
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Integrability of N=4 and N=2 Super

Yang Mills

A Thesis Presented

by

Ioannis Iatrakis

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Master of Arts

in

Physics

Stony Brook University

May 2008



Stony Brook University

The Graduate School

Ioannis Iatrakis

We, the thesis committee for the above candidate for the Master of Arts degree,
hereby recommend acceptance of this thesis.

Leonardo Rastelli – Thesis Advisor
Assistant Professor, Department of Physics and Astronomy

Martin Rocek – Chairperson of Defense
Professor, Department of Physics and Astronomy

Peter W. Stephens
Professor, Department of Physics and Astronomy

This thesis is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Thesis

Integrability of N=4 and N=2 Super Yang
Mills

by

Ioannis Iatrakis

Master of Arts

in

Physics

Stony Brook University

2008

The present thesis is devoted to the study of N = 4 and N = 2
supersymmetric field theories. We construct the appropriate su-
pesymmetric algebras and we examine the symmetries of the theo-
ries. We then derive the matrices of anomalous dimensions of local
gauge invariant operators of the theories. It is also shown that
these matrices can be identified with hamiltonians that describe
spin chains. Finally, we also prove that the coupling of the gauge
and hyper Lagrangians does not effect the anomalous dimensions
of single trace composite operators which are built of scalar fields
of N = 2 gauge multiplet.
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Chapter 1

Introduction and Conclusions

Supersymmetric gauge theories are of great interest. Particularly, after the
discovery of AdS/CFT correspondence which relates a N = 4 Super Yang
Mills theory to a Type IIB string theory, [1], there is growing interest in these
theories. In this project, extended supersymmetric theories are examined and
in particular the N = 2 and N = 4 super Yang Mills (SYM) theories, and the
N = 2 hyper Lagrangian.

Firstly, we construct the super Poincaré algebra and we then proceed to
the building of massless particle representations of the theory, which lead to
the field content and eventually to the Lagrangians of the theories that will be
examined, [2], [3]. The most remarkable characteristic of the N = 4 SYM is its
symmetries. The theory is conformally invariant even at the quantum level.
So, its gauge coupling does not receive any quantum corrections. However,
using the super-conformal symmetry of the theory we build local operators
which are renormalized and have interesting properties. We also introduce the
concepts of superconformal and chiral primary operators, see [3], [4] and [5].

The renormalization of local gauge invariant operators is then analysed.
The main purpose of this project is the computation of the anomalous dimen-
sion of several scalar composite operators and the connection of the results
to hamiltonians of integrable spin chains. This was first done for the SO(6)
sector of N = 4 SYM by Minahan and Zarembo [6]. Here, we use the same
techniques applied to the SU(2) sector of the theory, [7], and conclude that
the matrix of anomalous dimensions of opertors in SU(2) sector is identified
with the hamiltonian of the XXX Heisenberg spin chain. Then, Bethe equa-
tions can be used in order to diagonalize the hamiltonian and to find the basis
where the renormalization of the considered operators is multiplicative. The
eigenvalues correspond to the anomalous dimensions of the operators of this
basis. The diagonalization of the Heisenberg hamiltonian can be performed for
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a small number of magnons1 in the spin chain. But one can also diagonalize
the hamiltonian in the thermodynamic limit, [7] and [5]. It is then observed
that the eigenvalues correspond to the energy of a classical string of large an-
gular momentum spinning in a subspace of AdS5 × S5. Hence, we notice that
there is a correspondence among string states and local operators of the super
Yang Mills in the limit of large angular momentum.

We then follow a similar procedure in order to compute the anomalous
dimension of local operators in N = 2 SYM, [8]. The main difference from
the previous analysis is that now the coupling constant will acquire quan-
tum corrections that we must take into consideration when we renormalize
the composite operators. In this case, the resulting matrix of the anomalous
dimensions is identified with a hamiltonian of an XXZ spin chain. It is also
found that when the N = 2 SYM is coupled to the hyper Lagrangian the
result remains the same. This happens because there are two contributions
that cancel, one coming from the coupling constant and the other from the
self energy renormalization.

1Magnon is an excitation of a spin state in the spin chain.
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Chapter 2

Supersymmetric Field Theories

2.0.1 The supersymmetry algebra

The generators of Poincaré algebra, SO(1, 3) are Pµ and Mµν which correspond
to the translations and Lorentz transformations in Minkowski space-time with
metric ηµν = diag(−1,+1,+1,+1), where µ, ν = 0, 1, 2, 3. The generators
satisfy

[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ)

[Mµν , Pλ] = −i(ηµλPν − ηλνPµ) (2.1)

[Pµ, Pν] = 0.

The field theories that we will study are also invariant under an internal sym-
metry group G, with generators that form a Lie algebra

[TA, TB] = fC
ABTC . (2.2)

The Poincaré algebra can be extended by allowing anticommuting as well
commuting generators, which are the Qi

α and Qα̇j, where α, α̇ = 1, 2 are spinor
indices and a, b = 1, ...,N label the number of superymmetry charges. The
Poincaré algebra is then supplemented by
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{Qa
α, Q

b

α̇} = 2σµ
αα̇Pµδ

ab

[Pµ, Q
a
α] = [Pµ, Qα̇b] = 0

[Qa
α,Mµν ] = (σµν)α

βQa
β

[Qα̇b,Mµν ] = (σµν)
α̇

β̇Q
β̇

b

{Qa
α, Q

b
β} = εαβZ

ab

{Qα̇a, Qβ̇b} = εα̇β̇Z
†
ab (2.3)

[Qa
α, T

A] = bAa
bQ

b
α

[TA, Qα̇a] = b†Ab
aQα̇a

[Zab, X] = [Z†
cd, X] = 0 ,

where b†Aa
b = bAb

a. In Eq.(2.3), X is any generator in the algebra so that
Zab = −Zba generate the center of the algebra.

The supersymmetry algebra (2.3) closes under the action of a group of
automorphisms which, in our case, will be U(N ) or a subgroup of it. These
symmetries are called R-symmetries and act on the charges Qa

α and Qα̇b as

Qa′
α = Ua

bQ
b
α Q

′

α̇b = Qα̇aU
†a
b .

We can easily check that Qa′
α ’s and Q

′

α̇b’s satisfy the supersymmetry algebra
as well.

2.0.2 Massless irreducible representations

In order to find the massless representations of the supersymmetry algebra, we
choose a Lorentz frame qµ = (−k, 0, 0, k), with q2 = 0. The anticommutation

relation of Qi′
α’s and Q

′

α̇j’s then is

{Qa
α, Qβ̇b} = 4k

(

1 0
0 0

)

δa
b

When we choose α = β̇ = 2 and a = b and require that no zero norm states
exist in the Hilbert space we conclude to Q2i = 0. Then using the algebra we
find that the central charges vanish for the massless representations

{Qa
α, Q

b
β} = {Qα̇a, Qβ̇b} = 0 .
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Helicity N =2 N =2 N =4
≤ 1 gauge hyper gauge
1 1 0 1

1/2 2 2 4
0 2 4 6

−1/2 2 2 4
−1 1 0 1

Table 2.1: The N=2 and N=4 multiplets.

We may define now fermionic creation and annihilation operators

Γ2a−1 =
1

2
√
k
(Qa

1 +Q∗
1,a)

Γ†
2a = (Γa)† =

1

2
√
k
(Qa

1 −Q∗
1,a) , (2.4)

which satisfy the 2N dimensioal Clifford algebra

{ΓI ,Γ†
J} = 2δI

J

{ΓI ,ΓJ} = {Γ†
I ,Γ

†
J} = 0, (2.5)

where I, J = 1, ...2N . There is one irreducible representaion of the Clifford
algebra which is represented by 2N states that are created by the action of
Q∗

1,i on the vacuum which is defined as

Qa
1|Ωλ〉 = 0.

The vacuum is the state of lowest helicity λ, |Ωλ〉 = |qµ, λ〉. So, the states
which constitute the multiplet are constructed as

Q∗
a1
. . . Q∗

an
|Ωλ〉 . (2.6)

This state has helicity λ + n
2

and the maximum helicity in the multiplet is
λ+ N

2
. The field theories that we will study are CPT invariant, meaning that

the particle spectrum is symmetric in the change of sign of the helicity. CPT
invariance therefore implies, in general, a doubling of the number of states.
The multiplets, that we are interested in, i.e. N = 2 and N = 4 with |λ| ≤ 1
appear in Table (1).
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2.0.3 Field content and Lagrangians

In the previous analysis it was showed that the supersymmetry particle repre-
sentations for N =2 and N =4, with maximum spin 1, consist of spin 1 gauge
particles, spin 1/2 fermions and spin 0 scalars. As a result, the fields in su-
persymmetric theories with spin less or equal to 1 are spin 1 gauge fields, spin
1/2 Weyl fermion fields and spin 0 scalar fields, but these fields are restricted
to enter in multiplets of the corresponding supersymmetry algebras.

For any 1 ≤ N ≤4, we have a gauge multiplet, which transforms under
the adjoint representation of the gauge algebra, G. For N =4, this is a unique
multiplet. For N =1 and N =2, we also have matter multiplets. For N =2,
this is the chiral multiplet, and for N =2 we have the hypermultiplet, both
of which transform under the fundamental representation G of G. In our case,
N =4 theory has SU(N) gauge symmetry and the R symmetry is SU(4)R.
The N =2 gauge multiplet has SU(Nc) gauge symmetry and the R symmetry
is SU(2)R. Finally, the N =2 hypermultiplet contains fields that transform
under the fundamental of SU(Nc).There is also another gauge group, which is
the SU(Nf ), and the R symmetry is again SU(2)R. The fields of the theories,
that we will study, are the gauge field Aµ, Weyl fermions ψ, ΛI (I = 1, 2) and
λa (a = 1, ..., 4) and scalar fields φ, QI (I = 1, 2) and X i (i = 1, ..., 6). The
field content of the N =2 gauge and hyper multiplet and N =4 is:

• N =2 Gauge Multiplet {Aµ, ΛI , φ}, where Aµ is the gauge field λI

are Weyl fermions, and φ is a complex scalar. The theory also possesses
an SU(2)R symmetry, Aµ and φ are singlets, while ΛIs, transform as a
doublet (I = 1, 2 is an SU(2)R index).All the field transform under the
adjoint of SU(Nc)

• N =2 Hypermultiplet {ψ, QI}, where ψ are Weyl fermions and QIs
are two complex scalars. All of them transform under the fundamen-
tal representation of SU(Nc). Under SU(2)R symmetry, ψ are singlets,
while QIs transform as a doublet. The fields also transform under the
fundamental represenation of SU(Nf ).

• N =4 Gauge Multiplet {Aµ, λ
a X i}, where λa, a = 1, · · · , 4 are Weyl

fermions and X i, i = 1, · · · , 6 are real scalars. Under SU(4)R symmetry,
Aµ is a singlet, λa is a 4 and the scalars X i are in the anti-symmetric
representation, 6. All the fields transform in the adjoint representation
of SU(N).

Supersymmetric Lagrangians comprise gauge, spin 1/2 fermion and scalar
fields, (arranged in multiplets of the supersymmetry algebra). We will focus on
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local Lagrangians in which each term has a total of no more than two deriva-
tives on all boson fields and no more than one derivative on all fermion fields,
i.e. we will use the common Lagrangian for scalar fields, Dirac’s Lagrangian for
fermions and the non abelian generalization of Maxwell’s Lagrangian for gauge
fields. All renormalizable Lagrangians are of this form. The Lagrangians can
be found either by checking their invariance under supersymmetric transfor-
mations or using superspace technique, which is a more powerful tool.

The action of the N=2 super Yang Mills field theory is written in Euclidean
space

Sgauge,2 =

∫

d4x
1

g2
Tr

{

1

4
FµνF

µν + iΛ1σ
µDµΛ

1 + iΛ2σµDµΛ2 + (Dµφ)†(Dµφ)(2.7)

−i
√

2εIJΛIΛJφ† − i
√

2εIJΛ
I
Λ

J
φ− 1

2
[φ, φ†]2

}

,

where, as it was noted previously, each field is in the adjoint representaion of

SU(Nc), thus F =
∑N2

c −1
A=1 FATA, where F is an arbitrary field of the above

action. The generators of the group are normalised such as

Tr(TATB) = NδAB . (2.8)

The covariant derivatives and the field strength are

Dµ∗ = ∂µ ∗ +ig[Aµ, ∗] (2.9)

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν].

The εIJ are the Clebsch-Gordan coeffecients that relate the 2 of the SU(2)R

and the U(1)R, which the complex φ transforms under. The bare dimensions
of the fields are

∆0[Aµ] = 1 (2.10)

∆0[φi] = 1

∆0[Λ] = 3/2

The Lagrangian of the hypermultiplet is also written in the Euclidean space
and reads

7



Shyper,2 =
1

g2

∫

d4x

{

(DµQ
I)†DµQI + iψσµDµψ + iψ̃σµDµψ̃ (2.11)

+i
√

2ψ̃φψ + i
√

2ψφ†ψ̃ − g2

2
(QIQ

J)(QJQ
I)

−1

2
εIJε

KL(QLQ
J)(QKQ

I)

+i
√

2QIΛ
I
ψ̃ − ig

√
2ψ̃ΛIQ

I

+i
√

2eIJQIΛJψ − ig
√

2εIJψΛ
I
QJ

−2QIφ
†φQI

}

.

So, we have considered the coupling of the gauge and hypermultiplets. The
fields ψ and QIs tranform in the fundamental of SU(Nc) and in the adjoint of
the SU(Nf ). Finally, the Lagrangian for the N =4 super Yang Mills is

S4 =
1

g2

∫

d4xTr

{

1

4
FµνF

µν + iλ̄aσ̄µDµλa +DµX
iDµXi

+Cab
i λa[X

i, λb] + C̄iabλ̄
a[X i, λ̄b] − 1

2

∑

i,j

[X i, Xj]2
}

The constants Cab
i and Ciab are the Clebsch Gordan coeffecients connecting

the 6 and the 4 (or 4∗) of SU(4)R.

Besides the symmetries that are already noticed the action is also invariant
under rescalings. Rescaling invariance and Poincaré symmetry combine into
a larger symmetry, called conformal symmetry, and form the group SO(2, 4).
However, the considered action is invariant under a more general symmetry, the
super Poincaré symmetry. So, the combination of super Poincaré symmetry
and conformal invariance leads to the superconformal symmetry, which will be
described bellow. We have to point out that this symmetry is not broken at
the quantum level, since the N =4 super Yang Mills theory has no ultraviolet
divergences, hence the β function of the theory is equal to zero.

2.0.4 Super-conformal symmetry

We start with the conformal symmetry, which forms the group SO(2, 4) with
the follwing generators: the usual translations P µ and the Lorentz transforma-
tions Mµν , but also the dilations D and the special conformal transformations

8



Kµ. The above generators satisfy the conformal algebra

[D,Pµ] = −iPµ

[D,Kµ] = iKµ

[D,Mµν] = 0

[Pµ, Kν] = 2i(Lµν − ηµνD) (2.12)

[Mµν , Pλ] = −i(ηµλPν − ηλνPµ)

[Mµν , Kλ] = −i(ηµλKν − ηλνKµ)

[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ).

So, despite the 4 Pµ and the 6 Mµν , we also have 4 Kµ and 1 D, the conformal
group has therefore 15 generators. We now may redefine

Mµ5 =
1

2
(Pµ +Kµ)

M4µ =
1

2
(Pµ −Kµ) (2.13)

M54 = D

with the metric ηIJ = diag(−1,+1,+1,+1; +1,−1) (I, J = 0, 1, ..., 5). Then,
the conformal algebra (2.13) becomes

[MIJ ,MKL] = i(ηJKMIL − ηJLMIK − ηIKMJL + ηILMJK), (2.14)

As a result, it is obvious now that the conformal generators generate the group
SO(2, 4).

The supercnformal algebra is constructed in a similar way that was used in
order to enlarge the Poincaré algebra to the super-Poincaré. We first no-
tice that the conformal group has two subgroups generated by {Pµ,Mµν}
and {Kµ,Mµν}. By extending these two subgroups we find the usual super-
Poincaré algebra plus 16 more generators which will lead us to the super-
conformal algebra. The new fermionic generators Sαa are called conformal
supercharges, and transform under the 4∗ of the SU(4)R. While the S̄α̇a

transform under 4. Hence, the super-conformal algebra is
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[Kµ, Qa
α] = (σµ)αβ̇ε

β̇γ̇S̄a
γ̇ , [Kµ, Q̄α̇a] = (σµ)βα̇ε

βγSγa, (2.15)

[P µ, Sαa] = (σµ)αβ̇ε
β̇γ̇Q̄γ̇a, [P µ, S̄a

α̇] = (σµ)βα̇ε
βγQa

γ , (2.16)

[Mµν , Qa
α] = −i(σµν)αβε

βγQa
γ , [Mµν , Q̄α̇a] = −i(σ̄µν)α̇β̇ε

β̇γ̇Q̄γ̇a,(2.17)

[Mµν , Sαa] = −i(σµν)αβε
βγSγa, [Mµν , S̄a

α̇] = −i(σ̄µν)α̇β̇ε
β̇γ̇S̄a

γ̇ , (2.18)

[D,Qa
α] = − i

2Q
a
α, [D, Q̄α̇a] = − i

2Q̄α̇a (2.19)

[D,Sαa] = + i
2 Sαa, [D, S̄a

α̇] = + i
2 S̄

a
α̇, (2.20)

{Qa
α, Q̄β̇b} = (σµ)αβ̇δ

a
bPµ, {Sαa, S̄

b
β̇
} = (σµ)αβ̇δa

bKµ. (2.21)

The remaining commutation or anticommutation relations give zero, except
for the anticommutation relations between Sαa and Qa

α which

{Qa
α, Sβb} = (σij)a

bεαβRij + i(σµν)αβδ
a
bMµν − iεαβδ

a
bD, (2.22)

{Q̄α̇a, S̄
b
β̇
} = −(σij)a

bεα̇β̇Rij + i(σ̄µν)α̇β̇δa
bMµν − iεα̇β̇δa

bD , (2.23)

where Rij (i, j = 1, . . . , 6) are the SU(4)R generators. All the supercharges
transform as spinors under SU(4)R, so

[Ra
b , Q

c
α] = δc

bQ
a
α − δa

bQ
c
α, [Ra

b , Q̄α̇c] = −δa
c Q̄α̇b + δa

b Q̄α̇c (2.24)

[Ra
b , S

α
c ] = −δa

cS
α
b + δa

bS
α
c , [Ra

b , S̄
α̇c] = δc

bS̄
α̇a − δa

b S̄
cȧ, (2.25)

where (σij)a
bRij = Ra

b . We denote the three Cartan generators of the SU(4)
as (R12, R34, R56), and the corresponding charges as (J1, J2, J3).
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Chapter 3

The Anomalous Dimension of

Composite Operators

3.1 Local operators

We will consider local, gauge invariant operators which are polynomial in the
fields of the N =4 multiplet. Locality of the operators means that they are
evaluated at some point of spacetime. In general, we will be interested in
operators that are made by traces of the fields. So, we may have either single
trace operators or products of traces. Both of them will be gauge invariant.
In the present project we will examine operators that are made by scalars. In
the N =4 case, we considerthe six real scalar fields X i which transform in the
6 of SU(4)R. It is convenient to combine these fields into three complex scalar
fields

Z = X1 + iX2

W = X3 + iX4 (3.1)

Y = X5 + iX6,

which transform under the R-symmetry as

[R12, Z] = Z

[R34,W ] = W (3.2)

[R56, Y ] = Y

The conjugate fields will have one more minus sign in the RHS, and all other
commutators between Rij and Z,W, Y are zero. The conserved charges of the
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generators are

(∆, m1, m2; J1, J2, J3), (3.3)

where ∆ is the bare dimension of the operator, m1, m2 are the charges of the
Lorentz group SO(1, 3) ' SU(2)×SU(2) 1, and J1 , J2 and J3 are the charges
of the R symmetry 2.

Let us now consider a local operator in the field theory O(x). Under a scal-
ing transformation x 7→ Λx, the local operator scales as O(x) 7→ Λ−∆O(Λx)
where ∆ is the bare dimension of O(x). The generator of these scalings is the
dilatation generator D, which acts on the operator as

[D,O(x)] = −i(∆ − x∂x)O(x). (3.4)

When x = 0, it just counts the scaling dimension [D,O(0)] = −i∆O(0).
Acting with D on the commutator [Kµ,O(0)] and using the Jacobi identity,
we are led to

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]] = −i(∆ − 1)[Kµ,O(0)],
(3.5)

the operator [Kµ,O(0)] therefore has scaling dimension lower than that of O(0)
by one. Hence, Kµ acts as a annihilation operator that lowers the dimension by
one. This is also implied by Eqs.(2.13), where it is seen that Kµ has dimension
-1. In similar way we observe that

[D, [Pµ,O(0)]] = [[D,Pµ],O(0)]+[Pµ, [D,O(0)]] = −i(∆+1)[Kµ,O(0)], (3.6)

so the Pµ is a creation operator and D plays the role of the Cartan generator
of the conformal algebra. We can also check, in Eqs. (2.13), that Pµ has
dimension +1. It is well known that operators with negative dimension do
not exist in a unitary quantum field theory. Hence, if we keep acting with Kµ

to any operator with definite dimension we will eventually get an operator of
zero scaling dimension.

[Kµ,O(0)] = 0. (3.7)

A non zero operator satisfying the above relation is defined as conformal pri-

1Each charge m1, m2 corresponds to each one of the two SU(2)s.
2SU(4)R has rank 3 (i.e. it has three Cartan generators), so it admits three conserved

charges.

12



mary operator O. Any descendant operator can be constructed by acting with
Pµ on the conformal primary operator.

The action of conformal generators on a conformal primary operator O(0)
at the point 0 is described by

[Pµ,O(0)] = −i∂µO(0)

[Mµν ,O(0)] = −iΣ(m1 ,m2)
µν O(0) (3.8)

[D,O(0)] = −i∆O(0)

[Kµ,O(0)] = 0

Here Σµν is a Lorentz generator 3 acting on the indices of O. Notice that the
action of Σ

(m1 ,m2)
µν yields that O is an (m1, m2)-tensor in the Lorentz indices.

Observing Eqs.(2.19) and (2.20), we see that the dimensions of Qa
α and Sβb

are +1
2

and −1
2

respectively. So, succesive application of S on any operator
will lower its dimension until it will reach zero. Thus, we can introduce the
notion of superconformal primary operator O, which is defined as

[Sβb,O(0)] = [Sb
β̇
,O(0)] = 0, (3.9)

for all β, β̇ and b. We may put a further restriction in order to construct a
chiral primary operator

[Qa
α,O(0)] = 0, (3.10)

for some α and a. Descendant operators can be constructed by acting the
rest of the Q on the superconformal primary operator. This is the way that
we can construct the superconformal multiplet. Each superconformal multi-
plet contains only one superconformal primary. We should notice that each
superconformal primary is also a conformal primary 4, but the converse is not,
always, true. In N =4 superconformal primary operators can be formed only
by scalars. The simplest example are single trace operators of the form

Tr(X ((i1 ...X in))), (3.11)

where the indices i1, ..., in = 1, ...6 are symmetrized and traceless and the trace
is taken over the gauge algebra.

3Σµν is the spin part of the Lorentz generator. Since, we consider an operator at x = 0
the orbital part is zero.

4This is true since Kµ and Sβb commute.
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From the superconformal algebra, we have

[{Qa
α, Sβb},O(0)] = [(σij)a

bεαβRij + i(σµν)αβδ
a
bMµν − iεαβδ

a
bD,O(0)]. (3.12)

Chiral primaries satisfying [Qa
α,O(0)] = 0, make the LHS of (3.12) zero, be-

cause it can be rewritten as

{Qa
α, [Sβb,O(0)]} + {Sβb, [Q

a
α,O(0)]} (3.13)

using a graded Jacobi identity. Since, we consider that O(0) is a scalar,
then [Mµν ,O(0)] =0, so that the scaling dimension of O(0) ∆ is related to
its R-charge. Operators of the form O1 = Tr(ZJ1), O2 = Tr(W J2), and
O3 = Tr(Y J3) with R-charges (J1, 0, 0), (0, J2, 0), and (0, 0, J3) respectively,
are chiral primary operators. Indeed, their scaling dimension is easily found
by acting with D. So it is obvious that the first operator has bare dimension
J1 and the rest have J2 and J3 respectively. These three chiral primaries are
annihilated by eight of the sixteen supercharges Q1

α, Q2
α, Qα̇3 and Qα̇4, so they

are half-BPS operators. Since, the superconformal symmetry is not broken at
the quantum level, their bare dimensions do not receive any quantum correc-
tions but remain at their classical values at all orders in perturbation theory.
Non-BPS operators, however, acquire non-trivial correction to their dimen-
sions ∆. In the following section, we will consider operators in the SU(2)
sector of N =4 theory. These operators consist only of Z and W scalar fields
without their conjugate fields. This sector of operators is closed to all orders
in perturbation theory under operator mixing. This is seen by the fact that
operators of different bare dimension do not mix and by the conservation of
Lorentz and R charges. Another common sector of composite operators that
are built by the scalars of the N = 4 super Yang Mills is the SO(6) 5 sector.
Operators in this sector may consist of all the real scalar fields of the N = 4
theory. This sector is closed only to one loop order in perturbation theory.

3.1.1 Renormalization of composite operators

The renormalization of composite operators will be analysed in this section.
We will study single trace operators which are built of scalar fields that be-
long either to N = 4 or N = 2 super Yang Mills gauge multiplets. As it
was mentioned above, the gauge coupling constant g of the N = 4 theory is
not renormalised, but non-BPS gauge invariant local composite operators are
renormalised in general. So, the bare scaling dimension of a gauge invariant

5SU(4) and SO(6) are locally equal, and the 6 of SU(4) is the fundamental representa-
tion of SO(6).
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operator acquires corrections at the quantum level, the so-called anomalous
dimension.

In general, composite operators of the same bare dimension and the quan-
tum numbers can be mixed by quantum corrections, if we work in a massless
field theory. However in a massive field theory, it is also possible to have mixing
of operators of different dimensions. Since, we have only considered massless
theories we are not interested in this case. There is a basis of operators in
which they are renormilized multiplicatively. We may then diagonalize the
two point functions in this basis. The renormalized operator will be a rescaled
version of the operator which consists of the bare fields

OA = ZA
BOB

ren, (3.14)

in a particular basis. The renormalization factor is found by studying the
following correlator. The bare and the renormalized correlators are related by

〈X iL . . .X il+1X il . . .X i1OA〉 = Z
L/2
X ZA

B〈X iL
r . . .X il+1

r X il
r . . . X

i1
r OB

r 〉, (3.15)

where X i = Z
1/2
X X i

r, such that the correlator 〈X iXj〉 to be finite. Zs depend
on the ultraviolet cut off and the couling. Since, we may encounter operator
mixing, the anomalous dimension of an operator is generalized to the matrix
of anomalous dimension which is given by

Γ =
dZ

d lnΛ
· Z−1. (3.16)

By diagoanalizing Γ we find operators which are multiplicatively renor-
malizable, with the anomalous dimension to be the corresponding eigenvalue.
Then, the two point correlator reads

〈O′(x)O′(y)〉 =
c

|x− y|2(∆+γ)
, (3.17)

where O′ is the operator that corresponds to an eigenvector of Γ with eigen-
value γ, and c is a constant. The correlator depends only on |x − y| because
of translation and Lorentz invariance. The power is determined by the fact
that it is a homogeneous function under rescaling. If the gauge coupling is
small, then the quantum corrections are small enough (i.e. γ � ∆) and the
correlator can be expanded as

〈O(x)O(y)〉 =
c

|x− y|2∆ (1 − γln(Λ2|x− y|2) + ...), (3.18)
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where Λ is the ultraviolet cutoff.

3.1.2 One-loop anomalous dimension in N = 4 SYM

We initially consider operators in the SO(6) sector of the general form

O(x) =
1

NL/2
Tr(X i1...X iL), (3.19)

where i1, ..., iL = 1, ...6. We will now proceed to the calcuation of the matrix
of anomalous dimension at one loop in large N limit. Note that only two
of the L legs are relevant in the current one-loop computation, and only the
nearest-neighbour interactions are relevant since they give planar diagrams,
while non-planar interactions are suppressed in the large-N limit. At the one-
loop, there are three diagrams that contribute to the two-point function: (a)
self-energy, (b) gluon exchange, and (c) scalar four-vertex diagrams. However,
here we only need to compute the four-scalar diagram. The vertex of this
diagram is readily found by inspection of the last term of the N = 4 super
Yang Mills action. The vertex is N2

2g2 (2δ
jl+1

il
δjl

il+1
− δjl

il
δ

jl+1

il+1
− δilil+1

δjljl+1)

+ +

Figure 3.1: One loop diagrams. The thick horizontal lines represent the com-
posite operator

It is convenient now to introduce the operators that act on the SO(6)
indices

Il,l+1...δ
jl

il
δ

jl+1

il+1
... = ...δjl

il
δ

jl+1

il+1
...

Kl,l+1...δ
jl

il
δ

jl+1

il+1
... = ...δilil+1

δjljl+1... (3.20)

Pl,l+1...δ
jl

il
δ

jl+1

il+1
... = ...δ

jl+1

il
δjl

il+1
.....

The four-scalar diagram yields a Z factor which is
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Z
...jljl+1....
...ilil+1... = (Il,l+1 − λ(2Pl,l+1 −Kl,l+1 − Il,l+1)

∫

d4q

(2π)4

1

q4
)...δjl

il
δ

jl+1

il+1
...⇒

Z
...jljl+1...
...ilil+1... = (Il,l+1 −

λ

16π2
lnΛ(2Pl,l+1 −Kl,l+1 − Il,l+1))...δ

jl

il
δ

jl+1

il+1
..., (3.21)

where λ ≡ Ng2 is ’t Hooft parameter and the gauge indices are supressed.
The other two diagrams are clearly diagonal in the SO(6) indices. So, their
contribution will be of the form

Z
...jljl+1...
...ilil+1... = (Il,l+1 + C

λ

16π2
lnΛIl,l+1)...δ

jl

il
δ

jl+1

il+1
..., (3.22)

where C is a constant to be determined. Thus, by adding the above results
we find the matrix of anomalous dimensions for operators that are built from
scalar fields of N = 4 SYM is

Γ =
λ

16π2

L
∑

l=1

(C ′Il,l+1 − 2Pl,l+1 +Kl,l+1). (3.23)

This result is valid in the more general sector, SO(6). Any chiral primary
operator is known to have Γ = 0. According to Eq.(3.11), chiral primaries are
symmetric and traceless in the SO(6) indices., so the action of Pl,l+1 on them
will give one and the action of Kl,l+1 zero. Hence, C ′ = 2.

If we are now restricted to the SU(2) sector, there is no contribution from
the Kl,l+1 operator6, so the matrix of the anomalous dimension reduces to

ΓSU(2) =
λ

8π2

L
∑

l=1

(Il,l+1 − Pl,l+1). (3.24)

It is now noticed that this operator is identified with the Hamiltonian of the
XXX Heisenberg spin chain. The operators in the SU(2) sector are of the
form Tr(ZL−MWM). If we consider that Z field corresponds to spin up state
and W field to spin down then the energies of various states correspond to the
anomalous dimensions of the operators. Furthermore, the Hamilatonian can
also be written as

H =
λ

8π2

n
∑

l=1

(
1

2
− 2Sl · Sl+1). (3.25)

6In order for the Kl,l+1) operator not to give zero we should also include the complex
scalar fields in the SU(2) sector, but this is not the case.
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The ground state has all spins up and corresponds to the chiral primary oper-
ator Tr(ZL). The excitations about the ground state correspond to operators
which are not chiral primaries, so the receive quantum corrections to their bare
dimension.

3.1.3 One-loop anomalous dimension in N = 2 theories

We will firstly study the case of the gauge Lagrangian and then we will couple it
to the hypermultiplet Lagrangian. The crucial difference from the N = 4 super
Yang Mills is that the coupling constant now receives quantum corrections.
The relation of the bare and the remnormalized coupling constants is g = Zggr.
The β function of the N = 2 theories is

β(g) = − g3

16π2
b0, (3.26)

where b0 = −Nf for the hyper-Lagrangian and b0 = 2Nc for the gauge La-
grangian. By the definition of β function we have

β(g) ≡ Λ
∂

∂Λ
gr = −gΛ ∂

∂Λ
logZg = − g3

16π2
b0 (3.27)

one can derive the expression for Zg

Zg = 1 − g2b0
16π2

lnΛ. (3.28)

We consider the operators of the form

O(x) =
1

NL/2
Tr(φi1...φiL), (3.29)

where i1, ..., iL = 1, 2. The diagrams that we now compute are the same as
in Fig.(3.1). We follow the same procedure, so we focus only in the nearest-
neighbors interaction in order to take only the planar diagrams which lead to
the large Nc limit. In the case of the gauge Lagrangian the self energy diagram
vanishes, meaning that the fields are renormalized such that Z

1/2
φ = Zg. So,

there are two remaining diagrams. The four-scalar vartex diagram is computed
in exactly the same way as before and it yields

Z
...jljl+1...
4ϕ,...ilil+1... = (Il,l+1 −

λ

16π2
lnΛ(2Pl,l+1 −Kl,l+1 − Il,l+1))...δ

jl

il
δ

jl+1

il+1
.... (3.30)

For the diagram with gluon exchange we take
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Z
...jljl+1...
gluon,...ilil+1... = (Il,l+1 −

λ

16π2
lnΛIl,l+1)...δ

jl

il
δ

jl+1

il+1
.... (3.31)

Since, in our case the coupling constant runs, in order to find the one-loop
correction to the correlator of the form

〈ϕiL . . . ϕil+1ϕil . . . ϕi1O〉 = Z
L/2
φ Z〈ϕiL

r . . . ϕil+1

r ϕil
r . . . ϕ

i1
r Or〉, (3.32)

we must multiply the RHS of Eq.(3.32) a factor of Zg for each field. In the case
of the gauge Lagrangian, this will lead us to one more term that we should
take into account, which is

Z
...jljl+1...
g,...ilil+1... = (Il,l+1 +

λ

8π2
lnΛIl,l+1)...δ

jl

il
δ

jl+1

il+1
... (3.33)

By adding Eqs.(3.30), (3.31) and (3.33) we get

Z
...jljl+1...
...ilil+1... = (Il,l+1 +

λ

16π2
lnΛ(Kl,l+1 + 2Il,l+1 − 2Pl,l+1))...δ

jl

il
δ

jl+1

il+1
.... (3.34)

So, the matrix of anomalous dimensions is the same as in the N = 4 case
(in the SO(6) sector), but now, the indices of the scalar fields take only two
values. Thus,

Γ =
λ

16π2

L
∑

l=1

(2Il,l+1 − 2Pl,l+1 +Kl,l+1). (3.35)

It is noticed that operators which are built of products of the complex
scalar field φ have zero anomalous dimensions, in a similar way with SU(4)
case. This suggest to take them as the ground state of the spin chain. We
identify φ̄ with the spin up state and the φ with the spin down.

The matrix of anomalous dimensions can be written in the basis of sigma
matrices σµ ≡ (1, σx, σy, σz) In this basis the real scalar fields are represented
by ϕ1 → (1 0) and ϕ2 → (0 1). The permutation operator is writen as

P
jljl+1

ilil+1
=

1

2

3
∑

µ=0

(σµ)jl

il
(σµ)

jl+1

il+1
, (3.36)
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and the trace operator is

K
jljl+1

ilil+1
=

1

2

3
∑

µ=0

αµ(σµ)jl

il
(σµ)

jl+1

il+1
(3.37)

where αµ = (1, 1,−1, 1). By changing basis, the matrix of anomalous dimen-
sions is shown that is identical with the Hamiltonian of an XXZ spin chain:

Γ = − λ

32π2

L
∑

l=1

[(σx)l(σ
x)l+1 + (σy)l(σ

y)l+1 + 3 ((σz)l(σ
z)l+1 − 1l1l+1)]

≡ HXXZ.(3.38)

We finally show that when we couple the N = 2 gauge and hyper La-
grangian result remains the same. In this case, β function reads

β(g) = − g3

16π2
(2Nc −Nf ), (3.39)

This leads to a contribution to the renormalization factor that is associated
with the renormalization of the coupling constant.

Z
...jljl+1...
g,...ilil+1... = (Il,l+1 + (

g2Nc

8π2
− g2Nf

16π2
)lnΛIl,l+1)...δ

jl

il
δ

jl+1

il+1
... (3.40)

The term with Nf will cancel with a term coming from the self energy diagram.
In the hyper Lagrangian the scalar fields of the gauge multiplet couple to the
fermions of the hypermultiplet through two Yukawa terms. These terms give
a correction to the self energy of the scalar fields. So, the contribution of the
diagram in Fig.(3.2) to the first diagram of Fig. (3.1) will give a Zs.e. factor

Z
...jljl+1...
s.e.,...ilil+1... = (Il,l+1 +

g2Nf

16π2
lnΛIl,l+1)...δ

jl

il
δ

jl+1

il+1
... (3.41)

It is therefore clear that the two contributions that contain the Nf cancel and
the result remains uneffected.
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Figure 3.2: The correction to the self energy of scalar fields due to the Yukawa
interactions among the scalars of the gauge multiplet and the fermions of the
hypermultiplet. This diagram contributes to the first diagram of Fig.(3.1)
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