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Abstract of the Dissertation

Simulation of Magnetohydrodynamic
Multiphase Flow

by

Jian Du

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2007

We propose a numerical algorithm for the study of magnetohydrodynam-

ics (MHD) of free surface flows at low magnetic Reynolds numbers. The nu-

merical algorithm employs the method of front tracking and the Riemann prob-

lem for material interfaces, second order Godunov-type hyperbolic solvers, and

the embedded boundary method for the elliptic problem in complex domains.

The code is applied for the numerical simulations of free surface/multiphase

conductive flows with two different equation of state (EOS) models. First,

numerical results of mercury jet distortion within non-uniform magnetic field

are compared with theory and good agreements are achieved. Then we sim-

ulate the hydro and MHD processes in the liquid metal target for the Muon
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Collider/Neutrino Factory, which include mercury jet interacting with proton

pulse in longitudinal magnetic field. Strong restriction effect of the magnetic

field on the jet expansion speed is observed. We also use the multiscale ap-

proach to include the effect of bubble collapsing and proposed that it is one

of the causing factors for the surface instabilities of the target. At last, we

simulate the expansion of laser-generated plasma plumes in magnetic field and

confirmed quantitatively that the plume expansion is directed along magnetic

field lines and impeded in other directions.

Key Words: MHD, embedded boundary, front tracking, phase transi-

tion.
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Chapter 1

Introduction

In Section 1.1 and 1.2, the background of my research work and the

governing system of MHD equations are introduced. Two approaches to the

simulation of multiphase systems, the heterogeneous and the homogenized

models, are briefly described in Section 1.3. The last section is about the

Muon Collider Target introduction.

1.1 Background of Research

Computational magnetohydrodynamics, greatly inspired over the last

decades by magnetic confinement fusion and astrophysics problems, has achieved

significant results. The major research effort has been in the area of highly

ionized plasmas. Numerical methods and computational software for MHD of

weakly conducting materials such as liquid metals or weakly ionized plasmas

have not been developed to such an extent despite the need for fusion research

and industrial technologies. Theoretical, computational, and experimental

studies of liquid metal MHD have been driven by potential applications of
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flowing liquid metals or electrically conducting liquid salts as coolant in mag-

netic confinement fusion reactors as well as some industrial problems. Weakly

ionized plasmas have been studied with respect to their application to toka-

mak refueling devices [3–5], laser ablation in magnetic fields [6], and other

processes in laboratories and in nature.

The existence of moving free material interfaces or complex geometries

in many important MHD problems creates major complications for numeri-

cal algorithms. The majority of numerical studies of free surface MHD flows

are based on semi-analytical treatment of simplified flow regimes. To the

best of our knowledge, the only fully numerical treatment of general free sur-

face incompressible liquid flows is implemented in the HIMAG code [7] using

the level set algorithm for fluid interfaces, the electric potential formulation

for electromagnetic forces, and the incompressible fluid flow approximation.

However, strong linear and nonlinear waves and other compressible fluid phe-

nomena such as cavitation are typical features of many practically important

free surface MHD regimes in both weakly ionized plasmas and liquid metals

interacting with intense sources of external energies. The ablation of solid

hydrogen pellets in tokamaks (a proposed tokamak fueling technology) [3, 4],

laser - plasma interaction, and the interaction of a liquid mercury jet with

proton pulses in target devices for future advanced accelerators [8] are among

numerous examples of such MHD problems. To simulate such processes, we

propose in the thesis a numerical algorithm applicable to both 2D and 3D and

describe its implementation.
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1.2 MHD System of Equations & Approximations

The system of MHD equations [9] contains a hyperbolic system of the

mass, momentum, and energy conservation equations for the fluid, and a

parabolic equation for the evolution of the magnetic field:

∂ρ

∂t
= −∇ · (ρu), (1.1)

ρ

(
∂

∂t
+ u · ∇

)
u = −∇P + ρg +

1

c
(J×B), (1.2)

ρ

(
∂

∂t
+ u · ∇

)
e = −P∇ · u + ρu · g +

1

σ
J2, (1.3)

∂B

∂t
= ∇× (u×B)−∇× (

c2

4πσ
∇×B), (1.4)

∇ ·B = 0, (1.5)

P = P (ρ, e). (1.6)

Here u, ρ and e are the velocity, density, and the specific internal energy of the

fluid, respectively, P is the pressure, g is the gravitational acceleration, B is

the magnetic field induction, J = c
4π
∇×H is the current density distribution,

σ is the fluid conductivity, and c is the speed of light. The magnetic field

H and the magnetic induction B are related by the magnetic permeability

coefficient µ: B = µH.

If the magnetic Reynolds number,

Re =
4πuσL

c2
,

where L is the typical length scale, is small, and the eddy current induced

3



magnetic field δB is small compared to the external field B, the full system of

MHD equations 1.1 - 1.5 can be simplified. Namely, the time evolution of the

magnetic field 1.4 can be neglected, and the current density distribution can

be obtained from Ohm’s law:

J = σ

(
−∇ϕ +

1

c
u×B

)
, (1.7)

where ϕ is the electric field potential. Due to the charge neutrality, the po-

tential ϕ satisfies the following Poisson equation:

∇ · (σ∇ϕ) =
1

c
∇ · σ(u×B). (1.8)

For a numerical computation, such an approach effectively removes fast time

scales associated with the magnetic field diffusion,

τ =
4πµσL2

c2
.

Equation 1.5 is automatically satisfied for an external magnetic field created

by a realistic source.

The following boundary conditions must be satisfied at the interface Γ of

a conducting fluid with a dielectric medium:

i) the normal component of the velocity field is continuous across the

interface;

ii) the pressure jump at the interface is defined by the surface tension T
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and main radii of curvature:

∆P |Γ = T

(
1

r1

+
1

r2

)
; (1.9)

iii) the normal component of the current density vanishes at the interface

giving rise to the Neumann boundary condition for the electric potential:

∂ϕ

∂n

∣∣∣∣
Γ

=
1

c
(u×B) · n, (1.10)

where n is a normal vector at the fluid free surface Γ.

The governing equations 1.1 - 1.3, 1.8, 1.10 form a coupled hyperbolic

- elliptic system. It has to be solved in geometrically complex and moving

domains since our interest is in free surface flow. The fluid interface is rep-

resented as an explicit co-dimension one Lagrangian mesh moving through a

volume filling Eulerian mesh. The propagation and redistribution of the inter-

face using the method of front tracking [10, 11] are performed at the beginning

of a time step. Then the interface tangling is resolved by grid based reconstruc-

tion and interior states are updated by second order hyperbolic solvers such as

the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL)

[12]. At the end of the time step, the elliptic system is solved using a fi-

nite volume discretization with interface constraints (the embedded boundary

method [13]). At last, the interior and front states are updated by adding

electromagnetic source terms.

The low magnetic Reynolds number approximation is applicable to mod-

erately conductive media, such as liquid metals or salts, and weakly ionized

5



plasmas. The tokamak fueling and plasma disruption mitigation through the

ablation of solid deuterium pellets (or argon killer pellet for plasma disrup-

tions) produce cold, weakly ionized ablation flow. The applicability of the low

magnetic Reynolds number approximations to such problems was justified in

[5]. In that paper, a-posteriori estimate of the magnetic Reynolds number,

magnetic beta, and eddy current was performed. It was found that the elec-

trostatic (low magnetic Reynolds number) approximation applies to most of

the tokamak fueling regimes.

1.3 Models for Multiphase Flow

1.3.1 General Information

An accurate description of cavitation and wave propagation in cavitating

and bubbly fluids is a key problem in modeling and simulation of hydrody-

namic processes in a variety of applications ranging from marine engineering

to high-energy physics. We’ve used two different equation of state models, the

homogeneous model and the heterogeneous model for our simulations. The

homogeneous model treats the bubbly flow as a single component mixture and

suitable averaging is performed over the length scale which is large compared

to the distance between bubbles. In the heterogeneous model, on the other

hand, we model a liquid/vapor or liquid-nondissolvable gas mixture as a system

of one phase domains (vapor bubbles in a liquid) separated by free interfaces

[14]. Next section will give detailed information about the two models.
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1.3.2 Homogeneous and Heterogeneous Model

The homogeneous EOS model consists of three branches. The pure vapor

branch is described by the polytropic EOS:

P = (γv − 1)Eρ, (1.11)

where P is the pressure, ρ is the density, E is the specific internal energy, and

γv is the adiabatic exponent for the vapor. The liquid branch is described by

the corresponding reduction of the stiffened polytropic EOS model [15]

P = (γl − 1)ρ(E + E∞)− γl, (1.12)

where γl is the adiabatic exponent for the liquid, and P∞ and E∞ are two

model parameters defining the maximum tension (the maximum value of the

“negative pressure” achievable in the liquid) and the energy shift constant,

correspondingly. E∞ can be used to obtain the quantitative agreement of the

internal energy of the liquid at normal conditions with experimental data. The

two branches are connected by a model for the liquid-vapor mixture:

P = Psat,l + Pvllog

[
ρsat,vasat,v

2(ρsat,l + β(ρsat,v − ρsat,l))

ρsat,l(ρsat,vasat,v
2 − β(ρsat,vasat,v

2 − ρsat,lasat,l
2))

]
, (1.13)

where ρsat,v, ρsat,l, asat,v, asat,l are the density and the speed of sound of vapor

and liquid in saturation points, respectively, Psat,l is the liquid pressure in the

7



saturation point, β is the void fraction

β =
ρ− ρsat,l

ρsat,v − ρsat,l

, (1.14)

and the parameter Pvl is

Pvl =
ρsat,vasat,v

2ρsat,lasat,l
2(ρsat,v − ρsat,l)

ρsat,v
2asat,v

2 − ρsat,l
2asat,l

2
. (1.15)

The expression 1.13 was derived by integrating an experimentally validated

model for the sound speed in bubbly mixture. A set of the EOS input pa-

rameters, most of which are measurable quantities, allows to fit the two-phase

EOS to thermodynamics data for real fluids. And the most important feature

of the homogenized isentropic EOS model is the correct behavior of the sound

speed in liquid at void fractions ranging from the pure liquid to pure vapor

(gas) phases. Figure 1.1 displays a plot of the pressure vs. specific volume for

the model.

Since liquid/vapor mixture is treated as a pseudo-fluid that obeys an

equation of state of a single component flow, conductivity model is needed

for the mixed phase domain. Bruggeman’s method (Effective Medium Theory

[16]) is used in our simulations. Also the linear model, in which conductivity

is linearly proportional to the mass fraction of the liquid phase, is used for the

comparison. Suppose the liquid phase has conductivity of σl. Vapor phase has

conductivity of σg and volume fraction of β. Then if the condition σl >> σg

8



Pressure

Specific Volume

Vapor

Liquid

Mixed Phase

Figure 1.1: Pressure vs. specific volume for the homogeneous model

is satisfied, the conductivity of the mixed phase can be calculated by:

σm =





0 if 1 ≥ β ≥ 2
3
;

1
2
(2− 3β) if β ≤ 2

3
.

(1.16)

The dependence of conductivity for the mixture on vapor volume fraction is

shown in Figure 1.2.

One of the main disadvantages of the homogenized EOS model for multi-

phase flows is its inability to resolve spatial scales comparable to the distance

between bubbles. Averaging of fluid properties will result in an unresolved

fine structure of waves that may be critical for understanding the important

features of the flow dynamics such as surface instabilities, bubble collapse in-

duced pressure peaks, etc. The heterogeneous model eliminates this deficiency

and improves many other thermodynamic and hydrodynamic aspects of the

modeling of cavitating and bubbly flows.
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Volume Fraction of Vapor

Conductivity

2/3 1.0

Linear Model

Bruggeman Model

Figure 1.2: Conductivity vs. vapor volume fraction

In the heterogeneous method, we model a liquid – vapor or liquid – non-

dissolvable gas mixture as a system of one phase domains (vapor bubbles

in a liquid) separated by free interfaces, as shown in Figure 1.3. FronTier, a

compressible hydrodynamics code with free interface support, is used to model

the behavior of bubble interfaces. The dynamics of the interface comes from

the mathematical theory of Riemann solutions, which are idealized solutions

of single jump discontinuities for a conservation law. The method makes it

possible to resolve spatial scales smaller than the typical distance between

bubbles and to model some non-equilibrium thermodynamics features such as

finite critical tension in cavitating liquids.

Though computationally intensive, the heterogeneous model is poten-

tially a very accurate technique, limited by only numerical errors. It allows

to account for drag, surface tension, and viscous forces as well as the phase

transition induced mass transfer. Since characteristic time scales of the

10



hydrodynamics processes in such a jet are small, we assume that the evolu-

tion of cavitation bubbles is mainly due to the expansion (contraction) of the

bubble content (mix of vapor and gas). According to the equilibrium ther-

modynamics approximation, liquid will vaporize when the pressure falls below

the corresponding vapor pressure at given temperature. Liquids are able to

sustain some amount of tension which depends on their purity. The critical

radius of the cavitation bubble is:

Rc =
2σ

∆Pc

, (1.17)

where σ is the surface tension coefficient and ∆Pc is the critical strength of

the tensile pressure in the liquid. Initial cavitation bubble sizes in real liquids

(for instance, Rc = 1 micron for mercury at Pc = 10 bar) are close to numeri-

cally resolved limits as the FronTier code is equipped with the adaptive mesh

refinement. However we frequently use larger initial bubble size, especially for

coarser grid computations in large domains. This is effectively equivalent to

the insertion of a cavitation bubble at later time.

To create such a nucleus with critical radius RC , a critical energy EC =

16πσ3

34P 2
C

[17] must be deposited into the liquid to break the barrier against nucle-

ation. This critical energy EC accounts only for surface energy and the gain in

volume energy. The energy needed to convert liquid to vapor (heat of vapor-

ization) is neglected, because it is relatively small. Within the homogeneous

nucleation theory [17], one can write the nucleation rate J :

J = J0expEC/(kbT ), (1.18)
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per unit volume and per unit time. Here kb is the Boltzmann’s constant, T is

the liquid temperature, and J0 is a factor of proportionality defined as:

J0 = N

(
2σ

πm

)1/2

, (1.19)

where N is the number density of the liquid (molecules/m3) and m is the mass

of a molecule. Thus the nucleation probability Σ in a volume V during a time

period t is [18]:

Σ = 1− exp(−J0V t exp(−EC/(kbT ))). (1.20)

Equations (1.17) - (1.20) allow to relate a typical volume V , in which a nu-

cleation bubble appears with probability Σ during time t, with the critical

pressure. For Σ = 0.5, the critical pressure is:

PC
∼= −

(
16πσ3

3kbT ln(J0V t/ln2)

)1/2

(1.21)

The numerical time step defines a natural time scale t in equation (1.21),

and V 1/3 defines the spacing between cavitation bubbles. Expressions (1.17)

- (1.21), however, agree with experiments only in a relatively narrow thermo-

dynamic region [17]. Therefore, there is some uncertainty in calculating the

cavitation rate in numerical simulations if experimental data of the cavitation

threshold and concentration of cavitation centers is unavailable for specific ex-

perimental conditions, especially if experiments deal with liquids with large

amount of impurities due to interactions with intense beams of high energy

particles typical for the Neutrino Factory/Muon Collider target.
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Vapor / Liquid Interface (Bubble Wall)

Figure 1.3: Direct numerical simulation of cavitation bubbles

1.3.3 EOS and Conductivity Model of Weakly Ionized

Plasma

Partially ionized ablated materials occur in a variety of applications.

Some examples include the ablation of deuterium/tritium pellets injected into

the magnetically confined plasma (tokamak) and the expansion of laser gener-

ated plasma plumes in nanotube synthesis. Magnetic fields introduced in such

applications strongly affect the ablation process. The flow of the ablated ma-

terial is directed along the magnetic field lines and confined in the transverse

direction. The ablation rate can also be influenced by the magnetic field. The

simulation of the magnetohydrodynamics (MHD) in partially ionized ablated

material presents a new challenge in both the modeling and the numerical

algorithm. Specifically, the conductivity model and the equation of state are

described below.

The processes of dissociation and ionization in diatomic gases in the pres-

ence of external energies, resulting in the formation of weakly ionized plasmas,

introduce energy sinks and therefore strongly affect the plasma temperature.
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This in turn influences the electrical conductivity and MHD processes. In the

one temperature, one pressure MHD model, the pressure and specific inter-

nal energy of a partially dissociated and partially ionized diatomic gas can be

written [19, 20] as:

P =

(
1

2
+

1

2
fd + fi

)
ρkT

m
(1.22)

e =

(
1− fd

2(γm − 1)
+

fd + fi

γ − 1

)
kT

m
+

1

2
fd

kεd

m
+ fi

kεi

m
, (1.23)

where γm and γ = 5/3 are specific heat ratios for molecules and atoms, respec-

tively, k is the Boltzmann constant, m is the mass of the atom (ion). εd and

εi are energy associated with dissociation and ionization, respectively. The

dissociation fd(ρ, T ) and ionization fi(ρ, T ) fractions are defined as:

fd = (na + ni)/nt,

fi = ni/nt,

in which nt ≡ 2ng + na + ni = ρ/m stands for the total number density of

nuclei, and ng, na, and ni denote, respectively, the number densities of gas D2

molecules, D atoms, and D+ ions. The dissociation and ionization fractions

can be found from Saha equations [21] which can be written (in eV units) as

[19, 20]

f 2
i

1− fi

= 3.0× 1021T αi

nt

exp
(
−εi

T

)
, (1.24)

f 2
d

1− fd

= 1.55× 1024Tαd

nt

exp
(
−εd

T

)
, (1.25)
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where αi = 3/2 and the parameter αd is material dependent parameter. The

system of equations (1.22) - (1.25) can be used as an EOS closure for a hy-

drodynamic system of equations written in ρ,u, T independent variables, as

well as for a simple finite difference discretization of such a system. However

most of advanced numerical discretization algorithms, including second order

MUSCL type schemes and interface propagation algorithms implemented in

the FronTier code [22], are based on solutions of Riemann problems. Solving

numerically a Riemann problem requires an ability to calculate the sound speed

and integrals of Riemann invariant type expressions along characteristics. For

this purpose, expressions for entropy and other thermodynamic properties of

the system (1.22) - (1.25) based on the second law of thermodynamics have

been derived [5]. To satisfy the requirement of FronTier’s hyperbolic solvers

and interface propagation routines, the complete set of thermodynamic func-

tions in terms of different pairs of independent variables such as (ρ, e), (ρ, P ),

(ρ, T ) has been used. The corresponding algorithms use numerical solvers for

complicated nonlinear algebraic equations. The direct use of such algorithms

in hydrodynamic simulations is prohibitively expensive. To speedup the code,

tabulated data of thermodynamic functions and their integrals on a fine mesh

in the specific domain of interest is created before simulations. Then the table

is used for the look-up and interpolation algorithms during the run.

We use the following model for the electrical conductivity of weakly ion-

ized plasma. Values of the conductivity in the transverse and parallel direc-

tion to the magnetic field are the same since the ablation electron collision

frequency is much higher than their gyro-frequency [4]. Thus σ is given by the
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expression [4, 23]

σ[s−1] =
8.70× 1013

ln Λ · T−3/2
e + 0.054T−0.059

e (1/fi − 1)
, (1.26)

where fi is the ionization fraction, Te is the electron temperature in eV unit,

and

Λ =
1.55× 1010T

3/2
e

n
1/2
e

, (1.27)

where ne is the electron number density. In the limit fi → 1, σ → σ⊥, which

is the transverse Spitzer conductivity.

1.4 Applications: Muon Collider Target Simulation

In order to understand the fundamental structure of matter and energy,

an advance in the energy frontier of particle accelerators is required. Advances

in high-energy particle physics are paced by advances in accelerator facilities.

The aim of the multi-institutional research group Neutrino Factory/Muon Col-

lider Collaboration is to explore the feasibility of a high-energy, high-luminosity

muon-muon collider and a neutrino factory (http://www.cap.bnl.gov/mumu).

However, several challenging technological problems remain to be solved in the

collider design in order to achieve potential advantages of greatly increased

particle energies over traditional electron-positron machines (linear colliders).

One of the most important problems is to create an effective target able to

generate high-flux muon beams. The need to operate high atomic number

material targets in particle accelerators that will be able to withstand intense

16



Figure 1.4: Schematic picture of muon collider target setup

thermal shock has led to the exploration of free liquid jets as potential target

candidates for the proposed Muon Collider. The target will contain a series

of mercury jet pulses of about 1 cm in diameter and 30 cm in length. Each

pulse will be shot at a velocity of 20 m/s into a 15 Tesla magnetic field at a

small angle to the axis of the magnetic field. When the jet reaches the center

of the magnet it will be hit with a 2 ns proton pulse. Every proton pulse will

deposit about 80 J/g of energy in the mercury. The large tension developed

within the target induced by the proton pulse greatly exceeds the threshold

value which mercury can withstand and cavitation will occur. The schematic

setup of the experiment is as shown in Figure 1.4. Without magnetic field, the

jet of mercury quickly breaks up after interacting with proton pulse. (Figure

1.5)

Numerical simulations of hydro and MHD processes in the target can

reduce the amount of costly experiments and help to optimize target param-

eters. Such simulations present a challenging problem of computational sci-

ence. They require mathematical modeling of complex flows undergoing phase

17
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Figure 1.5: Mercury jet breakup after interaction with proton pulse [2]

transitions (cavitation) and numerical methods for solving MHD equations in

moving domains with complex geometries. The application of our numerical

algorithm to the target simulation will be presented in the following chapters.
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Chapter 2

Numerical Algorithm and Implementations

2.1 Grid Based Front Tracking

Front tracking is an adaptive computational method in which a lower

dimensional moving grid is fit to and follows distinguished waves in a flow.

Tracked waves explicitly include jumps in the flow state across the waves and

keep discontinuities sharp. A key feature is the avoidance of finite differencing

across discontinuity fronts and thus the elimination of interfacial numerical

diffusion including mass and vorticity diffusion [10, 11]. Front tracking is im-

plemented in FronTier [22, 24], a multiphysics code which is capable of tracking

and resolving topological changes of geometrically complex interfaces in two

and three space dimensions. Details of the front tracking method and the

structure of the FronTier code are described in the above mentioned papers.

In this section, we will describe only details of the algorithm specific to the

MHD system.
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2.1.1 Interface Propagation

For free surface MHD flows, we are interested in tracking only fluid in-

terfaces which are contact discontinuity curves of the corresponding Riemann

problem [25]. The interface propagation consists of normal and tangential

propagation of each interface point. Since the tangential propagation in the

MHD case is essentially equivalent to the algorithm described in [22], we will

concentrate here only on the algorithm for the normal propagation of interface

points.

In the operator splitting scheme, the system of equations (1) - (3) can be

considered as a pure hydrodynamic system in an external field given by the

Lorentz force. Since this force depends on the material dynamics and proper-

ties, the algorithm for the propagation of the interface in the normal direction

is slightly different from that for the gravity force [22]. The algorithm solves a

generalized Riemann problem for the projection of the flow equations onto the

direction normal to the front at the point being propagated. The projection

of the system (1) - (3) into the normal direction n yields the following one

dimensional system

∂ρ

∂t
+

∂ρvN

∂n
+

αn0

r
ρvN = 0,

∂ρvN

∂t
+

∂ (ρv2
N + P )

∂n
+

αn0

r
ρv2

N = ρgN +
1

c
(J×B)N ,

∂ρvT

∂t
+

∂ρvNvT

∂n
+

αn0

r
ρvNvT = 0, (2.1)

∂ρE

∂t
+

∂ (ρEvN + PvN)

∂n
+

αn0

r
(ρEvN + PvN) = ρgNvN .
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Here n0 is the r component of the normal vector n, ∂/∂n = n · ∇ is the di-

rectional derivative in the direction n, AN = A · n is the normal component

of a vector field A and AT = A− ANN is the corresponding tangential com-

ponent. The parameter α is equal to 1 for a cylindrical coordinate system,

axially symmetric with respect to z axis, 2 for a spherical coordinate system,

and 0 otherwise. The implementation of geometric source terms corresponding

to the cylindrical and spherical systems of coordinates is given in [22].

s

s

s

s

s

+0

−1

1

2

−2

dn

−0s

Figure 2.1: Schematic of a stencil for the normal point propagation algorithm.

A 5-point stencil for the point propagation algorithm is schematically

shown in Figure 2.1. The algorithm has three main steps: slope reconstruc-

tion to compute approximations to the flow gradients along the normal line,

prediction using the Riemann problem solution, and correction to account for
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the flow gradients on both sides of the front and to include geometric and body

terms. The reconstruction step is standard and used in many shock capturing

methods (see, for example, [22] and references therein). In the prediction step

(see Figure 2a), we solve the Riemann problem with states s−0 and s+0 to

calculate the interface velocity W0 at the beginning of the time step. Using

this velocity, we can estimate the position of the interface xI at the end of

the time step. The middle states of the solution of the Riemann problem also

provide the interface states s−I and s+I at the new interface position xI.

The correction step starts with obtaining states connected by characteris-

tics with the states at the predicted interface position. Namely, we trace back

the incoming characteristics from the predicted new front position using the

velocity and sound speeds computed from the Riemann problem, and use the

slope reconstruction algorithm to approximate the states sf and sb at the feet

of characteristics (Figure 2b). The correction to the final interface states can

be obtained by integrating iteratively the characteristic form of the system

(11) along both characteristics coming to the interface. This procedure, as

it was shown in [22], can be replaced by the following sequences of Riemann

problems. The Riemann problem with the input states sf and s−0 is solved

and the right wave state of the solution, sll, approximates the wave incoming

on the contact at time t0 + dt from the left. Correspondingly, the Riemann

problem with the input states sb and s+0 is solved and the left wave state

of the solution, srr, approximates the wave incoming on the contact at time

t0 + dt from the right. The states sll and srr are then modified by the action

of the Lorentz force which was computed at the end of the previous time step.
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The resulting states sllm and srrm approximate the state of the flow incoming

on the interface at the end of the time step. In most practical calculations only

one, the left or right state has to be modified by the electromagnetic terms

since the conducting fluid is usually only on one side of the interface.

Finally, the Riemann problem with the input state sllm and srrm is solved

to obtain approximations of the left and right states at the front, sl and sr,

and the front velocity V at the time t0 + dt. The procedure is illustrated in

Figure 2c. Assuming that the acceleration of the interface is constant during

the time step, the interface velocity during the time step is approximated as

W = (W0+V )/2. However if strong waves are not present in the vicinity of the

interface, we simplify the algorithm and approximate the final interface states

by solving the Riemann problem with the input states sfm and sbm obtained

from states sf and sb by the action of the Lorentz force, as shown in Figure 2d.

This reduces the computational time by eliminating two relatively expensive

Riemann problem solving steps for every interface point.

2.1.2 Interface Reconstruction

Two techniques for the redistribution of interfaces and resolving their

topological changes, the grid free and grid based tracking, have been devel-

oped [24]. In the first method, interface points are always independent of the

rectangular grid while in the second method, the interface points are formed by

the intersection of the interface with the rectangular grid lines. Since the first

algorithm is more accurate and sufficiently robust, especially in 2D, we use it

for the interface propagation in the hyperbolic part of the MHD algorithm.
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Figure 2.2: Schematic of the normal point propagation algorithm. RP denotes
the procedure of solving the Riemann problem and extracting of middle states
from the solution.
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We always transform the interface to the grid based one at the beginning of

the elliptic time step since such an interface ideally suits the finite volume dis-

cretization technique for the Poisson equation described in the next section.

In many practical applications, it is sufficient to solve the elliptic problem

once per several hyperbolic time steps. The reconstruction employs the micro-

topology within each rectangular grid block cell on the specified lattice. The

grid based reconstruction is divided into three steps [24]:

1. Compute the crossings between the interface and the grid cell edges.

2. Determine components at the grid block corners and eliminate inconsis-

tent crossings.

3. Reconstruct a new interface by using the remaining consistent crossings.

The reconstruction is based on the following three hypotheses:

1. At most two fluid components intersect any individual cell in the recon-

struction lattice.

2. Each cell edge has at most one interface crossing.

3. The portion of each cell edge that lie on one side of the reconstructed

interface forms a connected set.

The first hypothesis is valid for the two fluid flows. The second says that

the reconstructed interface cross each cell edge at most once. The third one

implies that if two corners of a cell lie in the same fluid component, then the

entire edge connecting those corners also remains in the same fluid.
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2.1.3 Interior States Update

The final phase of the hyperbolic time step update consists of computing

new states on the rectangular spatial grid. Several different shock capturing

methods have been implemented in FronTier. They include both direction-

ally split MUSCL [12] type schemes such as the Piecewise Linear, Piecewise

Parabolic Method [26], a second order MUSCL scheme developed by I. L.

Chern, and an unsplit MUSCL scheme [27]. An exact and several approxi-

mate Riemann solvers are available for use by these methods.

In FronTier code, a connected region in the domain separated by the

interface is represented by a component type. Therefore, each grid node is as-

sociated with a specific component in addition to the state variables. Compu-

tations near the fluid interface use ghost cells [28, 29] to avoid stencils crossing

the interface, keeping the different fluid computations entirely separate. The

ghost cell method avoids the interpolation across the interface and therefore

effectively keep the sharp front profile.

At the end of the elliptic step, the interior states within the region oc-

cupied by the conducting materials are modified by adding the Lorentz force

term.

2.2 Embedded Boundary Elliptic Solver

2.2.1 Principles

The embedded boundary method is based on the finite volume discretiza-

tion in grid blocks defined by the rectangular Cartesian grid and the interface.
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The solution is treated as a regular block centered quantity, even when these

centers are outside of the domain. However the gradient of the potential and

the right hand side are located in geometrical centers (centroids) of partial grid

blocks cut by the interface [13]. This treatment has the advantages of dealing

with geometrically complex domains and ensures second-order accuracy of the

solution.

We will describe the method and implementation for the MHD elliptic

problem, namely the Poisson’s equation (8) with Neumann boundary condition

(10) for both 2D and 3D. The regular grid block is a square in 2D and a cube

in 3D, and the component elements of each block are either 2D block edges

or 3D surfaces. Using the divergence theorem and integrating ∇ϕ over the

control volume, the differential operator can be discretized as

(Lϕ)∆i
=

1

Vi

(
∑

j

Fj · njSj) (2.2)

Vi is the control volume. Each block element has size Sj and unit normal nj,

with flux Fj crossing its geometric center. For full block elements (not cut by

the boundary), Fj is obtained by the centered difference while the flux across

partial block elements is obtained using a linear interpolation (in 2D) or bilin-

ear interpolation (in 3D) between centered difference fluxes in adjacent blocks.

As it was shown in [13, 30], the interpolation of fluxes through edges of partial

cells is necessary for stability and second order accuracy near the interface.

In 2D, the flux across the center g of the partial edge ef is obtained using

the linear interpolation between the fluxes Fj and Fj+1, the finite differences
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Figure 2.3: Linear flux interpolation

of values in the centers of the corresponding regular grid blocks(Figure 2.3).

In 3D, the flux across the centroid P of the surface ABC, which is the par-

tial front surface element of the grid block (i, j, k) (the computational domain

is above the interface), is obtained using the bilinear interpolation between

fluxes across the points G,D,E and F , which are centroids of the regular block

surface elements(Figure 2.4). The flux at the domain boundary (interface) is

given by the Neumann condition.
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Figure 2.4: Bilinear flux interpolation
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2.2.2 Code Structure

In order to implement the embedded boundary method, the interface is

reconstructed using its intersections with grid lines. The following assumptions

and simplifications are made:

1. The maximum number of intersection of each grid block edge with the

boundary curve or surface is one.

2. The elliptic problem domain within each grid block forms a connected set.

3. The positions of the boundary points are adjusted to remove partial

blocks with volumes less than a certain preset value.

The first and second assumptions are generally satisfied when the curva-

ture of the interface is not too large or the mesh is sufficiently refined. The

third one is necessary since blocks of arbitrary small volumes introduce large

numerical errors and increase the condition number of the linear system re-

sulting from the discretization [13].

The summary of the algorithm implementation is as follows.

(1) The elliptic domain boundary is constructed using intersection points

of the grid free interface with grid lines. Using information from the recon-

struction, types of material components of both grid points and block centers

are also properly set. All regular grid blocks are divided into three types:

INTERNAL, PARTIAL, and EXTERNAL, which means completely within,

partially within (cut by the interface), and completely outside of the compu-

tational domain for the elliptic problem.
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(2) The number of blocks marked as PARTIAL or INTERNAL is counted,

and the total size of the linear system is set. A 2D or 3D matrix is set to record

the global indices of the counted blocks, while the indices of the EXTERNAL

blocks are set to be negative. In parallel computing, two buffer layers of the

index matrix are passed between neighboring processors for two purposes: to

form a local to global index mapping and to do a quadric interpolation of the

potential gradient near the intersection of the subdomain boundary with the

interface.

(3) For each block marked as PARTIAL, all block elements are also di-

vided into three types similar as above. The edge centers and lengths are stored

for 2D block elements, and surface centroids and areas are stored in 3D. Take

the 3D case for example. Based on the four corner components type on each

of the six block surfaces, they are marked as type PARTIAL(1 3 black filled

corners), INTERNAL(four black filled corners), and EXTERNAL(no black

filled corner), as shown in Figure 2.5. For the surfaces marked as PARTIAL,

only three configurations are possible based on previous assumption: triangle,

trapezoid, and pentagon. Then with the information of the positions of the

corners and the crossings, the surface area and centroid coordinates is stored.

(4) A 9-point stencil is set to calculate fluxes across the control volume

BADEF , as shown in Figure 2.6, where the elliptic problem domain is the

shaded region, and filled circles represent locations where the potential is de-

fined. According to the expression of flux Fj =
∑

m,n c(m,n)ϕ(m, n), (m, n =

0, 1, 2), we define a 3× 3 matrix C with matrix elements c(m,n) representing

the coefficient of ϕ centered at (m,n). Therefore ϕ(1, 1) is always the po-
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Domain Within Elliptic Region

Figure 2.5: 3D block surface configurations
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tential located within the control volume. Suppose a Cartesian coordinate is

constructed with basis vector ei(i = 0, 1) and origin (0, 0) as shown in Figure

2.6, we further denote c(m,n) as c(V), where the vector V has components

m and n. The vector r is drawn from the regular block center containing the

control volume to the center of the block element on which the flux is to be

integrated. Then e′i = sign(r · ei)ei gives orientational information of r. Let

e be the vector whose entries are all ones, the stencil values for the linearly

interpolated flux in d-direction are:

c(e) =
a− 1

hd

; c(e + e′d) =
1− a

hd

c(e + e′d′) =
−a

hd

; c(e + e′d + e′d′) =
a

hd

where d′, d = 0,1 and d′ 6= d, hd is the grid spacing in the direction d, and

a =
|r·ed′ |

hd′
is the block element aperture.

In 3D, a 27-point stencil is used and the coefficients form a 3 × 3 × 3

matrix. Using the similar notations as above, the bilinearly interpolated flux

in the direction d has the stencil values:

c(e) =
−(1− a)(1− b)

hd

; c(e + e′d) =
(1− a)(1− b)

hd

c(e + e′d′) =
a(b− 1)

hd

; c(e + e′d′′) =
(a− 1)b

hd

c(e + e′d + e′d′) =
a(1− b)

hd

; c(e + e′d + e′d′′) =
(1− a)b

hd
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c(e + e′d′ + e′d′′) =
−ab

hd

; c(e + e′d + e′d′ + e′d′′) =
ab

hd

;

where d, d′, d′′ = 0, 1, 2 and d 6= d′ 6= d′′. a =
|r·ed′ |

hd′
, b =

|r·ed′′ |
hd′′

.

(5) Substituting Fj =
∑

m,n c(m,n)ϕ(m,n) or
∑

m,n,l c(m,n, l)ϕ(m,n, l)

into the equation (12) and summing up fluxes through all elements of each

PARTIAL block, the coefficient at each stencil point is set and added to the

global matrix. Since the right hand side in equation (10), which must be

evaluated at the centroid of the partial block, has the divergence form of a

vector field (∇·(u×B)), the divergence theorem can also be applied to replace

the divergence with the finite volume integration of the flux of (u×B). This

cancels the gradient of potential and the flux of u×B in the normal direction

to the boundary since they are equal by the boundary condition. Note that

from equation (8), both the stencil values and the right hand side is multiplied

by the fluid conductivity σ, which is evaluated at the center of block elements.

There is no need to calculate the size of the control volume since it appears

as a denominator on both sides. Five or seven point finite differences are used

for the INTERNAL grid blocks.

(6) The resulting linear system Ax = b is solved. We use preconditioners

and iterative solvers implemented in PETSc [31] libraries. Then the gradient

of the potential is calculated at all PARTIAL and INTERNAL block centers,

even if these centers are outside of the elliptic domain. Either the centered

difference or quadric interpolation is used to maintain the second order accu-

racy. For example, the x-derivative of the potential in the point (1, 1), ϕx(1, 1)

(see Figure 2.6), is easily calculated by the centered differences of ϕ(0, 1) and
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ϕ(2, 1). However the quadric fitting is required to calculate ϕx in the point

(0, 2) or (0, 1): ϕx(0, 1) is obtained as the x-derivative of the quadric curve,

which interpolates potential values ϕ(0, 1), ϕ(1, 1), and ϕ(2, 1). We also cal-

culate the gradient of the potential at the interface points as it is needed for

the Riemann solver described in the previous section. If an interface point

is located inside a triangle between regular grid block centers for which the

gradient of the potential is known (such as the interface points A and B in

Figure 2.6), a triangular interpolation is used to calculate the gradient of the

potential in the interface point. If the interface point is outside of such a

triangular (point G), a normal to the interface is constructed, and the gradi-

ent of the potential in the interface point is obtained similarly to the quadric

interpolation procedure described above.

(7) The interior momentum states are modified by adding the Lorentz

force term. Notice that if the hyperbolic system is written in terms of conserved

variables, namely the density, momentum, and total energy density, the last

variable remains unchanged. It is easy to verify that the external magnetic

field does not change the total energy of the system, and the increase of the

internal energy due to Joule’s heat is canceled by the decrease of the kinetic

energy due to the Lorentz force.
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2.3 Validation and Performance

2.3.1 Elliptic Problem Validation

Since the described elliptic technique is new to the method of front track-

ing and the FronTier software, we have validated it using analytical solutions

of a simple elliptic problem. Namely, we solve numerically the Neumann prob-

lem:

∆ϕ =





f

∂ϕ
∂n

∣∣
Γ

= g
, (2.3)

assuming that the exact solution is ϕ = ek1x2+k2y2+k3z2
. f and g are

obtained by differentiating the exact solution. The problem is solved in the

irregular 2D domain and a perturbed spherical 3D domain, as shown in Figure

2.7 and Figure 2.8.

We analyze the convergence of the gradient of the solution as the Neu-

mann boundary problem contains an arbitrary constant. ∇ϕ also corresponds

to physically measurable quantities in applications. The convergence rate R is

R = log
(‖ en+1 ‖
‖ en ‖

) /
log

(hn+1

hn

)
,

where en+1 and en are error vectors corresponding to the grid spacing hn+1 and

hn. The L2 norm is used in our calculations. Tables 1 - 3 contain data on the

solution error, convergence rate, CPU time, and the number of iterations of

the linear solver necessary to obtain the required tolerance. We observe that
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Figure 2.7: 2D Computational domains for the elliptic problem
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Figure 2.8: 3D computational domains for the elliptic problem
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Mash size Error Conv. Rate CPU Time, s Iterations
32× 32 1.110e-3 N/A 0.012 24
64× 64 2.477e-4 2.164 0.025 51

128× 128 5.332e-5 2.190 0.144 112
256× 256 1.339e-5 2.124 1.321 283

Table 2.1: Convergence and timing results for the x-derivative of the solution
in 2D. Error is measured by L2 norm of ϕx, and the relative tolerance for the
iterative linear solver is 10−5.

Mesh size Error Conv. Rate CPU time, s Iterations
64× 64 9.094e-05 N/A 0.087 44

128× 128 2.013e-05 2.175 0.389 98
256× 256 4.798e-06 2.122 2.223 264
512× 512 1.776e-06 1.893 15.445 500

Table 2.2: Convergence and timing results of the gradient of the solution in
2D. Error is measured by L2 norm of ∇ϕ, and the relative tolerance for the
iterative linear solver is 10−5.

the solution gradient is second order accurate. With the setting of a Dirich-

let point and eliminating the solution constant associated with the Neumann

boundary, we find that the computed solution is also second order accurate.

All 2D test calculations were performed on 4 processors using a 2× 2 domain

decomposition, and 3D tests used a 2 × 2 × 2 domain decomposition on 8

processors.

Mesh size Error Conv. Rate Iterations
32× 32× 32 1.316e-03 N/A 42
64× 64× 64 3.179e-04 2.050 76

128× 128× 128 8.046e-05 2.016 144

Table 2.3: Convergence results of the gradient of the solution in 3D. Error is
measured by L2 norm of ∇ϕ, and the relative tolerance for the iterative linear
solver is 10−5.
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Figure 2.9: Norm of the gradient error by the EB method on a 256× 256 grid.

2.3.2 Comparison with Mixed Finite Element Method

[1]

The Mixed Finite Element Method (MFEM) uses an unstructured trian-

gular mesh and instead of solving the second order elliptic equation, it solves

two first order equations and gives the potential and flux at the same time.

Thus, it solves

~q = −a∇φ

∇ · ~q = f

For the mixed finite element method, two function spaces are needed:

one scalar space for the potential φ and one vector space for the flux ~q.
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The unknowns are potentials on the elements and the flux on the edges.

To reduce the problem to a smaller one, the mixed-hybrid finite element is

modified by introducing a Lagrangian multiplier on the edges. Chavent and

Roberts [32] give in detail an implementation using rectangle elements. The

same 2D test problem as in Section 2.3.1 are solved by the mixed-hybrid fi-

nite element with three different basis functions for flux: the RT0 (Raviart-

Thomas space of degree zero), the RT1 (Raviart-Thomas space of degree one)

and BDM1(Brezzi-Douglas-Marini space of degree one). A mesh generation

method similar to Quadtree/Octree based algorithm is used to generate the

unstructured mesh[33]. Refer to [34] for more details. We did a comparison

study of the two method: Embedded Boundary Method and Mixed Finite El-

ement Method for the solution of elliptic boundary value problems. Both the

solution errors and performances of the two methods are compared (Table 2.4

shows gradient error for the whole domain while Table 2.5 shows gradient only

on the domain boundary). Figure 2.11 and Figure 2.12 shows the L2 error of

the solution gradient from EBM and BDM1 respectively. And Figure 2.10 is

part of the unstructured mesh.
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Table 2.4: Convergence and Timing Study using Uniform Mesh for the domain
in fig. 2.7

Mesh EBM
Size error ratio time iterations unknowns

64× 64 2.110753e-04 N/A 0.022319 43 1008
128× 128 5.779287e-05 1.869 0.164115 91 4008
256× 256 1.472989e-05 1.920 1.438516 209 15738
512× 512 3.641386e-06 1.952 10.398294 360 61967

Mesh RT0
Size error ratio time iterations unknowns

64× 64 1.806532e-03 N/A 0.283352 115 3177
128× 128 1.142133e-03 0.661 1.624428 218 12341
256× 256 6.140341e-04 0.895 11.236136 415 47870
512× 512 3.166839e-04 0.955 79.363582 770 187229

Mesh BDM1
Size error ratio time iterations unknowns

64× 64 1.695040e-04 N/A 0.832989 151 6354
128× 128 5.857866e-05 1.533 5.360611 278 24682
256× 256 1.641488e-05 1.835 33.627868 461 95740
512× 512 4.311759e-06 1.929 320.587307 1185 374458

Mesh RT1
Size error ratio time iterations unknowns

64× 64 2.203143e-05 N/A 1.212332 151 6354
128× 128 7.323467e-06 1.589 7.185103 296 24682
256× 256 2.032626e-06 1.849 45.390103 549 95740
512× 512 5.312876e-07 1.936 312.086512 1055 374458

From these results, we draw the following conclusions. Since the embed-

ded boundary method uses a structured cartesian grid, it is relatively easy to

implement while it is harder to write the mesh generation program. But after

the mesh is given, the discretization is simpler for the mixed finite element

method. Also FEM could have higher accuracy if high order basis function is

used. To save computational resources when solving large problems, we could

use EBM with automatic mesh refinement since it has better performance for
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Table 2.5: Maximum gradient errors on the boundary by different methods
Size EBM RT0 BDM1 RT1

64× 64 2.459720e-03 9.367834e-03 7.927028e-04 3.102073e-04
128× 128 6.567893e-04 6.797467e-03 1.274594e-04 4.007023e-05
256× 256 1.755489e-04 3.626596e-03 2.486447e-05 1.321007e-05
512× 512 4.614643e-05 1.754357e-03 6.351849e-06 2.751578e-06

the same order of accuracies.

With the same mesh size, EBM has the fewest number of unknowns for

the linear system and therefore, the fastest speed. From table 2.4, EBM and

BDM1 have close solution errors while the time difference is huge. There are

two reasons for this. One is that the EBM uses a structured grid and the

finite volume/central finite difference has super convergence in the mesh. The

MFM uses an unstructured grid, and to achieve the same order of accuracy,

a higher order basis function space is needed, which means more unknowns.

The other reason is that the unknowns for EBM are cell centered and those

for the MFM are edge centered. Since the approximate ratio of the vertices to

faces to edges is 1:2:3 for a simple large triangle mesh, we know the ratio of

the unknowns for the EBM, RT0, BDM1, RT1 is approximately 1:3:6:6. Thus

the EBM problem is smaller, which explains why it is much faster.

Finally, since interface reconstruction on the computational grid is needed

for the EBM to do flux discretization, it is well consistent with the grid based

Front Tracking method described in Section 2.1.2 . This makes the implemen-

tation of the algorithm more straightforward.
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2.3.3 Timing Separation

Since the elliptic solver is only one part of the MHD algorithm, we would

like to comment on the detailed computational cost. It is the sum of costs of

three major components:

(i) interface propagation and reconstruction algorithms;

(ii) solving the hyperbolic system in the interior domains;

(iii) solving the linear system of equations corresponding to the elliptic prob-

lem.

Since the interface is a co-dimension one hypersurface, the computational cost

of (i) is usually much smaller than the cost of other components. However

this cost can be comparable with that of (ii) for very complex interfaces. The

cost of (ii) is O(N), where N is the total number of grid cells. For given N ,

the actual cost depends on the hyperbolic scheme, Riemann solver, and the

equation of state. The FronTier code has a modular structure which allows

the user to choose solvers and algorithms from a list of available options. The

cost of iii) depends on the linear solver method the optimal choice of which

may depend on the problem size. While solving relatively small linear systems

corresponding to 2D domains may be done with O(N2) direct solvers, the op-

timal choice for a large 3D problem is a preconditioned iterative algorithm.

The cost of the most optimal ones, such as multigrid, is O(N log N) [35]. We

use parallel libraries of preconditioners and iterative solvers implemented in

the PETSc [31] packages. For the above reason, the time cost for the elliptic

step is minor on the coarse grid and becomes dominant at some sufficiently

fine grid which is 136 × 136 × 136 for the numerical example illustrated in
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Figure 2.13. To reduce the total computational cost, we often perform one

elliptic step per several hyperbolic time steps.
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Figure 2.13: CPU time spent by the interface propagation algorithm (dot–
dashed line), hyperbolic solver (solid line), and the elliptic solver (dashed line).
The elliptic problem starts to dominate at the grid size 136× 136× 136. Here
the elliptic problem is solved for conducting fluid occupying 34 % of the com-
putational domain. The hyperbolic solver is MUSCL with the exact Riemann
solver and stiffened polytropic (conducting liquid) and polytropic (non-con-
ducting gas) EOS models. The elliptic solver is GMRES with the block Jacobi
preconditioning, as implemented in PETSc. The calculation was performed
on a 2399 MHz Pentium cluster using 2× 2× 2 domain decomposition.
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Chapter 3

Simulation Results and Discussion

3.1 Jet Distortion in Non-uniform Magnetic Field

In this section, we validate our MHD code through the comparison of

the numerical simulation with experiments and asymptotic solutions of a liq-

uid mercury jet entering a non-uniform magnetic field. The simplicity of the

problem from a physics point of view, and the presence of experimental data

and satisfactory analytical solutions in terms of expansion series [36] are key

factors in choosing this problem for the benchmark. Despite the fact that some

features of this problem such as an incompressible and steady state flow regime

are not well suitable for the simulation with a compressible time dependent

code, we are able to obtain a good agreement with experiments and theory

using a realistic equation of state for mercury. Our simulations of complex

compressible free surface flows in liquids and weakly ionized plasmas in fusion

and accelerator target applications often require an analysis of indirect and

incomplete experimental data for validation, and therefore are less suitable for

the benchmark.
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Figure 3.1: Distribution of the applied magnetic field

The setup of the problem is as following. A free mercury jet with diameter

of 0.8 cm enters a stationary transverse magnetic field that has only one non-

zero component, By, with the hyperbolic tangent spatial dependence

(
By

Bmax

)2

=
1

2

[
1− tanh

(
z − z0

Lm

)]
,

where z0 is the center and Lm is the characteristic length of the magnetic field.

In our simulations, z0 = 1.5 cm and Lm = 0.62 cm. The distribution of the

magnetic field is shown in Figure 3.1.
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In the theoretical analysis [36], the mercury jet going through the solenoid

was approximated as a steady state jet of infinite length. The experiments also

dealt with long jets. However conventional methods such as periodic or flow

through boundary conditions are not applicable to the 3D direct numerical

simulations of such very long or infinite jets that exceed the size of the com-

putational domain. A simple analysis shows that the main contribution to the

MHD force is provided by currents flowing in the longitudinal direction. It is

difficult to accurately approximate the Neumann boundary condition on the

edges of a jet slice for the Poisson problem. Therefore a relatively short jet

with edges completely within the computational domain was simulated (see

Figure 3.2 a). The jet length is chosen to be long enough compared to the

jet diameter, but short enough to avoid an unnecessarily large computational

domain. The jet velocity is set to zero in the laboratory frame, and the effect

of the jet motion is achieved by moving the magnetic field in the computa-

tional domain. We have observed the flattening of the jet as it moves through

the nonuniform magnetic field (see Figures 3.2 (b) and (c)), and compared

the jet deformation with theoretical results of [36]. The theory itself has been

experimentally validated.

Accordingly to theoretical calculation, when the effect of the surface ten-

sion is small, the relative increase of width of the jet at distance Z from the

magnetic field center satisfies the formula:

dR

R0

=
Na

8
{Z +

1

εm

log(eεmZ + e−εmZ)},

53



where R0 is the initial radius of the jet before entering the magnetic field.

εm = R0

Lm
, Na = σBy

2R0

ρu
is the Stuart number,with ρ, σ and u represent the

density, electrical conductivity and main flow velocity of the jet respectively.

Therefore, with all other parameters as constants, the expansion is a function

of By
2

u
and Z only. Simulation results of the relative width change of the

jet cross-section in magnetic fields ranging from 5.5 Tesla to 12 Tesla and

jet velocities of 50 m/s and 60 m/s are shown in Figure 3.3. The relative

expansion of jet width is in a good agreement with theoretical predictions.

As we see from Figure 3.4, the jet width linearly depends on B2/u at a fixed

distance (2cm) from the magnetic field center. An excellent agreement between

simulation and theory is obtained. We have observed a quasi-steady state of

the jet shape in the sense that jet deformations remain unchanged at some

fixed longitudinal displacements with respect to the magnetic field at different

times. The quasi-steady state lasts until the longitudinal position of the jet

cross-section approaches the jet edge.

Past experiments have been performed [36] only in a narrow range of

parameters (small absolute values and ranges of the velocity and magnetic

field). Here we present our studies of the jet deformation at large changes of

the velocity and magnetic field, and compare them with the theory. Studies

using a wide range of parameters are also important for practical applications,

as future experiments with mercury jets at the Neutrino Factory / Muon

Collider facility will operate with parameters significantly different than that in

Oshima’s experiments. As it was shown in [36], the theory is a good agreement

with experiments on the width of the flattened jet.
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Figure 3.2: Change of the mercury jet shape as it enters the magnetic field.
(a) Initial time, (b) t = 1.0 ms, (c) t = 1.5 ms
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Figure 3.3: Dependence of the relative change of the width of the jet cross-sec-
tion on the longitudinal coordinate with respect to the magnetic field center
at different values of B2/u, [Tesla2·s/m]. Solid line is the theorerical result
and dots are measurements of simulated jet shapes.
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Figure 3.4: Dependence of the relative change of the width of the jet cross-sec-
tion on B2/u, [Tesla2·s/m], at the fixed distance (z = 2 cm) from the magnetic
field center. Solid line is the theorerical result and dots are measurements of
simulated jet shapes.
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Mesh Z=1cm Z=2cm
Size dR Relative Error dR Relative Error

24× 15× 78 0.1227 3.23e-1 0.2163 3.96e-1
48× 30× 156 0.1770 2.37e-2 0.3195 1.08e-1
72× 45× 234 0.1806 3.86e-3 0.3524 1.65e-2

Table 3.1: Convergence of simulations to theoretical results at B=12 Tesla and
u=60 m/s.

We have also performed the convergence study and find that the sim-

ulation error reduces with the mesh refinement (see Table 3.1). We would

like to note that since theoretical calculations are used to quantify the error,

some small error will remain at even higher level of the grid refinement due to

the unknown error of the theory. Experimental results are also not perfect as

fluctuations of the jet velocity, pressure in the nozzle etc. impose significant

errors, and the solution can be approximated only in the sense of statistical

average. Such detailed information on Oshima’s experiments is not available

to us, but our experience with the analysis of the targetry experimental data

from CERN tells us that the statistical average errorbars could be as high as

20%. Therefore we have chosen to compare simulations with the theory, and

clearly observed the agreement and convergence with the mesh refinement.

3.2 Muon Collider Targetry simulation

In this section, we present results of the numerical simulation of a liquid

mercury jet interacting with an intensive proton pulse in a 15 Tesla mag-

netic field. Such a jet will be used as a target in the proposed Muon Col-

lider/Neutrino Factory. The target is shown schematically in Figure 1.4. It
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will contain a series of mercury jet pulses of about 0.5 cm in radius and 60 cm

in length. Each pulse will be shot at a velocity of 25 m/sec into a 15 Tesla

magnetic field at a small angle (0.1 rad) to the axis of the magnetic field.

When the jet reaches the center of the magnet, it is hit with a 3 ns proton

pulse depositing about 80 J/g of energy in the mercury.

3.2.1 Problem Setup

In all of our simulations, we restrict the jet length to 10 cm to avoid

unnecessary computation cost. For the 2D simulations, the domain is chosen

as the cross sections along either the radial or the longitudinal direction of

the jet. Cylindrical symmetry is used for the longitudinal case and only half

of the cylinder is simulated. In 3D simulations, jet surface is initialized as

cylinder with the radius of 0.5 cm and the length of 10 cm. Figure 3.5 shows

the configurations.

(a)   3D Jet Surface

(b)   2D Longitudinal Slice

2D Transverse Slice
(c)

Figure 3.5: 2D and 3D interface profile
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The actual energy deposition in the mercury jet due to the interaction

with protons was calculated using a Monte-Carlo code MARS [37]. The energy

deposition profile can be accurately approximated by a two-dimensional Gaus-

sian function in cylindrical coordinates. Since the angle between the jet axis

and the magnetic field lines is small, the off-axial component of the magnetic

field can be ignored for the study of short time scale hydrodynamic processes

caused by the proton energy deposition (the off-axial magnetic field could not

be ignored in the study of some other aspects of this problem, for example the

relatively long time scale entrance of the jet into the magnetic field). In the

assumption of a uniform magnetic field, only the radial motion of the mercury

induces eddy currents.

First, the energy deposition ∆E causes the increase of pressure ∆P in the

liquid. SESAME table [38] can be used to look up the data of pressure increase

due to the energy deposition specific for mercury. For stiffened polytropic

equation of state, γl can be calculated from equation:

∆P = (γl − 1)ρ∆E (3.1)

Then P∞ in the EOS equation 1.12 is obtained by combining above parameters

with the sound speed in mercury (145 m/s). This makes stiffened polytropic

EOS parameters consistent with the data from SESAME table. As for the

homogeneous EOS model mentioned before, suppose the initial density and

pressure (before the energy deposition) are (ρ0, P0). We calculate what density

increase ∆ρ should be made in order to increase the pressure to P1 = P0 +∆P
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by connecting two states (ρ0, P0) and (ρ0 + ∆ρ, P1) through adiabatic curve.

The typical initial pressure profile along the radial direction of the jet is

shown as Figure 3.6. The pressure value can reach up to 16 kbar in mercury.

Previous numerical simulations performed with a single phase equation of state

have shown that the strength of rarefaction waves occurring after the energy

deposition significantly exceed the mercury cavitation threshold. We believe

that the formation of cavities takes place and cavitation bubbles influence the

wave dynamics in mercury and the jet surface evolution. Both the homoge-

neous and heterogeneous models mentioned in previous chapter are used to

model the multiphase flow.
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Figure 3.6: Initial pressure profile after energy deposition
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3.2.2 Results and Comparison

First we consider the results from the homogeneous model. For the simu-

lations without MHD effects, Figure 3.7 - 3.9 plot the density profile for the 2D

radial cross section. The results are obtained with grid 256×256 over domain

[-1.5, 1.5]×[-1.5,1.5]. Two phase domain with density much less than pure

liquid mercury forms at late time. Figure 3.10 shows the jet radius vs. time

from 2D simulations with different grid resolutions. (For the 2D longitudinal

case, the radius is always measured at the middle point of the longitudinal

axis). It is clearly shown that simulations with different grid size give almost

identical jet expansion speed. The first picture in Figure 3.13 is the density

plot at t = 0.15ms in the 2D longitudinal cross section. The jet expansion

velocity calculated from Figure 3.10 is about 30 m/s and is in good agreement

with experimentally measured values [39]. Also as shown in Figure 3.11, 2D

and 3D simulations give very close results.
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Figure 3.7: Density profile and radial distribution for t = 0
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Figure 3.8: Density profile and radial distribution for t = 0.025 ms
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Figure 3.9: Density profile and radial distribution for t = 0.075 ms
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Figure 3.10: Comparison of 2D simulations without MHD effects
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Figure 3.11: Comparison of 2D and 3D simulations without MHD effects
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After adding the magnetic field and with MHD effect included, both the

Bruggeman and linear conductivity model are used to calculate the electronic

current density. By comparing Figure 3.11 with Figure 3.12, we find that 15

Tesla magnetic field can greatly restrict the jet expansion. In the density plot

of 2D longitudinal cross section as in Figure 3.13, the growth of the cavitation

region is also much slower in the simulations with MHD effects. On the other

hand, there is no big difference regarding expansion speed between the two

conductivity models, while the running with Bruggeman model has slightly

higher expansion velocity. The MHD restriction effect on cavitation region

is also stronger for the linearized conductivity model, as shown in the cross

section density profile plot in Figure 3.14. This is not difficult to understand

since the Bruggeman model has a percolation threshold and thus smaller MHD

effects when the volume fraction of vapor is the same. 2D and 3D simulations

with homogeneous model give similar jet expansion for the MHD runnings as

shown in Figure 3.12. In Figure 3.15, the time evolution of jet radius and

cross section density profile under different magnetic field are plotted. It is

shown that the jet expansion is almost complete stopped after some time when

magnetic field reaches 15 Tesla.
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Figure 3.12: Comparison of 2D and 3D simulations with MHD effects
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Simulation Pcritical(Bar) Bubble Distance(mesh blocks)
2Db2 -100 2
2Db3 -100 3
2Db4 -100 4

Table 3.2: Different Sets of Simulations with Critical Pressure and Bubble
Distance

Besides the homogenous equation of state, we also use heterogenous EOS

in which vapor and liquid phase use polytropic and stiffened polytropic EOS

respectively. Vapor bubbles are dynamically inserted into the rarefied region

in liquid where the pressure is less than some critical value. We use different

critical pressure values and also different bubble distances for the simulations

to see if they have any impacts on the jet expansion. All the simulations use

grid size of 200 × 1600 over domain [0,1.5] × [0,12] to resolve the vapor bub-

bles. The parameters are shown in Table 3.2. From the time evolution of jet

radius plotted in Figure 3.18, we find that the related parameters for bubble

insertion do not have big influences on the speed of jet expansion, though the

final interface profiles are quite different. The homogeneous EOS model gives

larger jet expansion than the heterogeneous model. From Figure 3.17 and

Figure 3.16, as in homogeneous case, the expansion of the jet as well as the

growth of each individual bubble are greatly impeded by the magnetic field.

Figure 3.19 plots the electronic current density distribution for the heteroge-

neous simulations and shows that everywhere the current is tangential to the

interface.
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Figure 3.18: Comparison of jet expansion of homogenous and heterogenous
eos simulations without MHD effects

75



Figure 3.19: 2D electronic current density distribution
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3.2.3 Effects of Bubble Collapse

For all above simulations, no obvious surface instabilities are observed,

even for the running without MHD effect. This is not consistent with the ex-

perimental results, as shown in Figure 3.20. One of the possible causes is that

without magnetic field, the mercury jet has already become turbulent before

interacting with proton pulse (left side, Figure 3.20) while the jet surface is

smooth in all of our simulations. Another reason, we believe, is due to the

unresolved process of cavitation bubble evolution. In both the homogenous

and heterogenous simulations, the collapsing and rebounding of the cavita-

tion bubbles are not included, which could be of great importance for the jet

breakup.

Figure 3.20: Initial and late time surface profile for the mercury target
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It is known that the bubble collapse in compressible liquid is governed

by the Keller’s equation:

(1− 1

cf

dR

dt
)R

d2R

dt2
+

3

2
(1− 1

3cf

dR

dt
)(

dR

dt
)
2

=
1

ρf

(1+
1

cf

dR

dt
+

R

cf

d

dt
)(pB−p), (3.2)

where R is the bubble radius, cf is the sound speed in liquid, pB and p are

pressure within bubble vapor and ambient liquid respectively. By solving the

equation numerically with typical initial data found in mercury target, it can

be shown that the cavitation bubbles tend to shrink to less than 10−3 of the

original sizes. Therefore, it is too expensive to do 2D/3D global simulations to

resolve the whole procedure. Also the time step has to be reduced to almost

zero for such simulations due to the CFL condition. Therefore, we propose a

multiscale approach which contains only portion of the computational domain.

The main idea is as following.

First we separate a small region from 2D or 3D global domain which con-

tains a cavitation bubble (top and lower left of Figure 3.21). Our goal is to

study locally if single bubble collapse can be the cause of any surface pertur-

bations for the mercury target. In order to make the simulation closer to real

situation and enable the bubble to go to small size with less limitations from

grid resolution, we initialize the 2D and 3D simulations with late time data

(rebounding stage) from corresponding 1D simulation, which has relative large

bubble radius. As for 1D case, the domain is initialized as a two phase region

separated by an interface (bubble wall). The liquid phase uses a stiffened poly-

tropic EOS and vapor phase uses a polytropic EOS. By setting the relatively
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vapor liquid
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From 1D 

Figure 3.21: Multiscale approach to simulate the bubble collapse

large initial vapor bubble radius (0.01cm), low vapor pressure (0.01bar) and

large ambient liquid pressure (100bar), the vapor bubble begins to collapse.

When minimum radius is achieved and large pressure accumulated inside, a

rebounding stage ensues and shock front develops. As the bubble radius in-

creases, the pressure front propagates outwards from the collapse center. At

the late stage of the rebounding when the bubble radius is large enough, the

pressure, density and velocity profiles are taken as the initial input condition

of a similar 2D/3D simulation.
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By solving the Keller’s equation numerically with initial conditions men-

tioned above, we got the time evolution radius profile of the collapsing bubble

and compared it with out simulation results. As in Figure 3.22, the simulation

and theory matches reasonably well, considering Keller’s equation is dealing

with bubble collapsing with infinite domain of constant far field pressure while

our 1D simulation only use finite domain where pressure changes quickly with

bubble collapsing. As from Figure 3.23, the pressure peak in the vicinity of

the bubble can reach as high as 8000 bar.
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Taking the pressure profile at late time of 1D running (before shock wave

hit the boundary) as initial conditions, 2D and 3D simulations are done with

tracked bubble near the interface, both of which only contain partial of the

global domain. The schematic picture of the approach is as shown in 3.24. The

simulations are performed with grid size of 128 × 256 over domain [0,0.04] ×
[0,0.08]. The initial radius of the bubble is 0.016 cm and the distance from

the bubble center to the liquid/ambient gas interface is 0.01 cm. From the

interface evolution profiles in Figure 3.24 and Figure 3.25, we can clearly see

that the vapor bubble grows continuously and interface instability appears

very quickly. Figure 3.26 shows the tip position of the instability as function

of time and it is clear that the velocity can reach as high as 160m/s .
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(a) t = 0ms (b) t = 0.007ms

Figure 3.24: density profile for bubble distance to interface = 0.01 cm
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(a) t = 0.014ms (b) t = 0.0025ms

Figure 3.25: density profile for bubble distance to interface = 0.01 cm
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Figure 3.26: Position of interface tip (cm) Vs. Time(ms)
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Similarly, 3D simulation is performed with grid 80 × 80× 80 over do-

main [0,0.04]×[0,0.04]×[0,0.04]. Figure 3.27 clearly shows the development of

surface perturbations during the bubble rebounding procedure.

(a) t = 0 (b) t = 0.0035ms

(c) t = 0.0075ms

Figure 3.27: Interface profile during bubble rebounding
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3.3 Laser Ablated Plasma Plume Simulation

Magnetic fields are used for the control of the dynamic properties of

transient plasmas induced by laser ablation [6]. The laser ablation in magnetic

fields was studied experimentally in [6] as a method of diverting or extracting

energy from the highly ionized expanding plasma generated in IFE target

explosions. The plasma conductivity in IFE target explosions is very large

and the ablation process is beyond the applicability of low magnetic Reynolds

number approximation [6], at least at its initial stage. The plasma created in

the process of nano-tube synthesis is usually weakly ionized and the induced

magnetic field is usually much smaller than the applied field. We simulated

the expansion of laser-generated plumes using the algorithm discussed before

and the EOS model for partially ionized gas. The laser and material settings

are similar to those mentioned in Povitsky’s papers [40, 41]. We investigated

the MHD effect and observed changes in plume structure and dynamics in the

presence of the magnetic field.

In our computational model, the interface between the ablated plasma

plume and the cold nonconducting ambient gas is tracked explicitly (See Figure

3.28). We compared results of 2D axisymmetric simulations and 3D simula-

tions and found a good agreement. In transverse magnetic fields as in Figure

3.28, plumes become wedge-shaped and must be simulated in 3D.

The interaction of the laser beam with the evaporating material leads to

the formation of an isothermally expanding plasma and this persists until the

end of the laser pulse; after the termination of the laser pulse, no particles

are ejected from the target surface [42]. Our simulations were started from
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Figure 3.28: Schematic picture of plasma plume within magnetic field
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either the beginning or the end of the laser pulse. In the first approach, the

laser beam ablates the solid target and brings energy along with mass into the

plasma plume, and the ablated material expands during the time of the laser

pulse. After the termination of the pulse, the target surface is treated as a

reflecting boundary. In the second approach, a thin layer near the target is

initialized as the hot ablated material, and the target surface is always taken

to be a reflecting boundary. Since the simulated plume expansion time (several

microseconds) is much longer than the laser pulse duration (20 nanoseconds),

both approaches gave essentially the same results.

In the simulations presented here, the container is initially filled with the

argon gas at temperature of 1500K (0.13eV ) and pressure of 0.01 bar. A laser

beam of 2mm diameter is focused on the surface of a carbon target, creating

the ablated vapor with the initial pressure of 100 bar and temperature of

5eV . Since the ionization energy of carbon is 11.26eV , the carbon vapor is

only weakly ionized. The injection velocity of the ablated material is set to

zero. After the end of the laser pulse, the carbon surface is treated as a fixed

wall (normal velocity of vapor on the wall is zero). Flow through condition

is applied to all other boundaries of the computational domain to represent a

large container that does not interfere with the expansion of the plasma plume.
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(a) B = 0

(b) Bl = 1Tesla (c) Bl = 2Tesla

Figure 3.29: 3D plume fronts at t = 1µs in longitudinal magnetic field

91



0
0.

5
1

0

0.
51

1.
52

r 
(c

m
)

z (cm)

(a
)

B
=

0

0
0.

5
1

0

0.
51

1.
52

r 
(c

m
)

z (cm)

(b
)

B
l
=

1T
es

la

0
0.

5
1

0

0.
51

1.
52

r 
(c

m
)

z (cm)

(c
)

B
l
=

2T
es

la

F
ig

u
re

3.
30

:
E

vo
lu

ti
on

of
th

e
p
lu

m
e

fr
on

t
in

lo
n
gi

tu
d
in

al
m

ag
n
et

ic
fi
el

d
s.

In
ea

ch
fi
gu

re
,

th
e

so
li
d

cu
rv

e
is

fo
r

t
=

1µ
s,

th
e

d
as

h
ed

cu
rv

e
is

fo
r

t
=

5µ
s,

th
e

d
ot

te
d

cu
rv

e
is

fo
r

t
=

10
µ
s.

92



First we studied the evolution of the plume front in longitudinal magnetic

fields. Both two dimensional axisymmetric and three dimensional simulations

were carried out. The grid resolution used in the simulations was 0.02 cm,

and the grid size for a typical 3D simulation is 200 × 200 × 100. The 2D

and 3D simulation results were essentially the same. The 3D plume fronts in

longitudinal magnetic fields are shown in Figure 3.29. Figure 3.30 shows the

evolution of the plume front in longitudinal magnetic fields. In the absence

of the magnetic field, the plume front is close to spherical as shown in Figure

3.30(a). In magnetic fields, the plume is channelled along the field lines and the

longitudinal expansion is boosted while the transverse expansion is suppressed,

as shown in Figure 3.30(b) and 3.30(c).

Figure 3.31 shows the MHD effect of longitudinal magnetic fields on plume

expansion quantitatively. It is clear from the figure that the spherical expan-

sion in the absence of the magnetic field slows down quickly with increasing

time. But in magnetic fields the expansion is almost one-dimensional – there

is no significant slowing down of the longitudinal expansion, while the trans-

verse expansion almost completely stops. The peak values of longitudinal and

transverse expansion velocities at t = 10µs in the absence of the magnetic field

are 419 m/s and 439 m/s respectively. In the 2 Tesla field the corresponding

values are 1310 m/s and 25 m/s. Besides the change of the plasma plume

velocity distribution in the magnetic field, the plasma density and pressure

significantly increase. For example, the peak value of the plume density at

10µs increases from 1.0 × 10−7g/cm3 in the absence of the magnetic field to

2.0 × 10−7g/cm3 in the 2 Tesla field, while the maximum pressure increases
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Figure 3.31: Longitudinal and transverse expansion of the plume in the longi-
tudinal magnetic fields. In each figure, the solid curve is for B = 0, the dashed
curve is for B = 1 Tesla, the dotted curve is for B = 2 Tesla.
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from 9 mbar to 19 mbar.

We also studied the effect of transverse magnetic fields on the plasma

plume expansion. Due to the loss of axisymmetry, only three dimensional

simulations are applicable. The plasma plumes in 1 and 2 Tesla transverse

magnetic fields are plotted in the Figure 3.32. It is seen that with the increase

of the magnetic field, the plume expansion is extended in one direction (parallel

to field lines) and reduced in other directions (perpendicular to the field lines).

Assuming the magnetic field along y-axis, we also plotted the contours of

the density distribution in the cross sections of the plume in xz and yz planes

respectively in Figure 3.33. In the plane perpendicular to the magnetic field,

the plume density is higher in the center as expected. In the plane parallel it

is found that the plume density is approximately uniform along the field lines.

The dark regions in the bottom of the plume stand for the nearly vacuum

region created by the fast expansion of plasma plume. The zigzag boundary of

the plume comes from the interpolation used in the calculation of contours, the

actual tracked interface is a smoother triangulated two dimensional manifold.

From the MHD simulations of plasma plume expansion, we conclude that

the magnetic field is an effective tool to enhance, control, or direct the expan-

sion. Finally, to justify the the low magnetic Reynolds number approximation,

we calculated the induced magnetic field ∆B at the center of the plume using

Biot-Savart Law. Indeed we found that ∆B/B ¿ 1 in our simulations. For

the longitudinal magnetic field, no matter whether B = 1 Tesla or B = 2

Tesla, the ratio ∆B/B attains maximum at about 90 nanoseconds after the

end of the laser pulse, and the maximum value of ∆B/B is only 0.002.
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(a) Bt = 1 Tesla

(b) Bt = 2 Tesla

Figure 3.32: Three dimensional plume fronts at t = 1µs in transverse magnetic
fields.
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Figure 3.33: Density distribution in the cross sections of the plasma plume in
2 Tesla transverse magnetic fields. t = 1µs. The unit of the density if g/cm3.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions and Future Work

We have developed a numerical algorithm and computational software

for the numerical simulation of free surface magnetohydrodynamic flows at

low magnetic Reynolds numbers. The software is applicable to the simulation

of free surface MHD flows of conducting liquids undergoing phase transitions

and weakly ionized gases. The corresponding governing equations constitute

a coupled hyperbolic - elliptic system in a geometrically complex and evolving

domain. The numerical algorithm includes the interface tracking technique

for the hyperbolic problem, a Riemann problem for the material interface, dis-

cretization of elliptic equations in irregular domains with interface constraints

using the embedded boundary method, and high performance parallel solvers

such as MUSCL-type schemes for hyperbolic problems and iterative solvers

implemented in the PETSc package.

We have validated the elliptic technique using an exact solution of a Pois-

son problem with a Neumann boundary condition in geometrically complex
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domain and showed that it is second order accurate for the electric potential

and its gradient. Comparisons with the mixed finite element methods have also

been made. The MHD code has been validated by comparing numerical simu-

lations with analytical solutions in terms of expansion series for the problem a

liquid mercury jet moving in a non-uniform magnetic field. A good agreement

of simulations with experimentally validated theoretical calculations has been

achieved.

The algorithm has been applied to the numerical simulations of the fu-

ture Muon Collider/Neutrino Factory target. Both 2D axisymmetric and 3D

simulations of MHD processes in the mercury jet target interacting with a high

intensity proton pulse in a strong magnetic field have already been performed.

Different eos models(homogeneous and heterogeneous model) and conductiv-

ity models have been applied for the multiphase flow. The restriction effect of

the magnetic field on the mercury jet dispersal has been verified qualitatively.

Also with the approach of multiscale, we found that bubble collapsing and

rebounding may play important roles in jet breakup.

The code has also been applied to the simulation of the expansion of laser-

generated plasma plumes in magnetic fields. Both longitudinal and transverse

magnetic fields have been studied. We confirmed quantitatively that the lon-

gitudinal magnetic field would channel the plasma plume. In the transverse

magnetic field, the plume expansion is directed along the magnetic field lines,

and the expansion in other directions is reduced. Therefore our MHD sim-

ulations confirms the effectiveness of magnetic fields as a method to control

the ablation flow, and provides a way to test physical settings without going
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through expensive experiments.
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