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Petar M. Djurić, Advisor of Dissertation

Professor, Department of Electrical and Computer Engineering

John Murray, Chairperson of Defense

Professor, Department of Electrical and Computer Engineering

Sangjin Hong, Assistant Professor,

Department of Electrical and Computer Engineering

Jacob Sharony, Adjunct Professor,

Department of Electrical and Computer Engineering

Hui Zhang, Associate Professor,

Department of Mechanical Engineering

This dissertation is accepted by the Graduate School

Lawrence Martin

Dean of the Graduate School

ii



Abstract of the Dissertation

Design and Implementation of Reconfigurable

Hardware for Real-Time Particle Filtering.

by

Akshay Athalye

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2007

Particle Filtering is a Monte Carlo sampling based signal processing technique that is

applied to systems described using dynamic state space models. For models that are non-

linear and non-Gaussian, traditional filtering techniques fail in terms of filter performance.

Particle filters can handle nonlinear and non-Gaussian systems much more efficiently than

such methods. As a result, these filters have gained immense popularity in recent years.

However, their high computational intensity, which is widely recognized in literature, makes

them unsuitable for implementation on sequential platforms like DSPs. This fact, along with

the absence of dedicated hardware for particle filtering has prevented their use in real time

systems despite their suitability in terms of filter performance. The goal of this dissertation

is to address this gap and develop hardware suitable to real time particle filtering. This

research has progressed through the steps of algorithmic optimization, architecture develop-

ment and physical implementation, and has produced the first FPGA prototype for a particle

filter.

Often, real world systems require multiple models for accurate and complete descrip-

tion. A class of particle filters known as Multiple Model Particle Filters are applied to such

systems. Starting from the hardware developed for the basic particle filter, we propose a par-

allel, distributed architecture for implementation of a novel multiple model particle filtering

algorithm. The distributed processing units of the architecture interact using a data ex-
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change protocol with low interconnect requirement and no communication bottleneck. This

high speed architecture with its immense scalability is well suited to practical problems that

require a intensive particle filtering, incorporate a large number of models and have real

time processing requriements. The proposed architecture implemented on an FPGA plat-

form and applied to a practical problem, results in a speedup of upto 100 times over a DSP

implementation.

Flexibility of particle filters is another of their widely recognized assets. Within a general

framework, the particle filter can be applied to a wide range of problems by simply mod-

ifiying certain filtering parameters. We exploit the concept of hardware reconfiguration to

develop reconfigurable architectures, whereby the same particle filtering device can be used

for different problems by simply specifying a set of parameters. We use a novel buffer con-

troller based design methodology to develop a reconfigurable particle filtering hardware that

can be easily tuned to the problem at hand. Run time reconfiguration for implementation

of multiple model particle filters with dynamically changing model sets is also explored. For

each of the hardware architecture proposed, an FPGA based evaluation of speed and re-

source requirement is performed and the overall improvements over a sequential DSP based

implementation of the corresponding algorithm are analyzed.

With these contributions, this dissertation takes a significant step in enabling the appli-

cation of particle filters to practical systems requiring real time processing.
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5.3 Synchronization parameters for buffer controllers for SIRF and GPF. The

synchronization points are a function of M . . . . . . . . . . . . . . . . . . . 93

5.4 Illustration of FPGA mapping result of BRAM based buffer controller for dif-

ferent word size. Data in parentheses are for the result of distributed memory

based buffer controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Data exchange requirement between PEs and CU if centralized resampling is

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Resource Utilization on XC2V6000 device . . . . . . . . . . . . . . . . . . . 115

6.3 Module Information Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiii



Acknowledgements

I would like to thank my advisor Prof. Petar M. Djurić for his training and guidance
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Chapter 1

Introduction

1.1 Motivation

Particle Filters are a class of Sequential Monte Carlo methods that have gained immense

popularity in solving complex signal processing problems over the past decade. These filters

are applied to systems that are described by dynamic state space models. The well known

Kalman Filter is the optimal solution in cases where the model is linear and Gaussian. How-

ever, all traditional filtering methods are severely hampered by nonlinearity, non-Gaussianity

in the model. It is for such systems that particle filters greatly outperform traditional ap-

proaches such as Extended Kalman Filtering, Unscented Kalman filtering and Grid based

methods. Since nonlinear and non-Gaussian systems are frequently encountered in practice,

particle filters have attracted a great deal of attention from researchers and practitioners

in the recent past. Moreover, due to their recursive nature, particle filters can be used for

on-line sequential processing wherein filter estimate is sequentially updates as data becomes

available.

However, particle filters are computationally highly intensive. Hence when implemented

on sequential processors like DSPs, they cannot be applied to real time systems where speed

is of essence. Most of the research on particle filtering to date has focused on their theory

and on development of better variants of the basic particle filter. There has been vary little

research into the development of dedicated hardware for particle filters. This dissertation

intends to bridge this gap. When this effort was started, to the best of our knowledge, it was
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the first of its kind in addressing this problem. Since then a few other efforts have started

with the goal of developing hardware for particle filters.

Several practical problems, especially that of maneuvering target tracking require mul-

tiple models to cover system dynamics. The multiple model particle filter is an attractive

solution for such cases since it makes interaction between the models easier and is not affected

by nonlinearity and non-Gaussianity. With increasing number of models, the computational

intensity of the filter increases even further and the execution becomes even slower on a

sequential platform. On a DSP, for instance, the execution time scales exponentially with

increasing number of models and the filter becomes infeasible for practical applications which

frequently require several models in addition to real-time execution speed. Hardware that is

capable of executing multiple model particle filtering in real time can be applied to a host

of target tracking problems.

Another asset of particle filters is their flexibility. Within a consistent general framework,

they can be applied to a wide range of different models irrespective of constraints such as

linearity and Gaussianity. This property can be exploited at the hardware level by using

the concept of reconfigurability. This allows a single particle filtering device to be used

for a variety of problems in addition to allowing adaptation of filtering parameters during

processing.

1.2 Contributions

The traditional particle filtering algorithm is not suited to real time hardware implementa-

tion. The first contribution of this dissertation is an in-depth analysis of the basic particle

filtering algorithm from the point of view of hardware implementation. Modifications of the

basic algorithm are then proposed from the point of view making the filter more suitable to

concurrent spatial hardware. Architectures are developed for the resulting algorithm which

allow for fully pipelined execution and minimize memory requirement using elegant memory

access schemes. The architecture has led to the first hardware prototype of the particle

filter on an FPGA platform. This prototype, applied to the bearings only tracking problem,

shows a 50 times speedup as compared to the corresponding implementation on a sequential

processor.
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The modified algorithm and the architecture developed for the particle filter was then

extended and adapted to multiple model particle filters. The architecture consists of dis-

tributed processing elements and a central unit controlling the communication and interac-

tion between the various models used in the filtering. An overall communication scheme was

developed based on a modified distributed resampling algorithm that allows all inter-block

data exchange to be implemented with a single bus without introducing a communication

bottleneck. This makes the architecture highly scalable with respect to the number of models

and number of particles processed per model. An FPGA evaluation of the architecture for

a practical tracking application is presented.

During the course of this work, another class of particle filters viz. Gaussian Particle

Filters (GPFs) was explored from an implementation viewpoint. The GPF algorithm was

modified such that it can be implemented in hardware without storing particles in memories

between iterations. This makes the GPFs very attractive in applications requiring a large

number of particles where the available memory size restricts the use of standard particle

filters. A reconfigurable/parameterizable particle filtering architecture was developed which

incorporates the ability to perform both standard particle filtering as well as Gaussian par-

ticle filtering on the same hardware by simply changing a small set of parameters. This

architecture also allows for changing parameters of each filter in between iterations.

Finally, a design methodology was proposed for incorporating dynamically changing

model sets in the multiple model particle filters implemented on a Xilinx FPGA platform.

This represents a hardware realization of the Variable Structure Multiple Model particle

filters. The methodology was evaluated for a simple particle filter realization, but will be

enhanced and extended to a practical application in the future.

1.3 Organization of the Dissertation

The reset of this dissertation is organized as follows.

Chapter 2 lays down the foundation with a brief description of the theory of particle

filters. The basic algorithms for the Sampling Importance Resampling Filter (SIRF) and the

Gaussian Particle Filter (GPF) are explained along with their application to a the bearings
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only tracking problem.

Chapter 3 describes the algorithmic analysis and modifications of the particle filters from

an implementation perspective. The advantages of the modified algorithms in terms of re-

source requirement and speed are analyzed. The resulting algorithms are evaluated on a DSP

platform that serves as a performance benchmark for the eventual hardware implementation.

Chapter 4 presents the development of a hardware architecture and various memory

schemes for the SIRF. The implementation of Gaussian random number generators and

other model specific mathematical computation blocks is also explained. This chapter in-

cludes fixed point analysis of the particle filter applied to the bearings only tracking problem.

This analysis forms the basis of the fixed point scheme used in the implementation.

A design that can be reconfigured for two different types of particle filters viz. the SIRF

and the GPF is presented in Chapter 5. This design also allows for parameterizing individual

filter realization by specifying a small set of parameters.

A distributed architecture and communication scheme for multiple model particle filters

is presented in Chpater 6. The architecture presented in chapter 4 forms the basic building

block of the multiple model particle filter. Further, we explore a methodology that allows

for incorporation of dynamically changing model sets in the multiple model particle filter

implemented in a Xilinx FPGA platform.

Chapter 7 concludes the dissertation with a summary of our contributions and enlists

future directions arising from this research effort.

The published works resulting from this effort can be found in [8, 6, 5, 46, 19, 9, 7, 10,

69, 18]
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Chapter 2

Theory of Particle Filters

2.1 Dynamic State Space Models

Particle Filters are applied to systems that are formulated as dynamic state space models

[42]. Many real world systems related to signal processing, image processing, communications

and biology can be described by these models [40]. DSS models include a state equation

that describes the evolution of the state of interest {xn; n ∈ N}, x ∈ Rnx with time. This

equation along with the initial distribution of the state p(x0) describes the prior knowledge

of the hidden Markov state process which is incorporated in the distribution p(xn|xn−1). The

other equation in the DSS model, called the observation or measurement equation, describes

the observations {yn, n ∈ N},y ∈ Rny as a function of the state. The likelihood of the

observations, p(yn|xn) can be deduced from this equation. Mathematically, the DSS model

is written as follows:

xn = fn(xn−1,un) (2.1)

yn = hn(xn,vn) (2.2)

where fn and hn are possibly nonlinear state and observation equations respectively, and

un and vn are random noise vectors. The sequence of states and observations up to time

instant n are written as x0:n and y1:n respectively. In the Bayesian context, the complete state

information is incorporated in its posterior distribution p(x0:n|y1:n). In most applications,
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the data (observations) arrive sequentially and hence it is necessary to update the posterior

as the observations become available. Thus the goal in most real time applications is to

estimate recursively in time the state xn∀n and possibly some functions of the state. These

estimates are based on the posterior density and are given by expectations of the form [83]

I(g(x0:n)) =

∫
g(x0:n)p(x0:n|y1:n)dx0:n (2.3)

2.2 Analytical Solution to DSS Models

In sequential signal processing, the goal is to recursively update the state posterior as ob-

servations become available. Using Bayes theorem along with the Markovian assumption of

the state evolution and the conditional independence of the observations given the state, we

can decompose the posterior as

p(x0:n|y1:n) =
p(y1:n|x0:n)p(x0:n)

p(y1:n)

=
p(yn|x0:n,y1:n−1)p(x0:n|y1:n−1)

p(yn|y1:n−1)

=
p(yn|xn)p(xn|xn−1)p(x0:n−1|y1:n−1)

p(yn|y1:n−1)
(2.4)

The recursion can be clearly seen in (2.4), where p(x0:n|y1:n) is determined from p(x0:n−1|y1:n−1).

The normalizing constant in (2.4) can be written using the Chapman-Kolmogorov equation

as

p(yn|y1:n−1) =

∫
p(yn|xn)p(xn|y1:n−1)dxn (2.5)

The predictive density in the RHS of (2.5) can be obtained from the prior pdf of the state

as follows
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p(xn|y1:n−1) =

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1. (2.6)

Thus, solving (2.4) requires evaluation of the following expression

p(yn|y1:n−1) =

∫ ∫
p(yn|xn)p(xn|y1:n−1)p(xn|xn−1)p(xn−1|y1:n−1)dxndxn−1 (2.7)

Frequently, many problems may also require prediction or smoothing apart from filtering.

The prediction density can be expressed using the following recursion

p(xn+l | y1:n) =

∫
p(xn+l | xn+l−1)p(xn+l−1|yn)dxn+l−1, (2.8)

where l > 1.

Similarly, smoothing can be done recursively backward in time using the formula

p(xn | y1:N) =

∫
p(xn+1|y1:N)

p(xn|y1:n)p(xn+1 | xn)

p(xn+1|y1:n)
dxn+1, (2.9)

where n > N .

As can be seen from (2.7),(2.8) and (2.9), the analytical solutions to the desired densities

involve high dimensional integrals. Closed form solutions to these integrals are possible only

in very specific cases. The simplest of these is the linear model with Gaussian noise, where

the analytical solution of the filtering equation results in the Kalman Filter [54, 3, 43, 44]

which is the optimal solution in this case. Many suboptimal methods have been proposed

as a result of large amount of research for models that are nonlinear and non-Gaussian.

Most popular among these methods is the Extended Kalman Filter [3, 51, 43, 57] which uses

local linearization of the model around the previous estimate. This filter suffers from lack of

robustness and poor performance in terms of accuracy of estimate[38, 99]. Other approaches

include Approximate Grid Based Methods [76, 88], [89] Gibbs sampling and the Metropolis

Hastings scheme.

7



2.3 Concept of Particle Filtering

Over the past few years a set of simulation based methods known as Sequential Monte Carlo

(SMC) methods have become immensely popular in solving problems involving severe non-

linearities and non-Gaussian noise. Although these methods were being researched since the

late 1960’s,([41, 1]) lack of computational power prevented their growth. However, with in-

crease in computational power over the past decade, these methods have re-emerged and have

grown to become among the most popular methods for nonlinear signal processing. Particle

Filters fall under this broad category of SMC methods. They are simulation based methods

and are known variously as bootstrap filter [38], condensation algorithm [73], interacting

particle approximations [80] and survival of the fittest [55].

Particle filters represent (approximate) the desired densities (in our case the posterior)

using a random measure composed of a set of samples or particle drawn from the space of

the unknown state along with associated weights. This random measure approximating the

posterior p(x0:n|y1:n), is written as
{
x

(m)
0:n , w

(m)
n

}M

m=1
, where x

(m)
0:n represents the mth particle

(trajectory), w
(m)
n is its associated weight, and M is the total number of particles used

The weights are normalized such that ΣM
m=1w

(m)
n = 1. This random measure is used to

approximate the posterior as

p(x0:n|y1:n) ≈
M∑

m=1

δ(x0:n − x
(m)
0:n )w(m)

n (2.10)

.

Using this approximation, any function g of the state defined by (2.3) can be estimated

as follows:

Î(g(x0:n)) =
M∑

m=1

g(x
(m)
0:n )w(m)

n (2.11)

2.3.1 Importance Sampling

The density from which the samples or particles are drawn greatly influences the performance

of the particle filter. It can be clearly seen that the best performance will be obtained if
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these particles were drawn from the posterior p(x0:n|y1:n) itself. In this case the weight of

each of the M particles will be w
(m)
n = 1

M
∀m. However, in nontrivial problems, it is not

possible to directly draw samples from the posterior. Hence, one resorts to the technique

of Importance Sampling (IS) which is fundamental to most SMC methods. Importance

sampling is introduced in [35], and further described in the context of SMC methods in

[30, 29, 4]. According to this technique, samples are drawn from another density (since

drawing from the posterior is impossible), known as the Importance Function or Proposal

Density. This importance function is represented as π(x), and has the same support as the

posterior. The unnormalized importance weight of each particle drawn from the importance

function can be written as

w∗(m) =
p(x(m))

π(x(m))
(2.12)

For sequential processing, it is important to be able to recursively update the importance

weights as the observations become available. If the chosen proposal density can be factorized

as

π(x0:n|y1:n) = π(xn|x0:n−1,y1:n)π(x0:n−1|y1:n−1), (2.13)

then using (2.4) and (2.13), a recursive weight update equation can be easily obtained as

w∗(m)
n =

p(x0:n|y1:n)p(y1:n)

π(xn|x0:n−1,y1:n)π(x0:n−1|y1:n−1)

= w
(m)
n−1

p(yn|xn)p(xn|xn−1)

π(x
(m)
n |x(m)

0:n−1,y1:n)
(2.14)

The importance weights are normalized as follows

w(m)
n =

w
∗(m)
n∑M

m=1 w
∗(m)
n

(2.15)

This sequential importance sampling procedure represents the basic particle filter.
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2.3.2 Choice of Importance Function

The importance function π(·) plays a pivotal role in the performance of the filter. A poor

choice of the proposal density will result in a large number of particles having insignificant

weights. This not only results in poor filter performance, but also wastes computational

power and resources since trajectories with insignificant contributions to the representation

of the posterior are recursively updated. Strategies for choosing proposal densities have

been widely proposed in the literature [37, 27, 73, 48, 49]. The density p(x
(m)
n |x(m)

n−1,yn) has

been shown to be the optimal importance function in terms of minimizing the variance of

importance weights [30]. Evaluation of this density is not straightforward, and hence the

optimal importance function cannot be always used [4]. Sub-optimal approaches approximate

the optimal importance function using local linearziations [30] or Gaussian approximations

using the unscented transform [52]. The prior p(x
(m)
n |x(m)

n−1) is widely used as the importance

function. Although this density is not optimal the context of the above explanation, it

is easy to sample from. Also using this density the expression for importance weights is

greatly simplified. Due to these properties, the prior density is extremely attractive from

hardware implementation point of view. Substituting the prior density as the IF in (2.14),

the expression for the importance weights is given by

w∗(m)
n = w

(m)
n−1p(yn|xn) (2.16)

2.3.3 Resampling

A common problem in particle filters is that the variance of the importance weights in-

creases over time. This is commonly referred to as the ‘weight degeneracy’ problem. As

these particles are propagated in time, gradually the degeneracy becomes severe and eventu-

ally only a single particle with have normalized importance weight of 1 and all others will be

zero. To prevent this degeneracy, an important procedure called Resampling is introduced

into the particle filtering framework. It was first introduced in [92] and adapted for SIS in

[71],[63]. Resampling is a routine applied to the particle filter in order to remove particles

(trajectories) with small weights and replicate those with large weights. Theoretically, the

goal of resampling is to generate a new set of particles by sampling with replacement from
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the existing set of particles such that the resulting particles are i.i.d samples (with weight

1/M) from the approximate posterior represented by the original set of particles. In other

words, resampling is a procedure that replicates particles with large weights and discards

those with small weights in a controlled manner. Various techniques for resampling have

been proposed in the literature. These include systematic resampling [38],[29],[21], stratified

resampling [14], random resampling and residual resampling [71, 72]. Although resampling

is vital to the successful operation of the particle filter, it can on occasions cause an attrition

of particles which leads to loss of diversity and biased estimates. Hence an effective measure

should be used at each time instant to decide whether or not to resample. Frequently, the

variance of the importance weights is used to indicate need for resampling. Following is a

brief description of the above mentioned resamping methods.

• Random Resampling:

This is the simplest and most direct method for resampling. It was first introduced in

[70]. Its operates using the following steps.

1. Let x̃
(i(m))
n be drawn from

{
x

(m)
n , w

(m)
n

}M

m=1
with probability proportional to a

(m)
n . New

weights associated with these particles are w̃
(i(m))
n = w

(m)
n

ai(m)
n

.

2. Return the new random measure
{
x̃

(i(m))
n , w̃

(i(m))
n

}M

i(m)=1

This procedure has a complexity of O(M log M). Here i(m) represents the indexes of

the particles after resampling. The above description serves as a general formulation of

the resampling procedure. Other algorithms are special cases of this scheme where the

probabilities a(m) are chosen differently for each algorithm.

• Residual Resampling:

Residual is performed via the following steps [71]

1. For m = 1 to M retain Nm = dMw
(m)
n e copies of {x(m)

0:n }.

2. Calculate the residuum Nr = M -
∑M

m=1 Nm
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3. Obtain Nr particles using random resampling and w̃
(m)
n = 1/M ∀ M .

4. Return the new random measure
{
x̃

(m)
n , w̃

(m)
n

}M

m=1

Residual resampling has a complexity of O(M).

• Systematic Resampling:

This algorithm is a simple modification of the Stratified Resampling approach proposed

by [61]. This resampling is optimal in terms of variance of importance weights. These steps

involved in systematic resampling are as follows.

1. For m = 1 to M , sample and index j(m) according to the original weights such that

Pr (j(m) = m) = w
∗(m)
n

2. Assign resampled particle x̃
(m)
n = x

j(m)
n and weight w̃

(m)
n = 1/M

3. Return new random measure
{
x̃

(m)
n , w̃

(m)
n

}M

m=1

A theoretical comparison of the various resampling schemes can be found in [28]. The

steps of sampling from the importance function, computation of importance weights and re-

sampling form the most prevalent particle filter known as the Sampling Importance Resam-

pling Filter (SIRF). We will focus on this filter at various points throughout the dissertation.

The SIRF algorithm is summarized in Table 2.1.

2.4 Gaussian Particle Filters

Recently, a new class of particle filters, known as Gaussian Particle Filters (GPFs) has been

introduced. We have seen that the SIRFs represent desired densities with a random measure

composed of particles and weights. The GPFs on the other had are a class of Gaussian filters

which approximate desired densities as Gaussian. The Gaussian approximation is described

by its first two moments. The GPFs use a Monte Carlo (particle based) approach to calculate

the first two moments of the Gaussian approximation. The GPF algorithm describes a

technique of recursively updating the mean and variance of the Gaussian approximation and
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Input: The observation yn and the random measure from the

previous time instant {x̃(m)
n−1, w̃

(m)
n−1}M

m=1
Method:

1 Sample Step: Draw samples from π(xn) to obtain {x(m)
n }M

m=1.
2 Importance Step: Assign weights to the particles to obtain the

random measure {x(m)
n , w

∗(m)
n }M

m=1.
3 Normalization: Normalize the weights by

w
(m)
n = w

∗(m)
n /

∑M
m=1 w

∗(m)
n .

4 Resample Step: Resample to obtain new random measure

{x̃(m)
n , w̃

(m)
n }M

m=1

Table 2.1: Sample Importance Resample Filter (SIRF) algorithm

propagating them in time. Compared to other Gaussian filters like the EKF, the GPF has

been shown to be asymptotically optimal in terms of the number of particles. Hence it gives

much improved performance particularly in case of nontrivial nonlinearities. The Gaussian

approximation in the GPF restricts its application to cases where the desired density can be

approximated as a unimodal Gaussian.

The recursive update of Gaussian approximation to the posterior involves two key steps.

1. Time Update: In this step, a Gaussian approximation to the predictive distribution

p(xn|y0:n−1) is obtained. With the posterior at the previous instant p(xn−1|y0:n−1)

approximated as a Gaussian N (xn−1; µn|n,Σn|n), the predictive density is given by

p(xn|y0:n−1) =

∫
p(xn|xn−1)p(xn−1|y0:n−1) (2.17)

A Monte Carlo approximation to this density can be written as

p(xn|y0:n−1) ≈ 1

M

M∑
m=1

p(xn|x(m)
n−1) (2.18)

13



where x
(m)
n−1 are particles drawn from N (xn−1; µn−1|n−1,Σn−1|n−1). The mean and co-

variance of the Gaussian approximation to the predictive density p(xn|y0:n−1) is ob-

tained from these samples. This Gaussian approximation is written asN (xn; µn|n−1,Σn|n−1).

2. Measurement Update: After receiving the nth observation yn, the filtering distribution

and its Gaussian approximation is given by

p(xn|y0:n) = Cnp(yn|xn)p(xn|y0:n−1) (2.19)

≈ p(yn|xn)N (xn; µn|n−1,Σn|n−1).

An Importance sampling based approach is used to represent the filtering distribution

in (2.19). Accordingly, an importance function π(·) is selected and samples are drawn

from this density using the approximate predictive density. Weights are assigned to

these samples according to

w(m)
n =

p(yn|x(m)
n )N (x

(m)
n ; µn|n−1,Σn|n−1)

π(x
(m)
n )

(2.20)

The particles and weights are used to calculate the parameters of the Gaussian approx-

imation to this density N (xn; µn|n,Σn|n). The first two moments of this approximation

are propagated in time.

Unlike the SIRF, the entire set of particles is not propagated in the GPF. As a result,

particle degeneration does not occur and Resampling is not needed in the GPF. This is

an attractive feature from a hardware implementation perspective, since resampling is an

inherently sequential process which acts as a bottleneck in real time processing.

As noted in [47] pp. 65, the implementation of the GPF can be simplified by using the

prior density as the IF. This means that π(x
(m)
n ) is chosen to be equal to the p(xn|y0:n−1) =

N (xn; µn|n−1,Σn|n−1),, where µn|n−1 and Σn|n−1 represent the sample mean and covariance

of predictive distribution. This allows the samples generated in the time update step to be
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used directly in measurement update. The GPF algorithm, using this importance function

is summarized in Table 2.2.

Input: The observation yn and first two moments of the Gaussian
approximation of the posterior at previous instant µn−1 and Σn−1

Method:

GPF - Time update algorithm.
1. Draw conditioning particles from N (xn−1; µn−1,Σn−1) to obtain

{x(m)
n−1}M

m=1.

2. Generate particles by drawing samples from p(xn|xn = x
(m)
n−1) to

obtain {x(m)
n }M

m=1.
GPF - Measurement update algorithm

3. (a) Calculate weights by w̃
(m)
n = p(yn|x(m)

n ).

(b) Normalize the weights by w
(m)
n = w̃

(m)
n /

∑M
m=1 w̃

(m)
n .

4. Estimate the mean and covariance of the filtering distribution by

(a) µn =
∑M

m=1 w
(m)
n x

(m)
n

(b) Σn =
∑M

m=1 w
(m)
n (x

(m)
n − µn)(x

(m)
n − µn)

T

Table 2.2: Gaussian Particle Filter (GPF) algorithm.

2.5 Bearings Only Tracking

The complexity and performance of particle filters depends, to some extent, on the model

to which the filters are applied. Specifically, the model nonlinearity, model dynamics and

dimension of the state affect several performance aspects. These include estimation accuracy,

required number of particles to achieve this, requirement of resampling and complexity of

the importance sampling and weight computation. We consider various models throughout

the dissertation, but one of the most frequently considered applications is Bearings-Only

Tracking (BOT). This is frequently seen in SONAR and other angle-of-arrival based tracking

systems [15, 81]. Particle Filtering for BOT was first introduced in [38]. The BOT problem

is illustrated in Figure 2.1.
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Figure 2.1: The Bearings-Only Tracking (BOT) problem.

BOT involves tracking of an object (typical examples include ships, planes and other

moving vehicles) based upon its measured bearing (angle) with respect to a fixed sensor.

The problem is typically difficult due to non availability of range information. The system

state in BOT is 4 dimensional and includes the positions and velocities along the Cartesian

x and y directions. The positions are expressed with reference to the fixed sensor location.

The state equation in the BOT problem describes the system kinematics modelled with a

Constant Velocity model. The sampling period is taken to be TS = 1 unit. The measurement

is the bearing or angle of the object with respect to the sensor axis (y axis in our case).

The DSS model for BOT is

xn = Φxn−1 + Γun n = 1, . . . , N (2.21)

zn = tan−1(yn/xn) + vn (2.22)
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where xn = [xn, vxn, yn, vyn]T ,un = [uxn, uyn]T ,

Φ =




1 Ts 0 0

0 Ts 0 0

0 0 1 Ts

0 0 0 Ts




,Γ =




T 2
s /2 0

Ts 0

0 T 2
s /2

0 Ts




.Cu =


 0.005 0

0 0.005




where xn is the state vector which includes the positions and velocities xn, vxn, yn, vyn

of the object in the x and y directions respectively. un is a zero mean Gaussian white

noise process with covariance matrix Cu. This vector can be thought of as representing

the acceleration in the x and y directions. zn represents the observed bearing of the object

measured by the sensor at time n. vn is a zero mean white noise process with variance σ2
v

= 0.001. Before measurements are taken, the particle filter recursion is started with initial

prior information in the form of a 4 dimensional Gaussian variable with known mean and

covariance matrix.

As can be seen, this model is 4 dimensional and highly nonlinear due to a transcendental

function in the observation equation. These are the scenarios in which traditional filters

function poorly. The particle filters handle these situations efficiently. It has been shown

through intense simulations in [38], [64], that particle filters are much more efficient for this

problem than the traditional EKF.

2.5.1 SIRF for BOT

The SIRF applied to the BOT includes the usual steps of Sampling, Importance computation

and Resampling. The output of the filter is an minimum mean square error (MMSE) estimate

of the state vector. We chose the prior density as the IF. Although not optimal in terms of

variance of importance weights, this choice is most efficient from a hardware implementation

viewpoint. To prevent degeneracy, particularly due to the use of the prior density as the

IF, we chose to perform resampling at each step. SIRF for the BOT problem is summarized

Table 2.3.
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Input: The observation zn and previous estimates

1 Sample Draw particles from p(xn|xn−1 = x
(m)
n−1)

to obtain {x(m)
n }M

m=1.

x
(m)
n = x

(m)
n−1 + vx

(m)
n−1 + ux

(m)
n

vx
(m)
n = vx

(m)
n−1 + ux

(m)
n

y
(m)
n = y

(m)
n−1 + vy

(m)
n−1 + uy

(m)
n

vy
(m)
n = vy

(m)
n−1 + uy

(m)
n

2 Importance Calculate weights by w
∗(m)
n = p(zn|x(m)

n ).

w
∗(m)
n = w̃

(m)
n−1e

−(2πσ2
v)−1

(
zn−atan

y
(m)
n

x
(m)
n

)2

3 Normalization Normalize the weights by w
∗(m)
n = w

∗(m)
n /

∑M
m=1 w

∗(m)
n .

4 Resampling Resample particles to obtain new particles with weights 1
M

5 Output Calculate the outputs

x̂n =
∑M

m=1 w
(m)
n x

(m)
n

v̂xn =
∑M

m=1 w
(m)
n vx

(m)
n

ŷn =
∑M

m=1 w
(m)
n y

(m)
n

v̂yn =
∑M

m=1 w
(m)
n vy

(m)
n

Table 2.3: SIRF applied to Bearings-Only Tracking

2.5.2 GPF for BOT

For efficient implementation, we use the prior density p(xn|xn−1) as the importance function

as explained earlier. Conditioning particles are drawn from the Gaussian approximated

posterior of the previous time instant N (xn−1; µn−1,Σn−1). This requires decomposition of

the covariance matrix Σn−1 = Cn ·CT
n . This is done using Cholesky decomposition. It is well

known that Cn ·q, where q is a (4 x 1) vector [q1 q2 q3 q4]
T of white Gaussian noise samples,

results in samples with covariance matrix Σn. The GPF algorithm for BOT is shown in

Table 2.4
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Input: The observation zn and moments of previous Gaussian approximation
µn−1 and Cn−1 where C is Cholesky decomposed Σ

1. Draw conditioning particles to obtain {x(m)
n−1}M

m=1.

x
(m)
n−1 = µ1 + C11q1

vx
(m)
n−1 = µ2 + C21q1 + C22q2

y
(m)
n−1 = µ3 + C31q1 + C32q2 + C33q3

vy
(m)
n−1 = µ4 + C41q1 + C42q2 + C43q3 + C44q4

2. Draw particles from p(xn|xn−1 = x
(m)
n−1) to obtain {x(m)

n }Mm=1.

x
(m)
n = x

(m)
n−1 + vx

(m)
n−1 + ux

(m)
n

vx
(m)
n = vx

(m)
n−1 + ux

(m)
n

y
(m)
n = y

(m)
n−1 + vy

(m)
n−1 + uy

(m)
n

vy
(m)
n = vy

(m)
n−1 + uy

(m)
n

3. Assign Weights

w
∗(m)
n = w

(m)
n−1e

−(2πσ2
v)−1

(
zn−atan

y
(m)
n

x
(m)
n

)2

4. Normalize the weights by w
(m)
n = w∗(m)

n /
∑M

m=1 w̄
(m)
n .

5. Estimate mean and covariance by

µn =
∑M

m=1 w
(m)
n x

(m)
n

Σn =
∑M

m=1 w
(m)
n (x

(m)
n − µn)(x

(m)
n − µn)

T .

Table 2.4: Gaussian particle filter for BOT

2.5.3 Tracking Performance

An in-depth analysis of the tracking performance of the two filters for the BOT problem

is investigated in various works including [38, 64, 29]. We performed some simulations

to establish a performance benchmark to compare the performance of eventual hardware

implementations. The two filters were applied to a generated true path using M = 2000

particles. Obviously, with increasing particles, the performance in terms of MSE improves.

Hence, we compare the performance in terms of MSE to the Posterior Cramér Rao Lower

Bound (PCRLB). The PCRLB for the BOT is calculated using a methodology presented in

[103]. The MSE is obtained independently for each element of the state in the BOT problem.

19



−0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Tracking with SIRF and GPF using M=2000 particles

x position

y 
po

si
tio

n

true path
SIRF estimate
GPF estimate

Figure 2.2: One realization of GPF and SIRF tracking.

The MSE for the x position can be expressed as

MSEx(n) =
1

R

R∑
r=1

(x̂n − xn)2 (2.23)

where R is the total number of Monte Carlo realizations over which the MSE is averaged.

Each of these realizations used observations from the same generated true state. For our

experiment, we chose R = 100.

Figure 2.2 shows the tracking performance of one of the realizations. Figure 2.3 compares

the performance of the SIRF and GPF each with M = 2000 particles for tracking the x and

y positions with the PCRLB.
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Figure 2.3: Comparison of MSE of x and y positions for GPF and SIRF with the PCRLB.
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Chapter 3

Algorithmic Analysis and

Modification for Implementation

3.1 Introduction

Until very recently, almost all the research on Particle Filtering was related to its theory.

New algorithms were developed with the aim of improving tracking performance and being

able to handle complex nonlinear and non-Gaussian problems. PFs, due to the nature of

SMC techniques are inherently computationally intensive. This can be clearly seen from

the algorithms presented in the previous chapter. Typically, PFs need to work with a large

number of particles when handling complex real world scenarios. The processing of so many

samples through mathematically complex steps, naturally makes the filtering intensive and

slow on sequential machines. The traditional PF algorithms presented in the previous chapter

are sequential in nature and as such not well suited to implementation. In this chapter, we

analyze some of the algorithmic parameters of PFs and present several modifications that

allow for efficient implementation, both in terms of efficient resource usage and increased

speed due to the parallelism in the modified algorithms.

It is well understood in the field of VLSI signal processing, that the most impactful design

modifications are those made at the algorithmic level. For example, the results published

in [66, 90] show that the most dramatic power reduction in the final hardware results from

optimizations at the algorithm level rather than silicon (gate/circuit) level. In this chapter,
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we will first look briefly at the philophy of joint algorithm-architecture design, and then see

how this can be applied to particle filters and the implementation related advantages arising

therefrom.

3.2 Joint Algorithm-Architecture Design

While developing algorithms, its performance on a given problem is often treated as the sole

design criterion. However, decisions made at this level affect several implementation aspects

like speed, power and resources. Joint algorithm-architecture design implies exploration

of the algorithm and architecture design spaces jointly i.e. using algorithm parameters to

direct architectural choice, and using architecture details in turn to optimize the algorithm.

This design paradigm works with coarse grain, blocks based algorithm descriptions to drive

the design process. This reveals the inherent nature of the algorithm such as parallelism,

data dependencies, and function complexity. These parameters are extracted and used in

architecture exploration. The architecture can range from from a sequential processor to

dedicated spatial hardware. For a particular chosen architecture, the implementation cost

is estimated, and this is in turn used as feedback to the algorithm development for possible

optimization.

High level design decisions include choice of algorithm for a given application, fine tun-

ing the algorithm parameters, selection of the architecture and the determination of the

implementation parameters.

3.2.1 Algorithm Parameters

A better understanding of the correspondence between algorithm properties and architectural

implications, is a key to getting the most out of high level optimizations. For this purpose,

it is necessary to charecterize the algorithm using a set of relevant, measurable metrics that

can be used as guidelines in subsequent architecture exploration. Some of these parameters

are [114, 39]

1. Numerical Properties: This property relates to the format used and precision re-

quired for representing various quantities (variables) in hardware. This affects the
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architecture in terms of size of computation units and also execution time. There is

a tradeoff between algorithm performance and architecture and implementation cost.

Choice of appropriate word lengths and format is a good example of joint algorithm-

architecture design explained above. In the sequel, we have carefully examined this

issue in the context of particle filter implementation.

2. Complexity and amount of Computation: This characteristic can be easily ex-

tracted from the coarse block based functional description of the algorithm. A frequent

way of quantifying this characteristic is by the number of basic operations (addition,

multiplication, memory access) required by each functional block. This is used as

the initial lower bound on the amount of resources needed in the target architecture

platform to drive exploration of the architecture space.

3. Regularity: This property points to the ability to realize the algorithm with repetitive

use of simpler basic operations. This allows for structured, cell based hardware design.

Systolic processors attempt to exploit regularity in the algorithm.

4. Locality: The concept of locality is frequently used in the broad field of computer

architecture. Locality is described as temporal or spatial. Temporal locality refers to

the property of performing a function repeatedly in time. Spatial locality is more of an

architectural metric which refers to the property of accessing spatially close resources

frequently. In the VLSI domain temporal locality measures a variables persistence

before being re-evaluated and spatial locality refers to the communication pattern

between various processing blocks.

5. Data dependency and Concurrency: This property determines the critical path

and also the scalability of the algorithm in terms of added hardware. Concurrency

refers to the different tasks in the algorithm that are independent of each other and

can be performed simultaneously as long as enough hardware resources are present.

Data dependencies often determine the critical execution path and the achievable speed

of the hardware.
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3.2.2 Architectural Parameters

The architectural design space spans various levels of parallelism and programmability. It

extends from sequential machines like DSPs to dedicated ASIC hardware. The architectural

parameters influence the absolute implementation metrics i.e. speed, power and cost. The

role of architecture charecterization is to provide measurable metrics as feedback to the

algorithm development for suitable optimization and also to provide rough estimates of the

cost of implementation. Some common architecture characterization metrics are

1. Granularity of Processing blocks: This usually governs the amount of flexibility

in the architecture. Higher the granularity, more the flexibility.

2. Time multiplexing: This metric spans the design space from sequential to parallel

machines. In sequential machines, the degree of time multiplexing is high. They consist

of minimal resources which are reused in time. Parallel machines allocate hardware

with the goal of increasing the throughput.

We will say more about exploration of the architectural design space when describing

architectures developed for particle filters. In the following sections, we will describe some

algorithmic modifications of particle filters for better implementation.

3.3 Algorithmic Modification of the SIRF

A coarse-grain, block based functional representation of the SIRF is shown in Figure 3.1.

The input to the filter are observations which are sampled and used in the importance

computation step. The output of the filter is the estimate of the hidden state. The traditional

algorithm is loop intensive, in the sense that operations are repeated several times during

a single recursion. For making a pipelined implementation possible, the concept of loop

fusion or chaining is used. When there are several loops in an algorithm running for the

same number of iterations, then all the operations on the same index can be combined in a

single loop. This loop fusion can be used to combine the SIRF loops that process different

operations for the same index. This allows overlapping of operations at algorithm level and

pipelining at the architectural level. The pipelined SIRF algorithm for the BOT problem is

shown in Table 3.1. The resampling step however is still completely sequential.
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Figure 3.1: Functional block diagram of the SIRF

Traditional SIRF algorithm uses systematic resampling (SR) with normalized weights.

Normalization is an intensive operation as it requires M divisions which are expensive in

hardware. This operation may also act as a bottleneck since the resampling operation

cannot start until the normalized set of weights is available. The first modification we

present eliminates the need for the weight normalization step by using the unnormalized

weights along with the sum the weights,Wn, directly in the resampling process. A modified

SR algorithm which works with non-normalized weights is shown in Table 3.2. Using this

algorithm M divisions during normalization are replaced with one division as shown in step

2 of the pseudocode. This is a generic pseudocode where, Ni is the input number of particles,

No is the number of particles generated after resampling, and {w∗(m)
n }M

m=1 is the input array

of non-normalized weights from the importance step. In standard implementations Ni =

No = M . The output in is an array of indexes, which shows the addresses of the particles

in the original set that constitute the resampled set. The algorithm works by drawing the

uniform random number U from the support [0, Wn

No
] and then updating it using step 10. At

the same time, the sum of the first k particle weights is calculated (C) and compared with

U . When C < U the last particle is discarded and the weight of the particle k+1 is added to

S. If C > U the particle k will be replicated and the number of replications is proportional

to E(w̃
(k)
n No/Wn). It should be noted that this modification does not change the effect of
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Input: The observation zn and the particles from the previous

instant {x(m)
n−1}M

m=1
Method:

for m = 1, . . . , M ,
1. Sample Step

x
(m)
n = x

(m)
n−1 + vx

(m)
n−1 + u

(m)
x

vx
(m)
n = vx

(m)
n−1 + u

(m)
x

y
(m)
n = y

(m)
n−1 + vy

(m)
n−1 + u

(m)
y

vy
(m)
n = vy

(m)
n−1 + u

(m)
y

2. Importance step

w
∗(m)
n = e

−(2πσ2
v)−1

(
zn−atan

y
(m)
n

x
(m)
n

)2

Wn = Wn + w
∗(m)
n

3. Calculate partial output.

x̂n = x̂n + x
(m)
n · w∗(m)

n

v̂xn = v̂xn + x
(m)
n · w∗(m)

n

ŷn = ŷn + x
(m)
n · w∗(m)

n

v̂yn = v̂yn + x
(m)
n · w∗(m)

n

end

4. Resample particles using sum of weights.
5. Scale the estimates
x̂n = x̂n/Wn

v̂xn = v̂xn/Wn

ŷn = ŷn/Wn

v̂yn = v̂yn/Wn

Table 3.1: SIRF for BOT with pipelining and loop fusion

resampling. In other words, traditional SR using normalized weights and the algorithm in

Table 3.2 produce exactly the same result. We shall look more close at the resampling step
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and its cycle-by-cycle operation when we consider its implementation.

Input: Non normalized set of weights w
(m)
n

Method:
1. (in)=SR(Ni,No,Wn, w∗

n)
2. Ad = Wn

No

3. Generate random number U ∼ U [0, Ad]
4. C=0, k=0
5. for m = 1 : Ni
6. while (C < U)
7. k = k + 1
8. C = C + w

∗(k)
n

9. end
10. U = U + Ad

11. i
(m)
n = k

12. end

Table 3.2: Systematic Resamling with non normalized weights

The SIRFs have a high degree of spatial concurrency due to their regular nature and

the fact that operations on different trajectories at the same sampling instant are indepen-

dent of each other. This allows for parallelizing the SIRF using a distributed architecture.

Operations of sampling (propagation) and weight calculation for different particles are in-

dependent and each require M iterations for one particle filter recursion. This allows for

exploiting the loop-level parallelism using the software concept of loop unrolling [45]. Ac-

cordingly, a parallel architecture framework for the particle filter is suggested in Figure 3.2.

Here each processing element (PE) processes a fraction of the total particles performing the

steps of sampling and importance computation. Resampling is a sequential operation with

data dependencies between each iteration. Hence it cannot be parallelized in the same way

as the other steps. In the framework shown in Figure 3.2, the particles from each PE are

sent to the central unit (CU) for resampling.

We have modified the resampling procedure in a way that allows for partial parallelization.

According to this scheme, resampling is split into a two stage process. In the first stage,

each PE sends only its sum of weights to the CU. Based on this the CU determines how
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Figure 3.2: Parallel Architecture Framework.

many particles each PE should produce after resampling. Then concurrently in each PE,

resampling takes place according to the algorithm in Table 3.2 to produce the appropriate

number of particles. These particles are then propagated. The whole resampling process

now consists of three operations:

1. CU resampling which is sequential operation in which the CU first calculates the num-

ber of particles N (k) that each PE should produce after resampling based on its sum

of weights W
(k)
n for k = 1, ..., K where K is the number of PEs.

2. After the PEs get number N (k), resampling is executed in PEs in parallel. If resampling

is performed based on Pseudocode 1, the input number of particles is equal for all the

PEs Ni = M/K and the output number of particles varies No = N (k).

3. Data exchange in which particles among PEs are exchanged in a way that PEs with the

surplus send the particles to the PEs with the lack of particles. This step is necessary

in order to assure that all the PEs have the same number of particles before the next

sampling period.

Using this modification, the time for resampling in parallel implementation is reduced
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K times in comparison with the implementation in which resampling is performed only by

the CU. The average time for data exchange is reduced as well. In the parallel framework of

Figure 3.2, sampling importance computation and parallel resampling (item 2. above) are

mapped into PEs, while the sequential operations such as CU resampling and data exchange

are mapped to the CU.

This scheme does add the overhead of the interconnect and data transfer. The inter-

connect pattern and protocols for data exchange between PEs and the CU is a complicated

issue. They decide the efficiency of the parallel implementation and in terms of cost and

scalability. Several strategies to handle these issues have been proposed in [17]. We will look

more closely at these issues and propose solutions when we use the concept of a parallel ar-

chitecture along with distributed resampling in the context of multiple model particle filters

in Chapter 6

3.4 Algorithmic Modification of the GPF

Draw

Conditioning


Particles

Importance step
Sample step


Input observations


Output

Calculation


estimate


Calculate mean and

covariance,


Cholesky
  Decomposition


Figure 3.3: Functional block diagram of the GPF.

A coarse grain functional block diagram of the GPF is shown in Figure 3.3. Temporal

concurrency in the GPF exists as a concurrency of operations that can be executed simulta-

neously [65]. Degree of temporal concurrency in the algorithm implies storage requirement

for executing the algorithm in hardware. It is observed that the GPF contains four loops

of M iterations, where each loop is used for calculation of one step in Table 2.2. Since the

results from step one are used in the following steps, all M values of the states and weights
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must be saved in the memory for further processing. However, all four steps have the same

number of iterations and there are no inter-iteration data dependencies. As such these loops

are suitable for loop fusion [96] like some operations in the SIRF as described previously.

Steps 1, 2 and 3(a) in Table 2.2 can be easily fused. Weight normalization requires that all

the weights are known in order to form the sum of the weights. These normalized weights are

then used to calculate the mean and covariance of Gaussian approximation to the posterior.

These operations in this form cannot be fused with the main loop. However, we present a

modification to the algorithm that avoids normalization and allows for computing unscaled

mean and covariance as part of the main execution loop. This is done by using multiply -

and-accumulate (MAC) operation with the particles and non-normalized weights to partially

calculate the mean. Calculation of the variance still poses a problem as it requires the mean

to be calculated first. However, this step can be rewritten as:

Σn =
1

Wn

M∑
m=1

w̃(m)
n x(m)

n xT (m)
n − µnµ

T
n . (3.1)

The RHS of the subtraction is a constant and it can be calculated outside of the loop.

Calculation of the value on the LHS of the subtraction can be fused with the main loop as

MAC operations. This fused loop also exhibits loop-level parallelism which can be exploited

as in case of the SIRF using loop unrolling and the parallel architecture framework of Figure

3.2. Here again each PE performs the independent operations on a fraction of the total

number of particles in parallel with other PEs. The part of the algorithm mapped to each

PE is presented in Table 3.3.

The weights wn and the states xn in Pseudocode 2 are represented without the superscript

(m). This implies that these quantities are not saved in memories. This result is very

important since it shows that there is no need for storing particles in hardware. Intuitively

this makes sense, since the GPF does not propagate entire a complete random measure

consisting of the particles and the weights like in the SIRF. Only the first two moments

of a Gaussian approximation are propagated, and hence only these should require storing

between two time instants. However, as we saw, algorithm modifications are necessary to

exploit this property and translate it to reduced memory usage in hardware.
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Input: The observation yn and previous estimates µn−1 and the
matrix Cn−1 s.t. Σn−1 = Cn−1C

T
n−1

Method:
for m = 1 to M
1. Draw a conditioning particle from N (xn−1; µn−1,Σn−1) to obtain xn−1.
2. Draw a sample from p(xn|xn−1) to obtain xn.
3. (a) Calculate a weight by w̃n = p(yn|xn).

(b) Update the current sum of weights by W k
n = W k

n + w̃n.

4. Update the current mean and covariance by
(a) µk

n = µk
n + w̃nxn

(b) Σk
n = Σk

n + w̃nxn(xn)
T .

end

Table 3.3: Part of the GPF algorithm that runs in parallel on PEs after loop fusion is applied.

The GPF does not require resampling as pointed out in Chapter 2. Nevertheless, the CU

needs to perform the additional processing required outside the main loop. This involves:

final normalization (scaling) of the mean and covariance coefficients, calculation of the final

covariance coefficients using Eq. 3.1 and Cholesky decomposition. Cholesky decomposition

is necessary since step 1 of the GPF algorithm requires drawing conditioning particles from

the Gaussian with the specified covariance matrix. This is done by first generating a vector

of white Gaussian noise using standard techniques and then premultiplying this vector with

the decomposed matrix Cn.

Thus the algorithm modifications in the GPF allow for exploiting the inherent temporal

concurrency which results in a pipelined architecture and highly reduced memory usage.

Spatial concurrency is exploited by modifying certain algorithm steps such that a parallel

implementation is possible with distributed PEs and a CU.

For completeness, the complete modified GPF algorithm as applied to the BOT problem

is presented in Table. 3.5
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Input: W k
n , µk

n and Σk
n for k = 1, ..., K.

Method:
1. Collect and update central sum of weights, mean and covariance

for k = 1 to K
(a) Wn = Wn + W k

n .
(b) µn = µn + µk

n

(c) Σn = Σn + Σk
n

end
2. (a) Scale mean and covariance

(a) µn = µn/Wn

(b) Σn = Σn/Wn

3. Find the covariance estimate Σn = Σn − µn(µn)
T

4. The Cholesky decomposition of the matrix Σn in order to obtain Cn.

Table 3.4: Part of the GPF algorithm that runs sequentially on the CU.

3.5 Data Flow Analysis

The particle filter is a highly data driven program. The execution of the filter or some

operation within the filter is triggered by the availability of new data (token). Hence they

are well suited to description by data flow graphs [105]. In data flow graphs, each instruction

is viewed as the node of a graph. The output of the node is connected to all the other

nodes that consume the output. Each node executes when its triggering input becomes

available. The flow graph representation is the starting point of most architectural analysis

and synthesis [39]. The branches in the graph represent the data dependences between

the various operations. Branches representing control signals are included only when they

express additional triggering conditions for a node. Other than this case, in a data flow

graph representation the control flow is completely separated. This is very useful to analyze

applications like the particle filter which is highly data dominated and control at the high

level consists only of a counter that counts up to the number of particles. Thus the particle

filter is a highly data dominated algorithm, with a regular structure and parallelism which

is exploited by the modified algorithms presented in the earlier section. This fits well into

the Single Instruction Multiple Data (SIMD) architecture environment [34].
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Input: The observation zn and the parameters µn−1 and Σn−1

from the previous time instant
Method:

for m = 1, . . . , M ,
1. Draw conditioning particles from N (xn−1; µn−1,Σn−1)
xn−1 = µ1 + C11 · q1
vxn−1 = µ2 + C21 · q1 + C22 · q2
yn−1 = µ3 + C31 · q1 + C32 · q2 + C33 · q3
vyn−1 = µ4 + C41 · q1 + C42 · q2 + C43 · q3 + C44 · q4

2. Generate particles p(xn|xn−1)
xn = xn−1 + vxn−1 + ux
vxn = vxn−1 + ux
yn = yn−1 + vyn−1 + uy
vyn = vyn−1 + uy

2. Importance step

w∗
n = e−(2πσ2

v)−1(zn−atan yn
xn )

2

Wn = Wn + w∗
n

3. Calculate partial mean and covariance.
x̂n = x̂n + xn · w∗

n
v̂xn = v̂xn + vxn · w∗

n
ŷn = ŷn + yn · w∗

n
v̂yn = v̂yn + vyn · w∗

n

Σn = Σn + w∗
n · xn · (xn)

T

end

4. Calculate final mean and covariance (output estimate)
x̂n = x̂n/Wn

v̂xn = v̂xn/Wn

ŷn = ŷn/Wn

v̂yn = v̂yn/Wn

Σn = Σn/Wn - µT
n · µn

5. Cholesky decomposition of ΣN = CT
n ·Cn

Table 3.5: Modified GPF for the BOT problem
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3.5.1 Data flow and timing for SIRF
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Figure 3.4: Dataflow graph for the SIRF.

Figure 3.4(a) gives a high level picture of the SIRF (with two PEs) data flow for a single

recursion. It shows how a particle passes through the steps of sample, importance computa-

tion, calculation of sum of weights, output calculation and resampling. The modified SIRF

algorithm uses loop fusion to perform sampling, importance computation, accumulation of

sum of weights, and output calculation in the same loop. Hence these operations can be

easily pipelined. The output generation rate of each of these blocks is one per cycle. Hence

appropriate buffers can be placed between them to bring about pipelined execution at the

block level. Each of these blocks in turn includes complex computational units and are in-

ternally pipelined. This is the concept of two-level pipelining which we shall analyze in a

later chapter.

Once the weights of all the particles have been calculated, the resampling can start.

Resampling is represented using two nodes, resample and allocate. In the Resample node,

systematic resampling is performed and indices of particles after resampling are returned.
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The Allocate step reads appropriate particles from the memories using these indices and

propagates the resampled set of particles. The availability of this data triggers the output

calculation step and the sample step of the next time instant. With loop fusion and pipelin-

ing, the effective latency of sample, importance and cumulative sum of weights calculation

is 1.

Each of the K processing element processes M/K particles. In a parallel resampling

scheme, the central unit collects the partial sum of weights of each PE and determines, via

a step of CU resampling, the number of particles each PE should produce after resampling.

The weights of all the particles are combined to form the cumulative sum of the entire set of

the particles. This information is returned to the PEs, where the resample their own particle

set in parallel. The resampled particles are then propagated over the interconnection network

which is explained in later chapters.
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Figure 3.5: Block level timing of the SIRF.

Each PE processes M/K particles. Thus, processing of particles in the PE requires M/K

cycles, excluding start up latency. CU resampling takes K cycles and resampling in the PEs

takes M/K or 2M/K cycles depending upon the algorithm used for resampling. Thus the

total time required for completing one recursion of the SIRF is given by (2 ·M/K + LSIRF )

cycles, where LSIRF is the sum of the start up latencies of the various processing units.

Figure 3.5 shows the block level timing diagram of the SIRF.
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Figure 3.6: Dataflow graph for the GPF.

3.5.2 Dataflow for GPF

The dataflow graph of a GPF is shown in Figure 3.6. The branches indicate the data de-

pendencies and the data generation rate of the various blocks. The Cholesky Decomposition

can start only after processing of all blocks is complete. Calculating the final mean and

covariance estimate of requires the full sum of weights. Hence this step cannot begin until

the weights of all particles have been calculated.Cholesky decomposition is performed in the

central unit after combining the partial results of the individual PEs.

The block level timing diagram for the GPF is shown in figure 3.7. It can be seen that

the sample period of the GPF is (M/K + LGPF + LCU) cycles, where LGPF is the sum of

the start up latencies of the processing units and LCU is the latency of the central unit. This

unit adds the partial estimates of the mean and covariance and scales these by the sum of
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Figure 3.7: Block level timing of GPF.

weights. This seemingly simple step is mathematically complex in practical problems like the

4 dimensional BOT.The final estimate of the covariance matrix is passed onto the Cholesky

Decomposition block. This gives a lower diagonal 4× 4 decomposed matrix which is used in

the sample step of the next recursion. Thus in a parallel implementation of the GPF, the

only communication between the PEs and the central unit is exchange of partial estimates

of mean and covariance and Cholesky decomposed matrix. Not only is the communication

in GPF much less than the SIRF, but it is also completely deterministic. This makes for

easy and fast design of interconnection networks. It ensures that communication is not the

bottleneck in the operation of the parallel GPF. This greatly increases the scalability of the

filter since adding more PEs will surely speed up the execution. The drawback of the GPF

architecture is the complexity of the individual nodes in the dataflow.

3.6 Design Space Exploration

Design space exploration is the process of mapping a dataflow description to various points in

the architectural with the aim of estimating implementation costs and tradeoffs. This enables

the designer to easily choose an architecture to meet desired specifications. The range of the

design space for the particle filter dataflow can be explored using a methodology based on

combination of various works like [13, 11, 12, 39, 36]. Considering each node of the dataflow

as a block of computation, the design space can be explored by varying different architectural

parameters. Some of these are:

1. Type of Architecture : Sequential, parallel, multiplexed, programmable.
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2. Component selection : This decides nature of computational blocks i.e. are they serial,

parallel or pipelined, their word length and so on.

3. Pipelining : The depth of the pipeline at the block level. The depth of the pipeline of

the units inside the computational blocks will be decided by the component selection.

The cost and performance characteristics are then estimated and compared against de-

sired specifications. Some of the common specifications that are placed on designs are speed

requirement, cost requirement(resources or area) and power requirement. For example paral-

lel architectures though faster are often more expensive. For the PF, the degree of parallelism

can be increased by adding more resources. Thus if we consider unlimited availability of re-

sources, we can exploit maximum parallelism (i.e have M PEs, each processing a single

particle). We initially target an FPGA platform for the implementation. Hence we as-

sume that within the limits of a chosen device, we can use any amount of resources without

any additional cost. We use this criterion and then design our architecture for maximum

throughput. Since this is a data driven operation, the speed will depend on the number of

data samples that can be processed in unit time or in other words, the rate of generation

of output estimates. Among the parameters mentioned above, our level of pipelining is

optimized for maximum throughput. Our block size is fixed to one algorithmic operation

per block since this exploits maximum amount of regularity and concurrency. We chose our

components to be maximally pipelined, since each of the processing blocks is on the critical

path.

We explore the design space for this spatial implementation by varying the number of

PEs or in more general terms, varying the degree of parallelism. The speed and cost of the

resulting architecture is estimated using the specifications of the basic building blocks from

the standard IP core repositories like the Xilinx Core Generator [109]. A 20% overhead was

added to the speed and area estimates. Figure 3.8 shows the results of this exploration.
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Chapter 4

Architecture and FPGA

Implementation of the SIRF

4.1 Introduction

The SIRF is the most frequently used PF in practice. We have seen that the SIRF works by

representing the posterior using a random measure composed of samples or particles drawn

from an Importance Function and associated weights. In this chapter, we deal with the

hardware implementation of the SIRF. We continue from the data flow description presented

in the previous chapter. We propose and evaluate architectures and memory schemes for

SIRFs. In addition, we also develop the structure of each processing block of the SIRF and

investigate the important issue of fixed point representation for various variables for the 4

dimensional BOT problem.

In developing the architecture, a distinction is made between generic operations and

model dependent operations of the SIRF. The goal is provide a generic architecture which

can be used for any problem with minimal effort in designing the model dependent steps.

The proposed architecture can be used as a template to realize an SIRF applied to any

model. All the block level control is incorporated into the proposed architecture. The

model dependent operations involve mathematical computations on and can be designed

independently and incorporated into the overall architecture. Two important algorithmic

parameters that significantly affect the size and scalability of the architecture are the the
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nubmer of particles used and the dimension of the state space. From here on, we shall refer

to the number of particles used as M and the dimension of the state as Ns.

The main drawback of SIRFs is their computational complexity. From the dataflow

model, we see that for each observation received, all the M particles need to be processed

through the steps of sampling, importance computation and resampling. The sampling and

importance computation steps typically involve transcendental exponential and nonlinear

operations. Once all the M particles have been processed through the above mentioned

steps, the estimate of the state at the sampling instant is calculated and the next input can

be processed. These operations present significant computational load even on a state of

the art DSP. The performance of the SIRF for the BOT problem described in Chapter 2

with Ns = 4 was evaluated on a TI TMS320C54x generation DSP [101]. With M = 1000

particles, the inputs to the filter could be processed at the rate of only 1kHz. Clearly this

speed would prevent the use of PFs for online signal processing in real time applications

where higher sampling rates and/or higher number of particles are needed for processing.

Thus, design of dedicated hardware for the SIRF is needed if real time applications are to

become feasible.

SIRF is a recursive algorithm. The sampling step uses the resasmpled particles of the

previous instant to compute the particles of the current instant. This requires the particles

to be stored in memories. We shall see later, that a straightforward implementation of the

traditional SIRF algorithm would have a memory requirement of 2Ns×M since the sampled

and resampled particles need to be stored in different memories. Most practical applications

involve nonlinear models and high dimensional states (large Ns) which implies a large number

of particles M for SIRFs applied to these problems [26]. This would make the total memory

requirement of 2Ns ×M very large. The architectures proposed in this paper, reduce this

memory requirement to Ns memories of depth M (i.e. Ns ×M). This not only reduces the

hardware resource requirement of the SIRF but also makes it more energy efficient due to

reduced memory accesses [86].

The specifics of an SIRF implementation depend upon the properties of the model to

which the SIRF is applied. However, from a hardware viewpoint, the high level data flow

and control structure remains the same for every model. This chapter first describes the

developement of efficient architectures for these generic operations of the SIRF. They include
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the resampling step and memory related operations of the sample step. The other model

dependent operations are data driven and involve mathematical computations. They can be

easily incorporated into the proposed architectures for any model. Later in the chapter, we

describe the implementation of the model dependent operations for the BOT problem along

with the important fixed point analysis and representation scheme.

We develop two architectures, one using the traditional systematic resampling (SR) algo-

rithm and the other using the new residual systematic resampling (RSR) algorithm. These

architectures are referred to as Scheme 1 and Scheme 2 respectively. We have seen that

the resampling operation in the SIRFs presents a bottleneck since it is inherantly sequential

and also cannot be executed concurrently (pipelined) with other operations. Scheme 1 has

a low complexity and simple control structure, but is generically slow since SR involves a

while loop inside an outer for loop. As opposed to this, the RSR algorithm has a single for

loop and hence scheme 2 is faster than scheme 1. We also propose modifications of these

schemes which bring about partial parallelization of resampling and reduce the effect of the

resampling bottleneck on the execution throghput.

4.2 Resampling Operation in SIRFs

4.2.1 Systematic Resampling

The first architecture proposed in this paper uses the systematic resampling algorithm. This

is the most commonly used resampling algorithm for PFs [30]. This algorithm functions by

resampling with replacement from the original set of particles {x(m)
n }M−1

m=0 to obtain a new

set {x̃(m)
n }M−1

m=0 , where resampling is carried out according to

Pr(x̃(i)
n = x(j)

n ) = w(j)
n

In other words, the particles drawn in the sample step and their weights form a distri-

bution. The Resampled particles are drawn proportional to this distribution to replace the

original set. The normalised weights of all resampled particles are set to 1/M .

The SR concept for a PF that used 5 particles is shown in Fig. 4.1(a). First the cumulative

sum of weights (CSW) of sampled particles is computed. This is presented in the figure for
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Figure 4.1: The concept of systematic resampling.
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the case of 5 particles (M = 5) with weights w(0)...w(4). Then, as shown on the y axis of

the graph, a function u(m) called the resampling function is systematically updated [30] and

compared with the CSW of the particles. The corresponding particles are replicated to

form the resampled set which for this case is {x(0),x(0),x(3),x(3),x(3)}. In the traditional SR

algorithm, it is essential for the weights to be normalized such that their sum is one. However

we use a modified resampling algorithm that avoids weight normalization by incorporating

the sum of weights into the resampling operation as explained in Chapter 3. This avoids M

divisions per SIRF recursion which is very advantageous for hardware implementation.

The determination of the resampled set of particles is done sequentially as is shown

in Fig. 4.1(b). In each cycle, depending on the results of comparison between the two

numbers U and CSW , which represent the current value of the resampling function and the

CSW respectively, the relevant particle is replicated or discarded and the value of either

the resampling function U or the cumulative sum of weights CSW is updated. As shown

in the figure, in the first cycle, u(0) and csw(0) are compared. Since CSW > U , particle

0 is replicated and the resampling function is updated, while in cycle 4, since CSW < U ,

particle 1 is discarded and the CSW is updated. This process is repeated till the replicated

set of particles is obtained.

As we shall see later, the SR algorithm needs 2M − 1 cycles for execution in hardware.

4.2.2 Residual-Systematic Resampling Algorithm

Inspite of the low hardware complexity, the low speed of the SR algorithm may not be toler-

able in case of high speed applications. For these cases, the residual systematic resampling

(RSR) algorithm proposed in [17] can be used. This algorithm has a single for loop of M

iterations and hence is twice faster than SR in terms of number of cycles. This algorithm is

based on the traditional residual resampling algorithm [71]. In residual resampling (RR) the

number of replications of a specific particle x(m) is determined by truncating the product of

the number of particles M and the particle weight w(m). The result is known as a replication

factor. The sum of the replication factors of all particles, except for some special cases, is less

than M . These remaining particles are obtained from the residues of the truncated products

using some other mechanism like systematic resampling or random resampling. RR thus
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requires two loops of M iterations: one for processing the truncated products and the other

for processing residues. RSR calculates the replication factor of each particle similar to RR

but it avoids the second loop of RR by including the processing of the residues by systematic

resampling in the same loop. This is done by combining the resampling function U with the

truncated product. As a result, this algorithm has only one loop and the processing time is

independent of the distribution of the weights at the input. The RSR has an execution time

of M +LRSR cycles, where the latency of the RSR datapath LRSR is typically low (LRSR = 2

for our implementation). The RSR algorithm for M particles is summarized in Table 4.1.

(r) = RSR(M,w)
1. Generate a random number ∆U (0) ∼ U [0, 1

M ]
2. for m = 0 to M − 1
3. r(m) = b(w(m)

n −∆U (m−1)) ·Mc+ 1

4. ∆U (m) = ∆U (m−1) + r(m)

M − w
(m)
n

5. end

Table 4.1: Residual Systematic Resampling (RSR) for the SIRF.

Fig. 4.2 graphically illustrates the RSR methods for the case of M = 5 particles. The

RSR algorithm draws the uniform random number U (0) = ∆U (0) and updates it by ∆U (m) =

∆U (m−1) + r(m)

M
− w

(m)
n . The difference ∆U (m) between the updated uniform number and

the current weight is propagated. Fig. 4.2 shows that r(0) = 2, ,i.e., particle 0 is replicated

twice, r(3) = 3 i.e particle 3 is replicated 3 times and all other particles are discarded. SR

and RSR produce identical resampling result.

4.3 Architectures and Memory Schemes

We now elaborate on the development of architectures for the SIRF employing each of the

two resampling mechanisms discussed in the previous section.
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Figure 4.2: Residual-systematic resampling for an example with M = 5 particles.
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4.3.1 Reduction of memory requirement

In the SIRF algorithm, the sampled particles {x(m)
n }M−1

m=0 are generated by propagating the

previous resampled particles {x̃(m)
n−1}M−1

m=0 . This is done in the following manner using the

DSS model:

x(m)
n ∼ p(xn|x̃(m)

n−1),m = 0, 1, ...M − 1 (4.1)

A straightforward implementation of the SIRF would require 2×Ns memories of depth

M , Ns for storing the sampled particles {x(m)
n }M−1

m=0 and Ns for storing the resampled particles

{x̃(m)
n }M−1

m=0 . This implementation is shown in Fig. 4.3(a). At time instant n, the sampled

particles {x(m)
n }M−1

m=0 will be stored in the memory labelled SMEM . Their weights will be

calculated in the importance computation step. Once all the weights have been determined,

the resampling unit determines the resampled set of particles {x̃n}M−1
m=0 , which are written

to the memory labelled RMEM . The sample unit then reads particles from RMEM for

propagation. These memories are shown in Figure 4.3(a) for Ns = 1.

The memory schemes proposed here reduce this requirement to Ns memories of depth

M . In our implementation, the resampling unit returns the set of indexes (pointers) of the

replicated particles instead of the particles themselves. Then indirect addressing [45] can be

used to read the set {x̃n}M−1
m=0 from the sample memory SMEM itself for propagation. This

means that the particles are propagated in the following manner:

x(m)
n ∼ p(xn|xind(m)

n−1 ) (4.2)

where ind(m) represents the array of indexes or pointers to the resampled particles. Here

we make use of the fact that the resampled particles are in fact a subset of the particles

in the sampled particles memory. Hence instead of replicating them and storing them in a

different memory, they can be read from the same memory by using appropriate pointers.

The sampling process involves reading of M resampled particles and writing of M sampled

particles to the memory. If a single port memory is used the reads and writes cannot be

done simultaneously. This would require that a resampled particle be read, propagated and

written to the memory before the next resampled particle can be read. The execution of the

sample step would then take 2(M+LS) cycles where LS is the latency of sample computation.
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Figure 4.3: Memories for storing particles. In the traditional implementation two memories
would be needed. These are replaced by a single dual port memory.

This execution can be speeded up by using dual port memories [23] which are readily avail-

able on an FPGA platform1. This enables reading of {x̃n−1}M−1
m=0 and writing of {x(m)

n }M−1
m=0

to be executed concurrently. Hence, the sample step for M particles can be done in M + LS

cycles. The memory scheme is shown in Fig. 4.3(b) where the single dual port memory

labelled PMEM replaces the memories SMEM and RMEM of Fig. 4.3(a). Thus, use of

index addressing reduces the memory requirement of the SIRF and use of dual port memories

reduces the execution cycle time.

1We would like to point out here that on an ASIC platform, use of dual port memories incurs a 2x area
penalty

49



However, using index addressing alone does not ensure that the scheme with the single

memory will work correctly. We illustrate the reason for this with a simple example.

Consider the following one-dimensional random walk model:

xn = xn−1 + qn (4.3)

yn = xn + vn (4.4)

Here xn represents the one-dimensional state of the system and yn is a noisy measurement.

The symbols qn and vn are the process and the measurement noises respectively. Consider

5 sampled particles at instant n− 1 (i.e. {x(m)
n−1}4

m=0). In the implementation of Fig. 4.3(a),

these particles will be stored in the memory SMEM at locations SMEM [0], ..., SMEM [4].

Suppose that after resampling, particle x
(0)
n−1 is replicated twice, x

(3)
n−1 three times, and that

particles x
(1)
n−1, x

(2)
n−1 and x

(4)
n−1 are discarded. In the implementation with two memories, the

resampled particles will be written to memory RMEM . The operations performed in the

sample step at instant n for this case are shown in Fig. 4.4(a).

SMEM [0] = x(0)
n

= RMEM [0] + q(0)
n

SMEM [1] = x(1)
n

= RMEM [1] + q(1)
n

SMEM [2] = x(2)
n

= RMEM [2] + q(2)
n

SMEM [3] = x(3)
n

= RMEM [3] + q(3)
n

SMEM [4] = x(4)
n

= RMEM [4] + q(4)
n

(a) For implementation with two
memories

x(0)
n

= PMEM [0] + q(0)
n

x(1)
n

= PMEM [0] + q(1)
n

x(2)
n

= PMEM [3] + q(2)
n

x(3)
n

= PMEM [3] + q(3)
n

x(4)
n

= PMEM [3] + q(4)
n

(b) For implementation with
one memory

Figure 4.4: Memory operations in sample step

As seen from the figure, the sampled particles are written to the memory SMEM . In

the reduced memory implementation of Fig. 4.3(b), the replicated particles are read out of

the same single memory (PMEM in this case) using resampled indexes. For this example,
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the set of indexes of replicated particles is {0, 0, 3, 3, 3}. Thus the operations of the sample

step will be as shown in Fig. 4.4(b). However, if sampled particles are written to successive

locations of PMEM as in the previous case, the particle x
(m)
n will overwrite the resampled

particle x̃
(m)
n−1 causing an error if this particle has been replicated multiple times. In the above

example, if the particle x
(0)
n is written to PMEM [0], then for the next particle, we will get

x(1)
n = x(0)

n + q(1)
n

which is incorrect. Thus different strategies for writing sampled particles to the memory

need to be devised for the reduced memory design to function correctly. In the following

sections, we will explain the architectures developed using SR and RSR and how they handle

reading and writing of the particle memory.

4.4 SIRF using Systematic Resampling (SR) : Scheme
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Figure 4.5: Architecture of Resampling Unit implementing SR

Fig. 4.5 shows the architecture for the resampling unit implementing the SR mechanism.

The CSW is stored in the memory labelled MEM1 at locations corresponding to the ordinal

number of the particle in the sampled set. The resampling function u(m) is generated using
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an accumulator as shown. Both the memory and the accumulator are controlled by enable

signals. The outputs of the accumulator and the memory (U and W) are compared for

conditions U ≤ W and U > W by using a subtractor. The values of the CSW are read from

the memory using one counter (C1). The results of the comparison are passed to the index

generator unit which determines whether to replicate or discard the particle (i.e., the index

of the particle). The indexes of the replicated particles are stored in the memory MEM2.

This scheme also records the indexes of the discarded particles. These indexes are used

while writing the sampled (propagated) particles back to the memory. A particle which

has been generated by a replication, is written to the location of a discarded particle in the

memory. The number of particles before and after resampling is the same. This means that

for every replicated particle there will be a discarded particle. Hence this scheme can be

used effectively for writing particles to the memory. Since the number of particles that will

be discarded is non deterministic, we use a FIFO buffer of depth M to store the discarded

particle indexes. The output of counter C1 at an instant is the index of the particle that

is currently being processed. The comparator and the index generator unit bring about the

resampling as in Fig. 4.1. If the particle is replicated, its index is written to MEM2 whose

locations are addressed by counter C2, and the accumulator is enabled so as to update the

value of the resampling function. If the particle is discarded or when all its replications are

found, counter C1 is enabled CSW of the next particle is read from the memory. When an

index is to be discarded, the write enable of the FIFO buffer is asserted and the index is

written to it.
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Figure 4.6: Architecture of Sample Unit

Fig. 4.6 shows the architecture for the sample step under this scheme. Once resampling

is done, the memory MEM2 represents the array ind(m) containing M replicated indexes.

This memory is read sequentially and the indexes are used as addresses to the read port of
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the dual port memory (PMEM) storing the particles. The output of this memory is the set

{x̃n}M−1
m=0 . Due to the nature of the SR algorithm, all the replications of a particular index will

be written to successive locations in MEM2. Thus, since this memory is read sequentially,

a replication can be detected by comparing the current read index with the previous one.

When an index is read from MEM2 for the first time, the corresponding particle is read from

the memory and stored in the temporary register PREG. After propagation this particle is

written to its original location in the memory. When the same index is read from MEM2

in the following cycle, replication is detected, and the particle is read from the temporary

register PREG rather than from the memory (since the location in the memory will be

overwritten by the propagated particle). Also, the read enable of the FIFO is asserted high

and a discarded index is obtained which is used as address to the write port of PMEM to

write the replicated particle after propagation 4.7(b). We now further illustrate this scheme

with our previous example.
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Following the same case of the example, the contents of the replicated index memory
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MEM2 and discarded index FIFO in Fig. 4.5 will be as shown in Fig. 4.7(a). The sample

step starts by reading of the content of MEM2. The operations in various cycles are listed in

TABLE 4.2. Fig. 4.7(b) shows how the FIFO is read. A replication is detected by comparing

the current read index with the previous one. From the index memory contents, we see that

in this case a replication will be indicated when MEM2[1], MEM2[3] and MEM2[4] are

read. The result of this comparison is used as read enable to the FIFO.

Cycle Read Replication Read Write
address from to

1 0 No PMEM [0] PMEM [0]
2 0 Yes PREG PMEM [1]
3 3 No PMEM [3] PMEM [3]
4 3 Yes PREG PMEM [2]
5 3 Yes PREG PMEM [4]

Table 4.2: Function of sample step. Note that writing of particles is done LS cycles after
they are read where LS is the latency of the sample unit

SR involves comparison of M values of the CSW with M values of the resampling

function. As seen in Fig. 4.1(b), the two functions cannot be updated simultaneously,

except when obtaining their initial values at the start of resampling. The result of the

comparison in each cycle indicates which function is to be updated. Thus execution of SR

requires 2M − 1 cycles.

4.4.1 Modification of Scheme 1 for reduced execution time

Some properties of the SR algorithm can be used to partially parallelize resampling at the

cost of added hardware.

Due to the systematic nature of the resampling function update, the final value of the

resampling function is fixed. This value is u(0) + (M − 1)/M for traditional SR and u(0) +

S(M − 1)/M for our implementation of resampling using non normalized weights [18]. Also

the final value of the CSW, S, is also known to us. We can use this property of SR to

split the resampling shown in Fig. 4.1(a) into two concurrent loops of M/2 iterations each.

One loop determines the first M/2 resampled indexes by comparing csw(0) to csw(M/2−1)

with u(0) to u(M/2−1) and the other loop determines the next M/2 resampled indexes by
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comparing csw(M/2) to csw(M−1) with u(M/2) to u(M−1) From a hardware viewpoint, this

would require reading of two values of the CSW simultaneously from the memory which can

be accomplished by storing the CSW values (MEM1 in Fig. 4.5) in a dual port memory.

Also the replicated particle index memory MEM2 would need to be dual port and the

discarded index FIFO would be replaced by two FIFOs of half the size. All other logic

blocks in Fig. 4.5 would be replicated. This would reduce the loop bound [84] of the SIRF

recursion and increase its throughput. With this scheme, SR is split up into two parallel

loops of M/2 iterations each. Execution time of SR is reduced to 2 × M/2 − 1 = M − 1

cycles at the cost of added hardware. As an extension of this concept, resampling can be

split up into more than 2 loops of simultaneous comparisons due to the systematic update

of the resampling function. However this would need more memory blocks and additional

hardware. The tradeoff between added hardware and obtained speed is considered in Seciton

6.6.

4.5 SIRF with Residual Systematic Resampling (RSR)

: Scheme 2

The second architecture introduced in this paper uses the RSR mechanism for resampling.

The RSR has only one loop of M iterations and is faster than the SR. In this scheme too,

the replicated particles are written to the locations of the discarded particles in the same

dual port particle memory. Unlike scheme 1, after resampling in this scheme the indexes

of all the particles are stored in one index memory. Another memory is used to store the

corresponding replication factors. If an index has been discarded, a factor of 0 is recorded at

the corresponding location in the replication factors memory. In this scheme, the indexes are

arranged in such a way that all replicated indexes are written to the memory starting from

location 0 up, while all discarded indexes are written to locations from M − 1 down. This

method of storing indexes and replication factors is called particle allocation with arranged

indexes.

Memory usage for the example described in Section 4.3.1 is shown in Fig. 4.8, where the

indexes are arranged in the memory using the above mentioned method and the correspond-
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ing replication factors are stored in a separate memory.
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Figure 4.8: Contents of memories after the RSR method with particle allocation with ar-
ranged indexes.

From an implementation viewpoint, the RSR algorithm is benificial since it has a single

for loop. To make the RSR algorithm suitable for implementation, we make some changes

in Pseudocode 2 in Section 4.2.2. The changes incorporate particle allocation with arranged

indexes in the algorithm and also allow for resampling using non-normalized weights. As in

the case of SR this saves M divisions at each instant.

The modified RSR algorithm is shown in Table 4.3.

(i, r) = RSR(M,S, w)
1. Generate a random number U ∼ U [0, 1]
2. K = M/S
3. indr = 0, indd = M − 1
4. for m = 1 to M

5. temp = w
(m)
n ·K − U // Temporary variable

6. fact = dtempe
7. U = fact − temp
8. if fact > 0 // Particle allocation
9. i(indr) = m, r(indr) = fact, indr = indr + 1
10. else
11. i(indd) = m, r(indd) = 0, indd = indd − 1
12. end
13. end

Table 4.3: Modified Residual systematic resampling (RSR) algorithm.

In the pseudocode in Table 4.3 there is one multiplication inside the loop and one division

before the loop. The incorporation of the number K and generation of U from U [0, 1] is done

to allow non normalized weights in the resampling algorithm. These changes do not affect
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the correctness of the algorithm and the resampling results produced are same as Pseudocode

2.

Lines 9 and 11 bring about particle allocation with arranged indexes by writing replicated

and discarded indexes to the top and bottom parts of the index memory respectively.

The memory related operations in the sample step are shown in Table 4.4. First, the

replicated indexes are read sequentially from the memory of arranged indexes as shown in

the first for loop (line 2). The corresponding replication factors of the indexes are also read

at the same time. If the particle has been replicated, then it is propagated repeatedly. This

is shown by the second for loop (line 5) whose iterations equal the replication factor for

that particular index. Then, r(indr)− 1 sampled particles are written to the addresses of the

discarded particles (line 6) by reading the arranged index memory from the bottom. The

first sampled particle rewrites the original replicated particle (line 3). Hence the replicated

particle has to be stored in a variable Reg.

(X) = Sampling(i, r,X)
1. indr = 0, indd = M − 1
2. for indr = 1 to length(indr)
3. Reg = X(i(indr))
4. X(i(indr)) = Sample(Reg), indr = indr + 1
5. for k = r(indr)− 1 down to 1
6. X(i(indd)) = Sample(Reg), indd = indd − 1
7. end
8. end

Table 4.4: Memory related operations of the sample step.

4.5.1 Architecture for Scheme 2

In this section, the architectures for the algorithms presented in Tables 4.3 4.4 are shown

in Figure 4.9 and Figure 4.10. In Fig. 4.9, weights are stored in the memory MEMw and

addressed by the address counter that counts from 0 to M−1 and corresponds to the variable

m. The index generator is the block in which the arithmetics from the lines 5,6 and 7 in

Table 4.3 are implemented. The other part of the figure represents the implementation of

the particle allocation step (lines 8 - 12 of Table 4.3). MEMi stores the arranged indexes
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and MEMr stores the corresponding replication factors. Depending on whether a particle is

replicated or not, its index is written to MEMi at address pointed to by either the counter

counting up (counterr)or down (counterd). The appropriate replication factor is written to

the corresponding location in MEMr.
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Figure 4.9: The architecture for the RSR algorithm combined with the particle propagation.

There are three main blocks in Fig. 4.10: address generation, address control, and particle

generation and storing. One dual port memory PMEM is used for storing particles. The

arithmetics of the sampling step is implemented in the Sampling Unit. The delay between

read and write operations for the memory PMEM is determined by the pipeline latency

of the Sample Unit (LS). It is presented as Delay1 in the figure. Counterf represents the

variable k in Table 4.4. The replication from the memory MEMr is used as the initial value

to the down counter Counterf . The other logic blocks are for generation of controls to bring

about sampling as described in Table 4.4.

4.5.2 Modification of scheme 2 for reduced execution time

The RSR algorithm needs M +LRSR cycles for execution where the latency due to pipelining

of the RSR datapath is LRSR(2 in our case). Similar to the SR, the RSR algorithm can

also be parallelized with addition of more hardware for reduced execution time. The RSR

algorithm used for scheme 2 has only one loop in which the replication factor of a particle

is determined and the value of the resampling function is systematically updated. This

algorithm can also be modified for parallel execution by splitting the resampling process
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Figure 4.10: The architecture for memory related operations of the sampling step.

into multiple concurrent loops. The modified algorithm for 2 concurrent loops is shown in

Pseudocode 5. The first loop does the usual RSR of Pseudocode 3 for the first M/2 particles

from index 0 to M/2− 1. The second loop does the same simultaneously for the remaining

particles from index M/2 to M . This algorithm needs the cumulative sum of weights of the

first M/2 particles. This is denoted as SM/2. The initial value of the resampling function for

the second loop is denoted by U2 in the Pseudocode. Once again the factor K is included so

as to allow resampling using non-normalized weights. This mechanism can also be directly

extended to include more than two loops at the cost of adding more memory and hardware.

The execution time is thus reduced to (M/2)+2+L1 cycles where the additional latency

L1 is introduced by the computation of rM/2−1 and U2 before the second loop can start.

4.6 Implementation of Gussian Noise Generator

The architecture and memory schemes described so far are generic and can be used for

the implementation of the SIRF applied to any model. The computation operations of the

sample step and the importance step are specific to the model under consideration. We now

describe the design of these blocks for the SIRF applied to the BOT problem. This involves

Gaussian noise generation which is also fairly generic since many problems involve Gaussian

states.
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Method: (i,r) = RSR(M, S, SM/2, w)

1. Generate a random number U1 ∼ U [0, 1]
2. K = M/S
3. rM/2−1 = d(SM/2 − U 1)Ke
4. U2 = U1 + rM/2 − SM/2 ·K

Loop 1 Loop 2
Initialize ind1

r = 0, Initialize ind2
r = M/2,

ind1
d = M/2− 1 ind2

r = M − 1
for m = 0 to M/2− 1 for m = M/2 to M − 1

Perform steps 5 - 12 Perform steps 5 - 12
in Table 4.3 in Table 4.3

end end

Table 4.5: Split-Loop implementation of the RSR algorithm for parallel implementation.

Most theoretical particle filter formulations, particularly for models involving Gaussian

noise are based on the assumption of ideal (iid) white Gaussian noise (WGN) samples. How-

ever in the VLSI implementation, ideal WGN generation is not trivial. A large number of

methods for generation of Gaussian noise have been proposed in the literature. Most of these

start by using the uniform random numbers generated by a Linear Feedback Shift Register

(LFSR) [85],[104],[74],[2]. These uniform numbers are then transformed into Gaussian vari-

ates by using transformations like the Box Muller method [62] or IIR filtering (Central Limit

Theorem) [91]. Better quality random numbers can be generated using cellular automata

instead of the LFSR [108],[94]. A detailed description on testing of noise generators can be

found in [75]. We have presented guidelines for the choice of suitable noise generators for

particle filtering in [8].

We use an implementation based on the Quantized look up table approach outlined in

[25, 20]. In this method, the quantized values of the two Box Muller variables are stored in

ROM look up tables. These values are accessed using an LFSR. Figure 4.11(a) shows the

basic implementation of the noise generator from [25]. A non uniform quantization on the

first half Box Muller variable,
√−ln(x1) where x1 is a uniform random number, is performed.

This is done due to the steep characteristic of the ln(·) function around zero. Accordingly,
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Figure 4.11: (a)Implementation of noise generator presented in [25]. (b) Architecture modi-
fied for efficient FPGA utilization.

smaller values are quantized using a smaller step. As the value of x1 becomes smaller, the

quantization step becomes smaller. Thus, based on the output of the LFSR, one of the

ROMS storing quantized values of
√−ln(x1) is addressed. The other ROM stores the other

variable
√

2cos(2πx2). The two quantized half Box Muller variables are multiplied to give

the N (0, 1) distributed variable.

We modify the basic architecture of this noise generator to optimally use the FPGA

resources. Firstly we combine all the 5 ROMS in the above 4.11(a) into a single dual port

memory block. In figure 4.11(a) we see that the values at the outputs of the memories are

fed to the multiplexer. In our design, we choose one of 4 possible addresses rather than data.

This not only enables the use of a single memory block, but also eliminates the combinational

logic between the multiplier and the memory which allows mapping to adjacent memory and

multiplier blocks which in turn results in significantly reducing interconnect area (considering

the number of noise generators that are needed in the particle filter design). Figure 4.11(b)

shows the diagram of the modified noise generator implementation. Bits of appropriate order

are masked by making them high or low, when accessing the memories. The output of the

LFSR is split into two numbers as seen in the figure. Each of these with appropriate bit

masking is used to read from one of the ports of the memory. The numbers are stored in the
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ROM in fixed point format.

The noise generator is described using Verilog HDL. The look up tables are generated

using the Xilinx Memory Editor. The resulting design is simulated using modelsim and

then it is synthesized and put onto the device. Using the generated timing model, we back

annotate the delays into the simulation and carry out a post place and route simulation. This

helps us to know if the functionality of the model will be affected due to the delays. Table

4.6 shows the utilization of various resources on the FPGA by the noise generator module.

The generated noise samples are analyzed using MATLAB. Figure 4.6 shows some of the

statistics of the generated noise samples. These samples also pass the Kolmogorov-Smirnov

test for Gaussianity.

Net maximum delay through module = 4.194 ns
Resource Number Utilization %

External IOBs 43 4%
Mult Blocks 1 1%
RAM Blocks 1 1 %

Slices 56 1%
BUFMUXGs 1 16%

Table 4.6: Resource Utilization of noise generator for the device Xilinx Virtex II Pro 125
(XCV2P125), package ff1704, speed grade -6

4.7 Implementation of the Sample and Importance com-

putation steps

The generic architecture proposed for the SIRF includes a single memory for storing particles

and a control structure for correctly reading and writing particles. The implementation of

the Gaussian noise generator has been described in Section 4.6. Using these, the sample step

for the BOT problem is implemented simply with a set of pipelined adders.

The block diagram of the whole Importance step is shown in Fig. 4.13. The first instance

of the unrolled CORDIC core computes tan−1(y/x). This produces an output in the range

[−π, π] [113]. The tan−1() function has unique values in the range [−π/2, π/2]. Hence addi-

tional logic is needed to convert the output of the CORDIC core to this range. We observe
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Figure 4.12: (a)Histogram for noise samples from the implemented noise generator
(b)Autocorrelation upto lag of 4 for the noise samples.

that the value of the weight w reduces to 0 if the variable A shown in Fig. 4.13 is greater

than 255. We use this fact to reduce the area and resources required by the importance step.

Accordingly, only 8 LSBs of A are propagated through the weight computation logic. This

leads to a loss in accuracy of at most 10%. The 8 MSBs are compared to a constant, and if

A is greater than 255, the value 0 is selected as the output weight via a multiplexer. The

delay units are added for synchronization due to the fine grain pipelining of the CORDIC

units. The weights are summed using an accumulator as shown to produce the required sum

of weights.

The implementation of the exp() function is shown in Fig. 4.14. The input range of the

CORDIC core used for the exp() function is restricted to [−π/4, π/4] [113]. Hence we split

the input exponent into an integer and a fractional part based on the fixed point format

used. The exp() of the integer part is precalculated and stored in a ROM look up table.

The exp() of the fractional part is calculated using the CORDIC unit as shown and the two

numbers are then multiplied for the final result.
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4.8 Fixed point analysis for the SIRF

Fixed point analysis is an important issue in the implementation of data intensive algorithms

like the SIRF. The numbers that the SIRF deals with are largely dependent upon the model

and hence model parameters are used to drive the fixed point analysis. The SIRF involves

complex transcendental and exponential operations in its execution. In software, all the

numbers are represented and calculations are done using double precision floating point

types. For efficiency of hardware implementation, the floating point types are realized as

fixed point types. Fixed point numbers exist in registers with an imaginary (binary) point at

a suitable location. The part to the left of the binary point is interpreted as the integer part

of the number and the part to the right is interpreted as the fractional part. Implementing

fixed point types involves a detailed analysis of all the variables involved in the algorithm

and the effect that non ideal operations like truncation and rounding have on the filter

performance.
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For algorithms like the SIRF, where variables are random rather than deterministic, a

statistical analysis over many realizations is needed to appropriately define the format needed

for representing the variable. Various approaches have been suggested for this fixed point

analysis [22, 58, 33, 82]. Most of them use some kind of statistical analysis based on a simu-

lated dynamic range of each floating point variable. Often, floating to fixed point conversion

is formulated as an optimization problem where the hardware cost is to be minimized while

maintaining a specified system performance. A good overview of such techniques can be

found in [95].

4.8.1 Properties of Fixed Point Numbers

We adopt a generalized format for the representation of fixed point numbers [59], [98]. In

this format a fixed point type consists of a sign bit, integer part to the left of the imaginary

binary point and a fractional part to the right of the point. Truncation occurs when the

number of bits in the fractional part of the fixed point number is less then that required to

represent the result. Overflow occurs when the output of an operation generates more bits

on the MSB side than are available for representation. To model the effects of this, we can

use several quantization and overflow modes. This allows us to easily simulate the behavior

of the fixed point types in various modes of quantization and overflow. The characteristics

associated with a fixed point declaration are

• Word length : Total length including sign bit

• Integer Word Length : Number of bits to left of binary point

• Quantization Mode : Truncation, rounding, etc

• Overflow Mode : Saturation, Wrap around, etc

In hardware operations on fixed point numbers are carried out like integer operations.

The binary point in the number is purely imaginary and it is up to the architecture to

perform appropriate scaling for intermediate operations and interpret the final result.
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4.8.2 Method of Fixed Point Analysis

We use a statistical analysis method suggested in [58] utilizing the C++ concept of operator

overloading [97], [93] along with SystemC fixed point types to analyze and evaluate the fixed

point requirements of various variables. The advantage of using SystemC fixed point types is

that different characteristics can be easily associated with the fixed point type declaration.

Accordingly we define a class for monitoring the word length and integer word length of

each variable. The maximum and minimum values, mean and variance of the word length

and integer word length of each variable are recorded for each run of the SIRF. At each

instant, statistics are collected over all the processed particles. To do this analysis, we

start initially with the regular particle filter operating in floating point precision. When

the value of a particular variable is calculated in floating point precision, it is cast into the

systemC fixed point type with some specified format. The number of bits in this fixed point

type are modified until the difference between the floating point value and its fixed point

representation is within some predefined threshold. Then this information about the word

format is assigned to an object of the monitor class for which the = operator is overloaded

to update the statistics of the word length for that variable. Figure 4.15 shows the member

functions and variables for the class used.

class fix_form
{
public:

int wl, iwl, wl_sum, iwl_sum, wl_max, wl_min, iwl_max, iwl_min;
double wl_mean, wl_var, iwl_mean, iwl_var;

fix_form();
fix_form(int N_fx, int Ni_fx);
~fix_form();

fix_form& operator=(fix_form);
};

Figure 4.15: Members of class used for fixed point analysis

It is important to note the variation in the required word lengths over time. For the

BOT problem, for example, as time progresses the target in general tends to move away

from the origin and the largest range with respect to the origin that can be represented

depends upon the integer word length chosen. We use this information to come up with a

range specification for our filter for a particular fixed point format. Another specification
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is the resolution of the filter. Due to the limited number of bits on the right of the binary

point, there is a limitation the least value that the filter can resolve. This plays an important

role in the SIRF or any SMC technique. In theory, any SMC technique should benefit from

using a larger number of samples (particles). However if the fractional bit width used in the

representation is small as compared to the variance of the sample space, then effectively, the

number of unique samples reduces thus affecting the filter performance.

4.8.3 Critical Variables

The methodology described above, often results in formats that are not feasible for imple-

mentation due to resource limitations. Here, a distinction is made between variables that

affect filter performance and those that affect filter stability. The so called critical variables

are those whose accuracy cannot be compromised. More specifically, loss of accuracy in

these variables will lead to the filter not functioning at all. Examples includes variables in

denominators in division operations. On the other hand there are some variables for whom

compromise on the bit width only affects the accuracy of the filter and not the functionality.

For instance consider the value in the exponent of the importance computation step in the

SIRF. If this value is very large(of the order of 105) , the resulting weight will be close to

zero. A particle with such a small weight will almost surely be eliminated in resampling.

Hence there is no need to have a very wide register for the weights which in turn means that

we do not need a very wide register for the exponent. The approach we follow for these non

critical variables is a type of back annotation of values. We decide the smallest(or largest)

width used for representing a particular variable. Then we traverse the data flow in the

reverse direction and back annotate the value though inverse functions and decide the width

of all variables accordingly. A similar methodology has been used in [106].

4.8.4 Analysis of the SIRF for the BOT problem

The aforementioned analysis has been applied to the SRIF for the BOT problem. Figure

4.16 shows the variation in time of the statistics of the variables averaged over 5 realizations.

This graph is important for deciding the range of tracking. The analysis has been done for

all the variables but only some of them are shown on the graph.
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Figure 4.16: Graphs showing the variation in the fixed point format of the 3 variables with
time averaged over 5 realizations

We choose to track in the range [-32,-32] to [32,32]. This gives 6 bits in the integer part

of the representation. It can be seen that the weights which are the most critical variables

in the SIR filter on an average need slightly more than 15 bits and this remains somewhat

constant with time, Hence, for the weights we use 16 bits. The following table shows the

general format that we use for all the variables in the SIR filter.

Finally, Figure 4.17 shows the shifting and scaling involved in the computation data flow.

We start off with the two half Box Muller variables in look up tables for noise generation.

Noise samples for the x and vx particle generation need to be multiplied by small coefficiants.

Hence we use the shift-and-scale operation to avoid excessively large fractional bit width.

A similar flow is used for fixed point scaling and computations in the other dimension to

calculate y and vy.
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Variable name Max Word Mean Word Max Int Mean Int Used Format
Length Length Word Length Word Length < wl, iwl >

x 12 6.45 5 - mon.inc- < 16, 6 >

y 17 7.97 6 -mon. inc- < 16, 6 >

vx 24 13.19 1 1 < 16, 2 >

vy 11 9.89 1 1 < 20, 2 >

imp1 6 2 6 2 < 20, 4 >

imp2 29 15.06 3 1.01 < 18, 3 >

imp3 40 26.33 4 1.01 < 18, 2 >

imp4 29 14.67 19 3.44 < 18, 7 >

weights 40 7.56 1 1 < 16, 2 >

sum of weights 40 10.65 13 7.66 < 27, 13 >

Table 4.7: Table representing the sizes of some of the variables in the SIR algorithm.

4.9 Evaluation

In this section, we present the results of the implementation and a comparison of the two

proposed architectures. Both architectures were captured using Verilog HDL and synthesised

on a Xilinx Virtex 2 pro FPGA platform. The design was verified using Modelsim from

Mentor Graphics. After verification, the Verilog description was used as input to the Xilinx

Development System which synthesized, mapped and placed and routed the designs on a

Xilinx Virtex 2 pro device (XC2VP50-ff1152). The implemented design was verified through

a post place and route simulation using Modelsim.

4.9.1 Execution Time

Fig. 6.12 shows the timing of operations for one recursion of the SIRF. In the figure, LS

and LI represent the start up latencies of the sample and importance unit respectively. Tres

is the number of cycles required for resampling. The total cycle time of the SIRF is then

TSIRF = (M + LS + LI + Tres)Tclk, where Tclk is the system clock period.

As can be seen from the timing diagram, the resampling step is a bottleneck in the SIRF

execution as it cannot be pipelined with other operations. Thus, Tres significantly affects

the cycle time TSIRF . Hence, development of faster and more efficient resampling algorithms

is vital to the implementation of real time particle filters in high speed applications. The

architectures and their modifications that have been presented in this paper, help to bring

69
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Truncate Truncate y particle6 . 14  → (20)x particle6 . 14  → (20)vx particle6 . 14  → (20)

Figure 4.17: Fixed point scheme for SIRF

down Tres in different ways and hence reduce the effect of the resampling bottleneck. A

resampling scheme should be chosen such that its time Tres satisfies the required TSIRF for

the application at hand. The modified versions of the two resampling schemes partially

parallelize resampling and reduce execution time at the cost of added hardware. The time

Tres and TSIRF needed for resampling and one SIRF recursion respectively in terms of cycles

is summarized in TABLE 4.8. k is the number of loops into which resampling is split as

described in Section 4.4.1 and Section 4.5.2 for modified schemes.

In the table, L accounts for the start up latencies of all the units in the respective schemes.
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Figure 4.18: Timing of operations in SIRF

Time Scheme 1 Scheme 2 Modified Scheme 1 Modified Scheme 2
(cycles) with k loops with k loops

Tres 2M − 1 M + Lrsr 2(M
k )− 1 M

2 + LRSR

TSIRF 3M + L 2M + L (k+2
k )M + L (k+1

k )M + L

Table 4.8: Timing of SIRF using the different proposed architectures.

4.9.2 Resource Utilization

The architectures presented in the paper include all the memory related operations of the

generic SIRF. We use a Virtex 2 pro FPGA platform for evaluation [111]. All memory

modules are mapped to the 18Kb block RAMs available on the chip. The memory required

by SIRF for processing a certain number of particles depends upon the dimension of the

state and the number of bits used in the fixed point representation of the state, weights

(or CSW) and indexes. The number of 18Kb blocks needed on the Virtex 2 pro device for

storing M particles(also weights, CSWs or indexes), BM , is given by

BM = Nsd M · b
18× 1024

e (4.5)

where b is the number of bits used for representation of the word in the memory.

TABLE 4.9 summarizes the total utilization of the proposed architectures. The model

we have chosen for our evaluation is the Ns = 4 dimensional bearings-only tracking (BOT)

problem. The total memory requirement of the two schemes for the mentioned bit widths

shown in TABLE 4.9. Scheme 1 requires more memory than scheme 2 since it needs to store

the CSW which has a wider fixed point representation. The amount of block RAMs available

on a particular FPGA will determine the number of particles that an SIRF realization on
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that device can process. Thus, (4.5) can be used as a guideline for selecting a device for

a particular implementation. The mathematical units in Scheme 2 like the adders and

multiplier were chosen to be 18 bits wide in input and output. The table also gives an

estimate of the resources needed for the modified implementations of the two schemes with

resampling being split into k parallel loops.

Resource Scheme1 Scheme 2 Modified Scheme 1 Modified Scheme 2
(implemented) (implemented) (estimated) (estimated)

Slices 199 294 k · 199 k · 294
Slice Registers 130 224 k · 130 k · 224
4 Input LUTs 232 348 k · 232 k · 348
Block RAMS 15 14 11 + dk

2e 10 + dk
2e

Block Multipliers 0 1 0 k

Table 4.9: Resource utilization for the two schemes on the XC2VP50-ff1152 device

Finally, TABLE 4.10 shows the comparison of cycle time and memory requirement (in

terms of words) for the proposed schemes with a straightforward implementation starting

from the traditional algorithm. This approach requires the sampled and resampled particles

to be stored in different memories. Also if the index addressing schemes presented here are

not used, another M cycles are added to the SIRF execution time since resampled particles

first need to be read from one memory and written to another before the sample step can

begin.

Parameter Straightforward Scheme 1 Scheme 2
Implementation

Memory 2 ·Ns ·M Ns ·M + 2 Ns ·M + 2
(words)
TSIRF 4 ·M + L(SR) 3 ·M + L 2 ·M + L
(cycles) 3 ·M + L(RSR)

Table 4.10: Comparison of memory requirement and cycle time with a straightforward im-
plementation
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4.9.3 Tracking Performance

The entire SIRF along with the computational units of sampling and importance for the

above mentioned bearings only tracking problem was implemented on a Xilinx Virtex II pro

device (XC2VP50FF1152). This FPGA prototype used the architecture described in scheme

1 with a resampling time Tres = 2M − 1 cycles as explained earlier. Each input sample

is processed by the SIRF to produce an estimate of the unknown state at that sampling

instant.

The sample and importance computation units have a latency LS = 8 cycles and LI =

53 cycles. M = 2048 particles are used for processing. Hence the SIRF cycle time is

TSIRF = [(2048 + 8 + 53) + ((2× 2048)− 1)] Tclk

Thus one recursion of the SIRF needs 6024 cycles. The designed hardware can support

clock frequencies of upto 118 MHz. Using a clock frequency of 100 MHz, we get the speed at

which new samples can be processed 1/TSIRF = 16KHz. TABLE 4.11 shows the resource

utilization of the entire SIRF for the BOT problem. The outputs are 32 bits wide and are in

fixed point format. Their values are interpreted using SystemC fixed point data types and

plotted using MATLAB. The figure also shows the tracking results obtained by the SIRF

run in MATLAB using floating point representation for all variables. These results are also

compared with tracking results obtained with the traditional EKF which for this model has

execution speed of 10KHz on a DSP platform (TMS320C54x).

This performance figure of 16 KHz is for 2048 particles. In practice a much larger

number of particles is needed for tracking in noisy environments. This makes the SIRF

computationally very intensive and real time processing using any software platform or DSP

is not possible even for low sample rates. The FPGA hardware SIRF on the other hand

can process input samples at rates of upto 3.5KHz even with 10000 particles using the basic

Scheme 1. Large number of particles will lead to increased memory requirement. But a

large FPGA like the one chosen for our evaluation will support a high number of particles.

Thus, the hardware realization of the SIRF not only allows for increased sample rates but

also enables real time processing even with a very large number of particles.
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By using the other schemes introduced in the paper, the SIRF can be made even faster.

Resource Random no. Sample Importance Resample Top level Total
generation computation logic

Slices 300 411 1,535 199 623 3068 (13%)
Slice Registers 364 568 2,578 130 752 4392 (10%)
4 input LUTs 196 404 2,674 232 342 3848 (8%)
Block RAMs 2 8 1 7 0 18 (8%)

Block Multipliers 6 0 3 0 4 13 (6%)

Table 4.11: Resource utilization for entire SIRF for the bearings only tracking problem using
Scheme 1.
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Figure 4.19: Results of tracking for the BOT problem

4.10 Conclusion

In this chapter, we have presented a generic architectural framework for the hardware real-

ization of SIRFs applied to any model. The architectures reduce the memory requirement

of the filter in hardware and make efficient use of the dual port memories available on an

FPGA platform. Two architectural schemes, Scheme 1 and Scheme 2 were proposed based

on the SR and RSR algorithms respectively. The resampling process cannot be pipelined

with other operations and is a bottleneck in the filter execution. Hence for high speed ap-

plications, the high latency of SR in scheme 1 is unacceptable. Scheme 2 uses the faster but

more complicated RSR algorithm which allows for lower SIRF cycle times. We also intro-

duced modifications of the two schemes involving parallelization of the resampling process
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by splitting it up into multiple concurrent loops. This allows for reducing the resampling

latency and thus the SIRF cycle time at the cost of added hardware. The tradeoff between

speed and hardware cost will dictate the choice of architecture for an SIRF realization.

We further described the design of the computational units of sample and importance

step for the BOT problem. The sample step involved Gaussian noise generation which was

investigated. A detailed fixed point analysis was performed on the filter variables to decide

the representation scheme used.

Using all these results, an FPGA prototype of the SIRF for the BOT problem was

implemented. To the best of our knowledge this was first FPGA prototype for a particle

filter. For 2048 particles, this prototype can process input observations at 16 KHz which is

about 32 times faster than speed achieved for the same problem with the same number of

particles on a state of the art DSP.
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Chapter 5

Design of Hardware for

Reconfigurable Particle Filter

Realizations

5.1 Introduction

In this chapter, we present a design methodology for hardware providing parameterizable,

reconfigurable particle filter realizations. Specifically, we describe a design which can be

configured for different types of particle filtering by modifying a minimal set of control

parameters. Flexibility and generality of the particle filter are among its most attractive

properties. Exploiting this in hardware requires a reconfigurable platform. The proposed

methodology provides the capability of selecting a single particle filter from multiple possible

realizations with maximum resource sharing. An autonomous buffer controller mechanism

is proposed for the architecture which ensures correct data flow and synchronization of op-

erations. Parameter adaptation and algorithm reconfiguration can be accomplished with

negligible reconfiguration overhead through buffer controllers and a set of switches for trans-

forming dataflow structures such that any desired particle filter can be implemented. Two

target particle filters, SIRF and GPF, are realized on an FPGA platform based on the pro-

posed methodology. However, the architecture can be extended for a wide range of particle

filters with different sets of dynamics. The FPGA platform is used for rapid prototyping
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and evaluation. The methodology and the benefits thereof are equally applicable to an ASIC

platform. Through this work, we successfully demonstrate that implementation of a domain

specific processor for particle filters is feasible with performance that is much higher than

that of commercially available DSPs.

As we have seen in Chapter 2 and Chapter 3, execution of PF algorithms on sequential

hardware affects real-time performance due to their computational intensity. Hence, it is

highly desirable to develop a programmable particle filtering hardware that can replace the

use of DSP. As we have done so far, we use the BOT problem as the target application. The

main contribution of this work is a design methodology for a high speed, domain specific,

parameterizable particle filtering hardware with reconfigurability. In practice, a PF algo-

rithm for tracking must change to cope with the type of objectives and the dynamics of the

target. A reconfigurable PF can be used in a wide range of applications depending on the

statistical parameters of input observation and dynamic models. Reconfigurability in the

proposed design includes the type of PF used, dimension of state spaces and the number of

particles that may change dynamically to adapt to changing environments. For many real-

time applications, dynamically varying degree of parallelism is desirable where processing

elements duplicate for higher throughput processing. In addition, multiple instances of the

same PF are useful for tracking more than one object at a time. It is also desirable to change

the execution speed for power reduction if real-time requirement is relaxed. Thus, we can

envision a reconfigurable processor that can support the above situation dynamically during

run-time without redesigning particle filters whenever specifications change.

The use of reconfigurable DSP is not new [100], but most this effort has been focused at

traditional fine grain operations such as multipliers and adders. To the best of our knowl-

edge no previous works focus on reconfigurable architectures for the PF. Commercial DSPs

provide the ultimate flexibility for PF design. Filtering parameters as well as type of filters

can be easily adapted through change in software routines for a specific filtering task. Even

though current DSPs are highly pipelined and support some level of concurrency, they are not

suitable for high-speed real-time particle filtering. On the other hand, in the FPGA imple-

mentation, operational concurrency can be achieved by utilizing multiple processing elements

or parallelizing the overall filtering algorithms. However, a key problem with the FPGA im-

plementation using commercial design environment is that programming/reconfiguration is
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done statically during the design stage with long time to program, and without special sup-

port at the implementation level. Recently, commercial FPGAs have started to support

partial dynamic reconfiguration, but this comes at the cost of a complicated design flow, and

larger overheads which make it impractical for large designs [112].

The reconfigurable PF architecture presented here is based on maximizing reuse of pro-

cessing blocks common to different PF algorithms. The interconnection and interface be-

tween the processing blocks is done using distributed buffers, controllers, and multiplexers.

The rest of the chapter is organized as follows. Section 5.2 briefly describes relevant char-

acteristics of the PFs and the reconfigurable design proposed. Section 5.3 discusses the

processing blocks involved in the design. The processing blocks of the SIRF have been de-

scribed in Chapter 4. The design of some of the unique GPF processing blocks is explained

briefly. Section 5.4 details the structure and operation of the distributed buffer controller

which is a key element in the design. The combined architecture with processing blocks and

buffer controllers is presented in Section 5.5. The designs are mapped to FPGA and are

evaluated in Section 5.6. Finally, our contribution is summarized in Section 5.7.

5.2 Basis of the proposed design

5.2.1 Particle Filter Characteristics

For this design, we focus on two types of PFs viz. the SIRF and the GPF. The selection of

an algorithm from these two types of filters depends upon the characteristics of the dynamic

state space of interest. PFs, as many real-time signal processing algorithms, work on blocks

of data as frames. They can be represented as coarse data-flow graphs such that nodes (or

blocks) can be executed concurrently [87]. While the complexity of each node (or block)

differs in granularity, the data-flow graph can be clearly represented as a function of data

dependency. Each node in the data-flow graph executes on a set of data every iteration cycle.

Depending on applications, the size of data set can be large requiring significant amount of

buffers. Considering the dataflow within these applications, a two-level hierarchy is often

obvious, where data frames are processed as a unit in a sequence of logic blocks at a global

level, and elements within a frame are processed in a loop fashion within each block at a local
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level. For example in the function Y = h[f(X) + g(X)], the data frame X, (x1, x2, · · · , xM)

of dimension M is processed by the functions f(·) and g(·) in a loop, and, at the global level,

the sums of elements from these two functions are processed by the function h(·) generating

the data frame Y .

5.2.2 Block Level Pipelining

Block level pipelining provides a hardware realization of the dataflow model previously de-

scribed. The block (frame) based processing is incorporated in the architecture by intro-

ducing two level pipelining, i.e. fine grained (register based) and block-level (buffer based)

pipelining.

A buffer along with associated controller is inserted between successive processing ele-

ments at the block level. This buffer-controller serves as a pipeline element, and also allows

for incorporation of local architectural parameters such as latency and rate difference be-

tween a pair of processing blocks. Through block level pipelining, we can achieve three key

objectives:

1. It is possible to maintain concurrency of each processing block while providing correct

synchronization between them for proper execution.

2. Since the control signals, data and clock become local, hardware implementation is

much easier in terms of maintaining performance by minimizing clock skews and data

routing. Any change in logic will only affect its buffer size and controller configuration

thus simplifying reconfigurability and core reuse.

3. Since the entire design is centered around the buffers, performance mismatches between

memory and logics are minimized.

Fig. 5.1 illustrates a block-level pipelining structure. Data are transferred by the read

and write access of the buffers concurrently but at different address locations. The offset or

difference between the write and read address can be determined from the rate differences of

processing blocks as well as data dependency between them. Each buffer can have different

offset as required by the logic operation writing to or reading from it. The overall operation
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is logically viewed as just buffer to buffer operations separated by latency of the processing

blocks introduced by the processing block logic implementation. The data path may be

recursive.

Block 

1

Block 

3

Block 

2

BUF/

CONTROL

BUF/

CONTROL

BUF/

CONTROL

L1 L2 L3M12,offset12 M23,offset23 M31,offset31

Figure 5.1: Illustration of the block-level pipelining structure of data flow.

The above structure is characterized by the parameters Li, Mij, and offsetij, as indicated

in Fig. 5.1. The values Li represents the latency of processing block i and is obtained

from the implementation, Mij is the size of the data frame transferred between processing

blocks i and j. The buffer write-read offset, offsetij, is determined from the operational

data dependency of the pair of processing blocks. While a pair of processing blocks in Fig.

5.1 produces and consumes the same number of data, their data rates are not necessarily

identical.

5.2.3 Orthogonal Controller Design

When we consider dynamic run-time reconfiguration of PFs, a method for controlling the

desired operation becomes an important issue. Two approaches for controller design are

possible, namely centralized and distributed. In the centralized approach, a single large

controller is used to generate the different control signals for all the units. While [53] takes a

centralized controller approach arguing on the grounds of area overhead, [67, 24] take a dis-

tributed approach where the control is localized at the units and they operate by transferring

information between them. We adopt a distributed approach in this paper. The main differ-

ence between our controller design methodology and other distributed approaches is that our

design assumes that the execution characteristics of the processing block are known. This

is a valid assumption since we can always characterize the processing blocks based on their

implementation. This has the benefit that the processing blocks can be a logic core designed

by another party. Moreover, we provide the flexibility in changing the controller locally
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with minimum information and overhead. Such benefit is not possible with the centralized

approach where a small change in logics translates to overall redesign of the controller. In

the reconfigurable design, the centralized approach will lead to longer time to reconfigure

the overall design because of the tightly integrated control signals. Our methodology is

specifically targeted for block based processing for buffer centric applications. The method-

ology isolates local controllers from each other such that it is possible to provide operation

predictability in the overall system design.

The two algorithms considered here share several common processing blocks but differ

in their dataflow structures. Reconfiguration is achieved by configuring distributed buffer

controllers for local processing blocks and structural controller for algorithm selection. We

can view this reconfiguration scheme as one based on execution context.

5.3 Design of High Level Processing Units

5.3.1 Coarse Grain Data Flow Models

To fully utilize locality of the buffer controller, we follow three key strategies in designing

the processing blocks:

1. Each processing block is designed to eliminate control signal dependency between pro-

cessing blocks. If there exists such control dependency, we combine them for single

processing block. If such integration is unavoidable, we treat the control signal as data

between processing blocks under consideration.

2. We design each processing block so that the data consuming and producing rates are

deterministic. Since all the blocks, including buffers, use a single global clock, relative

rates can be defined. Moreover, the numbers of data produced and consumed are also

made to be deterministic. It is also possible that the processing block is complicated

enough to require its own local controller. However, we consider such highly localized

controller to be a part of processing block. Thus, as long as we maintain deterministic

input and output data flow, we can treat it as regular logic block.

81



3. We assume that there is only one global clock and all other clock signals feeding to

processing blocks are derived from the global clock.

The architecture of the SIRF for bearings-only tracking problem is constructed as shown

in Fig. 5.2. The figure shows both processing blocks and buffers (i.e., the buffer and its

controller are shown with shaded boxes). Each dashed box is translated to a buffer controller.

The same buffer controller is used for a grouped dashed box. A value inside the shaded box

represents the number of data going into the buffer in each iteration. The Importance step

has been split in to three blocks IMP1, IMP2 and IMP3 for maximizing resource sharing.

Figure 5.2: Dataflow graph (with buffers and processing blocks) of the SIRF particle filter.

Similarly, the architecture of the GPF for bearings-only tracking is constructed as shown

in Fig. 5.3. The figure shows the processing blocks and the buffers. In these two archi-

tectures, each processing block doesn’t change but the buffer controllers are reconfigured

depending on the target algorithms.
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Figure 5.3: Dataflow graph (with buffers and processing blocks) of the GPF particle filter.

5.3.2 Shared Processing Blocks in Design

From the initial observation, we can classify the operations that are common to both filters.

In this section, we describe the shared processing blocks that are common to the SIRF and

GPF, and the processing blocks that are unique to each filter. In order to maximize the

resource sharing, some of the processing blocks are divided into several smaller processing

blocks.

1. Sample Step (Particle Generate (PG)): The design of this unit was described in 4.7.

2. Weight computation (Importance) step: The design of this unit was described in 4.7

5.3.3 Processing blocks unique to the SIRF

The Resampling block is unique only to the SIRF. The design of this unit was handled in

detail in Chapter 4.
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5.3.4 Processing blocks unique to the GPF

The GPF is designed based on the modified GPF algorithm in Table 3.5 in Chapter 3. Here

we present the design of the processing blocks that are unique to the GPF.

1. Condition Particle Generation (CPG):

In the CPG step, the decomposed covariance matrix S and the mean µ obtained from

the CU processing block are used for calculation of conditioning particles. The matrix

S is a 4×4 upper triangular matrix, so the number of data that are transferred from the

CU processing block is 10 (not 16). All the multipliers are pipelined and they operate

concurrently producing M conditioning particles. Since, the outputs (x̃, Ṽx, ỹ, Ṽy) are

computed using different number of operators, we have to introduce additional delay

which is different for each state in order to get all the conditioning particles at the

same time instant at the output. The CPG requires 4 random number generators.

In the CPG processing block, there are 2 input buffers for (µ,S) from the CU processing

block and 4 output buffers for (x̃, Ṽx, ỹ, Ṽy) to the PG processing block. The data size

of mean µ is four and decomposed covariance S is 10. These data are generated

sequentially to save interconnect buses. Internally, these data are used in parallel. The

output data size is M . Initially, the mean and the decomposed covariance elements

are obtained externally and not from the CU.

2. Covariance Calculate (CC):

In the CC processing block, the partial covariance 4×4 matrix Var is calculated. This

block generates the normalized partial covariance. In the CC processing block, there

are 6 input buffers for (x, Vx, y, Vy) from the PG processing block and (tIMP2, sum)

from the IMP2 processing block. There is one output buffer Var to the CU processing

blocks. These outputs are serialized.

3. Cholesky Decomposition Unit (CU) The central unit carries out the operation of scaling

mean and covariance estimates and decomposing the covariance matrix using Cholesky

decomposition. The pseudocode for this is presented in Table 5.1.
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(Var) = GPFCH(x,Vx,y,Vy,w)
S11 = (V ar11)

1/2

S12 = V ar12/S11
S13 = V ar13/S11
S14 = V ar14/S11
S22 = (V ar22 − S12 · S12)

1/2

S23 = (V ar23 − S12 · S13)/S22
S24 = (V ar24 − S12 ∗ S14)/S22
S33 = (V ar33 − S13 · S13 − S23 ∗ S23)

1/2

S34 = (V ar34 − S13 · S14 − S23 · S24)/S33
S44 = (V ar44 − S14 · S14 − S24 · S24 − S34 · S34)

1/2

Table 5.1: Pseudocode for Cholesky decomposition.

The architecture of the GPF CU for implementing Cholesky decomposition is shown in

Fig. 5.4. The inputs and the outputs of the CU are produced once during the sampling

period. As seen from this pseudocode, this operation involves several expensive operations

like divisions and square root. There also exist data dependencies between the various

coefficients of the Cholesky decomposed matrix. Due to this use of dedicated hardware

units for each of these operations proves to be expensive due to the nature of the operators

and does not speed up processing greatly due to the inherent data dependency. Observing

concurrency of operations from the data flow for Cholesky decomposition, we see that at

any time, the maximum number of concurrent square root operations that can be performed

is one, and additions, multiplications and divisions are three. Hence we implement the

Cholesky decomposition with only these resources. The square root operation is implemented

using the CORDIC core [113] and the division is implemented using the pipelined divider

core [110]. The intermediate results are stored in internal registers and sent back to the

computation unit to use in the calculation of the next coefficients. All the hardware units

are time multiplexed (reused by subsequent operations). Like any other processing block in

the design, this unit has a local controller that generates the controls for the multiplexers

and read/write signals for the input and output buffers. Due to its sequential nature, the

Cholesky decomposition can also be implemented on a sequential coprocessor, like the IBM

PowerPC core embedded in the Virtex II pro FPGA.
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Figure 5.4: Architecture of the Unit Implementing Cholesky Decomposition

The bit widths and fixed point representation formats used in all the processing blocks

were determined, for the BOT problem, using a methodology outlined in [58].

5.4 Distributed Buffer Controller

The operations in the block based processing are viewed as buffer to buffer operations with

coarse grained processing blocks operating in between them. A block diagram of the buffer

controller, which is a key element in the proposed design, is shown in Fig. 5.5. The buffer

controller consists of concurrent controller and a dual-ported memory. When handling mul-

tidimensional data, the buffer controller has multiple dual port memory units controlled by

the same controller (grouped dashed boxes in Fig. 5.2 and Fig 5.3. The number of memory

units is equal to the dimension of the data. The concurrent controller has two logic sections:

read and write. The write logic section is configured by the parameters Li and nwij, and

the read logic section is configured by Dij and nrij where i and j denote the producing and

consuming processing blocks respectively. Note that these parameters are derived from the

dataflow structure and the processing block implementation details.

When this buffer controller is activated, both the write and read logic sections are con-

currently executed. Initiation of the write section indicates that data have arrived at the

processing block that is connected to this buffer as a producer. The actual data computed
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Figure 5.5: Block diagram of a buffer/controller consisting of a read and write processes.
The controller is programmed with the buffer controller parameters.

by the producing processing block is valid at the buffer controller after waiting for Li cy-

cles. The write logic section will not write these Li invalid data from the producer. This

will guarantee correctly receiving the valid data stream if the producer is purely pipelined

hardware. However, it is also possible that the processing block needs finite amount of com-

putation time regardless of the pipeline depth (i.e., delayed data generation by the processing

block). To support this type of processing block, we use one more parameter nwij. After

this wait period (Li + nwij), the data are written to the buffer. Once correct data samples

are being written to the buffer, the read process is started by the read logic section. The

parameter nrij represents the offset between writing and reading the data from the buffer.

This parameter is to support data dependency. Even if there are no data dependency, it

is also possible that the producer data generation rate is different from the consumer data

consuming rate. To support such rate mismatch between two processing blocks connected by

the buffer controller, we use another parameter Dij. After this wait period (max[nrij, Dij]),

the data are read from the buffer. Thus, the write logic section is configured by (Li, nwij)

and the read logic section is configured by (nrij, Dij). The same buffer controller is used to

support different data transfer characteristics by modifying these parameters.

There activation of the buffer controller is governed by three key synchronization signals:

start timeij, write beginij, and read beginij, where the index ij represents a buffer controller

placed between the processing blocks i and j. The start of the write waiting process is
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synchronized with the start read process of the previous buffer controller, indexed as ki.

And the start of the read process is synchronized with the start of the write waiting process

of the same buffer controller. They have the following relationships:

start timeij = read startki, (5.1)

write startij = start timeij + Li + nwij, (5.2)

read startij = write startij + max[nrij, Dij]. (5.3)

Each buffer controller is controlled by periodic signals, indicated by start, generated from

the global controller with a counter driven by a global clock. This is illustrated in Fig.

5.6. For each buffer controller, the start timing signal indicates the start of one iteration

process. Successive buffer controllers are separated by start signals. The global controller is

also responsible for the loading of timing information into the local controllers.

clock

buffer 1
timing

buffer 2
timing

buffer 3
timing

write/read iteration
of buffer 3

start start

start start

start start

Figure 5.6: Relative timing of the buffer controllers. All buffer controllers are synchronized
with a global clock. Each start signal is periodic and represents the iteration of the algorithm.

One of the main advantages of this scheme is that the buffer controller knows exactly

when the data are being transferred. This is determined from the parameters. Thus, when

the producing block or consuming blocks are not active (i.e., no data are written to or read

from the buffer), the corresponding processing block can be disabled for energy saving. In

the buffer controller, it may seem that the memory for buffer is used unnecessarily and large.

However, the size of the buffer controller is well defined from the its parameters, and the

actual size of the memory can be identical to the number of registers that may be needed in

traditional pipelining with hand shake. The predictability of the processing block execution

is especially beneficial for low power design. A simple hand shake mechanism does not have
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a clear information of the processing block activity.

5.4.1 Extension for Rate Mismatch

Consider a buffer controller connected between two processing blocks i and j such that i is the

producer and j is consumer for this buffer controller. Data generation rate of the producer

block is Pi, which is the write rate of the buffer controller . Similarly, data consuming rate

of consuming block is Cj which is equal to the data read rate of the buffer controller. We

assume these clocks are derived from the global clock Fclock. We will consider two possible

cases: Pi > Cj which leads to buffer overflow and Pi < Cj which causes buffer underflow.

Note that the number of data, Mij, transferred through the buffer controller should be a

constant and known.

Parameter Dij is used when there is a data rate mismatch between a pair of processing

blocks. When Pi ≥ Cj, producer writes to buffer at faster rate than that the consumer can

read from buffer. Under this condition, the read process does not have to wait once there is

at least one valid data in the buffer. The minimum value of Dij with respect to the global

clock is given by Eq (5.4).

Dij =
Fglobal

Pi

(5.4)

When Cj > Pi, the read process has to wait for the producer to write enough data to the

buffer to prevent underflow. Eq (5.5) gives the minimum wait period for the read process.

Dij =

(
Mij

Pi

− Mij − 1

Cj

)
× Fglobal (5.5)

5.5 Combined Architecture

The structure of the reconfigurable hardware implementing SIRF and GPF for bearings-

only tracking problem is shown in Figure 5.7. The figure shows both processing blocks and

buffers. In addition, there are switches associated with all the shared processing blocks

and buffer controllers for selecting the appropriate structure. These switches are configured
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dynamically, along with buffer controller parameters, before the beginning of any iteration.

Figure 5.7: A dataflow graph structure of the reconfigurable particle filter. The structure
contains both SIRF and GPF. Some buffer controllers are shared in the realization.

5.5.1 Buffer Controller Parameter Configuration

The parameters (Mij, nrij, nwij) are derived from the functional (algorithmic) description

of the particle filters. The parameters (Li, Dij) are determined from the processing block

implementation. The synchronization parameters of buffer controllers and global controller

are also determined from this information.

In the SIRF realization, key data dependencies that must be resolved are:

1. sum through BUF5 and the last value of tIMP2 through BUF4 must arrive at the

same time. This requires nwBUF5 = M + 1, since IMP2 will take M cycles from its

initialization to calculate the sum of weights.

2. the RS processing must wait for the sum of weights before it starts to execute. This de-

pendency results in nrBUF6 = M +61, where 61 is the sum of latencies of all processing

blocks in the path from the PG block to the RS block.

3. The PG processing block must wait for the first data generated by the RS processing

block (M cycles).
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4. The particle arriving at the OG block via BUF7 and the corresponding weight arriving

via BUF5 must be synchronized.

Similarly, the GPF has the following important data dependencies:

1. The particle and weight arriving at MC through BUF7 and BUF4 respectively must

be synchronized. Hence BUF7 reading must delayed till the first weight is calculated.

2. Data arriving at the CPG block from BUF11 and BUF13 must be synchronized.

3. The CC and MC blocks need M cycles after reading their first data to generate result.

Hence nwBUF9 = nwBUF10 = M .

Thus, using the buffer controller parameters nw and nr, the data dependencies in the

algorithms can be quantified and incorporated into the design. In both realizations, the

values of D are all one since there is no rate mismatch. The parameters of the other buffer

controllers in the design are determined using a similar reasoning. The depth of each buffer

is bounded by min(nrij,Mij), where nrij is the read offset and Mij is the number of data

words passing through that buffer per iteration. In reality, some buffer controllers in the

design need to have additional dual port memory units to account for multi dimensional

states. Accordingly, if Ns is the dimension of the state involved in the filtering, some buffer

controllers in Fig. 5.7 will need to incorporate Ns dual port memory units of appropriate

depth. The read/write operations of all memory units within a buffer controller will be done

using the same control signals. The Edge Information Table (EIT) (TABLE 5.2) shows the

values of the various buffer controller parameter for realization of SIRF and GPF using the

architecture of Fig. 5.7 for the Ns = 4 dimensional bearings-only tracking problem. The sizes

and format of memory in each buffer controller for a general Ns dimensional state model is

also sown in TABLE 5.2. Note that Mij stands for the number of data words passing through

the buffer controller between block i and j, while M stands for the number of particles used

for filtering.
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For the BOT model with Ns = 4 General Case
Buffers Signal Li nwij nrij Dij Mij No. of Depth of

Mem. units each unit

BUF1 (X̃) 11 [-, 1] [-, 1] [-, 1] [-, M ] Ns 1
BUF2 (x, y) 8 [1, 1] [1, 1] [1, 1] [M , M ] Ns 1
BUF3 (tIMP1) 23 [1, 1] [1, 1] [1, 1] [M , M ] 1 1
BUF4 (tIMP2) 20 [2, 2] [1, 1] [1, 1] [M , M ] 1 1
BUF5 (sum) 20 [M + 1, M + 1] [1, 1] [1, 1] [M , M ] 1 1
BUF6 (X) 8 [1, -] [M + 61, -] [1, -] [M , -] Ns M

BUF7 (X) 8 [1, 1] [49, 47] [1, 1] [M , M ] Ns 49
BUF8 (w) 10 [1, -] [1, -] [1, -] [M , -] 1 1
BUF9 (V ar) 8 [-, M ] [-, 1] [-, 1] [-, 10] 1 1
BUF10 (µ) 8 [-, M ] [-, 1] [-, 1] [-, 4] 1 1
BUF11 (µ) 8 [-, M ] [-, 78] [-, 1] [-, 4] 1 Ns

BUF12 (X̃) 19 [M , -] [1, -] [1, -] [M , -] Ns 1
BUF13 (S) 1 [-, 75] [-, 1] [-, 1] [-, 10] 1 1

Table 5.2: Edge Information Table (EIT) for reconfigurable realization. Each edge requires
a buffer. Each entry, denoted by [a, b] represents parameters for SIRF and GPF (i.e., a is
for the SIRF and b is for the GPF. The symbol - means that the buffer controller is not used
for the corresponding realization). X = (x, Vx, y, Vy) and X̃ = (x̃, Ṽx, ỹ, Ṽy).

The total amount of buffer used for the synchronization for SIRF and GPF respectively

is 4M + KSIRF and KGPF where KSIRF and KGPF are constants that depends on the

implementations of the processing blocks. Thus, the GPF has a much lower buffer usage

than the SIRF.

5.5.2 Synchronization Signals

The overall buffer synchronization parameters are generated according to (5.1), (5.2), and

(5.3). Table 5.3 summarizes the parameters for all the buffer controllers for the SIRF and

the GPF, respectively. The parameters for the start instant are computed with respect to

fclock. The executions of the PG, IMP, OG, and RS processing blocks are overlapped in

time. The minimum iteration period of the SIRF is TSIRF = (2M + LSIRF ) · Tclk, where

LSIRF = LPG + LIMP + LRS. Note that LOG is not included since the output generation

can be done within this cycle without creating a dependency. Thus, the iteration period,

2M+LSIRF = 2M+89, is indicated by the reset time instant. For the GPF, the executions of
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CPG, PG, IMP, MC, CC, and CU processing blocks are overlapped. The minimum iteration

period of the GPF is TGPF = (M + LGPF ) · Tclk, where LGPF = LCPG + LPG + LIMP +

LMC,CC + LCU and where LCU includes the latency due to hardware and delayed output

generation resulting from time-multiplexing within the CU processing block. The overall

latency LGPF is longer than the constant pipelining latency of the SIRF, LSIRF . Thus,

the iteration period, M + LGPF = M + 154, is indicated by the reset time instant. For

M À LGPF , the GPF is almost twice faster than the SIRF.

Buffers start time write begin read begin

BUF1 [-, 0] [-, 12] [-, 13]
BUF2 [0, 13] [9, 22] [10, 23]
BUF3 [10, 23] [34, 44] [35, 45]
BUF4 [35, 45] [57, 67] [58, 68]
BUF5 [35, 45] [M + 56, M + 66] [M + 57, M + 67]
BUF6 [0, -] [9, -] [M + 69, -]
BUF7 [0, 13] [9, 22] [58, 69]
BUF8 [M + 57, -] [M + 68, -] [M + 69, -]
BUF9 [-, 68] [-, M + 76] [-, M + 77]
BUF10 [-, 68] [-, M + 76] [-, M + 77]
BUF11 [-, 68] [-, M + 76] [-, M + 154]
BUF12 [M + 69, -] [2M + 88, -] [2M + 89, -]
BUF13 [-, M + 77] [-, M + 153] [-, M + 154]
reset [2M + 89, M + 154] - -

Table 5.3: Synchronization parameters for buffer controllers for SIRF and GPF. The syn-
chronization points are a function of M .

When the value of the counter in the global controller coincides with the binary repre-

sentation of the start time, the corresponding buffer controller becomes activated. Thus,

the global controller is simply an array of AND gates where the output of each gate controls

the buffer controller. Assuming that M is 1024, we need a 12-bit counter for the global

controller.

5.5.3 Reconfigurability and Parameterizability

As seen from the previous sections, execution of the hardware can be alternated between

SIRF and GPF by changing buffer controller parameters and interconnect switch states.

The advantage of this architecture is that the processing blocks in the design are slaves
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to the buffer controllers which are simply configured by a small set of parameters. The

processing blocks themselves do not implement any global controls. The buffer controllers

with their appropriate parameters and global synchronization signals maintain the overall

execution flow. As a result, changing parameters of the buffer controller allows for modifying

individual filter characteristics dynamically between iterations within limitation of provided

resources. The maximum number of particles that can be used is bounded, in case of the

SIRF, by the depth of BUF6. The maximum dimension of the state is bounded by the

number of dual port memory units in BUF1, BUF2, BUF6, BUF7 and BUF12. Within

these bounds, the number of particles and the dimension of the state can be varied between

iterations by changing the parameters and control signal timings of various buffer controllers

in accordance with TABLE 5.2 and TABLE 5.3.

In practical scenarios changing the number of particles brings about a tradeoff between

accuracy of the filter and the iteration period. Dynamically changing the dimension of the

state is needed in multiple target tracking problems with unknown number of targets. In

such problems, the sate vector represents positions and/or velocities of the targets being

tracked. Depending upon the number of targets the dimension of the state changes. The

proposed architecture allows for implementation of such algorithms since the dimension of

the state can be changed dynamically between iterations.

The design methodology also allows for exploitation of inherent parallelizability in the

PFs. The the blocks CPG, PG, Imp1, Imp2, Imp3 and OG perform data parallel com-

putations each iteration, i.e. each block processes a large data set where the individual

computations are independent of each other. Hence, these computations can be parallelized

if multiple instances of the processing blocks are available such that each instance processes

a fraction of the total M particles. The proposed methodology allows for easily incorpo-

rating additional processing blocks, if they are available, into the design. Using standard

design methodologies, parallelizing the filters would need a major redesign. Moreover, the

methodology is extremely scalable in terms of design complexity as more and more blocks

are added to increase the degree of parallelizability. The resampling step is inherently se-

quential. However, we have developed several resampling algorithms and that allow for

parallel and distributed resampling [17]. Processing blocks implementing such algorithms

can also be incorporated into the design if parallelization of resampling is needed. Fig. 5.8
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shows how multiple processing blocks can be included in the design using the buffer con-

troller parameters for the SIRF. The RS block implements traditional resampling and hence

cannot be parallelized. The execution period for the SIRF using parallelization reduces to

M/K+M +LSIRF where K is the degree of parallelism. For the GPF, similar replication can

be done which leads to an execution period of (M/k + LGPF ) · Tclk. The timing parameters

presented in TABLE 5.3 will scale accordingly for each buffer controller.

Parallelization provides higher speeds at the cost of higher resource and power consump-

tion. The buffer controllers along with the interconnection switches allow for dynamically

changing this degree of parallelism for power saving depending upon the speed requirement.

5.6 Physical Realization and Evaluation

5.6.1 Processing Block and Buffer Controller Synthesis

Fig. 5.9 illustrates the percentage of power and area of the processing blocks synthesized

on a Xilinx Virtex II pro device (XC2VP50). The actual achievable speed varies among the

processing blocks. The global clock, fclock is set to 100MHz for all the blocks for simplification

of the controller design. It has been observed that overall speed is limited by the speed of

the CORDIC. The power consumption of the RS block will increase with increasing M .

The buffer controller can be synthesized with either embedded BRAMs or with dis-

tributed memory on the FPGA. Table 5.4 illustrates the results for the buffer controller

synthesis. As the number of word increases from 4 to 64, the number of slices increases

due to larger counters and other peripheral logics. These delays are fast enough to be non

bottleneck in the system integration.

Data Size Slices Read Delay (ns) Write Delay (ns)
8× 4 24 (44) 2.867 (2.927) 3.429 (2.038)
8× 16 26 (46) 2.867 (3.291) 3.429 (2.958)
8× 32 28 (52) 2.867 (3.383) 3.429 (3.680)
8× 64 29 (77) 2.867 (3.711) 3.429 (3.826)

Table 5.4: Illustration of FPGA mapping result of BRAM based buffer controller for dif-
ferent word size. Data in parentheses are for the result of distributed memory based buffer
controller.
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BUF8PG BUF2 Imp2 BUF4BUF6BUF5sumImp1 BUF3 Input Imp3x,y,v ,vx y
BUF7x,y,v ,vx y OGPE1 RS

PG BUF2 Imp2 BUF4BUF6BUF5sumImp1 BUF3 Input Imp3x,y,v ,vx y
BUF7x,y,v ,vx y OGPEK BUF9

BUF10BUF11BUF12
BUF13 CO Output

Buffer Li nwij nrij Mij

BUF2 8 1 1 M/K
BUF3 23 1 1 M/K
BUF4 20 2 1 M/K
BUF5 20 M/K + 1 1 M/K
BUF6 8 1 M/K + 60 M/K
BUF7 8 1 49 M/K
BUF8 10 1 1 M/K
BUF9 10 1 1 M/K
BUF10 19 M 1 M/2
BUF11 19 M 1 M/2
BUF12 8 M/2 1 1
BUF13 8 M/2 1 1

Figure 5.8: Parallelizing SIRF execution by duplicating processing blocks.

In general, the buffer controller based on BRAM will use less logic resources than the

one based on distributed memory. While the buffer controllers will not be bottleneck for the

system performance, the interconnection between the them and processing blocks will be an

issue. Since use of BRAM, reduces location flexibility, buffer controllers based on distributed

memory reduce interconnect overhead in many cases.
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Figure 5.9: Percentage of FPGA resources of the processing blocks in terms of area and
power consumption. The power is estimated at 100MHz. In the implementation, M = 512.

5.6.2 Execution Performance

The execution diagrams for the SIRF and the GPF of the reconfigurable architecture are

shown in Fig. 5.10 and Fig. 5.11, respectively. The simulation shows the data transfer activ-

ities for two iterations of all the active buffer controllers. In the simulation, the value of M

is chosen to be 256, which can be arbitrarily selected depending on the applications. In both

filter realizations, the external input is synchronized with the start of the IMP2 processing

block. As shown in the figures, the activities of the buffer controllers are overlapped, which

indicates that the processing blocks are concurrently executed. The vertical lines in both

figures represent the beginning of each iteration. It is clear that for the same M , the second

iteration of the GPF starts quicker than that of the SIRF.

The performance of the reconfigurable PFs are faster because of operational concurrency

in the implementation. When the concurrency is fully exploited, the GPF is much faster for

large M . On the other hand, the SIRF is faster when the algorithm is executed on DSP

because when these two algorithms are executed sequentially, there are more computations

for the GPF. Fig. 5.12 shows two curves that correspond to the execution times for processing

M particles using the SIRF and GPF algorithms. The curves represent the sampling period

as a function of number of particles obtained from the implementation on Texas Instruments

(TMS320C67x) processors. In sequential implementations, the sampling period increases

almost linearly with the number of particles for M = {500, 1000, 5000}. We can observe that

most of the speed up is from the functional concurrency exploitation and deep pipelining.

While DSPs provide some degree of parallelism, functional concurrency cannot be fully
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Figure 5.10: Timing diagram of SIRF. The vertical lines indicate the start of the iterations.
The diagram illustrates buffer activity.

exploited.

Fig. 5.13 illustrates comparison of energy consumption. The plot is normalized so that

the value indicates the energy required to process one particle. The energy for the DSP is

estimated with Code Composer for instruction profiling and Power Estimation Spreadsheet.

The FPGA resource power is estimated using Xilinx XPower. As shown in the figure, the

energy per particle is much lower for the DSP than that of the FPGA. This is due to highly

pipelined implementation for the FPGA implementation. However, as we have discussed,

the potential throughput is much lower for the DSP implementation.

5.6.3 Discussion of Reconfiguration Overhead

The proposed architecture maximizes the buffer controller usage and minimizes the dynamic

reconfiguration efforts. The design does not suffer from the additional memory used by

buffers since we can view these buffers as pipeline registers (i.e., the registers are needed

in any design with standard design flow whether it is distributed or centralized). In com-

parison to the processing with DSP, the energy consumption for FPGA will be more as it

is using more resources and performing operations concurrently. These additional resources

are necessary when the is of utmost concern.
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Figure 5.11: Timing diagram of GPF. The vertical lines indicate the start of iterations. The
diagram illustrates buffer activity.

When we consider FPGA as the target platform, two separate implementation will take

up much more area than the proposed design. In terms of power consumption and speed

(i.e., when we compare SIRF of the proposed design vs. fixed SIRF), power dissipation

due to the processing elements are identical and the speeds are also same because overall

throughput is limited by the processing elements not buffer controller.

In the proposed design, 13% of resources are used for buffer controllers (with design

targeted for M = 512). Usually, this percentage will go up for finer processing elements

but will go down for coarser processing elements. Fixed SIRF design would use 71% of the

resources used in the proposed design. Similarly, fixed GPF design would use 82%. Thus,

if these two are implemented separately, it would use 50% more resources than that of the

proposed combined design. This will go up if we implement more than two types of particle

filters since we can still share many processing elements and buffer controllers.

In terms of speed, there is no gain for the fixed design since the speed bottleneck is due

to processing elements not the buffer controllers. Moreover, power dissipation would not

change when we compare the combined design to that of fixed designs. This is because only

the processing elements for a specific particle filter are active.

In the proposed architecture, because of the very small amount of information associated
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Figure 5.12: Sampling period of the reconfigurable PFs (GPF and SIRF) versus number of
particles. The DSP version of the filters are implemented on TI TMS320C67 Series processor.

Figure 5.13: Normalized energy consumption of different design configuration. The energy
is normalized for one particle. M = 512 for FPGA implementation.

with each structure (i.e., one set of data for each buffer controller and global controller), the

reconfiguration time is almost non-existent (i.e., all the parameters for the controller and

structural switch can be loaded with a few clock cycle but as low as one cycle simultaneously).

This is illustrated in the simulation diagram showing that parameter loading takes a few

cycles before the processing can begin. This is an attractive attribute since the execution

flow of the algorithm can change without redesigning the overall controllers.

5.7 Conclusions

In this chapter, we introduced a buffer controller based design methodology for overall syn-

chronization in reconfigurable PF realizations. The controller configuration is simple and
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systematic such that the reconfiguration is significantly simplified. We illustrated the effec-

tiveness of the reconfiguration by considering two different types of PFs. We have demon-

strated that by completely controlling the data transfer behavior, the processing blocks

become mere slaves of the buffer controllers in the overall execution. Moreover, the design

strategy of the processing blocks is well defined to satisfy the design methodology. The design

can be extended to support many different PFs. The reconfigurable processor outperforms

conventional DSPs.
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Chapter 6

Extension of Architecture to Multiple

Model Particle Filtering

Multiple model (MM) filtering methods are used to estimate the states of dynamic systems

that are inadequately described by a single model. In this Chapter, we present an algorithm

and a hardware architecture for the traditional particle filter, i.e., the Sampling Importance

Resampling Filter (SIRF), applied to systems with multiple interacting models. Due to su-

perior abilities of the SIRF to handle nonlinear non-Gaussian models, such filters outperform

traditional MM filters in several practical scenarios. We propose a parallel architecture for

the hardware implementation of this algorithm consisting of distributed processing elements

(PEs) performing model based operations and a central unit (CU) performing centralized

process of resampling as required by the algorithm. This centralized processing is inherently

sequential and requires a large amount of data to be exchanged between the PEs and the

CU. We alleviate this problem by using a novel distributed resampling method that paral-

lelizes the resampling process by distributing it to the PEs hence speeding up the resampling

process and reducing communication requirement. Thereafter, a data exchange method is

proposed that reduces the required interconnect to a single bus without causing communi-

cation bottleneck. The proposed architecture is evaluated on a Xilinx FPGA platform for a

multiple model target tracking application.

It has been established in the literature, that multiple model filters used to track targets

in practice, require a very large number of models to “cover” all possible target maneu-
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vers. Moreover, the models that best describe the target dynamics change with time. This

causes a heavy computational burden due to the large number of models, and also degrades

performance since a large number of diverse models “compete” with each other during the

estimation. In order to overcome this problem, the concept of adaptive or variable structure

multiple models filters (VSMMF) has been introduced [60]. Under this framework, filters in-

corporate an active model set that changes over time. This adaptability can be incorporated

into the proposed MM particle filtering architecture by exploiting the concept of reconfig-

urability. However, due to the sequential, on-line estimation nature of the particle filter, any

reconfiguration of the hardware will need to be done without disturbing the execution flow

of the particle filter. Recently, Xilinx FPGA devices have incorporated the feature of Partial

Run Time Reconfiguration (PRTR) whereby, part of the FPGA can be reconfigured while

the rest of the FPGA is still functioning as normal. This feature can be used to extend the

proposed MM particle filtering architecture to a VSMM particle filter. However, mapping

of the architecture to the Xilinx FPGA in order to utilize the PRTR feature is not straight-

forward. We have developed a systematic procedure for this mapping in the context of the

particle filter.

6.1 Introduction

In model based filtering methods the unknown state of a system is estimated in time based on

the received observations. These models have a state equation that describes the evolution

of the sate (e.g. position of a moving target) and an observation equation that describes

the measurements as a function of the state corrupted by noise. Frequently, several systems

require a multiple model formulation of the state dynamics. In practice these models may

be nonlinear and non-Gaussian. The interacting multiple model (IMM) methods have been

extensively applied for state estimation in such scenarios [77]. They are suboptimal methods

which approximate the posterior density of the state as a Gaussian. The traditional IMM

filters consist of a bank of simultaneously operating Kalman filters (KFs) or extended Kalman

filters (EKFs), each tuned to a different model. In addition to the state and measurement

equations, these filters also require knowledge of the model transition probabilities which are

used for combining individual filter estimates and initializing future filter recursions. In case
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of nonlinear models, the traditional IMM filters perform poorly due to the shortcomings of the

EKF. Alternative approaches for nonlinear and non-Gaussian IMMs include the unscented

Kalman filter (UKF), [58], and the regularized particle filter (RPF) [16]. Some practical

applications of the MM filtering approach are: tracking of maneuvering mobile station in

CDMA environment [68] and tracking of maneuvering vehicles for adaptive cruise control

[58].

Here, we use an SIRF based algorithm for dynamic systems described using multiple

interacting models. A similar approach has been applied in [78]. Compared to this method,

our algorithm does not require knowledge of the model probabilities and keeps a constant

number of particles per model at all times. Our focus, is on development of a parallel archi-

tecture for the efficient hardware implementation of this algorithm which will enable its use

in practical systems requiring real time processing. The architecture consists of distributed

processing elements (PEs) and a central unit (CU). We use a novel distributed resampling

approach which drastically reduces the data exchange requirement between the PEs and

the CU and also parallelizes the inherently sequential resampling process. This significantly

reduces the resampling time and increases the speed of the filter. The communication bottle-

neck and required interconnect density is reduced by using a mechanism based on distributed

particle storage and index addressing to bring about the data exchange. The modular and

distributed nature of this architecture with specific modules that are model dependent and

others that are generic makes it amenable to partial reconfiguration on FPGA platforms so

as to incorporate different models at different times with minimal redesign.

6.2 The MM SIRF algorithm

The multiple model system is described using multiple DSS models as

xn = fk
n(xn−1,qn−1) (6.1)

zn = hk
n(xn,vn) (6.2)

where xn describes the dynamically evolving state of the system at time n, fk
n is the possibly

nonlinear model dependent system transition function, k = 1, 2...K represents the model in-
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dex, where K is the total number of models used. The symbol zn represents the observations

of the system, hk
n is the possibly nonlinear model dependent observation function, and qn

and vn are state and observation noise processes, respectively, that may be non-Gaussian.

Unlike other multiple model filtering approaches, we do not consider a model for the transi-

tion probabilities. The prior model probabilities and transition probabilities are respectively

assumed constant while the posterior model probabilities are accounted for implicitly in the

algorithm as shall be seen. The input to the filter at every sampling instant is the observa-

tion zn. The goal of the filter is to estimate the state using this observation and the multiple

model state description.

In our algorithm, the traditional SIRF is extended to multiple models. In the sample

step a set of particles is drawn from each model. This is represented as
{
x

(i),(k)
n

}Ns

i=1
where

Ns is the number of particles used in each model and k is the model index number. The

importance step in each model assigns a weight to each of its particles based on the received

observations. Thus after these steps, we have a weighted set of particles from each model k,

represented as
{(

x
(i),(k)
n , w

(i),(k)
n

)}Ns

i=1
. This set represents the individual model conditioned

approximation to the state posterior.

We use the resampling step not only to avoid the generic weight degeneracy, but also to

combine the weighted sets of particles from all the models. This resampled set of particles

represents the combined posterior of the state over all models and can be used to compute

the desired estimate. The resampling operation selects Ns of the total K × Ns sampled

particles. This resampled set is denoted by
{
x̃

(i)
n

}Ns

i=1
, where the particles are chosen such

that
Pr(x̃(i)

n = x(j),(k)
n ) = w(j),(k)

n (6.3)

where i, j = 1 to Ns and k = 1 to K. The weight of each resampled particle is 1/Ns [29].

The posterior probability of each model is accounted for implicitly in this resampling step

by the fact that the model with the largest weight will contribute the highest number of

particles to the combined resampled set and hence to the final estimate. This combined set

of Ns particles is then propagated to the sample step of each model to determine the sampled

particles of the next time instant using (1). This brings about model interaction and makes
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the algorithm robust as the space of each model is explored at every instant.

The above algorithm was applied to the problem of tracking a moving vehicle with two

models described as in [58]. A constant velocity model describes straight line motion and

an almost-constant speed turn model covers vehicle maneuvers like U turns and rotaries.

The results of the tracking, with Ns = 1000 particles per model, averaged over 100 Monte

Carlo runs are presented in Fig. 6.1. The above example with Ns = 1000 and K = 2, when

evaluated on a DSP platform (TI-TMS320C67x), gave a processing speed of about 200Hz.

Hence design of efficient hardware is essential to meet real time processing requirements,

particularly in situations where a larger K and larger Ns are needed.
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Figure 6.1: Performance of the algorithm on a tracking example.
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Figure 6.2: Parallel architecture model for the algorithm.

6.3 Parallel Architecture Framework

Fig. 6.9 shows a basic parallel framework for the implementation of the multiple model SIRF

algorithm. The various operations mapped to the PEs and the CU are shown in the figure.

Each PE is tuned to one particular model and performs the model dependent steps, i.e.,

the sample and importance steps for that model simultaneously with other PEs. The CU

performs resampling and brings about the combination of the individual model estimates.

Resampling is a centralized operation which operates on particles and weights from all the

models (PEs) to produce a combined resampled set. All traditional resampling algorithms

are inherently sequential and cannot be parallelized to operate simultaneously on all PEs.

Accordingly, if the traditional systematic resampling [29] is used, it would require all the

K × Ns particles along with their weights to be sent from the PEs to the CU where they

would be stored. Resampling would then need to systematically choose Ns out of the total

K × Ns particles. From results presented in [6], this resampling would take ((K + 1) · Ns)

cycles. TABLE 6.1 summarizes the amount of communication needed between PEs and

CU if centralized resampling is used. The symbols bw and bp are the bit widths used for

representing the particles and weights in fixed point format.

Data Transferred Direction of Transfer Amount
Weights From each PE to CU K ×Ns × bw

Sampled Particles From each PE to CU K ×Ns × bp

Resampled Particles From CU to each PE Ns × bp

Table 6.1: Data exchange requirement between PEs and CU if centralized resampling is
used.
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It is reasonable to assume bp and bw to be of the order of 16 or more. The number of

used particles Ns is typically of the order of 1000 or more. Thus the traditional centralized

resampling approach has a very high data communication requirement, introduces a high

resampling latency and also poses a significant memory requirement in the CU. This affects

the scalability of the architecture since increasing the number of models or PEs K, increases

the data exchange requirement, resampling time and CU memory requirement by a factor

of Ns. This scheme also poses a serious bottleneck since resampling cannot start until all

particles and weights are sent to the CU and the sample step of the next instant cannot start

till the resampling step of the previous instant, which takes (K + 1) ·Ns cycles is complete.

6.4 Distributed Resampling

To alleviate the problems of centralized resampling, we use the method of distributed resam-

pling. This method is explained for the traditional (single model) SIRF in [17]. The amount

that each model (PE) contributes to the set of Ns resampled particles depends upon the

weight of the PE, i.e., sum of weights of all particles in that PE. Distributed resampling

makes use of this fact to split up resampling into a two stage hierarchical process. Initially,

only the sum of weights of all particles of each PE, is sent to the CU. This is denoted by W k

for PEk. The CU then performs the first stage of resampling which determines the number of

particles that each PE will contribute to the final resampled set based on its sum of weights.

We call this value as the PE replication factor and denote it as Rk for PEk. It is important

to note that
∑K

k=1 Rk = Ns and 0 ≤ Rk ≤ Ns. This operation is done using the method

of Residual Systematic Resampling (RSR), proposed in [17]. The hardware implementation

of this algorithm along with a modification that avoids the need for weight normalization is

presented in [6]. The following steps are performed during RSR in the CU to determine Rk.
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(Rk) = RSR(Ns, {W k}K
k=1)

1. Generate a random number U ∼ U [0, 1]
2. Calculate S =

∑K
k=1 W k

3. C = Ns/S

4. for k = 1 to K
5. temp = W (k) · C − U
6. Rk = dtempe
7. U = Rk − temp

8. end

Residual systematic resampling (RSR)
algorithm to determine Rk.

The Rk values are then sent to the respective PEs. Each PEk performs resampling

on its Ns sampled particles to produce Rk particles simultaneously with the other PEs.

This resampling is still sequential, but has reduced execution time since only Ns particles

are processed simultaneously in each PE as opposed to K × Ns in the CU if centralized

resampling is performed. We would like to stress here that distributed resampling is not

an approximation and the results of centralized and distributed resampling are the same.

In distributed resampling, the communication between PEs and the CU consists only of K

values of sum of weights W k and K replication factors Rk. This is a great reduction in

comparison to the values presented in TABLE 6.1.

After distributed resampling, each PE contains a portion of the Ns resampled particles

(Rk in PEk). The sample step in each PE requires all the Ns resampled particles of the

previous time instant. Hence each PEk needs to obtain Ns−Rk particles from the remaining

PEs. We shall see in the next sections how this exchange is carried out efficiently without

causing a communication bottleneck.
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Figure 6.3: Architecture of a single PE

6.5 Architecture Description

6.5.1 Structure of PE

Fig. 6.3 shows the basic architecture of each PE. This is based on the memory schemes

proposed in [8]. First Ns sampled particles are drawn in each PE using the combined set

of Ns resampled particles from the previous instant. Weights of the particles are calculated

by the importance step and are conveyed to the local resampling unit. After receiving the

number Rk from the CU, resampling is done to determine which Rk of the Ns particles of

the PEk will be present in the final resampled set. The process returns the addresses or

indexes of the Rk resampled particles in PMEM . They are written to the replicated index

memory MEM1 while the other indexes are written to the discarded index FIFO. Thus

after distributed resampling, the replicated index memory in each PE holds the Rk indexes

of those particles in its memory PMEMk that are a part of the combined resampled set.

The discarded particles indexes are used to write the sampled particles to PMEM without

inappropriately overwriting resampled particles [8], [6].

6.5.2 Inter-PE Communication

Fig. 6.4 shows the communication between the PEs in the form of abstract channels. Due

to the nature of the algorithm, it is likely that one of the models is dominant at some
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Figure 6.4: Communication channels between PEs.

instants and has a higher Rk than others. In such cases, there will be a large number of

particles communicated from this PE to all others while communication between other PEs

will be negligible. Due to these factors, having a dedicated bus from each PE to every other

(complete connection) results in most of the interconnect being unused. The utilization is

maximized when a single bus is used for the particle exchange. Particle distribution is then

sequential and takes Ns× t cycles where t is the number of cycles needed to transfer a word

(particle) over the bus. This depends upon the bus latency and the width of the bus Bw with

respect to the bp, the bit width used for representation of particles. Using the architecture of

Fig. 6.3, this particle distribution is pipelined with the sample and importance steps. Hence

communication bottleneck can be completely avoided if t = 1 cycle and Bw = bp, i.e., one

particle is available at the input of the sample step of each PE per cycle. If t > 1 cycle,

then a larger bus width will need to be chosen to prevent bottleneck. We target an FPGA

implementation where the PEs and the bus are located on a single chip and t = 1. Hence we

choose Bw = bp for our implementation. For a general case in which PEs may be different

processors with varying characteristics, the required bus specifications can be determined

using the methodology presented in [13]. This work provides a methodology for calculating

bus specifications to realize a communication of the form of Fig. 6.4 using a single bus.

6.5.3 Communication between PEs and CU

Fig. 6.5 shows the communication between PEs and CU in the form of abstract channels.

The required communication between PEs and CU in each recursion is only 2 ·K words; K

values of W k from PEs to CU and K values of Rk from CU to PEs. Typical values of K
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are between 2 − 6. The RSR process in the CU has a computation time of K cycles. The

PE-CU data exchange does not overlap with inter-PE communication. Hence we use the

same bus of width bp, that is used for communicating particles between PEs for the PE-CU

communication of 2K words. Though fixed point width for various quantities depend upon

the application, we have arrived at the following general relations by applying the statistical

analysis method of [58]

bp ≈ bw (6.4)

bW k ≈ 2× bw = 2× bp (6.5)

bRk = log2Ns << bW k (6.6)

where bW k , bw and bRk are the widths used in the fixed point representation of the sum of

weights, individual weights and the replication factors, respectively.

Applying the analysis of [13] to the communication of Fig. 6.5, gives us a required bus

width of K × max(bW k , bRk) = K × bW k to prevent a communication bottleneck. Using a

bus of width bp causes a communication latency of K ×d b
Wk

bp
e in sending the sum of weights
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to the CU and a latency of K cycles in obtaining the replication factors. Due to the small

value of K, this latency is of the order of 10− 20 cycles which is negligible compared to the

overall execution time of the filter.

6.5.4 Arbitration: The role of the CU

Each PE contains Rk resampled particles which need to be sent to other PEs over the bus.

The values of Rk are determined in the CU and these values decide how many particles

each PE will write to the bus. The CU incorporates a controller which consists of a counter

and comparators which compare the output of the counter with the values Rk. Accordingly,

control signals are generated which grant access of the bus to each PEk for Rk cycles. During

this time the sample step of this PE reads particles from the local memory while the sample

step of the other PEs get their input particles over the bus. Due to the pipelining of the

particle distribution with sample and importance steps, the time from the start of a recursion

till all the weights of particles within a PE are calculated is Ns + L1 cycles where L1 is the

start up latency of the PE datapath. The resampling in the PE takes 2 × Ns cycles if

systematic resampling is used and RSR operation in the CU takes K + 2 cycles (latency of

RSR datapath is 2 cycles). This information is incorporated into the central controller to

generate control signals for PE to CU transfer of sum of weights and CU to PE transfer of

replication factors.

6.6 Evaluation

The proposed architecture drastically reduces the communication bottleneck and resampling

time thus greatly speeding up the filter execution. Fig. 6.12 compares the timings of the

filters using a centralized resampling approach and the proposed architecture with distributed

resampling. The overall execution time of the filter for the two cases is given by

Tcent = (K + 3) ·Ns + L1 (cycles) (6.7)

Tdist = 3 ·Ns + 4 ·K + L1 (cycles) (6.8)
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Figure 6.6: Timing of multiple model SIRF using (a) centralized and (b) distributed resam-
pling.

where L1 is the latency of the PE datapath. Since value of L1 will be different for different

PEs, the maximum L1 over all the PEs is used in characterization of the filter. Additional

buffering is used at other PEs for synchronization. The value of L1 for our FPGA implemen-

tation with the bit widths mentioned in the previous sections was 75 cycles. This architecture

is highly scalable in that, increase in execution time by inclusion of more PEs and more par-

ticles per PE, is extremely small as compared to a centralized resampling approach. Fig. 6.7

shows the variation of the filter execution time with varying number of PEs and particles

per PE for the two cases.
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Fig. 6.8 shows the overall architecture of the filter with two PEs along with timing

diagrams showing the status of the bus and associated controls during the inter-PE and
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Figure 6.8: Full Architecture with two PEs.

CU-PE communication for a hypothetical case of Ns = 16. The same architecture can be

extended for incorporating more PEs within the resource limitations of the target platform.

Any bus architecture that supports a single master and multiple slaves can be used to realize

the required interconnection. We target an FPGA platform for this implementation and

realize the bus using macros which utilize long routing lines and tri-state buffers available

on the FPGA platform. Using the above architecture, the MM SIRF was implemented on

a Xilinx Virtex II device for the tracking application [58] discussed in Section 6.2 with K =

2 and Ns = 1000. All the memory required in the PEs is realized using block RAMs. All

trigonometric and exponential functions are implemented using CORDIC units.

Unit Slice Slice.Reg LUT B. RAM Mult TBUF
PE1 2,807 4,133 3,873 17 7 52
PE2 4,597 6,872 5,423 17 10 52
CU 520 550 610 0 1 10

Table 6.2: Resource Utilization on XC2V6000 device
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In Fig. 6.8, only the “Sample” and “Import.” blocks are model dependent while the rest

of the architecture is generic. TABLE 6.2 summarizes the resource utilization of various units

on the target platform. Post place and route timing analysis determines that the maximum

clock rate for this design is 60MHz. This means that for this example, the filter can process

input observations at 20KHz.

6.7 Variable Structure Multiple Model Particle Filters

In most practical scenarios, using a fixed set of models for a tracking problem requires a

very large number of models. This increases the computational burden and also results in

degrading performance due to conflicting estimates of diverse models. To overcome this,

Variable Structure Multiple Model (VSMM) filters are often used in practice. These filters

have a base set of several models, but only a few of these, called the active model set are

using for filtering at any given time. To make the proposed hardware for MM particle filters

feasible in practice, model set adaptability must be incorporated in the hardware. This can

be achieved by using the conept of reconfiguration. However, the sequential nature of the

particle filter demands that this reconfiguration be done without disturbing the execution

flow. For this purpose, we have utilized the PRTR feature recently introduced in Xilinx

FPGAs.Using this feature, it is possible to modify a part of the FPGA while the rest of the

FPGA is still functioning. However, access to the Xilinx FPGA for RTR is not completely

flexible and needs a systematic partitioning of the FPGA fabric into static and reconfigurable

partitions within certain pretty tight constraints. We have developed a methodology for

mapping the particle filter dataflow to this FPGA so as to enable PRTR in the MM particle

filtering architecture. We develop a cost function that guides the mapping of the dataflow

nodes to these partitions by attempting to minimize the communication cost while ensuring

that the required RTR is completed within certain time constraints.First, we describe the

methodology for any real time signal processing application in general and then use it to

map a simple particle filter dataflow to the FPGA with RTR.
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6.7.1 Partial Run Time Reconfiguration with Xilinx FPGAs

Partial run time reconfiguration is defined as the ability to modify a part of the circuit

“on the fly” while other parts are in operation. This ability is of great interest in adaptive

real time signal processing applications. These applications can be specified as data flow

graphs. We consider data flow graphs at module level granularity with individual nodes

representing the processing modules and the edges representing the data dependency and

communication requirement between them. Several adaptive signal processing applications,

require the operationality of some of the modules to be changed from iteration to iteration

while the structure of the data flow remains largely fixed. Partial run time reconfiguration

(RTR) brings about an efficient hardware realization of such adaptive data flows.

Recently, commercially available Xilinx FPGAs have started to support partial RTR

enabling certain parts of the FPGA to be reconfigured while the other parts are functioning.

Realization of a data flow on such FPGAs can allow RTR of adaptive modules without having

to suspend processing. However, in reconfigurable Xilinx FPGAs, any random region of the

fabric cannot be configured at run time. Partial RTR requires virtual partitioning of the

FPGA into a static portion and columns which can be reconfigured at run time. The time

required for reconfiguration of a particular column is proportional to size of the bitstream

configuring that column, which in turn depends upon the size (resource requirement) of

the modules mapped to that column. Communication between modules located in different

columns must happen over specialized bus macros. As we shall see, the use of these bus

macros affects the design efficiency and resource usage in several ways. This communication

cost can be reduced by moving nodes with high amount of data exchange requirement to

the same partition. This increases the reconfiguration time of that partition while reducing

the communication cost. We present a hueristic (cost function) based technique for mapping

adaptive data flows to the Xilinx FPGAs by optimizing the communication cost within the

allowable RTR time constraints.

There have been some efforts at enabling and optimizing RTR for hardware in the recent

past. RTR has been introduced for Xilinx FPGAs in [112]. A design procedure for customized

long-line based bus macros has been outlined in [102]. In [50] a method for implementing

LUT based macros is presented. Design flows and methodologies for realizing dynamically

reconfigurable applications on Xilinx FPGAs are presented in [31],[32]. Realization of partial
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RTR has led to the concept of self reconfiguring systems based on FPGAs. In such systems

a microcontroller which is embedded on a poriton of the FPGA fabric, is responsible for

dynamically reconfiguring the remaing portion of the FPGA as per the demands of the

appiclication. One such self reconfiguring system is described in [107]. The problem of

spatial partitioning of data flows to heterogeneous architectures has been handled in various

works like [56], [79]. In all such works, a given data flow is mapped to physically separated

units like multiple processors and FPGAs. We consider the problem of mapping a data flow

to a single Xilinx FPGA, virtually partitioned for reconfiguration purposes, to efficiently

achieve RTR. Examples of signal processing applications which can be realized on Xilinx

FPGAs using this method can be found in [100].

6.8 Problem Formulation

6.8.1 Target Architecture

Figure 6.9: Architecture for using Xilinx FPGA for partial RTR[111].

Figure 6.9 shows the architecture of the Xilinx FPGA for achieving RTR [111]. On

the Xilinx platform, only a column-wise access to the FPGA fabric for RTR is permitted.

Restrictions require these columns to occupy the full height of the FPGA and be at least 4

CLBs wide (“RTR resolution”). Those modules of the data flow that require RTR need to

be mapped to such columns and other modules can be palced in the static portion of the

FPGA. An important consideration of this architecture is that the communication between

any modules in different reconfigurable columns, or between a module in a reconfigurable
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column and a module in the static portion of the FPGA must happen through the so called

bus macros. These macros use the long line routing and connect to the modules through

tri state buffers. The physical locations of these macros and of the reconfigurable column

boundaries must remain fixed. As a result, modules in different columns although directly

communicating, cannot use the local routing lines. This causes the routing between the

modules to be spread out on the FPGA thus increasing the routing delay and reducing

the utilization efficiency. If there is a large amount of data exchange between modules in

different columns, the number of long lines on the FPGA may override limit on the available

resources. This means that there may be cases when majority of the logic resources will

be unused but the design size is limited due to the non availability of long lines. Recently,

LUT based macros have been introduced for this communication between different virtual

partitions [50]. However, these macros require design of arbitration units which increase

resource utilization and deisgn complexity. This cost of inter partition communication based

on bus macros can be reduced by

1. Reducing the number of reconfiguration partitions by mapping modules requiring RTR

to same partition when possible.

2. Placing static modules having large communication requirement with a reconfigurable

module in the same reconfigurable column and configuring them with the same context

each time the RTR of the column is done.

RTR requires that reconfiguration of a column be done while the other parts are operating.

Both the above options reduce the communication cost but increase the amount of reconfig-

uration information in a single column. This will eventually lead to a violation of the RTR

time constraint. Hence there is a tradeoff between communication cost and reconfiguration

time.

6.8.2 Data-flow Mapping

Figure 6.10 shows a generic modular granularity data flow graph for an adaptive signal

processing algorithm which is to be realized on the Xilinx FPGA with RTR ability. The

shaded modules of the data flow indicate those modules that may need to be reconfigured
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Figure 6.10: Generic real time processing data flow with nodes that need dynamic reconfig-
uration.

from iteration to iteration under the control of an external/internal processor. The edges

denote the data dependencies between the various operations and indicate the communica-

tion requirement. The data dependencies of the graph govern the scheduling of operations

into time slots.The processing times of the nodes on the critical path determing the overall

latency/sampling period Ts.

The objective is to reduce the bus macro communication requirement while satisfying

the RTR time constraint, which requires that reconfiguration of a particular column be

completed while other modules are in operation so as to prevent suspension of processing

during reconfiguration. The solution to the problem is a partitioned graph indicating the

required number of reconfigurable columns on the FPGA along with the mapping of various

nodes to these columns. Like the traditional partitioning problems, this problem is NP-

complete. Hence we need to use heuristic based methods to obtain a solution.

6.9 Cost Function

We use the Simulated Annealing algorithm to find a solution to the problem formulated in

the previous sections. The cost function we choose accounts for the cost of communication

using bus macros. The cost function is defined as follows:

Cost(S) =
N∑

i=1

N∑
j=1
j 6=i

(1 + w · γij)αij · λij · cij

CA

(6.9)
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where Cost(S) denotes the cost of a particular solution (S) which is a partitioned data

flow graph. N is the total number of nodes (modules) in the data flow. λij is a binary

indicator variable which is 1 if modules i and j communicate and 0 otherwise. The cost of

the communication needs to be considered only if the two modules lie in different partitions

(columns) of the FPGA. This is accounted for by the indicator variable αij. If two modules

lying on the critical path are put into different partitions, then the increased communication

delay between them may imply an additional cost of increasing the overall latency. This is

accounted for by the user defined factor w. If a high value of w is chosen, greater effort is

made to map critical path modules to the same partition. If the overall latency is not a

critical design issue, a small value of w can be chosen. A uniform effort is then made to

minimize communication cost irrespective of whether the communication is along the critical

path or not. The indicator variable γij is 1 if the modules i and j are a part of the critical

path. cij represents number of lines (bits) needed for communication between i and j and

CA is the total number of long lines in available on the chosen FPGA.

This cost needs to be optimized under the constraint that the reconfiguration time is

within the required limits to prevent suspension of the processing during the reconfiguration.

The time required for reconfiguration of a particular module depends upon the number of

resources (CLBs) used by that module. The allowable reconfiguration time for a column is

different for different solutions (S).

6.9.1 Time constraints for RTR
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Figure 6.11: Simple 4 module data flow with two static modules and two modules requiring
RTR.

Consider the simple data flow of Figure 6.11 having four modules. The operationality

of shaded modules can change between iterations and hence they require RTR. Let 2A, 2B

and 4A, 4B denote the two contexts of the reconfigurable modules 2 and 4. The execution

time and required configuration time of module i is represented by tei and tri respectively.

For a reconfigurable module, te and tr are chosen to be maximum respective values over
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its different contexts. The dynamic reconfiguration requirement states that if at instant n

the incoming data is processed by {1, 2A, 3, 4A} in that order, then the data at instant

n + 1 should be processed by {1, 2B, 3, 4B} without having to suspend processing for

reconfiguration. We illustrate the computation of the RTR time constraint based on two

simple cases.
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Figure 6.12: Timing diagram with possible reconfiguration schedules for the two partition
cases.

• Case 1: In this case, both the reconfigurable modules are mapped to separate recon-

figurable partitions (columns) on the FPGA. Figure 6.12(a) shows the timing diagram of

successive iterations of this data flow. Since the two modules are mapped to independent

reconfigurable partitions, they can be reconfigured at different times. To allow continuous

operation without suspension, reconfiguration of a module must be done within the time that

the other modules are functioning. These time intervals are shown on the timing diagram.

From this diagram, the constraints that must be satisfied for RTR are

tr2 < te1 + te3 + te4 (6.10)

tr4 < te1 + te2 + te3. (6.11)

• Case 2: In the next case, both the reconfigurable modules are mapped to the same
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partition (column) on the FPGA. Hence both modules are reconfigured together in one access.

The time required for this reconfiguration is tr2 + tr4. The timing diagram for two iterations

of the data flow in this case is shown in Figure 6.12(b). In this case there are two ways

to schedule the required reconfiguration. The straightforward way is to reconfigure the

partition with contexts 2B, 4B during execution of module 1 in iteration n + 1. However,

if tr2 + tr4 > te1, this schedule is not feasible. Another way to schedule the reconfiguration

is to access the partition once during execution of module 3 in iteration n to load contexts

2B, 4A; and in iteration n + 1 to load contexts 4B, 2A (it is assumed that processing

from iteration n + 2 proceeds with original contexts). Thus for this mapping there are two

possible reconfiguration schedules. RTR can be done if any one of these schedules satisfies

the reconfiguration time constraint. For this case, the constraint is specified as

tr2 + tr4 < max(te1, te3). (6.12)

The same analysis is used to calculate the allowable reconfiguration times for different solu-

tions of various data flows.

6.9.2 Partitioning Method

We use the simulated annealing approach with the cost function and constraints explained

above. Any other heuristic based approach can also be used. The algorithm starts with

an initial solution that places every module requiring RTR in to a different reconfigurable

partition(column) on the FPGA. This minimizes the reconfiguration time per column. If this

mapping does not satisfy the RTR time constraints, then no solution exists and the algorithm

is terminated. Otherwise the cost of this mapping is calculated using (6.9) and is taken to

be the current cost. At every iteration, a new solution is obtained by randomly selecting a

module and moving it to some partition. If the chosen module requires reconfiguration, then

only a move to one of the reconfigurable partitions is permitted. If the module is static, it

can be moved to any of the reconfigurable partitions or remain in the static portion. Next,

the reconfiguration and execution times are evaluated based on the data flow schedule to

see if the solution satisfies the RTR constraint as explained. If this constraint is satisfied,

the cost is calculated and the annealing proceeds in the traditional way. A relatively high
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initial temperature is chosen to allow for exploration of the entire design space. The process

continues till the temperature reduces to a user specified value. At the end of the process,

we get the cost optimized partitioning solution. The solution gives us the required number

of reconfigurable columns and the mapping of the modules to these columns and other static

portions of the FPGA. If a static module is mapped to a reconfigurable column, it is loaded

with the same context each time RTR is done.

6.10 Application to the Particle Filter

In this section, we demonstrate the application of the proposed technique to the realization

of a simple particle filter used for 2-D tracking of maneuvering targets with RTR on a Xilinx

FPGA. As seen in previous chapters, in the PF, each incoming data sample is processed by

the so called steps of sampling, weight computation, resampling and output computation.

Each of these steps requires M iterations, except resampling which requires 2M iterations,

where M is the number of particles used. At the modular granularity, the PF can be split

up into modules that are generic and those that are model dependent. The data flow at

this granularity is shown in Figure 6.13. We use M = 2000 and a clock speed of 50MHz

for the design. Processing of each incoming data sample thus takes 160µsec (critical path

latency). The necessary characteristics of the processing modules are shown in Table 6.3.

The bit widths of the communication lines between various modules are shown in Figure

6.13. For this design we have chosen the Xilinx Virtex II FPGA which has a configuration
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Figure 6.13: Data flow for a particle filter.

time per CLB of 0.6µsec. The time for reconfiguration of each module is estimated based on

its resource usage by implementing it in a seperate partition on the FPGA usign the partial

reconfiguration flow outlined in [111]. For a reconfigurable module, the values tr and te are

chosen to be the maximum values over all its contexts.
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Module Contexts Critical CLBs te tr
Path ∀ context µsec µsec

PR/PW 1 yes 50 15 30
SAM 2 yes {62, 68} 25 40
WC1 1 yes 35 10 20
WC2 2 yes {120, 135} 30 80
RES 1 yes 120 80 70
OC 1 no 75 40 45

Table 6.3: Module Information Table

Figure 6.14 shows the partitioning result obtained by applying the method to the particle

filter data flow. In the first case when w = 0 the algorithm attempts to minimize the

overall communication cost. Communication between Modules 2 and 6 is wider than between

Modules 2 and 3. Hence to minimize overall cost, Modules 2 and 6 are placed in the same

partition. In the second case, the overall latency is a critical factor. Hence a high value of

w is chosen. Priority is then given to minimizing communication on the cirtical path. This

causes Modules 2 and 3 to be placed in the same partition and the RTR time constraint is

satisfied by moving Module 6, despite its wider communication requirement, to a different

partition since it does not lie on the critical path. The figure also shows the variation of the

cost function during the annealing process for the two cases.

6.11 Conclusion

In this chapter, we described the development of a parallel architecture for efficient hard-

ware implementation of a MM SIRF algorithm. Compared to traditional approaches, this

algorithm does not require knowledge of transition probabilities and handles nonlinear and

non-Gaussian models more efficiently. This architecture is based on a distributed resampling

mechanism which greatly speeds up resampling and drastically reduces the data commu-

nication requirement. An efficient communication scheme was proposed which minimizes

communication bottleneck and interconnect requirement. The architecture was used to im-

plement and evaluate the MM SIRF for a practical tracking example on the Xilinx Virtex II

platform.

Many practical problems require VSMM type filtering involving multiple models that
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Figure 6.14: Partitioning results for particle filter for the two cases.

change with time. In order to extend the proposed MM SIRF architecture to this scenario,

the hardware must support run-time reconfiguration. Recent commercial Xilinx FPGAs have

started to support partial RTR. We developed a methodology for mapping the partical filter

dataflow to a Xilinx FPGA such that the different models can be configured dynamically at

run time. The methodology was tested using an elementary single-model realization of the

SIRF. The same methodology can be used for mapping a VSMM particle filter to the Xilinx

FPGA. This direction will be pursued as part of future work.
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Chapter 7

Conclusion

Advances in VLSI technology have led to fast and efficient implementations of various signal

processing algorithms enabling them to be applied to real time systems. However there are

some methods whose complexity makes implementation on hardware platforms nontrivial.

Moreover, although such algorithms show tremendous performance gains in theory, they are

simple not formulated in a way suitable to hardware implementation. Hence reducing such

algorithms to a feasible and efficient hardware implementation, is a challenging task. The

Particle Filter is one such signal processing algorithm. Based on the Bayesian paradigm,

it operates on Dynamic State Space models wherein the state of interest is hidden behind

noisy observations. The particle filter is a Monte Carlo sampling method which operates

by representing the posterior density by a set of weighted samples. Recursive propagation

of this posterior representation makes these filters suitable for on-line sequential processing.

Particle filters handle nonlinearity and non-Gaussianity in the state space model much more

efficiently than traditional methods and hence they show significantly improved performance

over such methods

As these filters have matured over the years, several important practical problems have

been identified where the superiority of the particle filters makes them a desirable solution.

However, due to lack of hardware capable of real time processing, they have not experienced

widespread adoption. This dissertation has taken a significant step in enabling this by

developing efficient hardware for real-time particle filtering. Along with implementation of

the standard particle filter, reconfigurable architectures for these filters were explored with a
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view to exploit their inherent flexibility. Reconfigurability includes the multiple variants of

the particle filter being executed on the same hardware and also adapting of particle filtering

parameters dynamically during execution.

7.1 Summary of Contributions

The main goal of this dissertation was to develop hardware capable of real time particle

filtering. The specific contributions towards this effort can be summarized as follows.

• Algorithmic Analysis and Modification

Particle filters have evolved over the years with most of the research focused on their

theory. As a result, the traditional particle filtering algorithm is not suited to hard-

ware implementation. We have performed an in-depth analysis of this algorithm and

quantified its major bottlenecks and resource hungry operations. We have introduced

several modifications to this algorithm with an analysis of how these modifications

impact the hardware implementation. These modified algorithms were examined from

a theoretical perspective and it was shown that the modifications do not affect the

integrity of the particle filter.

• Architectures and Memory Schemes for SIRFs

The Sampling Importance Resampling Filter (SIRF) is the most commonly used ver-

sion of the particle filtering technique. One of the most important aspects of the

implementation of SIRFs is that of particle storage and access before and after the se-

quential resampling process. We have introduced architectures that reduce the memory

requirement and access time for this operation. The proposed schemes are highly scal-

able such that the execution time can be further reduced by addition of hardware

resources. With these architectures, we pave the way for a generic particle filtering

hardware framework that can be used to implement the SIRF for any problem with

minimal redesign.

• Distributed Architecture for Multiple Model Particle Filters
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Multiple model filters are used when a single model does not completely describe the

probabilistic behaviour of the state. For instance, in several tracking problems, the

target is maneuvering such that a single model does not cover all the target dynamics.

Particle Filters are an ideal solution for cases when the models are nonlinear and non-

Gaussian. Other than the fact that they are not severely affected by these properties,

the particle filters provide an excellent means of model interaction and information

exchange due to the point-wise representation of the posterior and the process of re-

sampling. When implemented on hardware, a distributed architecture based on that

for the standard particle filter can be used. However, this gives rise to a whole new

set of problems regarding filter scalability and data exchange protocols for minimizing

interconnect and communication latency.We have addressed these problems and intro-

duced a pipelined particle distribution protocol that minimizes bus requirement and

latency.

• Reconfigurable hardware for processing two different particle filters

One limitation of the SIRF hardware is that the number of particles that can be used

is limited by the memory available on the device. In some situations it may be required

to increase the number of particles beyond this limit to ensure performance. For such

cases, we have explored the implementation of another particle filter known as the

Gaussian Particle Filter. The GPF is inferior in performance to the standard SIRF

and is also less general. However, we have introduced an algorithmic modification for

this filter that allows its execution without storing of particles in memories between

recursions. This allows the GPF hardware to use any number of particles irrespective

of the memory on the device. With these factors in mind, we have developed a re-

configurable architecture that incorporates the GPF and the SIRF. It is intended for

applications where the SIRF is normally used, except when the particle requirement

exceeds the available memory. In such cases, one can dynamically switch to GPF

execution by specifying a small set of parameters.

• Dynamic reconfiguration of particle filter model

The architecture introduced for the particle filter consists of some generic blocks and

some model dependent blocks. In some cases, like the variable structure multiple model
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particle filter, while the block level dataflow remains the same, the model used for the

filtering may change dynamically. We have utilized the recently introduced partial run-

time reconfiguration technique for commercial FPGAs to develop a design methodology

that allows such a reconfigurable particle filter to be mapped on to the FPGA. The

methodology minimizes the reconfiguration overhead while maintaining the execution

flow of the particle filter undisturbed. The methodology has been tested with an

elementary particle filter example, but can be extended to any practical scenario.

7.2 Future Direction

This effort lays the foundation for several research directions in the future. Some of these

are enlisted here.

• Particle Filtering Cores for FPGAs

As we have seen, the focus of the initial part of the dissertation was on developing

generic architectures for particle filters. Particularly, we saw that using the proposed

architecture, an SIRF can be realized for any model. The only design effort needed is

for building the model dependent data driven computation blocks. An interesting re-

search direction is looking for automated design methodologies that would read model

parameters, synthesize the model dependent computation steps from standard libraries,

integrate the synthesized blocks into the generic architecture framework, and present

a combined netlist for implementation on an FPGA. This would help in widespread

adoption of the particle filter by making the design process very convenient for engi-

neers.

• General Location and Tracking Engine using PFs

Particle Filters are gaining increasing popularity in indoor Real Time Location systems

(RTLS) and robot navigation. When the particle filters applied to a variety of problems

in these fields are examined, they differ in some minor aspects, but a general consistent

framework is often obvious. The reconfigurable particle filter architectures presented

in this dissertation, can exploit this fact to develop a generic location and tracking

engine that can be configured on a case-by-case basis.
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• Adaptive and Variable Structure Particle Filters

In this dissertation, we have laid the foundation for adaptive particle filtering where

the model parameters are changed dynamically between iterations. We also explored

variable structure multiple model filters where model sets change dynamically. This

adaptability makes particle filters very powerful and enable them to be applied to even

the most complex of systems. We have demonstrated a methodology to realize such

filters on commercial FPGAs with partial run time reconfiguration capabilities. This

methodology was only evaluated on a proof-of-concept basis for an elementary particle

filtering model. Extension of this to practical problems and development of algorithms

to trigger the adaptation or change in structure is a promising direction for the future.
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