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Abstract of the Dissertation 

The Power of Linkage Analysis of a Quantitative Endophenotype 

by 

Zhuying Huang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 

Stony Brook University 

2008 

 

In our study, we consider a complex disease with low frequency for which we are 

studying a disease related trait (endophenotype) instead of the disease itself. We assume 

that there is a pleiotropic gene that determines both the disease and disease related trait. 

First we developed software to simulate a quantitative endophenotype and linked markers 

in sib-pairs ascertained through a single disease affected proband. We simulated data sets 

of 100 sib-pairs under 210 genetic parameter values for disease allele frequency, disease 

penetrance, quantitative trait heritability with variable dominance and evaluated the 

power of the Haseman-Elston test for linkage. We then evaluated these results to estimate 

the effects of the parameter values and their interactions on power. 
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Chapter 1 
 

BIntroduction and Literature Review 
B1.1 Introduction of Complex Disease 
 

A disease is called complex if it is caused by multiple genes and environmental 

factors and their interactions. Examples of complex disease are schizophrenia and bipolar 

disease, for most complex diseases, there is no known direct relationship between 

genotype at a single locus and phenotype. In most cases, individuals who have the disease 

associated allele are more likely to have the disease than those who do not. However, 

individuals who do not have the associated allele have a non-zero probability the disease 

as well. However, it is sometimes possible to find major genes that determine a trait 

related to the disease. Since complex diseases are usually affected by many genes, they 

may have many different phenotypes associated with them too. Therefore, we need 

carefully choose the endophenotype/disease related trait since different traits may result 

in different outcomes. 
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B1.2 Endophenotype  

B1.2.1 Definition 
 

For most complex diseases, the same genotype may affect a large range of the 

phenotype and the same phenotype may be determined by many genotypes, environment 

factors and their interaction. However, it’s possible to find the gene(s) if they have a 

major effect on some less complex related traits.  

An endophenotype (EndoP), also called a disease related trait (DRT), is a trait 

which is associated with the disease as a result of being determined by a factor also 

involved in the disease. Researchers can get a better understanding of the biological 

components of a disease by identifying the endophenotype; also we can get a more 

accurate prediction and more effective prevention through an endophenotype.  

For most complex disease genetic analysis, endophenotypes are biological 

markers between genotype and external phenotype that may indicate disease 

susceptibility loci. Researchers are interested in endophenotypes because the 

endophenotype might have simpler etiology than disease itself. A good measurable 

endophenotype might be more biological than a clinical diagnosis and more directly tied 

to the gene expression, it has higher penetrance than the disease itself. Therefore, the 

endophenotype may play an important role in studying the complex disease.  
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B1.2.2 Criteria for an Endophenotype  
 

Due to the complexity of the transmission of complex diseases, more and more 

researchers are paying attention to endophenotypes instead of disease itself. Since for 

complex disease, they are affected by many genes and have various phenotypes, how to 

choose the endophenotype becomes a big issue.  Normally, endophenotype should meet 

the following criteria (Gottesman and Gould 2003): 

“(1). It is associated with illness in the population. 
 (2). It is heritable. 
(3). It is primary state-independent (manifests in an individual whether or not illness is 

active). 
(4). within families, endophenotype and illness co-segregate. 
(5). the endophenotype found in affected family members is found in non-affected family 
members at a higher rate than in the general population. ” 
 
  We define an endophenotype as an abnormality if it appears more frequently in 

cases (diseased individuals) than controls and it has a higher frequency in unaffected 

siblings of cases than in controls.  

There are many different explanations of the relationship between the disease and 

endophenotype. One popular explanation is that the traits are determined by a pleiotropic 

gene, a gene which controls more than one trait. For instance, a single gene mutation may 

cause an enzyme deficiency, which in turn may affect more than one tissue in one 

individual. Or pleiotropic effects may cause both a disease and an endophenotype, in turn 

the disease/DRT will or will not affect endophenotype/disease level. In our model, we 

assume that there is a pleiotropic gene which effect more than one trait. 
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B1.2.3 Applications of Endophenotype 

Recently, researchers have had many discussions on endophenotypes. Of interest 

are the possibilities of prevention and implications for the prediction of schizophrenia 

(Gottesman and Gould 2003). The endophenotypes of schizophrenia include eye tracking 

dysfunction (Levy et al.1993), thought disorder (Holzman et al. 1997) and working 

memory (Goldberg TE and Green MF, 2002).  Also researchers have worked on language 

deficit in studying autism (Alarcon et al. 2002) and plasma cholesterol levels in studying 

coronary heart disease (Sing and Boerwinkle, 1987).  

Even through an endophenotype has higher penetrance than the disease itself, an 

individual with the disease of interest may not always have the endophenotype. 

Conversely, having the endophenotype does not mean that one has disease either. That’s 

why we sometimes call the endophenotype a risk factor. For example, people would like 

to consider hypertension and/or cholesterol level as an endophenotype in studying the 

genetics of coronary heart disease. However, sometimes the endophenotype is benign and 

unnoticeable.  
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B1.3 Quantitative Genetics 

B1.3.1 Introduction 
 
 Quantitative genetics, founded by HR.A. Fisher, is the study of continuous traits 

such as height or blood pressure. Using quantitative genetic analysis, one can predict the 

response to selection given data on the Hphenotype and relationships of individuals based 

on combined effect of the many underlying genes results in a continuous distribution of 

phenotypic values. In other words, the variation is quantitative, not qualitative.  

Analysis of quantitative trait loci or QTL is a more recent addition to the study of 

quantitative genetics. A QTL is a region in the genome that affects the trait or traits of 

interest. OTL approach requires accurate phenotypic, pedigree and genotypic data from a 

large number of individuals. 

  Quantitative genetics can be applied to all traits determined by many genes, is not 

limited to continuous traits. The traits are: 1) Continuous traits are quantitative traits with 

a continuous phenotypic range. They are often polygenic, and may also be influenced 

significantly by environmental effects. 2)Traits or other ordinal numbers are expressed in 

Hwhole numbers, such as number of offspring, or number of bristles on a fruit fly. These 

traits can be either treated as approximately continuous traits or as threshold traits; 3) 

Some qualitative traits can be treated as if they have an underlying quantitative basis, 

expressed as a threshold trait (or multiple thresholds). Some human diseases (such as, 

Hschizophrenia) have been studied in this manner.  
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B1.3.2 Quantitative Mean and Variance 
 

We know that by the gene frequency and genotype frequency we can express the 

genetic properties of the population. But it not enough for quantitative trait, in 

quantitative genetics, we need to have a new concept to show how the character is 

measured. All observations, including mean, variance and covariance, must clearly be 

based on the measurement of phenotypic value. 

 The phenotype is mainly determined by the genotype and the environment. 

We may think that the genotype having a certain value on the individual and the 

environment causing a deviation from this. We assume the mean of the environment 

deviation in the population is 0, and then the mean of the phenotypic value is equal to the 

genotypic values. Also for simplicity we assume that the environmental effect remains 

constant from generation to generation, so the population mean is constant in the process 

where no genetic changes. Assume a two allele trait locus with allele frequencies p and 

q=1-p, and   
i

i

i

g = -a if genotype is AA
g = d if genotype is AB
g = -a if genotype is BB

⎧
⎪
⎨
⎪
⎩

 

We can calculate the population mean. Table 1.1 showed the population mean. 

Table 1.1: Population Mean  

Genotype Freq Value Freq*Value 

AA p2 +a p2a 

AB 2pq d 2pqd 

BB q2 -a -q2a 

                                                                        Mean= a(p2-q2)+2dpq 
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B1.3.3 Quantitative Trait Heritability 
 

The heritability of a trait is defined as the proportion of the total variance which is 

genetic. Let PV  denote is the variance of total phenotype, GV   the genetic variance, and 

EV the environment variance, AV  the variance due to additive genetic effects and DV  the 

dominant effects. Then we have the following equation: 

   P G EV V V= + = A D EV V V+ +  

( ) G

p

VHeritability Broad
V

=  

( ) A

p

VHeritability narrow
V

=  

We should realize that the term heritability of trait is different from the mode of 

the inheritance. The mode of inheritance is a fixed property of a trait, for example, 

autosomal dominance, polygenic etc. But the heritability of trait may change. For 

example, in different social circumstances, the heritability of IQ will be not the same.  

 

 
 
 
 
 
 

 
  

  

 



 8

B1.4 Pleiotropic Model  
 

The term pleiotropy is from Greek pleio, which means “many” and trepein, which 

means “influencing”. Pleiotropy is a property of a gene which has more than one 

phenotypic effect. It describes the genetic effects of a single gene on multiple pleiotropic 

traits. The underlying mechanism is that the gene codes for a product that is for example 

used by various cells, or has a signaling function on various targets (Williams, G.C. 

1957). For example, a single gene mutation may cause an enzyme deficiency. For 

instance, human disease PKU (phenylketonuria) can cause many other characteristics 

such as mental retardation and reduced hair and skin pigmentation. It can be caused by 

any of a large number of mutations in a single gene. This single gene is codes for an 

enzyme. It may change one amino acid to another amino acid. Then change the 

concentrations of the particular amino acid concentration. Then increase the toxic levels 

which will cause damage at several locations in a body.  In genetics, we call a single gene 

a pleiotropic gene when the single gene influences multiple phenotypic traits and this 

genetic model is called pleiotropic model. 

Of course, it could come out the same effect as a pleiotropic gene if several genes 

are clustered tightly in a single region. It is very important to distinguish between the 

pleiotropic effects of a single locus influencing all traits and separate tightly clustered 

loci that each influences a single trait (Almasy et al. 1997).  

Pleiotropy may cause the correlation of two or more traits. Two or more 

characteristics may be affected by the same gene if the degree of the correlation arising 

from pleiotropy. Some of the genes may tend to increase the values for all the traits while 

other genes may increase one and reduce others.  
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The following Figure 1.1 shows various possible relationships among a major 

gene, endophenotype (EndoP) and a complex disease. In case a, the endophenotype 

causes the disease. This case is very simple, if we want to know if there is a disease, we 

only need to check if there is an endophenotype. The other two cases are a bit more 

complicated, the major gene in b and c has the pleiotropic effect which causes both the 

endophenotype and the disease at the same time. In these two cases, even we know there 

is endophenotype; we still can not 100% sure if there is a disease. In our study, we are 

focusing on case b where the pleiotropic effects may cause both the endophenotype and a 

disease, but there is no interaction between the disease and the endophenotype. 

 

Figure 1.1: The relationship between gene and disease (Based on Sung, 2005) 

 

 

 

Major Gene EndoP Disease

Major Gene 

EndoP

Disease

EndoP

DiseaseMajor Gene 

(a) 

(b) 

(c) 

Other gene   

Other gene   

Other gene   
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B1.5 Types of Phenotype  
 

The phenotype describes physical appearance or a specific manifestation of a trait, 

such as height, sex, or behavior that varies between individuals. The difference between 

phenotype and genotype was proposed by Wilhelm Johannsen in 1911. The phenotype is 

composed of traits or chararcteristics. Some phenotypes are derterminded totally by the 

individual’s genotypes. For example, people’s blood type is determined when he is born. 

Others are determined by genes and significantly affected by enviroment. For example, 

almost all people have the ability to speak and understand language, but to learn and 

speak a particular language is significantly affected by the evironment. There are two 

types of phenotypes. One is a qualitative phenotype (discrete traits) and the other one is 

the quantitative phenotype (continuous traits). Very often several genotypes will result in 

the same phenotype and conversely one genotype can result in more than one phenotype. 
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B1.5.1 Qualitative Phenotype 
 
 This is also referred to as a nominal trait. Outcomes of qualitative phenotype are 

descriptions such as color, pattern, sex and blood type. Many qualitative phenotypes are 

mainly determined by genotypes and usually are less affected by environmental factors 

than the quantitative phenotypes. For instance, the individual’s blood type is determined 

when he is born. It will not be changed by the environment. Qualitative traits usually 

have two or more outcomes. For example, if father’s blood type is A and mother’s blood 

type is A, then their children’s blood type is A or O. We can predict the offspring’s 

phenotype from the parents’ genotype and we also can predict the genotype of the parents 

if we know offspring’s genotype. 

 In most cases, we treat diseases as dichotomous traits, i.e. there are two 

phenotypic classes – affected or unaffected with the disease. In the case of one locus with 

2 alleles and 3 genotypes, then there are at least two genotypes that share the same 

phenotype. If the disease gene A is dominant, then people who have genotype Aa or AA 

are affected. If the disease gene B is recessive, then only people who have genotype BB 

are affected. 
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B1.5.2 Quantitative Phenotype 
 

Quantitative traits are a bit more complicated and are more likely to be affected 

by the environment than qualitative traits. Quantitative traits do not fall into discrete class. 

These traits could have any values within a range and they can be measured, i.e. weight, 

height and IQ. When we analyze a population, we will find a continuous distribution of 

phenotype. For example, blood pressure, or cholesterol level are phenotypes which can 

be measured and usually represented by a continuous distribution.  

If the trait values have continuous distribution in the population and are controlled 

by multiple genes with small, equal and additive effects, then we may have one 

distribution in the population like the following Figure 1.2. 

 

 

 

 

 

 

Figure 1.2: Quantitative trait distribution controlled by multiple genes 
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If the trait values are determined principally by the genotype at a single locus, 

then we called such a locus a quantitative trait locus (QTL). We usually assume that the 

trait distribution conditional on genotype is a normal distribution and would observe a 

mixture of normal distribution in the population. Examples are thought disorder scores, 

eye tracking disorder measures and blood pressure. The genetic model for QTL 

determines the distribution of the quantitative trait. In our study, we denote that there is a 

major gene which is related to a disease. We denote that the allele for abnormal level of 

the trait is A and for normal level is B, so there are 3 types of genotypes at the QTL gene 

locus, AA, AB and BB. We assume the quantitative phenotype X follows a normal 

distribution with a variance and means being genotype dependent, i.e. f (X|AA) ~ N (μ2, 

σ2
2), f (X | AB) ~ N (μ 1, σ1

2) and f (X|BB) ~ N (μ 0, σ0
2). The phenotype distribution for 

each genotype and the whole population is illustrated in the following Figure 1.3. In 

Figure 1.3, we set μ 0=0, μ 1=1, μ2=4 and σ0 =σ1=σ2 =σ, so the population phenotype 

distribution is a mixture of normal distributions with unequal means and equal within 

group variance. 
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           Figure 1.3:  Graph of f (X*|Genotype), 0* x ux
σ
−

=  
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B1.6 Methods for Genetic Linkage Analysis 
 

We know that one way to find genetic control for a trait is to show it is linked to a 

known marker; that is, the two traits tend to be inherited together more often than it 

would be inherited by alone. There are two general methods that are commonly used in 

genetic linkage analysis: one is the classic model-based method and the other one is 

model-free methods. There are two important terminologies that are often used in linkage 

analysis. One is recombination fraction and the other one is identity by descent (IBD) 

number. 
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B1.6.1 Terminology 
 
1.6.1.1 Recombination Fraction  
 
 Genes are transmitted from parents to offspring through meiosis. Genetic 

recombination is commonly happened in sexual reproduction during in the process of 

meiosis. In the process separation, the two chromosomes cross over at different points. 

By crossing over, the alleles of gene are exchanged between the homologous 

chromosomes. Then the offspring can get set of genes which are different from either 

parent’s, being a combination of genes from both parents. We could be able to see these 

cross over directly if we know the cross over directly, but as marker are typically 

available only at discrete intervals, all we can tell is whether two consecutive markers 

derive from the same parental chromosome. Since the recombination can be happened 

with small probability at any location in the chromosome, the frequency of recombination 

between two locations dependents on their distance.  

  In Figure 1.4, we illustrated the recombination and nonrecombination resulting 

from 1 and 2 crossovers occurring between 3 loci respectively.  

Figure 1.4: Example of Cross-over 

 

 The proportion for recombination and nonrecombination is expected to be equal 

(1/2 and ½) when two loci are inherited independently (θ=1/2). In the case when the 
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recombination fraction is less than ½, the ratio of recombinant to no-recombinant will 

differ from 1:1. Also the recombination fraction is related to the genetic distance. The 

bigger in genetic distance, the more chance there is a recombination. 

 In many cases, the linkage analysis recombination fraction is sex dependent, 

which means recombination may different in male and female.  
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1.6.1.2 IBD Number  
 
 Allele sharing is an important concept in non-parametric linkage analysis. Identity 

by state (IBS) and identity by descent (IBD) are two different measurements of allele 

sharing. IBS are two alleles which have same form. If two alleles not only have same 

form, but they are both copies of the same gene in a common ancestor called IBD. IBD is 

a more important tool in genetic analysis.  Figure 1.5 shows allele sharing in a nuclear 

family. 

          

          Figure 1.5:  Example of allele transmission in a nuclear family                               
                         (Sham, P. 1998. Statistic in Human Genetics)  
 

 Here, we consider the nuclear family with two loci A and B, which are  linked 

tightly ( the theta is close to 0),  then there is no recombination between A and B. 

Studying on locus A, from the above we can see that the two siblings (individual 3 and 4) 

have the same genotype at locus A as A1A2. From the definition, the number of shared 

IBS is 2 at locus A since both of them have the same allele states. But to get the number 

A2A2 
B1B2

A1A2 
B1B1  

A1A2 
B1B1 

A1A2 
B1B1 
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of shared IBD is a bit more complicated than IBS.  The two A1 alleles in sibling’s are 

transmitted from father’s (individual 1) A1 allele since there is no A1 allele in mother’s 

(individual 2) alleles.  So these two A1 alleles (one for each sibling) are IBD. Therefore 

the A2 alleles for both siblings should be from mother (individual 2). Since the mother 

has two A2 alleles, we do not know if the two A2 alleles in sibling are from same allele. 

Also, the mother transmitted B1 to sibling 3 and transmitted B2 to sibling 4. So if there is 

a recombination between A and B, the two A2 alleles of siblings are IBD. But we assume 

that the loci A and B are linked tightly, a recombination event can rare happen. So in this 

case, the number of shared IBD is 1, only A1 allele at locus A is IBD. 

From above, we can see that there is a close relationship between the 

recombination and IBD status at two genetic loci in linkage analysis. The concept of IBD 

is important in genetic linkage analysis because if we know that an allele is shared IBD, 

then we can also pretty sure that a small region around this allele was transmitted IBD to 

both relatives as all because recombination in close region is rare and the region has same 

ancestral origin. So we can use this information to find out whether the unobserved 

disease gene is located in the vicinity of the marker locus. If we only know that an allele 

is shared IBS, then we can not sure that surrounding region has similar structure in both 

relatives. Since it’s possible that the allele is shared IBS while the adjacent genetic 

sequence was inherited from different founders. So IBD is more relevant than IBS in 

linkage analysis.   
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B1.6.2 Model Based Genetic Linkage Analysis 
 

Model-based methods often are referred to as parametric methods. The classic 

LOD score method is a model-based method under the assumption of a disease 

inheritance model which specifies a gene frequency and the relationship between the 

disease genotype and phenotype distribution. The concept of LOD score was introduced 

by Morton in 1955. The term LOD score is simply refers to the logarithm of the 

likelihood ratio, but take to base 10 rather than base e. In linkage analysis, the ratio that 

we are interested in is between the likelihood at the null value θ = 0.5 and its maximum at 

$θ . The two likelihoods in the ratio are the likelihood of observing the specific marker 

genotypes and trait phenotypes in the family giving linkage at a particular recombination 

fraction θ<0.5; otherwise, there is no evidence of linkage. We usually use the value 3 as a 

statistically significant evidence for linkage at the test recombination fraction. For LOD 

score equals 3, the significant level α is around 0.001. χ2 = (2ln10).LOD. LOD score 

value equals 3 means that the linkage hypothesis with recombination fraction θ is 103 

times more likely than the null of no-linkage. The problem with this method in the case 

of a quantitative trait is it requires that we know u0, u1, u2 σ2 and gene frequency. 

 Model-based linkage analysis is the most powerful genetic analysis and usually 

more complicated in calculation whenever the mode of inheritance is known (Ott 1997). 

When the model of inheritance is unknown, we can improve the power by considering a 

large number of models of inheritance parameter values and maximizing the LOD scores 

over multiple models (Ulgen et al. 2001). 
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B1.6.3 Model Free Genetic Linkage Analysis 
 

Gene model free methods of genetic analysis also are referred to as nonparametric 

methods. There are several nonparametric methods for linkage analysis. The main 

difference between model based and model free method is that in model free methods do 

not require any assumptions about the mode of inheritance of the traits.  

Penrose (1938) proposed a test for genetic linkage in humans using random 

independent sib pairs for the situation when one or both traits are quantitative. Jayakar 

(1970) suggested testing for linkage between a known marker locus and a locus for a 

quantitative trait by comparing trait variability among marker genotypes to variability 

within marker genotypes.  

Recently, two of the major approaches for linkage analysis with quantitative traits 

in humans including Haseman-Elston regression [Haseman and Elston, 1972] and the 

Variance Components method (Amos, 1994) are widely used. 
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B1.6.3.1 Haseman-Elston Method 
 

The Haseman-Elston method (1972) used random sib pairs to study quantitative 

traits and detect linkage between a quantitative trait and a genetic marker. This is the 

earliest proposed method of using π0, π1 and π2 (the proportion of alleles shared IBD) at 

marker locus to the values of a quantitative phenotype in a sib-pair. This method is based 

on the model that the greater proportion of genes at a marker locus that are identical by 

descent for a pair of sib, the smaller the squared difference between the sibs’ trait values 

should be if the trait value is affected by a locus linked to the marker locus.   

The original Haseman-Elston method is based on regression of squared trait 

difference on the estimated proportion of alleles shared IBD at a marker locus. That is, let 

d2 denote the squared difference of the quantitative trait values observed in a pair of 

siblings, i.e.  d2 = (y1-y2)2, where y1 and y2 are measured quantitative trait values for a 

sib-pair. The quantity d2 is regressed on the proportion of marker alleles shared IBD, π. 

Haseman-Elston method assumes random mating, linkage equilibrium and no epitasis. 

The statistics hypothesis test is: 

H0: β =0 

Ha: β <0         

Note that β  is the regression coefficient. 

If there is no linkage between the marker and the trait locus, then the regression 

coefficient equals 0. Otherwise, if the estimated regression coefficient is significantly less 

than 0, it indicates that there is a linkage of the marker to the QTL.  
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Performing Haseman-Elston Method, we will get the following regression 

equation:  

E [(y1-y2)2] =α+β π  

  α= σe
2+2ψ σg

2 +2 ψ (1-2ψ) σd
2 

 β =2 ψ (1-2ψ) σg
2 

Where ψ =θ2 + (1-θ) 2  

 The recombination fraction θ must satisfy 0≤  θ≤  ½, so we will have β  ≤  0. If 

there is no linkage (θ=1/2), the quantity (1-2ψ) is 0 then β  equals 0 and there is no 

regression. 

The Haseman-Elston method is widely used because of its simplicity and its 

robustness against departures from normality of the phenotypes. Blackwelder (1977) has 

shown the power and robustness of Haseman-Elston Method for genetic linkage between 

a marker locus and quantitative trait locus by comparing it to Penrose’s test. This method 

can be applied on both qualitative and quantitative (Rao and Li, 2000) univariate and 

multivariate traits (Amos at al. 1990).  Recently, many researchers have worked on 

revised regression based methods to improve the power, such as the revised Haseman-

Elston method, weighted Haseman-Elston Method (Xu et al. 2000). 

The revised Haseman-Elston method (Elston et al. 2000) uses the cross-product 

deviations of quantitative trait values from the population mean instead of square of 

differenced as the dependent variable since the regression of square of differences does 

not captive all the information of linkage(Wright 1997). We can get the additional 

evidence by the regression of square of sums.  
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Xu et al. (2000) suggested a unified Haseman-Elston method that uses a linear 

combination of the estimate of the proportion of phenotypic variance from square of 

sums and square of differences. The weight is determined by the overall trait correlation 

between the sibs in the population. Researchers (Sham and Purcell, 2001) recently have 

demonstrated the equivalence between the weighted Haseman-Elston method (Xu et al. 

2000) and variance-components methods. 
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1.6.3.2 BVariance- Components Method 
 

R.A. Fisher introduced variance components in 1918. Amos (1994) developed 

variance components method for linkage analysis in order to increase the power of the 

original Haseman-Elston regression based linkage analysis. Variance components can be 

applied to both univariate and multivariate trait linkage analysis. It is an alternative 

method for investigating linkage between a marker and a QTL. This approach models the 

quantitative traits in terms of its genetic variance under a multivariate normal assumption. 

The variance component method is based on likelihood test and extends to arbitrary 

pedigrees by Blangero (1995). It is widely used (Arya et al. 2002; Kraft et al. 2002; 

Olswold and de Andrade, 2002; Pankratz et al. 2002). To perform variance components 

methods, people need to know the parameters (σ , ρ and μ ) for the quantitative trait.  

Here ρ denoted the correlation of the quantitative trait in sib pairs (or in the case of an 

arbitrary pedigree, all of the relative pairs involved in the analysis). 
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B1.7 Purpose: Model Free Methods for Endophenotype Analysis 
 
 Power studies have been done for both the Haseman-Elston method and the 

Variance Components method. These have focused on random samples of sib pairs and 

samples in which at least one sibling has a quantitative value greater than 90th percentile. 

It has been observed that the latter sampling method gives good power using feasible 

(n=200) sample size in the situation. No power studies of linkage analysis of pairs of 

siblings ascertained through a disease affected individual have been done. On the other 

hand, quantitative traits are studied with some complex disease in mind and many genetic 

studies involves samples of families with at least one person is affected. We investigate 

the power of the regression based method - Haseman-Elston method using the sib pairs 

where at least one sibling with a disease for which the quantitative trait is a risk factor. 

Based on the regression, we can calculate the power of the proposed analysis for setting 

different genetic parameters. 
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Chapter 2 

BModel-free Methods for Linkage Analysis Based on Proband 
/Sibling Pairs 

B2.1 Proposed Study Design 
 

We know that the complex disease is affected by many genes, environmental 

factors and their interactions. Our study is based on some simplifying assumptions. We 

assume that the disease is determined in part by a bi-allelic disease gene, we also assume 

this gene is in the Hardy- Weinberg equilibrium and this gene is a pleiotropic gene which 

causes both a quantitative trait and disease.  
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B2.2 The Sampling Unit   
 

The sampling unit in our study is a sib pair. In each sib pair one is the proband 

which is affected and the other one is random chosen sibling which may be affected or 

unaffected. First, we assigned the proband’s (affected sib) genotype. From the proband’s 

genotype, we got the parents’ genotype. We also assign parent’s marker genotype. Then 

from the parent’s genotype and marker genotype, we got both proband’s and sibling’s 

marker genotype and sibling’s pleiotropic locus genotype. Our study is based on the sib 

ships’ data. Since we are sampling only sib ships with at least one disease affected 

individual, we are much more likely to observe more endophenotype positive than we 

would in a random sample of the sib pairs.  
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B2.3 The Proposed Data  
 

In our study, the proposed data requires quantitative trait values and marker data 

on both sibs and marker data on their parents. We will observe the number of alleles 

shared IBD at a marker locus based on the sibs’ marker data and their parents’ marker 

data.  

Table 2.1: Brief description of the study design in endophenotype analysis 

 

 

 

 

  

  

 

 

 

 

 

Note that GM[0] and GM[1] are parents’ marker genotype, GM[f2] is sib’s marker 
genotype, GD[f2] sib’s genotype and PT is sib’s quantitative trait value. 

 

 

 

 

familyID individualID GM[0] GM[1] PT GD[f2] GM[f2] 
1 3 43 12 3.353604 12 41 
1 4 43 12 2.839293 12 42 
2 3 23 41 3.451288 12 21 
2 4 23 41 1.130917 12 24 
3 3 32 41 1.923809 12 31 
3 4 32 41 5.033534 12 31 
4 3 13 24 1.664957 12 14 
4 4 13 24 1.596932 12 12 
5 3 34 12 2.420756 12 31 
5 4 34 12 -0.89957 22 42 
6 3 31 24 5.204206 12 32 
6 4 31 24 -0.22507 22 12 
7 3 42 31 2.613266 12 43 
7 4 42 31 3.082184 12 41 
8 3 24 31 2.325471 12 23 
8 4 24 31 4.077521 12 23 
9 3 24 13 3.776028 12 23 
9 4 24 13 0.957283 22 41 
10 3 24 31 2.838258 12 21 
10 4 24 31 2.191085 12 21 
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B2.4 The Proposed Genetic Generating Model 
 

 In our study, we proposed a genetic generating model in which there is a 

pleiotropic gene and this pleiotropic gene determines two traits: a quantitative 

endophenotype and presence or absence of a disease. The pleiotropic gene influences 

both the endophenotype and disease at the same time. 
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B2.5 The Proposed Analysis Methods 
 

The regression based method is applied in our study. Particularly, we used 

Haseman-Elston method. We investigate the genetic linkage between a marker locus and 

a locus affecting the quantitative trait. This method is based on regression of squared trait 

difference on the proportion of alleles shared IBD at a marker locus in sib pairs. The null 

hypothesis of the test is β =0 and the alternative hypothesis is β <0. If we reject the null 

hypothesis, we conclude that there is a linkage between the marker locus and pleiotropic 

locus. 

                     Table 2.2: Data for Haseman-Elston method  

Square of diff IBD number Proportion of IBD 
3.44487 2 1 
4.375351 1 0.5 
1.337481 1 0.5 
14.06116 1 0.5 
8.44397 2 1 
11.94665 0 0 
3.732203 2 1 
40.64755 1 0.5 
2.874225 1 0.5 
4.491975 1 0.5 
0.010285 2 1 
0.006611 1 0.5 
2.123598 1 0.5 
0.674629 2 1 
0.678953 1 0.5 
6.340722 1 0.5 
0.443448 2 1 
14.08093 1 0.5 
0.137931 2 1 

 

Then we use this data to apply Haseman-Elston regression method. The 

dependent variable in this model is squared difference of quantitative trait values and the 

independent variable is the proportion of shared marker IBD.  
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B2.6 Goal 
 

The goal of the study is to assess the power of linkage analysis between the 

marker data and the quantitative trait locus. 

In our study, we set the alpha level equals 0.05, and then we reject the null 

hypothesis (Rh=1, there is a linkage between the QTL and marker locus) if t-value is less 

than -1.65, otherwise Rh=0.  

Rh=1 if t-value  -1.65
Rh=0 otherwise

≤⎧
⎨
⎩

 

# 1RhPower
N
=

=  

For example, based on the following model p=0.01, f2D=0.5, f1D=0.25 and f0D=0 

and z0=0, z1=2 and z2=4, we applied the Haseman-Elston regression method and then get 

the results of T-value. Appendix Table A1.1 shows the simulation example. 

We set that:  

Rh=1  t-value 1.65
Rh=0    Otherwise

if ≤ −⎧
⎨
⎩

 

The following is what we got: 

n=6 Rh=0
n=94    Rh=1
⎧
⎨
⎩

 

So the power is 94% in for this set of genetic model parameter values. 
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Chapter 3  

BSimulation of Quantitative Pedigrees under Pleiotropic 
Endophenotype Generating Model 

B3. 1 Calculations for the Simulations 
 

In this part, we develop the probabilities that govern the distribution of 

endophenotype and marker allele sharing under the conditions of linkage between a 

pleiotropic trait locus and a marker locus. These probability values will be in the 

simulation.  

As mentioned before, we denote the disease allele frequency as p, and the normal 

allele frequency as q, where q = 1-p. The population probability of genotype Gi, assuming 

Hardy-Weinberg equilibrium is straight forward. 

2

2

P( )
P( ) P( ) 2 , 1,2,3

P( )
i

AA p
G AB pq i

BB q

⎧ =
⎪= = =⎨
⎪ =⎩

                                   (3.1.1) 

The marginal probability of parents’ pleiotropic locus (PL) genotype( )j kM ⊗   with 

one parent genotype j and the other genotype k is given as follows: 

P( ) P( ) P( )j k j kM G G⊗ = ⋅     Where j, k=1, 2, 3              (3.1.2) 

 Assuming random mating, the probability of parents’ PL genotypes in the 

population is giving in Table 3.1. 
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Table 3.1: The probability of parents’ PL genotypes 

Parents' PL genotypes Probability 
AA*AA p4 

AA*AB 4p3q 
AA*BB 2p2q2 

AB*AB 4p2q2 
AB*BB 4pq3 

BB*BB q4 

 

Let 
iGf denote the disease penetrance associated with pleiotropic locus genotype 

Gi, Gi=AA, AB, BB. 

                                
i

AA

G AB

BB

f
f f

f

⎧
⎪= ⎨
⎪
⎩

     i=1, 2, 3                            (3.1.3) 

So the probability of D+ in the population is: 

  2 2( ) 2AA AB BBP D f p f pq f q+ = ⋅ + ⋅ + ⋅  (3.1.4) 

The conditional probability of a pleiotropic locus genotype given the phenotype is 

D+ is calculated using Bayes Theorem. This is the probability of a disease affected 

proband has each genotype. 

2
2

2 2
2 1 0

1
2 2

2 1 0

2
0

2 2
2 1 0

P( | )
2
2P( | ) P( | ) , 1, 2,3
2

P( | )
2

i

p fAA D
p f pqf q f

pqfG D AB D i
p f pqf q f

q fBB D
p f pqf q f

⎧
+ =⎪

+ +⎪
⎪⎪+ = + = =⎨ + +⎪
⎪
⎪ + =

+ +⎪⎩

                       (3.1.5) 

 The following equation gives the probability of parents’ mating type given 

proband genotype: 
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( | ) ( )

( | )
( | ) ( )

i j k j k
j k i

i j k j k

P G M P M
P M G

P G M P M
⊗ ⊗

⊗
⊗ ⊗

=
∑

                i = 1, 2, 3              (3.1.6)    

 So the probability of parent’s mating type conditional on proband genotype is as 

follows:    

      

2

2
j k

AA 2 0
P(M |AA) AB 2 0

BB 0 0 0

AA AB BB
p pq
pq q⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                 (3.1.7) 

 

       

2

2 2
j k

2

AA 0
P(M |AB) AB

BB 0

AA AB BB
p pq

p pq q
pq q

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                  (3.1.8) 

 2
j k

2

AA 0 0 0
P(M |BB) AB 0 2

BB 0 2

AA AB BB

p pq
pq q

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                   (3.1.9) 

         

The following matrix gives the probability of having an offspring with disease for 

a given parents’ mating type.  

                                                     AA                     AB                            BB 

 

1
2

1 1 1 1
2 2 4 2

1
2

( )
P( | ) ( ) ( ) ( )

( )

AA AA AB AB

j k AA AB AB AA BB AB BB

AB AB BB BB

AA f f f f
D M AB f f f f f f f

BB f f f f
⊗

+⎛ ⎞
⎜ ⎟+ = + + + +⎜ ⎟
⎜ ⎟+⎝ ⎠

                         

                          j, k=1, 2, 3.                                                                    (3.1.10) 
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 Then the probability of a parents’ PL genotype given one of offspring is affected 

is calculated, again using Bayes Theorem as: 

   3

, 1

P( | ) P( )
P( | )

P( | ) P( )
j k j k

j k
m n m nm n

D M M
M D

D M M
⊗ ⊗

⊗

⊗ ⊗=

+ ⋅
+ =

+ ⋅∑
               (3.1.11) 

 Where ( | )m nP D M ⊗+ is given in equation 3.1.10 and ( )j kP M ⊗ is given in 

equation 3.1.2.  

 The probability of the offspring has Gi given the parents’ PL genotypes are given 

in the following matrices: 

  
iG j k

AA 1 0.5 0
P(Sib =AA|M ) AB 0.5 0.25 0

BB 0 0 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                           (3.1.12) 

  
iG j k

AA 0 0.5 1
P(Sib =AB|M ) AB 0.5 0.5 0.5

BB 1 0.5 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                             (3.1.13) 

  
iG j k

AA 0 0 0
P(Sib =BB|M ) AB 0 0.25 0.5

BB 0 0.5 1

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                           (3.1.14) 

  

The distribution of quantitative trait values of the proband and sibling are 

obtained as: 

 ( ) ~ ( ,1)
i iG Gf T N t      i=1, 2, 3                     (3.1.15)     
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Gi is individual’s genotype and is defined in equation 3.1.5 for proband and 3.1.12, 3.1.13, 

3.1.14 for sibling.  

 The pdf of quantitative trait values in the population is defined as:  

 
3

1
( ) ( )

ii G
i

f T p f T
=

= ⋅∑            i=1, 2, 3                     (3.1.16) 

Where 

2
1

2
2

3

2
p p
p pq

p q

⎧ =
⎪ =⎨
⎪ =⎩

                                                               (3.1.17) 

 

Without loss of generality, we set tAA≥ tAB≥ tBB in the simulation. We first set the 

trait heritability range from 0.1 to 0.5, and then we can calculate the trait values given the 

disease allele frequency and trait model dominance (dominant, additive or recessive). 
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B3.2. Simulation Programming Strategies 
 
 Here, we are interested in simulating the joint distribution of a disease and a 

disease related endophenotype (DRT). Also we are interesting in simulating the 

quantitative trait values and using the Haseman-Elston method to test the power of 

linkage analysis of the endophenotype.  

We are interested in particular in the case where we sample only nuclear families 

that have at least one disease affected individual. We also consider a case where both 

disease and disease related trait are affected by a major pleiotropic gene which we refer 

to as a pleiotropic trait locus (PL). We simulate marker genotype and the Endophenotype 

trait locus genotype for each individual in the family based on the proband’s (affected 

individual) genotype. The Endophenotype trait values are based on individuals’ trait 

locus genotype only. 

The simulations were done as described in the flow chart on the next page. A 

detailed description of each step of the simulation and sample results follow. 
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Figure 3.1: Flowchart of Simulation Procedure of Pleiotropic Locus (PL) and 

marker Locus (ML) Genotypes and Phenotypes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step1: Simulate proband’s PL 
genotype conditional on PL disease 
phenotype. P (Gi|D+) 

Step2: Simulate parents’ PL 
genotypes conditional on proband’s 
PL genotype 

Step3: Simulate the sibling’s PL 
genotype based on parents’ PL 
genotype 

Step4: Simulate sibling’s and 
proband’s marker locus genotypes 
based on PL genotypes and 
recombination fraction θ 

Step1a: Simulate proband 
quantitative trait values 
based on his PL genotype 

Step3a: Simulate sibling’s 
quantitative trait values 
based on his PL genotype 



 40

In Step 1: Simulate proband’s PL genotype conditional on PL disease 

phenotype P(Gi|D+). 

 
 Let P (Gi) denote the probability of genotype Gi (G1=AA, G2=AB, G3=BB) in the 

population and as given in Equation 3.1.1. And let P (D+|Gi) denote the penetrance for 

genotype Gi (AA, AB and BB). Then we can calculate the conditional probability that 

proband (who is affected) has genotype Gi as follows: 

∑
=

+

+
=+ 3

1
)()|(

)()|(
)|(

i
ii

ii
i

GPGDP

GPGDP
DGP , (G1=AA, G2=AB, G3=BB),                  (3.2.1)   

  

 In the simulation, the genotypes of the proband (Gi) were assigned with 

probability P (Gi|D+) by first sampling a random variable Y from U (0, 1). We then 

assigned the proband’s PL genotype. 

⎪
⎩

⎪
⎨

⎧

<<+=
+<<=

<<=

1)|()|(,
)|()|()|(,

)|(0,

213

2112

11

yDGPDGPifGgenotypeproband
DGPDGPyDGPifGgenotypeproband

DGPyifGgenotypeproband
    

(3.2.2) 

As an example consider the case where the gene frequency of A( disease allele ) 

p=0.01 and fAA=P(D+|G1)=0.5, fAB=P(D+|G2)=0.25, fBB= P(D+|G3)=0 and  z0=0, z1=2, 

z2=4. Then applying the equation 3.1.1, we got   

1

2

3

( ) 0.0001
( ) 0.0198
( ) 0.9801

P G
P G
P G

=⎧
⎪ =⎨
⎪ =⎩

 

                   and  
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1

2

3

( | ) 0.01
( | ) 0.99
( | ) 0

P G D
P G D
P G D

+ =⎧
⎪ + =⎨
⎪ + =⎩

 

 

Table 3.2 shows the simulation results and expected results. The results based on 

simulating100*100, 100 simulations of samples of 100 families. From the 10,000 

simulation of “proband”, 9885 probands’ genotypes are AB and 115 are AA. 

Table 3.2: Population and simulation results on probability of genotype 

genotype(p=.01, q=.99) Population results Simulation results 

(N=10,000 probands) 

AA 1% 1.15% 

AB 99% 98.85% 

BB 0 0 

 

From Table 3.2 the simulation results, we got 1.15% proband whose genotype is 

assigned as AA and 98.85% proband whose genotype is assigned as AB based on this 

model (p=0.01, q=0.99, fAA=0.5, fAB=0.25, fBB=0, z0=0, z1=2, z2=4) . Here, the 

probability of genotype BB is 0 because we set the penetrance for genotype BB at 0 in 

this model. Also the table above showed the probability of proband genotype on 

population based on this model. In population the probability of genotype AA is 1% and 

genotype AB is 99%.  
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In Step 1a: Simulate Proband’s Quantitative Trait Values Based on his 

PL Genotype.  

 
In this step, we assign the quantitative trait values to the proband based on 

proband genotype. We assume that the distribution of the quantitative trait values 

conditional on genotype is normal distribution. For a given proband genotype, the 

quantitative trait value of the proband is assigned by sampling using a random number 

generator according to proband’s genotype. The generator generates a random number 

from normal distribution. Based on this model (p=0.01, q=0.99, fAA=0.5, fAB=0.25, fBB=0, 

z0=0, z1=2, z2=4), we generate a random number from N (2, 1) for proband’s genotype is 

AB and we generate a random number from N (4, 1) for proband’s genotype is AA. 

Below is the schematic plot based on this simulation model, from the simulation, we got 

quantitative trait values fitting a normal distribution with mean 4.15 and standard 

deviation 0.98 (standard error 0.09 skewness -0.21 and kurtosis -0.51) for proband 

genotype AA. The 95% confidence interval (CI) is 4.15+1.96.σ/ n =4.15+0.18 = [3.97, 

4.33]. And we also see that the quantitative trait values fit normal distribution with mean 

1.99 and standard deviation 1.01 (standard error 0.01 skewness 0.04 and kurtosis -0.008) 

for proband genotype AB. The 95% confidence interval (CI) is 

1.99+1.96.σ/ n =1.99+0.02 = [1.97, 2.01]. From the simulation results, we can conclude 

that our simulation program to simulation the quantitative trait data works correct. Figure 

3.2 showed the quantitative trait distribution of probands given genotypes. 
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                  Figure 3.2 Quantitative trait distributions given the proband’s genotype 

          

 

 

 

 

 

 

 

 

 

 



 44

In Step 2: Simulate the Parents’ PL Genotypes Based on the Proband’s PL 

Genotype 

We calculate the probability of the parents’ PL genotype conditional on the 

genotype of the proband, using following equation 3.2.3. The genotype of the proband, 

Gip, was obtained in Step 1. 

∑
=

⊗⊗

⊗⊗
⊗ = 3

1,,
kjkj

kjkj
ipkj

)M()M|(

)M()M|(
)G|P(M

kji
ip

ip

PGP

PGP
   (3.2.3)          

Gip denotes the genotype of proband, i =1, 2 and )M( kj⊗P  is defined by equation 3.1.2. 

)M|( kj⊗ipGP  is defined by equation 3.1.8, 3.1.9 and 3.1.10. 

 Let Gjf, Gjm denote father’s genotype and mother’s genotype respectively, j=1, 2 

and 3. The genotypes of Gjf, Gjm are assigned with the probability P (Mj⊗ k|Gi) by 

sampling using a random number generator. The generator generates a random variable Y 

from U(0,1).If Gpro=AA, then                          

0 ( | )
( | ) ( | ) ( | )
( | ) ( | ) 1)

jf jm AA AA ip

jf jm AA AA ip AA AA ip AA AB ip

jf jm AA AA ip AA AB ip

G AA and G AA if y P M G AA
G AA and G AB if P M G AA y P M G AA P M G AA
G AB and G AB if P M G AA P M G AA y

⊗

⊗ ⊗ ⊗

⊗ ⊗

⎧ = = < < =
⎪ = = = < < = + =⎨
⎪ = = = + = < <⎩
                                                                                                                                 (3.2.4) 

 Use the same strategies for the cases of Gpro=AB and Gpro=BB. Below are the results 

based on the model (p=0.01, q=0.99, fAA=0.5, fAB=0.25, fBB=0, z0=0, z1=2, z2=4) in the 

population. 

       j k

AA 0.0101% 0.9999% 0
P(M |AA) AB 0.9999% 98.99% 0

BB 0 0 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                            (3.2.5) 
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         j k

AA 0 0.0099% 0.9803%
P(M |AB) AB 0.0099% 1.9606% 97.0492%

BB 0.9803% 97.0492% 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                         (3.2.6) 

 

                  j k

AA 0 0 0
P(M |BB) AB 0 0.0101% 0.9999%

BB 0 0.9999% 98.99%

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                              (3.2.7) 

And the probability of mating type given the proband genotype in the simulation results 

is as following: 

                       j k

AA 0 2.61% 0
P(M |AA) AB 2.61% 97.39% 0

BB 0 0 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                             (3.2.8) 

                    j k

AA 0 0.01% 1.04%
P(M |AB) AB 0.01% 2.19% 96.76%

BB 1.04% 96.76% 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                       (3.2.9) 

                   j k

AA 0 0 0
P(M |BB) AB 0 0 0

BB 0 0 0

AA AB BB

⊗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                          (3.2.10) 
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 From the results, we can see that there are 96.76% parents’ mating type is 

BBXAB given proband genotype AB based on model (p=0.01, q=0.99, fAA=0.5, fAB=0.25, 

fBB=0, z0=0, z1=2, z2=4) and there are 97.39% parents’ mating type is ABXAB given 

proband genotype AB. Also we calculated the population mating type given genotype. 

We found that for large samples (i.e. for proband genotype AB, we have total 9885 

individuals from the simulation) we got very similar probabilities ( 0.01%, 0.98%, 1.96% 

and 97.05% compare with 0.01%, 1.04%, 2.19% AND 96.76%). But the small sample 

size (total 115 for given proband genotype AA), we got a slightly different probabilities 

(0.01%, 1.0% and 98.99% in population and 0%, 2.61% and 97.39% in simulation). 
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In Step 3: Simulate Sibling’s Genotype Giving Parents’ PL Genotype 

We calculate the probability of sibling’s genotype given parents’ PL genotype by 

using the equation 3.1.12, 3.1.13, 3.1.14.  This step is very simple, the probability of 

sibling’s genotype for given parent’s genotype is independent of penetrance and gene 

frequency. 

If mating type is AA*AA, then sibling’s genotype is always AA.  

           If the mating type is AB*AB, then generate the random variable Y from U (0, 1). 

      

1, 0
4

1 3,
4 4
3, 1
4

sib genotype AA if y

sib genotype AB if y

sib genotype BB if y

⎧ = < <⎪
⎪
⎪ = < <⎨
⎪
⎪ = < <⎪⎩

                (3.2.11) 

Similarly, we can get the probability for sibling genotype given mating type 

AA*AB, AB*AB, AB*BB and BB*BB. 

Figure 3.3 shows the simulation results based on model (p= p=0.01, q=0.99, fAA=0.5, 

fAB=0.25, fBB=0, z0=0, z1=2, z2=4). 
 

 

Table 3.3 shows the simulation results and population results on the probability of 

sibling’s genotype. 

genotype(p=.01, q=.99) Population results Simulation results 

AA 0.01% 0.83% 

AB 1.98% 50.89% 

BB 98.01% 48.28% 
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From the simulation, we got 0.83% sibling’s genotype AA, 50.89% sibling’s 

genotype is AB and 48.28% sibling’s genotype is BB. Also we got 13.33% sibling are 

affected with disease from simulation. See the chart below (of course, the probability of 

affected proband is 100%). 
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In Step 3a: Simulate Sibling’s Quantitative Trait Values Based on his 

PL Genotype. 

In this step, we are using the similar method to simulate the sibling’s quantitative 

trait values based on sibling’s genotype instead of proband genotype. Since we have 3 

types of genotype for sibling, here we generate another random number from N (0, 1) for 

genotype BB.  Below shows the schematic plots on PT based on genotype in this model, 

from the simulation results, we found that the quantitative trait values fit normal 

distribution with mean 3.94 and standard deviation 0.92 (standard error 0.10 skewness -

0.14 and kurtosis -0.75) for genotype AA,  The 95% confidence interval (CI) is 

3.94+1.96.σ/ n =3.94+0.21 = [3.87, 4.01]. Also we got the quantitative trait values fit 

normal distribution with mean 2.018 and standard deviation 0.99 (standard error 0.01 

skewness 0.002 and kurtosis 0.04) for genotype AB. The 95% confidence interval (CI) is 

2.018+1.96.σ/ n =2.018+0.03 = [1.97, 2.01]. Similarly, for genotype BB, we got the trait 

values with mean -0.028 and standard deviation 1.003 (standard error 0.01 skewness 0.05 

and kurtosis 0.02). The 95% CI is n 0.028+1.96.σ/ n =-0.028+0.03 = [-0.058, 0.002]. 

Figure 3.3 shows the histogram of quantitative trait distribution conditional on the sib’s 

genotype. 
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Figure 3.3 Quantitative trait distributions given sib’s genotype 
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In Step 4:  Simulate Sibling’s and Proband’s Marker Locus Genotypes 

Based on PL Genotypes and Recombination Fraction θ 

We already knew both pleiotropic trait locus and marker genotypes of the parents. 

In this step, we assign disease and marker genotype to the offspring. Since there are 4 

combinations of haplotypes inherited from father and mother, there are 4 possible 

haplotypes for the offspring. (1). Paternal haplotype is recombinant and maternal 

haplotype is recombinant; (2). Paternal haplotype is recombinant and maternal haplotype 

is non-recombinant; (3). Paternal haplotype is non-recombinant and maternal haplotype is 

recombinant; (4). Paternal haplotype is non-recombinant and maternal haplotype is non-

recombinant. 

Let rf and rm denote recombinant status on the haplotype inherited from father and 

mother respectively. We assign rf, rm=1 if the haplotype is a recombinant haplotype and 

let rf, rm=0 if the haplotype is a non-recombinant. 

For each case, there are 4 possible trait and marker genotypes which can be 

passed on to the offspring; each has equal possibility (25%). Let f1 , f2 denote the two 

alleles at father’s pleiotropic locus, and let m1 , m2 denote two alleles at mother’s 

pleiotropic locus Let fm1, fm2 denote the two alleles at father’s marker locus, and mm1, 

mm2 denote the two alleles at mother’s marker locus. Let g1, g2, g3 and g4 denote the 

four possible trait and marker genotypes. Below are 4 possible cases and the 4 possible 

haplotype passed on to the offspring in each case. 
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Case I: ra=1 and rm=1 (both parents have recombinant)  

 

Case II: ra=1 and rm=0 (only paternal haplotype has recombinant) 

 

Case III: ra=0 and rm=1 (only maternal haplotype has recombinant)  

 

Case IV: ra=0 and rm=0 (neither has recombinant) 

 

 Now we generate independent random variables X, Y from U (0, 1), 

1 0
0

f

f

r if y
r otherwise

θ= < <⎧
⎨ =⎩

 

                                                   
1 0
0

m

m

r if x
r otherwise

θ= < <⎧
⎨ =⎩

 .                                               
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We will choose our simulation case is which one from these 4 cases according to 

the values of fa and fm. For example, If rf=1 and rm=1 then we have case 1.After we 

decided case 1 will be used, we will generate another random variable Z from U (0, 1). 

From the Z value, we will assign the trait and marker genotype to the sibling. 

1 0 0.25
2 0.25 0.50
3 0.50 0.75

4 0.75 1

offspring haplotype g if z
offspring haplotype g if z
offspring haplotype g if z

offspring haplotype g if z

= < <⎧
⎪ = < <⎪
⎨ = < <⎪
⎪ = < <⎩

 

We use same procedure to assign genotype to sibling conditional on the 

recombination status (case 1, 2, 3, and 4).  

Marker genotypes of proband and offspring of the proband are assigned from the 

parents’ marker genotype. To simplify, parents are given marker genotype 1, 2, 3, 4. 

When we assign the parents’ marker genotype, We first assign the marker alleles to father, 

whose first allele can random choose from 1,2,3,4, then his second allele can choose from 

the rest 3 numbers. After assigned the marker genotype for the father, then we assign the 

marker genotype for the mother. The mother’s first allele is random chosen from the rest 

2 numbers, and then assign mother’s second allele from the last number. Now we have 

the parents’ marker genotypes and we can differ from each other. Since we assume 

parents’ markers are fully informative. According to the recombination parameter, the 

sibling is assigned both disease and marker genotypes. 

As for the proband, it’s a bit different since we already assigned the disease genotype at 

the beginning of the simulation, so I let the computer keep assigning the disease and 

marker genotypes to the proband until at one iteration that the assigned disease proband is 

in agreement with the known disease genotype. Appendix Table A2.1 shows the whole 
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simulated pedigree data based on a particular simulation model (p=0.01, q=0.99, fAA=0.5, 

fAB=0.25, fBB=0, z0=0, z1=2, z2=4). 
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Chapter 4 
 

BPower study 
 

B4.1 Study Design: Generating Different Models Based on   Heritability. 

 
For the given generating model, there are a lot of options for the parameter values.  

We first focused on varying trait heritability values. For given trait heritability ranging 

from 0.1-0.5, we considered several disease parameters settings and then get the trait 

values bases on different trait models (dominant, additive and recessive). The design of 

the study of the parameter values is shown in Table 4.1. The heritability values and 

dominance values and gene frequency determine the quantitative trait means. 

Aside from the value of the allele frequency, we consider three parameters for the 

quantitative trait values and 3 parameters for the disease models if the P (D+|BB) =0 and 

4 parameters for the disease models if the P (D+|BB) =0.001. 
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Table 4.1: Values of the generating model parameters for sib pair simulations: 

 

Disease/Trait 

Allele frequency 

p=0.01 

q=0.99 

p=0.05 

q=0.95 

Trait 

Heritability 

0.1, 0.2, 0.3, 0.4, 0.5 

Trait 

Dominance (d) 

 

-1,  0,  1 

Disease 

Penetrance 

Values 

p(D+|AA)=fAA=0.5

p(D+|AA)=fAA=0.3

p(D+|AA)=0.83 

p(D+|AB)=fAB= fAA 

p(D+|AB)= 
2

AA BBf f+  

p(D+|AB)= fBB 

p(D+|AB)= AA BBf f⋅  

p(D+|BB)=fBB=0 

p(D+|BB)=fBB=0.001

 

Based on the different trait and disease parameter values, we have 90 dominant, 

90 additive, 90 recessive parameter settings at fBB=f0D=0. Also we have 120 dominant, 

120 additive, 120 recessive and 120 log additive values for the case where fBB=f0D=0.001. 

In each dataset, there are 100 nuclear families with 4 per family, 2 parents and 2 

offspring (one disease affected proband and the one random chosen sibling). The results 

are based on simulating N=1000 simulations of n=100 families. 

Once the pedigree datasets are simulated, for a given generating parameter value, 

we had the information on the marker genotype, pleiotropic locus genotype and 

quantitative trait values for each individual. We then use the sib pair information on the 
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marker genotype, pleiotropic genotype and quantitative trait values to get the squared 

difference of the quantitative trait values and the proportion of shared IBD number at the 

marker locus for each sib pair. We obtained the t-value for the regression coefficient after 

applying the Haseman-Elston regression based method.  The power is calculated with 

significance level equal to α =0.05, i.e. t≤  -1.65.  Appendix Tables A4.1, A4.2, A4.3 and 

A4.4 shows some simulation results based on different genetic models.  Figure 4.1 to 

Figure 4.3 that follow show the power values for different p values given f0D=0, Figure 

4.4 to Figure 4.6 shows the power comparison for different f2D values given f0D=0. Figure 

4.6 to Figure 4.9 shows the power comparison for different p values given f0D=0.001, 

Figure 4.10 to Figure 4.12 shows the power values for different f2D values given 

f0D=0.001.  
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B4.2 Power Values for f0D=0 
 
Figure 4.1 Power comparison for p=0.01 and p=0.05 given trait model is additive, 

f2D=0.5, f0D=0, θ =0.01 and n=100, N=1000 
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Note that p=endophenotype/allel frequency, Dmodel denotes disease model, D denotes 
dominant disease model, A denoted additive model and R denotes recessive model. 
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Figure 4.2 Power comparison for p=0.01 and p=0.05 given trait model is dominant, 

f2D=0.5, f0D=0,θ =0.01 and n=100, N=1000 
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Note that p=endophenotype/allel frequency, Dmodel denotes disease model, D denotes 
dominant disease model, A denoted additive model and R denotes recessive model. 
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Figure 4.3 Power comparison for p=0.01 and p=0.05 given trait model is recessive, 

f2D=0.5, f0D=0, θ =0.01 and n=100, N=1000 
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Note that p=endophenotype/allele frequency, Dmodel denotes disease model, D denotes 
dominant disease model, A denoted additive model and R denotes recessive model. 
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Figure 4.4 Power comparison for f2D=0.83, f2D=0.5 and f2D=0.3 given trait model is 

additive, p=0.05, f0D=0, θ =0.01 and n=100, N=1000 
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Note that f2 is p(D+|AA), Dmodel denotes disease model, D denotes dominant disease 
model, A denoted additive model and R denotes recessive model. 
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Figure 4.5 Power comparison for f2D=0.83, f2D=0.5 and f2D=0.3 given trait model is 

dominant, p=0.05, f0D=0, θ =0.01 and n=100, N=1000 
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Note that f2 is p(D+|AA), Dmodel denotes disease model, D denotes dominant disease 
model, A denoted additive model and R denotes recessive model. 
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Figure 4.6 Power comparison for f2D=0.83, f2D=0.5 and f2D=0.3 given trait model is 

recessive, p=0.05, f0D=0,θ =0.01 and n=100, N=1000 
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Note that f2 is p(D+|AA), Dmodel denotes disease model, D denotes dominant disease 
model, A denoted additive model and R denotes recessive model. 
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Results and discussion: 

1). From Figure 4.1 to 4.6, we found that the power increases as the heritability 

increases, i.e. the trait value is an important factor, higher trait values will result in   

higher power if all other generate parameter values are equal. For example, for the model 

p=0.05, f2D=0.05, trait model additive and disease model dominant, the power goes from 

23.8%to 100% as the heritability goes  from 0.1 to 0.5. 

2). From Figure 4.4 to 4.6, we found that for given trait models (Additive, 

Dominant and Recessive) and disease models (Additive, Dominant, Recessive), we can 

see that for different f2D (0.5, 0.83 and 0.3), the power for higher penetrance is only 

slightly higher in most cases if other generating parameters are same, but there is no 

significant difference among them. For example, given trait model additive, disease 

model dominant, p=0.05, the power for heritability from 0.1 to 0.5 and f2D=0.5 are 23.8, 

58.2, 83.6, 97.8, 100 and for f2D=0.3 are 31.4, 56.2, 82.2, 96 and 100. 

3). If trait model is dominant, that is, 1μ = 2μ and 0μ =0 and f2D=0.5, we found that 

the power for disease allele frequency 0.01 is higher than for 0.05. We found the similar 

results if the trait model additive, i.e., 2 0
1 2

μ μμ +
= . The power values for p=0.01 are all 

high (greater than 95 %) when the trait model is additive or dominant, you can see this 

from Figure 4.2 in which the line for the power is horizontal. But the Figure of the power 

for p=0.05 is not horizontal; it is dramatically increasing as the heritability goes up.  It 

starts around 10% and goes up to 95% when the heritability goes up to 0.3 and the power 

get to 100% at when heritability is 0.5. 
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4) If the trait model is recessive, i.e., 1μ = 0μ , the power is high only if the disease 

model is recessive for both disease allele frequencies (p=0.01 and p=.05) and different f2D 

(0.83, 0.5 and 0.3). But the power is low (less than 20%) for other disease models 

(dominant and additive).  From the Figure 4.3, we can see that the power for p=0.01 and 

p=0.05 is almost the same.  
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B4.3 Power Comparison for f0D=0.001 
 

Figure4.7 Power comparison for p=0.01 and p=0.05 given trait model is additive, f2D=0.5, 

f0D=0.001, θ =0.01 and n=100, N=1000 
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Note that p=endophenotype/allele frequency, Dmodel denotes disease model, D denotes 
dominant disease model, A denoted additive model, R denotes recessive model and M 
denotes multiplicative model. 
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Figure 4.8 Power comparison for p=0.01 and p=0.05 given trait model is dominant, 

f2D=0.5, f0D=0.001, θ =0.01 and n=100, N=1000 
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Note that p=endophenotype/allele frequency, Dmodel denotes disease model, D denotes 
dominant disease model, A denoted additive model, R denotes recessive model and M 
denotes multiplicative model. 
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Figure 4.9 Power comparison for p=0.01 and p=0.05 given trait model is recessive, 

f2D=0.5, f0D=0.001,θ =0.01 and n=100, N=1000 
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Note date p=endophenotype/allele frequency, Dmodel denotes disease model, D denotes 
dominant disease model, A denoted additive model, R denotes recessive model and M 
denotes multiplicative model. 
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Figure 4.10 Power comparison for f2D=0.83, f2D=0.5 and f2D=0.3 given trait model is 

additive, p=0.05, f0D=0.001, θ =0.01 and n=100, N=1000 
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 Note that f2=p(D+|AA), Dmodel denotes disease model, D denotes dominant disease 
model, A denoted additive model, R denotes recessive model and M denotes 
multiplicative model. 
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Figure 4.11 Power comparison for f2D=0.83, f2D=0.5 and f2D=0.3 given trait model is 

dominant, p=0.05, f0D=0.001,θ =0.01 and n=100, N=1000 
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Note that f2=p(D+|AA), Dmodel denotes disease model, D denotes dominant disease 
model, A denoted additive model, R denotes recessive model and M denotes 
multiplicative model. 
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Figure 4.12 Power comparison for f2D=0.83, f2D=0.5 and f2D=0.3 given trait model is 

recessive, p=0.05, f0D=0.001, θ =0.01 and n=100, N=1000 
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Note that f2=p(D+|AA), Dmodel denotes disease model, D denotes dominant disease 
model, A denoted additive model, R denotes recessive model and M denotes 
multiplicative model. 
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Results and Discussions 

 The results from considering a situation where there are disease phenocopies, i.e. 

f0D>0 showed essentially the same trends as those where we have a 0.0 phenocopy rate 

for the disease/endophenotype locus. Our major observations from Figure 4.7 -4.12 are as 

follows: 

 1) The power goes up as the quantitative trait heritability goes up, which means 

that the trait value is an important factor. For example, given that the trait model is 

additive , p=0.01 and disease model is log-additive, we can see that power increases from 

46.6 to 75.8, 86.2, 90.8, and 94.4 as the quantitative trait heritability goes up from 0.1 to 

0.2,0.3,0.4,0.5. 

2) The value of f2D has little or no effect on the power. This is the especially if the 

trait model is dominant, as we can see in Figure 4.11. 

3) The power for p=0.01 is higher than for p=0.05 in most cases. If the trait model 

is additive, the disease model is dominant or additive and p=0.01 then the power is 

uniformly high regardless of the (greater than 90%). However in these situations if 

p=0.05the power increases from around 30% to 100% as the heritability goes up from 0.1 

to 0.5. If the disease model is log-additive then the decrease in disease allele frequency 

from 0.05 to 0.01 has little effect on the power. In both cases, power increases from 

around 50 % to 100%. But for disease model is recessive, the power for p=0.01 does not 

change a lot, it’s all around 30 % while for p=0.05 the power increase from 50% to 100%. 

4) If trait model is dominant, and the disease model is additive we can see from the 

Figure 4.11, that the power for p=0.01 and disease model is high regardless of the 

heritability values considered. The power for p=0.01 and disease model is recessive is 
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horizontal too and round 40 %. The power for other models (p=0.05 and disease model is 

dominant) increase as the quantitative trait heritability goes up. 

5). If trait model is recessive, we found the power for all disease models (dominant, 

additive, recessive and log-additive) are low (less than 15 %) for disease allele frequency 

p=0.01. But for disease allele frequency p=0.05, the power in the case where the disease 

model is dominant and additive is low as well, less than 15%. However with a recessive 

trait model and a recessive disease or a log-additive disease model, the power is high and 

with the power for a recessive disease model being a bit higher than log-additive model. 

For example, for the case f2D=0.5, the power values if both the trait and the disease 

models are recessive are 89.4, 95.8, 97.6, 99.2, and 99 as the quantitative trait heritability 

goes up from 0.1 to 0.5 and for this same situation, the power values for the log-additive 

model are 59.6, 64.4, 67.6, 75.4 and 78.6. 
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B4.4 Power Comparison for Study Design: Random vs. Selected  

This study focuses on a selected sample of sib pairs with at least one affected 

proband. The traditional power studies have focused on random sib pairs and other 

selected study designs. Here we compare the power for two different study designs. 

Figure 4.13 to Figure 4.15 shows a power comparison for the linkage analysis of a 

quantitative endophenotype when based on a random sample of sib pairs as compared to 

a sample in which sib pairs are selected so as to have at least one disease affected. 
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Figure 4.13 Power comparison for random sib-pairs and selected sib-pairs given trait 

model is additive, p=0.05, f2D=0.5&f0D=0, θ =0.01 and n=100, N=1000 
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Note that proand indicates the each of the 100 sib pairs analyzed consisted of one disease 
affected proband and a randomly chosen sib. Random indicates that the 100 sib pairs 
analyzed consisted of 100 randomly chosen sib pairs. Dmodel denotes disease model, D 
denotes dominant disease model, A denoted additive model, R denotes recessive model. 
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Figure 4.14 Power comparison for random sib-pairs and selected sib-pairs given trait 

model is dominant, p=0.05, f2D=0.5&f0D=0, θ =0.01 and n=100, N=1000 
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Note that proand indicates the each of the 100 sib pairs analyzed consisted of one disease 
affected proband and a randomly chosen sib. Random indicates that the 100 sib pairs 
analyzed consisted of 100 randomly chosen sib pairs. Dmodel denotes disease model, D 
denotes dominant disease model, A denoted additive model, R denotes recessive model. 
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Figure 4.15 Power comparison for random sib-pairs and selected sib-pairs given trait 

model is recessive, p=0.05, f2D=0.5&f0D=0, θ =0.01 and n=100, N=1000 
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Note that proand indicates the each of the 100 sib pairs analyzed consisted of one disease 
affected proband and a randomly chosen sib. Random indicates that the 100 sib pairs 
analyzed consisted of 100 randomly chosen sib pairs. Dmodel denotes disease model, D 
denotes dominant disease model, A denoted additive model, R denotes recessive model. 
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Results and Discussions 

 The results from comparing the power for the proband sib pairs are greater than 

that for the random sib pairs. Our major observations from Figure 4.13 -4.15 are as 

follows: 

 1). From Figure 4.13 and Figure 4.14, we can see that for given trait model is 

additive or dominant, the power for the proband sib-pair increases dramatically as the 

quantitative trait values goes up. The power excess 80% when the heritability is 0.3. For 

the random sib-pair sample, the power increases as the heritability goes up, but very slow, 

the power for each the disease model is around 20% when the quantitative trait 

heritability is 0.5. 

 2). From Figure 4.15, for given the trait model is recessive, we can the power for 

the disease model is recessive, the power is a straight line and on the top for the proband 

sib-pairs, for other models either for random sib-pair or proband sib-pair, the power 

variants around 10%, it almost is a straight line and at the bottom. 

3). From the simulation results above, we can see that the power for the sib-pairs 

including proband has a much higher power than random sib-pairs in most cases. To 

confirm this, we used ttest and found there is a significant difference (p_value=0.001) 

between them. 
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Chapter 5 
 

BRegression Analysis 
 

B5.1 Regression Analysis 
 

In this chapter, we carried out regression analyses to see which factors and 

interactions have significant effects on the power. Since there are 3 disease dominance 

values if the penetrance for the BB genotype when f0D equals 0 and there are 4 values of 

penetrance for the heterozygote wherever f0D ≥ 0, we ran the analyses separately. We 

consider the mean of the T-value instead of the observed power because it can be 

estimated with greater precision. For example, the power for the model (trait 

model=Additive, disease model is dominant, p=0.01 and f2D =0.5 and f0D =0) is 95.2, 100, 

100, 100, 100 as the quantitative trait heritability goes from 0.1 to 0.5, yet from the 

average of the Z values, are -3.25, -4.78,-5.86, -6.53 and -7.01 respectively. We can 

calculate the approximate power at type I error level α using:  

( ) ( )E Z ZZ E Z Zα
β ασ

−
= = −  

 

Power=1-β . Thus the average value of Z is directly related to power. 

Below is the result of the regression Z values on different genetic generating 

parameters values. 
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B5.2 Regression Analysis for f0D=0 
 
 The analysis was first done using all main effects and all two, three and four way 

interactions. The variables considered are trait model donated as ‘tmodel’, disease model, 

denoted as ‘dmodel’, allele frequency, p, heritability of the quantitative trait, h2, and 

penetrance of the disease in individuals with genotype AA, f2. For tmodel and dmodel we 

generated two dummy variables as follows: TA=1 if the trait model is additive, that is if 

tmodel=’A’, TR=1 if tmodel=’R’ i.e., the trait model is recessive. Similarly DA=1 if the 

disease model is additive, i.e. if dmodel=’A’ and DR=1 if dmodel=’R’. Appendix Table 

A5.1 shows the ANOVA table and the estimates of the coefficients of these variables and 

the interaction terms. In this model, the sum of square of error is 17.5, the mean square of 

error is 0.16 and the adjusted R2=0.99. The overall F statistic is significant (F=232.23, p 

< 0.0001). The five-way interactions, four-way Interactions and three-way interactions 

are not significant (p > 0.05). The two-way interactions of pxTA and pxTR are significant. 

The main effect of p, TA and TR are significant. The main effects of f2, h2, DA and DR 

are not significant. So we used the backward deletion method to determine the significant 

factors and interactions and develop a final model. The results are shown in Table 5.1. 

 

Table 5.1 shows the ANOVA table and parameter estimates. 

Dependent Variable: Z 
Analysis of Variance 
Source DF Sum of 

Square 
Mean 
Square 

F Value Pr > F 

Model 15 2625.80 175.05 422.00 <.0001 
Error 164 68.03 0.41   
Corrected Total 179 2693.83    
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Root MSE 0.64 R-Square 0.9747 
Dependent Mean -4.79 Adj R-Sq 0.9724 

Coeff Var -13.43 
 

  

 

Parameter Estimates 
Variable DF Parameter Estimate Standard Error  t Value Pr > |t| 
Intercept 1 -6.70817 0.2742 -24.46 <.0001
P 1 129.3222 4.49054 28.8 <.0001
h2 1 -8.125 0.72009 -11.28 <.0001
TA 1 2.81012 0.38103 7.37 <.0001
TR 1 6.92812 0.38103 18.18 <.0001
DR 1 -2.3915 0.44096 -5.42 <.0001
TAxDR 1 -0.66287 0.585 -1.13 0.2588 
TRxDR 1 -2.10087 0.585 -3.59 0.0004 
h2xTA 1 0.04875 1.01836 0.05 0.9619 
h2xTR 1 7.80125 1.01836 7.66 <.0001
h2xDR 1 -3.7775 1.24723 -3.03 0.0029 
pxTA 1 -52.4083 5.8795 -8.91 <.0001
pxTR 1 -144.433 5.8795 -24.57 <.0001
pxDR 1 44.60833 5.09179 8.76 <.0001
h2xTAxDR 1 -8.59375 1.76385 -4.87 <.0001
h2xTRxDR 1 -8.07875 1.76385 -4.58 <.0001

 
Note that p is endophenotype/allele frequency, h2 is the trait heritability, TA denotes the trait model is 
additive, TR denotes the trait model is recessive, DA denoted the disease model is additive and DR denotes 
the disease model is recessive. 
 
 The overall F statistic is still significant (F=422.00, p<0.0001) and the adjusted 

R2=0.97.  The fitted model is 

Z=-6.71+129.32*p-8.13*h2 

       +2.81*TA+6.93*TR- 2.39*DR 

 +0.05*h2*TA+7.8* h2xTR -3.78* h2xDR 

 -52.41*pxTA -144.43*pxTR +44.61*pxDR 

 -8.59*h2xTAxDR-8.08*h2xTRxDR-0.66*TAxDR-2.10*TRxDR       (5.1)    

 Where p, h2, TA, TR, DA and DR are defined above.                        
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From the fitted model, we can get the different regression equations for the 

various combinations of trait model and disease model. Table 5.2 shows the regression 

coefficients for p and h2 for predicting the mean Z value for different models and Figure 

5.1 shows the comparison of the observed average Z value to the predicted “expected” 

mean Z value. From Figure 5.1, we can see that these regression models fit fairly since all 

points are close to the line y=x.  
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Table 5.2 The estimated regression coefficients for obtaining the mean value of 

Haseman-Elston statistic for different models. 

Tmodel Dmodel Intercept px10 h2 

D D -6.71 12.93 -8.13 

D A -6.71 12.93 -8.13 

D R -9.1 17.39 -11.91 

A D -3.9 7.69 -8.08 

A A -3.9 7.69 -8.08 

A R -6.95 12.15 -20.45 

R D 0.22 -1.51 -0.33 

R A 0.22 -0.51 -0.33 

R R -4.75 2.95 -12.19 
 
Note that p is the disease allele frequency, h2 is the trait heritability, Tmodel=’A’ denotes 
the trait model is additive, Tmodel=’D’ denotes the trait model is dominant, Tmodel=’R’ 
denotes the trait model is recessive, Dmodel=’A’ denotes the disease model is additive, 
Dmodel=’D’ denotes the disease model is dominant and Dmodel=’R’ denotes the disease 
model is recessive. 
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Figure 5.1 Mean Z value (Haseman-Elston statistic): Comparison of predicted expected 

value and observed (simulated) average value. 
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B  5.3 Regression Analysis for f0D=0.001 
 

The statements begin the analysis including the entire main factors and all the 

interactions. Appendix Table A5.2 shows the ANOVA table and parameter estimates. In 

this model, we created one more dummy variable for disease model, DM=1 if 

dmodel=’M’ that is when the disease model is Multiplicative (Log-additive). From the 

results, we can see that sum of square of error is 4.29, the mean square error is 0.03 and 

the adjust R2=0.99.The overall F statistic is significant (F=324.11, p < 0.0001). All the 

five-way interactions and four-way Interactions are not significant (p > 0.05). The three-

way interactions only pxh2xTA and pxh2xTR are significant. The two-way interactions 

between disease model and trait model TDxDR, TRxDM, pxh2, pxTA, pxTR, pxDR, 

pxDM are significant. The main effects of p, TA, TR, DR, DM are significant. So we 

refitted the model, the results is shown in Table 5.3. 

  Table5.3 shows ANOVA table and parameter estimates for mean of Z 

Dependent Variable: Z 
Analysis of Variance 
Source DF Sum of 

Square 
Mean 
Square 

F Value Pr > F 

Model 17 868.10 51.06 210.09 <.0001 
Error 222 53.96 0.24   
Corrected Total 239 922.06    

 

Root MSE 0.49 R-Square 0.9415 
Dependent Mean -2.48 Adj R-Sq 0.9370 

Coeff Var -19.87 
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Parameter Estimates 
Variable  DF Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 1 -7.01544 0.24105 -29.1 <.0001 
P 1 159.0667 6.65637 23.9 <.0001 
h2 1 1.16375 0.70264 1.66 0.0991 
TA 1 3.01056 0.32957 9.13 <.0001 
TR 1 6.63406 0.33641 19.72 <.0001 
DR 1 5.02425 0.15095 33.28 <.0001 
DM 1 3.322 0.15095 22.01 <.0001 
TRxDR 1 -3.8085 0.16536 -23.03 <.0001 
TRxDM 1 -2.42525 0.16536 -14.67 <.0001 
PxDR 1 -101.075 3.89757 -25.93 <.0001 
PxDM 1 -64.1917 3.89757 -16.47 <.0001 
pxh2 1 -252 19.48786 -12.93 <.0001 
PxTA 1 -95.9063 9.14062 -10.49 <.0001 
PxTR 1 -148.65 9.14062 -16.26 <.0001 
h2xTA 1 -5.79125 0.99369 -5.83 <.0001 
h2xTR 1 -1.61938 0.99369 -1.63 0.1046 
pxh2xTA 1 202.625 27.56 7.35 <.0001 
pxh2xTR 1 239.0625 27.56 8.67 <.0001 
 
Note that p is endophenotype/allele frequency, h2 is the trait heritability, TA denotes the trait model is 
additive, TR denotes the trait model is recessive, DM denotes the disease model is multiplicative and DR 
denotes the disease model is recessive. 
 

The overall F statistic is still significant (F=210.09, p<0.0001) and the adjusted 

R2=0.94. The fitted final model is 

 Z= -7.02+159.07*p+1.16*h2-252*pxh2 

                 +3.01*TA+6.63*TR+5.02*DR+3.32*DM 

                 -3.81*TRxDR-2.43*TRxDM-101.08*pxDR-64.19*pxDM 

                  -95.91*pxTA-148.65*pxTR-5.79*h2xTA-1.62*h2xTR 

                 +202.63*pxh2xTA+239.06*pxh2xTR                (5.2) 

 From the fitted model, we can get the different regression equations for different 

generating models. Table 5.4 shows the regression coefficient for the predicting the Z 

value for different models and Figure 5.2 shows the comparison of the predicted mean Z 
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value expected and the observed average Z value in the simulations. From Figure 5.2, we 

can see that it’s a good model and most points are close to the line y=x. 

 

Table 5.4: Regression coefficients for predicting the mean value of the Haseman-Elston 

statistic based on allele frequency and trait heritability for different pleiotropic models. 

Tmodel Dmodel intercept px10 h2 pxh2x10 

D D -7.02 15.91 1.16 -25.2 

D A -7.02 15.91 1.16 -25.2 

D R -2 -5.8 1.16 -25.2 

D M -3.7 9.49 1.16 -25.2 

A D -4.01 6.32 -4.63 -4.94 

A A -4.01 6.32 -4.63 -4.94 

A R 1.01 -3.79 -4.63 -4.94 

A M -0.69 -0.1 -4.63 -4.94 

R D -0.39 1.04 -0.46 -1.3 

R A -0.39 1.04 -0.46 -1.3 

R R 0.82 -9.07 -0.46 -1.3 

R M -0.02 -5.38 -0.46 -1.3 
 
Note that p is the disease allele frequency, h2 is the trait heritability, Tmodel=’A’ denotes 
the trait model is additive, Tmodel=’D’ denotes the trait model is dominant, Tmodel=’R’ 
denotes the trait model is recessive, Dmodel=’A’ denotes the disease model is additive, 
Dmodel=’D’ denotes the disease model is dominant, Dmodel=’R’ denotes the disease 
model is recessive and Dmodel=’M’ denoted the disease model is multiplicative. 
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  Figure 5.2 Z value comparison: expected value vs. average simulated value 
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Chapter 6 

BDiscussion and Future Work 

B6.1 Sample Selection 
 
 From our simulation results, we can see that the power of linkage analysis of 

quantitative trait endophenotype can be increased by using a selected sample of sib-pairs. 

That is, the power for random samples is much lower than the sample which includes at 

least one affected proband. We have investigated only one approach to linkage analysis 

specifically the Haseman-Elston analysis. Other statistical approaches to linkage analysis 

of endophenotypes such as variance components analysis and association analysis are 

likely to generate greater power using the selection approach we proposed. These can be 

studied as well using our simulation software.  
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BAppendix:  
 
Appendix Table A1.1 T-value based on a particular simulation model (p=0.01, q=0.99, 
fAA=0.5, fAB=0.25, fBB=0, z0=0, z1=2, z2=4). 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

-2.56713 -3.21316 -3.17492 -2.87639 -3.35963 -1.65019 -2.09628 
-2.80922 -3.24851 -3.69736 -3.9387 -3.47578 -3.93237 -2.50926 
-3.77627 -4.21305 -2.06752 -1.85226 -2.90998 -2.14643 -2.46431 
-4.14368 -2.60941 -2.99032 -2.72398 -1.73651 -1.89192 -3.46352 
-3.47074 -3.2976 -1.88292 -3.09127 -1.55 -3.24751 -1.99104 
-1.23574 -3.29563 -2.94044 -2.13032 -2.87098 -2.50369 -3.21095 
-1.94212 -4.30661 -3.00031 -4.15056 -2.45279 -1.78194 -2.0228 
-2.02564 -3.13499 -4.41064 -1.63671 -3.4178 -2.60192 -2.06675 
-2.92414 -4.07143 -2.06494 -3.31607 -1.9794 -2.58062 -2.34036 
-2.46406 -1.28652 -2.13611 -3.05888 -2.21638 -2.8425 -2.60882 
-3.04074 -2.78188 -3.42644 -3.28118 -4.05328 -2.89153 -4.30098 
-2.03794 -1.53771 -2.68968 -2.39289 -2.2802 -3.54955 -2.49937 
-3.36501 -3.07525 -1.62436 -2.39179 -2.7288 -1.9018 -2.8883 
-2.25108 -2.71529 -3.3466 -1.98527 -1.84702 -2.38616 -1.99121 
-2.20849 -2.78427      
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Appendix Table A2.1 simulated pedigree data based on a particular simulation model 
(p=0.01, q=0.99, fAA=0.5, fAB=0.25, fBB=0, z0=0, z1=2, z2=4). 
 

 
Note that GD[0] is father’s PL genotype, GD[1] is mother’s PL genotype, GM[0] is father’s marker 
genotype, GM[1] is mother’s marker genotype,  GD[f2] is offsping’s PL genotype, GM[f2] is offspring’s 
marker genotype, IndividualID=3 is  proband, individualID=4 is sibling. 
 

 

 

 

 

 

 

 

 

 

familyID individualID fatherID motherIDsex GD[0] GD[1] GM[0]GM[1]PT GD[f2] GM[f2]
1 3 1 2 2 12 22 43 12 3.353604 12 41 
1 4 1 2 1 12 22 43 12 2.839293 12 42 
2 3 1 2 1 12 22 23 41 3.451288 12 21 
2 4 1 2 2 12 22 23 41 1.130917 12 24 
3 3 1 2 1 12 22 32 41 1.923809 12 31 
3 4 1 2 2 12 22 32 41 5.033534 12 31 
4 3 1 2 2 12 22 13 24 1.664957 12 14 
4 4 1 2 1 12 22 13 24 1.596932 12 12 
5 3 1 2 2 12 22 34 12 2.420756 12 31 
5 4 1 2 2 12 22 34 12 -0.89957 22 42 
6 3 1 2 1 12 22 31 24 5.204206 12 32 
6 4 1 2 1 12 22 31 24 -0.22507 22 12 
7 3 1 2 1 12 22 42 31 2.613266 12 43 
7 4 1 2 1 12 22 42 31 3.082184 12 41 
8 3 1 2 1 12 22 24 31 2.325471 12 23 
8 4 1 2 2 12 22 24 31 4.077521 12 23 
9 3 1 2 2 12 22 24 13 3.776028 12 23 
9 4 1 2 2 12 22 24 13 0.957283 22 41 
10 3 1 2 2 12 22 24 31 2.838258 12 21 
10 4 1 2 1 12 22 24 31 2.191085 12 21 
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Appendix Table A4.1 shows the simulation results of the power for gene frequency 
p=0.01, f0=0 and θ =0.01, α=0.05, n=100, N=1000 

 
Note that p is disease allele frequency, f2=p(D+|AA), f0=p(D+|BB), h2 is trait heritability, 
Trait model=’A’ denoted the trait model is additive and  Disease model =’A’ denotes the 
disease model is additive, Disease model=’D’ denotes the disease model is dominant, 
Disease model =’R’ denotes the disease model is recessive. 
 
  

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 

p f2 f0 h2 Trait model 
Disease 
model Power 

0.01 0.5 0 0.1 A D 95.2 
0.01 0.5 0 0.1 A A 96.2 
0.01 0.5 0 0.1 A R 100 
0.01 0.5 0 0.2 A D 100 
0.01 0.5 0 0.2 A A 100 
0.01 0.5 0 0.2 A R 100 
0.01 0.5 0 0.3 A D 100 
0.01 0.5 0 0.3 A A 100 
0.01 0.5 0 0.3 A R 100 
0.01 0.5 0 0.4 A D 100 
0.01 0.5 0 0.4 A A 100 
0.01 0.5 0 0.4 A R 100 
0.01 0.5 0 0.5 A D 100 
0.01 0.5 0 0.5 A A 100 
0.01 0.5 0 0.5 A R 100 
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Appendix Table A4.2 shows the simulation results of the power for p=0.01, f0=0.001, 
θ =0.01 and n=100, N=1000 
 

p f2 f0 h2 Trait model 
Disease 
model Power 

0.01 0.5 0.001 0.1 A D 94.2 
0.01 0.5 0.001 0.1 A A 92 
0.01 0.5 0.001 0.1 A R 29.2 
0.01 0.5 0.001 0.1 A M 46.6 
0.01 0.5 0.001 0.2 A D 100 
0.01 0.5 0.001 0.2 A A 99.2 
0.01 0.5 0.001 0.2 A R 36.2 
0.01 0.5 0.001 0.2 A M 75.8 
0.01 0.5 0.001 0.3 A D 100 
0.01 0.5 0.001 0.3 A A 100 
0.01 0.5 0.001 0.3 A R 36.8 
0.01 0.5 0.001 0.3 A M 86.2 
0.01 0.5 0.001 0.4 A D 100 
0.01 0.5 0.001 0.4 A A 100 
0.01 0.5 0.001 0.4 A R 37 
0.01 0.5 0.001 0.4 A M 90.8 
0.01 0.5 0.001 0.5 A D 100 
0.01 0.5 0.001 0.5 A A 100 
0.01 0.5 0.001 0.5 A R 37.6 
0.01 0.5 0.001 0.5 A M 94.4 

 
Note that p is disease allele frequency, f2=p(D+|AA), f0=p(D+|BB), h2 is trait heritability, 
Trait model=’A’ denoted the trait model is additive and  Disease model =’A’ denotes the 
disease model is additive, Disease model=’D’ denotes the disease model is dominant, 
Disease model =’R’ denotes the disease model is recessive. 
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Appendix Table A4.3 shows the simulation results of the power for p=0.05, f0=0, 
θ =0.01 and n=100, N=1000 
 

p f2 f0 h2 Trait model
Disease 
model Power 

0.05 0.5 0 0.1 A D 23.8 
0.05 0.5 0 0.1 A A 30 
0.05 0.5 0 0.1 A R 96.8 
0.05 0.5 0 0.2 A D 58.2 
0.05 0.5 0 0.2 A A 63.6 
0.05 0.5 0 0.2 A R 100 
0.05 0.5 0 0.3 A D 83.6 
0.05 0.5 0 0.3 A A 88.2 
0.05 0.5 0 0.3 A R 100 
0.05 0.5 0 0.4 A D 97.8 
0.05 0.5 0 0.4 A A 96 
0.05 0.5 0 0.4 A R 100 
0.05 0.5 0 0.5 A D 100 
0.05 0.5 0 0.5 A A 100 
0.05 0.5 0 0.5 A R 100 

 
Note that p is disease allele frequency, f2=p(D+|AA), f0=p(D+|BB), h2 is trait heritability, 
Trait model=’A’ denoted the trait model is additive and  Disease model =’A’ denotes the 
disease model is additive, Disease model=’D’ denotes the disease model is dominant, 
Disease model =’R’ denotes the disease model is recessive. 
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Appendix Table A4.4 shows the simulation results of the power for p=0.05, f0=0.001, 
θ =0.01 and n=100, N=1000 
 

p f2 f0 h2 Trait model
Disease 
model Power 

0.05 0.5 0.001 0.1 A D 22.8 
0.05 0.5 0.001 0.1 A A 27.4 
0.05 0.5 0.001 0.1 A R 67.4 
0.05 0.5 0.001 0.1 A M 52.4 
0.05 0.5 0.001 0.2 A D 56.8 
0.05 0.5 0.001 0.2 A A 59.4 
0.05 0.5 0.001 0.2 A R 96.4 
0.05 0.5 0.001 0.2 A M 84.6 
0.05 0.5 0.001 0.3 A D 84.4 
0.05 0.5 0.001 0.3 A A 86 
0.05 0.5 0.001 0.3 A R 99.8 
0.05 0.5 0.001 0.3 A M 98.2 
0.05 0.5 0.001 0.4 A D 98 
0.05 0.5 0.001 0.4 A A 95.4 
0.05 0.5 0.001 0.4 A R 100 
0.05 0.5 0.001 0.4 A M 99.6 
0.05 0.5 0.001 0.5 A D 100 
0.05 0.5 0.001 0.5 A A 99.2 
0.05 0.5 0.001 0.5 A R 100 
0.05 0.5 0.001 0.5 A M 100 

 
Note that p is disease allele frequency, f2=p(D+|AA), f0=p(D+|BB), h2 is trait heritability, 
Trait model=’A’ denoted the trait model is additive and  Disease model =’A’ denotes the 
disease model is additive, Disease model=’D’ denotes the disease model is dominant, 
Disease model =’R’ denotes the disease model is recessive and Disease model =’M’ 
denotes the disease model is multiplicative. 
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Appendix Table A5.1 ANOVA table and parameter estimates 
 
The Reg Procedure 
Dependent Variable: Z 
Analysis of Variance 
Source DF Sum of Square Mean Square F Value Pr > F 
Model 71 2676.30 37.69 232.23 <.0001 
Error 108 17.53 0.16   
Corrected Total 179 2693.83    
 
 

Root MSE 0.40 R-Square 0.9935 

Dependent Mean -4.79 Adj R-Sq 0.9892 

Coeff Var -8.40 
 

  

 
PTAxDTRxDAmeter Estimates 

VTAxDRiable DF 
PTAxDTRxDAmeter 
Estimate 

StandTAxDRd 
ETRxDRor t Value Pr > |t| 

Intercept 1 -8.33112 1.57039 -5.31 <.0001 
p 1 183.2125 43.55479 4.21 <.0001 
f2 1 -0.79875 3.80876 -0.21 0.8343 
h2 1 -1.98375 4.7349 -0.42 0.6761 
TA 1 5.24712 2.22087 2.36 0.0199 
TR 1 8.44225 2.22087 3.8 0.0002 
DA 1 -0.08575 2.22087 -0.04 0.9693 
DR 1 -3.809 2.22087 -1.72 0.0892 
pxTA 1 -134.813 61.59578 -2.19 0.0308 
pxTR 1 -197.975 61.59578 -3.21 0.0017 
pxDA 1 8.875 61.59578 0.14 0.8857 
pxDR 1 93.5 61.59578 1.52 0.1319 
h2xTA 1 -7.65875 6.69617 -1.14 0.2553 
h2xTR 1 1.45 6.69617 0.22 0.829 
h2xDA 1 0.2825 6.69617 0.04 0.9664 
h2xDR 1 0.14 6.69617 0.02 0.9834 
f2xTA 1 0.36625 5.38639 0.07 0.9459 
f2xTR 1 0.525 5.38639 0.1 0.9225 
f2xDA 1 0.5175 5.38639 0.1 0.9236 
f2xDR 1 0.4475 5.38639 0.08 0.9339 
pxh2xTA 1 269.875 185.7183 1.45 0.1491 
pxh2xTR 1 220.5 185.7183 1.19 0.2377 
pxh2xDA 1 -30.25 185.7183 -0.16 0.8709 
pxh2xDR 1 -140 185.7183 -0.75 0.4526 
pxf2xTA 1 -3.625 149.3917 -0.02 0.9807 
pxf2xTR 1 -5 149.3917 -0.03 0.9734 
pxf2xDA 1 -29.75 149.3917 -0.2 0.8425 
pxf2xDR 1 -17.75 149.3917 -0.12 0.9056 
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h2xf2xTA 1 -1.6875 16.24059 -0.1 0.9174 
h2xf2xTR 1 -0.525 16.24059 -0.03 0.9743 
h2xf2xDA 1 -2.175 16.24059 -0.13 0.8937 
h2xf2xDR 1 -0.975 16.24059 -0.06 0.9522 
TAXDA 1 0.04188 3.14078 0.01 0.9894 
TAXDR 1 1.22413 3.14078 0.39 0.6975 
TRXDA 1 0.00963 3.14078 0 0.9976 
TRXDR 1 1.22288 3.14078 0.39 0.6978 
pxf2 1 25.875 105.6359 0.24 0.807 
pxh2 1 -197.625 131.3226 -1.5 0.1353 
f2xh2 1 1.4875 11.48383 0.13 0.8972 
pxh2xf2 1 -58.75 318.5042 -0.18 0.854 
pxTAXDA 1 -2.2875 87.10958 -0.03 0.9791 
pxTAXDR 1 -66.4625 87.10958 -0.76 0.4471 
pxTRXDA 1 -2.8125 87.10958 -0.03 0.9743 
pxTRXDR 1 -113.288 87.10958 -1.3 0.1962 
f2xTAXDA 1 -0.52375 7.61751 -0.07 0.9453 
f2xTAXDR 1 0.31875 7.61751 0.04 0.9667 
f2xTRXDA 1 -0.12125 7.61751 -0.02 0.9873 
f2xTRXDR 1 0.78875 7.61751 0.1 0.9177 
h2xTAXDA 1 0.46375 9.46981 0.05 0.961 
h2xTAXDR 1 -15.3513 9.46981 -1.62 0.1079 
h2xTRXDA 1 -0.32375 9.46981 -0.03 0.9728 
h2xTRXDR 1 -16.5338 9.46981 -1.75 0.0837 
pxh2xf2xTA 1 8.75 450.4329 0.02 0.9845 
pxh2xf2xTR 1 -2.5 450.4329 -0.01 0.9956 
pxh2xf2xDA 1 107.5 450.4329 0.24 0.8118 
pxh2xf2xDR 1 47.5 450.4329 0.11 0.9162 
pxf2xTAXDA 1 8.375 211.2718 0.04 0.9685 
pxf2xTAXDR 1 -7.375 211.2718 -0.03 0.9722 
pxf2xTRXDA 1 0.625 211.2718 0 0.9976 
pxf2xTRXDR 1 -24.875 211.2718 -0.12 0.9065 
pxh2xTAXDA 1 -12.375 262.6453 -0.05 0.9625 
pxh2xTAXDR 1 241.625 262.6453 0.92 0.3596 
pxh2xTRXDA 1 6.875 262.6453 0.03 0.9792 
pxh2xTRXDR 1 297.375 262.6453 1.13 0.26 
f2xh2xTAXDA 1 0.7125 22.96766 0.03 0.9753 
f2xh2xTAXDR 1 -2.0875 22.96766 -0.09 0.9277 
f2xh2xTRXDA 1 1.0375 22.96766 0.05 0.9641 
f2xh2xTRXDR 1 -2.9875 22.96766 -0.13 0.8967 
pxh2xf2xTAXDA 1 -1.25 637.0083 0 0.9984 
pxh2xf2xTAXDR 1 43.75 637.0083 0.07 0.9454 
pxh2xf2xTRXDA 1 -28.75 637.0083 -0.05 0.9641 
pxh2xf2xTRXDR 1 58.75 637.0083 0.09 0.9267 
 
Note that p is the disease allele frequency, h2 is the trait heritability, Tmodel=’A’ denotes 
the trait model is additive, Tmodel=’D’ denotes the trait model is dominant, Tmodel=’R’ 
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denotes the trait model is recessive, Dmodel=’A’ denotes the disease model is additive, 
Dmodel=’D’ denotes the disease model is dominant, Dmodel=’R’ denotes the disease 
model is recessive. 
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Appendix Table A5.2 shows ANOVA table and pTAxDTRxDAmeter estimates 
 
The Reg Procedure 
Dependent VTAxDRiable: Z 
Analysis of VTAxDRiance 
Source DF Sum of 

SquTAxDRe
Mean 
SquTAxDRe

F Value Pr > F 

Model 95 917.77 9.66 324.11 <.0001 
ETRxDRor 144 4.29 0.03   
CoTRxDRected 
Total 

239 922.06    

 

  

Root MSE 0.17 R-SquTAxDRe 0.9953 
Dependent Mean -2.48 Adj R-Sq 0.9923 

Coeff VTAxDR -6.96 
 

  

 

PTAxDTRxDTAxDMeter Estimates 

VTAxDRiable DF 
PTAxDTRxDTAxDMeter 
Estimate 

StandTAxDRd 
ETRxDRor t Value Pr > |t| 

Intercept 1 -6.81325 0.67296 -10.12 <.0001 
p 1 161.725 18.66455 8.66 <.0001 
f2 1 -1.8025 1.63217 -1.1 0.2713 
h2 1 0.86 2.02905 0.42 0.6723 
TA 1 3.61963 0.95171 3.8 0.0002 
TR 1 6.80362 0.95171 7.15 <.0001 
DA 1 0.83775 0.95171 0.88 0.3802 
DR 1 5.66875 0.95171 5.96 <.0001 
DM 1 4.034 0.95171 4.24 <.0001 
TAXDA 1 -1.061 1.34592 -0.79 0.4318 
TAXDR 1 -2.08712 1.34592 -1.55 0.1232 
TRXDA 1 -0.62125 1.34592 -0.46 0.6451 
TRXDR 1 -4.52087 1.34592 -3.36 0.001 
TAXDM 1 -1.83213 1.34592 -1.36 0.1756 
TRXDM 1 -3.54487 1.34592 -2.63 0.0094 
pxf2 1 22.25 45.26818 0.49 0.6238 
pxh2 1 -267 56.27573 -4.74 <.0001 
f2xh2 1 -2.35 4.92117 -0.48 0.6337 
pxh2xf2 1 65 136.4887 0.48 0.6346 
pxTA 1 -110.013 26.39566 -4.17 <.0001 
pxTR 1 -169.763 26.39566 -6.43 <.0001 
pxDA 1 -22.225 26.39566 -0.84 0.4012 
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pxDR 1 -123.325 26.39566 -4.67 <.0001 
pxDM 1 -84.45 26.39566 -3.2 0.0017 
f2xTA 1 2.52375 2.30823 1.09 0.2761 
f2xTR 1 1.94375 2.30823 0.84 0.4011 
f2xDA 1 -0.27 2.30823 -0.12 0.907 
f2xDR 1 0.195 2.30823 0.08 0.9328 
f2xDM 1 -0.2225 2.30823 -0.1 0.9233 
h2xTA 1 -3.73125 2.86951 -1.3 0.1956 
h2xTR 1 -1.00125 2.86951 -0.35 0.7277 
h2xDA 1 1.6825 2.86951 0.59 0.5586 
h2xDR 1 1.395 2.86951 0.49 0.6276 
h2xDM 1 0.9875 2.86951 0.34 0.7312 
pxf2xTA 1 -24.875 64.01888 -0.39 0.6982 
pxf2xTR 1 -20.375 64.01888 -0.32 0.7507 
pxf2xDA 1 16.5 64.01888 0.26 0.797 
pxf2xDR 1 20 64.01888 0.31 0.7552 
pxf2xDM 1 9.75 64.01888 0.15 0.8792 
pxh2xTA 1 204.625 79.58591 2.57 0.0112 
pxh2xTR 1 270.125 79.58591 3.39 0.0009 
pxh2xDA 1 -18.75 79.58591 -0.24 0.8141 
pxh2xDR 1 39 79.58591 0.49 0.6249 
pxh2xDM 1 28.75 79.58591 0.36 0.7184 
h2xf2xTA 1 -12.8875 6.95959 -1.85 0.0661 
h2xf2xTR 1 1.8625 6.95959 0.27 0.7894 
h2xf2xDA 1 -3.2 6.95959 -0.46 0.6464 
h2xf2xDR 1 2.675 6.95959 0.38 0.7013 
h2xf2xDM 1 2.8 6.95959 0.4 0.688 
pxh2xf2xTA 1 183.75 193.0242 0.95 0.3427 
pxh2xf2xTR 1 -66.25 193.0242 -0.34 0.7319 
pxh2xf2xDA 1 35 193.0242 0.18 0.8564 
pxh2xf2xDR 1 -142.5 193.0242 -0.74 0.4616 
pxh2xf2xDM 1 -125 193.0242 -0.65 0.5183 
pxTAXDA 1 33.7 37.3291 0.9 0.3681 
pxTAXDR 1 45.5625 37.3291 1.22 0.2242 
pxTRXDA 1 14.725 37.3291 0.39 0.6938 
pxTRXDR 1 28.5875 37.3291 0.77 0.445 
pxTAXDM 1 33.9625 37.3291 0.91 0.3644 
pxTRXDM 1 35.2375 37.3291 0.94 0.3468 
h2xTAXDA 1 3.925 4.0581 0.97 0.3351 
h2xTAXDR 1 0.17625 4.0581 0.04 0.9654 
h2xTRXDA 1 -2.0975 4.0581 -0.52 0.606 
h2xTRXDR 1 -1.90875 4.0581 -0.47 0.6388 
h2xTAXDM 1 0.08875 4.0581 0.02 0.9826 
h2xTRXDM 1 -0.68625 4.0581 -0.17 0.866 
f2xTAXDA 1 1.3625 3.26434 0.42 0.677 
f2xTAXDR 1 -3.41125 3.26434 -1.05 0.2978 
f2xTRXDA 1 -0.3625 3.26434 -0.11 0.9117 
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f2xTRXDR 1 -2.26375 3.26434 -0.69 0.4891 
f2xTAXDM 1 -1.68625 3.26434 -0.52 0.6063 
f2xTRXDM 1 -0.71125 3.26434 -0.22 0.8278 
pxf2xTAXDA 1 -57.25 90.53636 -0.63 0.5282 
pxf2xTAXDR 1 5.625 90.53636 0.06 0.9505 
pxf2xTRXDA 1 -2.75 90.53636 -0.03 0.9758 
pxf2xTRXDR 1 71.375 90.53636 0.79 0.4318 
pxf2xTAXDM 1 9.125 90.53636 0.1 0.9199 
pxf2xTRXDM 1 27.625 90.53636 0.31 0.7607 
pxh2xTAXDA 1 -120.5 112.5515 -1.07 0.2861 
pxh2xTAXDR 1 -46.125 112.5515 -0.41 0.6826 
pxh2xTRXDA 1 17.75 112.5515 0.16 0.8749 
pxh2xTRXDR 1 -97.125 112.5515 -0.86 0.3896 
pxh2xTAXDM 1 -28.375 112.5515 -0.25 0.8013 
pxh2xTRXDM 1 -64.875 112.5515 -0.58 0.5652 
f2xh2xTAXDA 1 -9.075 9.84234 -0.92 0.3581 
f2xh2xTAXDR 1 17.2625 9.84234 1.75 0.0816 
f2xh2xTRXDA 1 4.425 9.84234 0.45 0.6537 
f2xh2xTRXDR 1 -1.9875 9.84234 -0.2 0.8403 
f2xh2xTAXDM 1 12.2875 9.84234 1.25 0.2139 
f2xh2xTRXDM 1 -4.3375 9.84234 -0.44 0.6601 
pxh2xf2xTAXDA 1 277.5 272.9774 1.02 0.3111 
pxh2xf2xTAXDR 1 -331.25 272.9774 -1.21 0.2269 
pxh2xf2xTRXDA 1 -52.5 272.9774 -0.19 0.8478 
pxh2xf2xTRXDR 1 178.75 272.9774 0.65 0.5136 
pxh2xf2xTAXDM 1 -213.75 272.9774 -0.78 0.4349 
pxh2xf2xTRXDM 1 188.75 272.9774 0.69 0.4904 
 
Note that p is the disease allele frequency, h2 is the trait heritability, Tmodel=’A’ denotes 
the trait model is additive, Tmodel=’D’ denotes the trait model is dominant, Tmodel=’R’ 
denotes the trait model is recessive, Dmodel=’A’ denotes the disease model is additive, 
Dmodel=’D’ denotes the disease model is dominant, Dmodel=’R’ denotes the disease 
model is recessive and Dmodel=’M’ denoted the disease model is multiplicative. 
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