R4
0 + 3R2

0y
2 − 2y4) +R6(11R2

0 + 14y2) − 4R8
)

,

V
T (2)
FD (R, y) = γ2 84R8

0 R
2

5 [(R2 +R2
0 + y2)2 − 4R2R2

0]
9/2

·

·
(

(R2
0 − 4y2)(R2

0 + y2)3 − R2(4R6
0 + 9R4

0y
2 − 9R2

0y
4 − 14y6)+

+R4(6R2
0 + 21R2

0y
2 + 6y4) − R6(4R2

0 + 11y2) +R8
)

,

(5.86)

it is straightforward to write down the corresponding asymptotic expression for large

r of the hyperstar metric, which is not particularly illuminating and, therefore, we do
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not present it.

It is not difficult to see that, differently from what expected, there seems to be

a non-vanishing contribution to the mass proportional to γ2.8 The exact coefficient

of this term depends on the procedure used to compute it. In the first approach

discussed above there is a quadratic contribution to the stress-tensor

T̂
(2)
tt = −γ

2

16

(

19 − 159 cos2 θ̃ + 216 cos4 θ̃
)

, (5.87)

and to the mass

M (2) = −L
7

32
γ2 = − π4

72L9
T 4 . (5.88)

The method of background subtraction gives

K(2) = −γ2 L
3

8r̃4

(

69 − 540 cos2 θ̃ + 747 cos4 θ̃
)

, (5.89)

and

M (2) = −125L7

128
γ2 = −125π4

288L9
T 4 . (5.90)

The presence of this term and its scheme dependence are, however, not completely

surprising and have already been discussed in the literature. In computing the super-

star mass, both in five and ten dimensions, we already encountered a similar issue,

see eqs. (5.71) and (5.78). Indeed, retaining the Q2 terms in the computation of

the mass, one would obtain a non-linear BPS condition M ≃ Q − Q2

3L2 [215]. This

8On the other hand, the angular momentum, which can be obtained from N φ̃ ∼ γ
r̃2 + γ2

r̃4 + . . .,
does not receive corrections beyond O(γ).
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relation clearly conflicts with the expectation M ≥ |Q|. One can nevertheless recover

the usual linear BPS condition by including appropriate finite counterterms related to

scalar fields [216]. This discussion can be generalized to the three-charged AdS5 black

hole. It has been observed in [217] that terms quadratic in the charges are related

to a trace anomaly of the stress-tensor. This anomaly stems from a renormalization

scheme which violates the asymptotic isometry group of AdS5 and can be removed

by adding to the action the finite counterterm proposed in [216].

In the light of these examples, we therefore consider eqs. (5.88) and (5.90) as

spurious. They should be eliminated by a convenient choice of counterterms, although

we do not know how to carry out this procedure directly in ten dimensions.

Orders beyond γ2 do not contribute to the mass of the solution, because they fall

off too fast at radial infinity.

5.4.5 Angular momentum

As a check of the BPS condition for the hyperstar solution, we now calculate the asso-

ciated angular momentum. This computation is most easily done in a five-dimensional

setting. The ten-dimensional angular momentum J coincides with the electric charge

Q of the U(1) gauge field A coming from dimensional reduction on the S5. The gauge

field can be read off from the term gφ̃φ̃(dφ̃+N φ̃dt)2 in the ADM metric and therefore

coincides with the shift vector

A = N φ̃ dt =
2L

r2
γ dt+ O

(

1

r4

)

. (5.91)
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The associated charge (angular momentum) is then9

J =
L2

16πG5

∫

S3
∞

⋆5 dA = γ
L8

4
=
π2

6
T 2 , (5.92)

where ⋆5 is the five-dimensional Hodge star operator. In our normalization the five-

dimensional Newton constant is G5 = G10/V ol(S
5) = 2π/L5. The L2 factor in eq.

(5.92) is necessary for obtaining conventional units. Comparing J with the mass

formula eq. (5.68), we obtain the BPS relation M = J/L.

5.4.6 Entropy

In the previous sections we have found agreement between the ADM mass and the

thermal energy of the fermions. Since the Fermi gas has non-vanishing entropy at

non-zero temperature, we expect the same to occur for the supergravity solution.

We would like to understand how this entropy arises geometrically in the case of the

hyperstar. Although the solution we are considering seems to have a naked singularity,

it is expected that α′ corrections to the equations of motion might generate a finite-

area stretched horizon. With these corrections we can think of the hyperstar as a

legitimate black hole.

In the presence of an event horizon, the entropy of a gravitational solution in d

dimensions is given by the celebrated Bekenstein-Hawking formula

S =
A

4Gd
(5.93)

where A is the area of the horizon. In our case the entropy is still given by eq. (5.93)

9Looking at the five-dimensional gauged supergravity action one would expect a contribution to
the charge of the type

∫

S3
∞

A∧F . This term is nonetheless subleading and vanishes at radial infinity.
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but now A = Ash is the area of the stretched horizon.

Since we do not know the explicit form of the α′ corrections, the location of the

stretched horizon is inherently ambiguous. Therefore we expect to reproduce the

fermion entropy up to a numerical coefficient.

As we already discussed, the y = 0 plane is a null singular region. It is reasonable

to assume that the α′ corrections will generate a horizon at ysh ≃ 0 + O(α′). We

therefore need to compute the area of the y = ysh plane, with ysh ≃ α′ = g
−1/2
s l2p ∼

g
−1/2
s in units where ~ = 1. This area turns out to be finite. The metric in LLM

coordinates for fixed t and y reads

ds2|t , y= fixed = −h−2V 2dφ2 + h2(dR2 +R2dφ2) + yeGdΩ2
3 + ye−GdΩ̃2

3 , (5.94)

so that the integration measure is

µ =
√
h4R2 − V 2 y3 ≃ h2Ry3 ≃

(

1

4
− z2

0

)
1
2

Ry2 , (5.95)

where we have assumed the expansion (5.47), so that the term V 2 ∼ ln2 y can be

neglected for small y against h4 ∼ y−2 and z ≃ z0. By restricting the measure (5.95)

to y = ysh, the Bekenstein-Hawking formula yields

S =
Ash(y = ysh)

4G10
=

2π(2π2)2

4 · 2π4
y2
sh

∫ ∞

0

RdR

(

1

4
− z2

0

)1/2

≃ c

∫ ∞

0

RdR
√

n(1 − n) , (5.96)
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where c is a numerical constant. For the hyperstar n = nFD so that

√

nFD(1 − nFD) =
e
β
2
(ǫ−µ)

1 + eβ(ǫ−µ)
, (5.97)

with ǫ = R2/2 and µ = T
(

eN/T − 1
)

. Using eq. (5.96) we obtain

S ≃ c

∫ ∞

0

dǫ
e
β
2
(ǫ−µ)

1 + eβ(ǫ−µ)

= 2 c T
(π

2
− arctan e−

βµ
2

)

= 2 c T

(

π

2
− arctan

1√
eN/T − 1

)

. (5.98)

In the low temperature approximation this yield

S ∝ T
(

1 + O(e−N/T )
)

. (5.99)

Therefore the entropy is proportional to T , as expected from eq. (5.31), up to cor-

rections which are exponentially suppressed for N ≫ T .

In the high temperature limit, however, eq. (5.98) does not seem to reproduce the

logarithmic behavior of the Boltzmann entropy. In this limit, which will be studied

in the next section, the assumptions and the approximations which led to eq. (5.96)

might not be valid since T is not a small parameter.

5.5 High temperature regime

We now move to consider the high temperature regime. In this limit the Fermi-Dirac

distribution reduces to the classical Boltzmann distribution. Correspondingly, the

droplet spreads over a larger part of the y = 0 plane and the singular greyscale region

is not confined inside a thin ring anymore, as shown in fig. 5.2 .
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Figure 5.2: Droplet configuration in the high temperature limit.

The auxiliary function z can be computed in this regime as

zTB(R, y) =
1

2
+

∫ ∞

0

nB(R′)
∂

∂R′ z0(R, y;R
′)dR′ , (5.100)

where

nB(R) = Nβe−β
R2

2 , (5.101)

and β = 1/T . Making the change of variable R′2/2 = ǫ and using the explicit

expression for z0(R, y;R
′) we can write the integral as

zTB(R, y) =
1

2
− 2y2Nβ Iz(β,R, y) , (5.102)
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where we have defined

Iz(β,R, y) ≡
∫ ∞

0

dǫ e−βǫ
(2ǫ+ y2 +R2)

[(2ǫ+ y2 +R2)2 − 8R2ǫ]3/2
. (5.103)

The high temperature limit corresponds to the small β region. Therefore we want to

find an approximate expression for Iz(β,R, y) near β = 0. It is easy to verify that

Iz(0, R, y) = 1
2y2

, and also that

∂Iz
∂β

= −
∫ ∞

0

dǫ
ǫ e−βǫ(2ǫ+R2 + y2)

[(2ǫ+ y2 +R2)2 − 8R2ǫ]3/2
(5.104)

diverges as ln β in proximity of β = 0, because the integrand goes like e−βǫ/ǫ for large

ǫ. This suggests a low β expansion of the form

Iz(β,R, y) = Iz(0, R, y) + Aβ ln β + ...

zTB(R, y) =
1

2
− 2y2Nβ

(

1

2y2
+ Aβ ln β + ...

)

. (5.105)

Since it is not possible to compute explicitly ∂Iz
∂β

for β → 0 because of the divergence,

to find its small β behavior we find it useful to first regulate the integral by considering

the quantity

∂Iz
∂β

+
1

4

∫ ∞

0

dǫ
ǫ e−βǫ

ǫ2 + (R2 + y2)2
. (5.106)

The new piece

I0 ≡ −1

4

∫ ∞

0

dǫ
ǫ e−βǫ

ǫ2 + (R2 + y2)2
(5.107)
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has the same divergence structure of ∂Iz
∂β

and its value is known for finite β in terms

of the Sine and Cosine Integral functions Si(x), Ci(x). The corresponding small β

expansion can be given explicitely as

I0 =
γ

4
+

1

4
ln[β(R2 + y2)] − π

8
β(R2 + y2) + O(β2 ln β) , (5.108)

where γ is the Euler-Mascheroni constant. The combination (5.106) is by construction

convergent for any β, and has a well defined β → 0 limit which can be easily computed

analytically

(

∂Iz
∂β

− I0

)

∣

∣

∣

β=0
=

1

4

(

1 − R2

y2

)

− ln 2

4
+

1

4
ln y2 − 1

4
ln(R2 + y2) . (5.109)

Using eq. (5.108) we obtain the high temperature expansion of ∂Iz
∂β

∂Iz
∂β

=
1

4
ln β +

1

4

(

γ − ln 2 + 1 − R2

y2
+ ln y2

)

+ O(β ln β) , (5.110)

and integrating in β we can finally get

Iz(β,R, y) =
1

2y2
+

1

4
β ln β +

β

4

(

γ − ln 2 − R2

y2
+ ln y2

)

+ O(β2 ln β). (5.111)

The corresponding high temperature limit of zTB, keeping only the first two orders,

reads then as follows

zTB(R, y) =
1

2
−Nβ − Ny2

2
β2 ln β + O(β2). (5.112)

To obtain the metric we need to find also the function V T (R, y). Starting from
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eq. (5.15) and inserting the Boltzmann distribution we arrive at

V T
B (R, y) =

∫ ∞

0

dǫ Nβe−βǫ
2R2(2ǫ+ y2 +R2)

[(2ǫ+ y2 +R2)2 − 8R2ǫ]3/2
≡ 2NβR2IV (β,R, y) .

(5.113)

One can verify that IV (0, R, y) vanishes and that ∂IV
∂β

diverges logarithmically in the

β → 0 limit. We can proceed similarly as before by regulating ∂IV
∂β

with an appropriate

“reference” integral, to finally obtain

IV (β,R, y) = −1

4
β ln β − β

4

(

γ − ln 2 + 1 + ln y2
)

+ O(β2 ln β). (5.114)

In proximity of β = 0 the leading contribution to V T
B is therefore

V T
B (R, y) = −1

2
NR2β2 ln β + O(β2). (5.115)

The expressions for zTB and V T
B consistently satisfy eq. (5.13). Note that zTB does not

depend on R and that similarly V T
B does not depend on y. This fact is nevertheless

an artefact of the approximation we made. To study its limits of validity, we can look

at eqs. (5.112) and (5.115) and require that the corrections are small. From this we

can infer the conditions

y2 ≪ 1

β ln β
, R2 ≪ 1

Nβ2 ln β
. (5.116)

We can now find the metric at first order in the low β expansion, i.e. zTB =

1/2−Nβ and V T
B = 0. The metric in the LLM coordinates is quickly computed and
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reads

ds2 =
y√
Nβ

(

−dt2 + dΩ2
3

)

+

√
Nβ

y

(

dy2 + y2dΩ̃2
3 + dR2 +R2dφ2

)

. (5.117)

Rescaling the coordinates as

t̃ = (Nβ)−1/4t , ỹ = (Nβ)1/4y , R̃ = (Nβ)1/4R , (5.118)

brings the metric into the form

ds2 = (Nβ)1/4ỹ

(

−dt̃2 +
1√
Nβ

dΩ2
3

)

+
1

(Nβ)1/4ỹ

(

dỹ2 + ỹ2dΩ̃2
3 + dR̃2 + R̃2dφ2

)

.

(5.119)

This form of the metric closely resembles the dilute gas approximation limit studied

in [184]. There, one considers a configuration of droplets with area Ai in the (x1, x2)

plane, and send the distance between the droplets to infinity by the rescaling

x→ λx̃ , x′ → λx̃ , y → λỹ , λ→ ∞ , (5.120)

while keeping the droplets areas Ai fixed. The corresponding metric reads

ds2 = H−1/2
[

−dt̃2 + λ2dΩ2
3

]

+H1/2
[

dỹ2 + ỹ2dΩ̃2
3 + dxidxi

]

, (5.121)

where the harmonic function H is

H =
1

π

∑

i

Ai
[(x̃− x̃

′

i)
2 + ỹ2]2

. (5.122)
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Thus the metric (5.121) can be viewed as a multi-center solution for a stack of sep-

arated D3-branes, and corresponds to the SO(4) invariant sector of the Coulomb

branch of the gauge theory.

Upon the identification λ = (Nβ)−1/4, one can see that the dilute gas limit λ→ ∞

is similar to the high temperature regime β → 0 of the thermal solution eq. (5.119).

This is perhaps not surprising since in the high temperature limit the fermion density

goes to zero. We also notice that a continuum version of eq. (5.122) with Ai ≡

d2x̃′/
√
Nβ gives

H =
1

π

∫

d2x̃′√
Nβ

1

[(x̃− x̃′)2 + ỹ2]2
=

1√
Nβ ỹ2

, (5.123)

which is what we would expect in order to match eq. (5.119) with eq. (5.121).

Taking into account the next to leading order corrections for zTB and V T
B in eq.

(5.112) and (5.115), we obtain the metric

ds2 = H−1/2
[

−dt2 + (1 −Nβ)dΩ̃2
3

]

+H1/2
[

dy2 + (1 +Nβ)y2dΩ2
3 + dR2 +R2dφ2

]

+
√
NR2yβ3/2 ln βdtdφ (5.124)

where

H =
Nβ

y2
− N2β2

y2
+

1

2
β2N ln β. (5.125)

At this order we have a non-vanishing V T
B and this determines the presence of the

mixed term gφt in the metric.
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5.5.1 Energy and angular momentum

We remark that the region of validity of the approximations made so far does not allow

us to use the metrics (5.117) and (5.124) in the asymptotic regionR2+y2 ≫ 1, because

of the conditions (5.116). Therefore, to compute the energy of the hyperstar in the

high temperature regime, we need to find the form of the metric in the complementary

region of validity. The new metric will be trustable in the asymptotic region and will

allow a calculation of the energy with the methods already discussed. To this end, it

is convenient to first introduce polar coordinates in the (x1, x2, y) space

R = u cosϑ , y = u sinϑ . (5.126)

Then one can evaluate eqs. (5.102) and (5.113) in an expansion for u ≫ 1 while

keeping T fixed but large (such that we are in the Boltzmann regime). The integrals

involved in the expansion can be readily computed analytically and one ends up with

the result

zTB(u, ϑ) =
1

2
− 2N sin2 ϑ

1

u2
− 8NT sin2 ϑ(3 cos2 ϑ− 1)

1

u4

−48NT 2 sin2 ϑ(10 cos4 ϑ− 8 cos2 ϑ+ 1)
1

u6
+ O

(

1

u8

)

, (5.127)

V T
B (u, ϑ) = 2N cos2 ϑ

1

u2
+ 8NT cos2 ϑ(3 cos2 ϑ− 2)

1

u4

+48NT 2 cos2 ϑ(10 cos4 ϑ− 12 cos2 ϑ+ 3)
1

u6
+ O

(

1

u8

)

,(5.128)

where in the expansion we have kept only terms which contribute to the mass and

angular momentum. One can now go to the AdS5 × S5 coordinates via the change

of variables given in eq. (5.38) and use zTB and V T
B to obtain the asymptotic form
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of the metric. The explicit expressions are somewhat lengthy and we will not report

them here in detail. The computation of M and J follows the same lines of the one

given in detail for the low temperature regime. Particularly straightforward is the

evaluation of the angular momentum, which can be read off from the shift vector N φ̃.

The explicit calculation gives

N φ̃ =

(

4T

L3
− L

)

1

r2
+ O

(

1

r4

)

=
2L

N2r2

(

NT − N2

2

)

+ O
(

1

r4

)

, (5.129)

where we have used the relation N = L4/2 which holds in our units. Viewing

N φ̃dt ≡ A as a gauge field in five dimensions, the angular momentum is equal to

the corresponding electric charge, as explained in the previous section. The result is

then

J = NT − N2

2
. (5.130)

This is indeed what we would have expected, since NT is the energy for a gas of

N particles with Boltzmann density and N2/2 is the ground state energy of the N

fermions.

To compute the mass, we used both methods described in the previous section.

Once again, quadratic terms in the charge (NT − N2/2) appear in the calculation,

with different coefficients in the two methods. The linear term is however scheme

independent and gives the correct result

M =

(

NT − N2

2

)

/L . (5.131)
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5.6 Concluding remarks and outlook

In this chapter of the dissertation we explored the thermodynamic properties of a 1/2

BPS IIB supergravity solution called hyperstar. This background was first obtained

in [197] by thermal coarse-graining of the bubbling AdS geometry found in [184]. The

hyperstar is in correspondence with a distribution of free fermions in thermodynamic

equilibrium at temperature T , living on a two-dimensional phase space contained in

the ten-dimensional geometry.

We studied both limits of low and high temperature. In the former case, the

fermions obey the Fermi-Dirac distribution and the supergravity background is ob-

tained from the LLM Ansatz by means of a Sommerfeld expansion. We found agree-

ment between the energy of the fermions and the ADM mass of the supergravity,

modulo a subtlety involving T 4 terms which we discussed in the main text. We also

proposed a way to match the entropy of the fermions with the entropy of the hyper-

star in the low temperature limit. String α′ corrections are expected to generate a

finite area stretched horizon, lifting the naked singularity of the hyperstar to a true

black hole singularity.

In the classical limit of high temperature, we found the explicit form of the metric

of the supergravity background and we observed how this metric resembles the metric

of a dilute gas of D3-branes, which corresponds to the SO(4) invariant sector of the

Coulomb branch of the CFT. We also computed the associated mass and angular

momentum.

It would be interesting to push this study further. An important point, as already

remarked, would be to understand better the meaning of the temperature for the

supergravity solution. On a more fundamental level, it is worthwile to understand
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the exact relation between a thermalized solution like the hyperstar and the matrix

model description of the 1/2 BPS sector of the dual CFT, extending considerations

already made in [198].

Another issue is whether the appearance of the naked singularity in the hyperstar

can be understood in terms of a distribution of giant gravitons, as is the case for the

superstar [203].

The LLM geometries, upon dimensional reduction to five dimension, can be seen

as interesting generalizations of AdS 1/2 BPS extremal black holes [218]. It would

then be interesting to obtain the explicit dimensional reduction to five dimension of

the hyperstar. In this setting one could use the powerful methods of holographic

renormalization to carry out the computation of the ADM mass. Then one could

prove in a rigorous way that the quadratic contributions to the mass are effectively

spurious and can be eliminated within an appropriate renormalization scheme.

Finally, we would like to mention that the LLM construction has been extended

to other BPS sectors of type IIB supergravity, see, for instance, [219] for the 1/4 BPS

sector. In this case, one modifies the LLM Ansatz in order to accomodate an axion-

dilaton field which breaks the supersymmetry by half. The effect of this field is to

introduce a deficit angle in the “phase space”. One could try to understand whether

this phase space can be useful to study the mass and entropy of the corresponding

supergravity geometry.
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Chapter 6

Supersymmetric Wilson loops

This chapter contains three different studies on Wilson loop operators in the AdS/CFT

correspondence. We start in the next section by introducing a large new class of super-

symmetric loop operators. Given an arbitrary curve on a three-dimensional sphere we

define a certain scalar coupling so that the loop preserves at least two supercharges.

We present many explicit examples of loops not known before, providing a wide arena

for possible calculations, both on the gauge theory side and in string theory, which

may lead to further tests of the AdS/CFT correspondence.

In section 6.2 we study correlation functions of circular Wilson loops in higher

dimensional representations with chiral primary operators of N = 4 super Yang-Mills

theory. This is done using the relation discussed in chapter 2 between higher rank

Wilson loops in gauge theory and D-branes with electric fluxes in supergravity. We

verify our results with a matrix model computation, finding perfect agreement in both

the symmetric and the antisymmetric case.

Finally, in section 6.3 we present D3-brane solutions describing some 1/4 BPS

loops. In one case, where the loop is conjectured to be given by a Gaussian matrix
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model, the action of the brane correctly reproduces the expectation value of the

Wilson loop including all 1/N corrections at large λ. As in the corresponding string

solution, here too we find two classical solutions, one stable and one not. The unstable

one contributes exponentially small corrections that agree with the matrix model

calculation.

6.1 A new class of supersymmetric Wilson loop

6.1.1 Definition and supersymmetry analysis

As explained in detail in chapter 2, a necessary requirement for a Wilson loop to be

supersymmetric is that the norm of the vector ΘI be one. But that alone leads only to

local supersymmetry. If one considers the supersymmetry variation of the loop, then

at every point along the loop one finds another condition for preserved supersymmetry.

Only if all those conditions commute, will the loop be globally supersymmetric.

One simple way to satisfy this is if at every point one finds the same equation.

This happens in the case of the straight line, where ẋµ is a constant vector and one

takes also ΘI to be a constant. This idea was generalized in a very ingenious way by

Zarembo [68], who assigned for every tangent vector in R4 a unit vector in R6 (i.e.

a 6 × 4 matrix M I
µ) and took |ẋ|ΘI = M I

µẋ
µ. That construction guarantees that

if a curve is contained within a one-dimensional linear subspace of R4 it is 1/2 BPS.

Inside a 2-plane it will be 1/4 BPS, inside R3 it’s 1/8 BPS and a generic curve is 1/16

BPS.

An amazing fact about those loops is that their expectation value seems to be

trivial (the degree of rigor of this statement depends on the amount of supersymmetry)
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[220]-[222]. But this is also a crucial shortcoming of this construction. As seen in

chapter 2, one of the most interesting Wilson loop observables is the circle with a

coupling to a single scalar, whose expectation value is a non-trivial function of both

the rank of the gauge group N and of the ’t Hooft coupling λ. This Wilson loop

preserves 1/2 of the supersymmetries, but is not given by the above construction.

Recently some 1/4 BPS loops were described that also do not have trivial expectation

values, rather the values of all those loops seem to be described by a 0-dimensional

matrix model [223].

Here we present a generalization of Zarembo’s construction. This generalization

will allow for loops which do not have a trivial expectation value and in a certain

limit reproduce many of Zarembo’s loops.

Consider an arbitrary curve on S3, which we usually take as the unit sphere in flat

R4 in the Euclidean gauge theory. This can also be the spatial slice for the Lorentzian

theory on S3×R. The basic ingredient in our proposal for the supersymmetric Wilson

loop are the invariant one-forms on the group manifold SU(2) = S3 (here we follow

the conventions of [224]). In the flat coordinates xµ satisfying x2 = 1 they read

σR,L1 = 2
[

±(x2dx3 − x3dx2) + (x4dx1 − x1dx4)
]

,

σR,L2 = 2
[

±(x3dx1 − x1dx3) + (x4dx2 − x2dx4)
]

,

σR,L3 = 2
[

±(x1dx2 − x2dx1) + (x4dx3 − x3dx4)
]

,

(6.1)

where σRi are the right (or left-invariant) one-forms and σLi are the left (or right-

invariant) one-forms. These are respectively dual to left (right) invariant vector fields

ξRi (ξLi ) generating right (left) group actions. We can now use either σRi or σLi to

define a natural coupling to three of the scalars, say Φ1,Φ2,Φ3. We choose to use the
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right one-forms. Our Ansatz for the supersymmetric Wilson loop on S3 is then

W =
1

N
Tr P exp

∮
(

iA+
1

2
σRi M

i
IΦ

I

)

, (6.2)

where for convenience we write the integral in form notation. The 3 × 6 matrix M i
I

specifies which three scalars the loop will couple to and satisfies that MM⊤ is the 3×3

unit matrix. When we need an explicit choice of M we take M1
1 = M2

2 = M3
3 = 1

and all other entries zero. As a consistency check, we can see that the coupling to the

scalars satisfies ΘIΘI = 1, which follows from the condition on M and the property

σRi σ
R
i = 4dxµdxµ . (6.3)

For the analysis of the supersymmetries preserved by these loops it is convenient

to switch from forms to tangent vectors and write the pull-backs of the σ’s in terms

of x = ix1τ1 + ix2τ2 + ix3τ3 +x4I, the SU(2) matrix representing xµ, where τi are the

Pauli matrices and I is the 2 × 2 identity matrix, as

σ̂Ri = −i tr (τi x
† ẋ) , σ̂Li = −i tr (τi ẋ x†) . (6.4)

The trace here is over this SU(2).

We can now show that our Ansatz (6.2) leads to a supersymmetric Wilson loop.

The supersymmetry variation of the Wilson loop is proportional to

δW ≃
(

iẋµγµ +
1

2
σ̂Ri M

i
Iρ
Iγ5

)

ǫ(x) . (6.5)

Here we use a four-dimensional notation rather than the ten-dimensional one of chap-
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ter 2, then γµ and ρI are respectively the gamma matrices of SO(4) and SO(6),

the Poincaré and R-symmetry groups and they commute with each-other. γ5 =

−γ1γ2γ3γ4 is the four dimensional chirality matrix and ǫ(x) is a conformal Killing

spinor given by two arbitrary constant spinors (which are also spinors of the R-

symmetry group)

ǫ = ǫ0 + xµγµǫ1 . (6.6)

We rearrange the variation of the loop as

δW ≃ iẋµxνγµνǫ1 +
1

2
σ̂Ri M

i
Iρ
Iγ5ǫ0 − xηγη

(

iẋµxνγµνǫ0 +
1

2
σ̂Ri M

i
Iρ
Iγ5ǫ1

)

. (6.7)

Note now that the action of the γ’s on a chiral spinor ǫ± = 1
2
(1±γ5)ǫ can be expressed

in terms of the Pauli matrices, allowing one to write

iẋµxνγµνǫ
∓ = ±1

2
τ iσ̂R,Li ǫ∓ . (6.8)

The first two terms in eq. (6.7) can then be decomposed by their chirality as

δW ≃ 1

2

(

σ̂Ri (τ iǫ−1 −M i
Iρ
Iǫ−0 ) − (σ̂Li τ

iǫ+1 − σ̂Ri M
i
Iρ
Iǫ+0 )

)

, (6.9)

and a similar expression holds for the last two terms.

Thus for a generic curve on S3, when there are no linear relation between the six

σ̂R,Li and xηγη is non-trivial, the only solution to the supersymmetry equation is for

τ iǫ−1 = M i
Iρ
Iǫ−0 , ǫ+1 = ǫ+0 = 0 . (6.10)

For special curves, when the pull-backs of the forms are not independent, there will
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be more solutions and the Wilson loops will preserve more supersymmetry. We will

demonstrate this in some special cases below.

To solve this set of equations let us choose the matrix M that identifies i with I.

Then we can eliminate for example ǫ−0 from eq. (6.10) to get

iτ1ǫ
−
1 = −ρ23ǫ

−
1 , iτ2ǫ

−
1 = −ρ31ǫ

−
1 , iτ3ǫ

−
1 = −ρ12ǫ

−
1 . (6.11)

This is a set of constraints that are consistent with each other. However it is easy

to see that only two of them are independent since the commutator of any two gives

the remaining equation. With two independent projectors we are thus left with two

independent components of ǫ−1 , while ǫ−0 depends on ǫ−1 . So we conclude that for a

generic curve on S3 the Wilson loop preserves 1/16 of the original supersymmetries.

We would now like to explicitly find the two combinations of Q̄ and S̄ which

leave the Wilson loop invariant. Notice that in singling out three of the scalars

we are breaking the R-symmetry group SU(4) down to SU(2)A × SU(2)B, where

SU(2)A corresponds to rotations of Φ1,Φ2,Φ3 while SU(2)B rotates Φ4,Φ5,Φ6. Then

we recognize that the operators appearing in eq. (6.11) are just the generators of

SU(2)R and SU(2)A, and the above equations simply state that ǫ−1 is a singlet of the

diagonal sum of SU(2)R and SU(2)A, while it’s a doublet of SU(2)B. More explicitly,

we can always choose a basis in which ρi act as Pauli matrices on the SU(2)A indices,

such that the equations above become

(τRk + τAk )ǫ−1 = 0, k = 1, 2, 3. (6.12)
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If we split the SU(4) index in ǫ−1 as

ǫA1, α̇ = ǫa1, α̇ȧ, (6.13)

where ȧ and a are respectively SU(2)A and SU(2)B indices, then the solution to eq.

(6.12) can be written as

ǫa1 = εα̇ȧǫa1, α̇ȧ. (6.14)

Using any of the equations in (6.10) we can determine ǫ0

ǫ−0 = τR3 ρ
3ǫ−1 = τR3 τ

A
3 ǫ

−
1 = −ǫ−1 , (6.15)

where in the last equality we used eq. (6.12). Our conclusion is then that the Wilson

loops we introduced preserve the two supercharges

Q̄a = εα̇ȧ
(

Q̄a
α̇ȧ − S̄aα̇ȧ

)

. (6.16)

6.1.2 Topological twisting

This construction hints at a possible connection with a topologically twisted version

of N = 4 SYM. The twisting consists in replacing SU(2)R with the diagonal sum of

SU(2)R and SU(2)A, which we denote as SU(2)R′ , so that the twisted Lorentz group

is SU(2)L×SU(2)R′ . This twisting1 was first considered in [226] and further studied

in [225]. After the twisting the supercharges decompose under SU(2)L × SU(2)R′ ×
1It is case ii) in [225]. A different twisting, namely case i), was considered in [222] in the context

of Zarembo’s supersymmetric Wilson loops.
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SU(2)B as

(2, 1, 2, 2) + (1, 2, 2, 2) → (2, 2, 2) + (1, 3, 2) + (1, 1, 2). (6.17)

From the above it is clear that the two supercharges Qa are in the (1, 1, 2), and there-

fore they become scalar after the twisting. As usual, one would then like to regard

them as BRST charges, and the Wilson loops as observables in their cohomology. To

this purpose, the first thing we should check is if those charges square to zero. For

this computation we need to use the anticommutator

{

Q̄α̇A, S̄
B
β̇

}

= δBA Lα̇β̇ + εα̇β̇

(

TBA − 1

2
δBAD

)

, (6.18)

where Lα̇β̇, T
B
A and D are respectively the SU(2)R, SU(4) and dilatation generators.

Splitting the indices as above Q̄α̇A = Q̄a
α̇i and breaking the R-symmetry generators

as

TBA = εabTij + εijT
ab, (6.19)

we find that
{

Q̄a, Q̄b
}

= −4T ab. (6.20)

So the scalar supercharges do not square to zero but rather the square is proportional

to the SU(2)B generators.

6.1.3 Special loops

There are some special loops that preserve more supersymmetries.
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1) Large S2 If we restrict the loop to lie on an S2 defined by, say, x4 = 0, then the

left and right forms are no longer independent, rather

σLi = −σRi = −2ǫijkx
j dxk . (6.21)

Then eq. (6.7) has more solutions. In additional to the previous ones, it is also solved

by

τ iǫ+1 = −M i
Iρ
Iǫ+0 . (6.22)

Combining the two chiralities, this can be written as

iγjkǫ1 = ǫijkM
i
Iρ
Iγ5ǫ0 . (6.23)

Contrary to the general S3 case in eq. (6.10), we see that now the constraints are

not chiral. One can solve them in the same way as described above, but we now get

two copies of the solution, one for each chirality. The generic Wilson loop on S2 will

therefore preserve 1/8 of the supersymmetries. The four supercharges can be written

explicitly as

Qa = εαi (Qa
αi + Saαi) , Q̄a = εα̇i

(

Q̄a
α̇i − S̄aα̇i

)

. (6.24)

We can also determine what is the bosonic subgroup of SO(5, 1) × SO(6)R which

leave these loops invariant. As for the general S3 case, we have the symmetry under

the group SU(2)B ⊂ SO(6)R which rotates Φ4,Φ5,Φ6. Moreover, there is an extra

U(1) symmetry generated by

1

2
(P4 −K4) , (6.25)

where Pµ = −i∂µ and Kµ = −i(x2∂µ − 2xµx
ν∂ν). Invariance under this generator
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follows from the fact that these loops satisfy x4 = 0.

There is an interesting property of the loops on S2 involving the replacement of

the gauge and scalar couplings. Consider an arbitrary smooth curve on S2 which is

nowhere a geodesic and parameterized by ~x(s), and let us take |ẋ| = 1. The scalar

couplings is given by the standard cross product in three dimensions as ~Θ(s) = ~̇x×~x.

Those are also unit vectors in R3, so we can consider also a loop whose shape is

given by ~Θ. A simple calculation shows that the scalar couplings for the new loop is

proportional to ~x.

This suggests the existence of a duality between the scalar and vector couplings

and it is tempting to speculate that it will extend to a duality between the embedding

of the string in the dual description into the AdS5 and S5 parts of the geometry.

2) Large circle By this construction a maximal circle couples only to a single

scalar. For example, a circle in the (1, 2) plane couples only to Φ3. Studying the

supersymmetry variation leads to the single constraint

ρ3γ5ǫ0 = iγ12ǫ1, (6.26)

so the loop preserves 16 (8 chiral and 8 anti-chiral) combinations of Q and S. This is

the most studied 1/2 BPS circular Wilson loop. Using eq. (6.26) we may write down

the sixteen supercharges as

QA = iγ12QA +
(

ρ3S
)

A
, Q̄A = iγ12Q̄

A −
(

ρ3S̄
)A
, (6.27)

where A = 1, . . . , 4 and for simplicity we have omitted Lorentz indices. Furthermore,

it is not difficult to show that the 1/2 BPS circle also preserves the bosonic group
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SO(1, 2) × SU(2) × SO(5). Here, the SO(5) ⊂ SO(6)R simply follows from the fact

that the loop couples to a single scalar. The SU(2) symmetry is generated by

1

2
(P3 −K3) ,

1

2
(P4 −K4) , J34, (6.28)

where Jµν = i(xµ∂ν − xν∂µ) are the Lorentz generators. Finally, the SO(1, 2) sym-

metry is the Möbius group in the (1, 2) plane generated by

1

2
(P1 +K1) ,

1

2
(P2 +K2) , J12. (6.29)

All these bosonic symmetries, together with the above supercharges, form the super-

group Osp(4⋆|4).

3) Latitude Consider a non-maximal circle on S2 (a latitude) parameterized by

xµ = (sin θ0 cos t , sin θ0 sin t , cos θ0 , 0) . (6.30)

This is essentially the same Wilson loop operator considered in [223], except that by

a conformal transformation we moved the circle from the equator to a parallel.2 Such

a loop couples to three scalars, but it can be shown that it gives only two independent

constraints. Indeed, asking that the supersymmetry variation vanishes at every point

only requires the two equations

cos θ0
(

γ12 + ρ12

)

ǫ1 = 0 ,

ρ3γ5ǫ0 =
[

iγ12 + γ3ρ
2γ5 cos θ0(γ23 + ρ23)

]

ǫ1 .

(6.31)

2Also compared to [223], θ0 is replaced here by π/2 − θ0.
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If cos θ0 6= 0, one has two independent constraints and the loop preserves 1/4 of

the supersymmetries. In the special case cos θ0 = 0, as expected from eq. (6.30),

one recovers the 1/2 BPS maximal circle. One may solve the constraints (6.31) as

described in the previous section by viewing γi and ρi as Pauli matrices acting on

Lorentz and SU(2)A indices respectively. Then one can write the solutions to the

first line of eq. (6.31) as

ǫa1,(1) = ǫa01 − ǫa10 = εαȧǫa1, αȧ ,

ǫa1,(2) = ǫa01 + ǫa10 = ταȧ1 ǫa1, αȧ ,

(6.32)

and similarly for the other chirality. The ǫ0 spinors can be obtained from the second

line of the contraints, for example for the positive chirality they read

ǫa0,(1) = −ǫa1,(1)

ǫa0,(2) = −ǫa1,(2) − 2 cos θ0 ǫ
a
1,(1) .

(6.33)

Therefore the eight supercharges preserved by the loop may be written as

Qa
(1) = εαȧ (Qa

αȧ − Saαȧ) , Qa
(2) = ταȧ1 (Qa

αȧ − Saαȧ) + 2 cos θ0 ε
αȧQa

αȧ ,

Q̄a
(1) = εα̇ȧ

(

Q̄a
α̇ȧ − S̄aα̇ȧ

)

, Qa
(2) = τ α̇ȧ1

(

Q̄a
α̇ȧ − S̄aα̇ȧ

)

+ 2 cos θ0 ε
α̇ȧQ̄a

α̇ȧ .

(6.34)

One can also determine the bosonic group preserved by this non-maximal circle, which

turns out to be SU(2)× SU(2)B ×U(1). Besides the obvious SU(2)B symmetry, the
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other SU(2) is generated by3

1

2
(P3 −K3 − 2 cos θ0D) ,

1

2
(P4 −K4) , J34 +

1

2
cos θ0 (P4 +K4) , (6.35)

where D = −ixµ∂µ is the dilatation generator. Finally, the U(1) symmetry mixes

Lorentz and R-symmetry generators, and is given by

J12 + JA12 , (6.36)

where JA12 is a generator of SU(2)A. This follows from the fact that the loop coordi-

nates xµ and the scalar couplings ΘI satisfy the equation x2Θ1 − x1Θ2 = 0.

This loop also seems to be given by a Gaussian matrix model with the only

modification that the coupling g2 is replaced by g2 sin2 θ0.

4) Two longitudes Inside a large S2 consider a loop made of two arcs of length

π connected at an arbitrary angle δ, i.e. two longitudes on the sphere. We can

parametrize the loop in the following way

xµ = (sin t, 0, cos t, 0) , 0 ≤ t ≤ π ,

xµ = (− cos δ sin t, − sin δ sin t, cos t, 0) , π ≤ t ≤ 2π .
(6.37)

The corresponding Wilson loop operator will couple to Φ2 along the first arc and to

−Φ2 cos δ + Φ1 sin δ along the second one. It is straightforward to study the super-

symmetry variation of this operator. Each arc, being (half) a maximal circle, is 1/2

3The 1/4-BPS circle of [223] preserves, as the maximal circle, the SU(2) given by eq. (6.28).
Our loop is obtained from that in [223] by a dilatation and a translation along x3, after which the
generators become the ones in eq. (6.35).
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BPS and will produce a single constraint

First arc: ρ2γ5ǫ0 = iγ31ǫ1 ,

Second arc: (ρ2γ5 cos δ − ρ1γ5 sin δ)ǫ0 = i(γ31 cos δ − γ23 sin δ)ǫ1 .
(6.38)

Combining the two equations, we see that the system has to satisy, as long as sin δ 6= 0,

ρ2γ5ǫ0 = iγ31ǫ1 , ρ1γ5ǫ0 = iγ23ǫ1 . (6.39)

These constraints are of course consistent and therefore the loop will preserve 1/4 of

the supersymmetries. When sin δ = 0, the second equation in (6.39) disappears and

the loop becomes 1/2 BPS (in the case δ = π, it is just the maximal circle discussed

above, while in the case δ = 0 the loop is made of two coincident half circles with

opposite orientations). The same conditions apply also when one adds more circles

or half-circles that all intersect at the north and south poles.

To solve the above constraints, we can proceed as usual by first eliminating ǫ0.

This gives the equation

(−iγ12 + τA3 )ǫ1 = 0. (6.40)

For a generic loop we had three such equations (for the anti-chiral spinor), which

meant that the only solution had to be a singlet of the diagonal SU(2)R + SU(2)A

group. Here we find only one such equation for each of the chiralities, such that a

U(1) charge (τ total
3 ) has to vanish. So in addition to the singlet, this constraint allows

one of the states of the triplet.
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Explicitly, we can write the two solutions with positive chirality as

ǫa1,(1) = ǫa1, 01 − ǫa1, 10 = εαȧǫa1, αȧ

ǫa1,(2) = ǫa1, 01 + ǫa1, 10 = ταȧ1 ǫa1, αȧ ,

(6.41)

and similarly for the negative chirality. From the equation ρ3γ5ǫ0 = iγ12ǫ1 we can

then get

ǫ0,(1) = γ5ǫ1,(1) , ǫ0,(2) = −γ5ǫ1,(2) . (6.42)

Thus the eight supercharges which annihilate the Wilson loop made of two longitudes

are

Qa
(1) = εαȧ (Qa

αȧ + Saαȧ) , Qa
(2) = ταȧ1 (Qa

αȧ − Saαȧ) ,

Q̄a
(2) = εα̇ȧ

(

Q̄a
α̇ȧ − S̄aα̇ȧ

)

, Qa
(2) = τ α̇ȧ1

(

Q̄a
α̇ȧ + S̄aα̇ȧ

)

.

(6.43)

The loop also preserves the bosonic symmetry group U(1) × SO(4). To see this,

notice that each longitude is half a maximal circle and therefore it preserves an

SU(2) × SO(5) symmetry (the group SO(1, 2) is broken by the fact that they are

half circles). For the first arc one has exactly the same generators described above

for the maximal circle in the (1, 2) plane, while for the second arc the generators is a

δ-dependent rotation of those. One can then see that the only symmetries preserved

simultaneously by both arcs are the U(1) generated by 1
2
(P4 −K4) and the SO(4) ⊂

SO(6)R rotating Φ3,Φ4,Φ5,Φ6.

This example has many interesting features. By a stereographic projection it is

mapped to a cusp in the plane, where along each of the rays the scalar coupling is con-

stant. This is an operator of the class constructed in [68] and has trivial expectation
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value. The observable on S2 is not trivial, rather

W ≃















1 + g2N
8π2 δ(2π − δ) , g2N ≪ 1 ,

exp
√

g2N
π2 δ(2π − δ) , g2N ≫ 1 ,

(6.44)

Note that, as in the latitude case, the only modification from the circle at δ = π is

the rescaling of the coupling both at weak and at strong coupling by the same factor.

But here the perturbative calculation does not seem as simple as before.

5) Hopf fibers Consider the following parametrization of the three sphere

x1 = − sin
θ

2
sin

ψ − φ

2
, x2 = sin

θ

2
cos

ψ − φ

2
,

x3 = cos
θ

2
sin

ψ + φ

2
, x4 = cos

θ

2
cos

ψ + φ

2
,

(6.45)

where the range of the Euler angles is 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π. In

these coordinates the metric of the S3 reads

ds2 =
1

4

(

dθ2 + sin θ2dφ2 + (dψ + cos θ dφ)2
)

. (6.46)

This is the Hopf fibration of the three sphere, namely the S3 is written as an S1

fibration over S2. The fiber is parameterized by ψ, while the base S2 by (θ, φ).

Consider now a Wilson loop along a generic fiber. This loop sits at constant (θ, φ) =

(θ0, φ0), while ψ varies along the curve. Such operator couples to a single scalar,

namely Φ3. An easy way to see this is to write the left invariant one-forms (6.1) in
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terms of the Euler angles

σR1 = − sinψ dθ + cosψ sin θ dφ ,

σR2 = cosψ dθ + sinψ sin θ dφ ,

σR3 = dψ + cos θ dφ .

(6.47)

If θ and φ are constant, σR1 and σR2 will clearly not enter in the Wilson loop (6.2). An

equivalent way to say this is that this curve only follows the vector field ξR3 = ∂ψ dual

to σR3 . A single loop like this is 1/2 BPS, it is a maximal circle. In fact, studying the

supersymmetry variation, one finds the following constraints on the two chiralities

ρ3ǫ−0 = τR3 ǫ
−
1 , ρ3ǫ+0 = σ̂Li τ

iǫ+1 . (6.48)

where σ̂Li is the pullback of the left-forms along the curve. Using the explicit expres-

sion for them in terms of the Euler angles

σL1 = sinφ dθ − cosφ sin θ dψ ,

σL2 = cosφ dθ + sin φ sin θ dψ ,

σL3 = dφ+ cos θ dψ ,

(6.49)

we get σ̂Li (θ0, φ0)τ
i = cos θ0τ

3 − sin θ0(cosφ0τ
1 − sinφ0τ

2).

Take now a system made of several of these fibers. Notice that the anti-chiral

part of the constraint (6.48) is independent of (θ0, φ0), therefore the system made of

any number of fibers preserves the same 8 anti-chiral combination of Q̄ and S̄ as the

single fiber. However, the 8 chiral supersymmetries are broken when two or more

fibers are put together. Indeed, if we add a second fiber at (θ1, φ1), then we have two
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separate chiral constraints

ρ3ǫ+0 = σ̂Li (θ0, φ0)σ
iǫ+1 , ρ3ǫ+0 = σ̂Li (θ1, φ1)τ

iǫ+1 . (6.50)

To check when those two constraints are compatible, we subtract the two equations

and check if the resulting matrix has vanishing eigenvalues

det
(

σ̂Li (θ0, φ0)τ
i − σ̂Li (θ1, φ1)τ

i
)

= −2 (1 − cos θ0 cos θ1 − sin θ0 sin θ1 cos(φ0 − φ1)) .

(6.51)

This is zero only when θ0 = θ1 and φ0 = φ1. Therefore the combined system of two or

more Hopf fibers does not preserve any of the chiral supercharges, but it does preserve

the 8 anti-chiral supersymmetries defined by

ρ3ǫ−0 = −iγ12ǫ
−
1 . (6.52)

The corresponding supercharges preserved by the system will be essentially the same

as the ones preserved by the 1/2 BPS maximal circle, except that we only select one

chirality

Q̄A = iγ12Q̄
A −

(

ρ3S̄
)A

. (6.53)

As for the bosonic symmetries, notice that a single fiber, being a maximal circle,

preserves the group SO(2, 1)×SU(2)×SO(5). Keeping the coordinate system fixed,

however, the explicit generators of this group will depend in general on (θ0, φ0). One

can construct however one symmetry generator which is independent of the position
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of the fiber, which is simply

JR3 =
1

2
(J12 − J34) . (6.54)

The corresponding U(1) will therefore be a symmetry for a system made of any

number of fibers. Besides this, we have of course the SO(5) symmetry following from

the fact that these fibers only couple to one scalar. So we conclude that the bosonic

group preserved by the Hopf fibers is U(1) × SO(5).

6) Flat connection over Hopf-base Consider a curve parameterized by the Euler

angles θ and φ, which form the base of the Hopf fibration. Along the fibers we choose

ψ(s) = −
∫ s

0

ds′ φ̇(s′) cos θ(s′) , (6.55)

which guarantees that σ̂R3 vanishes. A generic curve of this form will break all the

chiral supersymmetries, and for the anti-chiral ones will introduce the constraints

ρ2ǫ+0 = τR2 ǫ
+
1 , ρ1ǫ+0 = τR1 ǫ

+
1 . (6.56)

This is the anti-chiral part of eq. (6.39), and consequently the loop will preserve the

anti-chiral supersymmetries in eq. (6.43)

Q̄a
(2) = εα̇i

(

Q̄a
α̇i − S̄aα̇i

)

, Qa
(2) = τ α̇i1

(

Q̄a
α̇i + S̄aα̇i

)

. (6.57)

The example of the longitudes is a special case of those loops where the entire

loop is contained within an S2, so in addition to those four anti-chiral supercharges, it
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preserves also four chiral supercharges. To relate them explicitly, of the Euler angles,

only θ varies along the two arcs of eq. (6.37) while φ and ψ are kept fixed with

ψ + φ = π, ψ + φ = 3π or ψ + φ = 5π.

Note that in this construction there is an integral condition, that the values of ψ

at the beginning and end of the curve are equal, so it closes.

Such a loop preserves an SO(4) symmetry rotating Φ3, Φ4, Φ5 and Φ6.

7) Infinitesimal loops If a loop is concentrated entirely near one point, say x4 = 1,

one does not see the curvature of the sphere anymore. The left and right forms then

become exact differentials

σR,Li ∼ 2dxi , i = 1, 2, 3 . (6.58)

So the Wilson loops (6.2) reduce to the ones constructed by Zarembo in [68]. The

supersymmetry variation of such a loop is proportional to

δW ≃ ẋi
(

iγi +M i
Iρ
Iγ5
)

(ǫ0 + γ4ǫ1) . (6.59)

The variations that will annihilate these loops will satisfy three constraints, which for

our usual choice of M i
I are

(

γi + ρiγ5
)

ǫ0 = 0 , (6.60)

and the same for ǫ1. Those loops generically preserve two combinations of Q and Q̄

and two combinations of S and S̄. If the curve is restricted further to lay only in a

2-plane or a line near x4 = 1, the supersymmetry will be further enhanced.

This should explain why in this case the expectation value of the loops vanishes.
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The planar loops come from infinitesimal ones on S3, so it is quite natural that their

VEV’s vanish. This also explains why the construction of the D3-brane solution dual

to the Wilson loop in this limit is singular (see section 6.3).

6.2 Correlators of giant Wilson loops and chiral

primaries

A small circular Wilson loop, when probed from a distance much larger than its cha-

racteristic size, can be expanded in a series of local operators of different conformal

dimension [227]. The operators which are allowed to appear in the expansions must

preserve the same symmetries of eq. (2.53) and therefore must be bosonic, gauge in-

variant and SO(5) invariant. The conformal dimension of some of these operators is

not protected by the superconformal algebra and therefore they receive large anoma-

lous dimensions and decouple in the strong coupling regime. An important class of

operators which have protected dimensions and appear in the operator product ex-

pansion are the chiral primary operators introduced in chapter 2. The correlator with

a local operator can then be read off from the expansion of the Wilson loop [227].4

In this section of the dissertation, we use the D3 and D5-branes described in section

2.3.3 to compute the correlation function between a circular Wilson loop in a higher

representation and a chiral primary operator in the fundamental representation. We

do this by studying the coupling to the brane worldvolume of the supergravity modes

dual to the chiral primaries. These modes propagate from the insertion of the local

operator on the boundary to the brane worldvolume in the bulk.

We first review the operator product expansion of the Wilson loop and how to

4For a nice review see [77].
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compute correlation functions when the Wilson loop is described in terms of a funda-

mental string worldsheet. To evaluate this one needs to study the harmonic expansion

on S5 of the bulk fields which couple to the worldsheet. We then replace the funda-

mental string with the D3 and D5-branes. We start by investigating the symmetric

case first and we then move on to the analysis of the antisymmetric one. Besides

checking that our results reproduce for small k the well-known string limit, we also

compare them against the expressions coming from the normal matrix model intro-

duced in this context in [89], and find perfect agreement both in the symmetric and

antisymmetric case.

6.2.1 Kaluza-Klein expansion

In this section we review the expansion in spherical harmonics for type IIB super-

gravity on AdS5×S5 [34], and identify the bulk excitations associated to turning on a

chiral primary operator in the dual N = 4 gauge theory [26]. These will be later used

to construct the coupling of the various supergravity modes to the D3 and D5-branes.

The Einstein equations of type IIB supergravity read5

Rmn =
1

96
FmijklF

ijkl
n , (6.61)

where the 5-form field strength F(5) is self-dual. In the Poincaré patch, the AdS5×S5

5In our conventions Latin indices run over the whole ten-dimensional manifold, while Greek
indices µ, ν, . . . and α, β, . . . run over AdS5 and S5 respectively. We also choose units in which
RAdS5

= RS5 = 1.
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solution reads

ds2 = 1
z2

(dz2 + d~x 2) + dΩ2
5 , (6.62)

F̄µ1µ2µ3µ4µ5 = −4ǫµ1µ2µ3µ4µ5 , F̄α1α2α3α4α5 = −4ǫα1α2α3α4α5 . (6.63)

The fluctuations around the background geometry can be parametrized as follows

Gmn = gmn + hmn , (6.64)

hαβ = h(αβ) +
h2

5
gαβ , gαβh(αβ) = 0 , (6.65)

hµν = h′µν −
h2

3
gµν , gµνh′(µν) = 0 , (6.66)

F = F̄ + δF , δFijklm = 5∇[iajklm] , (6.67)

where h2 is the trace of the metric on the 5-sphere, h2 ≡ hαβg
αβ. Note that the fields

hµν and h′µν are related by a d = 5 Weyl shift. To identify the bulk excitation in

AdS5 we expand the fluctuations as follows6

h′µν =
∑

h′
I
µν(x)Y

I(y) , (6.68)

h2 =
∑

hI2(x)Y
I(y) , (6.69)

aµ1µ2µ3µ4 =
∑

aIµ1µ2µ3µ4
(x)Y I(y) , (6.70)

aα1α2α3α4 = −4
∑

ǫαα1α2α3α4b
I(x)∇αY I(y) , (6.71)

where x and y refer to the AdS5 and S5 coordinates respectively, and Y I are scalar

6We do not consider the harmonic expansion of h(αβ) as this fluctuation is related to Q2Q̄2

descendants of chiral primaries in the dual super Yang-Mills theory.
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spherical harmonics on the 5-sphere which satisfy7

∇α∇αY
I = −∆(∆ + 4)Y I . (6.72)

Spherical harmonics on S5 can be classified in terms of the SO(6) ≃ SU(4) R-

symmetry group. In particular scalar harmonics belong to the [0,∆, 0] representation.

The fields h2 and b appear coupled in the linearized equation of motions. Their

equations can be diagonalized introducing the linear combinations [26]

sI =
1

20(∆ + 2)
[hI2 − 10(∆ + 4)bI ] , (6.73)

tI =
1

20(∆ + 2)
[hI2 + 10∆bI ] , (6.74)

which obey the equations of motion

∇µ∇µ sI = ∆(∆ − 4) sI , (6.75)

∇µ∇µ tI = (∆ + 4)(∆ + 8) tI . (6.76)

A scalar field in AdS with m2 = ∆(∆ − 4) (with ∆ ≥ 2) transforming in the

[0,∆, 0] representation corresponds to a chiral primary operator O∆ of conformal

dimension ∆. Therefore, to linear order, the scalar field sI corresponds to chiral

primaries in the dual gauge theory. On the other hand, the scalars tI are associated

to their descendants, which we do not consider here.

7We include a brief review of spherical harmonics in the appendix C.
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The linear solutions to the equations of motion turn out to be [26]

hµν = −6

5
∆ s gµν +

4

∆ + 1
∇(µ∇ν)s , (6.77)

hαβ = 2∆ s gαβ , (6.78)

aµ1µ2µ3µ4 = 4ǫµ1µ2µ3µ4µ5∇µ5b , (6.79)

aα1α2α3α4 = −4
∑

I

ǫαα1α2α3α4b
I(x)∇αY I(y) , (6.80)

where s =
∑

sIY I and b =
∑

bIY I . Using eq. (6.65) and the solution (6.78) one can

identify h2 = 10 ∆ s. Setting tI = 0 in eq. (6.74), one can then deduce s = −b.

6.2.2 Operator product expansion of Wilson loops

The Wilson loop operator can be expanded in terms of local operators when probed

from distances much larger than its characteristic size a. For the circular Wilson loop

with radius a we can write [227]

W (C) = 〈W (C)〉
(

1 +
∑

n

c(n)a
∆(n)O(n)

)

. (6.81)

In this expression O(n) is a local gauge invariant operator with conformal dimension

∆(n), and the sum over n runs over both the primary operators and their descendants.

This operator product expansion must be invariant under the symmetries preserved

by the Wilson loop. The 1/2 BPS circular loop has ΘI(τ) = ΘI = const., and

therefore preserves a SO(5) subgroup of the original SO(6) R-symmetry group. The

operators appearing in the OPE expansion must therefore contain SO(5) singlets in

the SO(6) → SO(5) decomposition. For example, at level ∆ = 2 we can consider

the chiral primary operator OA
2 = CA

IJTrΦIΦJ , where CA
IJ is a SO(6) symmetric
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traceless tensor. Under SO(6) → SO(5) it decomposes as 20 → 1 + 5 + 14 and

therefore, containing a singlet, it will appear in the OPE of the Wilson operator. A

similar analysis can be performed for higher dimension operators, which in general

will contain covariant derivatives, gauge field-strenghts and the fermions of the N = 4

multiplet. Some of them will get large anomalous dimension in the strong coupling

limit and therefore will decouple. The generic expansion looks as follows

W (C)

〈W (C)〉 = 1 + c(2) a
2 Y

(2)
A (Θ)N2C

A
IJTr

(

ΦIΦJ
)

+c(3) a
3 Y

(3)
A (Θ)N3C

A
IJKTr

(

ΦIΦJΦK
)

+ c(4) a
3Tr
(

ΘIXIF+

)

+ . . . ,

(6.82)

where Y
(n)
A (θ) are spherical harmonics and Nn are normalization constants.

The coefficients appearing in the OPE expansion can be read off from the large

distance behavior of the two point correlator of the Wilson loop and the local operators

〈W (C)O(n)(x)〉
〈W (C)〉 = c(n)

a∆(n)

L2∆(n)
+ . . . , (6.83)

where it is assumed that the loop radius a is much smaller than the distance L from the

point of insertion of the local operator. Here we shall focus only on chiral primary

operators OA
∆ = CA

I1···I∆Tr(ΦI1 . . .ΦI∆).8 These belong to short representations of

the superconformal algebra, have protected conformal dimensions, and appear at all

orders in the expansion (6.82).

In the AdS/CFT correspondence the chiral primary operators are dual to super-

gravity modes: O∆ corresponds to a scalar of mass m2 = ∆(∆ − 4), which is a

8We take the traces of the chiral primaries in the fundamental representation.
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combination of the trace of the metric and the R-R 4-form over S5, as we reviewed

above.

We now briefly discuss the procedure for computing the correlation function of

these operators with a Wilson loop in the strong coupling regime. The coupling to the

string worldsheet of the supergravity mode dual to O∆ is given by a vertex operator

V∆, which can be determined by expanding the string action to linear order in the

fluctuation hµν

S =
1

2πα′

∫

d2σ
√

det (Gµν∂αxµ∂βxν)

=
1

2πα′

∫

d2σ
√

det (gµν∂αxµ∂βxν)

(

1 +
1

2
(gµν∂αx

µ∂βx
ν)−1hµν∂αx

µ∂βx
ν + . . .

)

.

(6.84)

The fluctuation of the metric hµν on AdS5 is given in eq. (6.77). We write the scalar

sI in terms of a source sI0 located at the boundary

sI(~x, z) =

∫

d4~x ′G∆(~x ′; ~x, z)sI0(~x
′) , (6.85)

where G∆(~x ′; ~x, z) is the bulk-to-boundary propagator which describes the propa-

gation of the supergravity mode from the insertion point ~x ′ of the chiral primary

operator to the point (~x, z) on the string worldsheet

G∆(~x ′; ~x, z) = c

(

z

z2 + |~x− ~x ′|2
)∆

. (6.86)

The constant c = ∆+1
22−∆/2N

√
∆

is fixed by requiring the unit normalization of the 2-point

function [227]. Since we are probing the Wilson loop from a distance L much larger
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than its radius a we can approximate

G∆(~x ′; ~x, z) ≃ c
z∆

L2∆
, ∂zs

I ≃ ∆

z
sI , ∂2

zs
I ≃ ∆(∆ − 1)

z2
sI . (6.87)

The relevant Christoffel symbols are readily computed to be

Γzµν = zgµν −
2

z
δzµδ

z
ν , (6.88)

so that one finally has

hIµν ≃ −2∆ gµνs
I +

4∆

z2
δzµδ

z
νs
I . (6.89)

Inserting this result into eq. (6.84), the coupling to the worldsheet is found to be

[227]

1

2πα′

∫

dA (−2∆ s)
z2

a2
≡ 1

2πα′

∫

dA V∆ s . (6.90)

In this expression dA is the area element of the classical string. The correlation func-

tion is obtained from functionally differentiating the previous formula with respect

to the source s0

〈W (C)O∆(~x0)〉
〈W (C)〉 = −Y I(θ)

δ

δs0(~x0)

1

2πα′

∫

dA d4x′ V∆G∆(~x ′; ~x, z)sI0(~x
′)

= −Y I(θ)
1

2πα′

∫

dA V ∆G∆(~x0; ~x, z) . (6.91)

One obtains in the approximations of eq. (6.87)

〈W (C)O∆(~x0)〉
〈W (C)〉 = 2∆/2−1

√
∆λ

N

a∆

L2∆
. (6.92)
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6.2.3 Brane computation

We now move on to studying the operator product expansion of Wilson loops in

higher dimensional representations. We analyze the rank k symmetric representation

first. In the bulk this is described by the D3-brane discussed in section 2.3.3. The

first step in the computation consists in finding the vertex operator to be integrated

over the world-volume of the brane.

Coupling of the D3-brane to the chiral primaries

The linearized coupling of the scalar sI to the brane can be found by expanding the

induced metric on the brane around the AdS5 × S5 background gmn and keeping the

first order term in the fluctuation hmn. Since the brane lies completely in AdS5 we

can write

SDBI = TD3

∫

d4σ
√

det (Gµν∂aXµ∂bXν + 2πα′Fab)

= TD3

∫

d4σ
√

det (gµν∂aXµ∂bXν + 2πα′Fab) ·

·
(

1 +
1

2
(gµν∂aX

µ∂bX
ν + 2πα′Fab)

−1
hρσ∂aX

ρ∂bX
σ + . . .

)

.(6.93)

Here a, b are the brane world-volume indices.

The coupling of sI to the 4-form in the Wess-Zumino term is obtained by replac-

ing C(4) → C(4) + a(4), where, using eq. (6.79) and the approximation (6.87), the

fluctuation a(4) is

aIµ1...µ4
≃ −4ǫµ1...µ4z∂

zsI ≃ −4∆ z ǫµ1...µ4zs
I , (6.94)

186



so that

S
(1)
WZ = −TD3

∫

P [a(4)] = 4TD3 ∆

∫

P [C(4)]s , (6.95)

where s =
∑

sIY I .

We use now the explicit solution to the equations of motion (2.80) to evaluate the

on-shell value of the fluctuations (6.93) and (6.95). The first order in the fluctuation

in eq. (6.93) turns out to be

S
(1)
DBI = 4N∆κ2

∫

dρdθ
sin θ

sinh2 ρ

(

−1 − 2κ2 +
1 − sinh2 ρ(κ−2 − sin2 θ)

(cosh ρ− sinh ρ cos θ)2

)

s. (6.96)

Similarly, the Wess-Zumino term reads

S
(1)
WZ = 8N∆κ4

∫

dρdθ
sin θ

sinh2 ρ

(

1 +
1

κ2

sinh3 ρ− sinh ρ cosh2 ρ

cosh ρ− sinh ρ cos θ
cos θ

)

s. (6.97)

The final result for the action is then

S
(1)
D3 = S

(1)
DBI + S

(1)
WZ = −4N∆

∫ sinh−1 κ

0

dρ

∫ π

0

dθ
sin θ

(cosh ρ− sinh ρ cos θ)2
s. (6.98)

The correlation function

The prescription for computing the correlation function between the Wilson loop

and the chiral primary operator is to functionally differentiate the action (6.98) with

respect to the source sI0 (see eq. (6.85))

〈W (C)O∆(L)〉
〈W (C)〉 = −δS

(1)
D3

δs0

∣

∣

∣

s0=0
. (6.99)
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We approximate the bulk-to-boundary propagator with c z
∆

L2∆ and use for z the

expression (2.76). This yields

〈W (C)O∆(L)〉
〈W (C)〉 ≃ a∆

L2∆

4N∆

κ∆
c

∫ sinh−1 κ

0

dρ sinh∆ ρ

∫ π

0

dθ
sin θ

(cosh ρ− sinh ρ cos θ)2+∆
.

(6.100)

We are neglecting terms of higher order in a
L2 .

After performing the two integrals, the final result for the coefficients of the op-

erator product expansion turns out to be remarkably simple

cSk,∆ =
2∆/2+1

√
∆

sinh(∆ sinh−1 κ). (6.101)

Interestingly enough, this can be expressed in terms of Chebyshev polynomials with

imaginary argument

cSk,∆ =
(−1)∆/22∆/2+1

√
∆

·











−iV∆(iκ) for ∆ even

T∆(iκ) for ∆ odd ,
(6.102)

where we have used the identities Tn(x) = cos(n cos−1 x) and Vn(x) = sin(n cos−1 x).

The string limit is recovered when κ → 0. In this regime the S2 in the brane

world-volume shrinks to zero size and the D3 reduces effectively to a fundamental

string with AdS2 worldsheet. The coefficients (6.101) become

cSk,∆ ≃ 2∆/2+1
√

∆κ = 2∆/2−1

√
∆λ

N
k , (6.103)

in perfect agreement with the result (6.92) found originally in [227].
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The D5-brane

We consider now the rank k antisymmetric case, corresponding in the bulk to the

D5-brane presented in section 2.3.3.

The coupling of the KK scalars sI to the D5 world-volume can be obtained along

the same lines of the D3 calculation above. However, besides the fluctuation of the

AdS5 part of the metric hµν , we also need the fluctuation of the metric in the S5

direction hαβ, as well as the fluctuation of the 4-form a(4) along the S4. The explicit

expressions can be found in section 6.2.1. In particular, in this coordinates the 4-form

over the S5 is

aσ1σ2σ3σ4 = 4 sin4 θ µ(Ω4)
∑

sI ∂θY
I , (6.104)

where σ1, . . . , σ4 are the coordinates on the S4 and µ(Ω4) = sin3 σ1 sin2 σ2 sin σ3 is the

corresponding measure. Differently from the D3 case, now the S5 spherical harmonics

Y I play an active role in the computation since the D5-brane extends into the 5-

sphere. The explicit form of the harmonics is given in appendix C.

The variation of the DBI part of the action to first order in the fluctuations hµν

and hαβ reads

S
(1)
DBI =

TD5

2

∫

√

det(γab + 2πα′Fab)
(

γab + 2πα′Fab
)−1(

hµν∂aX
µ∂bX

ν + hαβ∂aX
α∂bX

β
)

.

(6.105)

Using the explicit solution reviewed in section 2.3.3, it is easy to compute the matrix

γab + 2πα′Fab. Plugging in the explicit expressions for the fluctuations and using the

fact that on the D5 solution we have z = a/ cosh ζ (this follows from the change of

189



coordinate (2.85) after setting u = 0), we get after some computations

S
(1)
DBI = πTD5

∫

dζdσ1 . . . dσ4µ(Ω4) sinh ζ sin5 θk

(

− 4∆

cosh2 ζ sin2 θk
+ 8∆

)

sIY I .

(6.106)

Performing the integration over the S4, only the SO(5) invariant spherical harmonics

are selected, namely the harmonics which depends on θk only, and we get

S
(1)
DBI =

N
√
λ

3π

∫

dζ sinh ζ sin5 θk

(

− 4∆

cosh2 ζ sin2 θk
+ 8∆

)

s∆Y ∆,0(θk) , (6.107)

where the suffix on the harmonic indicates that all the quantum numbers except one

were set to zero by the integration over the 4-sphere. As reviewed in appendix C,

these S4 invariant harmonics can be explicitely written as

Y ∆,0(θk) = N∆C
(2)
∆ (cos θk) , (6.108)

where C
(2)
∆ (cos θk) are Gegenbauer polynomials, and N∆ is a normalization constant

necessary to have orthonormality.

The linear coupling coming from the Wess-Zumino part of the action (2.89) can

be obtained using the expression for the 4-form fluctuation in eq. (6.104), and after

integrating over the S4 as above, we get

S
(1)
WZ =

8N
√
λ

3π

∫

dζ sinh ζ sin4 θk cos θks
∆ ∂θkY

∆,0(θk). (6.109)
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The correlation function

The correlator between the rank k antisymmetric Wilson loop and chiral primary

operator O∆(L) can now be computed plugging eq. (6.85) into eqs. (6.106) and

(6.109), and differentiating with respect to the source s∆
0 . As before, the bulk-to-

boundary propagator can be approximated by c z∆/L2∆. Recalling that on the D5

solution z = a/ cosh ζ , the ζ-integrals can be readily computed and we get

〈WAk O∆(L)〉
〈WAk〉

=
a∆

L2∆

[

2∆/2

3π

√
∆λ sin3 θkY

∆,0(θk)−

−2∆/2+1
√
λ(∆ + 1)

3π
√

∆(∆ − 1)
sin5 θk

(

∆Y ∆,0(θk) +
cos θk
sin θk

∂θkY
∆,0(θk)

) ]

.

(6.110)

Using the formula (C.16) for the derivatives of Gegenbauer polynomials, we obtain

∆Y ∆,0(θk) +
cos θk
sin θk

∂θkY
∆,0(θk) =

N∆

sin2 θk

(

∆C
(2)
∆ (cos θk) − (∆ + 3) cos θk C

(2)
∆−1(cos θk)

)

.

(6.111)

The correlation function (6.110) can then be written as

〈WAk O∆(L)〉
〈WAk〉

=
a∆

L2∆
Y ∆,0(0)

[

2∆/2

3π

√
∆λ sin3 θk·

· 6(∆ − 2)!

(∆ + 2)!

(

2(∆ + 1) cos θk C
(2)
∆−1(cos θk) − ∆C

(2)
∆ (cos θk)

)

]

,

(6.112)
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where we have factorized out the spherical harmonic evaluated at θ = 0, Y ∆,0(0) =

N∆
(∆+3)!

6∆!
.9 The OPE coefficient cAk,∆ we aim to compute is the expression in square

brackets. Using the recurrence relation eq. (C.17), we find that this expression can

be written in the compact form

cAk,∆ =
2∆/2

3π

√
∆λ sin3 θk

6(∆ − 2)!

(∆ + 1)!
C

(2)
∆−2(cos θk). (6.113)

This is our final result for the correlation function of rank k antisymmetric Wilson

loops and chiral primaries. In the next section, we will see that this result exactly

matches the one obtained from the normal matrix model. As a check, one can verify

that this expression reduces to the string result of [227] in the limit k/N → 0, by

using θ3
k ∼ 3πk/2N and eq. (C.18) from the appendix.

6.2.4 The correlation functions from the normal matrix model

The conjecture that the expectation value of a circular loop is captured by the Her-

mitian matrix model (2.58) extends to higher rank Wilson loops as well. The result

for the multiply wound Wilson loop has been obtained in [80], whereas [90] and

[81][90] contain the computations for, respectively, the symmetric and antisymmetric

representations.

When computing the correlation function between a Wilson loop and a chiral

primary operator one can substitute the Hermitian model (2.58) with a complex

one by introducing a second matrix MIm and defining z = M + iMIm. In [89] it

was shown that, for certain representations of the Wilson loop (the multi-winding

9The OPE coefficient does not include a factor coming from the spherical harmonic evaluated
at the unit 6-vector ΘI appearing in eq. (2.53). After a rotation, this vector can always be set to
ΘI = (1, 0, . . . , 0) which corresponds to the north pole of S5, i .e. θ = 0.
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and the antisymmetric), the complex matrix model is equivalent to a normal matrix

model, which is a complex model where the matrix is constrained to commute with

its conjugate.10 In the normal matrix model the expression for the Wilson loop reads

〈WR〉 =
1

ZN

∫

[z,z̄]=0

[d2z] exp

(

−2N

λ
Trzz̄

)

1

dimRTrRe
1√
2
(z+z̄)− λ

8N . (6.114)

For largeN , the eigenvalues of this model are distributed in incompressible droplets

in the complex plane. This leads to interpreting the complex plane as the phase space

of free fermions, in analogy with the matrix quantum mechanics describing chiral

primary operators [35][184]. For example, the Wilson loop in the fundamental rep-

resentation has an eigenvalue distribution given by a circular droplet with constant

density11

ρ(z) =











2
πλ

|z| <
√

λ
2

0 |z| >
√

λ
2
.

(6.115)

In [89] it was also shown that the correlation function between a Wilson loop in

the fundamental representation and a chiral primary operator is given by12

〈W�O∆〉 =
2∆/2

ZN

∫

[z,z̄]=0

[d2z] exp (−Tr zz̄)
1

N
Tr� e

1
2

√
λ
N

(z+z̄)− λ
8N

1√
∆N∆

Tr z∆.(6.116)

We now use the normal matrix model to check our results for the coefficients of the

operator product expansion of higher rank Wilson loops.

10This is required in order to be able to diagonalize simultaneously the two matrices M and MIm.
This allows to use the eigenvalue basis for solving the model.

11Projecting eq. (6.115) into the real axis one recovers the Wigner semi-circle distribution.
12The factor 2∆/2 instead of the 2−∆/2 of [89] is set in order to have normalizations consistent

with [227].
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The symmetric case

We start by reproducing the result (6.101) for cSk,∆ using the normal matrix model.

According to the holographic dictionary put forward in [88], we are interested in the

correlator between a Wilson loop in the rank k symmetric representation and the

chiral primary operator O∆ = 1√
∆N∆

TrZ∆. In the limit of large N and large λ the

symmetric representation Wilson loop WSk effectively coincides with the multiply

wound fundamental loop W
(k)
�

, as was shown in [89][90]. Therefore we limit ourselves

to the simpler case of computing 〈W (k)
�

O∆〉, where k is the winding number and

corresponds in the brane probe picture to the number of fundamental strings dissolved

in the brane.

We start from eq. (4.7) of [89], where we replace everywhere λ→ k2λ

〈W (k)
�

O∆〉 =
2∆/2+1ek

2λ/8N

k
√

∆λ

∮

dw

2πi
w∆ek

√
λw/2

(

1 +
k
√
λ

2Nw

)N




(

1 +
k
√
λ

2Nw

)∆

− 1



 .

(6.117)

The large winding limit consists in taking N → ∞ while keeping κ ≡ k
√
λ

4N
fixed.

In this limit the integral can be evaluated around the saddle point of the terms

proportional to N and k

∂w

(

k
√
λ

2
w +N log

(

1 +
k
√
λ

2Nw

))

= 0 , (6.118)

which yields

w⋆ =
√

1 + κ2 − κ. (6.119)
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Inserting w∗ in eq. (6.117) and using

√
1 + κ2 + κ = exp(sinh−1 κ) ,

√
1 + κ2 − κ = exp(− sinh−1 κ) , (6.120)

it is easy to see that

〈W (k)
�

O∆〉 =
2∆/2

2Nκ
√

∆
2 sinh(∆ sinh−1 κ)e2N(κ

√
1+κ2+sinh−1 κ). (6.121)

To get a properly normalized expression one still needs to divide eq. (6.121) by

〈W (k)
�

〉 =
1

2Nκ
e2N(κ

√
1+κ2+sinh−1 κ). (6.122)

The final result coincides with eq. (6.101), which we obtained from the brane picture.

The antisymmetric case

To compute the OPE coefficients of Wilson loops in the rank k antisymmetric rep-

resentation, we have to evaluate the following correlator in the normal matrix model

[89]

〈WAk O∆〉 =
2∆/2 ekλ/8N

ZNN∆/2
√

∆

∫

[z,z̄]=0

[d2z]e−Tr(zz̄) 1

dimAk
TrAke

1
2

√
λ
N

(z+z̄) Trz∆. (6.123)

This matrix integral can actually be solved exactly, as was shown in [89], and similarly

to the case of the fundamental representation, it can be written as a k-dimensional

contour integral. However, it does not seem to be easy to take the large N and large k

limit with k/N fixed from such an expression. Here we follow a different approach to

get the above correlator in this limit. First, as in [90], we find it convenient to rewrite
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the trace in the antisymmetric representation using the corresponding generating

function

TrAke
1
2

√
λ
N

(z+z̄) =

∮

dt

2πi
tk−1 exp

[

Tr log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)]

. (6.124)

Since we expect the correlator to be real, it is also convenient to replace Trz∆ →
1
2
(Trz∆ + Trz̄∆). The idea is then to view the insertion of the chiral primary Trz∆ in

eq. (6.123) as a small perturbation of the gaussian potential, by writing

∫

[z,z̄]=0

[d2z]e−Tr(zz̄)Trz∆ eTr log(1+ 1
t
e

1
2

√
λ
N

(z+z̄)
) =

= ZN
∂

∂α

(

1

ZN (α)

∫

[z,z̄]=0

[d2z]e−Tr(zz̄)+α
2
(Trz∆+Trz̄∆)eTr log(1+ 1

t
e

1
2

√
λ
N

(z+z̄)
)

) ∣

∣

∣

∣

α=0

≡ ZN
∂

∂α

〈

exp

[

Tr log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)]〉

α

∣

∣

∣

∣

α=0

, (6.125)

where we have introduced an α-dependent partition function

ZN(α) =

∫

[z,z̄]=0

[d2z]e−Tr(zz̄)+α
2
(Trz∆+Trz̄∆) , (6.126)

and we have used that ZN (α) = ZN + O(α2).13 The problem is now to evaluate the

correlation function (6.125) in the normal matrix model with the deformed potential

V (z, z̄) = −Trzz̄ +
α

2
Tr(z∆ + z̄∆) . (6.127)

Normal models with potentials of this kind were previously studied in the literature,

for a recent account see for example [228][229]. To solve the model at large N , one

13This follows from the fact that in the matrix model with gaussian potential 〈Trz∆〉 = 〈Trz̄∆〉 = 0.
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can as usual go to the eigenvalue basis at the expenses of introducing a Vandermonde

factor, and determine the eigenvalue density ρα(z, z̄) in the continuum limit. The

density is found by solving the saddle point equation14

z − ∆α

2
z̄∆−1 = N

∫

d2z′
ρα(z

′, z̄′)

z̄ − z̄′
, (6.128)

where the term in the right hand side comes from the Vandermonde factor. Once the

density is known, the correlation function in eq. (6.125) becomes

〈

exp

[

Tr log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)]〉

α

→ exp

[

N

∫

d2z ρα(z, z̄) log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)]

.

(6.129)

It is known that for potentials of the kind V (z, z̄) = −zz̄ + f(z) + f̄(z̄), the density

is a constant (equal to 1
Nπ

in the normalizations we are using here) inside a certain

droplet in the complex plane and zero outside. For the gaussian potential, as reviewed

previously, the droplet is just a circle of radius
√
N (to compare with eq. (6.115), one

has to rescale z →
√

λ
2N
z), while the term proportional to α induces a deformation

of the circle which preserves its total area (since we do not change the number of

eigenvalues). It is not difficult to find the shape of the droplet which solves the

saddle point equation (6.128) at leading order in α. It is convenient to work in polar

coordinates z = reiφ. The curve which bounds the droplet can then be written at

first order as

r(φ) =
√
N
(

1 + α f(φ)
)

. (6.130)

14As in [90], the term exp
[

Tr log
(

1 + 1
t e

1

2

√
λ

N
(z+z̄)

)]

does not modify the saddle point equation

at leading order at large N .
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Clearly f(φ) has to be periodic, and may be written as

f(φ) =

∞
∑

n=1

an cosnφ , (6.131)

where only cosines appear because of the symmetry of the potential (6.127) under

z ↔ z̄, and the mode with n = 0 is excluded by requiring the area to be preserved.

The saddle point equation now reads

r eiφ − ∆α

2
r∆−1 e−i(∆−1)φ =

1

π

∫ 2π

0

dφ′
∫

√
N(1+α f(φ′))

0

dr′
r′

r e−iφ − r′ e−iφ′
. (6.132)

Expanding the integral at first order in α and plugging in the Fourier expansion

(6.131), we see that this equation is satisfied if a∆ = N∆/2−1 ∆
2

and all other an

vanish, so we find that the shape of the deformed droplet is given by the curve

r(φ) =
√
N
(

1 +
α

2
∆N∆/2−1 cos ∆φ

)

. (6.133)

Before moving on to compute eq. (6.125), we can check the validity of the method

by applying it to the computation of the correlator (6.116) when the Wilson loop is

in the fundamental representation. In this case, following the same steps as above, in

the large N limit we arrive at

〈W�O∆〉 =
2∆/2

√
∆N∆/2

∂

∂α

∫

d2z ρα(z, z̄) e
1
2

√
λ
N

(z+z̄)
∣

∣

∣

α=0

=
2∆/2

√
∆N∆/2

∂

∂α

1

Nπ

∫ 2π

0

dφ

∫

√
N(1+α

2
∆N∆/2−1 cos ∆φ)

0

dr r e
√

λ
N
r cosφ

∣

∣

∣

∣

α=0

=
2∆/2

√
∆

N

1

2π

∫ 2π

0

dφ e
√
λ cosφ cos ∆φ =

2∆/2
√

∆

N
I∆(

√
λ) , (6.134)
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which is the result first found in [31] and the correct large N limit of the exact formula

(6.117) (with k = 1).

Going back to the antisymmetric representation, we have to evaluate

∮

dt

2πi
tk−1 ∂

∂α
exp

[

N

∫

d2z ρα(z, z̄) log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)]∣

∣

∣

∣

α=0

=

∮

dt

2πi
tk−1 ∂

∂α

[

N

∫

d2z ρα(z, z̄) log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)] ∣

∣

∣

∣

α=0

×

× exp

[

N

∫

d2z ρ0(z, z̄) log

(

1 +
1

t
e

1
2

√
λ
N

(z+z̄)

)]

, (6.135)

where in the last line ρ0 is just the circular droplet density. Since the exponent is

independent of α, the t integral can be evaluated in the supergravity limit of large

λ exactly as in [90]. We first make a change of variables t = e
√
λw, then the saddle

point of the exponent is found to be

w⋆ = cos θk , (6.136)

where θk is defined as in eq. (2.91). The exponent in eq. (6.135) gives a term propor-

tional to the expectation value of the Wilson loop, while the prefactor is evaluated at

the saddle point. After dividing by 〈WAk〉, the OPE coefficient can then be obtained

as

〈WAk O∆〉
〈WAk〉

=
2∆/2

√
∆N∆/2

∂

∂α

[

N

∫

d2z ρα(z, z̄) log

(

1 + e
1
2

√
λ

“

z+z̄√
N

−2 cos θk

”

)] ∣

∣

∣

∣

α=0

≃ 2∆/2N
√
λ√

∆N∆/2

∂

∂α

2

π

∫ θk

0

dφ

∫ 1+α
2

∆N∆/2−1 cos ∆φ

cos θk
cos φ

dr r(r cosφ− cos θk)
∣

∣

∣

α=0
, (6.137)

where the lower limit in the r integral comes from the fact that in the large λ limit the
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integral has support only in the region r cosφ ≥ cos θk.
15 After doing the derivative,

eq. (6.137) gives the final result

〈WAk O∆〉
〈WAk〉

=
2∆/2

√
∆λ

π

∫ θk

0

dφ cos ∆φ (cosφ− cos θk) . (6.138)

Remarkably, the integral in eq. (6.138) precisely reproduces the Gegenbauer polyno-

mials arising in the bulk computation, and the final result is

〈WAk O∆〉
〈WAk〉

=
2∆/2

3π

√
∆λ sin3 θk

6(∆ − 2)!

(∆ + 1)!
C

(2)
∆−2(cos θk) , (6.139)

which exactly matches the D5 computation of the OPE coefficient.

6.2.5 Outlook

In this section we computed the correlation function between a higher rank Wilson

loop and a chiral primary operator in the fundamental representation using branes

with electric fluxes. Following the proposal of [80][81][88], we considered a D3-brane

for the rank k symmetric case and a D5-brane for the antisymmetric one. We then

checked our results with the normal matrix model discussed in [89], finding perfect

agreement in both cases.

We focussed on chiral primary operators but it should not be difficult to extend our

computation to operators corresponding to other supergravity modes. For example,

the KK modes of the dilaton are necessary to compute correlation functions of Wilson

loops and Tr Φ∆F 2
+.

It would be worthwhile to study more general representations of both the Wilson

15The upper limit in the φ integral is rigorously θk +O(α), but it is easy to see that the correction
does not contribute at first order in α.
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loop and the chiral primary operator. A particularly interesting issue to address would

be understanding from our brane picture the selection rule found in [89]: for Wilson

loops in the rank k antisymmetric representation the only non-vanishing correlators

involve chiral primaries with traces over Young diagrams with at most k hooks. An-

other direction to pursue may be considering the correlation function between higher

dimensional Wilson loop and a chiral primary operator with ∆ ∼ N . In the bulk this

would require to study the bulk-to-bulk exchange of supergravity degrees of freedom

between the electric branes describing the Wilson loop and the (dual) giant gravitons

associated with the chiral primary.

6.3 Quarter BPS Wilson loops

In this section we continue the investigation of the D-brane description of higher rank

Wilson loops. In particular we study some systems where it is possible to find solutions

for the D3-branes starting from first-order equations derived from the supersymmetry

conditions. All the examples we present are Wilson loop operators which preserve

1/4 of the supersymmetry generators.

First we consider the system of a straight 1/2 BPS Wilson loop with the insertion

of two 1/2 BPS local operators such that the combined system preserves 1/4 of the

supercharges. If there was only the Wilson loop, the D3-brane would have been the

one of [80], while if only the local operators were present, that would have involved

the original giant gravitons [91]-[93]. This combined system of a Wilson loop and

a local operator was presented in [230], where it was shown to be supersymmetric

and the relevant string solution was found. In section 6.3.1 we present the D3-brane

solution preserving the same supersymmetries, and interpolating between the giant
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Wilson loop of [80] near the boundary and a giant graviton in the center of AdS5.

The second system, which will be described in section 6.3.2, involves circular Wil-

son loops which couple to three of the N = 4 scalars. This system, first presented

in [231] (as a generalization of an example in [68]) and studied further in [223], also

preserves 1/4 of the supersymmetries, but with a different combination of generators

than in the previous example. At two loop order in the perturbative expansion the

interacting graphs (in the Feynman gauge) cancel, which led to the conjecture that

only ladder/rainbow diagrams contribute to these operators. All those diagrams com-

bine nicely into a matrix model which was then compared with the string calculation

in AdS5 × S5. As we shall review in section 6.3.2 below, the results agreed includ-

ing a subleading term, a world-sheet instanton, which matched a correction to the

asymptotic expansion of the matrix model at strong coupling.

The calculation using D3-branes is applicable for a Wilson loop in a symmetric

representation whose rank k is of order N . At large λ the analog observable in the

matrix model agrees with the single-trace multiply wrapped loop which is given by

a function of the ratio k/N and thus the D3-brane calculation captures non-planar

corrections to the usual string calculation. We are able to compare the matrix model

and the D-brane calculation for arbitrary k/N and find an agreement and a check of

the aforementioned conjecture to all orders in 1/N .

6.3.1 Wilson loop with insertions

Setup

We consider here a Wilson loop operator in N = 4 supersymmetric Yang-Mills theory

on S3 × R, where the line is the time direction with Lorentzian signature. The loop
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will be comprised of one line in the time direction along a point on S3, and another

line going in the opposite direction at the antipodal point. In addition we will include

the insertion of local operators at the infinite past and infinite future.

Under the exponential map (after Wick-rotation), the space is mapped to flat

R
4 and the two lines to a single line through the origin with the local insertions at

the origin and at infinity. Without the insertions this Wilson loop preserves half the

supersymmetries of the vacuum, and we will consider the local insertions to also be

1/2 BPS, ZJ , where Z = Φ1 + iΦ2 is a complex scalar field (if ZJ is at the origin the

charge has to be absorbed by Z̄J at infinity). Note that the insertions are not gauge

invariant, since they are not traced over, and transform in the adjoint representation

of the gauge group. The entire configuration is nonetheless gauge invariant, because

of the presence of the Wilson loop. This guarantees that in the string picture the

charge generated by the local operator is carried by the open string (or D-brane)

representing the Wilson loop, and not by another supergravity field.

Recall that the 1/2 BPS Wilson loop contains also a coupling to one of the scalars.

For the combined system to be 1/4 BPS, this scalar has to be orthogonal to Z and

Z̄, so we take it to be Φ3. Formally we can write the Wilson loop as

WZJ = TrP
[

ZJ(−∞)ei
R ∞
−∞(At(t,0)+Φ3(t,0))dtZ̄J(∞)ei

R −∞
∞ (At(t,π)+Φ3(t,π))dt

]

. (6.140)

The arguments of At and Φ3 are the time and the two points on S3 given by an angle

at 0 and π.
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String solution

This Wilson loop was studied in [230] as were some non-supersymmetric generaliza-

tions of it and they were related to a certain spin-chain system. There it was proven

that eq. (6.140), which was the pseudo-vacuum of the spin-chain system, is supersym-

metric. Also the string solution describing it at large J and large ’t Hooft coupling λ

was given. We review it here.

Take the following metric for AdS5 × S2 (the other directions on S5 do not play

any role and we do not write them explicitly)

ds2

L2
= − cosh2 ρ dt2 + dρ2 + sinh2 ρ

(

dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)
)

+ dθ2 + sin2 θdφ2 .

(6.141)

L is the radius of curvature related to the ’t Hooft coupling and the string tension

by L4 = λα′2. The Wilson loop should reach the boundary at χ = 0 and χ = π. At

those points it should approach θ = 0 on the S2, which is the direction corresponding

to Φ3. In the bulk the string should rotate around this sphere carrying the angular

momentum related to ZJ .

The solution to the string equations of motion which satisfies these conditions is

φ = t , sin θ =
1

cosh ρ
. (6.142)

There are two parts to the string: at χ = 0 and at χ = π. They are continuously

connected to each other beyond ρ = 0. For a full derivation of the solution see [230].

Some interesting issues arise when studying the analog system in Euclidean sig-

nature. Those were discussed in [232].
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Supersymmetry analysis

A precise counting of the supersymmetries preserved by the string solution (6.142)

was performed in [230]. Here we briefly review that computation.

The number of supersymmetries preserved by the string is equal to the number of

independent solutions to the equation Γǫ = ǫ. The κ-symmetry projector Γ is given

by

Γ =
1√− det g

∂tx
µ∂ρx

νγµγνK , (6.143)

where g is the induced metric on the world-sheet parameterized by t and ρ, K acts

by complex conjugation, and γµ = eaµΓa with Γa constant tangent space gamma-

matrices. The dependence of the Killing spinors ǫ on the relevant coordinates of the

metric (6.141) is

ǫ = e−
i
2
ρΓ⋆Γ1e−

i
2
tΓ⋆Γ0e−

i
2
θ Γ⋆Γ5e

1
2
φΓ56ǫ0 , (6.144)

where Γ⋆ = Γ0Γ1Γ2Γ3Γ4 is the product of all gamma-matrices in the AdS5 directions

and ǫ0 is any constant chiral complex 16-component spinor. The spinors ǫ solve the

Killing equation
(

∂µ +
1

4
ωabµ Γab +

i

2L
Γ⋆γµ

)

ǫ = 0 . (6.145)

Inserting the solution (6.142) into the expression (6.143) it is easy to see that Γ

does not depend on t. The only place where t appears is in the exponent of the Killing

spinors. Since the projection equation has to hold for all t and ρ we eliminate this

dependence by imposing the condition

Γ⋆Γ056ǫ0 = iǫ0 , (6.146)
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so that the Killing spinors become

ǫ = e−
i
2
ρΓ⋆Γ1e−

i
2
θ Γ⋆Γ5ǫ0 . (6.147)

After some manipulation the action of the projector can be written as

Γǫ = −e− i
2
ρΓ⋆Γ1e−

i
2
θ Γ⋆Γ5 Γ01Kǫ0 , (6.148)

so the projector equation is solved by all constant spinors satisfying

Γ01Kǫ0 = −ǫ0 . (6.149)

It is easy to verify that the two conditions (6.146) and (6.149) are consistent with

each-other, so there are eight linearly independent real solutions to this equation.

Thus the string solution preserves 1/4 of the supersymmetries.

D3-brane solution

We look now for the D3-brane solution associated to this Wilson loops with insertions.

The loop is in the time direction, as reviewed above, and preserves an SO(3)×SO(3)

symmetry, the first being part of the AdS5 isometry and the other coming from the

S5. It is convenient to use the metric (6.141) and fix a static gauge where t, ρ, ϑ and

ϕ are the world-volume coordinates on the D3-brane. The Ansatz is then

χ = χ(ρ) , θ = θ(ρ) , φ = t . (6.150)

The brane action consists of a Dirac-Born-Infeld (DBI) part and of a Wess-Zumino
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(WZ) term, which captures the coupling to the background R-R form

S = TD3

∫

e−Φ
√

− det(g + 2πα′F ) − TD3

∫

P [C4] , (6.151)

where TD3 = N
2π2L4 is the brane tension and P [C4] denotes the pullback of the 4-form

to the brane world-volume. The solution should include a non-zero electric field,

carrying k units of flux associated to the Wilson loop. Because of the symmetry of

the system, it will be in the direction Ftρ(ρ).

With the ansatz above the DBI action reads (in the following we absorb a factor

of 2πα′/L2 in the definition of Ftρ)

SDBI =
2N

π

∫

dt dρ sinh2 ρ sin2 χ
√

(cosh2 ρ− sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ ,

(6.152)

whereas the WZ term is given by

SWZ =
2N

π

∫

dt dρ sinh4 ρ sin2 χχ′ , (6.153)

and the relative sign between these two terms in the action is positive. In these

formulas the ′ denotes a derivative with respect to ρ.

It is rather complicated to solve the equations of motion coming from this action.

Instead of trying to do this, we write down the supersymmetry equations derived

from requiring κ-symmetry. These are first-order rather than second-order and can

be integrated easily.

The κ-symmetry projector associated with the D3-brane embedding is (see for
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example [233])

Γ = L−1
DBI

(

Γ(4) + L2FtρΓ(2)K
)

I , (6.154)

where K acts by complex conjugation, I by multiplication by −i, and

Γ(4) = ∂tx
µ∂ρx

ν∂ϑx
ξ∂ϕx

ζγµγνγξγζ = (γt + γφ)(γρ + χ′ γχ + θ′ γθ)γϑγϕ ,

Γ(2) = ∂ϑx
µ∂ϕx

νγµγν = γϑγϕ ,

(6.155)

with γµ = eaµΓa. Using the vielbeins

e0 = L cosh ρ dt , e1 = Ldρ , e2 = L sinh ρ dχ ,

e3 = L sinh ρ sinχ dϑ , e4 = L sinh ρ sinχ sinϑ dϕ ,

e5 = Ldθ , e6 = L sin θ dφ ,

(6.156)

and the Ansatz (6.150), the projectors Γ(4) and Γ(2) can be explicitly written as

Γ(4) = L2(cosh ρΓ0 + sin θΓ6)(Γ1 + sinh ρχ′ Γ2 + θ′ Γ5) Γ(2) ,

Γ(2) = L2 sinh2 ρ sin2 χ sin ϑΓ34 .

(6.157)

Adding the dependence on the other coordinates into eq. (6.144), the Killing spinors

for the metric (6.141) are

ǫ = e−
i
2
ρΓ⋆Γ1e−

i
2
tΓ⋆Γ0e

1
2
χΓ12e

1
2
ϑΓ23e

1
2
ϕΓ34e−

i
2
θ Γ⋆Γ5e

1
2
φΓ56ǫ0 . (6.158)

From the supersymmetry analysis in the string case, we know that the constant
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spinors ǫ0 satisfy the conditions (6.146) and (6.149)

Kǫ0 = −Γ01ǫ0 , Γ6ǫ0 = −iΓ12345ǫ0 . (6.159)

Plugging φ = t in the expression (6.158) and using the second constraint in the

equation above, the Killing spinors may be rewritten as

ǫ = e−
i
2
ρΓ⋆Γ1e−

i
2
θΓ⋆Γ5e

1
2
χΓ12Mǫ0 , (6.160)

where

M = e
1
2
ϑΓ23e

1
2
ϕΓ34 . (6.161)

The differential equations we are looking for will come from considering the projector

equation

Γǫ = ǫ . (6.162)

To simplify it, we move the matrix e−
i
2
ρΓ⋆Γ1e−

i
2
θ Γ⋆Γ5e

1
2
χΓ12 to the left of the projector

Γ, using some gamma-matrix algebra and applying the constraints (6.159) (note that

ǫ0 and Mǫ0 satisfy the same constraints). In this way we get a set of 8 differential

equations in θ, χ and Ftρ (on the left we indicate the gamma-matrix structure the
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equations come from)

Γ0345 : 0 = Ftρ sinh ρ cosχ sin θ − θ′(cosh2 ρ− sin2 θ)

Γ⋆Γ5 : 0 = Ftρ sinh ρ sinχ sin θ − χ′ sinh2 ρ sin θ cos θ

Γ0234 : 0 = (cosh2 ρ− sin2 θ) sinχ + χ′ cosh ρ sinh ρ cosχ cos2 θ

Γ12 : 0 = Ftρ sinh ρ cosχ cos θ + θ′ sin θ cos θ + cosh ρ sinh ρ

Γ15 : 0 = χ′ cosh ρ sinh ρ cosχ sin θ cos θ − θ′ cosh ρ sinh ρ sinχ+ sinχ sin θ cos θ

Γ25 : 0 = Ftρ cosh ρ sin θ + cosχ sin θ cos θ − χ′ cosh ρ sinh ρ sinχ sin θ cos θ

−θ′ cosh ρ sinh ρ cosχ

Γ0134 : 0 = Ftρ cosh ρ cos θ + (cosh2 ρ− sin2 θ) cosχ− χ′ cosh ρ sinh ρ sinχ cos2 θ

1 : 1 = −L4L−1
DBI sinh2 ρ sin2 χ sinϑ

(

Ftρ sinh ρ sinχ cos θ + χ′ sinh2 ρ sin2 θ
)

.

(6.163)

One can solve for θ′, χ′ and Ftρ using for instance the first three equations. Once these

are solved, the remaining five are automatically satisfied. The first three equations

give

θ′ = − tan θ tanh ρ ,

χ′ cotχ = − cosh2 ρ− sin2 θ

cosh ρ sinh ρ cos2 θ
,

Ftρ = − cosh2 ρ− sin2 θ

cosh ρ cos θ cosχ
.

(6.164)

The solution to the first equation is

sin θ =
C1

cosh ρ
. (6.165)

The integration constant C1 is related (in a complicated way) to the amount of angular

momentum carried by the brane. After plugging the solution for θ into the expressions
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for χ′ and Ftρ, we find

χ′ cotχ = − cosh4 ρ− C2
1

sinh ρ cosh ρ(cosh2 ρ− C2
1)
, (6.166)

which is solved by

sinχ = C2
coth ρ

√

cosh2 ρ− C2
1

, (6.167)

with C2 a second integration constant. Finally the electric field is

Ftρ = − cosh4 ρ− C2
1

cosh2 ρ
√

cosh2 ρ− C2
1 − C2

2 coth2 ρ
. (6.168)

Plugging the BPS equations (6.164) into the DBI action (6.152), the square root

simplifies to

√

(cosh2 ρ− sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ = (cosh2 ρ− sin2 θ)

tanh ρ tanχ

cos2 θ
.

(6.169)

It is then straightforward to check that the solutions (6.165), (6.167) and (6.168)

satisfy the brane equations of motion stemming from eqs. (6.152) and (6.153).

Conserved charges

The solution has two integration constants C1 and C2 which are related to the two

conserved charges carried by the brane: the rank of the symmetric representation (or

the number of windings of the Wilson loop) k, and the angular momentum J around

the S2 in the S5.

The first charge k is the conjugate momentum to the gauge field after integrating
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over ϑ and ϕ

k = Π =
2πα′

L2
TD3

∫

dϑ dϕ
δL
δFtρ

=
4N√
λ
C2 . (6.170)

Then

C2 =
k
√
λ

4N
≡ κ . (6.171)

If we take κ→ 0 we recover the string solution (6.142). Notice that the electric field

Ftρ does not vanish in this limit.

The other conserved charge carried by the brane is the angular momentum J

J = 2TD3

∫

dϑ dϕ dρ
δL
δφ̇

= −4N

π

∫

dρ
sinh2 ρ sin2 χ sin2 θ (1 + sinh2 ρχ′2 + θ′2)

√

(cosh2 ρ− sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ

.
(6.172)

Here the range of the ρ integral is [arccoshC1, ∞), which like in the case of the string,

covers only half the world-volume, with χ < π/2. A multiplicative factor of 2 was

included to account for the other branch with χ > π/2.

Plugging the explicit solutions in this expression it is easy to see that J → 0 when

C1 → 0. In this limit the brane does not rotate along the S2 and the solution reduces

to

sin θ = 0 ,

sinχ sinh ρ = κ ,

Ftρ = −cosh ρ

cosχ
,

(6.173)

which is, after a conformal transformation, the same as the 1/2 BPS brane of [80].
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The energy gets contributions from the DBI action and the Wess-Zumino term

EDBI = 2TD3

∫

dϑ dϕ dρ
δLDBI
δṫ

=
4N

π

∫

dρ
sinh2 ρ sin2 χ cosh2 ρ (1 + sinh2 ρχ′2 + θ′2)

√

(cosh2 ρ− sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ

,

EWZ = 2TD3

∫

dϑ dϕ dρ
δLWZ

δṫ
=

4N

π

∫

dρ sinh4 ρ sin2 χχ′ .

(6.174)

In addition one has to add a total derivative term, which serves as a Legendre trans-

form from the gauge field coordinate to the conjugate momentum Π, which is the

correct canonical variable in this problem [80]. This is

EL.T. =
2L2

2πα′

∫

dρΠFtρ = −4N

π
κ

∫

dρ
cosh2 ρ− sin2 θ

cosh ρ cos θ cosχ
. (6.175)

Plugging the BPS equations in the formulas (6.172), (6.174) and (6.175) above,

one can see that

EDBI +EWZ +EL.T. + J =
4N

π

∫

dρ
cosh2 ρ− sin2 θ

cosh ρ cosχ

[

sinh ρ sinχ− κ

cos θ

]

. (6.176)

Using the explicit solution it is easy to check that the term in square brackets vanishes,

so we get E = −J = |J |.

6.3.2 Wilson loop wrapping a circle on S5

Setup

In this section we shall look at a family of circular Wilson loops that couple to three

of the six scalars of the N = 4 multiplet. These operators were presented in [231]
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and studied in detail in [223]. As for the loop in the previous section, the S5 part

of the gravity calculation will reduce to an S2 subspace. The difference will be that

here the couplings to the scalars are smeared around the loop and not localized at

two points.

While the Wilson loop follows a curve on the boundary of AdS5 parameterized by

x1 = R cos s , x2 = R sin s , (6.177)

the scalar to which it couples is given by the linear combination

Φ(s) = Φ3 cos θ0 + sin θ0(Φ1 cos s+ Φ2 sin s) , (6.178)

with an arbitrary fixed parameter θ0. The loop may be written (in Euclidean signa-

ture) as

Wθ0 = TrP exp

[
∮

(iAµ(s)ẋ
µ + |ẋ|Φ(s)) ds

]

. (6.179)

In the special case of θ0 = 0 this is the usual 1/2 BPS circle, while for θ0 = π/2 this

is a special case of the supersymmetric Wilson loops constructed by Zarembo [68].

It was shown in [223] that up to order (g2
YMN)2 all interacting graphs in the Feyn-

man gauge cancel and the only contribution comes from ladder diagrams where the

propagator is a constant proportional to cos2 θ0. This naturally led to the conjecture

that the expectation value of this Wilson loop is given by the same matrix model as

the 1/2 BPS one [29][30] with the replacement of the coupling λ by λ′ = λ cos2 θ0.

This gives the prediction

〈Wθ0〉 =
1

N
L1
N−1

(

− λ′

4N

)

exp

[

λ′

8N

]

, (6.180)
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where L1
N−1 is a Laguerre polynomial. In [223] only the planar limit of this expression

〈Wθ0,planar〉 =
2√
λ′
I1

(√
λ′
)

, (6.181)

was considered (I1 is a modified Bessel function). String theory provided exact agree-

ment with the strong coupling expansion of this expression, as we shall review shortly.

Furthermore, the same rescaling was observed in the computation of correlation func-

tions between this 1/4 BPS loop and chiral primary operators [234].

In the present calculation we want to capture a different limit, beyond the planar

one. We consider a multiply wrapped Wilson loop, or a loop in the k-th symmetric

representation,16 keeping the quantity κ′ ≡ k
√
λ′/4N fixed while taking both N and

λ to infinity. This is the limit that was discussed in [80][81][89][90] for the 1/2 BPS

loop, and in this limit the matrix model reduces to

〈Wκ′〉 = exp
[

2N
(

κ′
√

1 + κ′2 + arcsinhκ′
)]

. (6.182)

There is also a subleading contribution, that we did not include in the formula above,

obtained by replacing κ′ → −κ′. The appearance of this term can be explained by

the fact that perturbation theory should be invariant under λ′ → e2iπλ′. At strong

coupling the expectation value of the Wilson loop depends on
√
λ′, so that an extra

term with κ′ → −κ′ is needed. In the planar approximation this subleading term

reduces to e−
√
λ′, which appears in the large λ′ expansion of the Bessel function in

eq. (6.181).

Later in this section we will be able to construct a D3-brane which is dual to the

16It has been proven in [89][90] that in the matrix model the multiply wound loop W (k) and the
totally symmetric operator WSk

coincide in the strong coupling regime.
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multiply wrapped 1/4 BPS Wilson loop and we will recover eq. (6.182) from super-

gravity. This computation will also produce the subleading contribution discussed

above, which will correspond to an unstable D3-brane solution.

String solution

To write the relevant string solutions in the dual supergravity picture we use the

following metric on AdS5 × S2 (as in the previous example we drop the directions on

S5 which do not play a role here)

ds2

L2
= −dχ2 + cos2 χ(dρ2 + sinh2 ρ dψ2) + sin2 χ(dσ2 + sinh2 σ dϕ2) + dθ2 + sin2 θdφ2 .

(6.183)

This metric has Lorentzian signature, which is somewhat more natural for the super-

symmetry analysis, but later we will also use the Euclidean version obtained by Wick

rotating χ→ iu and σ → iϑ

ds2

L2
= du2 + cosh2 u(dρ2 + sinh2 ρ dψ2) + sinh2 u(dϑ2 + sin2 ϑ dϕ2) + dθ2 + sin2 θdφ2 .

(6.184)

Note that in the Lorentzian case the χ coordinate foliates AdS5 by H2 × H2 sur-

faces (H2 is the two-dimensional hyperbolic space, or Euclidean AdS2), while in the

Euclidean case u foliates it into H2 × S2 surfaces.

The string describing the Wilson loop (6.179) will be at χ = 0 (or u = 0) and

should end at ρ→ ∞ along a circle parameterized by ψ. As we go along this circle we

should also move along a circle on S2, the parallel at angle θ0 spanned by the angle

φ. We take the ansatz where along the entire world-sheet we equate ψ and φ. As

mentioned, the asymptotic value of θ should be θ0. In [223] two solutions with these
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boundary conditions were found

φ = ψ , sinh ρ(σ) =
1

sinh σ
, sin θ =

1

cosh(σ0 ± σ)
. (6.185)

Here σ is a world-sheet coordinate and σ0 is related to the boundary value of θ by

sin θ0 =
1

cosh σ0
. (6.186)

One can eliminate σ from the previous equations to find the relation

cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0 = ± sin θ0. (6.187)

The two sign choices correspond to surfaces extending over the north and south pole

of S2 respectively. The classical action for the two cases is equal to

S = ∓ cos θ0
√
λ = ∓

√
λ′ . (6.188)

The dominant contribution has negative action and corresponds to the surface ex-

tended over less than half a sphere. That solution is stable, while the one extending

over the other pole has positive action and three unstable modes.

These two solutions were interpreted in [223] as corresponding to the two saddle

points in the asymptotic expansion of the Bessel function (6.181)

〈Wθ0,planar〉 −→
λ′→∞

√
2√

πλ′3/4

[

e
√
λ′
(

1 + O(1/
√
λ′)
)

− ie−
√
λ′
(

1 + O(1/
√
λ′)
)]

.

(6.189)

Furthermore, it was shown there that considering the limit of large λ, while keeping
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small λ′ and integrating over the three modes that are massless for λ′ = 0, yields an

identical result to the full planar expression from the matrix model (6.181), including

all α′ corrections.

The counting of the supersymmetries for the solutions (6.185) goes very similarly

to the counting presented in the previous section for the loop with insertions. The

dependence of the Killing spinors on the relevant components of the metric (6.183)

is17

ǫ = e−
i
2
ρΓ⋆Γ1e

1
2
ψ Γ12e−

i
2
θ Γ⋆Γ5e

1
2
φΓ56ǫ0 , (6.190)

while the constraints analogous to eqs. (6.146) and (6.149) are now

(Γ12 + Γ56)ǫ0 = 0 , (6.191)

and

Kǫ0 = −
(

cos θ0 Γ13 + sin θ0Γ16

)

ǫ0 . (6.192)

The two conditions (6.191) and (6.192) are compatible and therefore the two string

solutions (6.185) preserve one quarter of the supersymmetries, as does the operator

Wθ0 in the dual gauge theory.

D3-brane solution

We now move on to the construction of the 1/4 BPS D3-brane which describes the

circular Wilson loop in the k-th symmetric representation Wκ′ . The supersymmetry

analysis will be presented in Lorentzian signature (6.183) to avoid defining the Killing

spinors in Euclidean space. The resulting brane has extra factors of i in the projector

17This is presented in greater detail in the following, see eq. (6.194), together with the vielbeins
(6.193).
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equations and an over-critical electric field. Moreover it does not seem to correspond

to a Wilson loop operator in the gauge theory, but to a higher-dimensional observable.

Still we find this way of performing the calculation useful. After presenting the

solution we will switch to Euclidean signature (6.184), where the solution will not

suffer from those problems and will be perfectly well defined.

We parameterize the brane world-volume by {ρ, ψ, σ, ϕ}. The 1/2 BPS brane

has constant χ = arcsin κ and θ = 0. A natural ansatz for the 1/4 BPS brane is

then to take χ = χ(ρ), θ = θ(ρ) and identify ψ with φ. This is consistent with the

symmetries of the loop. The asymptotic value of θ at ρ = ∞ should be θ0. To carry

the k units of flux represented by the Wilson loop operator, we switch on an electric

field Fρψ(ρ).

Note that the dependence of θ and χ on ρ explicitly breaks the AdS2 isometry.

This fact makes it difficult to guess a simple ansatz for the solution to the equations

of motion of the brane. As in the previous example we will then proceed by looking

at the first-order supersymmetry equations which follow from requiring κ-symmetry

on the brane world-volume.

We begin by constructing the Killing spinors associated to the AdS5 × S2 metric

(6.183) with Lorentzian signature. The vielbeins relevant for the D3-brane solution

are

e0 = Ldχ , e1 = L cosχ dρ , e2 = L cosχ sinh ρ dψ ,

e3 = L sinχ dσ , e4 = L sinχ sinh σ dϕ ,

e5 = Ldθ , e6 = L sin θ dφ .

(6.193)

Using the same notation of section 6.3.1, the Killing spinors may then be written as

219



(adding the dependence on ϑ and ϕ to eq. (6.190))

ǫ = e−
i
2
χΓ∗Γ0e−

i
2
ρΓ∗Γ1e

1
2
ψΓ12e−

1
2
σΓ03e

1
2
ϕΓ34e−

i
2
θΓ⋆Γ5e

1
2
φΓ56ǫ0 . (6.194)

The DBI Lagrangian reads (with the sign in the square root appropriate for a

brane with Euclidean world-volume and with Fρψ containing a factor of 2πα′/L2)

LDBI = L4 sin2 χ sinh σ
√

(−χ′2 + θ′2 + cos2 χ)(cos2 χ sinh2 ρ+ sin2 θ) + F 2
ρψ ,

(6.195)

and the projector associated with the D3-brane is

Γ = L−1
DBI

(

iΓ(4) − L2FρψΓ(2)K
)

I , (6.196)

where, again, K acts by complex conjugation, I by multiplication by −i and

Γ(4) = (γρ + χ′ γχ + θ′γθ)(γψ + γφ) Γ(2)

= L2(cosχΓ1 + χ′Γ0 + θ′Γ5)(cosχ sinh ρΓ2 + sin θΓ6) Γ(2)

Γ(2) = γσγϕ = L2 sin2 χ sinh σ Γ34 .

(6.197)

Note that the projector Γ does not depend on ψ. As for the string case we can

eliminate the dependence on ψ in the projection equation by imposing

(Γ12 + Γ56)ǫ0 = 0 , (6.198)

and then we impose also the condition

Kǫ0 = −(cos θ0Γ12 + sin θ0Γ16)ǫ0 , (6.199)

220



which both follow from the analysis of the supersymmetries of the string (6.192). The

brane solution will then preserve the same quarter of supersymmetries as the string

and as the gauge theory observable.

Because of the isometry of the system the factor of

M ≡ e−
1
2
σΓ03e

1
2
ϕΓ34 (6.200)

commutes with those two constraints, so ǫ0 and Mǫ0 satisfy the same conditions.

Using some gamma-matrix algebra and applying the constraints above, we move

the matrix e−
i
2
χΓ⋆Γ0e−

i
2
ρΓ⋆Γ1e−

i
2
θ Γ⋆Γ5 to the left of Γ in the projection equation. In

this way one gets a set of 8 first order differential equations for θ, χ and Fρψ (indicating
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which gamma-matrix combination leads to them)

Γ0234 : 0 = iFρψ sinχ sin θ sin θ0 + χ′ sinh ρ(cos2 χ− sin2 θ) + cosh ρ sinχ cosχ sin2 θ

Γ⋆Γ5 : 0 = iFρψ sinχ sin θ cos θ0 − χ′ cosh ρ sin θ cos θ + sinh ρ sinχ cosχ sin θ cos θ

Γ1234 : 0 = iFρψ sinh ρ cosχ sin θ sin θ0 + iFρψ cosh ρ cosχ cos θ cos θ0−

−χ′ sinh2 ρ sinχ cosχ− θ′ sin θ cos θ + sinh ρ cosh ρ cos2 χ

Γ2345 : 0 = iFρψ sinh ρ cosχ sin θ cos θ0 − iFρψ cosh ρ cosχ cos θ sin θ0−

−θ′ sinh ρ cosh ρ cos2 χ− cos2 χ sin θ cos θ

Γ01 : 0 = iFρψ sinh ρ cosχ cos θ cos θ0 + iFρψ cosh ρ cosχ sin θ sin θ0−

−χ′ sinh ρ cosh ρ sinχ cosχ+ cos2 χ(sinh2 ρ+ sin2 θ)

Γ05 : 0 = iFρψ sinh ρ cosχ cos θ sin θ0 − iFρψ cosh ρ cosχ sin θ cos θ0

+θ′(sinh2 ρ cos2 χ+ sin2 θ)

Γ15 : 0 = iFρψ sinχ cos θ sin θ0 − χ′ sinh ρ sin θ cos θ+

+θ′ sinh ρ sinχ cosχ+ cosh ρ sinχ cosχ sin θ cos θ

1 : 1 = −iL4L−1
DBI sin2 χ sinh σ

(

iFρψ sinχ cos θ cos θ0 + χ′ cosh ρ sin2 θ

− sinh ρ sinχ cosχ sin2 θ
)

.

(6.201)

The 1/2 BPS solution

χ′ = 0 , Fρψ = i cosχ sinh ρ (6.202)

can be recovered by setting θ = θ0 = 0 in eq. (6.201).

The equations (6.201) are all consistent with each other. One can solve any three of

them, the remaining ones being automatically satisfied. The first three, for example,
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lead to the equations

θ′ = A cos2 χ cos θ , χ′ = A sinχ cosχ sin θ , (6.203)

Fρψ = −icosχ cos θ

cos θ0
(A cosh ρ sin θ − sinh ρ) , (6.204)

where

A =
sinh ρ cos θ sin θ0 − cosh ρ sin θ cos θ0

(cos2 χ− sin2 θ) sinh ρ cos θ0 + cosh ρ sin θ cos θ sin θ0
. (6.205)

Taking the ratio of θ′ and χ′ yields

sinχ cos θ = C , (6.206)

where C is an integration constant. Inserting this solution into the expression for θ′

and solving the resulting differential equation gives

cosχ (cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0) = D . (6.207)

On the AdS5 side of the ansatz at ρ = 0 the circle parameterized by ψ shrinks to

a point. For the solution not to be singular at that point, the same has to happen

also on the S5 side, since φ = ψ. The solution will be regular at ρ = 0 only if at that

point sin θ = 0, which then gives D in terms of θ0 and C as

D = ± sin θ0
√

1 − C2 , (6.208)

where the +, − signs correspond respectively to taking either θ = 0 or θ = π at
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ρ = 0, or, in other words, to wrapping the brane around the northern or the southern

hemisphere of S2. Notice that in the string limit (χ → 0, or C → 0) the expression

(6.207) reduces to the string solution (6.187).

These solutions in Lorentzian space are unphysical. The world-volume of the

brane is Euclidean, but the electric field is over-critical, leading to an imaginary

action. Furthermore, the branes do not end along curves on the boundary, but along

higher-dimensional surfaces, and do not provide a holographic description of Wilson

loops.

Therefore we analytically continue those solutions to Euclidean signature, where

the resulting branes will provide a good holographic dual of Wilson loop operators.

We take the Wick rotation

χ = i u , σ = i ϑ . (6.209)

In these coordinates, the Euclidean AdS5 is written as an H2 × S2 fibration as in eq.

(6.184). The solution (6.206) and (6.207) in Lorentzian signature now becomes

sinh u cos θ = c , (6.210)

and

cosh u (cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0) = d . (6.211)

Similarly to the Lorentzian case the solution is smooth at ρ = 0 only for

d = ± sin θ0
√

1 + c2 . (6.212)
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The implicit equation (6.211) is solved for ρ as a function θ by

sinh ρ = sign(θ0 − θ)

sin θ sin θ0

(√
1 + c2 cos θ0 + cos θ

√

1 + c2 cos2 θ0
cos2 θ

)

cosh u(cos2 θ − cos2 θ0)

cosh ρ = sign(θ0 − θ)

√
1 + c2 cos θ sin2 θ0 + sin2 θ cos θ0

√

1 + c2 cos2 θ0
cos2 θ

cosh u(cos2 θ − cos2 θ0)
.

(6.213)

The sign function allows us to write in a single expression the two solutions corre-

sponding to a brane wrapping over the north or south poles of the S2. We will assume,

without loss of generality, that θ0 ≤ π/2.

Given that the solution may be written explicitly as a function of θ, it makes sense

to use it, instead of ρ, as one of the world-volume coordinate. Thus the world-volume

is parameterized by {θ, ψ, ϑ, ϕ} and ρ = ρ(θ) and u = u(θ) are given by the solutions

above. This parametrization will be singular in the 1/2 BPS limit, where θ = 0, but

that solution is very simple, with arbitrary ρ and constant u = arcsinh c.

The DBI action in this signature reads

SDBI = 4N

∫

dθ sinh2 u
√

(cosh2 u ρ′2 + u′2 + 1)(cosh2 u sinh2 ρ+ sin2 θ) + F 2
θψ ,

(6.214)

while the Wess-Zumino term can be written as

SWZ = 4N

∫

dθ ρ′ sinh ρ

(

u

2
− 1

2
sinh u cosh u− sinh3 u cosh u

)

. (6.215)

To obtain these expressions we have integrated over ψ and S2. Now the ′ stands for

the derivative with respect to θ. We have checked that the solutions found above
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satisfy the equations of motion coming from eqs. (6.214) and (6.215).

In figure 6.1 we have plotted ρ and u as functions of θ for a D3-brane solution

and for comparison also ρ for the analog string solution (in which case u = 0). There

are two solution, both reaching infinite ρ at θ0 (for the example pictured we took the

values θ0 = π/3 and κ = 1). The stable solution then goes to ρ = 0 at θ = 0, while

the unstable solution goes to ρ = 0 at θ = π.

Note that in the case of the unstable D3-brane solution the coordinate u diverges

at the equator θ = π/2, as can also be seen from eq. (6.210). This means that the

D3-brane reaches the boundary of AdS at that point, and gets reflected back into

the interior (after changing the sign of u). One could choose to truncate the surface

there and consider either half of the solution. But in the dual gauge theory that will

not correspond to a Wilson loop vacuum expectation value. Rather, the D3-brane

extending from θ0 to θ = π/2 will be the correlator between the Wilson loop and a

two-dimensional surface operator located where the brane reaches the boundary (the

surface spanned by {ϑ, ϕ}, the radius of the ψ circle shrinks to a point there). The

other part of the solution, from θ = π/2 to θ = π is the vacuum expectation value of

the surface operator itself, with no Wilson loop insertion.

As usual the BPS equations simplify the square root in the DBI action, which in

this case reduces to

SDBI = 4N

∫

dθ

∣

∣

∣

∣

Fθψ
cos θ0
cos θ

∣

∣

∣

∣

sinh3 u . (6.216)

This fact can be used to check the conservation of Π, the momentum conjugate to

the gauge field Aψ

Π = −i 2πα′

L2
TD3

∫

dϑ dϕ
δLDBI
δFθψ

= ±4N√
λ

∣

∣

∣

∣

c

cos θ0

∣

∣

∣

∣

≡ ±k, (6.217)
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Figure 6.1: A depiction of string and D3-brane solutions. The solid line gives ρ as a
function of θ for the string with boundary value of θ = π/3. The D3-brane solution is
represented by the dashed and dotted lines which are respectively ρ and u as functions
of θ (for κ = 1). In both cases there are two solutions, a stable one with 0 ≤ θ ≤ θ0
(where ρ for the string and D3-brane are nearly indistinguishable) and an unstable
one, with θ ≤ θ0 ≤ π. The unstable D3-brane solution reaches the boundary of AdS
not only at θ0, but also at θ = π/2, where u diverges, but then it turns back and
closes smoothly on itself.
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where the two signs correspond to the two solutions. This implies that

|c| = κ| cos θ0|. (6.218)

To compute the full on-shell action we have to supplement the DBI and WZ bulk

contributions with total derivatives and boundary terms associated to the electric

field Fθψ and the scalar ρ(θ). These are given respectively by18

SL.T. = −i L2

2πα′

∫

dθ dψΠFθψ , (6.219)

and

−Pρ
∣

∣

∣

θ→θ0
= −TD3

∫

dψ dϑ dϕ
δ(LDBI + LWZ)

δρ′

∣

∣

∣

∣

θ→θ0

. (6.220)

where Pρ is the momentum conjugate to ρ.

The boundary term for ρ can be motivated as follows. Let us consider the AdS5

metric in the Poincaré patch

ds2 =
1

z2
(dz2 + dr2

1 + r2
1dϕ

2
1 + dr2

2 + r2
2dϕ

2
2) . (6.221)

The transformation relating z to our coordinates is

z =
1

cosh u cosh ρ− cos ϑ sinh u
, (6.222)

so that the ρ→ ∞ region corresponds to z = 0. In the Poincaré patch the boundary

term associated to z has the form of a Legendre transform evaluated at the boundary

18For a general discussion on the role of boundary terms see [73][80].

228



of AdS5 [73][80]

−
∫

z pz

∣

∣

∣

z∼0
. (6.223)

Using eq. (6.222) it is immediate to verify that in proximity of the boundary z pz ∼ pρ.

This justifies the form of the boundary term for ρ.

Now we can evaluate the on-shell action. The bulk and boundary contributions

diverge as we approach the boundary of AdS5, i.e. in the limit θ → θ0. We can

regularize these divergences by introducing a cut-off at θ0 − ǫ. This leads to the

following expression for the regularized DBI action

SDBI = TD3

∫ θ0−ǫ

0

dθ

∫

dψ dϑ dϕLDBI = 4Nκ3 sin θ0

√
1 + c2

ǫ

+2Nκ3 sin θ0 tan θ0√
1 + c2

−Nκ sec2 θ0(2 + 8c2 − 4c2 cos2 θ0)
√

1 + c2 cos2 θ0

+2Nκ sec3 θ0
√

1 + c2
(

1 + 3c2 − 6c2 cos2 θ0 + 2c2 cos4 θ0
)

−2N sec4 θ0
(

1 − 4c2 sin2 θ0 − 8c4 sin2 θ0
)

log

(

c+
√

1 + c2

c cos θ0 +
√

1 + c2 cos2 θ0

)

+8Nκ3 sin θ0 tan θ0
√

1 + c2
(

2 log ǫ− 2 log(cos θ0 sin θ0) − log
(

1 + c2
)

+ log
(

cos2 θ0
(

1 + 2c2
)

+ 2 cos θ0
√

1 + c2
√

1 + c2 cos2 θ0 + 1
))

. (6.224)

The Legendre transform of the gauge field is written as the integral over the total

derivative

SL.T. = −i L2

2πα′

∫ θ0−ǫ

0

dθ

∫

dψΠFθψ

= 4Nκ sin θ0

√
1 + c2

ǫ
− 2Nc

3 + κ2 + 2c2√
1 + c2

, (6.225)
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and the boundary term for ρ is

−Pρ
∣

∣

∣

θ0−ǫ
= −2N sin θ0(κ

√
1 + κ2 + arcsinh κ)

√
1 + c2

ǫ
√

1 + κ2

−4N sec θ0(κ
√

1 + κ2 + arcsinhκ)
2κ2 − (1 + 4κ2 − κ4) cos2 θ0 − 2c4

4(1 + κ2)3/2
√

1 + c2
.

(6.226)

Finally the regularized Wess-Zumino term turns out to be

SWZ = −2N
(

c
√

1 + c2 + arcsinh c
)

− SDBI − SL.T. + Pρ . (6.227)

Those expressions are much more complicated than the 1/2 BPS case, where those

three terms are

SDBI = 4N

∫

dρ sinh ρ cosh u sinh3 u ,

SWZ = 4N

∫

dρ sinh ρ

(

u

2
− 1

2
sinh u coshu− sinh3 u coshu

)

, (6.228)

SL.T. = 4N

∫

dρ sinh ρ cosh u .

The boundary term for ρ just removes the divergence from the upper limit of ρ

integration, giving −1 from the lower limit. Summing up all the contributions and

using sinh u = κ gives the full on-shell action [80]

S = −2N
(

κ
√

1 + κ2 + arcsinhκ
)

. (6.229)

While the regularized expressions for the 1/4 BPS loop are much more compli-

cated, the sum of the bulk and boundary terms is exactly the same with the replace-
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ment of κ by c

Stotal = −2N
(

c
√

1 + c2 + arcsinh c
)

. (6.230)

Recall that c is related to the number of units of flux carried by the brane, or the

dimension of the representation of the Wilson loop by eq. (6.218)

c = κ′ =
k cos θ0

√
λ

4N
. (6.231)

Therefore this stable solution will contribute to the expectation value of the 1/4 BPS

Wilson loop at strong coupling

〈Wκ′〉 = exp
[

2N
(

κ′
√

1 + κ′2 + arcsinhκ′
)]

. (6.232)

This is the same result as can be derived from the matrix model observable (either

the multiply wrapped loop [80] or the symmetric one [89][90]) in this limit. This

serves as a confirmation that the matrix model correctly captures the 1/4 BPS loop

including all 1/N corrections at large N and large λ.

An analogous computation can be done for the unstable branch, where the range

of integration for the coordinate θ is [θ0 + ǫ, π] and Pρ is evaluated at θ0 + ǫ. The

final result is exactly as above, except for the overall sign

S
(unstable)
total = 2N

(

κ′
√

1 + κ′2 + arcsinh κ′
)

. (6.233)

As in the case of the string solution reviewed before, this should correspond to an

exponentially small correction to the expectation value of the Wilson loop when doing

the asymptotic expansion at large λ.
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In addition to the 1/2 BPS limit, with θ0 = 0, there is another interesting lim-

iting case, of θ0 = π/2 studied by Zarembo [68]. In that case the two D3-brane

solutions, whose actions always have the opposite signs, are degenerate. Both have

vanishing action, and in fact there are more than two solutions, rather a whole family

parameterized by an S3. But, unfortunately, looking at the solutions at this limit we

find that they do not provide a good description for the Wilson loop. If we consider

finite κ, then from eq. (6.218), the constant c vanishes and by eq. (6.210), also

u = 0. Therefore the D3-brane shrinks to a two-dimensional surface and therefore

the higher-derivative corrections to the DBI action cannot be ignored.

If instead we keep c finite in that limit, then κ will diverge, leading to a smooth

D3-brane solution. But now as θ goes to θ0 both ρ and u diverge, meaning that the

brane ends along a 3-dimensional surface on the boundary, rather than the Wilson

loop.

6.3.3 Discussion

We have presented some solutions for D3-branes in AdS5 × S5, which are dual to

certain 1/4 BPS Wilson loop operators in N = 4 supersymmetric Yang-Mills theory.

The first example was a combined system of a loop with two local insertions made

from complex scalar fields. Without the insertions the loop itself would have been

1/2 BPS and the trace of the local insertions is also 1/2 BPS, while the combined

system preserves 1/4 of the supersymmetries. The second system was a family of

Wilson loops with couplings to three of the scalars in a way that also preserves eight

supercharges.

It is by now a standard feature of the AdS/CFT correspondence that very long
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operators in the gauge theory map to “giant” D-brane objects rather than to funda-

mental strings or supergravity modes. In our case the D3-branes should describe the

Wilson loops in a high-dimensional symmetric representation, where the rank of the

representation k is of order N . In the example of the loop with insertions we were

able to calculate the energy and angular momentum and they agreed with each other,

as would be expected, but there was no special feature arising from the fact that the

loop is in a certain representation.

In the second example we were able to compare the result of the AdS calculation

to a matrix model conjectured to describe those 1/4 BPS loops [29][30][223]. The

value of those loops at large N and large λ in a symmetric representation is known

(and coincides with the single-trace multiply-wrapped loop). We found that the clas-

sical action for the D3-brane correctly reproduces the expected result, which includes

an infinite series of 1/N corrections to the planar string expression. Furthermore, we

have found two solutions with the same boundary conditions, in exact analogy with

the strings describing the loop in the fundamental representation. The second solu-

tion, which contributes an exponentially small correction to the Wilson loop in the

supergravity limit is the brane analog of a world-sheet instanton. Such contributions

are expected, since the string expansion is asymptotic in 1/
√
λ.

The geometry of this second D3-brane solution is very interesting. Starting from

the boundary of AdS, where it originates along the Wilson loop, it moves into the

bulk, turns back, goes again to the boundary, gets reflected back into the interior,

and closes off smoothly on itself. If we chose not to continue the solution, it would

end on a two-dimensional surface on the boundary. So this part of the solution would

describe the correlator of a Wilson loop and a surface operator which are non-trivially

linked. It would be very interesting to understand further the nature of this surface
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operator. The connection between Wilson loops and surface operators may not be

so surprising given that they may both be described by branes in the bulk (see e.g.

[235][88][236]).

As discussed at the end of the last section, one would like also to consider a special

limit of these loops, when θ0 = π/2. This limit is particularly interesting because of

a comment made at the end of [223], where it was noticed that one may take λ large

while keeping λ′ = λ cos θ0 small, in a way similar to the BMN limit [46]. When

considering the string solution in that limit, the mass of the string modes becomes

much larger than the mass of the three broken zero modes (those parameterizing

the S3 mentioned above). Ignoring all the stringy modes and integrating only over

those three leads to the full result of the planar matrix model, including all α′ (or

1/
√
λ′) corrections. It would be extremely interesting if we were able to repeat the

calculation here and find the exact expression including all 1/N and 1/
√
λ′ corrections.

Recall that those corrections would not be the same for the loop in the symmetric

representation and for the multiply-wound loop. So this calculation would be a very

good check of the recent identification of the D3-brane with the loop in the symmetric

representation [88]. Unfortunately, as explained before, in this limit the D3-brane

degenerates and does not provide a good description of those Wilson loops.

The loops studied in this section are not the most general 1/4 BPS Wilson loops,

all our examples had a circular geometry, which is not required. Many other loops were

described in [68], and there are probably even more. The string solutions describing

those loops were studied by Dymarsky et al. [222], and perhaps there is a general

classification of the relevant branes along the lines of [237].

After studying the probe brane in the AdS5 × S5 background it is natural to

consider the back-reaction of the brane on the geometry. This was pursued in the 1/2
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BPS case in [94] and [95], where all the relevant metrics could be related to Young-

tableaux, thus giving a correspondence between the representations of the Wilson

loop and the associated metrics. It would be interesting to try to find the metrics

in this case too, though this system has far less symmetry making it a much harder

problem.

Finally, one can go further to a system which is only 1/8 BPS, by looking at the

correlators of those Wilson loops with chiral primary local operators. Amazingly, in

the gauge theory those also seem to be captured fully by ladder diagrams and may

be reduced to some matrix model [234]. In the case of the 1/2 BPS loop this was

checked in AdS using a string [227][31] and D-branes [4], as reported is section 6.2.

For the 1/4 BPS loop this was done with a string in [234] and would be interesting

to repeat this calculation with D3-branes.
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Part III

Studies on twistor string theory

236



Chapter 7

Fermionic orbifold of the twistor

string

7.1 Introduction

In this chapter of the dissertation we address the problem of constructing twistor

theories with reduced supersymmetry. In fact, surprising and elegant as the duality

presented in chapter 3 undoubtedly is, it has two obvious shortcomings. The first

one is that in its original formulation it applies only to maximally supersymmetric

gauge theories.1 The second one is that superconformal invariance is automatically

built-in by virtue of the twistor formalism. These features seems to make the original

construction unfit for describing more realistic gauge theories.

Here we consider an extension of Witten’s correspondence to a class of N = 2

and N = 1 supersymmetric gauge theories. As we do not know how to relax the

1Examples of twistor-inspired computations of amplitudes in theories with less supersymmetry
have nonetheless appeared in the literature. See for example [238].
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requirement of superconformal invariance, natural candidates are the superconformal

quiver theories analyzed in [239][240], which we will recover from the twistor string.2

The procedure followed in [239] and [240] was to start with a parent N = 4 super

Yang-Mills theory and retrieve the superconformal daughter theories with reduced su-

persymmetry by orbifolding the SU(4)R symmetry rotating the supercharges.3 These

are quiver theories with bifundamental matter fields. In the present case of twistor

strings, the SU(4)R symmetry is part of the isometry group of CP
3|4. Thus, be-

fore Penrose transforming, this operation has a natural interpretation as a fermionic

orbifold of the twistor string’s target space.

Although it is not clear a priori what the meaning of a fermionic orbifold is, one is

immediately tempted to establish a connection with the standard lore about D-branes

tranverse to bosonic orbifold singularities [242], and their realization via geometric

engineering [243]. In the case of N = 2 superconformal theories engineered from type

IIB superstrings, the moduli space of superconformal couplings is known to admit a

duality group whose action is inherited from the S-duality of IIB superstrings.4 It

would be interesting to identify these moduli spaces in the twistor string theory.

We start by briefly recalling some basic facts about D-branes on (bosonic) orbi-

folds, and then we present our proposal for an orbifold of the fermionic directions of

CP
3|4. We discuss the role played by both D5 and D1-branes, and present, in the

two final sections of this chapter, two classes of quiver theories obtained from this

procedure.

2A related work pursuing this same direction can be found in [241].
3Strictly speaking, this is not really an orbifold in the conventional sense of the word, as one is

not gauging the discrete symmetry in spacetime.
4Alternatively, it can be seen as the affine Weyl group acting on the primitive roots of affine

ADE groups [244][240].
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7.2 Branes transverse to orbifold singularities

Placing a set of D-branes transverse to a C
n/Γ orbifold (where n = 2, 3, and Γ is a

discrete subgroup of SU(n)) gives rise to four dimensional gauge theories with N = 2

or N = 1 supersymmetry living in the brane worldvolume. To obtain their massless

spectrum one has to consider the appropriate orbifold action on fields in both the

open and closed string sectors. The open string sector contributes the field content

of the gauge theories, which can be encoded in quiver diagrams. The closed string

sector in turn contributes the necessary moduli which deform the transverse orbifold

singularity to a smooth space. We briefly review this construction below, focusing in

the case of abelian Γ for simplicity.

7.2.1 Open string sector

In the open string sector, Γ acts on the orbifolded transverse coordinates and on the

Chan-Paton factors of open strings in the worldvolume directions. To get conformal

theories one needs Γ to act on the Chan-Paton factors in (arbitrary number of copies

of) the regular representation R of Γ. Choosing N copies of R amounts to considering

N |Γ| D3-branes before the projection, where |Γ| is the order of Γ. At this stage one

then has U(N |Γ|) gauge symmetry in the worldvolume.

In the worldvolume directions Γ acts on the open string Chan-Paton factors ma-

trices λ only. This action is specified by a matrix γΓ∈R, and the invariant states

satisfy

γΓλγ
−1
Γ = λ . (7.1)

Now using elementary group theory the regular representation can be decomposed in
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irreducible representations as

R = ⊕iniRi , (7.2)

where ni = dim(Ri) = 1 for abelian Γ. Acting on λ as in eq. (7.1) this decomposition

projects out the fields whose Chan-Paton indices are not connected by one of the

irreducible Ri’s. Taking N copies of R the gauge group will therefore be broken5 to

F =
∏

i∈irrepsU(N). Each of these unitary groups with its gauge multiplet has an

associated node in the quiver diagram.

In the orbifolded directions Γ acts on the Chan-Paton matrices through an ele-

ment of the regular representation γΓ, and on space indices through the defining n

dimensional representation Gn×n
Γ , in such a way that

Gn×n
Γ (Ψ(i)) = Ψ(γΓ(i)) , (7.3)

Ψ(i) being a label for the i-th D3-brane in the orbifolded transverse space. This

means that the action of the space group is correlated with the action on the Chan-

Paton factors. The fields surviving the projection (7.3) can be obtained from the

decomposition

Hom(R, Gn×n
Γ ⊗R) =

⊕

i,j

[

Hom(Ri, G
n×n
Γ ⊗Rj) ⊗ Hom(CN ,CN)

]

(7.4)

=
⊕

i,j

aijHom(CN ,CN) ,

where again i runs over irreducible representations, and aij are the Clebsch-Gordan

coefficients in the decomposition of the tensor product. Physically these are aij chiral

5Actually there is a U(1) subgroup acting trivially on the fields. It can be seen as the motion of
the center of mass coordinate of the D-branes. Therefore the effective gauge group is G = F/U(1).

240



multiplets transforming in bifundamental representations as

⊕aij(N, N̄) . (7.5)

The quiver diagram has aij oriented links between nodes i and j. For N = 2 quivers

aij = aji, which makes the links non-oriented. Each of them represents an N = 2

hypermultiplet.

Finally, for C
2/Γ orbifolds one has two non-orbifolded transverse directions. Γ

acts on these fields as in eq. (7.1). They provide the adjoint chiral superfields which

together with the gauge multiplets complete the N = 2 vector multiplet.

7.2.2 Closed string sector

In the closed string sector there are no Chan-Paton factors, and one can follow the

ordinary orbifold techniques to find the spectrum. There are, in addition to the

usual untwisted sector, |Γ| − 1 twisted sectors which play a crucial role in resolving

the singularity. The untwisted sector is just the Kaluza-Klein reduction of the ten

dimensional supergravity multiplet on C2/Γ (for N = 2) or on C3/Γ (for N = 1),

together with the usual matter multiplets. In the large volume limit the moduli fields

from the |Γ| − 1 twisted sectors can be seen to arise by wrapping the various form

fields on the exceptional cycles of the blown-up singularity. For N = 2 the blow-up is

hyper-Kähler, whereas for N = 1 it is only Kähler. In the first case there are moduli

bi =
∫

S2
i

B and ~ζi =
∫

S2
i

~ω, where for IIA B is the NS-NS B-field,6 and ~ω is the triplet

of Kähler forms on the blow up. In the Kähler case bi =
∫

S2
i

B and ζi =
∫

S2
i

ω, where

ω is the Kähler form. In the first case the combination bi + i~ζi encodes (in the large

6For IIB one can in addition have the two-form from the R-R sector.
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volume limit) the deformations of Kähler and complex structure of the resolution.

Because of N = 2 supersymmetry the resolution is hyper-Kähler, and these two are

related by the SO(3) symmetry that rotates ~ω. In the second case bi+iζi parameterize

the deformations of the complexified Kähler structure.7

Of course one has in addition to these moduli scalars various p-form fields from

the twisted sectors. The twisted fields couple to open fields in the brane low effective

action via Chern-Simons couplings. In the presence of the orbifold, closed fields from

the k-th twisted sector Ck couple naturally to the U(1) part of the field strength of the

D-brane whose Chan-Paton factor is twisted by γΓ. Their supersymmetric completion

involves terms which couple as Fayet-Iliopoulos parameters in the effective gauge

theory on the brane world-volume. When these are non-zero the gauge symmetry is

completely broken, and the Higgs branch of the world-volume theory is the resolved

transverse space.

Taking into account all the twisted moduli one can write the full stringy quantum

volume of the exceptional cycles of the geometry as Vi =
(

b2i + |~ζi|2
)1/2

in the N = 2

case and Vi = (b2i + ζ2
i )

1/2
in the N = 1 case. At the orbifold point ζi = 0, and one

can write the coupling constant of the i-th gauge group as 1/(gYM i)
2 = Vi/gs, where

gs is the string coupling constant. In type IIB one has also ci =
∫

S2
i

BR, which plays

the role of a theta angle in the gauge theory. One can then write the complexified

couplings as τi = θi + i/(gYM i)
2 = ci + biτ , with τ = g−1

s . The S-duality of type IIB

superstrings, which acts on BNS and BR manifests itself as a duality in the moduli

space of couplings.

7In this case, in addition to B there are further moduli from the R-R sector: a hypermultiplet
for type IIB or a vector multiplet for type IIA.
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7.3 The orbifold of the twistor string

7.3.1 The orbifold in the D5-brane sector

The procedure reviewed in the previous section can be applied to the twistor string

of [96] in order to reduce the N = 4 supersymmetry. The homogeneous coordinates

of CP
3|4 provide a linear realization of PSU(4|4), which is the N = 4 superconformal

group. It is therefore natural to use twistors to study conformal theories. To reduce

supersymmetry, we can orbifold the fermionic directions of the super-twistor space.

Physically, this amounts to orbifolding the SU(4)R R-symmetry, which is the Fermi-

Fermi subgroup of PSU(4|4). As reviewed in chapter 3, in the twistor theory of [96]

a set of D5-branes is placed at ψ̄A = 0. In analogy with the conventional case, one

possible interpretation is to view the orbifold as acting in the ψ̄A directions, which

are transverse to the D5-branes. This induces an action on the ψA which will be the

one considered in the following.

Explicitly, we choose an action of the orbifold Γ ∈ Zk under which the fermionic

coordinates transform as

ψA → e2πiaA/kψA , (7.6)

with the condition on the charges
∑

A aA = 0 (mod k), so that Γ ∈ SU(4)R. The

holomorphic volume form Ω on CP
3|4 (see eq. (3.45)) is invariant under (7.6). This

implies that the super-orbifold is still Calabi-Yau. This is crucial for the consistency

of the B-model [117].

We consider a stack of kN D5-branes in the covering space. The orbifold action

regroups the branes in k stacks of N branes each, as shown in figure 7.1. It is thus
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1 2 k

N N N
Figure 7.1: Regrouping of the D5-branes under the orbifold action: the kN branes
are split into k stacks of N branes each. Note that the k stacks of branes are actually
coincident at the point ψ̄A = 0 of the twistor space.

convenient to decompose the U(kN) adjoint index into Aab = AIiJj, where I, J =

1, . . . , N label the brane within a stack and i, j = 1, . . . , k label the stacks.

An explicit representation of Γ is

R =



















r1 0 · · · 0

0 r2 · · · 0

...
...

. . .
...

0 0 · · · rk



















kN×kN

, (7.7)

where ri = e2πii/k is a N × N matrix acting on the i-th node of the associated

quiver. The orbifold projection is enforced by requiring invariance of the components

of the superfield A under the action of Γ. R-symmetry invariance of the superfield

implies that (7.6) induces a conjugate transformation on the fermionic indices of the

components. Combined with the action on the Chan-Paton factors given by (7.7),

this gives the following orbifold action on a generic component (with n = 0, . . . , 4
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fermionic indices)8

(ΦA1,...,An)
Ii
Jj → e2πi(i−j−aA1

−...−aAn )/k(ΦA1,...,An)
Ii
Jj . (7.8)

For example, the lowest component of the superfield (3.47), which physically repre-

sents the positive helicity gluon, transforms as

AIiJj → e2πi(i−j)/kAIiJj . (7.9)

Invariance requires i = j, so that the gauge group is broken to U(kN) → [U(N)]k.

Similarly, the positive helicity gluino χA transforms as

(χA)IiJj → e2πi(i−j−aA)/k(χA)IiJj , (7.10)

so that in this case one needs to enforce i = j + aA. Depending on the value of the

charge aA, the field χA becomes either a gaugino or a bi-fundamental quark. One

proceeds analogously with the other components of A. One can picture the field

content in a quiver diagram with k nodes corresponding to the k gauge groups and

bi-fundamental matter as lines connecting pairs of nodes.

The choice of the discrete group one quotients by determines the amount of super-

symmetry preserved by the orbifold. For generic Γ the supersymmetry is completely

broken, while for Γ ∈ Zk ⊂ SU(2)R and Γ ∈ Zk ⊂ SU(3)R one has respectively N = 2

and N = 1 [239].

So far we have only focused on the D5-brane sector. In the following section we

8In this notation, for instance, ΦA1A2A3A4
= 1

4! ǫA1A2A3A4
G, where G is the highest component

of A.

245



tackle the problem of orbifolding the D1-instantons.

7.3.2 D1-branes

As already explained in chapter 3, the holomorphic Chern-Simons action on CP
3|4 only

reproduces the selfdual truncation of N = 4 super Yang-Mills. A non-perturbative

correction to the B-model is needed in order to recover the non-selfdual part of the

gauge theory. These new non-perturbative degrees of freedom are D1-branes wrapped

on holomorphic cycles inside the supermanifold. These branes are D-instantons whose

instanton number is given by the degree d of the map.

We proceed now to the analysis of the orbifold action on the D1-instanton sector.

For this action to be faithful on the Chan-Paton factors of the D1’s, we need to start

with k D1-branes. To begin with, we locate them at ψA = 0. As in [96], the fermionic

dependence will be restored in the end through integration over the moduli space.

Considering k D1-branes, the effective action (3.52) gets changed into

ID1−D5 =

∫

D1

dz (βrIi∂̄α
Ii
r + βrIiB s

r α
Ii
s + βrIiAIi

Jjα
Jj
r ) , (7.11)

where r = 1, . . . , k is a U(k) index which labels the D1’s. For instance, αIir is a string

stretching from the r-th D1-brane to the I-th D5-brane inside the i-th stack. In eq.

(7.11) B s
r is the U(k) gauge field on the world-volume of the D1-branes. The action

of the orbifold breaks U(k) → [U(1)]k. The D1-D5 strings α and β transform as

αIir → e2πi(i−r)/kαIir ,

βrIi → e2πi(r−i)/kβrIi . (7.12)
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N N N
1 2 k

D5

D1
Figure 7.2: The stacks of D5 and D1-branes. D1-D5 strings are stretched between
the two different kinds of branes. An interaction between the first and the second
stack is also depicted.

Invariance under the orbifold action requires i = r. This implies that the D1-D5

strings only stretch between the i-th D1-brane and the D5-branes in the i-th stack.

This is shown in figure 7.2 and, in quiver language, for the specific example of k = 3,

in figure 7.3.

The U(1) fields living on the D1-branes and the bi-fundamental matter connecting

them will not be considered in the following, although they are depicted in figure 7.3.

The U(1) bundles over curves of genus g < 2 do not have moduli as remarked in [96]

and do not play a role in the computation of amplitudes. Further, it seems natural to

neglect the bi-fundamental fields since in general, when the branes move away from

ψA = 0, they should correspond to massive states.

The stack of k D1-branes can move away from the orbifold fixed point as one full

regular brane. In the covering space, the k D1-branes are located in points related

by the Γ action in the orbifold directions, whereas they coincide in the others. In

particular, they coincide along the bosonic subspace and therefore the bosonic world-

volume is the same for all of them. Since the branes cannot move independently

we have only one set of moduli (x, θ) for the whole system. However this is not the
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1

Figure 7.3: The quiver for the D1-D5 brane system in the case k = 3. It has three
nodes corresponding to the D5-branes indicated with N , and three nodes correspond-
ing to the D1’s.
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complete story. We do not fully explore the richness of the orbifold construction.

If the branes were coincident at the fixed point of the fermionic coordinates, then

there would be no constraint on their motion along the remaining directions and

one would have an extended moduli space {(xr, θr)} with k sets of parameters. We

will not study this explicitly but we will limit ourselves to some comments. Having k

independent D1-branes allows one to consider k independent minimal couplings (3.57)

to the b field. This might be worth studying because it could provide a mechanism

to generate k independent coupling constants, one at each node. Since in the usual

case the moduli space of couplings is related to twisted sectors, it will be valuable

to clarify this issue further by studying the closed sector of the B-model and check

whether it contains twisted states.

We now illustrate what discussed so far in two explicit examples, and compute

some amplitudes in these orbifold theories.

7.4 Explicit examples of orbifolds

7.4.1 An N = 1 orbifold

We start by considering the case Γ ∈ Zk ⊂ SU(3)R. Then SU(4)R is broken into

U(1)R, yielding N = 1. We consider a particularly simple example, in which k = 3

and aA = (1, 1, 1, 0), see eq. (7.6). The gauge group is decomposed into [U(N)]3 and

the corresponding quiver diagram is depicted in figure 7.4.

The gauge sector contains three N = 1 vector multiplets

Ai , Gi , λi , λ̃i , (7.13)
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Figure 7.4: The N = 1 quiver for k = 3 and aA = (1, 1, 1, 0).

where Ai ≡ AIiJi, Gi ≡ GIi
Ji, λ

a
i ≡ (χ4)

Ii
Ji, λ̃

a
i ≡ (χ̃4)

Ii
Ji. The index i = 1, 2, 3 labels

the nodes of the quiver.

On the other hand, the matter sector consists of three N = 1 chiral multiplets for

each pair of nodes

qµi,i+1 , q̃µi+1,i , φµi,i+1 , φ̃µi+1,i , (7.14)

where now the index µ runs from 1 to 3. Here a subscript i, j indicates that the field

has fundamental index in the i-th node and anti-fundamental in the j-th node. The

quarks qµi,i+1 and the anti-quarks q̃µi+1,i come from (χµ)IiJ,i+1 and (χ̃µ)I,i+1

Ji . The scalars

φµi,i+1 and φ̃µi+1,i come from (φµ4)
Ii
J,i+1 and ǫµνρ(φνρ)

I,i+1

Ji . The gauge theory with this

field content is superconformal [239][240].

In terms of these fields the action (3.49) becomes

S =

3
∑

i=1

∫

CP
3

Ω′ ∧ Tr
[

Gi ∧ (∂̄Ai + Ai ∧ Ai) + λ̃i ∧ D̄iλi + q̃µ i+1,i ∧ D̄i q
µ
i,i+1
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+ φ̃µ i+1,i ∧ D̄i φ
µ
i,i+1 + ǫµνρ q

µ
i,i+1 ∧ qνi+1,i+2 ∧ φρi+2,i + λi ∧ qµi,i+1 ∧ φ̃µ i+1,i

]

.

(7.15)

The interaction term (3.53) reads after the orbifold projection

∆ID1−D5 =

∫

D1

Tr JA =

∫

D1

JIiJjAJj
Ii →

→
3
∑

i=1

∫

D1

Tr
[

JiAi + ψ4Jiλi + ψµJi+1,iqµ i,i+1 +
1

2
ǫµνρψ

µψνJi,i+1φ̃
ρ
i+1,i

+ψµψ4Ji+1,iφµ i,i+1 +
1

3!
ǫµνρψ

µψνψρJiλ̃i

+
1

2
ǫµνρψ

µψνψ4Ji,i+1q̃
ρ
i+1,i + ψ1ψ2ψ3ψ4JiGi

]

, (7.16)

with Ji ≡ JJiIi = αJiβIi and Ji,i+1 ≡ JJ,i+1

Ii = αJ,i+1βIi. A convenient way to keep

track of the group theory factors is to use a double line notation, where one assigns

a different type of oriented line to the fundamental index of each node. For instance,

an adjoint field is represented by two lines of the same type and opposite orientation,

while a bi-fundamental field has two lines of different type and opposite orienation.

For example, in the N = 1 case discussed here there are three types of lines corre-

sponding to the three nodes of the quiver in figure 7.4. Some examples are shown in

figure 7.5.

MHV Amplitudes for the N = 1 orbifold

In order to calculate MHV amplitudes in these theories we need to follow the general

prescription given in [96] and [111]. This prescription is applicable also in this case

since we do not allow the k D1-branes to move independently, as already discussed.

Saturation of the fermionic degrees of freedom requires eight θ’s. We consequently
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Figure 7.5: The double line notation: (a) scattering of four adjoint fields belonging
to the same node; (b) scattering of two adjoint and two bi-fundamental fields; (c)
scattering of four bi-fundamental fields with intermediate adjoint field; (d) same as
in (c) but with intermediate bi-fundamental field.
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have as many different MHV amplitudes, as there are possible products of terms

from the superfield expansion giving eight θ’s. The denominator of these analytic

amplitudes is provided by the current correlation functions. The latters also provide

the appropriate group structure. Note that here we should be a little bit more careful

than usual, since part of the gauge theory trace is implicit in the summation of

the indices i which belong to the fundamental representation. We should therefore

make sure that we consider only meaningful products of currents, that correspond

to single trace terms for each MHV analytic amplitude, for instance products like

JiJi,i+1Ji+1,iJi for a four point amplitude of the form (λ q̃q λ̃). The possible group

theory contractions are easily estabilished by drawing the diagrams in double-line

notation.

It is now straightforward to proceed to the computation of specific amplitudes of

interest. One could rewrite the N = 4 superfield expansion eq. (3.47) in SU(3) ×

U(1)R notation which is manifestly N = 1 invariant. Recalling that the momentum

structure of the amplitudes is solely determined by the form of this expansion, we

deduce that analytic amplitudes in the N = 1 orbifold theory bear an identical spinor

product structure to the ones of N = 4 SYM in SU(3) × U(1)R notation. This is

in complete accordance with field theoretical considerations, since the Lagrangian

description of these theories is identical apart from their group structure. We will

make this point clearer with several examples. Note, however, that in what follows

we will omit group indices9 and coupling constants, since we stay at the point in the

moduli space where all the gauge couplings are equal.

9As usual we strip out the gauge group theory factor.
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Figure 7.6: The two Feynman diagrams that contribute to the tree level (q q q̃ q̃)
scattering.

Example 1: Amplitudes (A . . . AGG), (A . . .AGλ λ̃), and (A . . . AG q q̃) These

amplitudes have been extensively considered in the literature [102][103]. As a first

trivial check of the above, we compute the standard four gluon amplitude (AiAiGiGi),

with i = 1, 2, 3. Following the usual prescription, and using eq. (3.47), we have

M(4)(AAGG) =

∫

d8θ(ψ1
3ψ

2
3ψ

3
3ψ

4
3)(ψ

1
4ψ

2
4ψ

3
4ψ

4
4)

1

〈12〉〈23〉〈34〉〈41〉
=

〈34〉4
〈12〉〈23〉〈34〉〈41〉 . (7.17)

This is the familiar formula for MHV scattering in N = 4 SYM. In the same way,

one can compute amplitudes of the type (A . . . AGG), (A . . . AGλ λ̃), (A . . .AG q q̃),

and (A . . .A λ λ̃ q q̃).

Example 2: Amplitudes (q q q̃ q̃) and (λ q q̃ λ̃) These amplitudes have, as previ-

ously mentioned, the same spinor product structure N = 4 SYM has. Yet, they are

far more interesting cases to study. The reason is that they consist of two subampli-

tudes, shown in the case (q q q̃ q̃) in figure 7.6. They depend on both gluon and scalar

particle exchange. Let us now concentrate on (qρi−1,i q
σ
i,i+1 q̃

κ
i+1,i q̃

λ
i,i−1). The other case

(λ q q̃ λ̃) can be computed in a similar manner. The two subamplitudes in figure 7.6
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correspond in double line notation to diagrams (d) and (c) in figure 7.5

M(4)(qqq̃q̃) =

∫

d8θ
1

4
ψρ1ψ

σ
2(ψ

4
3ψ

µ
3ψ

ν
3 )(ψ4

4ψ
π
4ψ

τ
4 )ǫµνκǫπτλ

1

〈12〉〈23〉〈34〉〈41〉 . (7.18)

Integration over θ4 is straightforward and yields 〈34〉. Then, we must sum over all

possible contractions of momenta upon integration over the fermionic part of the

space. There are three distinct contractions

(a)

∫

d6 θψρ1ψ
σ
2 ψ

µ
3 ψ

ν
3ψ

π
4ψ

τ
4 + {µ↔ν

π↔τ} = δρσ(δµτδνπ − δµπδντ )〈12〉〈34〉2 ,

(b)

∫

d6 θψρ1ψ
σ
2ψ

µ
3 ψ

ν
3ψ

π
4ψ

τ
4 + {µ↔ν

π↔τ} =
(

δρσ(δµπδντ − δµτδνπ) − ǫρµνǫσπτ
)

〈23〉〈34〉〈41〉 ,

(c)

∫

d6 θψρ1ψ
σ
2ψ

µ
3 ψ

ν
3ψ

π
4ψ

τ
4 + {µ↔ν

π↔τ} =
(

δρσ(δµπδντ − δµτδνπ) − ǫρπτ ǫσµν
)

〈13〉〈24〉〈34〉 .

(7.19)

The three spinor product structures in (7.19), are related through the Schouten iden-

tity 〈pq〉〈rs〉+〈qr〉〈ps〉+〈rp〉〈qs〉 = 0. Use of this identity reveals the two independent

structures that we were expecting. Explicitly, we have

∫

d6 θψρ1ψ
σ
2ψ

µ
3ψ

ν
3ψ

π
4ψ

τ
4 = −ǫρπτ ǫσµν〈12〉〈34〉2 + (ǫρπτ ǫσµν − ǫρµνǫσπτ )〈23〉〈34〉〈41〉 .

(7.20)

Inserting eq. (7.20) into eq. (7.18), we obtain

M(4)(qqq̃q̃) = −δρλδσκ
〈34〉2

〈23〉〈41〉 − ǫρστ ǫτκλ
〈34〉
〈12〉 . (7.21)

255



Figure 7.7: The N = 2 quiver for k = 2 and aA = (1, 1, 0, 0).

It is easy to see that this result is in agreement with the field theory predictions. An

important remark is now in order. As we can also see in figure 7.6, there are two

types of contributions to this scattering process. One of them comes from a Yukawa

type interaction term while the other comes from the usual matter-gluon interaction.

In general these two interaction terms would be weighted with the appropriate inde-

pendent coupling constant. It would be interesting to check if the consistency of the

twistor method constraints the couplings to be in the conformal region of the moduli

space. Amplitudes like the one considered in this example might provide some insight

on how to move away from the point in the moduli space where all the couplings are

equal.

7.4.2 An N = 2 orbifold

We now move on to the case in which Γ ∈ Zk ⊂ SU(2)R. This breaks SU(4)R →

SU(2)R, thus giving N = 2. For simplicity, we investigate the particular choice of k =

2 and aA = (1, 1, 0, 0), see eq. (7.6). The fields surviving the orbifold projection are

organized into two N = 2 vector multiplets and two hypermultiplets. The resulting

gauge group is U(N) × U(N). The associated quiver diagram has two nodes and

two links and is given in figure 7.7. As in the previous N = 1 case, this theory is

superconformal. The field content of the gauge sector is

Ai , Gi , λai , λ̃ai , φmi , (7.22)
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where Ai ≡ AIiJi, Gi ≡ GIi
Ji, λ

a
i ≡ (χ3,4)

Ii
Ji, λ̃

a
i ≡ (χ̃3,4)

Ii
Ji, and φmi ≡ (φ12,34)

Ii
Ji. The

nodes of the quiver are labelled by i = 1, 2. The index a is the SU(2)R index, whereas

m labels the two real components of the complex scalar field. The matter sector has

two bifundamental hypermultiplets

qµi,i+1 , q̃µi+1,i , Hµ
i,i+1 , H̃µ

i+1,i , (7.23)

with the index µ = 1, 2 labeling the hypermultiplets. The quarks qµi,i+1 are given by

(χ1,2)IiJ,i+1 and the anti-quarks q̃µi+1,i by (χ̃1,2)I,i+1

Ji . The four scalars Hµ and H̃µ come

from φ13, φ14, φ23, and φ24.

The projected action and the D1-D5 interaction term can be obtained in similarly

to the previous N = 1 case.

MHV Amplitudes for the N = 2 orbifold

Example 1: Amplitudes like (A . . . AGG), (A . . .AG, λ λ̃), and (A . . . AG q q̃)

We consider the scattering process between the following particles (AAGλa λ̃c). Ac-

cording to the twistor string prescription, we should compute

M(5)(AAGλλ̃) =

∫

d8θ ψ1
3ψ

2
3ψ

3
3ψ

4
3ψ

a
4ψ

1
5ψ

2
5ψ

b
5ǫbc

1

〈12〉〈23〉〈34〉〈41〉 . (7.24)

There are only two possible contractions between the different ψ’s, which yield

M(5)(AAGλλ̃) = (δ3bδ4a − δ3aδ4b)ǫbc
〈35〉3〈34〉

〈12〉〈23〉〈34〉〈45〉〈51〉

= δac(δ4c − δ3c)
〈35〉3

〈12〉〈23〉〈45〉〈51〉 . (7.25)
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As we see, we recovered the familiar result.

Example 2: Amplitude (λ q q̃ λ̃) We will now apply the same method in order to

compute the scattering amplitude (λa qµ q̃ρ λ̃c) between a gluino-antigluino pair and

a quark-antiquark one. To this end, we need to calculate the following integral

M(4)(λqq̃λ̃) =

∫

d8θ ψa1ψ
µ
2(ψ

3
3ψ

4
3ψ

ν
3 )(ψ1

4ψ
2
4ψ

b
4)ǫνρǫbc

1

〈12〉〈23〉〈34〉〈41〉 , (7.26)

where a, b, c = 3, 4 and µ, ν, ρ = 1, 2. To perform the integration we need to sum over

all the possible contractions between the fermionic coordinates of supertwistor space.

In this example we can split the fermions into two groups, with no contractions among

fermions belonging to different groups. In each group, fermions can be contracted in

two different ways

(a)

∫

d4 θψa1ψ
3
3ψ

4
3ψ

b
4 = δa3δ4b〈13〉〈34〉 ,

(b)

∫

d4 θψa1ψ
3
3ψ

4
3ψ

b
4 = −δa4δb3〈13〉〈34〉 ,

(7.27)

and

(a)

∫

d4 θψµ2 ψ
ν
3ψ

1
4ψ

2
4 = δµ2δν1〈24〉〈34〉 ,

(b)

∫

d4 θψµ2 ψ
ν
3ψ

1
4ψ

2
4 = −δµ1δν2〈24〉〈34〉 .

(7.28)

We then substitute (7.27) and (7.28) into (7.26) and use the Schouten identity to

obtain

M(4)(λqq̃λ̃) = δacδµρ(δµ2 − δµ1)(δa3 − δa4)

(

〈34〉2
〈23〉〈41〉 −

〈34〉
〈12〉

)

. (7.29)
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Figure 7.8: The two Feynman diagrams that contribute to the tree level (λ q q̃ λ̃)
scattering.

We see from the form of the result that there are exactly two distinct spinor product

structures. They reflect contributions to the scattering process from two different

types of interactions: the former is the standard quark-gluon interaction and the

latter is of Yukawa type. Figure 7.8 shows the corresponding Feynman diagrams.

This is in accordance with the usual field theory calculations.

Other amplitudes, with quarks or scalars as external particles, can be computed

in a similar fashion. They usually retain the feature of receiving contributions from

multiple interaction processes/vertices.

7.5 Conclusion

In this chapter of the dissertation we have investigated Zk fermionic orbifolds of

the topological B-model on CP
3|4 to reduce the amount of supersymmetry of the

dual N = 4 super Yang-Mills theory. This was allowed by the fact that the Fermi-

Fermi part of the PSU(4|4) isometry group of CP
3|4 is precisely the SU(4)R R-

symmetry. We have discussed how the projection acts on both the D5 and the D1-

branes. As examples we have considered N = 1 and N = 2 orbifolds and obtained the

corresponding quiver theories. Several amplitudes have been computed and shown to
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agree with the field theory results.

We have worked only at the point in the moduli space where all gauge coupling

constants are equal. It would be interesting to study the full moduli space of super-

conformal couplings and understand its interpretation in twistor string theory. Some

indications on the origin of these moduli have been given in discussing the action of

the orbifold on the D1-brane sector. Since these moduli are usually interpreted as

coming from twisted fields it would be worth studying the closed string sector and

identify the twisted states. The fermionic orbifold does not have an obvious geomet-

rical meaning. The study of the twisted sector may be useful to shed some light on

the geometrical interpretation of the orbifold.
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Chapter 8

A twistorial approach to gravity

amplitudes

8.1 Introduction

In this final chapter we discuss a twistorial approach to the computation of graviton

amplitudes in ordinary (non-superconformal gravity). The closed string sector of the

B-model on CP
3|4 should presumably describe N = 4 conformal supergravity, which

at tree level reduces to conformal gravity. Ordinary gravity amplitudes would be

related not to the closed sector of the B-model on CP
3|4 but to that of a yet unknown

topological twistor string theory which probably describes N = 8 supergravity. Even

though the correct framework for studying gravity has not been completely estab-

lished, some preliminary indications on localization of tree level gravity amplitudes

can be given. Some initial analysis of the MHV case was already anticipated in

[96]. The crucial difference with respect to YM is that the n graviton MHV ampli-

tude is not holomorphic in the spinor helicity variables in Minkowski space. This
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non-holomorphic dependence is nonetheless very simple, namely polynomial. The

polynomial dependence implies that MHV gravity amplitudes are supported again on

d = 1 curves, but now with a multiple derivative of a delta-function, as we discuss in

the following.

It is natural to investigate if this behavior persists for non-MHV cases. In the

next section we check the simplest non-trivial case, namely the googly amplitude

M(5)(+,+,−,−,−). Constructing a suitable differential operator which annihilates

the amplitude, we verify that this is supported on a connected degree 2 curve of genus

zero. This is similar to what happens for the corresponding googly YM amplitude,

with the difference that we now have a derivative of a delta-function support.

This does not exclude a priori the presence of disconnected contributions and we

comment on the possibility of a MHV decomposition of gravity amplitudes. Note that

even without knowing the underlying string theory, having a MHV-like diagrammatic

expansion would dramatically simplify the calculation of gravity amplitudes, which

are notoriously complicated and in many cases not known in closed form.

The vertices are built using the MHV prescription for YM and the KLT relations,

which in general express closed string amplitudes as a sum of products of open string

amplitudes, in the field theory limit [245]. Differently from the gauge theory case

it is not possible to construct MHV gravity diagrams using only holomorphic ver-

tices. The only diagrams which can be built using holomorphic vertices correspond

to amplitudes of the form M(n)(+,−, . . . ,−). As in YM these are known to vanish.

Using the completely disconnected prescription we verify that the MHV diagrams

for M(4)(+,−,−,−) and M(5)(+,−,−,−,−) sum to zero. More problematic is an

MHV construction for the other gravity amplitudes. Already the first not vanish-

ing googly amplitude M(5)(+,+,−,−,−) involves a non holomorphic 4 vertex. The
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näıve application of the MHV prescription of [123] to this amplitude seems to fail.

In particular the result is not covariant. It is not quite clear whether this failure is

due to the special features of gravity (e.g., lack of conformal invariance) which may

lead to the inequivalence of connected and disconnected prescriptions. If this were

the case one should sum over both connected and disconnected configurations in the

corresponding string theory. Another possibility would be that our off-shell extension

needs to be modified.

8.2 A googly graviton amplitude

Starting from the observation that a closed string vertex operator factorizes into the

product of two open string vertices, Kawai, Lewellen, and Tye [245] were able to

derive a set of formulas relating closed string amplitudes to open string ones. In the

low-energy limit these formulas imply a similar factorization of gravity amplitudes as

products of two gauge theory amplitudes.

By direct use of the KLT relations it has therefore been possible [246] to ob-

tain compact expressions for several tree-level gravity amplitudes, which would have

been much more difficult to compute diagrammatically, considering the complexity

of perturbative gravity.1 A nice review of this topic is given in [247].

Following [246] we denote the amplitude for n external gravitons with momenta

p1, . . . , pn and helicities h1, . . . , hn by M(n)(1h1, . . . , nhn). Similarly to the gluon

case, the amplitude vanishes if more than n−2 gravitons have the same helicity. The

first non-trivial amplitude describes the scattering of 2 gravitons with one helicity and

1The Hilbert-Einstein Lagrangian generates an infinite number of interaction vertices, which
have complicated expressions containing hundreds of terms. The graviton propagator is also very
complicated, compared to gauge theory. As a striking example of this complexity, consider that a
gravity five loop diagram produces 1030 terms, even before performing any integration.
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n−2 gravitons with the opposite one. Using the same terminology as in chapter 3, the

amplitude with q = 2 negative helicity gravitons is called maximally helicity violating

(MHV), whereas the amplitude with q = n − 2 negative helicity gravitons is called

googly. Following custom we will use the abbreviated notation for the contraction of

two spinors 〈ij〉 ≡ ǫabλ
a
iλ

b
j and [ij] ≡ ǫȧḃλ̃

ȧ
i λ̃

ḃ
j.

The explicit expression in the MHV case of n = 5, q = 2 gravitons is [246]

M(5)(1−, 2−, 3+, 4+, 5+) = −4i (8πGN)
3
2

〈12〉8
∏4

i=1

∏5
j=i+1〈ij〉

E(1, 2, 3, 4) , (8.1)

where E(1, 2, 3, 4) = 1
4i

([12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41]). This amplitude is of the

form

M(5)(1−, 2−, 3+, 4+, 5+) =
∑

α=1,2

Rα(λi)Pα(λ̃i) , (8.2)

where the R’s are rational functions and the P ’s are polynomials. Even though (8.2)

is not holomorphic in λ as the Parke-Taylor formula (3.15), it splits in two parts,

each of them displaying a simple polynomial dependence on λ̃. This generalizes to all

MHV gravity amplitudes. As already shown in [96], the twistor transform of

A(5)(λi, λ̃i) = i(2π)4δ4

(

∑

i

λai λ̃
ȧ
i

)

M(5)(1−, 2−, 3+, 4+, 5+) (8.3)

yields

Ã(5)(λi, µi) = i

∫

d4x

∫

d2λ̃1

(2π)2
. . .

d2λ̃5

(2π)2
ei

P5
i=1 λ̃

ȧ
i (µiȧ+xaȧλ

a
i )M(5)(λi, λ̃i)

= i
∑

α=1,2

Rα(λi)Pα

(

i
∂

∂µiȧ

)
∫

d4x

5
∏

i=1

δ2(µiȧ + xaȧλ
a
i ) . (8.4)
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The twistor transformed amplitude is thus supported on a curve of degree d = 1 and

genus g = 0, via a polynomial in derivatives of the delta function.

Now we move on to the googly amplitude, which is obtained by switching the λ’s

and the λ̃’s in (8.1)2

M(5)(1+, 2+, 3−, 4−, 5−) =
[

M(5)(1−, 2−, 3+, 4+, 5+)
]∗

=
∑

α=1,2

P ∗
α(λi)R

∗
α(λ̃i)

= (8πGN)
3
2

( 〈12〉〈34〉[12]8

[12][13][15][24][25][34][35][45]
+

〈23〉〈41〉[12]8

[13][14][15][23][24][25][35][45]

)

.

(8.5)

This amplitude obeys for each i = 1, . . . , 5 a homogeneity condition as in eq. (3.12)

(

λai
∂

∂λai
− λ̃ȧi

∂

∂λ̃ȧi

)

M(5) = −2hiM(5) (8.6)

where hi = ±2 is the helicity of the i-th graviton.

The transform to twistor space of

A(5)(λi, λ̃i) = i(2π)4δ4

(

∑

i

λai λ̃
ȧ
i

)

M(5)(1+, 2+, 3−, 4−, 5−) (8.7)

would be

Ã(5)(λi, µi) = i
∑

α=1,2

P ∗
α(λi)

∫

d4x

∫

d2λ̃1

(2π)2
. . .

d2λ̃5

(2π)2
ei

P5
i=1 λ̃

ȧ
i (µiȧ+xaȧλ

a
i )R∗

α(λ̃i) . (8.8)

The homogeneity condition in twistor space, which can be obtained from (8.6) by

2In Lorentz signature this amounts to a parity transformation since λ̃ = ±λ̄, as explained in the
footnote 2 of chapter 3.

265



performing the transformation (3.20), reads

(

λai
∂

∂λai
+ µiȧ

∂

∂µiȧ

)

Ã(5) = (−2hi − 2)Ã(5) . (8.9)

According to (3.25), we expect Ã(5) to be supported on a d = 2, g = 0 curve in

twistor space. Since the λ̃ dependence of (8.5) is through rational functions, it is not

easy to perform explicitly the twistor transform and check this conjecture. Witten

proposed an alternative way to avoid this cumbersome computation [96]. This method

was described in chapter 3, and is based on the introduction of operators which control

if a set of given points lies on a common curve embedded in twistor space. These

operators are algebraic in the (λ, µ) space, and become differential once transformed

back to the (λ, λ̃) space.

The relevant operator for the n = 5, q = 3 case is

Kijkl = ǫIJKLZ
I
i Z

J
j Z

K
k Z

L
l , (8.10)

where ZI
i are homogeneous coordinates in CP

3, namely ZI
i = (λ1

i , λ
2
i , µi1, µi2), for the

i-th graviton (i = 1, . . . , 5). To go to the (λ, λ̃) space, one simply replaces µiȧ with

−i ∂
∂λ̃ȧi

. We introduce the notation

{ij} = ǫȧḃ
∂2

∂λ̃ȧi ∂λ̃
ḃ
j

. (8.11)

The differential operator in (λ, λ̃) space is thus expressed as

Kijkl = 〈ij〉{kl} − 〈ik〉{jl} − 〈jl〉{ik} + 〈il〉{jk} + 〈kl〉{ij} − 〈jk〉{li} . (8.12)
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If the amplitude is supported on a d = 2, g = 0 curve through a delta function,

then one expects that KijklA
(5)(λ, λ̃) = 0. This is indeed what happens for the n = 5,

q = 3 tree-level gluon amplitude, as verified in [96]. What we are actually going to

prove for the graviton amplitude is that

KijklKi′j′k′l′A
(5) = 0 . (8.13)

This means that we still have a localization on a d = 2, g = 0 curve but now via

a derivative of the delta function. This is somewhat similar to what happens in the

1-loop gluon amplitude analyzed in [96].

A useful simplification in checking (8.13) is achieved by using the manifest Poincaré

invariance of both K and A(5)(λ, λ̃). The Lorentz transformations are given by

SL(2,R)× SL(2,R), with the first SL(2,R) acting on the λ’s and the second one on

the λ̃’s. Translations act on the µ’s as µiȧ → µiȧ + xaȧλ
a
i . It is thus possible to fix

two points in twistor space Zi, Zj to convenient values: λi and λj can be fixed by

use of SL(2,R) plus a scaling allowed by (8.9), whereas µiȧ and µjȧ are fixed by the

translations. We can choose for example to fix Z3 = (1, 0, 0, 0) and Z4 = (0, 1, 0, 0).

This means λ3 = (1, 0), λ4 = (0, 1) and µ3 = µ4 = (0, 0). The delta function of

momentum conservation enforces

λ̃ȧ3 = −
∑

j=1,2,5

λ1
j λ̃

ȧ
j , λ̃ȧ4 = −

∑

j=1,2,5

λ2
j λ̃

ȧ
j . (8.14)

By substituting (8.14) in (8.5) we obtain a “fixed” amplitude A
(5)
fix, which is function

only of λi, λ̃i with i = 1, 2, 5. We find that the dependence of A
(5)
fix on the λ̃’s is only

through the bilinears a ≡ [12], b ≡ [15], and c ≡ [25]. The crucial property of A
(5)
fix is
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that

(

a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c

)

A
(5)
fix = 0 . (8.15)

This follows directly from the observation that the original amplitude (8.5) is ho-

mogeneous of degree 0 in the antiholomorphic bilinears. Since eq. (8.14) is linearly

homogeneous in the λ̃’s, the fixed amplitude is still homogeneous of degree 0 in a, b, c.

After fixing Z3 and Z4, eq. (8.12) can also be expressed in terms of a, b and c.

Defining an operator Ô ≡
(

a ∂
∂a

+ b ∂
∂b

+ c ∂
∂c

+ 1
)

we find

K1234 = − ∂
∂a
Ô , K1345 = − ∂

∂b
Ô , K2345 = − ∂

∂c
Ô ,

K1235 = −
(

λ2
5
∂
∂a

− λ2
2
∂
∂b

+ λ2
1
∂
∂c

)

Ô , K1245 = −
(

− λ1
5
∂
∂a

+ λ1
2
∂
∂b

− λ1
1
∂
∂c

)

Ô .

(8.16)

These are the only independent operators up to permutations. Since A
(5)
fix is homoge-

neous of degree zero, ÔA
(5)
fix = A

(5)
fix, and it follows that no component ofK annihilates

the amplitude. However from eq. (8.16) it can be seen that KijklA
(5)
fix is homogeneous

of degree -1 in a, b, and c for every i, j, k, l, and thus it will be annihilated by the

operator Ô. From this observation we conclude

KijklKi′j′k′l′A
(5)
fix = 0 (8.17)

for any choice of i, j, k, l and i′, j′, k′, l′.
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8.3 Disconnected MHV decomposition

So far we have investigated the possibility for a twistor transformed gravity amplitude

to be localized on connected curves whose degree and genus are given by (3.25).

In the gauge theory context of [96], a certain string interpretation suggests that

also disconnected curves may play a role in the computation of amplitudes, and

that a connected contribution might be decomposed into disconnected pieces. An

amplitude supported on a degree 2 curve can, for example, receive contributions

from configurations with two disconnected degree 1 curves. Although one expects a

contribution from all the possible decompositions, in [123] it was shown, as already

explained in chapter 3, that tree level gauge theory amplitudes can be obtained by

taking the completely disconnected configuration only. Inspired by what happens in

the gauge theory, we try to check if a similar decomposition holds for gravity as well.

In the following we present the 3 and 4 graviton vertices given by the M(3)(+,−,−)

and M(4)(+,+,−,−) MHV amplitudes and we try to apply this procedure to some

simple gravity amplitudes, including the n = 5 googly one studied in the previous

section.

8.3.1 The M(4)(+,−,−,−) and M(5)(+,−,−,−,−) amplitudes

Amplitudes of the type M(n)(1+, 2−, . . . , n−) should correspond to the twistor space

diagrams in fig. 8.1. As already stated, these are known to vanish. Each CP
1

represents a (+,−,−) vertex, also depicted in fig. 8.2. This vertex is obtained by

suitably extending the vanishing M(3)(+,−,−) graviton amplitude off-shell, and is
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3− 4−
(n−1)−

n−− + − + − +

1+

2−
− + − +

i−
(i+1)−

(n−1)−
n−

1+

2−

Figure 8.1: Two disconnected configurations contributing to M(n)(1+, 2−, . . . , n−).
Each sphere represents a CP

1, the sublocus of the twistor space where an MHV
vertex is localized. The lines spanning between spheres are graviton propagators,
with opposite helicities at the two endpoints.

+

− −
1+

2−

p−

Figure 8.2: The (+,−,−) graviton vertex. The external leg with momentum p is
suitably extended off-shell and can be connected to a propagator.
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2− 3−

4−

− +

4−

− + − +

1+ 1+ 1+

3− 2− 4− 2−

3−
p p p

Figure 8.3: The MHV diagrams contributing to the M(4)(1+, 2−, 3−, 4−) graviton
amplitude. Note that, differently from the Yang-Mills case, here we do not require a
fixed cyclic ordering of the external legs.

formally given by the square of the corresponding gluon amplitude [245].3 The off-

shell extension of the twistor λp corresponding to an off-shell momentum p has been

given in [123] and described in chapter 3. It amounts to defining

λpa =
paȧη

ȧ

[λ̃p, η]
, (8.18)

where ηȧ is an arbitrary spinor. The normalization factor is needed in order to have

a consistent on-shell limit, and it can be dropped if the amplitude is homogeneous in

the λp. The off-shell extension of the 3 graviton amplitude is therefore

M(3) =

( 〈2, p〉4
〈1, 2〉〈2, p〉〈p, 1〉

)2

. (8.19)

Here we start focusing on M(4)(1+, 2−, 3−, 4−). This is computed using the MHV

diagrams shown in fig. 8.3. The contribution of the first graph in fig. 8.3 is given by

〈2p〉8
(〈12〉〈2p〉〈p1〉)2

1

p2

〈34〉8
(〈p3〉〈34〉〈4p〉)2

=
φ6

1

φ2
2φ

2
3φ

2
4

〈12〉〈34〉2
[12]

, (8.20)

3The general KLT factorization formula relating closed and open string amplitudes reads

M(n)
closed ∼ ∑

p,p′ M(n)
open(p)M̃(n)

open(p′)eiπF (p,p′) where p and p′ are different orderings of the n ex-

ternal legs. In the n = 3 case the phase factor eiπF (p,p′) drops out yielding M(3)
closed ∼ M(3)

openM̃(3)
open.

In the α′ → 0 limit this translates to a similar relation between gravity and gauge theory amplitudes.
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− +

p q

2−

−

1+

+ − +

3−

5−

4−

p q
2−

3− 1+ 4−

5−

+ −

Figure 8.4: Two of the fifteen MHV diagrams contributing to the graviton amplitude
M(5)(1+, 2−, 3−, 4−, 5−). The remaining 12 graphs are obtained by appropriate
relabeling of the external legs of these two graphs.

where we have used λpa = −λ1aφ1 − λ2aφ2 = λ3aφ3 + λ4aφ4, with φi = λ̃iȧη
ȧ. The

remaining two diagrams are obtained by appropriately permuting the external labels.

Using momentum conservation in the form of
∑4

i=1〈yi〉[iz] = 0 (where λy and λ̃z are

arbitrary spinors), the final result can be arranged as

M(1+, 2−, 3−, 4−) =
φ6

1

φ2
2φ

2
3φ

2
4

(

〈12〉〈34〉+ 〈13〉〈42〉+ 〈14〉〈23〉
)〈42〉

[13]
. (8.21)

This vanishes by virtue of the Schouten identity 〈ij〉〈kl〉 + 〈ik〉〈lj〉 + 〈il〉〈jk〉 = 0

which is valid for any four spinors.

Moving now to M(5)(1+, 2−, 3−, 4−, 5−) we need to consider graphs of the type

given in fig. 8.4. The first diagram gives

φ6
1

φ2
2φ

2
3φ

2
4φ

2
5

〈12〉〈45〉 (〈34〉φ4 + 〈35〉φ5)
6

[12][45] (〈13〉φ1 + 〈23〉φ2)
4 , (8.22)

where we have extended both λpa and λqa off-shell using the same spinor ηȧ. This

diagram yields 12 contributions once one takes into account all inequivalent exchanges
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1+

2+ 3−

q−

Figure 8.5: The (+,+,−,−) graviton vertex. This vertex is non-holomorphic, for it
depends not only on λ but also on λ̃.

of the negative helicity external gravitons. The second graph gives

φ6
1

φ2
2φ

2
3φ

2
4φ

2
5

〈23〉〈45〉(〈12〉φ2 + 〈13〉φ3)
4

[23][45](〈14〉φ4 + 〈15〉φ5)2
, (8.23)

and two other terms obtained by permutations. Imposing momentum conservation,

with some computer assistance one can verify that the sum of the 12 contributions

coming from (8.22) and the 3 contributions coming from (8.23) vanishes as expected.

We stress here the holomorphicity of (8.19), which is the only vertex appearing in

this kind of graphs. In this regard these computations do not differ from the gluon

case, but in general non-vanishing graviton amplitudes are non-holomorphic, and it

is therefore interesting to ask whether the MHV decomposition also holds in those

cases.

8.3.2 The googly amplitude

We now come to the investigation of disconnected contribution to the amplitude

M(5)(1+, 2+, 3−, 4−, 5−). In the construction of the MHV graphs one also needs

here the 4 graviton vertex depicted in fig. 8.5. The expression for the 4 graviton
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amplitude was first obtained in [246] and is given by

M(1+, 2+, 3−, q−) =
〈3q〉8

〈12〉〈13〉〈1q〉〈23〉〈2q〉〈3q〉
[3q]

〈12〉 . (8.24)

One immediately notices that this expression is not holomorphic and this is in strong

contrast with the 3 graviton vertex (8.19) and all the gluon MHV vertices. Naively,

an off-shell extension of (8.24) would require a redefinition of λ̃ȧ whenever it appears

in an internal line. Hermiticity suggests to take the complex conjugate of (8.18) so

to have

λ̃pȧ =
paȧξ

a

〈λp, ξ〉
(8.25)

where ξ = η∗. Using this prescription one gets for the first graph in fig. 8.6

φ6
1

φ2
3

〈13〉〈45〉7[45]

〈25〉〈24〉[13](〈25〉φ2 − 〈54〉φ4)(〈24〉φ2 + 〈54〉φ4)(〈25〉φ5 + 〈24〉φ4)2
, (8.26)

and for the second graph

1

φ2
3φ

2
4(φ3φ̃3 + φ4φ̃4)

〈34〉(〈15〉φ1 + 〈25〉φ2)
7([15]φ̃1 + [25]φ̃2)

〈15〉〈25〉〈12〉2[34](〈12〉φ2 + 〈15〉φ5)(〈25〉φ5 − 〈12〉φ1)
, (8.27)

where φ̃i = λiaξ
a. The factor φ3φ̃3+φ4φ̃4 = [λ̃p, η]〈λp, ξ〉 comes from the normalization

of (8.18) and (8.25) which does not cancel in this case. One can get all the other seven

graphs by permutation of the external labels as usual. The expected result for this

amplitude is given in (8.5), which some computer algebra showed not to match with

the one following from (8.26) and (8.27). Moreover, the result depends on η. Therefore

the prescription seems to fail in this case. One possible reason for this result might
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+

1+

2+3−

5−

4−
p

5−

p

3−

4−

2+

1+

− −+

Figure 8.6: Two of the nine MHV graphs in the M(5)(1+, 2+, 3−, 4−, 5−) gravi-
ton amplitude. The other seven diagrams are obtained permuting the labels on the
external legs.

be that the heuristic proof of covariance given in [123] might not be generalizable in

the presence of non-holomorphic vertices.

8.4 Conclusion

In this last chapter of the dissertation we have presented an attempt to extrapolate

the twistor construction of [96] to ordinary gravity. We have checked that the sim-

plest non-trivial gravity quantity, namely the five graviton googly amplitude, confirms

the expectations of [96], and is indeed supported on a connected degree 2 curve in

twistor space, just as the corresponding amplitude in the gauge theory.4 There are

however important differences between the two. In the simplest, MHV case, these

stem from the fact that gravity amplitudes contain extra delta-function derivatives in

twistor space variables, or equivalently they are not holomorphic in Minkowski space

variables. It is clearly desirable to confirm that such behavior persists for further,

non-MHV graviton amplitudes.

In a complementary approach to the computation presented in section 8.2, we

4The computation does not exclude additional contributions coming from disconnected, lower
degree curves.
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have further tried to calculate tree level graviton amplitudes by using MHV subam-

plitudes as vertices (computed from the gauge theory quantities via KLT relations,

and suitably continuing them off-shell), in the spirit of the prescription given in [123]

for gauge theories. Although it is possible that such a generalization might be fea-

sible in principle, it is clear from our results that novel ingredients are necessary to

correctly reproduce non-trivial gravity amplitudes.

We nevertheless find encouraging that two graviton amplitudes M(4)(+,−,−,−)

and M(5)(+,−,−,−,−) vanish when computed from MHV vertices. We are aware

that these are very special cases. Indeed, M(n)(+,−, . . . ,−) amplitudes involve only

trivalent MHV vertices, which are holomorphic even in the graviton case. Unfortu-

nately, the four-valent graviton MHV vertex is not holomorphic. We believe that this

non-holomorphicity is an important reason for the failure of the MHV prescription to

correctly reproduce the 5 graviton googly amplitude discussed in this note.

We must emphasize that the twistor string theory underlying an eventually suc-

cessful version of such a construction might have nothing to do with the one of [96],

or even there might be no such theory at all. Indeed, the closed string sector of the

model of [96] is expected to be a kind of instanton expansion around N = 4 self-dual

superconformal gravity. General Relativity is most definitely not conformally invari-

ant, and therefore it should be related to a different model. The first computation

presented in this chapter seems to suggest that there could be some localization in

twistor space, and the disconnected prescription could provide an explicit and com-

putable “instanton” expansion around some “self-dual” theory. In this respect, we

think that the non-holomorphicity of higher MHV vertices could provide a hint about

which could be the right theory to expand around.
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Appendix A

The string Hagedorn temperature

In this appendix we recall the computation of the Hagedorn temperature in flat space

both for the bosonic string and the superstring on the light-cone.1

One can compute the Hagedorn temperature from the entropy in the microcano-

nical ensemble

S(E) = ln Ω(E) , (A.1)

where the Boltzmann constant kB is set to 1, and Ω(E) is the number of microstates

accessible to the system at energy E. Viewing the gas of strings as a collection

of harmonic oscillators, the energy E is related to the number operator N of the

oscillators, and Ω(E) is given by the partition of N , that is by the set of positive

numbers that add up to N .

We start with the bosonic open string in the light-cone gauge. We then need to

compute p24(N), the partition ofN for oscillators that can vibrate in the 24 transverse

light-cone directions. This is given, for large N , or, equivalently, for high energy E,

1The bosonic case is presented, for example, in chapter 16 of [248]. For a general review of string
thermodynamics see [249][250].
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by the approximate expression [248]

p24(N) ≃ e4π
√
N . (A.2)

The bosonic open string spectrum of strings with no spatial momentum is given by

the mass formula α′M2 = N − 1 ≃ N , from which follows E ≃
√

N/α′. Then one

obtains from eq. (A.1)

S(E) = 4π
√
α′E , (A.3)

and the (inverse of the) Hagedorn temperature

1

TH
=
∂S

∂E
= 4π

√
α′ . (A.4)

This result means that, in this high energy approximation, one can arbitrarily increase

the energy of the gas of strings, while maintaining their temperature fixed and equal to

the limiting temperature TH .2 For closed bosonic strings with no spatial momentum,

upon enforcing the level matching condition N = Ñ , one has α′M2 = 4(N−1) ≃ 4N ,

and E ≃ 2
√

N/α′. Now the number of states is Ω(E) = p24(N) p24(Ñ), and thus the

entropy and Hagedorn temperature are exactly as in eqs. (A.3) and (A.4).

For open superstrings in the light-cone, one needs the partition of N for oscillators

with 8 bosonic and 8 fermionic modes

p8|8(N) ≃ e2π
√

2N . (A.5)

2Sometimes the Hagedorn temperature can alternatively be interpreted as the critical temperature
of a phase transition.
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For large N , the energy is E ≃
√

N/α′ in both the NS and the R sector and one has

TH =
1

2π
√

2α′
, (A.6)

so that the Hagedorn temperature for the superstring is a factor of
√

2 larger than in

the bosonic case. The same is true for the closed superstring.
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Appendix B

Alternative derivation of eq. (4.43)

The expression (4.43) for the difference Sb(x) − Sf (x) can be obtained from a com-

pletely different procedure than the one in chapter 4, using the formula

Sb(x) − Sf(x) = − d

dx

(

x2

∫ π/x

0

dt′
∫ t′

0

dt

∞
∑

p=1

K0 (xp) cos pxt

)

. (B.1)

In virtue of the fact that [179]

∞
∑

p=1

K0 (xp) cos pxt =
1

2

(

γ + ln
x

4π

)

+
π

2x
√

1 + t2
+

+
π

2

∞
∑

l=1

(

1
√

x2 + (2lπ − tx)2
− 1

2lπ

)

+
π

2

∞
∑

l=1

(

1
√

x2 + (2lπ + tx)2
− 1

2lπ

)

,

eq. (B.1) becomes

Sb(x) − Sf(x) = −π
2

4x
− π

2
+
π

2

(√
x2 + π2

x
+

x

π +
√
x2 + π2

)

−

−πx
∞
∑

l=1

(

1

2lπ +
√

x2 + (2lπ)2
− 1

(2l + 1)π +
√

x2 + (2l + 1)2π2

)
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=
π2

4x
+
π

2
− πx

∞
∑

l=0

(

1

2lπ +
√

x2 + (2lπ)2
− 1

(2l + 1)π +
√

x2 + (2l + 1)2π2

)

=
π2

4x
− π

2
− πx

∞
∑

k=1

(−1)k

πk +
√
x2 + π2k2

. (B.2)

Expanding for small values of x, it is easy to prove that eq. (B.2) becomes precisely

eq. (4.43)

Sb(x) − Sf(x) =
π2

4x
− π

2
+ π

∞
∑

k=1

(−1)k

k!
√
π

Γ

(

k − 1

2

)

(x

π

)2k−1

T2k−1 , (B.3)

where Ts = (21−s − 1) ζ(s) and T1 = − ln 2 [251].
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Appendix C

Spherical harmonics and

orthogonal polynomials

In this appendix we collect some facts about spherical harmonics and orthogonal poly-

nomials that we have used in the computation of the correlators between giant Wilson

loops and chiral primaries in section 6.2. We follow the treatments of [252][253].

Spherical harmonics in d dimensions are eigenfunctions of the Laplacian on the

unit d-sphere

∇2
(d)Y

I(Ω) = λY I(Ω) , (C.1)

where the Laplacian is

∇2
(d) =

1√
det g

∂i
√

det g gij ∂j , (C.2)

with the metric given by gij = diag(1, sin2 θd(1, sin
2 θd−1(. . .))). The integer multi-
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index I = (ld, . . . , l1) satisfies

ld ≥ ld−1 ≥ · · · ≥ l2 ≥ |l1| . (C.3)

The general solution to eq. (C.1) is

Y ld,...,l1(θd, . . . , θ1) =
ei l1θ1√

2π

d
∏

n=2

nP̄
ln−1

ln
(θn) , (C.4)

where we defined

nP̄
l
L(θ) = nc

l
L(sin θ)

−(n−2)/2P
−(l+(n−2)/2)
L+(n−2)/2 (cos θ) . (C.5)

In this expression P −m
n (x) is the Legendre function of the first kind and the constant

nc
l
L =

[

(2L+ n− 1)(L+ l + n− 2)!

2(L− l)!

]1/2

(C.6)

is chosen to ensure the orthonormalization condition

∫

µ(Ωd) Y
IY I′ = δII

′
, (C.7)

where µ(Ωd) is the measure over Sd. The integration over Sd−1 selects only SO(d)

invariant harmonics
∫

µ(Ωd−1)
∑

I

Y I =
∑

ld

Y ld, 0,...,0 . (C.8)

The eigenvalue λ depends only on ld ≡ ∆ because of the O(d+1) symmetry of the

problem and it can be found by studying the action of the Laplacian on SO(d − 1)
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invariant spherical harmonics

(

1

sind−1 θd

∂

∂θd
sind−1 θd

∂

∂θd

)

Y ∆, 0(Ω) = λ∆Y
∆, 0(Ω) . (C.9)

After the change of variable x = cos θd, this is recognized to be the Gegenbauer

equation

(

(1 − x2)
∂2

∂x2
− d x

∂

∂x

)

Y ∆, 0(x) = λ∆Y
∆, 0(x) . (C.10)

The solution to this equation is

λ∆ = −∆(∆ + d− 1) , Y ∆, 0(x) = N∆ C
(d−1

2 )
∆ (x) , (C.11)

where C
( d−1

2 )
∆ are Gegenbauer polynomials and the constant N∆ can be obtained from

the orthonormality of the Y ∆, 0’s

N∆ =

[

∆!(2∆ + d− 1)
[

Γ
(

d−1
2

)]2
Γ
(

d
2

)

24−dπ
d+2
2 Γ(∆ + d− 1)

]1/2

. (C.12)

The Gegenbauer polynomials C
(λ)
∆ (x) are a generalization of the Legendre poly-

nomials and can be obtained from the following generating function

1

(1 − 2xt+ t2)λ
=

∞
∑

∆=0

C
(λ)
∆ (x) t∆. (C.13)

We list the first few of them

C
(λ)
0 (x) = 1 ,
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C
(λ)
1 (x) = 2λx ,

C
(λ)
2 (x) = −λ+ 2λ(1 + λ)x2 ,

C
(λ)
3 (x) = −2λ(1 + λ)x+

4

3
λ(1 + λ)(2 + λ)x3 . (C.14)

They satisfy the normalization condition

∫ 1

−1

dx(1 − x2)λ−1/2
[

C
(λ)
∆

]2

= 21−2λπ
Γ(∆ + 2λ)

(∆ + λ)Γ2(λ)Γ(∆ + 1)
(C.15)

for λ > −1/2.

We have used the following formula for the derivative of a Gegenbauer polynomial

(1 − x2)∂xC
(λ)
∆ (x) = −∆ xC

(λ)
∆ (x) + (∆ + 2λ− 1)C

(λ)
∆−1(x) , (C.16)

and the following recurrence relation

∆C
(λ)
∆ (x) = 2(∆ + λ− 1)xC

(λ)
∆−1(x) − (∆ + 2λ− 2)C

(λ)
∆−2(x) . (C.17)

We have also used that

C
( d−1

2 )
∆ (1) =

(∆ + d− 2)!

∆!(d − 2)!
. (C.18)
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