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One of the key components of many emerging networks such as ad hoc and
sensor networks is data storage/caching. It requires optimized placement of
data for efficient access, even when the users of the data are geographically
distributed, mobile or have very limited computing and communication ca-
pacities. Meanwhile, ad hoc and sensor networks are resource constrained in
terms of battery power, memory capacity, etc. In this dissertation work, we
address the data caching problem in ad hoc and sensor networks under different
constraints.

First, we consider the cache placement problem of minimizing total data
access cost in ad hoc networks with multiple data items and nodes with limited
memory capacity. The above optimization problem is known to be NP-hard.
Defining benefit as the reduction in total access cost, we present a polynomial-
time centralized approximation algorithm that provably delivers a solution
whose benefit is at least one-fourth (one-half for uniform-size data items) of
the optimal benefit. The approximation algorithm is amenable to localized
distributed implementation, which is shown via simulations to perform close
to the approximation algorithm. Our distributed algorithm naturally extends
to networks with mobile nodes. We simulate our distributed algorithm using
a network simulator (ns2), and demonstrate that it significantly outperforms
another existing caching technique (by Yin and Cao [56]) in all important per-
formance metrics. The performance differential is particularly large in more
challenging scenarios, such as higher access frequency and smaller memory.

Second, we address an optimization problem that arises in the context of
cache placement in sensor networks. In particular, we consider the cache place-
ment problem where the goal is to determine a set of nodes in the network to
cache/store the given data item, such that the overall communication cost in-
curred in accessing the item is minimized, under the constraint that the total
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communication cost in updating the selected caches is less than a given con-
stant. The update cost constraint is based on the observation that, the updates
always originate from the server node, and hence, the server node and the sur-
rounding nodes bear most of the communication cost incurred in updating.
Therefore, there is a need to constrain the total update cost incurred in the
network, to prolong the lifetime of the server node and the nodes around it —
and hence, possibly of the sensor network. In our network model, there is a
single server (containing the original copy of the data item) and multiple client
nodes (that wish to access the data item). For various settings of the problem,
we design optimal, near-optimal, heuristic-based, and distributed algorithms,
and evaluate their performance through simulations on randomly generated
sensor networks.

Third, we consider the problem of caching a data item in a network wherein
the data item is read as well as updated by other nodes and there is a limit on
the number of cache nodes allowed. More formally, given a network graph, the
read /write frequencies to the data item by each node, and the cost of caching
the data item at each node, the problem addressed in this work is to select a
set of P nodes to cache the data item such that the sum of the reading, writing
(using an optimal Steiner tree), and storage cost is minimized. or networks
with a tree topology, we design an optimal dynamic programming algorithm .
For the general graph topology, where the problem is NP-complete, we present
a centralized heuristic and its distributed implementation. Through extensive
simulations in general graphs, we show that the centralized heuristic performs
very close to the exponential optimal algorithm for small networks, and for
larger networks, the distributed implementation and the dynamic program-
ming algorithm on an appropriately extracted tree perform quite close to the
centralized heuristic.
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Chapter 1

Introduction

Ad hoc networks are multihop wireless networks of small computing devices
without the intervening of infrastructure. The computing devices could be
conventional computers (e.g., PDA; laptop, or PC) running interactive soft-
ware applications, or backbone routing platforms without any interactive use,
or even embedded processors interfaced with sensors/actuators that directly
interface with the physical environment. Sensor networks are wireless ad hoc
networks which consist of sensor nodes with short-range radios and limited on-
board processing capability, forming a multi-hop network of irregular topology.

Ad hoc networks require minimum setup and administration cost, thus find
tremendous use in a wide range of applications. For example, on one end,
MANETS or mobile ad hoc networks [39] have been considered for impromptu
conferencing and various tactical applications such as law enforcement, search-
and-rescue, military, and remote explorations. On the other end, wireless net-
works of microcontroller-based sensor /actuator nodes have been considered for
sensor networking and robot swarms. Applications of sensor networking are
plentiful [3] — from habitat or environment monitoring to remote surveillance.
Recently, mesh networks of wireless capable routers are also under active study
for applications such as community or enterprise networking [2].

However, both ad hoc networks and sensor networks face challenges. First,
the nodes are usually powered by small batteries, making energy efficiency a
critical design goal. Second, the scarcity of wireless bandwidth seriously affect
the efficient operation of ad hoc and sensor networks. Third, the nodes in such
networks usually have very limited memory capacity and processing power.

Caching has been a widely used effective technique in the web environ-
ment [8, 10, 43] and peer-to-peer networks [19, 25, 38| to alleviate problems such
as server overloading, delayed respond time, and inadequate bandwidth. How-
ever, relatively less work has been done on the cache placement problem in the
specific context of ad hoc networks and sensor networks. In this dissertation
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work, we specifically address the challenges faced by ad hoc and sensor net-
works and study how caching can improve the functionalities of such networks.
We have developed a paradigm of data caching techniques to support effective
data access in ad hoc networks. We also focus on designing caching techniques
to conserve energy in the network by caching data items at selected sensor
nodes in a sensor network.

In particular, we address the data caching problem in ad hoc and sensor
networks under different constraints: update cost constraint [49,51] , memory
capacity constraint [50] and number of allowable caches constraint [24]. We
have developed optimal, near optimal centralized algorithms in either tree net-
works or general networks. We also present their distributed implementations.
The thesis is organized as follows. In Chapter 2, we address the data caching
in ad hoc networks with memory constraint. In Chapter 3, we address the data
caching under update cost constraint in sensor networks. We study the data
caching under number constraint in Chapter 4. In Chapter 5 we conclude by
discussing the future work.



Chapter 2

Data Caching Under Memory
Constraint

2.1 Introduction

Ad hoc networks are multihop wireless networks of small computing devices
with wireless interfaces. The computing devices could be conventional com-
puters (e.g., PDA, laptop, or PC) or backbone routing platforms, or even
embedded processors such as sensor nodes. The problem of optimal placement
of caches to reduce overall cost of accessing data is motivated by the following
two defining characteristics of ad hoc networks. Firstly, the ad hoc networks
are multihop networks without a central base station. Thus, remote access
of information typically occurs via multi-hop routing, which can greatly ben-
efit from caching to reduce access latency. Secondly, the network is generally
resource constrained in terms of channel bandwidth or battery power in the
nodes. Caching helps in reducing communication, which results in savings in
bandwidth as well as battery energy. The problem of cache placement is partic-
ularly challenging when each network node has limited memory to cache data
items.

In this paper, our focus is on developing efficient caching techniques in ad
hoc networks with memory limitations. Research into data storage, access,
and dissemination techniques in ad hoc networks is not new. In particular,
these mechanisms have been investigated in connection with sensor networking
29, 44], peer-to-peer networks [1, 31], mesh networks [32], world wide web [43],
and even more general ad hoc networks [25,56]. However, the presented ap-
proaches have so far been somewhat “ad hoc” and empirically-based, without
any strong analytical foundation. In contrast, the theory literature abounds
in analytical studies into the optimality properties of caching and replica allo-
cation problems (see, for example, [6]). However, distributed implementations
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of these techniques and their performances in complex network settings have
not been investigated. Its even unclear whether these techniques are amenable
to efficient distributed implementations. Our goal in this paper is to develop
an approach that is both analytically tractable with a provable performance
bound in a centralized setting, and is also amenable to a natural distributed
implementation.

In our network model, there are multiple data items; each data item has
a server, and a set of clients that wish to access the data item at a given fre-
quency. Each node carefully chooses data items to cache in its limited memory
to minimize the overall access cost. Essentially, in this article, we develop ef-
ficient strategies to select data items to cache at each node. In particular, we
develop two algorithms — a centralized approximation algorithm which delivers
a 4-approximation (2-approximation for uniform-size data items) solution, and
a localized distributed algorithm which is based on the approximation algo-
rithm and can handle mobility of nodes and dynamic traffic conditions. Using
simulations, we show that the distributed algorithm performs very close to the
approximation algorithm. Finally, we show through extensive experiments on
ns-2 [21] that our proposed distributed algorithm performs much better than
prior approach over a broad range of parameter values. Ours is the first work to
present a distributed implementation based on an approximation algorithm for
the general problem of cache placement of multiple data items under memory
constraint.

The rest of the paper is organized as follows. In Section 2.2, we formally
define the cache placement problem addressed in this paper, and present an
overview of the related work. In Section 2.3, we present our designed centralized
approximation and distributed algorithms. Section 4.5 presents simulation
results. We end with concluding remarks in Section 3.6.

2.2 Cache Placement Problem

In this section, we formally define the cache placement problem addressed in
our article, and discuss related work.

A multi-hop ad hoc network can be represented as an undirected graph
G(V, E) where the set of vertices V' represents the nodes in the network, and
E is the set of weighted edges in the graph. Two network nodes that can com-
municate directly with each other are connected by an edge in the graph. The
edge weight may represent a link metric such as loss rate, delay, or transmis-
sion power. For the cache placement problem addressed in this article, there
are multiple data items and each data item is served by its server (a network
node may act as a server for more than one data items). Each network node
has limited memory and can cache multiple data items subject to its memory
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capacity limitation. The objective of our cache placement problem is to min-
imize the overall access cost. Below, we give a formal definition of the cache
placement problem addressed in this article.

Problem Formulation. Given a general ad hoc network graph G(V, E') with
p data items Dy, Dy, ..., D,, where a data item D, is served by a server ;.
A network node may act as a server for multiple data items. For clarity of
presentation, we assume uniform-size (occupying unit memory) data items for
now. Our techniques easily generalize to non-uniform size data items, as dis-
cussed later. Each node ¢ has a memory capacity of m; units. We use a;; to
denote the access frequency with which a node 7 requests the data item D,
and d; to denote the weighted distance between two network nodes 7 and (.
The cache placement problem is to select a set of sets M = {M;, Ms, ..., My},
where M is a set of network nodes that store a copy of D;, to minimize the
total access cost

p
T<G7 M) = Z Zaij X mmle({sj}qu)dila
i€V j=1
under the memory capacity constraint that
{M;li e M;}| <m, for all i € V,

which means each network node 7 appears in at most m; sets of M. The cache
placement problem is known to be NP-hard [6].

| |Cacheswith size 2
e Source Nodes
o Cache Nodes

Figure 2.1: Illustrating cache placement problem under memory constraint.

EXAMPLE 1 Figure 2.1 illustrates the above described cache placement
problem in a small ad hoc network. In Figure 2.1, each graph edge has a
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unit weight. All the nodes have the same memory capacity of 2 pages, and the
size of each data item is 1 memory page. Each of the nodes 1, 2, 3, 4, and 12
have one distinct data item to be served (as shown in the parenthesis with their
node numbers). Each of the client nodes (9, 10, 11, 13, and 14) accesses each
of the data items Dy, Dy, and D3 with unit access frequency. Figure 2.1 shows
that the nodes 5, 6, 7, 8 have cached one or more data items, and also shows
the cache contents in those nodes. As indicated by the bold edges, the clients
use the nearest cache node instead of the server to access a data item. The set
of cache nodes of each data item are: M; = {7,8}, My = {7,8}, M3 = {5,6}.
One can observe that total access cost is 20 units for the given cache placement.
O

2.2.1 Related Work

Below, we categorize the prior work by number of data items and network
topology.

Single Data Item in General Graphs. The general problem of determining
optimal cache placements in an arbitrary network topology has similarity to
two problems in graph theory viz. facility location problem and the k-median
problem. Both the problems consider only a single facility type (data item)
in the network. In the facility-location problem, setting up a cache at a node
incurs a certain fixed cost, and the goal is to minimize the sum of total access
cost and the setting-up costs of all caches, without any constraint. On the other
hand, the k-median problem minimizes the total access cost under the number
constraint, i.e., that at most k£ nodes can be selected as caches. Both problems
are NP-hard, and a number of constant-factor approximation algorithms have
been developed for each of the problems [16,18,30], under the assumption of
triangular inequality of edge costs. Without the triangular inequality assump-
tion, either problem is as hard as approximating the set cover [30, 37] and thus,
cannot be approximated better than O(log |V|) unless P = NP. Here, |V] is
the size of the network. In other related work, Nuggehalli et al. [38] formulate
the caching problem in ad hoc networks as a special case of the connected
facility location [47].

Single Data Item in Tree Topology. Several papers in the literature cir-
cumvent the hardness of the facility-location and k-median problems by as-
suming that the network has a tree topology [11,33,35,48,52]. In particu-
lar, Tamir [48] and Vigneron et al. [52] design optimal dynamic programming
polynomial algorithms for the k-median problem in undirected and directed
trees respectively. In other works, Krishnan et al. [35] consider placement of
k “transparent” caches, Kalpakis et al. [33] consider a cost model involving
reads, writes, and storage, and Bhattacharya et al. [11] present a distributed
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algorithm for sensor networks to reduce the total power expended. All of the
above works consider only a single data time in a tree network topology.!

Multiple Data Items. Hara [25] proposes three algorithms for cache place-
ment of multiple data items in ad hoc networks. In the first approach, each node
caches the items most frequently accessed by itself; the second approach elim-
inates replications among neighboring nodes introduced by the first approach;
the third approach requires creation of “stable” groups to gather neighborhood
information and determine caching placements. The first two approaches are
largely localized, and hence, would fare very badly when the percentage of
client nodes in the network is low, or the access frequencies are uniform. For
the third approach, it is hard to find stable groups in ad hoc networks because
of frequent failures and movements. All the above approaches assume the
knowledge of access frequencies. In extensions of the above work, [26] and [27]
generalize the above approaches for push-based systems and updates respec-
tively. In other related works, Xu et al. [55] discuss placement of “transparent”
caches in tree networks.

Our work on cache placement problem is most closely related to the works
by Yin and Cao [56] and Baev and Rajaraman [6]. Yin and Cao [56] design and
evaluate three simple distributed caching techniques, viz., CacheData which
caches the passing-by data item, CachePath which caches the path to the
nearest cache of the passing-by data item, and HybridCache which caches the
data item if its size is small enough, else caches the path to the data. They use
LRU policy for cache replacement. To the best of our knowledge, [56] is the
only work that presents a distributed cache placement algorithm in a multi-
hop ad hoc network with memory constraint at each node. Thus, we use the
algorithms in [56] as a comparison point for our study.

Baev and Rajaraman [6] design a 20.5-approximation algorithm for the
cache placement problem with uniform-size data items. For the non-uniform
size data items, they show that there is no polynomial-time approximation
unless P = NP. They circumvent the non-approximability by increasing the
given node memory capacities by the size of the largest data item, and gener-
alize their 20.5-approximation algorithm. However, their approach (as noted
by themselves) is not amenable to an efficient distributed implementation.

Our Work. In this article, we circumvent the non-approximability of the
cache placement problem by choosing to maximize the benefit (reduction in
total access cost) instead of minimizing the total access cost. In particular, we
design a simple centralized algorithm that delivers a solution whose benefit is
at least one-fourth (one-half for uniform-size data items) of the optimal benefit

1[35] formulates the problem in general graphs, but designs algorithms for tree topologies
with single server.
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without using any more than the given memory capacities. To the best of our
knowledge, ours and [6] are the only? works that present approximation algo-
rithms for the general placement of cache placement for multiple data items in
networks with memory constraint. However, as noted before, [6]’s approach is
not amenable to an efficient distributed implementation, while our approxima-
tion algorithm yields a natural distributed implementation which is localized
and shown (using ns2 simulations) to be efficient even in mobile and dynamic
traffic conditions. Moreover, as stated in Theorem 2, our approximation result
is an improvement over that of [6] when optimal access cost is at least (1/40)™"
of the total access cost without the caches. Finally, unlike [6], we do not make
the assumption of the cost function satisfying the triangular inequality.

2.3 Cache Placement Algorithms

In this section, we first present our centralized approximation algorithm. Then,
we design its localized distributed implementation that performs very close to
the approximation algorithm in our simulations.

2.3.1 Centralized Greedy Algorithm (CGA)

The designed centralized algorithm is essentially a greedy approach, and we
refer to it as CGA (Centralized Greedy Algorithm). CGA starts with all net-
work nodes having all empty memory pages, and then, iteratively caches data
items into memory pages maximizing the benefit in a greedy manner at each
step. Thus, at each step, the algorithm picks a data item D; to cache into
an empty memory page r of a network node such that the benefit of caching
D; at r is the maximum among all possible choices of D; and r at that step.
The algorithm terminates when all memory pages have been cached with data
items.

For formal analysis of CGA, we first define a set of variables A,;j;, where
selection of a variable A;j;. indicates that the k'™ memory page of node i has
been selected for storage of data item D;, and reformulate the cache placement
problem in terms of selection of A;j, variables. Recall that for simplicity we
have assumed that each data item is of unit size, and occupies one memory
page of a node.

Problem Formulation using A;j,. Given a network graph G(V, E), where
each node ¢+ € V has a memory capacity of m; pages, and p data items
Dy, ..., D, in the network with the respective servers Si,...,S5,. Select a set

2[4] presents a competitive online algorithm, but uses polylog-factor bigger memory ca-
pacity at nodes compared to the optimal.



CHAPTER 2. DATA CACHING UNDER MEMORY CONSTRAINT 9

I' of variables A;j, where i € V, 1 < j <p, 1 <k <m,, and if A;;;, € I' and
Ay, € T then j = j/, such the total access cost 7(G,I') (as defined below) is
minimized. Note that the memory constraint is subsumed in the restriction on
I" that if A;;; € I', then A, ¢ T' for any j' # j. The total access cost 7(G,TI)
for a selected set of variables can be easily defined as:

p
T(G, F) = Z Z Qjj X mmle({sj}u{iin/jkeF})diz.

j=1 icV

Note that the set of cache nodes M; that store a particular data item D; can
be easily derived from the selected set of variables I'.

Centralized Greedy Algorithm (CGA). CGA works by iteratively select-
ing a variable A;j, that gives the highest “benefit” at that stage. The benefit
of adding a variable A;j, into an already selected set of variables I' is the re-
duction in the total access cost if the data item D); is cached into the empty
k™ memory page of the network node i. The benefit of selecting a variable is
formally defined below.

Definition 1 (Benefit of selecting A;;i,.) Let I' denote the set of variables that
have been already selected by the centralized greedy algorithm at some stage.
The benefit of a variable A, (i € V, 7 < p, k < m;) with respect to I is
denoted as (A, I') and is defined as follows:

Undefined if Ajj, €, §/#
7(G,T) —7(G, T U {Aijr}) otherwise

where 7(G,T") is as defined before. The first condition of the above definition
stipulates that if the k'™ memory page of the node i is not empty (i.e., has
already been selected to store another data item j’ due to A;j; € I'), then the
benefit 5(A;j, ') is undefined. The second condition specifies that the benefit
of a variable A;;, with respect to I' is zero if the data item D; has already been
stored at some other memory page k£’ of the node 1. U

Algorithm 1 Centralized Greedy Algorithm (CGA)
BEGIN
I = (;
while (there is a variable A;;;, with defined benefit)
Let A;j, be the variable with maximum 3(A;;x, I').

end while;
RETURN T

END. O
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The total running time of CGA is O(p?|V[*m), where |V| is the size in the
network, m is the average number of memory pages in a node, and p is the
total number of data items. Note that the number of iterations in the above
algorithm is bounded by |V|m, and at each stage we need to compute at most
pV benefit values where each benefit value computation may take O(pV') time.

Theorem 1 CGA (Algorithm 1) delivers a solution whose total benefit is at
least half of the optimal benefit.

Proof: Let L be the total number of iterations of CGA. Note that L is equal
to the total number of memory pages in the network. Let I'; be the set of
variables selected at the end of [*" iteration, and let (; be the variable added to
the set I',_; in the I'" iteration. Let (; be a variable A,j;. signifying that in the
[ iteration CGA decided to store j™* data item in the £ memory page of the
1 node. Without loss of generality, we can assume that the optimal solution
also stores data items in all memory pages. Now, let A; be the variable A;;/
where j’ is the data item stored by the optimal solution in the k" memory
page of node 7. By the greedy choice of (;, we have

B(G, Ti-1) = BN, D), Vi< L. (2.1)

Let O be the optimal benefit,® and C be the benefit of the CGA solution. Note
that?

L

C=> B¢ T). (2:2)

=1

Now, consider a modified network G’ wherein each node 7 has a memory ca-
pacity of 2m;. We construct a cache placement solution for G’ by taking a
union of data items selected by CGA and data items selected in an optimal
solution for each node. More formally, for each variable \; = A/, as defined
above, create a variable A} = A;;y where k' = m; + k. Obviously, the benefit
O’ of the set of variables {(i,(a,...,C(r, N[, A, ..., A, } in G is greater than
or equal to the optimal benefit O in G. Now, to compute O’, we add the
variables in the order of (i,(a,...,(r, A, AL, ..., A}, and add up the benefits
of each newly added variable. Let ') = {C1, o, ..., (o} U {1, Aoy ..., A}, and

3Note that a solution with optimal benefit also has optimal access cost.
4Note that O # Zle B(A,Ti—1). Also, in spite of (2.2), the benefit value C' is actually
independent of the order in which (; are selected.
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recall that I'; = {(1, (s, ..., (;}. Now, we have

L L
0O < 0O = Zﬂ({l, I'q) + Zﬂ()\f,rig)
=1 =1
L
= C+ Z BALT ) From (2)
=1

L
< O+ Zﬁ()\l’rl_l) Since Ay = X, Ti—1 © T
=1

< 2C From (1) and (2)

]
The following theorem follows from the above theorem and the definition

of benefit, and shows that our above result is an improvement of the 20.5-
approximation result of [6] when the optimal access cost is at least (1/40)" of
the total access cost without the caches.

Theorem 2 If the access cost without the caches is less than 40 times the
optimal access cost using optimal cache placement, then the total access cost of
the CGA solution is less than 20.5 times the optimal access cost.

Proof: Let the total access cost without the caches be W, and the optimal
access cost (using optimal cache placement) be O. Thus, the optimal benefit
is W — O. Since the benefit of the CGA solution is at least half of the optimal
benefit, the total access time of the CGA solution is at most W — (W — 0)/2
which is at most 20.50. .

Non-uniform Size Data Items. To handle non-uniform size data items, at
each stage, CGA selects a data item to cache at a node such that the (data item,
node) pair has the maximum benefit per page at that stage. CGA continues
to cache data items at nodes in the above manner until each node’s memory
is exceeded by the last data item cached. Let S be the solution obtained at
the end of the above process. Now, CGA picks the better of the following two
feasible solutions: (S;) Each node caches only its last data item, (S) Each
node caches all the selected data items except the last. For the above solutions
to be feasible, we assume that size of the largest data item in the system is less
than the memory capacity of any node. Below, we show that the better of the
above two solutions has a benefit of at least 1/4 of the optimal benefit.

Theorem 3 For non-uniform size data items, the above described modified
CGA algorithm delivers a solution whose benefit is at least one fourth of the
optimal benefit. We assume that the size of the largest data time is at most the
size of any node’s memory capacity.
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Proof: First, note that since the solution S is a union of solutions S; and S5,
the benefit of either S; or Ss is at least half of the benefit of S. We prove the
theorem by showing below that the benefit of S is at least half of the optimal
benefit. The below proof is similar to that of Theorem 1.

As before, we define variables A, signifying that (part of) the data item
D; was stored in the £ memory page of node i. However, note that A, only
corresponds to a unit memory page, while a data item may occupy more than
one memory page. Thus, a cache placement solution may select one or more
variables A;j; with the same ¢ and j. Moreover, in this context, the benefit
B(A;jk, T') is defined as the benefit per unit space of caching D; at node ¢, when
the certain data items have already been cached at nodes (as determined by
the variables in I' — {4;;.}).

Now, let L’ be the total amount of memory used by the solution S. Note
that L’ may be more than the total number of memory pages in the network.
As in Theorem 1, let I'; be the set of variables selected at the end of I*" itera-
tion, and let (; be the variable added to the set I';_; in the I!" iteration. Thus,
the solution S is the set of variables {(1, (s, ..., (r/}. Similarly, let the optimal
solution be {A1, Ag,..., AL}, where \; corresponds to the same node and mem-
ory page as (;. Without loss of generality, we assume the optimal solution is
“completely” different than S. That is, there is no data item that is cached by
S as well as the optimal solution at the same node.® As in Theorem 1, by the
greedy choice of (; and the above assumption of completely different solutions,
we have

B Tim1) = BN, Tiea), Vi< L. (2.3)

Now, consider a modified network G’ wherein each node i has a memory
capacity of 2m;. We construct a cache placement solution for G’ by taking a
union of the solution S and the optimal solution at each node. More formally,
for each variable \; = A,;; as defined above, create a variable \} = A,
where k' = m] + k, where m/ is the memory used by the solution S at node 1.
Obviously, the benefit O’ of the set of variables {(1, (s, ..., (r, AJ, Ay, ..., A }in
(' is greater than or equal to the optimal benefit. Now, to compute O’, we add
the variables in the order of (1, (s, ..., (1, A}, Ay, ..., A} and add up the benefits
of each newly added variable. Let I') = {1, o, ..., o} U {1, Aoy ..., A}, and
recall that I'; = {¢1, (2, ...,(}. Let C be the benefit of solution S. Now, we

5Else, we could remove the common data items from both solutions and prove the below
claim about the remaining solutions.
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have

L

L/
O < 0= ZB(Q, ') + Zﬁ()‘g7rg—1)
=1

=1

L
= C+ ) BT

=1

IN

L

C+> B\,Tiy) Since A =X, Iy € T,
=1

2C From (1) and (2)

IN

2.3.2 Distributed Greedy Algorithm (DGA)

In this subsection, we describe a localized distributed implementation of CGA.
We refer to the designed distributed implementation as DGA (Distributed
Greedy Algorithm). The advantage of DGA is that it adapts to dynamic traffic
conditions, and can be easily implemented in an operational (possibly, mobile)
network with low communication overheads. While we cannot prove any bound
on the quality of the solution produced by DGA, we show through extensive
simulations that the performance (in terms of the quality of the solution de-
livered) of the DGA is very close to that of the CGA. The DGA is formed of
two important components — nearest-cache tables and localized caching policy
— as described below.

Nearest-cache Tables. For each network node, we maintain the nearest node
(including itself) that has a copy of the data item D; for each data item D, in
the network. More specifically, each node ¢ in the network maintains a nearest-
cache table, where an entry in the nearest-cache table is of the form (D;, N;)
where N is the closest node that has a copy of D;. Note that if ¢ is the server of
D; or has cached Dj, then N; is i. In addition, if a node ¢ has cached D;, then
it also maintains an entry (Dj, N7), where N7 is the second-nearest cache, i.e.,
the closest node (other than 7 itself) that has a copy of D;. The second-nearest
cache information is helpful when node 7 decides to remove the cached item
D;. Note that if 7 is the server of D;, then N; is ¢. The above information
is in addition to any information (such as routing tables) maintained by the
underlying routing protocol. The nearest-cache tables at network nodes in the
network are maintained as follows in response to cache placement changes.

Addition of a Cache. When a node i caches a data item D;, N7 (the second-
nearest cache) is set to its current N; (nearest-cache node) and N; is updated
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to ¢ itself. In addition, the node ¢ broadcasts an AddCache message to all
of its neighbors. The AddCache message contains the tuple (¢, D;) signifying
the ID of the originating node and the ID of the newly cached data item.
Consider a node ! that receives the AddCache message (i, D;). Let (D;, N;) be
the nearest-cache table entry at node [ signifying that IV; is the cache node
currently closest to [ that has the data item D;. If d; < lej,ﬁ then the
nearest-cache table entry (D;, N;) is updated to (D;,i), and the AddCache
message is forwarded by [ to all of its neighbors. Otherwise, the node [ sends
the AddCache message to the single node N; (which could be itself) so that
N; can possibly update information about its second-nearest cache. The above
process maintains correctness of nearest-cache entries and second-nearest cache
entries in a static network with bounded communication delays, because of the
following observations.

O1: Consider a node k whose nearest-cache table entry needs to change (to 7)
in response to addition of a cache at node . Then, every intermediate
node on the shortest path connecting k to ¢ also needs to change its
nearest-cache table entry (and hence, forward the AddCache message).

0O2: Consider a cache node k such that its second-nearest cache node should
be changed to 7 in response to addition of a cache at node 7. Then, there
exists two distinct neighboring nodes i; and i5 (not necessarily different
from k or ) on the shortest path from k to i such that the nearest-cache
node of 7; is k and the nearest-cache node of 75 is i.

The first observation ensures correctness of nearest-cache entries since any
node k that needs to receive the AddCache message receives it through the
intermediate nodes on the shortest path connecting k to ¢. The second ob-
servation ensures correctness of the second-nearest cache entries, since for any
cache node k whose second-nearest cache entry much change to the newly added
cache i, there exists a node i; that sends the AddCache message (received from
the forwarding neighboring node is) to k (i1’s nearest cache node). We now
prove the above two observations.

We prove the first observation O1 by contradiction. Consider a node k
whose nearest-cache table entry needs to change (to ) in response to addition
of a cache at node 7. Assume that there is an intermediate node j on the
shortest path P connecting k£ to ¢ such that ;7 does not need to change its
nearest-cache entry. Thus, there is another cache node [ that is nearer to j
than ¢. Then, the cache node [ is also closer to k£ than ¢, and thus, k£ does
not need to change its nearest-cache entry due to addition of cache at node

6The distance values are assumed to be available from the underlying routing protocol.
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1 — which is a contradiction. The second observation O2 is true because the
nearest-cache node of each intermediate node on the shortest path connecting
the cache nodes k and i (such that i is the second-nearest cache node of k) is
either k or i.

Deletion of a Cache. To efficiently maintain the nearest-cache tables in re-
sponse to deletion of a cache, we maintain a cache list C; for each data item
D; at its server S;. The cache list C; contains the set of nodes (including S;)
that have cached D;. To keep the cache list C; up to date, the server S; is
informed whenever the data time D; is cached at or removed from a node.
Note that the cache list C; is almost essential for the server S; to efficiently
update D; at the cache nodes. Now, when a node 7 removes a data item D;
from its local cache, it updates its nearest-cache node (V) to its second-nearest
cache (N JQ) and deletes the second-nearest cache entry. In addition, the node i
requests C; from the server S;, and then, broadcasts a DeleteCache message
with the information (i, D;, C;) to all of its neighbors. Consider a node [ that
receives the DeleteCache message and let (D;, N;) be its nearest-cache table
entry. If N; =4, then the node [ updates its nearest-cache entry using C}, and
forwards the DeleteCache message to all its neighbors. Otherwise, the node
[ sends the DeleteCache message to the node IV;. The above process ensures
correctness of nearest-cache and second-nearest cache entries due to the above
two observations (O1 and O2). If maintenance of a complete cache list at the
server is not feasible, then we can either broadcast the DeleteCache message
with {S;} as the cache list or not use any DeleteCache messages at all. In
the latter case, when a data request for the deleted cache is received, the data
request can be redirected to the server.

Integrated Cache-Routing Tables. Nearest-caching tables can be used in con-
junction with any underlying routing protocol to reach the nearest cache node,
as long as the distances to other nodes are maintained by the routing pro-
tocol (or available otherwise). If the underlying routing protocol maintains
routing tables [40], then the nearest-cache tables can be integrated with the
routing tables as follows. For a data item Dj;, let H; be the next node on the
shortest path to NV;, the closest node storing D;. Now, if we maintain a cache-
routing table having entries of the form (D;, H;, ;) where §; is the distance to
Nj;, then there is no need for routing tables. However, note that maintaining
cache-routing tables instead of nearest-cache tables and routing tables doesn’t
offer any clear advantage in terms of number of messages transmissions.

Mobile Networks. To handle mobility of nodes, we could maintain the inte-
grated cache-routing tables in the similar vein as routing tables [40] are main-
tained in mobile ad hoc networks. Alternatively, we could have the servers
periodically broadcast the latest cache lists. In our simulations, we adopted
the latter strategy, since it precludes the need to broadcast AddCache and



CHAPTER 2. DATA CACHING UNDER MEMORY CONSTRAINT 16

DeleteCache messages to some extent.

Localized Caching Policy. The caching policy of DGA is as follows. Each
node computes benefit of data items based on its “local traffic” observed for a
sufficiently long time. The local traffic of a node i includes its own local data
requests, non-local data requests to data items cached at 7, and the traffic that
the node 7 is forwarding to other nodes in the network.

Local Benefit. We refer to the benefit computed based on node’s local traffic
as the local benefit. For each data item D; not cached at node i, the node
¢ calculates the local benefit gained by caching the item D;, while for each
data item D; cached at node 7, the node 7 computes the local benefit lost by
removing the item. In particular, the local benefit B;; of caching (or removing)
D; at node 7 is the reduction (or increase) in access cost given by

Bij = ti30;,

where t;; is the access frequency observed by node 4 for the item D; in its local
traffic, and 4, is the distance from 7 to N; or NV ]2 — the nearest-node other than
¢ that has the copy of the data item D,. Using the nearest-cache tables, each
node can compute the local benefits of data items in a localized manner using
only local information. Since the traffic changes dynamically (due to new cache
placements), each node needs to continually recompute local benefits based on
most recently observed local traffic.

Caching Policy. A node decides to cache the most beneficial (in terms of local
benefit per unit size of data item) data items that can fit in its local memory.
When the local cache memory of a node is full, the following cache replacement
policy is used. Let |D| denote the size of a data item (or a set of data items) D.
If the local benefit of a newly available data item D); is higher than the total
local benefit of some set D of cached data items where |D| > |D;|, then the set
D is replaced by D;. Since, adding or replacing a cache entails communication
overhead (due to AddCache or DeleteCache messages), we employ a concept
of benefit threshold. In particular, a data item is newly cached only if its local
benefit is higher than the benefit threshold, and a data item replaces a set of
cached data items only if the difference in their local benefits is greater than
the benefit threshold.

Distributed Greedy Algorithm (DGA). The above components of nearest-
cache table and cache replacement policy are combined to yield our Distributed
Greedy Algorithm (DGA) for cache placement problem. In addition, the server
uses the cache list to periodically update the caches in response to changes to
the data at the server. The departure of DGA from CGA is primarily in its
inability to gather information about all traffic (access frequencies). In ad-
dition, the inaccuracies and staleness of the nearest-cache table entries (due
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to message losses or arbitrary communication delays) may result in approxi-
mate local benefit values. Finally, in DGA, the placement of caches happens
simultaneously at all nodes in a distributed manner, which is in contrast to
the sequential manner in which the caches are selected by the CGA. However,
DGA is able to cope with dynamically changing access frequencies and cache
placements. As noted before, any changes in cache placements trigger updates
in the nearest-cache table, which in turn affect the local benefit values. Below
is a summarized description of the DGA.

Algorithm 2 Distributed Greedy Algorithm (DGA)
Setting
A network graph G(V, F) with p data items. Each node i has a memory capacity of m;
pages. Let © be the benefit threshold.
Program of Node 1
BEGIN
When a data item D; passes by:
if local memory has available space and (B;; > O)
then cache D;
else if there is a set D of cached data items such that (local benefit of D < B;; — O)
and (|D| > |Dy|), then replace D with D;.
When a data item D); is added to local cache
Notify the server of D;.
Broadcast an AddCache message containing (i, D;)
When a data item D; is deleted from local cache
Get the cache list C; from the server of D;
Broadcast a DeleteCache message with (i, D;, C;)
On receiving an AddCache message (', D;)
if 4’ is nearer than current nearest-cache for D;
then update nearest-cache table entry and broadcast AddCache message to neighbors
else send the message to the nearest-cache of i
On receiving a DeleteCache message (¢, D;, C;)
if 4’ is the current nearest-cache for D;
then update the nearest-case of D; using C;, and broadcast the DeleteCache message
else send the message to the nearest-cache of ¢
For mobile networks, instead of AddCache and DeleteCache messages, for each data item,
its server periodically broadcasts (to the entire network) the latest cache list.

END. O

Performance Analysis. Note that the performance guarantee of CGA (i.e.,
proof of Theorem 1) holds even if the CGA were to consider the memory pages
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in some arbitrary order and select the most beneficial caches for each one of
them. Now, based on the above observation, if we assume that local benefit
is reflective of the accurate benefit (i.e., if the local traffic seen by a node i is
the only traffic that is affected by caching a data item at node ), then DGA
also yields a solution whose benefit is one-fourth of the optimal benefit. Our
simulation results in Section 2.4.1 show that DGA and CGA indeed perform
very close.

Data Expiry and Cache Updates. We incorporate the concepts of data
expiry and cache updates in our overall framework as follows. For data expiry,
we use the concept of Time-to-Live (TTL) [56], which is the time till which
the given copy of the data item is considered valid/fresh. The data item or its
copy is considered expired at the end of the TTL time value. We consider two
data expiry models, viz. TT'L-per-request and T'T'L-per-item. In the TTL-per-
request data expiry model [56], the server responds to any data item request
with the requested data item and an appropriately generated TTL value. Thus,
each copy of the data item in the network is associated with an independent
TTL value. In the TTL-per-item data expiry model, the server associates a
TTL value with each data item (rather than each request), and all requests
for the same data item are associated with the same TTL (until the data item
expires). Thus, in the TTL-per-item data expiry model, all the fresh copies of
a data item in the network are associated with the same TTL value. On expiry
of the data item, the server generates a new TTL value for the data item.

For updating the cached data items, we consider two mechanisms. For the
case of TTL-per-request data expiry model, we use the cache deletion update
model, where each cache node independently deletes its copy of the expired data
item. Such deletions are handled in the similar way as describe before, i.e., by
broadcasting a DeleteCache request. In the case of TT'L-per-item data expiry
model, all the copies of a particular data item expire simultaneously. Thus, we
use the server multicast cache update model, wherein the server multicasts the
fresh copy of the data item to all the cache nodes, on expiration of the data
item (at the server). If the cache list is not maintained at the server, then the
above update is implemented using a network wide broadcast.

2.4 Performance Evaluation

We demonstrate through simulations the performance of our designed cache
placement algorithms over randomly generated network topologies. We first
compare the relative quality of the solutions returned by CGA and DGA. Then,
we turn our attention to application level performance in complex network
settings, and evaluate our designed DGA with respect to a naive distributed
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algorithm and the HybridCache algorithm [56] using the ns-2 simulator [21].

24.1 CGA vs. DGA

In this subsection, we evaluate the relative performance of CGA and DGA, by
comparing the benefits of the solutions delivered.

For the purposes of implementing a centralized strategy, we use our own
simulator for implementation and comparison of our designed algorithms. In
our simulator, DGA is implemented as a dynamically evolving process wherein
initially all the memory pages are free and the nearest-cache table entries point
to the corresponding servers. This initialization of nearest-cache table entries
results in traffic being directed to servers, which triggers caching of data items
at nodes, which in turn causes changes in the nearest-cache tables and further
changes in cache placements. The process continues until convergence. To
provide a semblance of an asynchronous distributed protocol, our simulation
model updates routing and nearest-cache table entries in an arbitrary order
across nodes.

Simulation Parameters. In our cache placement problem, the relevant param-
eters are: (i) number of nodes in the network, (ii) transmission radius 7, (two
nodes can directly transmit with each other iff they are within 7,. distance from
each other), (iii) number of data items, (iv) number of clients accessing each
data item, (v) memory capacity on each node. The first two parameters are re-
lated to network topology, the next two parameters are application-dependent,
and the last parameter is the problem constraint (property of the nodes). Here,
we assume each data item to be of unit size (one memory page). Below, we
present a set of plots wherein we vary some of the above parameters, while
keeping the others constant.

Varying Number of Data Items and Memory Capacity. Figure 2.2(a)
plots the access costs for CGA and DGA against the number of data items in
the network for different local memory capacities. Here, the network size is 500
nodes in a 30 x 30 area.” We use a transmission radius (7}) of 5 units. The
memory capacity in each node is expressed as the percentage of the number
of data items in the network. We vary the number of data items from 500 to
1000, and the memory capacity of each node from 1% to 5% of the number of
data items. The number of clients accessing each data items is fixed at 50% of
the number of nodes in the network.

We observe that the access cost increases with the number of data items
as expected. Also, as expected, we see that CGA performs slightly better

"Since the complexity of CGA is a high-order polynomial, the running time is quite slow.
Thus, we have not been able to evaluate the performance on very large networks.
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Figure 2.2: Performance comparison of CGA and DGA. (a) Varying number of data
items and memory capacity, (b) Varying number of nodes and transmission radius
(T}), (c) Varying client percentage. Unless being varied - the number of nodes is
500, transmission radius is 5, number of data items is 1000, number of clients (for
each data item) is 250, and each node can store 20 data items in its memory.

since it exploits global information, but DGA performs quite close to CGA.
The performance difference between the algorithms decreases with increasing
memory capacity, since with increasing memory capacity both the algorithms
must converge to the same solution (access cost zero) as all client nodes will
eventually be able to cache all the data items they wish to access. While this
degenerate situation is not reached, the trend is indeed observed.

Varying Network Size and Transmission Radius. In the next plot (Fig-
ure 2.2(b)), we fix the number of data items in the network to 1000 and the
memory capacity of each node to 2% of data items. As before, 50% of the
network nodes act as clients for each of the data item. In this plot, we vary the
network size from 100 nodes to 500 nodes and transmission radius (7}) from 3
to 8. Essentially, Figure 2.2(b) shows the access cost as a function of network
size and transmission radius for the two algorithms. Once again, as expected
CGA slightly outperforms DGA, but DGA performs very close to CGA.

Varying Client Percentage. We also investigated the effect of the number of
clients on the access cost. See Figure 2.2(c). We note a similar behavior. The
performances are more similar as the independent parameter is varied towards
the degenerate case. Here, the degenerate case represents a single client, where
both algorithms must perform similarly.

2.4.2 DGA vs. HybridCache

In this subsection, we compare DGA with the HybridCache approach proposed
in [56] by simulating both approaches in ns2 [21] (version 2.27). The ns2 sim-
ulator contains models for common ad hoc network routing protocols, IEEE
Standard 802.11 MAC layer protocol, and two-ray ground reflection propaga-
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tion models [13]. The DSDV routing protocol [40] is used to provide routing
services. For comparison, we also implemented a Naive approach, wherein each
node caches any passing-by data item if there is free memory space and uses
LRU (least recently used) policy for replacement of caches. We start with pre-
senting the simulation setup, and then present the simulation results in the
next subsection. In all plots, each data point represents an average of five
to ten runs. In some plots, we show error bars indicating the 95% confidence
interval; for sake to clarity, we show confidence intervals in only those graphs
that are relevant to our claims.

B.1 Simulation Setup

In this subsection, we briefly discuss the network set up, client query model,
data access pattern model, and performance metrics used for our simulations.

Network Setup. We simulated our algorithms on a network of randomly placed
100 nodes in an area of 2000 x 500 m?. Note that the nominal radio range for
two directly communicating nodes in the ns2 simulator is about 250 meters.
In our simulations, we assume 1000 data items of varying sizes, two randomly
placed servers Sy and S; where Sy stores the data items with even IDs and S
stores the data items with odd IDs. We choose the size of a data item randomly
between 100 and 1500 bytes.®

Client Query Model. In our simulations, each network node is a client node.
Each client node in the network sends out a single stream of read-only queries.
Each query is essentially a request for a data item. In our DGA scheme,
the query is forwarded to the nearest cache (based on the nearest-cache table
entry). In the Naive scheme, the query is forwarded to the server unless the data
item is available locally; if the query encounters a node with the requested data
item cached, then the query is answered by the encountered node itself. The
time interval between two consecutive queries is known as the query generate
time and follows exponential distribution with mean value Tf,ery Which we vary
from 3 to 40 seconds. We do not consider values of Tyery less than 3 seconds,
since they result in a query success ratio of much less than 80 % for Naive
and HybridCache approaches. Here, the query success ratio is defined as the
percentage of the queries that receive the requested data item within the query
success timeout period. In our simulations, we use a query success timeout of
40 seconds.

The above client query model is similar to the model used in previous
studies [15,56]. However, query generation process differs slightly from the
one used in [56] in how the queries are generated. In [56], if the query response
is not received within the query success timeout period, then the same query

8The maximum data size used in [56] is 10 KBytes, which is not a practical choice due to
lack of MAC layer fragmentation/reassembly mechanism in the 2.27 version of ns2 we used.
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is sent repeatedly until it succeeds, while on success of a query, a new query
is generated (as in our model) after some random interval.” Our querying
model is better suited (due to exact periodicity of querying) for comparative
performance evaluation of various caching strategies, while the querying model
of [56] depicts a more realistic model of a typical application (due to repeated
querying until success).

Data Access Models. For our simulations, we use the following two patterns
for modeling data access frequencies at nodes.

1. Spatial pattern. In this pattern of data access, the data access frequencies
at a node depends on its geographic location in the network area such that
nodes that are closely located have similar data access frequencies. More
specifically, we start with laying the given 1000 data items uniformly over
the network area in a grid-like manner resulting in a virtual coordinate
for each data item. Then, each network node accesses the 1000 data items
in a Zipf-like distribution [12, 57], with the access frequencies of the data
items ordered by the distance of the data item’s virtual coordinates from
the network node. More specifically, the probability of accessing (which
can be mapped to access frequency) the (1 < j < 1000) closest data
item is represented by P; = W, where 0 < 6 < 1. Here, we have
assumed the number of data items to be 1000. When 6 = 1, the above
distribution follows the strict Zipf distribution, while for 8 = 0, it follows
the uniform distribution. As in [56], we choose € to be 0.8 based on real
web trace studies [12].

2. Random pattern. In this pattern of data access, each node uniformly
accesses a predefined set of 200 data items chosen randomly from the
given 1000 data items.

Performance Metrics. We measure three performance metrics for comparison of
various caching strategies, viz., average query delay, total number of messages,
and query success ratio. Query delay is defined as the time elapsed between
query request and query response, and average query delay is the average of
query delays over all queries. Total number of messages includes all message
transmissions between neighboring nodes, including messages due to queries,
maintenance of nearest-cache tables and cache-lists, and periodic broadcast of
cache-lists in mobile networks. Messages to implement routing protocol are not
counted, as they are the same in all three approaches compared. Query success

In the original simulation code of HybridCache ([56]), the time interval between two
queries is actually 4 seconds plus the query generate time (which follows exponential distri-
bution with mean value Tyyery).
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ratio has been defined before. Each data point in our simulation results is an
average over five different random network topologies, and to achieve stability
in performance metrics, each of our experiments is run for sufficiently long time
(20000 seconds for our experiments).

DGA Parameter Values. We now present a brief discussion on choice of values
of benefit threshold and local traffic window size for DGA. For static networks,
we compute local benefits based on the most recent 1000 queries. Since, the
data access frequencies remains static in our experiment setting, computing
local benefits based on as large a number of queries as possible is a good idea.
However, we observed that most recent 1000 queries are sufficient to derive
complete knowledge of local traffic. For mobile networks with spatial data
access pattern, the access frequencies at a client node change with the node’s
location. Thus, we compute local benefits using only 50 recent queries.

Also, we chose a benefit threshold value of 0.008 when the cache size is
default 75 KBytes (capable of storing 100 average sized data items), based on
the typical benefit value of the 100" most beneficial data item at a node. We
use similar methodology for choosing benefit threshold values for other values
of cache sizes. In general, the chosen benefit threshold value should be higher
than the communication overhead incurred (in terms of maintenance of the
nearest-cache tables and the cache list) due to caching of a data item.

B.2 Simulation Results

We now present simulation results comparing the three caching strategies,
viz., Naive Approach, HybridCache approach of [56], and our DGA, under the
random and spatial data access patterns (as defined above) and study the effect
of various parameter values on the performance metrics.
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Figure 2.3: Varying mean query generate time on spatial data access pattern.
(a) Average Query Delay, (b) Query Success Ratio, (c¢) Total Number of Mes-
sages.

Varying Mean Query Generate Time. In Figure 2.3, we vary the mean query
generate time Tg,ery in the spatial data access pattern while keeping the cache
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Figure 2.4: Varying mean of query generate time on random data access pat-
tern. (a) Average Query Delay, (b) Query Success Ratio, (c) Total Number of
Messages.
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Figure 2.5: Varying cache size on spatial data access pattern. Here, Tjyery = 10
secs. (a) Average Query Delay, (b) Query Success Ratio, (¢) Total Number of
Messages.

size as constant and all network nodes as client nodes. We choose the cache size
to be big enough to fit about 100 average sized data items (i.e., 75 KBytes).
We observe that our DGA outperforms the other two approaches in terms of all
three performance metrics of query average delay, query success ratio, and total
number of messages. In comparison with HybridCache strategy, our DGA has
an average query delay of less than half for all parameter values (corroborated
by confidence intervals of 95%), always has better query success ratio and lower
message overhead. For the mean query generate time of 3 seconds, average
query delay in all approaches is high, but our DGA outperforms HybridCache
by a more than a factor of 10. Also, for very low mean query generate times,
our DGA has a significantly better query success ratio. Figure 2.4 depicts
similar observations for the random access data patterns, except that for mean
query generate time of 5 second we have a slightly worse average query delay
than that of HybridCache (but a significantly better query success ratio).

Varying Cache Memory Size. In Figure 2.5, we vary the local cache size of each
node in the spatial data access pattern while keeping the mean query generate
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time Tuery constant at 10 seconds. We vary the local cache size from 15 KBytes
(capable of storing 20 data items of average size) to 150 KBytes. We observe in
Figure 2.5 that our DGA outperforms the HybridCache approach consistently
for all cache sizes and in terms of all three performance metrics. The difference
in the average query delay is much more significant for lower cache size — which
suggests that our DGA is very judicious in choice of data items to cache. Note
that HybridCache performs even worse than the Naive Approach when each
node’s memory is 15 KB.
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Figure 2.6: Varying mean query generate time in spatial data access pattern
with vmax= 10 m/s. (a) Average Query Delay, (b) Query Success Ratio, (c)
Total Number of Messages.
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Figure 2.7: Varying vn.x in spatial data access pattern. Here, Tiyery = 10
seconds. (a) Average Query Delay, (b) Query Success Ratio, (c¢) Total Number
of Messages.

Mobile Networks. Till now, we have restricted our discussion and simulations to
ad hoc networks with static nodes. Now, we present performance comparison
of various caching strategies for mobile ad hoc networks, wherein the mobile
nodes move based on the “random waypoint” movement model [13]. In the
random waypoint movement model, initially nodes are placed randomly in
the area. Each node selects a random destination and moves towards the
destination with a speed selected randomly from (0 m/s, vpax m/s). After the
node reaches its destination, it pauses for a period of time (chosen to be 300
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seconds in our simulations as in [56]) and repeats the movement pattern. In
our simulations, the server broadcasting the cache lists every 100 seconds; this
time interval is sufficient for notifying the nodes in a timely manner without
incurring too much overhead.

In Figure 2.6, we compare various cache placement algorithms under the
spatial data access pattern for varying mean query generate time, while keeping
other parameters constant (vy., = 10 m/s and local cache size = 75 KBytes).
We observe that our all schemes perform similarly in terms of query delay,
but DGA outperforms the other schemes by a significant margin in terms of
query success ratio (again, corroborated by confidence intervals). Note that a
significantly better query success ratio is much more desirable than a slightly
better average query delay. In Figure 2.7, we compare various schemes un-
der the spatial data access pattern for varying v,., value, while keeping other
parameters constant (Tquery = 10 seconds and local cache size = 75 KBytes).
In terms of query delay, DGA outperforms other schemes for low mobilities,
but has a slightly worse query delay for higher mobilities. But, more impor-
tantly, DGA has a significantly better query success ratio than all schemes
for all mobilities. As noted before, a much better query success ratio is more
desirable than slightly better query delay. We have the following explanation
for the unusual (nonmonotonic) pattern of the graphs in Figure 2.7, which is
the only figure in this article where we have varied mobilities. Firstly, Naive
and Hybrid schemes display similar patterns — the query success ratio initially
decreases with increase in mobility (as expected), and then, stabilizes. The
initial decrease in query delay is largely due to the effect of decrease in query
success ratio (due to loss of longer delay queries). The later increase in query
delay with increase in mobility is as expected, when the query success ratio
remains largely unchanged. In contrast, we notice that the DGA scheme has
a relatively unchanged query delay and query success ratio, suggesting that
higher mobility does not deteriorate much the performance of DGA due to the
presence of nearest-cache table structure.

Varying Client Percentage. In all previous experiments in this section, we have
assumed that each network node is a client node. In Figure 2.8, we vary the
percentage of client nodes in the static network for the spatial data access
pattern while keeping Tyuery = 10 seconds and cache size as 75 KBytes. We
can see that DGA outperforms HybridCache for all client percentage values.
The performance difference is seen to be very less at very low percentage of
client nodes because of minimal traffic. Figure 2.9 shows similar trend and
results for mobile networks with mobility (vmax = 10 m/s).

Incorporating Data Expiry and Cache Updates. In all of our previous exper-
iments, we have not considered data expiration or cache updates. We now
incorporate data expiry and cache updates into our simulations. We run our
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Figure 2.9: Varying client percentage on spatial data access pattern for mobile
networks with v,,, = 10 m/s. Here, Tyyery, = 10 seconds. (a) Average Query
Delay, (b) Query Success Ratio, (c¢) Total Number of Messages.

simulations for a total run time of 200,000 seconds, and generate TTL values as
current time plus a random number in [10000, 20000]. We use both data expiry
models, viz., TTL-per-request and TTL-per-item. As mentioned before, for the
TTL-per-request data expiry model, we use the cache deletion update mech-
anism, while for the TTL-per-time model we use the server multicast update
mechanism. For all the three caching algorithms (Naive, Hybrid, and DGA),
a data item request destined to a node with expired data item is redirected
to the server, and the TTL value of a cached expired data item is updated
using the TTL values of a passing by fresh copy of the data item. Figure 2.10
and Figure 2.11 show the comparison of the three caching techniques for TTL-
per-item and TTL-per-request data expiry models respectively. In Figure 2.10,
we see that our DGA technique outperforms HybridCache and Naive Caching
in all three performance metrics; the relative performance is similar to that
in Figure 2.3. However, for the case of TTL-per-request data expiry model
(Figure 2.11), our DGA has a lower query success ratio (95%) due to increase
in the number of DeleteCache messages; our DGA still outperforms the other
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Figure 2.10: Varying mean query generate time on spatial data access pattern
with cache update in static networks. Here, the data expiry model is TTL-
per-item and the cache update model is server multicast. (a) Average Query
Delay, (b) Query Success Ratio, (c¢) Total Number of Messages.
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Figure 2.11: Varying mean query generate time on spatial data access pattern
with cache update in static networks. Here, the data expiry model is TTL-
per-request and the cache update model is cache deletion. (a) Average Query
Delay, (b) Query Success Ratio, (c) Total Number of Messages.

two techniques in terms of average query delay by a significant margin. Fig-
ure 2.12 and Figure 2.13 show the comparison of the DGA and HybridCache
in mobile networks with v,,,,, = 2 m/s, for TTL-per-item and TTL-per-request
data expiry models respectively. The total run time for these experiments is
100,000 seconds, at which the average query delay and the query success ratio
values had stabilized. In this very general setting of mobility, data expiration
and cache updates, we continue to see that our DGA technique outperforms
HybridCache in terms of average query delay and query success ratio.

Compare with Random Caching/Nearest Cache Table. To demonstrate that the
better performance of DGA is not just due to the presence of nearest-cache ta-
ble, but also due to the way the caches are placed, we compare our DGA scheme
with a Random Caching scheme aided with the nearest-cache table. In the Ran-
dom Caching scheme, we cache/place data items randomly in each node’s cache
memory and appropriately initialize the nearest-cache table. The placement
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Figure 2.13: Varying mean query generate time on spatial data access pattern
with cache update in mobile networks with v,,., = 10 m/s. Here, the data
expiry model is TTL-per-request and the cache update model is cache dele-
tion. (a) Average Query Delay, (b) Query Success Ratio, (¢) Total Number of
Messages.

of caches and initialization of nearest-cache tables is done in a centralized way
without any communication overhead, which only favors the Random Caching
scheme. In Figure 2.14, we compare the DGA, HybridCache, and Random
Caching schemes in highly mobile networks (i.e., with v,,4, = 10 m/s). We ob-
serve that due to high-mobility all three different schemes have similar average
query delays. However, DGA has significantly better query success ratio than
the other schemes. These results demonstrate that the superior performance
of our DGA scheme is not just due to the nearest-cache table structure.

Summary of Simulation Results. Our simulation results can be summarized as
follows. Both the HybridCache and DGA approaches outperform the Naive
approach in terms of all three performance metrics, viz., average query delay,
query success ratio, and total number of messages. Our designed DGA almost
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Figure 2.14: Varying mean query generate time on spatial data access pat-
tern by comparing Random Caching, HybridCache and DGA, with v,,4, = 10
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Messages.

always outperforms the Hybrid approach in terms of all performance metrics
for a wide range of parameters of mean query generate time, local cache size,
and mobility speed. In particular, for frequent queries or smaller cache size,
the DGA approach has a significantly better average query delay and query
success ratio. For very high mobility speeds, sometimes, the DGA approach
has a slight worse average query delay than Hybrid, but with significantly
better query success ratio, which is certainly the more desirable performance
metric. We show that the success of DGA comes not only from maintenance of
the nearest-cache tables, but also from the near-optimal placement of caches.
The optimized placement of caches not only reduces query delay, but also
message transmissions, which in turn leads to less congestion and hence fewer
lost messages due to collisions or buffer overflows at the network interfaces.
This, in turn provides a better success ratio. This “snowballing” effect is very
apparent in challenging cases such as frequent queries and small cache sizes.

2.5 Conclusions

We have developed a paradigm of data caching techniques to support effective
data access in ad hoc networks. In particular, we have considered memory
capacity constraint of the network nodes, and developed efficient algorithms
to determine near-optimal cache placements to maximize reduction in overall
access cost. Reduction in access cost leads to communication cost savings
and hence, better bandwidth usage and energy savings. Our later simulation
experience with ns2 also shows that better bandwidth usage also in turn leads
to less message losses and thus, better query success ratio.

The novel contribution in our work is the development of a 4-approximation
centralized algorithm, which is naturally amenable to a localized distributed
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implementation. The distributed implementation uses only local knowledge of
traffic. However, our simulations over a wide range of network and application
parameters show that the performance of the two algorithms is quite close.
We note that ours is the first work that presents a distributed implementation
based on an approximation algorithm for the problem of cache placement of
multiple data items under memory constraint.

We further compare our distributed algorithm with a competitive algo-
rithm (HybridCache) presented in literature that has a similar goal. This
comparison uses the ns2 simulator with a complete wireless networking proto-
col stack including dynamic routing. We consider a broad range of application
parameters and both stationary and mobile networks. These evaluations show
that our algorithm significantly outperforms HybridCache, particularly in more
challenging scenarios, such as higher query frequency and smaller memory.



Chapter 3

Cache Placement Under Update
Cost Constraint

3.1 Introduction

Advances in embedded processing and wireless networking have made possible
creation of sensor networks [5,20]. A sensor network consists of sensor nodes
with short-range radios and limited on-board processing capability, forming a
multi-hop network of irregular topology. Sensor nodes must be powered by
small batteries, making energy efficiency a critical design goal. There has been
a significant interest in designing algorithms, applications, and network proto-
cols to reduce energy usage of sensors. Examples include energy-aware rout-
ing [29], energy-efficient information processing [17,20], and energy-optimal
topology construction [53]. In this article, we focus on designing techniques to
conserve energy in the network by caching data items at selected sensor nodes
in a sensor network. The techniques developed in this paper are orthogonal to
some of the other mentioned approaches, and can be used in combination with
them to conserve energy.

Existing sensor networks assume that the sensors are preprogrammed and
send data to a sink node where the data is aggregated and stored for offline
querying and analysis. Thus, sensor networks provide a simple sample-and-
gather service, possibly with some in-network processing to minimize commu-
nication cost and energy consumption. However, this view of sensor network
architecture is quite limited. With the rise in embedded processing technology,
sensor networks are set to become a more general-purpose, heterogeneous, dis-
tributed databases that generate and process time-varying data. As energy and
storage limitations will always remain an issue — as much of it comes from pure
physical limitations — new techniques for efficient data handling, storage, and
dissemination must be developed. In this article, we take a general view of the

32
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sensor network where a subset of sensor nodes (called servers) generate data
and another subset of nodes (called clients) consume this data. The data gen-
eration and consumption may not be synchronous with each other, and hence,
the overall communication cost can be optimized by caching generated data
at appropriately selected intermediate nodes. In particular, the data-centric
sensor network applications which require efficient data dissemination [11,29]
will benefit from effective data caching strategies.

In our model of the sensor network, there is a single data item at a given
server node, and many client nodes. (See Section 3.6 for a discussion on mul-
tiple data items and servers.) The server is essentially the data item producer
and maintains the original copy of the item. All the nodes in the network
cooperate to reduce the overall communication cost of accessing the data via a
caching mechanism, wherein any node in the network can serve as a cache. A
natural objective in the above context could be to select cache nodes such that
the sum of the overall access and update cost is minimized. However, such an
objective does not guarantee anything about the general distribution of energy
usage across the sensor network. In particular, the updates always originate
from the server node, and hence, the server node and the surrounding nodes
bear most of the communication cost incurred in updating. Hence, there is
a need to constrain the total update cost incurred in the network, to prolong
the lifetime of the server node and the nodes around it — and hence, possibly
of the sensor network. Thus, in this article, we address the cache placement
problem to minimize the total access cost under an update cost constraint.
More formally, we address the problem of selecting nodes in the network to
serve as caches in order to minimize the total access cost (communication cost
incurred in accessing the data item by all the clients), under the constraint
that the total update cost (communication cost incurred in updating the cache
nodes using an optimal Steiner tree over the cache nodes and the server) is less
than a given constant. Note that since we are considering only a single data
item, we do not need to consider memory constraints of a node.

Paper Outline. We start with formulating the problem addressed in this
article and a discussion on related work in Section 3.2. For the cache placement
problem under an update cost constraint, we consider a tree topology and
a general graph topology of the sensor network. For the tree topology, we
design an optimal dynamic programming algorithm in Section 3.3. The optimal
algorithm for the tree topology can be applied to the general graph topology by
extracting an appropriate tree from the given network graph. For the general
graph topology, we consider a simplified multiple-unicast update cost model,
and design a constant-factor approximation algorithm in Section 3.4.1. In
Section 3.4.2, we present an efficient heuristic for the general cache placement
problem under an update cost constraint, i.e., for a general update cost model
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in general graph topology. In Section 3.4.3, we present an efficient distributed
implementation. Finally, we present simulation results in Section 4.5, and give
concluding remarks in Section 3.6.

3.2 Problem Formulation and Related Work

In this section, we formulate the problem addressed in this article. We start
with describing the sensor network model.

Sensor Network Model. A sensor network consists of a large number of
sensor nodes distributed randomly in a geographical region. Each sensor node
has a unique identifier (ID). Each sensor node has a radio interface and can
communicate directly with some of the sensor nodes around it. For brevity,
we sometimes just use node to refer to a sensor node. The sensor network can
be modeled as an undirected weighted graph G = (V, E), where V' is the set
of nodes, and F is the set of weighted edges in the graph. Two network nodes
that can communicate directly with each other are connected by an edge in the
graph. The edge weight may represent a link metric such as loss rate, delay,
or transmission power. We use d;; to denoted the weighted distance between
any two nodes ¢ and j in GG. The network has a data item, which is stored at
a unique node called a server, and is updated at a certain update frequency.
Each sensor node could be a client node. A client node i requests the data
item with an access frequency a;. The cost of accessing a data item (access
cost) by a node i from a node j (the server or a cache) is a;d;;, where d;; is the
weighted distance between nodes ¢ and j.

Problem. Informally, our article addresses the following cache placement prob-
lem in sensor networks. Select a set of nodes to store copies of the data item
such that the total access cost is minimized under a given update cost con-
straint. The total access cost is the sum of all individual access costs over all
clients for accessing the data item from the nearest node (either a cache or the
server) having a copy of the data item. The update cost incurred in updating a
set of caches M is modeled as the cost of the optimal Steiner tree [22] spanning
the server and the set of caches. This problem is obviously NP-hard, as even
the Steiner tree problem is known to be NP-hard [9]. In this article, we look at
the above problem in various stages — a tree topology, a graph topology with
a simplified update cost model, a graph topology with the general update cost
model — and present optimal, approximation, and heuristic-based algorithms
respectively.

More formally, given a sensor network graph G = (V, E), a server r with the
data item, and an update cost A, select a set of cache nodes M CV (r € M)
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to store the data item such that the total access cost

T(G, M) = Zai X mz'njeMdij

eV

is minimum, under the constraint that the total update cost (M) is less than
a given constant A, where u(M) is the cost (i.e., weight) of the minimum
weighted Steiner tree over the set of nodes M. We use the words cost and
weight interchangeably, in this article. Note that in the above definition all
network nodes are considered as potential clients. If some node 7 is not a client,
the corresponding a; would be zero.

Related Work. The general problem of determining optimal cache place-
ments in an arbitrary network topology has similarity to two problems widely
studied in graph theory viz., facility location problem and the k-median prob-
lem. Both problems consider only a single facility type (data item) in the
network. In the facility-location problem, setting up a cache at a node incurs a
certain fixed cost, and the goal is to minimize the sum of total access cost and
the setting-up costs for all the caches, without any constraint. On the other
hand, the k-median problem minimizes the total access cost under the number
constraint, i.e., that at most k£ nodes can be selected as caches. Both problems
are NP-hard, and a number of constant-factor approximation algorithms have
been developed for each of the problems [16, 18, 30], under the assumption that
the edge costs in the graph satisfy the triangular inequality. Without the tri-
angular inequality assumption, either problem is as hard as approximating the
set cover [30,37], and therefore cannot be approximated better than O(log |V|)
unless NP C P. Here, |V| is the size of the network.

Several papers in the literature circumvent the hardness of the facility-
location and k-median problems by assuming that the network has a tree
topology [36,55]. In particular, Li et al. [36] address the optimal placement of
web proxies in a tree topology, essentially designing an O(n3k?) time dynamic
programming algorithm to solve the k-median problem optimally in a tree of n
nodes. In other related works on cache placement in trees, Xu et al. [55] discuss
placement of “transparent” caches to minimize the sum of reads and writes,
Krishnan et al. [35] consider a cost model based on cache misses, and Kalpakis
et al. [33] consider a cost model involving reads, writes, and storage. In sensor
networks, which consist of a large number of energy-constrained nodes, the
constraint on the number of cache nodes is of little relevance.

Cache placement has also been widely used in the web environment [8, 10,
43] and peer-to-peer networks [19, 25, 38] to alleviate problems such as server
overloading, delayed respond time, and inadequate bandwidth. In particular,
Qiu et al. [43] have addressed effective placement of web server replicas over the
Internet and evaluated several placement algorithms. Cohen and Shenkar [19]
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discuss the data replica placement problem in peer-to-peer networks and for-
mulate the data replication strategies as a mapping from the query cost to the
number of replicas. Relatively less work has been done on the cache placement
problem in the specific context of ad hoc networks. Hara [25] addresses replica
allocation methods for mobile ad hoc networks that can experience frequent
disconnection. Yin and Cao [56] design and evaluate three simple coopera-
tive caching techniques to efficiently support data access in ad hoc networks.
In particular, they propose that intermediate nodes either cache data and/or
nearest-cache path information to serve future requests. None of the above
described works offer any performance guarantee on the solutions.

Caching in sensor networks is equally important, since caching sensed infor-
mation at intermediate nodes can greatly reduce overall communication cost
which is the main source of energy consumption. Shenker et al. [46] propose
data centric storage (DCS) as a data dissemination paradigm for sensor net-
works. In DCS, data is stored, according to event type, at corresponding
sensornet nodes. Data is also replicated to avoid overloading. Recently, Sheng
et al. [45] study the storage node placement problem to minimize the total
energy for data collection and data query. Intanagonwiwat et al. [29] propose
directed diffusion, a data dissemination paradigm for sensor networks, which
adopts a data centric approach and enables diffusion to achieve energy savings
by selecting empirically good paths and by caching/processing data in-network.
Bhattacharya et al. [11] develop a distributed framework that improves energy
consumption by application layer data caching and asynchronous update mul-
ticast. Prabh et al. [42] improve upon [11] by presenting and analyzing the
optimality properties of Steiner data caching tree over all the cache nodes.
None of the above works take into consideration the update cost incurred for
the selected caches. In this article, we consider cache placement in sensor net-
works wherein the objective is to minimize the access cost under the constraint
of maximum allowable update cost. As mentioned before, the update cost is
typically mostly borne by the server and the surrounding nodes, and hence, is
a critical constraint. To the best of our knowledge, we are not aware of any
prior work that considers the cache placement problem under an update cost
constraint.

3.3 Tree Topology

In this subsection, we address the cache placement problem under the update
cost constraint in a tree network. The motivation of considering a tree topology
(as opposed to a general graph model which we consider in the next section)
is two fold. Firstly, data dissemination or gathering in sensor networks is
typically done over an appropriately constructed network tree. Secondly, for
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@ Cache Nodes

(a) Subtree notations

(b) Setup of the recursive equation

Figure 3.1: Dynamic Programming algorithm for the tree topology.

the tree topology, we can actually design polynomial time optimal algorithms.
Thus, we can apply such optimal algorithms for the tree topology to the general
graph topology by extracting an appropriate tree (e.g., shortest-path tree or
near-optimal Steiner tree connecting the clients) from the general graph. In
Section 4.5, we show through extensive simulations that such a strategy of
applying an optimal tree algorithm to a general graph topology yields heuristics
that deliver near-optimal cache placement solutions.

Consider an ad hoc network tree T" rooted at the node r. Since the commu-
nication edges are bidirectional, any node in the network could be designated
as the root; thus, we assume that the root node r is also the server for the
data item. The cache placement problem under update cost constraint in a
tree topology can be formally defined as follows.

Given the tree network T rooted at r, a data item whose server is r, and
an update cost constraint A, find a set of cache nodes M C T (r € M) for
storing copies of the data item, such that the total access cost

T(T, M) = Z a; X minjeMdij

i€T

is minimized under the constraint that the total update cost (M) is less than
A, where p(M) is the weight of minimum-weighted Steiner tree over M. Note
that the minimum weighted Steiner tree spanning over a set of nodes M is
simply the smallest subtree connecting the root r to all the nodes in M.



CHAPTER 3. CACHE PLACEMENT UNDER UPDATE COST CONSTRAINT38

3.3.1 Dynamic Programming Algorithm

In this subsection, we present an optimal dynamic programming algorithm for
the above described cache placement problem under the update cost constraint
in a tree topology. We first start with some subtree notations [36] that are
needed to describe our dynamic programming algorithm.

Subtree Notations. Consider the network tree T rooted at r. We use T,, to
denote the subtree rooted at u in the tree T" with respect to the root r; the
tree T, represents the entire tree T'. For ease of presentation, we use T, to also
represent the set of nodes in the subtree T,,. We use p(i) to denote the parent
node of a node ¢ in the tree T,. Let 7(i,j) denote the unique path from node
i to node j in T;, and dj ~(; ;) denote the distance of a node % to the closest
node on (i, 5).

Let us assume a left to right ordering of the children at each node. Consider
two nodes v and u in the network tree, where v in an ancestor of u in 7T,.. See
Figure 3.1(a). Let L,, be the subgraph induced by the set of nodes on the left
of and excluding the path 7(v,u) in the subtree T, and R, , be the subgraph
induced by the set of nodes on the right of and including the path (v, u), as
shown in Figure 3.1(a). It is easy to see T, can be divided into three distinct
subgraphs, viz., L, ,, Ty, and R,,. Note that T;, and R, , are trees, while L,,,,
may not be a tree.

DP Algorithm. Consider a subtree T, and a node x on the leftmost branch
of T,. Let us assume that all the nodes on the path 7(v, x) (including v and x)
have already been selected as caches. Let 7(7T,, z, ) denote the optimal access
cost for all the nodes in the subtree T, under the additional update cost 9,
where we do not include the cost of updating the already selected caches on
the path (v, z). Below, we derive a recursive equation to compute 7(7,, z, ),
which would essentially yield a dynamic programming algorithm to compute
7(T,,r,A) — the minimum value of the total access cost for the entire network
tree T, under the update cost constraint A.

Let O, be an optimal set (not including and in addition to 7(v,z)) of
cache nodes in T, that minimizes the total access time under the constraint
of additional update cost 0. Let u be the leftmost deepest node (i.e., deepest
among the leftmost) of O, in Ty, i.e., the node w is such that L,, N O, =0
and T,, N O, = {u}. It is easy to see that adding the nodes along the path
7(v,u) to the optimal solution O, does not increase the additional update cost
incurred by O,, but may reduce the total access cost. Thus, without loss of
generality, we assume that the optimal solution O, includes all the nodes along
the path 7(v,u) as cache nodes, if u is the leftmost deepest node of O, in T,.

Recursive Equation. As described above, consider an optimal solution O, that
minimizes (T, z,0), and let u be the leftmost deepest node of O, in T,,. Note
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that O, does not include the nodes on 7(v, z). Based on the definition of u and
possible cache placements, a node in L,,,, will access the data item from either
the nearest node on m(v,u) or the nearest node on 7(v,z). In addition, any
node in T, will access the data item from the cache node u, while all other nodes
(i.e., the nodes in R, ,) will choose one of the cache nodes in R, , to access the
data item. See Figure 3.1(b). Thus, the optimal access cost 7(T5,, z,0) can be
recursively defined in terms of 7(R, ., p(t), 6 —dy x(v,z)) as shown below. Below,
the quantity d, r(v2) denotes the shortest distance in 7 from u to a node on
the path 7(v, z) and hence, is the additional update cost incurred in updating
the caches on the path 7(v,u). We first define S(7,,x,0) as the set of nodes
u such that the cost of updating wu is less than §, the additional update cost.
That is,
S(Ty,z,6) ={ulu € Ty A (6 > dyrwa))}-

Now, the recursive equation can be defined as follows.
( Yier, @ X dig(v,a), if S(T,,z,0) = 0

minuES(Tv,a:,J)
ZiGLU,u a; X mzn(di,ﬂ(v,u)v diJT(’U,:E))
+ 2 ier, Gidiu : otherwise.
L +T(Ryus (1), 0 — dyr(v,2))

T(Ty, x,0) =

In the above recursive equation, the first case corresponds to the situation
when the additional update cost d is not sufficient to cache the data item at
any more nodes (other than already selected cache nodes on 7(v,z)). For the
second case, we compute the total (and minimum possible) access cost for each
possible value of u, the leftmost deepest additional cache node, and pick the
value of u that yields the minimum total access cost. In particular, for a fixed
u, the first term corresponds to the total access cost of the nodes in L, ,. Note
that for a node in L,,,, the closest cache node is either on the path m, , or m,,,.
The second and third terms correspond to the total access time of nodes in
T, and R,, respectively. Since the tree T, is devoid of any cache nodes, the
cache node closest to any node in T, is u. The minimum total access cost of
all the nodes in R, , can be represented as 7(R,., p(¢), 6 — dyrx(ve)), since the
remaining available update cost is 0 — dy, x(v,2) Where dy r(y . is the update cost
used up by the cache node u.

Time Complexity. Note that the above recursive equation can also be used to
compute the optimal placement of cache nodes required needed within 7}, to
attain the optimal cost 7(T,x,0). Also, our original problem of finding an
optimal set of cache nodes in 7, under the given update constraint A can be
solved by evaluating 7(T,.,r, A).
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For time efficiency, we first precompute the terms > ai XMan(ds x(v.u), dix(v,z))

€Ly
and ZieTu a;d;, for all combinations of values of v,u, and z. It is easy to
see that the precomputation can be done in O(n?) time. Next, we compute
7(Ty, x,0) for all values of v,z and §. Using the above precomputed values,
each such 7(7,,x,0) value takes O(n) time for computation. Since, there are
a total of n?A combinations of v,z and J, the overall time complexity of our
dynamic programming algorithm is O(n* + n3A)). In unweighted graphs, the
time complexity can be simplified to O(n*), since A = O(n).

3.4 (General Graph Topology

The tree topology assumption makes it possible to design a polynomial-time op-
timal algorithm for the cache placement problem under update cost constraint.
In this subsection, we address the cache placement problem in a general graph
topology. In the general graph topology, the cache placement problem becomes
NP-hard. Thus, our focus here is on designing polynomial-time algorithms with
some performance guarantee on the quality of the solution.

As defined before, the total update cost incurred by a set of caches nodes
is the minimum-weight of an optimal Steiner tree over the set of cache nodes
and the server; we refer to this update cost model as the Steiner tree update
cost model. Since the minimum-weighted Steiner tree problem is NP-hard in
general graphs, we solve the cache placement problem in two steps. First, we
consider a simplified multiple-unicast update cost model and present a greedy
algorithm with a provable performance guarantee for the simplified model.
Then, we improve our greedy algorithm based upon the more efficient Steiner
tree update cost model.

3.4.1 Multiple-Unicast Update Cost Model

In this section, we consider the cache placement problem for general network
graph under a simplified update cost model. In particular, we consider the
multiple-unicast update cost model, wherein we model the total update cost
incurred in updating a set of caches as the sum of the individual shortest path
lengths from the server to each cache node. More formally, the total update cost
of a set M of cache nodes is ju(M) = >, dsi, where s is the server. Using this
simplified update cost model, the cache placement problem in general graphs
for update cost constraint can be formulated as follows.

Problem Under Multiple-Unicast Model. Given an ad hoc network graph
G = (V, E), aserver s with the data item, and an update cost A, select a set of
cache nodes M C V (s € M) to store the data item such that the total access
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cost T(G, M) = > ..\ a; X minjepnd;; is minimum, under the constraint that
the total update cost (M) = > .., dsi < A.

The cache placement problem with the above simplified update cost model
is still NP-hard, as can be easily shown by a reduction from the k-median
problem. A number of constant-factor approximation algorithms have been
proposed [16,30] for the k-median problem which can also be used to solve
the above cache placement problem. However, all the constant-factor approx-
imation algorithms are based on the assumption that the edge weights in the
network graph satisfy the triangular inequality. Moreover, the proposed ap-
proximation algorithms for k-median problem cannot be easily extended to
the more efficient Steiner tree update cost model. Below, we present a greedy
algorithm that returns a solution whose “access benefit” is at least 63% of the
optimal benefit, where access benefit is defined as the reduction in total access
cost due to cache placements.

Greedy Algorithm. In this section, we present a greedy approximation al-
gorithm for the cache placement problem under the multiple-unicast update
cost constraint in general graphs, and show that it returns a solution with
near-optimal reduction in access cost. We start with defining the concept of a
benefit of a set of nodes which is important for the description of the algorithm.

Definition 2 (Benefit of Nodes) Let A be an arbitrary set of nodes in the
sensor network. The benefit of A with respect to an already selected set of cache
nodes M, denoted as 3(A, M), is the decrease in total access cost resulting due
to the selection of A as cache nodes. More formally, 5(A, M) = 7(G, M) —
7(G, M U A), where 7(G, M), as defined before, is the total access cost of the
network graph G when the set of nodes M have been selected as caches. The
absolute benefit of A denoted by [(A) is the benefit of A with respect to an
empty set, i.e., B(A) = B(A, D).

The benefit per unit update cost of A with respect to M is G(A, M)/u(A),
where p(A) is the total update cost of the set A under the multiple-unicast
update cost model. Il

Our proposed Greedy Algorithm works as follows. Let M be the set of
caches selected at any stage. Initially, M is empty. At each stage of the
Greedy Algorithm, we add to M the node A that has the highest benefit per
unit update cost with respect to M at that stage. This process continues until
the update cost of M reaches the allowed update cost constraint. The algo-
rithm is formally presented below.
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Algorithm 3Greedy Algorithm
Input: A sensor network graph V = (G, E).
Update cost constraint A.

Output: A set of cache nodes M.
BEGIN

M = 0

while (u(M) < A)

Let A be the node with maximum G(A, M)/u(A).

M =MU{A},
end while;
RETURN M — {A} or {A}, whichever has the higher benefit.
END. O

The running time of the above greedy algorithm is O(kn?), where n is the
number of nodes in the network and k(< n) is the number of iterations.

Performance Guarantee of the Greedy Algorithm. We now show that
the Greedy Algorithm returns a solution that has a benefit at least 31% of that
of the optimal solution. We start with presenting a lemma about the benefit
function that leads to the final approximation result. The following lemma
shows that the total benefit of a set of sets of nodes is at most the sum of the
benefit of individual sets.

Lemma 1 Let O1,0,,...,0,, and M be arbitrary sets of nodes. Then, (O, U
Oz...UO,, M) <™ B(0;,M).

Proof: Without loss of generality, we prove the lemma for m = 2. By definition
of the benefit function, we have

B(O1U Oy, M) = B(O1, M) + (02, M U Oy).
In the next paragraph, we show that
B(O02, M UOy) < (02, M).

Thus, we get 5(O1 U O, M) < (01, M) + 5(Oa, M).

To complete the proof, we now show that 3(Oy, M) > 5(Os, M U Oy) for
arbitrary sets of nodes M, O, and O,. Let V be the set of all nodes in the given
network graph, and let d(i, M) denote the distance (number of hops) from a
node i to the closest node in the set M. Note that for an arbitrary node ¢ and
arbitrary sets of nodes M, Oy, and O,, we have

d(i, M) — d(i, M U Os) > d(i, M UOy) — d(i, M UOy U O,).
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To see the above, consider the following three cases viz. the closest node to ¢
in the set M UO; U Oy is in M, or O or Oy. In the first case, both sides of
the above equation are zero. For the second case, the right hand side is zero
while the left hand side is positive. For the third case, d(i, M U O; U O,) =
d(i, M U Oq) = d(i,05) and d(i, M) > d(i, M U Oy).

Now, by the definition of the benefit function, we have

B0, M) = > a; x (d(i, M) — d(i, M U O))
> 3 a;x (d(i, MUOy) = d(i, MU O, UOy))
= B(0y, MUO)

Now, we show that the Greedy Algorithm returns a solution with near-
optimal benefit. The proof technique used here is similar to that used in [23]
for the closely related problem of selection of views in a data warehouse.

Theorem 4 Greedy Algorithm (Algorithm 3) returns a solution whose absolute
benefit is of at least (1—1/e)/2 times the absolute benefit of an optimal solution.

Proof: Let M be the set of cache nodes selected by Greedy Algorithm at the
end of the while loop, i.e., before the very last step. Below, we show that
the benefit of M is at least (1 — 1/e) times the absolute benefit of an optimal
solution (we actually allow the optimal solution to use p(M) update cost).
Since, Greedy Algorithm partitions M into two feasible solutions and return
the better of them, we get the desired approximation result.

Let u(M), the total multiple-unicast update cost of M, be equal to k. Let
the optimal solution using at most k£ units of multiple-unicast update cost be
0.

Consider a stage when the greedy algorithm has already chosen a set M =
GG, occupying [ units of update cost with “incremental” benefits by, bo, ..., b;.
Incremental benefit b; is defined as the increase in benefit when the node with
the i'" unit of update cost is added into the set of cache nodes. So, the absolute
benefit of Gy, B(G)) = Zi’:l b;. Since, the absolute benefit of O U G is at least
that of O, we have 3(0,G;) > B(0) — S, bs.

Let O = {01,09,...,0,}. By Lemma 1 for the sets {0;}’s, we have 5(O, G;) <
S B({oi}, Gi). Now, we show by contradiction that there exists a node oy, in
O such that 5({on}, Gi)/u(on) > 5(O,Gy)/k. Note that O and G; may not be
disjoint. Let us assume that there is no such node o5, in O. Then, 5({0;}, G;) <
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(B(O,Gy)/k)u(o;) for every node o; € O. Thus, Y ., 5({o;}, Gi) < (B(O,G))/k) >, p(o;) =
B(0, G)), which violates Lemma 1. Therefore, there exists a node oy, in O such

that z

B{on}. G1)/nlon) > BO,G) [k = (B(0) = > bi)/k.
i=1
Now, the benefit per unit update cost with respect to G; of the node C
selected by the algorithm is at least that of o, which is at least (3(0O) —
S b;)/k, as shown above. Distributing the benefit of C' over each of its unit
update costs equally (for the purpose of analysis), we get

bi+j = (B(0) — Zb’L)/k for 0 <j < u(C),

where 1(C) is the update cost for C.
As the above analysis is true for each node C selected at any stage, we have
for0<j <k

Application of the above equation j times, we get (6(O) — 5:1 b)) < ((k —
1)/k)?3(0), which yields (3(0) — 325, b;) < ((k — 1)/k)*3(0) when j = k.

Thus, we get (Zle b;)/B(0) > 1— (E2)% > 1—1/e. Since, the absolute
benefit of M is B(M) =S¥ b;, we have S(M)/F(0) > 1 —1/e. .

3.4.2 Steiner Tree Update Cost Model

Recall that the constant factor performance guarantee of the Greedy Algorithm
described in the previous section is based on the multiple-unicast update cost
model, wherein whenever the data item in a cache node needs to be updated,
the updated information is transmitted along the individual shortest path be-
tween the server and the cache node. However, the more efficient method of
updating a set of caches from the server is by using the optimal (minimum-
weighted) Steiner tree over the selected cache nodes and the server. In this
section, we improve the performance of our Greedy Algorithm by using the
more efficient Steiner tree update cost model, wherein the total update cost



CHAPTER 3. CACHE PLACEMENT UNDER UPDATE COST CONSTRAINT45

incurred for a set of cache nodes is the cost of the optimal Steiner tree over the
set of nodes M and the server of the data item.

Since the minimum-weighted Steiner tree problem is NP-hard, we adopt
the simple 2-approximation algorithm [22] for the Steiner tree construction,
which constructs a Steiner tree over a set of nodes L by first computing a
minimum spanning tree in the “distance graph” of the set of nodes L. We use
the term 2-approximate Steiner tree to refer to the solution returned by the
2-approximation Steiner tree approximation algorithm. Based on the notion
of 2-approximate Steiner tree, we define the following update cost terms.

Definition 3 (Steiner Update Cost) The Steiner update cost for a set M of
cache nodes, denoted by 1/(M), is defined as the cost of a 2-approximate Steiner
tree over the set of nodes M and the server s.

The incremental Steiner update cost for a set A of nodes with respect to
a set of nodes M is denoted by p'(A, M) and is defined as the increase in
the cost of the 2-approximate Steiner tree due to addition of A to M, i.e.,
WA, M) = (AU M) — p/'(M). O

Based on the above definitions, we describe the Greedy-Steiner Algorithm
which uses the more efficient Steiner tree update cost model as follows.

Algorithm 4Greedy-Steiner Algorithm
Input: A network graph V = (G, E).
Update cost constraint A.

Output: The set of cache nodes M.
BEGIN

M = 0;

while (u/(M) < A)

Let A be the node with maximum G(A, M)/u'(A, M).

M = MU{A};
end while;
RETURN M — {A} or {A}, whichever has the higher benefit.
END. O

Unfortunately, there is no performance guarantee of the solution delivered by
the Greedy-Steiner Algorithm. However, as we show in Section 4.5, the Greedy-
Steiner Algorithm performs the best among all our designed algorithms for the
cache placement problem under an update cost constraint.
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3.4.3 Distributed Implementation

In this subsection, we design a distributed version of the centralized Greedy-
Steiner Algorithm (Algorithm 4). Using similar ideas as presented in this sec-
tion, we can also design a distributed version of the centralized Greedy Algo-
rithm (Algorithm 3). However, since the centralized Greedy-Steiner Algorithm
outperformed the centralized Greedy Algorithm for all ranges of parameter
values in our simulations, we present only the distributed version of Greedy-
Steiner Algorithm. As in the case of centralized Greedy-Steiner Algorithm,
we cannot prove any performance guarantee for the presented distributed ver-
sion. However, we observe in our simulations that solution delivered by the
distributed version is very close to that delivered by the centralized Greedy-
Steiner Algorithm. Here, we assume the presence of an underlying routing
protocol in the sensor network. Due to limited memory resources at each sen-
sor node, a proactive routing protocol [41] that builds routing tables at each
node is unlikely to be feasible. In such a case, a location-aided routing protocol
such as GPSR [34] is sufficient for our purposes, if each node is aware of its
location (either through GPS [28] or other localization techniques [7, 14]).

Distributed Greedy-Steiner Algorithm. The distributed version of the
centralized Greedy-Steiner Algorithm consists of rounds. During a round, each
non-cache node A estimates its benefit per unit update cost, i.e., 5(A, M) /' (A, M),
as described in the next paragraph. If the estimate at a node A is maximum
among all its communication neighbors, then A decides to cache itself, and
sends the estimated incurred update cost p/(A, M) to the server. During each
round, a number of sensor nodes may decide to cache the data item according
to the above criteria. At the end of each round, the server node sums the up-
date cost incurred by newly added cache nodes, and calculates the remaining
update cost by deducting it from the given update cost constraint. Then the
remaining update cost is broadcast by the server to the entire network and a
new round is initiated. To avoid many cache nodes being selected in the first
round, we can have a node selecting itself as a cache node only if its estimate of
benefit per unit cost estimate is the maximum among all its k-hop neighbors,
where k£ > 1. The constant £ may be chosen iteratively, until the number of
nodes selecting themselves are small enough. Note that we do not need to
assume a synchronized mode, since each round is initiated by the server using
a message. If there is no remaining update cost, then the server decides to
discard some of the recently added caches (to keep the total update cost under
the given update cost constraint), and the algorithm terminates. In this case,
the server can deal with it by order. The algorithm is formally presented below.

Algorithm 5Distributed Greedy-Steiner Algorithm
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Input: A network graph V = (G, E).
Update cost constraint A.
Output: The set of cache nodes M.
BEGIN
M = 0;
while (p/(M) < A)
Let A be the set of nodes each of which (denoted as A)
has the maximum (A, M)/i/(A, M) among its
non-cache neighbors.

M= MU A,
end while;
RETURN M;

END.

O

Estimation of y/(A, M). Let A be a non-cache node, and T be the shortest
path tree from the server to the set of communication neighbors of A. Let
C € M be the cache node in T that is closest to A, and let d be the distance
from A to C. In the above Distributed Greedy-Steiner Algorithm, we estimate
the incremental Steiner update cost p/(A, M) to be d x u, where u is the update
frequency of the server. The value d can be computed in a distributed manner
at the start of each round as follows. As mentioned before, the server initiates
a new round by broadcasting a packet containing the remaining update cost to
the entire network. If we append to this packet all the cache nodes encountered
on the way, then each node should get the set of cache nodes on the shortest
path from the server to itself. Now, to compute d, each node only needs to
exchange the above information with all its immediate neighbors.

Estimation of (A, M). A non-cache node A considers only its “local” traffic to
estimate (A, M), the benefit with respect to an already selected set of cache
nodes M. The local traffic of A is defined as the data access requests that use
A as an intermediate/origin node. Thus, the local traffic of a node includes
its own data requests. We estimate the benefit of caching the data item at A
as (A, M) = d x t, where t is the frequency of the local traffic observed at
A and d is the distance to the nearest cache from A (which is computed as
shown in the previous paragraph). The local traffic ¢t can be computed if we let
the normal network traffic (using only the already selected caches in previous
rounds) run for some time between successive rounds. The data access requests
of a node A during normal network traffic between rounds can be directed to
the nearest cache in the tree T3 as defined in the previous paragraph.

Dynamic Topologies. The sensor network topology may be very dynamic
due to node/link failures, mobility of sensor nodes, new sensor nodes entering
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the network, etc. The Distributed Greedy-Steiner Algorithm can be adapted
to handle node failures if the active cache nodes periodically send a probe to
the server node, and the server initiates a new round if the current update cost
is sufficiently less than the update cost constraint. If the server node is static,
then mobility of cache nodes can be handled in a similar way. However, in this
case, the server node may need to discard cache nodes that have moved too far
away. The situation is more challenging if the server node itself is mobile. In
the most general scenario of mobile server and client nodes, the server node may
need to gather latest location of active cache nodes’ by periodically flooding
the network (in absence of a proactive routing scheme that adapts to mobility
of nodes). New nodes entering the network automatically become part of the
network and play a useful role in later rounds of the algorithm.

3.5 Performance Evaluation

We empirically evaluate the relative performances of the cache placement al-
gorithms for randomly generated sensor networks of various densities. As the
focus of our work is to optimize access cost, this metric is evaluated for a
wide range of parameters — (i) network-related — such as the number of nodes
and network density, (ii) application-related — such as the number of clients
accessing each data item.

We study various caching schemes (listed below) on a randomly generated
sensor network of 2,000 to 5,000 nodes in a square region of 30 x 30. The
distances are in terms of arbitrary units. We assume all the nodes have the
same transmission radius (7;.), and all edges in the network graph have unit
weight. We have varied the number of clients over a wide range. For clarity,
we first present the data for the case where number of clients is 50% of the
number of nodes, and then present a specific case with varying number of
clients. All the data presented here are representative of a very large number
of experiments we have run. Each point in a plot represents an average of five
runs, in each of which the server is randomly chosen. The access costs are
plotted against number of nodes and transmission radius and several caching
schemes are evaluated:

e No Caching — serves as a baseline case.

o Greedy Algorithm — greedy algorithm using the multiple-unicast update
cost model (Algorithm 3).

o Centralized Greedy-Steiner Algorithm — greedy algorithm using the Steiner
tree-based update cost model (Algorithm 4).
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Figure 3.2: Access cost with varying number of nodes in the network for differ-
ent update cost constraints. Transmission radius (7,) = 2. Number of clients
= 50% of the number of nodes, and hence increases with the network size.

o Distributed Greedy-Steiner Algorithm — distributed implementation of the
Greedy-Steiner Algorithm (Algorithm 5).

o DP on Shortest Path Tree of Clients — Dynamic Programming algorithm
(Section 3.3.1) on the tree formed by the shortest paths between the
clients and the server.

e DP on Steiner Tree of Clients — Dynamic Programming algorithm (Sec-
tion 3.3.1) on the 2-approximate Steiner tree over the clients and the
server.

Varying Network Size for Multiple Update Constraints. We first com-
pare the performance of the six algorithms under different update cost con-
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Figure 3.3: Access cost with varying transmission radius (7,.) for different
update cost constraints. Number of nodes = 4000, and number of clients =
2000 (50% of number of nodes).

straints with varying number of nodes (See Figure 3.2). The transmission
radius (7) is fixed at 2 (we will vary this in a later evaluation). Instead of
using absolute cost values to describe the update cost constraint, we represent
it in terms of a fraction of the cost of the near-optimal (2-approximate [9])
Steiner tree over all clients and the server node. Clearly, this cost represents
a measure of the maximum possible update cost. The update cost constraint
is set to 25% and 75% of the cost of the near-optimal Steiner tree. Figure 3.2
shows that the proposed algorithms perform significantly better (up to an or-
der of magnitude) than the no-caching case (note the logarithm scale for the
vertical axis). Figure 3.2(a) shows that when the update cost constraint is
small, all our proposed algorithms perform very similarly, especially for large
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network size. However, a closer look shows that Greedy Algorithm using the
multiple-unicast update cost model performs the worst among all our five de-
signed algorithms. The performance differences can be seen more clearly in
Figure 3.2(b), where the update cost constraint is larger. In particular, the
best performing algorithms are the Steiner tree based centralized algorithms
viz. DP on Steiner tree of clients and Centralized Greedy-Steiner Algorithm.
Finally, we observe that the Distributed Greedy-Steiner Algorithm performs
quite closely to its centralized version.

Varying Transmission Radius. Figure 3.3 shows the effect of the transmis-
sion radius (7)) on access cost. A network of 4,000 nodes is chosen for these
experiments. The transmission radius 7T, is varied from 1 to 4. This range
is sufficient for evaluation. 7, smaller than 1 disconnects the network with
high probability. On the other end, a convergence of behavior of our caching
algorithms is seen near T, = 4, as the network is already dense enough. So,
T, is not increased any further. The total access cost of all the algorithms de-
creases with the increase in 7)., since clients come closer to the server in terms
of number of hops as the network density increases. However, when the update
cost is large (75% of the near-optimal Steiner tree) as shown in Figure 3.3(b),
the performances of the two Steiner-tree based centralized algorithms is almost
same for all values of T,. Moreover, we again observe that the Distributed
Greedy-Steiner Algorithm performs very close to its centralized version.

Summary. The general trend in these two sets of plots (Figures 3.2 and
3.3) is similar. Aside from the fact that our algorithms offer much less total
access cost than the no-caching case, the plots show that (i) the two Steiner
tree-based algorithms (DP on Steiner Tree of Clients and Centralized Greedy-
Steiner Algorithm) perform equally well and the best among all algorithms
except for very sparse graphs; (ii) the Greedy-Steiner Algorithm provides the
best overall behavior; (iii) the Distributed Greedy-Steiner Algorithm performs
very closely to its centralized version. Figure 3.4 shows the total access cost
as a function of number of clients for a network with 3,000 nodes. The general
behavior is no different from before.

3.6 Conclusions

We have developed a suite of data caching techniques to support effective
data dissemination in sensor networks. In particular, we have considered up-
date cost constraint and developed efficient algorithms to determine optimal or
near-optimal cache placements to minimize overall access cost. Minimization of
access cost leads to communication cost savings and hence, energy efficiency.
The choice of update constraint also indirectly contributes to resource effi-



CHAPTER 3. CACHE PLACEMENT UNDER UPDATE COST CONSTRAINT52

10000 F

1000

100

[ SRR
ARSI

No Caching —+—

Greedy Algorithm ---x---

DP on Shortest Path Tree of Clients ---*--- 7
DP on Steiner Tree of Clients -~
Centralized Greedy-Steiner Algorithm ——-m-
Distcibuted Glreedy—Stleiner Alqorithm Lo

10

Total Access Cost (number of hops)

0 10 20 30 40 50 60
Percentage of Clients(%)
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ciency. Two models have been considered — one for a tree topology, where an
optimal algorithm based on dynamic programming has been developed, and the
other for the general graph topology, which presents a NP-hard problem where
a polynomial-time approximation algorithm has been developed. We also de-
signed efficient distributed implementations of our centralized algorithms, and
empirically showed that they perform well for random sensor networks.

Cache placement of multiple data items at different servers can be solved as
independent single data item cache placement problems, since the update cost
constraint at different servers would presumably be independent. The cache
placement problem of multiple data items at a single server is challenging, but
we can use a heuristic of allocating update costs for each item in proportion to
the sum of access frequencies. Each of the above scenarios assumes no memory
constraints at network nodes. Since, sensor nodes are characterized by limited
memory capacity and limited battery energy, we are currently addressing the
more general cache placement problem in sensor networks under memory and
update constraints for multiple data items.



Chapter 4

Data Caching Under Number
Constraint

4.1 Introduction

In recent years, with the advent of wireless technology and file sharing appli-
cations, the traditional client-server model has begun to lose its prominence.
Instead, information sharing by spontaneously connected nodes has emerged
as a new framework. In such networks, all network nodes are equal in terms of
capacity and functionality. Moreover, the ownership of the files is not critical,
and a file (data item) does not belong to a specific node and hence, is read and
written by multiple nodes in the network. Caching an object at various network
nodes can play an important role in improving overall system performance by
drastically reducing the time to read an object.

In this article, we address the data caching problem in above described
multi-hop networks wherein the given data item may be read and written
by multiple other network nodes, and the objective is to minimize the total
reading, writing, and storage cost by placing a limited number of caches. Here,
the cost of reading the data item by a node is defined as the distance to the
closest cache node times the read frequency, the cost of writing is defined as the
cost of the minimum Steiner tree over the writing node and all the cache nodes
times the write frequency, and the storage cost is the given cost of caching the
data item at the node.

The rest of the paper is organized as follows. In Section 4.2, we present our
network model, formulate the data caching problem addressed in this article,
and present an overview of the related work. Section 4.3 presents the optimal
dynamic programming algorithm for tree topology networks. In Section 4.4,
we design centralized and distributed heuristics for general graph networks.
Simulation results are presented in Section 4.5, and concluding remarks in

53
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Section 4.6.

4.2 Data Caching Problem Formulation

In this section, we present our model of the network, give a formal definition of
the problem, and present a discussion on related work. We use the term cache
node to refer to a network node that caches the data item.

Network Model and Notations. We model the network as a connected general
graph, G(V, E), where V is the set of nodes/vertices and F is the set of edges.
We use n to denote the total number of nodes in the given network, i.e., n = |V|.
Each edge has a nonnegative weight associated with it. There is a single data
item in the network, which is to be cached at selected network nodes. For each
node ¢ € V, the frequency of reading the data item is r;, the frequency of writing
the data item is w;, and the cost of caching (i.e., storing) the data item at node
i is s;. Let d;; denote the shortest distance (minimum total weight) between
any two nodes 4, j, and let d(¢, M) = min;eps d;; be the shortest distance from
i to some node in a set of nodes M. Also, let S(X) be the optimal cost of
a Steiner tree over the set of nodes X. Given a set of cache nodes M where
the data item is cached, the total cost of reading the data item by a node i is
rid(i, M), while the cost of writing by node ¢ is w;S(M U {i}). The tree used
by a writer ¢ to write onto the set of caches is refered to as the write-tree for
the writer 7. Note that we do not assume a server for the data item in the
network, since in our model, a server can be looked upon as a predetermined
cache node.

Data Caching Problem. The data caching problem in the above network
model can be defined as follows. Given a network graph G(V, E) and a number
P (1 < P < n), select at most P cache nodes such that the total (reading,
writing, and storage) cost is minimized. For a given network graph G and a
set of cache nodes M, the total cost is denoted by 7(G, M) and is defined as:

T(G M) = rd(i, M)+ ) wiS{iyUM)+) s (4.1)

eV eV ieM

In the above equation, the terms on the right hand side represent total read
cost, total write cost, and total storage cost respectively. Essentially, the data
caching problem is to select a set of cache nodes M (|M| < P) such that the
total cost 7(G, M) is minimized.

Related Work. When there are no writers and P = n, the data caching
problem is exactly the same as well-known facility-location problem. When
the number of cache nodes are constrained to be at most P and the cost
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is comprised only of reading and storage costs, the data caching problem is
the well-known P-median problem. Both the problems (facility-location and
P-median) are NP-hard, and a number of constant-factor approximation al-
gorithms have been developed for each of the problems [16, 18,30], under the
assumption that the edge costs in the graph satisfy the triangular inequality.
Without the triangular inequality assumption, either problem is as hard as
approximating the set cover [30,37], and therefore cannot be approximated
better than O(logn) unless NP C P. Several papers in the literature circum-
vent the hardness of the facility-location and P-median problems by assuming
that the network has a tree topology [35, 36,48]. In particular, the best known
algorithm for solving P-median in trees is by Tamir [48], who gives an O(Pn?)
time dynamic programming algorithm. In this article, we essentially general-
ize Tamir’s algorithm for our data caching problem in trees, and also present
centralized and distributed heuristics for general graphs.

In a recent work, Wolfson and Milo [54] consider a simpler version of our
data caching problem, wherein there are no storage costs, and the write cost
is equal to the minimum spanning tree over the distance graph of the cache
nodes. They design optimal algorithms for trees, rings, and complete graphs.
In the most related work, Kalpakis et al. [33] consider the problem of finding a
Steiner-optimal P-replica set in a tree topology in order to minimize the sum of
reading, writing, and storing costs. They developed a very complicated (more
than 20 pages of case analysis) optimal dynamic programming algorithm that
runs in O(n®P?) time and finds a Steiner-optimal replica set of size ezactly
P in tree topologies. In our understanding, their work gives a O(n®P3)-time
algorithm for finding a Steiner-optimal replica set of size at most P in trees. In
this article, we essentially address the same problem and design a much simpler
dynamic programming optimal algorithm that runs in O(n?P?) time and finds
an optimal set of caches of size at most P. In addition, we design centralized
and distributed heuristics to solve the problem in general graph topologies,
and show through extensive simulations that our proposed heuristics perform
well in practice. In the preliminary version [24] of this work, we proposed
an O(n?P?) dynamic programming algorithm for the data caching problem
in trees with an assumption that read requests are satisfied by an “ancestor”
cache node rather than the nearest cache node.

IThe assumption is not stated in the preliminary version [24], since we failed to realize it
at the time of publication. This work presents a correct (i.e., without the assumption) and
more efficient dynamic programming algorithm based on an entirely different technique.
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4.3 Data Caching in Tree Topology

In this section, we study the data caching problem in special case of a tree
topology, and present an optimal dynamic programming algorithm. Before
we present our algorithm, we first review Tamir’s dynamic programming (DP)
algorithm for the P-median problem in a tree topology [48], since it forms the
basis of our own proposed algorithm.

Tamir’s DP Algorithm for P-Median in Trees. As mentioned before, the
P-median problem is to select a set S of at most P nodes that minimizes the
sum of the storage costs of nodes in S and the access costs. As in our data
caching problem, the access cost is defined as the sum of the distances of each
node v in the tree to the node nearest to v in S. Tamir [48] presents an O(n?P)
time DP algorithm for the above. The brief description of the DP algorithm
in [48] is as follows. First, [48] presents a linear algorithm to transform an
arbitrary tree (rooted at some distinguished node v) into a full binary tree,
wherein each node either has two children or is a leaf. The transformation
guarantees that solving the problem on the original tree is equivalent to solving
it on the transformed full binary tree. Let T'= (V| E) be the resulting binary
tree, where V' = {vy,...,v,,}. For each node v; € V, the subtree rooted at v,
is denoted as T}, and the set of nodes in 7} is denoted as V;. Then, for each
node v; in V, [48] computes and sorts the distances from v; to all nodes in V/,
and denotes the sequence as L = {I}, ...,17},? where I < I'*! and [} = 0. The
node corresponding to l; is denoted as v; Based on the above notations, [48]
defines the following terms G and F', which can be computed recursively from
“leaves to root” using a dynamic programming approach.

o G(v),q, l;) It is defined as the optimal value of the subproblem defined
on the subtree T}, given that a total of at least 1 and at most ¢ cache
nodes can be selected in 7j, and that at least one of them has to be in
{vj,v,...,v5} N'V;. In the above definition, it is implicitly assumed that
there is no interaction between the nodes in 7 and the rest of nodes in
T.

e F(v;,q,1). It is defined as the optimal value of the subproblem defined
on the subtree 7; under the following constraints: (i) A total of at most
q cache nodes can be selected in T}, (ii) There are already some selected
cache nodes in T'— T}, and the closest amongst them to v; is at a distance
of [ from vj.

Tamir’s dynamic programming (DP) algorithm starts from leaves of 7', and
recursively computes G and F values at each node in 7" in terms of the G

?[48] uses the notation {r},...,r?} instead.
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and F values of its children. The optimal value of the problem is given by
min(G(vy, P,17), G(v1,0,1})), where v is the root of the tree and n is the total
number of nodes in the network. The algorithm can be easily modified to select
the actual set of cache nodes that yields the optimal value.

4.3.1 Generalizing Tamir’s DP to Our Data Caching
Problem

Our data caching problem essentially generalizes the P-median problem by
including the concept of writers and writing costs in the overall cost. Below,
we present our generalized DP algorithm for the data caching problem in trees.
First, we start with an overview of our simplified notations. Then, we generalize
the definitions of G and F' from [48] for our data caching problem, and present
the recursive equations for computing G and F' values at each node in the tree.
Finally, we will use the values of G and F’ to define another function G for each
node in the network, which essentially solves our data caching problem.

Simplified Notations. Let T'(V, E') be a given binary tree with nonnegative edge
weights. For clarity, we drop the subscript j from the notations used in [48].
In particular, we use v to represent a node in 7" (instead of v; in [48]), and T,
to denote the subtree (or the set of nodes in the subtree) rooted at v. Without
loss of generality, we pick some node R as the root of the given tree. For each
non-leaf node v € T, we use v; and v, to denote v’s left and right children.
Finally, for each node v € T, we compute and sort the distances from v to
all the nodes in T and denote the corresponding node sequence as {v!,...,v"},
where d,,i < dyyi+1 fori=1,...,n —1 and v' = v.

Defining G and F' using I'. For the purposes of defining our generalized
versions of G and F' functions, we first define the total cost I'(T,, M, M,) in a
subtree T, due to M, a set of cache nodes inside T}, where M, is the set of
cache nodes outside T,,. The cost I'(T,, M, M,) is defined as:

D(Ty, M, M) =Y rid(k, MUM,)+ > s+ Y weS{vpUM)+Y " wiS({k}u{v}uM)

keT, keM kT, keT,

The above expression includes the storage costs of the set M of cache nodes
inside T,,, the total reading costs of all the nodes in T;, using the cache nodes
M as well as M,, and total writing cost over the edges in T, due to all the
writers in 7. For the writing cost, we assume (even if M, is empty) that there
are some cache nodes outside T}, i.e, v is part of each write-tree.®> Note that

3Eventually, we will define another function G that computes the writing costs assuming
no outside caches nodes. For clarity of presentation, we defer definition of G.



CHAPTER 4. DATA CACHING UNDER NUMBER CONSTRAINT 58

M, can also be represented by the node in M, that is closest to v, but we use
the above notation for sake of clarity in defining G and F.

Defining G(v, ¢, v")(1 < ¢ < |T,|). We define G(v, q,v") as the optimal cost I in
the subtree T, given that there are ezxactly ¢ cache nodes in T, and the closest
to v among them is at most d,,: distance away from v. Also, the access costs
are computed using only the caches inside 7, (i.e., M, = {}). More formally,

G(v,q,v") = min (T, M,{}).

|M|=q.d(v,M)<d,

—vv

Defining F(v,q,v")(0 < q < |T,|. We define F (v, q,v") as the optimal cost T" in
the subtree T, given that there are ezxactly ¢ cache nodes in T, and the closest
outside cache is v*. More formally,

F(v,q,v") = min T(T,, M, {v'}).

[M|=q

Note that F(v,q,v?) is not defined when v* € T,,, and

F(v,0, vi) = Z(dekvi + wdgy).

keT,

Recursive Equations for Computing G and F. We now define recursive
equations for computing G and F' at a node v in terms of the G and F' at
the children of v. The G and F' values will be eventually used to compute the
solution of our data caching problem.

G and F Values at a Leaf Node. When v is a leaf node, the value G is defined

only for ¢ = 1 and F' is defined for ¢ = 0 or 1. Also, F is not defined for v = v,
i.e., i = 1. Now, it is easy to see that:

Gv,1,v") = s, i=1,...,n
F(v,0,v") = rydyi, i=2,...,n
F(v,1,v") = s, 1=2,...,n

Intuition for the Below Recursive Equations. Recall that v; and v, are used to
denote the two children of v. Now, for a non-leaf node v, the cost I'(T,,, M, M,)
can be expressed in terms of the function I' over T, and T,,, the access and
storage cost for node v, and the write cost over the edges (v, v;) and (v, v9).
The exact expression for the above depends on the composition of M, i.e.,
whether M includes v, a node in T,,,, and/or a node in T,,. Based on the above
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observation, the values G and F' at a node v can be appropriately defined in
terms of G and F' values at its children v; and wv,, as shown in the following
paragraphs.

Computing G(v, q,v!') (i.e., for i = 1). Here, since ¢ = 1, the node v is also a
cache node. First, when ¢ = 1, we have

G(v,1,v") = F(v1,0,v) + F(v9,0,0) + dy, Z Wi + Ay, Z W

keTy, keTy,

Note that v is an outside cache node for the subtrees T, and T,,. For ¢ > 1,
the total cost on T, includes the storage cost on node v, the cost on the subtrees
T,, and T,,, and the write cost on the edges of (v, v;) and (v, vy). In particular,
there are three cases:

(a) There are no cache nodes in T,,, but there is at least one cache node in
T,,. In this case, the edge (v,v;) is included in the write-trees of only
the writer nodes in T,,. However, the edge (v,vs) is included in the
write-trees of all writers in the network.

(b) There are no caches nodes in T,,, but there is at least one cache node in
T,,. This case is similar to the above case (a).

(c) There is at least one cache node in T,, as well as T,,; this case is only
possible if ¢ > 2. In this case, the path (vy,v,v;) is included in the
write-trees of each writer node in the network.

Based on the above three cases, the value G(v, q,v') for ¢ > 1 can be defined
as below.

F(’Ul, 0, U) + F<U2, q—1, U) + dv'ul ZkeTvl (U dvvz ZkeT W,
G(’U, q, Ul) = sv—i—min F(Ulv q— 17 U) + F('U27 07 U) + dvvg ZkETvz Wk + dvm ZkeT Wi,
minj<g, <q—1 (F<U1; q1,v) + F(v2,q =1 = q1,v) + dovy D per wk)

Computing G(v, q,v*) for 1 < i < n. Here, there are two cases:

1. In the first case, at least one of the nodes in {v',v? ... v""!} is selected
as a cache node. In this case, G(v,q,v") is equal to G(v,q,v""!). Note
that this case includes the scenario when v' ¢ T,.

2. In the second case, v* must be selected as a cache node. Here, there are
two subcases, viz., (2-a): v’ € T, (2-b): v' € T,,.
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Let us analyze the subcase (2-a); the subcase (2-b) is similar. We denote the
total cost for the subcase (2-a) as ()1, and compute it as a minimum of two
values: (i) When there are no cache nodes in 7,,, (ii) when there is at least
one cache node in 7),. The above case analysis yields the following expression
for G(v, q,v").
G(v,q,v") = min (G(U,q,vi’l),Ql) if v'e T,
G(v,q,v") = min (G(U,(],’Ui_l),Qg) if v'e T,

where

G<U17 Q7 Ui) + F(UQ7 07 /Ui) + d’u’ul ZkeT wk‘ + d’u’ug Zke’n@ wk‘a
minlStJ1<q <G<U1, q1, ’Ui) + F(“Za q— 1, Ui) + dez ZkeT Wy,
G(”Za q, Ui) + F(Ulv 07 Ui) + dvvz ZkeT Wy + dvvl ZkETvl W,
minlSQ1<q <G<U27 q1, Ui) + F(Ula q— 41, Ui) + dv1v2 ZkeT Wy,

Q1 = rydy, + min (

Q2 = ryd,,: + min (

As shown in the above equation for (), when there are no caches nodes in 7,,,,
the edge (v,v;) is part of the write-tree for all the writers in the network, and
the edge (v, v2) is part of the write-tree for all the writers in 7,,. On the other
hand, when there is at least one cache node in T,,, the path (vy,v,vs) is part
of the write-tree of all writer nodes in the network. On the other hand, The
cost Yy is similarly defined.

Computing F'(v, ¢, v"). Recall that F(v, g, v") is the optimal value of T'(T,,, M, {v'})
where M is a set of ¢ cache nodes in T}, and v is not in T,. If M includes a
cache node u € T, such that d,, < d,:, then the optimal value of I'(T,,, M, {v'})
is G(v,q,v""1). Else, v' is the closest cache to v (in particular, v is not a cache
node), and there are the following three cases. (i) There are no caches nodes
in T,,, (ii) There are no cache nodes in 75, , and (iii) There is at least one cache
node in 7T,,, as well as T,,,. For the last case, note that the cache node closest to
vy (v9) outside of Ty, (T,,) is still v¥, since M does not include any node u such
that dy, < d,i. Also, since ¢ > 1, there must be a cache node in either 7, or
T,,. The above case analysis and observations yield the following equation for
computing F'.

F(v,q,v") = min{G(v,q,v"""), Qa}
where
F(Ul, q, Ui) + F(UQ, O, Ui> + dm;l ZkeT Wi + dvvg ZkGTq,Q Wk,
Q3 = rvdmﬂ-—{-mjn F(U27 q, UZ) + F('Ula 0, U’L) + dvvg ZkET wy, + dvm ZkETul Wi,
minj<gi<q <F(U1, q1, Ui) + F(v,q — q1, Ui) + oo, ZkeT wk)

))
))
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Solving the Data Caching Problem. The computation of the above defined
G and F values does not solve the data caching problem, since definition of '
(and hence, ) assumes (for the purposes of write cost) that there is an ouside
cache node. Thus, we now define another function G, which is similar to the
definition of G' but assumes (even for writing costs) that there are no outside
cache nodes. More formally, for a given node vand 1 <i <nand 1 < q < |T,],
we define G (v, q,v%) as

G(v,q,v") = min (Z rrd(k, M) +Z sk—l—z weS({vUM) —|—Z weS( {k}UM)
MI=q.d(v,M)<d, i keEM  k¢T, kET,

The function G at a node v can be computed in terms of GG, F', and G values
at v; and vg, as shown below. The below equations are similar to the recursive
equations for G, except that when all the cache nodes are in T,,, (T3, ), the edge
(v,v1) ((v,v9)) is only used by the write-trees for writers outside T, (T,,)-

G(v,q,v") = G(v.qv")
g(UaQ7vi) = min (g(U7Qavi_l)7Q4) if Ui € Tvl
g(U, q, Ui) = min (g(U, q, Ui_l)? Q5) if Ui € T’Ug

where

G(v1,q,0") + F(v2,0,0°) + dowy Yopgr, Wk + dovy Doper,, Wy
ming <4, <4 <G(v1, @1,v") + F(v2,q = q1,0") + duyuy D per UJk> )
G(v2,q,v") + F(v1,0,0°) + dowy Doyg,, W + oo Doper,, W,
mini<g, <q (G(U% @1, 0") + F(v1,q = q1,0") 4 dogoy Y per w’“) )

Qs = rydy, + min (

Qs = ryd,,: +min (

Data Caching Problem Solution. The solution of the data caching problem can
now be computed as min;<,<p G(R,q, R"), where R is the root and R" is the
farthest node in the network from R. Starting from the leaves towards the
root, for each node v, we compute GG, F', and G values for each ¢ and 7. Thus,
there are total 3n” P values to be computed. If we precompute (3, .. wy) and
(D_kgr, wi) terms for all v in total O(n?) time, then computation of each G or
F or G value can be done in O(P) time. Thus, the overall time complexity of
our proposed dynamic programming algorithm is O(n?P?).

4.4 General Graph Topology

In this section, we address the data caching problem in a general graph topol-
ogy. In a general graph, the data caching problem is NP-hard, since it reduces
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to the facility-location problem when the write frequencies are zero. Here, we
first design a centralized greedy algorithm, and then present a distributed im-
plementation of the centralized algorithm. We have used similar techniques in
our recent work [49] on a related problem of data caching under update cost
constraint. We will show through simulations that the centralized heuristic
developed in this section perform close to the optimal solution in small general
graph networks.

4.4.1 Centralized Greedy Algorithm

We now present a polynomial-time Centralized Greedy Algorithm for the data
caching problem. We start with defining the concept of benefit of a set of
nodes.

Definition 4 (Benefit of Node) Let M be the set of nodes that have been
already selected as cache nodes by the Centralized Greedy Algorithm at some
stage. The benefit of an arbitrary node A, denoted as 3(A, M), is the reduction
in total cost due to selection of A as a cache node. More formally, 5(A, M) =
7(G, M) —7(G, M U{A}), where 7(G, M) is the total cost of selecting a set of
cache nodes M in graph G, as defined in Equation 4.1. O

Note that since the minimum-cost Steiner tree problem is NP-hard, we
adopt the 2-approximation Steiner tree algorithm [22] to compute writing costs.

Based on the above definition of benefit, our proposed Greedy Algorithm
can be described as follows. Let M be the set of cache nodes selected at any
given stage. Initially, M is empty. At each stage of the Greedy Algorithm,
we add to M the node A that has the highest benefit with respect to M at
that stage. The process continues until P caches nodes have been selected or
there is no node with positive benefit. The running time of the above described
algorithm is O(Pn®), since the time to compute a 2-approximation Steiner tree
over a set of s nodes is O(sn?).

4.4.2 Distributed Greedy Algorithm

In this subsection, we present a distributed localized implementation of the
Centralized Greedy Algorithm. To facilitate communication between nodes,
we assume presence of a coordinator in the network. Our Distributed Greedy
Algorithm consists of rounds. During each round, each non-cache node A
estimates the benefit (as described in the next paragraph) of caching the data
item at A. If the benefit estimate at a node A is positive and is the maximum
among all its non-cache neighbors, then A decides to cache the data item. At
the end of a round, the coordinator node gathers information about the cache
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nodes newly added. The number of cache nodes that can be further added
is then broadcast by the coordinator to the entire network. The algorithm
terminates, when either more than P cache nodes have already been added or
no more cache nodes were added in a round.

Estimation of 3(A, M). A non-cache node A considers only its “local” traffic
and estimation of distance to the nearest cache node, to estimate 5(A, M), the
benefit with respect to an already selected set of cache nodes M. In particular,
a node A observes its local traffic, i.e., the data access requests that A forwards
to other cache nodes. Of course, the local traffic of a node includes its own
data requests. We estimate the benefit of caching the data item at A as

BAM) = fd—s,—d Y w,

eV

where f is the frequency of the local data access traffic observed at A, d is the
distance to the nearest cache from A (which is computed as shown in the next
paragraph), s, is the storage cost at A, and w; is the write frequency at a node
1 in the network. In the above equation, we have estimated the increase in
total writing cost due to caching at A as d ), ,, w;. The local traffic f can be
computed if we let the normal network traffic (using only the already selected
cache nodes in previous rounds) run for some time between successive rounds.

Estimation of d — the distance to the nearest cache from A. Let A be a non-
cache node, and T4 be the shortest path tree from the coordinator to the set
of communication neighbors of A. Let C' € M be the cache node in T4 that is
closest to A. In the above Distributed Greedy Algorithm, we estimate d to be
d(A,C), the distance from A to C. The value d(A, C) can be computed in a
distributed manner at the start of each round as follows. As mentioned before,
the coordinator initiates a new round by broadcasting a packet containing the
remaining number constraint to the entire network. If we append to this packet
all the cache nodes encountered on the way, then each node should get the set
of cache nodes on the shortest path from the server to itself. Now, to compute
d(A,C), each node only needs to exchange the above information with all its
immediate neighbors.

4.5 Performance Results

In this section, we evaluate the relative performances of the various cache
placement algorithms proposed in our article.

Experiment Setup. We use a network of 50 to 400 nodes placed randomly in
a square region of size 30 x 30. We consider unit-disk graphs wherein two nodes
can communicate with each other if the distance between them is less than a
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given number (called the transmission radius). For our simulations, we use a
transmission radius of 9, which is the minimum to keep even small networks
of size 50 connected. We vary various parameters such as network size, the
maximum number of cache nodes P, percentage of readers and writers in the
network, and the ratio R of average write frequency to average read frequency.
Note that in practical settings we expect R to be low. The read frequency
of a reader node is chosen to be a random number between 0 and 100, the
write frequency of a writer node is chosen to be a random number between 0
and 100R, and the storage cost at a node is chosen to be a random number
between 0 and 100. Each data point in the graph plots is an average over
five different random graph topologies. In our simulations, we compare the
performance of various data caching placement algorithms, viz., Centralized
Greedy Algorithm, Distributed Greedy Algorithm, and Dynamic Programming
Algorithm (DP) on the spanning tree with near-minimum stretch factor (as
described below).

Computing a Spanning Tree with Near-Minimum Stretch Factor. Before pre-
senting the algorithm for constructing a spanning tree with near-optimal stretch
factor, let us first define stretch factor. Consider a graph G = (V| E); the
stretch factor of an edge (u,v) € F in a subgraph G'(V, E' C E) is defined as
the shortest distance between v and v in G’. The stretch factor of the subgraph
G’ is defined as the maximum stretch factor over all edges in G. The minimum
stretch-factor spanning tree problem is to find a spanning tree with minimum
stretch factor in the given graph. The problem is known to be NP-hard [?].

We now describe an approximation algorithm for the above problem [?]
in unit-disk graphs. We will use this algorithm to construct a near-minimum
stretch-factor spanning tree, which will be input to our dynamic programmg
algorithm (since it runs only on tree topologies). The approximation algorithm
consists of the following steps.

1. Construct a dominating set of the given unit-disk graph.

2. Connect the nodes in the dominating set that are at most three hops
away. This results in a connected dominating graph.

3. Extract the Gabriel Graph (which is planar) from the above connected
dominating graph.

4. Compute the dual graph of the Gabriel Graph. The dual graph contains a
vertex for every face of the Gabriel Graph, and an edge between any two
adjacent faces. The weight of the edge in the dual graph is the number
of common edges of the corresponding faces in the Gabriel Graph.
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5. We now associate an appropriate defined weight with each vertex in the
above dual graph, and then, construct a “shortest path tree” in the above
dual graph.

6. Finally, in the Gabriel Graph, we delete a common edge between any two
adjacent faces that are connected in the above constructed shortest-path
tree in the dual graph.

The resulting graph can be shown [?] to be a spanning tree with a stretch
factor of (OPT)*, where OPT is the optimal (minimum) stretch factor.*

Comparison with Optimal Algorithm in Small Networks. An optimal
solution for the data caching problem can be computed by looking at all O(n®")
subsets of nodes of size at most P, and picking the subset of nodes that gives
the minimum total cost as the solution. Due to the high time complexity of
the above algorithm, we choose the network size n = 50 and vary P from 1
to upto 6. We pick R (the ratio of average write frequency to the average
read frequency) as 0.1, since it was just small enough to result in maximum
number of cache nodes being selected. We observe in Figure 4.1 that the
Centralized Greedy Algorithm performs very close to the optimal cost. Thus,
in the following experiments, we use the Centralized Greedy Algorithm as a
benchmark of comparison. We also observe that the DP algorithm performs
only about 15% worse than the optimal algorithm.

Varying R. In this experiment, we vary R (the ratio of average read frequency
to the average write frequency) from 0.001 to 0.1 in a network of size 200 with
P (the maximum number of cache nodes allowed) as 25. We keep the percent-
age of readers and writers in the network at 50%. Figure 4.2 plots the total cost
7(G, M) corresponding to the set M of cache nodes delivered by various algo-
rithms for given parameters. We see that the Centralized Greedy outperforms
the Distributed Greedy Algorithm only by about 15%. However, when R is
small, the centralized and distributed greedy algorithms perform very closely,
but their relative performance becomes almost constant after R = 0.02. This
implies that the estimation of writing costs done by the Distributed Greedy
Algorithm is not as accurate as the estimation of reading costs. In contrast, we
see that the DP algorithm actually performs close to the Centralized Greedy
for very low values of R. For higher values of R, the DP algorithm performs
worse than the Distributed Greedy. Thus, the strategy of extracting the short-
est path tree rooted at an appropriate node seems effective when the writing
cost is relatively very low. For R = 0.1, we observed that the number of cache

4We note that the best known approximation for the minimum stretch-factor spanning
tree problem is logn [?,?]; however, we choose the technique from [?] for the sake of its
relative simplicity.
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Figure 4.1: Comparison of Central- Figure 4.2: Varying R, the ratio of
ized Greedy Algorithms with the average write to average read fre-
optimal algorithm. Here, the net- quency. Here, the network size is
work size is 50, R (the ratio of 200, P = 25, percentage of readers
average write to average read fre- and writers is 50.

quency) as 0.1, and percentage of
readers and writers is 50%.

nodes selected by any algorithm was very low (1 or 2). Thus, we did not in-
crease the value of R beyond 0.1. Based on Figure 4.2, we fix R as 0.02 for all
the remaining experiments, since for R = 0.02 the number of cache nodes is
large enough (around 10) and the relative performance observed at R = 0.02
is representative of the general trend.

Varying Network Size. In Figure 4.3, we vary the network size from 100
to 400 and plot 7(G, M) corresponding to the solution M delivered by various
algorithms. As suggested before, we fix P = 25 and R = 0.02. Also, the
percentage of readers and writers in the network is kept as 50%. In Figure 4.3,
we can see that the Centralized Greedy Algorithm and the Distributed Greedy
Algorithm perform quite closely; both perform better than the DP algorithm.
More importantly, we observe that the relative performance of the various
algorithms remains relatively stable, and hence, in all other simulations, we fix
the network size to be 200.

Varying Percentage of Readers and Writers. In Figure 4.4 and Fig-
ure 4.5, we vary the percentage of reader and writer nodes respectively in the
network and plot the values of 7(G, M) for the solution delivered by various
algorithms. As suggested in previous paragraphs, we fix R as 0.02 and the
network size as 200. In addition, we use P as 25. In Figure 4.4, we vary the
percentage of reader nodes from 10 to 100%, while keeping the percentage of

0.1
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Figure 4.3: Varying network size. Figure 4.4: Varying percentage of

Here, P = 25, R (the ratio of av- reader nodes in the network. Here,

erage write to average read fre- the network size is 200, P = 25,

quency) is 0.02, and percentage of R = 0.02, and the percentage of

readers and writers is 50. writer nodes is 50%.

writer nodes fixed at 50%. Similarly, in Figure 4.5, we vary the percentage
of writer nodes from 0 to 100%, while keeping the percentage of reader nodes
fixed at 50%. We observe that the relative performance of the various algo-
rithms remains largely unchanged with the change in percentages of readers or
writers. In generally, we see the performance gap between various algorithm
to be limited by 10-15%.

Varying P. In Figure 4.6, we vary P, the maximum number of cache nodes
allowed, and plot 7(G, M) for various algorithms. We see that with the increase
in P, the relative performance gap between the Centralized and Distributed
Greedy Algorithms reduces. After P = 10, the performance of the various
algorithms remains unchanged since for the given parameter values all algo-
rithms place at most 10 caches. Again, we see the performance gap between
various algorithm to be limited by 10-15%.

4.6 Conclusions

In this paper, we addressed the problem of selection on nodes to cache a data
item in a network, wherein multiple nodes can read or update the data items,
individual nodes have storage limitations, and there is a limit on the number of
nodes that can be selected to cache the data item. The objective of our prob-
lem was to minimize the sum of appropriately defined total reading cost, writ-
ing cost, and storage cost. For the above data caching problem, we designed
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an optimal dynamic programming algorithm for tree networks. In addition,
for general network graphs, we proposed Centralized Greedy and Distributed
Greedy heuristics, and evaluated the performance of our proposed algorithms
through extensive simulations. We observe that the Centralized Greedy per-
forms very close to the optimal algorithm for small networks, and for larger
networks, the Distributed Greedy and the dynamic programming algorithm on
an appropriately extracted tree perform very close to the Centralized Greedy.




Chapter 5

Conclusion and Future Work

We have studied the data placement problems in ad hoc and sensor networks.
In particular, we have proposed to solve the data placement problem under
different constraints: memory constraint, update cost constraint, and number
of allowable caches constraint. We have developed optimal, near optimal cen-
tralized algorithms in either tree networks or general networks. We also present
their distributed implementations.

There are still un-answered questions: How to design efficient caching al-
gorithms when nodes fail or join and leave the networks dynamically? Can
caching technique take advantage of the wireless broadcast medium for better
system performance? To name a few.

Moreover, ad hoc networks rely on the cooperation of participating nodes
to route messages from source to destination that are outside each other’s com-
munication range. Data forwarding costs nodes both bandwidth and battery
energy, making the user who operates the node unwilling to cooperate. This
also happens to the caching strategies — with limited local memory and bat-
tery, each node prefers to cache the most beneficial data items from its own
perspective, not the ones for the network as a whole. Our distributed caching
techniques have to be modified to address this important observation. There
is no any prior work addressing such selfish caching in a purely distributed
manner in ad hoc networks. How to analyze all these behavior of nodes in
ad hoc networks involves game theoretical approach, in which each node is a
rational player who wants to maximize its own utility. The central concept
benefit in this work captures this very idea. However, instead of maximizing
each node’s own benefit, how to design mechanism to guide nodes’ behaviors
to achieve benefit maximization of the whole network remains a challenge.
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