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Abstract of the Dissertation 
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Biomedical Engineering 
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2009

Physiological systems are inherently nonlinear and nonstationary. Traditional 

analysis techniques that assume linearity and stationarity in the data may miss subtle 

transitional dynamic characteristics of the signal. This dissertation seeks to develop novel 

analysis techniques that explore the nonlinear and nonstationary characteristics of 

physiological signals. Specifically, these algorithms will be used to discern and quantify 

differences in dynamics of the renal autoregulatory (RA) mechanisms from normotensive 

and hypertensive rats. This work is separated into four specific aims. The first aim seeks 

to distinguish if the higher degree of variability in renal blood flow in hypertensive rats is 

due to deterministic chaos (DC) or time-varying characteristics of renal autoregulation. 

The results show that the Lyapunov exponent, which is used to quantify the degree of 

DC, can give erroneous results when the analyzed system has time-varying dynamics. To 

overcome this limitation, an algorithm was developed to specifically detect switching 

dynamics in RA. The second aim seeks to detect intra- and inter-nephron coupling via the 

auto- and cross-bispectra. The results show that nonlinear interactions in the form of 

phase coupling are in general less pronounced in hypertensive animals. The third aim 

seeks to detect very low frequency oscillations (~0.01 Hz) in the form of amplitude 

modulation of renal autoregulatory mechanisms. The results show that amplitude 

modulation is reduced in hypertensive animals and also animals anesthetized with 

Inactin. The fourth aim seeks to develop and test a blood pressure control system based 
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on the proportional-integral design. The main impetus for this aim stems from the 

observation from the third aim that anesthetics exert a depressive effect on RA. 

Therefore, this aim seeks to develop a control system to induce step changes in blood 

pressure to determine the step response from the kidney. In summary, various algorithms 

developed in this dissertation work were able to show nonlinear and nonstationary 

characteristics in RA not seen or misinterpreted from previous time-invariant studies. The 

algorithms presented are general algorithms and therefore can be applied to other 

physiological systems. 
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Chapter 1 

Introduction
 

1.1 Overview and significance of the kidney 

 The kidney is a major organ of homeostasis in the body. Some of its major 

functions are the maintenance of body fluid volume, release of hormones, and the 

filtration of metabolic wastes (110). While the heart is often associated with the short 

term control of systemic blood pressure (SBP), it is the kidney that is ultimately 

responsible for the level of SBP in the long term (110). Therefore, kidney function is 

extremely important in dysfunctions of the SBP, such as in hypertension. Many studies 

show that hypertension can lead to kidney damage (107, 132). But conversely, kidney 

damage can also lead to hypertension (1). Taken together, this means that having either 

one of these conditions will lead to the other in a positive feedback cycle that can 

ultimately lead to kidney failure (20, 73, 132). With hypertension being one of the most 

prevalent diseases in this nation, with an estimated 29% of adults in the United State in 

2006 (91), the complete understanding of the mechanisms that underlie this damage is of 

the extreme importance. 

 

1.2 Renal autoregulation 
 

1.2.1 Overview and significance 

 

  The functional unit of the kidney is the nephron. Blood flow into the kidney 

eventually gets diverted down into approximately 3 million different nephrons in the 

adult human kidney. Blood flow into the each nephron enters via the glomerulus, where 

fluid then enters the various tubules and gets either reabsorbed back into the blood or 

exits the tubules and forms urine. The rate of fluid entry into the tubules, the glomerular 

filtration rate (GFR), is one way that the kidney can control the fluid and ion balance in 

the body, as an increase in GFR will lead to an increase in urine production and the 

decrease in ions and fluid in the body. In the absence of any regulation mechanisms, GFR 
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will be proportional to incoming renal blood flow (RBF). This would make fluid balance 

in the body essentially impossible as SBP inherently fluctuates on large time scales (8). 

However, experimental evidence shows that RBF remains relatively constant under 

different perfusion pressures (2, 43). Further, this phenomenon has been observed in 

isolated nephrons (15, 18, 97), which suggests that this regulation is accomplished 

independent of extra-renal control. This mechanism of stabilization of the RBF has been 

terms renal autoregulation (RA). Many past studies have shown that the site of RA is at 

the level of the afferent arterioles (15, 18, 37, 39, 55, 97, 119), and to a lesser degree at 

some upstream segments (42). This location allows the regulation of both the RBF and 

the GFR to be in parallel (109), as the site of activity lies upstream to the glomerular 

capillary bed.  

 Besides the important role of regulating GFR for proper fluid and ion balance, RA 

has also been associated with the role of protecting the microvasculature in the kidney (6, 

7, 72). This stems from the observation that systemic hypertension has been linked to 

glomerular injury (10, 11, 35, 124). Further, studies show that impaired RA has been 

linked to the progression of hypertensive renal diseases (10, 11, 52, 66, 120, 124). Taken 

together, this suggests that RA is essential in the maintenance of physical health of the 

kidney. 

 

1.2.2 Tubuloglomerular feedback 

  

Traditionally, RA has been thought to be mediated by at least two mechanisms. 

The first mechanism is the slower tubuloglomerular feedback (TGF) mechanism (25, 

139). This mechanism is unique to the kidney and is thought to be accomplished by a 

chloride ion sensor at the macular densa in the early distal tubule (13, 67, 105), which 

then signals for a change in conductance in the afferent arteriole. This action is possible 

due to the close physical proximity of the macula densa to its own arterioles (38, 123), 

allowing signaling to occur due to the small distance. This mechanism works on the 

principle that since salt reabsorption at the ascending loop of Henle is dependent on the 

rate of tubular flow, changes in the distal tubular ion concentration will generally indicate 

changes in tubular flow. Hence, raises in ion concentration at the level of the macula 
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densa will signal for vasoconstriction, which will ultimately restore filtration and renal 

function to steady levels. 

 Mechanistically, the general consensus is that the initial NaCl detection at the 

macula densa is via the furosemide-sensitive Na+-K+-2Cl- cotransporter (16, 32, 81, 100, 

135), which then releases ATP from the macula densa cells (67, 103). At the present, 

there are two competing hypotheses to the exact mechanism of how ATP induces 

vascular changes in the preglomerular vascular bed. One line of evidence suggests that 

the released ATP gets converted into adenosine, which then in activates the A1 receptors 

from the P1 family of purinoceptors on the afferent arteriole to induce vasoconstriction 

(90, 122, 125, 126). The second hypothesis suggests that the released ATP directly 

stimulates the autoregulatory response via activation of the ATP specific P2X1 receptors 

on the afferent arteriole (50, 51, 74). Further research is necessary to resolve this debate 

to the signaling mechanism of the TGF. 

 The kinetic properties of the TGF system are dependent upon many factors, such 

as the movement of fluid via the loop of Henle to the macula densa and the transduction 

of the signal from the macula densa to the proglomerular vasculature. Experimentally, the 

TGF response has a response time of ~30 seconds and takes ~40-60 seconds to 

completion in rats (30, 46). Due to the relatively long delays and slow response times, 

limit cycle oscillations , from 0.02 to 0.05 Hz, are observed in experimental data (9, 28, 

69, 94). Experimental evidence has shown that TGF accounts for roughly 20-50% of 

autoregulation under normal conditions (25, 29, 57, 58). 

  

1.2.3 Myogenic response 

 

 The second traditional mechanism of RA is the faster myogenic MYO response. 

This mechanism is the response of the vascular smooth muscle in response to changes to 

wall tension elicited by changes in transmural pressure (31, 54, 55, 83). Studies using the 

in vitro hydronephrotic kidney model (27, 39), which essentially lacks any tubules and 

therefore TGF, shows constriction of the afferent arterioles from changing pressure. 

Further, in isolated afferent arterioles (55) or in preparations where tubular flow is 

interrupted (127), a clear response of the vessel was observed in response to changes in 
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pressure. This suggests a mechanism separate from the TGF, and is contained in the 

vascular portions of the kidney.  

 Mechanistically, the membrane potential of the vascular smooth muscle cells of 

the afferent arteriole undergoes depolarization after an initial transmural pressure increase 

(36, 71). The nature of the initiation of the depolarization is as of yet unclear. Possible 

candidates include mechanosensitive ion channels and stretch induced activation of 

phospholipase C (56). What is clear is that following the initial depolarization, L-type 

calcium channels are activated (71), leading to an influx of calcium into the smooth 

muscle cells. This influx of calcium will ultimately initiate a series of intracellular events 

that ultimately lead to activation of myosin light chain kinase for contraction or myosin 

light chain phosphatase for relaxation (113). Due to the difference in the mechanisms for 

contraction and relaxation, the dynamics properties of the two are different in that the 

delay to contraction is much faster at ~0.3 second than dilation, which was shown to be at 

~1 second (70). Complete response times are typically less than 10 seconds (70, 127). 

Frequency domain methods have further shown a resonate peak in the 0.1 to 0.2 Hz range 

(21, 75).  

 

1.2.4 Third mechanism 

Recently, there has been experimental evidence supporting the presence of a third 

component to RA (57, 58, 60). The reported contribution from this mechanism under 

normal conditions is relatively low at less than 12 percent (57). The original observation 

of the third mechanism was made using step response experiments, which induces a rapid 

step increase in arterial pressure to the kidney. This type of experiment takes advantage 

of the fact that the different RA mechanisms have varying response times. Therefore, 

sudden change in pressure will elicit changes in the renal vascular resistance (RVR) first 

in the faster MYO response, followed by the slower TGF response. In a study by Just et 

al. (63), the investigators observed that a very slow, third change in RVR occurred start at 

~50 seconds and completing in 2 minutes in rats. In subsequent studies, similar 

experiments were carried out while inhibiting TGF either pharmacologically or via 

genetically manipulated animals to show that in the absence of the TGF response, a 
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mechanism other than the MYO participates in the total RA response (59). Taken 

together, these results suggest a third, very slow component that participates in the renal 

autoregulation of blood flow. 

The existence of this third mechanism of RA has been of some debate. A previous 

study using measurements at the level of the juxtamedullary afferent arterioles failed to 

show any slow compensation from step changes in perfusion pressure (127). Further, 

previous experiments utilizing broadband blood pressure perturbations failed to reveal 

any such low frequency components (75, 76).  

Experimental evidence for the mechanistic explanation of the punitive third 

mechanism has so far been scarce and sometimes conflicting. Experimental evidence 

suggests that this third mechanism was resistant to conditions that traditionally affect the 

other RA mechanisms, such as inhibition of nitric oxide synthase and angiotensin 

converting enzyme, as well as decapsulation of the kidney (60). In contrast, another study 

shows that angiotensin II receptor inhibition was able to abolish a slow component in RA 

(25). It is unclear at the moment the reason for the conflicting results. A recent study 

using genetic A1 adenosine receptor knockout mice, which has been shown to lack a 

TGF response, shows that this third mechanism is independent of the A1 adenosine 

receptor and is sensitive to furosemide (59). 

  

1.2.5 Interactions 

  

Given that the goal and the ultimate effecter, the afferent arteriole, of the two 

traditional forms of RA are the same, it is not surprising that constructive interactions 

exist between the two mechanisms. If the two mechanisms did not interact, destructive 

interference such as phase cancellations could occur to decrease the overall efficiency of 

RA. An elegant study by Schnermann and Briggs (101) using single nephon pressure 

measurements showed that TGF response was dependent on renal perfusion pressure 

despite interruption to the proximal tubule, which would essentially eliminate the ability 

for the TGF to sense changes in renal perfusion pressure. This result strongly suggests 

that the TGF must interact with the MYO in some way other than via tubular pressure to 

coordinate their activity. Later experiments using various analysis techniques have all 
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pointed to the interactions between the two traditional RA mechanisms (23, 78, 139).  

Interactions of RA are not limited to a single nephron, but have been shown to extend to 

other closely related nephrons. Studies have shown that the activation of the TGF in one 

nephron will cause a smaller response in an adjacent nephron (19, 64). Adjacent in this 

case refers to nephrons that share a common cortical radial artery. Further, it has been 

shown that the TGF and MYO synchronize with each other in adjacent nephrons (118). 

 At the moment, the physiological cause for the interactions remains unclear. One 

hypothesis suggests a mechanical cause, where activation of one mechanism induces 

changes in pressure in an upstream portion of the vasculature, where it would induce a 

stronger response (85). Another study suggests that this interaction stems from the 

propagation of depolarization of vascular smooth muscle cells initiated by the TGF (80). 

 

1.3 Analysis techniques 
  

 Traditional analysis of RA generally makes use of time domain or linear, time-

invariant frequency domain analysis techniques. Although these techniques have been 

able to give a great wealth of information about the characteristics of RA, it should be 

noted that the RA is neither time-invariant nor linear. Therefore, using traditional analysis 

techniques may miss the more subtle but important information that exists in 

experimental data. 

 More recent studies have recognized the limitations of the traditional methods and 

have utilized methods than accounts for the nonlinear or time-variance in RA. For 

example, the use of time varying spectra (129) and time varying transfer functions (24) 

have given insight into the non-stationary properties of RA. Nonlinear characteristics 

have also been shown to exist in RA, such as phase coupling  (22, 23), frequency locking 

(118), amplitude modulation (79, 131), and transition to chaos (137). Although much 

work has begun on characterizing these nonlinear and non-stationary properties of RA, 

much work still remains for the complete elucidation of the underlying dynamics of RA.   
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1.4 Importance and scope of the work presented 
 

 Given the aforementioned limitations to the traditional analysis techniques, one of 

the overall aims of this work was to develop and use sophisticated mathematical 

techniques to specifically characterize the non-linear and time-variance of the renal 

autoregulatory mechanisms. Further, it is recognized that anesthetics in general depresses 

many physiological functions, including RA. Therefore, another aim of this study was to 

develop methods that can help assess the true nature of RA without the influence of 

anesthetics. The results from this work will help lay the groundwork for the proper 

characterization of the true dynamics and behavior of the RA system, which would help 

give new insight into many disorders, such as hypertensive nephropathy. Further, the 

methods presented in this work are mostly general methods than can be applied to other 

systems. Therefore, this work can also help other researchers in different fields, as the 

properties of non-linearity and time-variance are present in other physiological systems. 
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Chapter 2 

Distinguishing between time variance and deterministic chaos in 

tubuloglomerular feedback 
 

2.1 Abstract 
 

 Past studies have shown that the tubuloglomerular feedback (TGF) of 

spontaneously hypertensive rats (SHR) have positive maximal Lyapunov exponent 

(MLE) values, which suggests that it has properties consistent with deterministic chaos. 

However, calculation of the MLE from normotensive Sprague-Dawley rats (SDR) also 

shows a positive number, even though the normotensive animals have relatively regular 

oscillations when compared with SHRs. Therefore, this study seeks to examine whether 

the general MLE value may be erroneous under the condition of time-variance. Computer 

simulations using the logistics map shows that when time variance is introduced into the 

model, the estimated MLE value is larger than when the model was without time 

variance. Due to this limitation of the MLE, a new algorithm is introduced specifically 

designed to quantify the frequency mode switching of the TGF. This algorithm was used 

on single nephron flow data from SHR (n=18) and SDR (n=15) animals. The results 

show that both the SDR and SHR had statistically significant lower frequency oscillation 

modes and frequency switching events than the logistics map, as well as being different 

from each other. The difference between the results from the MLE calculation and the 

present algorithm is likely due to the time variance that is present in both SDR and SHR. 

The results suggest that results from the MLE should be carefully interpreted as time 

variance, which is often present in physiological data, can lead to erroneous results. 

 

2.2 Introduction 
 

 Renal blood flow (RBF) remains relatively stable despite changes in systemic 

blood pressure due to the phenomenon of renal autoregulation. Traditionally, renal 

autoregulation is thought to be mediated by at least two mechanisms, the slower 
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tubuloglomerular feedback (TGF) and the faster myogenic (MYO) mechanisms. The 

TGF operates on a time scale of 20 – 50 seconds (47) and has been shown to be mediated 

by flow rate dependent concentration changes of the chloride ion at the macula densa (67, 

105). The MYO operates on a time scale of 3 – 10 seconds (70) and is thought to be 

mediated by sensing wall tension changes in the afferent arteriole (31, 54, 55). These two 

mechanisms have been shown in the past to interact and coordinate their activity to 

maximize the efficiency to bring RBF to homeostatic levels (23, 78, 101). Recent studies 

have also shown the possibility of the existence of a third mechanism, which operates on 

a longer time scale than the traditional mechanisms (57, 60).  

 Computational analyses of past experimental studies have shown that 

spontaneously hypertensive rats (SHR) have weaker and broader spectral peaks at the 

TGF frequency range than normotensive animals (44, 137).  Further, the time records of 

hypertensive animals are more unpredictable and have more irregular oscillations than 

normotensive animals and have a positive Lyapunov exponent value (137).   The 

Lyapunov exponent estimates the sensitivity of the data to initial conditions, which is the 

hallmark of deterministic chaos. However, previous studies have shown that the RBF of 

SHR is highly time varying (95). Given that the Lyapunov exponent value is essentially 

time invariant, using such a method on time varying data may lead to erroneous results. 

 The purpose of this study was therefore to revisit the use of the Lyapunov 

exponent in the study of RBF signals. Computer simulations were used to show that time 

variance will lead to erroneous values of the Lyapunov exponent, which suggests that the 

positive Lyapunov exponent present in the SHR may be erroneous. To resolve this issue, 

a new algorithm specifically designed based on frequency mode switching of the TGF 

was developed and used on single nephron flow data to assess the complexity of the renal 

autoregulation system. Computer simulations were used to assess the efficacy of the 

algorithm. The results show that both the SDR and SHR have lower number of TGF 

frequency switching and modes than low order deterministic models. 
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2.3 Methods 

2.3.1 Animal preparation 

 

 All experimental protocols were approved by the Institutional Animal Care and 

use Committee at the State University of New York at Stony Brook and The University 

of South Florida.  The data were collected from a previous study (19) and therefore the 

surgical techniques will only be briefly described. Single nephron stop flow pressure 

recordings were measured from Sprague-Dawley (SDR, 240-300g, n=15) and 

spontaneously hypertensive rats (SHR, 12 wk old, n=18).  The anesthesia state was 

achieved using halothane, administered via an oxygen-nitrogen mixture and ventilated 

artificially after the administration of a muscle relaxant. Tubular pressure was measured 

using a 1 to 3 um diameter micropipette attached to a servo-nulling pressure circuit 

inserted into a section of the proximal tubule. Data were recorded on a TEAC R-61 4 

channel cassette data recorder for off-line analysis. The data were replayed and sampled 

digitally at 4 Hz after electronic low-pass filtering at 1.5 Hz.  

2.3.2 Deterministic chaos models - Logistic map

 

 The logistic map is a simple non-linear dynamic equation that is often used to 

show chaotic behavior, described as: 

     ���� � ����	 
 ���   (eq. 2.1)  

where the parameter r determines the behavior of the system.  Generally, when r is 

greater than 3.57, the system has characteristics of deterministic chaos.   

2.3.3 Maximal Lyapunov exponent (MLE) calculation 

 

 The MLE is used to quantify deterministic chaos. A positive MLE is an indication 

of a chaotic system.  For example, non-chaotic signals will have a negative MLE while a 

chaotic system will have a positive MLE and the value increases with higher degree of 
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complexity. In this work, the calculation of the MLE was done by using the TISEAN 3.0 

software package (40). 

 The first step in the calculation of the MLE involves estimating the time delay and 

embedding dimension of the time series. Time delay was estimated using the mutual 

information criteria of the data. The embedding dimension was estimated using the false 

nearest neighborhood approach. Using this information, the MLE was estimated by the 

algorithm originally proposed by Kantz (65).   

2.3.4 Algorithm for detecting different TGF oscillation states 

 

 Collected data was further processed by down sampling to 1 Hz following an anti-

alias low-pass filter, removal of linear trend, and normalizing to unit variance to facilitate 

comparison between data sets. The time-frequency spectrum of the data was calculated 

using the variable frequency complex demodulation (VFCDM) algorithm, which has 

been shown to provide one of the highest time-frequency resolutions (128). The 

frequency region for the TGF mechanism (0.02 – 0.05 Hz) was isolated from the original 

spectrum, and the frequency at the maximum spectrum power in the TGF frequency band 

was recorded across time. Switching dynamics were noted when there were large sudden 

changes in frequency. This was done by comparing each point by the average value of a 

small window of previous points, hereby term the switching window.  Specifically, a 

switch is registered when the difference between these two values are larger than a 

threshold, hereby termed the switching threshold.  Further, only the first of these switches 

are registered as a true switch. The frequency of oscillation between two switches is 

considered to be a preliminary oscillatory mode. This oscillatory mode was then 

compared with all other modes in the same time trace. If the difference between two 

preliminary oscillatory modes is less than a threshold, hereby termed the mode threshold, 

the two modes are then considered to be one unique frequency mode.  The number of 

unique frequency modes as well as the number of true switches is recorded. 

 A computer generated simulation signal is used to illustrate the algorithm as 

shown in Fig. 2.1. The test signal is composed of two sinusoidal signals, at 0.02 and 0.04 

Hz, spliced together in an alternating manner. Each segment was 200 points, with a total 
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of 5 segments used. The top panel of Fig. 2.1 shows this test signal. The middle panel of 

this figure shows the frequency tracking of the maximal power across time done within 

the TGF frequency range. Note that the correct frequency for each segment in the data 

was obtained. The bottom panel shows the detected switches from the frequency tracking 

in panel B. Each vertical line shows the position of a detected switch. This figure further 

shows the segments that are found to be similar, with similar modes shown as letters A 

and B. Note that the algorithm was able to correct identify 5 different segments and 2 

different modes.  

 To determine the correct size of the aforementioned switching window, a series of 

computer generated signals were used. The simulated signal as shown in the top panel of 

Fig. 2.1 was used. This signal was then contaminated with a varying degree of additive 

Gaussian white noise, from 20dB to -10 dB. Window size was then varied between 10 to 

70 data points. The accuracy was assessed by calculating the standard deviation between 

the size of the detected segments. Since all 5 segments in the data are of equal length, 

perfect detection will result in 0 standard deviation. 100 realizations of added Gaussian 

white noise were used to get an average standard deviation value to assess accuracy. The 

result of this simulation is shown in Fig. 2.2. Note that this plot is a 3 dimensional plot, 

with the third dimension of color being the value of the standard deviation. This plot 

shows that a switching window size greater than 60 points results in large errors. Further, 

low data points also results in increased error. Therefore, a switching window of 40 data 

points was chosen for this study as it is shown on this simulation to have the greatest 

efficacy against increasing noise levels. 

2.3.5 Statistical analysis 

 

 The statistical software package SigmaStat (Systat Software, Inc., San Jose, CA) 

was used for all statistical calculation. Significance threshold was set to be alpha = 0.05. 

The student’s t-test was used to compare between 2 groups of data. For comparing 

between the number of dynamic modes and frequency switches, the Mann-Whiteney rank 

sum test was used. For the comparison of a single experimental value to simulated data 

generation, the 5 and 95 percent confidence interval was calculated for the simulated 
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value and compared with the single experimental value. The experimental value was 

deemed to be significantly different from the simulations if the experimental value lies 

outside of the confidence interval. 

 

2.4 Result and Discussion 
 

 The top panel of Fig. 2.3 shows two representative traces of the single nephron 

blood flow time traces. The top left panel shows a time trace of the SDR, while the top 

right panel shows the time trace of the SHR.   

 The maximal Lyapunov exponent was estimated to be 0.17 ± 0.02 and 0.37 ± 0.05 

for SDR and SHR, respectively.  These values are significantly different (P<=0.05).  

These values fit well with past studies that show positive MLE in hypertensive animals 

(137).  While the positive MLE value for SDR is low than SHR, it is different from the 

previous studies as it has been suggested that RBF dynamics from SDR do not exhibit 

dynamics of deterministic chaos.  Further, the MLE value of 0.17 for SDR is close to 

some of the low-dimensional deterministic chaos systems such as the logistics and the 

Henon maps.  A possible reason for the positive MLE value for SDR may stem from the 

fact that time-varying nature of the signal may have led to inaccurate estimate as the LE 

algorithm assumes stationarity.  

 To further explore this possibility, a series of computer simulations involving the 

logistic map was used. The first simulation example examined the effect of data points on 

the MLE. For this simulation, the parameter r from Eq. 2.1 was chosen to be 3.62.  The 

number of data points was varied between 100 to 5000 in steps of 10 data points.  At each 

data point, 100 different realizations of the logistic map were generated by varying the 

initial condition from 0.001 to 0.1, in steps of 0.001. The mean MLE values estimated 

from these 100 realizations was recorded at each data length step. The result from this 

simulation is shown in Fig. 2.4. It is observed that at low data lengths, the MLE 

estimation is not accurate.  At data lengths larger than ~1000 points, the value plateaus at 

~0.22.  This implies that 1000 data points are sufficient to accurately estimate the MLE 

from data. 
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 The second simulation tests the effect of time-variance on MLE estimation. For 

this experiment, a series of 10 logistic maps with r of 3.62 and data length of 1000 points 

was spliced together.  Each of the 10 logistic map segments was generated with a 

different initial condition. This will essentially create a logistic map with time-varying 

parameters. 100 different time-varying logistic maps were created by varying the initial 

conditions from 0.001 to 0.1 in steps of 0.001.  The mean ± standard deviation for each 

individual segment and for the total spliced signal was 0.22 ± 0.001 and 0.43 ± 0.090, 

respectively.  Nonstationary dynamics results in approximately doubling the actual MLE 

value.  These results clearly show that the time invariant MLE value was not able to 

correctly capture the true dynamics of the spliced together logistic map signal. Therefore, 

the MLE values obtained from SDR and SHR are most likely to have been inflated by the 

inaccurate MLE algorithm for time-varying data. 

 Therefore, a new algorithm, as described in the methods, was specifically 

designed to search for switching TGF dynamics in renal autoregulation. This algorithm 

will generally detect switching dynamic modes in the form of changes in frequency of the 

dynamics. Typical results from the algorithm are shown on Fig. 2.3. Summarized results 

are shown on Fig. 2.5. Statistical significance (P<=0.05) was found between SDR and 

SHR for both cases. Our results show that in general, SHR have more frequency 

switching and more frequency modes than SDR.  This is in agreement with previous 

studies (95, 137) where the TGF system was seen to exhibit more time-varying 

fluctuations across time.  Of particular importance is that the number of frequency modes 

detected in the SHR is at most 2 or 3, despite a relatively large number of switches. This 

is in excellent agreement with a modeling study by Layton et al., which suggested that 

the irregularities seen in the TGF of SHRs were due to the SHRs switching between 2 or 

3 different stable oscillatory modes (68). In contrast, the majority of the SDR records 

show only 1 frequency mode. This demonstrates the stability that is often observed with 

the TGF in SDR.  

Although the number of data length was not statistically different between SDR 

and SHR records (1543 ± 163 and 1391 ± 82), the frequency switching phenomenon is in 

general data point dependent.  That is, the longer the data set, the more switching would 

occur if all else is the same. Therefore, to more accurately compare between the 
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experimental data with the computer generated logistics map, we compared each 

experimental data record with generated logistics maps with the same data length. This 

comparison was made by first generating 999 generations of the logistic map with the 

parameter r set at 3.62 (for a MLE of 0.22) and data length equal to the original data by 

varying the initial condition from 0.001 to 0.999 in steps of 0.001. The frequency mode 

detection algorithm was used on each data set. The 5 and 95th percentile of the number of 

switches and modes were calculated and compared with the numbers calculated for the 

data.  If the values obtained from data lies outside of the 5 and 95th percentile of the 

simulations, it is then deemed significantly different.  

 All 15 SDRs had significantly less switching modes than similar length logistic 

map. For SHRs, only 12 out of 18 SHRs had significantly less switching modes than the 

logistic map. These distributions were then compared using a 2 x 2 contingency table 

based on the Chi-squared distribution, and was found to be significantly different 

(P<=0.05).  For the number of frequency modes, all 15 out of 15 SDRs had significantly 

less switches than similar length logistic maps, while for SHRs it was 14 out of 18. 

Again, using the Chi-squared distribution based a contingency table, the two distributions 

are found to be significantly different. It should be noted, however, that comparing the 

number of frequency modes using the logistics simulations may not be the most accurate. 

This is because the frequency threshold that differentiates two frequency modes was set 

at 0.01 Hz. Therefore, only a maximum of 6 different frequency modes can be possible 

given the scanning area of 0.01 to 0.06 Hz.  With such a small range of possible modes, 

and adding the problem of limited data lengths, the frequency resolution becomes a 

concern. 

 The frequency mode detection algorithm shows that the SHR have in general less 

frequency switching events than the logistics map. This is in contrast to the results from 

the MLE estimation, which showed the SHR to have higher complexity than the logistic 

map. The difference in the results is likely due to the fact that the current frequency mode 

detection algorithm was designed to specifically test for the time varying frequency shifts 

that exists in the TGF of the SHR. The logistics map, being a model for deterministic 

chaos, will have relatively random shifts in frequency modes, leading to the higher 

calculated values from this algorithm. 
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 Past studies have shown that the SHR has a positive MLE (137), which suggests 

that the SHR has properties that make it consistent with deterministic chaos. Not reported 

in that study was the MLE of SDRs. In this study, we confirm the positive MLE of the 

SHR of the previous study. Further, we calculated the MLE of the SDR to also be 

positive, albeit at a lower value. These positive MLE values would put the SDR and the 

SHR near the same order of chaotic behavior as a low order deterministic model, such as 

the logistics map. Since this is unlikely to be the case for the SDR, due to the highly 

regular TGF oscillations seen in the data, this points to some other factor that is 

influencing the MLE estimation. The simulations in this work suggests that one possible 

culprit is the time variance present in SHR.  

Taken together, this study shows that the general value of the MLE must be used 

carefully, as time-varying events can lead to erroneous decisions about the complexity of 

the data. This is especially important in physiological data, as time variance has been 

found in many physiological systems. A recent computer modeling study of the TGF 

system by Layton et al. used a model built from physiological measurements in an 

attempt to discern the origin of these irregular TGF oscillations in SHR (68).  In that 

work, the authors concluded that the seemingly irregular oscillations in the SHR was a 

result of time varying switches to different dynamic modes due to temporal variations in 

various TGF parameters in the SHR. This dynamic mode switching was thought to be the 

source of the multitude of peaks seen in the time invariant frequency spectra of the SHR. 

The results from the present study fit well with these modeling results, as the TGF of the 

SHR was shown to switch between several stable frequency modes across time.   

 In conclusion, this study revisits the notion that the apparent instability of the 

TGF in the SHR is consistent with a low order deterministic event. Using an algorithm 

that specifically detects frequency mode switching in the TGF frequency range, the SHR 

was shown to have statistically lower switching events than a low-order deterministically 

chaotic logistics map. This suggests that the high value of the MLE calculated for the 

SHR may have been due to the time variance that inherently exists in the SHR, and 

illustrates inadequacy of the MLE algorithms for time-varying data. 
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Figure 2.1 – Computer simulated example showing demonstrating the frequency mode 
detection algorithm. The top panel shows a test signal, which contains two frequency 
components of 0.04 and 0.02 Hz. The middle panel shows the frequency of the maximal 
amplitude in the TGF frequency band. The bottom panel shows the time points where 
frequency switches are detected. The figure further shows the modes that are detected to 
be the same, marked with the letters A and B in the bottom panel. 
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Figure 2.2 – Computer simulation to determine optimal switching window size. Varying 
window sizes as well as varying amount of Gaussian white noise was used in order to 
determine the window size that is best able to tolerate noise. The standard deviation of 
the detection was reported in this figure, as perfect detection should result in 0 standard 
deviation. 
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Figure 2.3 – Representative single nephron flow data from both SDR and SHR, shown 
on the left and right columns, respectively. The top panels show the representative time 
traces. The middle panels show the frequency of the maximum amplitude tracked across 
time. The bottom panels show the time location of the detected frequency mode switches. 
Further, the bottom panels shows which frequency modes are found to be similar, with 
similar modes indicated by the same letter. 

 
Figure 2.4 – Result of the simulation of the calculation of the maximal Lyapunov 
exponent (MLE) with increasing data length. The result here is shown as mean of 100 
simulations of the MLE of each individual generation of the signal. Note that the curve 
plateaus at approximately 1000 data points. 
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Figure 2.5 – Summary data from the frequency mode detection algorithm. Statistical 
significance was found between the SDR and SHR in both cases (P<=0.05, shown as 
“*”).  
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Chapter 3 

Statistical Approach to Quantify the Presence of Phase Coupling Using 

the Bispectrum 
 

3.1 Abstract 
 

The bispectrum is a method to detect the presence of phase coupling between 

different components in a signal.  The traditional way to quantify phase coupling is by 

means of the bicoherence index, which is essentially a normalized bispectrum. The major 

drawback of the bicoherence index (BCI) is that determination of significant phase 

coupling becomes compromised with noise and low coupling strength. To overcome this 

limitation, a statistical approach which combines the bispectrum with a surrogate data 

method to determine the statistical significance of the phase coupling is introduced.  This 

method does not rely on the use of the BCI where the normalization procedure of the BCI 

is the major culprit in its poor specificity.  The accuracy of the proposed approach was 

demonstrated using simulation examples which are designed to test its robustness against 

noise contamination as well as varying levels of phase coupling.  The results show that 

the proposed approach outperforms the bicoherence index in both sensitivity and 

specificity and provides an unbiased and statistical approach to determining the presence 

of quadratic phase coupling.  Application of this new method to renal hemodynamic data 

was applied to renal stop flow pressure data obtained from normotensive (N=7) and 

hypertensive (N=7) rats.  Significant nonlinear interactions were found in both strains of 

rats with a greater magnitude of coupling and smaller number of interaction peaks in 

normotensive rats than hypertensive rats.  

 

3.2 INTRODUCTION 
 

The bispectrum is a useful tool for identifying a process that is either non-

Gaussian or is generated by nonlinear mechanisms. Application of the bispectrum has 
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been especially popular in biological systems because of the ubiquity of inherently 

nonlinear characteristics of biological mechanisms. One such characteristic is the 

presence of nonlinear interactions which have been detected in neural (48, 92, 98, 106), 

renal (23, 95) and cardiovascular (5, 53) systems, in particular.  Detection of nonlinear 

interactions has been particularly useful in neural system studies because the bispectrum 

has been used effectively to detail changes in interactions with the level of anesthesia and 

sedation (96, 133, 134).  Furthermore, it has been used in an attempt to detect and predict 

epileptic seizure events (14).   

While nonlinear interactions can be identified in many forms, including phase 

coherence, the bispectrum is ideally suited to detecting phase coupling between two 

components of a process (88).  The power spectrum suppresses phase relations, thus, it 

cannot be used for detection of phase coupling.   

Quantification of phase coupling via the bispectrum is obtained by estimating the 

bicoherence index (BCI) which is essentially a normalized bispectrum obtained by 

dividing the bispectrum by the power spectra of the signal (88). The theoretical values of 

the BCI correspond to a range from insignificant to highly significant phase coupled 

peaks.  Phase coupling implies both frequency and phase coupling, in which the third 

frequency peak and its phase are the sum of the first two frequency peaks and phases.  

The BCI is designed to consider only phase-coupled components, eliminating bispectral 

peaks resulting from frequency locking alone that should not be present in a bispectrum 

but are often represented. However, due to technical considerations such as using an 

insufficient number of segments to compute the bispectrum, frequency coupled peaks 

will sometimes appear in the BCI. Further, for finite-length data sets, the high variability 

present in the bicoherence index will cause theoretically Gaussian processes to have a 

non-zero value.  

To avoid making erroneous decisions about the presence of phase coupling based 

on the BCI, a method was proposed by Elgar and Guza (33) that is based on modeling the 

significance level for zero bicoherence. In this work, the level of significance was based 

primarily on the number of segments used in the calculated bicoherence. We have 

recently proposed an autoregressive bispectrum combined with surrogate data method to 

test the statistical significance of the obtained quadratic phase coupled peaks (23).  This 
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approach allows better detection of phase coupled peaks, even with noise contamination.  

While this approach, known as S-statistics, is certainly an improvement over the BCI 

itself, the method still suffers from low specificity due to a normalization procedure 

which can allow insignificant bispectral peaks to become significant.  In addition, in 

certain instances, the BCI values are greater than one when a small amount of time-

variance was introduced into the data. This further complicates the interpretation of 

results, as most physiological data inherently have some degree of time-variance. To 

compensate for this problem, Pinhas et al. (93) introduced a method that statistically 

removes these erroneous peaks.  However, this method suffers from the fact that it is 

based on the central limit theorem, which requires a large amount of data which may be 

difficult to obtain with physiological data. 

Given the aforesaid problems associated with the detection of phase coupling with 

the use of the BCI as well as S-statistics, the aim of the present work is to circumvent the 

limitations of both methods.  The approach we propose does not involve the use of the 

BCI, rather, it uses bispectrum estimation followed by testing the significance of the 

results against surrogate data realizations.  The goal of the surrogate data transformation 

is to destroy the nonlinear dynamics in the data.  This leaves a time series with only linear 

properties; thus no phase coupling should be detected.  As a result, only bispectral peaks 

remaining must arise from harmonic components and are insignificant.  The efficacy of 

our new method, based on the use of the bispectrum estimation followed by the use of a 

surrogate data technique, will be compared to the traditional BCI as well as combination 

of the BCI and the S-statistics method. 

 

3.3 Methods 

3.3.1 Bispectral Analysis 

 

There are two nonparametric approaches, direct and indirect, to compute the 

bispectrum.  The indirect method involves computation of the third-order cumulant 

followed by the two-dimensional Fourier transform of the third-order cumulant.  For our 
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analysis, we use the direct method which is estimated by taking the average of triple 

products of the Fourier transform over K segments: 
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     (eq.  3.1) 

where Xk(f) is the Fourier transform of the kth segment and * indicates the complex 

conjugate.  Note that as the size of each segment decreases, the frequency resolution will 

also decrease. Therefore, it is important to choose the proper segment size so that there is 

sufficient resolution to resolve the dynamics in the signal while retaining enough 

segments to properly reduce variance in the bispectrum for the detection of phase 

coupling.  This tradeoff between time and frequency resolution also pertains to the 

indirect method and to a lesser extent to parametric approaches.  In addition, while our 

estimation results are all based on the direct method of computing the bispectrum, our 

approach of statistically quantifying the presence of phase coupling equally applies to 

both indirect and parametric (model based) approaches to estimating the bispectrum. 

 

3.3.2 Necessity of Statistical Analysis in Bispectral Analysis 

 

To illustrate the necessity of complementing bispectral estimation with statistical 

analysis, a simple simulation example is provided. The simulation consists of two test 

signals, both involving three frequencies, as shown below:  

)2sin()2sin()2sin()( 3322112,1 ������ ������ tfAtftfty     (eq. 3.2) 

where f1 and f2 are set to 0.1 and 0.2 Hz, respectively.  For both test signals, the third 

frequency, f3, is set to f1+f2=0.3Hz in order to achieve the frequency coupling. Phases 

associated with the first two frequencies (�1 and �2) are randomly generated between -� 

and � with a uniform distribution.  For the first test signal (y1(t)) the third frequency is 

also phase coupled such that �3=�1+�2.The second test signal (y2(t)) is not phase coupled 

so that �3 is also randomly generated to be between -� and �.  The amplitude A is set to 

0.5 for the phase uncoupled signal whereas it is set to 1.5 for the phase coupled signal. 

The amplitude of the phase uncoupled signal is set to a high value to simulate a condition 

where high bispectral values can be obtained from frequency matching components 

alone.  Both test signals were generated at 1 Hz sampling rate and contained 2048 data 
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points. For both test signals, 32 segments, each containing 64 data points, with no 

overlapping segments, were used to estimate the bispectrum. 

The resulting bispectra (middle panels) and the BCI (bottom panels) for the phase 

coupled and uncoupled signals with their respective power spectra (top panels), are 

shown in the left and right panels of Fig. 3.1.  The power spectra of the phase coupled 

and uncoupled signals are indistinguishable in terms of frequency information, albeit the 

amplitude of the phase coupled spectrum is lower especially at 0.3 Hz.  Although the 

phase coupled signal has lower spectral amplitude than the phase uncoupled spectral 

peak, we observe a similar bispectral peak magnitude at the frequency pair (0.1, 0.2) Hz 

in these two systems. This example demonstrates an important issue.  Due to inherent 

limitations associated with the bispectrum estimation, it is possible to obtain a bispectral 

peak for the phase uncoupled signal under certain frequency and amplitude combinations. 

That is, frequency coupling alone is sufficient to generate peaks in the bispectrum. 

Hence, a statistical method is needed to distinguish true peaks resulting from frequency 

and phase coupling from erroneous peaks resulting from frequency coupling alone. The 

bottom panel shows the bicoherence of the test signals. As shown on the bottom right 

panel, the BCI was able to correctly eliminate the phase uncoupled peaks as these peaks 

have values lower than the threshold value of 0.306 as derived by Elgar and Guza (33). 

However, note the inadequate frequency resolution especially on the bottom left panel as 

compared to the figure shown on the top left panel.  In addition, this simulation is based 

on noise-free and relatively long data records, conditions which are seldom met with 

experimental data. The limitations of the BCI will be further illustrated in the Results 

section. 

 

3.3.3 Traditional Statistical Methods 

 

Traditionally, determination of phase coupled peaks in the bispectrum required 

the calculation of a normalized bispectrum, called the bicoherence index (BCI). The BCI 

is calculated by: 

1 2
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Where P(f) is the power spectrum of the signal. 

From the BCI, one would then need a method for determining significance in the 

peaks observed. The method developed by Elgar and Guza (33) for determining 

significance in the BCI based on describing the significance levels for zero bicoherence 

was used here.  Specifically, it was found that the 95% significance level for zero 

bicoherence is approximately      ,where m is the number of segments.  Further, the S-

statistical method (23), based on surrogate data, was also used here for comparison  

While the S-statistics method was developed for use with autoregressive model based 

bispectral estimation, we adopt this technique to the direct method of computing the 

bispectrum. 

Surrogate data are a modified form of the original data which eliminates nonlinear 

properties while retaining linear statistical properties.  Randomization of phases 

accomplishes the elimination of nonlinearity and since randomization can be performed 

in many ways, we can obtain multiple realizations of surrogate data from a single time 

series. This is useful in the statistical testing of nonlinearity, as one can then use the 

generated surrogate data as the null condition to be tested against. We chose the 

iteratively refined surrogate data technique (IRSDT) (133).  The IRSDT will destroy any 

nonlinearity in the signal, and has been shown to be more accurate than the amplitude 

adjusted Fourier transform technique (121) because it iteratively corrects for deviations in 

the spectrum as well as maintains the correct distribution of the signal.   

The S-statistic approach involves generation of multiple realizations (~100 

suffice) of surrogate data. The BCI is calculated for each realization of surrogates as well 

as for the original data. The S value, which tests for the 95% significance of the detected 

quadratic phase coupling, is based on the assumption that the distribution of the 

surrogates follows a normal distribution.  In the current work, the threshold for S-

statistics is set as the 95th percentile of the distribution of the BCI estimated on the 100 

realizations of surrogate data.  The threshold value is then subtracted from the BCI value 

of the original data.. Values above zero are considered significant for the S-statistics. 

 Simulation examples will be used to show that the BCI and S-statistics lack 

sensitivity and specificity, respectively. Due to the inherent limitations of these 

traditional methods, a new approach for evaluating quadratic phase coupling, based on 

m2
6
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surrogate data of the bispectral estimate and completely bypassing the computation of the 

BCI, is described in the following section. 

 

3.3.4 Proposed Approach: Surrogate Data Threshold Method Applied to the 

Bispectrum and not BCI 

 

The bispectrum with surrogate (BWS) method is similar to S-statistics, being also 

based on surrogate data.  However, a key distinction is the fact that it does not utilize BCI 

but only the bispectrum estimate, since its statistical determination of the presence of 

phase coupling uses surrogate data realizations. The procedure involves generating 100 

realizations of surrogate data from the original data. The bispectrum of each of the 

surrogates, as well as the original data, is calculated. The mean and standard deviation of 

all 100 surrogates’ bispectral estimates are calculated. The 95% statistical threshold 

values are defined as the mean plus 2 standard deviations.  Note that the statistical 

threshold of the BWS, based on the normality assumption, is verified using the 

Kolmogorov-Smirnov goodness of fit test (140).  Any bispectral peaks estimated from 

the original data that are above these threshold values are considered to have significant 

frequency and phase coupling.  Therefore, the difference between the bispectrum value 

from the original data and the threshold value is then calculated. Difference values above 

0 will indicate a bispectrum value above the threshold, and are therefore considered 

significant.   

 

3.3.5 Simulation Conditions 

 

The three methods, the BCI, S-statistics, and our proposed approach (BWS) were 

tested by using simulated data under different conditions.  Unless otherwise noted, the 

test signal used consisted of a phased coupled triplet as described earlier, at a 1 Hz 

sampling rate with 2048 data points. The frequencies used were f1=0.1, f2=0.2, and f3=0.3. 

The bispectra was also calculated as described before with segment size of 64, but 128 

points were used for the FFT (64 points zero padding), and there were no overlapping 

segments. 
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To guard against counting the same bispectral peak twice (especially possible if 

the frequency resolution is not high), each peak was checked against its 8 nearest 

neighbors.  If the magnitude of a peak was higher than any of its neighbors, it was then 

considered a peak. We repeated this process for the entire bispectrum.  We then tested the 

peaks for significance of using the three methods. 

 

3.3.6 Application of the BWS to Renal Blood Flow 

 

The BWS was applied to experimental renal hemodynamic data to demonstrate its 

efficacy.  All experiments were performed under protocols approved by The Institutional 

Animal Care and Use Committee at Stony Brook and The University of South Florida. 

The data were collected from a previous study in which stop flow pressure (SFP) 

recordings from a single nephron were measured in Sprague-Dawley (SDR, 240-300g, 

n=7) and spontaneously hypertensive rats (SHR, 12 wk old, n=7) (19). Surgical 

preparation and the stop flow pressure measurements are detailed in our previously 

published study (23), thus, will only be briefly described here. Animals were anesthetized 

with halothane administered in an oxygen-nitrogen mixture and artificially ventilated 

after the administration of a muscle relaxant. Tubular flow was interrupted with bone wax 

in a selected proximal tubule, and intratubular hydraulic pressure proximal to the wax 

block was measured via a 1 to 3 um diameter micropipette attached to a servo-nulling 

pressure circuit. Data was recorded on a TEAC R-61 4-channel cassette data recorder for 

off-line analysis. The recorded data were replayed through an electronic low-pass filter 

with a roll-off frequency of 1.5 Hz and sampled digitally at 4 Hz.  Before bispectral 

analysis, the data were further filtered by a digital low-pass filter with a cut-off frequency 

of 0.5 Hz, and down sampled to 1 Hz. 
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3.4 Results and Discussion 

3.4.1 Test for Normality 

 

Our statistical threshold, based on the normality assumption, was verified using 

the Kolmogorov-Smirnov goodness of fit test (140). The calculated P value was > 0.05, 

which confirms that this set is drawn from a normally distributed population. 

 

3.4.2 Test of Robustness Against Noise Corruption 

 

We tested the three methods for robustness against noise corrupted data.  The 

generated signal was corrupted by additive Gaussian white noise (AGWN) such that the 

signal to noise ratio (SNR) ranged from 25 to -25 dB. Ten independent realizations of 

Gaussian white noise at each noise level were generated to corrupt the signal in order to 

achieve a statistical result.  The bispectrum was then calculated for each realization of the 

noise corrupted signal to examine how robust each method was in detecting only the true 

phase coupled peak.  To test the sensitivity of each method, the calculated value of each 

method at the generated frequencies were recorded for each realization and averaged. 

Further, to test for specificity, the total number of significant detected peaks across the 

entire bispectrum was also recorded for each realization. The mean of sensitivity and the 

median of specificity results are reported in the top and bottom panels of Fig. 3.2, 

respectively.  Note that for the BCI, the thresholding method proposed by Elgar and Guza 

was used (33), while for the S-statistics and the BWS methods, a threshold value of 0 was 

used as this represents the difference between the bicoherence value of the data and 

surrogate data results.  All of these threshold values are noted as dashed lines. 

As shown in the top panels of Fig. 3.2, the BCI is most susceptible to noise 

corruption as it needs a SNR greater than -11 dB to detect the true peak. The S-statistics 

method is able to tolerate a greater amount of noise as it remains robust even with SNR at 

-20 dB (robust in the sense that it always detects the phase coupled peak, even if it also 

detects extraneous peaks). The performance of the BWS is the best out of the three, being 

able to detect the frequency peak at a noise level as low as -22 dB. 



30�
�

Comparison of the specificity information for the 3 methods is shown in the 

bottom panels of Fig. 3.2.  We observe that the S-statistics method is non-specific, as it 

detects an average of 14 additional non-phase coupled peaks over the range of SNR we 

have used. The BCI and BWS methods have high specificity, detecting only the phase-

coupled peak up until the noise level at which these methods fail. This simulation shows 

that the BWS has the optimal combination of specificity and sensitivity in the case of 

varying amounts of noise in the data. Further, it should be noted that the degree of 

coupling in the test signal was not varied. Therefore, ideally the calculated values should 

not change with noise corruption.  The top panel of Fig. 3.2 shows that all three methods’ 

average calculated values decrease with increasing noise.  However, the BWS is most 

resistant to this effect, with a relatively unchanging calculated value up until 

approximately 0 dB. This suggests that the calculated values from the BWS used to 

assess coupling strength are the most accurate, as the BWS method is the least affected 

by noise corruption.  Further supporting evidence to this effect is shown in the 

proceeding sections.  

 

3.4.3 Test of Amount of Phase Coupling 

 

This example was designed to determine each method’s fidelity in discriminating 

uncoupled phases. The amount of phase coupling was varied by injecting a number of 

data points that had uncoupled phases.  The amount of phase coupling varied from 0% to 

100% at an increment of 1%.  For each level of phase coupling, 100 realizations of the 

test signals were generated.  Each realization of the test signal was corrupted by 0 dB 

AGWN.  For sensitivity testing, the calculated value for each method was recorded at the 

known phase coupled frequency. For specificity, the total number of significant detected 

peaks in the entire bispectrum was recorded and the median between the realizations is 

reported. These values are shown in Fig. 3.3 as a function of varying percent of phase 

coupling. 

As shown in the top panels of Fig. 3.3, the percent of coupling that each method 

was sensitive to was approximately 50%, 35%, and 18% for the BCI, S-statistics, and the 

BWS, respectively.  The bottom panels show the specificity of the three tests. The trend 
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here is the same as the prior example, where the specificity for the BCI and BWS is very 

high, while it is poor for the S-statistics method. This example provides evidence that the 

BWS has the best combination of sensitivity and specificity in detecting low levels of 

phase coupling.  Further, it should be noted that the calculated value for the BWS linearly 

increases with increasing coupling percent for values above 18%, thereby suggesting that 

the BWS method provides a good quantification of the actual amount of phase coupling 

present in the system. The BCI and the S-statistics, however, show a more sigmoidal 

relationship with only a small window of linearity from approximately 40 to 70 percent 

coupling. The problem here is that it would be difficult to distinguish between two 

signals with high coupling strengths with the BCI and the S-statistics, as they will show 

up with similar values. This suggests that the BCI and S-statistics are less able to 

distinguish relative degrees of coupling when signals are strongly coupled.  

 

3.4.4 Effects of Segment Number 

 

Varying the number of segments is tested, as it has been demonstrated that only 

by having a sufficient number of segments will one detect the presence of phase 

coupling, if it exists (88).  The size of each segment was kept constant at 64 data points. 

The number of segments was varied from 1 to 32 at an increment of one.  For example, 1 

segment means there are 64 data points and 32 segments correspond to 2048 data points 

in total, still 64 in each segment.  For each segment, 100 realizations of the test signal 

were generated. Each realization was corrupted by 0 dB AGWN.  Similar to previous 

simulations, the calculated value of the three tests and the number of detected peaks will 

be recorded for sensitivity and specificity, respectively. The result of this simulation is 

shown in Fig. 3.4. 

The top panels of Fig. 3.4 show the calculated values of each method as a 

function of segment number. It should be noted here that the threshold for the BCI, 

shown as the dashed curve, changes with segment number according to the method by 

Elgar and Guza (33). It can be seen from the top panels that the minimum number of 

segments needed to detect significant peaks for the BCI, S-statistics, and BWS are 6, 4 

and 3, respectively. This corresponds to 384, 256, and 192 points, respectively. The 
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specificity analysis in the bottom panel shows a similar trend as in previous tests, where 

the BCI and the BWS has the highest specificity, while the S-statistics method detects 

many erroneous peaks. From these results, it could be concluded that the BWS has the 

best tolerance to small amounts of data. 

 

3.4.5 Test of Small Amount of Time Variance 

 

In this simulation, we test the problem of having a small amount of time variation 

(nonstationarity) in the data while using the time-invariant bispectrum for analysis.  This 

problem was originally reported by Pinhas et al. (93).  The simulated test signal consisted 

of 2048 data points at a sampling rate of 1 Hz. This signal contains 32 segments of 64 

data points each. Two frequency triplets are used in the signal. The first frequency triplet 

contains frequencies 0.05, 0.1, and 0.15 Hz. The second frequency triplet contains 

frequencies 0.2, 0.25, and 0.45 Hz. Both frequency triplets are fully phase coupled. The 

second frequency triplet exists only in the last segment of the data, while the first 

frequency triplet exists in all data. This simulates a signal where a small portion of it is 

different from the rest. One hundred realizations of the test signal were generated in this 

simulation, and the results are averaged. The three methods are compared and the results 

are summarized in Table 3.1.  

As shown in Table 3.1, the calculated values for the BCI and S-statistics show a 

much higher value for the second triplet compared to the first triplet. This is an erroneous 

result, as the second triplet only exists in a small amount of data, which should, in theory, 

lead to a smaller magnitude of coupling. For the BWS, the calculated value of the second 

triplet is lower than the first.  Further, the value of the first triplet is 32.35 times that of 

the second. This matches very well to the 32:1 ratio (# of segments between the first and 

the second frequency triplets) between the first and second triplet, which may suggest 

that the calculated value of the BWS accurately quantifies the degree of coupling that is 

in the signal. It is important to note here that for the BCI and the S-statistics, the 

calculated values also show a 32 to 1 ratio, except in the opposite direction (the value for 

the second triplet is 32 times that of the first). This phenomenon is further investigated in 

the next section. 
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3.4.6 Test of the Relative Magnitudes of the Calculated Values 

In this simulation, the three methods were tested for their ability to quantify the 

relative coupling strengths between multiple coupling processes in a signal.  The 

simulation signal used was the additive sum of two different frequency triplets, resulting 

in a signal with 6 frequency components. Each frequency triplet was generated in the 

same manner as described in part B of the Methods section. The specific frequencies used 

were f1=0.05 Hz, f2=0.1 Hz, f3=f1+f2=0.15 Hz, f4=0.2 Hz, f5=0.25 Hz, f6=f4+f5=0.45 Hz. 

The coupling percent of the f4f5f6 triplet was varied between 0 to 100 percent at an 

increment of 1 percent, while the f1f2f3 triplet was fully phase coupled. The signal was 

generated at 1 Hz sampling rate with 2048 data points. One hundred realizations of the 

test signal were generated, and the averaged results are shown. The calculated values at 

the two simulated frequency triplets, and the total number of detected peaks in the entire 

bispectrum, were recorded. Further, the ratio between the calculated values of the two 

triplets was also calculated. This ratio should ideally change linearly with coupling 

percent if the calculated values represent the actual strength of coupling. 

The top panels of Fig. 3.5 show the plot of the ratio between the calculated values 

of the two triplets. Similar to the previous simulation, the BCI and S-statistics both have a 

linear region at the start of their detectable range. However, the ratio quickly saturates to 

the value of 1. For the BWS, the ratio remains relatively linear over its entire range. 

Linear regression of the ratio from the BWS yields an R2 of 0.97.  This linear behavior of 

the ratio is important when multiple components exist in a signal, and one wishes to 

quantitatively compare the degree of coupling between the mechanisms.  For the BCI and 

the S statistics, this will be difficult at best since the ratio between the calculated values 

of 70 to 100 percent shows a very similar value. The BWS, on the other hand, shows a 

linear relationship across its detectable range, allowing for a meaningful quantitative 

comparison between the different components in the signal.  

The bottom panels of Fig. 3.5 show the number of detected peaks from the three 

methods. The trend in this simulation is similar to all the other examples, where the BCI 

and the BWS are very sensitive and detect the correct number of peaks for their 
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detectable range, while the S-statistics method is not specific and detects a high number 

of peaks over all ranges. 

In summary, the two simulations presented in this section show that the BWS is 

able to correctly determine the relatively magnitude of different coupling components in 

the same signal. The other two methods, on the other hand, are less effective in 

quantifying the degree of coupling between dynamics. 

 

3.4.7 Application of the BWS to Renal Data 

Our previous data analysis involving autoregressive bispectrum revealed 

quadratic phase coupling at the prescribed myogenic (MYO: 0.1-0.3 Hz) and 

tubuloglomerular feedback (TGF: 0.02-0.05 Hz) frequency ranges (23).  Thus, the 

purpose of this section is to demonstrate the presence of such quadratic phase coupling 

using the BWS method, as well as its ability to discriminate only the significant phase 

coupling peaks.  A typical BWS result is shown in Fig. 3.6.   Panel A of Fig. 3.6 shows 

time series of a typical single nephron stop flow pressure.  Note both fast and slow 

oscillations in the stop flow pressure data which reflect the activity of the two 

autoregulatory mechanisms.  Panel B shows the bispectral estimation without the use of 

surrogate data on the data shown in panel A.  The largest peak is at the prescribed 

frequency pair (TGF: 0.0234 Hz, MYO: 0.1328 Hz) associated with the TGF and MYO 

mechanisms.  In addition to the largest peak, there are many smaller peaks present in the 

bispectral plot.  It is difficult to discern whether these smaller peaks are the result of true 

phase coupled peaks or if they simply arise from frequency coupling alone, measurement 

noise or estimation error.  Panel C shows the bispectrum of the same time tracing after 

using the BWS method to eliminate the erroneous peaks. The smaller peaks shown in 

panel B have mostly been eliminated, preserving only the phase coupled peak.  

Summarized results for both SDR (n=7) and SHR (n=7) are shown in Fig. 3.7.  As shown 

in the top panel of Fig. 3.7, we observe nonlinear interactions between MYO and TGF in 

all SDR and SHR and this result is consistent with past studies (22, 23, 116).  In addition, 

we found that there was a greater number of significant nonlinear interaction peaks with 

SHR than SDR.  However, the strength of interactions is significantly greater in SDR 
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than SHR (P < 0.05) as shown in the bottom panel of Fig. 3.7. The magnitude result is 

shown in log scale due to the SDR having a BWS magnitude of more than an order of 

magnitude larger than that of the SHR.  

 

3.5 Discussion 
 

The simulation examples presented generally shows that the BWS offers the best 

combination of sensitivity and specificity under all of the tested conditions. Further, the 

BWS in general is more sensitive than the BCI and the S-statistics method in detecting 

coupling. The S-statistics method detects many spurious peaks; the culprit is the 

normalization procedure inherent in the computation of the BCI.  The S-statistics method 

is reliable and appropriate to use when there is a priori information about the presence of 

quadratic phase coupling at specific frequencies.  Furthermore, the use of S-statistics is 

more appropriate with parametric approaches to bispectral estimates, as the process of 

finding the proper number of autoregressive terms limits introduction of spurious peaks

(23).  Otherwise, the use of S-statistics via the direct method to computing the bispectrum 

is not advised.  Finally, the BWS provides more accurate quantitative measure of the 

degree of coupling strength than either the BCI or S-statistics methods do, as shown in 

Figs. 3.3 and 3.5.  It should be noted, however, that the BWS does not provide a 

normalized indicator for coupling strength, thus, the BWS will be more appropriate for 

comparison between different conditions.   

In this work, a statistical method based on surrogate data was introduced to 

analyze bispectral data. This approach completely bypasses the use of the bicoherence 

index.  As shown in the results, the normalization factor in the computation of the 

bicoherence index is the main culprit in providing less sensitive and less specific results.  

The BWS, because it does not use the BCI at all, provides results far superior to either the 

BCI or S-statistics. It should be noted that the bispectrum detects not only quadratic 

phase coupled phenomenon but it also provides information regarding nonlinearity and 

deviation from Gaussian process.  Therefore, with the BWS approach, one can obtain 

statistical quantification regarding the phase coupling, nonlinearity and deviation from 

normality. 
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The BWS, BIC and S-statistics were all based on nonparametric bispectral 

estimation.  However, all of the methods are also applicable to parametric bispectral 

estimation.  In fact, the S-statistics method was already used with an autoregressive 

bispectral approach (23).  Given the fact that the BWS outperforms the S-statistics and 

BIC, we surmise that the BWS will also be applicable as an accurate approach for 

determining the statistical threshold levels of the parametric bispectrum.  The advantages 

of using the parametric over the nonparametric bispectrum are higher frequency 

resolution and its ability to retain the accuracy for data with short data records.  However, 

the main disadvantage of the parametric approach is the determination of model order, 

which can be complex. 

As in a previous study (23), consistent phase coupling was observed in tubular 

pressure recordings from both SDR and SHR with the application of the BWS.  The BWS 

revealed that the SHR has a significantly greater number of MYO and TGF interaction 

peaks but the strength of coupling is smaller than SDR.  This may be due to either more 

transient behavior or the TGF frequency shifting, both of which we have previously 

reported (34, 95). These results are also consistent with a recent modeling study (68), 

which suggests that the TGF mechanism in the SHR switches between different dynamic 

modes.  This shifting of modes can lead to the increased amount of peaks detected in the 

SHR as each mode would show up as a separate peak.  Furthermore, the shifting of 

modes would decrease the amount of time of each mode in the total time record, leading 

to a decrease in the magnitude of coupling observed.  

The significance of detecting the presence of phase coupling in renal blood flow 

is that perhaps this can be used as a marker in differentiating normal versus disease 

conditions that may arise because of autoregulatory dysfunction in kidneys.  It can be 

speculated that with progressive renal autoregulatory dysfunction, the presence of 

quadratic phase coupling, which is needed for efficient autoregulation in normal 

conditions, may dissipate.  However, further studies are needed to determine if such a 

scenario occurs.   

This work has been published in IEEE Transactions on Biomedical Engineering, 

2008. 
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Figure 3.1 - Bispectra (middle panels) and bicoherence (bottom panels) with (left panels) 
and without (right panels) phase coupling.  Note the similar phase coupling magnitudes 
for both phase uncoupled and coupled system.   
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Figure 3.2 – Comparison of three bispectral methods with noise contamination. The data 
were corrupted by a variable amount of Gaussian white noise. The top panels show the 
calculated value of each method at the generated frequencies. The bottom panels show 
the median number of significant peaks detected at each noise level.  
 
 
 
 
 

 
Figure 3.3 – Comparison of three bispectral methods with varying amounts of coupling. 
Plotted on the top panels are the calculated values at the known phase-coupled frequency 
for each of the three methods. The dotted lines show the significant threshold levels for 
each of the three approaches.  
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Figure 3.4 – Comparison of three bispectral methods with varying number of segments.  
The top panels show the calculated value of each method at the known phase-coupled 
frequency. The dotted lines in the top panels show the threshold levels for each method: 
0.5 for the BCI, 2 for the S-statistics, and 0 for the BWS. The bottom panels show the 
number of detected peaks for the three methods. 
 

 
Figure 3.5 - Comparison of three bispectral methods with two triplets of varying amounts 
of phase coupling.  In this simulation, the first triplet was fully phase coupled, while the 
second triplet had a varying amount of phase coupling ranging from 2 to 100 percent, in 1 
percent increments. The calculated values for each method for the two triplets were 
recorded, and the ratio between the calculated values of the two triplets is shown in the 
top panels. The bottom panels show the number of detected peaks from the three 
methods. 
 



40�
�

 
Figure 3.6 - Stop-flow pressure tracing (panel A) and the corresponding bispectrum 
without (panel B) and with surrogate data (panel C).  Note the elimination of many peaks 
in panel B with the use of the BWS 
 

 
Figure 3.7 – Summary of the application of the BWS on renal stop flow pressure 
measurements on both SDR (n=7) and SHR (n=7). The top panel shows the number of 
significant peaks between the two strains, with the blue + representing the median. Both 
the magnitude and the number of peaks are significantly different (P<0.05), with the SHR 
showing a lower magnitude as well as a greater number of peaks.  Bottom panel shows 
the average BWS magnitude of significant peaks between the TGF and MYO 
mechanisms in log scale. 
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 BCI S-Statistics BWS 

Triplet 1 1.00 0.93 0.0940 

Triplet 2 31.92 31.83 0.0029 

Table 3.1 – Comparison of the three bispectral methods’ abilities to tolerate a small 
amount of time variance in the data. The simulation used a signal with two frequency 
triplets, where both of the triplets are both frequency and phase coupled.  However, 
triplet 2 only exists in the last segment of data, whereas triplet 1 exists in all data. 
Reported here are the calculated values from the three methods for triplet 1 and 2.  
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Chapter 4 

On the Efficacy of the Combined Use of the Cross-Bicoherence with 

Surrogate Data Technique to Statistically Quantify the Presence of 

Nonlinear Interactions 

4.1 Abstract 
 

The cross-bispectrum is an approach to detect the presence of quadratic phase 

coupling (QPC) between different components in bivariate signals.  Quantification of 

QPC is by means of the cross-bicoherence index (CBI).  The major limitations of the CBI 

are that it favors only the strongly coupled signals and its accuracy becomes 

compromised with noise and low coupling strength.  To overcome this limitation, a 

statistical approach which combines CBI with a surrogate data method to determine the 

statistical significance of the QPC derived from bivariate signals is introduced. The 

accuracy of the proposed approach was demonstrated using simulation examples which 

are designed to test its robustness against noise contamination as well as varying levels of 

phase coupling and data lengths.  Comparisons were made to the traditional CBI and the 

method based on the use of cross-bispectrum followed by a surrogate data technique.  

The results show that the cross-bicoherence with surrogate data technique outperforms 

the two other method compared in both sensitivity and specificity and provides an 

unbiased and statistical approach to determining the presence of quadratic phase coupling 

in bivariate signals. These results are in contrast to the previous chapter where the auto-

bispectrum combined with surrogate data approach had the best performance.  

Application of this approach to renal hemodynamic data was applied to renal stop flow 

pressure data obtained in the nephrons of the normotensive (N=18) and hypertensive 

(N=15) rats.  We found significant nonlinear interactions between nephrons only when 

they are derived from the same cortical renal artery.  The accuracy was 100% and 

verified by comparing the results to the known vascular connectivity between nephrons.   
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4.2 Introduction 
 

In previous work, nonlinear coupling between tubuloglomerular feedback (TGF) 

and the myogenic (MYO) mechanisms within a single nephron (95, 111) as well as the 

whole kidney level (22, 95) was detected for both normotensive and spontaneously 

hypertensive rats (SHR) using a bispectrum approach.  The reason for the interest in the 

detection of nonlinear interactions is that they can give rise to a number of system 

properties, including chaos, synchronization, and frequency modulation (116), which 

may be physiologically important, and which do not occur in linear systems.  The 

bispectrum is an algorithm used to detect both frequency and phase coupling between 

different components of a signal and bispectral peaks should only appear when these two 

criteria have been met (88).  However, in practice, having only the frequency coupling or 

insufficient segment averaging can lead to erroneous bispectral peaks.  A long held 

dogma is that these erroneous peaks can be rejected by the use of a bicoherence index, 

but its determination of significant peaks favors only those with strong coupling.  To 

overcome this limitation, we recently developed an algorithm which combines the 

bispectrum with surrogate data method to determine the statistical significance of the 

phase coupling (111).  Our approach completely bypasses the use of the bicoherence 

index.  Our method showed far greater sensitivity and specificity than the bicoherence 

index and paved a way for an unbiased and statistical approach to determine the presence 

of quadratic phase coupling.   

For bivariate signals, the cross-bispectrum can be used to detect quadratic phase 

coupling (QPC) between dynamic components from two different signals. For example, it 

will be possible to detect coupling between the autoregulatory mechanisms from different 

nephrons (111).  Our aim is to apply the cross-bispectrum to examine if there are any 

differences in nephron to nephron interactions between normotensive and hypertensive 

rats. 

Inherent weaknesses of the cross-bispectrum are nearly identical to those of the 

auto-bispectrum.  For example, the cross bispectrum also requires a sufficient number of 

segments to detect proper phase coupling.  If these are not available, non-phase coupled 

components will appear in the resulting cross-bispectra, confounding the interpretation of 
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the results.  The most widely-used approach to suppress these non-phase coupled peaks is 

via the cross-bicoherence index.  Using multiple realizations of Gaussian white noise 

signals, Shils et al. (108) provided a quantitative approach to determine a 95% 

significance level to discriminate between erroneous and true phase coupled peaks, based 

on the number of segments used.  However, the main disadvantage of this approach is 

that the distribution of white noise is different than the data.  In addition, the significance 

level derived by the white noise is a stringent criterion and may miss weak couplings 

between two signals, thereby leading to type II error.  

 Given the aforesaid limitations and the fact that we found a solution to selection 

of the significance of the determined auto-bispectral peaks based on a surrogate data 

technique, we initially assumed the same method can be used for cross-bispectrum.  That 

is, first calculate the cross-bispectrum followed by surrogate data to determine the 

statistical significance of the calculated cross-bispectral peaks.  Note that in our recent 

study, it was found that using the auto-bispectrum followed by surrogate data to 

determine the statistical significance was more accurate than using either the 

conventional bicoherence index or bicoherence followed by the surrogate data(111).  

Similar to the auto-bispectrum case, we expected poor performance of the cross-

bicoherence index for quantitative determination of the significance of the cross-

bispectrum.  To our surprise, the most accurate approach for auto-bispectrum (bispectrum 

followed by surrogate data) was not as effective for cross-bispectrum.  Thus, the aim of 

the present study was to systematically investigate and compare three different 

approaches to determine the most accurate way to assess the significance of the estimated 

cross-bispectral peaks.  The three methods compared are: 1) cross-bicoherence index, 2) 

cross-bispectrum with surrogate data, and 3) cross-bicoherence with surrogate data.  We 

have previously shown that the method of using bicoherence followed by the surrogate 

data works better than using only the bicoherence but its accuracy was lower than the 

bispectrum with surrogate data approach (111).   Note that the second and third method 

as defined above differ in that the former method uses cross-bispectral values whereas the 

latter method uses the cross-bicoherence values to determine the statistical significance.  

To quantitatively compare three methods, computer simulations involving their 

effectiveness against varying levels of noise, coupling and data lengths were investigated.  
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Unlike the auto-bispectrum, it was found that the approach of cross-bicoherence with 

surrogate data performed the best for all test conditions considered.  The technique of the 

cross-bicoherence with surrogate data was applied to stop flow pressure measurements 

obtained from two nephrons simultaneously in both normotensive and hypertensive rats 

to detect and discern quantitative differences in the quadratic phase coupling between two 

conditions. 

 

4.3 Methods 

4.3.1 Cross Bispectral Analysis 

Given two stationary zero mean processes, x(n) and y(n), the direct method of 

computing the cross-bispectrum, BXYX, involves taking the average of triple products of 

the Fourier transform over M segments: 

�
�
���� ��� � �
�� ������������������ � �������   (eq. 4.1) 

where Xm(�1) and Ym(�2)are the Fourier transform of the m-th segment and * indicates 

the complex conjugate. 

 Similar to auto-bispectrum, the cross-bispectrum will reveal peaks when quadratic 

phase coupling occurs between the two signals.  An example of the QPC via the cross-

bispectrum is illustrated in Fig. 4.1 using the following example (89):  
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          (eq. 4.2) 

             

The signals x(n) and y(n) are the two composite outputs of the simulation. In this 

simulation, the frequencies are set to: fx(1) = fy(1) = 0.03 Hz and fx(2) = fy(2) = 0.12 Hz to 

simulate the slow and fast mechanisms of renal autoregulation.  32 segments of 128 data 
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points of both x(n) and y(n) were generated (for a total of n = 4096 data points and step 

size � = 1 second each), with the initial phase of each segment, �, randomly distributed 

along 0 and 2�. Phase coupling is unidirectional from y(n) to x(n), with the third term in 

y(n) being responsible for the coupling. Note that the simulated signals have imaginary 

portions.  For visualization purposes, only the real portion of the signals is shown in the 

top two panels of Fig. 4.1. The bottom left panel shows the resulting cross-bispectra for 

these two simulated signals. Note that a single large peak is shown at the (0.03, 0.12) Hz 

frequency pair, suggesting significant phase coupling between the signals.  The example 

provided was free of noise.  More realistic example is to contaminate the signals as 

described in Eq. (4.2) with Gaussian white noise (GWN).  The signal-to-noise (SNR) 

ratio was set to -20 dB. The result is shown in the middle panel of Fig. 4.1.  While the 

largest peak is the coupled peak, with such a low SNR, we observe many noise-related 

peaks in the cross-bispectrum. 

To address how one can comb through to find only the significant phase coupled 

peak, the most widely used approach is a cross-bicoherence index, which is essentially a 

normalized cross-bispectrum: 

                         ()*
�
���� ��� � + % �,-�,.�
/0 �,-�0%�,.�0 �,-�,.�

   (eq. 4.3) 

where bicxyx denotes the cross-bicoherence and P denotes the power spectrum.  Shils et al. 

(108) introduced a 95% threshold of N3 , where N is the number of segments. Using 

this threshold value for the simulation above, we would erroneously reject the true phase 

coupled peak at (0.03, 0.12) Hz frequency pair, as illustrated in the right panel of Fig. 4.1.  

This type II error is likely due to the fact that the above defined 95% threshold value is 

too stringent since it was based on Gaussian white noise simulations, thus, it is not able to 

discern a phase coupling that is contaminated by significant noise.  While not shown, a 

similar type II error would occur when the magnitude of the phase coupled peak is weak.  

These issues will be further illustrated in the Simulation Example section.     

 To circumvent this white noise based 95% threshold value of the cross-

bicoherence index, we demonstrate utility of two methods that utilize the concept of 

surrogate data technique. Specifically, the two methods utilize a surrogate data testing 

approach to determine the statistical significant threshold value for either the cross-
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bispectrum or cross-bicoherence values.  Surrogate data technique generates multiple 

random realizations of signal from real data that contain only the linear characteristics 

from the original signal.  In essence, the surrogate data will not contain the phase 

couplings that are in the original signals and can therefore be used as the null condition 

for statistical comparison.  We chose the iteratively refined surrogate data technique 

(IRSDT) (133).  The IRSDT will destroy any nonlinearity in the signal, and has been 

shown to be more accurate than the amplitude adjusted Fourier transform technique (121) 

because it iteratively corrects for deviations in the spectrum as well as maintains the 

correct distribution of the signal.   

100 realizations of surrogate data pairs were generated and the cross-bispectrum 

and cross-bicoherence values were calculated for each of the two methods. The mean and 

standard deviation between the 100 cross-bispectra or cross-bicoherence indices were 

then calculated, and the threshold was set to be the mean plus 2 standard deviations of the 

maximum peak in the cross-bispectrum or cross-bicoherence values. The magnitude of 

coupling is determined to be the difference between the original bispectrum and the 

calculated threshold. Using this method, the threshold for the cross-bispectrum is 

statistically determined and not based on arbitrary decision.  The surrogate method based 

on the cross-bispectrum will henceforth be termed cross-bispectrum with surrogate (CBS) 

and the surrogate method based on the cross-bicoherence will henceforth be called cross-

bicoherence with surrogate (CBicS).  

 

 4.3.2 Simulation Procedures 

 

Computer generated data were used to compare the efficacy of the three methods.  

In these simulations, pairs of phase coupled signals were generated, per Eq. (4.2).  Each 

of the bivariate signals contains 4096 data points with zero mean, and unit variance.  The 

calculation of the cross-bispectra and cross-bicoherence is based on FFT resolution of 

0.0078125 with the segment length of 128 and 50 percent overlap.  

In the first simulation, fully phase coupled signals were generated and a varying 

level of GWN was added to the signal. In the second simulation, phase coupling was 

varied from 0 to 100 percent.  For the third simulation, the number of data points was 
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varied in increments of 128. For each simulation, 100 realizations are generated for each 

condition and an average value was obtained.  Further, the specificity of the algorithm 

was assessed by searching for the total number of significant peaks across each 

calculation. Theoretically, if the specificity is high, only one peak is shown. 

4.3.3 Experimental Procedure 

 

All experiments were performed under protocols approved by The Institutional 

Animal care and Use Committee at Stony Brook and The University of South Florida. 

Data were collected from a previous study where stop flow pressure recordings from two 

nephrons were simultaneously measured in normotensive Sprague-Dawley rats (SDR, 

240-300g, n=15) and SHR(weight matched, 12 week old, n=18). Surgical preparation and 

the stop flow pressure measurements are detailed in our previously published study (23), 

thus, will only be briefly described here. Animals were anesthetized with halothane 

administered in an oxygen-nitrogen mixture and artificially ventilated after the 

administration of a muscle relaxant. Tubular flow was interrupted with bone wax in a 

selected proximal tubule, and intratubular hydraulic pressure proximal to the wax block 

was measured via a 1 to 3 um diameter micropipette attached to a servo-nulling pressure 

circuit. A similar procedure will performed onto a second nephron that is in close 

proximity to the original. Data from the two nephrons were recorded on a TEAC R-61 4-

channel cassette data recorder for off-line analysis. The recorded data were replayed 

through an electronic low-pass filter with a roll-off frequency of 1.5 Hz and sampled 

digitally at 4 Hz.  Vascular connections between nephrons were confirmed with vascular 

cast after measurement. Nephron pairs that did not show vascular connections were also 

analyzed to serve as negative control. In total, 9 of the 15 SDR and 7 of the 18 SHR show 

vascular connections under vascular cast. 

 

4.3.4 Data Analysis 

  

Data recorded at a sampling rate of 4 Hz were further down-sampled to 1 Hz after an 

anti-aliasing low pass filter at 0.5 Hz. The data were then zero meaned, detrended, and 
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normalized to unit variance in order to facilitate comparison. Since the direction of 

coupling is unknown between the nephrons, the cross-bicoherence with surrogate method 

was applied in both directions (e.g., Bxyx and Byxy) to search for significant phase 

coupling. The total number and average magnitude of coupling for each data set was 

recorded.  As described earlier, all data sets were analyzed regardless of whether 

physiological connections were present under vascular cast. Statistical testing was done 

using student’s t-test or Mann-Whitney rank sum test.  

4.4 Results and discussion 

4.4.1 Test for normality 

 

 Both of the surrogate methods introduced in this study make use of the descriptive 

statistics of mean and standard deviation, which assumes normality. Therefore, it is 

important to first confirm that the calculated set of 100 surrogate cross-bispectrum and 

cross-bicoherence values follows a normal distribution. 100 realizations of the test signal 

were generated according to Eq. (2), and 100 surrogate data realizations were generated 

from each of the 100 test signals. The cross-bispectrum and cross-bicoherence were 

calculated for each surrogate data set, and the value at the coupling frequency was 

recorded. Each of the 100 sets of surrogate data cross-bispectrum and cross-bicoherence 

were tested for normality using the Kolmogorov-Smirnov goodness of fit test (140). All 

of the surrogate data sets were statistically confirmed to be from a normally distributed 

population (P>0.05).  

 

4.4.2 Case 1: Noise Contamination Simulation 

 

 The three method’s ability to correctly detect coupling in the presence of noise 

was tested. In this simulation, varying levels of Gaussian white noise were used to 

corrupt the test signal pairs. The noise was varied from 30 dB to -30 dB, in steps of -1 

dB.  At each noise level, 100 realizations of the test signal pairs according to Eq. (4.2) 

were generated, and each pair was corrupted by an independent pair of GWN.  The 
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calculated mean value across the 100 test data sets at the true frequency pairs and the 

median number of detected peaks were recorded. The result from this noise simulation is 

shown in Fig. 4.2. The top panels show the mean calculated value, while the bottom 

panels show the median number of detected peaks. The dotted line on the top panels 

shows the threshold for significance for each method. The columns are arranged with 

cross-bicoherence results on the left, cross-bispectrum with surrogate (CBS) in the 

middle, and the cross-bicoherence with surrogate (CBicS) on the right.  

 The cross-bicoherence is able to discern significant phase coupling up to -18 dB 

of noise. Both surrogate data methods were able to discern significant phase coupling up 

to the simulation limit of -30 dB of noise.  However, the middle bottom panel shows the 

CBS loses specificity with increasing noise, detecting a median of 4 peaks at -30 dB. The 

cross-bicoherence and the CBicS were very specific as both methods never detect more 

than 1 peak. Therefore, both cross-bicoherence based methods offers great specificity as 

neither detects erroneous peaks. However, the sensitivity of the cross-bicoherence was 

less compared to that of the CBS and the CBicS, as it was only able to discern phase 

coupling up to -11 dB of noise. Taken together, this shows that the CBicS offers the best 

combination of sensitivity as well as specificity in noise corrupted data. 

 It is interesting to note that the CBS’s behavior with increasing noise is opposite 

of that of the two cross-bicoherence based methods in that its magnitude of the calculated 

value increases with increasing noise. A possible explanation for this phenomenon is that 

since the noise is Gaussian, as the noise level goes up, the magnitude of the cross-

bispectra will increase at all frequency pairs, including the magnitude at the frequency of 

coupling. In contrast, the normalization procedure in the calculation of the cross-

bicoherence suppresses this power from non-coupling mechanisms, therefore leading to a 

decrease in calculated value as the noise increases. 

 It is important to note that the noise levels used in this simulation are generally 

much higher than that which is normally experienced in real experiments. However, one 

must keep in mind that the test signals used in this simulation are all designed to 

specifically be detected by cross-bispectra techniques. Real signals from experiments are 

never in this form, and hence the algorithm’s efficacy may decrease. Therefore, it is 

important to keep in mind that the results shown here are purely for comparative purposes 
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and not to be used as guidelines for noise tolerance for the algorithms in experimental 

settings. 

 

4.4.3 Case 2: Coupling Percent Simulation 

 

 In this simulation, the amount of phase coupling needed to discern significant 

phase coupling was compared between the three methods. Test signal pairs were 

generated according to Eq. (4.2), with one part of the signal being phase coupled while 

the other part having random phases. The amount of the signal that was phase coupled 

was varied between 1 and 100 percent, in steps of 1 percent. At each percent, 100 

realizations of the test signal pairs were generated. Similar to the previous simulation, the 

mean calculated value and the median number of detected peaks between the 100 

realizations for each percent level was recorded. The results are shown in Fig. 4.3 and 

they are arranged the same way as in Fig. 4.2.  

 It is important to note that the CBS algorithm was able to detect significant 

coupling independent of the amount of phase coupling. This highlights a disadvantage of 

the CBS algorithm in that frequency coupling alone is sufficient for the CBS algorithm to 

detect as the presence of QPC.  The results for the two cross-bicoherence based methods 

show that the cross-bicoherence requires that the signals be at least 60% phase coupled. 

The CBicS, on the other hand, requires only 25 percent of the data to be coupled for 

detection. This gives the CBicS a big advantage in that the algorithm can detect weakly 

phase coupled signals. Further, physiological systems are often time-varying in nature, 

which may result in signals that have intermittent coupling. This can be seen as a weakly 

coupled signal, as the phase coupling only exists in selected portions of the data. Again, 

the CBicS algorithm is able to detect this time-varying coupling better than either the 

cross-bicoherence or CBS algorithms. 

 Taking the noise and percent coupling simulation together points to a weakness in 

the cross-bicoherence based algorithms. It could be seen that the calculated value goes 

down regardless of whether it is due to increase in noise levels or decrease in coupling 

percent. Therefore, when the magnitude of the cross-bicoherence with surrogate between 

two signals is compared, one can never be sure of whether it is due to differences in noise 
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levels or the degree of coupling. This is similar to coherence analysis, where noise and 

the degree of coherence will both affect the magnitude of the result. Although this may be 

an inherit weakness in the algorithm, in most experimental cases one can usually assume 

that the noise levels are comparable between experiments and hence, this should not be 

an issue. One possible way to resolve this weakness would be to use a time-varying 

bispectral analysis, as a low coupling percent could be viewed as a time-varying process. 

In theory, the surrogate approaches could be implemented into a time-varying cross-

bispectrum algorithm, allowing for statistical quantification. 

 

4.4.4 Case 3: Data Length Simulation 

 

 In this simulation, the data length was varied in order to assess the data length 

requirements for each algorithm. Phase coupled test signals were generated according to 

Eq. (2). The data length was varied in steps of 128 points from 128 to 4098 in order to 

keep the segment number constant at 128. At each data point step, 100 realizations of the 

test signal pairs were generated and analyzed with the three algorithms. The results are 

shown in Fig. 4.4 and arranged in the same way as previous figures. Note that the 

threshold for the cross-bicoherence in this simulation changes as the number of segments 

changes. 

 The results show that the performance of both the cross-bicoherence and CBicS 

are similar, where the methods are able to discern significant coupling for 4 and 3 

segments, respectively. The CBS algorithm was able to detect significant coupling with 

as few as 128 points (1 segment), but detected erroneous peaks with fewer than 2176 

points (17 segments). Further, the calculated value for the CBS increased with decreasing 

data length. This points to a weakness in the CBS algorithm: at low segment numbers, the 

method loses specificity. 

 The simulation result for the cross-bicoherence points to a weakness in the 

segment number-based threshold in that at low segment numbers, the threshold becomes 

extremely high. This leads to a severe drop in sensitivity at low data points. One possible 

solution to this problem would be to decrease the segment size to increase the number of 

segments. However, this will lead to a decrease in resolution, as the segment size 
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determines the frequency resolution. Therefore, one must keep this tradeoff of resolution 

verses ability to detect significant coupling in mind while choosing segment size. 

The simulation for the CBicS here also points to a potential weakness in the 

algorithm in that the calculated value decreases drastically with data points less than 

approximately 1000 points, even though it was able to still correctly detect a single 

coupling peak with low data points. Therefore, when analyzing physiological data one 

must keep the data length between data sets similarly sized for comparison.   

 

4.4.5 Experimental Data results 

  

The previous simulations show that the CBicS has superior sensitivity and 

specificity in relation to noise, number of data segments or weakly coupled data. 

Therefore, it was the chosen method for the analysis of the renal flow data. 

 To reiterate the importance of a statistical method for the analysis of bispectral 

results, analysis for a representative data set of anatomically connected nephrons is 

shown on Fig. 4.5. The top two panels of Fig. 4.5 show the stop flow pressure time traces 

from two simultaneously measured nephrons. The bottom left panel shows the cross-

bispectrum of the data sets. Note the large peak shown at the MYO-TGF frequency range 

(0.13 Hz and 0.023 Hz, respectively). Further, many other smaller peaks are also present, 

whose magnitude suggests that they may also be significant peaks, hence complicating 

the interpretation of data. The bottom right panel shows the result after the application of 

the cross-bicoherence with surrogate algorithm, which shows a single large peak at the 

frequencies associated with MYO (0.13 Hz) and TGF (0.023) mechanisms. All of the 

smaller peaks shown on the cross-bispectrum were eliminated statistically using the 

CBicS algorithm, therefore allowing for the proper interpretation of data. 

 None of the nephrons pairs that did not have a physiological connectivity via 

vascular cast (6 of 15 SDR and 11 of 18 SHR) showed any significant coupling by the 

CBicS. This further proves the high specificity of the algorithm for the determination of 

significant phase coupling.  It is unlikely to have coupling from pair of nephrons that do 

not have vascular connectivity. 
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 The summarized results from the analysis of only the nephron pairs that show a 

physiological vascular connection are shown on Fig. 4.6. The top panel of Fig. 4.6 shows 

the mean magnitude of coupling between the two animal groups, which was shown to be 

significantly different from each other (P<0.05). The bottom panel of Fig. 4.6 shows the 

number of significant peaks from the data sets, which was not significantly different from 

the normotensive and hypertensive rats. 

 The cross bicoherence with surrogate algorithm is able to discern significant 

phase coupling between nephrons only if they are located on the same cortical radial 

artery.  The nephrons that do not have vascular connections failed to show any significant 

phase coupling. This would suggest that synchronization between nephrons is achieved 

via proximity on the vasculature.  One possible mechanism for such coupling was 

originally observed by Schnermann (101) and modeled later by Moore et al. 

(85).Basically, the theory is that when one segment of the afferent arteriole undergoes 

vasoconstriction via renal autoregulatory mechanisms, the pressure in a section of the 

vasculature upstream of the constriction site will be increased, thereby leading to 

enhanced response from the autoregulatory mechanisms. If this response is extrapolated 

to the cortical radial artery, then it may be possible that it is responsible for the coupling 

observed in this work. Further, this response would naturally decay with increasing 

distance from the original site of constriction. Therefore, the results here also suggest that 

the upper limit of distance for this response is at the distance of the cortical radial artery. 

 Another possible explanation for this coupling phenomenon is that an 

electrochemical signal is propagated via the vasculature originating from the TGF. 

Possible methods for this propagation have been proposed as the voltage gated Ca 

channels (78) or vianitric oxide activity (58, 62). 

 Although not shown, the coupling detected in this work only existed between 

TGF-MYO or the self coupling between MYO-MYO itself. Absent was the coupling 

between TGF-TGF. This may be a result of experimental condition of the stop flow 

pressure. In essence, since both nephrons’ flow was interrupted via a bone wax plug, each 

of the nephron’s own TGF mechanism was unable to sense the other’s activity. On the 

other hand, since the MYO mechanism sense flow at the level of the afferent arteriole, it 
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is still able to sense and interact with the TGF mechanism. Therefore, this explains the 

presence of TGF-MYO and MYO-MYO interactions and not TGF-TGF.  

 Given the fact that a rat’s kidney is composed of approximately 30,000 nephrons, 

it is reasonable to expect that nonlinear interactions observed at the whole kidney (22, 95) 

arise from coupling between nephrons derived from the same cortical radial artery (19, 

64, 138).  In a study by Sosnovtseva et al. (118), it was noted that the coupling between 

nephrons in SHR was shown to be less common in free flow nephrons.  While our study 

differs from them because we used the stop flow pressure data, we still observe decrease 

in magnitude of coupling in SHR when compared to SDR.  A decrease in the degree of 

coupling can result from intermittent coupling.  Indeed, we previously found more 

intermittent coupling in SHR at the single nephron level (95). Such intermittent coupling 

may indicates a time-varying system. Thus, implementing a time varying version of the 

algorithm presented here in the future may yet reveal more information about the nature 

of the coupling phenomenon. 

 

 

4.5 Conclusion 
 In summary, this work presents a surrogate data based approach to statistically 

quantify quadratic phase coupling based on the cross-bispectrum, adapted from a method 

we previously developed for the auto-bispectrum. Simulations were used to assess the 

efficacy of the algorithm along with the traditional method of cross-bicoherence. 

Simulation results showed that surrogate data technique combined with cross-

bicoherence offered the best combination of specificity and sensitivity between the 

methods compared. These results are in contrast to the results we obtained in an earlier 

work on the auto-bispectrum, where surrogate data combined with the bispectrum was 

found to be superior. Application of this method to renal data revealed nephron-to-

nephron interactions when they were derived from the same cortical renal artery. Having 

at hand the information on the connectivity between the nephrons, we were able to 

validate the accuracy of CBicS results; it was found that the accuracy was 100 percent.  

The CBicS method is a general purpose algorithm, thus, it can be adapted to many 
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different physiological signals.  For example, quantitative determination of possible loss 

of coupling during epileptic seizures is an attractive application of the method. 

 This work has been submitted for review to Annals of Biomedical Engineering. 

 

 
Figure 4.1 – Simulation demonstrating the necessity of a new quantification method for 
the cross-bispectrum. The top two panels show a pair of simulated signals that are phase 
coupled with each other. The bottom left and middle panels show the cross-bispectrum of 
a pair of clean and noisy signals, respectively. Noise confounds interpretation of the 
results as shown in the bottom right panel even with the use of cross-bicoherence index. 
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Figure 4.2 – Simulation summary to test the three algorithm’s efficacy against varying 
noise levels. The top panels show the calculated value of the respective methods, while 
the bottom shows the median number of detected peaks.  Simulations were performed in 
steps of 1dB with 100 realizations at each noise level. 
 

 

 
Figure 4.3 – Simulation summary to test the three algorithm’s efficacy against different 
percent of coupling. The top panels show the calculated value of the respective methods, 
while the bottom shows the median number of detected peaks. Simulations were 
performed in steps of 1 percent, with 100 realizations at each percent level. 
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Figure 4.4 – Simulation summary to test the three algorithm’s efficacy against different 
number of data points. The top panels show the calculated value of the respective 
methods, while the bottom shows the median number of detected peaks. Simulations 
were performed in steps of 128 points, with 100 realizations at each data length.  
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Figure 4.5 – Representative data from the stop flow pressure meansurements. The top 
two panels show pressure measurements from two simultaneously measured nephrons. 
The bottom left panel shows the cross bispectrum of this pair of data. Note that in 
addition to a large peak, many other smaller peaks appear, confounding the interpretation 
of the cross-bispectrum. The bottom right panel shows the result from the application of 
the cross-bichoerence with a surrogate method. The non-significant peaks shown in the 
cross-bispectrum are all removed, leaving only one significant true peak. 
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Figure 4.6 – Summary results from the stop flow pressure experiment, with n=9 and n=7 
for SDR and SHR, respectively. Statistical significance is shown with * (P<=0.05).  
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Chapter 5 

Detection of Low Frequency Oscillations in Renal Blood Flow 

5.1 Abstract 

 Detection of the low frequency (LF; ~0.01 Hz) component of renal blood flow, 

which is theorized to reflect the action of a third renal autoregulatory mechanism, has 

been difficult due to its slow dynamics. In this work, we used three different experimental 

approaches to detect the presence of the LF component of renal autoregulation using 

normotensive and spontaneously hypertensive rats (SHR), both anesthetized and 

unanesthetized. The first experimental approach utilized a blood pressure forcing in the 

form of a chirp, an oscillating perturbation with linearly increasing frequency, to elicit 

responses from the LF autoregulatory component in anesthetized normotensive rats.  The 

second experimental approach involved collection and analysis of spontaneous blood 

flow fluctuation data from anesthetized normotensive rats and SHR to search for 

evidence of the LF component in the form of either amplitude or frequency modulation of 

the myogenic and tubuloglomerular feedback mechanisms.  The third experiment used 

telemetric recordings of arterial pressure and renal blood flow from normotensive rats 

and SHR for the same purpose. Our transfer function analysis of chirp signal data yielded 

a resonant peak centered at 0.01 Hz that is greater than 0 dB, with the transfer function 

gain attenuated to lower than 0 dB at lower frequencies, which is a hallmark of 

autoregulation.  Analysis of the data from the second experiments detected the presence 

of ~0.01 Hz oscillations only with isoflurane albeit the strength was weaker when 

compared to telemetry recordings.  With the third experimental approach, the strength of 

the LF component was significantly weaker in the SHR than in the normotensive rats.  In 

summary, our detection via the AM approach of interactions between the LF component 

and both TGF and MYO, with the LF component having an identical frequency to that of 

the resonant gain peak, provides evidence that 0.01 Hz oscillations may represent the 

third autoregulatory mechanism. 
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 5.2 Introduction 
 

 The long term regulation of systemic blood pressure is one of the major functions 

of the kidney.  The functional unit of the kidney, the nephron, requires a stable input of 

fluid to perform its function. However, systemic blood pressure fluctuates over a large 

range of frequencies, which would destabilize renal function without a proper control 

mechanism to compensate for blood flow variations (45). It is known that the nephron 

has the ability to regulate its own blood flow, a phenomenon termed autoregulation.  

Another role of the autoregulatory mechanism is to provide protection for the renal 

vasculature from large fluctuations in systemic pressure (6, 7). Abnormalities in the 

autoregulatory mechanisms have been implicated in many diseases, such as hypertension 

induced renal disease and chronic renal failure (6, 7). 

Renal autoregulation is widely accepted to be mediated by two mechanisms. The first is 

the slower of the two mechanisms, the tubuloglomerular feedback mechanism (TGF), 

which oscillates between 0.02-0.05 Hz in rats (30, 44). The myogenic mechanism (MYO) 

is faster than TGF and exhibits oscillations in the frequency range between 0.1-0.3 Hz 

(58, 131).  On the basis of experiments using a step decrease in blood pressure, Just et al. 

(57, 60) have proposed the existence of a slower, third autoregulatory mechanism which 

operates at ~0.01 Hz.  To date, little is known about its mechanistic origin, but its 

operating time scale may indicate involvement of angiotensin II (112).  The presence of 

the third mechanism is somewhat controversial because assessments of autoregulation 

dynamics using broadband blood pressure perturbations have not revealed such a low 

frequency component (75, 76).  However, there are two possible reasons why behaviors 

consistent with the third mechanism have not been observed in these dynamic 

autoregulation studies.  First, preprocessing of renal blood pressure and blood flow data 

often involves detrending, which may well have filtered out any ~ 0.01 Hz oscillation. 

Second, the time interval and, hence, the number of data points analyzed is limited when 

traditional power spectral methods are used, and this makes it difficult to detect low 

frequency peaks.   

 One computational approach to discern the presence of the autoregulatory 

mechanisms is to look for their interactions. An example is an elegant study by 
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Schnermann and Briggs which demonstrated that the strength of the TGF response 

depends on the state of the MYO system at the single nephron level (101).  Further, 

evidence of interactions between the two autoregulatory mechanisms was buttressed by a 

study in which Chen et al. (19) showed that coupling exists between nephrons that have 

physiological vascular connections.   Consequently, such interaction phenomena were 

detected in both single nephrons and whole kidneys using a myriad of computational 

approaches, including the Volterra-Wiener kernel (22), the bispectrum (111), frequency 

and amplitude modulation (116, 117), and frequency locking via a wavelet method (118). 

 In this work, we utilized three separate experimental approaches to detect the low 

frequency (LF) oscillation which is thought to be related to a third autoregulatory 

mechanism. In the first experimental approach, we used a chirp signal forcing in the 

blood pressure (BP) of anesthetized normotensive rats to elicit characteristic oscillations 

associated with the LF component.  Given the fact that both TGF and MYO interact, and 

if the putative third mechanism does indeed exist, it is reasonable to assume that it should 

also be coupled to the two other autoregulatory mechanisms.  Thus, in the second and 

third experimental approaches, we hypothesize that the putative third autoregulatory 

mechanism interacts with the MYO and TGF mechanisms, and that the interactions 

should be evident in the spontaneous blood flow fluctuation data.  The computational 

method we used in this study, complex demodulation (CDM), provides very high 

resolution of time-frequency spectra, which is required to resolve the low frequency 

oscillations associated with the operation of the third mechanism (57, 60).  Specifically, 

we used CDM to identify either amplitude modulation (AM) or frequency modulation 

(FM) in the frequency bands normally associated with the TGF and MYO mechanisms 

since they would be the result of any interaction phenomenon.  Thus, the aim of the study 

is to verify the presence of the third autoregulatory mechanism by looking for its 

interactions with the MYO and TGF mechanisms, and to determine if the transfer 

function gain magnitude on the chirp signal experiment provides the signature of the 

dynamics of autoregulation. 
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5.3 Methods 

5.3.1 Animal preparation 

 

Experiment 1, as described below, was performed for the present study in the 

laboratory of Dr. Cupples.  Experiments 2 and 3 below were performed for the present 

study in the laboratory of Dr. Chon. 

5.3.2 Experiment 1 – Chirp signal blood pressure perturbation 

 

The first experiment was approved by the Animal Care Committee of the 

University of Victoria and was conducted under the guidelines promulgated by the 

Canadian Council on Animal Care.  Five adult male Long Evans rats (~300 g) had free 

access to water and food at all times prior to the acute experiments. These animals are 

normotensive and we have shown previously that their renal blood flow dynamics are 

remarkably similar to those of other normotensive strains (130). Twenty min prior to 

anesthesia each rat received buprenorphine (Temgesic®, 0.01 mg/kg i.p. Reckitt and 

Colman Pharmaceuticals Inc., Wayne, NJ).  Anesthesia was induced by 5% isoflurane in 

inspired gas (30% O2, 70% air).  After induction the anesthetic concentration was 

reduced to �2%.  The animal was transferred to a servo-controlled, heated table to 

maintain body temperature at 37°C, intubated, and ventilated by a respirator (RSP 1002, 

Kent Scientific Corp., Litchfield, CT). During the 1 hour post-surgical equilibration 

period inspired anesthetic concentration was titrated to the minimum concentration that 

precluded a blood pressure response when the tail was pinched (�1%).  

 Cannulas were placed in the right femoral artery and vein.   A constant infusion 

delivered 1% of body weight per hour throughout the experiment and contained 2% 

charcoal washed bovine serum albumin in normal saline.  The left kidney was 

approached by a flank incision, immobilized in a plastic cup, and covered with plastic 

wrap.  The flow probe (1PRB, driven by a Transonic Systems Inc model T401 

flowmeter) was placed around the renal artery; it was fixed in place and acoustic coupling 
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assured as recommended by the manufacturer.  Femoral arterial pressure was measured 

by a Kent pressure transducer (TRN050) driven by a TRN005 amplifier.  

 A motorized clamp was placed on the aorta between the right and left renal 

arteries and was used to force blood pressure. The motor was driven by a program which 

operates in a negative-feedback manner to impose chirp forcing of renal perfusion 

pressure 15-20% below the spontaneous level of blood pressure.  Care was taken to 

ensure that renal perfusion pressure remained within the autoregulatory range at all times. 

Data were low pass filtered at 40 Hz and digitized with 12 bit resolution at 200 Hz. 

 

5.3.3 Experiment 2 – AM and FM detection in anesthetized animals 

 

 For the acute experiments, 24 animals (6 SDR and 6 SHR for each anesthetic) 

were anesthetized with either inactin (135mg/kg) or isoflurane (3% initial, 1% 

maintenance).  The animals were then placed on a servo-controlled heated table to 

maintain a body temperature of 37oC. A tracheostomy was performed to aid respiration. 

The right femoral artery and vein were catheterized (PE-50 and PE-10, respectively) for 

blood pressure measurement and infusion of isotonic saline to compensate for surgical 

fluid losses, respectively. The left kidney was isolated and placed in a Lucite cup.  An 

ultrasonic flow probe (Transonic Systems, Inc., Ithaca, NY, series 1PR) was placed 

around the renal artery for measurement of renal blood flow. The animals were allowed 1 

hour to recover from surgical stress before experimental measurements were made. 

5.3.4 Experiment 3 – AM and FM detection via telemetric measurement 

 

 Male Sprague-Dawley rats (SDR) and spontaneously hypertensive rats (SHR) 

between 200-250g (Taconic Farms) were used in the experiments. All experimental 

protocols were approved by the institutional guidelines of animal care and use in research 

and approved by the Institutional Research Board (IACUC #20081267) on the use of 

animals for research at the State University of New York at Stony Brook. Prior to 

surgery, the animals had free access to standard rat chow and tap water, and were housed 
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individually in a temperature controlled room with a 12 hour light and 12 hour dark 

cycle. A total of 5 SDRs and 5 SHRs were used.    

Animals were anesthetized using sodium pentobarbital (50 mg/Kg, intraperitoneally). 

After induction of anesthesia, an ultrasonic flow probe (Transonic Systems, Inc., Ithaca, 

NY, series 1PR) was placed around the left renal artery. The cannula of a blood pressure 

telemeter (PA-C40, Data Sciences International, Saint Paul, MN) was also implanted into 

the right femoral artery. After surgery, the animal was placed on a heated pad to facilitate 

recovery from anesthesia. The animals were studied after a one week period of surgical 

recovery Animals were monitored for signs of infection on a daily basis. 

5.3.5 Experimental Protocol 

 

 For the telemetry experiment, each animal was housed individually in a 

temperature controlled room set on a 12 hour light and 12 hour dark cycle, with free 

access to standard rat chow and tap water.  After the connection of the animal to the 

blood flow recording equipment, the animal was allowed a 15 minute adjustment period 

before measurements began.  Renal blood flow (RBF) and systemic blood pressure was 

measured for 2 hours each day starting at 10 am for a period of 1 week. During the 

recording period, spontaneous activity of the animal was recorded by the investigator. 

Only data segments collected when the animal was at rest were analyzed in order to avoid 

movement artifacts. For the acute experiments, performed under anesthesia, spontaneous 

BP and RBF were recorded for 1 hour after the recovery period.  

 For the telemetry experiment, data were recorded at a sampling rate of 250 Hz 

using the Dataquest A.R.T. system (Data Sciences International, St. Paul, MN).  For the 

acute experiment, data were collected at 100 Hz using a Powerlab 16RSP A-to-D 

converter (ADInstruments, Inc., Colorado Springs, CO). All data were down-sampled to 

1 Hz sampling rate following digital low-pass filtering to avoid aliasing. 
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5.3.6 Chirp blood pressure forcing 

 

 The low frequency response characteristics of blood flow fluctuations in 

anesthetized Long Evans rats were investigated by imposing a sinusoidal forcing with 

linearly increasing frequency (0.001 – 0.02 Hz) on renal perfusion pressure. The rationale 

for using a chirp signal on the blood pressure forcing is to excite any autoregulation 

mechanism that may resonate within the perturbation frequency band.  While we were 

primarily interested in detecting 0.01 Hz oscillations, we used a wide range of 

frequencies (0.001-0.02 Hz) for the blood pressure forcing in order to avoid introducing 

bias and to indentify other possible oscillations.   

A flow chart of the data processing steps along with a representative data set is 

shown in Fig. 5.1.  The first row shows the chirp signal of the BP forcing and the 

resultant RBF data.  The first step is to calculate the time-frequency spectrum of each 

signal using a complex demodulation (CDM) approach, as shown on the second row.  

Note the linearly increasing frequency in BP perturbation and RBF response.  Next, the 

magnitude of the peak frequency was tracked across time, as shown on the third row.  

Finally, the ratio between the RBF and the BP amplitudes across time was calculated as 

shown on the fourth row, plotted in log scale. Ratio values above the threshold of 0, 

shown as the dotted line, indicate characteristic resonance of the autoregulation system. 

Note that since the frequency increases linearly with time, the x-axis in this figure can 

also be plotted in terms of frequency. 

5.3.7 Amplitude modulation (AM) and frequency modulation (FM) detection 

algorithm 

 

 AM and FM denote that either the amplitude or the frequency of a component in a 

signal, termed the carrier signal, is changed by another oscillatory mode, termed the 

modulation signal: 

1�2� � 3 � 456'���2 � 7�� 
Here M is the modulation magnitude, and �� and 7� are the modulation frequency and 

phase.  The un-modulated carrier signal is denoted as: 
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*�2� � 8 � 456'��92 � 79� 
Where C is the carrier magnitude, and �9 and 79 are the carrier frequency and phase.  For 

AM, the amplitude of the carrier signal is modulated, such that: 

*�:;<=>?@;�2� � �8 �1�2�" � 456'��92 � 79� 
For FM, the modulating frequency is calculated by an integral, such that: 

8�:;<=>?@; � 8 � 456'�ABC92 � D 1�E�FE�
?

G
 

 Simulated data containing AM were created to illustrate the concepts. In this 

simulation, components with frequencies to those exhibited by renal autoregulatory 

mechanisms were used.  Specifically, two carrier frequencies, at 0.03 and 0.12 Hz, were 

modulated by a 0.01 Hz mechanism. The top panels of Fig. 5.2 show AM signals. Panel 

A shows the higher carrier frequency (0.12 Hz) modulated by 0.01 Hz, while panel B 

shows the lower carrier frequency (0.03 Hz) modulated by 0.01 Hz. Panel C  shows the 

composite signal that combines both the high and low frequency signals in panels A and 

B. 

 The general approach to detecting AM is shown in panels D to H in Figs. 5.2.  

The first step is to calculate the time-frequency representation (TFR) of the original 

signal using CDM, shown in panel D in both figures.  The CDM was chosen for this 

calculation as it has been shown to have one of the highest frequency and time 

resolutions while preserving accurate amplitude information (128).  After the calculation 

of the TFR, the average amplitude at the MYO and TGF frequency bands were extracted 

(0.1 - 0.3 Hz and 0.02 – 0.05 Hz, respectively), as shown in panels E and F.  Next, the 

frequency spectra of these extracted time traces were calculated to show the frequency 

and magnitude of modulation, shown as the solid line in panels G and H.  For illustration 

purposes, the maximum magnitude of these spectra is shown to be 1.  For this algorithm, 

only modulation at the low frequency range (0 – 0.02 Hz) was examined. The reason for 

this is to avoid detecting TGF modulation when the method is used with actual blood 

flow renal data.  Note that the peak of this spectrum is correctly shown to be at a 

simulated modulation frequency of 0.01 Hz.  This simulation illustrates how even a low 

frequency component (~0.01 Hz) can be reliably detected by looking for AM phenomena 

with the aid of a high-resolution time-frequency spectral method.  
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For FM detection, we employed a weighted average method to account for 

varying MYO frequencies in the 0.1-0.3 Hz band.  Specifically, for each time point, any 

spectral peak that is above Gaussian white noise (GWN)-derived threshold values (as 

detailed in the proceeding paragraph) is selected. A weighted average frequency was 

calculated by summing the frequency of all significant peaks multiplied by their own 

individual magnitude. This sum was then divided by the sum of the magnitudes of the 

significant peaks (e.g., CHI � � ��JKJ�LJM-
� KJLJM-

'�. In essence, this calculation provides a weighted 

frequency average based on the strength of each frequency peak. 

 In order to assess the significance of this modulation, a statistical threshold based 

on GWN was calculated; it is shown as the dotted line in panels G and H of Fig. 5.2. To 

obtain this threshold, 1000 realizations of GWN with the same data length and variance 

as the original data signal were generated. Each realization of GWN was analyzed with 

modulation detection algorithm, resulting in 1000 spectra. The mean plus two standard 

deviations of these 1000 spectra were then taken as the statistical threshold to determine 

significance of modulation. It is important to note that the averaged white noise spectrum 

has greater power at low frequencies.  This is due to the fact that the GWN data is band-

limited, and this results in better representation of low frequencies than higher 

frequencies.  This illustrates the importance of using a statistical threshold to determine 

significance, as band-limited random signals have a bias towards lower frequencies. 

5.3.8 Data analysis 

 

 For the chirp forcing experiment, data were collected at 200 Hz, then low-pass 

filtered with a cutoff frequency of 0.1 Hz and down-sampled to 0.5 Hz.  Finally, the data 

underwent linear trend removal, and were normalized to zero mean and unit variance. 

 All modulation analyses of data from conscious rats were performed on 10 

minutes data segments. All data were filtered with a low-pass anti-aliasing filter followed 

by down sampling to 1 Hz which resulted in a total of 600 data points.  This segment size 

was chosen because of the need to analyze only telemetric data sets that are free from 

substantial movement artifacts. The data were then normalized to zero mean and unit-

variance to permit comparison between SHR and SDR.  The CDM was employed with a 
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FFT segment size of 1024 points (zero padding included) which yielded a resolution of 

0.000976 Hz. Because we collected telemetry data for 7 days, we were able to obtain 16 

to 25 data sets of 10 minute duration in each animal that were essentially free of motion 

artifacts.   Analysis was performed on each segment and the final results were averaged 

for each animal.  Further, the percentage of significant (motion-free) segments for each 

animal was recorded. For the acute data collected for one hour under anesthesia, the 

percentage of significant segments was not recorded. 

 Statistical analysis was done using the SigmaStat (Systat Software, Inc., San Jose, 

CA) software package. We used Student’s t-test for 2 groups (e.g., SDR vs. SHR in the 

telemetry experiments), and one-way ANOVA for multiple groups (e.g., SDR vs. SHR in 

the anesthesia and telemetry experiments).  The significance level was P < 0.05. 

 

5.4 Results 
 

 For the chirp data, all animals (n=5) showed significant resonance oscillatory 

peaks in the vicinity of ~0.01 Hz, similar to the results shown in Fig. 5.1. The group 

average for the 5 animals is shown in Fig. 5.3. The solid line indicates the mean, while 

the dashed lines indicate the standard deviation. The large solid line shows statistical 

significance above the zero threshold which is shown as the dotted line. The mean peak 

frequency was 9.0 ± 0.5 mHz for all animals. 

 Analysis of all of the data collected from conscious animals via telemetry and 

from isoflurane anesthetized rats identified only significant amplitude modulation via the 

modulation detection algorithm; frequency modulation was not significant.   A 

representative time trace, along with its corresponding TFR, extracted AM signal, and its 

spectrum are shown in Fig. 5.4.  The data shown in this figure are from a SDR telemetry 

experiment.  We observed significant modulation frequency peaks at ~0.01 Hz which 

were derived by extracting AM magnitude values from the MYO (left bottom panels) and 

TGF (right bottom panels) frequency bands. The assertion of significance is based on the 

fact that the peaks in panels E and F exceed the critical threshold calculated with band-

limited GWN (see methods). 
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 Fig. 5.5 summarizes the results of the analyses of the telemetry data. The left and 

right columns show the detected AM results obtained from the MYO and TGF frequency 

bands, respectively. The top row shows the mean percentage of segments that exhibited 

significant AM. The middle row shows the average magnitude of the AM. The bottom 

row shows the averaged frequency associated with the detected AM.  For both MYO and 

TGF frequency bands, the percentage of coupled segments are significantly higher (p 

<0.05 as denoted by *) for SDR than SHR.  Further, we observe a greater AM effect on 

TGF than MYO (p < 0.05 as denoted by #) in SHR.  As shown in the middle panels, the 

magnitude of the AM effect on MYO and TGF was significantly greater (P < 0.05 as 

denoted by *) in SDR than SHR.  The frequency of AM was found to be ~0.01 Hz in all 

cases. 

 For the acute data collected under isoflurane anesthesia, the presence of the ~0.01 

Hz autoregulation component was only evident in the form of AM in the MYO frequency 

band.  Further, the data from animals under inactin exhibited no significant AM or FM 

and are not shown.  Fig. 5.6 shows comparison between acute experiments with 

isoflurane anesthetic and telemetry recordings in which there was clear AM of the MYO 

frequency band.  Note that the two telemetry values are the same as on Fig. 5.5 and are 

included here to facilitate comparison. The results show that the AM magnitude in the 

MYO band for SDR telemetry recording was significantly different from the other 

conditions (P<=0.05, denoted by *).  

 

5.5 Discussion 
 

 In this study, we detected the presence of the low frequency (~0.01 Hz) 

component in spontaneous blood flow recordings from both conscious and unconscious 

normotensive and hypertensive rats. Specifically, we found evidence of LF that 

modulates the amplitudes of the MYO and TGF oscillations, which is consistent with 

significant interactions of these autoregulatory systems with a LF component.  Further, 

we found a greater number of data segments that exhibit LF modulation of the TGF and 

MYO mechanisms in SDR than in SHR.  In addition, the magnitude of the LF 

modulation of the MYO and TGF systems was greater in SDR than in SHR with 
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telemetry recordings.  With anesthetic agents, the magnitude of the LF modulation of the 

MYO and TGF components, when compared to telemetry recordings, was suppressed by 

isoflurane, and abolished by inactin.   These observations were reinforced by separate 

experiments where a chirp forcing signal in BP was used to elicit resonant spectral peaks 

in the low frequency band. These results showed that there was, indeed, an active 

autoregulatory component in RBF in the low frequency range.  

 In previous studies, random blood pressure forcings were used to examine the 

dynamic properties of the renal autoregulation (75, 76).  However, no LF components 

were observed in these studies. One possible explanation for this may be that in the past 

studies, the data segments were relatively short, which would limit the frequency 

resolution and, hence, the ability to resolve any LF component.  In contrast, we analyzed 

much longer time records. Further, our chirp signal forcing was specifically designed to 

elicit BP fluctuations in the LF range, whereas a random forcing does not guarantee that 

BP fluctuations in the LF range are well represented.  Thus, the chirp signal forcing is a 

more appropriate approach than random forcing to resolve LF components. 

Work by Just and Arendshorst (57) identified a putative third renal autoregulatory 

mechanism with a response time and resonant frequency that coincides with the LF 

component we identified.   Our approach to identification of the LF component is based 

on the hypothesis that if it does exists, it should interact with the MYO and TGF 

mechanisms.  The support for our hypothesis stems from previous studies in which there 

is ample evidence of interactions between the MYO and TGF via experimental (101) and 

computational approaches (22, 95, 117).  Further, a study by Sosnovtseva et al. found 

interactions between the MYO and TGF by searching for AM and FM phenomena 

between the two mechanisms using wavelet analysis (116).  In the cardiovascular system, 

we found interactions between the sympathetic and parasympathetic nervous systems by 

obtaining evidence of AM and FM phenomena in heart rate variability signal (141).  

Thus, the presence of AM and FM phenomena in biological signals is ubiquitous, and this 

has led us to look for the presence of the LF oscillation in renal hemodynamics by these 

means. 

Identification of the third mechanism in the study of Just and Arendshorst is based 

on time-domain measurements that examine the transition between steady-states in renal 
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blood flow elicited by step changes in blood pressure in rats under the influence of 

anesthesia (57).  Our study differs from that of Just and Arendshorst (57) in several ways.  

First, identification of the LF component is not based on inducing step changes in blood 

pressure, but directly from the spontaneous recordings of RBF data.  Thus, we were able 

to use telemetric data from conscious rats for our analysis.  The results show that 

anesthetics significantly suppress the interaction of the LF component. Therefore, the use 

of conscious recording is important in assessing the true dynamics of the putative LF 

autoregulatory component.  Second, our method involves discrimination of the LF 

component in both time and frequency domains by searching for the presence of AM or 

FM dynamics, not just time-domain analysis as was employed by Just and Arendshorst 

(57).  We have previously shown that accurate identification of renal autoregulatory 

dynamics such as interactions between the MYO and TGF requires time-varying 

approaches (95).  In addition, the AM or FM phenomena are often difficult to resolve 

partly because they are time-varying. Thus, our successful identification of AM was 

predicated on the use of one of the highest resolution time-frequency spectral techniques 

available (128). We have shown that our CDM time-frequency method performs better 

than the wavelet approach, and in some cases, it outperforms the parametric time-varying 

autoregressive model based spectrum (128).     

 It is important to note that the third mechanism of renal autoregulation proposed 

by Just and Arendshorst (57) and our two approaches leading to the detection of the LF 

(LF gain peak via chirp forcing and LF amplitude modulation of the MYO and TGF)in 

the present study operate on a similar time scales  The use of a chirp signal as BP 

fluctuations resulted in a significant resonant gain peak centered at 0.01 Hz when we 

calculated the ratio between RBF and BP spectra.  The gain magnitude values decreasing 

below 0 dB in Fig. 5.3 at frequencies lower than 0.01 Hz is hallmark of dynamic 

autoregulation.  Previous time-invariant (26, 75) and time-varying (24) transfer function 

analyses show such characteristics at the MYO and TGF frequency ranges, thereby 

leading to our assertion that they are autoregulatory mechanisms. The LF component 

detected via AM phenomenon being related to the possible third autoregulatory 

mechanism is less direct than the chirp signal forcing experiment.  However, having 

found evidence of interactions between LF to both TGF and MYO, and the fact that this 
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LF is identical to the frequency of the resonant gain peak, we can surmise that 0.01 Hz 

detection via the AM is also related to the autoregulatory dynamics.  Although not 

shown, it should be noted that we also observed significant interactions between the 

MYO and TGF in the form of the latter mechanism amplitude and frequency modulating 

the former. This is not surprising, as previous studies have shown evidence of both AM 

and FM of the MYO by the TGF (118).  

 The results of the telemetry data show that the magnitude of AM is reduced in the 

SHR when compared to SDR.  This finding is consistent with previous studies.  

Sosnovtseva et al. showed that synchronization between the two traditional modes of 

renal autoregulation is reduced in SHR (118).  In our own laboratory, we also observed a 

decrease in coupling between the MYO and TGF mechanisms in SHR using a bispectrum 

approach (111). However, it is important to note that where the past studies showed 

evidence of frequency modulation, our study only detected a significant amplitude 

modulation. This may suggest that the slow modulation mechanism interacts with the two 

established modes of renal autoregulation differently. 

  The presence of FM of the LF on either TGF or MYO was not detected in this 

work.  The presence of FM was searched by tracking frequencies associated with the 

significant amplitudes in the MYO and TGF frequency bands across time. As shown in 

Fig. 5.4, searching for the presence of FM is difficult in the MYO frequency band 

because frequencies tend to vacillate over time. To circumvent an objective selection of 

which frequency to select at each time point, we used a weighted frequency average 

technique as described in the Methods section.  While we did not detect LF component 

frequency modulating either the MYO or TGF, we did find evidence of FM of the MYO 

by the TGF.  This is in agreement with a previously reported study which also found such 

FM phenomenon using a double wavelet approach (116).  

 Fig. 5.6 shows that the use of isoflurane anesthetic reduced the magnitude of the 

low frequency modulation in the MYO frequency range. This is in general not surprising, 

as anesthetics tend to suppress physiological dynamics. Of more importance is the 

difference between isoflurane and inactin, where the presence of the LF modulation is 

abolished with inactin.  
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The time scale of the LF component also suggests possible involvement of ANG 

II (25).  Resetting of autoregulation to operate at a new mean arterial pressure in response 

to sustained reductions of renal perfusion pressure has been shown to involve ANG II 

(114, 115).  Certainly, ample evidence indicates that ANG II strongly influences the 

dynamics of TGF (12, 49, 82, 102).  Thus, the fact that we observe AM of TGF by a LF 

component, and given that ANG II acts on a similar time scale (25), suggests that the LF 

phenomena we have identified may involve ANG II.   Further studies will be needed to 

confirm this possibility. 

 In summary, the present study used two novel approaches to detect the presence 

of a low frequency component in RBF signals: 1) via a chirp signal forcing and 2) via a 

signal processing approach in which we specifically searched for the presence of the LF 

component by quantifying its effect to modulate the amplitude of oscillations of the TGF 

and MYO mechanisms.  Our results suggest that one discriminator between the SHR and 

SDR is the lower magnitude of amplitude modulation with the latter. We see that 

isoflurane diminished the magnitude of the LF component whereas inactin abolished our 

detection of either the AM or FM phenomenon of the LF component.  Our transfer 

function analysis of chirp signal data yielded a resonant peak centered at 0.01 Hz that is 

greater than 0 dB, whereas at lower frequencies the transfer function gain diminished to 

smaller than 0 dB, providing direct evidence of the LF being one of the autoregulatory 

mechanisms.  Further, our detection via the AM approach of interactions between the LF 

component and both TGF and MYO, with the LF component having an identical 

frequency to that of the resonant gain peak, provides more evidence that 0.01 Hz 

oscillations may represent the third autoregulatory mechanism.    

 This work has been submitted for review to American Journal of Physiology, 

Renal Physiology. 
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Figure 5.1 – Flow chart showing the data analysis procedures used for the chirp forcing 
experiment (n=5). The top row shows the representative blood flow data. The second row 
shows the time-varying spectrums calculated via complex demodulation method. The 
third row shows time traces of the peak amplitude across time for each spectrum. The 
bottom panel shows the ratio between the two amplitude tracking time traces. The dotted 
line in the bottom panel shows the threshold of zero, where ratios above zero indicates 
the presence of a resonant component. 
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Figure 5.2 – Flowchart of the amplitude modulation detection algorithm using simulated 
data. Panels A and B shows two simulated signals amplitude modulated by a LF 
component. Panel C shows the summation of those two signals. This was done to 
simulate the conditions of the two renal autoregulatory mechanisms. Panel D shows the 
CDM time frequency representation of the simulated data in panel C. Panel E and F 
shows the average amplitude of the MYO and TGF frequency range across time, at 0.01-
0.03 and 0.02-0.05 Hz, respectively. Panels G and H are the FFT of the time traces from 
panels E and F, respectively, which shows the amplitude modulation peak. The dotted 
line in G and H shows the result from 1000 random simulations of Gaussian white noise 
which underwent the same algorithm. This shows the statistical threshold for significant 
amplitude modulation. 
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Figure 5.3 – Plot of the average of the ratio between the power of the RBF verses the BP, 
plotted in log scale (n=5). The solid line shows the mean of the 5 animals, while the 
dashed line shows the standard deviation. The dotted line shows the threshold of 0, where 
above this value indicates an active mechanism. The thick area in the mean ratio indicates 
statistical significant difference from the threshold line.  

 

 

 

 

 

 

 

 

 

 

 

 



79�
�

 
Figure 5.4 – Representative data set showing significant amplitude modulation. The 
particular data set shown is a recording from a telemetry experiment in an SDR. The 
calculation of the amplitude modulation is the same as that shown in figure 5.3. 
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Figure 5.5 – Summary data for the telemetry experiments. Note that only the results for 
amplitude modulation are shown as frequency modulation was not found to be 
significant. Statistical significance between SDR and SHR is denoted by “*” (P<=0.05).  

 
Figure 5.6 – Summary data from the acute experiments. Results from the telemetry 
experiments are also shown, to facilitate comparison. Note that only data from MYO 
amplitude modulation is shown, as TGF did not show significant modulation in acute 
experiments. Further, the results from inactin anesthetized animals are not shown as they 
were also not significant. The “*” denote data sets that were significantly different from 
all others. 
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Chapter 6 

Electrohydraulic pump-driven closed-loop blood pressure regulatory 

system

6.1 ABSTRACT 

In this work, a design for a new electrohydraulic (EH) pump-driven renal 

perfusion pressure (RPP) regulatory system capable of implementing precise and rapid 

RPP regulation in experimental animals is proposed. Without this automated system, RPP 

is manually controlled via a blood pressure clamp, and the imprecision in this method 

leads to compromised RPP data. This motivated us to develop an EH pump-driven 

closed-loop blood pressure regulatory system based on flow-mediated occlusion using the 

vascular occlusive cuff technique.  A closed-loop servo-controller system based on a 

proportional plus integral (PI) controller was designed using the dynamic feedback RPP 

signal from animals.  In vivo performance was evaluated via flow-mediated RPP 

occlusion, maintenance, and release responses during baseline and angiotensin II infused 

conditions.  A step change of -30 mmHg, referenced to normal RPP, was applied to 

Sprague-Dawley rats with the proposed system to assess the performance of the PI 

controller.  The PI’s performance was compared against manual control of blood pressure 

clamp to regulate RPP.  Rapid RPP occlusion (within 3 seconds) and a release time of 

approximately 0.3 seconds were obtained for the PI controller for both baseline and Ang 

II infusion conditions in which the former condition was significantly better than manual 

control.   We concluded that the proposed EH RPP regulatory system could fulfill in vivo 

needs to study various pressure-flow relationships in diverse fields of physiology, in 

particular, studying the dynamics of the renal autoregulatory mechanisms. 

 

6.2 INTRODUCTION 
It is widely accepted that renal autoregulation plays a key role in maintaining 

relatively constant blood flow despite large variations in arterial pressure over many time 

scales (77).  There are at least two mechanisms responsible for autoregulation (21, 46, 

99), and recent works suggest a possible role of the third mechanism (56).  The two 
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originally-recognized autoregulatory mechanisms, the myogenic mechanism (MYO) and 

tubuloglomerular feedback (TGF), have been extensively studied (17, 22, 46, 56, 63, 84, 

104).  The MYO is believed to respond to changes in wall tension induced by changes in 

local vascular pressures whereas TGF is governed by flow-rate dependent concentration 

changes in tubular fluid (17, 22, 46, 56, 63, 84, 104).  

Understanding the kinetics and dynamic properties of autoregulatory mechanisms 

often requires the induction of a pressure step that is effectively instantaneous.  This 

requirement is marginally met in vitro (3) with a feedback controller system but it has 

been a difficult feat to master under in vivo conditions.  Obtaining results in vivo is the 

necessary precursor for telemetric recordings, which are the ultimate goal as it has been 

shown that anesthetics depress dynamics of the autoregulatory mechanisms (4).            

Many attempts have been made to maintain renal perfusion pressure (RPP) in a 

desired pressure range and these include a pneumatic servo-control system (87), a 

bidirectional DC motor syringe pump system (41), and a unidirectional occlusive 

mechanical system (86).  There are, however, limitations with these approaches as their 

effectiveness is reduced due to slow dynamic response, inaccurate maintenance of steady-

state blood pressure fluctuations, and a bulky hardware system which precludes practical 

implementation for telemetric usage.  A more recent study by Xia et al. (136) used a 

vascular occluder to servo control RPP in a telemetric setting.  However, this system 

suffers from a slow (~45-50 seconds) response time to bring the increased RPP back to 

preset ranges, thus, making it less useful for evaluating renal autoregulatory dynamics. 

 To overcome the aforesaid limitations, we present the development of an 

electrohydraulic (EH) pump-driven closed-loop blood pressure regulatory system that can 

be used in vivo.  The novelty in the EH pump system stems from the software developed, 

as it utilizes a commercially-available motor and data acquisition system.  The controller 

software is a user-friendly monitoring program designed to be easily adapted to interested 

investigators’ laboratories, and was programmed using a commercially-available 

software tool known as the Labview 8.0 program (National Instruments, Austin, TX, 

USA).  The software is available free for interested investigators upon request.  Our 

system can be adopted for telemetric use since we use an aortic occluder that is 

constructed entirely of silicon rubber.  The system can occlude and release RPP in 
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approximately 3 seconds and 0.3 seconds respectively, and maintain desired RPP, based 

on the designed proportional and integral (PI) feedback controller.  These response times 

indicate that this is a robust controller that results in a rapid step induction of blood 

pressure signals.  

6.3 METHODS 

6.3.1 Configuring the Electrohydraulic (EH) pump 

 

We configured an electrohydraulic (EH) pump to maintain a desired RPP with 

minimum deviations as well as to deliver a step like change in RPP in a near 

instantaneous manner.  The system consists of a commercially available EH peristaltic 

pump (LS brushless computer-programmable drive, Cole-Parmer Instrument Co., Vernon 

Hills, IL, USA) with double pump heads with each head having four rollers (LS Easy-

Load II pump head 77201-60, Cole-Parmer Instrument Co., Vernon Hills, IL, USA).  

These double pump heads are directly coupled to a drive shaft which can rotate at speeds 

from 10 to 600 rpm.  We used double Y pump tubing (L/S 16, ID=3.2 mm, Cole-Parmer 

Instrument Co., Vernon Hills, IL, USA) for generating hydraulic pressure, which allows 

rapid filling and emptying of the silicon occluder.  The larger the size of the Y-tube, the 

faster the transfer of fluid to the occluder, but it should be noted that a consequence is 

greater difficulty in achieving fine adjustments.  In this study, we selected the inner 

diameter of the Y-tube to be 3.2 mm because this allows the best compromise between 

delivering fluid in a relatively short time and still being able to make fine adjustments.  

Panel A of Fig. 6.1 shows the EH configuration. The pump operation is activated 

by a monitor program we developed using the Labview 8.0 software tool.  The 

communication between the EH pump and the software is via an RS-232C serial 

communication port located in the back of the EH pump.  Occlusion of RPP is achieved 

by a mechanical vascular occluder (OC4, In Vivo Metric Co., Healdsburg, CA, USA) 

with the following specifications: cuff’s width, thickness, and lumen diameter are 5 mm, 

2 mm, and 4 mm, respectively.  The double Y tubing described above is directly 

connected to the vascular occluder.  It is our experience that the vascular occluder’s cuff 
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must be inflated at least 50 mmHg more than the systolic pressure for complete 

occlusion.   

The RPP signal was acquired using an analog-to-digital converter (DT9800 series, 

Data Translation Inc., Marlboro, MA, USA) controlled by the Labview program.  The 

sampling time of the A/D converter was 5 ms.  The Labview program was implemented 

on a computer running the Windows XP operating system. 

 

6.3.2 Proportional plus Integral (PI) Controller Design 

The PI controller to decrease, maintain and release the RPP at a predetermined 

pressure level using the EH pump motor was implemented in Labview 8.0.  The PI 

controller is a closed-loop feedback system which is designed to track the desired 

reference signal in near real time and with a minimum amount of error at each time step.  

In general, the proportional controller is designed to provide a fast and large step 

compensation to achieve the desired level based on the reference signal. The integral 

controller is the fine tuner system designed to eliminate an offset error caused by the 

over- or under-shooting of the desired pressure level caused by the proportional 

controller.  Without the integral controller, the offset error cannot be eliminated.  Thus, 

the integral controller is a slow process and this fine tuning process can lend itself to slow 

oscillations as it tries to minimize the tracking of the target error values.    

Panel B of Fig. 6.1 illustrates how the PI controller can be used to control RPP 

based on the EH pump system.  The RPP is the reference signal and subtraction of the 

output blood pressure (U(s)) signal produces an error signal (E(s)) which is essentially an 

input to the PI controller.  Given the input and output signal, a continuous-time transfer 

function can be derived below for the PI controller:  
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Where �0N � OP
OQ (expressed in radians/s).  In these equations, Kp and KI denote constant 

gain values associated with the proportional and integrator controller.  The 1/s term can 

be implemented as an integrator.  One problem with an integrator is that with time, this 

value increases to a large value which can lead to instability.  Thus, we used an anti-

windup algorithm with saturation value set at 200.  Eq. (6.2) above needs to be 

discretized since we use an analog-to-digital converter to control the EH pump.  The 

discretized version of Eq. (6.2) becomes:  
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where T is the sampling time of the PI controller and it is limited by the 4800 baud rate of 

the serial communication of the EH motor.  Equation (6.3) can be further modified to a 

difference equation form: 

kksamplePIPkPk UETKEKU �������� �� )1(11 �          (eq. 6.4) 

The unknown gains, Kp and KI (note �0N � OP
OQ) were tuned using the Ziegler-

Nichols criteria to reduce oscillatory effects and yet generate an appropriately fast 

reactive pump motor speed.  Using a series of animal experiments, the following 

parameters were derived: 

3�PK , 30�IK   

where sradPI /1.0��  = KI/Kp and msTsample 10�
 , which was based on the baud rate of 

the serial communication board of the EH motor. 

6.3.3 Animal preparation for an in vivo performance evaluation 

 

 We performed a series of experiments on 10 male Sprague-Dawley rats, weighing 

200 to 300 g, in accordance with the guidelines and practices established for the care and 

use of research animals at the State University of New York at Stony Brook.  The rats 

were initially anesthetized with 3% isoflurane anesthesia and their body temperature was 

maintained at 37 oC by placing the animals on a temperature-controlled surgery table.  

We cannulated the trachea, and a stream of 50/50 oxygen/nitrogen mix flowed into their 
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tracheal tube mixed with 1% isoflurane throughout the experiment to maintain the 

anesthetic state. The right femoral artery was catheterized (PE-50) for the measurement 

of hind limb pressure, which is reflective of the RPP.  An incision was made on the left 

flank. The hydraulic vascular occluder was placed around the supra-renal aorta. In some 

experiments, an ultrasonic flow probe (Transonic Systems, Inc., Ithaca, NY, series 1PR) 

was placed around the left renal artery for the measurement of renal blood flow (RBF). 

Measurements began 1 hour after completion of surgery to allow for the recovery from 

post-surgical stress. 

6.3.4 Experimental protocol 

 

In the first set of experiments, the efficacy of the PI controller was compared to 

manual control (n=5). RPP was first clamped approximately 30 mmHg below baseline 

levels for 1 minute, after which the clamp was rapidly released. After release, the animal 

was allowed to recover for 5 minutes. Typical time traces of the RPP for this clamping 

protocol are shown in Fig. 6.3. This clamp and release process was repeated for a total of 

3 trials. After the trials, the occluder was connected to a water filled syringe for manually 

controlled hand clamps. This protocol is similar to the PI controlled clamps except that 

the clamping was controlled manually by a syringe.  A series of 3 clamps were also 

performed.   

Fig. 6.2 shows a user interface programmed using the Labview tool. The result is 

a user-friendly application in which the operator inputs a desired reduction in the RPP 

values and then the software automatically adjusts the pressure using the PI controller.  In 

addition, there are some useful real-time data analysis capabilities including filtering of 

the data as well as estimation of the power spectrum.   

A second set of experiments were performed to assess the system’s ability to 

function at different RPP set points (n=5). The protocol is similar to the first set of 

experiments except that manually controlled clamps were not performed.  After a 

baseline measurement of 3 PI controlled clamps, angiotensin II (Ang II, Sigma-Aldrich, 

St. Louis, MO, 30 ng kg-1 min-1) mixed with 2% albumin and saline solution was infused 

into the femoral vein to raise baseline RPP.  After allowing the RPP and RBF to stabilize 
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(~10 minutes), a second series of 3 PI controlled clamps were performed.  Ang II 

infusion was terminated after this second series of clamps and RPP was allowed to return 

to baseline levels.  

To further test the system’s ability to maintain steady RPP despite 

pharmacological manipulations to alter RPP, the PI controller was set and engaged at 

baseline RPP levels, Ang II was then infused into the animal at the previous flow rate in 

an attempt to raise RPP. This response was compared with the Ang II response without 

engaging the PI controller. 

 

6.3.5 Data analysis 

 

The collected data was low-pass filtered at 0.5 Hz to remove the cardiac signal 

from the time traces before analysis. 

For each clamp, the linear slope and the standard deviation of the RPP 

fluctuations during the maintenance phase of the PI controller were calculated. Further, 

the times for the blood pressure to reach desired blood pressure levels as well as the time 

to reach baseline values were recorded.  Trials for each animal for both the PI controller 

and manual clamping methods were averaged for comparison. Variance was compared 

using Levene’s test for equality of variances.   

Renal autoregulatory compensation parameters were calculated from RBF for 

each RPP clamp session. The top and bottom panels of Fig. 6.4 show typical RBF clamp 

response time traces under baseline and Ang II infusion conditions, respectively.  Note 

that the RBF traces were plotted as a percent, where 100 percent is the mean baseline 

RBF level. This was done to facilitate comparison between animals and two conditions. 

This figure has been annotated to detail approaches we have used to calculate various 

renal autoregulatory compensatory parameters. Four autoregulatory compensatory 

parameters were calculated from each trace: percent MYO compensation from the clamp 

release, percent MYO compensation from the clamp engagement, slope of the slower 

clamp response, and percent compensation of the slower component. The percent MYO 

compensation from the clamp release was defined as the MYO release response divided 

by the complete release compensation, then multiplied by 100.  The percent MYO 
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compensation from the clamp engagement is defined as the MYO clamp response divided 

by the complete clamp compensation, then multiplied by 100.  The slope of the slower 

clamp response was defined as the linear slope between the points immediately after the 

MYO clamp response to immediately before the clamp release.  Finally, the percent 

compensation of the slower component was defined as the slow clamp response divided 

by the complete clamp compensation, and then multiplied by 100. 

The statistical significance for the averaged data was obtained using the student’s 

t-test or the Mann-Whitney rank sum test when the data did not have equal variance. 

Difference in variance was tested using the Levenne’s test for equal variance. The paired 

t-test was used for comparison between baseline and Ang II infused data from the same 

animals.  In all cases, the statistical significance was set to P<=0.05. 

6.4 RESULTS 
 

Table 6.1 summarizes the RPP and RBF values for the animals. The numbers are 

reported as mean ± standard error.  

Fig. 6.3 shows representative RPP time traces for the different clamping methods. 

The top panel shows a clamping trial using the PI controller.  The middle and bottom 

panels show two different manually clamped results. The middle panel is an instance 

where the RPP was clamped to the desired pressure level at the first drop. The bottom 

panel shows an over-clamped trial followed by subsequent adjustments.  

Summarized data of RPP from the experiments comparing the performance of the 

PI controlled clamps verses the manually controlled clamps are shown in Fig. 6.5.  Data 

are shown as the mean plus standard error across the 5 animals.  Panel A shows the mean 

linear slope during the RPP maintenance phase of the clamp using the PI controller and 

manual approaches, which were -0.0094±0.005 and 0.277±0.064 mmHg/sec, 

respectively.  Panel B shows the standard deviations of the signal RPP during the 

maintenance of RPP phase, which were 1.48±0.176 and 1.154±0.218 mmHg for the PI 

controlled and manual clamps, respectively.  Panel C shows the times needed from the 

start of clamp to when the RPP attained the desired RPP level, which were 3.26±0.29 and 

10.59±3.75 seconds for the PI controlled and manual clamps, respectively.  Panel D 
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shows the times for the RPP to return to baseline levels after the release of the clamp, 

which were 0.24±0.05 and 0.28±0.04 seconds for the PI controlled and manual clamps, 

respectively.  Significant difference in the mean or median and the variance (P<=0.05) 

were found between the slope and the time to desired RPP between the PI controller and 

the manual approach. 

 Although not shown, the same parameters that were measured in Fig. 6.5 were 

also measured in the second experiment for the comparison of Ang II infused animals. 

Comparison between baseline and Ang II infused animals showed no statistical 

significance (P>0.05). This shows that the PI controller performs consistently even with 

different RPP set points.  

 Fig. 6.6 shows the typical result for testing the PI controller’s ability to 

compensate for increases in RPP from pharmacological manipulations. In this figure, 

Ang II infusion began at 0 minutes. Ang II infusion resulted in a quick rise in RPP within 

1 minute to 170±3.70 mmHg and then slowly reached a steady-state within 10 minutes to 

139±1.02 mmHg. This rise in RPP was not observed in the PI controlled trace. The 

results shown demonstrate that the system was able to compensate for relatively large, 

sudden increases in RPP.  The standard deviation of the RPP for 2 minutes before and 

after the Ang II infusion was found to be insignificantly different (P>0.05), at 1.51±0.17 

and 1.61±0.21 mmHg, respectively. 

 Summary results from the RBF data calculated according to Fig 6.4 between 

baseline and Ang II clamps are shown on Fig 6.7. Statistically significant difference was 

found in all cases (P<=0.05).  

 

6.5 CONCLUSIONS 
 

We demonstrated an effective and yet simple PI servo-controller that can quickly 

and automatically reduce RPP to desired levels, and maintain the pressure despite the 

opposing compensatory effects.  The PI controller was designed to send fluid as quickly 

as possible to the vascular occluder cuff using an EH pump motor and then fine tune 

itself to maintain the desired pressure.  Using the LabVIEW tool, we designed a user 

friendly interface in which the operator simply inputs the desired pressure value with the 
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appropriate PI controller gain settings.  The program has the ability to filter and estimate 

the power spectrum of the data in real time.  The efficacy of this system was 

demonstrated by comparing the proposed PI controller to a person who already has had 

experience in manually controlling the blood pressure using a syringe.  Our results 

indicate that the PI controller provided significantly faster time to a desired RPP level, 

and maintained its value with significantly less variation than human interventions. 

Further, the system was tested against RPP changes with Ang II infusion, and the results 

showed that the system performed consistently well even at different set points.  

 One of the key advantages of the proposed PI controlled system is the 

maintenance of the desired RPP, as demonstrated in the top panel of Fig. 6.3 and 

quantitatively illustrated in Fig 6.5A.  As compared to human interventions to maintain 

the desired RPP, shown in the remaining panels of Fig. 6.3 and Fig. 6.5, the PI controller 

does a significantly better job.  Even with human intervention, there is a monotonic 

increase in RPP, as shown in the two bottom panels of Fig. 6.5, and quantitatively 

illustrated as a rise in slope value as compared to no rise in slope with the PI controller in 

Fig. 6.5A.   

 The maintenance of the steady RPP levels during the pressure clamp was 

achieved by the PI controller using small adjustments on the occluder.  With many fine 

adjustments, there is a concern that they may lead to a greater variance in RPP fluctuation 

than in normal conditions.  However, as shown in Fig. 6.5B, while the average standard 

deviation values of the PI controlled clamps were slightly larger than those of the 

manually-induced clamps, it was not found to be significantly different. 

 The variance of the time to desired RPP level was found to be significantly lower 

in the PI controlled clamps than with human intervention.  This was mainly due to over-

clamping and subsequent readjustment of the clamps via manual trials, as shown in the 

bottom panel of Fig. 6.3.  It should be noted that the chance of overshooting the desired 

RPP decreased with experience.  For the PI-controlled clamps, the speed to achieve the 

desired RPP was consistent across all animals.  

 Ang II infusion raised the RPP by a maximum of ~65 mmHg and steady state 

value by ~35 mmHg. Fig 6.6 shows that the proposed PI controller was able to fully 

compensate for this change with no significant change in the RBF’s variance. Further, 
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RPP clamps performed under the effects of Ang II infusion also yielded no significant 

difference when compared to the baseline.  Taken together, this shows that the PI 

controller system proposed in this work can operate under different physiological 

conditions. 

The representative time traces of RBF clamping experiments shown in Fig. 6.4 

shows that Ang II infusion shifted the distribution of renal autoregulation from a balance 

of MYO and TGF to a more MYO dominant behavior. This trend was further seen from 

the summary data in Fig. 6.7, where MYO compensation with Ang II infusion was higher 

than under baseline conditions. This is not surprising, as Ang II has been shown in the 

past to increase excitability of vessels (61).  Of more interesting observation is the slower 

compensatory mechanism during step reduction in RPP.  The slow rise in RBF has been 

noted in several other studies (70), but due to the use of manually controlled clamps, 

which is not able to curtail rise in RPP, it was difficult to ascertain if the rise was due to 

the RPP itself or the action of the autoregulatory mechanism.  With the use of the PI 

controlled clamp, RPP was held at a constant level, therefore, we can rule out the 

possibility of RPP.  Thus, the slow rise is most likely the action of the TGF. 

A previous study by Xia et al. (136) made use of an automatic RPP control 

system. The response time for that system was approximately 45-50 seconds.  Further, 

because the system does not utilize a robust feedback controller, initial 1-2 minutes of the 

controller results in wide variations in RPP.  For characterizing renal autoregulatory 

dynamics where fast control of RRP is required, the controller by Xia et al. (17) would 

not be applicable.  However, this system is useful for studies that involve the control of 

RPP for long duration experiments (e.g., telemetry applications). 

Although this study was performed in non-survival conditions, the occluder used 

is biocompatible and could be theoretically implanted and used in telemetric survival 

studies. This PI controller-based occluder has the potential to be especially useful in the 

application of renal autoregulation studies, where one could take advantage of the fast 

response time of this system to study the step response of the autoregulation system under 

the conscious state.   

In conclusion, we have shown that the proposed PI controller offers advantages 

over the traditional manual clamps.  They include consistency in the data and the ability 
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to adjust for small rises in RPP caused by physiological responses to abrupt drops in 

pressure. Altering the animal condition by the use of Ang II did not significantly alter the 

performance of the system, suggesting that it can perform under different physiological 

conditions.  

 This work has been submitted for review to American Journal of Physiology, 

Renal Physiology. 

 

 

 

 

Figure 6.1 - Schematic diagram of the PI control system. Panel A shows the optimized 
electrohydraulic (EH) pump configuration. Panel B shows the diagram for the servo 
control system. 
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Figure 6.2 - A user-interface via Labview software.  The input required is the target or 
desired RPP level in the upper left box. 



94�
�

Figure 6.3. - Representative blood pressure data using the different clamp methods. The 
top panel shows the PI controlled clamp. The middle and bottom panels show two 
investigator-controlled clamps. The middle panel shows a clamp in which the clamp was 
successful on the initial clamp. The bottom panel shows a clamp in which there was 
initial overshoot, followed by a small release of the clamp to bring the blood pressure to 
desired levels. 
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Figure 6.4 - Representative RBF traces are annotated to illustrate how autoregulatory 
compensation parameters are calculated.
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Figure 6.5 - Summarized data from the clamping experiments. Panel A shows the 
average linear slope during clamping. Panel B shows the standard deviation of the trace 
during clamping. Panel C shows the time needed to achieve the desired RPP level from 
the start of the clamp. Panel D shows the time needed for the RPP to return to baseline 
levels after release of occlusion. Data shown here as mean ± standard error.Statistical 
significance is indicated by “*”. Statistically difference in variance is shown as “#”.  
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Figure 6.6 - Time traces showing the effect of the PI controller on Ang II infusion. Note 
that the RPP rise was abolished by the use of the PI controller (lower trace).   
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Figure 6.7 - Summarized RBF parameter data between baseline and Ang II infused 
animals. Panel A shows the percent of MYO compensation for the clamp release 
response. Panel B shows the percent of MYO compensation for the clamp engaged 
response. Panel C shows the slope of the slow component of RBF compensation during 
RPP clamping. Panel D shows the percent compensation from this slow component. Data 
shown as mean ± standard error.  Statistical significance is indicated by “*” (P<=0.05).  

Baseline RPP Angiotensin II 
RPP

Maximum

Angiotensin II 
RPP Steady 

Baseline RBF Angiotensin II 
RBF 

105±2.87 
mmHg 

170±3.70 
mmHg 

139±1.02 
mmHg 

5.01±0.20 
mL/min 

1.49±0.137 
mL/min 

Table 6.1 - Average values for RPP and RBF under baseline and Ang II infusion. 



99�
�

Chapter 7 

Conclusion

 This work was designed to study the subtle characteristics of the renal 

autoregulatory system that previous works may have missed. Specifically, algorithms 

were designed to study the nonlinearity and time variance in the renal autoregulatory 

mechanisms. Further, a blood pressure control device was designed so that step responses 

can be used to study the renal autoregulatory system in a conscious, anesthetic free 

condition. The results show that rich nonlinear and time varying dynamics are present in 

the renal autoregulatory system. These results offer a more complete picture of renal 

autoregulation that was overlooked in the past. The differences that were observed 

between normotensive and hypertensive animals offers new insight into a disease that 

afflicts a large portions of the industrialized world. Further, the algorithms and techniques 

presented here are general techniques that can be adopted to be used in other fields of 

research. 
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