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Abstract of the Dissertation

Covariant quantization
of the superstring

by

Kiyoung Lee

Doctor of Philosophy

in

Physics

Stony Brook University

2007

Quantization of the manifestly space-time supersymmetric string

theory has been possible only in the light-cone gauge. Covari-

ant quantization is expected to be a stronger calculational tool

to investigate various aspect of superstring theory. But covariant

quantization of the superstring has been unsolved for over 20 years

mainly because of the presence of infinite tower of ghosts. We give

here new BRST operator of the superstring in which we success-

fully treat all the needed infinite tower of ghosts and using it we

show how to calculate some lower points amplitudes in a manifestly

covariant manner.
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Chapter 1

1st quantized BRST

1.1 Prologue

The advantages of supersymmetry are somewhat obscured in the Ramond-

Neveu-Schwarz formalism, as is the case for supersymmetric particle theories

when not formulated in superspace. For example, cancellations of divergences

are not obvious, and amplitudes with many fermions are difficult to calculate.

Some of these problems were resolved with the Green-Schwarz formalism,

but it proved difficult to quantize except in the lightcone gauge, where some

manifest supersymmetry is retained in trade for the loss of some manifest

Lorentz invariance. (Similar remarks apply to the Casalbuoni-Brink-Schwarz

superparticle.) For example, higher-point diagrams of any type are difficult to

calculate because longitudinal polarizations and momenta introduce nonlinear-

ities, and in particular cancellation of anomalies (or any ε-tensor contribution)

is difficult to check.

Covariant quantization of the Green-Schwarz action was attempted [1]. A
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class of derivative gauges was introduced that led to a pyramid of ghosts.

Counting arguments showed that the conformal anomaly canceled, and sum-

mation of ghost determinants agreed with the lightcone result due to the “iden-

tity” 1−2+3−... = 1/4. Unfortunately, due to a noninvertible transformation

the gauge-fixed action found by this method proved not to be invariant under

the Becchi-Rouet-Stora-Tyutin transformations derived by the same method

[2]. This problem already appeared for the Casalbuoni-Brink-Schwarz super-

particle.

In the meantime, an alternative approach to the quantum superparticle was

developed [3], based on adding extra dimensions to the lightcone, a method

that had successfully given free gauge-invariant actions for arbitrary repre-

sentations of the Poincaré group in arbitrary dimensions [4]. This approach

directly gave a BRST operator with the right cohomology. Using the rela-

tion between this BRST operator and Zinn-Justin-Batalin-Vilkovisky first-

quantization [5], a manifestly supersymmetric classical mechanics action for

this superparticle followed, including a BRST-invariant gauge-fixed action [6].

A crucial difference from the previous method was that “nonminimal” fields

were required: There was necessarily a “pyramid” of ghosts, not just a linear

tower. However, because of a required Fierz identity, the method of adding

extra dimensions could not be directly applied to the lightcone Green-Schwarz

superstring.

Various alternatives for a manifestly supersymmetric superstring have since

been tried; the most successful is the pure spinor formalism [7]. It has proven

somewhat more useful than RNS or lightcone GS approaches in calculating

tree amplitudes [8]; its application to loop amplitudes is in progress [9]. If
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the formalism for all loops is developed, it should provide a simpler proof of

finiteness, which previously required a combination of RNS and lightcone GS

results (and equivalence of the two approaches). The pure spinor approach

has two main shortcomings:

The first problem is the lack of a manifestly supersymmetric (and Lorentz

covariant) path-integration measure. This is a problem in all known super-

space approaches to first-quantizing superparticles and superstrings. One con-

sequence is that Green functions (or the effective action in the superparticle

case) are not manifestly supersymmetric off shell. Another is that gauge fixing

the string field theory (with ghost fields) is not simple. We will not address

this problem here.

The other problem is that the pure-spinor BRST operator lacks the c and

b ghosts associated with the usual 2D coordinate invariances (and their associ-

ated Virasoro constraints). This is directly related to the lack of a correspond-

ing action with worldsheet metric; the action is known only in the conformal

gauge. Furthermore, the moduli that are the remnants of the metric in the

conformal gauge must be inserted by hand. Another consequence of the lack

of these ghosts as fundamental variables is that they must be reconstructed

as complicated composite operators for use as insertions in loop diagrams.

The (gauge-fixed) action, BRST operator, moduli, and operator insertions are

thus separate postulates of the formalism, rather than all following from a

gauge-invariant action as in other formalisms.

In this paper we will formulate the superstring with the ghost structure

indicated by the original attempt of [1] and the successful treatment of the

superparticle in [3]: the usual c and b ghosts, and a pyramid of spinors labeled
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by ghost number and generation. The main result is the BRST operator (from

which the gauge-invariant action follows), which takes the form

Qsstring = U

( ∫
c T + 1

4
π̄γ̃⊕π|>

)
U−1 (1.1)

with

U = e
∫

θ̃D ei
∫

Ra|>P
(±)
a e

∫
(R⊕+θγ̃⊕θ/2)|>b (1.2)

where T is essentially the energy-momentum tensor, D and P are the usual

“covariant derivatives” in the affine Lie algebra of the classical superstring, θ̃ is

a certain linear combination of ghost θ’s, Ri are certain expressions quadratic

in θ’s, π is conjugate to θ, γ̃⊕ is a ghost partner to the gamma matrices γa

(which act only on θ and π), and |> picks out the ghost contributions. The

gauge-fixed Hamiltonian is just {Q,
∫

b} =
∫

T . The unitary transformations

are necessary because they change the Hilbert space, and so cannot be dropped:

A simple analog is the BRST operator for the spinning (Dirac) particle in an

external gauge field:

QDirac = ecγa∇a/γ⊕(γ⊕2b)e−cγa∇a/γ⊕ = γ⊕2b + γ⊕γa∇a − 1
2
c(γa∇a)

2

where 1/γ⊕ doesn’t exist on the correct Hilbert space, but cancels when the

“unitary” transformation is evaluated.

We begin in chapter 2 by reviewing the free superparticle, which has al-

ready been quantized (and its BRST cohomology checked) in this approach.

Because of the similarity of the algebra of super Yang-Mills [10] to that of the

superstring [11], in chapter 3 we couple this superparticle to external super
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Yang-Mills superfields. We use an almost identical method to derive the BRST

operator for the superstring in section 4. We finish with our conclusions in

chapter 5. (Mathematical details are relegated to the Appendix A.)
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1.2 Review of free superparticle

We will start from the free super BRST operator derived in [3]. The generic

BRST operator for arbitrary fields (massless, or massive by dimensional reduc-

tion) is constructed by starting with a representation of the lightcone SO(D−2)

(which defines the theory) and adding 4 bosonic and 4 fermionic dimensions

to obtain a covariant representation, including all auxiliary fields and ghosts.

(This is somewhat redundant for bosons, but necessary for fermions.) The

resulting generators SAB of OSp(D,2|4) spin carry vector indices A,B that are

separated into the usual SO(D−1,1) indices a, b and the rest as

A = (+,−, a; µ, µ̃) = (+,−, i), µ = (⊕,ª) (1.3)

where +,− belong to an SO(1,1) subgroup and µ, µ̃ to two Sp(2)’s, of which

only the diagonal subgroup will be useful. The BRST operator then takes the

generic form

Q′
free = 1

2
c ¤ + S⊕a∂a + S⊕⊕b + S⊕̃− ( ¤ = ∂a∂a ) (1.4)

In the case of the superparticle, the spin operators are

SAB = − 1
4

η̄Γ[AΓB}η (1.5)

in terms of self-conjugate variables η, which arose from the usual self-conjugate

SO(D−2) fermionic spinor of lightcone superspace. We decompose the OSp(D,2|4)

gamma-matrices ΓA in terms of those of the subgroup SO(1,1) and those (γ)

6



of the subgroup OSp(D−1,1|4) as

Γi =




γi 0

0 −γi


 , Γ+ =




0 −I

0 0


 , Γ− =




0 0

−I 0


 (1.6)

with (anti)commutation relations

{γa, γb} = − 2ηab, ηab = (−+ + + · · · )

{γa, γµ} = {γa, γ̃µ} = 0 (1.7)

[γµ, γν ] = [γ̃µ, γ̃ν ] = 2Cµν , [γµ, γ̃ν ] = 0 (1.8)

where Cµν is the Sp(2) metric with convention

C⊕ª = Cª⊕ = i = − Cª⊕ = − C⊕ª (1.9)

and we have denoted γµ̃ ≡ γ̃µ for legibility. The generalization of the fermionic

superspace coordinate θ and its conjugate momentum appear through the

analogous decomposition

η =




π

θ


 , π =

∂

∂θ
(1.10)

We begin with a chiral (Weyl) spinor η, and multiplication by any Γ changes

the chirality: not just Γa (γa) as usual, but also Γ±, which shows that π and

θ have opposite chirality (as expected, since they are conjugate), and Γµ (γµ).

This BRST operator is supersymmetric and also has an infinite pyramid
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Figure 1.1: infinite pyramid of ghosts

of ghosts. To see these ghosts we need to define creation and annihilation

operators from γµ and γ̃µ as follows:

γµ = aµ + a†µ , γ̃µ = i(aµ − a†µ) (1.11)

[aµ, a†ν ] = Cµν (1.12)

Then θ can be expanded giving the usual physical supersymmetry fermionic

coordinate θ0 at the top of the infinite pyramid of ghosts:

8



|p,q〉 ≡ i
(p+q)(p+q+1)

2
1√

p!
√

q!
(a†⊕)p(a†ª)q |0〉

〈p,q| ≡ (−i)
(p+q)(p+q+1)

2
1√

p!
√

q!
〈0| (a⊕)p(aª)q

〈p,q|r,s〉 = δr
pδ

s
q

θp,q ≡ 〈θ|p,q〉 = θp,q†

πp,q ≡ 〈p,q|π〉 (1.13)

where

θ0 ≡ θ0,0. (1.14)

A power of i has been inserted to make θp,q real: The product of n real fermions

gets a sign (−1)n(n−1)/2 under Hermitian conjugation, because of the reverse

ordering. The ghost a’s and a†’s are fermions, because they take fermions to

bosons, and vice versa (in contrast to ordinary γ matrices, which take fermions

to fermions). Thus θp,q is the product of p+q+1 fermions, including 〈θ| itself.
Then πp,q is not necessarily Hermitian, but has been defined to give 0 or 1

in graded commutators. (But πp,q is always Hermitian, like |π〉 and π0.) We

will sometimes also use a notation where θp,q carries instead p ⊕’s and q ª’s:

For example, θ1,0 ≡ θ⊕. Note that the ghosts alternate in both statistics and

chirality with each ghost level.

So in superspace notation the free super BRST operator is

Q′
free = 1

2
c ¤ − 1

2
π̄γ⊕2θb + 1

4
π̄γ̃⊕π − i

2
π̄γ⊕/pθ, /p ≡ − i∂aγ

a (1.15)
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We can make a unitary transformation on Q′
free to give a convenient form with

which to work. Specifically, the unitary transformation

Qfree = U0Q
′
freeU

†
0 (1.16)

with

U0 = eθ̄γ̃⊕θb/2 (1.17)

gives Qfree in terms of the supersymmetry generator q0, spinor covariant

derivative d0 and all their nonminimal versions:

Qfree = 1
2
c ¤− 2π̄a†⊕a⊕θb− i

2
q̄a†⊕d (1.18)

q = π − /pθ, d = π + /pθ (1.19)

Actually, q0 is the only part of q that does not appear in this form of the

BRST operator: Because of the creation and annihilation operators, θ0 and

π0 appear only as their supersymmetry invariant combination d0. Thus the

supersymmetry generator that anticommutes with this form of Q is just the

usual one q0. (This can also be derived in a straightforward way by starting

with the lightcone q.) Then the supersymmetry generator for Q′
free can be

obtained by inverting the unitary transformation on q0:

q′0 = U †
0q0U0

= π0 − /pθ0 − θ⊕b (1.20)

10



1.3 Interacting superparticle

The (D=3,4,6,10) superparticle BRST operator in a super Yang-Mills back-

ground (with constant superfield strength) is closely related to the superstring

BRST operator. The introduction of the SYM background can be established

by gauge covariantizing the super covariant derivatives pa and d0α:

pa −→ ∇a (1.21)

d0 −→ ∇0 (1.22)

Then the graded algebra among the covariant derivatives is [10]

[∇a,∇b] = Fab (1.23)

{∇0α,∇0β} = 2γaαβ∇a (1.24)

[∇0α,∇a] = γaαβW β (1.25)

The Bianchi identity from the above algebra gives

γaαβ[∇a,W β] = 0 (1.26)

and the D=3,4,6,10 dimensional gamma matrix (which is symmetric in those

cases) identity

γa(αβγa
γ)

δ = 0. (1.27)

We begin at linear order in the fields, where the background satisfies the

11



equations of motion

{∇α,W α} = 0 (1.28)

[∇a, Fab] = 0 (1.29)

1.3.1 Constant YM background

One way to build this interacting super BRST operator is by considering an

ordinary constant YM background first, and next supersymmetrizing it by

including a constant fermionic field strength (not yet superfield)
◦
wα. Then we

extend the result to a nonconstant SYM background in the next subsection.

Making the gauge choice

◦
Aa = i

2
xb

◦
F ba

for constant field strength, the super BRST operator can be written in the

form
◦
Q′

Y MB = Q′
free + 1

2

◦
F abV

ab (1.30)

We then find

V ab = i
2
cx[apb] + i

2
R⊕R[apb]− (c+ R⊕) π̄γabθ + 1

4
(x +R)[aπ̄γ⊕γb]θ (1.31)

in terms of an expression Ri defined below, where we use the notation

C [aDb] ≡ CaDb − CbDa (1.32)

γab ≡ − 1
4
γ[aγb] (1.33)

12



We can also write

V ab = V ⊕ab

V ijk = i(xixj + RiRj)pk + 1
2
(x + R)(iπ̄γj]γkθ

x⊕ = c, p⊕ = 0 (1.34)

(There is further antisymmetrization in the last two indices upon contraction

with F , following the graded symmetrization in the first two indices shown

above: The tensor V ijk has mixed symmetry.)

The expression Ri is given by

Ri(θ) ≡ 1
2
θ̄Oγiθ (1.35)

where the operator O is defined to satisfy

[γ⊕,O] = 0

{γ̃⊕,O} = 2γ⊕

[a†⊕a⊕ − a†ªaª,O] = 0

〈0|Oγ̃⊕ = −i〈0|γ̃⊕ = 〈0|γ⊕ (1.36)

As an explicit form of O we find

O =
1

2

{
1

γ̃⊕
, γ⊕

}
(1.37)

13



where

1

γ̃⊕
=

∞∑
p=0

[
ΘN⊕−Nª

N⊕!

(N⊕ + p + 1)!
ia⊕(ia⊕aª)p

− a†ª(−ia†⊕a†ª)pΘNª−N⊕
Nª!

(Nª + p + 1)!

]
(1.38)

with

Θx =





1 x ≥ 0

0 x < 0
, Nµ = a†µaµ

(not summed over µ). This representation satisfies (1.36) if we regularize

indefinite norm states. (See the Appendices for details.)

1.3.2 Constant SYM background

From this
◦
Q′

Y MB we can construct a BRST operator for a supersymmetric

constant SYM background
◦
Q′

SY MB in the form

◦
Q′

SY MB = Q′
free + 1

2

◦
F abV

ab +
◦
wαVα (1.39)

In addition to first-quantized transformations we take q′0 (1.20) to also generate

the second-quantized transformations of
◦
wα and

◦
F ab

{q′0β,
◦
wα} = γab

β

α ◦
F ab (1.40)

{q′0,
◦
F ab} = 0 (1.41)

14



so that they cancel up to a gauge transformation (generated by Q′
free):

{q′0,
◦
Q′

SY MB} = {Q′
free, Ψ} (1.42)

We then have

1
2

◦
F ab {q′0β, V ab} − ◦

wα[q′0β, Vα] = −
◦
F ab γab

β

α
Vα + {Q′

free, Ψβ} (1.43)

This is true if we define Vα by

{q′0β, V ab}|γab ≡ − 2γab
β

α Vα (1.44)

which means we define Vα from the left-hand side by selecting only terms with

an explicit γab.

With this definition we find Vα and Ψα

Vα ≡ − (c + R⊕) q′0α (1.45)

Ψα ≡ − i
2
(xb + Rb)(γa

αβθβ
0

◦
F ab − 2γbαβ

◦
wβ) + 1

2
(γb

αβθβ
0 + γb

αβ θ̃β
0 )iRa

◦
F ab (1.46)

where

θ̃ = − i〈0|O|θ〉 = 〈0|eia⊕aª − 1|θ〉 (1.47)

which contains all nonminimal ghost-number-zero ghosts.

To obtain a gauge independent and explicitly supersymmetric expression

we perform a unitary transformation

U1 = eΛ
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where

Λ = iRb ( θ0γb
◦
w + θ̃γb

◦
w + 1

2
θ0γbγ

acθ0

◦
F ac + 1

2
θ̃γbγ

acθ0

◦
F ac

+ 1
2
θ̃γbγ

acθ̃
◦
F ac − 1

2
θ0γ

cθ̃
◦
F bc)

− θ0γ
bθ̃ ( 1

3
θ0γb

◦
w + 2

3
θ̃γb

◦
w + 1

4
θ0γbγ

acθ0

◦
F ac

+ 3
4

θ̃γbγ
acθ0

◦
F ac + 5

12
θ̃γbγ

acθ̃
◦
F ac) (1.48)

After another unitary transformation U0 (1.17),
◦
Q′

SY MB becomes (at the lin-

earized level)

◦
QSY MB = 1

2
(c + R⊕ + 1

2
θ̄γ̃⊕θ )|>( ¤ − W∇0 − π̄γabθ|> Fab )

− 2 π̄a†⊕a⊕θ|>b + 1
4

π̄γ̃⊕π|>
− i

2
(∇a + θ̃γaW + 1

2
θ̃γa{W,∇0}θ̃ ) π̄γ⊕γaθ|>

− 1
2

π̄⊕∇0 − 1
2

(∇a + θ̃γaW + 1
2

θ̃γa{W,∇0}θ̃ − i
2
Rb|>Fab) θ̄⊕γa∇0

− 1
3

q̄⊕γaθ̃ θ̃γaW + 5
24

q̄⊕γaθ̃ θ̃γa{W,∇0}θ̃

+ i
4

q̄⊕γbθ̃ Ra|> Fab

+ 1
4

[ i∇bR
b|>,−i∇a π̄γ⊕γaθ|>]

+ R⊕|>Pa(θ̃γ
aW + 1

2
θ̃γa{W,∇0}θ̃)

+ 1
2·3!

[
i∇cR

c|>, [ i∇bR
b|>,−i∇a π̄γ⊕γaθ|>]

]
(1.49)

where |> means that we drop θ0 contributions, and
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¤ = −∇a∇a (1.50)

∇a = pa + Aa (1.51)

∇0α = π0α + (/pθ0)α + Aα (1.52)

q⊕α = π⊕α + (/pθ⊕)α (1.53)

The superfields have the θ0 expansions

Fab =
◦
F ab (1.54)

Wα =
◦
wα + (γabθ0)

α
◦
F ab (1.55)

Aa =
◦
Aa + θ̄0γa

◦
w + 1

2
θ̄0γaγ

bcθ0

◦
F bc (1.56)

Aα = (γaθ0)α

◦
Aa + 2

3
(γaθ0)α θ̄0γa

◦
w + 1

4
(γaθ0)α θ̄0γaγ

bcθ0

◦
F bc (1.57)

in the gauge

◦
Aa = i

2
xb

◦
F ba (1.58)

◦
Aα = 0 (1.59)

used above, but (1.49) is manifestly gauge independent and supersymmetric.

1.3.3 Arbitrary SYM background

After making a final unitary transformation

U3 = e(R⊕+θγ̃⊕θ/2)|>b
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the above BRST operator can be written in the simple form

Q′′
SY MB = U

[
1
2
c
(

¤−W∇0 − π̄γabθ|> Fab

)
+ 1

4
π̄γ̃⊕π|>

]
U−1

U = eθ̃∇0 eiRa|>∇a e(R⊕+θγ̃⊕θ/2)|>b (1.60)

which can be applied directly to the case of an arbitrary, nonlinear SYM

background.

In fact, the nilpotence of this BRST operator does not seem to require that

the background be on shell. This is contradictory to the usual result that any

description of linearized “quantum” Yang-Mills in a Yang-Mills background

must have the background on shell, since nonabelian gauge invariance relates

kinetic and interaction terms [12]. (Similar remarks apply to any nonabelian

gauge theory, such as gravity or strings.) This paradox is probably due to the

fact that we have not required an “integrability” condition on the background:

For a generic self-interacting field theory, an action (or ZJBV action) of the

form

S = 1
2
φjφiKij + 1

6
φkφjφiVijk + ... (1.61)

results in the kinetic operator (or BRST operator) in a background

Qij = Kij + φkVkij + ... (1.62)

From S we can see that K, V, ... must be totally (graded) symmetric. In Q,

this condition on K is seen to follow simply from hermiticity, but the condition

on V is not so obvious. Since we are ultimately concerned with the BRST

18



operator for the superstring without background, and are using the SYM case

in a background only as an analogy, we will not consider this obscurity further

here.

As explained in the Introduction, in the above expression for the BRST

operator (1.60) we are not allowed to remove the exponential factors, since that

would lead to a trivial result. This fact can be understood already in the free

case: The BRST operator that would result from dropping the background and

exponentials has the wrong cohomology, since the remaining two terms have

no dependence on θ0, so one would obtain an ordinary superfield satisfying

only the Klein-Gordon equation. In this case the exponentials are required

for Q to be regularizable: Certain poorly defined quantities cancel upon their

expansion. (See Appendices A.2-A.3.)
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1.4 Superstring

The superstring is described by a 2D field theory whose algebra of covariant

derivatives (currents) resembles that of interacting particle covariant deriva-

tives for a constant SYM background:

{D(±)
α (1), D

(±)
β (2)} = 2δ(2− 1)γa

αβP (±)
a (1)

[D(±)
α (1), P (±)

a (2)] = 2δ(2− 1)γaαβΩ(±)β(1)

{D(±)
α (1), Ω(±)β(2)} = ±iδ′(2− 1)δβ

α

[P (±)
a (1), P

(±)
b (2)] = ±iδ′(2− 1)ηab

[P (±), Ω(±)] = {Ω(±), Ω(±)} = 0 (1.63)

where

D(±)
α = π0α + (γaθ0)αP̂ (±)

a ± i1
2
(γaθ0)αθ0γaθ

′
0

P (±)
a = P̂ (±)

a ± iθ0γaθ
′
0

Ω(±)α = ±iθ′0 (1.64)

and

P̂ (±) = 1√
2

(
i

δ

δX
±X ′

)
(1.65)

in the Hamltonian formalism correspond to the left(right)-moving combina-

tions of P0 and P1 of the first-order formalism after using the equation of

motion for P1 (see below). (In the definitions above, (±)’s on π and θ are

understood.) Also, ′ means a σ derivative as usual. D, P, Ω (anti)commute
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with the supersymmetry generator

qα = q(+)
α + q(−)

α , q(±)
α =

∫
π0α − (γaθ0)αP̂ (±)

a ∓ i1
6
(γaθ0)αθ0γaθ

′
0 (1.66)

So we can see the analogy between the covariant derivatives of the free

superstring and the superparticle with SYM background.

(Dα, Pa, Ω
α) ↔ (∇α,∇a,W

α) (1.67)

as well as the less precise analogy

′ ↔ Fab (1.68)

1.4.1 BRST

Now we can guess the result for the superstring BRST operator from the result

of the superparticle in a constant SYM background:

Qsstring = U

( ∫
c T + 1

4
π̄γ̃⊕π|>

)
U−1 (1.69)

where

U = e
∫

θ̃D e
∫

iRa|>Pa e
∫
(R⊕+θγ̃⊕θ/2)|>b (1.70)

and Qsstring = Q
(+)
sstring + Q

(−)
sstring. From now on we will suppress the σ-integral

symbol for convenience. Since θ0 and π0 appear only in D, P , and T , this Q

is automatically supersymmetric under the above supersymmetry generator.

There are two major differences in T as compared to the superparticle:
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Firstly the string has a c′b ghost contribution. Secondly the superstring has

ΩD as an analog of W∇0 − π̄γabθFab, from the correspondence above. So our

trial form of T is

T (±) = 1
2

¤± ∓ i
{
c′b + θ̄′π + w±(θ̄π)′

+A±
1

[
θ̄(a†⊕a⊕ − a†ªaª)π

]′
+ A±

2

[
θ̄(a†⊕a⊕ + a†ªaª)π

]′ }
(1.71)

where ¤± = −P̂ (±)aP̂
(±)
a . (The true energy-momentum tensor is actually

T ∓ i(cb)′.) The constants w±, A±
1 and A±

2 will be determined by 3 conditions:

(1) The conformal weight of π̄γ̃⊕π should be 1. (2) The conformal anomaly

should cancel in D = 10. (3) θ0 should have conformal weight 0 due to

supersymmetry. (The A1 term is ghost number, while the A2 term is ghost

level.)

Satisfying these constraints we find

A±
1 = 1, A±

2 = w± = 0

⇒ T (±) = 1
2

¤± ∓ i
{

c′b + θ̄′π +
[
θ̄(a†⊕a⊕ − a†ªaª)π

]′ }
(1.72)

and the gauge-fixed Hamiltonian is {Q,
∫

b(+) + b(−)} =
∫

T (+) + T (−).

This Q has four interesting quantum numbers:(1) ghost number; (2) con-

formal weight, which is “momentum number” (1 for P, b, π, ′) minus ghost

number; (3) (10D) engineering dimension (−1 for x, c, −1
2

for θ, 2 for ′); and

(4) a mysterious “field weight”, which is 1 for all fields, but for which we at-

tribute a 1 for γ̃⊕. (Thus, Q is quadratic in momenta and primes, and cubic

in fields and γ̃⊕’s.)
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From now on let’s concentrate on one chirality. After expanding the expo-

nential factor and regularizing (as explained in Appendix A.3) we find

Q
(+)
sstring =

(
c + R⊕ + 1

2
θ̄γ̃⊕θ

) |>
× (

1
2
¤+ − ic′b − iθ̄′π − i[θ̄(a†⊕a⊕ − a†ªaª)π]′

)

− 2 π̄a†⊕a⊕θ|>b + 1
4

π̄γ̃⊕π|>
− i

2

(
P̂a + iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R′
a|>

)
π̄γ⊕γaθ|>

− 1
2

π̄⊕
(
π0 + (γaθ0)P̂a + i1

2
(γaθ0)θ0γaθ

′
0

)

− 1
2

(
P̂a + iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R′
a|>

)

× θ̄⊕γa
(
π0 + (γbθ0)P̂b + i1

2
(γbθ0)θ0γbθ

′
0

)

− 1
3

q̄⊕γaθ̃
(
2iθ̃γaθ

′
0 + i5

4
θ̃γaθ̃

′ − 3
4

R′
a|>

)

+ 1
2

(
P̂a + iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2
R′

a|>
)2

R⊕|>
+ ic′b

(
R⊕ + 1

2
θ̄γ̃⊕θ

) |> (1.73)

This Q satisfies Q2 = 0, as can be checked directly.

1.4.2 Constraints

The constraints of the gauge-invariant action (see following subsection) can be

obtained directly from the BRST operator by taking its (graded) commutator

and keeping just ghost-number-zero terms: The Virasoro constraints A follow

as usual from b (with the gauge-fixed action from
∫

b), while generalizations B
of the γ·pd constraint (κ symmetry generator) follow from θp,p+1, and first-class
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generalizations E of the second-class constraint d follow from πp,p+1 [6]:

A = 1
2
¤+ − i

∞∑
q=0

θ̄′q,qπq,q (1.74)

B0 = γaΠPa(d 0 + π1,1)− 2θ1,1A+ 2ϑ0(1
2
P2 +A) (1.75)

Bp = γaΠPa(π
p,p + πp+1,p+1) + 2(θp,p − θp+1,p+1)A+ 2ϑp(1

2
P2 +A) (1.76)

E0 = d 0 − π1,1 + γaΠPaθ
1,1 (1.77)

Ep = Π(πp,p − πp+1,p+1) + γaΠPa(θ
p,p + θp+1,p+1) (1.78)

where

Pa ≡ P̂a + iθ0γaθ
′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R̃′
a|>

d 0 ≡ π0 + γaP̂aθ0 + i1
2
(γaθ0)θ0γaθ

′
0 + 2

3
γaθ̃

(
2iθ̃γaθ

′
0 + i5

4
θ̃γaθ̃

′ − 3
4

R̃′
a|>

)

ϑp ≡ 2θ1,1 + 2θ2,2 + · · ·+ 2θp−1,p−1 + θp,p − θp+1,p+1 − 2θp+2,p+2 − 2θp+3,p+3 − · · ·

(1.79)

and R̃a indicates that only ghost-number-zero θ’s are selected.

Since this procedure requires the component expression, we explicitly use

the projection operator

Π =
1

γ̃⊕
(γ̃⊕)reg (1.80)

as, e.g., Π|θ〉, in some terms, as explained in Appendix A.3. Also, because R⊕

only interacts with πΠ we express [πp,p+1, R⊕] as a projected expression ϑp.

(For the full expression, see Appendix A.4.)

These constraints are closed classically (after regularization: see Appendix
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A.4)

[A(1),A(2)] = −δ′(2− 1)[A(1) +A(2)]

[A(1), Ep(2)] = −δ′(2− 1)Ep(1)

[A(1),Bp(2)] = −δ′(2− 1)[Bp(1) + Bp(2)]

{Ep(1), Eq(2)} = 0

{Bα
p (1),Bβ

q (2)} = 8δ′(2− 1)ϑpαPa(1)γaβδEqδ(2)

+4δ′(2− 1)γαλ
a (πp,p + πp+1,p+1)λ(1)γaβδEqδ(2)

−2δ′(2− 1)(θp,p − θp+1,p+1 + ϑp)αBβ
q [(1) + (2)]

+((p, α, 1) ↔ (q, β, 2))

{Epα(1),Bδ
q(2)} = −4δβ

αδ(2− 1)A(1)

−2δ′(2− 1)(θq,q − θq+1,q+1 + ϑp)βEpα(2) (1.81)

where

Eq ≡
∑

r

ir−q 1√
r
(Θr−q−1 −Θr−q−2)Er−1

1.4.3 Action

From this Hamiltonian form of the BRST operator for the superstring we can

find the ZJBV form [5]:

QZJBV = i
2
φ̇AφA −H − φ̌A{φA, QH ] (1.82)
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where

[φA, φB} = ΩAB

φA = ΩABφB, φB = φAΩAB (1.83)

and φ̌A is the antifield which is canonically conjugate to the field φA by the an-

tibracket. ZJBV is useful for Lagrangian quantization, but since Q is sufficient

for Hamiltonian quantization, we leave the details for Appendix A.5.

Constraints appearing in the gauge-invariant Hamiltonian have ghost num-

ber 0; their ghosts have ghost number 1; their antighosts have ghost number

−1; the antifields of their antighosts have ghost number 0, and we can iden-

tify them in the ZJBV BRST operator with the Lagrange multipliers of the

gauge-invariant Hamiltonian. (More generally, we interpret all the negative-

ghost-number fields as antifields.) Let

Φp,p+1 ≡ (−1)p+1i1
2

√
p + 1θ̌p,p+1

Ψp,p+1 ≡ (−1)p+1i1
2

√
p + 1π̌p,p+1

b̌ ≡ g (1.84)

and similarly for their antifields. Then we find the gauge invariant action in

Hamiltonian form SH either from the usual Hamiltonian procedure (using the

constraints of the previous subsection), or as the antifield-free part of QZJBV
sstring:

SH = −ẊP̂ 0 + i
∑
±,p

θ̇p,pπp,p −
∑
±

g±A± +
∑
±,p≥0

(
Φ̃±,p,p+1Ep + Ψ̃±,p,p+1Bp

)

(1.85)
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(Again, for each sign ± we use fermions of the corresponding chirality.)

If we consider only the quadratic terms and the A term, keeping only

the physical fields, and introducing P̂ 1 as an independent variable, we find

the first-order, 2D world-sheet covariant form [11] (with world-sheet metric

ηmn = (−+))

Sphys
0 = P̂m∂mX − 1

2
gmnP̂

mP̂ n + i
√

2
∑
±

∂±θ±0 π±0 (1.86)

where θ±0 ≡ θ0L,R, π±0 ≡ π0L,R, and ∂± ≡ 1√
2
(e0

m ± e1
m)∂m. By introducing

supersymmetric variables

Pm = P̂m + εmn(η+
(0)n − η−(0)n)

D±
0 = π±0 + [P̂± ± 1

2
(η+

(0)∓ − η−(0)∓)] · γθ±0

η±(0)m ≡ i√
2
(∂mθ±0 )γθ±0 (1.87)

(where we suppress spacetime indices for simplicity) and plugging this into

(1.86) we find

Sphys
0 = −1

2
gmnP

mP n + Pm[∂mX − (η+
(0)m + η−(0)m)]

−εmn[(∂mX) · (η+
(0)n + η−(0)n)− η+

(0)mη−(0)n] + i
√

2
∑
±

∂±θ±0 D±
0 (1.88)

Except for the last term this is the Green-Schwarz supersting action. To

extend this redefinition to the whole action one can further define (we use p, q

for ghost level and (p), (q) when there is confusion with world sheet indices
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l, m, n)

Pm = P̂m + εmn(η+
(0)n − η−(0)n) + εmn(χ+

n − χ−n )

D±
0 = π±0 +

{
[P̂± ± 1

2
(η+

(0)∓ − η−(0)∓)] · γθ±0 ∓ 2
3
(ξ+
∓ − ξ−∓) · γθ̃±

}

D±
p = π±p + P± · γθ±p (p ≥ 1)

π±p ≡ πp,p
L,R

θ±p ≡ θp,p
L,R

ϑ±p ≡ ϑp
L,R

χ±m ≡ 1√
2

(
2i(∂mθ±0 )γθ̃± − i(∂mθ̃±)γθ̃± + 1

2
∂mR̃±

)

ξ±m ≡ 1√
2

(
2i(∂mθ±0 )γθ̃± − i5

4
(∂mθ̃±)γθ̃± + 3

4
∂mR̃±

)

η±(p)m ≡ i√
2
(∂mθ±p )γθ±p

Φp± ≡ ΦL,R
p,p+1

Ψp± ≡ ΨL,R
p,p+1 (1.89)

Then our manifestly worldsheet-covariant action reads

S0 = S̃GS + i
√

2
∑
±,p≥0

∂±θ±p D±
p + SA (1.90)

where SA consists of Lagrange multipliers times all the (first-class) constraints

other than Virasoro

SA =
∑
±,p≥0

(
Ψp±B±p + Φp±E±p

)
(1.91)

and S̃GS is an extension of the usual GS action to the fields θ±p at nonzero
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ghost levels

S̃GS = −1
2
gmnPmPn

+
∑
±
P±

[
∂±X − (η+

(0)± + η−(0)±) +
∑
p≥1

η±(p)± ± (χ+
± − χ−±)

]

−εmn
[
(∂mX) ·

{
(η+

(0)n − η−(0)n) + (χ+
n − χ+

n )
}

+ η+
(0)mη−(0)n

]

+2
3

∑
±
± i√

2
(∂±θ±0 γθ̃±)(ξ+

∓ − ξ−∓) (1.92)

This is a first-order action in terms of the coordinates X, θ±p , momenta Pm,D±
p ,

worldsheet metric gmn, and Lagrange multipliers Φp±, Ψp,±. Now Ep and Bp

are expressed in terms of these new variables as

E±p = D±
p −D±

p+1 + 2P± · γθ±p+1

B±p = P± · γ(D±
p +D±

p+1 − 2P± · γθ±p+1)

+ (Θp−1θ
±
p − θ±p+1 + ϑ±p )×

{
P±2 − [P± ∓ (η+

(0)∓ − η−(0)∓ + χ+
∓ − χ−∓)]2

± 1√
2

[∑
q≥1

i∂±θ±q
(D±

q − P± · γθ±q
)

+ i∂±θ±0

×
(
D±

0 −
{

[P̂± ± 1
2
(η+

(0)∓ − η−(0)∓)] · γθ±0 ∓ 2
3
(ξ+
∓ − ξ−∓) · γθ̃±

}) ] }

(1.93)

Elimination of P1 by its equation of motion reproduces the previous Hamilto-

nian form of the action except for terms quadratic in E , which can be elimi-

nated by a redefinition of Φ. The gauge-fixed action with ghosts is most easily

obtained from the Hamiltonian formalism as H = {Q,
∫

b} =
∫

T : Then (with
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the full θp,q)

SGF = P̂m∂mX − 1
2
ηmnP̂

mP̂ n + i
√

2
∑
±

∂±c±b±± + i
√

2
∑
±

∂±θ±π± (1.94)
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1.5 Summary of 1st quantized BRST

We have given a gauge-invariant action for the superstring and its correspond-

ing BRST operator. The BRST-invariant gauge-fixed action is the obvious

quadratic expression following from {Q,
∫

b} (and is thus BRST invariant since

Q2 = 0). This is sufficient to perform S-matrix calculations (with vertex op-

erators of the type given for the superparticle above), but a naive application

would require a measure that breaks manifest supersymmetry. (For exam-

ple, solving for the cohomology of the superparticle with this BRST operator

in [3] required using the equivalent of the lightcone gauge.) In principle, a

covariant measure that avoids picture changing altogether (in particular, for

the bosonic ghosts) can be found by methods similar to those used in [4];

we hope to return to this problem. The cohomology of this BRST operator

should also be checked: The massless level follows from the previous analysis

for the superparticle; the massive levels should follow from a similar lightcone

analysis.
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Chapter 2

Scattering amplitudes

2.1 Prologue

Many formalisms have been introduced for calculating scattering amplitudes

for superstrings. The most practical of these have been (covariant) Ramond-

Neveu-Schwarz (RNS) [13], (lightcone) Green-Schwarz (GS) [14], hybrid RNS-

GS (H) [15], and pure spinor (PS) [7][16]. All of these have (at least) two

important defects:

(1) Some kind of insertion is required. It may be separate from the vertices, or

may be combined with some vertices to put them into different “pictures”. The

result is to complicate the calculations or destroy manifest symmetry. (The

only exception is tree graphs with external bosons only, where such methods

make cyclic symmetry more obscure but avoid producing extra terms that

cancel.)

(2) Supersymmetry is not completely manifest. The most serious case is RNS,

where fermion vertices are much more complicated than boson (because the
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spinors are not free fields, so in practice noncovariant exponentials of bosons

must be used), and sums over spin structures (periodic/antiperiodic bound-

ary conditions) must be performed in loops. In the GS and H cases there is

partial supersymmetry (and partial 10D Lorentz invariance), which compli-

cates vertices for the “longitudinal” directions, which are required for general

higher-point calculations; for this reason we will not consider GS and H in

detail. The most symmetric is PS, which has only an integration measure that

is explicitly dependent on the spinor coordinates.

In a previous paper [17] we introduced a new formalism for the superstring

(based on a similar one for the superparticle [3]) using an infinite pyramid

of ghosts for the spinor coordinate (GP) [1]. A derivation was also given

from a covariant action. (The RNS action is not spacetime-supersymmetry

covariant. The GS action [18] has defied covariant quantization [2]. The H and

PS formalisms do not follow from the quantization of an action with general

worldsheet metric.) The Becchi-Rouet-Stora-Tyutin operator found there was

rather complicated, but fortunately none of the results of our previous paper

will be needed explicitly here for calculation, but only for justification of the

validity of our approach. In fact, the gauge-fixed action and massless vertex

operators were guessed much earlier [11]. (An early attempt to apply them

to amplitude calculations failed because spinor ghosts were not included [19].)

The fact that these simple rules can be applied so naively hints that perhaps

an even simpler formalism exists that implies the same rules.

There are (at least) two new conceptual results in this paper (in addition to

the explicit calculations), both of which involve the treatment of zero-modes.

These allow us to evaluate trees and loops without evaluating explicit inte-
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grals or (super)traces over these zero-modes, thereby solving the above two

problems:

(1) In loop calculations we infrared regularize the worldsheet propagators. In

principle one should do this anyway, since IR divergences are notorious in two

dimensions, especially for 2D conformal field theories, but usually such prob-

lems are avoided by examining only IR-safe quantities. In our case such a

regularization allows a simple counting of the infinite number of zero-modes

arising from the ghost pyramid (including those from the physical spinor),

with the only result being the introduction of factors of 1/4 due to the usual

summation 1 − 2 + 3 − ... = 1/4. (Regularization of x zero-modes is unnec-

essary; it only replaces the momentum-conservation δ-function with a sharp

Gaussian.)

(2) In tree graphs these zero-modes do not appear separately, having been ab-

sorbed into the definition of the (first-quantized) vacuum. Specifically, since

we do not perform explicit integration over spinor zero-modes, we also do not

need to define measure factors for such integrations, make insertions of oper-

ators (essentially Dirac δ-functions in those modes) to kill those modes, nor

use operators of different pictures to hide such insertions. We do not make

special manipulations to deal with such modes; care of them is taken auto-

matically by naively ignoring them. Although we do not analyze this vacuum

(or other) state in detail here (we effectively work with the old Heisbenberg

matrix mechanics, ignoring Schrödinger wave functions), we explain why such

behavior is implied by the standard N=1 superspace formulation of the vector

multiplet.

The net result of these ideas is that the calculational rules are the most
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naive generalization of the rules of the bosonic string: (1) The b and c ghosts

appear in the same way, affecting only the measure. (2) The spinor ghosts serve

only to ensure correct counting of zero-modes, and give an extra factor of 1/4

to any trace of γ-matrices. (3) IR regularization takes care of all (physical

and ghost) spinor zero-modes. (4) The vertex operator for the massless states

generalizes the bosonic-string one just by adding the same spin terms as in

ordinary field theory or supergraphs (to include the spinor vertices), taking

into account the stringy generalization of the algebra of covariant derivatives

[11].

Consequently, for the case of tree graphs with external vectors only, our

rules are almost identical to (R)NS calculations in the F1 picture. We explain

the advantage of this picture and why it is more relevant to the superstring.

As an interesting side result, we show how the ∂θ terms in the DPΩ current

algebra arise already in the superparticle.
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2.2 Rules

2.2.1 Vertex operators

We now present the main result of this paper, the rules themselves, with exam-

ples later. (Derivations are given in the Appendices.) Here we will calculate

amplitudes with only massless external states. (We also concentrate on open

strings, but the results generalize in the usual way to closed.)

To a limited extent first-quantization can be applied to particles as well

as to strings: It gives only one-particle irreducible graphs (vertices at the

tree level), whereas for the string it gives complete S-matrix amplitudes by

duality (for given loop level and external states). However, the methods are

almost identical, particularly since the superparticle is the zero-modes of the

superstring.

The vertex operators follow from the results of our previous paper [17] but

are basically those of [11] with a small modification from ghosts (as expected

from the integrated vertex operators of PS [7][16]):

V = AA(x, θ)JA

where AA are superfields and JA are 2D currents:

AA = (Aα, Aa,Wα, F ab)

JA = (Ωα, Pa, Dα, Ŝab)

where JA have zero-modes jA, of which only pa and dα act nontrivially on AA.
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D,P, Ω are the currents of [11], while Ŝ is the Lorentz current of the θ ghosts

(“superspin”). (Appendix B.1 gives the relation of vertex operators between

Lagrangian and Hamiltonian formalisms.)

As for the bosonic string, the integrated vertex operator is
∫

V and the

unintegrated one is cV ; the b and c ghosts work in exactly the same way, to

keep the measure conformal. (We could also add a term α′(∂aA
a)∂c to the

unintegrated vertex operator to avoid having to apply ∂aA
a = 0 [20].)

The external-state superfields and the currents can be expanded in θ for

evaluation in terms of 2D Green functions of the fundamental variables: For

example, the vertex for just the vector is then

VB = Aa(x)∂xa + 1
2
F ab(x)Sba

where S is the Lorentz current of all θ’s, physical and ghost. There are also

terms higher-order in θ, but in the absence of external fermions there are no

π’s to cancel the extra θ’s, so such terms won’t contribute. Because of its

universality, this form is useful for comparison to other formalisms.

2.2.2 Current algebra

However, when calculating general amplitudes (including fermions), it is more

convenient to expand neither the currents nor superfields (thus manifesting

supersymmetry). This requires rules for evaluating products of arbitrary num-

bers of currents. Although this problem is generally intractable for arbitrary

representations of arbitrary current algebras, in our case it is relatively simple:

(1) Ŝ doesn’t act on the superfields. It is quadratic in free fields, so the matrix
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element of any product of such currents is simply the sum of products of loops

of them (in 2D perturbation theory), from contracting the (ghost) θ of one

with the π of the next. Each such loop contributes the trace of the product

of the γ matrices that appear sandwiched between θ and π in Ŝab = θγabπ|>
(where “|>” means to restrict to ghosts).

(2) The remaining currents Dα, Pa, and Ωα form a separate algebra. Although

their “loops” are more complicated (since D is cubic in free fields), the struc-

ture constants are so simple that no loop contains more than 4 currents: only

the combinations PP , DΩ, DDP , or DDDD. Since D and P (but not Ω)

can also act on superfields, the matrix element of such currents and superfields

reduces to the sum of products of these 4 types with strings of D and P acting

on superfields.

The loops are:

〈Pa(1)Pb(2)〉 = −ηabG
′′
x(1, 2)

〈Dα(1)Ωβ(2)〉 = −iδβ
αG′

θ(1, 2)

〈Dα(1)Dβ(2)Pa(3)〉 = −iγaαβ[2Gθ(2, 3)G′
θ(1, 3)− 2Gθ(1, 3)G′

θ(3, 2)

+Gθ(1, 2)(G′′
x(1, 3) + G′′

x(2, 3))]

〈Dα(1)Dβ(2)Dγ(3)Dδ(4)〉 = 2iG′
θ(1, 2)Gθ(1, 3)Gθ(1, 4)(γa

αγγaδβ − γa
αδγγβ)

+2iG′
θ(1, 2)Gθ(2, 3)Gθ(2, 4)(γa

βδγγα − γa
βγγaδα)

+iG′′
x(1, 2)

[
Gθ(1, 3)Gθ(2, 4)γa

αγγaβδ

−Gθ(2, 3)Gθ(1, 4)γa
βγγaαδ

]
+ perm. (2.1)

where 〈 〉 refers to fully contracted operator products, and “1” means “z1”,
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etc. We have distinguished the x and θπ Green functions (Gx and Gθ) because

only Gθ gives zero-mode corrections, which is explained in detail in Appendix

B.5. For N string loops, G is a genus-N Green function: for trees, G′
x(z1−z2) =

−iGθ(z1−z2) = − 1
z1−z2

and G′′
x(z1−z2) = −iG′

θ(z1−z2) = 1
(z1−z2)2

; at 1 string

loop they are Jacobi theta functions and their derivatives; etc.

The action of the currents on the fields is given by considering all possible

symmetrizations of the D’s. Any symmetrization of 2 D’s (acting on a field)

gives

D(α(1)Dβ)(2) → Gθ(1, 2)γa
αβ[Pa(1) + Pa(2)] (2.2)

This reduces any string of currents to sums of strings of P ’s times antisym-

metrized strings of D’s, which are evaluated as

D[α(1) · · ·Dβ](2)Pa(3) · · ·Pb(4)A(5) = Gθ(1, 5) · · ·G′
x(4, 5)(d[α · · · dβ]pa · · · pbA)(5)

(2.3)

where pa = −i∂a, and we can replace πα = ∂/∂θα with the usual supersymme-

try covariant derivative dα in such antisymmetrizations since final results can

always be evaluated at θ = 0 by supersymmetry.

By 10D dimensional analysis, any Ŝ loop is dimensionless, while any DPΩ

loop has dimension 2. This implies (contrary to expectations, but well known

from the bosonic case) that each DPΩ loop carries an extra factor of the

inverse of α′. (In the particle case, there is instead an inverse of z.) Thus,

the maximum number of DPΩ loops gives the lowest power in momenta,

and each loop less gives two more powers of momenta. (One way to see the

dimensional analysis is to note that each current acting on a superfield gives a
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G′
x or Gθ. The same is true in a DPΩ loop, except that 2 currents “close” the

loop to give a G′′
x or G′

θ. Thus, each DPΩ loop introduces an extra factor of

G′′
x(or G′

θ)/(Gθ)
2. On the other hand, closing an Ŝ loop gives a (Gθ)

2 instead

of G′
θ, so such loops give no extra factor.)

Finally, there is the usual momentum dependence coming from Green func-

tions connecting the superfields to each other, from their x dependence only:

For the usual plane waves,

〈A(1) · · ·A(N)〉 = A · · ·A e−
∑

i<j ki·kjGx(i,j) (2.4)

with units α′ = 1/2 for the string.

2.2.3 Component expansion

The final result for an amplitude is given as a “kinematic factor” times a scalar

function of momentum invariants, expressed as an integral over the worldsheet

positions of the vertices. The kinematic factor is expressed, by the above

procedure, as a sum of products of superfields, representing external state

wave functions. The string rules have effectively already performed covariant

θ integration, so these superfields may be evaluated at θ = 0. (As in the

usual superspace methods, where θ expansion and integration is replaced by

the action on the “Lagrangian” of the product of all supersymmetry covariant

derivatives dα, supersymmetry guarantees that all θ dependence cancels, up

to total x derivatives.)

The evaluation of spinor derivatives follows from the (linearized) con-

straints on the gauge covariant superspace derivatives, and their Bianchi iden-
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tities [10]. The result is

d(αAβ) = 2γa
αβAa

dαAa − ∂aAα = 2γaαβW β

dαW β = 1
2
γab

α
βFba

dαF ab = 2iγ
[a
αβ∂b]W β (2.5)

The result is also (linearized) gauge invariant (except for ∂aA
a = 0, as ex-

plained above), so one may use a Wess-Zumino gauge where Aα = 0 at θ = 0.

(A review of gauge covariant derivatives appears in Appendix B.3.)

2.2.4 IR regularization

In evaluation of tree graphs there is the usual δ-function for conservation of

total momentum from the zero-modes of x, but θ effectively has no zero-

modes: The effect of the θ ghosts is to mimic GS where, unlike momentum,

the 8 surviving fermionic variables of the lightcone are self-conjugate, and

thus have no vanishing eigenvalues. Thus there is no residual integration over

θ zero-modes (unlike PS).

In loops there is the usual summation over θ zero-modes in the sum over

all states, but the ghosts again mimic GS by effectively reducing the number

to 8 from the physical 32 (θ and conjugate π), using the sum

1− 2 + 3− 4 + ... = 1/4

when counting the number of θ’s at successive ghost levels (alternating in
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statistics). Application of this rule requires infrared regularization of the 2D

Green functions to “remove” the zero-modes: The factor in the partition func-

tion from these zero-modes is the IR regulator ε to the power 16 × 1/4 = 4

(from the 16-valued spinor index on the θ’s). Since the θπ Green function

goes as 1/ε (+ the usual finite expression + O(ε)), the amplitude vanishes

until 4-point. Thus the power of the regulator counts zero-modes.

The 1/4 rule also applies in γ-matrix algebra. Amplitudes involve traces of

products of γ-matrices. These matrices are the same at each ghost level (except

that chirality, as well as statistics, alternates with ghost level), so the net effect

of the ghosts appears only when taking a trace: Applying the usual γ-matrix

identities, the trace is reduced to str(I) = 16×1/4 = 4, again reproducing GS.

The difference from GS is that the γ-matrices are for 10 dimensions, so the

result is Lorentz covariant, and the usual 10D Levi-Civita tensor is produced

(where appropriate) instead of spurious 8D ε-tensors. For example, anomalies

can be found from 6-point graphs. (Details of the regularized Green functions

are given in Appendix B.5.)
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2.3 Trees

2.3.1 RNS pictures

We begin by proving that the trees with external bosons are identical to those

obtained from (the NS sector of) RNS. This is most obvious in the F1 picture.

Although this picture was the original one to be used in (R)NS amplitude

calculations, it was immediately replaced with the F2 picture [21]. We refer

here to the picture for the physical coordinates (x, ψ), and not just the ghosts:

For example, vector vertices have always been ∂x+... except for two ψ vertices,

while in the F1 picture all vertices are ∂x+... . In the proof of equivalence [21],

starting from the F1 picture, one pulls factors of (the ±1/2 modes of) G =

ψ · ∂x (worldsheet supersymmetry generator) off of two unintegrated ∂x + ...

vertices to turn them into ψ vertices, then collides the G’s to produce (the

0 mode of) a worldsheet energy-momentum tensor T , which gives a constant

acting on a physical state. (With ghosts the approach is similar, with G

replaced with the picture-changing operator, which is simply the operator

product of the gauge-fixed G with eφ in terms of the bosonized ghost φ.) The

resulting rules are then the same as the rules for the bosonic string, including

the factors of c for the three unintegrated vertices, except that the ∂x vertex

has the extra spin term. The β and γ ghosts are completely ignored; the

vacuum used is in what is usually called the “−1 picture”, so the zero-modes

of γ (or φ) are already eliminated. (What is usually called “picture changing”

in the modern covariant formalism would start with the F2 picture, introduce

two factors of picture changing times inverse picture changing, use the picture

changing to change the two ψ vertices, and use the inverses to change the

43



initial and final vacuua. Unfortunately, the inverse has an overall factor of c,

so in the new vacuum 〈γγc〉 ∼ 1 [22], and the γ’s pick out the ψ terms again

in two of the unintegrated vertices γψ+c(∂x+ ...). Thus such transformations

preserve the F2 picture as far as the physical sector is concerned.)

Historically, the F1 picture was introduced first because: (1) It is more

similar to the bosonic string, and (2) cyclic symmetry is manifest (no need to

bother with picture changing). The F2 picture was then chosen because the

physical-state conditions were more obvious. Although in modern language

the BRST conditions are clear in either picture, it’s interesting to examine

the differences in the pictures if the ghosts are ignored, since the ghosts differ

in different formulations of the superstring, but all formulations have similar

integrated vertices. Then the ground state of the F2 picture is the “physical”

tachyon, at m2 = −1/2, while in the F1 picture it’s an “unphysical” tachyon at

m2 = −1. Furthermore, the F1 picture has an additional “ancestor” trajectory

1/2 unit higher than the leading physical trajectory. These “disadvantages”

were noticed in the days before Gliozzi-Scherk-Olive projection. On the other

hand, for the superstring this projection eliminates the “physical” tachyon as

well as the ancestor trajectory. So the only remaining additional unphysical

state of the F1 picture is its vacuum, while GSO projection has eliminated the

vacuum of the F2 picture altogether! This suggests that any comparison of

the RNS formulation to others would be easier in the F1 picture.
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2.3.2 For bosons only

The proof of equivalence of the F1 vector trees to the vector trees of our

formalism is then simple: One only has to note that the operator algebra of

the vertices is identical. But the vertices are identical in form; only the explicit

representation of the spin current is different. So one only has to check the

equivalence of the two current algebras. Since they are both (10D) Lorentz

currents, quadratic in free fields, this means just checking that the central

charge is the same. (The same method has been used for comparing PS to

the F2 picture [8].) The reason the result for the central charge is the same is

that the GP result is the same as the GS result: The γ-matrix algebra is the

same except for a trace, which is 1/4 as big in the lightcone as for a covariant

spinor, but GP again gets a factor of 1/4 from summing over ghosts. (As we’ll

see below, similar arguments apply in loops, unless one gathers enough spin

currents to produce a Levi-Civita tensor.)

The calculations in the F1 picture (and GP) are somewhat harder than the

F2 picture because two vertices have been replaced with ones that generate

more terms, which cancel. Also, RNS bosonic trees are simpler than PS or

GP because integration over the vector fermion ψa effectively does all γ-matrix

algebra. However, tree amplitudes with fermions are much harder in RNS than

PS or GP (and increase in difficulty as the number of fermions increases). PS

is still simpler than GP, because θ integration takes the place of the change

in the two vertices, and so also avoids generating extra terms. So, for trees

RNS is the easiest for pure bosons, PS is easiest with fermions, and GP is a

bit harder than both. However, GP requires fewer rules, since all vertices are
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the same, so it produces more terms at an intermediate stage but is easier to

“program”. This feature is a peculiarity of tree graphs: At the loop level we’ll

see that GP maintains the simplest rules, while RNS produces extra terms

that cancel (because supersymmetry is not manifest).

At first sight these rules for GP might seem peculiar because there is no

explicit integral over spinor zero-modes, as expected in known superspace ap-

proaches. The answer can be seen from examining the simpler (and better

understood) case of 4D N=1 super Yang-Mills. Since the vacuum of the open

bosonic string can be identified with a constant Yang-Mills ghost (or gauge

parameter), we examine the ghost superfield φ, and look at φ = 1, a super-

symmetric condition. Since this superfield is chiral, and supergraphs prefer

unconstrained superfields, we write φ = d̄2χ in terms of a general complex

superfield χ. Then clearly χ = θ̄2 in our case. This is still supersymmetric

because of the gauge invariance δχ = d̄α̇λα̇. Furthermore, this χ has a nice

norm,
∫

d4θ |χ|2 = 1. In Hilbert-space notation we thus write the norm and

supersymmetry as

〈0|0〉 = 1, qα|0〉 = Q|λ〉α

so the vacuum is supersymmetry invariant up to a BRST triviality, and the

norm includes zero-mode integration, but the extra zero-modes are absorbed

by the vacuua, and no insertions are required. (We could also use |λ〉α = Λα|0〉
to define q̂α = qα − [Q, Λα], q̂α|0〉 = 0.) This supersymmetry of the vacuum is

enough to ensure the amplitudes transform correctly, since the vertex operators

are superfields times supersymmetry invariant currents, and the vacuum and

vertex operators (integrated and unintegrated) are BRST invariant. (The
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unintegrated vertex operators we have used are BRST invariant only after

including terms higher-order in ghost θ’s, which don’t contribute to amplitudes

for massless external states, and probably not for massive ones either, because

of the absence of ghost π’s to cancel them.) The fact that the vacuum is “half-

way” up in the θ expansion was also found for the expansion in the spinor

ghost coordinates in a lightcone analysis of the BRST cohomology for the GP

superparticle [3]. Note that this choice of vacuum is relevant only for trees; at

1 loop one effectively does a (super)trace over all states rather than a vacuum

expectation value, so the vacuum is irrelevant. (We assume a similar situation

will occur at higher loops, but we have not checked yet.) As we will see below,

one important affect on this vacuum choice for trees, which does not affect

loops, is that:

For tree graphs only, background fields are always evaluated in the Wess-

Zumino gauge.

If this vacuum structure can be better understood, it might be possible

to find an analog of the F2 picture for GP, avoiding the production of extra

canceling terms, making it the simplest formalism even for trees. As an at-

tempt at formulating such a picture, one can consider this picture for RNS:

For pure bosons, two vertices must be in the “−1 picture”, so it is convenient

to consider those two as the initial and final states, using the vertex operators

on the initial and final vacuua. Generalizing only those 2 states to include

fermions, we can write their vertex operators as in GP, but now identifying

the currents with

Dα = e−φ/2Sα, Pa = e−φψa, Ωα = e−3φ/2Sα
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The first two are the usual for the spinor (in the −1/2 picture) and vector (in

the −1 picture), while the last can be identified as that for the spinor in the

−3/2 picture (also with conformal weight 1) if we use the “supersymmetric

gauge”

W α ∼ γaαβ∂aAβ

instead of the WZ gauge. (Hitting cAαΩα with picture changing produces

cWαDα.) These currents satisfy almost the same algebra as the usual ones

(including DP ∼ Ω, to leading order); the only exceptions are ΩP and ΩΩ.

As a guess for the GP analog, we can then try to construct a new DPΩ for

this picture that depends only on the ghosts. Unfortunately (the simplest

guess for) this construction seems not to work, apparently because the depen-

dence on the WZ gauge hasn’t been eliminated, and is incompatible with the

supersymmetric gauge.

2.3.3 General 3-point

As explained in Section 2, we prefer the superfield formalism for the calculation

of amplitudes with fermions. This includes the all-vector amplitude in the

same calculation. The only nonvanishing operator products for the 3-point

48



tree, after applying the Landau gauge condition (∂ · A = 0), are:

A. 〈Pa(1)Pb(2)〉 × Pc(3)Aa(1)Ab(2)Ac(3) + permutations

B. (Pc(3)Aa(1))(Pa(1)Ab(2))(Pb(2)Ac(3)) + perm.

C. 〈Pa(1)Pb(2)〉 ×Dα(3)Aa(1)Ab(2)Wα(3) + perm.

D. 〈Dα(1)Dβ(2)Pa(3)〉 ×W α(1)W β(2)Aa(3) + perm.

E. 〈Dβ(2)Ωγ(3)〉 ×Dα(1)Wα(1)W β(2)Aγ(3) + perm.

F. (Dγ(3)W α(1))(Dα(1)W β(2))(Dβ(2)W γ(3)) + perm.

G. 〈Ŝab(1)Ŝcd(2)〉 × Pe(3)F ab(1)F cd(2)Ae(3) + perm.

H. 〈Ŝab(1)Ŝcd(2)Ŝef (3)〉 × F ab(1)F cd(2)F ef (3) (2.6)

where the Ŝ contraction is the usual γ trace.

The other contributions, like (〈DαΩβ〉P )·AWαAβ, (〈SS〉Dα)·FFW α, (PPDα)·
AAWα and (PDαDβ)AWW , all vanish using ki · kj = 0, k/W = 0 in the Wess-

Zumino gauge. We give some details of the calculation in Appendix B.6.

Notice that F and H combine to give the GP sum 1− 2 + 3− 4 · · · = 1/4.

From these combinations we find the manifestly supersymmetric 3-point tree

amplitudes for vectors and spinors

Atree
3 = k1 · A(3)A(1) · A(2) + k3 · A(2)A(1) · A(3) + k2 · A(1)A(2) · A(3)

+iA(1) ·W (2)γW (3) + iA(2) ·W (3)γW (1) + iA(3) ·W (1)γW (2)

(2.7)

where A(i) are the vectors and W (i) the spinors. (Note that we use the usual

49



anticommuting fields for the spinors; numerical evaluation involves fermionic

functional differentiation, replacing these fields with the usual commuting wave

functions, and may introduce signs if not all terms have the same ordering.)

This result applies to both the superparticle and superstring. In the string

case there is also a factor of 1/(z1− z2)(z2− z3)(z1− z3) from the Green func-

tions, but this is canceled as usual with the inverse factor from the conformal

measure obtained from 〈c(1)c(2)c(3)〉.
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2.4 IR regularization

2.4.1 Zero modes

The kinematic factor in supersymmetric amplitudes is closely related to the

spinor zero-mode problem, which is the most important problem in the Lorentz

covariant superparticle and superstring. If we naively integrate over zero-

modes of the infinite pyramid of spinors with no vertex attached, we find

0 ·∞2 ·03 ·∞4 ·05 ·∞6 · · · . So we need to regularize the zero-mode integration.

In Appendix B.5 we derive the 2D Green function with a 2D regularization

mass, but it turns out that the zero-mode behavior of the 2D Green function

is exactly that of the 1D one. So we will concentrate on the 1D case here. To

do this IR regularization we introduce small mass terms in the superparticle

free action (for 1D “proper time” coordinate z)

Xa(−∂2
z + ξ2)Xa, −iπ(∂z + ε)θ (2.8)

Now we can fix the measure of zero-modes for X and θ without ambiguity.

For X, neglecting the Laplacian term, which vanishes for zero-modes,

lim
ξ→0

∫
dDX0 e−Tξ2X2

0/2−i(
∑

k)·X0 = lim
ξ→0

(
2π

Tξ2

)D/2

e−(
∑

k)2/2Tξ2

= (2π)DδD
(∑

k
)

=

∫
dDX0 e−i(

∑
k)·X0

where T is the range of z (at 1 loop, the period). Here we used limξ→0 e−x2/2ξ2
/
√

ξ =
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√
2πδ(x). Therefore our zero-mode measure for X is

∫
dX0 = lim

ξ→0

(
2π

Tξ2

)D/2

(2.9)

However, this bosonic zero-mode does not appear explicitly, since this always

gives momentum conservation thanks to the vertex operators.

Similarly for θ we see

∫
dθ dπ eiT επθ = (iεT )±2(D−2)/2

(2.10)

where “±” stands for fermionic and bosonic spinor respectively. Then our

zero-mode measure for a spinor is

∫
dθ dπ = lim

ε→0
(iεT )±2(D−2)/2

(2.11)

In our case we have an infinite pyramid of spinors and hence we get

∫
dθ dπ = lim

ε→0
(iεT )(2(D−2)/2)(1−2+3−4+··· )

= lim
ε→0

(iεT )2(D−6)/2

(2.12)

where we used coherent-state regularization for the ambiguous sum 1−2+· · · =
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1/4:

tr[(N + 1)(−1)N ] =

∫
d2z

π
e−z∗z〈z|(a†a + 1)(−1)a†a|z〉

=

∫
d2z

π
e−|z|

2

(〈z|a†a| − z〉+ 〈z| − z〉)

=

∫
d2z

π
(−|z|2 + 1)e−2|z|2

= −1
4

+ 1
2

= 1
4

(2.13)

More intuitively

1

1 + x
= 1− x + x2 − x3 + x4 · · ·

1

(1 + x)2
= 1− 2x + 3x3 − 4x4 + · · ·

so at x = 1 we get 1/2 and 1/4 respectively.

Therefore in D = 10 we get effectively ε4 for zero-modes. So our complete

spinor measure with non-zero modes is

Dθ Dπ (iT ε)4 (2.14)

The significant role of this effective power will be clear after we discuss the

Green function.

The regularization 1 − 2 + 3 − 4 + · · · = 1/4 explains how we can get a

physical SO(8) spinor contribution out of 2 covariant 16-component spinors

π and θ. Because we cannot project covariant spinors into physical spinors

in a covariant way, we need to add infinitely many ghosts to achieve this 1/4

reduction in amplitudes.
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2.4.2 Regularized Green functions

We summarize the results of Appendix B.5 here. We find the regularized 1D

Green functions for x and θ

Gx(z) =
1

2ξ

cosh[ξ(|z| − T/2)]

sinh(ξT/2)

Gθ(z) = i(−∂z + ε)

[
1

2ε

cosh[ε(|z| − T/2)]

sinh(εT/2)

]
(2.15)

The ε correction to ∂z in Gθ is nontrivial because it multiplies a Green function

with a 1/ε term.

It is convenient to expand the Green functions in ε when we calculate

scattering amplitudes:

Gx =
1

ξ2T
+

∞∑
n=0

Gx
nξn

Gθ =
i

εT
+

∞∑
n=0

Gθ
nε

n (2.16)

where

Gx
0 =

T

12
+
|z|(|z| − T )

2T
=

T

12
+ Gx

un

Gθ
0 =

i

2
Sign(z)− i

z

T
= Gθ

un (2.17)

and Gx
un and Gθ

un are the usual 1D Green functions with periodic boundary

conditions, normalized to Gun(0) = 0. The extra constant will not contribute

to massless amplitudes because of derivatives and k2 = 0.

Because the mass (re)moves zero-modes, the usual fudges of the massless

54



Green functions are eliminated: There is no freedom to add constants (depen-

dent on T , but not z) to G, and the δ function in its equation of motion is

not modified to δ(z)− 1/T to preserve “charge conservation”. But the latter

property is restored upon expansion in the regulator:

Gx =
1

ξ2T
+ ∆Gx, (−∂2 + ξ2)Gx = δ ⇒ (−∂2 + ξ2)∆Gx = δ − 1

T

Gθ =
i

εT
+ ∆Gθ, −i(∂ + ε)Gθ = δ ⇒ −i(∂ + ε)∆Gθ = δ − 1

T
(2.18)

Similarly we will do this expansion for superstring Green functions. The

details are given in Appendix B.5. However, expansion of Gx is unnecessary,

because in vertex operators X appears only as Ẋ (and as an argument of the

superfields), and any contraction involving this vertex operator is always finite.

(The derivative kills the potentially divergent 1/ξ2 term.) For this reason X

regularization gives only energy-momentum conservation and is irrelevant to

amplitude corrections. But ε expansion of Gθ is crucial, as we will see in the

next section.
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2.5 Loops

2.5.1 N<4 super

Here we give simple examples. The only differences from standard first-

quantization of a loop of a scalar particle or bosonic string can be associated

with “kinematic factors” that may also depend on the positions of the vertices

on the worldline/sheet. (For a summary of the standard analysis of the other

factors, see Appendix B.4.)

Collecting the results of the zero-mode measure and the Green function

zero-mode behavior, the amplitude is zeroth order in ε.

Since there is an ε4 in the measure, we should pick up an ε−4 in the integrand

of the path integral. For example, one sub-diagram of the N-point 1-loop

amplitude is proportional to

∮
dε ε3 Gθ(1, 2)Gθ(2, 3) · · ·Gθ(N, 1) (2.19)

Then to evaluate this amplitude we should expand each Gθ and collect terms

with ε−4.

We now notice that every Gθ gives i/εT . For N < 4 there are not enough

powers of ε−1 and so their amplitudes just vanish.

There is no zero-mode behavior for any contraction involving ∂X because

of the derivative. Therefore P contractions start to contribute only at N = 5

(a black dot in Fig. 2.1).
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Figure 2.1: Schematic diagrams for various contractions

2.5.2 N=4 vector only

The first nonvanishing amplitude is at N = 4. However, this is just the

case where every Gθ from the Sab’s contributes i/εT . So the integration is

trivially done for K4 and only its spin algebra matters. There are two kinds

of diagrams: the case where all 4 points are connected, and the case where

each pair of points is connected separately (Fig. 2.1). These two diagrams

have opposite sign. Each closed contraction should be traced over all ghost

pyramid spinors to give 1 − 2 + 3 − 4 + · · · = 1/4. Therefore we get for K4,

omitting external field factors,

K4 = −1

4

[
tr(γabγcdγefγgh) + 5 permutations

]

+
1

16

[
tr(γabγcd)tr(γefγgh) + 2 permutations

]
(2.20)

Using the Mathematica code Tracer.m we evaluate this gamma-matrix
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trace to find

K4 = 1
2
(δbcδdeδfgδha + δbeδcfδdgδha + δaeδfgδchδbd + 45 terms

from antisymmetrizing each pair of indices [ab][cd][ef ][gh])

−1
2

[
(δacδbd − δadδbc)(δegδfh − δehδfg)

+(δaeδbf − δafδbe)(δcgδdh − δchδdg)

+ (δagδbh − δahδbg)(δceδdf − δcfδde)
]

(2.21)

This is the well-known kinematic factor for both tree and 1-loop. We can also

express this results in terms of F as [23]

F ac(1)F b
c(2)Fa

d(3)Fbd(4)− 1

8
F ab(1)Fab(2)F cd(3)Fcd(4)

−1

4
F ab(1)F cd(2)[Fab(3)Fcd(4)− 2Fac(3)Fbd(4)] (2.22)

which can be interpreted as “graviton”, “dilaton”, and “axion” as far as

Lorentz (and not gauge) structure is concerned. (In the nonplanar case, it

actually corresponds to those poles for color singlets in the 1+2=3+4 chan-

nel.)

2.5.3 N=4 super

Here we again prefer the superfield formalism as explained in Section 2. How-

ever, the 4-point one-loop case is dramatically simplified due to the IR regu-

larization. Consider the 4 types of fully contracted operators again and then

notice that they can have only limited 1/ε factors, since each Gθ gives such a
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factor while Gθ ′ doesn’t:

Pa(z1)Pb(z2) : O(ε0)

Dα(z1)Ω
β(z2) : O(ε0)

Dα(z1)Dβ(z2)Pa(z3) : O(ε−1)

Dα(z1)Dβ(z2)Dγ(z3)Dδ(z4) : O(ε−2)

(Ŝ)n : O(ε−n) (2.23)

This means that except for Ŝ they appear at best from the 6-point at 1

loop. So the only contractions for this amplitude are from Ŝ4 and Ŝ2d2. We

also need to consider the case where 4 d’s act on the superfields. Then we can

directly write down the kinematic factor for the manifestly supersymmetric,

4-point, 1-loop amplitude

1
4!
d[αdβdγdδ]W

α(1)W β(2)W γ(3)W δ(4)

+ 3
32

tr(γabγcd)d[αdβ]Fab(1)Fcd(2)W α(3)W β(4) + perm.

+K̂4(F
4) (2.24)

K̂4 is the same as K4 above except that the (super)traces don’t include the

physical π, θ. Of course, this missing contribution comes from (dβWα) (dαW β)

(dδW
γ) (dγW

δ) plus different permutations of the d’s. Also, the missing con-

tribution for the tr(γabγcd) terms comes from −1
4
Wα(d[αdδ]W

β)W γ(d[γdβ])W
δ

plus different permutations. Note that this result already has the same form

as the 4D N=1 supergraph calculation for N=4 super Yang-Mills [24] (if we
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rewrite it in Majorana notation for comparison), where there tr(I) = 4 al-

ready, so Ŝ terms are unnecessary to produce str(I) = 16 × 1/4 = 4. (There

the d4 comes from overall θ integration, the d’s of the W ’s being killed by

loop-θ integration.)

We give here the fermion part of the result of (2.24) and leave details to

Appendix B.6.

KFFBB
4 = − i

2
W (1)γabγc∂dW (2)F cd(3)F ab(4) + 3 ↔ 4

= i
2
W (1)γabc∂dW (2)F ab(3)F cd(4) + iW (1)γa∂bW (2)F ac(3)Fc

b(4) + 3 ↔ 4

KFFFF
4 = −4k1 · k4 W (1)γW (2) ·W (3)γW (4) + 2 ↔ 4 (2.25)

where γabc = 1
3!
γ[aγbγc]. (The [abc] means to sum over permutations with

signs to antisymmetrize.) The second form of the FFBB amplitude can be

interpreted as “axion” and “traceless graviton” terms. (Using the fermion

field equation and symmetry, the former term is totally antisymmetric in abcd

and a total curl on the fermions, as the FF factor is then for the bosons,

while the latter term is symmetric and traceless in ab.) We have written these

amplitudes in manifestly gauge invariant form. Note that the complete 4-point

amplitude is totally symmetric in all 4 external lines. (This was clear from the

original form (2.24).) This means that not only are the specific cases listed

above separately symmetric between boson lines and between fermion lines

(if we had used wave functions instead of fermionic fields then they would be

antisymmetric), but the amplitudes for other arrangements of fermions and

bosons are obtained simply by permutation. The usual representations are

given in Appendix B.6.
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2.5.4 N>4 vector only

In principle there is no difficulty to evaluate higher-point diagrams. Some new

terms occur compared to the N = 4 case. First of all, ∂X can contribute from

one vertex, acting on a field, which is indicated by a black dot in Fig. 2.1. (All

the other vertices contribute contractions between θ(zi) and π(zj) from S.)

Terms of the Green function higher-order in the ε expansion start to appear

and thus KN has zi dependence. We give a schematic diagram for various

types of contractions in Fig. 2.1. Notice that our diagram exactly coincides

with earlier covariant RNS results [25]. There can also be corrections from

the fermion partition function because of regularization. For example, this

correction in the 6-point amplitude is proportional to θ′′′1 (0|iτ)/θ′1(0|iτ) (see

Appendix B.4.2).

2.5.5 N=5 vector only

First we will consider the part of the amplitude that doesn’t have a black

dot in Fig. 2.1. Let’s call the graphs without and with a black dot Ka
N and

Kb
N respectively. Since the 5-point amplitude has 5 sides we should choose

Gθ
0 from exactly one side. This is true for both the pentagon and triangle +

ellipse graphs. The difference between them is the gamma matrix trace factor.

So we can write down the part of Ka
5 for a given group-index ordering (the

61



kth vector has θγakbkπ) as:

Ka
5 = −1

4
[ Gθ

0(z2 − z1)tr(γ
a1b1γa2b2γa3b3γa4b4γa5b5) + 23 permutations ]

+
1

16
[ Gθ

0(z2 − z1)tr(γ
a1b1γa2b2γa3b3)tr(γa4b4γa5b5) + 11 permutations ]

(2.26)

Then we can write

Kb
5 =

5∑
j=2

ka1
j Gx′(z1 − zj)K4(2, 3, 4, 5) + 4 permutations

(2.27)

where K4 was given in subsection 5.2. Ka
5 and Kb

5 complete the 5-point planar

amplitude. Totally antisymmetric ε-tensor terms vanish because the 5 exter-

nal momenta are not independent. Notice that the light-cone GS calculation

reduces to our results after heavy algebra [26], and RNS needs a spin-structure

sum to produce this result [25].

We postpone the N ≥ 6-point amplitudes to another paper, which will

be interesting because of the anomaly cancellation issue. One good thing

in our covariant formalism is that we have a totally antisymmetric ε-tensor

naturally in the hexagon amplitude, where we have enough momenta to have

a nonvanishing result, contrary to the 5-point case.
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2.6 Open problems

There are many avenues of further study, in particular:

(1) Many types of diagrams can be calculated. At the tree level, diagrams with

many fermions have not yet been explicitly evaluated in any formalism. New

algebraic methods for the current algebra might be useful. At the 1-loop level,

little has been done with fermions or higher-point functions. Alternative IR

regularization schemes could be considered. The 2-loop 4-vector calculation

would be a good test, and nothing more than that has been done at 2 loops,

and nothing at all at higher loops.

(2) The Hilbert space needs to be studied covariantly, especially the vacuum,

to completely justify the naive manipulations we have made for tree graphs.

It would be useful to find the relation of these methods to supergraphs, where

explicit zero-mode integrations appear (both in loops, corresponding to π zero-

modes, and an overall integral for θ zero-modes.) Massive vertex operators for

physical states are expected to also be relatively simple, as the spinor ghosts

should appear again in a minimal way (as opposed to the more complicated

structure of the BRST operator). The analogy to second-quantized ghost

pyramids (e.g., for higher-rank forms) might be useful: There ghosts beyond

the first generation (i.e., the usual Faddeev-Popov ghosts) appear only at 1

loop, to define the measure.

(3) Closer relations to other formulations might exist. An analog to the F2

picture of RNS might further simplify tree calculations. The many similarities

with PS suggests it might be a particular gauge choice of GP that truncates

the ghost spectrum.
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Appendix A

A.1 Sp(2) components

The matrix elements of the Sp(2) operators are

〈p, q|γ⊕|r, s〉 = Cr,s
p,q(
√

p δp,r+1δq,s + i
√

q + 1 δp,rδq+1,s) (A.1)

〈p, q|γ̃⊕|r, s〉 = Cr,s
p,q(−i

√
p δp,r+1δq,s −

√
q + 1 δp,rδq+1,s) (A.2)

where Cr,s
p,q = i

(r+s)(r+s+1)−(p+q)(p+q+1)
2 . From these we can find “inverse” opera-

tors, especially

〈p, q| 1

γ̃⊕
|r, s〉 = ir−pCr,s

p,q

√
p!s!

q!r!
δq−p+r−s,1 [Θp−qΘs−q − Θs−rΘp−r] (A.3)

It satisfies

γ̃⊕
1

γ̃⊕
γ̃⊕ = γ̃⊕, γ̃⊕

1

γ̃⊕
→ I,

1

γ̃⊕
γ̃⊕ → I (A.4)

The arrows means there is cancellation among the multiplied matrix elements

to the infinite ghost level. The subtle point of this cancellation will be studied

in Appendix A.2.
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Then we find that γ⊕ and 1
γ̃⊕ don’t (anti)commute but give

〈p, q|{ 1

γ̃⊕
, γ⊕}|r, s〉 = ir−p+1Cr,s

p,q

√
p!s!

q!r!
δq−p+r−s,0[(Θp−q + Θp−q−1)(Θs−q + Θs−q−1)

− (Θs−r−1 + Θs−r)(Θp−r−1 + Θp−r)] (A.5)

〈p, q|[ 1

γ̃⊕
, γ⊕]|r, s〉 = ir−p+1Cr,s

p,q

√
p!s!

q!r!
δq−p+r−s,0[(Θp−q −Θp−q−1)(Θs−q + Θs−q−1)

− (Θs−r−1 −Θs−r)(Θp−r−1 + Θp−r)]

= 2iδp,qδr,s (A.6)

Some interesting and useful commutators are

〈p, q|[γ⊕, { 1

γ̃⊕
, γ⊕}]|r, s〉 = −4ir−pCr,s

p,q(
√

r + 1δp,qδr+1,s +
√

pδp,q+1δr,s)

(A.7)

〈p, q|[γ⊕γ⊕, { 1

γ̃⊕
, γ⊕}]|r, s〉 = −8ir−p+1Cr,s

p,q(
√

(r + 2)(r + 1)δp,qδr+2,s

+
√

p(p− 1)δp,q+2δr,s − 2
√

p(r + 1)δp,q+1δr+1,s)

(A.8)

〈p, q|[γ⊕γ⊕, { 1

γ̃⊕
, γ⊕}]γ⊕|r, s〉 = 16ir−pCr,s

p,q(
√

(r + 3)(r + 2)(r + 1)δp,qδr+3,s

+
√

p(p− 1)(r + 1)δp,q+2δr+1,s

− 2
√

p(r + 2)(r + 1)δp,q+1δr+1,s) (A.9)
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Using (A.1),(A.2) and (A.5) we find

π̄γ⊕γ⊕θ =
∑
pq

[
√

p(p− 1) (−1)p+1ip+q+1 π̄p,q θq,p−2

+ 2
√

p(q + 1) (−1)q+1ip+q+1 π̄p,q θq+1,p−1

+
√

(q + 1)(q + 2) (−1)p+1ip+q+1 π̄p,q θq+2,p] (A.10)

1
2
π̄γ̃⊕π =

∑
pq

√
p (−1)q+1 π̄p,q πq,p−1 (A.11)

π̄γ⊕γaθ = i
∑
pq

[
√

p (−1)p π̄p,q γa θq,p−1

+
√

q + 1 (−1)q+1 π̄p,q γa θq+1,p] (A.12)

Ra = 1
4

θ̄{ 1

γ̃⊕
, γ⊕}γaθ

= 1
4

∑
pqr

(−1)(q−p+r+1)r−qp−piq−p+1

√
p!(q − p + r)!

q!r!
θ̄p,q γa θq−p+r,r

[(Θp−q + Θp−q−1)(Θr−p + Θr−p−1)

− (Θq−p−1 + Θq−p)(Θp−r−1 + Θp−r)] (A.13)

R⊕ = 1
4

θ̄{ 1

γ̃⊕
, γ⊕}γ⊕θ

= 1
4

∑
pqr

(−1)(q−p+r+2)r−qp−p

√
p!(q − p + r + 1)!

q!r!
θ̄p,q θq−p+r+1,r

[(Θp−q + Θp−q−1)(Θr−p+1 + 2Θr−p + Θr−p−1)

− (Θq−p−1 + Θq−p)(Θp−r−2 + 2Θp−r−1 + Θp−r)] (A.14)
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The component fields defined above satisfy

{πp,q, θ
r,s] = δr

pδ
s
q (A.15)

67



A.2 Subtle points in Sp(2) operators

In this appendix we explain some subtle points about 1
γ̃⊕ , due to the infinite

dimensional structure of Sp(2) operators.

Consider the commutator

{ π̄γ̃⊕θ , [
(1)

θ
(0)

θ , Ra ] } (A.16)

where

(0)

θ = 〈0|eia⊕aª|θ〉

= θ0 + θ̃

= θ0 + θ⊕ª + θ⊕⊕ªª + θ⊕⊕⊕ªªª + · · ·
(1)

θ = 〈0|eia⊕aª(iaª)|θ〉

= 2i(θ⊕ −
√

2θ⊕⊕ª +
√

3θ⊕⊕⊕ªª −
√

4θ⊕⊕⊕⊕ªªª + · · · )

(A.17)

We will also need:

for n ≥ 0

(n)

θ = 〈0|eia⊕aª(iaª)n|θ〉

=
∞∑

k=0

(−1)k(n+k+1)i
n(n+1)

2 (1 + Θ
n−1

2
)

√
(n + k)!

k!
θn+k,k (A.18)
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for n < 0

(n)

θ = 〈0|eia⊕aª(ia†⊕)|n||θ〉

=
∞∑

k=0

(−1)k(|n|+k+1)i
|n|(|n|+1)

2 (1 + Θ|n|−1
2
)

√
k!

(|n|+ k)!
θk,|n|+k

(A.19)

The above double commutator should vanish because the inner one involves

only θ. However, if we apply the Jacobi identity we see

{π̄γ̃⊕π, [
(1)

θ
(0)

θ ,Ra]} = 0 = [{π̄γ̃⊕π,
(1)

θ
(0)

θ }, Ra] − {
(1)

θ
(0)

θ , [π̄γ̃⊕π, Ra]}

= [0̃, Ra] − 2 {
(1)

θ
(0)

θ , π̄γ⊕γaθ}

= [0̃, Ra] + 2
(1)

θ γa
(1)

θ + 4
(0)

θ γa
(2)

θ (A.20)

where we have introduced the scalar 0̃ defined by

[1
2
π̄γ⊕π,

(n)

θ ] (n ≥ −1) ≡ −i
n(n+1)

2
+n(1 + Θ|n|−1

2
)

√
(n + 1)!

0!
(π̄n+1,0 − π̄n+1,0)

+(−1)ni
n(n+1)

2
+n(1 + Θ|n|−1

2
)

√
(n + 2)!

1!
(π̄n+2,1 − π̄n+2,1)

+ · · ·

+(−1)(k+2)(n+k+2)−1i
n(n+1)

2
+n(1 + Θ|n|−1

2
)

√
(n + k + 1)!

k!
(π̄n+k+1,k − π̄n+k+1,k)

+ · · ·

≡ 0̃ → 0 (A.21)
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and

[
(n)

θ , π̄γ⊕γaθ] = − in(1 + Θ
n−1

2
)γa

(n+1)

θ (A.22)

Unfortunately, 0̃ is not zero in the presence of Ra. Let’s assume the collective
(n)

θ k has k +1 terms instead of an infinite number of terms. Then [1
2
π̄γ⊕π,

(n)

θ k]

gives

(−1)(k+2)(n+k+2)−1i
n(n+1)

2
+n(1 + Θ|n|−1

2
)

√
(n + k + 1)!

k!
π̄n+k+1,k

Finally, one can see that

(−1)(k+2)(n+k+2)−1i
n(n+1)

2
+n(1 + Θ|n|−1

2
)

√
(n + k + 1)!

k!
[π̄n+k+1,k, Ra]

gives − in(1 + Θ|n|−1
2
)

(n+1)

θ k. So if we make the collective
(n)

θ k have an infinite

number of terms by k →∞ then 0̃ produces a nonzero result in the commuta-

tor with Ra. This exactly cancels the remaining terms in (A.20) to make the

double commutator consistent.

Keeping this subtle point in mind let’s consider the following transforma-

tion

Q′
free = eiRapaQ̃freee

−iRapa

= eiRapa(1
2
c ¤ − 1

2
π̄γ⊕γ⊕θb + 0̃b + [−iRapa,−1

2
π̄γ⊕γ⊕θ + 0̃]b

+ 1
4
π̄γ̃⊕π + [−iRapa,

1
4
π̄γ̃⊕π] + 1

2
[−iRapa, [−iRapa,

1
4
π̄γ̃⊕π]]

− i
2
π̄γ⊕/pθ + [−iRapa,− i

2
π̄γ⊕/pθ])e−iRapa (A.23)

where 0̃b vanishes in Q′
free but will give a nontrivial contribution in the presence
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of Ra. We will determine this term from nilpotency of Q′
free.

In terms of R⊕ and
(n)

θ , Q̃free is

Q̃free = 1
2
c ¤ − 1

2
π̄γ⊕γ⊕θb −

(2)

θ γa
(0)

θ pab + 1
2

(1)

θ γa
(1)

θ pab

+ 0̃b + [−iRa, 0̃]pab + 1
4
π̄γ̃⊕π − 0̃apa

+ 1
2
[−iRapa,−0̃bpb] + 1

2
R⊕¤ (A.24)

where

[−iRapa,−1
2
π̄γ⊕γ⊕θ]b = −

(2)

θ γa
(0)

θ pab + 1
2

(1)

θ γa
(1)

θ pab (A.25)

and we have defined the vector 0̃a

0̃a ≡ −[−iRa, 1
4
π̄γ̃⊕π] + i

2
π̄γ⊕γaθ (A.26)

The nilpotency of Q′
free implies

− {−0̃a, 1
2
R⊕}pa¤ = 1

2
(−

(2)

θ γa
(0)

θ +1
2

(1)

θ γa
(1)

θ +[−iRa, 0̃])pa¤ (A.27)

[1
2
π̄γ⊕γ⊕θ, 1

2
[−iRapa,−0̃bpb]] b = −[−1

2
π̄γ⊕γ⊕θ + 0̃, 1

2
R⊕]¤ b

= 1
4
(3i

(1)

θ
(2)

θ −2i
(0)

θ
(3)

θ −2[0̃, R⊕])¤ b

(A.28)
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From (A.26) we can find 0̃a as

0̃a = i
4

(1)
π∞γa

(0)

θ − i
4

(0)
π∞ γa

(1)

θ (A.29)

where

(n)
χ∞≡ lim

k→∞
(−1)k(n+k+1)(−i)

n(n+1)
2

√
(n + k + 1)!

k!
χn+k,k (A.30)

for χ = θ, π. Inserting this into (A.27) we find

[iRa, 0̃] =
(1)

θ γa
(1)

θ (A.31)

[0̃, R⊕] = 2i
(1)

θ
(2)

θ (A.32)

One solution for 0̃ is

0̃ =
(1)
π∞

(1)

θ (A.33)

Now Q̃free is nilpotent, as it should be. However, the origin of collective

nonminimal fields is that Ra produces π̄γ⊕γaθ using [π̄γ̃⊕π,
(n)

θ ] → 0. (The key

feature of Ra is
(n)

θ , see (A.13).) And this implies that Ra and R⊕ commute

with π̄γ⊕γ⊕θ only up to these collective nonminimal fields (see (A.7)). So

these collective fields are just mathematical objects to compensate terms like

[Ri, 0̃]. Therefore, a physical (but not mathematical) equivalent is to drop

0̃(a) and
(n)

θ and regard Ri as terms commuting with π̄γ⊕γ⊕θ in (A.24). The

resulting Q̃free is simply

Q̃free = 1
2
c¤ − 1

2
π̄γ⊕γ⊕θb + 1

4
π̄γ̃⊕π + 1

2
R⊕¤ (A.34)
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with [π̄γ⊕γ⊕θ,R⊕] ∼ 0.

Our results for
◦
Q′

Y MB(1.30),
◦
QSY MB(1.49) and Q′′

SY MB(1.60) all reflect this

prescription. θ̃ in these BRST operators will produce only π⊕, θ⊕ and θ⊕⊕b

(θ⊕⊕b will only appear in (1.30)) dropping
(1)

θ and
(2)

θ b. If we want to be

rigorous
(n)

θ and 0̃(a) should be kept and the commutator [Ri, π̄γ⊕γ⊕θ] should

be calculated for both to compensate terms from 0̃(a).

If we consider this mathematical rigor for Q′
Y MB(1.30) we find

Qcollective
Y MB = eiRa∇a [ 1

2
c(¤− π̄γabθFab) + 1

2
R⊕(¤− π̄γabθFab)

+ 1
2D

[iRa, 0̃a](¤− π̄γabθFab) − 1
2
π̄γ⊕γ⊕θb + 1

4
π̄γ̃⊕π

+ 0̃b −
(2)

θ γa
(0)

θ ∇ab + 1
2

(1)

θ γa
(1)

θ ∇ab − [iRa, 0̃]∇ab

− 0̃a∇a

− 1
2
{(cb− 1

2
) + R⊕b + 1

2D
[iRa, 0̃a]b}

× θ̄
1

γ̃⊕
γabθ[Fab,∇c](−

(2)

θ γc
(0)

θ + 1
2

(1)

θ γc
(1)

θ − [iRc, 0̃])

+ 1
2
{c + R⊕ + 1

2D
[iRa, 0̃a]}

× θ̄
1

γ̃⊕
γabθ[Fab,∇c]0̃

c ] e−iRa∇a | linear in F , [∇,F ]=0 (A.35)

where

D = dimension of space-time (10 here)

and ¤ = −∇a∇a (A.36)

If we drop
(n)

θ and 0̃(a) and regard [γ⊕, 1
γ̃⊕ ] = 0 (which is equivalent to [Ri, π̄γ⊕γ⊕θ]] =

0) we come back to Q′
Y MB(1.30). The last four lines do not contribute to Q′

Y MB
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but are there for nonconstant Yang-Mills background.
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A.3 Regularization

In this appendix we will consider a regularization procedure which will give

the prescription of the previous appendix. The motivation is the fact that

[π̄γ̃⊕π,
(n)

θ ] → 0. However, this does not exactly vanish, but leaves a piece of

(n+1)
π ∞. This remnant gives a nontrivial contribution in the presence of 1

γ̃⊕ ,

i.e.,

〈0|eia⊕aª(iaª)nγ̃⊕|θ〉 → 0

〈0|eia⊕aª(iaª)nγ̃⊕
1

γ̃⊕
|θ〉 →

(n)

θ (A.37)

Now if we introduce some regularization parameter z as

〈p, q|γ̃⊕|r, s〉 regularized−→ zp+r+s+r〈p, q|γ̃⊕|r, s〉, z → 1 (A.38)

then (A.37) becomes

〈0|eia⊕aª(iaª)nγ̃⊕|θ〉k → z2n+2k+1 θn+k+1,k

〈0|eia⊕aª(iaª)nγ̃⊕
1

γ̃⊕
|θ〉k → z2n+2k+1

(n)

θ k (A.39)

where k means the collective field has k + 1 terms. The regularization is to

send k to infinity with fixed z (< 1). Then the operator γ̃⊕ 1
γ̃⊕ is a projection

operator which will project out the collective fields. The free terms in any

Qbackgroud all have this projection operator which goes to the identity in the
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absence of 1
γ̃⊕ .

− 1
2
π̄γ⊕γ⊕θb + 1

4
π̄γ̃⊕π − i1

2
∇aπ̄γ⊕γaθ

→ −1
2
π̄γ⊕γ⊕Πθb + 1

4
π̄γ̃⊕Ππ − i1

2
∇aπ̄γ⊕γaΠθ

(A.40)

The arrow means inserting the projection operator and dropping collective

fields after expansion of exponential factors.

If a collective field is truncated, i.e., with incomplete beginning or ending

components, then we cannot remove it by this regularization procedure, but

we can still avoid its contribution. This situation occurs when we consider the

commutator

{ηπp,p+1, [∇0θ̃, π̄γ⊕γaθ]} = {ηπp,p+1,−i∇0γ
aθ⊕} = 0 (p > 0) (A.41)

where η is a constant fermionic field. This implies

[∇0θ̃, (π
p,p + πp+1,p+1)η] = 0 (A.42)

The second argument in the commutator is an example of a truncated collective

field. Actually, this commutator indeed vanishes if we consider
(1)

θ , which

we drop in regularization. So for consistent regularization we take this as

vanishing.

This fact is applied for closure of the algebra

[ηθq,q+1, { [η′πp,p+1, QR], QR}] (A.43)

76



where QR is any version of the BRST operator including Ri. After canceling

ghost-number-nonzero components this commutator reduces to

[η′C−
p , ηC+

q ] (A.44)

where C±
p will be superstring constraints if we use Qsstring. But the original

commutator is just

1
2
[ηθq,q+1, [η′πp,p+1, {QR, QR}]] (A.45)

and it is just zero due to nilpotency of QR. However, η′C−
p has a term like

ηγa(πp,p + πp+1,p+1), which comes from [η′πp,p+1, π̄γ⊕γaθ]. But this combina-

tion of πp,p is just an example of truncated collective fields. This truncated

collective field will interact with θ̃ in ηC+
q giving a nonzero contribution in this

apparently vanishing commutator. This should be canceled by a [η′πp,p+1,
(1)

θ ]

contribution, which we projected out by regularization. What this means is

that for consistent regularization we should take the commutator with trun-

cated collective fields, θ̃, Ri as vanishing. For example, we should take [(πp,p +

πp+1,p+1), θ̃] as zero but we should calculate {(θp,p +θp+1,p+1), (πp,p +πp+1,p+1)}
in [η′C−

p , ηC+
p ], both of which come from π̄γ⊕γaθ.
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A.4 Closure of constraints

First of all, if one directly calculates [πp,p+1, R⊕] one gets

[πp,p+1, R⊕] = −3
4

∑
r

(−1)p
√

p + 1θr,r(Θr−p + 2Θr−p−1 + Θr−p−2)

+1
4

∑
r

(−1)p
√

p + 1θr,r[(Θp−r+1 + 2Θp−r + Θp−r−1)

≡ −3
4
A + 1

4
B

= −1
2
(A−B)− 1

4
(A + B) (A.46)

But A + B is just (−1)p
√

p + 1
(0)

θ , and it will vanish when it acts on the

projection operator Π. Also,

A−B = −2(−1)p
√

p + 1ϑp

in terms of ϑ (1.79). When we calculate closure of the constraints, there are

two types of terms related to the above expression, i.e.,

{[ηπp,p+1, R⊕], [η′θq,q+1, π̄γ̃⊕π]}

and

{[ηπp,p+1, R⊕], [η′πq,q+1, π̄γ⊕γaθ]}

{[ηπp,p+1, π̄γ⊕γaθ], [η′πq,q+1, R⊕]}

where η and η′ are constant spinors.

The first type is always zero due to the symmetry of γ⊕ and γ̃⊕. If p 6= q,
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p 6= q + 1 and p + 1 6= q the second type cancels because of the A − B

sign difference. If p = q we can express [ηπp,p+1, R⊕] as just −√p + 1η(θp,p −
θp+1,p+1). If p = q + 1 or p + 1 = q we can use

√
p + 1η(θp,p − θp+1,p+1). This

becomes clearer in a simpler situation,

{R⊕, π̄γ⊕γaθ} = 0

Then we have

{η′πq,q+1, [ηπp,p+1, {R⊕, π̄γ⊕γaθ}]} = 0

But this implies

[{ηπp,p+1, R⊕}, {η′πq,q+1, π̄γ⊕γaθ}] + [{η′πq,q+1, R⊕}, {ηπp,p+1, π̄γ⊕γaθ}] = 0

This is one part of the closure of constraints. A similar analysis shows

[ ηP̂aγ
a(θp,p + θp+1,p+1), η′P̂aγ

a(θp,p + θp+1,p+1) ]

∼ [ η(πp,p − πp+1,p+1), i
4
R̃a ] η′γa(θp,p + θp+1,p+1)

+ ηγa(θp,p + θp+1,p+1) [ i
4
R̃a, η

′(πp,p − πp+1,p+1) ] (A.47)

where ∼ means we should drop truncated collective fields.

Secondly, from the fact that [θ̃, π̄γ⊕γaθ]=
(1)

θ −i θ⊕ ∼ −i θ⊕ due to regu-

larization when θ̃ acts on terms from π̄γ⊕γaθ, we should change the sign of

θ̃. ( More precisely, they are all zero except for π1,1 from π̄γ⊕γaθ. For only

this term we can see this sign-change effect as explained in the previous ap-

pendix.) This fact was implicitly expressed with the projection operator Π in
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the constraints.

Finally, one should be cautious about {π̄γ⊕γaθ , π̄γ⊕γbθ} = (−1)(−2)gab

π̄γ⊕γ⊕θ. The “−” sign comes from the fact that OSp(2) gamma matrices (and

therefore a† and a) anticommute with ordinary gamma matrices. This gives

an additional sign when one calculates terms like [ηγaθp,p , η′γbπp,p].
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A.5 ZJBV form of BRST

The ZJBV form of the BRST operator follows from the Hamiltonian form of

the BRST operator

QZJBV = i
2
φ̇AφA − φ̌A{φA, QH ] (A.48)

Then in our case,

QZJBV
sstring = −Ẋ · P 0 +

∑
±

Q
(±)ZJBV
sstring (A.49)

where, e.g., for the (+) term (for (−), just add a − for each ′)

QZJBV
sstring = ċb + θ̇π

+ (X̌a − P̌ ′
a)

[(
c + 1

2
θ̄γ̃⊕θ

)
P̂ a − i

2
π̄γ⊕γaθ

−
(
iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R′
a|>

)
R⊕ + i1

2
θ̄⊕θ0 θ0γ

aθ′0

−1
2
θ̄⊕γbγaθ0

(
i1
2
θ0γbθ

′
0 + 2iθ̃γbθ

′
0 + iθ̃γbθ̃

′ − 1
2

R′
a|>

)

− 1
3
θ̄⊕γaγbθ̃

(
2iθ̃γaθ

′
0 + i5

4
θ̃γaθ̃

′ − 3
4

R′
a|>

)]

− č
[
icc′ + 2 π̄a†⊕a⊕θ|>

]

− b̌
(
− 1

2
P̂ 2 − 2ic′b − icb′ − iθ̄′π − i[θ̄(a†⊕a⊕ − a†ªaª)π]′

)
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+
∑
p>1

θ̌p,p+1

[ {
i
(
c + R⊕ + 1

2
θ̄γ̃⊕θ

) |>θ′p,p+1
}

− 2i[(p + 1)−
√

p + 1

√
p +

√
p + 2

2
]Πθp+1,pb

+(−1)p+1i1
2

√
p + 1Π(πp,p − πp+1,p+1)

+(−1)p+1i1
2

√
p + 1γaΠ(θp,p + θp+1,p+1)Pa

]

− i
2

θ̌0,1

{
π0 + (γaθ0)P̂a + i1

2
(γaθ0)θ0γaθ

′
0

+2
3
γaθ̃

(
2iθ̃γaθ

′
0 + i5

4
θ̃γaθ̃

′ − 3
4

R′
a|>

)
− π1,1 + γaΠθ1,1Pa

}

−
∑
p>1

π̌p,p+1

[{
i
(
c + R⊕ + 1

2
θ̄γ̃⊕θ

) |>πp,p+1
}′

+(−1)p+1i
√

p + 1ϑp
{
−1

2
P2 + 1

2
P̂ 2 + iθ̄′π + i[θ̄(a†⊕a⊕ − a†ªaª)π]′

}

+1
2
R⊕|>

∑
r

(−1)r2+p+1

√
p + 1

r
γaθ′r−1,r(Θr−p−1 + Θr−p−2)Pa

− (−1)p+1i
√

p + 1(θp,p − θp+1,p+1)

×
(

1
2
P̂ 2 + iθ̄′π + i[θ̄(a†⊕a⊕ − a†ªaª)π]′

)

+ 2i[(p + 1)−
√

p + 1

√
p +

√
p + 2

2
]πp+1,pb

−(−1)p+1i1
2

√
p + 1γaΠ(πp,p + πp+1,p+1)Pa

+1
4

∑
r

(−1)r2+p+1

√
p + 1

r
γaθ′r−1,r(Θr−p−1 + Θr−p−2)

×
(
−π̄γ⊕γaθ|> + iθ̄⊕γa

(
π0 + (γbθ0)P̂b + i1

2
(γbθ0)θ0γbθ

′
0

)
+ iq̄⊕γaθ̃

)]

− i
2

π̌0,1

{
γa

(
π0 + (γbθ0)P̂b + i1

2
(γbθ0)θ0γbθ

′
0

)

×
(
P̂a + iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R′
a|>

)

+2
3
γbγaθ̃

(
2iθ̃γaθ

′
0 + i5

4
θ̃γaθ̃

′ − 3
4

R′
a|>

)

×
(
P̂b + iθ0γbθ

′
0 + 2iθ̃γbθ

′
0 + iθ̃γbθ̃

′ − 1
2

R′
b|>

)

−γaΠπ1,1
(
P̂a + iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R′
a|>

)

82



+2θ1,1
(
− 1

2
P̂ 2 − iθ̄′π − i[θ̄(a†⊕a⊕ − a†ªaª)π]′

)

+2ϑ0 ×
{
−1

2

(
P̂a + iθ0γaθ

′
0 + 2iθ̃γaθ

′
0 + iθ̃γaθ̃

′ − 1
2

R′
a|>

)2

+1
2
P̂ 2 + iθ̄′π + i[θ̄(a†⊕a⊕ − a†ªaª)π]′

}

+1
2
R⊕|>

∑
r

(−1)r2+1 1√
r
γaθ′r−1,r(Θr−1 + Θr−2)Pa

− i
4

∑
r

(−1)r2+1 1√
r
γaθ′r−1,r(Θr−1 + Θr−2)

×
(
−π̄γ⊕γaθ|> + iθ̄⊕γa

(
π0 + (γbθ0)P̂b + i1

2
(γbθ0)θ0γbθ

′
0

)
+ iq̄⊕γaθ̃

)}

−
∑

q 6=p+1

θ̌p,q[θ
p,q, Qsstring}

−
∑

q 6=p+1

π̌p,q[π
p,q, Qsstring} (A.50)

where

Θx =





1 x ≥ 0

0 x < 0
(A.51)
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Appendix B

B.1 Hamiltonian to Lagrangian

B.1.1 Superparticle

In our previous paper we constructed the BRST operator for the superparti-

cle and superstring in a super Yang-Mills background [17]. From the BRST

operator we can get the gauge fixed Hamiltonian:

Hparticle
GF = {b,Qθ}

= −1
2
¤ + Wα∇α + 1

2
F abθγbaπ|> (B.1)

where

¤ = −(pa + Aa)
2, ηab = δab

∇α = d0α + Aα

d0α = π0α + (p/θ0)α, π0α = ∂/∂θα
0

γab = −1
4
(γaγb − γbγa), {γa, γb} = 2δab
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and ∇α,∇a are the graded covariant derivatives.

Notice that π and θ are shorthand notation for πp,q and θp,q, where p − q

is the ghost number and p + q is the ghost level. (Even level and odd level

correspond to fermion and boson respectively.) The expression “|>” means

“ghosts only”.

Now we go to the Lagrangian form of the action for x. To obtain complete

results for the amplitude rules, we need to keep terms in the Hamiltonian

quadratic in the background fields. This has two unusual consequences: In

the Lagrangian, (1) all these terms will become linear (as familiar from the

bosonic case), and (2) such terms new to the supersymmetric case will appear

only with θ̇.

Neglecting ibċ and F · ŝ we see

−p · ẋ + iπθ̇ + 1
2
(p + A)2 + Wα[π0α + pa(γaθ0)α + Aα]

⇒ −1
2
ẋ2 + iπθ̇ + A · ẋ− iAαθ̇α + Wα[π0α + (ẋ− A) · (γθ0)α − 1

2
(γθ)α ·Wγθ]

By redefining π0α ⇒ π0α + A · (γθ0)α + 1
2
(γθ0)α ·Wγθ0 (deformed only with

gauge fields) we get

−1
2
ẋ2 + iπθ̇−Aαiθ̇α

0 + A · (ẋ + iθ0γθ̇0) + W α[π0α + ẋ · (γθ0)α + i
2
(γθ0)α · θ0γθ̇0]

The background terms then give the vertex operator

V = AAjA

= Aαωα + Aapa + W αdα + 1
2
F abŝba (B.2)
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where

dα = π0α + ẋ · (γθ0)α + i
2
(γθ0)α · θ0γθ̇0

pa = ẋ + iθ0γθ̇0

ωα = −iθ̇α
0

ŝab = θγabπ|> (B.3)

The fact that θ̇ vanishes by its free field equations is related to the fact

that its contraction with π gives a δ(z), canceling a (spacetime) propagator,

and thus contracting two 3-point vertices into a 4-point vertex. Thus, they

originate from terms in the Hamiltonian quadratic in background fields. The

string vertex operator is the same, with the z derivative replaced with the left-

or right-handed worldsheet derivative.

In our previous paper [17] the background coupling had additional terms

involving the expression Ra, quadratic in ghost θ’s. These terms never con-

tribute to amplitudes because there are no ghost π’s to cancel them. (ŝ has a

ghost π, but together with a ghost θ.) This is also true for the superstring.

86



B.1.2 Superstring

Like the case of the superparticle, the gauge fixed action for the superstring

comes from {∫ b,Qsstring}, adding first-order terms: without background,

SGF =

∫
d2z P̂m∂mX − 1

2
ηmnP̂

mP̂ n + i
√

2
∑
±

∂±c±b±± + i
√

2
∑
±

∂±θ±π±

The
√

2 comes from ∂± = (1/
√

2)(∂0 ± ∂1).

We can introduce the background as for the particle case:

V = AAJA

= AαΩα + AaPa + WαDα + 1
2
F abŜba (B.4)

where

Dα = π0α + (γaθ0)α∂Xa + i1
2
(γaθ0)αθ0γa∂θ0

Pa = ∂Xa + iθ0γa∂θ0

Ωα = −i∂θ0α

Ŝab = θγabπ|> (B.5)
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B.2 Current algebra

The operator (affine Lie) algebra remains simple because the currents are no

more than cubic in the fundamental variables:

JA(z1)JB(z2) = G′
AB(z1−z2)fAB

C [z′]JC(z′)+G′′
AB(z1−z2)ηAB+ :: JA(z1)JB(z2) ::

(B.6)

where JA has zero-modes jA, of which only pa and dα act nontrivially on

AA, and GAB is the relevant Green function. For example, G
(n)
ab = G

(n)
x and

G
(n)
αβ = G

(n−1)
θ . The various definitions are

fαβ
a[z]Pa(z) ≡ γa

αβ[Pa(zα) + Pa(zβ)]

faαβ[z]Ωβ(z) ≡ 2γaαβΩβ(za)

fαaβ[z]Ωβ(z) ≡ −2γaαβΩβ(za)

ηα
β = −iδβ

α

ηβ
α = iδβ

α

ηab = −ηab

otherwise vanish
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and

:: JA(z1)JB(z2) :: AC ≡ : JA(z1)JB(z2) : AC

JA(z1)A
B(z2) = G′

AB(z1 − z2)(jAAB)(z2) + :JA(z1)A
B(z2):

AA(z1)A
B(z2) = e−k1·k2Gx(z1−z2):AA(z1)A

B(z2):

:: JA(z1)JB(z2) :: JC(z3) ≡ (−1)BCG′
AC(z1 − z3)fAC

D[z′]JD(z′)JC(z3)

+G′
BC(z2 − z3)fBC

D[z′]JA(z1)JD(z′)

+(−1)BCG′
AC(z1 − z3)fAC

D[z′] :: JD(z′)JC(z3) ::

+G′
BC(z2 − z3)fBC

D[z′] :: JA(z1)JD(z′) ::

+ :: JA(z1)JB(z2)JC(z3) :: (B.7)

It is then straightforward to get (2.1), which is all that is needed in amplitude

calculations.
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B.3 Component expansions

The θ expansion of the superfields follows directly from the constraints on the

(super)field strengths

[∇a,∇b] = Fab

{∇0α,∇0β} = 2γaαβ∇a

[∇0α,∇a] = 2γaαβW β

and the Bianchi identities that follow from them.

Although in practice we perform component expansions by evaluating spinor

derivatives at θ = 0, we can also directly expand superfields in θ. In a Wess-

Zumino gauge we have:

Fab =
◦
F ab

W α =
◦

W α + 1
2
(γabθ0)

α
◦
F ab

Aa =
◦
Aa + 2θ0γa

◦
W + 1

2
θ0γaγ

bcθ0

◦
F bc

Aα = (γaθ0)α

◦
Aa + 4

3
(γaθ0)αθ0γa

◦
W + 1

4
(γaθ0)αθ0γaγ

bcθ0

◦
F bc

where ◦ indicates θ0 independence, and we have expanded only to constant

field strengths W and F , which is sufficient for lower-point diagrams because

of the deficiency of π’s. The vertex operator V = VB +VF for the superparticle
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is then :

VB = i
◦
A · ẋ + 1

2

◦
F abθγbaπ

VF =
◦

W α[π0α − iẋ · (γθ0)α − i
6
(γaθ0)αθ0γ

aθ̇0] (B.8)

Here θγabπ includes the physical π0, θ0. (In terms of superfields and currents

we hide this physical π0, θ0 in Wα and Dα. Then Ŝ has only ghost number

non-zero π, θ.) Notice that the spinor vertex is the supersymmetry generator

qα, which will happen again in the superstring case. Inserting plane waves for

the fields,

VB = Aa(iẋ
a + θγabπkb)e

ik·x (B.9)

VF = wα[π0α − iẋ · (γθ0)α − i
6
(γaθ0)αθ0γ

aθ̇0]e
ik·x (B.10)

The superstring vertices are essentially the same.
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B.4 Loop review

B.4.1 Superparticle

Since our theory is 1st-quantized, we should calculate amplitudes in terms

of worldline Green functions with periodic boundary conditions [27]. So our

partition function with imaginary time is

N
∫ ∞

0

dT

T

∫
DX Dc Db Dθ Dπ Tr e−

∫ T
0 dz Lθ (B.11)

where

N =

∫
DP e−

∫ T
0 dzP 2/2 (B.12)

and
∫

dT/T comes from the Schwinger proper-time integral representation of

the 1-loop vacuum energy −Tr[ln(−¤)].

Since this is a 1-loop amplitude, we should impose periodic boundary con-

ditions, on both X and θ (to preserve supersymmetry):

X(T ) = X(0), θ(T ) = θ(0) (B.13)

This boundary condition also results in a supertrace naturally in the loop

amplitude.

In this setting the color-ordered, N-point, 1-loop amplitude of the super-

particle can be written as:

AN = GN

∫ ∞

0

dT (2πT )−D/2

∫

0≤zr≤zr+1≤zN=T≤∞
dN−1zi KN e−

∑
1≤r<s≤N kr·ksGrs

(B.14)
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The factor (2πT )−D/2 comes from N ∫ DXe−
∫

Ẋ2/2. The zi integration factors

come from the Nth order expansion of the vertex operator. The worldline

Green function G(zs− zr) is given in (2.15). Examples of the kinematic factor

KN are given in section 5. The factor GN is the trace of group generators in

a given ordering.

B.4.2 Superstrings

The procedure is almost identical to the particle case. One difference is that

our Green functions are now doubly periodic:

Gx(z) = Gx(z + 2πi) = Gx(z + T )

Gθ(z) = Gθ(z + 2πi) = Gθ(z + T ) (B.15)

Again this periodic boundary condition in both directions is required by su-

persymmetry. Also, there is a topological distinction among graphs, namely

planar, nonplanar, and unorientable graphs. We will concentrate on the planar

one here; the others follow from similar considerations.

We can write the color-ordered, N-point, 1-loop, superstring amplitude in

a form identical to that of the particle case (B.14), but with the string Green

function given in Appendix B.5. After the usual change of variables

ρi = e−zi , w = ρN = e−T (B.16)
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we have

GN

∫ 1

0

dw

w

(−2π

ln w

)D/2 ∫

0≤w≤ρr+1≤ρr≤1

N−1∏
r=1

dρr

ρr

KN e−
∑

1≤r<s≤N kr·ksGrs (B.17)

In the bosonic case there is a factor of [f(w)]−D+2 coming from the partition

function (and a w from the tachyon mass) for D X’s and the 2 reparametriza-

tion ghosts b and c. In the supersymmetric case this is canceled (as in all

superstring formulations) by an [f(w)](2
D/2)(1−2+3−4+··· ) = [f(w)]2

(D−4)/2
which

comes from the infinite pyramid of spinors, in D = 10. However, the regular-

ization introduces corrections to the spinor partition function:

∏
n

(1− wn)4(1− wn)4 ⇒
∏
n

(1− wn+iε)4(1− wn−iε)4 (B.18)

The ε expansion of this partition function gives corrections to amplitudes. For

example, in the 6-point, 1-loop amplitude we expect a term ∼ (1/ε)6(ε2θ′′′1 /θ′1),

where the (1/ε)6 comes from 6 Gθ’s and the ε2θ′′′1 /θ′1 comes from expansion of

the spinor partition function.
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B.5 Periodic Green functions

B.5.1 Second order

The general Fourier decomposition of a function in 2 dimensions with doubly

periodic boundary conditions ((x, y) ' (x + 2π, y) ' (x, y + 2πτ)) for real

τ = T/2π is

G(x− x′, y − y′) =
∑
n,m

Gn,m ein(x−x′)+im(y−y′)/τ (B.19)

Then the Gn,m for the Green function of the differential operator −∂2
x−∂2

y +ε2

is easily found to be

Gn,m =
1

2πτ

1

n2 + m2

τ2 + ε2
(B.20)

For simplicity we can set x′ = y′ = 0 by translational invariance. Using

Schwinger proper-time parametrization we get

G(x, y) =
1

2πτ

∑
n,m

∫ ∞

0

ds e−s(n2+m2/τ2+ε2)+inx+imy/τ (B.21)

Next using Jacobi’s transform

∑
m

e−sm2/τ2+imy/τ = τ

√
π

s

∑
m

e−(2πm−y/τ)2τ2/4s

we get

G(x, y) =
1

2π

∑
n,m

∫ ∞

0

ds

√
π

s
e−(2πm−y/τ)2τ2/4s−s(n2+ε2)+inx (B.22)
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Then using ∫ ∞

0

ds sα−1 e−ps−q/s = 2

(
q

p

)α/2

Kα(2
√

pq)

we get

G(x, y) =
1√
2π

∑
n,m

(
(2πmτ − y)2

n2 + ε2

)1/4

einxK1/2

(√
(2πmτ − y)2(n2 + ε2)

)

(B.23)

Also using K1/2(z) =
√

π/2ze−z we get

G(x, y) =
1

2

∑
n,m

1√
n2 + ε2

e−|2πmτ−y|√n2+ε2+inx

=
1

2ε
e−ε|y| +

1

2ε

∑

m6=0

e−ε|2πmτ−y| +
1

2

∑

n 6=0

1√
n2 + ε2

e−|y|
√

n2+ε2+inx

1

2

∑

n,m6=0

1√
n2 + ε2

e−|2πmτ−y|√n2+ε2+inx (B.24)

Now let’s transform each sum into a sum over positive integers only:

1

2ε

∑

m6=0

e−ε|2πmτ−y| =
1

ε
cosh(εy)

∞∑
m=1

e−2πmτε

=
1

2ε
e−πτε cosh(εy)

sinh(πτε)
(B.25)

1

2

∑

n 6=0

1√
n2+ε2

e−|y|
√

n2+ε2 + inx =
1

2

∞∑
n=1

1√
n2+ε2

(λn
n + c.c.) (B.26)

1

2

∑

n,m6=0

1√
n2+ε2

e−|2πmτ−y|√n2+ε2 + inx =
1

2

∞∑
n,m=1

1√
n2+ε2

wmn
n (ρn

n + ρ−n
n + c.c.)

(B.27)
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where

ln λn = i

(
x + i|y|

√
1 +

ε2

n2

)

ln ρn = i

(
x + iy

√
1 +

ε2

n2

)

wn = e−2πτ
√

1+ε2/n2

(B.28)

We can subtract out G for the particle from G(x, y), which includes the part

divergent as ε → 0:

1

2ε

cosh[ε(|y| − πτ)]

sinh(πτε)
(B.29)

The remainder is

1

2

∞∑
n=1

1√
n2+ε2

(λn
n + c.c.) +

1

2

∞∑
n,m=1

1√
n2+ε2

wmn
n (ρn

n + ρ−n
n + c.c) (B.30)

In the ε → 0 limit (wn → w = e−T , λn → λ, ρn → ρ = e−z, z = y − ix), using

∞∑
n=1

xn

n
= − ln(1− x)

we get for the remainder

− ln |1− λ| −
∞∑

m=1

ln |(1− wmρ)(1− wmρ−1)|

= − [Re(z)]2

2T
− 1

2
ln |λ| − ln |f(w)2|+ Gx

un
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where (assuming |y| = y for simplicity)

Gx
un(z, T ) = − ln

∣∣∣∣∣
2πθ1(

iz
2π
| iT
2π

)

θ′1(0| iT2π
)

∣∣∣∣∣ +
[Re(z)]2

2T

θ1(
iz
2π
| iT
2π

) = −iw1/8(ρ1/2 − ρ−1/2)
∞∏

m=1

(1− wmρ)(1− wmρ−1)(1− wm)

θ′1(0| iT2π
) = 2πw1/8f 3(w), f(w) =

∞∏
m=1

(1− wm)

and Gx
un is the unregularized Green function with the usual T -dependent “con-

stant” added to normalize its short distance behavior to be the same as that

of the tree case (see, e.g., [28]).

Combining the two parts we get

G(ρ) =
1

Tε2
+

y2

2T
− y

2
+

T

12
+O(ε)

+
1

2
Re

(
ln2 ρ

ln w

)
− 1

2
ln |ρ| − ln |[f(w)]2|+ Gx

un +O(ε)

=
1

Tε2
− 1

12
ln |w[f(w)]24|+ Gx

un +O(ε) (B.31)

The first term is the zero-mode behavior, and the second term is a constant

that won’t contribute to massless amplitudes (because of derivatives and k2 =

0; the non-f piece is the same as for the particle).

B.5.2 First order

The worldsheet Green function for θ can be obtained by differentiating that

for X. However, to be careful about zero-modes some modification is needed.
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For the 1st-order differential operator −i(∂y − i∂x + ε) we find the mode sum

of the Green function

Gθ =
i

T

∑
m,n

−im/τ + n + ε

m2/τ 2 + (n + ε)2
einx+imy/τ

= i(−∂y − i∂x + ε)
1

2πτ

∑
m,n

1

m2/τ 2 + (n + ε)2
einx+imy/τ

where the ε in the numerator is nontrivial because the second-order Green

function has a 1/ε pole. The above sum is almost identical to the second-order

case except for the change n2 + ε2 ⇒ (n + ε)2. Therefore we can write the

first-order Green function as

Gθ = i(−∂y − i∂x + ε)

[
1

2ε

cosh[ε(|y| − πτ)]

sinh(πτε)
+

1

2

∞∑
n=1

1

n + ε
(λn

n + c.c.)

+
1

2

∞∑
n,m=1

1

n + ε
wmn

n (ρn
n + ρ−n

n + c.c.)

]
(B.32)

where

ln λn = i
[
x + i|y|

(
1 +

ε

n

)]

ln ρn = i
[
x + iy

(
1 +

ε

n

)]

wn = e−2πτ(1+ε/n)
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Hence it has a less divergent leading term followed by the expected differenti-

ated second-order Green function:

Gθ =
i

T ε
+

∞∑
n=0

Gθ
nεn

=
i

T ε
+ i(∂y + i∂x)G

x
0 +O(ε) (B.33)
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B.6 Super amplitudes

B.6.1 Super tree

In this section we give some details of the calculation of 3-point tree and

4-point 1-loop super amplitudes.

We will concentrate on terms which give fermion contributions. In (2.6)

only C, D, and E give the AWW amplitude. Let’s consider A(1)W (2)W (3),

for example. Using (2.1),(B.7) we get for the tree (no fermion zero-mode

regularization)

〈Pa(1)Pb(2)〉 = −ηab
1

(z1−z2)2

〈Dα(1)Ωβ(2)〉 = δβ
α

1
(z1−z2)2

〈Pa(1)Dα(2)Dβ(3)〉 = −iγaαβ[ 2
z1−z2

1
(z1−z3)2

− 2
z1−z3

1
(z2−z1)2

− 1
z2−z3

( 1
(z1−z2)2

+ 1
(z1−z3)2

)] (B.34)
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Then we see in the Wess-Zumino gauge (Aα = γa
αβθβAa +O(θ2) + · · · , etc.)

C : (PPD) : −〈Pa(1)Pb(2)〉Aa(1)(Dα(3)Ab(2))W α(3)

= −i 1
(z1−z2)2

1
z3−z2

Aa(1)(dαAa(2))W α(3)

= −i 1
(z1−z2)2

2
z3−z2

Aa(1)W (2)γaW (3)

(PDP ) : −〈Pa(1)Pb(3)〉Aa(1)(Dα(2)Ab(3))W α(2)

= −i 1
(z1−z3)2

2
z2−z3

Aa(1)W (3)γaW (2)

D : (PDD) : −〈Pa(1)Dα(2)Dβ(3)〉Aa(1)Wα(2)W β(3)

= i[ 2
z1−z2

1
(z1−z3)2

− 2
z1−z3

1
(z2−z1)2

− 1
z2−z3

( 1
(z1−z2)2

+ 1
(z1−z3)2

)]A(1) ·W (2)γW (3)

E : (ΩDD) : 〈Ωα(1)Dβ(2)〉(Dγ(3)Aα(1))W β(2)W γ(3)

−〈Ωα(1)Dγ(3)〉(Dβ(2)Aα(1))W β(2)W γ(3)

= i
[
− 1

(z1−z2)2
1

z3−z1
+ 1

(z1−z3)2
1

z2−z1

]
A(1) ·W (2)γW (3)(B.35)

This reduces to (2.7).

B.6.2 1 loop : 2 fermions + 2 vectors

We will concentrate on the case where the fermions are at both ends. The other

case can be easily obtained by permutation. There are two kinds of contribu-

tions: W (dW )(dddW )W (with WF (ddF )W ) and W (dW )(dW )(ddW ) (and

corresponding W (dW )F (dF )). The W 2F 2 contribution gives a GP sum with
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the corresponding W 2(dW )2 as usual. The explicit formula is

A : − Wα(1)
(
dγW

β(2)
) (

1
3!
d[δdαdβ]W

γ(3)
)
W δ(4)

+ 3
16

tr(γabγcd)W
α(1)F ab(2)

(
1
2!
d[δdα]F

cd(3)
)
W δ(4)

B : − Wα(1)
(

1
3!
d[δdαdγ]W

β(2)
)
(dβW γ(3)) W δ(4)

+ 3
16

tr(γabγcd)W
α(1)

(
1
2!
d[δdα]F

ab(2)
)
F cd(3)W δ(4)

C : − Wα(1)
(
dαW β(2)

)
(dδW

γ(3))
(

1
2!
d[βdγ]W

δ(4)
)

+ 3
16

tr(γabγcd)W
α
(
dαW β(2)

)
F ab(3)

(
dβF cd(4)

)

D : − Wα(1)
(
dδW

β(2)
)
(dαW γ(3))

(
1
2!
d[γdβ]W

δ(4)
)

+ 3
16

tr(γabγcd)W
α(1)F ab(2) (dαW γ(3))

(
dγF

cd(4)
)

E : (dβdγW
α(1))

(
dδW

β(2)
)
(dαW γ(3)) W δ(4)

− 3
16

tr(γabγcd)
(
dβF ab(1)

) (
dδW

β(2)
)
F cd(3)W δ(4)

F : (dγdβWα(1))
(
dαW β(2)

)
(dδW

γ(3)) W δ(4)

− 3
16

tr(γabγcd)
(
dγF

ab(1)
)
F cd(2) (dδW

γ(3)) W δ(4) (B.36)

A and B vanish due to a GP sum. C+D and E+F give identical contributions,

using integration by parts (momentum conservation) and the (free) W field

equation ∂/W = 0. The results are given in (2.25).

These results appear in the literature in forms where neither gauge invari-

ance nor permutation symmetry (relating FFBB and FBFB) is manifest, which

we now provide for comparison. When written in terms of each momentum
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and gauge field, the results are (before applying integration by parts)

C : −1
2
k1 · k2W (1)A/ 2k/2A/ 3W (4) + 1

2
A3 · k4W (1)A/ 2k/2k/3W (4)

D : −1
2
k1 · k3W (1)A/ 3k/3A/ 2W (4) + 1

2
A2 · k4W (1)A/ 3k/3k/2W (4)

E : −1
2
k1 · k3W (4)A/ 2k/2A/ 3W (1) + 1

2
A3 · k1W (4)A/ 2k/2k/3W (1)

F : −1
2
k1 · k2W (4)A/ 3k/3A/ 2W (1) + 1

2
A2 · k1W (4)A/ 3k/3k/2W (1) (B.37)

Each of C + D and E + F can then be re-expressed as

1
2
k1 · k4 W (1)A/ 3k/3A/ 2W (4)

+ k1 · k4 k4 · A2 W (1)A/ 3W (4) + k1 · k2 A2 · A3 W (1)k/2W (4)

+ k1 · A2 k4 · A3 W (1)k/2W (4) + k1 · A3 k4 · A2 W (1)k/3W (4) (B.38)

Another expression for each of C, D, E, F can be obtained by absorbing the

second term into the first term, and the summed result is:

− k1 · k3 W (1)A/ 3(k/3 + k/4)A/ 2W (4)− k1 · k2W (1)A/ 2(k/2 + k/4)A/ 3W (4) (B.39)
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B.6.3 1 loop : 4 fermions

There are totally 1
2
· (4

2

) · 2 · 2 = 3 · 4 = 12 terms (and also 12 corresponding

(dF )2W 2 terms) contributing to the 4-fermion amplitude:

[αβ][γδ] : 1
2!2!

(d[δdγ]W
α)W β(d[βdα]W

γ)W δ

− 1
2!2!

(d[γdδ]W
α)W βW γ(d[βdα]W

δ)

− 1
2!2!

Wα(d[δdγ]W
β)(d[αdβ]W

γ)W δ

+ 1
2!2!

Wα(d[γdδ]W
β)W γ(d[αdβ]W

δ)

[αγ][βδ] : − 1
2!2!

(d[δdβ]W
α)(d[γdα]W

β)W γW δ

+ 1
2!2!

(d[βdδ]W
α)W βW γ(d[γdα]W

δ)

+ 1
2!2!

Wα(d[αdγ]W
β)(d[δdβ]W

γ)W δ

− 1
2!2!

WαW β(d[βdδ]W
γ)(d[αdγ]W

δ)

[αδ][βγ] : − 1
2!2!

Wα(d[αdδ]W
β)W γ(d[γdβ]W

δ)

+ 1
2!2!

(d[γdβ]W
α)(d[δdα]W

β)W γW δ

− 1
2!2!

(d[βdγ]W
α)W β(d[δdα]W

γ)W δ

+ 1
2!2!

WαW β(d[αdδ]W
γ)(d[βdγ]W

δ) (B.40)

For each term there are 4 terms, which come from [dαdβ−γa
αβ(−i∂a)]

2. Among

them only the γγ term survives, and the others vanish due to a GP sum from

corresponding (dF )2WW terms.

For each group two terms are equal to the other 2 terms, and the resultant
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6 terms are

2W (1)γaW (2) W (3)γbW (4) kb
1k

a
3

−2W (1)γaW (2) W (3)γbW (4) kb
1k

a
4

+2W (1)γaW (3) W (2)γbW (4) kb
1k

a
2

−2W (1)γaW (3) W (2)γbW (4) kb
1k

a
4

−2W (1)γaW (4) W (2)γbW (3) kb
1k

a
3

+2W (1)γaW (4) W (2)γbW (3) kb
1k

a
2 (B.41)

Symmetry between any two fermion lines is somewhat obscure in this form.

But there are Fierz identities which make it clear:

A : W (1)γaW (2) W (3)γaW (4)

= −W (1)γaW (3) W (4)γaW (2)−W (1)γaW (4) W (2)γaW (3)

B : W (2)γcγdγ
aW (1) W (4)γaγbγcW (3)kb

1k
d
3

= 4W (2)γaW (4) W (3)γaW (1)k2 · k3 − 4W (2)γaW (4) W (3)γbW (1)ka
3k

b
2

+12W (2)γaW (3) W (1)γW (4)ka
1k

b
3 − 12W (2)γaW3 W (1)γaW (4)k1 · k3
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C : W (2)γcγdγ
aW (1) W (4)γaγbγcW (3)kb

1k
d
3

= 8W (2)γaW (4) W (3)γaW (1)k2 · k3 − 8W (2)γaW (4) W (3)γbW (1)ka
3k

b
2

+16W (2)γaW (3) W (1)γW (4)ka
1k

b
3 − 16W (2)γaW3 W (1)γaW (4)k1 · k3

−4W (2)γaW (1) W (4)γbW (3)ka
3k

b
1 (B.42)

Using the above identities we can rewrite (B.41) as

4k1 · k2 W (1)γW (4) ·W (2)γW (3)− 4k1 · k4 W (1)γW (2) ·W (3)γW (4) (B.43)

Now symmetry in fermion lines can be checked using Fierz identity A.
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