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Abstract of the Dissertation

Applications of Front Tracking to Multiple
Scientific Problems

by

Xicheng Jia

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2007

We present several new developments of the Front Tracking method to solve

scientific and engineering problems including constructing 3-D grid cells with multiple

components, propagating 2-D boundary nodes through contact angle, and simulating

the cell migration behaviors. The purpose of our study is to extend the Front Tracking

method into more research fields where the tracking of high resolution discontuinities

is essential.

Key Words: Front Tracking, multiple components, contact angle, cell migrations.
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Chapter 1

Introduction

Computational Fluid Dynamics(CFD) is one of the most important branches of

the continuum media physics. It combines the knowledge of the classical fluid dy-

namics with the growing computational technologies, and has been rapidly developed

in the recent forty years.

The Front Tracking method, accompanied by the FronTier code, is an unique

method to attain sharp solutions for physical problems featuring with discontinuities.

In this paper, we explain new algorithms and extend the Front Tracking method into

several new applications.

1.1 Equation systems

The FronTier code is a comprehensive software package which contains the solvers

for various physical problems. For a gas dynamic problem, the underlying mathe-

matical model of the Front Tracking method is based on the Euler equation which

follows three conservation laws (mass, momentum, and energy conservations) and

the equation of states (EOS). For example, the Euler equation for one-dimensional

compressible fluid flow is as follows:
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∂
−→
U

∂t
+

∂
−→
f

∂x
= 0 (1.1)

where

−→
U =













ρ

ρu

e













and
−→
f =













ρu

ρu2 + p

u(e + p)













(1.2)

u is the velocity of the fluid parcel, p is the pressure, ρ is the fluid density, and

e is the energy. ∂
−→
U

∂t
is the time-dependent term which describes the local rate of

change with time for variables in U , and ∂
−→
f

∂x
is the flux convection term. It is worth

noting that for most of the time-dependent finite difference schemes, the convection

term is the most important part to find the accurate position and the strength of the

captured discontinuities.

In case the viscosity is important in the studied physics, a source term is intro-

duced into the equation system to specify the viscosity-related influences. Such equa-

tion system is known as the Navier-Stokes equation, and the basic one-dimensional

N-S equation is Equation 1.3, where
−−→
V IS is the viscosity source term.

∂
−→
U

∂t
+

∂
−→
f

∂x
=

−−→
V IS (1.3)

1.2 Numerical Methods

Finite difference is the main method used in the FronTier package as the PDE

solver. Several frequently used schemes i.e. MUSCL, Lax-Wendroff and PPM, are

also joined into the FronTier solver. On the neighborhood of the discontinuities,

Reimann solver is applied to compute the propagated positions of the discontinuities.
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For a given problem, the computational domain is discretized into grids. For each

grid point, the modeling equations are solved to compute its physical parameters by

using variables at its neighboring grid points.

For most finite difference schemes, there are common factors that may influence

the accuracy and robustness of the simulations:

1. How to handle the discontinuity, especially the contact discontinuity. In the

neighborhood of these physical waves, the physical properties may have a sharp

gradient and two adjacent grid points may follow completely different equations.

2. How to handle the boundary conditions. For any time-dependent finite differ-

ence method, a small error on the boundary can be propagated inward and

accumulate to influence the overall numerical solution.

Front Tracking method is a Godunov-type scheme which solves Reimann prob-

lems on grid blocks for flux calculation and applied a direct way to explicitly track

discontinuities. More details of this method are discussed in §1.3.

1.3 Discontinuities and Reimann Solution

Knowing the equations at the discontinuities where one or more physical proper-

ties change dramatically within several neighboring grid cells is a primary challenge

for most numerical simulations. This is the major reason the numerical solution be-

comes unstable or even incorrect if not treated properly. In fluid dynamics, there are

two types of discontinuities: shock and contact.
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1.3.1 Shock, Rarefaction and Contact

Sod’s classical one-dimensional Shock-Tube experiment is a good example to

explain the differences between the shock, the rarefaction and the contact.
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Figure 1.1: 1-D shock tube experiment: Top: Left: initialization, Right: types of
discontinuity. Bottom: density, velocity, pressure distributions.

See Figure 1.1 Top Left, at initial time, a box is separated by a thin film and gas

in each side of the film has very different physical properties.

At time = 0, the film is broken, and various discontinuities evolve and spread

along the box. Three types of discontinuities can be found at the location 1, 2, and 3

as in Figure 1.1top-right. The density, velocity and pressure at time = 0.14 computed

by a second order upwind TVD scheme(computational grid size is 100 along the x-

direction, 1997 by Xicheng Jia) can be shown in the Figure 1.1 bottom.

At location 3 where there is a shock, the density, velocity and pressure all have

very sharp gradients and the changes in the quantity span only two grids in width.

At location 1 where this is a rarefaction, although the density, velocity and

pressure all have large gradients, the changes span more grid widths and are smoother.
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Different from both the shock and the rarefaction, at location 2 where there is

a contact, the density has a very sharp gradient and the change spans about 3 grid

widths while both the pressure and velocity are continuous without change.

Figure 1.1 Top Right shows the discontinuities which spread along the spatial

(horizontal) direction and the time (vertical) direction in Sod’s experiment. If we use

a horizontal straight line(keep time as a constant) to sweep along the spatial-axis,

the resultant rarefaction is shown as a line segment, while both the shock and the

contact are points.

1.3.2 Reimann Solution

Riemann problem is a fundamental problem to study the interactions among

waves. Numerical methods involving Riemann solution, i.e. Godunov scheme, Glimm

scheme et al., treat the flow as a set of small-scale waves, and Reimann problems can

then be solved exactly between the adjacent regions of these waves.

Considering the one dimensional Euler equation as in Equation 1.1. In case of

the discontinuities, the partial derivatives in Equation 1.1 are not defined, and the

Rankine-Hugoniot condition is applied to obtain weak solution.

−→n · ([
−→
f ] − v[

−→
U ]) = 0 (1.4)

where [A] = A+ − A− (Note: A can be either
−→
f or

−→
U in Equation 1.4) is the

jump in the quantity of the variable A across the discontinuity, v is the velocity of

the discontinuity, and −→n is the unit vector normal to the discontinuity.

For a discontinuous problem, solutions of Equation 1.1 are not unique, and an

entropy condition must be supplied to make the solution unique. According to the

initial physical states at the left and the right sides of the discontinuity, Reimann

5



solutions can be divided into five cases, see Figure 1.2.

Figure 1.2: Five typical Riemann solutions: (a) Shock-Contact-Shock, (b) Rarefac-
tion-Contact-Shock, (c) Shock-Contact-Rarefaction, (d) Rarefaction-Contact-Rar-
efaction, (e) Rarefaction-Vacuum-Rarefaction.

Each type of the five cases provides an unique description of the wave interac-

tions(Fu 1993 [20]).

1.4 Front tracking Method and FronTier

Front Tracking method have been applied to the studies of fluid interface insta-

bilities since the late 1980’s([21, 22]). This method, combined with some classic CFD

method i.e. MUSCL, produces high resolutions in studying the physical problems

with discontinuities.

1.4.1 Tracking Methods

Three main tracking methods are used in the FronTier: grid-free, grid-based and

the hybrid tracking methods(see [21]).

In the grid-free tracking method, the propagated interface does not necessarily

have a relation with the finite difference grid. The propagation of the interface posi-

6



tions in this method is often more accurate but suffer from complexity in topological

bifurcations.

The grid-based tracking method, on the other hand, adapted the reconstruction

of the interface on Eulerian mesh blocks to simplify the topological bifurcations.

This method is more robust than the grid-free method and therefore is often used in

computing the fluid interface instabilities where topological changes are frequent.

The hybrid tracking method (locally grid-based tracking method) is a compro-

mise of the above two methods which combined the accuracy of the grid-free method

with the robustness of the grid-based method. Reconstruction is only used locally

when and where bifurcation occurs. The hybrid method has been a major improve-

ment to the previous tracking methods and its implementations keep an ongoing

subject of the FronTier package(Du et al. 2006 [14]).

1.4.2 Applications

The applications of the Front Tracking method have included fluid interface in-

stabilities, the shock implosions and fuel-injection jet et al. Aside from the original

FronTier code, a general purpose software library is also available for scientific com-

putation of various dynamic interfaces.

In our studies, we presented some recent development of the Front Tracking

method and new applications including 3-D three-component interface constructions,

the 2-D thin film formation, and cell migration problems et. al. Both the original

FronTier package and the newest FronTier library packages are applied in the simula-

tions.

7



Chapter 2

Multiple Component Problems

The Marching Cube algorithm [31] is an efficient way to numerically construct

complex geometric structures by mapping all potential grid cell conformations into

some isomorphically distinct patterns. Here, we extended the Marching Cube algo-

rithm into the construction of three dimensional grid cells containing three different

materials.

2.1 Marching Cube Algorithm

The Marching Cube algorithm was proposed by Lorensen and Cline in 1987

[31] and now is one of the standard methods for iso-surface generation. As one of

the most useful surface modeling algorithms, the Marching Cube method provides a

high-resolution 3D surface construction and has been widely used in many research

fields, e.g. medical imagining and computational graphics where the applications are

mainly based on the grid cells(Rajon et al. 2003 [50]).

2.1.1 Mechanism

The principle of the Marching Cube algorithm is that the crossings are located by

determining which edges of the cube are intersected by the isosurface and then a set

8



of triangle patches are constructed by using these crossings. A surface representation

is constructed by connecting the neighboring triangular patches from all cubes on the

isosurface boundary.

Basically, the Marching Cube method uses the symmetric properties of the geo-

metric structures of a grid cell and maps all possible combinations of the components

on eight grid vertices into a look-up table. Based on the component values of these

vertices, a set of grid-line crossings and grid-face crossings are constructed and con-

nected to describe how a surface cuts through each cell in a three-dimensional spatial

domain.

There are two main methods used in the Matching Cube algorithm to establish

such mapping. For example, for a three-dimensional and two-component problem,

the conformation mapping can be established by:

• use a look-up table of all 256 conformations which collect all potential combi-

nations of corner status and then map them into 14 basic patterns. This is the

faster way and take time complexity of O(1) (Bourke, 1994 [8]). The downside

of this method is that the table of 256 potential conformations has to be found

manually beforehand. For three-component problem, this becomes much more

difficult and error-prone since the number of potential conformations becomes

38 = 6561.

• use a look-up table of 14 patterns and let the computer programs do the ro-

tations and complementations within the cube. This technique, termed as 24

rotations (for three-dimensional only), is a more generic way and easier to be

implemented. The downside is that it uses a brute-force algorithm to loop

through 24 potential rotations, and thus may take more computational time

(up to 14 × 24 = 336 tests for each grid cell) to find the correct conformation
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pattern.

The implementation of the Marching Cube algorithm is the foundation for the

grid-based tracking method in FronTier. By matching over the entire computational

domain, the cells are treated one at a time and then by using the component values

of eight vertices on the grid cell, a conformation pattern is selected from the look-up

table and the triangular patches are constructed by connecting related crossings, and

then the interface is constructed by the linking of these triangles in the cell.

2.1.2 Terminologies

Prior to the introduction of building grid-based interfaces, some terminologies

frequently used in three dimensional FronTier simulations need to be explained.

See Figure 2.1, if we divide the computational domain into grid blocks, each

block is a cube which has eight vertices, six grid-faces, and twelve grid-lines(edges).

Figure 2.1: Technical terminologies in FronTier code.

In FronTier, an interface is an arbitrarily complex topological object consisting

of a set of surfaces which separate the fluids. The surfaces divide the computational

domain into a set of connected sub-domains which contain distinct materials. Each
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surface on the interface is represented by a set of planar triangular elements, and

different surfaces intersect only along curves. A curve is a set of connected bonds

which are line segments connected by neighboring curve crossings on the grid-faces.

Each curve is a continuous object which has start and end points, and a boundary

point is called node. The most fundamental geometric object in FronTier is the point

(the x, y, z coordinate set) which is used to describe a position in the space.

Most of the objects described above are oriented manifolds, and have topologi-

cal properties e.g. positive-negative, incoming-outcoming, start-end and so on. For

example, if we labeled three materials with comp-0, comp-1, and comp-2, the orien-

tation of three surfaces follows a rotation of the components (See Table 2.1). Note:

the orientation of the intersecting curve is unique and must be specified deliberately

in order to cope with the surface orientations.

Surface number Positive component Negative component
0 comp − 0 comp − 1
1 comp − 1 comp − 2
2 comp − 2 comp − 0

Table 2.1: The orientations of the surfaces. The direction of a surface is from the
negative component pointing to the positive component.

Figure 2.2 shows the definition of the orientations for both the surfaces and the

intersecting curve. The orientation of the surfaces follows the right-hand rule, for

example, the positive direction is from comp − 0 to comp − 1 for surface − 0, from

comp−1 to comp−2 for surface−1, and from comp−2 to comp−0 for surface−2.

By this way, the positive direction of the bond where three surfaces intersect, keeps

coherent, from P1 to P2.

In FronTier, Numbers 0 ans 1 are used to specify the positions of objects in a

grid cell. For example, 0 is generally used to denote the lower boundary, and 1 is the
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Figure 2.2: The orientations of the surfaces are given by the right-hand rule and then
the direction of the bond can be determined accordingly.

upper boundary. (x, 0) means the lower boundary at x direction, and (z, 1) means the

upper boundary at z direction. Similarly, the 8 vertices may be expressed as (0,0,0),

(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) in a (x,y,z) coordinate system.

2.1.3 24 Rotations

Because of the structure symmetries of the cube, any potential conformation

of the n-dimensional cube can be mapped into a number of isomorphically distinct

patterns by geometric transformations. The rotation group of the n-dimensional cube

is one of such transformations for the mapping.

Given a simple 2-dimensional cube(square) of two-component problem as an

example, the number of possible conformations is 24 = 16, see Figure 2.3.

In Figure 2.3 top, conformation 1, 2, 4, 8 can be derived from one another by basic

rotations and then grouped into a single pattern numbered 1 as shown in Figure 2.3

bottom. Moreover, conformation 14 is a binary complementation of the conformation

1, thus there is no need to create a new pattern for this configuration. By using a

similar rotation and reflection technique, all 16 conformations can be mapped into
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) 16 potential conformations.

0 1 2 3

(b) 4 basic patterns.

Figure 2.3: 2-dimensional cube conformations and patterns. Top: the 16 conforma-
tions for a 2-dimensional cube. Bottom: After applying rotations and reflections, the
conformations can be reduced to four patterns

the four patterns of Figure 2.3 bottom.

Some principles can be made to work in constructing three-dimensional confor-

mations, they are:

• Rotation over any of the 3 primary axis

• Reflecting the shape across any of the 3 primary axis

• Inverting the components of all corners and flipping the normals of polygons.
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According to Malkevitch (2003[33]), the size of the rotation group for a n-

dimensional cube is 2n(n!). For example, the rotation group must has 8 rotations for

a two dimensional cube(square), and 24 rotations for a three dimensional cube(cell).

Taking this into account we can resolve the original 256 potential conformations

of a two-component problem in 3D cube down to a total of 16 combinations. With this

number it is much easier to create predefined polygon sets for making the appropriate

surface representations.

Note that Matching Cube algorithm does not consider the symmetric by reflec-

tion, it considers only rotations, and the reflection has to be treated independently.

If we consider the reflection, the typical patterns for a two-component grid cell can

be reduced to 14.

From Li et al.(2003 [30]), the number of the isomorphically distinct patterns for

three-dimensional grid cells with different multiple component (from one to eight)

problems are shown in Table 2.2.

NO. of Distinct Comp 1 2 3 4 5 6 7 8
NO. of patterns 1 14 57 94 60 19 3 1

Table 2.2: The maximum number of the typical patterns for three-dimensional grid
cells containing different numbers of distinct components.

For a three dimensional grid cell which contains exactly three distinct compo-

nents, there are 38 = 6561 possible conformations. But by using our extended March-

ing Cube algorithm, these 6561 conformations can be represented by 57 isomorphically

distinct patterns. We will discuss this in the next section.
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2.2 Three-Component Problems

When we construct the interfaces on a grid cell containing at most two dis-

tinct components, there is no interaction between different surfaces. But in three-

component problems, the situation becomes more complex. For example, there can

be up to three surfaces within a single grid cell. Thus how to distinguish among

different surfaces and how to assign consistent surface and curve orientations become

the main concern.

To define a surface representation within a grid cell which contains exactly three

different components, we first look at the problem from the mathematical point of

views. Assuming components in the grid cell can be divided by two functions z =

f(x, y) and z = g(x, y), the intersections of these two functions define the bonds that

separate three components into distinct parts.

Based on each grid-face(see Figure 2.4 Left), the intersecting point of two func-

tions z = f(x, y) and z = g(x, y) is called a curve crossing. Different from a grid-line

crossing which is a point located on the grid line separating two distinct materials,

a curve crossing is a point in the grid-face at which three different materials meet

together.

Since the curve crossings may occur in any position of a grid-face, and given a

grid-face conformation (Figure 2.4) by solving the above two equations, there can be

a single curve crossing, no curve crossing, or multiple curve crossings.

If we consider all these potential conformations and 6 grid-faces in a single grid

cell, the number of the typical patterns extracted from the Marching Cube algorithm

will be added up to at least 3 × 6 = 18 times of the number in the original look-up

patterns, which is too expensive in numerical computations and have to be simplified.
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f(x,y)

g(x,y)

f(x,y)

g(x,y) f(x,y)

g(x,y)

(a) no crossing (b) a single crossing (c) two crossings

Figure 2.4: Left: typical grid-face conformations when there is a single curve cross-
ing(Left), no curve crossing(Middle) and multiple curve crossings(Right).

2.2.1 Curve Crossing Assumptions

After the conformation of a grid cell is specified and the component values on the

vertices are fixed, the grid-line crossing can be uniquely determined by the following

rules:

1. one and only one crossing must exist on a grid line with two distinct components

at each end.

2. At most one crossing on each grid line.

These rules remove two possible curve-crossing cases in Figure 2.4 Middle, Right,

but still have problems as shown in Figure 2.5. In order to further simplify our

problem, some restrictions are made in defining a curve crossing.

On each grid-face, a curve crossing is uniquely determined if and only if the

following assumptions are satisfied:

1. Exactly three distinct components are found.

2. Two components at the diagonal positions must be different.
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A sample grid-face which satisfies all above assumptions is shown in Figure 2.4

Left.

By the above assumption, there does not exist a curve crossing in a grid-face

conformations(see Figure 2.5 Left). In some computational cases it is possible to

have at least one curve crossing(see Figure 2.5 Middle, Right).

f(x,y)

g(x,y)

f(x,y)

g(x,y) f(x,y)

g(x,y)

(a) no crossing (b) a single crossing (c) two crossings

Figure 2.5: grid-face conformations which must not have a curve crossing by the
assumptions. Left: no curve crossing which is valid according to our assumptions.
Middle and Right: deprecated cases where one or more curve crossings exist.

2.2.2 57 Pattern Construction

We construct the three-component interface on each grid cell as follows:

1. For every grid-line with two distinct components at each end, one and only one

grid-line crossing must exist. A surface number (see Table 2.1) is specified to

each grid-line crossing according to the values of the two components.

2. For each grid face, one and only one curve crossing must exist if it satisfies two

assumptions introduced in 2.2.1.
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NO. of Comp-0 NO. of Comp-1 NO. of Comp-2 NO. of case
1 1 6 3
1 2 5 7
1 3 4 13
2 2 4 16
2 3 3 18

Table 2.3: The 57 typical conformation patterns divided by the different numbers of
distinct components.

3. Triangular patches are built by connecting all grid-line crossings having the same

surface number with possible curve crossings. Triangulation using these crossing

points should follow the same orientation of the given surface(see Figure 2.2).

4. One or more bonds are formed by connecting curve crossings.

By stitching the triangular patches from the neighboring grid cells, we can make

surface representation, and we make the intersecting curve of three components by

connecting all adjacent bonds into a continuous object.

As mentioned above, 6561 potential conformations exist in a grid cell containing

three distinct components on 8 vertices. By the extended Marching Cube algorithm,

any possible grid cell conformation can be described by one of the 57 isomorphically

distinct patterns. According to the numbers of different components we can group 57

patterns into five categories, see Table 2.3.

Considering the possibilities of the reversal on the components for patterns with

the set of 1(comp0)-1(comp1)-6(comp2), 2(comp0)-2(comp1)-4(comp2), and 2(comp0)-

3(comp1)-3(comp2), there should be 3 + 16 + 18 = 37 basic patterns which have to

apply 24 rotations twice in order to cover all possible grid cell conformations.
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2.3 Computational Results

To examine the feasibility of our assumptions in constructing the three-component

grid cells, we conducted several numerical experiments on geometric problems where

three-phase intersecting curves exist.

2.3.1 Pattern Constructions

Figure 2.6 shows some grid conformations computed by using our new algorithm.

Both the surface representations and the bond are well constructed as expected.

Figure 2.6: Two typical grid-cell conformations constructed by the new algorithm.
Left: three surfaces and a bond. Right: two surfaces and no bond.

It’s worth noting that the original Marching Cube algorithm uses the middle

point of an edge to locate the position of a crossing point. In our computations, the

coordinates of both grid-line crossing and curve crossing are computed by solving

several equations used for initialization. there exist cases where some computed

crossings are very close to the grid vertices, and the pre-constructed triangular patches

from the isomorphically distinct patterns may not fit the real surfaces well.

Since the Matching Cube algorithm relies mainly on a small look-up table as
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we have mentioned in §2.1, it may have cracks and inconsistent topology(Lewiner,

2003 [29]). For example, from Figure 2.7, we can find some tangled triangles and the

intersection between surfaces are not smooth.

Figure 2.7: A computed grid conformation in which the bond is almost parallel to an
adjacent grid edge and some triangular planes are tangled between each other.

2.3.2 An Ellipsoid Collides with a Plane

Figure 2.8 shows an ellipsoid drip into a horizontal free-boundary plane. Three

components are the component inside the ellipsoid, the component outside the el-

lipsoid but above the horizontal plane, and the component outside the ellipsoid but

below the horizontal plane. The ellipsoid is cut open in order to check details of the

interaction from the inside. From Figure 2.8 Right, the curve is smooth enough to

express the geometric structure of a three component surface intersection.

2.3.3 Two Ellipsoids Intersect

Figure 2.9 shows the collision of two ellipsoids. The smaller ellipsoid has been

cut open to check the intersecting curve from the inside. The surface intersection

is captured properly. Some glitches could be found on the intersecting curve, which
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Figure 2.8: An ellipsoid collides with a horizontal free-boundary plane. Left: The
interaction when part of the ellipsoid is below the plane. Right: grid details around
the intersecting curve.

may be from the assumptions of defining the curve crossings or the pre-defined trian-

gulations on the 57 grid cell patterns. Considering the computational spatial scale,

these glitches are still acceptable.

Figure 2.9: Two ellipsoids collide. Left: the intersecting curve shown from both inside
and outside an ellipsoid. Right: some glitches found on the intersecting curve.
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2.3.4 Three Dimensional Jet

In the initialization of three-dimensional fuel jet problem there is a boundary

curve on which the fuel, the air, and the structure wall intersect, see the bold white

line in Figure 2.10 Right and Figure 2.11 Right.

Figure 2.10: Initialization of 3-D jet problem(fine grid). Left: the initial grid when
the contact is a plane inside the jet nozzle. Right: the grid details around jet nozzle.

Figure 2.11: Initialization of 3-D jet problem(coarse grid). Left: the initial grid when
the contact is an ellipsoidal surface outside the jet nozzle. Right: the grid details
around the intersecting curve.

The computational grid applied in the computation is 150 × 150 × 150 for the
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fine grid and 50× 50 × 50 for the coarse grid. From the geometric plots, we can find

that both the curve and surfaces were captured smoothly.

Note: the nozzle radius in the simulations is enlarged in order to display the

structure of the jet clearly.

2.4 Summary

In our computation, we extended the applications of the Marching Cube algo-

rithm into the three-component grid cell constructions. Some assumptions on defining

the curve crossing are made to validate and simplify the implementation. The numer-

ical experiments show that the method is appropriate in handling three dimensional

grid cells containing multiple materials. Further work can be done to improve the

triangulation method on the 57 patterns.
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Chapter 3

The Contact Angle Problems

The contact angle plays the role of boundary conditions where more than three

interfaces meet. Here we tried to establish some basic frames to study how the notions

of the contact angle can be applied to describe a moving boundary node and how to

implement them into the FronTier code.

3.1 The Contact Angle

The contact angle is a very important parameter in studying the interfacial

physics which involves more than three different phases of materials. The experimen-

tal and theoretical research about the contact angle, e.g. dynamic wetting, spreading,

had been extensively conducted (Dussan 1979 [15], Hocking 1976, 1995 [24, 25] et al.).

One usual method of studying the contact angle is placing a drop of liquid on a flat

horizontal plate and setting up an external device above the surface, the contact angle

then can be measured either directly by drawing on an enlarged photograph a line

tangent to gas/liquid interface at the contact line and using a protractor or indirectly

by using the solution for the shape of the meniscus along with the measured height

of the apex of the drop and its size. Some new measurements combine experimen-

tal equipment(i.e. goniometers) with specially prepared computer programs to get
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better effect in studying the contact angles, e.g. Sklodowska et al. (1999 [55]) used

such combination and measured the contact angle of a liquid drop on the surface of

minerals.

Currently, there are two main challenges in attaining the exact contact angle.

One is the micro-physical processes near the contact line of which identity is not

yet established. Due to the complexity of particle motion in this region, most of

the current models can be established only on the macroscopic processes. Hocking

(1995) [25] derived the macroscopic contact angle in an evaporating drop, and found

that the difference between microscopic and macroscopic contact angles is due to the

physical process in the narrow region near the contact line where slip is important.

In this immediate neighborhood of the contact-line, the application of the classic

hydrodynamic assumptions such as no-slip boundary condition between a fluid and

the solid surface gives rise to an unphysical stress singularity (Benintendi et al. 1999

[3]). This suggests that very close to the moving contact line, unique micro-physics

processes other than classic hydrodynamic control the fluid motion (Chen et al. 1995,

1997 [10, 11]). Depending on different physical systems, a number of models for flow

in the neighborhood of a contact line have been suggested to relieve such bifurcations,

e.g. diffuse interface model, non-linear slip model, shear thinning model, models by

finding the balance between surface tension and Van der Waals stresses (Eggers et al.

2004 [16]). But up to now, none of these models have been experimentally confirmed

and the modeling to study the exact physics which govern the behaviors of the fluid

in this contact-line region is still unknown (Dussan 1979 [15], Benintendi et al. 1999

[3]).

Research on the dynamic behaviors of the contact angle is another challenge in

studying the interfacial physics. Until now, very little is known about the details

of which one fluid displaces another at the moving contact line. From Tanner’s law
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[17], the local dynamic contact angle is dependent on the relative speed between the

substrate and the contact line through a cubic function, i.e. U ∝ α3. Theoretical

justifications of this relation had been given by different research, i.e. Eggers et

al. (2004 [16]) adapted a logarithmic correction on the speed in a model-dependent

manner. Dussan (1979 [15]) studied the static and dynamic contact angle on several

typical situations where fluid flow has a significant influence on the moving contact

line. Besides the motion of the fluids, the value of the dynamic contact angle also

depends on the geometry in which it’s measured (Chen et al. 1997 [11]). Because

the influence of the viscous forces on the shape of the object, the measured dynamic

contact angle is not guaranteed to be the actual contact angle.

There are also many other factors that may influence the magnitude of the con-

tact angle, e.g. the physical properties of different materials, the shapes and surface

roughness of the solid wall, the environmental temperature and the pressure etc. Some

further studies showed different surface effects and the environmental parameters on

the contact angle. Hocking (1976) [24] examined a fluid displaces another on a rough

surface by using an effective slip coefficient. Benintendi and Smith (1999) [3] stud-

ied the effects of the slip coefficient on the spreading of a thin axisymmetric liquid

droplet under certain temperature gradients. The behavior of the contact angle on

extremely hydrophilic surfaces or highly hydrophobic surfaces had also been studied

by Partankar 2003[46].

According to our knowledge, because the value of the contact angle is sensitive

not only to the physical properties of the nearby materials but also to the mutual

interactions between interfaces, a generic data of contact angles are usually very

hard to obtain. In our studies, the detailed mechanism of fluid flow in the contact-

line region is not considered. A simplified macroscopic model is introduced into the

FronTier code to simulate the propagation of the boundary node.
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3.1.1 Thermodynamics

Since fluid flows in which the contact angle plays an important role involve the

complicated free-boundary physics, knowing the contact angle is often the key to

understand the flow details at the vicinity of the contact line, to specify the tangential

surface tensions, and to establish a proper equilibrium system of momentum and mass

conservations around the contact line.

For fluid flow containing multiple components, the contact angle can be a set of

angles which describe the relative position and strength between interfaces along the

contact line. In general, for a three-phase flow, there can be at most three contact

angles at a given point of the contact line. In such case the three contact angles can

be addressed in the same cross section, and the number of unknown contact angles is

reduced to two according to the basic triangle rule.

A special case of the contact angles is on the boundary where two fluids intersect

with at a solid wall. Since the solid wall is always fixed, only one angle is needed to

describe the interfaces around the boundary contact line.

Currently, most experimental and theoretical studies about the contact angle are

based on the angle between a physical wave and a solid wall boundary. The contact

angle along the boundary is the topic of our study.

The classic Young-Laplace’s formula(Equation 3.1) studied the static contact

angle from the consideration of a thermodynamic equilibrium between the following

three phases: the liquid phase, the vapor phase of the ambient(or another immiscible

liquid phase) and the solid phase of the substrate (Finn 1986 [18], Neumann et al.

1996 [43]).

cosα =
γsv − γls

γvl

(3.1)
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where γvl is the surface tension between the liquid and the vapor, γls and γsv

denote the solid-vapor interfacial energy and the solid-liquid interfacial energy re-

spectively.

Young’s formula describes a simple relation on the shape of the liquid-vapor or

liquid-liquid interface away from the solid-vapor and solid-liquid interfaces, which

theoretically establishes an equilibrium condition on fluid flow problems involving

multiple components.

After the contact angle at a boundary node is known, the new position of the

boundary node can be specified accordingly and the influence of the contact angle

on the conservation of the system can be evaluated by introducing a pressure jump

into the momentum and energy equations. This pressure jump can be written as a

function of the surface tension, the local mean curvature and the contact angle.

3.1.2 Dynamic Contact Angle

As we have known, the speed of the contact line has significant influence on the

behavior of the contact interfaces . The contact angle used to describe the inter-

sections in the contact line region under dynamic conditions is called the dynamic

contact angle. Currently, there are two methods to study the dynamic contact angle.

One approach is to assume a constitutive relation between the static contact

angle and the contact-line speed. For example, Hocking’s (1995 [25]) established a

relation between the dynamic contact angle and the static contact angle according to

some fitted functions from the experimental data on non-evaporating system.

α3 − α3
0 =

72µU

γ
. (3.2)

where α is the dynamic contact angle, α0 is the static contact angle, µ is the
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dynamic viscosity of the liquid-phase, and U is the velocity of the moving contact

line.

This cubic function connects the mathematical description of the outer region

of the flow field to the contact-line speed and roughly establishes a macroscopic re-

lationship between the dynamic contact angle, the static contact angle and other

physical parameters. The detailed micro-physics in the contact-line is masked and

not required in computing the flow of the bulk droplet.

Another approach is to assume that the microscopic contact angle is always equal

to its static value. For instance, according to Neumann et al.(1996 [43]), in a water

drop moving along a horizontal plate, the measured dynamic contact angles for the

flow with relatively low velocities are equal to static contact angles. In cases when

the three-phase contact curve is inactive or moving in a very low speed, the contact

angle can be treated as a function of the properties of the material and the local

temperature which avoid using any dynamic property of the contact line.

As we mentioned in the previous section, the detailed studies on the dynamic

contact angle is one of the most challenging research. Up to now, the experimental

techniques to obtain the dynamic contact angle is very limited especially when the

curve speed is large. In our studies, some simplified functions were adopted to test the

implementation of our contact angle algorithm and the exact input of these dynamic

angles is left for future studies.

3.1.3 Boundary Node Propagation

The contact angle exists only when more than three phase intersections occur at

the same location. In FronTier, the interface points on such kind of contact line are

either called CC-node (Figure 3.1 Left, Curve Crossing node) or B-node (Figure 3.1

Right, Boundary node), where CC-nodes are interface points between three physical
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waves, and B-nodes are interface points between a physical wave and a non-physical

boundary.

Figure 3.1: Two special nodes in Front Tracking. Left: Curve Crossing node where
comp-0, comp-1 and comp-2 are all fluids and the contact angles α1, α2 and α3 are
changeable. Right: Boundary node where one of the three phases is the solid wall
and only one contact angle α is needed.

As discussed in the previous sections, B-node is actually a special kind of CC-

nodes and only one contact angle is needed to describe the relative relations between

three interfaces.

In numerical simulations using FronTier, the computations with regard to B-

node often involve some complex grid cells in which several interfaces may be tangled

and need some special restructuring. The complex flow details within the contact-

line region are neglected and a macroscopic contact angle is applied to simplify the

problem.

Prior to the introducing of the contact angle into the FronTier code, there are

two other methods to study the B-node propagation. see Figure 3.2

In Figure 3.2, if we assumed that A, B, C, and D are all interface points on the

physical wave. At each time step, all the new position of these points (i.e. A′, B′,

C ′, and D′) are computed by solving the wave propagation equations(i.e. Riemann
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Figure 3.2: Existing ways to handle two-dimensional B-node propagation. Left: Find
the crossing between the boundary and the computed interface. Right: Extend the
computed interface to intersect with the boundary.

solution). However, the resulting point A′ is just a temporary position, the final new

position A” of the B-node will be specified according to the relative position of A′ to

the boundary line.

Two basic ways are applied in FronTier to specify the new position of a B-node:

1. If A′ is outside the boundary, as in Figure 3.2 Left, then a straight line between

A′ and the closest interface point on the physical wave B′ is made. The inter-

section between this straight line and the boundary is the new position of the

B-node, i.e. A”.

2. If A′ is inside the physical boundary, see Figure 3.2 Right, there are several

ways to extend the physical wave towards the boundary by using the existing

nearby interface points to find the new position of the B-node A”:

• Extend the straight line along A′ and B′ and the intersection between this

line and the boundary.
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• Draw a circle by using three nearby points, A′, B′, C ′, and find the inter-

section between the circle and the boundary.

• use Huyghens’ principle to the wavefront of a propagating wave of light.

Figure 3.3: The new position of a propagated B-node A” is determined by drawing
a line through the closest interface point (B′) on the physical wave whose slope is
the contact angle away from the boundary line, and finding its intersection with the
boundary.

If we use the method of the contact angles, the temporary point A′ is not nec-

essary and the new position of the B-node must be obtained by using a geometric

method instead of solving the physical equation. See Figure 3.3, for a two dimensional

problem, given the value of the contact angle and the position of the closest interface

point on the physical wave B′, a straight line which passes through point B′ and takes

a value of the contact angle counterclockwisely away from the boundary line is made.

The new position of the B-node is the intersection between this straight line and the

boundary.

This method is exactly a simplified method to apply the contact angles since

instead of using it on the contact line, we use it on a nearby interface point of the
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physical wave. The drawback of this method is that it may introduce big errors when

the simulations are based on some coarse grid or where the shear forces around the

boundary have a sharp gradient.

3.2 Computational Results

There are many situations in which the contact angle plays a significant role.

Here we applied the above contact angle method on the B-node propagation into

several applications such as water drops onto a horizontal plate or a slanted plate,

a thin film problem of the jet where a gravity-driven flow runs into a plane solid

boundary.

3.2.1 Droplet Problems

The spreading of a water drop of volume V on a flat solid plate is a commonly

used test case in studying the contact angle. Here we assumed that the surface of

the plate is smooth enough so that we do not need to consider the roughness and

surface resistance. Both the temperature and the pressure are under the standard

environment.

The simulation is based on a two-dimensional 100×100 grids. Initially the water

drop starts from a semi-circle and then spreads and changes its shape under the

influence of the gravity. Because of the geometric symmetry only half of the semi-

circular droplet is studied and the reflecting boundary condition is applied on the

corresponding left boundary of the horizontal direction. The boundary condition for

the solid wall(plate) is a Neumann boundary.

At initial time, there is one B-node as shown in Figure 3.4 and at this point the

water drop, air and the solid wall intersect.

33



Figure 3.4: The contact angle exists at which the droplet, the air and the horizontal
wall intersect. The blank area (no grid) in the left hand side is where the reflecting
boundary condition are applied.

By Dussan’s data (1979 [15]), the static contact angle α can be calculated upon

getting the instantaneous radius r of the circular area where the drop wets the solid

along with the volume V of the drop:

r3

V
=

3(1 + cosα sin α)

π(1 − cos α)(2 + cosα)
. (3.3)

Since the droplet moves very slowly, we applied the static contact angles instead

of the dynamic contact angles in our simulations. We tested the values of the contact

angle by using the above formula and compare them with the result by the B-node

propagation. If we express r as the inverse of the local mean curvature at the B-

node, the computed contact angle for the droplet is 1.5889(91o) and the results are

reasonably close to the real contact angle within some initial time and the computed

contact angles are approaching to a fixed values i.e. 270o. This may be introduced

by the functions we used to compute the local mean curvature at B-node. The result

from this simulation can be shown in Figure 3.5.

We further simulated a water drop spreading along a slanted plate. Figure 3.6
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Figure 3.5: A droplet spreads on a horizontal plate at three different computational
iteration steps(1, 250, and 500).

shows the boundary conditions we applied on this simulation. Both upper boundary

at x and y directions are Dirichlet flow-through boundary and the lower boundary at

the x direction is Reflect boundary condition. Newmann boundary is set on the solid

wall.

Figure 3.6: The boundary conditions to simulate a droplet spreading along a slanted
plate.

Figure 3.7 shows the computational results of the above simulations at different

time steps. Compared with the results from the original methods in FronTier code

(see Figure 3.8), the results from the contact angle method takes nearly a constant
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tangential angle at the boundary node while the original method takes a smaller

angle. The overall positions and the shapes are roughly the same within a certain

time.
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Figure 3.7: The numerical results of a droplet spreading on a slanted plate at four
different computational iteration steps (200, 400, 600 and 800) by using the contact
angle method to handle B-node propagation.

Figure 3.9 shows an elliptic water droplet falls from a certain height down to a

slanted plate and then spread around. The shapes and the volumes of the droplet

during the falling and spreading are reasonable from the qualitative point of view.
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Figure 3.8: The numerical results of a droplet spreading on a slanted plate at four
different computational iteration steps (200, 400, 600 and 800) by using the original
method to handle B-node propagation.

3.2.2 Thin Film Problems

We applied the contact angle method to solve the B-node propagation in a thin

film problem. See Figure 3.10 Left, water at 20oC flows from the jet with the flow-rate

of 1.7gr/s and then hits a slanted plate.

We applied four different grids and structures to initialize this problem, see Fig-

ure 3.11.

In case-1, the jet outlet is simplified to a Dirichlet flow-through boundary flow.

The fluid at the nozzle keeps constant physical parameters throughout the simulation.

In case-2 and case-3, a full-structured jet is applied. The initial interface be-
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Figure 3.9: The numerical results of a droplet falling from a certain height and then
spreading onto a slanted plate at four different computational iteration steps (0, 1000,
2000 and 3000).

tween the water within the jet and the ambient air is either a straight line(case-2)

or an extended elliptic curve(case-3). In case-3, considering that the contact angle is

difficult to specify at the corner, we expanded one grid-cell out and make an elliptical

curve to form the water-air interface, see Figure 3.12.

In case-4, the same full-structured jet had been adapted but with a smaller

distance between the jet nozzle and the slanted plate.

For all four computational cases, Neumann boundary is applied on the slanted
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Figure 3.10: Geometric description of the thin film problem.

plate and the flow-through Dirichlet boundary condition is applied on all four com-

putational boundary. For case-2,3,4, the Newmann boundary is set on the solid wall

of the jet nozzle.

The computational grid applied in the simulations are 450 × 660 for case-1,2,3

and 300 × 460 for case-4.

The computed velocity vector and density contour for case-1 has been shown in

Figure 3.13. Several vortex structures are well captured from the Figure 3.13 Right,

and the density plot shows how the water interacts with the slanted plate.

When full-structured jet is applied as in case-2 and case-3, the results are quite

different from that of the case-1. This may come from the B-node treatments on the

jet nozzle which introduce the geometric bifurcations and the contact angle can not

normally be handled, see Figure 3.12.

From Figure 3.14 and Figure 3.15, the density contours of case-2 and case-3 are

much similar, both cases have more back-flow than those of case-1 and case-4.

When the distance between the jet nozzle and the slanted plate becomes smaller(case-
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Figure 3.11: Initialization of the thin film problem. Left: the jet nozzle is treated
as a flow-through Dirichlet boundary. Middle: full-structured jet with Newmann
boundary on the jet nozzle. Right: full-structured jet with a smaller distance between
the jet and the plate.

4), the back-flow at which the water hits the plate is reduced see Figure 3.16.

3.3 Summary

In our simulations, we applied some empirical data and simplified functions to

simulate the propagation of the boundary nodes. Since the physical contact angles on

the complex geometric structures are still not available, the current method is mainly

developed as a model of computational interface which will take physical-based input

to determine the specific contact angles in the later simulations.
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Figure 3.12: Different treatments of the interface at the jet nozzle. Left: case-2
where the initial interface at the jet nozzle is a straight line. Right: case-3 where
we extended one more computational grid away from the jet nozzle wall and used an
elliptic curve as the initial interface.
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Figure 3.13: The material interface(Left) and the velocity vectors (Right) computed
by the contact angle method(case-1). The water at the impact region has certain
back-flow towards the upper part of the plate.
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Figure 3.14: The density contour(Left) and the velocity vectors (Right) computed by
the contact angle method(case-2).
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Figure 3.15: The density contour(Left) and the velocity vectors (Right) computed by
the contact angle method(case-3).
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Figure 3.16: The density contour(Left) and the velocity vectors (Right) computed by
the contact angle method(case-4).
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Chapter 4

Cell Migration Problems

Here we developed some algorithms to simulate the behaviors of the moving cells

with the FronTier code. Our algorithms are based on the mathematical and physi-

cal principles and combine with some observations from the biological experimental

results.

By simulating different behaviors of cell migrations, we are hoping to characterize

and quantify some typical processes of the cell migrations with Front Tracking method

and help predict some medical activities in tumor progression and drug production

et. al.

4.1 Introduction

Cell migration takes a central role in studying embryogenesis, immune response,

tumor growth, and wound healing. Tissue formation and development during these

processes all require the movement of some specific cells in a particular direction to

a specific location. Errors during these processes may have serious consequences,

including vascular disease, tumor formation and metastasis et al. Understanding the

mechanisms of cell migrations is therefore of great importance for the development

of some new therapeutic strategies, and the cellular transplantation.
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Cell migration is a multidisciplinary research area which involves knowledge of

biology, biophysics, biochemistry, immunology, neuroscience et al. Recent techni-

cal advances, particularly in computer hardware and computational biology, have

extended the studies of the cell migrations into the world of numerical computation.

Currently, most of the research work on the cell migration is in the experiment

and analysis of mechanism. For example, the polymerization of actin filaments has a

well established role in driving the formation of protrusions. Meanwhile, most cells

move and respond to chemo-attractants, chemical gradients, gradients of substrate

stiffness, et al., and their direction of movement is determined by these gradients.

Many studies also focused on the molecular mechanisms which regulate cytoskeletal

dynamics and the adhesion, both take a key role in changing cell shape and motility.

The computational simulation of cell migration is very new compared with the

experimental researches. Since the real cell migration is a very complex precess, in

reality, most of the moving cells are fibroblast-like and change directions and shapes

often and unpredictably, therefore to reproduce an exact cell migration is less possible.

On the other hand, many cell migrations do follow certain rules. For example, some

specific cells response to specific signals, and thus move towards them, both the

strength and distance of these signals make a contribution to the moving velocities

and directions.

Recent numerical simulation on the cell migrations involves the studies of the

moving directions, trajectories, and the change of cell shape and size. Ray et al.(2002

[51]) applied an energy-based model to constrain the active cell shapes, sizes and

positions in simulating a moving leukocyte. Agresar et al. (1998 [1]) applied an

adaptively refined mesh and immersed boundary method to test the deformation and

adhesion of the cells under different mechanic models.

In our study, we have tried to explore some typical behaviors of cell migrations,

44



and we care more about the overall moving velocity, the position and the direction

of some specific types of cells. we also applied some algorithms to keep the volume

roughly conservative, but the exact shape is not our concern at this time. The Front

tracking method and the FronTier testfront code are applied to capture the interface

of the cell membrane. The current study applies to geometric and velocity models.

4.2 Cell Migration Mechanisms

In order to migrate, cells have to attain energy from either intracellular or ex-

tracellular sources. Basically, a moving cell has its driven potential to move towards

a specific direction, and is influenced by its living environments and obstacles in its

path.

For example, a normal leukocyte moving in a blood vessel, will be influenced by

the blood-pressure in the blood vessel and the interactions with white cells. When

there is a wound somewhere on the body, leukocytes in the circulation migrate into

the surrounding tissue to destroy invading microorgans and infected cells and to clear

debris.

The mechanism of how leukocytes overcome the outside resistances and move

intentionally towards the places where wounds occur is therefore the main topic we

are trying to explore in our studies.

4.2.1 Thermodynamics

The basic processes of cell migrations satisfy all three laws of thermodynamics.

We predict that a white cell with higher potential energy and living closer to the

wounds can arrive the destination easier, while a white cell with low potential energy

and farther to the wound may never be able to reach the destination.
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We start our research from the mathematical and physical principles. If we

neglect the influence of heat transfers in cell migration processes, and at this time,

if we do not consider cell-cell and cell-boundary interactions which are considered as

the outside-work in the first law of thermodynamics. All we need to consider is the

change of internal energy which finally drives the cell migration.

The internal energy change can take the following forms:

• all possible chemical reactions and biologic processes(i.e. polymerization) inside

the cell which may produce or consume energy.

• positional potentials.

• kinetic energy.

• potentials from the pressure gradients.

For the cell migration problem, the driving sources can be listed as the following:

• The polymerization and de-polymerization of actin filaments produce the abso-

lute free energy which drives the cell motion.

• The motor proteins convert the chemical energy of nucleotide hydrolysis into

mechanical works, which also produce energy to drive the cell.

• Polarized network of actin filaments exists, especially in the leading and trailing

edge, which influences the local magnitudes of the driven forces, and further

steer the cell motions.

• Elastic force on the membrane which helps the cell to keep its shape.

• The chemical gradients in the living environment.
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4.2.2 Polymerization and Driving Horses

Polymers preform many tasks in living cells. Oster et al.(2003 [37]) discussed

their rules in two general aspects:

1. Polymers can convert the binding free energy of their constituent monomers

into mechanical force to generate a pushing axial load, while de-polymerizing

microtubes can develop pulling forces.

2. Polymers can also store elastic energy during their polymerization that can be

released later to generate the forces.

Polymerization can be considered to be the driven horses which produce the

absolute free energy and finally moderate the intuition of the cell to move towards

a certain direction. Certain kinds of cell crawling are apparently driven by actin

polymerization. According to Mogilner(1996 [40]), this force can be approximated by

a stochastic model. Theriot et al.(1992 [57]) suggest that the actin growth drives the

bacterium forward.

Since the polymerization and de-polymerization are directly related with the

working filaments in the cell actin network, and both the number of working filaments

and the magnitude of the process are uncertainty in any specific location and at

different time, we introduced some randomized terms in our velocity model to simulate

these effects.

4.2.3 Polarization and Sense of the Directions

In order to move to a particular direction, cells have to sense extracellular chemo-

attractants through specialized receptors on their cell membranes. These receptors

may take active role in regulating the distribution of the actin filament network
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and the local activities of the polymerization and de-polymerization processes. The

polarized actin filament network in return triggers signaling cascades that lead to cell

movement.

Watanabe et al.(2005 [58]) showed that a migrating cell is highly polarized and

contains complex regulatory pathways downstream of various stimuli. Cell polariza-

tion includes the asymmetrical distribution of signaling molecules and the cytoskele-

ton, in addition to directed membrane trafficking.

To polarize the moving cell, we divided the cell into two parts: the leading edge

and the trailing edge. The leading edge can be defined as the protrusion part of a

cell. Even though the ratio of the leading edge varies according to the types of a cell,

the protrusion part is typically 2 − 5µm which is 10 − 50% of the cell boundary.

The polarization model in our method is based on a signal process which means

for a given signal, there are a corresponding leading edge and a trailing edge. The

cell responds to the signal according to the signal strength and its distance away from

the signal, and thus different signals take different influential factors on the moving

direction and velocity.

The division between the leading edge and the trailing edge is based on the

distance between the signal and the cell membrane. Currently, we set 30% of the

closest points on the boundary as the leading edge section and others as the trailing

edge section. But we can change the portion of the protrusion part as much as we

want.

4.2.4 Adhesion and Cell Crawling

Some cells migrate by first extending a protrusion at the leading edge. Once

the protrusion is stabilized, i.e. by attaching to some surrounding substrate, the

rear of the cell then releases its attachments to the substrate and contracts. This
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kind of movement involves cell adhesion, and the cell must constantly switch between

attaching and relinquishing their bonds with the basement membrane.

By applied a time-dependent velocity function on our model, we can simulate

such kind of cell movement. The basic rules are:

1. Given a time interval or computational step interval.

2. At a certain time interval, move the leading edge while keep the trailing edge

unmoved.

3. At the next time interval, move the trailing edge while keep the leading edge

unmoved.

4. repeat step 2 and 3

The time intervals can be a variable which make the crawling more complex.

4.2.5 Shape and Size of Moving Cells

A moving cell, when treated a bulk of uniform materials enclosed by a closed

surface, maintain a rough volume conservation in motion. The shape and the size

thus need to change smoothly for the sake of the conservation of the overall volume.

As the uncertainty impacts of the intracellular polymerization on the cell mem-

brane, the exact shapes of the moving cell are very difficult to track and therefore is

not the focus of our current simulations.

4.3 Front Tracking and Cell Migration Models

Living cell, as a whole, can be simplified as a bulk of fluid wrapped by an envelope.

The possible complex interface tangling has been handled properly by the FronTier
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code. With the versatility of FronTier testfront code, we are trying to extend the

application of Front Tracking method into the field of cell migration.

As the same with all the other numerical simulations, we phased out some

nonessential factors to the cell migration, and made several assumptions:

• we neglected the internal complexities within the cell body, and treat the cell

as an uniform component of a certain material.

• Since the chemical reactions and biologic processes has a big randomized factor,

we applied some simplified stochastic models in our method to replace these

complexities.

• Heat transfers between cell and its surrounding and inter-cellular interactions

are also neglected at this stage.

we can further divide the force fields on a single moving cell into two categories:

• Inside the cell: polymerization and de-polymerization of actin filaments network

which produce the energy to move, and elastic forces on the membrane which

help to keep the cell shape.

• Outside the cell: chemical gradients and pressure gradients which drive or block

the cell movement, and Chemo-attractants which emit signals to moderate cell

polarization and influence the cell migration indirectly.

Our model is per-signal based, for multiple signals, we will apply a different

strength and influential factor on each signal and then combine them accordingly.

4.3.1 Velocity Models

The FronTier code has a general purpose software library, which consists of the

basic geometric functions of FronTier. The library, applied on a testfront code, can
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simulate a moving object by a user-customized velocity function.

After we have established the force or energy conservation equations system, we

need to map them into velocity and then implement in the testfront code.

Figure 4.1: Using Front Tracking method to simulate Cell Migration Problems

Volume Conservation

Figure 4.2 show the change of volume/area of a moving cell with respect to the

time step under different force fields. An increase of the cell volume/area can be

found when the cell starts moving and the volume/area decreases when transferring

into a changed force field.

From the mathematical point of view, to keep the volume conservative, the fol-

lowing relation should be satisfied:

∫

∂Γ

(−→v · −→n )dΓ =
n

∑

i=0

{

vn
ix

(

xi+1 − xi

)

+ vn
iy

(

yi+1 − yi

)

}

= 0 (4.1)
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Figure 4.2: Mathematical Expression of the Volume Conservative

The summation of the multiplication between the normal component of the ve-

locities and the length of local curve along the closed cell interface vanishes. Where

(xi, yi) and (xi+1, yi+1) are the coordinates of the middle point of adjacent bonds to

the given point, vn
ix and vn

iy are x and y−components of the normal velocity at the

local point. n is the index of the point on the interface.

In our method, we adopted a simplified equation. Since we assumed that the

density inside a cell is uniform the volume conservation can be expressed by the

velocity along the boundary. By Stokes’ theorem,

∫

Ω

dvn =

∫

∂Ω

vn (4.2)

where Ω is the cell domain and ∂Ω is the cell boundary, vn is a velocity component

in the normal direction at a point on the boundary. To conserve volume we need the

constraint
∫

∂Ω

vn = 0 . (4.3)

Since we have discrete finite points on the cell boundary we have instead of
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Equation 4.3

Σpvn = 0 (4.4)

where p’s are points along the cell boundary.

In our method, we apply an velocity repository at each time step to contain the

overall normal velocities which conserve the volume according to the computational

points on the cell membrane.

1. assume the signal take a strength of 1.

2. before each time step, we generate a repository of velocities, and divide them

into two part: head part(take positive number), and tail part(take negative

number)

3. the velocity sum of head part and tail part are 1 and -1 respectively.

4. whether the interface points belong to head part or tail part are decided by

their relative position from the signal.

5. at each interface point, we dish out a velocity value from the repository(step 2)

as the absolute velocity of this interface point accordingly.

Figure 4.3 shows how a randomized number generator works out with some given

number of random vectors. In our computational cases, we use this model to generate

random velocities on the cell membrane.

We compute the random walk using our model for the center of mass of the cell.

Because the mass is uniformly distributed, we do it by averaging the coordinate in

each direction. At the boundary, each point propagates with the velocity calculated

by:

vn = vrandom
n + vcurvature

n (4.5)
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Figure 4.3: Randomized Number Generator in a Three-dimensional Matrix

between the point and the signal, the normal velocities with random magnitude

in the leading edge are moving outwards the cell and those in the trailing edge are

moving inwards the cell. Since it is hard to take both velocities into account at a

time satisfying 4.4 we consider these two types of velocities(outwards and inwards)

separately.

Mathematical Conservation

Certain constraints based on the displacements are applied to keep the size and

shape of the moving cell. Mathematically, we can keep strict conservation of volumes

by applying a coefficient α to each of the interface points on the cell membrane, see

Equation 4.6:

α =

√

Anew

Aoriginal

⇒















xre = α · xnew

yre = α · ynew

(4.6)

where Aold, Anew are the volume of the original interface and new interface re-

spectively, x, y are the coordinates of the points on the interface. Subscript re means

redistribution, new means the newly propagated point, and original means the initial

values.
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4.3.2 Force Models

The velocity model is in fact a mathematical model which is established on

a stochastic model and geometric conservation relations. To make our simulation

physically reasonable, we need to add force and energy equations.

According to Mogilner and Oster’s model(2003 [38]), the force and velocity rela-

tionship based on a single filament can be expressed in the following form:

V = Vmaxexp[−fwl/kBT ] − Vdep (4.7)

where Vmax = kon · l · M is the free polymerization velocity, and Vdep = koff l is

the de-polymerization velocity. Here kon and koff are the rate of monomer assembly

and de-assembly respectively. fwl is the work done by a filament against the load

during one act of assembly, kB is the Boltzmann constant, and T is the absolute

temperature.

This equation establishes a relation between the force fwl and the velocity of

the interface V . The force produced by a filament can be obtained either by a force

balance relation, or by the stochastic analysis.

According to our understanding, the direction of the cell migration is determined

mainly by the surrounding gradients or signals from outside the cell. A cell heading to

this direction has denser filaments network along with the heading than the trailing

edge of this directions. When the polymerization and de-polymerization occur within

the filament network, the growing filaments exert internal pressure on a cell boundary,

which combined with the load force, makes the cell move and deform(i.e.Boal 2002

[4], Janetopoulos et al. 2004 [32]).

A pressure difference across the boundary membrane gives rise to a lateral tension

whose magnitude and direction depends on the local curvature which obeys Young-
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Laplace equation. In our case, we set the tangential force Fτ as a function of surface

tensions τ , local mean curvature of the membrane r, and velocity V , thus we have:

Fτ = f(τ, r, V )

For a single filament in the network, a force is generated on the cell membrane

by the local filaments activities which is a function of the growth rates of the fila-

ment. The concentration of filaments inside the cell is not uniform, and we assume,

is subject to the gradients and the chemo-attractants, thus the forces from the inside

of the cell at any local membrane point can be written as a function of the chemical

gradients and signals Ff = k · ∆Φ, where ∆Φ is the local force gradients of the chem-

icals around the cell. Here k is a time-dependent function which is influenced by the

signal information, and its magnitude depends on the number of working filaments

and the energy released during the polymerization processes.

To simplify our problem, we divided the main forces into two categories: ran-

dom force and curvature-dependent force. The random force can be perceived as a

microscopic force from the protrusion while curvature dependent force as a macro-

scopic force from the protrusion force and the traction force to keep the shape of the

cell. The retraction force in the trailing edge and the curvature are automatically

considered by the volume constraints.

4.4 Results and Discussions

Cell behaves differently in different environments and for different types of cells.

Here we started from the simplest case: single cell in vacuo. We apply the methods

mentioned in the previous sections and discussed several cell migration behaviors:

extracellular gradients, signals and crawling, and three dimensional cells in multiple

signals.
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All the computation have the initial cell as a circle or sphere and the points on

the cell boundary are uniformly distributed. The points are also redistributed at each

computational time step.

Both Locally Grid-based and Grid-based tracking methods are used in the simula-

tions, the Grid-based method has a smoother surface but worse in volume-conservation

than those using the Locally Grid-based method.

4.4.1 Cell in Vacuo

Figure 4.4 shows a single cell in vacuo where no external force exists. the cell

moves in a certain direction under the influence of the internal polymerization and de-

polymerization. The shapes are changed with time but the volumes are kept roughly

constant.

Figure 4.4: A single Cell in Vacuo

4.4.2 Cell under Gradient

Figure 4.5 shows a single cell moves in a simple velocity field (see Figure 4.5-

b), where both moving direction and cell shapes and size are changed dramatically.

The gradient become the main factor to influence the direction and shape of the cell

migration.
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Figure 4.5: A single cell moving in a given velocity field

From this simulation, we found that wherever there exists a sharp change on

any given factor(i.e. the external velocity field), the sizes of the cell may change

dramatically and thus not conservative.

4.4.3 Volume Conservation

We use the method in §4.3.1 to keep the volume conserved for a moving cell.

Table 4.1 shows the results on a two-dimensional moving cell. the computational grid

is 300 × 300, the resulting different ratio of cell area is computed by the following

function:

differentratio = (Acomputed − Aoriginal)/Aoriginal (4.8)

where Acomputed is the computed cell area and Aoriginal is the original cell area.

The different ratio is less than 10% in this computational case.

4.4.4 Mathematical Conservation

We also applied mathematical conservation algorithm in §4.3.1 to test the con-

servation of the cell volumes. No velocity conservation (see §4.3.1) constraint is
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step computed cell area original cell area different ratio
0 0.122576 0.122576 0.0
20 0.120706 0.122576 -1.5
40 0.129846 0.122576 5.9
60 0.116129 0.122576 -5.3
80 0.134256 0.122576 9.5
100 0.119784 0.122576 -2.3
120 0.126642 0.122576 3.3
140 0.122750 0.122576 0.1
160 0.124474 0.122576 1.5
180 0.134443 0.122576 9.7
200 0.133890 0.122576 9.2
220 0.126471 0.122576 3.2
240 0.133154 0.122576 8.6
260 0.133730 0.122576 9.1
280 0.123067 0.122576 0.4
300 0.125283 0.122576 2.2
320 0.124658 0.122576 1.7

Table 4.1: Volume of the Cell after applying Volume Conservation Algorithm

implemented.

A mean-value coefficients function is applied to do interface point-redistribution

upon reaching a certain intervals(i.e. every ten computational steps).

Figure 4.6 shows the trajectories of a moving cell before and after we have applied

a mean-factors re-distribution. By the constraint of the volume conservation, the

volume is almost constant, and the shape of the cell keep approximately the same,

the positions of the moving cell are changed.

Table 4.2 shows the computed values of volume and
∫

∂Γ

(−→v · −→n )dΓ for the com-

putational case. The original volume of the cell is 0.125660.
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Figure 4.6: Volume Conservative

4.4.5 Cell Crawling

We implemented the method described in §4.2.4 to simulate the cell crawling.

The time interval in our computation is a fixed value for each step. From the Fig-

ure 4.7, the leading or trailing edges of the cell are moved at a certain time-step while

the other part keeps almost unchanged.
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Figure 4.7: Cell Crawling
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Time step
Non-redistribution Mean-redistribution

Volume
∫

∂Γ

(−→v · −→n )dΓ Volume
∫

∂Γ

(−→v · −→n )dΓ

1 0.123190 0.000254 0.125660 0.000256
20 0.146414 -0.000571 0.125660 -0.000366
40 0.155870 0.000226 0.125660 0.000378
60 0.155098 0.000825 0.125660 0.000357
80 0.129160 0.001254 0.125660 0.001360
100 0.103425 0.001886 0.125660 0.002139
120 0.096536 0.006780 0.125660 0.006352
140 0.102967 0.004383 0.125660 0.004948
160 0.113771 0.002534 0.125660 0.003005

Table 4.2: Volume of the cell before and after the redistribution

4.4.6 Three-Dimensional Cell Migrations

Figure 4.8: Cell attracted by a single signal

Using a similar algorithm, we can extend our velocity model to the simulation

of three dimensional moving cells. Figure 4.8 shows a cell moves under the influence

of a single extracellular signal.

Figure 4.9 and Figure 4.10 show a cell move under multiple extracellular signals.

the deformations are varies according to the strength and distance of these signals.
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Figure 4.9: Cell Attracted by two signals

Figure 4.10: Cell Attracted by three signals
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Chapter 5

Conclusions

Here we developed several algorithms and presented several applications of the

Front Tracking method including: the construction of multiple component grid-based

interface, the thin film formation problem, the cell migration problem et. al. From

the simulations, we draw the following conclusions:

1. Front Tracking method is an effective way to analyze complex physical problems

with moving discontinuities. In our computations, both grid-based and grid-free

topological algorithms are applied for different problems.

2. FronTier can be developed into a comprehensive software package and provides a

framework and interface to solve different physical and mathematical problems.

3. With several assumptions, the extended Marching Cube algorithm can be used

to solve 3-D three-component problems. In some situations, special functions

may be needed to handle tangled bonds and surfaces. Further improvement

may also include dynamic optimization of the triangulation in constructing 57

isomorphically distinct patterns.

4. The analysis of the contact angle is the key to the simulations of physical prob-

lems containing multiple components. Applying the contact angle to the B-node
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propagation solver is the first step in understanding the complex physics in the

vicinity of the dynamic contact line. The further research can be a reference

and extended into the propagation of the Curve Crossing Node which is the

major challenge in simulating 3D jet problem.

5. Cell migration is a promising scientific front and the FronTier provides a flexible

testfront package which can be used to simulate the cell migration. Understand-

ing the mechanism and using the advantages of the high-resolution interface

construction of Front tracking method can be expected to solve more complex

biological physics.
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