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Abstract of the Thesis 

A Fair-Share Scheduler for the Graphics 

Processing Unit  

by 

Ashok Dwarakinath 

 

Master of Science 

in 

Computer Science 

Stony Brook University 

2008 

 

The latest Graphics Processing Units (GPU) have more transistors than modern multi-

core CPUs. GPUs have also evolved into general purpose stream processors capable of 

complex floating point computation. Programming language frameworks/environments 

which extend common programming languages like C are available to exploit this 

computation power. As a result, GPUs are not only being used for better 3D rendering, 

they are also being used to solve general purpose computation tasks like performing 

scientific calculations. With this new CPU vs. GPU power equation; there emerges a 

need to manage the GPU resource efficiently. 

 

 In this thesis, we look at the issue of fair allocation of the GPU resource among 

competing GPU applications. Graphics device drivers in modern operating systems adopt 

a first come first serve approach at allocating the GPU. With this approach, one of the 

applications can monopolize the GPU.  We propose an alternate approach at allocating 

the GPU based on the deficit round robin algorithm which ensures nearly equal GPU 

times to competing applications. To implement this algorithm, we make changes to the 

graphics device driver subsystem, to have per-process queues for graphics commands. 

The algorithm also requires an estimation of GPU command execution times. A 

measurement based approach is used to maintain average execution times for various 

GPU command types. This allows estimation of future command execution times based 

on command type. 
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Chapter 1  

 

Introduction 
 

 

 

 GPUs have been growing in power to cater to the demand created by a multi-billion 

dollar computer gaming industry. Modern GPUs now have more transistors than recent 

multi-core CPUs [1]. Table 1 shows a comparison of an NVIDIA GeForce GTX 280 

GPU with Intel Core 2 Extreme Quad-Core QX 9650. These are the frontline processors 

in terms of processing power in mid-2008.  The higher computation power of the 

GeForce GPU is not just economics; it is also because adding more transistors to a GPU 

is more attractive because of their special needs. (More arithmetic operations per word 

preferred)  

 

 GeForce GTX 280 Intel Core 2 QX 9650 

Transistor Count 1.4 Billion 820 Million 

FLOPS 933 G < 100 G 

Peak Memory 

Bandwidth 
141 GB/s 6.6 GB/s 

 

Table 1: CPU v/s GPU in terms of computation power 

 

 In addition to their raw power, GPUs are designed to be highly parallel processors. 

This is so that the vertices or pixels can be processed in parallel. The processors run 

shader programs on the vertices or pixels. In a more generic sense, GPUs operate on data 

records in parallel by running program fragments or kernels with the records as input. 

Thus any computation that operates on a large stream of records with similar operation 

being performed on each record is a good candidate to be ported to the GPU. This gives 

rise to an entire class of non-graphics applications like matrix computation, image 

processing and Protein folding calculations that can be ported to the GPU. This is 

commonly referred to as GPGPU [2]. (General Purpose computation on GPUs) But until 

recently, porting an application to the GPU was difficult because of lack of any 

programming frameworks and control flow limitations in kernels. (No if-then-else) This 

is not true any more with the advent of development frameworks like CUDA, BrookGPU 

and CTM. Stanford University’s Folding@home project [3] which performs distributed 

protein folding calculations on ATI graphics cards and the SETI@home project which 

also has a GPU client are some real world examples of GPUs being used for non-graphics 

applications.  
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 As GPUs start being widely used for non-graphics applications, and considering their 

immense power, it is inevitable that multiple such applications will be executed 

simultaneously and hence will compete for the GPU resource on a system. Thus there is a 

need for a scheduler that manages allocation of the GPU.  

 In current operating systems, the GPU resource is managed by the graphics device 

driver. The application programs link to a graphics library implementing the OpenGL or 

DirectX API, which in turn calls functions in a user level driver component. This user 

level driver converts OpenGL or DirectX commands into commands that are specific to 

the graphics card. The user level driver then issues a system call to the kernel level 

graphics driver to DMA the commands to the GPU. The user level driver also ensures 

that the application executes against the correct graphics state (view port specifications, 

lighting parameters etc…). This is usually done by obtaining a lock on the GPU before 

sending graphics commands. The process of obtaining the lock ensures restoration of the 

correct graphics state before the commands are sent. This is similar to process context 

switch on the CPU where the process state is restored before it starts executing on the 

CPU. Unlike CPU scheduling, where the context switch is transparent to the application, 

GPU scheduling requires the user level driver which is part of the application to explicitly 

restore the state whenever necessary and release locks on time. This opens up the 

possibility of clients holding the lock for too long and starving other clients. 

 To ensure fairness among multiple applications using the GPU, we explore a new 

design for the graphics device driver. We have developed a prototype called GERM 

(Graphics Engine Resource Manager) with per-process command queues in the kernel 

and a scheduler that uses an algorithm called deficit round robin to ensure fairness among 

competing applications. The rest of this thesis explores the design, implementation and 

evaluation of this prototype.  

 



3 

 

Chapter 2  

 

Related Work 
 

 

 

Windows Display Driver Model [4] (WDDM) introduced with windows vista 

seeks to solve the same problems as GERM. In Windows XP, the display driver model 

has the same problems described in the previous chapter. The GPU scheduling is first 

come first serve, which can essentially lead to starvation for some clients. WDDM v1.0 

which is a basic version of the driver model and is implemented in windows vista has 

per-process command queues in the kernel, but the policy used for scheduling is not 

known. WDDM v2.0 is an advanced version of the driver model. It supports mid-

command buffer pre-emption and per-process page tables with demand paging of video 

memory pages. This would require a new generation of GPUs. GPU has to support 

multiple contexts and interrupt the CPU on completion of a command group. Each 

context includes a ring buffer for commands and a page table for video memory. WDDM 

v2.1 is more advanced; it supports mid-pixel pre-emption. This is the ultimate level of 

device isolation to processes using the GPU. No process will ever starve. But these are 

tough problems to solve. (Consider the case of a shader that executes for a really long 

time) While WDDM has the same goals as GERM, it is targeted at windows operating 

systems. The GERM prototype has been implemented on Linux, is open source, and as 

such can benefit from contributions by the open source community.  

Compute Unified Device Architecture [5] (CUDA) is a C language framework 

from NVIDIA that eases development of programs for the GPU. It provides simple 

extensions to the C language and an SDK to develop programs for NVIDIA GPUs. 

CUDA also requires a driver component to be installed in the system running CUDA 

programs. So, the CUDA software stack at the lowest level essentially consists of a driver 

which interacts with the GPU. The CUDA library runtime which sits on top of the CUDA 

driver translates commands from the CUDA program and sends them to the driver. 

CUDA programs are C programs with additional syntax to specify kernels. (functions 

executed by threads) A compiler front-end called nvcc is provided to compile CUDA-

specific extensions. Nvcc compiles the CUDA specific code into object files called 

cubins. These cubins are loaded by the CUDA runtime and sent through the driver to the 

GPU. CUDA provides a multi-threaded programming model with facility to synchronize 

threads.  The programmer can specify multiple threads that execute the same kernel in 

parallel. Threads that execute on the same processor core form a thread group. The thread 

group has access to shared memory on the core. (similar to L1 cache in CPU) Each thread 

also has local memory. There can be a maximum of 512 threads in a thread group. Each 

thread group runs independently on different processor cores. The job of a programmer is 

to partition a problem into multiple sub-problems each of which can be run independently 
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either in parallel or serial fashion. Each such sub-problem can be assigned to a thread 

group. Then the data in the sub-problem can be processed in parallel using threads in the 

thread group. CUDA is currently supported for GPUs based on NVIDIA’s Tesla 

architecture.    

ATI Stream SDK [6] is the successor to ATI Close To Metal (CTM) technology. 

It provides low-level access to the registers and memory on the GPU. The software stack 

at the lowest level consists of a device driver that provides a forward compatible 

hardware abstraction layer (Compute Abstraction Layer - CAL) to programs. This 

abstraction layer works very much like a virtual machine. It accepts intermediate code 

called AMD IL and generates GPU specific code that can be executed by the target 

device. The CAL API is used by the runtime library to send pre-compiled kernel routines 

to the GPU. The Stream SDK also provides a compiler called brcc to compile ATI-

specific extensions to the C language. This is really a meta-compiler since the output of 

this is a C++ source file containing compiled kernels. (embedded in the source)  The 

programmer has to write kernels that execute in parallel on data arrays called streams.  

Both CUDA and ATI stream computing initiatives are a departure from the device 

driver architecture prevalent for graphics programs.  They provide access to the 

computing power of the GPU without any need for the programmer to interact with 

features of the GPU like lighting parameters or viewport specifications that only graphics 

programs need. As such the current CUDA and CTM infrastructure doesn’t concern itself 

with multiple programs using the GPU at the same time and hence it is not clear what 

policy they adopt to schedule commands from multiple programs.    

SGI’s multi-rendering X windows [7] support is based on modifying the X server 

to have multiple rendering threads in its address space. An OpenGL client first sends 

commands to X server, which then assigns these commands to a rendering thread. The 

rendering thread in turn parses these commands and sends them to the GPU. Once the 

rendering completes, the X server returns to the client and is ready to accept more 

commands. This approach obviously involves some latency as the clients need to send 

commands to X server. Fairness issues have not been explored in this implementation. 
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Chapter 3  
 

Direct Rendering Infrastructure 
 

 

 

 Direct Rendering Infrastructure [8] (DRI) is a framework that allows OpenGL clients 

to directly access the graphics hardware without the need to communicate with the X 

server. The purpose of DRI is to provide hardware acceleration for 3D rendering. Direct 

rendering uses the graphics hardware to perform geometry calculations and is therefore 

fast. In contrast, In-direct rendering involves communicating with the X server, where the 

calculations are done in software and hence slower. OpenGL is a specification of 

graphics primitives from SGI. Mesa 3D [9] is an open source implementation of OpenGL 

developed primarily for Linux and FreeBSD systems running X.  Mesa also provides 

user-level graphics drivers that interact with kernel drivers from the DRI project that 

enable OpenGL programs to use hardware acceleration. Our prototype design and 

implementation is based on Mesa 3D and DRI code and seeks to overcome problems with 

their existing design. Hence a detailed discussion of the two follows in subsequent 

sections.  

 

3.1      Overview 
 

 Figure 1 gives an overview of the direct rendering infrastructure. An OpenGL 

program consists of the application code linked with the Mesa OpenGL library 

(libGL.so). The program is also linked with a GPU specific user level driver. (For ex: 

r200_dri.so). The OpenGL library uses the user level driver to send GPU specific 

commands to the kernel level driver. The kernel driver module sends the commands to 

the GPU by writing the commands to a ring buffer that is accessible by the GPU.  

 

3.2      User level driver 
 

 Having part of the driver code in user level serves two purposes: 

• It is easier to debug and maintain user level code. 

• Security: User code is un-privileged and bugs here will not crash the system.  

 

The GPU user level driver accumulates commands from the application and sends them 

to the kernel level driver through an IOCTL system call interface. In the current Linux 

DRI implementation the IOCTL interface is provided by libdrm, which provides a 

wrapper around the ioctl system calls to the kernel. The driver also maintains the graphics 
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state of the application and ensures that the commands are executed against the correct 

state. Figure 2 shows the major components of the user level driver and its interaction 

with the kernel level driver. 

 

 
 

Figure 1 : High level view of DRI 

 

 

 
 

Figure 2 : User Level GPU Driver 
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The user level driver contains the following main data structures: 

• Command Buffer: This is an 8 KB array that holds GPU commands before it is 

flushed to the GPU. Buffering ensures lesser calls into the kernel and allows 

command groups such as state restoration commands, glArrayElement commands 

to be atomically sent to the GPU.  

• State Atom List: This is a list of state atoms (command sequences) that represents 

the state information that was last sent to the GPU. This basically consists of 

information such as transformation matrices, lighting parameters etc... 

• Saved GPU state: This is a copy of the above information for internal book-

keeping. This structure maintains the latest GPU state information that needs to be 

sent on the next buffer flush. 

 

The user level driver also ensures that only one client is sending commands to the 

GPU at a time. This is done using the locking primitives implemented with the help of 

the kernel level driver. The user level driver sends an ioctl call to the kernel driver 

requesting a lock on the hardware. The system call returns once the client has the lock. If 

the client detects that the lock was previously held by another client, then the state 

information will be sent again on the next buffer flush. This is the equivalent of a context 

switch in the GPU. 

The set of commands sent between a lock acquisition and a lock release is called a 

command batch. This is different from a command group, which is a set of commands 

that need to be sent atomically to the GPU.  

The user level driver also manages data structures that provide the application with a 

view of video memory layout – the regions in video memory currently occupied or free. 

Each client maintains this information separately and keeps it up to date with the help of 

the kernel level driver. A detailed discussion of this is beyond the scope of this thesis.  

 

3.3      Kernel Level Driver 
 

Kernel level driver in DRI is called Direct Rendering Manager [10] (DRM). This 

consists of a top level common module (drm.ko in linux 2.6) and a driver specific 

module. (Ex: radeon.ko for ATI radeon cards)  Figure 3 shows the main components of 

the kernel level GPU driver. The top level module (drm.ko) provides the code that 

exposes the graphics card as a char device. (implements the file ops necessary and creates 

a device node at /dev/drm). drm.ko also contains a handler for the ioctl call to /dev/drm 

through which the user level driver interacts. This handler in turn invokes the function in 

the GPU specific module that actually handles the system call. If the call requires sending 

commands to the GPU, the handler in the GPU specific driver would write the commands 

now formatted as command packets (with header and payload) to the ring buffer that is 

accessible by the GPU through DMA. 
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Figure 3: Kernel level GPU Driver 
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the GPU. It indicates the position in the buffer at which the next read will take place. The 

write pointer is updated by the driver in the host after it writes command packets to the 

buffer. Note that there are two copies of read/write pointers, one in host memory and the 

other in GPU registers. The process of reading and writing to the ring buffer ensures that 

both copies are in-sync. Writing to the ring is through BEGIN_RING, 

ADVANCE_RING and COMMIT_RING macros in DRM code. BEGIN_RING macro 

ensures there is adequate buffer space. ADVANCE_RING macro advances the write 

pointer. OUT_RING(x) macro writes the byte x into the buffer.  COMMIT_RING macro 

updates the write pointer register of the GPU and reads the read pointer value from the 

GPU register to synchronize read/write pointer values and ensure correct posting of data 

to the ring.  

 

3.5      Command Flow 
 

Figure 5 shows a command flow diagram with only the important buffers (data 

containers in general) in the user level driver and kernel driver that store data provided by 

an OpenGL application and how that data reaches the GPU. The diagram illustrates how 

vertex data is transferred to the GPU. Texture data transfer would be similar to this.  

 Vertex data consists of geometric co-ordinates, along with the color values (RGB) 

for that vertex. An OpenGL program typically calls the glVertex3f OpenGL function to 

specify this information. The Mesa 3D implementation of this function, calls a user level 

driver function to store this vertex data into a DMA buffer mapped into the address space 

of the process. The user level driver also maintains a vertex buffer that contains a pointer 

to this DMA buffer and maintains a vertex count variable as well as other meta-data 

about the vertices. Once a primitive (triangle, polygon) is output to the vertex buffer, a 

command packet containing meta-data about the vertices in this primitive is flushed to 

the user level command buffer mentioned in section 3.2. This meta-data contains the 

packet type and the start address and length of vertex data in the DMA buffer. Once this 

command buffer is full, it is sent through the IOCTL interface to the kernel level driver, 

which writes the commands to the GPU ring buffer. The GPU then processes the 

command and obtains the vertex data through DMA. 

 Figure 6 shows a timing diagram with various components of DRI, and how they 

interact to push information from the OpenGL App to the GPU. A glVertex3f OpenGL 

call gets translated to a user level driver-specific call, xx_Vertex3f. At this stage, the 

vertex data is merely buffered in the user driver as discussed previously. When the 

command buffer gets full or due to an explicit flush call, the command data is sent to the 

kernel level driver through an IOCTL call. Before the data is sent, a lock is obtained on 

the GPU, by a system call to the kernel. If another process previously held the lock, state 

data is sent to the GPU. Access to the ring buffer is through macros discussed in section 

3.4.  
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Figure 5: Command flow diagram showing the buffers containing vertex data 
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Figure 6: Timing diagram showing flow of data from OpenGL App to ring buffer 
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3.6      Limitations of DRI 
 

As shown in the timing diagram in the previous section, the user level driver ensures 

exclusive access of the GPU to a process by obtaining a lock on the GPU. There are two 

issues to note here: 

 

a) The lock acquisition and release is entirely done at the user level. A malicious 

client can hold the lock for any amount of time and prevent other processes from 

accessing the GPU. 

b) The amount of GPU time consumed is directly proportional to the CPU time 

allotted to the process. A process which consumes more CPU time, but needs less 

GPU resources still gets more GPU time than another process which needs more 

GPU resources, but less CPU time. 

c) The command batch that is sent atomically to the GPU can take an arbitrary 

amount of time to execute.  

 

Point (a) above can lead to starvation of clients. Point (b) and (c) can lead to un-fair 

allocation of the GPU to competing processes. The next chapter discusses the design of 

GERM, which seeks to address the above limitations. 
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Chapter 4  
 

Design 
 

 

4.1      Design Goals 
 

In the previous chapter we looked at DRI design and its limitations. We have 

modified DRI to overcome these limitations. In particular, we have modified the graphics 

driver with the following high-level goals in mind: 

• To provide equal GPU time to a set of competing GPU applications with similar 

requirements. 

• To prevent starvation for applications with low GPU requirements. 

The following sub-sections look at the various design issues and the solutions considered 

in achieving the above goals. The chapter ends with a section on the detailed design of 

the prototype, including the changes to kernel level and user level drivers. 

 

4.2      Overview 
 

It is obvious that in order to achieve the stated goals we need to schedule 

commands at the command group level as against the command batch level in DRI. With 

the current (lock---command flush---unlock) model in DRI, this is not possible.  The 

locking mechanism has to be disabled to pre-empt a process at command group level. 

Since, in the current DRI design, graphics state maintenance is closely linked to locking, 

we need to develop a different mechanism to restore the graphics state of a process 

whenever we schedule command groups belonging to a process. We also need a 

scheduling policy that enforces our notion of fairness. Since the notion of fairness is 

closely linked to the GPU time consumed by a process, we also need a way to measure 

how long a command group takes to execute on the GPU.  

 The issues summarized above can be formally stated as follows: 

a) Fine-grained command scheduling – This involves scheduling commands at the 

command group level. To implement this, we need a way to buffer commands till 

they can be sent to the GPU. Note that this was not necessary in DRI, as the 

commands were sent to the GPU in a single system call from the user level driver. 

Closely linked to the issue of fine-grained scheduling is the problem of 

maintaining state. Where to maintain state information, how to update it, and how 

to ensure that the command groups are always executed against the correct state 

are some of the other issues. 
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b) Scheduling policy – We need a scheduler that can send command groups to the 

GPU. The scheduler needs to implement an algorithm that ensures that all 

processes get to send commands eventually and that they send roughly commands 

of the same cost each time. 

c) Measuring GPU execution time – We need a notion of GPU execution time. The 

problem here is that until recently, GPUs didn’t interrupt the CPU once a 

command group was processed. 

d) GPU command cost estimation – We will see when we discuss scheduling policy 

that GPU command cost estimation is an important issue to consider in our 

design. GPU command cost estimation is the ability to predict the GPU execution 

time of a command group based on its contents. We need to develop some kind of 

heuristics to solve this problem. 

 

The following sub-sections discuss each of the above issues in detail. 

 

4.3      Fine-grained command scheduling 
 

Figure 7 illustrates fine-grained command scheduling. Command group is the unit 

of commands sent atomically to GPU. A scheduler sends the command groups on behalf 

of a process. Note that such a scheduler is best implemented in the kernel, since it needs 

access to the GPU ring buffer and has a global role to play in the graphics system. After a 

command group is sent, the scheduler may switch context, to send command groups 

belonging to a different process. To be able to do this, the command groups need to be 

stored in per-process command queues. 

 

 
Figure 7: Fine grained command scheduling 
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4.3.1      Command Queues 
 

Command groups need to be buffered before the scheduler can send them to the GPU. 

This is done in per-process command queues.  There are various ways to implement 

command queues: 

 

a) One way is to maintain the buffers in the kernel and memory-map them to the 

user program. The user program can insert commands in this buffer through the 

user level driver. This is a zero-copy approach to send command groups to the 

GPU. The disadvantage is that this requires a complete re-design of DRI user 

level and kernel drivers. The kernel level driver in DRI writes to the ring buffer in 

a format that the GPU understands. This needs to be now done in the user level 

driver before inserting commands to the command queue to maintain the zero 

copy advantage. The absolute lack of documentation in the open source drivers 

make such a huge change difficult to implement. 

b) Another way is to maintain buffers in the kernel and modify user level driver to 

insert commands into these buffers instead of directly writing to the ring buffer. 

This is much easier to implement, as the access to the GPU ring is through well-

defined macros. Changing these macros to insert commands into the command 

queues is easy to implement. The disadvantage of this approach is that there is an 

extra copy involved. The command groups are first copied into the command 

queues, before the scheduler writes them to the ring buffer. 

 

We have chosen option (b) because it is easier to implement correctly. GPGPU programs 

generally upload a single kernel which is run multiple times on input data. As a result it is 

unlikely that an extra copy while inserting commands into the command queue will be a 

bottleneck for such programs.  

 

4.3.2      Context switch (state restoration) 
 

User level driver locking needs to be removed to implement fine-grained 

scheduling. With this change, the scheduler needs to make sure that the command group 

is executed against the correct state. This requirement suggests that the state of each 

process needs to be maintained by the scheduler. The state can also be updated by the 

OpenGL App during the course of execution. In DRI, this state data is sent to the GPU in 

the same way as other commands. This needs to be changed since the scheduler is the one 

that sends data to the GPU. (And it needs to have the most recent state of the App, in case 

of a context switch). The user level driver and kernel driver are modified to adhere to a 

protocol in the data they exchange. This is to recognize the type of command (normal 

data or state change command) in the command group. In the kernel level driver, a state 

change command results in change of the internal state data maintained by the scheduler 

for the application. This state change is also sent to the GPU by the scheduler before 
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succeeding commands in the command stream are executed. The exact format of 

commands and command groups is discussed in section 4.7.3. 

4.4      Scheduling Policy 
 

 GERM scheduling policy is based on an algorithm called Deficit Round Robin [11] 

which was proposed for fairness in packet switching with multiple input flows (queues). 

This algorithm requires O(1) work per packet. The main idea of the algorithm is to assign 

a quantum (say number of bytes) to each input flow. This is done every scheduling round 

of the round robin. If an input flow uses less than a quantum in the current round, then it 

gets to send more data in the next round. (deficit of the current round plus the quantum 

for the next round). Similarly, if it consumes more than a quantum in the current round 

(say, packet size is more than the quantum assigned), then it gets to send less data in the 

next round of scheduling. This works well with variable-sized packets and thus reduces 

packet processing time. (no fragmentation required) Note that it is easy to implement a 

priority-based scheme on top of quantum-based scheduling. If one of the input flows has 

higher priority, then it can be assigned a higher quantum each round.  

 Since this is a round robin algorithm, processes will not starve. The scheduler visits 

the command queue of every process in each scheduling round. As long as a process has 

commands to be sent, it will get to use its quantum. 

 Figure 8 shows how this algorithm is adapted for GPU scheduling. The GERM 

scheduler maintains per-process queues for commands. The commands are in containers 

called command groups or packets, which is a unit of commands that needs to be sent to 

the GPU atomically. The quantum in this case is GPU time. Unlike data packet size, we 

don’t really know how much GPU time a given command group will take to execute. It 

may not even be proportional to command group size. One way to know the time is to 

refer to GPU specifications – to find the cycle count for various commands executed by a 

particular GPU. While building the command packets in the kernel, we can tag packets 

with their GPU cost from the above data. This will be fairly accurate. Unfortunately, this 

data is not available to the general development community. The other alternative is to  

estimate command group execution time by using heuristics and a measurement-based 

approach. We can maintain running averages of command group execution times and use 

that to estimate the cost of command groups in the command queues. This scheme is 

discussed in the next sub-section.   
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Figure 8: Scheduler Design 

 

 

4.5      GPU commands cost estimation 
 

We estimate the cost of GPU commands using heuristics on the contents of the 

command group. We examine the contents of the command group and look at the 

following characteristics of the command group in the order they are mentioned below: 

• Presence of Texture Dispatch Command:  Texture dispatch command results in 

transfer of textures (image data) from the host memory to the GPU. The command 

group containing this command should consume high GPU time. 

• Presence of Buffer Swap Command: In case of double buffering, a buffer swap 

command switches the back buffer (which contains the latest pixel data) with the 

front buffer (which would be used to render on screen). Double buffering results 

in better frame rates as one buffer can be used to display on screen while the other 

buffer is being drawn into. We have found through measurements that this 

operation is costly and needs to be accounted separately. 

• Number of Vertices: Vertices are processed in the geometry stage of the graphics 

pipeline to calculate visibility, color and projection of the 3D scene. Besides, 

vertex shaders are also run on the vertices if specified. It is safe to consider that 

the GPU time consumption of a command group is proportional to the number of 

vertices in the command group.    
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• Number of Bytes in command group:  If none of the above commands are found, 

we consider the cost of a GPU command group to be proportional to the size of 

the command group. 

We use a measurement based approach to quantize the costs mentioned above. The 

scheduler maintains the following averages or coefficients to estimate the cost of GPU 

command groups.  

• Time to upload 1 byte of texture: With each texture dispatch command we find 

out the size of the texture that is associated with that command and by measuring 

the time taken by this command to execute, we can calculate the average time it 

takes to upload a byte of texture to the GPU. When a command group contains a 

texture upload command, we just multiply the size of the associated texture with 

this average to get the estimated GPU time for the command group. 

• Average time for a buffer swap: We use this average to estimate the cost of a 

command group containing a buffer swap command. 

• Average time per vertex: We use this average to estimate the cost of a command 

group with a given number of vertices. 

• Average time per command byte: We use this average to estimate the cost of a 

command group that does not contain any of the above commands. 

Note that these averages are used in the order they are mentioned above. So, the 

command group is checked for vertex data only if it does not contain texture dispatch 

commands and buffer swap commands. Central to the measurement-based approach 

described above is the aspect of measuring GPU execution time. This is discussed in the 

next section. 

 

4.6      Measuring GPU command execution time 
 

Most GPUs don’t interrupt the CPU once a command group is processed by the 

GPU. So, it is difficult to measure the exact time that a command group took to execute.  

Recent GPUs can be setup to interrupt the CPU once a command group is processed. This 

is by using something called fence objects where a command to write a scratch register is 

injected into the command stream. This command when executed causes an interrupt to 

the CPU.  But the GPU on which our implementation is based doesn’t have this feature. 

So, we have used a polling based approach.  

After each command group is written to the ring buffer, we inject a command that 

increments a scratch register which we call the timing register on the GPU. This acts like 

a counter for the number of command groups executed on the GPU. We poll the value of 

this register regularly to find the number of command groups executed since the last time 

the register value was read. We also measure the CPU time when the timing register is 

read. With these measurements it is possible to calculate the GPU time consumed per 

command group. It is important that we poll regularly to ensure accurate measurement. 

We discuss how this is done in the next section. 
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4.7      Detailed design 
 

4.7.1      Changes to User Level Driver 
 

The following changes are required in the user level driver: 

 

• Removal of calls requesting hardware locks – The locking API in the user level 

driver consists of LOCK_HARDWARE and UNLOCK_HARDWARE macros. 

These macros are no longer required, since context switching and atomicity of 

command groups dispatch is handled by the scheduler present in the kernel level 

driver in GERM. These macros have been modified to do nothing in the driver 

code.  

• Add command group heuristics information – Command group cost estimation 

requires information on the contents of a command group like the number of 

vertices in the command group. This information is available only to the user 

level driver. The driver has been updated to communicate this information to the 

kernel level driver.  

• Tag state information – Hardware state is restored by the scheduler during a 

context switch. So, when the state atoms are emitted by the user level driver into 

its command buffer, it needs to be tagged so that the kernel level driver can 

identify this information in the command stream and update the state information 

it maintains. 

• Tag DMA Buffer Discard – DMA Buffers are used to dispatch vertex lists. These 

buffers are re-used when the GPU has processed the current buffers. This is done 

by incrementing an age register on the GPU. This has to be done by the scheduler 

now. So, these buffer discard commands are tagged in the command stream. 

 

4.7.2      Changes to Kernel Level Driver 
 

Figure 9 describes the major components in the kernel level driver and their 

interaction. The components are described in detail below. 

• Per process command queues – This is a linked list of 96KB buffers. Buffers are 

allocated and freed as commands are queued and processed. 

• Change ioctl handlers - The ioctl handlers in DRM write commands to the ring 

buffer using BEGIN_RING, OUT_RING, ADVANCE_RING and 

COMMIT_RING macros. These macros have been modified to write to the 

command queues instead. 

• Scheduler thread – The scheduler that implements the deficit round robin 

algorithm is a separate kernel thread. This thread visits the active list of processes 

in a round robin fashion and dispatches the commands in their command queues 

to the ring buffer. 
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• Timing thread – Our scheduling algorithm relies on accurate estimation of GPU 

command cost. So, we need to tune the cost metric coefficients we maintain 

(average time per vertex, average time per command byte, etc…) in real time. 

This tuning is done by the timing thread, which wakes up every jiffy to poll the 

timing register on the GPU and calculate the time consumed per command group. 

This data is then used to update the cost metric coefficients. 

• Work Chunk queue – Note that for the timing thread to update the cost metric 

coefficients, it has to know the characteristics of the command group. (if the cost 

of that command group was estimated with cost metric coefficients associated 

with texture dispatch or buffer swap or vertex or command byte) So, we have 

another queue linked from the task structure that contains meta-data about the 

command groups sent. This meta-data is contained in a work chunk structure, an 

instance of which is en-queued into the work chunk queue when a command 

group is sent to the GPU, and de-queued when the timing thread finds out that the 

corresponding command group has been processed by the GPU. (this is fairly 

straight-forward as the GPU is a FIFO engine) 

 

 

 
 

Figure 9: GERM component diagram 

 

 

Ioctl handler 

Scheduler thread 

Timing thread 

Cost metric 

coefficients 

Work chunk queue 

De-queues 

En-queues 

Updates 

Inserts 

commands 

Schedules commands from 

command queues using cost 
metric coefficients 



21 

4.7.3      Command group format 
 

Figure 10 shows the format in which command groups are stored in the command 

queues. A command group consists of a set of command items with a header storing 

meta-data about the command group. This meta-data consists of cost information like 

number of vertices in the command group; number of command bytes, number of 

commands in command group, number of buffer swap commands, and size of texture 

data if a texture dispatch command is present in command group. Note that this command 

group format is internal to GERM and only the command data gets sent to the GPU. 

 

 
 

Figure 10: GERM command group format 

 

4.7.4      Command Format 
 

Figure 11 shows the format of a command item in the command group. A 

command item can be just command data, or a state atom, or a buffer swap command. 

These commands are distinguished by a special 2 byte mask (SC_MASK) in the 

beginning of the command item. Note again that this command format is internal to 

GERM, only the command data is sent to the GPU. 

 

  
Figure 11: GERM command item format 

Header    

32 bytes 1 to n command items 

    length                    command data 

SC_MASK         Special command 

(a) normal command data 

(b) special commands 
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Chapter 5  
 

Implementation 
 

 

 

GERM is currently implemented for ATI Radeon r200 GPU [12]. This GPU was 

chosen because of the availability of open source drivers. Software requirements for the 

prototype are as follows: 

• Mesa 3D version 6.5.3 

• X server version 6.9 

• DRM version 1.28 

• Linux Kernel 2.6.x 

 

Changes are required in the user level r200 driver and the kernel level driver. (DRM, 

radeon) The prototype is provided as a patch to the standard driver software.  

 

 

5.1      Main data structures 
 

The following are main data structures used in the prototype: 

• GERM device structure – This structure has been added to the DRM code to 

maintain GERM specific information. This information includes the list of tasks 

currently accessing the GPU (active list), pointers to the task structures of the 

scheduler thread and timing thread, the current hardware state of the GPU and 

locks to protect these members. This device structure is linked from the private 

info of the DRM device structure used in DRM code. 

• GERM task structure – This structure represents a task accessing the GPU. This 

structure contains the list of buffers used to store commands emitted by the task, 

heuristic information for command cost estimation (average time per vertex), 

hardware state of the task and locks to protect these members. 

• GERM command buffer – This structure contains an array of 96K bytes to store 

the command data. A linked list of these buffers is accessible from the task 

structure. 
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5.2      Scheduler thread 
 

 

 
 

Figure 12: Scheduler thread main loop 

 

Figure 12 shows the pseudo-code for the main loop in the scheduler thread. The 

active list is a list of GERM task structures. The time_left variable in the task structure 

indicates the GPU time available for the task. Locks are used to avoid simultaneous 

access of the task structure members by the timing thread. (Not shown in the figure for 

clarity)  GERM_QUANTUM is the quantum value in the deficit round robin algorithm. 

In our implementation this has been chosen to be 0.0005 * (CPU clock speed). This is 

considering the cost of command transfer to the GPU which is more of the order of a 

memory access.   

 

5.3      Timing thread 
 

 The timing thread wakes up every jiffy and probes the GPU to find out the 

number of command groups that have been processed since the last probe. Figure 13 

shows the main loop in the timing thread. The number of command groups executed is 

found by reading the timing register and taking the difference of that value and the last 

probe value. If there are command groups that have been processed, we measure the time 

consumed per command group and then use the work chunk list to find the meta-data 

loop until shutdown 

 current_task = next task in active list 

 Dequeue current_task and insert at end of active list 

 current_task.time_left += GERM_QUANTUM 

 command_cost = cost of next command group 

 loop while command_cost < current_task.time_left 

  schedule command group to be sent to GPU 

  create new work chunk instance  

  fill the work chunk with command group meta-data 

insert into work chunk queue 

command_cost = cost of next command group 

current_task.time_left -= command_cost 

 end loop 

end loop 
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about each of the command groups processed. The meta-data includes estimated time of 

the command group, the task associated with command group and the cost metric used 

for estimation. The deficit round robin algorithm assumes that the cost value of the 

command group is known. Since we only have an estimate while scheduling, we need to 

correct the actual time left for a task once we know the correct cost value. This is done by 

updating the time_left variable of the task. The cost metric coefficients are then updated.  

 

 
 

Figure 13: Timing thread main loop 

loop until shutdown 

 sleep for 1 jiffy 

 current_probe_value = read timing register 

 num_cmd_grps = current_probe_value – last_probe_value 

 if (num_cmd_grps > 0) 

  current_time = system time  

  time_consumed = current_time – last_probe_time 

  time_per_cmd_grp  

= time_consumed / num_cmd_grps 

  loop while num_cmd_grps > 0 

   wc = dequeue next work chunk instance 

   task = task associated with wc 

   task.time_left = task.time_left +  

     wc.estimated_time –  

     time_per_cmd_grp 

   update task cost metrics using wc  

and time_per_cmd_grp   

 num_cmd_grps -= 1 

  end loop 

 end if 

 last_probe_value = current_probe_value 

 last_probe_time = current_time 

end loop 
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5.4      Portability 
 

GERM is currently tested to work on ATI r200 GPU. The current device driver 

code organization requires us to modify GPU-specific user level driver and kernel level 

driver. But it should be easy to port major portion of GERM which includes the scheduler 

and timing thread to any other GPU. There are some aspects which include dealing with 

GPU state that would require careful review when porting to another GPU.  
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Chapter 6  
 

Evaluation 
 

 

6.1      Methodology 
 

Running multiple graphics applications is not the norm currently. As GPGPU 

applications get more popular there is a good reason for multiple such programs to be run 

simultaneously. GPGPU applications essentially have a part that runs on the CPU 

(network access, synchronization between threads) and a part that runs on the GPU (core 

computation). It makes sense to run multiple of these together. (when one program is 

running code on CPU, another can use the GPU) GPGPU applications are just starting to 

make their presence felt and it is difficult to find representative applications for testing. It 

is also tough to find an application that runs on all GPUs, as the development frameworks 

are targeted for a specific GPU model. In our evaluation we have used a set of graphics 

applications instead. These graphics applications provide a good enough instruction mix 

to test our command estimation and scheduling. We have written our own GPGPU 

programs (matrix multiplication and string comparison) to evaluate our prototype. 

 One of the goals of GERM is to ensure that applications with similar requirements 

get similar share of GPU time. One of the ways of measuring fairness is to look at Frames 

per second (fps) of an application. If an application renders at F fps when running alone, 

then the time to render a single frame is 1/F seconds. If this application then runs at f fps 

when running along with other applications, then the GPU time consumed by this 

application is f/F seconds. One could then look at the maximum variation in GPU times 

consumed by a set of applications to measure fairness. Lesser variation implies better 

fairness. A more accurate measure of GPU time consumed can be obtained from within 

GERM. Note that we need to measure command group execution times in our scheduling 

algorithm. By summing up these command group execution times, we can obtain the 

overall GPU time consumption of a process. To obtain these times, the execution time 

statistics of the set of active applications are exported through the /proc interface. These 

statistics are then used to determine fairness. 

 GERM is built on top of DRI. This was done to avoid major changes in the 

graphics driver architecture. But this adds an overhead to applications running on GERM. 

To measure this overhead, we run multiple instances of the same application on DRI and 

run the same instances on GERM. We observe the change in frame rate (fps) in these 

experiments. The difference in frame rate can be considered as the overhead associated 

with GERM.  

 It would be interesting to see the accuracy of command group estimation 

heuristics used in GERM. This is important because the effectiveness of the deficit round 
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robin algorithm depends on accurate estimation. For each type of heuristic, we print the 

estimated time of a command group based on that heuristic and the actual time consumed 

to get an idea of its accuracy. The following sections discuss each of the above 

evaluations in detail. 

  

6.2      Fairness 
 

Fairness is the main goal of GERM. We define fairness in the following way – if 

t[i] is the GPU time consumed by process “i” in a set of n competing processes, tmax and 

tmin are maximum and minimum GPU times consumed by processes in the application 

mix, then the following formula gives a measure of fairness (Utime) for the application 

mix -  

 

   Utime = (tmax – tmin) / ∑t[i] 

  

Note that a higher value of Utime indicates lower actual fairness.  The statistics 

on the GPU time consumed by the current set of processes is available through a /proc 

interface exposed by GERM. The experiments to measure fairness were conducted over a 

2 to 5 second period. The applications used for experiments are described in the next sub-

section. 

 

6.2.1      Test Applications 
 

 Mesa provides demo programs along with the OpenGL library. We have used these 

applications in our evaluation. But there aren’t any GPGPU programs that run on ATI 

r200 GPU. So, we have written a string comparison program and a matrix multiplication 

program using the ATI_fragment_shader extension [13]. This extension provides 

assembly-like instructions to add, subtract and multiply 8 bit numbers. The fragment 

shader cannot access arbitrary memory locations in the GPU. It can only access the 

texture data mapped to the current pixel being processed. For simplicity, we map textures 

such that there is a one-to-one mapping between texture elements and pixels in the 

drawing area. So, to represent a 100x100 matrix, we have a 100x100 texture array 

mapped to 100x100 pixel drawing canvas. The fragment program code is executed for 

each pixel in the screen area.  

 To add two 100x100 matrices, the matrices are represented in two textures of size 

100x100. These textures are mapped onto a 100x100 vertex grid with a view-port of size 

100x100 pixels. The fragment program has a single instruction to add two numbers. The 

output matrix can be read by the program using a glReadPixels call.  

 Multiplying two matrices is more complicated. Matrix multiplication involves 

multiplication and addition of numbers in the rows and columns of the matrix. Given the 

one-to-one mapping of texture data and pixels on screen and other limitations (only 6 

texture units, 16 total instructions in the fragment program, no arbitrary memory reads) 

multiplying 2 matrices requires multiple passes on the input data and intermediate 

matrices.  
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6.2.2      Test Results 
 

Table 2 shows the test results of the fairness experiments. The difference in GPU 

time consumed by any 2 processes in the application mix is consistently below 5% which 

meets our goals.  Correct cost estimation is the key to ensuring fairness in our 

implementation. The slightly higher Utime values for matrix multiplication programs 

indicate that for some command groups our estimation was not accurate. These are 

limitations of a measurement approach to cost estimation. More accurate estimation 

would require parsing the GPU commands, which would make the implementation highly 

GPU-specific. 

 

Application Mix Fairness (Utime) 

Gears, Train  0.12% 

Quake 3, Train  0.02% 

Gloss, Gears, Train  0.15% 

3xString Comparison  0.97% 

2xMatrixMul128×128  0.55% 

MatrixMul128×128, String Comparison  1.53% 

MatrixMul128×128, MatrixMul256×256  2.40% 
 

Table 2: Fairness values of different application mixes under GERM 

 

6.3      Overhead measurements 
 

The overhead associated with GERM is from two sources: 

• Context switching: Fine-grained scheduling results in more number of context 

switches. Each context switch requires the state information to be sent to the GPU 

and the GPU execution pipeline to be drained completely of existing commands.  

• Command queues and scheduling: There is an extra copy operation associated 

with storing commands in command queues before they are scheduled to be sent 

to the GPU. This results in an overhead for applications which send a lot of 

commands to the GPU. 

 

6.3.1      Context switching overhead 
  

To measure context switching overhead we used a program that draws 100 

triangles per frame. We modified GERM kernel code to induce N context switches per 

frame. (a single context switch time is too small to measure) Table 3 shows the measured 

frames per second of the application with different number of context switches per frame. 

With this data we can calculate the context switch time to be around 3 micro-seconds. 

With a scheduling quantum of 1ms, there would be roughly 1000 context switches per 
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second with a context switching overhead of 3ms. The overhead of context switches is 

thus less than 0.3% (3ms per second). 

  

Number of Context 

Switches/Frame FPS 

Frame 

Time(1/FPS) 

0 518 0.0019 

500 466 0.0021 

1000 269 0.0037 

2000 143 0.0069 

3000 92 0.0108 

4000 74 0.0135 
 

Table 3: Impact of context switches on observed frame rate. 

 

6.3.2      Scheduling Overhead 
 

To measure scheduler overhead, we ran multiple instances of the same application 

and measured the frames per second (fps) under DRI and under GERM. The difference in 

fps gives the overhead of the scheduler. (We saw in the previous section that the context 

switch overhead is negligible.) Table 4 shows the results for graphics applications and 

Table 5 shows the same for GPGPU applications. From the results we see that for more 

CPU intensive graphics applications like Quake 3, the overhead is higher. This can be 

attributed to the extra copy associated with having the commands in the command 

queues.  

 

Application  

Triangles 

per frame Textures  Frames per second 

                       1x        2x        3x      4x 

Underwater  228 232 DRI             280      140     95      71 

   GERM         256      131     89      68 

   Overhead     8.6%   6.4%  6.3%  4.2% 

Gloss (Mesa 

demo)  566 17 DRI             196      98       66      49 

   GERM         175      87       57      44 

   Overhead     10.7% 11.2% 13.6% 10.2% 

GearTrain (Mesa 

demo)  2800 0 DRI              77.8     39 

   GERM          66.7    32.7 

   Overhead     14.3% 16.2% 

Quake 3  6000 2226 DRI               63.1    30.7     20 

   GERM           49.8     24.9    8.7 

   Overhead      21.1%  18.9% 56.5% 
 

Table 4: Overhead of scheduler (graphics applications). 
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Application  Size of Instance Elapsed time (CPU Mcycles) 

                    1x         2x           3x 

String Comparison   12.2KB DRI           3.54     7.39      11.61 

  GERM      3.57      8.04      12.04 

  Overhead  0.85%   8.79%   3.70% 

Matrix Multiplication   128x128 DRI          11.96    24.43     35.47 

  GERM      12.36    25.5       37.63 

  Overhead   3.34%  4.38%    6.09% 
 

Table 5: Overhead of scheduler (non-graphics applications). 

  

6.4      Accuracy of command group estimation 
 

To measure the accuracy of estimation heuristics, we print the command group 

estimated time and the actual time consumed for each type of heuristic. The heuristics 

related to textures, buffer swaps and vertices are accurate within 0.1% of the actual time 

consumed. The heuristic related to command bytes size is not that accurate, >20% of 

actual time in some cases. This provides a strong case for parsing command groups to 

develop additional heuristics. But this requires a better knowledge of the GPU commands 

and architecture. Unfortunately, this information is not available to the general 

development community currently. 
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Chapter 7  
 

Conclusion and Future Work 
 

 

 

In this thesis, we address the issue of fairness among applications using the GPU. 

To solve this problem we adapt the deficit round robin algorithm to schedule commands 

to the GPU. As part of our prototype, we create per-process command queues in the 

kernel and implement fine-grained scheduling by doing away with hardware locks and 

have the scheduler handle context switches. We also develop heuristics for estimation of 

GPU command costs. The content of a command group determines its cost. We use a 

measurement based approach to determine the coefficients or average cost of a command 

group for a specific type of command. We then use these coefficients to determine the 

cost of future command groups. Estimation allows us to implement the deficit round 

robin algorithm, and ensure fairness among multiple applications.  

The current GERM prototype implemented for ATI r200 GPU ensures GPU time 

variance of less than 5% among competing applications. The overhead of the scheduler is 

less than 10% for less CPU intensive graphics applications and GPGPU applications. For 

high-end graphics applications, the overhead is higher because of the additional copy 

involved in maintaining per-process command queues in the kernel.   

 Going forward, the GERM prototype can be ported to newer GPUs. These GPUs 

might provide better feedback (interrupts) to the CPU on completion of command groups 

thus resulting in a more accurate time measurement of command group execution. ATI 

recently released an open-source driver [14] for the R500 GPUs and also made the GPU   

specification public [15]. Though the driver is still very basic, this is an important step in 

opening up GPU architectures, which would result in better graphics drivers on Linux.  

 In hindsight, the extra copy associated with maintaining command queues could 

become a bottleneck if GERM is used for running multiple graphics applications 

(games). This extra copy can be eliminated by a complete re-design of the user level and 

kernel level drivers with focus on command buffer management.    

 One aspect we have not explored in this thesis is that of texture memory 

management. As we have seen in command group estimation, texture dispatch is costly. 

There could be a situation where sharing textures between programs is useful. For 

example, we have two instances of the same program running and they access the same 

texture. Currently, if there is not enough video memory, existing textures need to be 

swapped out of video memory and new textures brought in. This is a waste of memory 

bandwidth if the two textures are the same. Schemes can be developed to recognize this 

situation and provide ways to share textures when possible.  
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