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Abstract of the Dissertation

Computer Aided Synthesis of Rational Motions under

Kinematic Constraints

by

Zhe Jin

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2008

This dissertation deals with the problem of synthesizing rational motions of a

rigid body that satisfy kinematic constraints imposed by planar, spherical, and

spatial kinematic chains. The dissertation brings together the well-known kine-

matics of various kinematic chains and the recently developed freeform rational

motions to synthesize the constrained rational motions for Cartesian motion

planning. The kinematic constraints under consideration are workspace re-

lated constraints that limit the position of the end link of open chains and the

coupler link of closed chains.

Planar quaternions, quaternions, and dual quaternions are used to repre-

sent planar, spherical, and spatial displacements, respectively. In this way,
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displacements of a rigid body in Cartesian space are mapped into points in

quaternion space, and the kinematic constraints are transformed into geo-

metric constraints, such as circle, circular ring, spherical and hyperboloidal

shells in quaternion space. Thus, the problem of rational motion interpolation

is transformed into that of rational curve interpolation, where the standard

scheme for curve interpolation in Computer Aided Geometric Design (CAGD)

can be applied. For the constrained curve interpolation this dissertation de-

velops several efficient numerical algorithms that include smooth piecewise

rational Bézier interpolation on a circle, smooth rational B-spline interpola-

tion inside an n-spherical shell and within intersection of two hyperboloidal

shells.

The last portion of the dissertation adopts a different approach for rational

motion interpolation of planar chains in a parametric space defined by the

elements of planar displacement matrix. This approach has the advantage of

being direct and yields lower degree motions.

The results of this dissertation have applications in Cartesian motion plan-

ning in robotics and task specification for task driven design of robots and

mechanisms.
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Chapter 1

Introduction

This dissertation deals with the problem of synthesizing rational motions of a

rigid body under kinematic constraints that are imposed by open and closed

kinematic chains. In this introductory chapter, a general overview on back-

ground and the existing work in the area of motion planning is presented

followed by the main contributions of this dissertation.

Kinematics (Reuleaux [6], Hunt [7], Bottema and Roth[8], Angeles[9], Mc-

Carthy [10]) deals with the phenomenon of motion without regard to the

cause of the motion. The area of Computer Aided Geometric Design (CAGD)

(Farin [11, 12], Farin et al. [13], Hoschek and Lasser [14], Piegl and Tiller [15],

Gallier [16]) is concerned with the approximation and representation of curves

and surfaces that arise when these objects have to be processed by computer.

Since the seminal work of Shoemake [17], the past two decades have witnessed

significant progress in merging of the field of Computer Aided Geometric De-

sign and Kinematics for the development of rational Bézier and B-spline mo-

tions of rigid bodies. The idea behind such a synergy is that the problem of
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designing rational motions of rigid bodies can be transformed into the problem

of designing rational curves in a higher dimensional projective space via spe-

cial mappings. By choosing quaternion representations for the planar, spher-

ical, and spatial displacements, the problem is further reduced to designing

curves in the space of planar quaternions, quaternions, and dual quaternions,

respectively (Bottema and Roth [8] and McCarthy [10]). Rational motions,

with applications spanning across areas such as motion animation in com-

puter graphics, task specification in mechanism synthesis, and virtual reality

systems as well as Cartesian motion planning in robotics, are an attractive

proposition since they integrate well with the industry standard Non-uniform

Rational B-spline (NURBS) based CAD/CAM system. Furthermore, from a

computational perspective they can easily exploit fast and stable algorithms

from CAGD.

The earliest instance of such a synergistic endeavor is found in Shoe-

make’s [17] work, who extended the idea of linear interpolation in affine spaces

to the spherical linear interpolation (slerping) of quaternions. Since then, there

has been quite some work on the synthesis of spherical motions by designing

quaternion based splines such as Pletinckx [18], Dam et al. [19], Duff [20], Kim

et al. [21], Kim and Nam [22], Nielson [23, 24], Wang and Joe [25], and Barr

et al [26]. Ge and Ravani [27, 28] extended this technique of motion synthe-

sis to the domain of spatial motion interpolation by using a dual quaternion

approach. Their work was further refined by Jüttler and Wagner [29], Wag-

ner [30], and Purwar and Ge [31]. A comprehensive list of references on the
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topic of free-form rational motion design can be found in a survey paper by

Röschel [32], and the most updated ones can be found in Purwar [33].

Despite all the advances in the area of rational motion design, none of the

aforementioned work deals with design of rational motions under kinematic

constraints. The seemingly related work by Horsch and Jüttler [34] and Wag-

ner and Ravani [35] seeks direct application of rational motions to Cartesian

motion planning of robots and has not dealt with rational motions under kine-

matic constraints. Ge and Larochelle [36] presented a preliminary framework

for approximating algebraic motions of four-bar spherical mechanisms with

rational B-Spline spherical motions.

This dissertation deals with rational motion interpolation under kinematic

constraints of open and closed kinematic chains. With the aid of quaternion

representations of planar, spherical, and spatial displacements, the workspace

constraints of the end link of open kinematic chains or the coupler link of

closed kinematic chains can be transformed into geometric constraints (al-

gebraic equations such as circles and circular rings). Thus, the problem of

synthesizing the Cartesian rational motion under the kinematic constraints

is converted into one that deals with geometric constraints in the space of

quaternions (planar quaternions, quaternions, or spatial quaternions).

As mentioned above, the problem of rational motion interpolation un-

der kinematic constraints of kinematic chains is reduced to that of rational

curve interpolation under geometric constraints in quaternion space. Hofer

and Pottmann have done some work on spline curve interpolation on surfaces
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of arbitrary dimensions by variational approach (Hofer et al. [37, 38, 39] and

Pottmann et al. [40]). They proposed an algorithm that minimizes an energy

of curves on surfaces of arbitrary dimension and codimension. They also pro-

posed a subdivision based algorithm for interpolation such that the chosen

feature points of the moving object follow smooth trajectory. Pobegailo [41]

gave a method to design motion by using B-spline interpolant and exploiting

the affine connection, when the parameterized curve is given. If the geometric

constraint transformed from its kinematic constraint is a surface in quaternion

space, we can apply the methods developed by Hofer and Pottmann. But kine-

matic constraints of kinematic chains can be curves, constrained regions on a

plane, or intersection of two geometric objects, etc. For example, in planar

quaternion space, the kinematic constraint of planar 3R open chain is a circular

ring and the kinematic constraint of planar 6R closed chain is the intersection

of two hyperboloidal shells. Thus, we proposed different approaches in this

dissertation for rational motion interpolation under kinematic constraints of

kinematic chains (see Jin and Ge [1, 2, 3] and Purwar and Jin[4, 5]).

This dissertation deals with the following constrained motion interpolation

problem:

Given: A set of the positions of the end link of a kinematic open chain

or the coupler link of a kinematic closed chain in its workspace as well as

the parameter values ui, i = 0, ..., L and the configuration of corresponding

kinematic chain.

Find: A smooth rational motion of the end link of the kinematic open chain

4



or the coupler link of the kinematic closed chain that interpolates through the

given positions at the parameter values and satisfies the kinematic constraints

of corresponding kinematic chain.

Through the use of planar quaternions, it is shown that the problem of

synthesizing the Cartesian rational motion of a planar 2R open chain can be

reduced to that of circular interpolations in two separate planes. Piecewise ra-

tional Bézier interpolation on a circle can be applied (see Forrest (1968), Piegl

and Tiller (1987, 1989) for details). Furthermore, the problem of synthesizing

the Cartesian rational motion of a planar 3R arm can be reduced to that of

circular interpolation in one plane and constrained spline interpolation in a

circular ring. Meek and Ong [42] proposed an algorithm which constructs a

G2 interpolating curve on one side of a polyline or on the constrained poly-

line. This dissertation develops an algorithm which can produce a smooth (C2

or higher) rational B-spline curve within an n-spherical Shell (when n = 3,

the constraint is a three dimensional concentric spherical shell; when n = 2,

the constraint is a two dimensional concentric circular ring and if n = 1, the

constraint is a band). Due to the limitation of circular interpolation, only C1

continuous rational motions are generated. For applications that require C2 or

higher continuous motions, the dissertation presents a method for generating

smooth (C2 or higher) motions that approximate the kinematic constraints for

planar 2R and 3R open chains. For the planar 6R close chain, the kinematic

constraint is transformed into the intersection of two hyperboloidal shells in

planar quaternion space. In the past some work has been done on design-
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ing splines on quadrics and hypersurfaces (see Gfrerrer [43] and Wang and

Joe [44]) as well as on surfaces of arbitrary dimension and codimension (Hofer

and Pottmann [39]). Given a set of positions within the workspace of a pla-

nar 6R closed chain, a freeform rational B-spline motion is used to interpolate

the given positions. To ensure that the entire motion satisfies the kinematic

constraints, an algorithm is developed that detects an extreme position on

the rational motion that violates the kinematic constraints. This position is

then modified so that it is in compliance with the kinematic constraints and is

added to the list of positions to be interpolated. Since we require the modified

new positions to be minimally away from the extreme positions, the issue of

finding new positions can be seen as a normal distance minimization problem

in the image space subject to certain constraints. Ravani and Roth [45] pro-

posed a general algebraic method for approximate normal distance calculation

between the image curve and a given position in the image space. Later on,

Bodduluri and McCarthy [46] used their method for finite position synthesis

of a spherical four-bar motion. In this dissertation we modify their methods

to find new positions which are projected onto kinematic constraint mani-

folds from extreme positions. By repeating this process, one obtain a rational

B-spline motion such that it fully satisfies the kinematic constraints of the

planar 6R closed chain. As planar 5R and 4R closed chains can be obtained

by holding one or two joints fixed, the above mentioned algorithm for planar

6R closed chain is also shown to be applicable to the problem of synthesizing

rational motions for planar 5R and 4R chains.
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Similarly, through the use of quaternions, it is shown that the problem of

synthesizing the Cartesian rational motion of a spherical 2R open chain can be

reduced to that of circular interpolations in two separate planes. The problem

of synthesizing the Cartesian rational motion of a spherical 3R open chain can

be reduced to that of constrained spline interpolation in two different planes.

We show that in case of the spherical 3R open chain, it is possible to get

an exact C2 or higher continuous rational motion, while the same method

can be used to synthesize a C2 or higher continuous rational motion for a

spherical 2R open chain that approximates the kinematic constraint within

the limits of a user defined value. Furthermore, the kinematic constraint of

a spherical 6R closed chain is transformed into geometric constraint, which is

the intersection of two hyperboloidal shells in quaternion space. We can apply

a numerical algorithm similar to the one developed for planar 6R closed chain.

As spherical 5R and 4R closed chains can be obtained by holding one or two

joints fixed, the above mentioned algorithm for spherical 6R closed chain is

also shown to be applicable to the problem of synthesizing rational motions

for spherical 5R and 4R closed chains.

The spatial displacement is represented by a dual quaternion (see Bottema

and Roth [8] and McCarthy [10] for quaternion representations of displace-

ments). In this way, the kinematic constraints of the ADEPT robot are trans-

formed into geometric constraints of circle, circular ring, and band. Thus, the

same algorithms for planar 2R and 3R open chains can be applied. For the

case of spatial SS open chain, we develop an algorithm which is similar to the

7



one for planar or spherical 6R closed chain.

In Kinematics, it is well known that by using quaternion representation of

displacement the elements of displacement matrix are quadratic in terms of

the coordinates of quaternions (see Bottema and Roth [8] and McCarthy [10]).

Therefore, if the interpolating curve in quaternion space is a polynomial func-

tion of degree n, then the corresponding displacement matrix represents a

rational motion of degree 2n, which means the degree of the Cartesian motion

is doubled. To overcome this disadvantage, we formulate the kinematic con-

straints of planar open and closed chains in terms of the elements of planar

displacement matrix, thus give rise to the constraint manifold in the parameter

space of displacement matrix elements. In the space of planar displacement

matrix elements, this manifold is given by algebraic equations and can be seen

as describing geometric constraints. Iterative algorithms are developed which

are similar to those proposed for planar open and closed kinematic chains.

Advantages of directly using the elements of displacement matrix (as opposed

to quaternions) for motion interpolation are that the interpolation process is

straightforward and the resulting motion is of lower degree; e.g., cubic inter-

polation of planar quaternions produces a motion of degree six, while that of

the elements of displacement matrices produces a motion of degree three only.

We note that the degree mentioned here pertains to the motion interpolation

parameter, usually associated with time.

The rest of the dissertation is organized as follows. Chapter 2 reviews rep-

resentations of planar, spherical, and spatial displacements in terms of planar

8



quaternions, quaternions, and dual quaternions, respectively. Chapter 3 deals

with the formulation of kinematic constraints of planar, spherical, and spatial

mechanisms. Chapter 4 studies the problem of synthesizing rational motions

of a rigid body under kinematic constraints that are imposed by planar and

spherical 2R and 3R open chains. Chapter 5 deals with the synthesis of ra-

tional motions under kinematic constraints of planar and spherical 4R, 5R,

and 6R closed chains. Chapter 6 studies the problem of synthesizing rational

motions under kinematic constraints of spatial mechanisms, such as spatial SS

open chain and ADEPT robot. Chapter 7 deals with the problem of synthe-

sizing rational motions under kinematic constraints of planar open and closed

kinematic chains by investigating the matrix representation of planar displace-

ments directly. The final chapter summarizes the results of this research.
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Chapter 2

Displacements and Quaternions

2.1 Introduction

This chapter deals, at the fundamental level, with the geometry of displace-

ments as well as the quaternion representations of planar, spherical, and spa-

tial displacements. Details about displacements and quaternions can be found

in Bottema and Roth [8] and McCarthy [10], and Appendix A summarizes

quaternion algebra.

The organization of this chapter is as follows. Section 2.2 reviews a for-

mulation of spherical displacements using quaternions. Section 2.3 presents

a formulation of planar displacements using planar quaternions. Section 2.4

shows a spatial displacement and its dual quaternion representation.

2.2 Spherical Displacements and Quaternions

The rotation of a three dimensional body, M, with respect to a fixed body, F,

can be viewed as a displacement of the frame M from an initial position coin-
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ciding with F to its final position. Let x and X be three dimensional vectors

defining coordinates of a point P in M and F, then under this displacement

the point P is constrained to lie on a sphere and this displacement is termed

a spherical displacement.

Any rotation in three-dimensional space has a rotation axis and a rotation

angle about this axis. Let s = (sx, sy, sz) denote a unit vector along the axis

and θ denote the angle of rotation. They can be used to define the so-called

Euler-Rodrigues parameters:

q1 = sx sin(θ/2), q2 = sy sin(θ/2), q3 = sz sin(θ/2), q4 = cos(θ/2). (2.1)

The Euler-Rodrigues parameters and the quaternion units, 1, i, j,k can be

combined to define a quaternion of rotation:

q = q1i + q2j + q3k + q4. (2.2)

A quaternion q, at times, is also written as an ordered quadruple (q1, q2, q3, q4).

Since q2
1 +q2

2 +q2
3 +q2

4 = 1, q is also called a unit quaternion. Details on quater-

nions are found in Bottema and Roth [8] and McCarthy [10], and Appendix A

summarizes quaternion algebra.

If we consider x and X as the vector quaternions (no coefficient of 1), then

the rotation is given by the quaternion equation

X = qxq∗ (2.3)

where q∗ = q4 − q1i − q2j − q3k is the conjugate of q.
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We can apply homogeneous transform matrix form to represent the Eq. (2.3):

[

X

1

]

= [A]

[

x

1

]

, (2.4)

where

[A] =
1

S2









q2
4 + q2

1 − q2
2 − q2

3 2(q1q2 − q4q3) 2(q1q3 + q4q2) 0
2(q2q1 + q4q3) q2

4 − q2
1 + q2

2 − q2
3 2(q2q3 − q4q1) 0

2(q3q1 − q4q2) 2(q3q2 + q4q1) q2
4 − q2

1 − q2
2 + q2

3 0
0 0 0 S2









,

(2.5)

where S2 = q2
1 + q2

2 + q2
3 + q2

4 . Details about quaternion algebra can be found

in Appendix A.

Note that when qi is replaced by Qi = wqi (i = 1, 2, 3, 4), where w is a

nonzero scalar, the matrix [A] is unchanged. Thus, the quaternion components

of q can be considered as homogeneous coordinates of a rotation.

Quaternion algebra is also used for composing two successive rotations. Let

Q0,Q1 denote two rotations. The composition of two rotations Q1 followed

by Q0 is given by the quaternion product Q0Q1.

2.3 Planar Displacements and Planar Quater-

nions

It is shown that a spherical displacement can be represented by a quaternion

in section 2.2. Similarly, a planar displacement can be represented by a planar

quaternion (see Bottema and Roth [8] and McCarthy [10]). Planar quater-

nions have been used for designing planar open and closed chains (Ravani and

Roth [45], Larochelle [47], Murray et al. [48], Perez and McCarthy [49]).
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For a planar displacement shown in Figure 2.1, let d1, d2 denote the co-

ordinates of the origin of the moving frame M in the fixed frame F and α

denote the rotation angle of M relative to F. Then a planar displacement can

be represented by a planar quaternion, Z = Z1ǫi + Z2ǫj + Z3k + Z4, where

(i, j,k, 1) form the quaternion basis and ǫ is the dual unit with the property

ǫ2 = 0. The components of the planar quaternion, Z = (Z1, Z2, Z3, Z4), are

given by

Z1 = (d1/2) cos(α/2) + (d2/2) sin(α/2),
Z2 = −(d1/2) sin(α/2) + (d2/2) cos(α/2),
Z3 = sin(α/2),
Z4 = cos(α/2).

(2.6)

These four components can be identified as coordinates of a point in four

dimensional space. The point Z is called the image point of a planar displace-

ment. The set of image points that represent all planar displacements is called

the image space of planar displacements and is denoted as Σp. In view of (2.6),

the coordinates of an image point must satisfy the equation:

Z2
3 + Z2

4 = 1. (2.7)

The above equation may be interpreted as defining a hyper-circular cylinder

in four dimensions.

If the point x = (x, y) in R
2 is identified with x = yiǫ− xiǫ + k, then the

result of planar displacement of x is obtained by

X = ZxZ∗, (2.8)

where Z = Z4 − Z1ǫi − Z2ǫj − Z3k is the conjugate of Z.
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Figure 2.1: A planar displacement.

We can use homogeneous transform matrix to represent Eq. (2.8):

[

X

1

]

= [A]

[

x

1

]

, (2.9)

where

[A] =
1

Z2
3 + Z2

4





Z2
4 − Z2

3 −2Z3Z4 2(Z1Z4 − Z2Z3)
2Z3Z4 Z2

4 − Z2
3 2(Z1Z3 + Z2Z4)

0 0 Z2
3 + Z2

4



 . (2.10)

Note that when Zi (i = 1, 2, 3, 4) is replaced by wZi, where w is a nonzero

scalar, the matrix [A] is unchanged. From this perspective, the four compo-

nents of a planar quaternion can also be considered as a set of homogeneous

coordinates for a planar displacement.

Quaternion algebra is also used for composing two successive planar dis-

placements. Let Z0,Z1 denote two planar displacements. The composition of

two planar displacements Z1 followed by Z0 is given by the quaternion product

Z0Z1.
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2.4 Spatial Displacements and Dual Quater-

nions

2.4.1 Spatial Displaements

Figure 2.2: A spatial displacement.

A spatial displacement (see Figure 2.2) is most commonly represented as

a rigid transformation from M to F in terms of point coordinates:

[

X

1

]

=

[

[R] d

0 0 0 1

] [

x

1

]

, (2.11)

where X and x are vectors whose scalar components are the Cartesian co-

ordinates of the point as measured in F and M, respectively. The rotation

matrix [R] can be parameterized with quaternions q = (q1, q2, q3, q4) where

qi, i = 1, 2, 3, 4 are given by Eq. (2.1):

[R] =
1

S2





q2
4+q2

1−q
2
2−q

2
3 2(q1q2−q4q3) 2(q1q3+q4q2)

2(q2q1+q4q3) q2
4−q

2
1+q2

2−q
2
3 2(q2q3−q4q1)

2(q3q1−q4q2) 2(q3q2+q4q1) q2
4−q

2
1−q

2
2+q2

3



 , (2.12)
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where S2 = q2
1 + q2

2 + q2
3 + q2

4 .

The use of such matrix representation, however, is not convenient when

dealing with the problem of synthesizing a rational motion that interpolates

or approximates a set of displacements. One of the main obstacles is the

issue of preserving the orthogonality of the rotation matrix in the interpola-

tion/approximation process (Fillmore [50], Röschel [32]). It has been recog-

nized that an effective way of dealing with the problem is to use dual quater-

nions (Ge and Ravani [27]). In what follows, we review the concepts dual

quaternions in so far as necessary for the development of the current chapter.

2.4.2 Dual Quaternions

Dual quaternions Q̂ = Q + ǫQ0 can represent spatial displacements. The real

part Q = Q1i+Q2j+Q3k+Q4 is defined by the homogeneous Euler parameters

of rotation, see Eq. (2.1). The dual part, Q0, is given by the formula:









Q0
1

Q0
2

Q0
3

Q0
4









=
1

2









0 −d3 d2 d1

d3 0 −d1 d2

−d2 d1 0 d3

−d1 −d2 −d3 0

















Q1

Q2

Q3

Q4









(2.13)

The translation vector d = (d1, d2, d3) can be recovered from Eq. (2.13) in

terms of (Q,Q0) by using the following

d = −
2

S2





Q0
4Q1 −Q0

1Q4 +Q0
2Q3 −Q0

3Q2

Q0
4Q2 −Q0

2Q4 +Q0
3Q1 −Q0

1Q3

Q0
4Q3 −Q0

3Q4 +Q0
1Q2 −Q0

2Q1



 (2.14)

We now recast Eq. (2.11) in terms of dual quaternions and the homogeneous

16



coordinates of a point P : (P1, P2, P3, P4) of the object (see Sirchia [51]):

P̃ = QPQ∗ + P4[(Q
0)Q∗ −Q(Q0)∗] (2.15)

where Q∗ and (Q0)∗ are conjugates of Q and Q0, respectively and P̃ denotes

homogeneous coordinates of the point after the displacement.

Similar to the spherical case, quaternion algebra is also used for composing

two successive spatial displacements. Let Q̂0, Q̂1 denote two spatial displace-

ments. The composition of the two spatial displacements is given by the

quaternion product Q̂0Q̂1, in the order Q̂0, after Q̂1.

2.4.3 The Image Space

The unit dual quaternion Q̂ = Q + ǫQ0 that represent spatial displacements

must satisfy the two constraints:

Q · Q = Q2
1 +Q2

2 +Q2
3 +Q2

4 = 1, (2.16)

and

Q · Q0 = Q1Q
0
1 +Q2Q

0
2 +Q3Q

0
3 +Q4Q

0
4 = 0. (2.17)

The first ensures that Q is a unit quaternion and the second comes from

the definition of the dual part Q0. The set of points (Q,Q0) in R
8 is a six

dimensional algebraic manifold of R
8, and is termed the image space of spatial

displacements (denoted as Σ).

Another way to view this manifold is considering the dual constraint equa-
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tion

Q̂ · Q̂ = Q̂2
1 + Q̂2

2 + Q̂2
3 + Q̂2

4 (2.18)

= Q2
1 +Q2

2 +Q2
3 +Q2

4 + ǫ(Q1Q
0
1 +Q2Q

0
2 +Q3Q

0
3 +Q4Q

0
4) = 1.

This is the equation of a unit hypersphere in a space of four dual dimensions.

Thus the dual four dimensional points that represent spatial displacements lie

on a dual hypersphere.
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Chapter 3

Kinematic Constraints of

Planar, Spherical, and Spatial

Mechanisms

3.1 Introduction

This chapter deals with in so far as necessary the formulation of kinematic con-

straints of planar, spherical, and spatial mechanisms using quaternion based

representation found in McCarthy [10] and Ge [52].

The organization of this chapter is as follows. Section 3.2 presents the

constraint manifolds of planar 2R, 3R open chains and planar 4R, 5R, and

6R closed chains using planar quaternions. Section 3.3 reviews kinematic con-

straints of spherical 2R, 3R open chains and spherical 4R, 5R, and 6R closed

chains using quaternions. Section 3.4 shows the kinematic constraints of spa-

tial SS open chain and ADEPT robot using dual quaternions.
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3.2 Kinematic Constraints of Planar Mecha-

nisms

This section reviews the formulation of kinematic constraints of planar 2R, 3R

open chains and planar 4R, 5R, and 6R closed chains.

3.2.1 Planar 2R Open Chain

Figure 3.1: A planar 2R open chain.

A kinematic chain connected by two revolute joints with parallel axes is

called a planar 2R open chain, see Figure 3.1. We attach a fixed frame O

to the base and moving frames A, B to each of the links. The joint angles

θ, φ are for the first and the second joints respectively and the link length is

denoted as a.

A position of the second link is the composition of a rotation of frame A

relative to the frame O followed by another displacement of B relative to A.

The rotation of A is represented by the planar quaternion Z(θ) = sin(θ/2)k+

cos(θ/2) which defines an image point Z(θ) = (0, 0, sin(θ/2), cos(θ/2) in the
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image space of planar displacements Σp. The displacement of B relative to

A is a translation along x-axis by a distance a followed by a rotation about

the z-axis by an angle φ. The translation is given by the planar quaternion

X(a) = 1 + (a/2)ǫi which defines an image point X(a) = (a/2, 0, 0, 1). The

rotation is represented by the image point Z(φ) = (0, 0, sin(φ/2), cos(φ/2)).

Their product is the image point defining a general position for the second

link of the planar 2R open chain:

Z(θ, φ) = Z(θ)X(a)Z(φ). (3.1)

Expanding Eq. (3.1), we obtain Z(θ, φ) = (Z1, Z2, Z3, Z4) where

Z1 = (a/2) cos((θ − φ)/2),
Z2 = (a/2) sin((θ − φ)/2),
Z3 = sin((θ + φ)/2),
Z4 = cos((θ + φ)/2).

(3.2)

It is clear from the above equations that the four components of the planar

quaternion must satisfy the algebraic equations:

Z2
1 + Z2

2 = a2/4. (3.3)

Z2
3 + Z2

4 = 1. (3.4)

Eqs.(3.3) and (3.4) characterize the kinematic constraints of a planar 2R

open chain and are said to define the constraint manifold for the 2R open

chain (McCarthy [10]).

3.2.2 Planar PR Open Chain

A displacement of the second link is the composition of a translation of frame

A relative to the frame O followed by another rotation of B relative to A.
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Figure 3.2: A planar PR open chain.

The translation of A is given by the planar quaternion X(b) = 1 + (b/2)ǫi.

The rotation of B is represented by the planar quaternion Z(θ) = sin(θ/2)k+

cos(θ/2). We obtain

Z(θ, b) = (
b

2
cos

θ

2
,−

b

2
sin

θ

2
, sin

θ

2
, cos

θ

2
). (3.5)

Let b1, b2 denote the lower and upper limits for the range of travel of the

prismatic joint, then in addition to the common circle constraint (2.7) we have

the kinematic constraints for planar PR open chain:

Z1 =
b

2
Z4,

Z2 = −
b

2
Z3,

b1 ≤ b ≤ b2.

(3.6)

3.2.3 Planar RP Open Chain

Similar to a planar PR open chain, the planar quaternion for the end link of

RP open chain is given by

Z(θ, b) = (
b

2
cos

θ

2
,
b

2
sin

θ

2
, sin

θ

2
, cos

θ

2
). (3.7)
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Figure 3.3: A planar RP open chain.

In addition to the common circle constraint (2.7), we have the kinematic

constraints:

Z1 =
b

2
Z4,

Z2 =
b

2
Z3,

b1 ≤ b ≤ b2.

(3.8)

3.2.4 Planar 3R Open Chain

Figure 3.4: A planar 3R open chain.

Consider a planar 3R open chain with reference frames O, A, B, C, Fig-
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ure 3.4. The length of the first link is a, the length of the second link is b and

θ, φ, ψ are joint angles for three revolute joints respectively. The constraint

manifold of a planar 3R open chain is obtained from that of the 2R open chain

by another displacement of C relative to B. The parameterized equation of the

constraint manifold, Z(θ, φ, ψ), of a 3R robot open chain is obtained by multi-

plying Eq. (3.1) on the right by X(b) = (b/2, 0, 0, 1), which defines a translation

of distance b in the direction of x-axis, and Z(ψ) = (0, 0, sin(ψ/2), cos(ψ/2))

which defines a rotation of angle ψ about z-axis:

Z(θ, φ, ψ) = Z(θ)X(a)Z(φ)X(b)Z(ψ). (3.9)

The coordinates of Z(θ, φ, ψ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 =
a

2
cos

θ − φ− ψ

2
+
b

2
cos

θ + φ− ψ

2
, (3.10)

Z2 =
a

2
sin

θ − φ− ψ

2
+
b

2
sin

θ + φ− ψ

2
,

Z3 = sin
θ + φ+ ψ

2
,

Z4 = cos
θ + φ+ ψ

2
.

From Eq. (3.10), it is not difficult to show that the coordinates, Zi, satisfy

the following equations:

Z2
1 + Z2

2 = a2/4 + b2/4 + (ab/2) cos(φ). (3.11)

Z2
3 + Z2

4 = 1. (3.12)

Since the range of cos(φ) is [-1 1], Eq. (3.11) can be reduced to:

(a− b)2/4 ≤ Z2
1 + Z2

2 ≤ (a+ b)2/4. (3.13)
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Eqs. (3.12) and (3.13) characterize the kinematic constraints of the planar 3R

open chain.

3.2.5 Planar RRP Open Chain

Figure 3.5: A planar RRP open chain.

The planar quaternion associated with the end link is given by

Z(θ, φ, b) = Z(θ)Z(φ)X(b), (3.14)

where Z(θ, φ, b) = (Z1, Z2, Z3, Z4) are

Z1 =
b

2
cos

θ + φ

2
+
a

2
cos

θ − φ

2
, (3.15)

Z2 =
b

2
sin

θ + φ

2
+
a

2
sin

θ − φ

2
,

Z3 = sin
θ + φ

2
,

Z4 = cos
θ + φ

2
.

It is clear from the above equation that the components of the planar
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quaternion must satisfy the algebraic equation:

(Z1 −
b

2
Z4)

2 + (Z2 −
b

2
Z3)

2 =
a2

4
. (3.16)

Eq.(3.16) and the range of b (b1 ≤ b ≤ b2) guarantee the motion is within

workspace.

3.2.6 Planar RPR Open Chain

Figure 3.6: A planar RPR open chain.

The planar quaternion of the end link is given by

Z(θ, b, φ) = Z(θ)X(b)Z(φ), (3.17)

where

Z1 =
b

2
cos

θ − φ

2
, (3.18)

Z2 =
b

2
sin

θ − φ

2
,

Z3 = sin
θ + φ

2
,

Z4 = cos
θ + φ

2
.
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It follows that

b21
4

≤ Z2
1 + Z2

2 =
b2

4
≤
b22
4
, (3.19)

where we assume that b1 ≤ b ≤ b2.

3.2.7 Planar PRR Open Chain

Figure 3.7: A planar PRR open chain.

The planar quaternion for the end link is given by

Z(b, θ, φ) = X(b)Z(θ)Z(φ), (3.20)

where

Z1 =
a

2
cos

θ − φ

2
+
b

2
cos

θ + φ

2
, (3.21)

Z2 =
a

2
sin

θ − φ

2
−
b

2
sin

θ + φ

2
,

Z3 = sin
θ + φ

2
,

Z4 = cos
θ + φ

2
.
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Thus the kinematic constraint associated with the PRR chain is given by

(Z1 −
b

2
)2 + (Z2 +

b

2
Z3)

2 =
a2

4
,

b1 ≤ b ≤ b2.
(3.22)

3.2.8 Planar PRP Open Chain

Figure 3.8: A planar PRP open chain.

The planar quaternion for the end link is given by

Z(b, θ, c) = X(b)Z(θ)X(c). (3.23)

where

Z1 =
b+ c

2
cos

θ

2
, (3.24)

Z2 =
c− b

2
sin

θ

2
,

Z3 = sin
θ

2
,

Z4 = cos
θ

2
.
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The kinematic constraints for the chain are given by

Z1 =
b+ c

2
Z4,

Z2 =
c− b

2
Z3,

b1 ≤ b ≤ b2,
c1 ≤ c ≤ c2.

(3.25)

3.2.9 Planar 4R Closed Chain

Figure 3.9: A planar 4R closed chain.

A planar 4R closed chain is composed of a pair of planar 2R open chains

with their end links rigidly connected, see Figure 3.9. This planar 4R closed

chain has one degree of freedom so the constraint manifold is a curve, which

is the intersection of two constraint surfaces governed by two planar 2R open

chains (see Jin and Ge [53, 54]).

Select the fixed frame F so that it is at the midpoint between a1 and a2,

and the moving frame M at the midpoint between b1 and b2. The position of
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the moving frame M is composed of a translation from F to O1 with a planar

quaternion G1 = (−g/4, 0, 0, 1), a displacement of B1 relative to O1 with

Z(θ1, φ1), and another translation from B1 to M with a planar quaternion

H1 = (h/4, 0, 0, 1). The planar quaternion Z(θ1, φ1) is given by Eq. (3.2)

(see Jin and Ge [53, 54]). Combining all these displacements, we obtain the

following transformation from F to M:

Y1(θ1, φ1) = G1Z(θ1, φ1)H1 = [C1]Z(θ1, φ1), (3.26)

where

[C1] = [G+
1 ][H−

1 ] =









1 0 0 −τ
0 1 σ 0
0 0 1 0
0 0 0 1









, (3.27)

and

σ = (g + h)/4, τ = (g − h)/4. (3.28)

Similarly the planar quaternion representing the other planar 2R open

chain is given by:

Y2(θ2, φ2) = [C2]Z(θ2, φ2), (3.29)

where [C2] is the inverse of [C1]:

[C2] =









1 0 0 τ
0 1 −σ 0
0 0 1 0
0 0 0 1









. (3.30)

The constraint curve for the planar 4R closed chain is the intersection of

the constraint surfaces given by (3.26) and (3.29), that is Y1 = Y2 = Y =
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(Y1, Y2, Y3, Y4). The algebraic equations for the intersection are obtained by

inverting (3.26) and (3.29):

Z(θ1, φ1) = [C2]Y(θ1, φ1), Z(θ2, φ2) = [C1]Y(θ2, φ2). (3.31)

This leads to the kinematic constraints in terms of planar quaternions:

YT [Q1]Y = 0, (3.32)

YT [Q2]Y = 0.

where [Q1], [Q2] are:

[Q1] =









1 0 0 τ
0 1 −σ 0
0 −σ σ2 − a2

1/4 0
τ 0 0 τ 2 − a2

1/4









, (3.33)

and

[Q2] =









1 0 0 −τ
0 1 σ 0
0 σ σ2 − a2

2/4 0
−τ 0 0 τ 2 − a2

2/4









. (3.34)

The kinematic constraints as given by Eq. (3.32) can be rewritten as:

F1(Y1, Y2, Y3, Y4) =
a2

1

4
, (3.35)

and

F2(Y1, Y2, Y3, Y4) =
a2

2

4
, (3.36)

where F1(Y1, Y2, Y3, Y4) and F2(Y1, Y2, Y3, Y4) are given by:

F1(Y1, Y2, Y3, Y4) =
(Y1 + τY4)

2 + (Y2 − σY3)
2

Y 2
3 + Y 2

4

, (3.37)
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and

F2(Y1, Y2, Y3, Y4) =
(Y1 − τY4)

2 + (Y2 + σY3)
2

Y 2
3 + Y 2

4

. (3.38)

The constraint equations of the form, (3.35) and (3.36), will be used for

rational motion synthesis.

3.2.10 Planar 5R Closed Chain

Figure 3.10: A planar 5R closed chain.

Consider a planar 5R closed chain, see Figure 3.10. The constraint manifold

for this planar 5R closed chain is a portion of the constraint surface of a planar

2R open chain cut by the inner and outer boundaries of the constraint manifold

of a planar 3R open chain.

The constraint surface of a planar 2R open chain is given by Eq. (3.26).

The constraint manifold of a planar 3R open chain is given by (see Jin and
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Ge [53]):

Y2(θ2, φ2, ψ2) = [C2]Z(θ2, φ2, ψ2), (3.39)

where [C2] is given by Eq. (3.30) and Z(θ2, φ2, ψ2) is given by Eq. (3.10).

The algebraic equations for the constraint manifolds associated with planar

2R and 3R chains can be obtained as:

YT [Q1]Y = 0, YT [Q2(φ2)]Y = 0. (3.40)

where [Q1] is given by Eq. (3.33) and [Q2(φ2)] is given by:

[Q2(φ2)] =









1 0 0 −τ
0 1 σ 0
0 σ σ2 −R2

2(φ2)/4 0
−τ 0 0 τ 2 − R2

2(φ2)/4









, (3.41)

and

R2
2(φ2) = a2

2 + b22 + 2a2b2 cos(φ2),
|a2 − b2| ≤ R2(φ2) ≤ a2 + b2.

(3.42)

We can rewrite Eq. (3.40) as

F1(Y1, Y2, Y3, Y4) =
a2

1

4
, (3.43)

(a2 − b2)
2

4
≤ F2(Y1, Y2, Y3, Y4) ≤

(a2 + b2)
2

4
. (3.44)

where F1(Y1, Y2, Y3, Y4) and F2(Y1, Y2, Y3, Y4) are given by Eqs. (3.37) and

(3.38) respectively.

Eqs. (3.43) and (3.44) characterize the kinematic constraints of the planar

5R closed chain.
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Figure 3.11: A planar 6R closed chain.

3.2.11 Planar 6R Closed Chain

Consider a planar 6R closed chain, see Figure 3.11. The constraint manifold

for this planar 6R closed chain is the intersection of constraint manifolds of

two planar 3R open chains. Similar to the case of a planar 5R closed chain,

the two constraint manifolds for the 6R chain are given by

Y1(θ1, φ1, ψ1) = [C1]Z(θ1, φ1, ψ1), (3.45)

Y2(θ2, φ2, ψ2) = [C2]Z(θ2, φ2, ψ2).

The algebraic equations for the two manifolds are:

YT [Q1(φ1)]Y = 0, YT [Q2(φ2)]Y = 0, (3.46)
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where [Q2(φ2)] is given by (3.41) and [Q1(φ1)] is:

[Q1(φ1)] =









1 0 0 τ
0 1 −σ 0
0 −σ σ2 −R2

1(φ1)/4 0
τ 0 0 τ 2 − R2

1(φ1)/4









, (3.47)

and

R2
1(φ1) = a2

1 + b21 + 2a1b1 cos(φ1),
|a1 − b1| ≤ R1(φ1) ≤ a1 + b1.

(3.48)

We can rewrite Eq. (3.46) as:

(a1 − b1)
2

4
≤ F1(Y1, Y2, Y3, Y4) ≤

(a1 + b1)
2

4
, (3.49)

(a2 − b2)
2

4
≤ F2(Y1, Y2, Y3, Y4) ≤

(a2 + b2)
2

4
. (3.50)

where F1(Y1, Y2, Y3, Y4) and F2(Y1, Y2, Y3, Y4) are given by Eqs. (3.37) and

(3.38).

Eqs. (3.49) and (3.50) characterize the kinematic constraints of the planar

6R closed chain.

3.3 Kinematic Constraints of Spherical Mech-

anisms

This section reviews the formulation of kinematic constraints of spherical 2R,

3R open chains and spherical 4R, 5R, and 6R closed chains.

3.3.1 Spherical 2R Open Chain

In this subsection, we review the kinematic constraint of a spherical 2R open

chain that specifies the orientations obtainable by the end link of the arm.
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Figure 3.12: A Spherical 2R open chain.

Consider a spherical 2R open chain (see Figure 3.12) with joint axes a, b that

intersect at a fixed point O. The joint axes make an angle α with respect to

each other. We attach a fixed frame O to O and moving frames A, B, to each

link. The joint angles are denoted as θ and φ for the first and the second joint,

respectively. For details on the orientation of the moving frames, we refer the

reader to McCarthy [10].

The orientation of the end link is given by the composition of a rotation

θ about the z-axis of A, a rotation α about the displaced x-axis, followed by

another rotation φ about the z-axis of B. These three rotations are given by

the following quaternions:

Z(θ) = (0, 0, sin(θ/2), cos(θ/2)),
X(α) = (sin(α/2), 0, 0, cos(α/2)),
Z(φ) = (0, 0, sin(φ/2), cos(φ/2)).

(3.51)

The product of these quaternions gives a quaternion defining a general position
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for the end link of the spherical 2R open chain:

q(θ, α, φ) = Z(θ)X(α)Z(φ). (3.52)

Expanding Eq. (3.52), we obtain q(θ, α, φ) = (q1, q2, q3, q4), where

q1 = sin(α/2) cos((θ − φ)/2),
q2 = sin(α/2) sin((θ − φ)/2),
q3 = cos(α/2) sin((θ + φ)/2),
q4 = cos(α/2) cos((θ + φ)/2).

(3.53)

From Eq. (3.53), we can derive the following algebraic equation:

q2
1 + q2

2

q2
3 + q2

4

= tan2(α/2). (3.54)

This equation characterizes the kinematic constraint of a spherical 2R open

chain and is said to define the constraint manifold for the 2R open chain

(McCarthy [10]).

The Eq. (3.54) is equivalent to:

q2
1 + q2

2

q2
1 + q2

2 + q2
3 + q2

4

= sin2(α/2). (3.55)

or

q2
3 + q2

4

q2
1 + q2

2 + q2
3 + q2

4

= cos2(α/2). (3.56)

Note that when qi (i = 1, 2, 3, 4) is replaced by Qi = wqi, where w is a

scalar, Eq. (3.54), (3.55) and (3.56) are unchanged.

From Eqs. (3.55) and (3.56) it is clear that if a unit quaternion is used,

these equations reduce to the equations of circle in two different planes. Thus,

the problem of interpolating orientations of the end link of a spherical 2R
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open chain can be reduced to that of circular interpolations in two separate

planes. We note here that even though the kinematic constraint expressed

by Eqs. (3.54), (3.55), and (3.56) are equivalent to one another, we still need

to perform circular interpolation in two different planes. This is so because

Eq. (3.55) and Eq. (3.56) each contribute only half of the four quaternion

coordinates. As we will show later, the problem is greatly simplified since the

circular interpolation is a standard problem in CAGD and has been effectively

solved.

3.3.2 Spherical 3R Open Chain

Figure 3.13: A spherical 3R open chain.

Consider a spherical 3R open chain (see Figure 3.13) with joint axes a, b, c

intersecting a fixed point O. The axes a, b make an angle α and b, c make an

angle β. We attach a fixed frame O to O and moving frames A, B, C to each

links. The joint angles are denoted as θ, φ, and ψ for the successive joints.
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For details on the orientation of the moving frames, we again refer the reader

to McCarthy [10]. The orientation of the end link is given by the following

quaternion product:

q(θ, φ, ψ) = Z(θ)X(α)Z(φ)X(β)Z(ψ), (3.57)

where,

Z(θ) = (0, 0, sin(θ/2), cos(θ/2)),
X(α) = (sin(α/2), 0, 0, cos(α/2)),
Z(φ) = (0, 0, sin(φ/2), cos(φ/2)),
X(β) = (sin(β/2), 0, 0, cos(β/2)),
Z(ψ) = (0, 0, sin(ψ/2), cos(ψ/2)).

(3.58)

By expanding the product in Eq. (3.57) we obtain q(θ, φ, ψ) = (q1, q2, q3, q4),

where

q1 = cos(
φ

2
) sin(

α+ β

2
) cos(

θ − ψ

2
) + sin(

φ

2
) sin(

α− β

2
) sin(

θ − ψ

2
),

q2 = cos(
φ

2
) sin(

α+ β

2
) sin(

θ − ψ

2
) − sin(

φ

2
) sin(

α− β

2
) cos(

θ − ψ

2
),

q3 = cos(
φ

2
) cos(

α + β

2
) sin(

θ + ψ

2
) + sin(

φ

2
) cos(

α− β

2
) cos(

θ + ψ

2
),

q4 = cos(
φ

2
) cos(

α + β

2
) cos(

θ + ψ

2
) − sin(

φ

2
) cos(

α− β

2
) sin(

θ + ψ

2
).

(3.59)

Equation (3.59) further gives:

q2
1 + q2

2 = cos2(
φ

2
) sin2(

α + β

2
) + sin2(

φ

2
) sin2(

α− β

2
),

q2
3 + q2

4 = cos2(
φ

2
) cos2(

α + β

2
) + sin2(

φ

2
) cos2(

α− β

2
).

(3.60)

Since α, β satisfy the condition 0 < α, β < π, Eq. (3.60) reduces to the follow-

ing inequality:

tan2((α− β)/2) ≤
q2
1 + q2

2

q2
3 + q2

4

≤ tan2((α+ β)/2). (3.61)
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This inequality characterizes the kinematic constraint of a spherical 3R

open chain. The Eq. (3.61) is equivalent to:

sin2((α− β)/2) ≤
q2
1 + q2

2

q2
1 + q2

2 + q2
3 + q2

4

≤ sin2((α + β)/2), (3.62)

or

cos2((α+ β)/2) ≤
q2
3 + q2

4

q2
1 + q2

2 + q2
3 + q2

4

≤ cos2((α− β)/2). (3.63)

Note once again that when qi (i = 1, 2, 3, 4) is replaced by Qi = wqi, where

w is a scalar, Eq. (3.61), (3.62) and (3.63) are unchanged.

We assert that the kinematic constraint given by Eq. (3.61) is frame inde-

pendent. See Appendix C for a proof that uses spherical trigonometry.

3.3.3 Spherical 4R Closed Chain

Figure 3.14: A spherical 4R closed chain
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A 4R spherical closed chain can be assembled by joining the end links of two

spherical 2R robot arms. Thus, the kinematic constraints of the 4R spherical

closed chain can be obtained by first, appropriately transforming the location

of the fixed and the moving frame, writing out the kinematic constraints of

the end link from the perspective of the two 2R robot arms, and then equating

those two perspectives.

Consider a spherical 4R robot arm (see Figure 3.14) with moving pivots

at b1 and b2, and fixed pivots at a1 and a2. The joint axes at all the pivots

intersect at a fixed point O. The angle between the fixed pivots is denoted

γ and the fixed frame F (XYZ) is positioned midway along this angle with

its x-axis normal to the plane defined by the fixed joints a1 and a2 in the

direction (a1 − O) × (a2 − O). The z-axis of the fixed frame F points in the

direction of the bisector of the angle γ between vectors (a1 −O) and (a2−O).

The angle between the moving pivots is denoted η and the moving frame M

(xyz) is positioned midway along this angle. Similar to the orientation of the

fixed frame, its x-axis is normal to the plane defined by the moving joints b1

and b2 in the direction (b1 − O) × (b2 − O) and the z-axis bisects the angle

η between the vectors (b1 − O) and (b2 − O). The joint angles for the first

and the second 2R robot arm are denoted θ1, φ1 and θ2, φ2, respectively, while

the angular spans of the two links joining the coupler are α1 and α2. For the

first 2R robot arm, the moving frame M can be positioned with respect to

the fixed frame F by the following quaternion product (see Appendix A for
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quaternion products):

Y1(θ1, φ1) = X(−γ/2)D(θ1, φ1)X(η/2), (3.64)

where X(−γ/2) and X(η/2) represent rotations about X axis by angle −γ/2

and η/2, respectively. Using local coordinate transformation approach to

building transformations for robotic chains, these two transformations bring

the origin of the fixed frame F to the fixed pivot a1 and bring the moving

pivot b1 to the origin of the moving frame M, while D(θ1, φ1) represents the

transformation of a spherical 2R chain. Equation (3.64) is given in the matrix

form by

Y1(θ1, φ1) = [C1]D(θ1, φ1), (3.65)

where, [C1] is a 4 × 4 matrix and D(θ1, φ1) is written as a 4 × 1 column

vector. We note here that for brevity we use the same symbol to denote both

a quaternion and a column vector and rely on the context to reveal which use is

intended. Thus, for example, D(θ1, φ1) is written in the quaternion form in the

quaternion product given by Eq. (3.64), while the same symbol in Eq. (3.65)

involving multiplication with a matrix [C1] denotes a 4 × 1 column vector.

Similarly, for the second 2R robot arm, the moving frame M can be posi-

tioned with respect to the fixed frame F by the following transformation:

Y2(θ2, φ2) = X(γ/2)D(θ2, φ2)X(−η/2), (3.66)

Equation (3.66) is given in the matrix form by

Y2(θ2, φ2) = [C2]D(θ2, φ2), (3.67)
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where D(θi, φi); i = 1, 2 have been derived in Purwar et. al. [4], and X(±γ/2) =

(± sin(γ/4), 0, 0, cos(γ/4));X(±η/2) = (± sin(η/4), 0, 0, cos(η/4)).

Matrices [C1] and [C2] in the Eqs. (3.65) and (3.67) are orthogonal matri-

ces, given by

[C1] = [X(−γ/2)+][X(η/2)−] =









cos τ 0 0 − sin τ
0 cosσ sin σ 0
0 − sin σ cosσ 0

sin τ 0 0 cos τ









, (3.68)

[C2] = [X(γ/2)+][X(−η/2)−] =









cos τ 0 0 sin τ
0 cosσ − sin σ 0
0 sin σ cosσ 0

− sin τ 0 0 cos τ









, (3.69)

where [X(±γ/2)+]and[X(±η/2)−] are the matrix representations of their re-

spective quaternion form (see McCarthy [10] for matrix representation of

quaternion products) and

σ = (γ + η)/4, τ = (γ − η)/4. (3.70)

Equations (3.65) and (3.67) describe the constraint surfaces of the two spher-

ical 2R robot arms. Their intersection gives us the kinematic constraints of

the 4R spherical closed chain, that is Y1 = Y2 = Y = (Y1, Y2, Y3, Y4). The

algebraic equations for the intersection are obtained by inverting Eqs. (3.65)

and (3.67) and by using the fact that [C1][C2] = [I]:

D(θ1, φ1) = [C2]Y1(θ1, φ1), D(θ2, φ2) = [C1]Y2(θ2, φ2). (3.71)

Substituting (3.71) into the equation for the constraint surface of spherical

2R robot arm chain (see Purwar et. al. [4]), we obtain the equations for two

quadrics:
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YT [Q1]Y = 0, (3.72)

YT [Q2]Y = 0.

where [Q1], [Q2] are:

[Q1] =

















c2
α1

2
− s2τ 0 0 sτcτ

0 c2
α1

2
− s2σ −sσcσ 0

0 −sσcσ −s2α1

2
+ s2σ 0

sτcτ 0 0 −s2α1

2
+ s2τ

















, (3.73)

and

[Q2] =

















c2
α2

2
− s2τ 0 0 −sτcτ

0 c2
α2

2
− s2σ sσcσ 0

0 sσcσ −s2α2

2
+ s2σ 0

−sτcτ 0 0 −s2α2

2
+ s2τ

















. (3.74)

In the above matrices, c and s represent the cosine and sine functions, respec-

tively.

We expand the equation of the two quadrics given by Eq. (3.72) to:

F1(Y1, Y2, Y3, Y4) = cos2 α1

2
, (3.75)

F2(Y1, Y2, Y3, Y4) = cos2 α2

2
. (3.76)

where F1(Y1, Y2, Y3, Y4) and F2(Y1, Y2, Y3, Y4) are given by:

F1(Y1, Y2, Y3, Y4) =
(Y1 sin τ − Y4 cos τ)2 + (Y2 sin σ + Y3 cos σ)2

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4

, (3.77)

44



and

F2(Y1, Y2, Y3, Y4) =
(Y1 sin τ + Y4 cos τ)2 + (Y2 sin σ − Y3 cos σ)2

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4

. (3.78)

Equations (3.75) and (3.76) characterize the kinematic constraints of a

spherical 4R closed chain (McCarthy [10]) and are said to define Clifford-

quadrics (Müller [55]). These kinematic constraints are homogeneous in nature

since multiplying Yi(i = 1 . . . 4) with a common scalar does not change these

equations.

3.3.4 Spherical 5R Closed Chain

Figure 3.15: A spherical 5R closed chain

Consider a spherical 5R closed chain; see Figure 3.15. The constraint

manifold for this spherical 5R closed chain is the intersection of the constraint
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surface of a spherical 2R robot arm with the constraint solid of a spherical 3R

robot arm.

The constraint surface of a spherical 2R open chain is given by Eq. (3.65).

The constraint solid of a spherical 3R robot arm is given by transforming

D(θ2, φ2, ψ2) (see Purwar et.al. [4]) by matrix [C2]:

Y1(θ1, φ1) = [C1]D(θ1, φ1), (3.79)

Y2(θ2, φ2, ψ2) = [C2]D(θ2, φ2, ψ2).

The algebraic equations for the intersection of above manifolds are:

YT [Q1]Y = 0, YT [Q2(φ2)]Y = 0, (3.80)

where [Q1] is given by Eq. (3.73) and [Q2(φ2)] is obtained by substituting α2

in Eq. (3.74) with ρ2. The angle ρ2 = ρ2(φ2) defines the distance between the

fixed pivot a2 and the moving pivot c2 of the second 3R spherical robot arm

and varies according to joint angle φ2 and the angular spans of the links of the

3R arm as follows:

cos ρ2 = cosα2 cosβ2 − sinα2 sin β2 cosφ2,
cos(α2 + β2) ≤ cos ρ2 ≤ cos(α2 − β2).

(3.81)

The above inequality is always true since the link lengths given by α2 and β2

are never more than π. We can get the kinematic constraints of a spherical

5R closed chain by expanding Eq. (3.80):

F1(Y1, Y2, Y3, Y4) = cos2 α1

2
, (3.82)

cos2(
α2 + β2

2
) ≤ F2(Y1, Y2, Y3, Y4) ≤ cos2(

β2 − α2

2
). (3.83)
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where F1(Y1, Y2, Y3, Y4) and F2(Y1, Y2, Y3, Y4) are given by Eqs. (3.77) and

(3.78).

Equations (3.82) and (3.83) characterize the kinematic constraints of a

spherical 5R closed chain and are said to define the constraint manifold for

the spherical 5R closed chain (McCarthy [10]).

3.3.5 Spherical 6R Closed Chain

Figure 3.16: A spherical 6R closed chain

Consider a spherical 6R closed chain; see Figure 3.16. The constraint

manifold for this spherical 6R closed chain is the intersection of constraint

solids of two spherical 3R robot arms. In the figure, angles θ1, φ1, ψ1, and

θ2, φ2, ψ2 denote the joint angles for the first and the second spherical 3R

robot arms, respectively.
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The constraint solids of two spherical 3R closed chains can be obtained by

transforming D(θ1, φ1, ψ1) by matrix [C1] and transforming D(θ2, φ2, ψ2) by

matrix [C2] (see Purwar et.al. [4] for expressions of the parameterized solids

given by D(θi, φi, ψi); i = 1, 2):

Y1(θ1, φ1, ψ1) = [C1]D(θ1, φ1, ψ1), (3.84)

Y2(θ2, φ2, ψ2) = [C2]D(θ2, φ2, ψ2).

The algebraic equations for the intersection of above manifolds are:

YT [Q1(φ1)]Y = 0, YT [Q2(φ2)]Y = 0, (3.85)

where [Q2(φ2)] has been already defined and [Q1(φ1)] is obtained by substitut-

ing α1 in Eq. (3.73) with ρ1(φ1). The angle ρ1 = ρ1(φ1) defines the distance

between the fixed pivot a1 and the moving pivot c1 of the first 3R spherical

robot arm and varies according to joint angle φ1 and the angular spans of the

links of the first 3R robot arm as follows:

cos ρ1 = cosα1 cosβ1 − sinα1 sin β1 cosφ1, (3.86)

We can derive the kinematic constraints of a spherical 6R closed chain from

Eq. (3.85):

cos2(
α1 + β1

2
) ≤ F1(Y1, Y2, Y3, Y4) ≤ cos2(

β1 − α1

2
), (3.87)

cos2(
α2 + β2

2
) ≤ F2(Y1, Y2, Y3, Y4) ≤ cos2(

β2 − α2

2
), (3.88)

where F1(Y1, Y2, Y3, Y4) and F2(Y1, Y2, Y3, Y4) are given by Eqs. (3.77) and

(3.78).
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Equations (3.87) and (3.88) characterize the kinematic constraints of a

spherical 6R closed chain and are said to define the constraint manifold for

the spherical 6R closed chain (McCarthy [10]).

3.4 Kinematic Constraints of Spatial Mecha-

nisms

This section reviews the formulation of kinematic constraints of the spatial SS

open chain, the ADEPT robot, and the PUMA robot.

3.4.1 Spatial SS Open Chain

Figure 3.17: A spatial SS dyad.
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A kinematic open chain connected by two spherical joints is called a spatial

SS open chain, see Figure 3.17. We attach a fixed frame O to the base and

moving frames A, B to each of the links. Initially the frames A and O coincide

and B is located at the center of joint b with the same orientation with O.

The orientation of A relative to O is prescribed by the angles α, θ, and δ

about the x-axis, the displaced z, x-axis of A, respectively. We set δ = 0 since

this rotation does not contribute to the final configuration of the end link.

Similarly, the orientation of B relative to A is prescribed by the angles β, φ,

and γ. The position of B relative A is a translation along x-axis of A by the

link length a. Thus the final configuration of the end link B relative to the

base O is determined by angles α, θ, β, φ, γ and link length a.

The dual quaternion representing the transformation from O to B is:

q̂(α, θ, a, β, φ, γ) = q + ǫq0 = X(α)Z(θ)X(a)X(β)Z(φ)X(γ), (3.89)

where X(α), Z(θ), X(a), X(β), Z(φ), and X(γ) are defined by:

X(α) = sin(
α

2
)i + cos(

α

2
), (3.90)

Z(θ) = sin(
θ

2
)k + cos(

θ

2
),

X(a) = (
a

2
)ǫi + 1,

X(β) = sin(
β

2
)i + cos(

β

2
),

Z(φ) = sin(
φ

2
)k + cos(

φ

2
),

X(γ) = sin(
γ

2
)i + cos(

γ

2
).

Expand this product to obtain q = (q1, q2, q3, q4) and q0 = (q0
1, q

0
2, q

0
3, q

0
4),
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where

q1 = cos(
θ

2
) cos(

φ

2
) sin(

α + β + γ

2
) − sin(

θ

2
) sin(

φ

2
) sin(

α− β + γ

2
), (3.91)

q2 = − cos(
θ

2
) sin(

φ

2
) sin(

α + β − γ

2
) − sin(

θ

2
) cos(

φ

2
) sin(

α− β − γ

2
),

q3 = cos(
θ

2
) sin(

φ

2
) cos(

α + β − γ

2
) + sin(

θ

2
) cos(

φ

2
) cos(

α− β − γ

2
),

q4 = cos(
θ

2
) cos(

φ

2
) cos(

α+ β + γ

2
) − sin(

θ

2
) sin(

φ

2
) cos(

α− β + γ

2
),

q0
1 =

a

2
cos(

θ

2
) cos(

φ

2
) cos(

α + β + γ

2
) +

a

2
sin(

θ

2
) sin(

φ

2
) cos(

α− β + γ

2
),

q0
2 = −

a

2
cos(

θ

2
) sin(

φ

2
) cos(

α + β − γ

2
) +

a

2
sin(

θ

2
) cos(

φ

2
) cos(

α− β − γ

2
),

q0
3 = −

a

2
cos(

θ

2
) sin(

φ

2
) sin(

α + β − γ

2
) +

a

2
sin(

θ

2
) cos(

φ

2
) sin(

α− β − γ

2
),

q0
4 = −

a

2
cos(

θ

2
) cos(

φ

2
) sin(

α + β + γ

2
) −

a

2
sin(

θ

2
) sin(

φ

2
) sin(

α− β + γ

2
).

The components of q and q0 satisfy the relation

(a2/4)(q2
1 + q2

2 + q2
3 + q2

4) − ((q0
1)

2 + (q0
2)

2 + (q0
3)

2 + (q0
4)

2) = 0. (3.92)

Eq.(3.92) as well as the fundamental dual quaternion equations (2.16) and

(2.17) characterize the kinematic constraints of a spatial SS open chain are

said to define the constraint manifold for the spatial SS open chain (Ge [56]).

3.4.2 An ADEPT robot

Consider the ADEPT robot shown in Figure 3.18. We attach a fixed frame

O to the base and moving frame A, B, C, and D to each links. The joint

angles are denoted as θ, φ, and ψ. The displacement from the fixed fame O

to the moving frame D is the composition of a rotation of A relative to O,
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Figure 3.18: An ADEPT robot.

a translation from the frame A to the frame B, a rotation of C relative to

B, a translation from the frame B to the frame C, a rotation of the frame

D relative to C, and a translation from the frame C to the frame D. Their

product is the dual quaternion defining a general position of the moving frame

D:

q̂(θ, a, φ, b, ψ, c) = q + ǫq0 = Z(θ)X(a)Z(φ)X(b)Z(ψ)Z(c), (3.93)
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where Z(θ), X(a), Z(φ), X(b), Z(ψ), and Z(c) are given by:

Z(θ) = sin(
θ

2
)k + cos(

θ

2
), (3.94)

X(a) = (
a

2
)ǫi + 1,

Z(φ) = sin(
φ

2
)k + cos(

φ

2
),

X(b) = (
b

2
)ǫi + 1,

Z(ψ) = sin(
ψ

2
)k + cos(

ψ

2
),

Z(c) = (
c

2
)ǫk + 1,

Expand this product to obtain q = (q1, q2, q3, q4) and q0 = (q0
1, q

0
2, q

0
3, q

0
4),

where

q1 = 0, (3.95)

q2 = 0,

q3 = sin(
α + φ+ ψ

2
),

q4 = cos(
α+ φ+ ψ

2
),

q0
1 =

a

2
cos(

α− φ− ψ

2
) +

b

2
cos(

α + φ− ψ

2
),

q0
2 =

a

2
sin(

α− φ− ψ

2
) +

b

2
sin(

α+ φ− ψ

2
),

q0
3 =

c

2
cos(

α + φ+ ψ

2
),

q0
4 = −

c

2
sin(

α+ φ+ ψ

2
).

53



The components of q and q0 satisfy the relation

q2
3 + q2

4 = 1, (3.96)

(a− b)2

4
≤ (q0

1)
2 + (q0

2)
2 =

a2

4
+
b2

4
+
ab

2
cos(φ) ≤

(a+ b)2

4
, (3.97)

q0
3 =

c

2
q4, (3.98)

q0
4 = −

c

2
q3. (3.99)

Eqs. (3.96), (3.97), (3.98), and (3.99) characterize the kinematic constraints

of a ADEPT robot.
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Chapter 4

Constrained Motion

Interpolation for Planar and

Spherical 2R and 3R Open

Chains

4.1 Introduction

The purpose of this chapter is to study the problem of synthesizing rational

motions of a rigid body under kinematic constraints that are imposed by planar

and spherical 2R and 3R open chains. Through the use of planar quaternions,

it is shown that the problem of rational motion interpolation under the kine-

matic constraints of a planar 2R open chain can be reduced to that of circular

interpolations in two separate planes. Furthermore, the problem of synthesiz-

ing the Cartesian rational motion of a planar 3R open chain can be reduced to

that of circular interpolation in one plane and constrained spline interpolation

in a circular ring in the other plane. Similarly, through the use of quaternions,

it is shown that the problem of synthesizing the Cartesian rational motion of
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a spherical 2R open chain can be reduced to that of circular interpolations

in two separate planes. The problem of synthesizing the Cartesian rational

motion of a spherical 3R open chain can be reduced to that of constrained

spline interpolation in two different planes.

The organization of this chapter is as follows. Section 4.2 presents an

algorithm for C1 piecewise rational Bézier interpolation on a circle. Section 4.3

shows an algorithm for rational B-spline interpolation within an n-spherical

shell. Section 4.4 presents algorithms for rational motion interpolation under

kinematic constrains of planar and spherical 2R and 3R open chains.

4.2 Piecewise Rational Bézier Interpolation on

a Circle

In this section, we deal with the problem of interpolating a given set of two

dimensional points on a circle using a piecewise rational Bézier representation.

The resulting algorithm will be used in later sections for generating Cartesian

rational motions for planar and spherical open chains.

We first review the construction of a circular arc using a rational Bézier

representation (see Forrest [57], Piegl and Tiller [58, 59] for details).

Let b0, b2, denote the start and end points of a circular arc of radius r,

since the middle Bézier point b1 should be the intersection point of two lines

that are tangent to the circle at the points b0, b2 respectively, we have

b1 =
r2(b0 + b2)

r2 + b0 · b2
. (4.1)
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Figure 4.1: Quadratic NURB circular arc.

where “·” denotes the dot product of two vectors. In addition, the relationship

of the weights wi related to Bézier points bi should be:

w2
1 =

w0w2

2
[1 + (

b0

r
) · (

b2

r
)]. (4.2)

We now present a simple algorithm for interpolating a set of points on a

circle with a C1 piecewise rational Bézier curve (Figure 4.1). The problem is

defined as follows:

Given: A set of points x0, ...,xL on a circle with radius r and the corre-

sponding parameter values (or knots) u0, ..., uL.

Find: A piecewise quadratic rational Bézier circular arc b(u) that interpo-

lates the given data points at the specified parameter values, i.e., b(ui) = xi.

In view of Eq. (4.1), Bézier control points of the piecewise rational Bézier

curve are given by:

b2i = xi, b2i+1 =
r2(xi + xi+1)

r2 + xi · xi+1

, b2i+2 = xi+1. (4.3)
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Let △i = ui+1 − ui and let s2i = w2i+1/w2i denote the weight ratio, where

i = 0, ..., L−1. The weights (or weight ratios) must be selected such that each

rational Bézier segment is a circular arc:

s2i =
s2i+1

2
[1 + (

xi

r
) · (

xi+1

r
)], i = 0, ..., L− 1. (4.4)

and that two adjacent Bézier segments have C1 continuity at the junction

point b2(i+1) = xi+1:

|b2i+3 − b2i+2|

|b2i+2 − b2i+1|
=

△i+1

△is2i+1s2i+2
, i = 0, ..., L− 2. (4.5)

where | · | denotes the magnitude of a vector. Without loss of generality, we

choose s0 = 1 (w0 = 1, w1 = 1).

In summary, the algorithm for C1 piecewise rational Bézier circular inter-

polation is given by:

Algorithm 4.2

1. Find control points b2i from the given points xi using Eq. (4.3).

2. For ith piece of Bézier circular arc use [ui, ui+1] as the range for the

parameter u and calculate the weights associated with each of the Bézier

points from Eqs. (4.4) and (4.5).

3. Generate the C1 interpolating non-uniform rational Bézier (NURB) cir-

cular arc from its piecewise rational Bézier form.
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4.3 Rational B-spline Interpolation inside an

n-spherical Shell

In this section, we deal with the problem of interpolating a given set of points

within an n-spherical shell using a rational B-spline curve, where n-spherical

shell means in-between of two n dimensional concentric hyperspheres. The

resulting algorithm will be used in later sections for generating Cartesian ra-

tional motions for planar and spherical open chains.

Given: A set of points xi, i = 0, ..., L within an n-spherical shell in R
n as

well as corresponding parameter values ui. Let rmin and rmax denote the inner

and the outer radius of the n-spherical shell respectively.

Find: A rational B-spline curve b(u) that interpolates through the given

points at the corresponding parameter values.

Algorithm 4.3

1. Interpolate the given points xi with a B-spline curve b(u).

2. Of all the points on the curve b(u), find those that have the maximum

and minimum distances to the origin and record the corresponding pa-

rameter values.

3. Verify if the magnitudes (distances to the origin) of those extreme points

are in the range of [rmin, rmax].

4. If yes, stop; if not, connect a line from the origin to the extreme point

and then select a new point on this line such that the new point is within
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the range of [rmin, rmax]. Add this new point as well as the associated

parameter value to the list of points to be interpolated and go to step 1.

Remark 4.3.1. In step 1 of above algorithm, a standard scheme for B-spline

interpolation is used (see, for example, Piegl and Tiller [15]). However, this

scheme does not guarantee that the entire curve would stay within the n-

spherical shell.

Remark 4.3.2. When we add a new point in step 4 of above algorithm, if

the distance of the extreme point is smaller than rmin, then use rmin + δ to

generate a new point, and if the distance of the extreme point is greater than

rmax, then use rmax−δ to generate a new point. Here, δ is a specified tolerance

that defines the minimum distance of the new point from the boundary of the

n-spherical shell.

Remark 4.3.3. If n = 2, then the n-spherical shell becomes circular ring;

when n = 1 we interpolate given one dimensional points within the boundary

[rmin, rmax]. If we consider the parameter value as the other coordinate, then

the problem becomes interpolation of two dimensional points within a band

with the boundary [rmin, rmax].

We now address the issue of how to determine the extreme points on the

rational B-spline curve that have maximum or minimum distance to the origin.

For each of the Bézier segments, the distance from a point with parameter u

to the origin is given by

|si(u)| = |

3
∑

j=0

B3
j (

u− ui

ui+1 − ui
)b3i+j |; i = 0, ..., L− 1; u ∈ [ui, ui+1). (4.6)
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i 1 2 3 4 5 6

Zi1 3.0 2.0 0.0 −2.0 −2.5 0.0

Zi2 0.0 1.2 3.0 2.4 1.0 −2.1

ui 0.00 0.14 0.38 0.52 0.67 1.00

Table 4.1: Input data for Algorithm 4.3.

where B3
j (

u− ui

ui+1 − ui

) are Bernstein Polynomials of degree 3. The parameter u

associated with the extreme point is given by the following condition:

∂

∂u
(|si(u)|)

2 = 0. (4.7)

This results in a quintic equation in terms of u, which can be solved either

analytically or numerically for the parameter value u in the range [ui, ui+1).

We give an example to demonstrate the Algorithm 4.3. A set of two

dimensional points is given in Table 4.1. Figure 4.2 shows that a portion

of the cubic B-spline curve is outside the circular ring and thus violates the

circular ring constraint. As the results of Algorithm 4.3, Figure 4.3 shows

the constrained interpolation with δ = 1.

4.4 Rational Motions of Planar and Spherical

2R and 3R Open Chains

In this section, we present algorithms for synthesizing piecewise rational mo-

tions of planar and spherical 2R and 3R open chains that interpolate a set of

given positions of the end link.

The given positions of the end link of a planar open chain can be speci-

fied using either Cartesian based parameters (d1i, d2i, αi) or joint coordinates
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Figure 4.2: An unconstrained C2 cubic B-spline interpolation of a set of points.
In this case, a portion of the curve is outside of the ring and thus violates the
constraint. The symbol ”⋆” represents the extreme point of B-spline curve
that is outside the circular ring and has minimum distance to the center; the
symbol ”�” represents the coordinates of the given points; the symbol ”•”
represents the control points of B-spline curve.

(θi, φi) of the open chain. In the case of Cartesian parameters, we use Eq. (2.6)

to convert them into planar quaternions; in the case of joint parameters, we

convert them to planar quaternions by using Eq. (3.2) for planar 2R open

chain and Eq.(3.10) for planar 3R open chain.

The orientations of the end link of a spherical 2R open chain can be given

by either Cartesian coordinates (sxi, syi, szi, θi) or joint coordinates (θi, φi).

Similarly, the orientations of the end link of a spherical 3R open chain can

be given by either Cartesian coordinates (sxi, syi, szi, θi) or joint coordinates

(θi, φi, ψi). Eq. (2.1) can be used to convert Cartesian coordinates into quater-

nions, while Eq. (3.53) or Eq. (3.59) can be used to convert joint coordinates

into quaternions for spherical 2R and 3R open chains, respectively.
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Figure 4.3: A constrained C2 cubic B-spline interpolation in a circular ring
with δ = 1.

4.4.1 C1 Interpolating Rational Motions for Planar and

Spherical 2R Open Chains

This section presents an algorithm for the following constrained motion inter-

polation problem:

Given: A set of the positions of the end link of a planar or a spherical

2R open chain in its workspace as well as the parameter values ui, i = 0, ..., L

and the length of the first link a of the planar 2R open chain and the length

of the first link α of the spherical 2R open chain.

Find: A C1 rational motion of the end link that interpolates through the

given positions at the parameter values and satisfies the kinematic constraints

of the planar or the spherical 2R open chain.

Algorithm 4.4.1

1. Convert the given positions of the second link into the planar quaternions
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Zi = (Zi1, Zi2, Zi3, Zi4) using Eq. (2.6) or Eq. (3.2).

2. Separate the planar quaternions into: Ei = (Zi1, Zi2); Fi = (Zi3, Zi4).

3. Since all given positions are assumed to be within the workspace of

the planar 2R open chain, Ei must satisfy Eq. (3.3). This means the

points Ei lie on a circle of radius a/2. Let xi = Ei, r = a/2 and we

use Algorithm 4.2 to obtain a C1 interpolating circular NURB curve

E(u).

4. Similarly, Fi must satisfy Eq. (3.4) and we let xi = Fi, r = 1 and use

Algorithm 4.2 once again to obtain another C1 interpolating circular

NURB curve F(u).

5. The image curve, Z(u) = (E(u),F(u)), is a C1 continuous quadratic

rational curve. Substituting Z(u) into Eq. (2.10), we obtain a C1 con-

tinuous quartic rational motion for the planar 2R open chain that inter-

polates the given set of positions of the end link.

Remark 4.4.1. From Eqs. (3.55) and (3.56) we can see that the kinematic

constraints of a spherical 2R open chain are similar to those of a planar 2R

open chain, the only difference is the radius of circle constraint. We can use

Algorithm 4.4.1 for the rational motion interpolation of a spherical 2R open

chain with the modification r = sin(α/2) in the step 3 and r = cos(α/2) in

the step 4.

In the following example, we are given five key positions of the second

link for planning the motion of a planar 2R open chain. These positions
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i 1 2 3 4 5

θi(
◦) 10 50 90 130 160

φi(
◦) 0 −10 0 20 20

ui 0.0 0.2 0.5 0.8 1.0

Table 4.2: Input data for a planar 2R open chain (a = 4).

as well as the dimensions of the planar open chain are given in Table 4.2.

We apply Algorithm 4.4.1 to interpolate Ei and Fi with two quadratic

circular arcs E(u) and F(u) respectively, see Figure 4.4 and Figure 4.5. Then

Z(u) = (E(u),F(u)) is the C1 rational motion that interpolates given key

positions of the second link.
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Figure 4.4: Interpolation of points Ei (planar 2R open chain).
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Figure 4.5: Interpolation of points Fi (planar 2R open chain).

4.4.2 C2 Interpolating Rational Motions that Approx-

imate the Kinematic Constraints for Planar 2R

and 3R Open Chains

The approach advocated in section 4.4.1 has a limitation in that it can generate

only C1 (i.e., velocity-continuous) piecewise rational motions. In high-speed

applications, a C2 (i.e., acceleration-continuous) motion is often desired.

For this purpose we consider the kinematic constraints Eqs. (3.3), (3.4), and

(3.12) (equation of circle) as very ”thin” circular rings. Then we apply Algo-

rithm 4.3 to generate C2 rational motions that approximate the kinematic

constraints for planar 2R and 3R open chains. We still separate the planar

quaternions Zi = (Zi1, Zi2, Zi3, Zi4) into: Ei = (Zi1, Zi2); Fi = (Zi3, Zi4), and

use the following range [rmin, rmax] when applying Algorithm 4.3:

• Planar 2R open chain:

– Interpolating Ei : rmin = a/2 − δ/2, rmax = a/2 + δ/2
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– Interpolating Fi : rmin = 1 − δ/2, rmax = 1 + δ/2

• Planar 3R open chain:

– Interpolating Ei : rmin = |a− b|/2, rmax = (a+ b)/2

– Interpolating Fi : rmin = 1 − δ/2, rmax = 1 + δ/2

Here δ is a deviation value, it can be decided by the diametral clearance of open

chains. In reality there is diametral clearance in each revolute joints of planar

2R and 3R open chains, see Figure 4.6. Because of diametral clearance cd1, cd2

for the first and the second joints, length of the first link is within the range

[a− cd1 − cd2, a+ cd1 + cd2], so if we choose the deviation value δ = cd1 + cd2 for

the planar 2R open chain then the generated C2 rational motion is obtainable

by this planar 2R robot open chain which is perfect.

Figure 4.6: Diametral clearance of planar 2R open chain.

In the following example, we still use five given positions of a planar 3R

open chain as listed in Table 4.3. We apply Algorithm 4.3 to interpolate

both Ei and Fi with a cubic B-spline curve, here we use the deviation value
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i 1 2 3 4 5

θi(
◦) 20 60 90 120 170

φi(
◦) 0 30 40 50 80

ψi(
◦) 10 20 30 40 50

ui 0.0 0.2 0.5 0.8 1.0

Table 4.3: Input data for planar 3R open chain (a = 4, b = 3).

δ = 0.02, see Figures 4.7, 4.8, and 4.9. The approximation converges quickly,

it is achieved with two iterations.
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Figure 4.7: Interpolation of points Ei (planar 3R open chain).

4.4.3 C2 Interpolating Rational Motions that Approxi-

mate the Kinematic Constraints for Spherical 2R

and 3R Open Chains

Spherical 3R Open Chain

This subsection presents an algorithm for the following constrained motion

interpolation problem:

Given: A set of orientations of the end link of a spherical 3R open chain in
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Figure 4.8: Unconstrained interpolation of points Fi (planar 3R open chain).
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Figure 4.9: Constrained interpolation of points Fi (planar 3R open chain).

its workspace, the corresponding parameter values ui, the associated weights

wi, i = 0 . . . L, and link lengths α and β of the first and second link, respec-

tively.

Find: A smooth (C2 or higher) rational motion of the end link that inter-

polates the given orientations at the corresponding parameter values subject

to the kinematic constraints of the spherical 3R open chain.
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Then kinematic constraint for spherical 3R open chain is given by inequal-

ities in Eq. (3.62) or Eq. (3.63). Geometrically, the limits in these inequalities

represent two rings of varying radius in two different planes. The radius of

these two rings change along the parameter u because the denominator in the

inequalities is not necessarily unity. Since the motion of the end link is re-

quired to satisfy these kinematic constraints, we can reduce the problem of

designing a smooth rational motion of the end link to that of constructing two

separate spline curves confined to lie in the region defined by the two rings.

In the succeeding discussion, we assume that the given orientations of the

end link have been converted into unit quaternions qi = (qi1, qi2, qi3, qi4) using

either Eq. (2.1) or Eq. (3.59), and thereafter into the non-unit quaternions

Qi(= (Qi1, Qi2, Qi3, Qi4)) = wiqi.

We now present a sketch of the algorithm: We divide the quaternion com-

ponents Qi = (Qi1, Qi2, Qi3, Qi4) in two groups (Ei,Fi), where Ei = (Qi1, Qi2)

and Fi = (Qi3, Qi4). Then, we construct two C2 cubic B-spline curves1 E(u)

and F(u) that interpolate Ei and Fi at parameter values ui, respectively. Let

us call the plane defined by the first two quaternion coordinates (q1, q2) as s1s2

plane, and by the last two quaternion coordinates (q3, q4) as s3s4 plane. The

curve E(u) lies in the s1s2 plane, while the curve F(u) lies in the s3s4 plane.

However, these two curves are not guaranteed to lie inside the rings described

earlier. In the Cartesian space, this means that the kinematic constraint given

by Eq. (3.61) are not satisfied at all values of the parameter u. The Kine-

1Designing a C2 B-spline curve is a standard scheme in CAGD (Farin [11], Hoschek and
Lasser [14], and Piegl and Tiller [15]).
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matic constraint (Eq. (3.61)) for a continuous valued parametric curve can be

rewritten as:

tan2((α− β)/2) ≤ g(u) ≤ tan2((α + β)/2), (4.8)

where

g(u) =
E(u) · E(u)

F(u) · F(u)
.

The idea behind the algorithm to be presented shortly is to first detect all the

extrema of the function g(u) by using piecewise Bézier representation of the

B-spline curves. Then we test if an extremum violates the constraint. If it

does, then we replace such an extremum with a new point that satisfies the

constraint. We call an extremum that violates the constraint as an extreme

point. In adding a new point, we impose following restrictions on it: 1) it

should be inside the rings, 2) it should be minimally away from the extreme

point, and 3) it should be added for the same parameter value as that of the

extreme point. The idea is to deform the curve minimally in the vicinity of

the extreme point by the addition of this new point that is just inside the

ring. This new point is added to the set of points to be interpolated and new

C2 B-spline curves that interpolate these points are constructed. This process

is repeated until no extreme points are detected. At the end, we have a C2

B-spline constrained curve that does not violate the constraint. We note here

that even though the two curves detect a common extreme point since the

constraints given by Eqs. (3.62) and (3.63) are equivalent to each other, it is

still necessary to construct two B-spline curves in each of the s1s2 and s3s4

plane. The curves E(u) and F(u) contribute two coordinates each to make up
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the complete quaternion curve Q(u) = (E(u),F(u)).

Now we show how the extreme and new points are calculated. We calculate

the extrema of function g(u) to detect violations of the kinematic constraint.

The extrema of g(u) can be calculated easily by taking the derivative of the

piecewise Bézier form of E(u) and F(u). For the ith pair of Bézier segments,

Ei(u) and Fi(u), with the parameter value u ∈ [ui, ui+1), we determine the

extrema of the following function:

gi(u) =
Ei(u) · Ei(u)

Fi(u) · Fi(u)
. (4.9)

By differentiating (4.9) and setting the resulting derivative to zero we obtain:

Ei(u) · Ėi(u)

Ei(u) · Ei(u)
=

Fi(u) · Ḟi(u)

Fi(u) · Fi(u)
. (4.10)

where Ėi(u) and Ḟi(u) denote the derivatives of Ei(u) and Fi(u) with respect

to u. Equation (4.10) is a polynomial equation of degree 11 but due to the

cancellation of the highest order term, it actually reduces to a equation of

degree 10, and can be solved numerically for the parameter value u in the

range [ui, ui+1). This procedure may yield many local extrema for different

Bézier segments.

Let us assume that g(u) has an extremum at u = u∗ that violates the

constraint. Thus, we would like to add a new point (Ej,Fj) at the parameter

value u∗. We connect a line from the origin to E(u∗) and select Ej on this line;

similarly we connect another line from the origin to F(u∗) and then select Fj

on this line, such that g(u∗) satisfies the inequality given in Eq. (4.8). We use

following rules for locating Ej and Fj on the respective lines:
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If

|E(u∗)|

|F(u∗)|
< | tan((α− β)/2)|,

then

|Ej|

|Fj |
= | tan((α− β)/2)| + δ, (4.11)

and if

|E(u∗)|

|F(u∗)|
> | tan((α + β)/2)|,

then

|Ej|

|Fj |
= | tan((α + β)/2)| − δ, (4.12)

where δ is a user defined tolerance value, which can be chosen as small as

possible. If an extremum is found at the limits of the inequality in Eq. (4.8),

the constraints are considered satisfied and thus, no new points are added in

that case. We note here that due to limitations of numerical computing, we

actually determine if the difference between the extremum of function g(u)

and the limit values is smaller than a very small number, instead of directly

comparing the two numbers for equality. The tolerance parameter δ controls

the change in the shape of the curve between successive iterations. These rules

seek to add a new point that is minimally away from the extreme point and

satisfies the kinematic constraint. We note that choosing a truly inner point,

instead of a new point that is just inside a boundary of the ring may yield a

curve that is unlikely to go out of the ring, this would not satisfy the desired

condition of minimal change in the curve. The new point Ej,Fj should also

satisfy:

Ej · Ej + Fj · Fj = w2
j . (4.13)
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Here, without any loss of generality, we choose wj = 1.

Thus, the magnitude of new point Ej ,Fj can be calculated from Eq. (4.11)

or (4.12), and Eq. (4.13). Since we already know the slope of the lines joining

origin with the extreme point in two planes, we can uniquely locate the new

point. Now, we present the algorithm:

Algorithm 4.4.3

1. Convert the given orientations of the end link into unit quaternions qi =

(qi1, qi2, qi3, qi4) using either Eq. (2.1) or Eq. (3.59). Convert unit quater-

nions qi into non-unit quaternions Qi(= (Qi1, Qi2, Qi3, Qi4)) = wiqi.

2. Group quaternion components as: Ei = (Qi1, Qi2); Fi = (Qi3, Qi4).

3. Construct a C2 cubic B-spline curve E(u) that interpolates Ei and con-

struct a C2 cubic B-spline curve F(u) that interpolates Fi at parameter

values ui.

4. Calculate the extrema of the function g(u) (Eq. (4.10)). For each ex-

tremum, test if (tan2((α− β)/2) ≤ extremum (g(u)) ≤ tan2((α+ β)/2).

If yes, then the kinematic constraint of a spherical 3R open chain are

satisfied. Go to step 5. If an extremum point fails the test, say at u = u∗,

do the following and repeat for each extreme point:

(a) Connect a line from the origin to E(u∗) and add Ej on this line. Cal-

culate the magnitude of Ej from Eq. (4.11) or (4.12), and Eq. (4.13).
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(b) Connect a line from the origin to F(u∗) and add Fj on this line. Cal-

culate the magnitude of Fj from Eq. (4.11) or (4.12), and Eq. (4.13).

(c) Locate Ej and Fj on the lines.

(d) Add the new point (Ej ,Fj) at the parameter value u∗ to the list of

points to be interpolated and go to step 3.

5. The image curve Q(u) = (E(u),F(u)) defines the C2 interpolating piece-

wise rational motion of degree 6 after the substitution into Eq. (2.5).

Spherical 2R Open Chain

In this subsection, we show that we can use a slightly modified form of Al-

gorithm 4.4.3 to plan the C2 rational motion for a spherical 2R open chain

that approximates the kinematic constraints.

First, we transform the kinematic constraints of the spherical 2R open chain

to a form similar to that of spherical 3R open chain. The idea is to transform

the circular constraints of spherical 2R open chain to the ring constraints.

Considering that in practice, there is always some clearance at the revolute

joints of the open chain, the link length α is not exact but actually a function

of diametric clearance at both the joints. Thus, the kinematic constraint of

the spherical 2R open chain (Eq. (3.54)) can be modified as:

tan2(α/2) − δ ≤ h(u) ≤ tan2(α/2) + δ, (4.14)

where

h(u) =
q2
1 + q2

2

q2
3 + q2

4

, (4.15)

75



and δ is an indicator of the clearance at joints. The value of δ can be cal-

culated from the diametric clearance at the joints. For a smaller value of δ,

the kinematic constraint is better approximated. This form of the modified

constraint equation is similar to the one derived for spherical 3R open chain

and thus, the Algorithm 4.4.3 can be applied. For a given value of δ, the

constraints are considered violated, if the extrema of h(u) do not satisfy the

inequality in Eq. (4.14).

Let us assume that h(u) has an extremum at u = u∗ that violates the

constraint. Thus, we would like to add a new point (Ej,Fj) at the parameter

value u∗. Following the kinematic constraints of 2R open chains given by

Eq. (3.55) and (3.56), the new point (Ej,Fj) should satisfy:

|Ej | = wj sin(α/2); |Fj| = wj cos(α/2). (4.16)

Here, again without any loss of generality, we choose wj = 1.

Examples

In this section, we present two examples – one for the C2 interpolating motion

of a spherical 2R open chain, and the other for the C2 interpolating motion

of spherical 3R open chain. These examples demonstrate the working of the

algorithms presented before. Tables 4.4 and 4.5 give the values of the joint co-

ordinates used in the examples for five orientations along with their parameter

values for spherical 2R and 3R open chain, respectively.

In the first example we have five orientations for Cartesian rational motion

planning of a spherical 2R open chain (see Table 4.4 for input data). We
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Figure 4.10: An unconstrained C2 cubic B-spline interpolation of a set of
points in the s3s4 plane.

use Algorithm 4.4.3 to plan a C2 rational motion for the same spherical

2R open chain and the same set of five orientations. This is demonstrated

in Figures 4.10 and 4.11, which show the results of constraining the curve

F(u) in the s3s4 plane, with δ = 0.002. Note that in all the figures shown

in this section, the symbol “�” represents first or the last two coordinates

(i.e., Ei = (Qi1, Qi2) or Fi = (Qi3, Qi4)) of the quaternions associated with

the given five orientations. These are the orientations to be interpolated. The

symbol “•” represents the deboor control points of the resulting B-spline curve;

the symbol “⋆” represents the extreme points of the B-spline curve. In first

iteration, the algorithm finds two extreme points (Figure 4.10), one each on the

two Bézier segments. Thus, the algorithm adds two new points corresponding
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Figure 4.11: A constrained C2 cubic B-spline interpolation of a set of points
in the s3s4 plane.

i 1 2 3 4 5
α(deg) 30
θi(deg) 0 45 90 125 165
φi(deg) 0 15 30 40 30
ui 0.0 0.3 0.6 0.8 1.0

Table 4.4: Joint coordinates for spherical 2R open chain motion plan-

ning.

to the parameter value of the extreme points and in the next iteration re-

interpolates seven (five originally given, and two newly added) orientations.

In the second iteration, the kinematic constraints are satisfied approximately

(Figure 4.11). The same procedure is repeated for the curve E(u) as well. In

the end, we have a constrained curve Q(u) that satisfies the constraint of a

spherical 2R robot open chain approximately.
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i 1 2 3 4 5
α(deg) 45
β(deg) 30
θi(deg) 20 70 90 120 170
φi(deg) 0 30 40 50 80
ψi(deg) 10 30 40 60 90
ui 0.0 0.2 0.5 0.7 1.0

Table 4.5: Joint coordinates for spherical 3R open chain motion plan-

ning.

Q(u) = (E(u),F(u))
i Di

0 (0.6064, 0.0531, 0.2053, 0.7663)
1 (0.4951, 0.1167, 0.6587, 0.5544)
2 (0.5915, 0.2021, 0.7772, 0.0725)
3 (0.4953, 0.1791, 0.8327, 0.1707)
4 (0.3862, 0.2059, 0.5419,−0.7175)
5 (0.4112, 0.2355, 0.0559,−0.8788)

Table 4.6: Control points of B-spline curve Q(u) = (E(u),F(u)).

79



In the second example, we use five given orientations for motion planning

of a spherical 3R open chain (see Table 4.5 for input data). Figures 4.12, 4.13,

4.14 and 4.15 demonstrate the Algorithm 4.4.3. In Figures 4.12 and 4.14,

the “wiggly” curves r1(u) and r2(u) depict the lower and the upper limits,

respectively of the inequality in Eq. (3.62), while in Figures 4.13 and 4.15,

curves r3(u) and r4(u) depict the lower and the upper limits, respectively of

the inequality in Eq. (3.63). Figure 4.12 shows the unconstrained curve E(u)

in the s1s2 plane and the Figure 4.13 shows the unconstrained curve F(u) in

the s3s4 plane. The algorithm detects one extreme point outside the limits of

the inequality (Eq. (4.8)) at u∗ = 0.6241. This extreme point is common to

the curves E(u) and F(u). The algorithm adds a new point on the line joining

origin and this extreme point in each plane and re-interpolates. We note here

that the equivalence of the inequalities given by Eq. (3.62) and Eq. (3.63)

gives rise to a common extreme point for both the curves but both the curves

still need to be constructed and constrained independently since they each

contribute only half of the quaternion coordinates of Q(u). Similarly, the new

point can be generated only by combining the coordinates of point Ej and Fj

from coordinate planes s1s2 and s3s4, respectively. The curve is constrained

in the next iteration; see Fig 4.14 and Fig 4.15. The algorithm converges in

two iterations for a value of δ = 0.02. Table 4.6 gives the deboor control

orientations Di of the constrained C2 B-spline curve.
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Figure 4.12: An unconstrained C2 cubic B-spline interpolation of a set of
points in s1s2 plane; r1(u) = |w sin((α − β)/2)|, r2(u) = |w sin((α + β)/2)|,
w2 = Q2

1(u) +Q2
2(u) +Q2

3(u) +Q2
4(u).

4.5 Conclusions

In this chapter, we studied the problem of synthesizing piecewise rational

motions subject to the kinematic constraints of the planar and spherical 2R

and 3R open chains. We presented several algorithms for synthesizing exact

C1 continuous piecewise rational motions for planar and spherical 2R and 3R

open chains. We also showed an algorithm for synthesizing exact C2 continuous

piecewise rational motions for a spherical 3R open chain and an algorithm for

synthesizing C2 continuous piecewise rational motions that approximate the

kinematic constraints for a planar 3R open chain.
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Figure 4.13: An unconstrained C2 cubic B-spline interpolation of a set of
points in s3s4 plane; r3(u) = |w cos((α + β)/2)|, r4(u) = |w cos((α − β)/2)|,
w2 = Q2

1(u) +Q2
2(u) +Q2

3(u) +Q2
4(u).
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Figure 4.14: A constrained C2 cubic B-spline interpolation of a set of points
in s1s2 plane; r1(u) = |w sin((α − β)/2)|, r2(u) = |w sin((α + β)/2)|, w2 =
Q2

1(u) +Q2
2(u) +Q2

3(u) +Q2
4(u).
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Figure 4.15: A constrained C2 cubic B-spline interpolation of a set of points
in s3s4 plane; r3(u) = |w cos((α + β)/2)|, r4(u) = |w cos((α − β)/2)|, w2 =
Q2

1(u) +Q2
2(u) +Q2

3(u) +Q2
4(u).
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Chapter 5

Constrained Motion

Interpolation for Planar and

Spherical 4R, 5R and 6R Closed

Chains

5.1 Introduction

The purpose of this chapter is to study the synthesis of rational motions under

kinematic constraints of planar and spherical 4R, 5R, and 6R closed chains.

The spherical displacement of the coupler link is represented by a quater-

nion and the planar displacement is represented by a planar quaternion (see

Bottema and Roth [8] and McCarthy [10] for quaternion representation of

displacements). In this way, the problem of rational motion interpolation is

transformed into that of rational curve interpolation, and the kinematic con-

straints of planar and spherical 6R closed chains are transformed into geometric

constraints for the rational interpolation. Thus, given a series of coupler’s posi-

tions in Cartesian space, the problem of synthesizing the smooth interpolating
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rational motion of a planar and a spherical 6R closed chain is reduced to that

of designing a smooth rational spline constrained to lie on the constraint man-

ifolds of the planar or the spherical closed chain. To solve this problem, first

a free-form smooth B-spline quaternion curve is used to interpolate the given

positions. To ensure that the entire motion satisfies the kinematic constraints,

an algorithm is developed that detect extreme positions on the rational mo-

tion that violates the kinematic constraints. These extreme positions are then

modified so that they are in compliance with the kinematic constraints and

are added to the list of positions to be interpolated. By repeating this process,

one obtain a rational B-spline motion such that it fully satisfies the kinematic

constraints of the planar 6R closed chain or the spherical 6R closed chain.

As planar and spherical 5R, 4R closed chains can be obtained by holding one

or two joints fixed, the above mentioned algorithm is also shown to be appli-

cable to the problem of synthesizing rational motions for the planar and the

spherical 5R, 4R closed chains.

The organization of this chapter is as follows. Section 5.2 reviews the idea

of synthesis of free-form rational planar and spherical motions. Section 5.3

presents algorithms for the rational motion interpolation of planar 4R, 5R,

and 6R closed chains. Section 5.4 shows algorithms for the rational motion

interpolation of spherical 4R, 5R, and 6R closed chains.
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5.2 Unconstrained Rational Planar and Spher-

ical Motions

This section reviews the idea of synthesis of unconstrained (also known as,

free-form) rational planar and spherical motions.

5.2.1 Unconstrained Rational Planar Motion

Planar quaternions have been used for developing unconstrained planar ratio-

nal B-Spline motions (Wagner [60]).

Let Zi, i = 0, ..., n be planar quaternions, then the following represents a

Bézier curve in the space of planar quaternions:

Z(u) =

n
∑

i=0

Bn
i (u)Zi. (5.1)

where Bn
i (u) are the Bernstein polynomials.

Similarly, a B-Spline planar quaternion curve is given by:

Z(u) =
n

∑

i=0

Ni,p(u)Zi. (5.2)

where Ni,p(u) are pth-degree basis functions.

A representation for the rational Bézier motion and rational B-Spline mo-

tion in the Cartesian space can be obtained by substituting Eq. (5.1) and

Eq. (5.2) into the homogeneous matrix [A]. From Eq. (2.10), it can be seen

that if the Bézier or B-Spline curve Z(u) is expressed as a polynomial func-

tion of degree n, then the matrix [A] represents a rational Bézier or B-Spline

motion of degree 2n.
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5.2.2 Unconstrained Rational Spherical Motion

Ravani and Roth [61] considered the components of q as defining a point in

a projective three-space, called the Image Space of spherical kinematics. The

image space of spherical kinematics is a three-dimensional Cayley-Klein space

with elliptic metric. (see Müller [55])

A polynomial curve in the Image Space corresponds to a rational spherical

motion in the Cartesian space. By applying CAGD techniques for designing

curves in the Image Space, we obtain rational motions in the Cartesian space.

Let Qi, i = 0, ..., n be given quaternions, then the following represents a

B-Spline quaternion curve in the space of quaternions:

Q(u) =
n

∑

i=0

Ni,p(u)Qi, (5.3)

where Ni,p(u) are pth-degree basis functions. See Farin [11], Hoschek and

Lasser [14], and Piegl and Tiller [15] for details on the B-spline curves.

A representation for the rational B-Spline motion in the Cartesian space

can be obtained by substituting the coordinates of Q(u) given by Eq. (5.3) into

the homogeneous matrix [A] (Eq. (2.5)). It is easy to see that if the B-Spline

curve Q(u) is expressed as a polynomial function of degree p with parameter

u treated as time, then the matrix [A] represents a rational B-Spline motion

of degree 2p.
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5.3 Rational Motion Interpolation of Planar

4R, 5R and 6R Closed Chains

In this section, we present algorithms for synthesizing C2 continuous piecewise

ration motions of planar 4R, 5R, and 6R close chains under the kinematic

constraints derived in chapter 3.

5.3.1 Rational Motion Interpolation of Planar 6R Closed

Chain

In this subsection, we present an algorithm for the following constrained mo-

tion interpolation problem:

Given: A set of positions of the coupler link of a planar 6R closed chain

in its workspace as well as the parameter sequence ui, i = 1, ..., n for the given

positions.

Find: A rational B-spline motion of the coupler link that interpolates

through the given positions at the parameter values subject to the kinematic

constraints of the planar 6R closed chain.

With the use of planar quaternions, this problem is transformed into that

of interpolating a set of points in the space of planar quaternions subject to

the kinematic constraints (3.49) and (3.50). In this section, we use cubic B-

spline interpolation algorithm for points interpolation. This algorithm can be

found in CAGD texts (see for example, Farin [11], Hoschek and Lasser [14],

and Piegl and Tiller [15]).

We first interpolate the set of planar quaternions without any kinematic
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constraint. We then try to find the extreme point on the B-spline planar

quaternion curve that has the maximum deviation from the constraint mani-

fold of the 6R chain. This extreme point is then “projected” into the constraint

manifold. This results in a new point within the constraint manifold. This

new point is then added to the list of points (or planar quaternions) to be

interpolated. We repeat this process until there is no extreme point on the

interpolating curve that violates the kinematic constraints.

Algorithm 5.3.1

1. Convert given positions into planar quaternions Yi = (Yi1, Yi2, Yi3, Yi4)

using Eq. (3.45), if given positions are in joint angles.

2. Interpolate these planar quaternions Yi with a cubic B-spline curve in

the space of planar quaternions.

3. Find extreme points on the interpolating curve which violate the kine-

matic constraint Eq. (3.49) or Eq. (3.50).

4. If no extreme points are found, then stop and the resulting motion satis-

fies all the kinematic constraints of the planar 6R closed chain. If there

are extreme points that violate the kinematic constraints then add new

points (which satisfy the kinematic constraints) as well as the associated

parameter values to the list of points to be interpolated and go to step

2.
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To find extreme points on the interpolating curve we rewrite Eq. (3.37) and

Eq. (3.38) as follows:

F1(u) =
(Y1(u) + τY4(u))

2 + (Y2(u) − σY3(u))
2

Y 2
3 (u) + Y 2

4 (u)
, (5.4)

F2(u) =
(Y1(u) − τY4(u))

2 + (Y2(u) + σY3(u))
2

Y 2
3 (u) + Y 2

4 (u)
. (5.5)

The maximum and minimum values of F1(u) and F2(u) can be obtained from

dF1(u)

du
= 0,

dF2(u)

du
= 0. (5.6)

Then the extreme points are those points which have maximum or mini-

mum values of F1(u) or F2(u), and reside outside of the range governed by

Eqs. (3.49) and (3.50).

We solve the following modified kinematic constraint equations to find new

points which satisfy the kinematic constraints in the step 4 of the algorithm:

(Y1 + τY4)
2 + (Y2 − σY3)

2 = r2
1(Y

2
3 + Y 2

4 ), (5.7)

(Y1 − τY4)
2 + (Y2 + σY3)

2 = r2
2(Y

2
3 + Y 2

4 ). (5.8)

In general, one can project the extreme point onto the constraint manifold

using the concept of normal distance in the image space introduced by Ravani

and Roth [45]. In this chapter, however, we use a much simpler approach in

order to obtain a more efficient algorithm. We use the values of Y3, Y4 of the

extreme point and then obtain new values for Y1, Y2 by solving (5.7) and (5.8)

simultaneously. Kinematically, this means that we keep the same orientation

of the coupler link associated with the extreme point but shift the position
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of the coupler link so that the kinematic constraints of the coupler link are

satisfied.

In order to make sure that the new point stays inside of the constraint

manifold, we select r1, r2 by:

r1 =







|a1 − b1|/2 + δ1, if F1(u
∗) < (a1 − b1)

2/4;
(a1 + b1)/2 − δ1, if F1(u

∗) > (a1 + b1)
2/4;

F1(u
∗), otherwise.

(5.9)

and

r2 =







|a2 − b2|/2 + δ2, if F2(u
∗) < (a2 − b2)

2/4;
(a2 + b2)/2 − δ2, if F2(u

∗) > (a2 + b2)
2/4;

F2(u
∗), otherwise.

(5.10)

where u∗ is the parameter value corresponding to the extreme point. The

parameters, δ1 and δ2 define how far inside the new point is supposed to be

inside of the constraint manifold. When they equal zero, the new point lies on

the boundary of the constraint manifold.

From Eqs. (5.7) and (5.8) we can see that they represent two circles when

Y3 and Y4 are held constant. In our algorithm we choose the one of two

intersection points of two circles which is closer to the extreme point as new

point.

We now give an example to demonstrate the algorithm. A set of positions

of the coupler link of a planar 6R closed chain are given in Table 5.1 and the

corresponding planar quaternions are given in Table 5.2. The kinematic con-

straints of the given planar 6R closed chain is shown in Table 5.3. The results

of the advocated algorithm are shown in Figures 5.1, 5.2 and 5.3. For the ease

of visualization, we have projected all objects from planar quaternion space

91



i 1 2 3 4 5
θi(deg) 63.3 68.5 97.1 169.7 −129.1
φi(deg) −84.6 −74.8 −16.6 −108.8 −136.9
ψi(deg) 21.3 36.3 −95.5 −45.9 −63.0
ui 0.0 2.0 5.0 7.0 10.0

Table 5.1: Input joint angles for a planar 6R closed chain (a1 = 1,
b1 = 3, a2 = 4, b2 = 2).

onto Y4 = 1 hyperplane. We have rotated and zoomed Figure 5.1 to obtain

Figures 5.2 and 5.3, which allow illustration of the results more clearly. While

the green and red hyperboloids represent the kinematic constraints Eqs. (3.49)

and (3.50), the given positions are marked by pink squares, the extreme points

are shown as red star points, and the new points that satisfy the kinematic

constraints are denoted as yellow squares. The initial curve for unconstrained

interpolation is shown in black and the final curve for constrained interpola-

tion is shown in blue. We set the values δ1 = δ2 = 0.1 in Eqs. (5.9) and (5.10).

From Figure 5.2 we find that one portion of the initial black curve contains

one extreme point that violates the kinematic constraint Eq. (3.49) (F1 ≥ 1).

Figure 5.3 shows us that another part of the initial curve, which also has one

extreme point that violates the kinematic constraint Eq. (3.49) (F1 ≤ 4). The

blue curve in each of the two figures represents the new planar quaternion

curve that satisfies the kinematic constraints of given planar 6R closed chain.
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i Zi = (Zi1, Zi2, Zi3, Zi4)
1 (1.0224,−0.0970, 0.0000, 1.0000)
2 (1.1153, 0.4791, 0.2588, 0.9659)
3 (−0.6683, 1.6696,−0.1305, 0.9914)
4 (−0.1761, 1.6698, 0.1305, 0.9914)
5 (−0.6875, 1.8228, 0.2676, 0.9635)

Table 5.2: Planar quaternions of given positions of the coupler link

of planar 6R closed chain.

i Kinematic constraints Fi

1 1.0 ≤ F1 ≤ 4.0
2 1.0 ≤ F2 ≤ 9.0

Table 5.3: Kinematic constraints of given planar 6R closed chain.

5.3.2 Rational Motion Interpolation of Planar 4R Closed

Chain

This section shows that the algorithm described in the previous section may be

applied for the rational motion interpolation under the kinematic constraints

of the planar 4R closed chain.

To use the algorithm mentioned in the section 5.3.1, we modify the kine-

matic constraints Eqs. (3.35) and (3.36) to be:

(

a1 − δ1
2

)2

≤ F1(Y1, Y2, Y3, Y4) ≤

(

a1 + δ1
2

)2

, (5.11)

and
(

a2 − δ2
2

)2

≤ F2(Y1, Y2, Y3, Y4) ≤

(

a2 + δ2
2

)2

. (5.12)

where δ1 and δ2 are allowable tolerances indicating how closely the kinematic

constraints (3.35) and (3.36) of a 4R chain should be approximated.
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Figure 5.1: A constrained interpolation of given points.

With the modified kinematic constraints Eqs. (5.11) and (5.12), we can

directly use the same algorithm described in the section 5.3.1 except that when

we find new points in the step 4 of the algorithm the r1 and r2 of Eqns (5.9)

and (5.10) are given by:

r1 =
a1

2
, r2 =

a2

2
. (5.13)

5.3.3 Rational Motion Interpolation of Planar 5R Closed

Chain

For a planar 5R closed chain, we can use the same algorithm as for the planar

6R closed chain. We need to replace the first kinematic constraint Eq. (3.43)

with Eq. (5.11). The value of r1 is given by Eq. (5.13) in the step 4 of the

Algorithm 5.3.1.
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Figure 5.2: Zoomed image from view angle 1 of Figure 5.1. One extreme point
violates the kinematic constraint 1.0 ≤ F1 ≤ 4.0).

5.4 Rational Motion Interpolation of Spheri-

cal 4R, 5R and 6R Closed Chains

In this section, we first present an algorithm for synthesizing C2 continuous

piecewise rational motions of spherical 6R closed chain under the kinematic

constraints derived in chapter 3. Next we will show that the same algorithm

can be applied for the synthesis of interpolating rational motion of spherical

4R and 5R closed chains with the kinematic constraints being satisfied only

approximately, however within a user-defined tolerance.

The positions of the coupler of a spherical 6R closed chain can be given

by either Cartesian coordinates (sxi, syi, szi, θi) or joint coordinates (θi, φi, ψi).

Eq. (2.1) can be used to convert Cartesian coordinates into quaternions, while
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Figure 5.3: Zoomed image from view angle 2 of Figure 5.1. One extreme point
violates the kinematic constraint 1.0 ≤ F1 ≤ 4.0).

Eq. (3.84) can be used to convert joint coordinates into quaternions. If the

given positions of the coupler are not connectable with a continuous trajectory,

then the mechanism has to be disassembled and re-assembled to interpolate

the positions. This is commonly known as “assembly mode defect”. Recently,

Schröcker and Husty [62] and Schröker et al. [63] presented fast numerical al-

gorithms for determining if two task positions of planar and spherical four-bar

mechanisms suffer from this defect. The algorithm presented below assumes

that the given positions are on the same branch.
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5.4.1 Rational Motion Interpolation for Spherical 6R

Closed Chain

In this subsection, we present an algorithm for the following constrained mo-

tion interpolation problem:

Given: A set of positions of the coupler link of a spherical 6R closed chain

in its workspace, the corresponding parameter values ui (i = 1 . . . n), angular

spans of the links given by αi, βi (i = 1, 2), and the angular distance between

the two moving pivots and between the two fixed pivots given by η and γ,

respectively.

Find: A rational motion of the coupler link that interpolates the given

positions at the parameter values subject to the kinematic constraints of the

spherical 6R closed chain.

In the ensuing discussion over a general description of the algorithm, we as-

sume that the given positions of the coupler link are represented by quaternion

coordinates given by Yi = (Yi1, Yi2, Yi3, Yi4); i = 1 . . . n. These quaternions

map into points in the space of quaternions.

Detection of Kinematic Constraints Violation

Finding a motion that satisfies the requirements stated earlier in this section

begins with the construction of a C2 cubic B-spline image curve 1 Y(u) that

interpolates Yi at parameter values ui. Such a curve does not automatically

satisfy the kinematic constraints given by Eqs. (3.87) and (3.88). Specifically,

1Designing a C2 B-spline curve is a standard scheme in CAGD (see Farin [11], Hoschek
and Lasser [14], and Piegl and Tiller [15]).
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kinematic constraints are considered violated at those points of the synthesized

image curve Y(u), where the following functions (rewritten from Eqs. (3.77)

and (3.78)) do not satisfy the inequality given in Eqs. (3.87) and (3.88):

F1(u) =
(Y1(u) sin τ − Y4(u) cos τ)2 + (Y2(u) sinσ + Y3(u) cosσ)2

Y 2
1 (u) + Y 2

2 (u) + Y 2
3 (u) + Y 2

4 (u)
, (5.14)

F2(u) =
(Y1(u) sin τ + Y4(u) cos τ)2 + (Y2(u) sinσ − Y3(u) cosσ)2

Y 2
1 (u) + Y 2

2 (u) + Y 2
3 (u) + Y 2

4 (u)
. (5.15)

To detect violations of the kinematic constraints, extrema of functions

F1(u) and F2(u) are calculated using the following equations:

dF1(u)

du
= 0,

dF2(u)

du
= 0. (5.16)

If an extremum falls outside the limits in any of the inequalities (Eqs. (3.87)

and (3.88)), the constraints are considered violated. We call a point on the

image curve corresponding to an extremum of F1(u) or F2(u) an extreme point.

A C2 cubic B-spline curve can be easily converted into a piecewise Bézier form

using standard methods (see Farin [11]), where each Bézier segment has an

algebraic form. The piecewise Bézier form allows easy evaluation of Eq. (5.16)

for each of the L Bézier segments, Yi(u); i = 0, 1, . . . , L−1, that make up the

B-spline curve Y(u).

Modifying the Curve to Satisfy Kinematic Constraints

By restricting to operate in the image space, we have transformed the kine-

matic constraints into geometric constraints. Thus, we can take a purely

geometric approach to modify the synthesized image curve in such a way that
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the kinematic constraints are satisfied. Our approach is to replace the extreme

point that violates the kinematic constraints with a new point that satisfies

kinematic constraints, thereby dragging the curve to the inside of the con-

straint manifold. To ensure that the image curve changes minimally, the new

point should be closest possible to the extreme point. This approach is realized

in a two step iterative process: first, a new point is generated that satisfies

the kinematic constraints and is minimally away from the extreme point, then

this new point is added (at the parameter value corresponding to the extreme

point) to the initial set of given points and a new C2 cubic B-spline image curve

is generated that interpolates the new point as well. If the new image curve

detects any further violation of the kinematic constraints as outlined in the

previous subsection, this two-step process is repeated until no extreme points

that violate the kinematic constraints are found. This process may yield many

new points before the kinematic constraints are satisfied completely. A visual

interpretation of this approach is that the image curve is repeatedly “bent-in”

or “bent-out” in the vicinity of the constraints violating extreme points in its

image space, while still interpolating through the given positions, until it fits

in the constraint manifold defined by the kinematic constraints.

Generating New Points

Since we require the new points to be minimally away from the extreme points,

the issue of finding new points can be seen as a normal distance minimiza-

tion problem in the image space subject to certain constraints. Ravani and

Roth [45] proposed a general algebraic method for approximate normal dis-
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tance calculation between the image curve and a given position in the image

space. Later on, Bodduluri and McCarthy [46] used their method for finite

position synthesis of a spherical four-bar motion. In what follows, we outline

this method and conform the issue of finding new points to the framework of

this method for solution.

We first rewrite the kinematic constraint equations from Eqs. (3.77), (3.78),

and Eqs. (3.87), (3.88) as follows:

(Y1 sin τ − Y4 cos τ)2 + (Y2 sin σ + Y3 cosσ)2 = r2
1

4
∑

i=1

Y 2
i , (5.17)

(Y1 sin τ + Y4 cos τ)2 + (Y2 sin σ − Y3 cosσ)2 = r2
2

4
∑

i=1

Y 2
i . (5.18)

Here, r1 and r2 are variables which should satisfy the following inequalities:

| cos(
α1 + β1

2
)| ≤ r1 ≤ | cos(

α1 − β1

2
)|

| cos(
α2 + β2

2
)| ≤ r2 ≤ | cos(

α2 − β2

2
)|

(5.19)

The new point should satisfy Eqs. (5.17), (5.18) as well as the following:

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = w2, (5.20)

where w is a non-zero scalar (or, weight) for the quaternion coordinates of

the new point. Here, without any loss of generality, we choose w = 1, since

as we showed before in section 5.2.2, the coordinates of Y are homogeneous

coordinates.

In the context of spherical four-bar mechanism synthesis, the method used

by Bodduluri and McCarthy [46] solves the design problem of determining an
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image curve that passes through or near a set of given points. The image curve

is algebraically given by intersection of two quadric hypersurfaces (constraint

surfaces) and is expressed as functions of the design parameters, such as link

lengths and the pivot locations. They seek the values of design parameters

which reduce the error between the image curve and the given points. The

error at each given position is defined as the normal distance to the image

curve. They define total error as the sum of squares of each position error.

The method is approximate in the sense that the constraint surfaces are ap-

proximated by their tangent hyperplane in the vicinity of the desired position.

We use the same approach to find a new point Y that satisfies the constraints

given by Eqs. (5.17), (5.18), and (5.20) and is also at the minimum distance

from the extreme point (Y∗) that violates the kinematic constraints. In our

case, we define e = Y − Y∗ as the normal error vector at the position Y∗.

Minimization of the square of the magnitude of e subject to Eq. (5.19) would

yield r1 and r2. This in turn would give the new point Y = e∗ + Y∗, where

e∗ is the optimized normal distance. This new point Y may not satisfy the

kinematic constraints because the constraint surfaces are only approximated

in this approach. In that case, this new point Y is set as the new extreme

point Y∗ and the process described above is repeated.

The optimization procedure outlined above involves the tangent hyperplane

approximation to the hypersurfaces. For that, we first rewrite Eqs. (5.17),

(5.18), and (5.20) as follows:

H1(Y) : (Y1 sin τ − Y4 cos τ)2 + (Y2 sin σ + Y3 cosσ)2 − r2
1 = h1, (5.21)
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H2(Y) : (Y1 sin τ + Y4 cos τ)2 + (Y2 sin σ − Y3 cosσ)2 − r2
2 = h2, (5.22)

G(Y) : Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 − 1 = g, (5.23)

where, h1 = h2 = g = 0.

These surfaces can be approximated by the tangent hyperplanes at a point

Y∗ = (Y ∗

1 , Y
∗

2 , Y
∗

3 , Y
∗

4 ) by following:

0 = H1(Y
∗) +

4
∑

i=1

∂H1(Y
∗)

∂Yi

∆Yi,

0 = H2(Y
∗) +

4
∑

i=1

∂H2(Y
∗)

∂Yi
∆Yi,

0 =

4
∑

i=1

2Y ∗

i ∆Yi. (5.24)

These equations can be assembled as follows:













∂H1

∂Y1

∂H1

∂Y2

∂H1

∂Y3

∂H1

∂Y4

∂H2

∂Y1

∂H2

∂Y2

∂H2

∂Y3

∂H2

∂Y4

2Y ∗

1 2Y ∗

2 2Y ∗

3 2Y ∗

4

























∆Y1

∆Y2

∆Y3

∆Y4













=











−H1

−H2

0











. (5.25)

The above can also be written as

[J ]e = v. (5.26)

Bodduluri and McCarthy [46] solve for the normal error vector e by minimizing

the Lagrangian function given as follows:

L(e,A) = eTe + AT ([J ]e − v), (5.27)
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where A = (A1, A2, A3) is a vector of Lagrange multipliers, e = (Y1 −Y ∗

1 , Y2 −

Y ∗

2 , Y3 − Y ∗

3 , Y4 − Y ∗

4 ), v = (−H1(Y
∗),−H2(Y

∗), 0). Putting the condition for

a minimum as

∂L

∂ei
= 0, i = 1, 2, 3, 4 (5.28)

where (e1, e2, e3, e4) are the coordinates of the vector e and assembling the

solution equations, we obtain

2eT + AT [J ] = 0. (5.29)

Thus, if e∗ designates the solution to the error vector (or, the normal distance)

then it should satisfy the equations

[J ]e∗ = v,

2e∗ + [J ]TA = 0. (5.30)

Equation (5.30) gives an explicit formula for the solution error vector e∗ in

terms of variables r1 and r2 (see Bodduluri and McCarthy [46]):

e∗ = [J ]T ([J ][J ]T )−1v. (5.31)

Thus, we can determine the variables r1 and r2 by optimizing the function

E(Y, r1, r2) = (e∗)Te∗, (5.32)

subject to constraints given by Eq. (5.19).

With normal error vector e∗ known, the new point is given by

Y = e∗ + Y∗. (5.33)
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Since the constraint surfaces have been approximated by their tangent hyper-

planes in the vicinity of the extreme point Y∗, this new point Y may or may

not lie inside the constraint solids given by Eqs. (3.87) and (3.88). If the new

point does not satisfy the constraints, the newly obtained point Y is set as a

new Y∗ and the procedure described above is repeated from Eq. (5.24) until

a new point Y is obtained that satisfies the kinematic constraints. This new

point not only satisfies the kinematic constraints but is also at the shortest

distance from the original extreme point Y∗. With this new point added to

the set of initial points in the quaternion space, a new C2 B-spline is interpo-

lated to the points. If the new image curve detects any further violation of the

kinematic constraints, the optimization process is repeated until no further ex-

treme points that violate the kinematic constraints are found. This process at

the end gives an interpolating motion that satisfies the kinematic constraints.

Now, we present the algorithm:

Algorithm 5.4.1

1. Convert given positions of the coupler link into unit quaternions (points

in image space) Yi = (Yi1, Yi2, Yi3, Yi4) using either Eq. (2.1) or Eq. (3.84).

2. Current list of points to be interpolated = given points (Yi; i = 1 . . . n)

3. Construct a C2 cubic B-spline curve Y(u) that interpolates current list

of points.

4. (a) Evaluate the extrema of F1(u) and F2(u) using Eq. (5.16). Say, the
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extrema are found at u = u∗1 and at u = u∗2 for F1(u) and F2(u),

respectively. Designate extreme points on the curve as Y∗

1 and Y∗

2.

(b) Check if Y∗

1 and Y∗

2 satisfy the kinematic constraints (Eqs. (3.87)

and (3.88)).

(c) If yes, the curve is constrained; continue to Step 5.

(d) else, find new points Y(u∗1) and Y(u∗2) (Eqs. (5.24) – (5.33)).

(e) Check if the new points Y(u∗1) and Y(u∗2) satisfy kinematic con-

straints (Eqs. (3.87) and (3.88)).

i. If yes, continue to next Sub-step (f)

ii. else, set Y∗

1 = Y(u∗1) and Y∗

2 = Y(u∗2) and repeat from Sub-step

(d).

(f) Add Y(u∗1) and Y(u∗2) to the current list of points to be interpolated

and go to Step 3.

5. The image curve Y(u) defines a C2 interpolating piecewise rational mo-

tion of degree 6 after the substitution into Eq. (2.5).

We have observed that this algorithm always converges as long as the

interpolating points are on the same branch. In this algorithm, the B-spline

curve is generated using a global interpolation scheme (Piegl and Tiller [15]).

In this scheme, although moving one of the interpolating points changes the

curve globally, the change in the curve diminishes away from the modification

point. Next we show via an example that the algorithm converges fast as well.
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i Yi = (Yi1, Yi2, Yi3, Yi4) ui

1 (−0.2636, 0, 0, 0.9646) 0.0
2 (−0.0039,−0.2949,−0.0814, 0.9520) 2.0
3 (−0.0110,−0.5860, 0.0150, 0.8101) 5.0
4 (−0.4910,−0.4170,−0.0005, 0.7649) 7.0
5 (−0.5620, 0, 0, 0.8271) 10.0

Table 5.4: Quaternion coordinates of the given positions of the cou-

pler link of spherical 6R closed chain(α1 = π/4, β1 = π/6, α2 = π/3,
β2 = π/6, η = π/3, γ = π/2)

i Kinematic constraints Fi

1 0.63 ≤ F1 ≤ 0.98
2 0.5 ≤ F2 ≤ 0.93

Table 5.5: Kinematic constraints of given spherical 6R closed chain.

Table 5.4 gives the quaternion coordinates (Yi1, Yi2, Yi3, Yi4) for five po-

sitions of the coupler link of a spherical 6R closed chain along with their

parameter values. The table also gives the link lengths and the angular dis-

tance between moving and the fixed pivots. The range of the inequality in the

kinematic constraints given by Eqs. (3.87) and (3.88) are shown in Table 5.5.

To visualize the constraint solids in three-dimensional Euclidean space, we

recast the constraint equations (Eqs. (3.87) and (3.88)) in terms of Rodrigues

parameters (see Bottema and Roth [8]) given by (Y1/Y4, Y2/Y4, Y3/Y4). Geo-

metrically, this is equivalent to observing the intersection of constraint solids

with hyperplane Y4 = 1. Figure 5.4 shows such an intersection of the con-

straint surfaces of the four dimensional solids described by Eqs. (3.87) and

(3.88) with the hyperplane Y4 = 1. Various surfaces are the indicated by the
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Figure 5.4: Kinematic constraint surfaces obtained by intersection with the
hyperplane Y4 = 1

limits of the inequalities (Table 5.5). These surfaces are hyperboloid of one

sheet and we note here that contrary to what the reader might expect, the

inner hyperboloids indicate the upper and the outer ones indicate the lower

range of the kinematic constraints inequality (Eqs. (3.87) and (3.88)). The

volume bounded by the surfaces is the valid region for the image curve to

remain in for the constraints to be satisfied.

Figure 5.5 shows the kinematic constraint surfaces and the unconstrained

interpolation of the given positions from a different angle than shown in Fig-

ure 5.4. The extreme points that violate the kinematic constraints are shown

by the star points (‘⋆’). Given positions interpolated by the image curve are

indicated by ‘�’. This figure shows that there are two extreme points, each

of which violate one of the kinematic constraints. One of the extreme point

is seen to be at u∗ = 0.92, where F1 = 1.0. This point is outside the bounds
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Figure 5.5: Unconstrained interpolation and the kinematic constraint surfaces
obtained by intersection with the hyperplane Y4 = 1. The image curve is
shown as a continuous curve, the two extreme points that violate kinematic
constraints as ‘⋆’, and the given positions as ‘�’.

of F1(u) : 0.63 ≤ F1 ≤ 0.98. It is not difficult to see from the figure that

this extreme point does not violate the other kinematic constraint given by

0.5 ≤ F2 ≤ 0.93 . This point can be clearly seen between the two kinematic

constraint surfaces given by the limits of F2(u). Similarly, the other extreme

point is seen to be at u∗ = 8.74, where F2 = 0.38. This point violates the

lower limit of the inequality 0.5 ≤ F2. It can also be seen from the figure that

this extreme point does not violate the other kinematic constraint.

Figures 5.6 and 5.7 focus on the violation of different constraints and vi-

sually demonstrate the application of the algorithm in constraining the image

curve. Figure 5.6, which is obtained by rotating and zooming in on the Fig-

ure 5.5 focuses on the kinematic constraint 0.5 ≤ F2 ≤ 0.93 and the extreme

point that violates this constraint. It shows the unconstrained curve with one
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Figure 5.6: A zoomed-in and rotated view of the Figure 5.5: one extreme point
with F2(8.74) = 0.38 violates the kinematic constraint: 0.5 ≤ F2. Surfaces
given by the limits of the other constraint are shown in light broken lines.

of the extreme points that violates the constraint 0.5 ≤ F2. This point is

clearly seen to be outside the volume defined by the constraint surfaces. Sur-

faces given by the limits of the other constraint F1(u) (Eq. (3.87)) that is not

violated by this extreme point are shown in light broken lines. It should also be

noted that the other unlabeled extreme point does not violate the constraint

0.5 ≤ F2 ≤ 0.93.

Similarly, Figure 5.7 shows from another angle the kinematic constraint

surfaces given by the limits of F1(u) and the unconstrained curve. This figure

shows the other extreme point that violates the upper limit (F1 ≤ 0.98) of the

kinematic constraints given by the inequality in Eq. (3.87). Also shown are

the constraint surfaces given by the limits of F2(u) in light broken lines.

Application of the algorithm presented earlier is illustrated in the Fig-
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Figure 5.7: A zoomed-in and rotated view of the Figure 5.5: one extreme point
with F1(0.92) = 1.0 violates the kinematic constraint: F1 ≤ 0.98. Surfaces
given by the limits of the other constraint are shown in light broken lines.

ure 5.8 and 5.9, where in two iterations, the algorithm produces a constrained

curve. On a Pentium 4 2.0 GHz system with 512 MB of primary memory,

the algorithm ran for less than 5 seconds. Two new points that replace the

extreme points are added in the process, which are indicated by ‘o’. It might

seem from Figure 5.8 and 5.9 that the two new points added to satisfy the

limits on F2(u) and F1(u) are not minimally away from their corresponding

extreme point, respectively. However, this is not true. A different view of the

locations of the two new points verifies this assertion visually in Figure 5.8 and

Figure 5.9, e.g., the new point labeled in Figure 5.8 is seen to be very close to

the outer constraint surface shown in light broken lines in the Figure 5.9.

The final interpolating curve satisfies all the constraints, which in the

Cartesian space translates into a C2 continuous B-spline rational motion of
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Figure 5.8: Constrained interpolation (compare with Figure 5.6): The labeled
new point (‘o’) is the point that replaces the labeled extreme point.

the spherical 6R closed chain.

5.4.2 Rational Motion Interpolation of Spherical 4R And

5R Closed Chains

Constraint equations of spherical 4R and 5R closed chains can be seen as a

special case of the constraint equations of spherical 6R closed chain. By turning

the equality equations of 4R and 5R closed chains (Eqs. (3.75), (3.76), and

(3.82)) into inequalities, we can apply the same algorithm as presented before

to do constrained interpolation for 4R and 5R closed chains as well.

For spherical 4R closed chains, we modify the kinematic constraints (Eqs. (3.75)

and (3.76)) as follows:

cos2(
α1 + δ1

2
) ≤ F1(Y1, Y2, Y3, Y4) ≤ cos2(

α1 − δ1
2

), (5.34)

cos2(
α2 + δ2

2
) ≤ F2(Y1, Y2, Y3, Y4) ≤ cos2(

α2 − δ2
2

) (5.35)
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Figure 5.9: Constrained interpolation (compare with Figure 5.7): The labeled
new point (‘o’) is the point that replaces the labeled extreme point.

where δ1 and δ2 are user-defined tolerances. Thus, by choosing these values

to be as small as possible, the user can use the same algorithm to do con-

straint interpolation to a desired degree of satisfaction. The addition of new

points is handled slightly differently; we use the following equations in place

of Eq. (5.19):

r1 = cos
α1

2
, r2 = cos

α2

2
. (5.36)

In case of spherical 5R closed chain, we modify the kinematic constraint

(Eq. (3.82)) to be same as the kinematic constraint Eq. (5.34). This puts

the first kinematic constraint in the inequality form, while we use the second

constraint equation unchanged, i.e., Eq. (3.83). The new points are added in

the same way as illustrated before; however, the value of r1 in the Eq. (5.19)

is replaced with the value given in Eq. (5.36).
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5.5 Conclusions

In this chapter, we studied the problem of rational motion interpolation subject

to the kinematic constraints of planar and spherical 4R, 5R, and 6R closed

chains. We presented algorithms for rational B-spline motion interpolation of

given positions of the coupler link of a planar or a spherical 6R closed chain

which satisfies the kinematic constraints exactly. We showed these algorithms

are also applicable to planar and spherical 4R and 5R closed chains that result

in motions that approximate the kinematic constraints.
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Chapter 6

Constrained Motion

Interpolation for Spatial

Mechanisms

6.1 Introduction

The purpose of this chapter is to study the problem of synthesizing rational

motions under kinematic constraints of spatial mechanisms, such as spatial SS

open chain and ADEPT robot. In this chapter, the spatial displacement is rep-

resented by a dual quaternion (see Bottema and Roth [8] and McCarthy [10]

for quaternion representation of displacements). In this way, the problem of

rational motion interpolation is transformed into that of rational curve inter-

polation, and the kinematic constraints of spatial mechanisms are transformed

into geometric constraints for the rational interpolation. Thus, given a series

of positions of end effector in Cartesian space, the problem of synthesizing

the smooth interpolating rational motion of a spatial SS open chain and an

ADEPT robot is reduced to that of designing a smooth rational curve con-
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strained to lie on the constraint manifolds of the corresponding spatial mecha-

nisms. We can apply similar algorithms developed in chapter 4 and chapter 5

to the rational motion interpolation under the kinematic constraints of a spa-

tial SS open chain and an ADEPT robot.

The organization of this chapter is as follows. Section 6.2 presents an algo-

rithm for rational motion interpolation of spatial SS open chain. Section 6.3

deals with the problem of synthesizing rational motions under the kinematic

constraints of an ADEPT robot.

6.2 Rational Motion Interpolation of Spatial

SS Open Chain

In this section, we present an algorithm for synthesizing piecewise ration mo-

tions of spatial SS open chain under the kinematic constraints derived in sec-

tion 3.4.1.

Given: A set of positions of the end effector of a spatial SS open chain

in its workspace as well as the corresponding parameter values ui(i = 1 . . . n)

and the length of the first link a.

Find: A rational motion of the end effector that interpolates the given

positions at the parameter values subject to the kinematic constraints of the

spatial SS open chain.

The given positions of the end effector of a spatial SS open chain can be

specified using either Cartesian based parameters (sxi, syi, szi, θi, d1i, d2i, d3i) or

joint coordinates of the open chain (αi, θi, βi, φi, γi). In the case of Cartesian
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parameters, we use Eqs. (2.1) and (2.13) to convert them into dual quater-

nions; in the case of joint parameters, we convert them into dual quaternions

by using Eq. (3.91).

Detection of Kinematic Constraints Violation

Finding a motion that satisfies the requirements stated earlier in this section

begins with the construction of a cubic B-spline image curve 1 q̂(u) that in-

terpolates q̂i at parameter values ui. Such a curve does not automatically

satisfy the kinematic constraints given by Eqs. (3.92), (2.16), and (2.17).

Specifically, kinematic constraints are considered violated at those points of

the synthesized image curve q̂(u), where the following inequalities (rewritten

from Eqs. (3.92), (2.16), and (2.17)) do not satisfy:

|F1(u)| = |q2
1 + q2

2 + q2
3 + q2

4 − 1| ≤ δ1, (6.1)

|F2(u)| = |q1q
0
1 + q2q

0
2 + q3q

0
3 + q4q

0
4| ≤ δ2, (6.2)

|F3(u)| = |(q0
1)

2 + (q0
2)

2 + (q0
3)

2 + (q0
4)

2 − a2/4| ≤ δ3, (6.3)

where parameters, δ1, δ2, and δ3 are specified tolerances that define how far

deviated the points from the kinematic constraints.

To detect violations of the kinematic constraints, extrema of functions

F1(u), F2(u), and F3(u) are calculated using the following equations:

dF1(u)

du
= 0,

dF2(u)

du
= 0,

dF3(u)

du
= 0. (6.4)

1Designing a C2 B-spline curve is a standard scheme in CAGD (see Farin [11], Hoschek
and Lasser [14], and Piegl and Tiller [15]).
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If an extremum falls outside the limits in any of the inequalities (Eqs. (6.1),(6.2),

and (6.3)), the constraints are considered violated. We call a point on the im-

age curve corresponding to an extremum of F1(u), F2(u), or F3(u) an extreme

point. A C2 cubic B-spline curve can be easily converted into a piecewise

Bézier form using standard methods (see Farin [11]), where each Bézier seg-

ment has an algebraic form. The piecewise Bézier form allows easy evaluation

of Eq. (6.4) for each of the L Bézier segments, q̂i(u); i = 0, 1, . . . , L− 1, that

make up the B-spline curve q̂(u).

Modifying the Curve to Satisfy Kinematic Constraints

By restricting to operate in the image space, we have transformed the kine-

matic constraints into geometric constraints. Thus, we can take a purely

geometric approach to modify the synthesized image curve in such a way that

the kinematic constraints are satisfied. Our approach is to replace the extreme

point that violates the kinematic constraints with a new point that satisfies

kinematic constraints, thereby dragging the curve to the inside of the con-

straint manifold. To ensure that the image curve changes minimally, the new

point should be closest possible to the extreme point. This approach is realized

in a two step iterative process: first, a new point is generated that satisfies

the kinematic constraints and is minimally away from the extreme point, then

this new point is added (at the parameter value corresponding to the extreme

point) to the initial set of given points and a new C2 cubic B-spline image

curve is generated that interpolates the new point as well. If the new image

curve detects any further violation of the kinematic constraints as outlined
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in the previous subsection, this two-step process is repeated until no extreme

points that violate the kinematic constraints are found. This process may yield

many new points before the kinematic constraints are satisfied completely.

Generating New Points

Since we require the new points to be minimally away from the extreme points,

the issue of finding new points can be seen as a normal distance minimiza-

tion problem in the image space subject to certain constraints. Ravani and

Roth [45] proposed a general algebraic method for approximate normal dis-

tance calculation between the image curve and a given position in the image

space. Later on, Bodduluri and McCarthy [46] used their method for finite

position synthesis of a spherical four-bar motion. In what follows, we outline

this method and conform the issue of finding new points to the framework of

this method for solution.

Note: In this subsection we use vector q = (q1, q2, q3, q4, q5, q6, q7, q8) in R
8 to

represent the corresponding dual quaternion q̂ = q + ǫq0.

In the context of spherical four-bar mechanism synthesis, the method used

by Bodduluri and McCarthy [46] solves the design problem of determining

an image curve that passes through or near a set of given points. The im-

age curve is algebraically given by intersection of two quadric hypersurfaces

(constraint surfaces) and is expressed as functions of the design parameters,

such as link lengths and the pivot locations. They seek the values of design

parameters which reduce the error between the image curve and the given

points. The error at each given position is defined as the normal distance to
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the image curve. They define total error as the sum of squares of each position

error. The method is approximate in the sense that the constraint surfaces

are approximated by their tangent hyperplane in the vicinity of the desired

position. We use the same approach to find a new point q that satisfies the

constraints given by Eqs. (6.1),(6.2), and (6.3) and is also at the minimum

distance from the extreme point (q∗) that violates the kinematic constraints.

In our case, we define e = q−q∗ as the normal error vector at the position q∗.

Minimization of the square of the magnitude of e would yield the new point

q = e∗ + q∗, where e∗ is the optimized normal distance. This new point q

may not satisfy the kinematic constraints because the constraint surfaces are

only approximated in this approach. In that case, this new point q is set as

the new extreme point q∗ and the process described above is repeated.

The optimization procedure outlined above involves the tangent hyperplane

approximation to the hypersurfaces. For that, we first rewrite Eqs. (6.1),(6.2),

and (6.3) as follows:

H1(q) : q2
1 + q2

2 + q2
3 + q2

4 − 1 = h1, (6.5)

H2(q) : q2
5 + q2

6 + q2
7 + q2

8 − a2/4 = h2, (6.6)

H3(q) : q1q5 + q2q6 + q3q7 + q4q8 = h3, (6.7)

where, h1 = h2 = h3 = 0.

These surfaces can be approximated by the tangent hyperplanes at a point
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q∗ by following:

0 = H1(q
∗) +

8
∑

i=1

∂H1(q
∗)

∂qi
∆qi,

0 = H2(q
∗) +

8
∑

i=1

∂H2(q
∗)

∂qi
∆qi,

0 = H3(q
∗) +

8
∑

i=1

∂H3(q
∗)

∂qi
∆qi. (6.8)

These equations can be assembled as follows:





2q1 2q2 2q3 2q4 0 0 0 0
0 0 0 0 2q5 2q6 2q7 2q8
q5 q6 q7 q8 q1 q2 q3 q4





























∆q1
∆q2
∆q3
∆q4
∆q5
∆q6
∆q7
∆q8

























=





−H1

−H2

−H3



 . (6.9)

The above can also be written as

[J ]e = v. (6.10)

Bodduluri and McCarthy [46] solve for the normal error vector e by minimizing

the Lagrangian function given as follows:

L(e,Λ) = eTe + ΛT ([J ]e − v), (6.11)

where Λ = (Λ1,Λ2,Λ3) is a vector of Lagrange multipliers, e = q − q∗,

v =(−H1(q
∗), −H2(q

∗), −H3(q
∗)). Putting the condition for a minimum

as

∂L

∂ei
= 0, i = 1, . . . , 8, (6.12)

120



where ei are the coordinates of the vector e and assembling the solution equa-

tions, we obtain

2eT + ΛT [J ] = 0. (6.13)

Thus, if e∗ designates the solution to the error vector (or, the normal distance)

then it should satisfy the equations

[J ]e∗ = v,

2e∗ + [J ]T Λ = 0. (6.14)

Equation (6.14) gives an explicit formula for the solution error vector e∗ in

terms of variables r1 and r2 (see Bodduluri and McCarthy [46]):

e∗ = [J ]T ([J ][J ]T )−1v. (6.15)

With normal error vector e∗ known, the new point is given by

q = e∗ + q∗. (6.16)

Since the constraint surfaces have been approximated by their tangent hyper-

planes in the vicinity of the extreme point q∗, this new point q may or may

not lie on the constraint surface given by Eqs. (6.1),(6.2), and (6.3). If the

new point does not satisfy the constraints, the newly obtained point q is set as

a new q∗ and the procedure described above is repeated from Eq. (6.8) until

a new point q is obtained that satisfies the kinematic constraints. This new

point not only satisfies the kinematic constraints but is also at the shortest

distance from the original extreme point q∗. With this new point added to
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the set of initial points in the quaternion space, a new C2 B-spline is interpo-

lated to the points. If the new image curve detects any further violation of the

kinematic constraints, the optimization process is repeated until no further ex-

treme points that violate the kinematic constraints are found. This process at

the end gives an interpolating motion that satisfies the kinematic constraints.

Now, we present the algorithm:

Algorithm 6.2

1. Convert given positions of the coupler link into unit quaternions (points

in image space) q̂i using either Eqs. (2.1) and (2.13) or Eq. (3.91).

2. Current list of points to be interpolated = given points (q̂i; i = 1 . . . n)

3. Construct a C2 cubic B-spline curve q̂(u) that interpolates current list

of points.

4. (a) Evaluate the extrema of F1(u), F2(u), and F3(u) using Eq. (6.4).

Say, the extrema are found at u = u∗1, at u = u∗2, and at u = u∗3 for

F1(u), F2(u), and F3(u) respectively. Designate extreme points on

the curve as q̂∗

1, q̂∗

2, and q̂∗

3.

(b) Check if q̂∗

1, q̂∗

2, and q̂∗

3 satisfy the kinematic constraints (Eqs.(6.1),

(6.2), and (6.3)).

(c) If yes, the curve is constrained; continue to Step 5; else, find new

points q̂(u∗1), q̂(u∗2), and q̂(u∗3).
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(d) Add q̂(u∗1), q̂(u∗2), and q̂(u∗3) to the current list of points to be

interpolated and go to Step 3.

5. The image curve q̂(u) defines a C2 interpolating piecewise rational mo-

tion of degree 6 after the substitution into Eq. (2.11).

We have observed that this algorithm always converges as long as the

interpolating points are on the same branch. In this algorithm, the B-spline

curve is generated using a global interpolation scheme (Piegl and Tiller [15]).

In this scheme, although moving one of the interpolating points changes the

curve globally, the change in the curve diminishes away from the modification

point. Next we show an example.

Table 6.1 gives joint parameters for the five positions of the end effector of

a spatial SS open chain along with their parameter values. The joint param-

eters are converted into dual quaternions using Eq. (3.91), which are shown

in Table 6.2. We use Algorithm 6.2 to find extreme positions ,generate new

positions, and finally generate a C2 B-spline curve within the kinematic con-

straints of the spatial SS open chain. The extreme positions, new positions,

corresponding kinematic constraint values, and control positions of final C2

B-spline curve are presented in Table 6.3, 6.4, 6.5, and 6.6, respectively. In

this example, we use the deviation values δ1 = 0.02, δ2 = 0.02, and δ3 = 0.02 in

Eqs. (6.1), (6.2), and (6.3). The parameter sequence for the final C2 rational

B-spline curve in Table 6.6 is [0.0, 0.7501, 1.1066, 1.4564, 2.1101, 2.7559, 3.1917,

3.8652, 4.8226, 6.0534, 7.2038, 8.0158, 8.6900, 10.0]. The algorithm converges at

the third iteration in this example.
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i (αi, θi, βi, φi, γi) deg ui

1 (10, 45, 20, 30, 30) 0.0
2 (−20, 60, 30, 35, 75) 2.0
3 (60, 25,−30, 75, 30) 5.0
4 (45, 30, 20, 20, 20) 7.0
5 (−30, 30,−30, 30, 100) 10.0

Table 6.1: Joint coordinates of the given positions of the end effector

of spatial SS open chain (a = 2).

i qi(qi1, qi2, qi3, qi4) q0
i (q

0
i1, q

0
i2, q

0
i3, q

0
i4) ui

1 (0.4290, 0.1264, 0.5865, 0.6753) (0.8704, 0.1082,−0.1264,−0.4634) 0.0
2 (0.5255, 0.5629, 0.4398, 0.4622) (0.7557, 0.0006,−0.2831,−0.5905) 2.0
3 (0.2732,−0.0859, 0.7430, 0.6049) (0.7367,−0.4456, 0.0859,−0.5014) 5.0
4 (0.6255,−0.0753, 0.4096, 0.6598) (0.7429, 0.0997,−0.0531,−0.6599) 7.0
5 (0.2678, 0.4377, 0.2041, 0.8337) (0.9198, 0.1173, 0.0547,−0.3704) 10.0

Table 6.2: Dual quaternions of the given positions of the end effector

of spatial SS open chain (a = 2).

i q∗

i (q
∗

i1, q
∗

i2, q
∗

i3, q
∗

i4) (q0
i )

∗((q0
i1)

∗, (q0
i2)

∗, (q0
i3)

∗, (q0
i4)

∗) u∗i
1 (0.4965, 0.2849, 0.5067, 0.6152) (0.8452, 0.1557,−0.2051,−0.5114) 0.28
2 (0.5741, 0.5184, 0.4070, 0.5163) (0.7984, 0.1706,−0.3070,−0.5799) 0.95
3 (0.5763, 0.5319, 0.4031, 0.5094) (0.7946, 0.1656,−0.3114,−0.5837) 1.02
4 (0.5751, 0.5749, 0.3975, 0.4830) (0.7782, 0.1271,−0.3198,−0.5953) 1.35
5 (0.3892, 0.3804, 0.5791, 0.4871) (0.7401,−0.2456,−0.1461,−0.5437) 2.98
6 (0.3450, 0.3007, 0.6274, 0.5038) (0.7383,−0.3187,−0.0953,−0.5263) 3.28
7 (0.3423, 0.2954, 0.6304, 0.5049) (0.7382,−0.3231,−0.0920,−0.5252) 3.31
8 (0.4607,−0.1352, 0.5842, 0.6411) (0.7358,−0.1703, 0.0293,−0.5894) 6.16
9 (0.7395, 0.1465, 0.1547, 0.7088) (0.7900, 0.4208,−0.1407,−0.6779) 8.45
10 (0.7278, 0.1733, 0.1406, 0.7164) (0.7981, 0.4287,−0.1389,−0.6668) 8.60
11 (0.6592, 0.2544, 0.1181, 0.7431) (0.8264, 0.4145,−0.1168,−0.6152) 9.02

Table 6.3: Extreme positions.
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i qi(qi1, qi2, qi3, qi4) q0
i (q

0
i1, q

0
i2, q

0
i3, q

0
i4) ui

1 (0.4874, 0.2872, 0.5217, 0.6393) (0.8177, 0.1462,−0.2126,−0.5155) 0.28
2 (0.5255, 0.5047, 0.4205, 0.5438) (0.7364, 0.1357,−0.3176,−0.5862) 0.95
3 (0.5262, 0.5168, 0.4156, 0.5356) (0.7329, 0.1301,−0.3218,−0.5896) 1.02
4 (0.5268, 0.5573, 0.4046, 0.5013) (0.7264, 0.0960,−0.3284,−0.5992) 1.35
5 (0.4990, 0.3915, 0.6185, 0.4785) (0.8210,−0.2218,−0.0970,−0.5264) 2.98
6 (0.4604, 0.2978, 0.6826, 0.4998) (0.8162,−0.3040,−0.0330,−0.5011) 3.28
7 (0.4574, 0.2915, 0.6863, 0.5012) (0.8153,−0.3090,−0.0293,−0.4996) 3.31
8 (0.4642,−0.1363, 0.5893, 0.6471) (0.7681,−0.1777, 0.0302,−0.6159) 6.16
9 (0.6715, 0.1193, 0.1564, 0.7182) (0.6696, 0.3695,−0.1341,−0.6444) 8.45
10 (0.6572, 0.1429, 0.1438, 0.7301) (0.6736, 0.3743,−0.1326,−0.6386) 8.60
11 (0.5895, 0.2209, 0.1239, 0.7715) (0.7072, 0.3600,−0.1145,−0.6118) 9.02

Table 6.4: New positions generated for extreme positions.

i (Fi1(u
∗

i ), Fi2(u
∗

i ), Fi3(u
∗

i )) u∗i /ui (Fi1(ui), Fi2(ui), Fi3(ui))
1 (−0.0371, 0.0422, 0.0454) 0.28 (0.0009, 0.0009, 0.0001)
2 (0.0305, 0.0970, 0.1224) 0.95 (0.0035, 0.0052, 0.0032)
3 (0.0371, 0.0965, 0.1232) 1.02 (0.0036, 0.0052, 0.0033)
4 (0.0524, 0.0784, 0.1060) 1.35 (0.0030, 0.0037, 0.0029)
5 (−0.1312,−0.0750,−0.1548) 2.98 (0.0138, 0.0098, 0.0109)
6 (−0.1432,−0.0674,−0.1660) 3.28 (0.0164, 0.0108, 0.0123)
7 (−0.1432,−0.0664,−0.1660) 3.31 (0.0164, 0.0107, 0.0122)
8 (−0.0172,−0.0814, 0.0012) 6.16 (0.0001, 0.0018,−0.0000)
9 (0.0946, 0.2805, 0.1435) 8.45 (0.0055, 0.0183, 0.0099)
10 (0.0928, 0.2846, 0.1579) 8.60 (0.0061, 0.0193, 0.0108)
11 (0.0654, 0.2469, 0.1792) 9.02 (0.0068, 0.0172, 0.0102)

Table 6.5: Kinematic constraints for extreme and new positions; |F1| ≤
0.02, |F2| ≤ 0.02, and |F3| ≤ 0.02.
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i Di(Di1, Di2, Di3, Di4) D0
i (D

0
i1, D

0
i2, D

0
i3, D

0
i4)

1 (0.4290, 0.1264, 0.5865, 0.6753) (0.8704, 0.1082,−0.1264,−0.4634)
2 (0.4993, 0.2918, 0.5251, 0.6480) (0.8208, 0.1584,−0.2160,−0.5162)
3 (0.5223, 0.4432, 0.4466, 0.5850) (0.7556, 0.1617,−0.2952,−0.5683)
4 (0.5275, 0.5358, 0.4068, 0.5240) (0.7261, 0.1246,−0.3298,−0.5954)
5 (0.5262, 0.5784, 0.4003, 0.4810) (0.7247, 0.0731,−0.3296,−0.6035)
6 (0.5247, 0.5705, 0.4401, 0.4527) (0.7605,−0.0118,−0.2806,−0.5908)
7 (0.5272, 0.4792, 0.5504, 0.4590) (0.8182,−0.1400,−0.1643,−0.5524)
8 (0.4741, 0.3070, 0.6868, 0.4969) (0.8266,−0.3028,−0.0296,−0.5007)
9 (0.3304, 0.0758, 0.7932, 0.5535) (0.7652,−0.4712, 0.0797,−0.4528)
10 (0.2083,−0.0968, 0.7649, 0.6018) (0.7132,−0.5032, 0.0963,−0.4741)
11 (0.4315,−0.1705, 0.6391, 0.6520) (0.7885,−0.2497, 0.0582,−0.6213)
12 (0.6682,−0.0725, 0.3827, 0.6574) (0.7451, 0.1557,−0.0700,−0.6720)
13 (0.7055, 0.0462, 0.2068, 0.6824) (0.6682, 0.3395,−0.1331,−0.6595)
14 (0.6490, 0.1846, 0.1029, 0.7490) (0.6630, 0.4079,−0.1397,−0.6330)
15 (0.4692, 0.3330, 0.1208, 0.8371) (0.7799, 0.3058,−0.0769,−0.5728)
16 (0.2678, 0.4377, 0.2041, 0.8337) (0.9198, 0.1173, 0.0547,−0.3704)

Table 6.6: Control points of C2 B-spline curve.

6.3 Rational Motion Interpolation of ADEPT

Robot

In this section, we present an algorithm for synthesizing continuous piecewise

ration motions of ADEPT robot under the kinematic constraints derived in

section 3.4.2.

Given: A set of positions of the end effector of a ADEPT robot in its

workspace, the corresponding parameter values ui(i = 1 . . . n), the length of

the first and the second link a and b, respectively.

Find: A rational motion of the end effector that interpolates the given

positions at the parameter values subject to the kinematic constraints of the
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ADEPT robot.

The given positions of the end effector of an ADEPT robot can be specified

using either Cartesian based parameters (sxi, syi, szi, θi, d1i, d2i, d3i) or joint co-

ordinates of the open chain (θi, φi, ψi, ci). In the case of Cartesian parameters,

we use Eqs. (2.1) and (2.13) to convert them into dual quaternions; in the case

of joint parameters, we convert them to dual quaternions by using Eq. (3.95).

The kinematic constraint of an ADEPT robot Eq. (3.96) is the equation

of a circle. Thus we can apply Algorithm 4.2 for C1 piecewise rational

Bézier interpolation on a circle, or we can use Algorithm 4.3 for smooth (C2

or higher) rational motions that approximate the circle kinematic constraint.

For Eq. (3.97), which is the equation of a circular ring, Algorithm 4.3 can

be used for C2 or higher rational B-spline interpolation within the the circular

ring kinematic constraint. Finally for Eqs. (3.98) and (3.99) we could use one

dimensional version of Algorithm 4.3 to interpolate within the kinematic

constraints.

6.4 Conclusions

In this chapter, we studied the problem of rational motion interpolation sub-

ject to the kinematic constraints of a spatial SS open chain and an ADEPT

robot. We presented an algorithms for rational B-spline motion interpolation

of given positions of the end effector of a spatial SS open which approximates

the kinematic constraints. We also showed an algorithm for rational B-spline

motion interpolation of the end effector of an ADEPT robot which satisfies
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the kinematic constraints.
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Chapter 7

Matrix Approach to

Constrained Motion

Interpolation for Planar Open

and Closed Chains

7.1 Introduction

The purpose of this chapter is to study the problem of synthesizing ratio-

nal motions of a rigid body under kinematic constraints that are imposed by

planar open and closed kinematic chains. This chapter adopts a different ap-

proach for motion interpolation from chapter 4 and chapter 5 by investigating

the matrix representation of planar displacements directly. It has been found

that the elements of the displacement matrix can be used directly for synthe-

sizing rational motions as well as for characterizing the kinematic constraints

of planar kinematic chains. Interestingly, the kinematic constraints for planar

2R and 3R can be reduced to circles and circular rings, essentially the same

as those represented using planar quaternions. Thus the algorithms developed
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by chapter 4 may be directly applied to the elements of the displacement ma-

trix. Furthermore we can apply a similar algorithm developed in chapter 5 to

the problem of synthesizing rational motions of planar 4R, 5R, and 6R closed

chains in a parametric space defined by the elements of the displacement ma-

trix. The advantage of this approach is that the handling of the interpolation

process as well as the kinematic constraints are more straightforward. In ad-

dition, the degree of the resulting rational motion is lower. For example, while

the degree of the rational motion resulting from a cubic interpolation of pla-

nar quaternions is six, the degree of the rational motion resulting from a cubic

interpolation of matrix elements remains to be three.

The organization of this chapter is as follows. Section 7.2 presents kine-

matics of planar open and closed chains. In this section, the algebraic form of

kinematic constraints are derived using the elements of the displacement ma-

trix. Section 7.3 deals with the problem of constrained motion interpolation

of a planar 6R closed chain in a parametric space defined by the elements of

the displacement matrix. Section 7.4 shows how the algorithm presented in

the previous section can be used to do rational motion interpolation of planar

4R and 5R closed chains. Section 7.5 deals with the problem of constrained

motion planning of various open chains in a parametric space defined by the

elements of the displacement matrix.
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7.2 Kinematic Constraints of Planar Open and

Closed Chains

This section derives the algebraic relations that characterize the kinematic

constraints of various planar open and closed chains in terms of the displace-

ment matrix elements. The goal is to present a representation of rational

motion that can easily handle the kinematic constraints of the planar chains.

A planar quaternion based formulation of the kinematics of planar open and

closed chains is presented in chapter 3.

7.2.1 Planar Displacement Matrix

The components of a planar quaternion are related to the planar displacement

matrix by:

[M ] =





m1 −m2 m3

m2 m1 m4

0 0 1



 , (7.1)

where

m1 = Z2
4 − Z2

3 , m2 = 2Z3Z4,
m3 = 2(Z1Z4 − Z2Z3), m4 = 2(Z1Z3 + Z2Z4).

(7.2)

It follows that

m2
1 +m2

2 = 1. (7.3)

This circular constraint (7.3) ensures that the matrix [M ] represents a rigid-

body transformation.

If m = (m1, m2, m3, m4) are rational functions of degree n in parameter u

(u being usually associated with time), such that the circular condition (7.3)

is satisfied, then the matrix [M ] represents a rational motion of degree n.
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On the other hand, from Eq. (7.2) it is clear that choosing planar quaternion

Z = (Z1, Z2, Z3, Z4) to construct a rational motion would produce a rational

motion of degree 2n. In this chapter, we use m = (m1, m2, m3, m4) directly to

construct a rational motion.

Let mi = (mi1, mi2, mi3, mi4); i = 0, ..., n be (n + 1) vectors of displace-

ment matrix parameters, then the following represents a Bézier curve in the

parameter space:

m(u) =

n
∑

i=0

Bn
i (u)mi. (7.4)

where Bn
i (u) are the Bernstein polynomials.

Similarly, a B-Spline curve in the parameter space is given by:

m(u) =
n

∑

i=0

Ni,p(u)mi. (7.5)

where Ni,p(u) are pth-degree basis functions.

A representation for the rational Bézier motion and rational B-Spline mo-

tion in the Cartesian space is obtained by substituting m(u) from Eq. (7.4)

or Eq. (7.5) into the homogeneous matrix [M ]. From Eq. (7.1), it can be seen

that if the B-Spline curve m(u) is expressed as a polynomial function of degree

p, then the matrix [M ] represents a rational B-Spline motion of degree p.

Since m1 and m2 must satisfy the circular constraint in order to meet the

requirement of rigid transformation, the goal of the remainder of the section is

to derive constraints on m3 and m4 that characterize the kinematic constraints

associated with various planar open and closed chains.

132



7.2.2 Planar 2R Open Chain

The planar quaternion for the second link of the planar 2R open chain (see

Figure 3.1) is defined by Eq. (3.2).

The substitution of Eq.(3.2) into Eq. (7.2) leads to

m1 = cos(θ + φ), m2 = sin(θ + φ),
m3 = a cos(θ), m4 = a sin(θ).

(7.6)

Thus we have

m2
3 +m2

4 = a2. (7.7)

The above equation characterizes the kinematic constraint of a planar 2R

open chain. Thus, the problem of interpolating planar displacements for a

planar 2R open chain can be reduced to that of circular interpolation in two

separate planes, one in the m1m2 plane to meet the general planar rigid-

body requirement (7.3) and the other in the m3m4 plane to meet the specific

requirement (7.7) for the planar 2R chain.

7.2.3 Planar PR Open Chain

The planar quaternion for the second link of the planar PR open chain (see

Figure 3.2) is defined by Eq. (3.5).

The substitution of Eq.(3.5) into Eq. (7.2) leads to

m1 = cos(θ), m2 = sin(θ),
m3 = b, m4 = 0.

(7.8)

Let b1, b2 denote the lower and upper limits for the range of travel of the
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prismatic joint, then we have the kinematic constraints for planar PR arm:

b1 ≤ m3 ≤ b2, (7.9)

m4 = 0. (7.10)

7.2.4 Planar RP Open Chain

Similar to a planar RP open chain (see Figure (3.3)), the planar quaternion

for the end link of RP open chain is given by Eq. (3.7).

The substitution of Eq.(3.7) into Eq. (7.2) leads to

m1 = cos(θ), m2 = sin(θ),
m3 = b cos(θ), m4 = b sin(θ).

(7.11)

In addition to the common circle constraint (7.3), we have

m3 = bm1,
m4 = bm2,
b1 ≤ b ≤ b2.

(7.12)

7.2.5 Planar 3R Open Chain

The planar quaternion for the end link of the planar 3R open chain (see Fig-

ure 3.4) is defined by Eq. (3.10).

The substitution of Eq.(3.10) into Eq. (7.2) leads to

m1 = cos(θ + φ+ ψ), m2 = sin(θ + φ+ ψ), (7.13)

m3 = a cos(θ) + b cos(θ + φ),

m4 = a sin(θ) + b sin(θ + φ).

It is not difficult to show that

m2
3 +m2

4 = a2 + b2 + 2ab cos(φ). (7.14)
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Since the range of cos(φ) is [-1 1], it follows that

(a− b)2 ≤ m2
3 +m2

4 ≤ (a+ b)2. (7.15)

Eq. (7.15) characterizes the kinematic constraint of the planar 3R open

chain. It represents a circular ring in the m3m4 plane.

7.2.6 Planar RRP Open Chain

The planar quaternion for the end link of the planar 3R open chain (see Fig-

ure 3.5) is defined by Eq. (3.15).

The substitution of Eq.(3.15) into Eq. (7.2) leads to

m1 = cos(θ + φ), m2 = sin(θ + φ),
m3 = b cos(θ + φ) + a cos(θ),
m4 = b sin(θ + φ) + a sin(θ).

(7.16)

It is clear that

(m3 − bm1)
2 + (m4 − bm2)

2 = a2. (7.17)

Eq.(7.17) and the range of b (b1 ≤ b ≤ b2) guarantee the motion is within

workspace.

7.2.7 Planar RPR Open Chain

The planar quaternion for the end link of the planar 3R open chain (see Fig-

ure 3.6) is defined by Eq. (3.18).

The substitution of Eq.(3.18) into Eq. (7.2) leads to

m1 = cos(θ + φ), m2 = sin(θ + φ),
m3 = b cos(θ), m4 = b sin(θ).

(7.18)
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It follows that

b21 ≤ m2
3 +m2

4 = b2 ≤ b22, (7.19)

where we assume that b1 ≤ b ≤ b2.

7.2.8 Planar PRR Open Chain

The planar quaternion for the end link of the planar 3R open chain (see Fig-

ure 3.7) is defined by Eq. (3.21).

The substitution of Eq.(3.21) into Eq. (7.2) leads to

m1 = cos(θ + φ), m2 = sin(θ + φ),
m3 = b+ a cos(θ), m4 = a sin(θ).

(7.20)

Thus the kinematic constraint associated with the PRR chain is given by

(m3 − b)2 +m2
4 = a2,

b1 ≤ b ≤ b2.
(7.21)

7.2.9 Planar PRP Open Chain

The planar quaternion for the end link of the planar 3R open chain (see Fig-

ure 3.8) is defined by Eq. (3.24).

The substitution of Eq.(3.24) into Eq. (7.2) leads to

m1 = cos(θ), m2 = sin(θ),
m3 = b+ c cos(θ), m4 = c sin(θ).

(7.22)

The kinematic constraint for the chain is given by

m3 = b+ cm1,
m4 = cm2,
b1 ≤ b ≤ b2,
c1 ≤ c ≤ c2.

(7.23)
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7.2.10 Planar 4R Closed Chain

The planar 4R closed chain (see Figure 3.9)has one degree of freedom so the

constraint manifold is the intersection of two constraint surfaces governed by

two planar 2R open chains (see Jin and Ge [1, 3]).

The planar quaternion representing one planar 2R open chain is given by:

Y1 = (a1/2) cos((θ1 − φ1)/2) − τ cos((θ1 + φ1)/2),
Y2 = (a1/2) sin((θ1 − φ1)/2) + σ sin((θ1 + φ1)/2),
Y3 = sin((θ1 + φ1)/2),
Y4 = cos((θ1 + φ1)/2).

(7.24)

Substituting Yi; i = 1 . . . 4 from Eq. (7.24) into Eq. (7.2), we obtain elements

of the matrix [M ], given by m:

m1 = cos(θ1 + φ1),
m2 = sin(θ1 + φ1),
m3 = a1 cos θ1 + (σ − τ) cos(θ1 + φ1) − (σ + τ),
m4 = a1 sin θ1 + (σ − τ) sin(θ1 + φ1).

(7.25)

Similarly the planar quaternion representing the other planar 2R open

chain is given by:

Y1 = (a2/2) cos((θ2 − φ2)/2) + τ cos((θ2 + φ2)/2),
Y2 = (a2/2) sin((θ2 − φ2)/2) − σ sin((θ2 + φ2)/2),
Y3 = sin((θ2 + φ2)/2),
Y4 = cos((θ2 + φ2)/2).

(7.26)

Substituting Yi; i = 1 . . . 4 from Eq. (7.26) into Eq. (7.2), we obtain elements

of the matrix [M ], given by m2:

m1 = cos(θ2 + φ2),
m2 = sin(θ2 + φ2),
m3 = a2 cos θ2 + (τ − σ) cos(θ1 + φ1) + (σ + τ),
m4 = a2 sin θ2 + (τ − σ) sin(θ1 + φ1).

(7.27)
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The constraint curve for the planar 4R closed chain is the intersection of

the constraint surfaces given by (7.25) and (7.27), that is m1 = m2 = m =

(m1, m2, m3, m4). The algebraic equations for the kinematic constraints are

obtained by eliminating θi, φi; i = 1, 2 from Eqs. (7.25) and (7.27):

m2
1 +m2

2 = 1,
(m3 − (σ − τ)m1 + (σ + τ))2 + (m4 − (σ − τ)m2)

2 = a2
1,

(m3 + (σ − τ)m1 − (σ + τ))2 + (m4 + (σ − τ)m2)
2 = a2

2.
(7.28)

In this chapter, the constraint equations of the form (7.28) will be used for

rational motion synthesis.

7.2.11 Planar 5R Closed Chain

Consider a planar 5R closed chain, Figure 3.10. The constraint manifold for

this planar 5R closed chain is a portion of the constraint surface of a planar 2R

open chain cut by the inner and outer boundaries of the constraint manifold

of a planar 3R open chain.

The planar quaternion representing one planar 2R open chain is given by

Eq. (7.24).

The constraint manifold of a planar 3R open chain is given by (see Jin and

Ge [53]):

Y2(θ2, φ2, ψ2) = [C2]Z(θ2, φ2, ψ2), (7.29)

where [C2] is given by Eq. (3.30) and Z(θ2, φ2, ψ2) is given by Eq. (3.10).

Substituting Y2 from Eq. (7.29) into Eq. (7.2), we obtain elements of the
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homogeneous matrix [M ]:

m1 = cos(θ2 + φ2 + ψ2),
m2 = sin(θ2 + φ2 + ψ2),
m3 = a2 cos θ2 + b2 cos(θ2 + φ2) − (σ − τ) cos(θ2 + φ2 + ψ2)

+ (σ + τ),
m4 = a2 sin θ2 + b2 sin(θ2 + φ2) − (σ − τ) cos(θ2 + φ2 + ψ2).

(7.30)

Once again, the kinematic constraint equations are obtained by eliminating

θ2, φ2, ψ2 from Eq. (7.30). Assembling all the constraint equations:

m2
1 +m2

2 = 1,
(m3 − (σ − τ)m1 + (σ + τ))2 + (m4 − (σ − τ)m2)

2 = a2
1,

(m3 + (σ − τ)m1 − (σ + τ))2 + (m4 + (σ − τ)m2)
2 = R2

2(φ2),
(7.31)

where

R2
2(φ2) = a2

2 + b22 + 2a2b2 cos(φ2),
|a2 − b2| ≤ R2(φ2) ≤ (a2 + b2).

(7.32)

7.2.12 Planar 6R Closed Chain

Consider a planar 6R closed chain, see Figure 3.11. The constraint manifold

for this planar 6R closed chain is the intersection of constraint manifolds of

two planar 3R open chains. Similar to the case of a planar 5R closed chain,

the two constraint manifolds for the 6R chain are given by

Y1(θ1, φ1, ψ1) = [C1]Z(θ1, φ1, ψ1), (7.33)

Y2(θ2, φ2, ψ2) = [C2]Z(θ2, φ2, ψ2).

Following the same procedure as outlined in the previous subsections, the

kinematic constraints in terms of the elements of the homogeneous matrix [M ]
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for a planar 6R closed chain are obtained and given by:

m2
1 +m2

2 = 1,
(m3 − (σ − τ)m1 + (σ + τ))2 + (m4 − (σ − τ)m2)

2 = R2
1(φ1),

(m3 + (σ − τ)m1 − (σ + τ))2 + (m4 + (σ − τ)m2)
2 = R2

2(φ2),
(7.34)

where

R2
1(φ1) = a2

1 + b21 + 2a1b1 cos(φ1),
|a1 − b1| ≤ R1(φ1) ≤ (a1 + b1),

(7.35)

and R2(φ2) is given by Eq. (7.32).

7.3 Rational Motions of Planar 6R Closed Chain

In this section, we present an algorithm adopted from Purwar et al. [5] for

synthesizing C2 continuous piecewise rational motions of planar 6R closed

chain under the kinematic constraints derived in the previous section.

7.3.1 C2 Interpolating Rational Motion for Planar 6R

Closed Chain

This subsection presents a matrix approach for the following constrained mo-

tion interpolation problem:

Given: A set of positions of the coupler link of a planar 6R closed chain

in its workspace, the corresponding parameter values ui(i = 1 . . . n), lengths

of the links given by ai, bi(i = 1, 2), and the distance between the two moving

pivots and between the two fixed pivots given by h and g, respectively.

Find: A smooth (C2 or higher) rational motion of the coupler link that

interpolates the given positions at the respective parameter values subject to

the kinematic constraints of the planar 6R closed chain.

140



The given positions of the coupler link of a planar 6R closed chain can be

given using either Cartesian based parameters (d1i, d2i, αi) or the joint coordi-

nates of the robot arm. In the case of Cartesian parameters, we use Eq. (2.6)

and (7.2) to obtain the elements of the matrix [M ]; in the case of joint param-

eters, we directly substitute joint parameters into homogeneous matrix form of

the planar robot arm. If the given positions of the coupler are not connectable

with a continuous trajectory, then the mechanism has to be disassembled and

re-assembled to interpolate the positions. This is commonly known as “assem-

bly mode defect”. Recently, Schröcker and Husty [62] presented fast numerical

algorithms for determining if two task positions of planar four-bar mechanisms

suffer from this defect. The algorithm presented below assumes that the given

positions are on the same branch.

In what follows, we present a sketch of the algorithm:

1. Given positions of the coupler are converted to the elements of the dis-

placement matrix; this gives us a set of element vectors, mi; i = 0 . . . n.

An initial interpolating C2 B-spline curve m(u) is constructed1 in the

space of the elements of the displacement matrix using Eq. (7.5).

2. The curve m(u) in the parameter space should satisfy following geo-

metric constraints (rewritten from Eq. (7.34) and slightly modified from

Eq. (7.3)):

1Designing a C2 B-spline curve is a standard scheme in CAGD (see Farin [11], Hoschek
and Lasser [14], and Piegl and Tiller [15]).
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(a1 − b1)
2 ≤ F1(u) ≤ (a1 + b1)

2, (7.36)

(a2 − b2)
2 ≤ F2(u) ≤ (a2 + b2)

2, (7.37)

(1.0 − δ)2 ≤ F3(u) ≤ (1.0 + δ)2, (7.38)

where

F1(u) = (m3(u) − (σ − τ)m1(u) + (σ + τ))2 + (m4(u) − (σ − τ)m2(u))
2,

F2(u) = (m3(u) + (σ − τ)m1(u) − (σ + τ))2 + (m4(u) + (σ − τ)m2(u))
2,

and F3(u) = m2
1(u)+m2

2(u). In Eq. (7.38), δ is a user-defined value that

can be chosen as small as desired to approximate the circular constraints.

Here, we have modified the form of (7.3) to an inequality constraint for

numerical computation.

Since a C2 B-spline curve, such as m(u) has a piecewise cubic Bézier

representation, it is easy to evaluate the first order derivative of func-

tions Fi(u); i = 1, 2, 3 and verify if the geometric constraints given above

are satisfied. The solution of following equations yields the extrema of

functions Fi(u); i = 1, 2, 3:

dF1(u)

du
= 0,

dF2(u)

du
= 0,

dF3(u)

du
= 0. (7.39)
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If an extremum of any of the functions Fi(u) is outside the corresponding

inequality given in Eqs. (7.36), (7.37), or (7.38), the constraints are con-

sidered violated. Such a constraint violating extremum (say, at u = u∗)

is called an extreme point m∗ on the parameter space curve m(u).

3. If an extreme point is found at u = u∗, this point is replaced with a

new point m(u∗) that satisfies the geometric constraints (Eqs. (7.36),

(7.37), and (7.38)) and added to the initial set of positions given to be

interpolated. A new C2 B-spline curve is generated that interpolates this

new point as well. We also require this new point to be minimally away

from the extreme point so as to allow the least amount of change in the

shape of the previously generated curve. If the new curve satisfies all the

constraints, we stop otherwise we repeat the procedure outlined above.

4. The issue of finding a new point that is minimally away from an extreme

point can be turned into a normal distance minimization problem in the

parameter space. This problem has been effectively solved by Ravani and

Roth [45], who gave a general algebraic method for approximate normal

distance calculation between the image curve and a given position in

the image space. Bodduluri and McCarthy [46] used their method for

finite position synthesis of a spherical four-bar motion. However, our

operating space in this chapter being a parameter space rather than an

image space, a proper metric for this space has to be defined. We show

via a simple derivation (see appendix B) that our choice of a metric for
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the space of the elements of the displacement matrix is directly related

to the metric used by Ravani and Roth [45] for planar displacements. We

note here that the choice of a metric for planar or spatial displacements is

a continuing topic of research (see Angeles [64] for the latest on this topic)

due to the problem associated with combining translation and rotation

in a meaningful way. Our choice of metric in the space of the elements

of displacement matrices combines translation with the rotation in such

a way that the “distance” between two planar displacements is same as

the metric used by Ravani and Roth [45]. In the context of four-bar

mechanism synthesis, the method used by Ravani and Roth [45] solves

the design problem of determining an image curve that passes through

or near a set of given points. The image curve is algebraically given

by intersection of two quadric hypersurfaces (constraint surfaces) and is

expressed as functions of the design parameters, such as link lengths and

the pivot locations. They seek the values of design parameters which

reduce the error between the image curve and the given points. The

error at each given position is defined as the normal distance to the image

curve. They define total error as the sum of squares of each position error.

The method is approximate in the sense that the constraint surfaces are

approximated by their tangent hyperplane in the vicinity of the desired

position. We now outline and conform Ravani and Roth [45]’s method

for calculation of a new point in our problem:

Assuming that there exists an extreme point m∗ at u = u∗ on the curve
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and a new point m is desired to be inserted to the initial set of given

positions at the same parameter u = u∗, we define a normal error vector

e = m − m∗. The new point m = (m1, m2, m3, m4) should satisfy the

geometric constraints given by Eqs. (7.36), (7.37), and (7.38), rewritten

as follows.

H1(m) : (m3−(σ−τ)m1 +(σ+τ))2+(m4−(σ−τ)m2)
2−r2

1 = 0, (7.40)

H2(m) : (m3+(σ−τ)m1−(σ+τ))2+(m4+(σ−τ)m2)
2−r2

2 = 0, (7.41)

H3(m) : m2
1 +m2

2 − r2
3 = 0, (7.42)

where we have introduced new variables r1, r2, and r3 that should satisfy

following inequalities:

|a1 − b1| ≤ r1 ≤ (a1 + b1),
|a2 − b2| ≤ r2 ≤ (a2 + b2),
|1.0 − δ| ≤ r3 ≤ (1.0 + δ).

(7.43)

Equations (7.40), (7.41), and (7.42) describe three different quadric hy-

pershells in the parameter space. We seek to minimize the square of the

l2 norm of the error vector e subject to the condition that m satisfies

these inequalities. This optimization procedure yields the optimal values

of variables r1, r2 and r3, which in turn give the new point m = e∗ +m∗,

where e∗ is the optimized normal error vector. This new point m may

not satisfy the kinematic constraints because the constraint surfaces are

only approximated in this approach. In that case, this new point m
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is set as the new extreme point m∗ and the process described above is

repeated.

For faster computation of optimized normal error vector, Ravani and

Roth [45] suggest an approximate method by using Taylor series expan-

sion of the hypersurfaces (Eqs. (7.40) (7.41), and (7.42)) in the vicinity

of the extreme point m∗:

0 = H1(m
∗) +

4
∑

i=1

∂H1(m
∗)

∂mi

∆mi,

0 = H2(m
∗) +

4
∑

i=1

∂H2(m
∗)

∂mi
∆mi,

0 = H3(m
∗) +

2
∑

i=1

2m∗

i ∆mi. (7.44)

These equations can be assembled as follows:













∂H1

∂m1

∂H1

∂m2

∂H1

∂m3

∂H1

∂m4

∂H2

∂m1

∂H2

∂m2

∂H2

∂m3

∂H2

∂m4

2m1 2m2 0 0

























∆m1

∆m2

∆m3

∆m4













=











−H1

−H2

−H3











. (7.45)

The above can also be written as

[J ]e = v. (7.46)

We solve for the normal error vector e by minimizing the Lagrangian

function given as follows:

L(e, a) = eT [Q]e + aT ([J ]e − v), (7.47)
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where a = (a1, a2, a3) is a vector of Lagrange multipliers, e = (m1 −

m∗

1, m2 −m∗

2, m3 −m∗

3, m4 −m∗

4), v = (−H1(m
∗),−H2(m

∗),−H3(m
∗)),

and [Q] =









1 0 0 0
0 1 0 0
0 0 1/4 0
0 0 0 1/4









.

Matrix [Q] comes about from using a proper metric for the parame-

ter space of the elements of the displacement matrix (see appendix B).

Putting the condition for a minimum as

∂L

∂ei
= 0, i = 1, 2, 3, 4 (7.48)

where (e1, e2, e3, e4) are the coordinates of the vector e and assembling

the solution equations, we obtain

2g + [J ]T a = 0, (7.49)

where g = (2e1, 2e2, e3/2, e4/2). If we transform the matrix [J ] to [J ′]

such that

[J ′] =













∂H1

∂m1

∂H1

∂m2

4
∂H1

∂m3

4
∂H1

∂m4

∂H2

∂m1

∂H2

∂m2
4
∂H2

∂m3
4
∂H2

∂m4

2m1 2m2 0 0













, (7.50)

then Eq. (7.49) changes to

2e + [J ′]Ta = 0. (7.51)

Thus, if e∗ designates the solution to the error vector (or, the normal
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distance) then it should satisfy the equations

[J ]e∗ = v,

2e∗ + [J ′]Ta = 0. (7.52)

Equation (7.52) gives an explicit formula for the solution error vector e∗

as:

e∗ = [J ′]T ([J ][J ′]T )−1v. (7.53)

Thus, we can determine the variables r1, r2, and r3 by optimizing the

function

E(m, r1, r2, r3) = (e∗)Te∗, (7.54)

subject to constraints given by Eq. (7.43).

With normal error vector e∗ known, the new point is given by

m = e∗ + m∗. (7.55)

Since the constraint surfaces have been approximated by their tangent

hyperplanes in the vicinity of the extreme point m∗, this new point m

may not lie inside the constraint solids given by Eqs. (7.40), (7.41), and

(7.42). If the new point does not satisfy the constraints, the newly ob-

tained point m is set as an extreme point m∗ and the procedure described

above is repeated from Eq. (7.44) until a new point m is obtained that

satisfies the kinematic constraints. With this new point added to the set

of initial positions, a new C2 B-spline is generated that interpolates the

points. If the new curve detects any further violation of the kinematic
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constraints, the optimization process is repeated until no further extreme

points are found. This process at the end gives an interpolating motion

that satisfies the kinematic constraints. Now, we present the algorithm:

Algorithm 7.3.1

1. Convert given positions of the coupler link into matrix elements mi =

(mi1, mi2, mi3, mi4) using Eqs. (2.6) and (7.2) or, if given in terms of

joint angles, by direct substitution into the homogeneous form of the

displacement matrix.

2. Current list of points to be interpolated = given points (mi; i = 1 . . . n)

3. Construct a C2 cubic B-spline curve m(u) that interpolates mi at pa-

rameter values ui

4. Evaluate the extrema of Fi(u); i = 1, 2, 3 using Eq. (7.39). Repeat Steps

(a) to (f) for all extrema.

(a) Say, an extreme point is found at u = u∗.

(b) Check if m(u∗) satisfies the kinematic constraints (Eqs. (7.40),

(7.41), and (7.42)).

(c) If yes, the curve is constrained; continue to Step 5. If no, designate

m(u∗) as an extreme point m∗ and continue.

(d) Find a new point m (Eqs. (7.44) – (7.55)).

(e) Check if the new point m satisfies kinematic constraints (Eqs. (7.40),

(7.41), and (7.42)).
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i. If yes, continue to next Sub-step (f)

ii. else, set m∗ = m and repeat from Sub-step (d).

(f) Add m at u = u∗ to the current list of points to be interpolated

and go to Step 3.

5. The parameter space curve m(u) defines a C2 interpolating piecewise

rational motion of degree 3 after substitution into Eq. (7.1).

We have observed that this algorithm always converges as long as the

interpolating points are on the same branch. In this algorithm, the B-spline

curve is generated using a global interpolation scheme (Piegl and Tiller [15]).

In this scheme, although moving one of the interpolating points changes the

curve globally, the change in the curve diminishes away from the modification

point.

7.3.2 Example

In this section, we present an example to demonstrate the algorithm presented

earlier. Table 7.1 gives the elements of the displacement matrix (mi1, mi2, mi3, mi4)

for five positions of the coupler link of a planar 6R closed chain along with

their parameter values. The table also gives the link lengths and the distances

between moving and the fixed pivots. The range of the inequality for the kine-

matic constraints given by Eqs. (7.36), (7.37), (7.38) are shown in Table 7.2.

For the input data given in the Table 7.1, our algorithm takes two iterations

to produce a C2 B-spline motion that satisfies all the kinematic constraints. In

the first iteration, four extreme points are detected; out of which all the four
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i mi = (mi1, mi2, mi3, mi4) ui

1 (1.0000, 0, 2.0449,−0.1941) 0.0
2 (0.8660, 0.5000, 1.9067, 1.5028) 2.0
3 (0.9659,−0.2588,−0.8893, 3.4851) 5.0
4 (0.9659, 0.2588,−0.7850, 3.2651) 7.0
5 (0.8568, 0.5157,−2.3005, 3.1447) 10.0

Table 7.1: Elements of the displacement matrix of the given positions

of the coupler link of a planar 6R closed chain(a1 = 1.0, b1 = 3.0, a2 =
4.0, b2 = 3.2, g = 6.0, h = 3.6)

i Kinematic constraints (Fi)
1 4.00 ≤ F1 ≤ 16.00
2 0.64 ≤ F2 ≤ 51.84
3 0.95 ≤ F3 ≤ 1.05

Table 7.2: Kinematic constraints of given planar 6R closed chain.

δ = 0.05

violate the approximate rigid body constraint given by Eq. (7.38), and two of

them also violate the constraint given by Eq. (7.36). In the second iteration,

one extreme point is detected. This is shown partially in Figure 7.1, where

a part of the constraint surface parameterized by coordinates m1, m2, m3 is

shown. The figure prominently shows the hypersurface given by Eq. (??),

which is a cylinder perpendicular to m1m2 plane. The initial unconstrained

B-spline curve is shown by broken line and the initial positions to be inter-

polated are shown by round filled circles (‘•’) The extreme points detected in

the first iteration are shown by the ‘star’ (‘⋆’) symbol, while the lone extreme

point detected in the second iteration is shown by a ‘delta’ (‘△’) symbol. The

figure also indicates the parameter and the value of the Fi(u); i = 1, 3 func-
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Figure 7.1: Unconstrained and constrained interpolation; kinematic constraint
surface in a three-dimensional space parameterized by m1, m2, m3 coordinates:
all five extreme points (⋆) violate circular constraint; algorithm adds five new
points (�).

tions ((7.36), and (7.38)) at the extreme points. It can be clearly seen that

none of the extreme points are on the hypercylinder, indicating a violation of

rigid body constraint, however in this figure it is difficult to see the violation

of the constraint given by Eq. (7.36). The algorithm adds five new points (in-

dicated by ‘�’) corresponding to the five extreme points. The new curve lies

on or very near (due to a choice of δ = 0.05) to the hypercylinder and satisfies

all the constraints. To visualize the violation of the other constraint, we

show the intersection of the corresponding four dimensional constraint shells

(Eqs.(7.36), (7.37)) with m1 = 1 hyperplane in Figure 7.2. In m1 = 1 hyper-

plane, Eqs.(7.36) and (7.37) describe two elliptic cylindrical shells. The curve

is constrained to lie inside the volume between the boundary surfaces. The fig-
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Figure 7.2: Intersection of two constraint shells (4.00 ≤ F1 ≤ 16.00 and 0.64 ≤
F2 ≤ 51.84) with m1 = 1 hyperplane and the unconstrained and constrained
curve: two extreme points with F1(8.83) = 2.77 and F1(9.06) = 2.67 violate
the kinematic constraint: 4.00 ≤ F1

ure shows two extreme points that violate the F1 constraint (Eq.(7.36)). These

two points are clearly seen to be outside the constraint shell bounded by sur-

faces marked as min(F1) and max(F1). These are the same two points, which

violate the F1 constraint in first iteration (see Figure 7.1). Also shown are

two new points (‘�’) added by the algorithm and the constrained curve. The

final interpolating curve satisfies all the constraints, which in the Cartesian

space translates into a C2 continuous B-spline rational motion of the planar

6R closed chain.
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7.4 Matrix Approach to Rational Motions of

Planar 4R and 5R Closed Chains

Constraint equations of planar 4R and 5R closed chains can be seen as a special

case of the constraint equations of planar 6R closed chain. By transforming

the equality relations of 4R and 5R closed chains from Eqs. (7.28) and (7.31)

into inequalities, we can apply the same algorithm as presented before to do

constrained interpolation for 4R and 5R closed chains as well. We have already

seen how to transform the circular constraint into an inequality (Eq. (7.36)).

Here we would focus on the other equality constraints.

7.4.1 Planar 4R Closed Chain

We modify the equality constraints from Eq. (7.28) of planar 4R closed chains

as follows:

(a1 − δ1)
2 ≤ F1(u) ≤ (a1 + δ1)

2, (7.56)

and

(a2 − δ2)
2 ≤ F2(u) ≤ (a2 + δ2)

2, (7.57)

where δ1 and δ2 are user-defined tolerances, and F1(u) and F2(u) have been

previously defined. Thus, by choosing these tolerances to be as small as pos-

sible, the user can use the same algorithm to do constrained interpolation to

a desired degree of satisfaction. The new points are added in the same way as

described before.
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7.4.2 Planar 5R Closed Chain

In case of planar 5R closed chain, we modify the only non-circular equal-

ity constraint in Eq. (7.31) to be same as the modified constraint given by

Eq. (7.56).

7.5 Matrix Approach to Rational Motion In-

terpolation of Planar Open Chains

This section presents matrix approach for the following constrained motion

interpolation problem:

Given: A set of the positions of the end link of planar 2R, PR, RP, 3R,

RRP, RPR, PRR, PRP open chains in their workspace as well as the parameter

values ui, i = 1..n.

Find: Rational motions of the end link that interpolate through the given

positions at the parameter values and satisfy the constraints of given planar

open chains.

The given positions of the end link can be specified using either Cartesian

based parameters (d1i, d2i, αi) or the joint coordinates of the robot arm. In

the case of Cartesian parameters, we use Eq.(2.6) to convert them into pla-

nar quaternions; in the case of joint parameters, we directly substitute joint

parameters into homogeneous matrix form of the planar open chain.

We can see from the constraint equations of planar open chains mentioned

in previous section 7.2 that they are combinations of the geometric constraints

of circle, circular ring, and band. We can apply Algorithm 4.2 for C1 piece-
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C1 Interpolation C2 Interpolation
(m1, m2) (m3, m4) (m1, m2) (m3, m4)

2R Alg. 4.2 Alg. 4.2 Alg. 4.3 Alg. 4.3

PR Alg. 4.2 Alg. 4.3 Alg. 4.3 Alg. 4.3

RP Alg. 4.2 Alg. 4.3 Alg. 4.3 Alg. 4.3

3R Alg. 4.2 Alg. 4.3 Alg. 4.3 Alg. 4.3

RRP Alg. 4.2 Alg. 4.2, 4.3 Alg. 4.3 Alg. 4.3

RPR Alg. 4.2 Alg. 4.3 Alg. 4.3 Alg. 4.3

PRR Alg. 4.2 Alg. 4.2, 4.3 Alg. 4.3 Alg. 4.3

PRP Alg. 4.2 Alg. 4.3 Alg. 4.3 Alg. 4.3

Table 7.3: C1 and C2 Interpolation of planar open chains (For PR robot
arm m4 = 0.

wise rational Bézier interpolation on a circle and use Algorithm 4.3 for C2

B-spline interpolation within a circular ring and C2 B-spline interpolation in-

side a band.

Table 7.3 summarizes algorithm combinations for rational motion interpo-

lation problem under kinematic constrains of planar open chains described in

the beginning of this section.

7.6 Conclusions

In this chapter, we have studied the problem of constrained motion interpo-

lation directly in a parametric space defined by the elements of the planar

displacement matrix. Kinematic constraints of various planar open and closed

chains have been characterized by the algebraic relations among the elements

of the displacement matrix. This facilitates the development of the algorithms

for generating C1 and C2 piecewise rational interpolating motions in a para-
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metric space defined by these elements. Several examples have been presented

to demonstrate the effectiveness of the algorithms. Future research is to ex-

plore the feasibility of this approach for spherical and spatial kinematic chains.
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Chapter 8

Conclusions

This dissertation focussed on the constrained Cartesian motion interpola-

tion for planar, spherical, and spatial kinematic chains. It was shown that

by quaternion based representation of displacements, the problem of Carte-

sian motion interpolation could be reduced to that of curve interpolation in

quaternion space subject to geometric constraints which are transformed from

kinematic constraints of kinematic chains. This dissertation proposed several

iterative algorithms for aforementioned constrained Cartesian motion interpo-

lation. It was shown that the algorithm for piecewise rational Bézier interpo-

lation on a circle and the algorithm for Rational B-spline interpolation inside

an n-spherical shell could be brought together to do constrained motion inter-

polation of planar and spherical open chains and ADEPT robot. An algorithm

for B-spline interpolation inside intersection of two hyperboloidal shells was

developed for constrained motion interpolation of planar and spherical 4R, 5R,

and 6R closed chains. For spatial SS open chain, this dissertation showed a

numerical algorithm which is similar to that for planar and spherical closed
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chains.

In this dissertation, it was also shown that a matrix approach could be

used for Cartesian constrained motion interpolation of planar chains. In a

parametric space defined by the elements of planar displacement matrix, the

problem of Cartesian motion interpolation could be transformed into that

of curve interpolation under geometric constraints in terms of the elements

of planar displacement matrix. Thus, the numerical algorithms developed

previously could be applied. Advantages of directly using the elements of

displacement matrix for motion interpolation are that the interpolation process

is straightforward and the resulting motion is of lower degree.

Overall, this dissertation has resolved the problem of constrained Cartesian

rational motion interpolation for various planar, spherical, and spatial open

and closed kinematic chains.
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Appendix A

Quaternions

Quaternions A quaternion Q as introduced by W. R. Hamilton [65] is de-

fined as a hypercomplex number depending on four units 1, i, j, k:

Q = Q1i +Q2j +Q3k +Q4, (A.1)

where Ql (l = 1, 2, 3, 4) are real numbers, called the components of Q.

The addition of two quaternions is given by

G + Q = (G1 +Q1)i + (G2 +Q2)j + (G3 +Q3)k + (G4 +Q4) (A.2)

The multiplication of two quaternions is distributive with respect to summa-

tion and is defined by the following rules for the multiplication of the units:

i2 = −1, j2 = −1, k2 = −1,
ij = k, jk = i, ki = j,
ik = −j, kj = −i, ji = −k.

(A.3)

Hence

GQ = [G+]Q = [Q−]G, (A.4)

170



where

[G+] =









G4 −G3 G2 G1

G3 G4 −G1 G2

−G2 G1 G4 G3

−G1 −G2 −G3 G4









, [Q−] =









Q4 Q3 −Q2 Q1

−Q3 Q4 Q1 Q2

Q2 −Q1 Q4 Q3

−Q1 −Q2 −Q3 Q4









.

(A.5)

Quaternion multiplication is associative but not commutative. If Q = Q1i +

Q2j + Q3k + Q4 is a quaternion, the conjugate quaternion Q∗ is defined by

Q∗ = −Q1i−Q2j−Q3k+Q4. From quaternion multiplication, it follows that

QQ∗ = Q∗Q = Q2
1 + Q2

2 + Q2
3 + Q2

4, a non-negative number called the norm

N(Q) of Q. If N(Q) = 1 then Q is called a unit quaternion. A quaternion

with Q4 = 0 is called a vector quaternion.

Dual Quaternions A dual quaternion Q̂ is defined as a quaternion whose

components are dual numbers:

Q̂ = Q + ǫQ0 = Q̂1i + Q̂2j + Q̂3k + Q̂4, (A.6)

where Q̂l = Ql + ǫQ0
l , l = 1, 2, 3, 4, Ql and Q0

l being real numbers.

The addition of two dual quaternions is given by

Ĝ + Q̂ = (Ĝ1 + Q̂1)i + (Ĝ2 + Q̂2)j + (Ĝ3 + Q̂3)k + (Ĝ4 + Q̂4) (A.7)

The multiplication of two dual quaternions Ĝ and Q̂ goes as follows:

ĜQ̂ = GQ + ǫ(GQ0 + QG0)

= [Ĝ+]Q̂ = [Q̂−]Ĝ, (A.8)

where [Ĝ+] = [G+] + ǫ[G0+] and [Q̂−] = [Z−] + ǫ[Q0−].
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Planar Quaternions A planar quaternion Z is defined as a quaternion

whose components are dual numbers:

Z = Z1iǫ+ Z2jǫ+ Z3k + Z4, (A.9)

where Zl, l = 1, 2, 3, 4 are real numbers.

The addition of two planar quaternions is given by

Y + Z = (Y1 + Z1)iǫ+ (Y2 + Z2)jǫ+ (Y3 + Z3)k + (Y4 + Z4) (A.10)

The multiplication of two planar quaternions Y and Z goes as follows:

YZ = [Y +]Z = [Z−]Y, (A.11)

where

[Y +] =









Y4 −Y3 Y2 Y1

Y3 Y4 −Y1 Y2

0 0 Y4 Y3

0 0 −Y3 Y4









, [Z−] =









Z4 Z3 −Z2 Z1

−Z3 Z4 Z1 Z2

0 0 Z4 Z3

0 0 −Z3 Z4









. (A.12)
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Appendix B

Derivation of a Simple Metric in

the Parameter Space of the

Elements of Displacement

Matrix

Normal distance in the image space of planar displacements is given by YTY =

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 , where Y = (Y1, Y2, Y3, Y4) is a planar quaternion (see

McCarthy [10]). Using Eqs. (2.7) and (7.2), we obtain:

m2
1 +m2

2 +
1

4
m2

3 +
1

4
m2

4 = Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 (B.1)

or, mT [Q]m = YTY, where [Q] =









1 0 0 0
0 1 0 0
0 0 1/4 0
0 0 0 1/4









Thus, to calcu-

late normal distance between two points in the parameter space, expression

mT [Q]m should be used.
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Appendix C

Frame Independent Kinematic

Constraint for Spherical 3R

Open Chain

In this appendix, we show that kinematic constraint for spherical 3R robot

arm derived earlier are frame independent. From spherical trigonometry we

have the following equation (see Figure C.1):

cos(γ) = cos(β) cos(α) − sin(β) sin(α) cos(φ) (C.1)

Since the range of cos(φ) is [−1, 1], Eq. (C.1) reduces to:

cos(β + α) ≤ cos(γ) ≤ cos(β − α). (C.2)

After using double-angle formulae in trigonometry and performing algebra

manipulation, inequality (C.2) changes to:

tan2((β − α)/2) ≤ tan2(γ/2) ≤ tan2((β + α)/2). (C.3)

Similarly, using double-angle formulae Eq. (C.1) can be changed to:

sin2(γ/2) = −
1

2
cos(β) cos(α) +

1

2
sin(β) sin(α) cos(φ) +

1

2
, (C.4)
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Figure C.1: A Spherical 3R robot arm.

and

cos2(γ/2) =
1

2
cos(β) cos(α) −

1

2
sin(β) sin(α) cos(φ) +

1

2
. (C.5)

We can expand the first equation of (3.60) to:

q2
1 + q2

2 = cos(φ) sin(β) sin(α)/2 − cos(β) cos(α)/2 + 1/2. (C.6)

Similarly, we can expand the second equation of (3.60) to:

q2
3 + q2

4 = cos(β) cos(α)/2 − cos(φ) sin(β) sin(α)/2 + 1/2. (C.7)

From Eqs. (C.4), (C.5), (C.6) and (C.7), we find the following relationship:

tan2(γ/2) =
sin2(γ/2)

cos2(γ/2)
=
q2
1 + q2

2

q2
3 + q2

4

. (C.8)

Eq. (C.3) and Eq. (C.8) together constitute the kinematic constraint of a

spherical 3R robot arm.
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Appendix D

Convergence Issue in Iterative

Algorithm for Motion

Interpolation

In this appendix, we discuss convergence issue of iterative algorithms for con-

strained motion interpolation. Using quaternion based representation of dis-

placements the problem of constrained motion interpolation in Cartesian space

is transformed into that of curve interpolation under geometric constraints in

quaternion space. Quaternion and planar quaternion space is a linear four

dimensional space (R4) and dual quaternion space is a six dimensional space

(R6). It was shown in this dissertation that the geometric constraints could be

a curve, circular ring, n-spherical and hyperboloidal shells. It was also shown

that the basic strategy of the iterative algorithms for constrained motion inter-

polation is to detect extreme points, which violate the geometric constraints

most, pull back the extreme points into the geometric constraints, interpolate

given points as well as modified points. This procedure will be repeated un-

til there are no points on the interpolating curve that violate the geometric
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constraints.

Figure D.1: A parametric curve in R
n.

Dai, Yau, and Gu [66] looked into the properties of an arc length param-

eterized three dimensional curve. They showed that if arc length parameters

satisfy certain conditions and X(a), X(s), and X(b) are three consecutive

points on the curve, then the angle ∠X(a)X(s)X(b) is greater than π/2 (see

Figure D.1). In this appendix, we extend their result to R
n so that it can be

applied to the convergence issue of iterative algorithms. Note that the result is

only applicable when the geometric constraint is a curve in quaternion space.
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D.1 Property of Arc Length Parameterized Curve

in R
n

Definition D.1.1. Let X and Y be two non-zero vectors in R
n, then the angle

between X and Y is defined by

∠(X,Y) = arccos
〈X, Y〉

|X| · |Y|
, (D.1)

where 〈·, ·〉 denotes the inner product of two vectors; | · | denotes the magnitude

of a vector and 0 ≤ ∠(X,Y) ≤ π.

Definition D.1.2. Let ei, i = 1, 2, . . . , n be the basis vectors in R
n, then the

wedge product of two basis vectors are given by

ei ∧ ej = −ej ∧ ei for i 6= j,
ei ∧ ei = 0.

(D.2)

Definition D.1.3. Let ei, i = 1, 2, . . . , n be the basis vectors of an n-dimensional

space, let Xj, j = 1, 2, . . . , p be vectors in R
n, then a general p-vector is rep-

resented by

X1 ∧ . . . ∧Xp =
∑

i1<···<ip

(−1)NM i1i2···ipei1 ∧ · · · ∧ eip , (D.3)

where M i1i2···ip is a p×p minor of the p×n matrix formed from the components

of Xj, j = 1, . . . , p, and N is given by

N = (i1 − 1) + (i2 − 2) + · · ·+ (ip − p). (D.4)
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Remark D.1.1. Let x and y be two unit vectors in R
n, then the following

equation holds

〈x, y〉2 + |x ∧ y|2 = 1. (D.5)

Remark D.1.2. Let X and Y be two non-zero vectors in R
n, then the following

equation holds:

sin ∠(X,Y) =
|X ∧ Y|

|X| · |Y|
. (D.6)

Definition D.1.4. Let X(t) be a general parameterized continuous curve in

R
n, then the arc length parameter s is defined to be

s(t) =

∫ t

0

〈dX/dt, dX/dt〉1/2dt. (D.7)

Definition D.1.5. Let X(s) be an arc length parameterized smooth curve

R
n, then we define the tangent vector T and the total curvature κ as

T = dX/ds = X′, (D.8)

and

κ = |d2X/ds2| = X′′. (D.9)

Remark D.1.3. The magnitude of T is seen to be 1 by the computation

〈dX, dX〉 = ds2 =⇒ 〈T,T〉 = 〈
dX

ds
,
dX

ds
〉 = 1. (D.10)

Remark D.1.4. X′(s) and X′′(s) are orthogonal.

〈T,T〉 = 1 =⇒ 〈T,T′〉 = 0. (D.11)
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Lemma D.1.1. Let X(s) be an arc length parameterized smooth spatial curve

in R
n with curvature bound κm, and a, s, b satisfy 0 ≤ a ≤ s ≤ b ≤ π/κm, then

the following estimate holds

∠(X(b) −X(s),X(s) −X(a)) ≤ π/2. (D.12)

Proof. Consider function f(s) = 〈X′(s),X′(0)〉, then since X′(s) and X′′(s)

are orthogonal, the inner product 〈X′′(s), 〈X′(0),X′(s)〉X′(s)〉 is 0.

f ′(s) = 〈X′′(s),X′(0)〉 = 〈X′′(s),X′(0) − 〈X′(0),X′(s)〉X′(s)〉. (D.13)

Since |X′(s)| = 1 and the inner product is linear, we obtain the magnitude of

the second term of above equation to be

|X′(0) − 〈X′(0),X′(s)〉X′(s)| (D.14)

=
√

〈X′(0) − 〈X′(0),X′(s)〉X′(s),X′(0) − 〈X′(0),X′(s)〉X′(s)〉

=
√

〈X′(0),X′(0)〉 − 2〈X′(0),X′(s)〉2 + 〈X′(0),X′(s)〉〈X′(s),X′(s)〉

=
√

1 − 〈X′(0),X′(s)〉2

=
√

1 − f 2(s)

we take into account the property |X′′(s)| ≤ κm, then Eq. (D.13) satisfies

|f ′(s)| ≤ κm

√

1 − f 2(s), therefore f ′(s) ≥ −κm

√

1 − f 2(s), furthermore,

−
f ′(s)

√

1 − f 2(s)
≤ κm,

∂

∂s
(arccos f(s)) ≤ κm,

f(s) ≥ cos(κms), s ∈ [0, π/κm].

(D.15)

180



〈X(b) − X(s),X(s) −X(a)〉 (D.16)

= 〈

∫ b

s

X′(u)du,

∫ s

a

X′(v)dv〉

=

∫ s

a

∫ b

s

〈X′(u), X′(v)〉dudv

≥

∫ s

a

∫ b

s

cosκm(u− v)dudv

= cosκm(b− s) + cosκm(s− a) − cosκm(b− a) − 1

= 2 cos
κm(b− a)

2
(cos

κm(b+ a− 2s)

2
− cos

κm(b− a)

2
)

≥ 0.

Consider the definition of the inner product along with the result of Eqs. (D.16)

we can prove the Lemma D.1.1.

Theorem D.1.2. Let X(s) be an arc length parameterized smooth spatial

curve in R
n with curvature bound κm, and a, s, b satisfy 0 ≤ a ≤ s ≤ b ≤ π/κm,

then the orthogonal distance from the point on the curve X(s) to the line pass-

ing through X(a) and X(b) is less than the magnitude of X(b) −X(a).

Proof. Orthogonal distance from the point X(s) to the line passing through
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X(a) and X(b) is less than |X(s) − X(a)| and |X(b) − X(s)|.

〈X(b) − X(a),X(b) − X(a)〉 (D.17)

= 〈(X(b) − X(s)) + (X(s) −X(a)), (X(b) −X(s)) + (X(s) − X(a))〉

= |X(b) − X(s)|2 + |X(s) −X(a)|2 + 2〈X(b) −X(s),X(s) − X(a)〉

≥ |X(b) − X(s)|2, |X(s) −X(a)|2,

we use the result of Lemma D.1.1, which is 〈X(b)−X(s),X(s)−X(a)〉 ≥ 0,

in above derivation.

Consider the result of Eq. (D.17) we can conclude that the orthogonal

distance from the point on the curve X(s) to the line passing through X(a)

and X(b) is less than the magnitude of X(b) − X(a).

D.2 Convergence Issue in Iterative Algorithm

for Motion Interpolation

According to the Theorem D.1.2 we can conclude that the maximum of

|X(b)−X(a)| is the upper-bound of the deviation from a parameterized curve

X(s) to the linear interpolation of points on that curve. Thus, if the upper-

bound is within the tolerance δ, we can assume the linear interpolation ap-

proximates the curve X(s).

|X(b) −X(a)|max ≤ δ. (D.18)

Furthermore, due to the standard approximation theory, B-spline interpolation

converges to linear interpolation, so we can conclude that B-spline interpola-
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tion converges to the parameterized curve X(s) as long as the upper-bound

condition Eq.(D.18) is satisfied.
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